Sample records for extraterrestrial intelligence seti

  1. The Scientific Search for Extraterrestrial Intelligence: a Sociological Analysis.

    NASA Astrophysics Data System (ADS)

    Romesberg, Daniel Ray

    1992-01-01

    This study examines the search for extraterrestrial intelligence, as it has been conducted by scientists over the past century. The following questions are explored: (1) What are the historical patterns of American scientific interest in extraterrestrial intelligence? From a sociology of science perspective, how can these patterns of interest be explained? (2) Who are the most prominent scientists involved in SETI? What are their academic backgrounds? (3) How has the rather exotic idea of extraterrestrial intelligence managed to penetrate the realm of respectable science?. In order to measure the historical fluctuations of scientific interest in extraterrestrial intelligence, a frequency distribution of relevant articles published in American scientific journals over the past century has been constructed. The core scholars of the "extraterrestrial" field have been determined via citation analysis, in a selected portion of the scientific literature. An analysis of recent scientific literature on the Search for Extraterrestrial Intelligence (SETI) has revealed a number of tactics of legitimation and de-legitimation used by SETI proponents, as well as opponents. This study has generated the following findings: (1) Historically, there are three factors which tend to stimulate general scientific interest in extraterrestrial intelligence: First, the strong demonstration of the plausibility of extraterrestrial intelligence, or life, especially in a tangible, and therefore studiable location. Scientific laboratories are primary agents of plausibility here. Second, the organized political activity of SETI scientists. Third, the availability of government funding for searches for extraterrestrial intelligence, or life. (2) Statistically, the leading scholars of modern SETI are Sagan, Drake and Morrison. The field itself tends to be dominated by astronomers and physicists. (3) Because SETI has no concrete data, and is easily stigmatized as an illegitimate scientific activity, it must engage in an intense campaign of scientific legitimation. Most importantly, SETI scientists must try to resemble scientists who are engaged in "normal," respectable scientific activities. (4) The sociological study of SETI's history demonstrates the strengths and limits of the constructivist and realist approaches to the sociology of science. It suggests that sociological analyses of science should attempt to incorporate both analytical perspectives.

  2. Do potential SETI signals need to be decontaminated?

    NASA Astrophysics Data System (ADS)

    Carrigan, Richard A., Jr.

    2006-01-01

    Biological contamination from space samples is a remote but accepted possibility. Signals received by searches for extraterrestrial intelligence (SETI) could also contain harmful information in the spirit of a computer virus, the so-called "SETI Hacker" hypothesis. Over the last four decades extraterrestrial intelligence searches have given little consideration to this possibility. Some argue that information in an extraterrestrial signal could not attack a terrestrial computer because the computer logic and code is idiosyncratic and constitutes an impenetrable firewall. Suggestions are given on how to probe these arguments. Measures for decontaminating extraterrestrial intelligence signals (ETI) are discussed. Modifications to the current SETI detection protocol may be appropriate. Beyond that, the potential character of ETI message content requires much broader discussion.

  3. The Search for Extraterrestrial Intelligence (SETI)

    NASA Astrophysics Data System (ADS)

    Tarter, Jill

    The search for evidence of extraterrestrial intelligence is placed in the broader astronomical context of the search for extrasolar planets and biomarkers of primitive life elsewhere in the universe. A decision tree of possible search strategies is presented as well as a brief history of the search for extraterrestrial intelligence (SETI) projects since 1960. The characteristics of 14 SETI projects currently operating on telescopes are discussed and compared using one of many possible figures of merit. Plans for SETI searches in the immediate and more distant future are outlined. Plans for success, the significance of null results, and some opinions on deliberate transmission of signals (as well as listening) are also included. SETI results to date are negative, but in reality, not much searching has yet been done.

  4. Mutual help in SETIs

    NASA Astrophysics Data System (ADS)

    Melia, F.; Frisch, D. H.

    1985-06-01

    Techniques to establish communication between earth and extraterrestrial intelligent beings are examined analytically, emphasizing that the success of searches for extraterrestrial intelligence (SETIs) depends on the selection by both sender and receiver of one of a few mutually helpful SETI strategies. An equation for estimating the probability that an SETI will result in the recognition of an ETI signal is developed, and numerical results for various SETI strategies are presented in tables. A minimum approach employing 10 40-m 20-kW dish antennas for a 30-yr SETI in a 2500-light-year disk is proposed.

  5. Strategic considerations in SETI, and a microwave approach. [Search for ExtraTerrestrial Intelligence

    NASA Technical Reports Server (NTRS)

    Seeger, C. L.

    1977-01-01

    Plausible options in the search for extraterrestrial intelligence (SETI), and the need to reserve a suitable portion of the EM (microwave) spectrum for SETI research, are discussed. Reasons for selection of a portion of the spectrum, specifically the 'water hole' near 1.5 GHz in the terrestrial microwave window (1-25 GHz), are presented, and competition with various emitters for that band (existing satellite downlink transmissions) is discussed. SETI search policies and options are summarized in a table. Speculative considerations guiding initial phases of the SETI pursuit are discussed.

  6. Imaging the Alien - The Portrayal of Extraterrestrial Intelligence and SETI in Science Fiction

    NASA Astrophysics Data System (ADS)

    Baxter, S.

    Concepts of extraterrestrial intelligence as explored in science fiction are reviewed. In particular, modern fiction based on the scenarios envisaged in SETI methodologies is described. The intention is to help make this work accessible to specialists such as the SETI and astrobiology communities. While SF is primarily fiction and is meant to entertain, the more thoughtful of such works may serve as a bank of thought experiments to assist in the development of future SETI strategies and policies.

  7. SETI: Spreading the net

    NASA Astrophysics Data System (ADS)

    Carstairs, Ian R.

    2002-12-01

    Ian R Carstairs reports on efforts to extend the search for extraterrestrial intelligence to X and γ-ray regions. Traditional Search for Extra-Terrestrial Intelligence (SETI) strategies have used radio, microwave and, to a limited extent, optical searches. But this ignores the higher energy X and γ-ray regions that a technologically advanced extraterrestrial civilization might use to attract our attention - using messages encoded in discrete photon-counting exchange, much like the signals seen from pulsars. Here, the methods used in high-energy pulsar detection and analysis are reviewed and applied to this new SETI initiative.

  8. L factor: hope and fear in the search for extraterrestrial intelligence

    NASA Astrophysics Data System (ADS)

    Rubin, Charles T.

    2001-08-01

    The L factor in the Drake equation is widely understood to account for most of the variance in estimates of the number of extraterrestrial intelligences that might be contacted by the search for extraterrestrial intelligence (SETI). It is also among the hardest to quantify. An examination of discussions of the L factor in the popular and technical SETI literature suggests that attempts to estimate L involve a variety of potentially conflicting assumptions about civilizational lifespan that reflect hopes and fears about the human future.

  9. Searching for extraterrestrial intelligence - The ultimate exploration

    NASA Technical Reports Server (NTRS)

    Black, D.; Tarter, J.; Cuzzi, J. N.; Conners, M.; Clark, T. A.

    1977-01-01

    A survey highlighting the central issues of the SETI program (Search for Extraterrestrial Intelligence), including its rationale, scope, search problems, and goals is presented. Electromagnetic radiation is suggested as the most likely means via which knowledge of extraterrestrial intelligence will be obtained, and the variables governing these signals are discussed, including: signal frequency and polarization, state, possible coordinates, and signal duration. The modern history of SETI and NASA's involvement is briefly reviewed, and the search strategies used by the Jet Propulsion Laboratory and the Ames Research Center are discussed and compared. Some of the potential scientific and cultural impacts of the SETI program are mentioned, noting advancements in technological, biological, and chemical research.

  10. The search for extra-terrestrial intelligence.

    PubMed

    Drake, Frank

    2011-02-13

    Modern history of the search for extra-terrestrial intelligence is reviewed. The history of radio searches is discussed, as well as the major advances that have occurred in radio searches and prospects for new instruments and search strategies. Recent recognition that searches for optical and infrared signals make sense, and the reasons for this are described, as well as the equipment and special detection methods used in optical searches. The long-range future of the search for extra-terrestrial intelligence (SETI) is discussed in the context of the history of rapid change, on the cosmic and even the human time scale, of the paradigms guiding SETI searches. This suggests that SETI searches be conducted with a very open mind.

  11. Extraterrestrial Life

    NASA Technical Reports Server (NTRS)

    Klein, M. J.

    1993-01-01

    Extraterrestrial Intelligence is intelligent life that developed somewhere other than the earth. Such life has not yet been discovered. However, scientific research, including astronomy, biology, planetary science and studies of fossils here on earth have led many scientists to conclude that such life may exist on planets orbiting at least some of the hundreds of billions of stars in our Milky Way Galaxy. Today, some researchers are trying to find evidence for extraterrestrial intelligence. This effort is often called SETI, which stands for Search for Extraterrestrial Intelligence. SETI researchers decided that looking for evidence of their technology might be the best way to discover other intelligent life in the Galaxy. They decided to use large radio telescopes to search the sky over a wide range of radio frequencies...

  12. Anthropological Contributions to the Search for Extraterrestrial Intelligence

    NASA Astrophysics Data System (ADS)

    Vakoch, D. A.

    2009-12-01

    Three recent annual conferences of the American Anthropological Association (AAA) have included symposia on the Search for Extraterrestrial Intelligence (SETI). This paper reviews these symposia, which dealt with themes associated with the overarching AAA conference themes for each year: in 2004, the SETI session addressed Anthropology, Archaeology, and Interstellar Communication: Science and the Knowledge of Distant Worlds; in 2005, it dealt with Historical Perspectives on Anthropology and SETI; and in 2006, the session examined Culture, Anthropology, and SETI. Among the topics considered in these symposia were analogues for contact with extraterrestrial intelligence (ETI), examining anthropologists’ experience in the field encountering other cultures-past and present. Similarly, the methodologies of archaeologists provide analogies for making contact with temporally distant civilizations, based on reconstructions from fragmentary information. Case studies helped make such analogies concrete in the symposia. The challenges of comprehending intelligences with different mental worlds was explored through a study of the meetings of Neanderthals and Homo sapiens, for example, while the decryption of Mayan hieroglyphics provided lessons on understanding others of own species.

  13. Risk and value analysis of SETI

    NASA Technical Reports Server (NTRS)

    Billingham, J.

    1990-01-01

    This paper attempts to apply a traditional risk and value analysis to the Search for Extraterrestrial Intelligence--SETI. In view of the difficulties of assessing the probability of success, a comparison is made between SETI and a previous search for extraterrestrial life, the biological component of Project Viking. Our application of simple Utility Theory, given some reasonable assumptions, suggests that SETI is at least as worthwhile as the biological experiment on Viking.

  14. Risk and value analysis of SETI.

    PubMed

    Billingham, J

    1990-01-01

    This paper attempts to apply a traditional risk and value analysis to the Search for Extraterrestrial Intelligence--SETI. In view of the difficulties of assessing the probability of success, a comparison is made between SETI and a previous search for extraterrestrial life, the biological component of Project Viking. Our application of simple Utility Theory, given some reasonable assumptions, suggests that SETI is at least as worthwhile as the biological experiment on Viking.

  15. Search for extraterrestrial intelligence (SETI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, P.; Billingham, J.; Wolfe, J.

    1977-01-01

    Findings are presented of a series of workshops on the existence of extraterrestrial intelligent life and ways in which extraterrestrial intelligence might be detected. The coverage includes the cosmic and cultural evolutions, search strategies, detection of other planetary systems, alternate methods of communication, and radio frequency interference. 17 references. (JFP)

  16. [An encounter with extraterrestrial intelligence].

    PubMed

    Hisabayashi, Hisashi

    2003-12-01

    It is much easier to find extraterrestrial intelligence than to detect simple organisms living on other planets. However, it is hard to communicate with such intelligence without the mutual understanding of inter-stellar communication protocol. The radio SETI (The Search for Extra-Terrestrial Intelligence) was initiated with the pioneering work of F. Drake in 1960, one year after the historical SETI paper by Cocconi and Morrison. This talk explains that SETI evolves with two bases of science; the understanding of our universe and the development of technology. Since SETI has had strong connection with radio astronomy from its early beginning, the impacts of radio astronomical findings and technological breakthrough can be seen in many aspects of the SETI history. Topics of this talk include the detection of microwave 3 K background radiation in the universe. Interstellar atomic and molecular lines found in radio-wave spectra provide the evidence of pre-biotic chemical evolution in such region. Radio telescope imaging and spectral technique are closely associated with methodology of SETI. Topics of the talk extend to new Allen Telescope Array and projected Square Kilometer Array. Recent optical SETI and the discoveries of extra solar planets are also explained. In the end, the recent understanding of our universe is briefly introduced in terms of matter, dark matter and dark energy. Even our understanding of the universe has been evolutionarily revolved and accumulated after 1960, we must recognize that our universe is still poorly understood and that astronomy and SETI are required to proceed hand in hand.

  17. The Search for Extraterrestrial Intelligence in the 1960s: Science in Popular Culture

    NASA Astrophysics Data System (ADS)

    Smith, Sierra

    2012-01-01

    Building upon the advancement of technology during the Second World War and the important scientific discoveries which have been made about the structure and components of the universe, scientists, especially in radio astronomy and physics, began seriously addressing the possibility of extraterrestrial intelligence in the 1960s. The Search for Extraterrestrial Intelligence (SETI) quickly became one of the most controversial scientific issues in the post Second World War period. The controversy played out, not only in scientific and technical journals, but in newspapers and in popular literature. Proponents for SETI, including Frank Drake, Carl Sagan, and Philip Morrison, actively used a strategy of engagement with the public by using popular media to lobby for exposure and funding. This paper will examine the use of popular media by scientists interested in SETI to popularize and heighten public awareness and also to examine the effects of popularization on SETI's early development. My research has been generously supported by the National Radio Astronomy Observatory.

  18. Alien Mindscapes-A Perspective on the Search for Extraterrestrial Intelligence.

    PubMed

    Cabrol, Nathalie A

    2016-09-01

    Advances in planetary and space sciences, astrobiology, and life and cognitive sciences, combined with developments in communication theory, bioneural computing, machine learning, and big data analysis, create new opportunities to explore the probabilistic nature of alien life. Brought together in a multidisciplinary approach, they have the potential to support an integrated and expanded Search for Extraterrestrial Intelligence (SETI (1) ), a search that includes looking for life as we do not know it. This approach will augment the odds of detecting a signal by broadening our understanding of the evolutionary and systemic components in the search for extraterrestrial intelligence (ETI), provide more targets for radio and optical SETI, and identify new ways of decoding and coding messages using universal markers. SETI-Astrobiology-Coevolution of Earth and life-Planetary habitability and biosignatures. Astrobiology 16, 661-676.

  19. SETI and the media: Views from inside and out

    NASA Astrophysics Data System (ADS)

    Tarter, Donald E.

    Results are presented from a detailed questionnaire sent to members of the international SETI (Search for Extraterrestrial Intelligence) community and the international science media. Both groups are compared on the following dimensions: perceived importance of SETI, perceived level of information about SETI available to the media and public, perceived credibility of SETI, and attitudes toward information policy options to govern an announcement of a SETI discovery. The results indicate that SETI is perceived to be an extremely important endeavor, but it enjoys only marginal credibility among the public and the SETI community's professional constituencies. Both the SETI community and the media agree that an erroneous announcement of a discovery of extraterrestrial intelligence could be very damaging. In order to minimize the dangers of false announcement and to bring a degree of order to SETI, a scientific protocol agreement and the establishment of a contact verification committee have been recommended. Both received endorsement from the SETI community and the international science media. The science media feels that from its viewpoint, a contact verification committee would be a more effective way of assuring accurate information about SETI programs and discoveries.

  20. Searching for Good Science - The Cancellation of NASA's SETI Program

    NASA Astrophysics Data System (ADS)

    Garber, S. J.

    On Columbus Day, 1992, the National Aeronautics and Space Administration (NASA) formally initiated a radio astronomy program called SETI (Search for Extraterrestrial Intelligence). Less than a year later, Congress abruptly canceled the program. Why? While there was and still is a debate over the likelihood of finding intelligent extraterrestrial life, virtually all informed parties agreed that the SETI program constituted worthwhile, valid science. Yet, fervor over the federal budget deficit, lack of support from other scientists and aerospace contractors and a significant history of unfounded associations with nonscientific elements combined with bad timing in fall 1993 to make the program an easy target to eliminate. Thus SETI was a relative anomaly in terms of a small, scientifically valid program that was canceled for political expediency.

  1. The SERENDIP 2 SETI project: Current status

    NASA Technical Reports Server (NTRS)

    Bowyer, C. S.; Werthimer, D.; Donnelly, C.; Herrick, W.; Lampton, M.

    1991-01-01

    Over the past 30 years, interest in extraterrestrial intelligence has progressed from philosophical discussion to rigorous scientific endeavors attempting to make contact. Since it is impossible to assess the probability of success and the amount of telescope time needed for detection, Search for Extraterrestrial Intelligence (SETI) Projects are plagued with the problem of attaining the large amounts of time needed on the world's precious few large radio telescopes. To circumvent this problem, the Search for Extraterrestrial Radio Emissions from Nearby Developed Intelligent Populations (SERENDIP) instrument operates autonomously in a piggyback mode utilizing whatever observing plan is chosen by the primary observer. In this way, large quantities of high-quality data can be collected in a cost-effective and unobtrusive manner. During normal operations, SERENDIP logs statistically significant events for further offline analysis. Due to the large number of terrestrial and near-space transmitters on earth, a major element of the SERENDIP project involves identifying and rejecting spurious signals from these sources. Another major element of the SERENDIP Project (as well as most other SETI efforts) is detecting extraterrestrial intelligence (ETI) signals. Events selected as candidate ETI signals are studied further in a targeted search program which utilizes between 24 to 48 hours of dedicated telescope time each year.

  2. Search for Extraterrestrial Intelligence (SETI)

    NASA Technical Reports Server (NTRS)

    Billingham, John

    1993-01-01

    Various aspects of project SETI are discussed. Some of the topics discussed include spectrum analyzers, signal processing, sky surveys, radiotelescopes, high resolution microwave survey, Deep Space Network, and signal detection.

  3. Alien Mindscapes—A Perspective on the Search for Extraterrestrial Intelligence

    NASA Astrophysics Data System (ADS)

    Cabrol, Nathalie A.

    2016-09-01

    Advances in planetary and space sciences, astrobiology, and life and cognitive sciences, combined with developments in communication theory, bioneural computing, machine learning, and big data analysis, create new opportunities to explore the probabilistic nature of alien life. Brought together in a multidisciplinary approach, they have the potential to support an integrated and expanded Search for Extraterrestrial Intelligence (SETI1), a search that includes looking for life as we do not know it. This approach will augment the odds of detecting a signal by broadening our understanding of the evolutionary and systemic components in the search for extraterrestrial intelligence (ETI), provide more targets for radio and optical SETI, and identify new ways of decoding and coding messages using universal markers.

  4. Responsibility, capability, and Active SETI: Policy, law, ethics, and communication with extraterrestrial intelligence

    NASA Astrophysics Data System (ADS)

    Vakoch, Douglas A.

    2011-02-01

    With recently growing interest in the Active Search for Extraterrestrial Intelligence (SETI), in which humankind would send intentional signals to extraterrestrial civilizations, there have been increased concerns about appropriate policy, as well as the role of space law and ethics in guiding such activities. Implicit in these discussions are notions of responsibility and capability that affect judgments about whether humans or other civilizations should initiate transmissions. Existing protocols that guide SETI research address transmissions from Earth, but there is debate over whether these guidelines should inform de novo transmissions as well. Relevant responsibilities to address include (1) looking out for the interests of humankind as a whole, (2) being truthful in interstellar messages, and (3) benefiting extraterrestrial civilizations. Our capabilities as a species and a civilization affect how well we can fulfill responsibilities, as seen when we consider whether we will be able to reach consensus about message contents (and whether that would be desirable), and whether we have the capacity to decode messages from beings that rely on different sensory modalities. The interplay of these responsibilities and capabilities suggests that humankind should place increased emphasis on Active SETI.

  5. Positive consequences of SETI before detection

    NASA Astrophysics Data System (ADS)

    Tough, A.

    Even before a signal is detected, six positive consequences will result from the scientific search for extraterrestrial intelligence, usually called SETI. (1) Humanity's self-image: SETI has enlarged our view of ourselves and enhanced our sense of meaning. Increasingly, we feel a kinship with the civilizations whose signals we are trying to detect. (2) A fresh perspective: SETI forces us to think about how extraterrestrials might perceive us. This gives us a fresh perspective on our society's values, priorities, laws and foibles. (3) Questions: SETI is stimulating thought and discussion about several fundamental questions. (4) Education: some broad-gage educational programs have already been centered around SETI. (5) Tangible spin-offs: in addition to providing jobs for some people, SETI provides various spin-offs, such as search methods, computer software, data, and international scientific cooperation. (6) Future scenarios: SETI will increasingly stimulate us to think carefully about possible detection scenarios and their consequences, about our reply, and generally about the role of extraterrestrial communication in our long-term future. Such thinking leads, in turn, to fresh perspectives on the SETI enterprise itself.

  6. The art and science of interstellar message composition: a report on international workshops to encourage multidisciplinary discussion

    NASA Astrophysics Data System (ADS)

    Vakoch, Douglas A.

    2011-02-01

    Throughout the history of the Search for Extraterrestrial Intelligence (SETI), there has been widespread recognition of the profound societal implications of detecting intelligence beyond Earth. At the SETI Institute, interstellar message construction serves as the focus of a multidisciplinary attempt to prepare for the cultural impact of signal detection and the critical events that would follow. Interstellar message construction at the SETI Institute builds upon the recommendations of the 1991-1992 Workshops on the Cultural Aspects of SETI, while also exploring opportunities for multidisciplinary contributions on new topics. Through a series of international workshops in Toulouse, Paris, Zagreb, Washington, and Bremen, the SETI Institute and partner organizations have fostered broad-based discussion about some of the most important decisions that would follow detection of extraterrestrial intelligence, including "should we reply?" and if so, " what should we say, and how might we say it?". Several of the themes addressed at these workshops will be highlighted, including the relationship between art and science in designing messages, the value of interactive messages, and the importance of better understanding the nature of language.

  7. The Search for Extra-Terrestrial Intelligence

    NASA Astrophysics Data System (ADS)

    Tarter, J.

    1998-12-01

    Aliens abound on the movie screens, but in reality we are still trying to find out if we share our universe with other sentient creatures. Intelligence is very difficult to define, and impossible to directly detect over interstellar distances. Therefore, SETI, the search for extraterrestrial intelligence, is actually an attempt to detect evidence of another distant technology. If we find such evidence, we will infer the existence of intelligent technologists. For the past 36 years, the SETI community has had a very pragmatic definition of intelligence - the ability to build radio telescopes! Radio signals are not the only possible way to detect a technology across the vast distances that separate the stars, but given our own current technological state, it remains the best way.

  8. We are alone in our Galaxy

    NASA Astrophysics Data System (ADS)

    Tipler, F. J.

    1982-10-01

    An assessment is presented of the probability of the existence of intelligent extraterrestrial life in view of biological evolutionary constraints, in order to furnish some perspective for the hopes and claims of search of extraterrestrial intelligence (SETI) enthusiasts. Attention is given to a hypothetical extraterrestrial civilization's exploration/colonization of interstellar space by means of von Neumann machine-like, endlessly self-replicating space probes which would eventually reach the planetary systems of all stars in the Galaxy. These probes would be able to replicate the biology of their creator species, upon reaching a hospitable planet. It is suggested that the fundamental technological feasibility of such schemes, and their geometrically progressive comprehension of the Galaxy, would make actual colonization of the earth by extraterrestrials so probable as to destroy the hopes of SETI backers for occasional contact.

  9. The Search for Extraterrestrial Intelligence.

    ERIC Educational Resources Information Center

    Jones, Barrie W.

    2003-01-01

    Traces the efforts of Searching for Extraterrestrial Technological Intelligence (SETI) since 1960 when a radio-telescope was used to see if any messages were being sent from the vicinity of two nearby stars. Describes attempts to detect microwave/optical signals and technological modification of the cosmic environment. (Author/KHR)

  10. Wideband waveguide polarizer development for SETI

    NASA Technical Reports Server (NTRS)

    Lee, P.; Stanton, P.

    1991-01-01

    A wideband polarizer for the Deep Space Network (DSN) 34 meter beam waveguide antenna is needed for the Search for Extraterrestrial Intelligence (SETI) project. The results of a computer analysis of a wideband polarizer are presented.

  11. Hello Out There.

    ERIC Educational Resources Information Center

    Giberson, Karl; Brown, Laura

    1997-01-01

    Presents an activity that begins with a discussion that leads into the rationale behind the techniques used in the Search for Extraterrestrial Intelligence (SETI) program. Students decode a message intended for extraterrestrials and consider a number of topics related to the possible existence of extraterrestrials. (DDR)

  12. OAST Space Theme Workshop. Volume 2: Theme summary. 3: Search for extraterrestrial intelligence (no. 9). A: Theme statement. B. 26 April 1976 presentation. C. Summary. D. Newer initiatives (form 4). E. Initiative actions (form 5)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Preliminary (1977-1983), intermediate (1982-1988), and long term (1989+) phases of the search for extraterrestrial intelligence (SETI) program are examined as well as the benefits to be derived in radioastronomy and the problems to be surmounted in radio frequency interference. The priorities, intrinsic value, criteria, and strategy for the search are discussed for both terrestrial and lunar-based CYCLOPS and for a space SETI system located at lunar liberation point L4. New initiatives related to antenna independent technology, multichannel analyzers, and radio frequency interference shielding are listed. Projected SETI program costs are included.

  13. Project Haystack: The Search for Life in the Galaxy.

    ERIC Educational Resources Information Center

    Search for Extraterrestrial Intelligence Inst., Mountain View, CA.

    Produced by the Search for Extraterrestrial Intelligence (SETI), Project Haystack presents scenarios that depict various aspects of the search for extraterrestrial intelligence. Students conduct hands-on and minds-on activities while exploring what it means to send and receive a message across interstellar distances. Students explore and map vast…

  14. SETI - The search for extraterrestrial intelligence - Plans and rationale

    NASA Technical Reports Server (NTRS)

    Wolfe, J. H.; Billingham, J.; Edelson, R. E.; Crow, R. B.; Gulkis, S.; Olsen, E. T.; Oliver, B. M.; Peterson, A. M.

    1981-01-01

    The methodology and instrumentation of a 10 yr search for extraterrestrial intelligence (SETI) program by NASA, comprising 5 yr for instrumentation development and 5 yr for observations, is described. A full sky survey in two polarizations between 1.2 and 10 GHz with resolution binwidths down to 32 Hz, and a two polarization can between 1.2-3 GHz with resolution binwidths down to 1 Hz of 700 nearby solar type stars within 20 light years of earth will extend the sensitivity of previous surveys by 300 times and cover 20,000 times more frequency space. EM signals are perceived as the only means for detecting life outside the solar system, and the SETI effort is driven by the empirical experience that once a physical process has been observed to occur, its occurrence elsewhere is assured. Further discussion is given of the history of searches for life in the Universe, the SETI search strategy, instrumentation, and signal identification.

  15. Alien Mindscapes—A Perspective on the Search for Extraterrestrial Intelligence

    PubMed Central

    2016-01-01

    Abstract Advances in planetary and space sciences, astrobiology, and life and cognitive sciences, combined with developments in communication theory, bioneural computing, machine learning, and big data analysis, create new opportunities to explore the probabilistic nature of alien life. Brought together in a multidisciplinary approach, they have the potential to support an integrated and expanded Search for Extraterrestrial Intelligence (SETI1), a search that includes looking for life as we do not know it. This approach will augment the odds of detecting a signal by broadening our understanding of the evolutionary and systemic components in the search for extraterrestrial intelligence (ETI), provide more targets for radio and optical SETI, and identify new ways of decoding and coding messages using universal markers. Key Words: SETI—Astrobiology—Coevolution of Earth and life—Planetary habitability and biosignatures. Astrobiology 16, 661–676. PMID:27383691

  16. A Parameter Space as an Improved Tool for Investigating Extraterrestrial Intelligence

    NASA Astrophysics Data System (ADS)

    Ashworth, S.

    2014-06-01

    For the past half century the Drake Equation and the Fermi Paradox have provided the intellectual foundation for investigating the possible existence of extraterrestrial intelligence. But both the Equation and the Paradox are flawed and of questionable scientific utility. A replacement needs to be found, based on a different principle, and a parameter space for extraterrestrial intelligence is proposed as an improved tool of thought. This generates six distinct scenarios, whose implications for SETI are discussed.

  17. What ET will look like and why should we care

    NASA Astrophysics Data System (ADS)

    Shostak, Seth

    2010-11-01

    Our experiments to find extraterrestrial life are predicated on the assumption that it is most likely to be found on so-called "habitable worlds." These are planets and moons where surface liquid water exists, and atmospheres of light gases are found. Our searches presume that life on other worlds has a biochemistry at least somewhat similar to our own. While these postulates might be our best guide for finding biology, they could be misleading us in the search for extraterrestrial intelligence (SETI). Timescale arguments suggest that shortly after a sentient species invents the technology for communication, it develops synthetic intelligence. Consequently, SETI's targeted searches of star systems that might have habitable planets in the conventional sense may be chasing a very short-lived prey. In this paper, we discuss what the implications of post-biological intelligence might have in directing our SETI experiments.

  18. Objectives and first results of the NASA SETI sky survey field tests at Goldstone

    NASA Technical Reports Server (NTRS)

    Gulkis, S.; Klein, M. J.; Olsen, E. T.; Crow, R. B.; Gosline, R. M.; Downs, G. S.; Quirk, M. P.; Lokshin, A.; Solomon, J.

    1986-01-01

    Field tests of SETI (Search for Extraterrestrial Intelligence) prototype hardware and software began in March 1985 at Goldstone. With emphasis on the sky survey component of the NASA SETI search strategy, the article describes the survey characteristics, the detection strategy, and preliminary results of system tests.

  19. Back to the future: SETI before the space age

    NASA Astrophysics Data System (ADS)

    Dick, Steven J.

    1995-02-01

    In the late 1890s and early 1900s, before the advent of formalized search for extraterrestrial intelligence (SETI) programs, scientists such as Nikola Tesla and Gulielmo Marconi reported evidence of extraterrestrial radio signals. This paper reviews the history of 'interstellar/interplanetary radio communication'. The investigations of David P. Todd and Donald Menzel are discussed, and the fields of radio communication and radio astronomy are mentioned briefly.

  20. Search for extraterrestrial intelligence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, P.; Billingham, J.; Wolfe, J.

    1979-01-01

    The findings of a series of workshops on the search for extraterrestrial intelligence are presented. The major conclusions of the deliberations are presented. Six of the most interesting and significant elements of the debate are presented in the form of Colloquies. A selection of detailed technical arguments about various aspects of the SETI endeavor is documented. (GHT)

  1. A SETI experiment. [Search for Extra Terrestrial Intelligence

    NASA Technical Reports Server (NTRS)

    Mclaughlin, W. I.

    1986-01-01

    In order to increase the probability of contact in the search for extraterrestrial intelligence (SETI), it has been proposed to search more intensively in certain regions of the electromagnetic spectrum ('the water hole'). The present paper describes a similar narrowing of the search in the time domain. Application of this strategy results in the SETI experiments searching for signals from the Tau Ceti system late in 1986 and early in 1987, and from the Epsilon Eridani system in mid 1988.

  2. Promoting SETI in the UK

    NASA Astrophysics Data System (ADS)

    Penny, Alan

    2013-10-01

    MEETING REPORT What does the UK presently do in the search for extraterrestrial intelligence and what are the plans for the future? Alan Penny reports on a meeting of UK academics active in SETI, held as sessions in the recent National Astronomy Meeting in Scotland - and the formation of the UK SETI Research Network to promote UK academic work.

  3. The Scientific Search for Extraterrestrials

    NASA Astrophysics Data System (ADS)

    Shostack, S.

    2001-05-01

    The premise of intelligent life elsewhere in the cosmos is an old one, but has recently gained new impetus from discoveries that suggest that planets are common and biologically friendly habitats could be plentiful. Since there is some chance that a large number of sentient societies could inhabit the galaxy, a small group of scientists have undertaken the research activity known as SETI, the Search for Extraterrestrial Intelligence. SETI's methods are well founded in both astronomy and engineering: it is an attempt to find technically sophisticated civilizations in situ by looking for narrow-band radio signals or short pulses of laser light from other star systems. The rapid increase in SETI capability gives some reason to expect that a signal detection might occur early in the 21st century. If so, it would demonstrate that the natural processes that have produced intelligence on this planet have spawned functionally similar intelligence elsewhere. This would be further evidence that not only physics and chemistry are universal, but biology and the evolution of intelligence are also cosmic, rather than merely earthly phenomena.

  4. The NASA SETI program

    NASA Technical Reports Server (NTRS)

    Billingham, J.; Brocker, D. H.

    1991-01-01

    In 1959, it was proposed that a sensible way to conduct interstellar communication would be to use radio at or near the frequency of hydrogen. In 1960, the first Search for Extraterrestrial Intelligence (SETI) was conducted using a radiotelescope at Green Bank in West Virginia. Since 1970, NASA has systematically developed a definitive program to conduct a sophisticated search for evidence of extraterrestrial intelligent life. The basic hypothesis is that life may be widespread in the univers, and that in many instances extraterrestrial life may have evolved into technological civilizations. The underlying scientific arguments are based on the continuously improving knowledge of astronomy and astrophysics, especially star system formation, and of planetary science, chemical evolution, and biological evolution. If only one in a million sun-like stars in our galaxy harbors species with cognitive intelligence, then there are 100,000 civilizations in the Milky Way alone. The fields of radioastronomy digital electronic engineering, spectrum analysis, and signal detection have advanced rapidly in the last twenty years and now allow for sophisticated systems to be built in order to attempt the detection of extraterrestrial intelligence signals. In concert with the scientific and engineering communities, NASA has developed, over the last several years, a Microwave Observing Project whose goal is to design, build, and operate SETI systems during the decade of the nineties in pursuit of the goal signal detection. The Microwave Observing Project is now approved and underway. There are two major components in the project: the Target Search Element and the Sky Survey Element.

  5. Inventing Life-Forms: The Creation of an Extraterrestrial Species.

    ERIC Educational Resources Information Center

    Science Activities, 1996

    1996-01-01

    Presents activities in which students play the role of cadets performing missions for the fictitious SETI (Search for Extraterrestrial Intelligence) Academy. Guides students toward an understanding of evolutionary forces and how they are affected by the physical environment. (JRH)

  6. #FoundThem-21st Century pre-search and post-detection seti protocols for social and digital media

    NASA Astrophysics Data System (ADS)

    Forgan, Duncan; Scholz, Alexander

    2016-09-01

    The transmission of news stories in global culture has changed fundamentally in the last three decades. The general public are alerted to breaking stories on increasingly rapid timescales, and the discussion/distortion of facts by writers, bloggers, commenters and Internet users can also be extremely fast. The narrative of a news item no longer belongs to a small cadre of conventional media outlets, but is instead synthesised to some level by the public as they select where and how they consume news. The IAA Search for Extraterrestrial Intelligence (SETI) post-detection protocols, initially drafted in 1989 and updated in 2010, were written to guide SETI scientists in the event of detecting evidence of extraterrestrial intelligence, but do not give guidance as to how scientists should prepare to navigate this media maelstrom. The protocols assume communication channels between scientists and the public still resemble those of 1989, which were specifically one-way with a narrative controlled by a select few media outlets. Modern SETI researchers must consider this modern paradigm for consumption of news by the public, using social media and other non-traditional outlets, when planning and executing searches for extraterrestrial intelligence. We propose additions to the post detection protocols as they pertain to the use of the Internet and social media, as well as pre-search protocols. It is our belief that such protocols are necessary if there is to be a well-informed, sane global conversation amongst the world's citizens following the discovery of intelligent life beyond the Earth.

  7. Efficient computational methods to study new and innovative signal detection techniques in SETI

    NASA Technical Reports Server (NTRS)

    Deans, Stanley R.

    1991-01-01

    The purpose of the research reported here is to provide a rapid computational method for computing various statistical parameters associated with overlapped Hann spectra. These results are important for the Targeted Search part of the Search for ExtraTerrestrial Intelligence (SETI) Microwave Observing Project.

  8. On the design of a postprocessor for a search for extraterrestrial intelligence /SETI/ system

    NASA Technical Reports Server (NTRS)

    Healy, T. J.; Seeger, C. L.; Stull, M. A.

    1979-01-01

    The design of an on-line postprocessor for a search for extraterrestrial intelligence (SETI) system is described. Signal processing tasks of the postprocessor include: (1) analysis of power level, phase coherence, and state of polarization of single-channel signals in a search for significant signals; (2) grouping or aggregation of adjacent channel data, time averaging of data; and (3) the detection of drifting and modulated signals. Control functions include multichannel spectrum analyzer frequency and clock control, system calibration and selfdiagnostic, control of data flow to and from short-term and long-term (archival) memories, and operation of detection subsystems, such as a visual display and a tunable receiver.

  9. Searching for alien artifacts on the moon

    NASA Astrophysics Data System (ADS)

    Davies, P. C. W.; Wagner, R. V.

    2013-08-01

    The Search for Extraterrestrial Intelligence (SETI) has a low probability of success, but it would have a high impact if successful. Therefore it makes sense to widen the search as much as possible within the confines of the modest budget and limited resources currently available. To date, SETI has been dominated by the paradigm of seeking deliberately beamed radio messages. However, indirect evidence for extraterrestrial intelligence could come from any incontrovertible signatures of non-human technology. Existing searchable databases from astronomy, biology, earth and planetary sciences all offer low-cost opportunities to seek a footprint of extraterrestrial technology. In this paper we take as a case study one particular new and rapidly-expanding database: the photographic mapping of the Moon's surface by the Lunar Reconnaissance Orbiter (LRO) to 0.5 m resolution. Although there is only a tiny probability that alien technology would have left traces on the moon in the form of an artifact or surface modification of lunar features, this location has the virtue of being close, and of preserving traces for an immense duration. Systematic scrutiny of the LRO photographic images is being routinely conducted anyway for planetary science purposes, and this program could readily be expanded and outsourced at little extra cost to accommodate SETI goals, after the fashion of the SETI@home and Galaxy Zoo projects.

  10. Spin-Off Successes of SETI Research at Berkeley

    NASA Astrophysics Data System (ADS)

    Douglas, K. A.; Anderson, D. P.; Bankay, R.; Chen, H.; Cobb, J.; Korpela, E. J.; Lebofsky, M.; Parsons, A.; von Korff, J.; Werthimer, D.

    2009-12-01

    Our group contributes to the Search for Extra-Terrestrial Intelligence (SETI) by developing and using world-class signal processing computers to analyze data collected on the Arecibo telescope. Although no patterned signal of extra-terrestrial origin has yet been detected, and the immediate prospects for making such a detection are highly uncertain, the SETI@home project has nonetheless proven the value of pursuing such research through its impact on the fields of distributed computing, real-time signal processing, and radio astronomy. The SETI@home project has spun off the Center for Astronomy Signal Processing and Electronics Research (CASPER) and the Berkeley Open Infrastructure for Networked Computing (BOINC), both of which are responsible for catalyzing a smorgasbord of new research in scientific disciplines in countries around the world. Futhermore, the data collected and archived for the SETI@home project is proving valuable in data-mining experiments for mapping neutral galatic hydrogen and for detecting black-hole evaporation.

  11. Fermi paradox and alternative strategies for SETI programs - The anthropic principle and the search for close solar analogs

    NASA Astrophysics Data System (ADS)

    Fracassini, Massimo; Pasinetti Fracassini, Laura E.; Pasinetti, Antonio L.

    1988-07-01

    The Anthropic Principle, a new trend of modern cosmology, claims that the origin of life and the development of intelligent beings on the Earth is the result of highly selective biological processes, strictly tuned in the fundamental physical characteristics of the Universe. This principle could account for the failure of some programs of search for extraterrestrial intelligences (SETI) and suggests the search for strict solar analogs as a primary target for SETI strategies. In this connection, the authors have selected 22 solar analogs and discussed their choice.

  12. [Current considerations around the search for extraterrestrial life].

    PubMed

    González de Posada, F

    2000-01-01

    In this paper, the current cosmological topics are considered: a) The fourth centenary celebration of Giordano Bruno's death at the Roman's inquisition stake. This eminent philosopher, based on the Coppernican Revolution, concibed the Cosmos as a infinite universe with innumerable inhabited worlds. He acted on reason to believe not only in extraterrestrial life but in extraterrestrial intelligent life. Here we write a few words in his memory and honour. b) The active project SETI@home in the framework of today's classic program "Search for Extra-Terrestrial Intelligence", by means of the reception of radioelectrical signals. c) Search for extrasolar planets.

  13. At what wavelengths should we search for signals from extraterrestrial intelligence? (SETI/infrared communication/interstellar communication/extraterrestrial intelligence)

    NASA Technical Reports Server (NTRS)

    Townes, C. H.

    1979-01-01

    Searches for extraterrestrial intelligence concentrate on attempts to receive signals in the microwave region, the argument being given that communication occurs there at minimum broadcasted power. Such a conclusion is shown to result only under a restricted set of assumptions. If generalized types of detection are considered, in particular photon detection rather than linear detection alone, and if advantage is taken of the directivity of telescopes at short wavelengths, then somewhat less power is required for communication at infrared wavelengths than in the microwave region. Furthermore, a variety of parameters other than power alone can be chosen for optimization by an extraterrestrial civilization.

  14. SETI in the light of cosmic convergent evolution

    NASA Astrophysics Data System (ADS)

    Flores Martinez, Claudio L.

    2014-11-01

    Theodosius Dobzhansky, one of the founding fathers of the modern evolutionary synthesis, once famously stated that ;nothing makes sense in biology except in the light of evolution;. Here it will be argued that nothing in astrobiology makes sense except in the light of ;Cosmic Convergent Evolution; (CCE). This view of life contends that natural selection is a universal force of nature that leads to the emergence of similarly adapted life forms in analogous planetary biospheres. Although SETI historically preceded the rise of astrobiology that we have witnessed in the recent decade, one of its main tenets from the beginning was the convergence of life on a cosmic scale toward intelligent behavior and subsequent communication via technological means. The question of cultural convergence in terms of symbolic exchange, language and scientific capabilities between advanced interstellar civilizations has been the subject of ongoing debate. However, at the core of the search for extraterrestrial intelligence lies in essence a biological problem since even post-biological extraterrestrial intelligences must have had an origin based on self-replicating biopolymers. Thus, SETI assumes a propensity of the Universe towards biogenesis in accordance with CCE, a new evolutionary concept which posits the multiple emergence of life across the Cosmos. Consequently, we have to wonder about the biophilic properties the Universe apparently exhibits, as well as to try to find an encompassing theory that is able to explain this ;fine-tuning; in naturalistic terms. The aims of this paper are as follows: 1) to emphasize the importance of convergent evolution in astrobiology and ongoing SETI research; 2) to introduce novel and biology-centered cosmological ideas such as the ;Selfish Biocosm Hypothesis; and the ;Evo Devo Universe; as valuable arguments in theorizing about the origin and nature of extraterrestrial intelligence and 3) to synthesize these findings within an emerging post-biological paradigm on which future SETI efforts may be founded.

  15. A lunar base for SETI (Search for Extraterrestrial Intelligence)

    NASA Technical Reports Server (NTRS)

    Oliver, Bernard M.

    1988-01-01

    The possibilities of using lanar based radio antennas in search of intelligent extraterrestrial communications is explored. The proposed NASA search will have two search modes: (1) An all sky survey covering the frequency range from 1 to 10 GHz; and (2) A high sensitivity targeted search listening for signals from the approx. 800 solar type stars within 80 light years of the Sun, and covering 1 to 3 GHz.

  16. Twinkle, Twinkle, Little Laser by Ben Bova

    NASA Astrophysics Data System (ADS)

    Bova, Ben

    2000-03-01

    Radio astronomers have had no success in the search for extraterrestrial intelligence (SETI). Astronomers are now studying the heavens for signals that intelligent beings might send using lasers. Laser lights have the advantage of directionality, monochromaticity, and coherence. This research, called "optical SETI," looks for optical or infrared pulses with detectors that can pick up a broad spectrum of frequencies. By confining the search to stars similar to the Sun, scientists hope to find evidence of life other than ours.

  17. Rise of Intelligence and Culture: A SETI Academy Planet Project.

    ERIC Educational Resources Information Center

    1995

    The possibility of life on other worlds is one of enormous fascination. This book emphasizes how intelligence and culture helped humans form a civilization that now has the technology to detect and communicate with possible extraterrestrial civilizations. Topics discussed include indications and characteristics of intelligence, the evolutionary…

  18. SETI group let by Barney Oliver, John Wolfe and John Billingham (in middle standing) lead a 1976

    NASA Technical Reports Server (NTRS)

    1976-01-01

    SETI group let by Barney Oliver, John Wolfe and John Billingham (in middle standing) lead a 1976 discussion on the best strategies in the Search for Extraterrestrial Intelligence. Joining the discussion are L-R; Charles Seeger, Dario Black, Mary Connors, (Oliver, Wolfe, Billingham) and Larry Lesyna, (seated) Mark Stull.

  19. SETI-3: the Search for ExtraTerrestrial Intelligence. A selection of papers from 1987-1990 Symposia of the International Academy of Astronautics held during the 38th-41st Congress (Brighton, Bangalore, Malaga, Dresden) of the International Astronautical Federation.

    PubMed

    1992-01-01

    This special issue of Acta Astronautica is a compilation of selected papers presented at Review Meetings on SETI at the 1987-1990 International Academy of Astronautics Congresses. Papers are drawn from seven areas: bioastronomical context, SETI technology, SETI searches, radio frequency interferences, possibilities for newer instrumentation, interdisciplinary connections, and public relations. Two papers presented at the Pesek Lecture are included.

  20. Status of the NASA SETI Sky Survey microwave observing project

    NASA Technical Reports Server (NTRS)

    Klein, M. J.; Gulkis, S.; Wilck, H. C.; Olsen, E. T.; Garyantes, M. F.; Burns, D. J.; Asmar, P. R.; Brady, R. B.; Deich, W. T. S.; Renzetti, N. A.

    1992-01-01

    The Sky Survey observing program is one of two complementary strategies that NASA plans to use in its microwave Search for Extraterrestrial Intelligence (SETI). The primary objective of the Sky Survey is to search the entire sky over the frequency range 1000-10,000 MHz for evidence of narrow band signals of extraterrestrial, intelligent origin. Spectrum analyzers with upwards of 10 million channels and data rates in excess of 10 gigabits per second are required to complete the survey in less than 7 years. To lay the foundation for the operational SETI Sky Survey, a prototype system has been built to test and refine real time signal detection algorithms, to test scan strategies and observatory control functions, and to test algorithms designed to reject radio frequency interference. This paper presents a high level description of the prototype hardware and reports on the preparations to deploy the system to the 34-m antenna at the research and development station of NASA's Deep Space Communication Complex, Goldstone, California.

  1. Status of the NASA SETI Sky Survey microwave observing project.

    PubMed

    Klein, M J; Gulkis, S; Wilck, H C; Olsen, E T; Garyantes, M F; Burns, D J; Asmar, P R; Brady, R B; Deich, W T; Renzetti, N A

    1992-01-01

    The Sky Survey observing program is one of two complementary strategies that NASA plans to use in its microwave Search for Extraterrestrial Intelligence (SETI). The primary objective of the Sky Survey is to search the entire sky over the frequency range 1000-10,000 MHz for evidence of narrow band signals of extraterrestrial, intelligent origin. Spectrum analyzers with upwards of 10 million channels and data rates in excess of 10 gigabits per second are required to complete the survey in less than 7 years. To lay the foundation for the operational SETI Sky Survey, a prototype system has been built to test and refine real time signal detection algorithms, to test scan strategies and observatory control functions, and to test algorithms designed to reject radio frequency interference. This paper presents a high level description of the prototype hardware and software and reports on the preparations to deploy the system to the 34-m antenna at the research and development station of NASA's Deep Space Communication Complex, Goldstone, California.

  2. SEARCHING FOR EXTRATERRESTRIAL INTELLIGENCE SIGNALS IN ASTRONOMICAL SPECTRA, INCLUDING EXISTING DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borra, Ermanno F., E-mail: borra@phy.ulaval.ca

    The main purpose of this article is to make astronomers aware that Searches for Extraterrestrial Intelligence (SETIs) can be carried out by analyzing standard astronomical spectra, including those they have already taken. Simplicity is the outstanding advantage of a search in spectra. The spectra can be analyzed by simple eye inspection or a few lines of code that uses Fourier transform software. Theory, confirmed by published experiments, shows that periodic signals in spectra can be easily generated by sending light pulses separated by constant time intervals. While part of this article, like all articles on SETIs, is highly speculative themore » basic physics is sound. In particular, technology now available on Earth could be used to send signals having the required energy to be detected at a target located 1000 lt-yr away. Extraterrestrial Intelligence (ETI) could use these signals to make us aware of their existence. For an ETI, the technique would also have the advantage that the signals could be detected both in spectra and searches for intensity pulses like those currently carried out on Earth.« less

  3. A numerical testbed for hypotheses of extraterrestrial life and intelligence

    NASA Astrophysics Data System (ADS)

    Forgan, D. H.

    2009-04-01

    The search for extraterrestrial intelligence (SETI) has been heavily influenced by solutions to the Drake Equation, which returns an integer value for the number of communicating civilizations resident in the Milky Way, and by the Fermi Paradox, glibly stated as: ‘If they are there, where are they?’. Both rely on using average values of key parameters, such as the mean signal lifetime of a communicating civilization. A more accurate answer must take into account the distribution of stellar, planetary and biological attributes in the galaxy, as well as the stochastic nature of evolution itself. This paper outlines a method of Monte Carlo realization that does this, and hence allows an estimation of the distribution of key parameters in SETI, as well as allowing a quantification of their errors (and the level of ignorance therein). Furthermore, it provides a means for competing theories of life and intelligence to be compared quantitatively.

  4. The recognition of extraterrestrial artificial signals

    NASA Technical Reports Server (NTRS)

    Seeger, C. L.

    1980-01-01

    Considerations in the design of receivers for the detection and recognition of artificial microwave signals of extraterrestrial origin are discussed. Following a review of the objectives of SETI and the probable reception and detection characteristics of extraterrestrial signals, means for the improvement of the sensitivity, signal-to-noise ratios and on-line data processing capabilities of SETI receivers are indicated. The characteristics of the signals likely to be present at the output of an ultra-low-noise microwave receiver are then examined, including the system background noise, terrestrial radiations, astrophysical radiations, accidental artificial radiations of terrestrial origin, and intentional radiations produced by humans and by extraterrestrial intelligence. The classes of extraterrestrial signals likely to be detected, beacons and leakage signals, are considered, and options in the specification of gating and thresholding for a high-spectral resolution, high-time-resolution signal discriminator are indicated. Possible tests for the nonhuman origin of a received signal are also pointed out.

  5. The Ĝ infrared search for extraterrestrial civilizations with large energy supplies. I. Background and justification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, J. T.; Mullan, B.; Sigurdsson, S.

    We motivate the Ĝ infrared search for extraterrestrial civilizations with large energy supplies. We discuss some philosophical difficulties of the search for extraterrestrial intelligence (SETI), and how communication SETI circumvents them. We review 'Dysonian SETI', the search for artifacts of alien civilizations, and find that it is highly complementary to traditional communication SETI; the two together might succeed where either one alone has not. We discuss the argument of Hart that spacefaring life in the Milky Way should be either galaxy-spanning or non-existent, and examine a portion of his argument that we call the 'monocultural fallacy'. We discuss some rebuttalsmore » to Hart that invoke sustainability and predict long Galaxy colonization timescales. We find that the maximum Galaxy colonization timescale is actually much shorter than previous work has found (<10{sup 9} yr), and that many 'sustainability' counter-arguments to Hart's thesis suffer from the monocultural fallacy. We extend Hart's argument to alien energy supplies and argue that detectably large energy supplies can plausibly be expected to exist because life has the potential for exponential growth until checked by resources or other limitations, and intelligence implies the ability to overcome such limitations. As such, if Hart's thesis is correct, then searches for large alien civilizations in other galaxies may be fruitful; if it is incorrect, then searches for civilizations within the Milky Way are more likely to succeed than Hart argued. We review some past Dysonian SETI efforts and discuss the promise of new mid-infrared surveys, such as that of WISE.« less

  6. The Ĝ Infrared Search for Extraterrestrial Civilizations with Large Energy Supplies. I. Background and Justification

    NASA Astrophysics Data System (ADS)

    Wright, J. T.; Mullan, B.; Sigurdsson, S.; Povich, M. S.

    2014-09-01

    We motivate the Ĝ infrared search for extraterrestrial civilizations with large energy supplies. We discuss some philosophical difficulties of the search for extraterrestrial intelligence (SETI), and how communication SETI circumvents them. We review "Dysonian SETI," the search for artifacts of alien civilizations, and find that it is highly complementary to traditional communication SETI; the two together might succeed where either one alone has not. We discuss the argument of Hart that spacefaring life in the Milky Way should be either galaxy-spanning or non-existent, and examine a portion of his argument that we call the "monocultural fallacy." We discuss some rebuttals to Hart that invoke sustainability and predict long Galaxy colonization timescales. We find that the maximum Galaxy colonization timescale is actually much shorter than previous work has found (<109 yr), and that many "sustainability" counter-arguments to Hart's thesis suffer from the monocultural fallacy. We extend Hart's argument to alien energy supplies and argue that detectably large energy supplies can plausibly be expected to exist because life has the potential for exponential growth until checked by resources or other limitations, and intelligence implies the ability to overcome such limitations. As such, if Hart's thesis is correct, then searches for large alien civilizations in other galaxies may be fruitful; if it is incorrect, then searches for civilizations within the Milky Way are more likely to succeed than Hart argued. We review some past Dysonian SETI efforts and discuss the promise of new mid-infrared surveys, such as that of WISE.

  7. New CCIR report on SETI

    NASA Technical Reports Server (NTRS)

    Degroot, N. F.

    1988-01-01

    Since 1978, the reports and recommendations of the Comite Consultatif International des Radiocommunications (CCIR) have included a document describing SETI (the Search for Extraterrestrial Intelligence) in the context of radio frequency management. A new report to replace the old one was adopted by a CCIR study group; both reports were written at JPL. Following introductory and background material, the text of the new report is given.

  8. The Berkeley piggyback SETI program - SERENDIP II. [Search for Extraterrestrial Radio Emission from Nearby Developed Intelligent Populations

    NASA Technical Reports Server (NTRS)

    Bowyer, S.; Werthimer, D.; Lindsay, V.

    1988-01-01

    The SERENDIP (Search for Extraterrestrial Radio Emission from Nearby Developed Intelligent Populations) II system is currently operating at NRAO's 300-ft telescope in Greenbank, WV. The paper reports on the characteristics of this system in combination with this telescope, as well as elements of an off-line analysis program which are intended to identify signals of special interest. The sensitivity and relative probability of acquisition are evaluated.

  9. The Search for Extraterrestrial Intelligence (SETI) and Whether to send 'Messages' (METI): A Case for Conversation, Patience and Due Diligence

    NASA Astrophysics Data System (ADS)

    Brin, D.

    Understanding the controversy over "Messages to Extra Terrestrial Intelligence" or METI requires a grounding in the history and rationale of SETI (Search for ETI). Insights since the turn of the century have changed SETI's scientific basis. Continued null results from the radio search do not invalidate continuing effort, but they do raise questions about long-held assumptions. Modified search strategies are discussed. The Great Silence or Fermi Paradox is appraised, along with the disruptive plausibility of interstellar travel. Psychological motivations for METI are considered. With this underpinning, we consider why a small cadre of SETI-ist radio astronomers have resisted the notion of international consultations before humanity takes a brash and irreversible step into METI, shouting our presence into the cosmos.

  10. Messages from Space: The Solar System and Beyond. Grades 508. Teacher's Guide. Great Explorations in Science (GEMS).

    ERIC Educational Resources Information Center

    Beals, Kevin; Erickson, John; Sneider, Cary

    Building on collaborative work between the Search for Extraterrestrial Intelligence (SETI) Institute and the Lawrence Hall of Science, this curriculum takes advantage of humans' fascination with extraterrestrials to catalyze the study of the solar system and beyond. The unit begins when students attempt to decode a fictitious message from outer…

  11. The Order of the Dolphin: Origins of SETI

    NASA Astrophysics Data System (ADS)

    Temming, Maria; Crider, Anthony

    2016-01-01

    In 1961, the National Academy of Sciences organized a meeting on the search for extraterrestrial intelligence (SETI) at the National Radio Astronomy Observatory in Green Bank, West Virginia. The ten scientists who attended, including future SETI icons such as Frank Drake and Carl Sagan, represented a variety of scientific fields. At the conclusion of the meeting, the attendees adopted the moniker "The Order of the Dolphin," in honor of participant John Lilly's work on interspecies communication. Since this seminal meeting, researchers in each of the attendees' fields have contributed in some way to the search for intelligent life. This study investigates the circumstances that led to each attendee's invitation to Green Bank and explores SETI as the legacy of this meeting. We will focus in this talk on the SETI connections of two attendees, astronomer Otto Struve and physicist Philip Morrison, both in regards to their personal contributions to SETI and the influence of their work on subsequent SETI research. Specifically, we will examine proposals by Otto Struve for exoplanet discovery methods, and Philip Morrison for radio searches that laid the groundwork for modern SETI.

  12. Dysonian Approach to SETI: A Fruitful Middle Ground?

    NASA Astrophysics Data System (ADS)

    Bradbury, R. J.; Cirkovic, M. M.; Dvorsky, G.

    We critically assess the prevailing currents in the Search for Extraterrestrial Intelligence (SETI), embodied in the notion of radio-searches for intentional artificial signals as envisioned by pioneers such as Frank Drake, Philip Morrison, Michael Papagiannis and others. In particular, we emphasize (1) the necessity of integrating SETI into a wider astrobiological and future studies context, (2) the relevance of and lessons to be learnt from the anti-SETI arguments, in particular Fermi's paradox, and (3) a need for complementary approach which we dub the Dysonian SETI. It is meaningfully derived from the inventive and visionary ideas of Freeman J. Dyson and his imaginative precursors, like Konstantin E. Tsiolkovsky, Olaf Stapledon, Nikola Tesla or John B. S. Haldane, who suggested macro-engineering projects as the focal points in the context of extrapolations about the future of humanity and, by analogy, other intelligent species. We consider practical ramifications of the Dysonian SETI and indicate some of the promising directions for future work.

  13. SETI The Search for Extraterrestrial Intelligence.

    ERIC Educational Resources Information Center

    Jones, Barrie W.

    1991-01-01

    Discussed is the search for life on other planets similar to Earth based on the Drake equation. Described are search strategies and microwave searches. The reasons why people are searching are also discussed. (KR)

  14. A SETI Course at University of Western Sydney Macarthur.

    ERIC Educational Resources Information Center

    Bhathal, Ragbir

    1999-01-01

    Describes a course based on the scientific approach to the search for extraterrestrial intelligence. Explores the biological and technological aspects of the search and the social implications of possible contact. (Author/CCM)

  15. Searching for Extraterrestrial Intelligence with the Square Kilometre Array

    NASA Astrophysics Data System (ADS)

    Siemion, A.; Benford, J.; Cheng-Jin, J.; Chennamangalam, J.; Cordes, J. M.; Falcke, H. D. E.; Garrington, S. T.; Garrett, M. A.; Gurvits, L.; Hoare, M.; Korpela, E.; Lazio, J.; Messerschmitt, D.; Morrison, I.; O'Brien, T.; Paragi, Z.; Penny, A.; Spitler, L.; Tarter, J.; Werthimer, D.

    2015-04-01

    The vast collecting area of the Square Kilometre Array (SKA), harnessed by sensitive receivers, flexible digital electronics and increased computational capacity, could permit the most sensitive and exhaustive search for technologically-produced radio emission from advanced extraterrestrial intelligence (SETI) ever performed. For example, SKA1-MID will be capable of detecting a source roughly analogous to terrestrial high-power radars (e.g. air route surveillance or ballistic missile warning radars, EIRP (EIRP = equivalent isotropic radiated power, ~10^17 erg sec^-1) at 10 pc in less than 15 minutes, and with a modest four beam SETI observing system could, in one minute, search every star in the primary beam out to ~100 pc for radio emission comparable to that emitted by the Arecibo Planetary Radar (EIRP ~2 x 10^20 erg sec^-1). The flexibility of the signal detection systems used for SETI searches with the SKA will allow new algorithms to be employed that will provide sensitivity to a much wider variety of signal types than previously searched for. Here we discuss the astrobiological and astrophysical motivations for radio SETI and describe how the technical capabilities of the SKA will explore the radio SETI parameter space. We detail several conceivable SETI experimental programs on all components of SKA1, including commensal, primary-user, targeted and survey programs and project the enhancements to them possible with SKA2. We also discuss target selection criteria for these programs, and in the case of commensal observing, how the varied use cases of other primary observers can be used to full advantage for SETI.

  16. SETI reloaded: Next generation radio telescopes, transients and cognitive computing

    NASA Astrophysics Data System (ADS)

    Garrett, Michael A.

    2015-08-01

    The Search for Extra-terrestrial Intelligence (SETI) using radio telescopes is an area of research that is now more than 50 years old. Thus far, both targeted and wide-area surveys have yet to detect artificial signals from intelligent civilisations. In this paper, I argue that the incidence of co-existing intelligent and communicating civilisations is probably small in the Milky Way. While this makes successful SETI searches a very difficult pursuit indeed, the huge impact of even a single detection requires us to continue the search. A substantial increase in the overall performance of radio telescopes (and in particular future wide-field instruments such as the Square Kilometre Array - SKA), provide renewed optimism in the field. Evidence for this is already to be seen in the success of SETI researchers in acquiring observations on some of the world's most sensitive radio telescope facilities via open, peer-reviewed processes. The increasing interest in the dynamic radio sky, and our ability to detect new and rapid transient phenomena such as Fast Radio Bursts (FRB) is also greatly encouraging. While the nature of FRBs is not yet fully understood, I argue they are unlikely to be the signature of distant extra-terrestrial civilisations. As astronomers face a data avalanche on all sides, advances made in related areas such as advanced Big Data analytics, and cognitive computing are crucial to enable serendipitous discoveries to be made. In any case, as the era of the SKA fast approaches, the prospects of a SETI detection have never been better.

  17. The windows of SETI - Frequency and time in the search for extraterrestrial intelligence

    NASA Technical Reports Server (NTRS)

    Oliver, Bernard M.

    1987-01-01

    Since interstellar travel is not economically possible on the time scale of a human lifetime, communication with extraterrestrials can be achieved only by sending some form of energy or matter across space; photons (electromagnetic waves) are best. Of particular interest to SETI is the region from about 1,000-60,000 MHz known as the free-space microwave window. During the course of NASA's Cyclops program, it was pointed out that the hydrogen and hydroxyl lines bounded a band in which there were no other known lines. The threatened loss of the microwave window to earth-based services is discussed.

  18. A Half-century of SETI Science

    NASA Astrophysics Data System (ADS)

    Shuch, H. Paul

    We begin our journey with a brief review of half a century of SETI science. The material in this introductory chapter is offered for the benefit of those educated laypersons whose enthusiasm for the Search for Extraterrestrial Intelligence exceeds their detailed knowledge of the relevant technologies. It is my hope that readers of this volume will better appreciate the material which follows if they first have a basic understanding of SETI concepts. Hence, I offer an overview, which is intended not to be exhaustive, but rather representative. Together, we will explore the nature of radio telescopes, experimental design strategies, SETI instrumentation, signal analysis, and the hallmarks of artificiality that allow us to differentiate between natural astrophysical emissions and intelligent interstellar transmissions. If you are already a technical specialist in these areas, feel free to bypass this introduction, and proceed directly to the subsequent chapters.

  19. Enlivening Introductory Physics With SETI

    NASA Astrophysics Data System (ADS)

    Hobson, Art

    2001-04-01

    The search for extraterrestrial intelligence (SETI), popular for years in astronomy courses, is also an excellent topic in physics literacy courses. Space travel, relativity, scientific methodology, pseudoscience, and physics-related societal topics can all be taught within the SETI context. Fermi's question (see Kuiper and Brin, Extraterrestrial Civilization, AAPT 1989, p. 67) is especially appropriate. Enrico Fermi, speculating in 1950 on the number of technological civilizations in our galaxy, concluded that we should have been visited long ago and many times over. Thus one might ask, paraphrasing Fermi, "Where is everybody?" Fermi concluded that either interstellar travel is impossible, or is always judged not to be worth the effort, or technological civilization doesn't last long enough for it to happen. Whether one agrees with Fermi or not, the great physicist's third suggestion is a sobering perspective on the sustainability of Earth-based civilization.

  20. At what wavelengths should we search for signals from extraterrestrial intelligence?

    PubMed Central

    Townes, C. H.

    1983-01-01

    It has often been concluded that searches for extraterrestrial intelligence (SETI) should concentrate on attempts to receive signals in the microwave region, the argument being given that communication can occur there at minimum broadcasted power. Such a conclusion is shown to result only under a restricted set of assumptions. If generalized types of detection are considered—in particular, photon detection rather than linear detection alone—and if advantage is taken of the directivity of telescopes at short wavelengths, then somewhat less power is required for communication at infrared wavelengths than in the microwave region. Furthermore, a variety of parameters other than power alone may be chosen for optimization by an extraterrestrial civilization. Hence, while partially satisfying arguments may be given about optimal wavelengths for a search for signals from extraterrestrial intelligence, considerable uncertainty must remain. PMID:16593279

  1. At what wavelengths should we search for signals from extraterrestrial intelligence?

    PubMed

    Townes, C H

    1983-02-01

    It has often been concluded that searches for extraterrestrial intelligence (SETI) should concentrate on attempts to receive signals in the microwave region, the argument being given that communication can occur there at minimum broadcasted power. Such a conclusion is shown to result only under a restricted set of assumptions. If generalized types of detection are considered-in particular, photon detection rather than linear detection alone-and if advantage is taken of the directivity of telescopes at short wavelengths, then somewhat less power is required for communication at infrared wavelengths than in the microwave region. Furthermore, a variety of parameters other than power alone may be chosen for optimization by an extraterrestrial civilization. Hence, while partially satisfying arguments may be given about optimal wavelengths for a search for signals from extraterrestrial intelligence, considerable uncertainty must remain.

  2. On the plurality of inhabited worlds: a brief history of extraterrestrialism

    NASA Astrophysics Data System (ADS)

    Brake, Mark

    2006-10-01

    This paper delineates the cultural evolution of the ancient idea of a plurality of inhabited worlds, and traces its development through to contemporary extraterrestrialism, with its foundation in the physical determinism of cosmology, and its attendant myths of alien contact drawn from examples of British film and fiction. We shall see that, in the evolving debate of the existence of extraterrestrial life and intelligence, science and science fiction have benefited from an increasingly symbiotic relationship. Modern extraterrestrialism has influenced both the scientific searches for extraterrestrial intelligence (SETI), and become one of the most pervasive cultural myths of the 20th century. Not only has pluralism found a voice in fiction through the alien, but fiction has also inspired science to broach questions in the real world.

  3. Teaching Planetary Science as Part of the Search for Extraterrestrial Intelligence (SETI)

    NASA Astrophysics Data System (ADS)

    Margot, Jean-Luc; Greenberg, Adam H.

    2017-10-01

    In Spring 2016 and 2017, UCLA offered a course titled "EPSS C179/279 - Search for Extraterrestrial Intelligence: Theory and Applications". The course is designed for advanced undergraduate students and graduate students in the science, technical, engineering, and mathematical fields. Each year, students designed an observing sequence for the Green Bank telescope, observed known planetary systems remotely, wrote a sophisticated and modular data processing pipeline, analyzed the data, and presented their results. In 2016, 15 students participated in the course (9U, 5G; 11M, 3F) and observed 14 planetary systems in the Kepler field. In 2017, 17 students participated (15U, 2G; 10M, 7F) and observed 10 planetary systems in the Kepler field, TRAPPIST-1, and LHS 1140. In order to select suitable targets, students learned about planetary systems, planetary habitability, and planetary dynamics. In addition to planetary science fundamentals, students learned radio astronomy fundamentals, collaborative software development, signal processing techniques, and statistics. Evaluations indicate that the course is challenging but that students are eager to learn because of the engrossing nature of SETI. Students particularly value the teamwork approach, the observing experience, and working with their own data. The next offering of the course will be in Spring 2018. Additional information about our SETI work is available at seti.ucla.edu.

  4. Dysonian SETI as a "Shortcut" to Detecting Habitable Planets

    NASA Astrophysics Data System (ADS)

    Wright, J. T.

    2016-12-01

    The search for habitable planets is ultimately motivated by the search for inhabited planets. On Earth, the most telling signature of life is that of humanity's technology. The Search for Extraterrestrial Intelligence (SETI) is thus the "ultimate" search for habitable planets.In 1960 two seminal papers in SETI were published, providing two visions for SETI. Giuseppe Cocconi and Philip Morrison's proposed detecting deliberate radio signals ("communication SETI"), while Freeman Dyson ("artifact SETI"), proposed detecting the inevitable effects of massive energy supplies and artifacts on their surroundings. While communication SETI has now had many career-long practitioners and major efforts, artifact SETI has, until recently, not been a vibrant field of study. The launch of the Kepler and WISE satellites have greatly renewed interest in the field, however, and the recent Breakthrough Listen Initiative has provided new motivation for finding good targets for communication SETI. I will discuss the progress of the Ĝ Search for Extraterrestrial Civilizations with Large Energy Supplies, including its justification and motivation, waste heat search strategy and first results, and the framework for a search for megastructures via transit light curves. The last of these led to the identification of KIC 8462852 (a.k.a. "Tabby's Star") as a candidate ETI host. This star, discovered by Boyajian and the Zooniverse Planet Hunters, exhibits several apparently unique and so-far unexplained photometric properties, and continues to confound natural explanation.

  5. Space biology research development

    NASA Technical Reports Server (NTRS)

    Bonting, Sjoerd L.

    1993-01-01

    The purpose of the Search for Extraterrestrial Intelligence (SETI) Institute is to conduct and promote research related activities regarding the search for extraterrestrial life, particularly intelligent life. Such research encompasses the broad discipline of 'Life in the Universe', including all scientific and technological aspects of astronomy and the planetary sciences, chemical evolution, the origin of life, biological evolution, and cultural evolution. The primary purpose was to provide funding for the Principal Investigator to collaborate with the personnel of the SETI Institute and the NASA-Ames Research center in order to plan and develop space biology research on and in connection with Space Station Freedom; to promote cooperation with the international partners in the space station; to conduct a study on the use of biosensors in space biology research and life support system operation; and to promote space biology research through the initiation of an annual publication 'Advances in Space Biology and Medicine'.

  6. The SETI episode in the 1967 discovery of pulsars

    NASA Astrophysics Data System (ADS)

    Penny, Alan John

    2013-09-01

    In the winter of 1967 Cambridge radio astronomers discovered a new type of radio source of such an artificial seeming nature that for a few weeks some members of the group had to seriously consider whether they had discovered an extraterrestrial intelligence. Although their investigations lead them to a natural explanation (they had discovered pulsars), they had discussed the implications if it was indeed an artificial source: how to verify such a conclusion and how to announce it, and whether such a discovery might be dangerous. In this they presaged many of the components of the SETI Detection Protocols and the proposed Reply Protocols which have been used to guide the responses of groups dealing with the detection of an extraterrestrial intelligence. These Protocols were only established some twenty five years later in the 1990s and 2000s. Using contemporary and near-contemporary documentation and later recollections, this paper discusses in detail what happened that winter.

  7. The Impact of the Temporal Distribution of Communicating Civilizations on Their Detectability.

    PubMed

    Balbi, Amedeo

    2018-01-01

    We used a statistical model to investigate the detectability (defined by the requirement that causal contact has been initiated with us) of communicating civilizations within a volume of the Universe surrounding our location. If the civilizations are located in our galaxy, the detectability requirement imposes a strict constraint on their epoch of appearance and their communicating life span. This, in turn, implies that our ability to gather empirical evidence of the fraction of civilizations within range of detection strongly depends on the specific features of their temporal distribution. Our approach illuminates aspects of the problem that can escape the standard treatment based on the Drake equation. Therefore, it might provide the appropriate framework for future studies dealing with the evolutionary aspects of the search for extraterrestrial intelligence (SETI). Key Words: Astrobiology-Extraterrestrial life-SETI-Complex life-Life detection-Intelligence. Astrobiology 18, 54-58.

  8. Ten years of the international review meetings on Communication with Extraterrestrial Intelligence /CETI/

    NASA Technical Reports Server (NTRS)

    Pesek, R.; Billingham, J.

    1981-01-01

    The development of ideas on CETI within the international community over the past five years is reviewed, and the outlook for future CETI activities is discussed. The growth of review sessions on CETI held annually by the International Academy of Astronautics (IAA) is considered, with particular attention given to the issue of radio frequency allocation for the search for extraterrestrial intelligence. CETI activities outside the IAA are then examined, including the Viking search for life on Mars, Project Orion for the detection of extrasolar planetary systems, SETI programs undertaken in the U.S. and Soviet Union, and the development of multispectral spectrum analyzers and signal processors. The expected future development of CETI strategies, techniques and instrumentation as well as popular and scientific interest in SETI are discussed, and it is noted that the IAA sessions remain the only regular international forum for the exchange of data on all aspects of CETI.

  9. SETI science working group report

    NASA Technical Reports Server (NTRS)

    Drake, F.; Wolfe, J. H.; Seeger, C. L.

    1984-01-01

    This report covers the initial activities and deliberations of a continuing working group asked to assist the SETI Program Office at NASA. Seven chapters present the group's consensus on objectives, strategies, and plans for instrumental R&D and for a microwave search for extraterrestrial in intelligence (SETI) projected for the end of this decade. Thirteen appendixes reflect the views of their individual authors. Included are discussions of the 8-million-channel spectrum analyzer architecture and the proof-of-concept device under development; signal detection, recognition, and identification on-line in the presence of noise and radio interference; the 1-10 GHz sky survey and the 1-3 GHz targeted search envisaged; and the mutual interests of SETI and radio astronomy. The report ends with a selective, annotated SETI reading list of pro and contra SETI publications.

  10. From Ozma to Cyclops: The Beginnings of American SETI, 1959-70

    NASA Astrophysics Data System (ADS)

    Sullivan, W. T.

    2002-12-01

    The modern era in SETI (Search for Extraterrstrial Intelligence) began with two independent proposals in the late 1950s. In 1959 Phillip Morrison and Guiseppe Cocconi at Cornell published a short theoretical paper in ``Nature," while simultaneously Frank Drake at the brand-new NRAO in West Virginia developed a receiver for the first radio observations, called Project Ozma. In 1960 Drake monitored two nearby solar-like stars, Tau Ceti and Epsilon Eridani, for several months with a scanning one-channel radiometer at 21-cm on an 85-ft diameter dish. Drake's interest, along with that of his boss Otto Struve, then led to a remarkable small meeting at Green Bank in 1961, at which time the Drake Equation was first put forth as an organizing concept for estimating the possible number of extraterrestrial civilizations. The next milestone was the appearance of ``Intelligent Life in the Universe" by Iosif Shklovsky and Carl Sagan (1966), which widely circulated the idea of SETI. The growth of NASA's exobiology program (although primarily focused on microbial life and the origin of life) throughout the 1960s also legitimized the field and culminated in the Viking mission to Mars in 1976. In 1970 NASA sponsored a large summer workshop charged with the task of designing a feasible radio telescope for SETI. The resulting report, ``Project Cyclops: A Design Study of a System for Detecting Extraterrestrial Intelligent Life" (1971), was the first detailed look at all aspects of the problem, and set the tone for future NASA involvement in SETI. This talk will briefly cover this history, in particular the radio astronomy aspects, and will include a portion of a tape recording of a talk given by Drake in 1960 even as Project Ozma was in progress.

  11. Broadening and Simplifying the First SETI Protocol

    NASA Astrophysics Data System (ADS)

    Michaud, M. A. G.

    The Declaration of Principles Concerning Activities Following the Detection of Extraterrestrial Intelligence, known informally as the First SETI Protocol, is the primary existing international guidance on this subject. During the fifteen years since the document was issued, several people have suggested revisions or additional protocols. This article proposes a broadened and simplified text that would apply to the detection of alien technology in our solar system as well as to electromagnetic signals from more remote sources.

  12. An Opportunistic Search for Extraterrestrial Intelligence (SETI) with the Murchison Widefield Array

    NASA Astrophysics Data System (ADS)

    Tingay, S. J.; Tremblay, C.; Walsh, A.; Urquhart, R.

    2016-08-01

    A spectral line image cube generated from 115 minutes of MWA data that covers a field of view of 400 sq, deg. around the Galactic Center is used to perform the first Search for ExtraTerrestrial Intelligence (SETI) with the Murchison Widefield Array (MWA). Our work constitutes the first modern SETI experiment at low radio frequencies, here between 103 and 133 MHz, paving the way for large-scale searches with the MWA and, in the future, the low-frequency Square Kilometre Array. Limits of a few hundred mJy beam-1 for narrowband emission (10 kHz) are derived from our data, across our 400 sq. deg. field of view. Within this field, 45 exoplanets in 38 planetary systems are known. We extract spectra at the locations of these systems from our image cube to place limits on the presence of narrow line emission from these systems. We then derive minimum isotropic transmitter powers for these exoplanets; a small handful of the closest objects (10 s of pc) yield our best limits of order 1014 W (Equivalent Isotropic Radiated Power). These limits lie above the highest power directional transmitters near these frequencies currently operational on Earth. A SETI experiment with the MWA covering the full accessible sky and its full frequency range would require approximately one month of observing time. The MWA frequency range, its southern hemisphere location on an extraordinarily radio quiet site, its very large field of view, and its high sensitivity make it a unique facility for SETI.

  13. A Search for Brief Optical Flashes Associated with the SETI Target KIC 8462852

    NASA Technical Reports Server (NTRS)

    Abeysekara, A. U.; Archambault, S.; Archer, A.; Benbow, W.; Bird, R.; Buchovecky, M.; Buckley, J. H.; Byrum, K.; Cardenzana, J. V.; Cerruti, M.; hide

    2016-01-01

    The F-type star KIC8462852 has recently been identified as an exceptional target for search for extraterrestrial intelligence (SETI) observations. We describe an analysis methodology for optical SETI, which we have used to analyze nine hours of serendipitous archival observations of KIC8462852 made with the VERITAS gamma-ray observatory between 2009 and 2015. No evidence of pulsed optical beacons, above a pulse intensity at the Earth of approximately 1 photon/sq m, is found. We also discuss the potential use of imaging atmospheric Cherenkov telescope arrays in searching for extremely short duration optical transients in general.

  14. A Search for Brief Optical Flashes Associated with the SETI Target KIC 8462852

    NASA Astrophysics Data System (ADS)

    Abeysekara, A. U.; Archambault, S.; Archer, A.; Benbow, W.; Bird, R.; Buchovecky, M.; Buckley, J. H.; Byrum, K.; Cardenzana, J. V.; Cerruti, M.; Chen, X.; Christiansen, J. L.; Ciupik, L.; Cui, W.; Dickinson, H. J.; Eisch, J. D.; Errando, M.; Falcone, A.; Fegan, D. J.; Feng, Q.; Finley, J. P.; Fleischhack, H.; Fortin, P.; Fortson, L.; Furniss, A.; Gillanders, G. H.; Griffin, S.; Grube, J.; Gyuk, G.; Hütten, M.; Håkansson, N.; Hanna, D.; Holder, J.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kelley-Hoskins, N.; Kertzman, M.; Kieda, D.; Krause, M.; Krennrich, F.; Kumar, S.; Lang, M. J.; Lin, T. T. Y.; Maier, G.; McArthur, S.; McCann, A.; Meagher, K.; Moriarty, P.; Mukherjee, R.; Nieto, D.; O'Brien, S.; O'Faoláin de Bhróithe, A.; Ong, R. A.; Otte, A. N.; Park, N.; Perkins, J. S.; Petrashyk, A.; Pohl, M.; Popkow, A.; Pueschel, E.; Quinn, J.; Ragan, K.; Ratliff, G.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Staszak, D.; Telezhinsky, I.; Tucci, J. V.; Tyler, J.; Vincent, S.; Wakely, S. P.; Weiner, O. M.; Weinstein, A.; Williams, D. A.; Zitzer, B.

    2016-02-01

    The F-type star KIC 8462852 has recently been identified as an exceptional target for search for extraterrestrial intelligence (SETI) observations. We describe an analysis methodology for optical SETI, which we have used to analyze nine hours of serendipitous archival observations of KIC 8462852 made with the VERITAS gamma-ray observatory between 2009 and 2015. No evidence of pulsed optical beacons, above a pulse intensity at the Earth of approximately 1 {photon} {{{m}}}-2, is found. We also discuss the potential use of imaging atmospheric Cherenkov telescope arrays in searching for extremely short duration optical transients in general.

  15. SETV: an Extension of SETI?

    NASA Astrophysics Data System (ADS)

    Teodorani, M.

    2003-02-01

    In the ambit of the SETI Project, a new branch named SETV (Search for Extraterrestrial Visitation) was born very recently due to the international effort of some engineers, astronomers and other researchers, and it is now in a development phase with several monitoring projects. SETV is aimed at investigating, by using well-tested means of physical and technological sciences, the possible evidence of extraterrestrial visitations inside our solar system. On the basis of statistical calculations of galactic migration, and of models coming from standard stellar evolution, Dyson theory and advanced possibilities invoked by theoretical physics, the historical excursus which turned the SETA hypothesis (Search for Extraterrestrial Artifacts), developed in the 80', into the present SETV definition, is presented in detail. The possibility that extraterrestrial intelligences are present inside our solar system with inhabited and/or robotic probes is discussed, including the possibility that our planet is one of their targets. A proposal concerning instrumented multi-wavelength surveys and identification of such exogenous probes is presented.

  16. Who are the SETI sceptics?

    NASA Astrophysics Data System (ADS)

    Ćirković, Milan M.

    2013-08-01

    Search for ExtraTerrestrial Intelligence (SETI) is now more than half a century old and has provoked enough discussion on technical, philosophical, and popular level, much of it critical. Historically, the criticism of SETI has been strong enough to heavily influence the course of research, so that there is a significant interest in discerning the nuances and fine points of critical argumentation. In this paper, I outline the two major forms of SETI scepticism, "fundamentalist" and "instrumentalist," which are often conflated in the published literature, both technical and popular. Precise delineation between these two types of scepticism is important for future research as a part of a wider taxonomic project, the build-up of SETI theory, as well as for smooth joining of SETI with the ongoing astrobiological revolution. Resolving the confusion in this respect is likely to lead to an improved atmosphere and heightened public image of future SETI searches and related activities.

  17. Observational program options and system requirements for the search for extraterrestrial intelligence /SETI/

    NASA Technical Reports Server (NTRS)

    Billingham, J.; Wolfe, J. H.; Edelson, R. E.; Gulkis, S.; Sadin, S. R.

    1978-01-01

    The possibility that intelligent life may be widespread in the universe is now being investigated. A formula for estimating the number of coexisting communicative civilizations has been developed by Drake. A good way of conducting a search for extraterrestrial intelligence (SETI) is to examine the microwave window of the electromagnetic spectrum for narrow-band signals which such civilizations may be transmitting. Two specific search strategies are described. Both employ existing antennas equipped with sophisticated multichannel spectrum analyzers and pattern recognition devices. The Ames Research Center proposal is a high sensitivity, high-resolution search of nearby promising stars and selected sky areas in the 'water hole' (1400-1727 MHz). The Jet Propulsion Laboratory proposal is for a survey of most of the sky over a significant portion of the free-space microwave window at lower sensitivities and resolutions. The approaches are complementary and both are being pursued. The consummation of these programs could achieve one of the most profound discoveries in the history of human civilization, or at least will show the way to future efforts.

  18. Cultural aspects of the search for extraterrestrial intelligence

    NASA Astrophysics Data System (ADS)

    Billingham, J.

    SETI is an acronym which stands for the Search for Extraterrestrial Intelligence. The NASA SETI High Resolution Microwave Survey Project is a new and comprehensive search for evidence of microwave signals from extraterrestrial civilizations. It will formally begin on October 12, 1992, and last to the end of the century. The discovery of another form of intelligent life would be an important milestone for our civilization. In addition to the new scientific knowledge that we might acquire on the chemistry, physiology, behavior and evolutionary history of extraterrestrial life forms, we may also learn of the cultural achievements of another civilization, or indeed of many other civilizations. It is likely that the society that we detect will be much in advance of our own, so that they may long ago have passed through the evolutionary stage we are at now. The implications of such a discovery would have important consequences for our own future. This paper presents an analysis of some of the important areas which will require study as we approach the beginning of the NASA search. There are significant questions about the ease or difficulty of incorporating the new knowledge into the belief structures of different religions. Sociological and educational changes over time may equal or exceed those of the Copernican revolution. The status of the other civilization relative to ours is a challenging question for international space law. There are institutional and international questions on who will represent Earth in any future interstellar communication endeavors that we may attempt. There may be challenges in how we absorb the knowledge of an advanced technology. In political science we may have much to learn from their history, and what influence it may have on our own future. Last but not least, there is the effect of the discovery on individual and group psychology. These are the cultural aspects of SETI. Each area warrants further study, and recommendations are made as to the mechanisms which could be used to undertake such studies.

  19. Are transmissions to space dangerous?

    NASA Astrophysics Data System (ADS)

    Shostak, Seth

    2013-01-01

    We consider the suggestion that, as a matter of caution, the deliberate broadcast of signals to the cosmos should be proscribed. We explore the likely capabilities of extraterrestrial societies that might conceivably pose a threat to our species and show that this suggestion is without merit because even if followed, it would fail to keep our existence secret. In addition, trying to limit signalling activities would be a burden on our descendants, crippling their own activities for the indefinite future. A corollary to these considerations affects the search for extraterrestrial intelligence (SETI): namely, it seems inarguable that technologically advanced beings will assume that other societies are capable of detecting their leakage. Consequently, the premise that SETI should expect to find deliberate beacons from other worlds may be mistaken.

  20. AN OPPORTUNISTIC SEARCH FOR EXTRATERRESTRIAL INTELLIGENCE (SETI) WITH THE MURCHISON WIDEFIELD ARRAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tingay, S. J.; Tremblay, C.; Walsh, A.

    A spectral line image cube generated from 115 minutes of MWA data that covers a field of view of 400 sq, deg. around the Galactic Center is used to perform the first Search for ExtraTerrestrial Intelligence (SETI) with the Murchison Widefield Array (MWA). Our work constitutes the first modern SETI experiment at low radio frequencies, here between 103 and 133 MHz, paving the way for large-scale searches with the MWA and, in the future, the low-frequency Square Kilometre Array. Limits of a few hundred mJy beam{sup −1} for narrowband emission (10 kHz) are derived from our data, across our 400more » sq. deg. field of view. Within this field, 45 exoplanets in 38 planetary systems are known. We extract spectra at the locations of these systems from our image cube to place limits on the presence of narrow line emission from these systems. We then derive minimum isotropic transmitter powers for these exoplanets; a small handful of the closest objects (10 s of pc) yield our best limits of order 10{sup 14} W (Equivalent Isotropic Radiated Power). These limits lie above the highest power directional transmitters near these frequencies currently operational on Earth. A SETI experiment with the MWA covering the full accessible sky and its full frequency range would require approximately one month of observing time. The MWA frequency range, its southern hemisphere location on an extraordinarily radio quiet site, its very large field of view, and its high sensitivity make it a unique facility for SETI.« less

  1. The NASA SETI sky survey: Recent developments

    NASA Technical Reports Server (NTRS)

    Klein, M. J.; Gulkis, S.; Olsen, E. T.; Renzetti, N. A.

    1989-01-01

    NASA's Search for Extraterrestrial Intelligence (SETI) project utilizes two complementary search strategies: a sky survey and a targeted search. The SETI team at the Jet Propulsion Laboratory (JPL) in Pasadena, California, has primary responsibility to develop and carry out the sky survey part. Described here is progress that has been made developing the major elements of the survey including a 2-million channel wideband spectrum analyzer system that is being designed and constructed by JPL for the Deep Space Network (DSN). The system will be a multiuser instrument; it will serve as a prototype for the SETI sky survey processor. This prototype system will be used to test the signal detection and observational strategies on DSN antennas in the near future.

  2. The NASA SETI sky survey - Recent developments

    NASA Technical Reports Server (NTRS)

    Klein, Michael J.; Gulkis, Samuel; Olsen, Edward T.; Renzetti, Nicholas A.

    1988-01-01

    NASA's Search for Extraterrestrial Intelligence (SETI) project utilizes two complimentary search strategies: a sky survey and a targeted search. The SETI team at the Jet Propulsion Laboratory have primary responsibility to develop and carry out the sky survey part of the Microwave Observing Project. The paper describes progress that has been made to develop the major elements of the survey including a two-million channel wideband spectrum analyzer system that is being developed and constructed by JPL for the Deep Space Network. The new system will be a multiuser instrument that will serve as a prototype for the SETI Sky Survey processor. This system will be used to test the signal detection and observational strategies on deep-space network antennas in the near future.

  3. Technical considerations on using the large Nancay radio telescope for SETI

    NASA Technical Reports Server (NTRS)

    Gulkis, S.; Biraud, F.; Heidmann, J.; Tarter, J.

    1990-01-01

    The Nancay decimetric Radio Telescope (NRT) in Nancay, France, is described, and its potential use for Search for Extraterrestrial Intelligence (SETI) observations is discussed. The conclusion reached is that the NRT is well suited for SETI observations because of its large collecting area, its large sky coverage, and its wideband frequency capability. However, a number of improvements are necessary in order to take full advantage of the system in carrying out an efficient SETI program. In particular, system sensitivity should be increased. This can be achieved through a series of improvements to the system, including lowering the ground pickup noise through the use of ground reflectors and more efficient feed design, and by using low-noise amplifier front ends.

  4. Do extraterrestrials have sex (and intelligence)?

    PubMed

    Barkow, J H

    2000-04-01

    This thought experiment addresses the range of possible evolved psychologies likely to be associated with extraterrestrial (ET) intelligence. The analysis rests on: (1) a number of assumptions shared by the SETI project; (2) recent arguments concerning convergent evolution; and (3) current theories of how intelligence evolved in our own species. It concludes that, regardless of how and which cognitive abilities arise initially, extraterrestrially they can develop into intelligence only if an amplification process involving a form of predation and/or sexual selection occurs. Depending on the amplification process, ETs may be xenophobic; however, it is more probable that they will be ethnocentric. Their ideas of reciprocity and fairness are likely to at least overlap with our own. They will definitely be culture-bearing and probably have two sexes, both of which are intelligent. Regardless of the degree of physical similarity of ETs to ourselves, convergence makes it likely that we will at least find their evolved psychology similar enough to our own for comprehension.

  5. A real-time KLT implementation for radio-SETI applications

    NASA Astrophysics Data System (ADS)

    Melis, Andrea; Concu, Raimondo; Pari, Pierpaolo; Maccone, Claudio; Montebugnoli, Stelio; Possenti, Andrea; Valente, Giuseppe; Antonietti, Nicoló; Perrodin, Delphine; Migoni, Carlo; Murgia, Matteo; Trois, Alessio; Barbaro, Massimo; Bocchinu, Alessandro; Casu, Silvia; Lunesu, Maria Ilaria; Monari, Jader; Navarrini, Alessandro; Pisanu, Tonino; Schilliró, Francesco; Vacca, Valentina

    2016-07-01

    SETI, the Search for ExtraTerrestrial Intelligence, is the search for radio signals emitted by alien civilizations living in the Galaxy. Narrow-band FFT-based approaches have been preferred in SETI, since their computation time only grows like N*lnN, where N is the number of time samples. On the contrary, a wide-band approach based on the Kahrunen-Lo`eve Transform (KLT) algorithm would be preferable, but it would scale like N*N. In this paper, we describe a hardware-software infrastructure based on FPGA boards and GPU-based PCs that circumvents this computation-time problem allowing for a real-time KLT.

  6. Field test results with the targeted search MCSA. [multi-channel spectrum analyzer for SETI

    NASA Technical Reports Server (NTRS)

    Tarter, J. C.

    1988-01-01

    In April 1985, a 74,000 channel prototype of the multichannel spectrum analyzer (MCSA) that NASA plans to use in a systematic search for extraterrestrial intelligence (SETI) was installed at DSS13, a 26 meter R&D antenna facility at the Goldstone Deep Space Network (DSN) site. Since that time the instrumentation has been used to validate the performance of signal detection algorithms using locally injected signals and the weak carriers from distant spacecraft. This paper describes results from the Goldstone Field Tests and plans to move the prototype equipment to other sites where SETI may be conducted in the future.

  7. Experiential Education on the Edge: SETI Activities for the College Classroom

    ERIC Educational Resources Information Center

    Crider, Anthony; Weston, Anthony

    2012-01-01

    In a sophomore-level, interdisciplinary honors class, we introduced students to the Search for Extraterrestrial Intelligence through assigned readings, student presentations, classroom discussions, and multiple experiential activities. In this paper, we present four of these novel experiential activities. In the first, students suddenly find…

  8. Extraterrestrial intelligence? The search is on

    NASA Technical Reports Server (NTRS)

    Coulter, Gary R.

    1991-01-01

    NASA's SETI-Microwave Observing Project, beginning on October 12, 1992, will search the closest solar-type stars for radio signals from extraterrestrial civilizations. When completed in the year 2000, the NASA search will have surpassed the search volume of all prior searches by a factor of 10 exp 10. The world's largest radio telescopes will be employed, in conjunction with the NASA Deep Space Network communications antennas. The program will be led by NASA-Ames, with substantial contribution by JPL.

  9. Which colors would extraterrestrial civilizations use to transmit signals?: The ;magic wavelengths; for optical SETI

    NASA Astrophysics Data System (ADS)

    Narusawa, Shin-ya; Aota, Tatusya; Kishimoto, Ryo

    2018-04-01

    In the case of radio SETI, there are predicted frequencies which extraterrestrial beings select to send messages to other civilizations. Those are called ;magic frequencies. Considering the optical region, terrestrial technologies can not transmit arbitrary wavelengths of high-power optical lasers, easily. In this article, we discuss communications among civilizations with the same level of technology as us to enhance the persuasive power. It might be possible to make a reasonable assumption about the laser wavelengths transmitted by extraterrestrial intelligences to benefit optical SETI (OSETI) methods. Therefore, we propose some ;magic wavelengths; for spectroscopic OSETI observations in this article. From the senders point of view, we argue that the most favorable wavelength used for interstellar communication would be the one of YAG lasers, at 1.064 μm or its Second Harmonic Generation (532.1 nm). On the contrary, there are basic absorption lines in the optical spectra, which are frequently observed by astrophysicists on Earth. It is possible that the extraterrestrials used lasers, which wavelengths are tuned to such absorption lines for sending messages. In that case, there is a possibility that SHG and/or Sum Frequency Generation of YAG and YLF lasers are used. We propose three lines at, 393.8 nm (near the Ca K line), 656.5 nm (near the Hα line) and 589.1 nm (Na D2 line) as the magic wavelengths.

  10. Project OASIS: The Design of a Signal Detector for the Search for Extraterrestrial Intelligence

    NASA Technical Reports Server (NTRS)

    Lord, S. (Editor); Dixon, R. (Editor); Healy, T. (Editor)

    1981-01-01

    An 8 million channel spectrum analyzer (MCSA) was designed the meet to meet the needs of a SETI program. The MCSA puts out a very large data base at very high rates. The development of a device which follows the MCSA, is presented.

  11. Second Symposium on Chemical Evolution and the Origin of Life

    NASA Technical Reports Server (NTRS)

    Devincenzi, D. L. (Editor); model. (Editor)

    1986-01-01

    Recent findings by NASA Exobiology investigators are reported. Scientific papers are presented in the following areas: cosmic evolution of biogenic compounds, prebiotic evolution (planetary and molecular), early evolution of life (biological and geochemical), evolution of advanced life, solar system exploration, and the Search for Extraterrestrial Intelligence (SETI).

  12. Second Symposium on Chemical Evolution and the Origin of Life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devincenzi, D.L.; Dufour, P.A.

    1986-05-01

    Recent findings by NASA Exobiology investigators are reported. Scientific papers are presented in the following areas: cosmic evolution of biogenic compounds, prebiotic evolution (planetary and molecular), early evolution of life (biological and geochemical), evolution of advanced life, solar system exploration, and the Search for Extraterrestrial Intelligence (SETI).

  13. The temporal aspect of the drake equation and SETI.

    PubMed

    Cirković, Milan M

    2004-01-01

    We critically investigate some evolutionary aspects of the famous Drake equation, which is usually presented as the central guide for research on extraterrestrial intelligence. It is shown that the Drake equation tacitly relies on unverified assumptions on both the physicochemical history of our galaxy and the properties of advanced intelligent communities. In this manner, the conventional approach fails to take into account various evolutionary processes forming prerequisites for quantification of the Drake equation parameters. The importance of recent results of Lineweaver and collaborators on chemical build-up of inhabitable planets for the search for extraterrestrial intelligence is emphasized. Two important evolutionary effects are briefly discussed, and the resolution of the difficulties within the context of the phase-transition astrobiological models is sketched.

  14. NASA SETI microwave observing project: Sky Survey element

    NASA Technical Reports Server (NTRS)

    Klein, M. J.

    1991-01-01

    The SETI Sky Survey Observing Program is one of two complimentary strategies that NASA plans to use in its microwave Search for Extraterrestrial Intelligence (SETI). The primary objective of the sky survey is to search the entire sky over the frequency range of 1.0 to 10.0 GHz for evidence of narrow band signals of extraterrestrial intelligent origin. Frequency resolutions of 30 Hz or narrower will be used across the entire band. Spectrum analyzers with upwards of ten million channels are required to keep the survey time approximately 6 years. Data rates in excess of 10 megabits per second will be generated in the data taking process. Sophisticated data processing techniques will be required to determine the ever changing receiver baselines, and to detect and archive potential SETI signals. Existing radio telescopes, including several of NASA's Deep Space Network (DSN) 34 meter antennas located at Goldstone, CA and Tidbinbilla, Australia will be used for the observations. The JPL has the primary responsibility to develop and carry out the sky survey. In order to lay the foundation for the full scale SETI Sky Survey, a prototype system is being developed at the JPL. The system will be installed at the new 34-m high efficiency antenna at the Deep Space Station (DSS) 13 research and development station, Goldstone, CA, where it will be used to initiate the observational phase of the NASA SETI Sky Survey. It is anticipated that the early observations will be useful to test signal detection algorithms, scan strategies, and radio frequency interference rejection schemes. The SETI specific elements of the prototype system are: (1) the Wide Band Spectrum Analyzer (WBSA); a 2-million channel fast Fourier transformation (FFT) spectrum analyzer which covers an instantaneous bandpass of 40 MHz; (2) the signal detection processor; and (3) the SETI Sky Survey Manager, a network-based C-language environment that provides observatory control, performs data acquisition and analysis algorithms. A high level description of the prototype hardware and software systems will be given and the current status of the system development will be reported.

  15. Life: Here? There? Elsewhere? The Search for Life on Venus and Mars. Life in the Universe Series.

    ERIC Educational Resources Information Center

    1996

    This classroom kit, designed by curriculum developers working with teachers and scientists from the SETI (Search for Extraterrestrial Intelligence) Institute, helps teachers guide students in the exploration of life through the multidisciplinary sciences of paleontology and exobiology. It reflects the real-life methods of science: making…

  16. Resource letter ETC-1 - Extraterrestrial civilization

    NASA Technical Reports Server (NTRS)

    Kuiper, Thomas B. H.; Brin, Glen David

    1989-01-01

    This resource letter provides a guide to the literature about intelligent life beyond the human sphere of exploration. It offers a starting point for professionals and academics interested in participating in the debate about the existence of other technological civilizations or in SETI. It can also serve as a reference for teaching. Several extensive bibliographies are cited.

  17. Impacts of sociopolitical conditions

    NASA Technical Reports Server (NTRS)

    Finney, Ben R.

    1992-01-01

    Space development scenarios and the choice of technologies to carry them out depend upon the future social, economic, and political factors. A brief discussion concerning the impact of sociopolitical conditions on space exploration is presented. Some of the topics mentioned include: space weapons/warfare, international cooperation, NASA's Search for Extraterrestrial Intelligence (SETI) Program, and superpower rivelry.

  18. Multiple-Feed Design For DSN/SETI Antenna

    NASA Technical Reports Server (NTRS)

    Slobin, S. D.; Bathker, D. A.

    1988-01-01

    Frequency bands changed with little interruption of operation. Modification of feedhorn mounting on existing 34-m-diameter antenna in Deep Space Network (DSN) enables antenna to be shared by Search for Extra-Terrestrial Intelligence (SET) program with minimal interruption of DSN spacecraft tracking. Modified antenna useful in terrestrial communication systems requiring frequent changes of operating frequencies.

  19. The Search for Extraterrestrial Intelligence

    NASA Technical Reports Server (NTRS)

    Tucher, A.

    1985-01-01

    The development of NASA's SETI project and strategies for searching radio signals are reviewed. A computer program was written in FORTRAN to set up data from observations taken at Jodrell Bank. These data are to be used with a larger program to find the average radio signal strength at each of the approximately 63,000 channels.

  20. The Strategies for SETV and the Search for Exogenous Intelligent Life on Planet Earth

    NASA Astrophysics Data System (ADS)

    Teodorani, M.

    2002-10-01

    The main strategies of the present SETV (Search for Extraterrestrial Visitation) Project, one specific branch of the more general SETI project, are widely described and discussed, after showing the restrictions of the standard SETI procedures, such as the well-known Microwave Observing Project. An historical description of the first steps and scientific foundations of the SETV research is presented in detail, in particular: a) the first SETA (Search for Extraterrestrial Artifacts) theoretical studies and observational attempts that started at the end of the years -70; b) the theoretical concept of "interstellar migration" and the "diffusion equations" that, during the same years, were derived from a bio-astronomical application of stellar statistics and stellar evolution. Subsequently the main tasks and goals of the SETV project are introduced as they are conceived at the present time: the scientific search for robotic and/or inhabited probes that might be present both in the Solar System and on Earth. The possible reasons of interstellar migrations are discussed, together with propulsion systems that, according to most recent physics theories, might be employed to permit interstellar travel. A technical description of the necessary observational sensing devices of astrophysical kind, which are strategically and tactically intended to be employed to verify some theoretical predictions both in some critical areas of the Solar System and on Earth, is described. Concerning the possibility that space devices originated from exogenous intelligence too can visit Earth, the attention is drawn to some unknown aspects of still unexplained atmospheric anomalies. It is shown how a rigorous study of such anomalies can permit an important advancement in fundamental physics, which could come both from the understanding of the physical mechanism with which some (poorly understood so far) natural phenomena occur, and from the understanding of some exotic propulsion systems if they are produced by an extraterrestrial intelligence visiting our planet. The importance of studying the anomalies on Earth is to distinguish which ones of them might be possibly due to extraterrestrial intelligence, if this is really the case, and which ones are due to natural phenomena. The paper is accompanied with a rich bibliographic reference source concerning astronomy and physics general subjects, SETI, SETA, SETV, canonic (including Dyson theory) and exotic propulsion and transportation systems, and the physics of atmospheric anomalies.

  1. The search for intelligence

    NASA Astrophysics Data System (ADS)

    Coffey, E. J.

    1980-12-01

    Implications of current understandings of the nature of human intelligence for the possibility of extraterrestrial intelligence are discussed. The perceptual theory of intelligence as the manipulation of perceptual images rather than language is introduced, and conditions leading to the ascendancy of man over other hominids with similar conceptual abilities are discussed, including the liberation of the hands from a locomotive function and the evolution of neoteny. It is argued that the specificity of the environmental, behavioral and physiological conditions which lead to the emergence of technologically oriented, and communicative intelligent creatures suggests that any SETI would most likely be fruitless.

  2. Low on the London Scale

    NASA Astrophysics Data System (ADS)

    Webb, S.

    2013-09-01

    Until relatively recently, many authors have assumed that if extraterrestrial life is discovered it will be via the discovery of extraterrestrial intelligence: we can best try to detect life by adopting the SETI approach of trying to detect beacons or artefacts. The Rio Scale, proposed by Almár and Tarter in 2000, is a tool for quantifying the potential significance for society of any such reported detection. However, improvements in technology and advances in astrobiology raise the possibility that the discovery of extraterrestrial life will instead be via the detection of atmospheric biosignatures. The London Scale, proposed by Almár in 2010, attempts to quantify the potential significance of the discovery of extraterrestrial life rather than extraterrestrial intelligence. What might be the consequences of the announcement of a discovery that ranks low on the London Scale? In other words, what might be society's reaction if 'first contact' is via the remote sensing of the byproducts of unicellular organisms rather than with the products of high intelligence? Here, I examine some possible reactions to that question; in particular, I discuss how such an announcement might affect our views of life here on Earth and of humanity's place in the universe.

  3. Cultural Evolution and SETI

    NASA Astrophysics Data System (ADS)

    Dick, S. J.

    2009-12-01

    The Drake Equation for the number of radio communicative technological civilizations in the Galaxy encompasses three components of cosmic evolution: astronomical, biological and cultural. Of these three, cultural evolution totally dominates in terms of the rapidity of its effects. Yet, SETI scientists do not take cultural evolution into account, perhaps for understandable reasons, since cultural evolution is not well-understood even on Earth and is unpredictable in its outcome. But the one certainty for technical civilizations billions, millions, or even thousands of years older than ours is that they will have undergone cultural evolution. Cultural evolution potentially takes place in many directions, but this paper argues that its central driving force is the maintenance, improvement and perpetuation of knowledge and intelligence, and that to the extent intelligence can be improved, it will be improved. Applying this principle to life in the universe, extraterrestrials will have sought the best way to improve their intelligence. One possibility is that they may have long ago advanced beyond flesh-and-blood to artificial intelligence, constituting a postbiological universe. Although this subject has been broached, it has not been given the attention it is due from its foundation in cultural evolution. Nor has the idea of a postbiological universe been carried to its logical conclusion, including a careful analysis of the implications for SETI. SETI scientists, social scientists, and experts in AI should consider the strengths and weaknesses of this new paradigm.

  4. Computational problems and signal processing in SETI

    NASA Technical Reports Server (NTRS)

    Deans, Stanley R.; Cullers, D. K.; Stauduhar, Richard

    1991-01-01

    The Search for Extraterrestrial Intelligence (SETI), currently being planned at NASA, will require that an enormous amount of data (on the order of 10 exp 11 distinct signal paths for a typical observation) be analyzed in real time by special-purpose hardware. Even though the SETI system design is not based on maximum entropy and Bayesian methods (partly due to the real-time processing constraint), it is expected that enough data will be saved to be able to apply these and other methods off line where computational complexity is not an overriding issue. Interesting computational problems that relate directly to the system design for processing such an enormous amount of data have emerged. Some of these problems are discussed, along with the current status on their solution.

  5. Analysis of a crossed Bragg-cell acousto optical spectrometer for SETI

    NASA Technical Reports Server (NTRS)

    Gulkis, S.

    1986-01-01

    The search for radio signals from extraterrestrial intelligent (SETI) beings requires the use of large instantaneous bandwidth (500 MHz) and high resolution (20 Hz) spectrometers. Digital systems with a high degree of modularity can be used to provide this capability, and this method has been widely discussed. Another technique for meeting the SETI requirement is to use a crossed Bragg-cell spectrometer as described by Psaltis and Casasent (1979). This technique makes use of the Folded Spectrum concept, introduced by Thomas (1966). The Folded Spectrum is a two-dimensional Fourier Transform of a raster scanned one-dimensional signal. It is directly related to the long one-dimensional spectrum of the original signal and is ideally suited for optical signal processing.

  6. Analysis of a crossed Bragg-cell acousto optical spectrometer for SETI

    NASA Astrophysics Data System (ADS)

    Gulkis, S.

    1986-10-01

    The search for radio signals from extraterrestrial intelligent (SETI) beings requires the use of large instantaneous bandwidth (500 MHz) and high resolution (20 Hz) spectrometers. Digital systems with a high degree of modularity can be used to provide this capability, and this method has been widely discussed. Another technique for meeting the SETI requirement is to use a crossed Bragg-cell spectrometer as described by Psaltis and Casasent (1979). This technique makes use of the Folded Spectrum concept, introduced by Thomas (1966). The Folded Spectrum is a two-dimensional Fourier Transform of a raster scanned one-dimensional signal. It is directly related to the long one-dimensional spectrum of the original signal and is ideally suited for optical signal processing.

  7. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1989-01-01

    Archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA) are presented. Activities of the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) related to DSN advanced systems, systems implementation, and DSN operations are addressed. In addition, recent developments in the NASA SETI (Search for Extraterrestrial Intelligence) sky survey are summarized.

  8. Life in the Universe: Foundation for exciting multidisciplinary science activities for middle and elementary school classes

    NASA Technical Reports Server (NTRS)

    Milne, D.; O'Sullivan, K.

    1994-01-01

    Young students find extra-terrestrial life one of the most intriguing of all topics. A project funded by the National Science Foundation and NASA, and administered by the SETI Institute, is underway to devise science lessons for grades 3-9 that draw upon this fascination. The lessons are designed by teachers and persons with long experience at curriculum design, tested in classrooms, revised and retested. Six guides, each containing some 6-10 science lessons, will be finished by summer, 1994.The theme Life in the Universe lends itself naturally to integrated treatment of facts and concepts from many scientific disciplines. The lessons for two completed guides span the origin of planet systems, evolution of complex life, chemical makeup of life, astronomy, spectroscopy, continental drift, mathematics and SETI (Search for Extra-Terrestrial Intelligence). All lessons are hands-on, interesting, and successful.

  9. Life in the universe: foundation for exciting multidisciplinary science activities for middle and elementary school classes.

    PubMed

    Milne, D; O'Sullivan, K

    1994-01-01

    Young students find extra-terrestrial life one of the most intriguing of all topics. A project funded by the National Science Foundation and NASA, and administered by the SETI Institute, is underway to devise science lessons for grades 3-9 that draw upon this fascination. The lessons are designed by teachers and persons with long experience at curriculum design, tested in classrooms, revised and retested. Six guides, each containing some 6-10 science lessons, will be finished by summer, 1994. The theme Life in the Universe lends itself naturally to integrated treatment of facts and concepts from many scientific disciplines. The lessons for two completed guides span the origin of planet systems, evolution of complex life, chemical makeup of life, astronomy, spectroscopy, continental drift, mathematics and SETI (Search for Extra-Terrestrial Intelligence). All lessons are hands-on, interesting, and successful.

  10. Media reaction to a SETI success.

    PubMed

    Shostak, G S

    1997-01-01

    Consideration of the reaction to a SETI detection by the media, and the effect this will have on the public, is more than mere sociological speculation. An accurate forecast of the media's interest can lead to actions that will help ensure that correct and comprehensible information reaches the public. This is most critical in the first few weeks following a discovery. While a widely accepted protocol for dealing with a detection exists in the "Declaration of Principles Following the Detection of Extraterrestrial Intelligence," it gives scant consideration to the fact that the actual situation will be chaotic and not subject to easy control. The 1996 story about the possible discovery of martian microfossils has provided a useful precedent for what will happen if astronomers uncover the existence of alien intelligence.

  11. VLSI processors for signal detection in SETI

    NASA Technical Reports Server (NTRS)

    Duluk, J. F.; Linscott, I. R.; Peterson, A. M.; Burr, J.; Ekroot, B.; Twicken, J.

    1989-01-01

    The objective of the Search for Extraterrestrial Intelligence (SETI) is to locate an artificially created signal coming from a distant star. This is done in two steps: (1) spectral analysis of an incoming radio frequency band, and (2) pattern detection for narrow-band signals. Both steps are computationally expensive and require the development of specially designed computer architectures. To reduce the size and cost of the SETI signal detection machine, two custom VLSI chips are under development. The first chip, the SETI DSP Engine, is used in the spectrum analyzer and is specially designed to compute Discrete Fourier Transforms (DFTs). It is a high-speed arithmetic processor that has two adders, one multiplier-accumulator, and three four-port memories. The second chip is a new type of Content-Addressable Memory. It is the heart of an associative processor that is used for pattern detection. Both chips incorporate many innovative circuits and architectural features.

  12. VLSI processors for signal detection in SETI.

    PubMed

    Duluk, J F; Linscott, I R; Peterson, A M; Burr, J; Ekroot, B; Twicken, J

    1989-01-01

    The objective of the Search for Extraterrestrial Intelligence (SETI) is to locate an artificially created signal coming from a distant star. This is done in two steps: (1) spectral analysis of an incoming radio frequency band, and (2) pattern detection for narrow-band signals. Both steps are computationally expensive and require the development of specially designed computer architectures. To reduce the size and cost of the SETI signal detection machine, two custom VLSI chips are under development. The first chip, the SETI DSP Engine, is used in the spectrum analyzer and is specially designed to compute Discrete Fourier Transforms (DFTs). It is a high-speed arithmetic processor that has two adders, one multiplier-accumulator, and three four-port memories. The second chip is a new type of Content-Addressable Memory. It is the heart of an associative processor that is used for pattern detection. Both chips incorporate many innovative circuits and architectural features.

  13. A reply from earth? - A proposed approach to developing a message from humankind to extraterrestrial intelligence after we detect them

    NASA Technical Reports Server (NTRS)

    Michaud, Michael; Billingham, John; Tarter, Jill

    1990-01-01

    The question of the formulation of a proper response to the detection of an extraterrestrial civilization is considered. It is proposed that an international agreement or declaration of principles establishing procedures enabling international participation in the making of such decisions be developed and that the SETI Committee of the International Academy of Aeronautics, in cooperation with other interested bodies, draft an agreement or declaration of principles that would set up these procedures; and that the draft be presented to the United Nations for consideration through the Committee on Peaceful Uses of Outer Space. A suggested outline of the agreement or declaration is presented and proposes that a response to the detection of extraterrestrial intelligence should be on behalf of all humankind; that this decision should be made by an appropriately representative international body; and that the content of the reply should reflect an international consensus.

  14. Resource Letter ETC-1: extraterrestrial civilization.

    PubMed

    Kuiper, T B; Brin, G D

    1989-01-01

    This Resource Letter provides a guide to the literature about intelligent life beyond the human sphere of exploration. It offers a starting point for professionals and academics interested in participating in the debate about the existence of other technological civilizations or in the search for extraterrestrial intelligence (SETI). It can also serve as a reference for teaching. This Letter is not intended as an exhaustive bibliography, but several extensive bibliographies have been cited. The letter E after an item indicates elementary, nontechnical material of general interest to persons becoming informed in the field. Intermediate level material, of a somewhat more specialized nature, is indicated by the Letter I. The annotation A indicates advanced, technical material. An asterisk (*) precedes items to be included in an accompanying Reprint Book.

  15. A language based on analogy to communicate cultural concepts in SETI

    NASA Astrophysics Data System (ADS)

    Musso, Paolo

    2011-02-01

    The present paper is a synthesis of three presentation given by myself at the Toulouse IAC 2001 ( Analogy as a tool to communicate abstract concepts in SETI), the Bremen IAC 2003 ( From maths to culture: towards an effective message), and the Vancouver IAC 2004 ( Philosophical and religious implications of extraterrestrial intelligent life). Its aim is to find a way to make our cultural concepts understandable to hypothetical extraterrestrials (ETs) in a SETI communication. First of all, I expose the reasons why I think that analogy could be a good tool for this purpose. Then, I try to show that this is possible only in the context of an integrated language, using both abstract symbols and pictures, also sketching two practical examples about some basic concepts of our moral and religious tradition. Further studies are required to determine whether this method could be extended to the higher-level abstract concepts in the other fields of our culture. Finally, I discuss the possible role of mathematics, logic and natural science in the construction of an analogy-based language for interstellar messages with a cultural content and a possible way of managing this matter from a social point of view.

  16. Astrobiology in culture: the search for extraterrestrial life as "science".

    PubMed

    Billings, Linda

    2012-10-01

    This analysis examines the social construction of authority, credibility, and legitimacy for exobiology/astrobiology and, in comparison, the search for extraterrestrial intelligence (SETI), considering English-language conceptions of these endeavors in scientific culture and popular culture primarily in the United States. The questions that define astrobiology as a scientific endeavor are multidisciplinary in nature, and this endeavor is broadly appealing to public audiences as well as to the scientific community. Thus, it is useful to examine astrobiology in culture-in scientific culture, official culture, and popular culture. A researcher may explore science in culture, science as culture, by analyzing its rhetoric, the primary means that people use to construct their social realities-their cultural environment, as it were. This analysis follows this path, considering scientific and public interest in astrobiology and SETI and focusing on scientific and official constructions of the two endeavors. This analysis will also consider whether and how scientific and public conceptions of astrobiology and SETI, which are related but at the same time separate endeavors, converge or diverge and whether and how these convergences or divergences affect the scientific authority, credibility, and legitimacy of these endeavors.

  17. Exobiology and SETI from the lunar farside

    NASA Technical Reports Server (NTRS)

    Tarter, Jill C.; Rummel, John

    1990-01-01

    Within the Life Sciences Division of NASA, the Exobiology Program seeks to understand the origin, evolution and distribution of life in the universe. There are two feasible methods of searching for life beyond the earth. The first is to return to Mars and systematically explore its surface and subsurface with instrumentation capable of identifying extinct as well as extant life. The second is to search for advanced forms of life in other planetary systems that have developed a technology capable of modifying their environment in ways that make it detectable across the vast interstellar distances. The Exobiology Program is currently pursuing both of these options. If NASA's SETI (search for extraterrestrial intelligence) Microwave Observing Project of the 1990s fails to detect evidence of radio signals generated by an extraterrestrial technology, what might be the next step? The establishment of a permanent lunar base early in the next century may enable the construction of large aperture radio telescopes that can extend both the sensitivity and the frequency range of SETI observations. A lunar base may also provide the opportunity for construction of optical and IR telescopes intended for the direct detection of extrasolar planetary systems.

  18. Exoplanets and SETI

    NASA Astrophysics Data System (ADS)

    Wright, Jason T.

    The discovery of exoplanets has both focused and expanded the search for extraterrestrial intelligence. The consideration of Earth as an exoplanet, the knowledge of the orbital parameters of individual exoplanets, and our new understanding of the prevalence of exoplanets throughout the galaxy have all altered the search strategies of communication SETI efforts, by inspiring new "Schelling points" (i.e. optimal search strategies for beacons). Future efforts to characterize individual planets photometrically and spectroscopically, with imaging and via transit, will also allow for searches for a variety of technosignatures on their surfaces, in their atmospheres, and in orbit around them. In the near-term, searches for new planetary systems might even turn up free-floating megastructures.

  19. Lick Observatory Optical SETI: targeted search and new directions.

    PubMed

    Stone, R P S; Wright, S A; Drake, F; Muñoz, M; Treffers, R; Werthimer, D

    2005-10-01

    Lick Observatory's Optical SETI (search for extraterrestrial intelligence) program has been in regular operation for 4.5 years. We have observed 4,605 stars of spectral types F-M within 200 light-years of Earth. Occasionally, we have appended objects of special interest, such as stars with known planetary systems. We have observed 14 candidate signals ("triple coincidences"), all but one of which are explained by transient local difficulties. Additional observations of the remaining candidate have failed to confirm arriving pulse events. We now plan to proceed in a more economical manner by operating in an unattended drift scan mode. Between operational and equipment modifications, efficiency will more than double.

  20. The NASA HRMS educational outreach program - Searching for extraterrestrial intelligence while developing extraintelligent terrestrials

    NASA Technical Reports Server (NTRS)

    Coulter, Gary R.; O'Sullivan, Kathleen; Milne, David; Stoneburner, Cara

    1993-01-01

    Students, young and old, find extraterrestrial life one of the most intriguing of all science topics. A curriculum development project co-funded by the National Science Foundation and NASA, and administered by the SETI Institute, is underway to develop and test third through ninth grade science lessons that draw upon this fascination to focus student interest on science and mathematics. Individual lessons are designed by teachers and curriculum developers, tested in classrooms, revised and re-tested prior to distribution. A series of guides, each containing 10 to 15 lessons, will be finished by late summer 1994.

  1. Signal coverage approach to the detection probability of hypothetical extraterrestrial emitters in the Milky Way.

    PubMed

    Grimaldi, Claudio

    2017-04-12

    The lack of evidence for the existence of extraterrestrial life, even the simplest forms of animal life, makes it is difficult to decide whether the search for extraterrestrial intelligence (SETI) is more a high-risk, high-payoff endeavor than a futile attempt. Here we insist that even if extraterrestrial civilizations do exist and communicate, the likelihood of detecting their signals crucially depends on whether the Earth lies within a region of the galaxy covered by such signals. By considering possible populations of independent emitters in the galaxy, we build a statistical model of the domain covered by hypothetical extraterrestrial signals to derive the detection probability that the Earth is within such a domain. We show that for general distributions of the signal longevity and directionality, the mean number of detectable emitters is less than one even for detection probabilities as large as 50%, regardless of the number of emitters in the galaxy.

  2. Signal coverage approach to the detection probability of hypothetical extraterrestrial emitters in the Milky Way

    NASA Astrophysics Data System (ADS)

    Grimaldi, Claudio

    2017-04-01

    The lack of evidence for the existence of extraterrestrial life, even the simplest forms of animal life, makes it is difficult to decide whether the search for extraterrestrial intelligence (SETI) is more a high-risk, high-payoff endeavor than a futile attempt. Here we insist that even if extraterrestrial civilizations do exist and communicate, the likelihood of detecting their signals crucially depends on whether the Earth lies within a region of the galaxy covered by such signals. By considering possible populations of independent emitters in the galaxy, we build a statistical model of the domain covered by hypothetical extraterrestrial signals to derive the detection probability that the Earth is within such a domain. We show that for general distributions of the signal longevity and directionality, the mean number of detectable emitters is less than one even for detection probabilities as large as 50%, regardless of the number of emitters in the galaxy.

  3. Breakthrough Listen on MWA Pilot Study

    NASA Astrophysics Data System (ADS)

    Croft, S.; Siemion, A.; Kaplan, D. L.; Tremblay, S.

    2016-07-01

    We propose a pilot study, using the Voltage Capture System, for Breakthrough Listen on the MWA. Breakthrough Listen (BL) is a major new project that aims to dramatically improve the coverage of parameter space in the search for intelligent life beyond Earth. BL has already deployed hardware and software to the Green Bank Telescope, and will bring a similar program with the Parkes Telescope online in the second half of 2016. The low frequency sky is however currently very poorly explored. The superb capabilities of the MWA (large field of view, low frequency of operation, and location in a very radio quiet site) provide a unique opportunity for a pilot study to obtain voltage data for a SETI (Search For Extraterrestrial Intelligence) study of the Galactic Plane. We propose commensal observations, piggybacking on the proposed pulsar search of Tremblay et al. Using existing VCS software, combined with the pipeline developed for Breakthrough Listen at GBT and Parkes, we will perform a blind search for candidate signals from extraterrestrial intelligence. Although the chances of a detection are not large, particularly for a pilot study such as that proposed here, the Breakthrough Listen team plan to perform extensive testing and analysis on the data obtained which should be useful for other users of the MWA VCS. We will make the secondary SETI data products and associated documentation available as a resource to the community via the Breakthrough Listen online archive.

  4. Analysis of a crossed Bragg cell acousto-optical spectrometer for SETI

    NASA Technical Reports Server (NTRS)

    Gulkis, S.

    1989-01-01

    The search for radio signals from extraterrestrial intelligent beings (SETI) requires the use of large instantaneous bandwidth (500 MHz) and high resolution (20 Hz) spectrometers. Digital systems with a high degree of modularity can be used to provide this capability, and this method has been widely discussed. Another technique for meeting the SETI requirement is to use a crossed Bragg cell spectrometer as described by Psaltis and Casasent. This technique makes use of the Folded Spectrum concept, introduced by Thomas. The Folded Spectrum is a 2-D Fourier Transform of a raster scanned 1-D signal. It is directly related to the long 1-D spectrum of the original signal and is ideally suited for optical signal processing. The folded spectrum technique has received little attention to date, primarily because early systems made use of photographic film which are unsuitable for the real time data analysis and voluminous data requirements of SETI. An analysis of the crossed Bragg cell spectrometer is presented as a method to achieve the spectral processing requirements for SETI. Systematic noise contributions unique to the Bragg cell system will be discussed.

  5. Analysis of a crossed Bragg cell acousto-optical spectrometer for SETI.

    PubMed

    Gulkis, S

    1989-01-01

    The search for radio signals from extraterrestrial intelligent beings (SETI) requires the use of large instantaneous bandwidth (500 MHz) and high resolution (20 Hz) spectrometers. Digital systems with a high degree of modularity can be used to provide this capability, and this method has been widely discussed. Another technique for meeting the SETI requirement is to use a crossed Bragg cell spectrometer as described by Psaltis and Casasent. This technique makes use of the Folded Spectrum concept, introduced by Thomas. The Folded Spectrum is a 2-D Fourier Transform of a raster scanned 1-D signal. It is directly related to the long 1-D spectrum of the original signal and is ideally suited for optical signal processing. The folded spectrum technique has received little attention to date, primarily because early systems made use of photographic film which are unsuitable for the real time data analysis and voluminous data requirements of SETI. An analysis of the crossed Bragg cell spectrometer is presented as a method to achieve the spectral processing requirements for SETI. Systematic noise contributions unique to the Bragg cell system will be discussed.

  6. Analysis of a crossed Bragg cell acousto-optical spectrometer for SETI

    NASA Astrophysics Data System (ADS)

    Gulkis, Samuel

    The search for radio signals from extraterrestrial intelligent beings (SETI) requires the use of large instantaneous bandwidth (500 MHz) and high resolution (20 Hz) spectrometers. Digital systems with a high degree of modularity can be used to provide this capability, and this method has been widely discussed. Another technique for meeting the SETI requirement is to use a crossed Bragg cell spectrometer as described by Psaltis and Casasent. This technique makes use of the Folded Spectrum concept, introduced by Thomas. The Folded Spectrum is a 2-D Fourier Transform of a raster scanned 1-D signal. It is directly related to the long 1-D spectrum of the original signal and is ideally suited for optical signal processing. The folded spectrum technique has received little attention to date, primarily because early systems made use of photographic film which are unsuitable for the real time data analysis and voluminous data requirements of SETI. An analysis of the crossed Bragg cell spectrometer is presented as a method to achieve the spectral processing requirements for SETI. Systematic noise contributions unique to the Bragg cell system will be discussed.

  7. What should we say to extraterrestrial intelligence?: An analysis of responses to “Earth Speaks”

    NASA Astrophysics Data System (ADS)

    Vakoch, Douglas A.; Lower, Timothy A.; Niles, Britton A.; Rast, Katrina A.; DeCou, Christopher

    2013-05-01

    If scientists engaged in the Search for Extraterrestrial Intelligence (SETI) detect a signal from an extraterrestrial civilization, one of the most pressing issues facing humankind will be "Should we reply, and if so, what should we say?" Building on an infrastructure that the SETI Institute used to gather over 50,000 messages from around the world to send onboard the Kepler mission, Earth Speaks invites people to submit online their text messages, pictures, and sounds, as they ponder what they would want to say to an extraterrestrial civilization. Participants for the study have been recruited from 68 nations, from all walks of life. By tracking demographic variables for each person submitting a message, we have identified commonalities and differences in message content that are related to such factors as age and gender. Similarly, by tracking the date on which messages were submitted and the location from which the message was sent, we have also identified the way in which message content is related to time and geographic location. Furthermore, when we compare previous themes derived from textual messages to our current categorical analysis of submitted images, we find our textual themes to be concurrently validated. In doing so, we find the Earth Speaks Website not only allows for the construction of interstellar messages, but also functions as a projective psychological assessment of species-level human identity. We next proceed to demonstrate the generative power of our method by showing how we can synthesize artificial messages from the Earth Speaks messages. We then discuss how these artificially generated messages can be tailored to represent both commonality and diversity in human thought as it is revealed through our data. We end by discussing our method's utility for cross-disciplinary research in the social sciences and humanities.

  8. The game of active search for extra-terrestrial intelligence: breaking the `Great Silence'

    NASA Astrophysics Data System (ADS)

    de Vladar, Harold P.

    2013-01-01

    The search for extra-terrestrial intelligence (SETI) has been performed principally as a one-way survey, listening of radio frequencies across the Milky Way and other galaxies. However, scientists have engaged in an active messaging only rarely. This suggests the simple rationale that if other civilizations exist and take a similar approach to ours, namely listening but not broadcasting, the result is a silent universe. A simple game theoretical model, the prisoner's dilemma, explains this situation: each player (civilization) can passively search (defect), or actively search and broadcast (cooperate). In order to maximize the payoff (or, equivalently, minimize the risks) the best strategy is not to broadcast. In fact, the active search has been opposed on the basis that it might be dangerous to expose ourselves. However, most of these ideas have not been based on objective arguments, and ignore accounting of the possible gains and losses. Thus, the question stands: should we perform an active search? I develop a game-theoretical framework where civilizations can be of different types, and explicitly apply it to a situation where societies are either interested in establishing a two-way communication or belligerent and in urge to exploit ours. The framework gives a quantitative solution (a mixed-strategy), which is how frequent we should perform the active SETI. This frequency is roughly proportional to the inverse of the risk, and can be extremely small. However, given the immense amount of stars being scanned, it supports active SETI. The model is compared with simulations, and the possible actions are evaluated through the San Marino scale, measuring the risks of messaging.

  9. The fermi paradox is neither Fermi's nor a paradox.

    PubMed

    Gray, Robert H

    2015-03-01

    The so-called Fermi paradox claims that if technological life existed anywhere else, we would see evidence of its visits to Earth--and since we do not, such life does not exist, or some special explanation is needed. Enrico Fermi, however, never published anything on this topic. On the one occasion he is known to have mentioned it, he asked "Where is everybody?"--apparently suggesting that we do not see extraterrestrials on Earth because interstellar travel may not be feasible, but not suggesting that intelligent extraterrestrial life does not exist or suggesting its absence is paradoxical. The claim "they are not here; therefore they do not exist" was first published by Michael Hart, claiming that interstellar travel and colonization of the Galaxy would be inevitable if intelligent extraterrestrial life existed, and taking its absence here as proof that it does not exist anywhere. The Fermi paradox appears to originate in Hart's argument, not Fermi's question. Clarifying the origin of these ideas is important, because the Fermi paradox is seen by some as an authoritative objection to searching for evidence of extraterrestrial intelligence--cited in the U.S. Congress as a reason for killing NASA's SETI program on one occasion. But evidence indicates that it misrepresents Fermi's views, misappropriates his authority, deprives the actual authors of credit, and is not a valid paradox.

  10. The Breakthrough Listen Initiative and the Future of the Search for Intelligent Life

    NASA Astrophysics Data System (ADS)

    Enriquez, J. Emilio; Siemion, Andrew; Croft, Steve; Hellbourg, Greg; Lebofsky, Matt; MacMahon, David; Price, Danny; DeBoer, David; Werthimer, Dan

    2017-05-01

    Unprecedented recent results in the fields of exoplanets and astrobiology have dramatically increased the interest in the potential existence of intelligent life elsewhere in the galaxy. Additionally, the capabilities of modern Searches for Extraterrestrial Intelligence (SETI) have increased tremendously. Much of this improvement is due to the ongoing development of wide bandwidth radio instruments and the Moore's Law increase in computing power over the previous decades. Together, these instrumentation improvements allow for narrow band signal searches of billions of frequency channels at once.The Breakthrough Listen Initiative (BL) was launched on July 20, 2015 at the Royal Society in London, UK with the goal to conduct the most comprehensive and sensitive search for advanced life in humanity's history. Here we detail important milestones achieved during the first year and a half of the program. We describe the key BL SETI surveys and briefly describe current facilities, including the Green Bank Telescope, the Automated Planet Finder and the Parkes Observatory. We also mention the ongoing and potential collaborations focused on complementary sciences, these include pulse searches of pulsars and FRBs, as well as astrophysically powered radio emission from stars targeted by our program.We conclude with a brief view towards future SETI searches with upcoming next-generation radio facilities such as SKA and ngVLA.

  11. Fourth Symposium on Chemical Evolution and the Origin and Evolution of Life

    NASA Technical Reports Server (NTRS)

    Wharton, Robert A., Jr. (Editor); Andersen, Dale T. (Editor); Bzik, Sara E. (Editor); Rummel, John D. (Editor)

    1991-01-01

    This symposium was held at the NASA Ames Research Center, Moffett Field, California, July 24-27, 1990. The NASA exobiology investigators reported their recent research findings. Scientific papers were presented in the following areas: cosmic evolution of biogenic compounds, prebiotic evolution (planetary and molecular), early evolution of life (biological and geochemical), evolution of advanced life, solar system exploration, and the Search for Extraterrestrial Intelligence (SETI).

  12. Radio SETI Observations of the Anomalous Star KIC 8462852

    NASA Astrophysics Data System (ADS)

    Harp, G. R.; Richards, Jon; Shostak, Seth; Tarter, J. C.; Vakoch, Douglas A.; Munson, Chris

    2016-07-01

    We report on a search for the presence of signals from extraterrestrial intelligence in the direction of the star system KIC 8462852. Observations were made at radio frequencies between 1 and 10 GHz using the Allen Telescope Array. No narrowband radio signals were found at a level of 180-300 Jy in a 1 Hz channel, or medium band signals above 10 Jy in a 100 kHz channel.

  13. The windows of SETI--frequency and time in the search for extraterrestrial intelligence.

    PubMed

    Oliver, B M

    1987-01-01

    On Earth intelligent life evolved as a natural consequence of the events set in motion when the planet formed over 4 billion years ago. Since chemical evolution and solar-system formation appear to be occurring throughout the universe, we theorize that our universe may be rich with planets populated by intelligent beings who, like us, can search for evidence of other technological civilizations. Terrestrial civilization now has this capability. But if we do not begin the search soon, we'll lose the opportunity to do it from Earth as interfering signals of Earthly origin rapidly close the microwave window.

  14. A search strategy for SETI - The search for extraterrestrial intelligence

    NASA Technical Reports Server (NTRS)

    Billingham, J.; Wolfe, J.; Edelson, R.; Gulkis, S.; Olsen, E.; Oliver, B.; Tarter, J.; Seeger, C.

    1980-01-01

    A search strategy is proposed for the detection of signals of extraterrestrial intelligent origin. It constitutes an exploration of a well defined volume of search space in the microwave region of the spectrum and envisages the use of a combination of sky survey and targeted star approaches. It is predicated on the use of existing antennas equipped with sophisticated multichannel spectrum analyzers and signal processing systems operating in the digital mode. The entire sky would be surveyed between 1 and 10 GHz with resolution bin widths down to 32 Hz. More than 700 nearby solar type stars and other selected interesting directions would be searched between 1 GHz and 3 GHz with bin widths down to 1 Hz. Particular emphasis would be placed on those solar type stars that are within 20 light years of earth.

  15. The lure of local SETI: Fifty years of field experiments

    NASA Astrophysics Data System (ADS)

    Ailleris, Philippe

    2011-01-01

    With the commemoration in October 2007 of the Sputnik launch, space exploration celebrated its 50th anniversary. Despite impressive technological and scientific achievements the fascination for space has weakened during the last decades. One contributing factor has been the gradual disappearance of mankind's hope of discovering extraterrestrial life within its close neighbourhood. In striking contrast and since the middle of the 20th century, a non-negligible proportion of the population have already concluded that intelligent beings from other worlds do exist and visit Earth through space vehicles popularly called Unidentified Flying Objects (UFOs). In light of the continuous public interest for the UFO enigma symbolized by the recent widely diffused media announcements on the release of French and English governmental files; and considering the approach of broadening the strategies of the "Active SETI" approach and the existence of a rich multi-disciplinary UFO documentation of potential interest for SETI; this paper describes some past scientific attempts to demonstrate the physical reality of the phenomena and potentially the presence on Earth of probes of extraterrestrial origin. Details of the different instrumented field studies deployed by scientists and organizations during the period 1950-1990 in the USA, Canada and Europe are provided. In conclusion it will be argued that while continuing the current radio/optical SETI searches, there is the necessity to maintain sustaining attention to the topic of anomalous aerospace phenomena and to develop new rigorous research approaches.

  16. Project Phoenix and beyond. Pesek Lecture.

    PubMed

    Tarter, J

    1997-01-01

    Although there are no federally funded projects at this time, SETI (the search for extraterrestrial intelligence) is a vigorous exploratory science. There are currently eight observational programs on telescopes around the world, of which the Phoenix Project is the most comprehensive. Most of these projects are rooted in the conclusions of the pioneering studies of the early 1970's that are summarized in the Cyclops Report. Technology has experienced an exponential growth over the past two and a half decades. It is reasonable to reassess the Cyclops conclusions as SETI enters the next century. Listening for radio signals is still the preferred method of searching, however new technologies are making searches at other wavelengths possible and are modifying the ways in which the radio searches can and should be conducted. It may be economically feasible to undertake the construction of very large telescopes that can simultaneously provide multiple beams on the sky for use by SETI and the radioastronomy community.

  17. Pesek lecture project Phoenix and beyond

    NASA Astrophysics Data System (ADS)

    Tarter, Jill

    Although there are no federally funded projects at this time, SETI (the search for extraterrestrial intelligence) is a vigorous exploratory science. There are currently eight observational programs on telescopes around the world, of which the Phoenix Project is the most comprehensive. Most of these projects are rooted in the conclusions of the pioneering studies of the early 1970's that are summarized in the Cyclops Report1. Technology has experienced an exponential growth over the past two and a half decades. It is reasonable to reassess the Cyclops conclusions as SETI enters the next century. Listening for radio signals is still the preferred method of searching, however new technologies are making searches at other wavelengths possible and are modifying the ways in which the radio searches can and should be conducted. It may be economically feasible to undertake the construction of very large telescopes that can simultaneously provide multiple beams on the sky for use by SETI and the radioastronomy community.

  18. A conceptual 34-meter antenna feed configuration for joint DSN/SETI use from 1 to 10 GHz

    NASA Technical Reports Server (NTRS)

    Slobin, S. D.

    1986-01-01

    The very satisfactory performance of a conceptual 34-m DSS-12 type HA-Dec antenna feed sysem over the frequency range of 1 to 10 GHz is demonstrated. A seven-feedhorn baseline design is developed which will allow Search for Extra-Terrestrial Intelligence (SETI) investigations using each horn over a 1.4:1 frequency range. A gain/system noise temperature (G/T) figure of merit is calculated for the frequency range of each horn; it is found that system performance down to 20 deg elevation is possible with a G/T degradation of less than 3 dB at every frequency. The design presented here will allow shared but independent antenna use by the Deep Space Network (DSN) and SETI with a minimum of operational impacts to DSN functions and no intrusions into the DSN microwave equipment configuration.

  19. Woodpeckers and Diamonds: Some Aspects of Evolutionary Convergence in Astrobiology.

    PubMed

    Ćirković, Milan M

    2018-05-01

    Jared Diamond's argument against extraterrestrial intelligence from evolutionary contingency is subjected to critical scrutiny. As with the earlier arguments of George Gaylord Simpson, it contains critical loopholes that lead to its unraveling. From the point of view of the contemporary debates about biological evolution, perhaps the most contentious aspect of such arguments is their atemporal and gradualist usage of the space of all possible biological forms (morphospace). Such usage enables the translation of the adaptive value of a trait into the probability of its evolving. This procedure, it is argued, is dangerously misleading. Contra Diamond, there are reasons to believe that convergence not only plays an important role in the history of life, but also profoundly improves the prospects for search for extraterrestrial intelligence success. Some further considerations about the role of observation selection effects and our scaling of complexity in the great debate about contingency and convergence are given. Taken together, these considerations militate against the pessimism of Diamond's conclusion, and suggest that the search for traces and manifestations of extraterrestrial intelligences is far from forlorn. Key Words: Astrobiology-Evolution-Contingency-Convergence-Complex life-SETI-Major evolutionary transitions-Selection effects-Jared Diamond. Astrobiology 18, 491-502.

  20. Signal coverage approach to the detection probability of hypothetical extraterrestrial emitters in the Milky Way

    PubMed Central

    Grimaldi, Claudio

    2017-01-01

    The lack of evidence for the existence of extraterrestrial life, even the simplest forms of animal life, makes it is difficult to decide whether the search for extraterrestrial intelligence (SETI) is more a high-risk, high-payoff endeavor than a futile attempt. Here we insist that even if extraterrestrial civilizations do exist and communicate, the likelihood of detecting their signals crucially depends on whether the Earth lies within a region of the galaxy covered by such signals. By considering possible populations of independent emitters in the galaxy, we build a statistical model of the domain covered by hypothetical extraterrestrial signals to derive the detection probability that the Earth is within such a domain. We show that for general distributions of the signal longevity and directionality, the mean number of detectable emitters is less than one even for detection probabilities as large as 50%, regardless of the number of emitters in the galaxy. PMID:28401943

  1. Communication with extraterrestrial intelligences - Possibilities, chances, and perspectives with special attention given to the leaky-embargo hypothesis

    NASA Astrophysics Data System (ADS)

    Fiebag, Johannes

    1989-12-01

    Present SETI projects are described, emphasizing search methods alternative to investigations in the radio range. The possibility that the human race is being studied by alien presences within the solar system is addressed in the context of the 'zoo hypothesis' and the 'leaky embargo' hypothesis. In the former, the aliens prevent any contact with humans, while in the latter occasional contact is permitted.

  2. Using the Very Large Array (VLA) and other radio telescopes to perform a parasitic Search for Extraterrestrial Intelligence (SETI)

    NASA Technical Reports Server (NTRS)

    Tarter, J.

    1985-01-01

    This paper describes several attempts to utilize various radio telescopes in a manner that we term "parasitic," that is in a manner that does not interrupt or seriously impact the standard astronomical observing programs in progress at the radio observatories. In the extreme case, only recorded astronomical data are accessed off-line, after the fact, without any burden on the observatory at all.

  3. Using the Very Large Array (VLA) and other radio telescopes to perform a parasitic search for extraterrestrial intelligence (SETI)

    NASA Technical Reports Server (NTRS)

    Tarter, J. C.

    1984-01-01

    This paper describes several attempts to utilize various radio telescopes in a manner that is termed 'parasitic', that is in a manner that does not interrupt or seriously impact the standard astronomical observing programs in progress at the radio observatories. In the extreme case, only recorded astronomical data are accessed off-line, after the fact, without any burden on the observatory at all.

  4. Using the Very Large Array (VLA) and other radio telescopes to perform a parasitic Search for Extraterrestrial Intelligence (SETI).

    PubMed

    Tarter, J

    1985-01-01

    This paper describes several attempts to utilize various radio telescopes in a manner that we term "parasitic," that is in a manner that does not interrupt or seriously impact the standard astronomical observing programs in progress at the radio observatories. In the extreme case, only recorded astronomical data are accessed off-line, after the fact, without any burden on the observatory at all.

  5. Half a century of SETI in the USSR and Russia

    NASA Astrophysics Data System (ADS)

    Gindilis, Lev; Gurvits, Leonid

    SETI studies in the USSR ascend back to the beginning of the 1960s. The stage for these studies have been set by the publication of the first edition of the book “The Universe, Life and Intelligence” by I.S. Shklovsky in 1962. Important milestones of early decades of the studies were the First All-Union Conference on extraterrestrial civilisations (Byurakan, 1964), the First International Symposium on CETI (Byurakan, 1971), the Zelenchukskaya Workshop (1975), Tallinn (1981) and Vilnius (1987) symposia, the Decennial US-USSR Conference on SETI (Santa Cruz, CA, 1991). The studies discussed at these forums ranged from developing criteria of “artificiality” of signals, analysing possible strategies of communication and broadcasting of messages on cosmic distances, methodology of search for artificial signals in various domains of the electro-magnetic spectrum, optimisation of frequency bands for search of and communication with ETI. A number of exploratory search projects have been conducted in radio and optical domains in the 1960s-80s. Theoretical studies were focused at developing optimal techniques for coding and decoding of interstellar messages, evaluation of astro-engineering dimension of the extraterrestrial intelligent activities, advancing philosophical aspects of the SETI problem. Later, in the 1990s and first decade of the third millennium, despite of general difficulties confronting scientific activities in Russia, SETI-oriented studies continued in the area of surveys of sun-like stars in Milky Way, search for Dyson spheres and optical signals with indications on artificiality. Several programmes of cosmic broadcasting were conducted too, including radio transmission toward selected stars. Serious re-thinking was given to incentives for passive and active involvement in SETI and CETI by cosmic civilisations. In our presentation, we will give a brief review of the past activities mentioned above and offer an outlook for further steps in advancing SETI. This outlook will be based on the advances of relevant scientific and technological areas, especially in astronomy. These developments are characterised by invention of new ultra-sensitive instruments and ability to process enormous amounts of experimental (observing) data, unthinkable in the recent past. All that would create a new basis for the continuation of SETI in the foreseeable future.

  6. THE FIRST VERY LONG BASELINE INTERFEROMETRIC SETI EXPERIMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rampadarath, H.; Morgan, J. S.; Tingay, S. J.

    2012-08-15

    The first Search for Extra-Terrestrial Intelligence (SETI) conducted with very long baseline interferometry (VLBI) is presented. By consideration of the basic principles of interferometry, we show that VLBI is efficient at discriminating between SETI signals and human generated radio frequency interference (RFI). The target for this study was the star Gliese 581, thought to have two planets within its habitable zone. On 2007 June 19, Gliese 581 was observed for 8 hr at 1230-1544 MHz with the Australian Long Baseline Array. The data set was searched for signals appearing on all interferometer baselines above five times the noise limit. Amore » total of 222 potential SETI signals were detected and by using automated data analysis techniques were ruled out as originating from the Gliese 581 system. From our results we place an upper limit of 7 MW Hz{sup -1} on the power output of any isotropic emitter located in the Gliese 581 system within this frequency range. This study shows that VLBI is ideal for targeted SETI including follow-up observations. The techniques presented are equally applicable to next-generation interferometers, such as the long baselines of the Square Kilometre Array.« less

  7. The longevity of habitable planets and the development of intelligent life

    NASA Astrophysics Data System (ADS)

    Simpson, Fergus

    2017-07-01

    Why did the emergence of our species require a timescale similar to the entire habitable period of our planet? Our late appearance has previously been interpreted by Carter (2008) as evidence that observers typically require a very long development time, implying that intelligent life is a rare occurrence. Here we present an alternative explanation, which simply asserts that many planets possess brief periods of habitability. We also propose that the rate-limiting step for the formation of observers is the enlargement of species from an initially microbial state. In this scenario, the development of intelligent life is a slow but almost inevitable process, greatly enhancing the prospects of future search for extra-terrestrial intelligence (SETI) experiments such as the Breakthrough Listen project.

  8. Polyphase-discrete Fourier transform spectrum analysis for the Search for Extraterrestrial Intelligence sky survey

    NASA Technical Reports Server (NTRS)

    Zimmerman, G. A.; Gulkis, S.

    1991-01-01

    The sensitivity of a matched filter-detection system to a finite-duration continuous wave (CW) tone is compared with the sensitivities of a windowed discrete Fourier transform (DFT) system and an ideal bandpass filter-bank system. These comparisons are made in the context of the NASA Search for Extraterrestrial Intelligence (SETI) microwave observing project (MOP) sky survey. A review of the theory of polyphase-DFT filter banks and its relationship to the well-known windowed-DFT process is presented. The polyphase-DFT system approximates the ideal bandpass filter bank by using as few as eight filter taps per polyphase branch. An improvement in sensitivity of approx. 3 dB over a windowed-DFT system can be obtained by using the polyphase-DFT approach. Sidelobe rejection of the polyphase-DFT system is vastly superior to the windowed-DFT system, thereby improving its performance in the presence of radio frequency interference (RFI).

  9. Two systems analyses of SETI. [microwave Search for Extra-Terrestrial Intelligence

    NASA Technical Reports Server (NTRS)

    Machol, R. E.

    1976-01-01

    The problem of receiving and identifying a single microwave signal transmitted by extraterrestrial intelligent beings is analyzed in the cases where the signal is designed to catch our attention and the signal is designed for internal purposes of another civilization. Six variables which yield uncertainty as to the exact signal which should be searched for are described: polarization, modulation, flux level, direction, frequency (including bandwidth and drift rate), and time. It is shown that if all reasonable variations of these parameters are to be examined sequentially for 1000 seconds, the search would take over a million times longer than the age of the Universe. Ways to simplify the search are considered, including widening the frequency bin, selecting specific targets, cutting the observation time, using a Fourier transform device for data processing, and building larger antennas as well as better low-noise receivers.

  10. Efficiency in SETI

    NASA Astrophysics Data System (ADS)

    Shostak, Seth

    2011-02-01

    While modern SETI experiments are often highly sensitive, reaching detection limits of 10 -25 W/m 2 Hz in the radio, interstellar distances imply that if extraterrestrial societies are using isotropic or broad-beamed transmitters, the power requirements for their emissions are enormous. Indeed, isotropic transmissions to the entire Galaxy, sufficiently intense to be detectable by our current searches, would consume power comparable to the stellar insolation of an Earth-size planet. In this paper we consider how knowledge can be traded for power, and how, and to what degree, astronomical accuracy can reduce the energy costs of a comprehensive transmission program by putative extraterrestrials. Indeed, an exploration of how far this trade-off might be taken suggests that extraterrestrial transmitting strategies of civilizations only modestly more advanced than our own would be, as are our SETI receiving experiments, inexpensive enough to allow multiple efforts. We explore the consequences this supposition has for our SETI listening experiments.

  11. The Impact of Discovering Life beyond Earth

    NASA Astrophysics Data System (ADS)

    Dick, Steven J.

    2016-01-01

    Introduction: astrobiology and society Steven J. Dick; Part I. Motivations and Approaches. How Do We Frame the Problems of Discovery and Impact?: Introduction; 1. Current approaches to finding life beyond earth, and what happens if we do Seth Shostak; 2. The philosophy of astrobiology: the Copernican and Darwinian presuppositions Iris Fry; 3. History, discovery, analogy: three approaches to the impact of discovering life beyond earth Steven J. Dick; 4. Silent impact: why the discovery of extraterrestrial life should be silent Clément Vidal; Part II. Transcending Anthropocentrism. How Do We Move beyond our Own Preconceptions of Life, Intelligence and Culture?: Introduction; 5. The landscape of life Dirk Schulze-Makuch; 6. The landscape of intelligence Lori Marino; 7. Universal biology: assessing universality from a single example Carlos Mariscal; 8. Equating culture, civilization, and moral development in imagining extraterrestrial intelligence: anthropocentric assumptions? John Traphagan; 9. Communicating with the other: infinity, geometry, and universal math and science Douglas Vakoch; Part III. Philosophical, Theological, and Moral Impact. How Do We Comprehend the Cultural Challenges Raised by Discovery?: Introduction; 10. Life, intelligence and the pursuit of value in cosmic evolution Mark Lupisella; 11. 'Klaatu barada nikto' - or, do they really think like us? Michael Ruse; 12. Alien minds Susan Schneider; 13. The moral subject of astrobiology: guideposts for exploring our ethical and political responsibilities towards extraterrestrial life Elspeth Wilson and Carol Cleland; 14. Astrobiology and theology Robin Lovin; 15. Would you baptize an extraterrestrial? Guy Consolmagno, SJ; Part IV. Practical Considerations: How Should Society Prepare for Discovery - and Non-Discovery?: Introduction; 16. Is there anything new about astrobiology and society? Jane Maienschein; 17. Evaluating preparedness for the discovery of extraterrestrial life: considering potential risks, impacts and plans Margaret Race; 18. Searching for extraterrestrial intelligence: preparing for an expected paradigm break Michael A. G. Michaud; 19. SETI in non-western perspective John Traphagan and Julian W. Traphagan; 20. The allure of alien life: public and media framings of extraterrestrial life Linda Billings; 21. Internalizing null extraterrestrial 'signals': an astrobiological app for a technological society Eric Chaisson; Index.

  12. Christianity's Response to the Discovery of Extraterrestrial Intelligent Life: Insights from Science and Religion and the Sociology of Religion

    NASA Astrophysics Data System (ADS)

    Bertka, Constance M.

    The question of whether or not extraterrestrial life exists and its potential impact for religions, especially Christianity, is an ancient one addressed in numerous historical publications. The contemporary discussion has been dominated by a few notable scientists from the SETI and astrobiology communities, and by a few Christian theologians active in the science and religion field. This discussion amounts to scientists outside of the faith tradition predicting the demise of Christianity if extraterrestrial intelligent life is discovered and theologians within the tradition predicting the enrichment and reformulation of Christian doctrine. Missing from this discussion is insight drawn more broadly from the science and religion field and from the sociology of religion. A consideration of how possibilities for relating science and religion are reflected in the US public's varied acceptance of the theory of evolution; the growth of Christianity in the Global South; and a revised theory of secularization which inversely correlates religiosity to existential security, gives credence to the proposal that the response from those outside of academia would be much more varied and uncertain.

  13. Identification, Characterization, and Exploration of Environments for Life on Mars

    NASA Technical Reports Server (NTRS)

    Acevedo, Sara E.

    2002-01-01

    A bibliography (18 references) listing the publications during the current grant period of The Center for the Study of Life in the Universe, part of the SETI (Search for Extraterrestrial Intelligence) Institute is presented. The publications, from the Period of Performance September 1, 2000 to February 28, 2002, primarily cover Mars and its potential for life, as well as extreme environments and primitive life forms on Earth. One of the publications covers Europa and the Galileo spacecraft.

  14. Ultranarrowband searches for extraterrestrial intelligence with dedicated signal-processing hardware

    NASA Technical Reports Server (NTRS)

    Horowitz, P.; Matthews, B. S.; Forster, J.; Linscott, I.; Teague, C. C.; Chen, K.; Backus, P.

    1986-01-01

    An evaluation is made of the prospects for SETI applications of multichannel spectroscopy, assuming narrowband RF beacon transmission, with a mHz resolution that matches interstellar medium properties. Receiver Doppler corrections must furnish substantial interference rejection. Results are presented from an Arecibo antenna search of 250 sunlike stars at 1.4 and 2.8 GHz. A meridian transit search of the northern sky is also in progress with the Harvard-Smithsonian 26-m antenna.

  15. The Search for Life in the Universe: The Past Through the Future

    NASA Astrophysics Data System (ADS)

    Lebofsky, L. A.; Lebofsky, A.; Lebofsky, M.; Lebofsky, N. R.

    2003-05-01

    ``Are we alone?'' This is a question that has been asked by humans for thousands of years. More than any other topic in science, the search for life in the Universe has captured the imagination. Now, for the first time in history, we are on the verge of answering this question. The search for life beyond the Earth can be seen as far back as the 17th century writings of Bishops F. Godwin and J. Wilkins and S. Cyrano de Bergerac to the early 20th century's H. G. Wells. From a scientific perspective, this search led to the formulation of the Drake Equation which in turn has led to a number of projects that are searching for signs of intelligent life beyond the Earth, the Search for Extraterrestrial Intelligence. SETI@home reaches millions of users, including thousands of K-12 teachers across the nation. We are developing a project that will enhance the SETI@home web site located at UC Berkeley. The project unites the resources of the SETI@home distributed computing community web site, university settings, and informal science learning centers. It will reach approximately 100,000 learners. The goal is to increase public understanding of math and science and to create and strengthen the connections between informal and formal learning communities. We will present a variety of ways that the Drake Equation and SETI@home can enhance the public and student understanding of the search for life in the Universe, from its roots in literature, to the development (and evolution) of the Drake Equation, to the actual search for life with SETI.

  16. Searching for extraterrestrial civilizations.

    PubMed

    Kuiper, T B; Morris, M

    1977-05-06

    We have argued that planning for a search for extraterrestrial intelligence should involve a minimum number of assumptions. In view of the feasibility (at our present level of understanding) of using nuclear fusion to effect interstellar travel at a speed of 0.1c, it appears unwarranted (at this time) to assume that it would not occur for at least some technologically advanced civilizations. One cannot even conclude that humans would not attempt this within the next few centuries. On the contrary, the most likely future situation, given the maintenance of technological growth and the absence of extraterrestrial interference, is that our civilization will explore and colonize our galactic neighborhood. A comparison of the time scales of galactic evolution and interstellar travel leads to the conclusion that the galaxy is either essentially empty with respect to technological civilizations or extensively colonized. In the former instance, a SETI would be unproductive. In the latter, a SETI could be fruitful if a signal has been deliberately directed at the earth or at an alien outpost, probe, or communication relay station in our solar system. In the former case, an existing antenna would probably be sufficient to detect the signal. In the latter case, success would depend on the way in which the communications were coded. Failure to detect a signal could permit any of the following conclusions: (i) the galaxy is devoid of technological civilizations, advanced beyond our own, (ii) such civilizations exist, but cannot (for some reason which is presently beyond our ken) engage in interstellar colonization, or (iii) such civilizations are not attempting overt contact with terrestrial civilizations and their intercommunications, if present, are not coded in a simple way. To plan at this time for a high-cost, large-array SETI based on the last two possibilities appears to be rather premature.

  17. Time and space integrating acousto-optic folded spectrum processing for SETI

    NASA Technical Reports Server (NTRS)

    Wagner, K.; Psaltis, D.

    1986-01-01

    Time and space integrating folded spectrum techniques utilizing acousto-optic devices (AOD) as 1-D input transducers are investigated for a potential application as wideband, high resolution, large processing gain spectrum analyzers in the search for extra-terrestrial intelligence (SETI) program. The space integrating Fourier transform performed by a lens channels the coarse spectral components diffracted from an AOD onto an array of time integrating narrowband fine resolution spectrum analyzers. The pulsing action of a laser diode samples the interferometrically detected output, aliasing the fine resolution components to baseband, as required for the subsequent charge coupled devices (CCD) processing. The raster scan mechanism incorporated into the readout of the CCD detector array is used to unfold the 2-D transform, reproducing the desired high resolution Fourier transform of the input signal.

  18. A Search for Extraterrestrial Intelligence (SETI) toward the Galactic Anticenter with the Murchison Widefield Array

    NASA Astrophysics Data System (ADS)

    Tingay, S. J.; Tremblay, C. D.; Croft, S.

    2018-03-01

    Following the results of the first systematic modern low-frequency search for extraterrestrial intelligence using the Murchison Widefield Array (MWA), which was directed toward a Galactic Center field, we report a second survey toward a Galactic Anticenter field. Using the MWA in the frequency range 99–122 MHz over a three-hour period, a 625 deg2 field centered on Orion KL (in the general direction of the Galactic Anticenter) was observed with a frequency resolution of 10 kHz. Within this field, 22 exoplanets are known. At the positions of these exoplanets, we searched for narrowband signals consistent with radio transmissions from intelligent civilizations. No such signals were found with a 5σ detection threshold. Our sample is significantly different to the 45 exoplanets previously studied with the MWA toward the Galactic Center, since the Galactic Center sample is dominated by exoplanets detected using microlensing, and hence at much larger distances than the exoplanets toward the Anticenter, found via radial velocity and transit detection methods. Our average effective sensitivity to extraterrestrial transmitter power is therefore much improved for the Anticenter sample. Added to this, our data processing techniques have improved, reducing our observational errors, leading to our best detection limit being reduced by approximately a factor of four compared to our previously published results.

  19. The Breakthrough Listen Initiative and the Future of the Search for Intelligent Life

    NASA Astrophysics Data System (ADS)

    Enriquez, J. Emilio; Siemion, Andrew; Falcke, Heino; Croft, Steve; DeBoer, David R.; Gajjar, Vishal; Hickish, Jack; Isaacson, Howard T.; Lebofsky, Matt; MacMahon, David; Price, Danny C.; Tellis, Nate; Werthimer, Dan; ter Veen, Sander; Garrett, Michael A.; Hellbourg, Greg

    2017-01-01

    Unprecedented recent results in the fields of exoplanets and astrobiology have dramatically increased the interest in the potential existence of intelligent life elsewhere in the galaxy. Additionally, the capabilities of modern Searches for Extraterrestrial Intelligence (SETI) have increased tremendously. Much of this improvement is due to the ongoing development of wide bandwidth radio instruments and the Moore’s Law increase in computational power over the previous decades. Together, these instrumentation improvements allow for narrow band signal searches of billions of frequency channels at once.The Breakthrough Listen Initiative (BL) was launched on July 20, 2015 at the Royal Society in London, UK with a charge to conduct the most comprehensive and sensitive search for advanced life in humanity’s history. Here we detail important milestones achieved during the first year of the program, describe the key BL SETI surveys and briefly describe current facilities, including the Green Bank Telescope, the Automated Planet Finder and the Parkes Observatory.Complementary to the BL initiative (at a smaller scale), pioneering SETI work at low radio frequencies (20-250 MHz) is being undertaken with the LOw Frequency ARray (LOFAR). This program uses simple fixed-stationary antennas and multiple phased-array beams formed in a supercomputer to search many targets at once and will lay the groundwork for future searches with SKA1-low and mid frequency aperture array pathfinders. We will present the results of a volume complete sample of nearby stars (< 5pc) observed with LOFAR, searching for drifting narrow band signals with expected Doppler drifts covering a wide range of potential transmitter host planets.We conclude with a brief view towards future SETI searches with upcoming next-generation radio facilities such as SKA and ngVLA.

  20. Toward understanding the active SETI debate: Insights from risk communication and perception

    NASA Astrophysics Data System (ADS)

    Korbitz, Adam

    2014-12-01

    Insights from the robust field of risk communication and perception have to date been almost totally absent from the policy debate regarding the relative risks and merits of Active SETI or Messaging to Extraterrestrial Intelligence (METI). For many years, the practice (or proposed practice) of Active SETI has generated a vigorous and sometimes heated policy debate within the scientific community. There have also been some negative reactions in the media toward the activities of those engaged in Active SETI. Risk communication is a scientific approach to communication regarding situations involving potentially sensitive or controversial situations in which there may be high public concern and low public trust. The discipline has found wide acceptance and utility in fields such as public health, industrial regulation and environmental protection. Insights from the scientific field of risk communication (such as omission bias, loss aversion, the availability heuristic, probability neglect, and the general human preference for voluntary over involuntary risks) may help those who have participated in either side of the debate over Active SETI to better understand why the debate has taken on this posture. Principles of risk communication and risk perception may also help those engaged in Active SETI to communicate more effectively with other scientists, the public, with the media, and with policy makers regarding their activities and to better understand and respond to concerns expressed regarding the activity.

  1. Lasers revisited - Their superior utility for interstellar beacons, communications, and travel

    NASA Technical Reports Server (NTRS)

    Rather, John D. G.

    1991-01-01

    This paper demonstrates reasons why research supporting SETI and Communication with Extraterrestrial Intelligence should be broadened to optical wavelengths rather than focusing almost entirely upon microwave wavelengths and technologies. New perceptions regarding the feasibility of laser technologies, along with reassessments of signal-to-noise considerations, show both the desirability and feasibility of optical interstellar transmissions, especially at IR and visible wavelengths. It is shown that utilization of the large bandwidths available at optical wavelengths greatly improves the possible use of such endeavors.

  2. A strategic 'viewfinder' for SETI research

    NASA Astrophysics Data System (ADS)

    Teodorani, Massimo

    2014-12-01

    One of the most important reasons why unsuccessful results have been obtained so far by the SETI Project is due to the fact that no sure targets to aim at have been available up-to the present state of research. All-sky surveys, even if very accurate and complete, might result to be time-consuming. SETI needs at least one effective 'viewfinder' in order that a true targeted research is carried out with a possible success. The best foundation to get this can be identified with the search for the evidence of extraterrestrial astro-engineering activity in form of the Dyson spheres predicted by theory. The existence of such stellar objects can be ascertained by finding the evidence of two main signatures in stars of solar spectral type: infrared excess and anomalous light curves due to transiting artificial objects. These are probably the most powerful viewfinders in order to allow SETI techniques for intelligent signal search to be aimed at more appropriate targets. This paper is not intended to be a research paper but rather a review paper whose goal is not to present calculations and/or operational research but rather to be a research proposal for a more focused research in SETI just using Dyson Spheres as crucial markers.

  3. All Over the World: Mid-Twentieth Century Radio Astronomy and the Origin of the International SETI Network

    NASA Astrophysics Data System (ADS)

    Charbonneau, Rebecca

    2018-01-01

    Cold War mythology is rife with stories about secrecy, competition, espionage, and animosity. Yet the history behind the myth-- the overlooked scientists collaborating outside of the aims of the state-- also tells an interesting story. This paper examines the challenges of international scientific collaboration during the Cold War, focusing especially on a case study concerning Soviet radio astronomer Iosif Samuilovich Shklovskii and U.S. astrophysicist Carl Sagan, and their collaborative work on the search for extraterrestrial intelligence (SETI). Despite the hyper-politics that instigated and fueled the Space Race, SETI was held up as an ideal internationalist science, with the lofty goal of uniting all of humanity by situating it within a cosmic community. Although the internationalism of SETI discourse is not entirely unfounded due to its roots in international collaboration, further research indicates that such internationalism was in reality instilled with geopolitics, international conflict, and even espionage. That said, however, the cultural and philosophical perspectives of individual SETI scientists led them to operate within the tensions between national and ideological restraints and their own personal philosophical perspectives. In reviewing the letters of correspondence, conference proceedings, interviews, transcripts of lectures, and autobiographical writings of early-SETI radio astronomers, this paper ultimately argues that, although SETI was not the ideal internationalist science it was portrayed as, SETI pioneers were able to connect and form international networks within a contentious system which often centred on the restriction of free information and international collaboration through their mutual unconventional scientific interests, and facilitated by their personal utopian futurist philosophies.

  4. The Breakthrough Listen Search for Intelligent Life: the first SETI results and other future science.

    NASA Astrophysics Data System (ADS)

    Enriquez, J. Emilio; Breakthrough Listen Team

    2018-01-01

    The Breakthrough Listen (BL) Initiative is the largest campaign in human history on the search for extraterrestrial intelligence. The work presented here is the first BL search for engineered signals. This comprises a sample of 692 nearby stars within 50 pc. We used the Green Bank Telescope (GBT) to conduct observations over 1.1-1.9 GHz (L-band). Our observing strategy allows us to reject most of the detected signals as terrestrial interference. During the analysis, eleven stars show events that passed our thresholding algorithm, but detailed analysis of their properties indicates they are consistent with known examples of anthropogenic radio frequency interference. This small number of false positives and their understood properties give confidence on the techniques used for this search. We conclude that, at the time of our observations none of the observed systems host high-duty-cycle radio transmitters emitting at the observed frequencies with an EIRP of 10^13 W, readily achievable by our own civilization.We can place limits on the presence of engineered signals from putative extraterrestrial civilizations inhabiting the environs of the target stars. Our results suggest that fewer than ~0.1% of the stellar systems within 50 pc possess the type of transmitters searched in this survey. This work provides the most stringent limit on the number of low power radio transmitters around nearby stars to date. We explored several metics to compare our results to previous SETI efforts. We developed a new figure-of-merit that can encompass a wider set of parameters and can be used on future SETI experiments for a meaningful comparison.We note that the current BL state-of-the-art digital backend installed at the Green Bank Observatory is the fastest ever used for a SETI experiment by a factor of a few. Here we will describe the potential use of the BL backend by other groups on complementary science, as well as a mention the ongoing and potential collaborations focused in particular in the study of astrophysically powered radio emission from stars targeted by our program.

  5. A near-infrared SETI experiment: instrument overview

    NASA Astrophysics Data System (ADS)

    Wright, Shelley A.; Werthimer, Dan; Treffers, Richard R.; Maire, Jérôme; Marcy, Geoffrey W.; Stone, Remington P. S.; Drake, Frank; Meyer, Elliot; Dorval, Patrick; Siemion, Andrew

    2014-07-01

    We are designing and constructing a new SETI (Search for Extraterrestrial Intelligence) instrument to search for direct evidence of interstellar communications via pulsed laser signals at near-infrared wavelengths. The new instrument design builds upon our past optical SETI experiences, and is the first step toward a new, more versatile and sophisticated generation of very fast optical and near-infrared pulse search devices. We present our instrumental design by giving an overview of the opto-mechanical design, detector selection and characterization, signal processing, and integration procedure. This project makes use of near-infrared (950 - 1650 nm) discrete amplification Avalanche Photodiodes (APD) that have > 1 GHz bandwidths with low noise characteristics and moderate gain (~104). We have investigated the use of single versus multiple detectors in our instrument (see Maire et al., this conference), and have optimized the system to have both high sensitivity and low false coincidence rates. Our design is optimized for use behind a 1m telescope and includes an optical camera for acquisition and guiding. A goal is to make our instrument relatively economical and easy to duplicate. We describe our observational setup and our initial search strategies for SETI targets, and for potential interesting compact astrophysical objects.

  6. Evolutionary contingency and SETI revisited

    NASA Astrophysics Data System (ADS)

    Cirkovic, Milan M.

    2014-07-01

    The well-known argument against the Search for ExtraTerrestrial Intelligence (SETI) due to George Gaylord Simpson is re-analyzed almost half a century later, in the light of our improved understanding of preconditions for the emergence of life and intelligence brought about by the ongoing "astrobiological revolution". Simpson's argument has been enormously influential, in particular in biological circles, and it arguably fueled the most serious opposition to SETI programmes and their funding. I argue that both proponents and opponents of Simpson's argument have occasionally mispresented its core content. Proponents often oversimplify it as just another consequence of biological contingency, thus leaving their position open to general arguments limiting the scope of contingency in evolution (such as the recent argument of Geerat Vermeij based on selection effects in the fossil record). They also tend to neglect that the argument has been presented as essentially atemporal, while referring to entities and processes that are likely to change over time; this has become even less justifiable as our astrobiological knowledge increased in recent years. Opponents have failed to see that the weaknesses in Simpson's position could be removed by restructuring of the argument; I suggest one way of such restructuring, envisioned long ago in the fictional context by Stanislaw Lem. While no firm consensus has emerged on the validity of Simpson's argument so far, I suggest that, contrary to the original motivation, today it is less an anti-SETI argument, and more an astrobiological research programme. In this research programme, SETI could be generalized into a platform for testing some of the deepest assumptions about evolutionary continuity and the relative role of contingency versus convergence on unprecedented spatial and temporal scales.

  7. The Benefits of Adding SETI to the University Curriculum and What We Have Learned from a SETI Course Recently Offered at UCLA

    NASA Astrophysics Data System (ADS)

    Lesyna, Larry; Margot, Jean-Luc; Greenberg, Adam; Shinde, Akshay; Alladi, Yashaswi; Prasad MN, Srinivas; Bowman, Oliver; Fisher, Callum; Gyalay, Szilard; McKibbin, William; Miles, Brittany E.; Nguyen, Donald; Power, Conor; Ramani, Namrata; Raviprasad, Rashmi; Santana, Jesse

    2017-01-01

    We advocate for the inclusion of a full-term course entirely devoted to SETI in the university curriculum. SETI usually warrants only a few lectures in a traditional astronomy or astrobiology course. SETI’s rich interdisciplinary character serves astronomy students by introducing them to scientific and technological concepts that will aid them in their dissertation research or later in their careers. SETI is also an exciting topic that draws students from other disciplines and teaches them astronomical concepts that they might otherwise never encounter in their university studies. We have composed syllabi that illustrate the breadth and depth that SETI courses provide for advanced undergraduate or graduate students. The syllabi can also be used as a guide for an effective SETI course taught at a descriptive level.After a pilot course in 2015, UCLA formally offered a course titled "EPSS C179/279 - Search for Extraterrestrial Intelligence: Theory and Applications" in Spring 2016. The course was designed for advanced undergraduate students and graduate students in the science, technical, engineering, and mathematical fields. In 2016, 9 undergraduate students and 5 graduate students took the course. Students designed an observing sequence for the Arecibo and Green Bank telescopes, observed known planetary systems remotely, wrote a sophisticated and modular data processing pipeline, analyzed the data, and presented the results. In the process, they learned radio astronomy fundamentals, software development, signal processing, and statistics. The instructor believes that the students were eager to learn because of the engrossing nature of SETI. The students rated the course highly, in part because of the observing experience and the teamwork approach. The next offering will be in Spring 2017.See lxltech.com and seti.ucla.edu

  8. OPTICAL SETI OBSERVATIONS OF THE ANOMALOUS STAR KIC 8462852

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuetz, Marlin; Vakoch, Douglas A.; Shostak, Seth

    To explore the hypothesis that KIC 8462852's aperiodic dimming is caused by artificial megastructures in orbit, rather than a natural cause such as cometary fragments in a highly elliptical orbit, we searched for electromagnetic signals from KIC 8462852 indicative of extraterrestrial intelligence. The primary observations were in the visible optical regime using the Boquete Optical SETI Observatory in Panama. In addition, as a recommended preparatory exercise for the possible future detection of a candidate signal, three of six observing runs simultaneously searched radio frequencies at the Allen Telescope Array in California. No periodic optical signals greater than 67 photons m{supmore » −2} within a time frame of 25 ns were seen. If, for example, any inhabitants of KIC 8462852 were targeting our solar system with 5 MJ laser pulses, locally illuminating an approximately 3 au diameter disk, the signal could have been detected at the Boquete Observatory. The limits on narrowband radio signals were 180–300 Jy Hz at 1 and 8 GHz, respectively. While the power requirement for a detectable, isotropic narrowband radio transmission from KIC 8462852 is quite high, even modest targeting on the part of the putative extraterrestrials can lower this power substantially.« less

  9. Optical SETI Observations of the Anomalous Star KIC 8462852

    NASA Astrophysics Data System (ADS)

    Schuetz, Marlin; Vakoch, Douglas A.; Shostak, Seth; Richards, Jon

    2016-07-01

    To explore the hypothesis that KIC 8462852's aperiodic dimming is caused by artificial megastructures in orbit, rather than a natural cause such as cometary fragments in a highly elliptical orbit, we searched for electromagnetic signals from KIC 8462852 indicative of extraterrestrial intelligence. The primary observations were in the visible optical regime using the Boquete Optical SETI Observatory in Panama. In addition, as a recommended preparatory exercise for the possible future detection of a candidate signal, three of six observing runs simultaneously searched radio frequencies at the Allen Telescope Array in California. No periodic optical signals greater than 67 photons m-2 within a time frame of 25 ns were seen. If, for example, any inhabitants of KIC 8462852 were targeting our solar system with 5 MJ laser pulses, locally illuminating an approximately 3 au diameter disk, the signal could have been detected at the Boquete Observatory. The limits on narrowband radio signals were 180-300 Jy Hz at 1 and 8 GHz, respectively. While the power requirement for a detectable, isotropic narrowband radio transmission from KIC 8462852 is quite high, even modest targeting on the part of the putative extraterrestrials can lower this power substantially.

  10. Radio frequency interference at Jodrell Bank Observatory within the protected 21 cm band

    NASA Technical Reports Server (NTRS)

    Tarter, J.

    1989-01-01

    Radio frequency interference (RFI) will provide one of the most difficult challenges to systematic Searches for Extraterrestrial Intelligence (SETI) at microwave frequencies. The SETI-specific equipment is being optimized for the detection of signals generated by a technology rather than those generated by natural processes in the universe. If this equipment performs as expected, then it will inevitably detect many signals originating from terrestrial technology. If these terrestrial signals are too numerous and/or strong, the equipment will effectively be blinded to the (presumably) weaker extraterrestrial signals being sought. It is very difficult to assess how much of a problem RFI will actually represent to future observations, without employing the equipment and beginning the search. In 1983 a very high resolution spectrometer was placed at the Nuffield Radio Astronomy Laboratories at Jodrell Bank, England. This equipment permitted an investigation of the interference environment at Jodrell Bank, at that epoch, and at frequencies within the 21 cm band. This band was chosen because it has long been "protected" by international agreement; no transmitters should have been operating at those frequencies. The data collected at Jodrell Bank were expected to serve as a "best case" interference scenario and provide the minimum design requirements for SETI equipment that must function in the real and noisy environment. This paper describes the data collection and analysis along with some preliminary conclusions concerning the nature of the interference environment at Jodrell Bank.

  11. Radio frequency interference at Jodrell Bank Observatory within the protected 21 cm band.

    PubMed

    Tarter, J

    1989-01-01

    Radio frequency interference (RFI) will provide one of the most difficult challenges to systematic Searches for Extraterrestrial Intelligence (SETI) at microwave frequencies. The SETI-specific equipment is being optimized for the detection of signals generated by a technology rather than those generated by natural processes in the universe. If this equipment performs as expected, then it will inevitably detect many signals originating from terrestrial technology. If these terrestrial signals are too numerous and/or strong, the equipment will effectively be blinded to the (presumably) weaker extraterrestrial signals being sought. It is very difficult to assess how much of a problem RFI will actually represent to future observations, without employing the equipment and beginning the search. In 1983 a very high resolution spectrometer was placed at the Nuffield Radio Astronomy Laboratories at Jodrell Bank, England. This equipment permitted an investigation of the interference environment at Jodrell Bank, at that epoch, and at frequencies within the 21 cm band. This band was chosen because it has long been "protected" by international agreement; no transmitters should have been operating at those frequencies. The data collected at Jodrell Bank were expected to serve as a "best case" interference scenario and provide the minimum design requirements for SETI equipment that must function in the real and noisy environment. This paper describes the data collection and analysis along with some preliminary conclusions concerning the nature of the interference environment at Jodrell Bank.

  12. Ultranarrowband searches for extraterrestrial intelligence with dedicated signal-processing hardware.

    PubMed

    Horowitz, P; Matthews, B S; Forster, J; Linscott, I; Teague, C C; Chen, K; Backus, P

    1986-01-01

    Multichannel spectroscopy with millihertz resolution constitutes an attractive strategy for a microwave search for extraterrestrial intelligence (SETI), assuming the transmission of a narrow-band radiofrequency beacon. Such resolution matches the properties of the interstellar medium, and the necessary receiver Doppler corrections provide a high degree of interference rejection. We have constructed a frequency-agile swept receiver with an 8,388,608-channel spectrum analyzer, on-line signal recognition, and multithreshold archiving. A search of 250 Sun-like stars at 1.4 and 2.8 GHz has been carried out with the Arecibo 305-m antenna, and a meridian transit search of the northern sky is in progress at the Harvard-Smithsonian 26-m antenna. Successive spectra of 400 kHz at 0.05 Hz resolution are searched for features characteristic of an intentional narrowband beacon transmission. These spectra are centered on guessable ("magic") frequencies (such as the 21-cm hydrogen hyperfine line), referenced successively to the local standard of rest, the galactic barycenter, and the cosmic blackbody rest frame.

  13. ETI, SETI and today's public opinion

    NASA Astrophysics Data System (ADS)

    Pinotti, Roberto

    During the last three decades the general public's initial opinions about ETI and SETI changed, turning ignorance, fear and superficiality into a gradual understanding of the importance of these concepts. After a brief analysis of this changing psycho-sociological attitude, the paper provides an "estimate of the situation" about general interest for ETI and SETI, suggesting a growing awareness in today's public opinion. Science fiction movies like Close Encounters of the Third Kind and E.T. the Extra-Terrestrial and popular interest in UFOs as visitors from outer space played a major role in the average man's acceptance of the reality of extra-terrestrial life and its meaning for mankind.

  14. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1987-01-01

    Archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA) are provided. Activities of the Deep Space Network (DSN) in space communications, radio navigation, radio science, and ground-based radio astronomy are reported. Also included are the plans, supporting research and technology, implementation and operations for the Ground Communications Facility (GCF). In geodynamics, the publication reports on the application of radio interferometry at microwave frequencies for geodynamic measurements. In the search for extraterrestrial intelligence (SETI), it reports on implementation and operations for searching the microwave spectrum.

  15. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1991-01-01

    A compilation is presented of articles on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition. In space communications, radio navigation, radio science, and ground based radio and radar astronomy, activities of the Deep Space Network are reported in planning, in supporting research and technology, in implementation, and in operations. Also included is standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. In the search for extraterrestrial intelligence (SETI), implementation and operations are reported for searching the microwave spectrum.

  16. Search for extraterrestrial intelligence/High Resolution Microwave Survey team member

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1994-01-01

    This final report summarizes activities conducted during the three years of the NASA High Resolution Microwave Survey (HRMS). With primary interest in the Sky Survey activity, the principal investigator attended nine Working Group meetings and traveled independently to conduct experiments or present results at other meetings. The major activity involved evaluating the effects of spaceborne radio frequency interference (RFI) on both the SETI sky survey and targeted search. The development of a database of all unclassified earth or biting and deep space transmitters, along with accompanying search software, was a key accomplishment. The software provides information about potential sources of interference and gives complete information regarding the frequencies, positions and levels of interference generated by the spacecraft. A complete description of this search system (called HRS, or HRMS RFI Search) is provided. Other accomplishments include development of a 32,000 channel Fast-Fourier-Transform Spectrum analyzer for use in studies of interference from satellites and in a 1.4 mm SETI observational study. The latest revision of HRS has now been distributed to the extended radio astronomy and SETI community.

  17. A near-infrared SETI experiment: commissioning, data analysis, and performance results

    NASA Astrophysics Data System (ADS)

    Maire, Jérôme; Wright, Shelley A.; Dorval, Patrick; Drake, Frank D.; Duenas, Andres; Isaacson, Howard; Marcy, Geoffrey W.; Siemion, Andrew; Stone, Remington P. S.; Tallis, Melisa; Treffers, Richard R.; Werthimer, Dan

    2016-08-01

    Over the last two decades, Optical Search for Extra-Terrestrial Intelligence experiments have been conducted to search for either continuous or pulsed visible-light laser beacons that could be used for interstellar communication or energy transmission. Near-infrared offers a compelling window for signal transmission since there is a decrease in interstellar extinction and Galactic background compared to optical wavelengths. An innovative Near-InfraRed and Optical SETI (NIROSETI) instrument has been designed and constructed to take advantage of a new generation of fast (> 1 Ghz) low-noise near-infrared avalanche photodiodes to search for nanosecond pulsed near-infrared (850 - 1650 nm) pulses. The instrument was successfully installed and commissioned at the Nickel (1m) telescope at Lick Observatory in March 2015. We will describe the overall design of the instrument with a focus on methods developed for data acquisition and reduction for near-infrared SETI. Time and height analyses of the pulses produced by the detectors are performed to search for periodicity and coincidences in the signals. We will further discuss our NIROSETI survey plans.

  18. Carl Sagan and Joseph Shklovsky: Intelligent Life in the Universe

    NASA Astrophysics Data System (ADS)

    Kurt, Vladimir

    J. S. Shklovsky and Carl Sagan played an outstanding role in modern astronomy. Their names are well known not only to professional astronomers, but also to millions of educated people in many countries, which are interested in modern state of science research. Among these trends of modern science, which are difficult to define, are such problems, as the creation of Solar system, the origin of life on Earth, the evolution of living organisms on Earth from the simplest viruses to Homo Sapiens, the evolution of intelligence and technology. Finally, both outstanding scientists were deeply interested in the problem of SETI (Search Extraterrestrial Intelligence), i.e. search of extraterrestrial civilizations and methods of making contacts with them. And both scientists were high professionals in their fields. Joseph Shklovsky was a theoretical astronomer in all fields of modern astronomy (geophysics and physics of the upper atmosphere of the Earth, Sun and Solar Corona, Interplanetary Medium and Solar Wind, Interstellar Medium, Supernova and their remnants, the Galaxy and galaxies, Quasars and Cosmology). There is hardly a field in modern astrophysics (except perhaps the theory of the interior structure of stars), where Joseph Shklovsky has not l a bright stamp of his talent…

  19. SETI: A good introductory physics topic

    NASA Astrophysics Data System (ADS)

    Hobson, Art

    1997-04-01

    If America is to achieve the science literacy that is essential to industrialized democracy, all students must study such topics as scientific methodology, pseudoscience, ozone depletion, and global warming. My large-enrollment liberal-arts physics course covers the great principles of physics along with several such philosophical and societal topics. It is easy to include the interdisciplinary context of physics in courses for non-scientists, because these courses are flexible, conceptual, and taught to students whose interests span a broad range. Students find these topics relevant and fascinating, leading to large enrollments by non-scientists even in courses labeled ''physics.'' I will discuss my approach to teaching the search for extra-terrestrial intelligence (SETI), a topic with lots of good physics and with connections to scientific methodology and pseudoscience. A textbook for this kind of course has been published, Physics: Concepts and Connections (Prentice-Hall, 1995).

  20. SETI: another way to find habitable worlds

    NASA Astrophysics Data System (ADS)

    Tarter, Jill

    2003-10-01

    There are currently eleven active SETI (search for extraterrestrial intelligence) programs on telescopes around the world. They operate at microwave and optical frequencies, as either sky surveys or targeted searches in the direction of (primarily) solar-type stars. Each is attempting to detect an electromagnetic biosignature of a technological civilization. Although detectable technologies will be far older than our own, these searches are constrained by our current understanding of physics and the terrestrial technologies available in the 21st century. Moore's Law suggests that most of these detection technologies will improve their capacity exponentially. Thus if any of the current strategies is valid, a thorough exploration of the Milky Way Galaxy should be possible within decades (not centuries), and success, or a significant null-result is predictable. Giving up, incorporating new search strategies based on emergent technologies, or adding beacon transmission to the listening strategies are all future possibilities.

  1. Costs and Difficulties of Interstellar 'Messaging' and the Need for International Debate on Potential Risks

    NASA Astrophysics Data System (ADS)

    Billingham, J.; Benford, James

    We advocate international consultations on societal and technical issues to address the risk of Messaging to Extraterrestrial Intelligence (METI) transmissions, and a moratorium on future transmissions until such issues are resolved. Instead, we recommend continuing to conduct SETI by listening, with no innate risk, while using powerful new search systems to give a better total probability of detection of beacons and messages than METI for the same cost, and with no need for a long obligatory wait for a response. Realistically, beacons are costly. In light of recent work on the economics of contact by radio, we offer alternatives to the current standard methods of SETI searches. METI transmissions to date are faint and very unlikely to be detected, even by nearby stars. We show that historical leakage from Earth has been undetectable for Earth-scale receiver systems. Future space microwave and laser power systems will likely be more detectable.

  2. A bimodal search strategy for SETI

    NASA Technical Reports Server (NTRS)

    Gulkis, S.; Olsen, E. T.; Tarter, J.

    1980-01-01

    The search strategy and resultant observational plan which was developed to carry out a comprehensive Search for Extraterrestrial Intelligence (SETI) over that portion of the electromagnetic spectrum known as the terrestrial microwave window is described. The limiting sensitivity achieved was parameterized and calculated for Deep Space Network antennas as well as several radio astronomy observatories. A brief description of the instrumentation to be employed in the search and the classes of signals to be looked for is given. One observational goal is to survey the entire sky over a wide range of frequency to a relatively constant flux level. This survey ensures that all potential life sites are observed to some limiting equivalent isotropic radiated power depending upon their distance. A second goal is to survey a set of potential transmission sites selected a priori to be especially promising, achieving very high sensitivity over a smaller range of frequency.

  3. Five Years of SETI with the Allen Telescope Array: Lessons Learned

    NASA Astrophysics Data System (ADS)

    Harp, Gerald

    2016-01-01

    We discuss recent observations at the Allen Telescope Array (ATA) supporting a wide ranging Search for Extraterrestrial Intelligence (SETI). The ATA supports observations over the frequency range 1-10 GHz with three simultaneous phased array beams used in an anticoincidence detector for false positive rejection. Here we summarize observational results over the years 2011-2015 covering multiple campaigns of exoplanet stars, the galactic plane, infrared excess targets, etc. Approximately 2 x 108 signals were identified and classified over more than 5000 hours of observation. From these results we consider various approaches to the rapid identification of human generated interference in the process of the search for a signal with origins outside the radius of the Moon's orbit. We conclude that the multi-beam technique is superb tool for answering the very difficult question of the direction of origin of signals. Data-based simulations of future instruments with more than 3 beams are compared.

  4. Religion in SETI Communications

    NASA Astrophysics Data System (ADS)

    Pay, R.

    The prospect of millions of civilizations in the Galaxy raises the probability of receiving communications in the Search for Extraterrestrial Intelligence (SETI). However, much depends on the average lifetime of planetary civilizations. For a lifetime of 500 years, an optimistic forecast would predict about 65 civilizations in the Galaxy at any one time, separated by 5,000 light years. No prospect of communication. For a lifetime of 10 million years, over a million civilizations would be spaced 180 light years apart. Communication among them is feasible. This indicates that extraterrestrial communications depend on civilizations achieving long term stability, probably by evolving a global religion that removes sources of religious strife. Stability also requires an ethic supporting universal rights, nonviolence, empathy and cooperation. As this ethic will be expressed in the planet-wide religion, it will lead to offers of support to other civilizations struggling to gain stability. As stable civilizations will be much advanced scientifically, understanding the religious concepts that appear in their communications will depend on how quantum mechanics, biological evolution, and the creation of the universe at a point in time are incorporated into their religion. Such a religion will view creation as intentional rather than accidental (the atheistic alternative) and will find the basis for its natural theology in the intention revealed by the physical laws of the universe.

  5. Extraterrestrial intelligence - An observational approach

    NASA Technical Reports Server (NTRS)

    Murray, B.; Gulkis, S.; Edelson, R. E.

    1978-01-01

    The article surveys present and proposed search techniques for extraterrestrial intelligence in terms of technological requirements. It is proposed that computer systems used along with existing antennas may be utilized to search for radio signals over a broad frequency range. A general search within the electromagnetic spectrum would explore frequency, received power flux, spatial locations, and modulation. Previous SETI projects (beginning in 1960) are briefly described. An observation project is proposed in which the earth's rotational motion would scan the antenna beam along one declination circle in 24 hours. The 15 degree beam width would yield a mapping of 75% of the sky in an 8-day period if the beam were shifted 15 degrees per day. With the proposed instrument parameters, a sensitivity of about 10 to the -21 watt/sq m is achieved at a 0 degree declination and 1.5 GHz. In a second phase, a 26 m antenna would yield an HPBW of 0.8 degrees at 1 GHz and 0.03 degrees at 25 GHz. It is noted that the described technology would provide secondary benefits for radio astronomy, radio communications, and other fields.

  6. High resolution SETI: Experiences and prospects

    NASA Astrophysics Data System (ADS)

    Horowitz, Paul; Clubok, Ken

    Megachannel spectroscopy with sub-Hertz resolution constitutes an attractive strategy for a microwave search for extraterrestrial intelligence (SETI), assuming the transmission of a narrowband radiofrequency beacon. Such resolution matches the properties of the interstellar medium, and the necessary Doppler corrections provide a high degree of interference rejection. We have constructed a frequency-agile receiver with an FFT-based 8 megachannel digital spectrum analyzer, on-line signal recognition, and multithreshold archiving. We are using it to conduct a meridian transit search of the northern sky at the Harvard-Smithsonian 26-m antenna, with a second identical system scheduled to begin observations in Argentina this month. Successive 400 kHz spectra, at 0.05 Hz resolution, are searched for features characteristic of an intentional narrowband beacon transmission. These spectra are centered on guessable frequencies (such as λ21 cm), referenced successively to the local standard of rest, the galactic barycenter, and the cosmic blackbody rest frame. This search has rejected interference admirably, but is greatly limited both in total frequency coverage and sensitivity to signals other than carriers. We summarize five years of high resolution SETI at Harvard, in the context of answering the questions "How useful is narrowband SETI, how serious are its limitations, what can be done to circumvent them, and in what direction should SETI evolve?" Increasingly powerful signal processing hardware, combined with ever-higher memory densities, are particularly relevant, permitting the construction of compact and affordable gigachannel spectrum analyzers covering hundreds of megahertz of instantaneous bandwidth.

  7. Radio Searches for Signatures of Advanced Extraterrestrial Life

    NASA Astrophysics Data System (ADS)

    Siemion, Andrew

    Over the last several decades, observational astronomy has produced a flood of discoveries that suggest that the building blocks and circumstances that gave rise to life on Earth may be the rule rather than the exception. It has now been conclusively shown that planets are common and that some 5-15% of FGKM stars host planets existing in their host star's habitable zone. Further, terrestrial biology has demonstrated that life on our own planet can thrive in extraordinarily extreme environments, dramatically extending our notion of what constitutes habitability. The deeper question, yet unanswered, is whether or not life in any form has ever existed in an environment outside of the Earth. As humans, we are drawn to an even more profound question, that of whether or not extraterrestrial life may have evolved a curiosity about the universe similar to our own and the technology with which to explore it. Radio astronomy has long played a prominent role in searches for extraterrestrial intelligence (SETI), beginning with the first suggestions by Cocconi and Morrison (1959) that narrow-band radio signals near 1420 MHz might be effective tracers of advanced technology and early experiments along these lines by Frank Drake in 1961, continuing through to more recent investigations searching for several types of coherent radio signals indicative of technology at a wider range of frequencies. The motivations for radio searches for extraterrestrial intelligence have been throughly discussed in the literature, but the salient arguments are the following: 1. coherent radio emission is commonly produced by advanced technology (judging by Earth’s technological development), 2. electromagnetic radiation can convey information at the maximum velocity currently known to be possible, 3. radio photons are energetically cheap to produce, 4. certain types of coherent radio emissions are easily distinguished from astrophysical background sources, especially within the so-called ``terrestrial microwave window'' and 5. these emissions can transit vast regions of interstellar space relatively unaffected by gas, plasma and dust. Our group is conducting a variety of radio SETI at a wide range of frequencies, from 50 MHz to 230 GHz, using several facilities: the Dutch/European Low-Frequency Array (LOFAR), Arecibo Observatory, the Green Bank Telescope and the Combined Array for Research in Millimeter-wave Astronomy (CARMA). Our experiments employ a variety of strategies, including searches of nearby stars, stars with known exoplanets and the galactic center. We have also developed an observing pipeline that targets systems of multiple exoplanets at epochs in which two or more planets are aligned relative to Earth, which we have dubbed exoplanetary interplanetary communication (EPIC) SETI. Our detection algorithms are sensitive to a wide range of signal types, and we have developed numerous radio interference rejection techniques. Many of our experiments operate ``commensally'' with other science projects, providing thousands of hours of observations with the largest telescopes in the world. Here we present the status of our radio SETI efforts, discuss observations conducted to-date and review the various regions of parameter space probed by each experiment.

  8. Basic Space Science; United Nations/European Space Agency Workshops for Developing Countries, 2nd, Bogota, Colombia, November 9-13, 1992

    NASA Technical Reports Server (NTRS)

    Haubold, Hans J. (Editor); Torres, Sergio (Editor)

    1994-01-01

    The conference primarily covered astrophysical and astronomical topics on stellar and solar modeling and processes, high magnetic field influence on stellar spectra, cosmological topics utilizing Cosmic Background Explorer (COBE) data and radioastronomic mapping as well as cosmic gravitational instability calculations, astrometry of open clusters amd solar gravitational focusing, extremely energetic gamma rays, interacting binaries, and balloon-borne instrumentation. Other papers proposed an active Search for Extraterrestrial Intelligence (SETI) communication scheme to neighboring solar-like systems and more direct involvement of and with the public in astronomy and space exploration projects.

  9. A Serendipitous MWA Search for Narrowband Signals from ‘Oumuamua

    NASA Astrophysics Data System (ADS)

    Tingay, S. J.; Kaplan, D. L.; Lenc, E.; Croft, S.; McKinley, B.; Beardsley, A.; Crosse, B.; Emrich, D.; Franzen, T. M. O.; Gaensler, B. M.; Horsley, L.; Johnston-Hollitt, M.; Kenney, D.; Morales, M. F.; Pallot, D.; Steele, K.; Trott, C. M.; Walker, M.; Wayth, R. B.; Williams, A.; Wu, C.

    2018-04-01

    We examine data from the Murchison Widefield Array (MWA) in the frequency range 72–102 MHz for a field of view that serendipitously contained the interstellar object ‘Oumuamua on 2017 November 28. Observations took place with a time resolution of 0.5 s and a frequency resolution of 10 kHz. Based on the interesting but highly unlikely suggestion that ‘Oumuamua is an interstellar spacecraft, due to some unusual orbital and morphological characteristics, we examine our data for signals that might indicate the presence of intelligent life associated with ‘Oumuamua. We searched our radio data for (1) impulsive narrowband signals, (2) persistent narrowband signals, and (3) impulsive broadband signals. We found no such signals with nonterrestrial origins and make estimates of the upper limits on equivalent isotropic radiated power (EIRP) for these three cases of approximately 7 kW, 840 W, and 100 kW, respectively. These transmitter powers are well within the capabilities of human technologies, and are therefore plausible for alien civilizations. While the chances of positive detection in any given search for extraterrestrial intelligence (SETI) experiment are vanishingly small, the characteristics of new generation telescopes such as the MWA (and, in the future, the Square Kilometre Array) make certain classes of SETI experiments easy, or even a trivial by-product of astrophysical observations. This means that the future costs of SETI experiments are very low, allowing large target lists to partially balance the low probability of a positive detection.

  10. Status of the UC-Berkeley SETI efforts

    NASA Astrophysics Data System (ADS)

    Korpela, E. J.; Anderson, D. P.; Bankay, R.; Cobb, J.; Howard, A.; Lebofsky, M.; Siemion, A. P. V.; von Korff, J.; Werthimer, D.

    2011-10-01

    We summarize radio and optical SETI programs based at the University of California, Berkeley. The SEVENDIP optical pulse search looks for ns time scale pulses at visible wavelengths. It utilizes an automated 30 inch telescope, three ultra fast photo multiplier tubes and a coincidence detector. The target list includes F, G, K and M stars, globular cluster and galaxies. The ongoing SERENDIP V.v sky survey searches for radio signals at the 300 meter Arecibo Observatory. The currently installed configuration supports 128 million channels over a 200 MHz bandwidth with ~1.6 Hz spectral resolution. Frequency stepping allows the spectrometer to cover the full 300MHz band of the Arecibo L-band receivers. The final configuration will allow data from all 14 receivers in the Arecibo L-band Focal Array to be monitored simultaneously with over 1.8 billion channels. SETI@home uses the desktop computers of volunteers to analyze over 160 TB of data at taken at Arecibo. Over 6 million volunteers have run SETI@home during its 10 year history. The SETI@home sky survey is 10 times more sensitive than SERENDIP V.v but it covers only a 2.5 MHz band, centered on 1420 MHz. SETI@home searches a much wider parameter space, including 14 octaves of signal bandwidth and 15 octaves of pulse period with Doppler drift corrections from -100 Hz/s to +100 Hz/s. SETI@home is being expanded to analyze data collected during observations of Kepler objects of interest in May 2011. The Astropulse project is the first SETI search for μs time scale pulses in the radio spectrum. Because short pulses are dispersed by the interstellar medium, and the amount of dispersion is unknown, Astropulse must search through 30,000 possible dispersions. Substantial computing power is required to conduct this search, so the project uses volunteers and their personal computers to carry out the computation (using distributed computing similar to SETI@home). Keywords: radio instrumentation, FPGA spectrometers, SETI, optical SETI, Search for Extraterrestrial Intelligence, volunteer computing, radio transients, optical transients.

  11. Broad horizons SETI, SF and education

    NASA Astrophysics Data System (ADS)

    Griffiths, Martin

    2004-04-01

    Science fiction (SF) is often perceived as a ‘fringe’ form of entertainment that excites the socially challenged. This misperception detracts from the critical, scientific and interpretive nature of the genre which can be directed into science teaching at school and university levels as an innovative way of exploring the cultural background, politics, leitmotif and themes of society, science and their operation. One example is the ‘alien’ theme in SF; it is perceptually one of the driving factors in the search for extraterrestrial intelligence (SETI). Such a topic can become an introduction to current technology, the motives and politics of science and the sociological implications inherent in a confrontation with the ideal of man's uniqueness in the cosmos. When applied to the SETI, SF engenders a constructive convergence in studies such as biological determinism, the evolution of life, communication, interstellar travel and methods of contact, thus enriching the consideration of possible life in the cosmos. Adopting elements of SF in lifelong learning therefore enables informed, imaginative reflection and debate that educates, trains and instructs, broadening the potential of students and their future roles by invoking an analysis of vital public, scientific and humanistic fields.

  12. A near-infrared SETI experiment: A multi-time resolution data analysis

    NASA Astrophysics Data System (ADS)

    Tallis, Melisa; Maire, Jerome; Wright, Shelley; Drake, Frank D.; Duenas, Andres; Marcy, Geoffrey W.; Stone, Remington P. S.; Treffers, Richard R.; Werthimer, Dan; NIROSETI

    2016-06-01

    We present new post-processing routines which are used to detect very fast optical and near-infrared pulsed signals using the latest NIROSETI (Near-Infrared Optical Search for Extraterrestrial Intelligence) instrument. NIROSETI was commissioned in 2015 at Lick Observatory and searches for near-infrared (0.95 to 1.65μ) nanosecond pulsed laser signals transmitted by distant civilizations. Traditional optical SETI searches rely on analysis of coincidences that occur between multiple detectors at a fixed time resolution. We present a multi-time resolution data analysis that extends our search from the 1ns to 1ms range. This new feature greatly improves the versatility of the instrument and its search parameters for near-infrared SETI. We aim to use these algorithms to assist us in our search for signals that have varying duty cycles and pulse widths. We tested the fidelity and robustness of our algorithms using both synthetic embedded pulsed signals, as well as data from a near-infrared pulsed laser installed on the instrument. Applications of NIROSETI are widespread in time domain astrophysics, especially for high time resolution transients, and astronomical objects that emit short-duration high-energy pulses such as pulsars.

  13. How do people feel about contact with ETIs?

    NASA Astrophysics Data System (ADS)

    Sabadell, Miguel A.; Salamero, Fernando J.

    1996-06-01

    'Astronomers find ET civilization.' In the opinion of many, this newspaper headline could reflect what would be the most exciting, challenging and profound discovery not only of the century but of human history. The idea of a plurality of inhabited worlds in the universe is as old as our civilization. It was a religious heresy in pre-Renaissance times; Giordano Bruno was burned at the stake in 1600 because of this belief. A slow but steady increase in the number of papers on the possible existence of other beings distinct from us has been appearing since then. The rapid progress in science and technology, our although poor understanding of the mechanisms of the cosmic evolution, the consolidation of the Darwinian hypothesis and, most importantly, the tenacious work of SETI pioneers have made possibly that the scientific community took seriously the possibility of life in other places of the universe and to search for it. There are different SETI projects running in the world. The unequivocal detection of an ETI signal is the goal. This could take many forms, all of them unpredictable. Some authors notice that the unambiguous confirmation that the signal is of extraterrestrial intelligence origin would be a hard work (Boyce 1990, Tarter 1991). But of most significance is the impact on our society of such a contact. How should we react? With fear and panic because advanced ETIs would quickly destroy the human spirit? Waiting a golden age? Imagine an extraterrestrial spaceship landing somewhere in our planet. What should we do? In both cases, will human behavior be influenced by the incontestable knowledge of the existence of ETIs? As John Billingham point out 'there has been little activity on those cultural aspects of SETI other than science and engineering.'

  14. Can Collimated Extraterrestrial Signals be Intercepted?

    NASA Astrophysics Data System (ADS)

    Forgan, D. H.

    2014-06-01

    The Optical Search for Extraterrestrial Intelligence (OSETI) attempts to detect collimated, narrow-band pulses of electromagnetic radiation. These pulses may either consist of signals intentionally directed at the Earth, or signals between two star systems with a vector that unintentionally intersects the Solar System, allowing Earth to intercept the communication. But should we expect to be able to intercept these unintentional signals? And what constraints can we place upon the frequency of intelligent civilisations if we do? We carry out Monte Carlo Realisation simulations of interstellar communications between civilisations in the Galactic Habitable Zone (GHZ) using collimated beams. We measure the frequency with which beams between two stars are intercepted by a third. The interception rate increases linearly with the fraction of communicating civilisations, and as the cube of the beam opening angle, which is somewhat stronger than theoretical expectations, which we argue is due to the geometry of the GHZ. We find that for an annular GHZ containing 10,000 civilisations, intersections are unlikely unless the beams are relatively uncollimated. These results indicate that optical SETI is more likely to find signals deliberately directed at the Earth than accidentally intercepting collimated communications. Equally, civilisations wishing to establish a network of communicating species may use weakly collimated beams to build up the network through interception, if they are willing to pay a cost penalty that is lower than that meted by fully isotropic beacons. Future SETI searches should consider the possibility that communicating civilisations will attempt to strike a balance between optimising costs and encouraging contact between civilisations, and look for weakly collimated pulses as well as narrow-beam pulses directed deliberately at the Earth.

  15. From the Physical World to the Biological Universe: Historical Developments Underlying SETI

    NASA Astrophysics Data System (ADS)

    Dick, Steven J.

    More than thirty years ago the French historian of science Alexandre Koyré (1957) wrote his classic volume, From the Closed World to the Infinite Universe, in which he argued that a fundamental shift in world view had taken place in 17th century cosmology. Between Nicholas of Cusa in the fifteenth century and Newton and Leibniz in the seventeenth, he found that the very terms in which humans thought about their universe had changed. These changes he characterized broadly as the destruction of the closed finite cosmos and the geometrization of space. The occasion of the Third International Bioastronomy Symposium in France is an especially appropriate time to argue that the SETI endeavor represents a test for a similar fundamental shift in cosmological world view, from the physical world to the biological universe. I define the biological universe, equivalent to what I have called before the biophysical cosmology (Dick, 1989), as the scientific world view which holds that life is widespread throughout the universe. In this case the biological universe does not necessarily supersede the physical universe, but a universe filled with life would certainly fundamentally alter our attitude toward the universe, and our place in it. Although Koyré mentioned life beyond the Earth as an adjunct to the revolution from the closed world to the infinite universe, only in the 1980s has the history of science begun to give full treatment to the subject. What follows is meant to be a contribution to that ongoing endeavor to understand where the extraterrestrial life debate fits in the history of science. The modern era in the extraterrestrial life debate is normally dated from Cocconi and Morrison's paper in 1959, and though one can always find precursors, this in my view is a valid perception. Cocconi and Morrison gave definite form to SETI, Frank Drake independently first carried out the experiment, a network of interested scientists began to form and met in Green Bank in November 1961, and the most distinctive part of the modern era of the extraterrestrial life debate - the Search for Extraterrestrial Intelligence by means of radio telescopes — was off and running. In this paper, after briefly reviewing some of the long-term steps toward the biological universe, I would like to examine the immediate precursors to this modern era in the 1940s and 1950s.

  16. Representing culture in interstellar messages

    NASA Astrophysics Data System (ADS)

    Vakoch, Douglas A.

    2008-09-01

    As scholars involved with the Search for Extraterrestrial Intelligence (SETI) have contemplated how we might portray humankind in any messages sent to civilizations beyond Earth, one of the challenges they face is adequately representing the diversity of human cultures. For example, in a 2003 workshop in Paris sponsored by the SETI Institute, the International Academy of Astronautics (IAA) SETI Permanent Study Group, the International Society for the Arts, Sciences and Technology (ISAST), and the John Templeton Foundation, a varied group of artists, scientists, and scholars from the humanities considered how to encode notions of altruism in interstellar messages . Though the group represented 10 countries, most were from Europe and North America, leading to the group's recommendation that subsequent discussions on the topic should include more globally representative perspectives. As a result, the IAA Study Group on Interstellar Message Construction and the SETI Institute sponsored a follow-up workshop in Santa Fe, New Mexico, USA in February 2005. The Santa Fe workshop brought together scholars from a range of disciplines including anthropology, archaeology, chemistry, communication science, philosophy, and psychology. Participants included scholars familiar with interstellar message design as well as specialists in cross-cultural research who had participated in the Symposium on Altruism in Cross-cultural Perspective, held just prior to the workshop during the annual conference of the Society for Cross-cultural Research . The workshop included discussion of how cultural understandings of altruism can complement and critique the more biologically based models of altruism proposed for interstellar messages at the 2003 Paris workshop. This paper, written by the chair of both the Paris and Santa Fe workshops, will explore the challenges of communicating concepts of altruism that draw on both biological and cultural models.

  17. The search for extraterrestrial life: Recent developments; Proceedings of the Symposium, Boston University, MA, June 18-21, 1984

    NASA Astrophysics Data System (ADS)

    Papagiannis, M. D.

    The conference presents papers on the history of the search for extraterrestrial life, the scientific rationale and methods used in the search for other planetary systems, the detection of distant planets with the Space Telescope, planetary searches using optical astrometric interferometers, and infrared spectral identification of complex organic molecules in interstellar grains. Also considered are universal protein ancestors from hydrogen cyanide and water, astronomical sources of polarized light and their role in determining molecular chirality on earth, the universal diagrams and life in the universe, the precambrian evolution of terrestrial life and a thermodynamic approach to the occurrance and appearance of galactic life forms. Papers are also presented on the Ohio Seti program, lunar reflections of terrestrial radio leakage, the multichannel spectrum analyzer, software implementation of detection algorithms for the MCSA, the Serendip II design, galactic colonization and competition in a young galactic disk, implications of ancient and future migrations, extraterrestrial intelligence, the inevitability and the possible structures of supercivilizations, planetary, interplanetary and interstellar organic matter, and universal aspects of biological evolution.

  18. The search for extraterrestrial life: Recent developments; Proceedings of the Symposium, Boston University, MA, June 18-21, 1984

    NASA Technical Reports Server (NTRS)

    Papagiannis, M. D. (Editor)

    1985-01-01

    The conference presents papers on the history of the search for extraterrestrial life, the scientific rationale and methods used in the search for other planetary systems, the detection of distant planets with the Space Telescope, planetary searches using optical astrometric interferometers, and infrared spectral identification of complex organic molecules in interstellar grains. Also considered are universal protein ancestors from hydrogen cyanide and water, astronomical sources of polarized light and their role in determining molecular chirality on earth, the universal diagrams and life in the universe, the precambrian evolution of terrestrial life and a thermodynamic approach to the occurrance and appearance of galactic life forms. Papers are also presented on the Ohio Seti program, lunar reflections of terrestrial radio leakage, the multichannel spectrum analyzer, software implementation of detection algorithms for the MCSA, the Serendip II design, galactic colonization and competition in a young galactic disk, implications of ancient and future migrations, extraterrestrial intelligence, the ineviability and the possible structures of supercivilizations, planetary, interplanetary and interstellar organic matter, and universal aspects of biological evolution.

  19. From Here to ET

    NASA Astrophysics Data System (ADS)

    Mathews, J. D.

    SETI (Search for ExtraTerrestrial Intelligence) has thus far proven negative. The assumptions that have driven these searches are reexamined to determine if a new paradigm for future searches can be identified. To this end, the apparent path of evolving human exploration of the solar system and the local galaxy is used to assess where it might lead in the relative near future while noting that we are not overtly intending to contact ET (ExtraTerrestrials). The basic premise is that human space exploration must be highly efficient, cost effective, and autonomous as placing humans beyond low Earth orbit is fraught with political, economic, and technical difficulties. With this basis, it is concluded that only by developing and deploying self-replicating robotic spacecraft--and the incumbent communication systems--can the human race efficiently explore even the asteroid belt let alone the vast reaches of the Kuiper Belt, Oort Cloud, and beyond. It is assumed that ET would have followed a similar path. The technical practicality of and our progress towards this autonomous, self-replicating exobot--Explorer roBot or EB--is further examined with the conclusion that the narrow-beam, laser-based communication network that would likely be em- ployed, would be difficult to detect from a nearby star systems thus offering an explanation of the failure of SETI to date. It is further argued, as have others, that EBs are likely a common feature of the galaxy.

  20. Synchronized SETI-The Case for "Opposition"

    NASA Astrophysics Data System (ADS)

    Corbet, Robin H. D.

    2003-06-01

    If the signals being sought in search for extraterrestrial intelligence (SETI) programs exist but are brief (for example, they are produced intermittently to conserve energy), then it is essential to know when these signals will arrive at the Earth. Different types of transmitter/receiver synchronization schemes are possible, which vary in the relative amount of effort required by the transmitter and the receiver. The case is made for a scheme that is extremely simple for the receiver: Make observations of a target when it is at maximum angular distance from the Sun (i.e., "opposition"). This strategy requires that the transmitter has accurate knowledge of the distance and proper motion of the Sun and the orbit of the Earth. It is anticipated that within the next 10-20 years it will be possible to detect directly nearby extrasolar planets of approximately terrestrial mass. Since extraterrestrial transmitters are expected to have significantly more advanced technology, it is not unreasonable to expect that they would be able to detect the presence of the Earth and measure its orbit at even greater distances. This strategy is simple to implement, and opposition is also typically the time when observations are easiest to make. Limited opposition surveys contained in a number of all-sky surveys have already been performed. However, full-sky opposition surveys are best suited to detectors with very large fields of view.

  1. Synchronized SETI-the case for "opposition".

    PubMed

    Corbet, Robin H D

    2003-01-01

    If the signals being sought in search for extraterrestrial intelligence (SETI) programs exist but are brief (for example, they are produced intermittently to conserve energy), then it is essential to know when these signals will arrive at the Earth. Different types of transmitter/receiver synchronization schemes are possible, which vary in the relative amount of effort required by the transmitter and the receiver. The case is made for a scheme that is extremely simple for the receiver: Make observations of a target when it is at maximum angular distance from the Sun (i.e., "opposition"). This strategy requires that the transmitter has accurate knowledge of the distance and proper motion of the Sun and the orbit of the Earth. It is anticipated that within the next 10-20 years it will be possible to detect directly nearby extrasolar planets of approximately terrestrial mass. Since extraterrestrial transmitters are expected to have significantly more advanced technology, it is not unreasonable to expect that they would be able to detect the presence of the Earth and measure its orbit at even greater distances. This strategy is simple to implement, and opposition is also typically the time when observations are easiest to make. Limited opposition surveys contained in a number of all-sky surveys have already been performed. However, full-sky opposition surveys are best suited to detectors with very large fields of view.

  2. A critical examination of factors that might encourage secrecy

    NASA Astrophysics Data System (ADS)

    Tough, Allen

    If a signal is detected someday from extraterrestrial intelligence, several factors might encourage complete and immediate secrecy. As a result, all data might be restricted to the receiving facility or nation instead of being shared promptly with SETI scientists around the world. Seven factors seem particularly like to encourage secrecy: (1) the belief that people may panic; (2) the fear of a negative impact on religion, science, and culture; (3) embarrassment; (4) the individual and national competitive urge; (5) avoiding a harmful premature reply; (6) a national trade or military advantage; and (7) the fear of a Trojan Horse. Three steps might alleviate the particularly difficult factors (numbers 4, 5, 6): an international treaty for immediate sharing of possible signals with SETI scientists in several other countries; implementation and frequent use of an actual network of scientists for such sharing; and further study of the possible need for partial restriction of data about the location and channel of a suspected signal.

  3. A SETI Search of Nearby Solar-Type Stars at the 203-GHz Positronium Hyperfine Resonance

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.; DeBoer, David R.

    1994-01-01

    The development of advanced millimeter-wave technology has made it possible to construct low-noise receivers and high-power transmitters comparable to those available at much lower frequencies. This technology, plus certain physical characteristics of the millimeter-wave spectrum, suggests possible advantages for use of this wavelength range for interstellar communications. As a result, a Search for ExtraTerrestrial Intelligence(SETI) type search has been conducted for narrow-bandwidth signals at frequencies near the positronium hyperfine spectral line (203.385 GHz), a potential natural reference frequency. A total of 40 solar-type stars within 23 parsecs were observed, in addition to three locations near the galactic center. No detections were made at the detection threshold of 2.3 x 10(exp -19) W/sq m in each of two orthogonal linear polarizations Future observations will be made with a higher resolution Fast Fourier Transform Spectrum Analyzer (FFTSA), which should improve sensitivity by an order of magnitude and reduce required observing time.

  4. Overview of the NASA SETI Program

    NASA Technical Reports Server (NTRS)

    Oliver, B. M.

    1986-01-01

    The NASA Search of Extraterrestrial Intelligence (SETI) program plan is to scan the microwave window from 1 to 10 GHz with existing radio telescopes and sophisticated signal processing equipment looking for narrow band features that might represent artificial signals. A microwave spectrometer was built and is being field tested. A pattern recognition computer to search for drifting continuous wave signals and pulse trains in the output spectra is being designed. Equipment to characterize the radio frequency interference environment was also built. The plan is to complete the hardware and software by FY-88. Then, with increased funding, this equipment will be replicated in Very Large Scale Integration form. Observations, both a complete sky survey and a search fo nearby solar type stars, will begin in about 1990. The hypothesis that very powerful signals exist or that signals are being beamed at us will be tested. To detect the kinds of signals radiated at distances of 100 light years will require a collecting area kilometers in diameter.

  5. Astrobiological complexity with probabilistic cellular automata.

    PubMed

    Vukotić, Branislav; Ćirković, Milan M

    2012-08-01

    The search for extraterrestrial life and intelligence constitutes one of the major endeavors in science, but has yet been quantitatively modeled only rarely and in a cursory and superficial fashion. We argue that probabilistic cellular automata (PCA) represent the best quantitative framework for modeling the astrobiological history of the Milky Way and its Galactic Habitable Zone. The relevant astrobiological parameters are to be modeled as the elements of the input probability matrix for the PCA kernel. With the underlying simplicity of the cellular automata constructs, this approach enables a quick analysis of large and ambiguous space of the input parameters. We perform a simple clustering analysis of typical astrobiological histories with "Copernican" choice of input parameters and discuss the relevant boundary conditions of practical importance for planning and guiding empirical astrobiological and SETI projects. In addition to showing how the present framework is adaptable to more complex situations and updated observational databases from current and near-future space missions, we demonstrate how numerical results could offer a cautious rationale for continuation of practical SETI searches.

  6. International law implications of the detection of extraterrestrial intelligent signals

    NASA Astrophysics Data System (ADS)

    Kopal, Vladimir

    This paper first considers whether the present law of outer space, as it has been enshrined in five United Nations treaties and other legal documents concerning outer space, provides a satisfactory basis for SETI/CETI activities. In the author's opinion, these activities may serve "the common interest of all mankind in the progress of the exploration and use of outer space for peaceful purposes," as recognized in the 1967 Outer Space Treaty. The use of the radio frequency spectrum for SETI/CETI purposes should be in conformity with the legal principles governing this valuable natural resource, as expressed in the International Telecommunication Convention and related documents, and with allocations of the relevant segments of the spectrum by the competent bodies of the International Telecommunication Union. In the second part the author examines the impact that the detection of extraterrestrial intelligent signals may have on the present body of space law. A possible role for the United Nations in this respect is also explored and a timely interest of the world body in discussing questions relating to this subject is recommended. Consideration of these questions could become a tool helping to concentrate the attention of the world community on problems of common concern and thus to strengthen international cooperation. However, the author believes that a law-making process that would aim at elaborating a special regulation of activities in this field would be premature at this stage. It should be initiated only when the boundary between possibilities and realities is crossed. Finally, the paper outlines some likely transformation in our space law thinking that would be the consequence of the detection of extraterrestrial intelligent signals. Elaboration of the principles and norms to govern relations between the international community of our own planet and other intelligent communities in the universe would add a new dimension to the present body of outer space law. At the same time this new approach might exercise a beneficial influence on relations between nations and peoples of the planet Earth. Considerations of legal implications of new phenomena in the world for our life are usually made from two points of view that reflect two basic levels of our thinking. First, we try to establish what exists and then decide what could or should be done. This two-fold approach, known in legal terminology as de lege lata and de lege ferenda, can also be used in the consideration of our present problem, though it seems to be still a rather extraordinary subject.

  7. NASA's Exobiology Program.

    PubMed

    DeVincenzi, D L

    1984-01-01

    The goal of NASA's Exobiology Program is to understand the origin, evolution, and distribution of life, and life-related molecules, on Earth and throughout the universe. Emphasis is focused on determining how the rate and direction of these processes were affected by the chemical and physical environment of the evolving planet, as well as by planetary, solar, and astrophysical phenomena. This is accomplished by a multi-disciplinary program of research conducted by over 60 principal investigators in both NASA and university laboratories. Major program thrusts are in the following research areas: biogenic elements; chemical evolution; origin of life; organic geochemistry; evolution of higher life forms; solar system exploration; and the search for extraterrestrial intelligence (SETI).

  8. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1992-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Telecommunications and Data Acquisition (TDA) Office. In the Search for Extraterrestrial Intelligence (SETI), the TDA Progress Report reports on implementation and operations for searching the microwave spectrum. In solar system radar, it reports on the uses of the Goldstone Solar System Radar for scientific exploration of the planets, their rings and satellites, asteroids, and comets. In radio astronomy, the areas of support include spectroscopy, very long baseline interferometry, and astrometry. These three programs are performed for NASA's Office of Space Science and Applications (OSSA) with the Office of Space Operations for funding DSN operational support.

  9. SETI low-frequency feed design study for DSS 24

    NASA Technical Reports Server (NTRS)

    Stanton, P. H.; Lee, P. R.

    1992-01-01

    The Search for Extraterrestrial Intelligence Sky Survey project requires operation from 1 to 10 GHz on the beam waveguide (BWG) antenna DSS 24. The BWG reflectors are undersized in the 1- to 3.02-GHz range, resulting in poor performance. Horn designs and a method for implementing 1- to 3.02-GHz operation on DSS 24 are presented. A combination of a horn and a shaped feed reflector placed above the main reflector is suggested. The horn and feed reflector could be hidden in the RF shadow of the subreflector and struts. Results from computer analysis of this design indicate that adequate performance could be achieved.

  10. Supporting Research and Technology Activities for a Microwave Observing Program to Search for Extraterrestrial Intelligence

    NASA Technical Reports Server (NTRS)

    Tarter, Jill; Backus, Peter

    1995-01-01

    Curriculum materials based on the search for extraterrestrial intelligence (SETI) were developed for grades 3 through 9 science classes. The project was supported in part by NASA. Six teacher's guides, plus ancillary visuals, addressing topics in astronomy, biology, chemistry, geosciences, and physics as well as mathematics, social sciences, and language arts, were designed by a team of teachers, scientists. curriculum developers, and artists. First drafts were piloted by 10 design team teachers; revised drafts were field tested by 109 teachers in 30 states. Extensive feedback from these teachers and their students and reviews by scientists were used to revise materials prior to submission to the publisher. The field test teachers overall ranking of all guides (data from individual lesson feedback forms) was 431 on a one low to five high scale; 85% found the content appropriate to course and grade level and 75% indicated they had no reservations about using the materials again or recommending them to colleagues. The ratio of liked to disliked student responses (from 1305 student letters) was 70:30. Most recommendations from the teachers, students, and science reviewers were incorporated in the final versions for the guides, published by Libraries Unlimited/Teacher Ideas Press, 1995.

  11. Educating the next generation of SETI scientists: Voyages through time

    NASA Astrophysics Data System (ADS)

    DeVore, Edna; Tarter, Jill; Fisher, Jane; O'Sullivan, Kathleen; Pendleton, Yvonne; Taylor, Sam; Burke, Margaret

    2003-08-01

    The search for extraterrestrial intelligence (SETI) could succeed tomorrow, or not for many generations, or never. SETI scientists are very cognizant of the need to train the next generation of researchers who can carry on this vast scientific exploration. Previously, the SETI Institute has met this challenge by developing supplementary teacher's guides for elementary and middle schools called "Life In the Universe" and published by Teacher Ideas Press. Currently, we are engaged in a far more challenging project that is funded primarily by the National Science Foundation (NSF). The SETI Institute is creating a year long, interdisciplinary, high school science curriculum called "Voyages Through Time: Everything Evolves". We are using the theme of evolution to weave a panoramic vista for students that begins with the origin of the universe, encompasses our own origin and evolution, and looks at the evolution of technology and our possible future. By integrating different scientific and technical disciplines to explore how we answer fundamentally important questions, we hope to excite and motivate high school students with the opportunities offered by the way science is practiced today. We invite them to plan a future in which they help to enrich the answers to the big questions: Where did I come from? Where am I going? is anybody else out there? Voyages Through Time consists of six modules on CD-ROMs for teachers and students that have been extensively tested both regionally and nationally. Publication is expected in 2003. The partners in the development of this curriculum are the SETI Institute, NASA Ames Research Center, California Academy of Sciences, and San Francisco State University. Voyages Through Time is funded by the NSF (IMD # 9730693) with additional support from NASA, Hewlett Packard Company, The Foundation for Microbiology, and the Federated Charitable Campaign. For further information, visit: http://www.seti.org/education/Welcome.html.

  12. Observational Research on Star and Planetary System Formation

    NASA Technical Reports Server (NTRS)

    Simpson, Janet P.

    1998-01-01

    Institute scientists collaborate with a number of NASA Ames scientists on observational studies of star and planetary system formation to their mutual benefit. As part of this collaboration, SETI scientists have, from 1988 to the present: (1) contributed to the technical studies at NASA Ames of the Stratospheric Observatory for Infrared Astronomy (SOFIA), an infrared 2.5 meter telescope in a Boeing 747, which will replace the Kuiper Airborne Observatory (KAO), a 0.9 meter telescope in a Lockheed C-141. SOFIA will be an important facility for the future exploration of the formation of stars and planetary systems, and the origins of life, and as such will be an important future facility to SETI scientists; (2) worked with the Laboratory Astrophysics Group at Ames, carrying out laboratory studies of the spectroscopic properties of ices and pre-biotic organics, which could be formed in the interstellar or interplanetary media; (3) helped develop a photometric approach for determining the Frequency of Earth-Sized Inner Planets (FRESIP) around solar-like stars, a project (now called Kepler) which complements the current efforts of the SETI Institute to find evidence for extraterrestrial intelligence; and (4) carried out independent observational research, in particular research on the formation of stars and planetary systems using both ground-based telescopes as well as the KAO.

  13. Observational Research on Star and Planetary System Formation

    NASA Astrophysics Data System (ADS)

    Simpson, Janet P.

    1998-07-01

    Institute scientists collaborate with a number of NASA Ames scientists on observational studies of star and planetary system formation to their mutual benefit. As part of this collaboration, SETI scientists have, from 1988 to the present: (1) contributed to the technical studies at NASA Ames of the Stratospheric Observatory for Infrared Astronomy (SOFIA), an infrared 2.5 meter telescope in a Boeing 747, which will replace the Kuiper Airborne Observatory (KAO), a 0.9 meter telescope in a Lockheed C-141. SOFIA will be an important facility for the future exploration of the formation of stars and planetary systems, and the origins of life, and as such will be an important future facility to SETI scientists; (2) worked with the Laboratory Astrophysics Group at Ames, carrying out laboratory studies of the spectroscopic properties of ices and pre-biotic organics, which could be formed in the interstellar or interplanetary media; (3) helped develop a photometric approach for determining the Frequency of Earth-Sized Inner Planets (FRESIP) around solar-like stars, a project (now called Kepler) which complements the current efforts of the SETI Institute to find evidence for extraterrestrial intelligence; and (4) carried out independent observational research, in particular research on the formation of stars and planetary systems using both ground-based telescopes as well as the KAO.

  14. The trillion planet survey: an optical search for directed intelligence in M31

    NASA Astrophysics Data System (ADS)

    Stewart, Andrew; Lubin, Philip

    2017-09-01

    In realm of optical SETI, searches for pulsed laser signals have historically been preferred over those for continuous wave beacons. There are many valid reasons for this, namely the near elimination of false positives and simple experimental components. However, due to significant improvements in laser technologies and light-detection systems since the mid-20th century, as well as new data from the recent Kepler mission, continuous wave searches should no longer be ignored. In this paper we propose a search for continuous wave laser beacons from an intelligent civilization in the Andromeda galaxy. Using only a 0.8 meter telescope, a standard photometric system, and an image processing pipeline, we expect to be able to detect any CW laser signal directed at us from an extraterrestrial civilization in M31, as long as the civilization is operating at a wavelength we can "see" and has left the beacon on long enough for us to detect it here on Earth. The search target is M31 due to its high stellar density relative to our own Milky Way galaxy. Andromeda is home to at least one trillion stars, and thus at least one trillion planets. As a result, in surveying M31, we are surveying one trillion planets, and consequently one trillion possible locations of intelligent life. This is an unprecedented number of targets relative to other past SETI searches. We call this the TPS or Trillion Planet Survey.

  15. The Search for Life in the Universe: The Past Through the Future

    NASA Astrophysics Data System (ADS)

    Lebofsky, L. A.; Lebofsky, A.; Lebofsky, M.; Lebofsky, N. R.

    2003-05-01

    ``Are we alone?" This is a question that has been asked by humans for thousands of years. More than any other topic in science, the search for life in the Universe has captured everyone's imagination. Now, for the first time in history, we are on the verge of answering this question. The search for life beyond the Earth can be seen as far back as the 16th century writings of J. Kepler, Bishops F. Godwin and J. Wilkins, and S. Cyrano de Bergerac to the early 20th century's H. G. Wells. From a scientific perspective, this search led to the formulation of the Drake Equation which in turn has led to a number of projects that are searching for signs of intelligent life beyond the Earth, the Search for Extraterrestrial Intellegence. SETI@home reaches millions of users, including thousands of K-12 teachers across the nation. We are developing a project that will enhance the SETI@home web site located at UC Berkeley. The project unites the resources of the SETI@home distributed computing community web site , university settings, and informal science learning centers. It will reach approximately 100,000 learners. The goal is to increase public understanding of math and science and to create and strengthen the connections between informal and formal learning communities. We will present a variety of ways that the Drake Equation and SETI@home can enhance the public and student understanding of the search for life in the Universe, from its roots in literature, to the development (and evolution) of the Drake Equation, to the actual search for life with SETI.

  16. SETI from the moon: an invitation to COSPAR

    NASA Astrophysics Data System (ADS)

    Heidmann, J.

    After presenting arguments for SETI (Search for ExtraTerrestrial Intelligence) work to be done well into the 21st century, and in view of the dramatic increase of blinding human-made radiofrequency interference, this author proposed that a well defined locale on the farside of the Moon - crater Saha - be preserved for the next 20-30 years not only for SETI but also for future high-sensitivity radioastronomy. The long-term programmatic issues were presented at the Lunar Exploration Symposium of the Jerusalem 1994 International Astronautical Federation Congress. The legal questions raised were delineated at the International Institute of Space Law (IISL) Colloquium of the same Jerusalem Congress. Numerous suggestions were given for an action strategy, in particular to present a proposal at a COSPAR venue. In the words of IISL Director A.A. Cocca: ``This reservation of a lunar zone for scientific activities, and its further utilization aiming at the common good of humanity, must be recognized, and constitutes a precedent.'' At the Hamburg 1995 European Geophysical Society XXth GA, we pointed out that this Saha project could offer interesting possibilities for a symbiosis with the `Science on the Moon Exobiology' teams. We also presented it at the Berlin 1996 European Space Agency/Deutsche Forschungsanstalt für Luft und Raumfahrt `International Moon Workshop' to geologists and to bioastrononomers at the Capri 1996 Bioastronomy International Astronomical Union Colloquium #161. At the 1995 IAF Congress in Oslo, the SETI Committee of the International Academy of Astronautics took action for the future benefit of humankind by setting-up a Sub-committee for `A SETI Lunar Study', chaired by the author. We hope that, in view of these initial endeavors, COSPAR may become interested in this Saha proposal and supports it.

  17. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1990-01-01

    Archival reports are given on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA), including space communications, radio navigation, radio science, ground-based radio and radar astronomy, and the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, supporting research and technology, implementation, and operations. Also included is TDA-funded activity at JPL on data and information systems and reimbursable DSN work performed for other space agencies through NASA. In the search for extraterrestrial intelligence (SETI), implementation and operations for searching the microwave spectrum are reported. Use of the Goldstone Solar System Radar for scientific exploration of the planets, their rings and satellites, asteroids, and comets are discussed.

  18. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1992-01-01

    Archival reports on developments in programs managed by the Jet Propulsion Laboratory's (JPL's) Office of Telecommunications and Data Acquisition (TDA) are published in the TDA Progress Report. In the search for extraterrestrial intelligence (SETI), the TDA Progress Report reports on implementation and operations for searching the microwave spectrum. In solar system radar, it reports on the uses of the Goldstone Solar System Radar for scientific exploration of the planets, their rings and satellites, asteroids, and comets. In radio astronomy, the areas of support include spectroscopy, very long baseline interferometry, and astrometry. These three programs are performed for NASA's Office of Space Science and Applications (OSSA), with the Office of Space Operations funding DSN operational support.

  19. Is life what we make of it?

    PubMed

    Denning, Kathryn

    2011-02-13

    Although astrobiological or SETI detections are possible, actual invasions of sentient extra-terrestrials or plagues of escaped alien microbes are unlikely. Therefore, an anthropological perspective on the question suggests that in the event of a detection, the vast majority of humanity will be dealing not with extra-terrestrial life itself (whether intelligent or not, local or distant), but with human perceptions and representations of that alien life. These will, inevitably, derive from the powerful influences of culture and individual psychology, as well as from science. It may even be argued that in most detection scenarios, the scientific data (and debates about their interpretation) will be nigh-irrelevant to the unfolding of international public reaction. 'Extra-terrestrial life' will, in short, go wild. From this premise, some key questions emerge, including: what can scientists reasonably do to prepare, and what should their responsibilities be, particularly with respect to information dissemination and public discussions about policy? Then, moving beyond the level of immediate practicalities, we might also ask some more anthropological questions: what are the cultural substrates underneath the inquiries of Western science into extra-terrestrial life? In particular, what are the stories we have been told about discovery of rare life, and about contact with other beings, and do these stories really mean what we think they do? Might a closer look at those narratives help us gain perspective on the quest to find extra-terrestrial life, and on our quest to prepare for the consequences of detection?

  20. Communication with aliens, as an opening of the horizon of a scientific Humanity. A philosopher's reflections

    NASA Astrophysics Data System (ADS)

    Petit, J.-L.

    2013-07-01

    In this article, we reflect on the motives underlying the search for extraterrestrial intelligent life (SETI) with a view to show that far from turning away from humanity it is profoundly rooted in human aspirations. We suggest that those motives derive their driving force from the fact that they combine two powerful aspirations of humanity. On the one hand, there is the transcendental motive that drives history of science, the human enterprise that claims to escape any communitarian closure of horizon and brings our humanity to transcend itself toward the other, which was formerly referred to under the title Universal Reason. On the other hand, there is the anthropological motive by virtue of which the human being tends to project on the other and even in inanimate nature a double of himself. The mixture of both motives is deemed responsible for a remarkable bias in the current understanding of the SETI programme. Despite the fact that such a programme might well be aimed at any biological formation which could be arbitrarily different from all known forms, it is focused instead on a very special kind of being: beings that possess both the natural property of the type of mentality we identify with: intelligence, and the ideal one of being possible co-subjects for a Science of Nature.

  1. Detection of the Earth with the SETI microwave observing system assumed to be operating out in the galaxy

    NASA Technical Reports Server (NTRS)

    Billingham, J.; Tarter, J.

    1992-01-01

    This paper estimates the maximum range at which radar signals from the Earth could be detected by a search system similar to the NASA Search for Extraterrestrial Intelligence Microwave Observing Project (SETI MOP) assumed to be operating out in the galaxy. Figures are calculated for the Targeted Search, and for the Sky Survey parts of the MOP, both operating, as currently planned, in the second half of the decade of the 1990s. Only the most powerful terrestrial transmitters are considered, namely, the planetary radar at Arecibo in Puerto Rico, and the ballistic missile early warning systems (BMEWS). In each case the probabilities of detection over the life of the MOP are also calculated. The calculation assumes that we are only in the eavesdropping mode. Transmissions intended to be detected by SETI systems are likely to be much stronger and would of course be found with higher probability to a greater range. Also, it is assumed that the transmitting civilization is at the same level of technological evolution as ours on Earth. This is very improbable. If we were to detect another technological civilization, it would, on statistical grounds, be much older than we are and might well have much more powerful transmitters. Both factors would make detection by the NASA MOP a much more likely outcome.

  2. Detection of the Earth with the SETI microwave observing system assumed to be operating out in the galaxy.

    PubMed

    Billingham, J; Tarter, J

    1992-01-01

    This paper estimates the maximum range at which radar signals from the Earth could be detected by a search system similar to the NASA Search for Extraterrestrial Intelligence Microwave Observing Project (SETI MOP) assumed to be operating out in the galaxy. Figures are calculated for the Targeted Search, and for the Sky Survey parts of the MOP, both operating, as currently planned, in the second half of the decade of the 1990s. Only the most powerful terrestrial transmitters are considered, namely, the planetary radar at Arecibo in Puerto Rico, and the ballistic missile early warning systems (BMEWS). In each case the probabilities of detection over the life of the MOP are also calculated. The calculation assumes that we are only in the eavesdropping mode. Transmissions intended to be detected by SETI systems are likely to be much stronger and would of course be found with higher probability to a greater range. Also, it is assumed that the transmitting civilization is at the same level of technological evolution as ours on Earth. This is very improbable. If we were to detect another technological civilization, it would, on statistical grounds, be much older than we are and might well have much more powerful transmitters. Both factors would make detection by the NASA MOP a much more likely outcome.

  3. Life in the Universe - Astronomy and Planetary Science Research Experience for Undergraduates at the SETI Institute

    NASA Astrophysics Data System (ADS)

    Chiar, J.; Phillips, C. B.; Rudolph, A.; Bonaccorsi, R.; Tarter, J.; Harp, G.; Caldwell, D. A.; DeVore, E. K.

    2016-12-01

    The SETI Institute hosts an Astrobiology Research Experience for Undergraduates (REU) program. Beginning in 2013, we partnered with the Physics and Astronomy Dept. at Cal Poly Pomona, a Hispanic-serving university, to recruit underserved students. Over 11 years, we have served 155 students. We focus on Astrobiology since the Institute's mission is to explore, understand and explain the origin, nature and prevalence of life in the universe. Our REU students work with mentors at the Institute - a non-profit organization located in California's Silicon Valley-and at the nearby NASA Ames Research Center. Projects span research on survival of microbes under extreme conditions, planetary geology, astronomy, the Search for Extraterrestrial Intelligence (SETI), extrasolar planets and more. The REU program begins with an introductory lectures by Institute scientists covering the diverse astrobiology subfields. A week-long field trip to the SETI Institute's Allen Telescope Array (Hat Creek Radio Astronomy Observatory in Northern California) and field experiences at hydrothermal systems at nearby Lassen Volcanic National Park immerses students in radio astronomy and SETI, and extremophile environments that are research sites for astrobiologists. Field trips expose students to diverse environments and allow them to investigate planetary analogs as our scientists do. Students also participate in local trips to the California Academy of Sciences and other nearby locations of scientific interest, and attend the weekly scientific colloquium hosted by the SETI Institute at Microsoft, other seminars and lectures at SETI Institute and NASA Ames. The students meet and present at a weekly journal club where they hone their presentation skills, as well as share their research progress. At the end of the summer, the REU interns present their research projects at a session of the Institute's colloquium. As a final project, students prepare a 2-page formal abstract and 15-minute presentation that mirrors the requirements for professional conference presentations. In collaboration with the mentors, successful projects are selected and funded for submission to national scientific conferences during the subsequent academic year. This program is funded by the NSF AST Grant # 1359346.

  4. The 'Wow' Signal, Drake Equation and Exoplanet Considerations

    NASA Astrophysics Data System (ADS)

    Wheeler, E.

    It has been 38 years since the most likely artificial transmission ever recorded from a possible extraterrestrial source was received [1, 2]. Using greatly improved technology, subsequent efforts by the Search for Extraterrestrial Intelligence (SETI) have continued, yet silence from space prevails [3]. This article examines whether the transmission was an artificial signal, and if so why it matters, to include the possibility that the modest technology used by the "Big Ear" receiver could have been accommodated by the source. The transmission and the ensuing long silence may be intended. This paper reconsiders the Drake equation, an estimate for the number of civilizations in our galaxy that may possess technology for interstellar signaling [4, 5], and shows that statement of the current alleged best estimate of two civilizations is not supported [6]. An alternate and original method suggests ~100 civilizations. It importantly relies on experience and detectable events, including recent astronomical evidence about exoplanets as cataloged by the European Exoplanet program and by the National Aeronautics and Space Administration (NASA) Exoplanet Science Institute [7, 8]. In addition it addresses major geological and astronomical occurrences that profoundly affected development of life on Earth and might apply similarly for Extraterrestrial Intelligence (ETI). The alternate approach is not intended to compute ETI precisely but to examine the possibility that, though vastly spread, it likely exists. The discussion anticipates difficulties in communication with an alien civilization, hardly an exercise in science fiction, and explores how international groups can participate in future specific response. One response might be to monitor the electromagnetic radiation spectral line of an element to be determined by consensus.

  5. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1987-01-01

    This quarterly publication (July-September 1987) provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio astronomy, it reports on activities of the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, in supporting research and technology, in implementation, and in operations. This work is performed for NASA's Office of Space Tracking and Data Systems (OSTDS). In geodynamics, the publication reports on the application of radio interferometry at microwave frequencies for geodynamic measurements. In the Search for Extraterrestrial Intelligence (SETI), it reports on implementation and operations for searching the microwave spectrum. The latter two programs are performed for NASA's Office of Space Science and Applications (OSSA).

  6. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1986-01-01

    This quarterly publication (July-Sept. 1986) provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio astronomy, it reports on activities of the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, in supporting research and technology, in implementation, and in operations. This work is performed for NASA's Office of Space Tracking and Data Systems (OSTDS). In geodynamics, the publication reports on the application of radio interferometry at microwave frequencies for geodynamic measurements. In the search for extraterrestrial intelligence (SETI), it reports on implementation and operations for searching the microwave spectrum. The latter two programs are performed for NASA's Office of Space Science and Applications (OSSA).

  7. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1992-01-01

    Archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA) are provided. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, in supporting research and technology, in implementation, and in operations. Also included is standards activity at JPL for space data and information. In the search for extraterrestrial intelligence (SETI), the TDA Progress Report reports on implementation and operations for searching the microwave spectrum. Topics covered include tracking and ground-based navigation; communications, spacecraft-ground; station control and system technology; capabilities for new projects; network upgrade and sustaining; network operations and operations support; and TDA program management and analysis.

  8. News and Views: Gemini hits 1000 papers; Comet Elenin? Forget it! Sellers launches course; Merry Christmas from 18th-century Lapland; ET: where are they all hiding? SETI in the city; Complex organic molecules may not mean life

    NASA Astrophysics Data System (ADS)

    2011-12-01

    No-one has yet found artefacts from an alien civilization, but have we looked hard enough? Astronomers seeking signs of extraterrestrial intelligence have suggested a novel approach: look for alien cities. The search for signs of life in the universe has included the detection of complex organic molecules, seen as a step on the way to living things. But now analysis of spectral signatures known as Unidentified Infrared Emission features found in stars, interstellar space and galaxies suggest that complex organic molecules can be made in stars in a matter of weeks without the presence of life.

  9. A 640-MHz 32-megachannel real-time polyphase-FFT spectrum analyzer

    NASA Technical Reports Server (NTRS)

    Zimmerman, G. A.; Garyantes, M. F.; Grimm, M. J.; Charny, B.

    1991-01-01

    A polyphase fast Fourier transform (FFT) spectrum analyzer being designed for NASA's Search for Extraterrestrial Intelligence (SETI) Sky Survey at the Jet Propulsion Laboratory is described. By replacing the time domain multiplicative window preprocessing with polyphase filter processing, much of the processing loss of windowed FFTs can be eliminated. Polyphase coefficient memory costs are minimized by effective use of run length compression. Finite word length effects are analyzed, producing a balanced system with 8 bit inputs, 16 bit fixed point polyphase arithmetic, and 24 bit fixed point FFT arithmetic. Fixed point renormalization midway through the computation is seen to be naturally accommodated by the matrix FFT algorithm proposed. Simulation results validate the finite word length arithmetic analysis and the renormalization technique.

  10. Searching for `ET': Some Open Questions

    NASA Astrophysics Data System (ADS)

    Kracher, A.

    2013-09-01

    The assumptions underlying the “search for extraterrestrial intelligence” are examined, including the role of meteoritics, planetology and exoplanetology. Interdisciplinary strategies for SETI and their problems are evaluated.

  11. Cultural Aspects of Astrobiology: A Preliminary Reconnaissance at

    NASA Astrophysics Data System (ADS)

    Dick, Steven

    NASA's Astrobiology Roadmap, developed in 1998 by an interdisciplinary team of more than 150 individuals, recognizes ten science goals, 17 more specific science objectives, and four broad principles for the Astrobiology Program. Among the four operating principles, which emphasize multidisciplinarity, planetary stewardship and public outreach, is one that also recognizes broad societal interest for the implications of astrobiology, especially its extraterrestrial life component. Although several meetings ahve been convened in the past decade to discuss the implications of extraterrestrial intelligence, including NASA's own CASETI workshops in 1991-1992, none have surveyed the broader implications of astrobiology as now defined at NASA. In this paper we survey these societal questions raised by astrobiology, and then focus on those related to extraterrestrial life, and in particular how they might differ from SETI concerns already discussed. As we enter the new millennium, the necessity for interdisciplinary studies is increasingly recognized in academia, industry and government. Astrobiology provides an unprecedented opportunity to encourage the unity of knowledge, as recently proposed in E. O. Wilson's book Consilience: The Unity of Knowledge. It is incumbent on scientists to support research on the implications of their work, in particular large government-funded scientific projects. The deep insights such study may yield has been amply demonstrated by the Human Genome Project, among others.

  12. Manifestation of intelligence implications for SETI

    NASA Technical Reports Server (NTRS)

    Kuiper, T. B. H.

    1986-01-01

    The objectives of the SETI projects are discussed. Life, intelligence, and sapience are defined in order to characterize the phenomena. Dissipation and coherence are useful characteristics for detection. Consideration is given to electromagnetically observable phenomena, in particular spatial coherence.

  13. A decade of SETI observations

    NASA Technical Reports Server (NTRS)

    Dixon, R. S.

    1986-01-01

    A full time dedicated search for extraterrestrial radio signals of intelligent origin has been in progress at the Ohio State University Radio Observatory since 1973. The radio telescope has a collecting area of 2200 square meters, which is equivalent to a circular dish 175 feet in diameter. The search concentrates on a 500 kHz bandwidth centered on the 1420 MHz hydrogen line, Doppler corrected to the galactic standard of rest. A large portion of the sky visible from Ohio was searched, with particulat emphasis on the galactic center region and the M31 Andromeda galaxy. The survey is largely computer automated, and all data reduction is done in real time. Two distinct populations of signals were detected. The first is a relatively small number of signals which persist for over a minute and which are clearly extraterrestrial in origin. The second is the large number of signals which persist less than 10 seconds whose locations are anticorrelated with the galactic plane but show clumps along the galactic axis. None of these signals were observed to recur, despite repeated observations. The cause of these signals were not determined.

  14. Optical SETI: Moving Toward the Light

    NASA Astrophysics Data System (ADS)

    Ross, Monte; Kingsley, Stuart

    In 2009, the SETI community celebrated a half-century since the classic paper by Giuseppe Cocconi and Philip Morrison in Nature, that described how we might look for radio transmissions from extraterrestrial civilizations. It is propitious that the publication of this book in 2010 marks both the 50th anniversary of Frank Drake's Project Ozma, and the 50th anniversary of the demonstration of the first (ruby) laser by Theodore Maiman. The invention of the laser was based on the maser work by Arthur Schawlow and Charles Townes and the simultaneous work of Gordon Gould. During this first half-century of SETI, most observing has been carried out in the radio spectrum, during which time there have been enormous developments in laser technology. Only during the past two decades has the optical approach to SETI, otherwise known as optical SETI, been given the attention it deserves.

  15. Sampling the Radio Transient Universe: Studies of Pulsars and the Search for Extraterrestrial Intelligence

    NASA Astrophysics Data System (ADS)

    Chennamangalam, Jayanth

    The transient radio universe is a relatively unexplored area of astronomy, offering a variety of phenomena, from solar and Jovian bursts, to flare stars, pulsars, and bursts of Galactic and potentially even cosmological origin. Among these, perhaps the most widely studied radio transients, pulsars are fast-spinning neutron stars that emit radio beams from their magnetic poles. In spite of over 40 years of research on pulsars, we have more questions than answers on these exotic compact objects, chief among them the nature of their emission mechanism. Nevertheless, the wealth of phenomena exhibited by pulsars make them one of the most useful astrophysical tools. With their high densities, pulsars are probes of the nature of ultra-dense matter. Characterized by their high timing stability, pulsars can be used to verify the predictions of general relativity, discover planets around them, study bodies in the solar system, and even serve as an interplanetary (and possibly some day, interstellar) navigation aid. Pulsars are also used to study the nature of the interstellar medium, much like a flashlight illuminating airborne dust in a dark room. Studies of pulsars in the Galactic center can help answer questions about the massive black hole in the region and the star formation history in its vicinity. Millisecond pulsars in globular clusters are long-lived tracers of their progenitors, low-mass X-ray binaries, and can be used to study the dynamical history of those clusters. Another source of interest in radio transient astronomy is the hitherto undetected engineered signal from extraterrestrial intelligence. The Search for Extraterrestrial Intelligence (SETI) is an ongoing attempt at discovering the presence of technological life elsewhere in the Galaxy. In this work, I present my forays into two aspects of the study of the radio transient universe---pulsars and SETI. Firstly, I describe my work on the luminosity function and population size of pulsars in the globular clusters Terzan 5, 47 Tucanae, and M 28. Applying Bayesian statistics to our data set consisting of the number of detected pulsars, their flux densities, and the amount of diffuse radio emission from the direction of these clusters, we show that the number of potentially observable pulsars in Terzan 5 should be within a 95 per cent credible interval of 147+112-65 For 47 Tucanae and M 28, our results are 83+54-35 and 100+91-52 , spectively. We also constrain the luminosity function parameters for the pulsars in these clusters. The Galactic center pulsar population has been an interesting target for various studies, especially given that only one pulsar has been detected in the region, when we expect hundreds of pulsars to be present. In this work, we use the scattering measurements from recent observations of PSR J1745--2900, the Galactic center pulsar, and show that the size of the potentially observable pulsar population has a conservative upper limit of ~200. We show that the observational results so far are consistent with this number and make predictions for future radio pulsar surveys of the region. The Versatile GBT Astronomical Spectrometer (VEGAS) is a heterogeneous instrument used mainly for pulsar studies with the Green Bank Telescope. I describe our work on the GPU spectrometer that we developed as part of VEGAS. The GPU code supports a dual-polarization bandwidth of up to 600 MHz. In the field of SETI, I discuss two works. SERENDIP VI is a heterogeneous SETI spectrometer to be installed both at the Green Bank Telescope and at the Arecibo Observatory. In this work, we describe the design of the GPU spectrometer that forms part of SERENDIP VI. In the second work, we speculate on a novel search strategy for SETI, based on the idea that technological civilizations lacking the advancement required to build high-powered beacons may choose to build a modulator situated around a nearby pulsar, depending on whether it is energetically favorable. We discuss observational signatures to search for, using a model of artificially-nulled pulsars.

  16. The outlook for cosmic company.

    PubMed

    Shostak, S

    2001-12-01

    The last 100 million years or so has seen a continued increase in encephalization for several terrestrial species. Intelligence has survival value. Developments in astrobiology suggest that what was once considered enormously improbable, namely life, is now suspected of being ubiquitous. It may be that the evolution of intelligence is unlikely, but in a finite, breathtakingly large universe (10(22) stars) small probability likely does not matter. Even if nature is indifferent to producing intelligence, SETI might still succeed. Biological intelligence may be rare, but it has the potential for creating engineered synthetic intelligence, capable of rapid and directed self-evolution. The galaxy could be rife with such long-lived, communicating devices, even if intelligent protoplasm is both rare and fleeting. SETI is looking for narrow-band, microwave signals that are not produced naturally. Ultimately, SETI is more exploration than experimentation.

  17. The Silence of the Universe as Challenge to our Knowledge

    NASA Astrophysics Data System (ADS)

    Efremov, Yuri N.

    SETI has much more implications than just search for extraterrestrial intelligence. This is the issue of ourselves, on what we are and if we are able to understand the Universe. Comparing the age of the Universe, some 15 Gyrs, with the time scale of the exponential growth of our science and technology, some 100 years, the greatest paradox of the contemporary Knowledge arises - this is just the absence of any evidence of activity of superpower civilizations. This was interpreted by Shklovsky (1984) as prove of our loneliness owing to the death of a civilization after the development of both science and military technology. Implicitly, only for this case of our solicitude in the Universe, all variations of anthropic principle were considered until now. This concerns the idea (Harrison 1995) that there is the natural selection of universes containing the intelligent life the clever enough to produce the universe of the next generation. The possibility of non-biological ETI opens other ways, however.

  18. The Impact of the Temporal Distribution of Communicating Civilizations on Their Detectability

    NASA Astrophysics Data System (ADS)

    Balbi, Amedeo

    2018-01-01

    We used a statistical model to investigate the detectability (defined by the requirement that causal contact has been initiated with us) of communicating civilizations within a volume of the Universe surrounding our location. If the civilizations are located in our galaxy, the detectability requirement imposes a strict constraint on their epoch of appearance and their communicating life span. This, in turn, implies that our ability to gather empirical evidence of the fraction of civilizations within range of detection strongly depends on the specific features of their temporal distribution. Our approach illuminates aspects of the problem that can escape the standard treatment based on the Drake equation. Therefore, it might provide the appropriate framework for future studies dealing with the evolutionary aspects of the search for extraterrestrial intelligence (SETI).

  19. On space-based SETI

    NASA Technical Reports Server (NTRS)

    Stuiver, Willem

    1990-01-01

    Space-based antenna systems for the search of signals from extra-terrestrial intelligence are discussed. Independent studies of the ecliptic solar-sailing transfer problem from the geosynchronous departure orbit to Sun-Earth collinear transterrestrial liberation point were conducted. They were based on a relatively simple mathematical model describing attitude-controlled spacecraft motion in the ecliptic plane as governed by solar and terrestrial gravitational attraction together with the solar radiation pressure. The resulting equations of motion were integrated numerically for a relevant range of values of spacecraft area-to-mass ratio and for an appropriate spacecraft attitude-control law known to lead to Earth escape. Experimentation with varying initial conditions in the departure orbit, and with attitude-control law modification after having achieved Earth escape, established the feasibility of component deployment by means of solar sailing. Details are presented.

  20. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1991-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN). Also included is standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. In the search for extraterrestrial intelligence (SETI), 'The TDA Progress Report' reports on implementation and operations for searching the microwave spectrum. In solar system radar, it reports on the uses of the Goldstone Solar System Radar for scientific exploration of the planets, their rings and satellites, asteroids, and comets. In radio astronomy, the areas of support include spectroscopy, very long baseline interferometry, and astrometry.

  1. Congress Examines Efforts to Search for Life in the Universe

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-06-01

    "It is not hyperbolic to suggest that scientists could very well discover extraterrestrial intelligence within 2 decades' time or less, given resources to conduct the search," Seth Shostak, senior astronomer with the SETI Institute, in Mountain View, Calif., testified at a 21 May congressional hearing held by the House of Representatives' Committee on Science, Space, and Technology. He pointed to the progress in extrasolar planet discovery made possible by NASA's Kepler space telescope, the enormous number of potential planets in the Milky Way and other galaxies, the increasing power of digital electronics to find and sort out radio and other signals, and other work related to exoplanets and astrobiology. It was the committee's third hearing on astrobiology and the search for life in the universe in roughly 1 year.

  2. SETI@home

    Science.gov Websites

    experiment, based at UC Berkeley, that uses Internet-connected computers in the Search for Extraterrestrial several hours to be sure. If that didn't solve the problem, it probably means the index the server uses to

  3. NASA-SETI microwave observing project: Targeted Search Element (TSE)

    NASA Technical Reports Server (NTRS)

    Webster, L. D.

    1991-01-01

    The Targeted Search Element (TSE) performs one of two complimentary search strategies of the NASA-SETI Microwave Observing Project (MOP): the targeted search. The principle objective of the targeted search strategy is to scan the microwave window between the frequencies of one and three gigahertz for narrowband microwave emissions eminating from the direction of 773 specifically targeted stars. The scanning process is accomplished at a minimum resolution of one or two Hertz at very high sensitivity. Detectable signals will be of a continuous wave or pulsed form and may also drift in frequency. The TSE will possess extensive radio frequency interference (RFI) mitigation and verification capability as the majority of signals detected by the TSE will be of local origin. Any signal passing through RFI classification and classifiable as an extraterrestrial intelligence (ETI) candidate will be further validated at non-MOP observatories using established protocol. The targeted search will be conducted using the capability provided by the TSE. The TSE provides six Targeted Search Systems (TSS) which independently or cooperatively perform automated collection, analysis, storage, and archive of signal data. Data is collected in 10 megahertz chunks and signal processing is performed at a rate of 160 megabits per second. Signal data is obtained utilizing the largest radio telescopes available for the Targeted Search such as those at Arecibo and Nancay or at the dedicated NASA-SETI facility. This latter facility will allow continuous collection of data. The TSE also provides for TSS utilization planning, logistics, remote operation, and for off-line data analysis and permanent archive of both the Targeted Search and Sky Survey data.

  4. A cloaking device for transiting planets

    NASA Astrophysics Data System (ADS)

    Kipping, David M.; Teachey, Alex

    2016-06-01

    The transit method is presently the most successful planet discovery and characterization tool at our disposal. Other advanced civilizations would surely be aware of this technique and appreciate that their home planet's existence and habitability is essentially broadcast to all stars lying along their ecliptic plane. We suggest that advanced civilizations could cloak their presence, or deliberately broadcast it, through controlled laser emission. Such emission could distort the apparent shape of their transit light curves with relatively little energy, due to the collimated beam and relatively infrequent nature of transits. We estimate that humanity could cloak the Earth from Kepler-like broad-band surveys using an optical monochromatic laser array emitting a peak power of ˜30 MW for ˜10 hours per year. A chromatic cloak, effective at all wavelengths, is more challenging requiring a large array of tunable lasers with a total power of ˜250 MW. Alternatively, a civilization could cloak only the atmospheric signatures associated with biological activity on their world, such as oxygen, which is achievable with a peak laser power of just ˜160 kW per transit. Finally, we suggest that the time of transit for optical Search for Extraterrestrial Intelligence (SETI) is analogous to the water-hole in radio SETI, providing a clear window in which observers may expect to communicate. Accordingly, we propose that a civilization may deliberately broadcast their technological capabilities by distorting their transit to an artificial shape, which serves as both a SETI beacon and a medium for data transmission. Such signatures could be readily searched in the archival data of transit surveys.

  5. Discovery of extra-terrestrial life: assessment by scales of its importance and associated risks.

    PubMed

    Almár, Iván; Race, Margaret S

    2011-02-13

    The Rio Scale accepted by the SETI Committee of the International Academy of Astronautics in 2002 is intended for use in evaluating the impact on society of any announcement regarding the discovery of evidence of extra-terrestrial (ET) intelligence. The Rio Scale is mathematically defined using three parameters (class of phenomenon, type of discovery and distance) and a δ factor, the assumed credibility of a claim. This paper proposes a new scale applicable to announcements alleging evidence of ET life within or outside our Solar System. The London Scale for astrobiology has mathematical structure and logic similar to the Rio Scale, and uses four parameters (life form, nature of phenomenon, type of discovery and distance) as well as a credibility factor δ to calculate a London Scale index (LSI) with values ranging from 0 to 10. The level of risk or biohazard associated with a purported discovery is evaluated independently of the LSI value and may be ranked in four categories. The combined information is intended to provide a scalar assessment of the scientific importance, validity and potential risks associated with putative evidence of ET life discovered on Earth, on nearby bodies in the Solar System or in our Galaxy.

  6. A stochastic process approach of the drake equation parameters

    NASA Astrophysics Data System (ADS)

    Glade, Nicolas; Ballet, Pascal; Bastien, Olivier

    2012-04-01

    The number N of detectable (i.e. communicating) extraterrestrial civilizations in the Milky Way galaxy is usually calculated by using the Drake equation. This equation was established in 1961 by Frank Drake and was the first step to quantifying the Search for ExtraTerrestrial Intelligence (SETI) field. Practically, this equation is rather a simple algebraic expression and its simplistic nature leaves it open to frequent re-expression. An additional problem of the Drake equation is the time-independence of its terms, which for example excludes the effects of the physico-chemical history of the galaxy. Recently, it has been demonstrated that the main shortcoming of the Drake equation is its lack of temporal structure, i.e., it fails to take into account various evolutionary processes. In particular, the Drake equation does not provides any error estimation about the measured quantity. Here, we propose a first treatment of these evolutionary aspects by constructing a simple stochastic process that will be able to provide both a temporal structure to the Drake equation (i.e. introduce time in the Drake formula in order to obtain something like N(t)) and a first standard error measure.

  7. Evolution and mass extinctions as lognormal stochastic processes

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    2014-10-01

    In a series of recent papers and in a book, this author put forward a mathematical model capable of embracing the search for extra-terrestrial intelligence (SETI), Darwinian Evolution and Human History into a single, unified statistical picture, concisely called Evo-SETI. The relevant mathematical tools are: (1) Geometric Brownian motion (GBM), the stochastic process representing evolution as the stochastic increase of the number of species living on Earth over the last 3.5 billion years. This GBM is well known in the mathematics of finances (Black-Sholes models). Its main features are that its probability density function (pdf) is a lognormal pdf, and its mean value is either an increasing or, more rarely, decreasing exponential function of the time. (2) The probability distributions known as b-lognormals, i.e. lognormals starting at a certain positive instant b>0 rather than at the origin. These b-lognormals were then forced by us to have their peak value located on the exponential mean-value curve of the GBM (Peak-Locus theorem). In the framework of Darwinian Evolution, the resulting mathematical construction was shown to be what evolutionary biologists call Cladistics. (3) The (Shannon) entropy of such b-lognormals is then seen to represent the `degree of progress' reached by each living organism or by each big set of living organisms, like historic human civilizations. Having understood this fact, human history may then be cast into the language of b-lognormals that are more and more organized in time (i.e. having smaller and smaller entropy, or smaller and smaller `chaos'), and have their peaks on the increasing GBM exponential. This exponential is thus the `trend of progress' in human history. (4) All these results also match with SETI in that the statistical Drake equation (generalization of the ordinary Drake equation to encompass statistics) leads just to the lognormal distribution as the probability distribution for the number of extra-terrestrial civilizations existing in the Galaxy (as a consequence of the central limit theorem of statistics). (5) But the most striking new result is that the well-known `Molecular Clock of Evolution', namely the `constant rate of Evolution at the molecular level' as shown by Kimura's Neutral Theory of Molecular Evolution, identifies with growth rate of the entropy of our Evo-SETI model, because they both grew linearly in time since the origin of life. (6) Furthermore, we apply our Evo-SETI model to lognormal stochastic processes other than GBMs. For instance, we provide two models for the mass extinctions that occurred in the past: (a) one based on GBMs and (b) the other based on a parabolic mean value capable of covering both the extinction and the subsequent recovery of life forms. (7) Finally, we show that the Markov & Korotayev (2007, 2008) model for Darwinian Evolution identifies with an Evo-SETI model for which the mean value of the underlying lognormal stochastic process is a cubic function of the time. In conclusion: we have provided a new mathematical model capable of embracing molecular evolution, SETI and entropy into a simple set of statistical equations based upon b-lognormals and lognormal stochastic processes with arbitrary mean, of which the GBMs are the particular case of exponential growth.

  8. Search for extraterrestrial intelligence/high resolution microwave survey team member

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1993-01-01

    This semiannual status report describes activities conducted by the Principal Investigator during the first half of this third year of the NASA High Resolution Microwave Survey (HRMS) Investigator Working Group (IWG). As a (HRMS) Team Member with primary interest in the Sky Survey activity, this investigator attended IWG meetings at NASA/Ames and U.C.-Santa Cruz in Apr. and Aug. 1992, and has traveled independently to NRAO/Kitt Peak, Arizona (April 1993) and Woodbury, Georgia (July 1993). During the July 1993 visit to the Georgia Tech Research Corporation/Woodbury Research Facility, an experiment was conducted to study the effects of interference from C-band (3.7 - 4.2 GHz) geostationary spacecraft on the Sky Survey operation in that band. At the first IWG meeting in April of this year, results of a SETI observation conducted at the 203 GHz positronium hyperfine resonance using the NRAO facility at Kitt Peak, AZ, were presented, as well as updates on the development of the spaceborne RFI data bases developed for the project. At the second meeting, results of the study of interference from C-band geostationary spacecraft were presented. Likewise, a presentation was made at the accompanying 1993 Bioastronomy Symposium describing the SETI observation at the positronium hyperfine resonance.

  9. Wide-bandwidth high-resolution search for extraterrestrial intelligence

    NASA Technical Reports Server (NTRS)

    Horowitz, Paul

    1995-01-01

    Research was accomplished during the third year of the grant on: BETA architecture, an FFT array, a feature extractor, the Pentium array and workstation, and a radio astronomy spectrometer. The BETA (this SETI project) system architecture has been evolving generally in the direction of greater robustness against terrestrial interference. The new design adds a powerful state-memory feature, multiple simultaneous thresholds, and the ability to integrate multiple spectra in a flexible state-machine architecture. The FFT array is reported with regards to its hardware verification, array production, and control. The feature extractor is responsible for maintaining a moving baseline, recognizing large spectral peaks, following the progress of previously identified interesting spectral regions, and blocking signals from regions previously identified as containing interference. The Pentium array consists of 21 Pentium-based PC motherboards, each with 16 MByte of RAM and an Ethernet interface. Each motherboard receives and processes the data from a feature extractor/correlator board set, passing on the results of a first analysis to the central Unix workstation (through which each is also booted). The radio astronomy spectrometer is a technological spinoff from SETI work. It is proposed to be a combined spectrometer and power-accumulator, for use at Arecibo Observatory to search for neutral hydrogen emission from condensations of neutral hydrogen at high redshift (z = 5).

  10. SETI - A preliminary search for narrowband signals at microwave frequencies

    NASA Technical Reports Server (NTRS)

    Cuzzi, J. N.; Clark, T. A.; Tarter, J. C.; Black, D. C.

    1977-01-01

    In the search for intelligent signals of extraterrestrial origin, certain forms of signals merit immediate and special attention. Extremely narrowband signals of spectral width similar to our own television transmissions are most favored energetically and least likely to be confused with natural celestial emission. A search of selected stars has been initiated using observational and data processing techniques optimized for the detection of such signals. These techniques allow simultaneous observation of 10 to the 5th to 10 to the 6th channels within the observed spectral range. About two hundred nearby (within 80 LY) solar type stars have been observed at frequencies near the main microwave transitions of the hydroxyl radical. In addition, several molecular (hydroxyl) masers and other non-thermal sources have been observed in this way in order to uncover any possible fine spectral structure of natural origin and to investigate the potential of such an instrument for radioastronomy.

  11. A search for narrow band signals with SERENDIP II: a progress report

    NASA Technical Reports Server (NTRS)

    Werthimer, D.; Brady, R.; Berezin, A.; Bowyer, S.

    1988-01-01

    Commensal programs for the Search for Extraterrestrial Intelligence (SETI), carried out concurrently with conventional radio astronomical observing programs, can be an attractive and cost-effective means of exploring the large multidimensional search space intrinsic to this effort. Our automated commensal system, SERENDIP II, is a high resolution 131,072 channel spectrometer. It searches for 0.49 Hz signals in sequential 64,700 Hz bands of the IF signal from a radio telescope being used for an astronomical observation. Upon detection of a narrow band signal with power above a preset threshold, the frequency, power, time, and telescope direction are recorded for later study. The system has been tested at the Hat Creek Radio Astronomy Observatory 85 ft telescope and the NASA-JPL Deep Space Station (DSS 14) 64 m telescope. It is currently collecting data at the National Radio Astronomy Observatory 300 ft telescope.

  12. Using the IRAS data to search in the asteroid belt for any potential evidence of galactic colonization

    NASA Technical Reports Server (NTRS)

    Papagiannis, M. D.

    1986-01-01

    The end product of the biological evolution seems to be the appearance of technological civilizations, which are characterized by superior technology that supercedes biological capabilities. The Search for Extraterrestrial Intelligence (SETI) has gained scientific recognition in recent years. The concept of galactic colonization is debated extensively, with opinions ranging from the impossible to the inevitable, but without a clear resolution. Answers can be obtained only with experimental tests and not with endless debates. A search for large space colonies in the asteroid belt, an ideal source of raw materials for a spaceborne civilization, is a test of the galactic colonization theory. The catalogue of solar system objects obtained form the Infrared Astronomy Satellite (IRAS) observations at 12, 25, 60, and 100 microns, is an ideal source for such a search. The catalog is expected to be ready at the end of 1985 and will contain more than 10,000 objects.

  13. Multi-epoch Measurements of the Galactic Center 6667 MHz) and the Blazar 0716+714 (1 & 3 MHz) taken from the Allen Telescope Array at Hat Creek Radio Observatory in 2013

    NASA Astrophysics Data System (ADS)

    Castellanos, Aaron; Harp, G.

    2014-01-01

    The Allen Telescope Array (ATA) is a 42 radio dish array located in Hat Creek, CA and is used to search for traces of Extraterrestrial Intelligence (SETI) and to study the interstellar medium. The ATA has taken multi-epoch measurements of the Galactic Center 6667 MHz) and the intraday variable Blazar 0716+714 (1 & 3MHz) and are imaged on 10 second timescales to search for intensity fluctuations on timescales 10s and beyond. We utilize software developed and focused on antenna system temperatures to minimize Radio Frequency Interference (RFI) in order to enhance calibration and signal variability. We will discuss potential radio bursts from the Galactic Center, possibly originating from the descent of the gas cloud G2 into the Galactic Center.

  14. A search for narrow band signals with SERENDIP II: a progress report.

    PubMed

    Werthimer, D; Brady, R; Berezin, A; Bowyer, S

    1988-01-01

    Commensal programs for the Search for Extraterrestrial Intelligence (SETI), carried out concurrently with conventional radio astronomical observing programs, can be an attractive and cost-effective means of exploring the large multidimensional search space intrinsic to this effort. Our automated commensal system, SERENDIP II, is a high resolution 131,072 channel spectrometer. It searches for 0.49 Hz signals in sequential 64,700 Hz bands of the IF signal from a radio telescope being used for an astronomical observation. Upon detection of a narrow band signal with power above a preset threshold, the frequency, power, time, and telescope direction are recorded for later study. The system has been tested at the Hat Creek Radio Astronomy Observatory 85 ft telescope and the NASA-JPL Deep Space Station (DSS 14) 64 m telescope. It is currently collecting data at the National Radio Astronomy Observatory 300 ft telescope.

  15. The 1993 Finnish Interdisciplinary Seminar on SETI - A review of aims, approaches and conclusions

    NASA Astrophysics Data System (ADS)

    Seppanen, Jouko

    1993-10-01

    The communications of the International Interdisciplinary Seminar on SETI, held on March 6-7, 1993 in Vantaa, Finland, are reviewed and the contents and conclusions of papers summarized. The seminar was organized jointly by the Finnish Artificial Intelligence Society (FAIS), Finnish Astronomical Society, Ursa Astronomical Association and Heureka - The Finnish Science Centre. As the ninth in a series of intelligence-related seminars of FAIS, SETI was chosen as the topic for spring 1993, noting the new ten year NASA SETI program HRMS (High Resolution Micro-wave Survey), commenced on Columbus Day, October 12, 1992. The aims and the interdisciplinary format of the seminar are described, the main results and conclusions of papers are restated, and the seminar publications introduced. The summaries of papers are based on their abstracts and contain excerpts from texts.

  16. A bibliography on the search for extraterrestrial intelligence

    NASA Technical Reports Server (NTRS)

    Mallove, E. F.; Connors, M. M.; Forward, R. L.; Paprotny, Z.

    1978-01-01

    This report presents a uniform compilation of works dealing with the search for extraterrestrial intelligence. Entries are by first author, with cross-reference by topic index and by periodical index. This bibliography updates earlier bibliographies on this general topic while concentrating on research related to listening for signals from extraterrestrial intelligence.

  17. Galactic extraterrestrial intelligence. I - The constraint on search strategies imposed by the possibility of interstellar travel

    NASA Astrophysics Data System (ADS)

    Singer, C. E.

    1982-03-01

    The possibility that extraterrestrial intelligence might settle the Galaxy by interstellar travel is investigated. The existence of this possibility is shown to be incompatible with the existence of a large number of potential sources of communication from extraterrestrial intelligences in the Galaxy. A detailed examination of suggested resolutions of this contradiction is presented. These include physical, temporal and sociological explanations. The sociological explanations include the so-called disinterest, self-destruction, fizzle, ZPG, taboo, and private zoo hypotheses. Each of these is carefully shown to require incredible universal ad hoc assumptions about the nature of extraterrestrial intelligence. It is concluded that proposed serial search modes for communication from extraterrestrial intelligence have negligible chance of success. A mathematical formalism for evaluating other search modes is also developed.

  18. Pros and cons in the search for extraterrestrial intelligence.

    PubMed

    Kantha, S S

    1996-03-01

    I propose a new term, 'galactic organism with distinct intelligence', for the extraterrestrial forms, with which humans can make contact. This is because, among the three existing terms: (a) 'the search for extraterrestrial intelligence' 'excludes biology and is inelegant'; (b) 'extraterrestrial' does not distinguish between the micro-organisms and highly-evolved intelligent life-forms; and (c) 'unidentified flying object' projects a sense of mysticism. On the presence of galactic organisms with distinct intelligence, scientists belong to three camps. Astronomers, physicists and some biochemists belong to the believers group. Evolutionists are in the doubters category. The third camp is represented by the 'uncommitted'. Approaches for contacting galactic organisms with distinct intelligence would take three steps. These are: (a) radioastronomical observations in the galaxy and interstellar space for the presence of organic matter; (b) initiating radio contact and listening to any transmitted message, as set out by the search for extraterrestrial intelligence program, and (c) landing instruments and humans in the galaxy.

  19. Using Astrobiology case studies to bring science decision making into the classroom: Mars sample return, exobiology and SETI

    NASA Astrophysics Data System (ADS)

    Race, Margaret

    As citizens and decision makers of the future, today's students need to understand the nature of science and the implications of scientific discoveries and activities in a broad societal context. Astrobiology provides an opportunity to introduce students to real world decision-making involving cutting edge, multidisciplinary research topics that involve Earth, the solar system and beyond. Although textbooks and curricular materials may take years to develop, teachers can easily bring the latest astrobiological discoveries and hypotheses into the classroom in the form of case studies to complement science classes. For example, using basic biological, geological and chemical information from Earth and other planets, students can discuss the same questions that experts consider when planning a Mars Sample Return mission. How would you recognize extraterrestrial life? What would be the impact of bringing martian life to Earth? How should martian samples be handled and tested to determine whether they pose hazards to Earth's biota and ecosystems? If truly martian life exists, what are the implications for future human missions or colonies on the planet? What are the ethical and societal implications of discovering extraterrestrial life, whether in the solar system or beyond? What difference world it make if the extraterrestrial life is microbial and simple vs. intelligent and advanced? By integrating basic science concepts, up-to-date research findings, and information about laws, societal concerns, and public decision making, students can experience first-hand the kind of questions and challenges we're likely to face in the years ahead.

  20. Search for Signatures of Life in the Solar System

    NASA Astrophysics Data System (ADS)

    Race, M.; Schwehm, G.; Arnould, J.; Dawson, S.; Devore, E.; Evans, D.; Ferrazzani, M.; Shostak, S.

    The search for evidence of extraterrestrial life is an important scientific theme that fascinates the public and encourages interest in space exploration, both within the solar system and beyond. The rapid pace of mass media communication allows the public to share mission results and new discoveries almost simultaneously with the scientific community. The public can read about proposed sample return missions to Mars, listen as scientists debate about in situ exploration of the oceans on Europa, learn about the growing number of extrasolar planets, or use their personal computers to participate in searches for extraterrestrial intelligence (SETI). As the science community continues its multi-pronged efforts to detect evidence of extraterrestrial life, it must be mindful of more than just science and technology. It is important to understand public perceptions, misperceptions, beliefs, concerns and potential complications associated with the search for life beyond our home planet. This panel is designed to provide brief overviews of some important non-scientific areas with the potential to impact future astrobiological exploration. The presentations will be followed by open discussion and audience participation. Invited panelists and their topical areas include: SCIENCE FICTION AND MISPERCEPTIONS: Seth Shostak, Dylan EvansBattling Pseudo-Science, Hollywood and Alien Abductions LEGAL ISSUES: Marcus FerrazzaniLooming Complications for Future Missions and Exploration RISK COMMUNICATION: Sandra DawsonEngaging the Public, Explaining the Risks, and Encouraging Long-Term Interestin Mission Science EDUCATION: Edna DeVoreUsing the Search for Life as a Motivating Theme in Teaching Basic Science andCritical Thinking. ETHICAL ISSUES AND CONCERNS: Jacques ArnouldWhat Will it Mean if We Find "ET"? PANEL MODERATORS: Margaret Race, Gerhard Schwehm

  1. A Scheme for Targeting Optical SETI Observations

    NASA Astrophysics Data System (ADS)

    Shostak, Seth

    2004-06-01

    In optical SETI (OSETI) experiments, it is generally assumed that signals will be deliberate, narrowly targeted beacons sent by extraterrestrial societies to large numbers of candidate star systems. If this is so, then it may be unrealistic to expect a high duty cycle for the received signal. Ergo, an advantage accrues to any OSETI scheme that realistically suggests where and when to search. In this paper, we elaborate a proposal (Castellano, Doyle, &McIntosh 2000) for selecting regions of sky for intensive optical SETI monitoring based on characteristics of our solar system that would be visible at great distance. This can enormously lessen the amount of sky that needs to be searched. In addition, this is an attractive approach for the transmitting society because it both increases the chances of reception and provides a large reduction in energy required. With good astrometric information, the transmitter need be no more powerful than an automobile tail light.

  2. SpaceScience@Home: Authentic Research Projects that Use Citizen Scientists

    NASA Astrophysics Data System (ADS)

    Méndez, B. J. H.

    2008-06-01

    In recent years, several space science research projects have enlisted the help of large numbers of non-professional volunteers, ``citizen scientists'', to aid in performing tasks that are critical to a project, but require more person-time (or computing time) than a small professional research team can practically perform themselves. Examples of such projects include SETI@home, which uses time from volunteers computers to process radio-telescope observation looking for signals originating from extra-terrestrial intelligences; Clickworkers, which asks volunteers to review images of the surface of Mars to identify craters; Spacewatch, which used volunteers to review astronomical telescopic images of the sky to identify streaks made by possible Near Earth Asteroids; and Stardust@home, which asks volunteers to review ``focus movies'' taken of the Stardust interstellar dust aerogel collector to search for possible impacts from interstellar dust particles. We shall describe these and other similar projects and discuss lessons learned from carrying out such projects, including the educational opportunities they create.

  3. Design considerations for the beamwaveguide retrofit of a ground antenna station

    NASA Technical Reports Server (NTRS)

    Veruttipong, T.; Withington, J.; Galindo-Israel, V.; Imbriale, W.; Bathker, D.

    1987-01-01

    A primary requirement of the NASA Deep Space Network (DSN) is to provide for optimal reception of very low signal levels. This requirement necessitates optimizing the antenna gain to the total system operating noise level quotient. Low overall system noise levels of 16 to 20 K are achieved by using cryogenically cooled preamplifiers closely coupled with an appropriately balanced antenna gain/spillover design. Additionally, high-power transmitters (up to 400 kW CW) are required for spacecraft emergency command and planetary radar experiments. The frequency bands allocated for deep space telemetry are narrow bands near 2.1 and 2.3 GHz (Ka-band), 7.1 and 8.4 GHz (X-band), and 32 and 34.5 GHz (Ka-band). In addition, planned operations for the Search for Extraterrestrial Intelligence (SETI) program require continuous low-noise receive coverage over the 1 to 10 GHz band. To summarize, DSN antennas must operate efficiently with low receive noise and high-power uplink over the 1 to 35 GHz band.

  4. The Serendip II design. [narrowband astronautical radio signal search for extraterrestrial intelligence

    NASA Technical Reports Server (NTRS)

    Werthimer, D.; Tarter, J.; Bowyer, S.

    1985-01-01

    Serendip II is an automated system designed to perform a real time search for narrow band radio signals in the spectra of sources in a regularly scheduled, non-Seti, astronomical observing program. Because Serendip II is expected to run continuously without requiring dedicated observing time, it is hoped that a large portion of the sky will be surveyed at high sensitivity and low cost. Serendip II will compute the power spectrum using a 65,536 channel fast Fourier transform processor with a real time bandwidth of 128 KHz and 2 Hz per channel resolution. After searching for peaks in a 100 KHz portion of the radio telescope's IF band, Serendip II will move to the next 100 KHz portion using a programmable frequency synthesizer; when the whole IF band has been scanned, the process will start again. Unidentified peaks in the power spectra are candidates for further study and their celestial coordinates will be recorded along with the time and power, IF and RF frequency, and bandwidth of the peak.

  5. Alien Life Imagined

    NASA Astrophysics Data System (ADS)

    Brake, Mark

    2012-11-01

    1. Kosmos: aliens in ancient Greece; 2. The world turned upside down: Copernicanism and the voyages of discovery; 3. In Newton's train: pluralism and the system of the world; 4. Extraterrestrials in the early machine age; 5. After Darwin: the war of the worlds; 6. Einstein's sky: life in the new universe; 7. Ever since SETI: astrobiology in the space age; References; Index.

  6. SETI via Leakage from Light Sails in Exoplanetary Systems

    NASA Astrophysics Data System (ADS)

    Guillochon, James; Loeb, Abraham

    2015-10-01

    The primary challenge of rocket propulsion is the burden of needing to accelerate the spacecraft’s own fuel, resulting in only a logarithmic gain in maximum speed as propellant is added to the spacecraft. Light sails offer an attractive alternative in which fuel is not carried by the spacecraft, with acceleration being provided by an external source of light. By artificially illuminating the spacecraft with beamed radiation, speeds are only limited by the area of the sail, heat resistance of its material, and power use of the accelerating apparatus. In this paper, we show that leakage from a light sail propulsion apparatus in operation around a solar system analogue would be detectable. To demonstrate this, we model the launch and arrival of a microwave beam-driven light sail constructed for transit between planets in orbit around a single star, and find an optimal beam frequency on the order of tens of GHz. Leakage from these beams yields transients with flux densities of Jy and durations of tens of seconds at 100 pc. Because most travel within a planetary system would be conducted between the habitable worlds within that system, multiply transiting exoplanetary systems offer the greatest chance of detection, especially when the planets are in projected conjunction as viewed from Earth. If interplanetary travel via beam-driven light sails is commonly employed in our galaxy, this activity could be revealed by radio follow-up of nearby transiting exoplanetary systems. The expected signal properties define a new strategy in the search for extraterrestrial intelligence (SETI).

  7. Prior indigenous technological species

    NASA Astrophysics Data System (ADS)

    Wright, Jason T.

    2018-01-01

    One of the primary open questions of astrobiology is whether there is extant or extinct life elsewhere the solar system. Implicit in much of this work is that we are looking for microbial or, at best, unintelligent life, even though technological artefacts might be much easier to find. Search for Extraterrestrial Intelligence (SETI) work on searches for alien artefacts in the solar system typically presumes that such artefacts would be of extrasolar origin, even though life is known to have existed in the solar system, on Earth, for eons. But if a prior technological, perhaps spacefaring, species ever arose in the solar system, it might have produced artefacts or other technosignatures that have survived to present day, meaning solar system artefact SETI provides a potential path to resolving astrobiology's question. Here, I discuss the origins and possible locations for technosignatures of such a prior indigenous technological species, which might have arisen on ancient Earth or another body, such as a pre-greenhouse Venus or a wet Mars. In the case of Venus, the arrival of its global greenhouse and potential resurfacing might have erased all evidence of its existence on the Venusian surface. In the case of Earth, erosion and, ultimately, plate tectonics may have erased most such evidence if the species lived Gyr ago. Remaining indigenous technosignatures might be expected to be extremely old, limiting the places they might still be found to beneath the surfaces of Mars and the Moon, or in the outer solar system.

  8. Kardashev's Classification at 50+: A Fine Vehicle With Room for Improvement

    NASA Astrophysics Data System (ADS)

    Ćirković, M. M.

    2015-12-01

    We review the history and status of the famous classification of extraterrestrial civilizations given by the great Russian astrophysicist Nikolai Semenovich Kardashev, roughly half a century after it has been proposed. While Kardashev's classification (or Kardashev's scale) has often been seen as oversimplified, and multiple improvements, refinements, and alternatives to it have been suggested, it is still one of the major tools for serious theoretical investigation of SETI issues. During these 50+ years, several attempts at modifying or reforming the classification have been made; we review some of them here, together with presenting some of the scenarios which present difficulties to the standard version. Recent results in both theoretical and observational SETI studies, especially the {Ĝ infrared survey (2014-2015), have persuasively shown that the emphasis on detectability inherent in Kardashev's classification obtains new significance and freshness. Several new movements and conceptual frameworks, such as the Dysonian SETI, tally extremely well with these developments. So, the apparent simplicity of the classification is highly deceptive: Kardashev's work offers a wealth of still insufficiently studied methodological and epistemological ramifications and it remains, in both letter and spirit, perhaps the worthiest legacy of the SETI "founding fathers".

  9. New Evo-SETI results about civilizations and molecular clock

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    2017-01-01

    In two recent papers (Maccone 2013, 2014) as well as in the book (Maccone 2012), this author described the Evolution of life on Earth over the last 3.5 billion years as a lognormal stochastic process in the increasing number of living Species. In (Maccone 2012, 2013), the process used was `Geometric Brownian Motion' (GBM), largely used in Financial Mathematics (Black-Sholes models). The GBM mean value, also called `the trend', always is an exponential in time and this fact corresponds to the so-called `Malthusian growth' typical of population genetics. In (Maccone 2014), the author made an important generalization of his theory by extending it to lognormal stochastic processes having an arbitrary trend m L (t), rather than just a simple exponential trend as the GBM have. The author named `Evo-SETI' (Evolution and SETI) his theory inasmuch as it may be used not only to describe the full evolution of life on Earth from RNA to modern human societies, but also the possible evolution of life on exoplanets, thus leading to SETI, the current Search for ExtraTerrestrial Intelligence. In the Evo-SETI Theory, the life of a living being (let it be a cell or an animal or a human or a Civilization of humans or even an ET Civilization) is represented by a b-lognormal, i.e. a lognormal probability density function starting at a precise instant b (`birth') then increasing up to a peak-time p, then decreasing to a senility-time s (the descending inflexion point) and then continuing as a straight line down to the death-time d (`finite b-lognormal'). (1) Having so said, the present paper describes the further mathematical advances made by this author in 2014-2015, and is divided in two halves: Part One, devoted to new mathematical results about the History of Civilizations as b-lognormals, and (2) Part Two, about the applications of the Evo-SETI Theory to the Molecular Clock, well known to evolutionary geneticists since 50 years: the idea is that our EvoEntropy grows linearly in time just as the molecular clock. (a) Summarizing the new results contained in this paper: In Part One, we start from the History Formulae already given in (Maccone 2012, 2013) and improve them by showing that it is possible to determine the b-lognormal not only by assigning its birth, senility and death, but rather by assigning birth, peak and death (BPD Theorem: no assigned senility). This is precisely what usually happens in History, when the life of a VIP is summarized by giving birth time, death time, and the date of the peak of activity in between them, from which the senility may then be calculated (approximately only, not exactly). One might even conceive a b-scalene (triangle) probability density just centred on these three points (b, p, d) and we derive the relevant equations. As for the uniform distribution between birth and death only, that is clearly the minimal description of someone's life, we compare it with both the b-lognormal and the b-scalene by comparing the Shannon Entropy of each, which is the measure of how much information each of them conveys. Finally we prove that the Central Limit Theorem (CLT) of Statistics becomes a new `E-Pluribus-Unum' Theorem of the Evo-SETI Theory, giving formulae by which it is possible to find the b-lognormal of the History of a Civilization C if the lives of its Citizens C i are known, even if only in the form of birth and death for the vast majority of the Citizens. (b) In Part Two, we firstly prove the crucial Peak-Locus Theorem for any given trend m L (t) and not just for the GBM exponential. Then we show that the resulting Evo-Entropy grows exactly linearly in time if the trend is the exponential GMB trend. (c) In addition, three Appendixes (online) with all the relevant mathematical proofs are attached to this paper. They are written in the Maxima language, and Maxima is a symbolic manipulator that may be downloaded for free from the web. In conclusion, this paper further increases the huge mathematical spectrum of applications of the Evo-SETI Theory to prepare Humans for the first Contact with an Extra-Terrestrial Civilization.

  10. Human evolution in the age of the intelligent machine

    NASA Technical Reports Server (NTRS)

    Mclaughlin, W. I.

    1983-01-01

    A systems analysis of the future evolution of man can be conducted by analyzing the biological material of the galaxy into three subsystems: man, intelligent machines, and intelligent extraterrestrial organisms. A binomial interpretation is applied to this system wherein each of the subsystems is assigned a designation of success or failure. For man the two alternatives are, respectively, 'decline' or 'flourish', for machine they are 'become intelligent' or 'stay dumb', while for extraterrestrial intelligence the dichotomy is that of 'existence' or 'nonexistence'. The choices for each of three subsystems yield a total of eight possible states for the system. The relative lack of integration between brain components makes man a weak evolutionary contestant compared to machines. It is judged that machines should become dominant on earth within 100 years, probably by means of continuing development of existing man-machine systems. Advanced forms of extraterrestrial intelligence may exist but are too difficult to observe. The prospects for communication with extraterrestrial intelligence are reviewed.

  11. Human evolution in the age of the intelligent machine

    NASA Astrophysics Data System (ADS)

    McLaughlin, W. I.

    A systems analysis of the future evolution of man can be conducted by analyzing the biological material of the galaxy into three subsystems: man, intelligent machines, and intelligent extraterrestrial organisms. A binomial interpretation is applied to this system wherein each of the subsystems is assigned a designation of success or failure. For man the two alternatives are, respectively, 'decline' or 'flourish', for machine they are 'become intelligent' or 'stay dumb', while for extraterrestrial intelligence the dichotomy is that of 'existence' or 'nonexistence'. The choices for each of three subsystems yield a total of eight possible states for the system. The relative lack of integration between brain components makes man a weak evolutionary contestant compared to machines. It is judged that machines should become dominant on earth within 100 years, probably by means of continuing development of existing man-machine systems. Advanced forms of extraterrestrial intelligence may exist but are too difficult to observe. The prospects for communication with extraterrestrial intelligence are reviewed.

  12. Corpus Linguistics and the Design of a Response Message

    NASA Astrophysics Data System (ADS)

    Atwell, E.

    2002-01-01

    Most research related to SETI, the Search for Extra-Terrestrial Intelligence, is focussed on techniques for detection of possible incoming signals from extra-terrestrial intelligent sources (e.g. Turnbull et al. 1999), and algorithms for analysis of these signals to identify intelligent language-like characteristics (e.g. Elliott and Atwell 1999, 2000). However, another issue for research and debate is the nature of our response, should a signal arrive and be detected. The design of potentially the most significant communicative act in history should not be decided solely by astrophysicists; the Corpus Linguistics research community has a contribution to make to what is essentially a Corpus design and implementation project. (Vakoch 1998) advocated that the message constructed to transmit to extraterrestrials should include a broad, representative collection of perspectives rather than a single viewpoint or genre; this should strike a chord with Corpus Linguists for whom a central principle is that a corpus must be "balanced" to be representative (Meyer 2001). One idea favoured by SETI researchers is to transmit an encyclopaedia summarising human knowledge, such as the Encyclopaedia Britannica, to give ET communicators an overview and "training set" key to analysis of subsequent messages. Furthermore, this should be sent in several versions in parallel: the text; page-images, to include illustrations left out of the text-file and perhaps some sort of abstract linguistic representation of the text, using a functional or logic language (Ollongren 1999, Freudenthal 1960). The idea of "enriching" the message corpus with annotations at several levels should also strike a chord with Corpus Linguists who have long known that Natural language exhibits highly complex multi-layering sequencing, structural and functional patterns, as difficult to model as sequences and structures found in more traditional physical and biological sciences. Some corpora have been annotated with several levels or layers of linguistic knowledge, for example the SEC corpus (Taylor and Knowles 1988), the ISLE corpus (Menzel et al. 2000). Tagged and parsed corpus can be used by corpus linguists as a testbed to guide their development of grammars (e.g. Souter and Atwell 1994); and they can be used to train Natural Language Learning or data-mining models of complex sequence data (e.g. Brill 1993, Hughes 1993, Atwell 1996). Corpus linguists have a range of standards and tools for design and annotation of representative corpus resources, and experience of which annotation types are more amenable to Natural Language Learning algorithms. An Advisory panel of corpus linguists could help design and implement an extended Multi-annotated Interstellar Corpus of English, incorporating ideas from Corpus Linguistics such as: - Augment the Encyclopaedia Britannica with a collection of samples representing the diversity of language in real use. - As an additional "key", transmit a dictionary aimed at language learners which has also been a rich source for NLP - Supply our ET communicators with several levels of linguistic annotation, to give them a richer training set for their - Add translations of the English text into other human languages: Humanity should not be represented by English alone, This calls for a large-scale corpus annotation project, requiring an Interstellar Corpus Advisory Panel, analogous to the BNC or MATE advisory panels, to include experts in English grammar and semantics, English language learning, computational Natural language Learning algorithms, and corpus design, implementation, annotation, standardisation, and analysis.

  13. How far are extraterrestrial life and intelligence after Kepler?

    NASA Astrophysics Data System (ADS)

    Wandel, Amri

    2017-08-01

    The Kepler mission has shown that a significant fraction of all stars may have an Earth-size habitable planet. A dramatic support was the recent detection of Proxima Centauri b. Using a Drake-equation like formalism I derive an equation for the abundance of biotic planets as a function of the relatively modest uncertainty in the astronomical data and of the (yet unknown) probability for the evolution of biotic life, Fb. I suggest that Fb may be estimated by future spectral observations of exoplanet biomarkers. It follows that if Fb is not very small, then a biotic planet may be expected within about 10 light years from Earth. Extending this analyses to advanced life, I derive expressions for the distance to putative civilizations in terms of two additional Drake parameters - the probability for evolution of a civilization, Fc, and its average longevity. Assuming "optimistic" values for the Drake parameters, (Fb Fc 1), and a broadcasting duration of a few thousand years, the likely distance to the nearest civilizations detectable by SETI is of the order of a few thousand light years. Finally I calculate the distance and probability of detecting intelligent signals with present and future radio telescopes such as Arecibo and SKA and how it could constrain the Drake parameters.

  14. SETI-ITALIA 2008: On-going searches and future prospects

    NASA Astrophysics Data System (ADS)

    Montebugnoli, S.; Bartolini, M.; Bianchi, G.; Cosmovici, C.; Monari, J.; Orlati, A.; Perini, F.; Pluchino, S.; Pupillo, G.; Salerno, E.; Schillirò, F.; Zoni, L.

    2010-12-01

    The Medicina Radioastronomical Station is located nearby Bologna, in Italy. It consists of two receiving antennas currently dedicated to the astronomical research at radio frequencies. The 32 m diameter parabolic dish performs observations from 1.4 to 22 GHz whereas the Northern Cross (a 30.000 m 2 wide T-shaped array transit antenna) works at 408 MHz. So far SETI observations have been performed using a SERENDIP IV high resolution spectrometer connected to the parabolic antenna. Data acquisition were performed meanwhile the antenna was employed in ordinary astronomical observations (piggy-back mode). An innovative method to search for possible extraterrestrial signals could be provided by using the UHF Northern Cross transit telescope. In this paper observational modalities and the required technological set-up are investigated.

  15. SETI VIA LEAKAGE FROM LIGHT SAILS IN EXOPLANETARY SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillochon, James; Loeb, Abraham, E-mail: jguillochon@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu

    The primary challenge of rocket propulsion is the burden of needing to accelerate the spacecraft’s own fuel, resulting in only a logarithmic gain in maximum speed as propellant is added to the spacecraft. Light sails offer an attractive alternative in which fuel is not carried by the spacecraft, with acceleration being provided by an external source of light. By artificially illuminating the spacecraft with beamed radiation, speeds are only limited by the area of the sail, heat resistance of its material, and power use of the accelerating apparatus. In this paper, we show that leakage from a light sail propulsionmore » apparatus in operation around a solar system analogue would be detectable. To demonstrate this, we model the launch and arrival of a microwave beam-driven light sail constructed for transit between planets in orbit around a single star, and find an optimal beam frequency on the order of tens of GHz. Leakage from these beams yields transients with flux densities of Jy and durations of tens of seconds at 100 pc. Because most travel within a planetary system would be conducted between the habitable worlds within that system, multiply transiting exoplanetary systems offer the greatest chance of detection, especially when the planets are in projected conjunction as viewed from Earth. If interplanetary travel via beam-driven light sails is commonly employed in our galaxy, this activity could be revealed by radio follow-up of nearby transiting exoplanetary systems. The expected signal properties define a new strategy in the search for extraterrestrial intelligence (SETI)« less

  16. Invited Pesek lecture: Exploration rather than speculation-assembling the puzzle of potential life beyond Earth

    NASA Astrophysics Data System (ADS)

    Dominik, Martin

    2012-12-01

    Speculations about the existence of life beyond Earth are probably as old as mankind itself, but still there is no evidence - neither for its presence nor for its absence. Moreover, we neither know the necessary nor the sufficient conditions for life to emerge, sustain or evolve. The Drake equation famously quantifies our ignorance by writing the number of detectable civilizations as product of factors that get increasingly uncertain the further one goes to the right. As a result, the predictive power is poor, and it ultimately depends on the most uncertain factor. However, if we were able to derive a reasonable estimate, we would not need SETI experiments to tell us whether we are alone or not. What has changed substantially over human history is our ability to explore the Universe. Most significantly, radio transmission technology gives us the opportunity to communicate over interstellar distances, and we are now able to not only determine the population statistics of planets within the Milky Way, but even in principle to find biosignatures in their atmospheres. By finding life beyond Earth, we will learn how frequently it emerges. By finding signals from intelligent extra-terrestrial civilizations, we will get unprecedented insight into our biological, technological, and societal evolution. The Drake equation is not such a useful means for assessing the chances of success of SETI, but instead it provides the framework for using observational data in advancing towards understanding the origins of our existence and our role in the cosmos, and maybe to get a glimpse of our future.

  17. Archaeology and direct imaging of exoplanets

    NASA Astrophysics Data System (ADS)

    Campbell, John B.

    The search for extraterrestrial technology effectively began 45 years ago with Frank Drake's Project Ozma and a radioastronomy start to the search for extraterrestrial intelligence (SETI). Eventually searches began for possible interstellar probes in stable orbits in the Solar System, as well as for infrared excesses from possible Dyson spheres round Sun-like stars. Whilst the Cold War was still underway, some scientists looked for evidence of nuclear waste dumps and nuclear wars elsewhere in the Milky Way. None of this work was carried out by archaeologists, even though by their very nature archaeologists are experts in the detection of ancient technologies. The technologies being searched for would have been partly ancient in age though advanced in techniques and science. The development of ESA's Darwin and NASA's TPF for detection and imaging of Earth-like exoplanets in our galactic neighbourhood represents an opportunity for the testing of techniques for detecting signatures of technological activities. Ideally, both Darwin and TPF might be able to provide spectroscopic data on the chemistry and biochemistry of the atmospheres of Earth-like exoplanets, and thus to detect some of the signs of life. If this can be accomplished successfully, then in theory evidence for pollution and nuclear accidents and wars should be detectable. Some infrared signatures of ETT on or round exoplanets might be detectable. Direct visual imaging of ETT structures will probably not be feasible till we have extremely powerful interstellar telescopes or actually send orbital craft.

  18. The search for extraterrestrial intelligence: Telecommunications technology

    NASA Technical Reports Server (NTRS)

    Edelson, R. E.; Levy, G. S.

    1980-01-01

    Efforts to discover evidence of intelligent extraterrestrial life have become not only feasible, but respectable. Fledgling observational projects have begun that will use state-of-the-art hardware to develop sophisticated receiving and data processing systems. The rationale behind the Search for Extraterrestrial Intelligence, the manner in which the program is taking shape, and the implications for telecommunications are described. It is concluded that the breadth of technological development required for the detection of signals from galactic brethren has particular relevance for the future of telecommunications in Earth oriented uses.

  19. Anthropomorphism in the search for extra-terrestrial intelligence - The limits of cognition?

    NASA Astrophysics Data System (ADS)

    Bohlmann, Ulrike M.; Bürger, Moritz J. F.

    2018-02-01

    The question "Are we alone?" lingers in the human mind since ancient times. Early human civilisations populated the heavens above with a multitude of Gods endowed with some all too human characteristics - from their outer appearance to their innermost motivations. En passant they created thereby their own cultural founding myths on which they built their understanding of the world and its phenomena and deduced as well rules for the functioning of their own society. Advancing technology has enabled us to conduct this human quest for knowledge with more scientific means: optical and radio-wavelengths are being monitored for messages by an extra-terrestrial intelligence and active messaging attempts have also been undertaken. Scenarios have been developed for a possible detection of extra-terrestrial intelligence and post-detection guidelines and protocols have been elaborated. The human responses to the whole array of questions concerning the potential existence, discovery of and communication/interaction with an extra-terrestrial intelligence share as one clear thread a profound anthropomorphism, which ascribes classical human behavioural patterns also to an extra-terrestrial intelligence in much the same way as our ancestors attributed comparable conducts to mythological figures. This paper aims at pinpointing this thread in a number of classical reactions to basic questions related to the search for extra-terrestrial intelligence. Many of these reactions are based on human motives such as curiosity and fear, rationalised by experience and historical analogy and modelled in the Science Fiction Culture by literature and movies. Scrutinising the classical hypothetical explanations of the Fermi paradox under the angle of a potentially undue anthropomorphism, this paper intends to assist in understanding our human epistemological limitations in the search for extra-terrestrial intelligence. This attempt is structured into a series of questions: I. Can we be alone? II. Who are we looking for? III. Or what are we looking for? IV. Where is everybody? V. What if we make contact and VI. So, what now?

  20. Stanford Hardware Development Program

    NASA Technical Reports Server (NTRS)

    Peterson, A.; Linscott, I.; Burr, J.

    1986-01-01

    Architectures for high performance, digital signal processing, particularly for high resolution, wide band spectrum analysis were developed. These developments are intended to provide instrumentation for NASA's Search for Extraterrestrial Intelligence (SETI) program. The real time signal processing is both formal and experimental. The efficient organization and optimal scheduling of signal processing algorithms were investigated. The work is complemented by efforts in processor architecture design and implementation. A high resolution, multichannel spectrometer that incorporates special purpose microcoded signal processors is being tested. A general purpose signal processor for the data from the multichannel spectrometer was designed to function as the processing element in a highly concurrent machine. The processor performance required for the spectrometer is in the range of 1000 to 10,000 million instructions per second (MIPS). Multiple node processor configurations, where each node performs at 100 MIPS, are sought. The nodes are microprogrammable and are interconnected through a network with high bandwidth for neighboring nodes, and medium bandwidth for nodes at larger distance. The implementation of both the current mutlichannel spectrometer and the signal processor as Very Large Scale Integration CMOS chip sets was commenced.

  1. Philosophical issues in the search for extraterrestrial life and intelligence

    NASA Astrophysics Data System (ADS)

    Schneider, Jean

    2013-07-01

    In the search for extraterrestrial life and intelligence, it is essential to clarify what is to be meant by `life' and `intelligence'. I first analyse what it means to `define' these words. I will show that some philosophical prejudice is unavoidable. As a working hypothesis, I consider two types of philosophy: `natural philosophy', seeking for some essence of things, and `critical (or analytical) philosophy', devoted to the analysis of the procedures by which we claim to construct a reality. An extension of critical philosophy, epistemo-analysis (i.e. the psycho-analysis of concepts) is presented and applied to the definition of exolife and to extraterrestrial `intelligence'. Some pragmatic conclusions are finally drawn for future search strategies.

  2. Enhancing a Person, Enhancing a Civilization: A Research Program at the Intersection of Bioethics, Future Studies, and Astrobiology.

    PubMed

    Ćirković, Milan M

    2017-07-01

    There are manifold intriguing issues located within largely unexplored borderlands of bioethics, future studies (including global risk analysis), and astrobiology. Human enhancement has for quite some time been among the foci of bioethical debates, but the same cannot be said about its global, transgenerational, and even cosmological consequences. In recent years, discussions of posthuman and, in general terms, postbiological civilization(s) have slowly gained a measure of academic respect, in parallel with the renewed interest in the entire field of future studies and the great strides made in understanding of the origin and evolution of life and intelligence in their widest, cosmic context. These developments promise much deeper synergic answers to questions regarding the long-term future of enhancement: how far can it go? Is human enhancement a further step toward building a true postbiological civilization? Should we actively participate and help shape this process? Is the future of humanity "typical" in the same Copernican sense as our location in space and time is typical in the galaxy, and if so, can we derive important insights about the evolutionary pathways of postbiological evolution from astrobiological and Search for ExtraTerrestrial Intelligence (SETI) studies? These and similar questions could be understood as parts of a possible unifying research program attempting to connect cultural and moral evolution with what we know and understand about their cosmological and biological counterparts.

  3. Unconscious intelligence in the universe

    NASA Astrophysics Data System (ADS)

    Raup, David M.

    1987-10-01

    It is argued that animals on other planets may have evolved, by natural selection, the ability to communicate by radio waves. Radio communication in such non-intelligent organisms would persist much longer than radio communication developed by intelligent beings, which would be ephemeral due to cultural changes. The search for SETI should take the possibility of such radio communication into account.

  4. Nonconscious intelligence in the universe.

    PubMed

    Raup, D M

    1992-01-01

    Animals lacking humanoid intelligence have evolved systems indistinguishable in function, if not in structure, from systems built by humans. Although radio communication has never been verified in animals, it is completely feasible biologically. If such systems are present in non-intelligent organisms on other planets, then our chances of detecting life in the universe by current SETI methods are greatly enhanced.

  5. Nonconscious intelligence in the universe

    NASA Technical Reports Server (NTRS)

    Raup, D. M.

    1992-01-01

    Animals lacking humanoid intelligence have evolved systems indistinguishable in function, if not in structure, from systems built by humans. Although radio communication has never been verified in animals, it is completely feasible biologically. If such systems are present in non-intelligent organisms on other planets, then our chances of detecting life in the universe by current SETI methods are greatly enhanced.

  6. Power Beaming Leakage Radiation as A SETI Observable

    NASA Technical Reports Server (NTRS)

    Benford, James N.; Benford, Dominic J.

    2016-01-01

    The most observable leakage radiation from an advanced civilization may well be from the use of power beam-ing to transfer energy and accelerate spacecraft. Applications suggested for power beaming involve launching spacecraft to orbit, raising satellites to a higher orbit, and interplanetary concepts involving space-to-space transfers of cargo or passengers. We also quantify beam-driven launch to the outer solar system, interstellar precursors and ultimately starships. We estimate the principal observable parameters of power beaming leak-age. Extraterrestrial civilizations would know their power beams could be observed, and so could put a message on the power beam and broadcast it for our receipt at little additional energy or cost. By observing leakage from power beams we may find a message embedded on the beam. Recent observations of the anomalous star KIC8462852 by the Allen Telescope Array (ATA) set some limits on extraterrestrial power beaming in that system.We show that most power beaming applications commensurate with those suggested for our solar system would be detectable if using the frequency range monitored by the ATA, and so the lack of detection is a meaningful,if modest, constraint on extraterrestrial power beaming in that system. Until more extensive observations are made, the limited observation time and frequency coverage are not sufficiently broad in frequency and duration to produce firm conclusions. Such beams would be visible over large interstellar distances. This implies a new approach to the SETI search: Instead of focusing on narrowband beacon transmissions generated by another civilization, look for more powerful beams with much wider bandwidth. This requires a new approach for their discovery by telescopes on Earth. Further studies of power beaming applications should be done, which could broaden the parameter space of observable features we have discussed here.

  7. Power Beaming Leakage Radiation as a SETI Observable

    NASA Astrophysics Data System (ADS)

    Benford, James N.; Benford, Dominic J.

    2016-07-01

    The most observable leakage radiation from an advanced civilization may well be from the use of power beaming to transfer energy and accelerate spacecraft. Applications suggested for power beaming involve launching spacecraft to orbit, raising satellites to a higher orbit, and interplanetary concepts involving space-to-space transfers of cargo or passengers. We also quantify beam-driven launch to the outer solar system, interstellar precursors, and ultimately starships. We estimate the principal observable parameters of power beaming leakage. Extraterrestrial civilizations would know their power beams could be observed, and so could put a message on the power beam and broadcast it for our receipt at little additional energy or cost. By observing leakage from power beams we may find a message embedded on the beam. Recent observations of the anomalous star KIC 8462852 by the Allen Telescope Array (ATA) set some limits on extraterrestrial power beaming in that system. We show that most power beaming applications commensurate with those suggested for our solar system would be detectable if using the frequency range monitored by the ATA, and so the lack of detection is a meaningful, if modest, constraint on extraterrestrial power beaming in that system. Until more extensive observations are made, the limited observation time and frequency coverage are not sufficiently broad in frequency and duration to produce firm conclusions. Such beams would be visible over large interstellar distances. This implies a new approach to the SETI search: instead of focusing on narrowband beacon transmissions generated by another civilization, look for more powerful beams with much wider bandwidth. This requires a new approach for their discovery by telescopes on Earth. Further studies of power beaming applications should be performed, potentially broadening the parameter space of the observable features that we have discussed here.

  8. Synthesis and Development of Porous Polymeric Column Packing and Microchip Detectors for GC Analysis of Extraterrestrial Atmospheres

    NASA Technical Reports Server (NTRS)

    Shen, Thomas C.

    1999-01-01

    This report summarizes the last nine years research accomplishments under Cooperative Agreement NCC2-650 between NASA, Ames Research Center and SETI Institute. Four Major research tasks are conducted: 1. Gas chromatography column development. 2. Pyrosensor development. 3. Micro-machining gas chromatography instrument development. 4. Amino acid analysis and high molecular weight polyamino acid synthesis under prebiotic conditions. The following describes these results.

  9. Solar sailing for radio astronomy and seti: An extrasolar mission to 550 AU

    NASA Astrophysics Data System (ADS)

    Matloff, Gregory L.

    1994-11-01

    Current or near-term technology is capable of propelling small payloads to 550 Astronomical Units (AU) on flights of decades duration. Beyond 550 AU, natural or artificial electromagnetic (EM) radiation emitted by galactic objects occulted by the Sun is greatly amplified by solar gravitational focusing. Propulsion systems capable of launching such an extrasolar probe include Jupiter gravity-assist, flat or inflatable solar sails unfurled from parabolic solar orbits sunward of the Earth, and the proton-reflecting 'Magsail'. Best performance for a near-future probe is obtained using the solar sail; a superconducting Magsail has great potential for course-correction purposes. A properly configured solar sail can also serve as a radio telescope and as a solar-energy collector to power the probe's instrumentation. The best direction for the probe's trajectory is towards the galactic anti-center. This is because of the astrophysical interest in amplified EM radiation from the galactic center and the large number of Sunlike stars in the galactic arm. Many of these stars could be surveyed for artificial radio emissions using the proposed probe by astronomers engaged in SETI (Search for ExtraTerrestrial Intelligence). By chance, the anti-galactic-center is not too far from the positions on the celestial sphere of the nearby Sunlike stars Tau Ceti and Epsilon Eridani. This random celestial arrangement increases the potential interest of the proposed mission. While focused on or near the galactic center, the probe could also examine a number of objects of astrophysical interest. These include supernova remnants, HI and HIII regions, and neutron stars or black holes near the galctic center. A number of alternative directions for probes of this type exists. Missions could be flown to sample amplified radio emissions from globular clusters such as M13 and M22 and extra-galactic objects such as the Magellanic Clouds and the Great Spiral Galaxy (M31) in Andromeda. For a number of reasons, the galactic center is superior to these objects, at least for the first flights of the SETI-sail.

  10. SETI meets a social intelligence: Dolphins as a model for real-time interaction and communication with a sentient species

    NASA Astrophysics Data System (ADS)

    Herzing, Denise L.

    2010-12-01

    In the past SETI has focused on the reception and deciphering of radio signals from potential remote civilizations. It is conceivable that real-time contact and interaction with a social intelligence may occur in the future. A serious look at the development of relationship, and deciphering of communication signals within and between a non-terrestrial, non-primate sentient species is relevant. Since 1985 a resident community of free-ranging Atlantic spotted dolphins has been observed regularly in the Bahamas. Life history, relationships, regular interspecific interactions with bottlenose dolphins, and multi-modal underwater communication signals have been documented. Dolphins display social communication signals modified for water, their body types, and sensory systems. Like anthropologists, human researchers engage in benign observation in the water and interact with these dolphins to develop rapport and trust. Many individual dolphins have been known for over 20 years. Learning the culturally appropriate etiquette has been important in the relationship with this alien society. To engage humans in interaction the dolphins often initiate spontaneous displays, mimicry, imitation, and synchrony. These elements may be emergent/universal features of one intelligent species contacting another for the intention of initiating interaction. This should be a consideration for real-time contact and interaction for future SETI work.

  11. Christian Soteriology and Extraterrestrial Intelligence

    NASA Astrophysics Data System (ADS)

    Weidemann, C.

    The paper presents an argument for the incompatibility of classical Christian soteriology (doctrine of salvation) with belief in numerous extraterrestrial intelligent life forms (ETI). Four popular answers to the problem are discussed and rejected: a) unlike humanity, extraterrestrial intelligent species are not in need of salvation; b) Jesus of Nazareth has reconciled the entire cosmos to God; c) God or the second person of the Trinity has incarnated (or will incarnate) himself multiple times; d) alien sinners have been or are going to be saved by means different from a divine incarnation. The final section deals with remaining options for rational Christian believers and speculates briefly about consequences for interstellar space flight.

  12. Extraterrestrial intelligence? Not likely.

    PubMed

    DeVore, I

    2001-12-01

    The possibility that there exist extraterrestrial creatures with advanced intelligence is considered by examining major events in mammalian, primate, and human evolution on earth. The overwhelming evidence is that the evolution of intelligence in creatures elsewhere who have the capability to communicate with us is vanishingly small. The history of the evolution of advanced forms of life on this planet is so beset by adventitious, unpredictable events and multiple contingencies that the evolution of human-level intelligence is highly unlikely on any planet, including earth.

  13. A directed search for extraterrestrial laser signals

    NASA Technical Reports Server (NTRS)

    Betz, A.

    1991-01-01

    The focus of NASA's Search for Extraterrestrial Intelligence (SETI) Program is on microwave frequencies, where receivers have the best sensitivities for the detection of narrowband signals. Such receivers, when coupled to existing radio telescopes, form an optimal system for broad area searches over the sky. For a directed search, however, such as toward specific stars, calculations show that infrared wavelengths can be equally as effective as radio wavelengths for establishing an interstellar communication link. This is true because infrared telescopes have higher directivities (gains) that effectively compensate for the lower sensitivities of infrared receivers. The result is that, for a given level of transmitted power, the signal to noise ratio for communications is equally as good at infrared and radio wavelengths. It should also be noted that the overall sensitivities of both receiver systems are quite close to their respective fundamental limits: background thermal noise for the radio frequency system and quantum noise for the infrared receiver. Consequently, the choice of an optimum communication frequency may well be determined more by the achievable power levels of transmitters rather than the ultimate sensitivities of receivers at any specific frequency. In the infrared, CO2 laser transmitters with power levels greater than 1 MW can already be built on Earth. For a slightly more advanced civilization, a similar but enormously more powerful laser may be possible using a planetary atmosphere rich in CO2. Because of these possibilities and our own ignorance of what is really the optimum search frequency, a search for narrowband signals at infrared frequencies should be a part of a balanced SETI Program. Detection of narrowband infrared signals is best done with a heterodyne receiver functionally identical to a microwave spectral line receiver. We have built such a receiver for the detection of CO2 laser radiation at wavelengths near 10 microns. The spectrometer uses a high-speed HgCdTe diode as the photomixer and a small CO2 laser as the local oscillator. Output signals in the intermediate frequency range 0.1-2.6 GHz are processed by a 1000-channel acousto-optic signal processor. The receiver is being used on a 1.5-m telescope on Mt. Wilson to survey a selected sample of 150 nearby stars. The current status of the work is discussed along with future project plans.

  14. Can the periodic spectral modulations observed in 236 Sloan Sky Survey stars be due to dark matter effects?

    NASA Astrophysics Data System (ADS)

    Tamburini, Fabrizio; Licata, Ignazio

    2017-09-01

    The search for dark matter (DM) is one of the most active and challenging areas of current research. Possible DM candidates are ultralight fields such as axions and weak interacting massive particles (WIMPs). Axions piled up in the center of stars are supposed to generate matter/DM configurations with oscillating geometries at a very rapid frequency, which is a multiple of the axion mass m B (Brito et al (2015); Brito et al (2016)). Borra and Trottier (2016) recently found peculiar ultrafast periodic spectral modulations in 236 main sequence stars in the sample of 2.5 million spectra of galactic halo stars of the Sloan Digital Sky Survey (˜1% of main sequence stars in the F-K spectral range) that were interpreted as optical signals from extraterrestrial civilizations, suggesting them as possible candidates for the search for extraterrestrial intelligence (SETI) program. We argue, instead, that this could be the first indirect evidence of bosonic axion-like DM fields inside main sequence stars, with a stable radiative nucleus, where a stable DM core can be hosted. These oscillations were not observed in earlier stellar spectral classes probably because of the impossibility of starting a stable oscillatory regime due to the presence of chaotic motions in their convective nuclei. The axion mass values, (50< {m}B< 2.4× {10}3) μ {eV}, obtained from the frequency range observed by Borra and Trottier, (0.6070< f< 0.6077) THz, agree with the recent theoretical results from high-temperature lattice quantum chromodynamics (Borsanyi et al (2016); Borsanyi et al (2016b)).

  15. Introduction to the METI Issues

    NASA Astrophysics Data System (ADS)

    Benford, J.

    Understanding the controversy over "Messages to Extra Terrestrial Intelligence" or METI requires a grounding in the history and rationale of SETI (Search for ETI). Insights since the turn of the century have changed SETI's scientific basis. Continued null results from the radio search do not invalidate continuing effort, but they do raise questions about long-held assumptions. Modified search strategies are discussed. The Great Silence or Fermi Paradox is appraised, along with the disruptive plausibility of interstellar travel. Psychological motivations for METI are considered. With this underpinning, we consider why a small cadre of SETI-ist radio astronomers have resisted the notion of international consultations before humanity takes a brash and irreversible step into METI, shouting our presence into the cosmos.

  16. Information theory, animal communication, and the search for extraterrestrial intelligence

    NASA Astrophysics Data System (ADS)

    Doyle, Laurance R.; McCowan, Brenda; Johnston, Simon; Hanser, Sean F.

    2011-02-01

    We present ongoing research in the application of information theory to animal communication systems with the goal of developing additional detectors and estimators for possible extraterrestrial intelligent signals. Regardless of the species, for intelligence (i.e., complex knowledge) to be transmitted certain rules of information theory must still be obeyed. We demonstrate some preliminary results of applying information theory to socially complex marine mammal species (bottlenose dolphins and humpback whales) as well as arboreal squirrel monkeys, because they almost exclusively rely on vocal signals for their communications, producing signals which can be readily characterized by signal analysis. Metrics such as Zipf's Law and higher-order information-entropic structure are emerging as indicators of the communicative complexity characteristic of an "intelligent message" content within these animals' signals, perhaps not surprising given these species' social complexity. In addition to human languages, for comparison we also apply these metrics to pulsar signals—perhaps (arguably) the most "organized" of stellar systems—as an example of astrophysical systems that would have to be distinguished from an extraterrestrial intelligence message by such information theoretic filters. We also look at a message transmitted from Earth (Arecibo Observatory) that contains a lot of meaning but little information in the mathematical sense we define it here. We conclude that the study of non-human communication systems on our own planet can make a valuable contribution to the detection of extraterrestrial intelligence by providing quantitative general measures of communicative complexity. Studying the complex communication systems of other intelligent species on our own planet may also be one of the best ways to deprovincialize our thinking about extraterrestrial communication systems in general.

  17. Toward a new cosmic consciousness: Psychoeducational aspects of contact with extraterrestrial civilizations

    NASA Astrophysics Data System (ADS)

    De la Torre, Gabriel G.

    2014-02-01

    This study presents a new approach to the concept of cosmic consciousness integrated in current neuroscience knowledge and discusses implications for the search for extraterrestrial intelligence. It also examines different aspects related to consciousness and how it may play a key role in the understanding of the search for extraterrestrial intelligence and life in the Universe and its implications. Subjects (n=116) were college students from Spain, the United States, and Italy. Subjects responded to a questionnaire comprising five different sections: (A) religious beliefs, (B) environment and general opinion, (C) astronomy, (D) contact, and (E) attention and perception. The results showed the importance of several modular aspects that affect Space awareness in humans. Preliminary results are discussed with regard to current neuroscience, factor analysis, and possible implications for the understanding of contact with extraterrestrial intelligence. The roles of education, new search strategies, and possible contact scenarios are also discussed.

  18. New SETI prospects opened up by current information networking

    NASA Astrophysics Data System (ADS)

    Piotelat, Elisabeth; Cerceau, Florence Raulin

    2013-07-01

    This paper discusses ideas that impact the f c factor as defined by Frank Drake in 1961, i.e. the fraction of planets with intelligent creatures capable of interstellar communication. This factor remains one of the most speculative terms of the equation. We suggest that the ability of sharing information is an important parameter to take into account in evaluating the tendency of a civilization to make contact (or share data) with other civilizations. Thus, we give special consideration to the fraction of planets with intelligent creatures capable of producing and sharing large amount of data. First, we determine the level of our own civilization in the framework of Sagan's energy- and information-based classification, by taking into account the recent improvements in computing and networking technologies. Second, we distinguish two types of organization, hierarchical and heterarchical, with respect to information sharing. We illustrate this distinction in the case of SETI and we show that the probability to detect a civilization would be greater if it is heterarchical than if it is hierarchical and if we utilize heterarchical principles for SETI.

  19. Millions and Billions of Channels

    NASA Astrophysics Data System (ADS)

    Leigh, Darren; Horowitz, Paul

    The history of the Harvard SETI group is inextricably linked with the history of Paul Horowitz. Horowitz became enamored with SETI as a student at Harvard, reading Ed Purcell's paper "Radio Astronomy and Communication Through Space" (Purcell, 1960), discussing with his roommates a class that Carl Sagan was teaching there using a draft of Shklovskii and Sagan's "Intelligent Life in the Universe" (Shklovskii and Sagan, 1966) as a text, and finally attending a Loeb Lecture series at Harvard by Frank Drake (Drake, 1969). The series was officially about pulsars but Drake did manage to slip in one inspiring talk about SETI. Horowitz says that "It was this lecture that launched me into this field; it was a revelation that you could go beyond idle speculation - you could actually calculate stuff."

  20. Recent progress and future plans on the search for extraterrestrial intelligence

    NASA Technical Reports Server (NTRS)

    Papagiannis, M. D.

    1985-01-01

    The history and present status of the search for extraterrestrial intelligence (ETI) are surveyed. Individual search projects and NASA searches for ETI in the radio band are discussed, giving the targets and wavebands used in the investigations. The arguments about the existence of ETI and the usefulness of looking for it are reviewed.

  1. Beyond the Drake Equation: On the Probability of the Nature of Extraterrestrial Life Forms in Our Galaxy Today

    NASA Astrophysics Data System (ADS)

    Geller, Harold A.

    2014-01-01

    I will discuss my research into the issues associated with the nature of any extraterrestrials that may be encountered in the future in our galaxy. This research was sparked by statements made by Stephen Hawking in 2010 regarding his fear of emitting radiation from our Earth so that an extraterrestrial intelligent civilization may be alerted to our existence in the galaxy today. While addressing issues of extraterrestrial altruism, a probabilistic equation was developed which addresses the number of extraterrestrial intelligent life forms that may exist in our galaxy today, who could use our bodies for nourishment or reproductive purposes. The equation begins with the results from a Drake Equation calculation, and proceeds by addressing such biochemical parameters as the fraction of ETIs with: dextro sugar stereo-isomers; levo amino acid stereo-isomers; similar codon interpretation; chromosomal length and, similar cell membrane structure to allow egg penetration.

  2. Supra-Earth affairs.

    PubMed

    Othman, Mazlan

    2011-02-13

    The United Nations briefly considered the issue of extra-terrestrial intelligence at the 32nd session of the General Assembly in 1977. As a result, the Office of Outer Space Affairs was tasked to prepare a document on issues related to 'messages to extra-terrestrial civilizations', but this area has not been followed through in more recent times. This discussion paper describes the United Nations' activities in the field of near-Earth objects in some detail, and suggests that this might be used as a model of how Member States could proceed with dealing with this issue in case the existence of extra-terrestrial life/intelligence is established.

  3. Starry Messages - Searching for Signatures of Interstellar Archaeology

    NASA Astrophysics Data System (ADS)

    Carrigan, R. A., Jr.

    Searching for signatures of cosmic-scale archaeological artefacts such as Dyson spheres or Kardashev civilizations is an interesting alternative to conventional SETI. Uncovering such an artifact does not require the intentional transmission of a signal on the part of the originating civilization. This type of search is called interstellar archaeology or sometimes cosmic archaeology . The detection of intelligence elsewhere in the Universe with interstellar archaeology or SETI would have broad implications for science. For example, the constraints of the anthropic principle would have to be loosened if a different type of intelligence was discovered elsewhere. A variety of interstellar archaeology signatures are discussed including non-natural planetary atmospheric constituents, stellar doping with isotopes of nuclear wastes, Dyson spheres, as well as signatures of stellar and galactic-scale engineering. The concept of a Fermi bubble due to interstellar migration is introduced in the discussion of galactic signatures. These potential interstellar archaeological signatures are classified using the Kardashev scale. A modified Drake equation is used to evaluate the relative challenges of finding various sources. With few exceptions interstellar archaeological signatures are clouded and beyond current technological capabilities. However SETI for so-called cultural transmissions and planetary atmosphere signatures are within reach.

  4. Starry messages: Searching for signatures of interstellar archaeology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrigan, Richard A., Jr.; /Fermilab

    2009-12-01

    Searching for signatures of cosmic-scale archaeological artifacts such as Dyson spheres or Kardashev civilizations is an interesting alternative to conventional SETI. Uncovering such an artifact does not require the intentional transmission of a signal on the part of the original civilization. This type of search is called interstellar archaeology or sometimes cosmic archaeology. The detection of intelligence elsewhere in the Universe with interstellar archaeology or SETI would have broad implications for science. For example, the constraints of the anthropic principle would have to be loosened if a different type of intelligence was discovered elsewhere. A variety of interstellar archaeology signaturesmore » are discussed including non-natural planetary atmospheric constituents, stellar doping with isotopes of nuclear wastes, Dyson spheres, as well as signatures of stellar and galactic-scale engineering. The concept of a Fermi bubble due to interstellar migration is introduced in the discussion of galactic signatures. These potential interstellar archaeological signatures are classified using the Kardashev scale. A modified Drake equation is used to evaluate the relative challenges of finding various sources. With few exceptions interstellar archaeological signatures are clouded and beyond current technological capabilities. However SETI for so-called cultural transmissions and planetary atmosphere signatures are within reach.« less

  5. Searching for Cost-Optimized Interstellar Beacons

    NASA Astrophysics Data System (ADS)

    Benford, Gregory; Benford, James; Benford, Dominic

    2010-06-01

    What would SETI beacon transmitters be like if built by civilizations that had a variety of motives but cared about cost? In a companion paper, we presented how, for fixed power density in the far field, a cost-optimum interstellar beacon system could be built. Here, we consider how we should search for a beacon if it were produced by a civilization similar to ours. High-power transmitters could be built for a wide variety of motives other than the need for two-way communication; this would include beacons built to be seen over thousands of light-years. Extraterrestrial beacon builders would likely have to contend with economic pressures just as their terrestrial counterparts do. Cost, spectral lines near 1 GHz, and interstellar scintillation favor radiating frequencies substantially above the classic "water hole." Therefore, the transmission strategy for a distant, cost-conscious beacon would be a rapid scan of the galactic plane with the intent to cover the angular space. Such pulses would be infrequent events for the receiver. Such beacons built by distant, advanced, wealthy societies would have very different characteristics from what SETI researchers seek. Future searches should pay special attention to areas along the galactic disk where SETI searches have seen coherent signals that have not recurred on the limited listening time intervals we have used. We will need to wait for recurring events that may arriarrive in intermittent bursts. Several new SETI search strategies have emerged from these ideas. We propose a new test for beacons that is based on the Life Plane hypotheses.

  6. Searching for Cost-Optimized Interstellar Beacons

    NASA Technical Reports Server (NTRS)

    Benford, Gregory; Benford, James; Benford, Dominic

    2010-01-01

    What would SETI beacon transmitters be like if built by civilizations that had a variety of motives but cared about cost? In a companion paper, we presented how, for fixed power density in the far field, a cost-optimum interstellar beacon system could be built. Here, we consider how we should search for a beacon if it were produced by a civilization similar to ours. High-power transmitters could be built for a wide variety of motives other than the need for two-way communication, this would include beacons built to be seen over thousands of light-years. Extraterrestrial beacon builders would likely have to contend with economic pressures just as their terrestrial counterparts do. Cost, spectral lines near 1GHz, and interstellar scintillation favor radiating frequencies substantially above the classic "water hole." Therefore, the transmission strategy for a distant, cost-conscious beacon would be a rapid scan of the galactic plane with the intent to cover the angular space. Such pulses would be infrequent events for the receiver. Such beacons built by distant, advanced, wealthy societies would have very different characteristics from what SETI researchers seek. Future searches should pay special attention to areas along the galactic disk where SETI searches have seen coherent signals that have not recurred on the limited listening time intervals we have used. We will need to wait for recurring events that may arrive in intermittent bursts. Several new SETI search strategies have emerged from these ideas. We propose a new test for beacons that is based on the Life Plane hypotheses.

  7. Searching for cost-optimized interstellar beacons.

    PubMed

    Benford, Gregory; Benford, James; Benford, Dominic

    2010-06-01

    What would SETI beacon transmitters be like if built by civilizations that had a variety of motives but cared about cost? In a companion paper, we presented how, for fixed power density in the far field, a cost-optimum interstellar beacon system could be built. Here, we consider how we should search for a beacon if it were produced by a civilization similar to ours. High-power transmitters could be built for a wide variety of motives other than the need for two-way communication; this would include beacons built to be seen over thousands of light-years. Extraterrestrial beacon builders would likely have to contend with economic pressures just as their terrestrial counterparts do. Cost, spectral lines near 1 GHz, and interstellar scintillation favor radiating frequencies substantially above the classic "water hole." Therefore, the transmission strategy for a distant, cost-conscious beacon would be a rapid scan of the galactic plane with the intent to cover the angular space. Such pulses would be infrequent events for the receiver. Such beacons built by distant, advanced, wealthy societies would have very different characteristics from what SETI researchers seek. Future searches should pay special attention to areas along the galactic disk where SETI searches have seen coherent signals that have not recurred on the limited listening time intervals we have used. We will need to wait for recurring events that may arrive in intermittent bursts. Several new SETI search strategies have emerged from these ideas. We propose a new test for beacons that is based on the Life Plane hypotheses.

  8. Asteroids and Aliens

    NASA Technical Reports Server (NTRS)

    Ostro, S.

    1999-01-01

    Discussion of extraterrestrial life (ETL) and extraterrestrial intelligent life (ETI) is extraordinarily complex and mulitidisciplinary, in part because relevant questions involve both the origin/evolution of terrestrial life and the future of human civilization.

  9. Artificial Exo-Society Modeling: a New Tool for SETI Research

    NASA Astrophysics Data System (ADS)

    Gardner, James N.

    2002-01-01

    One of the newest fields of complexity research is artificial society modeling. Methodologically related to artificial life research, artificial society modeling utilizes agent-based computer simulation tools like SWARM and SUGARSCAPE developed by the Santa Fe Institute, Los Alamos National Laboratory and the Bookings Institution in an effort to introduce an unprecedented degree of rigor and quantitative sophistication into social science research. The broad aim of artificial society modeling is to begin the development of a more unified social science that embeds cultural evolutionary processes in a computational environment that simulates demographics, the transmission of culture, conflict, economics, disease, the emergence of groups and coadaptation with an environment in a bottom-up fashion. When an artificial society computer model is run, artificial societal patterns emerge from the interaction of autonomous software agents (the "inhabitants" of the artificial society). Artificial society modeling invites the interpretation of society as a distributed computational system and the interpretation of social dynamics as a specialized category of computation. Artificial society modeling techniques offer the potential of computational simulation of hypothetical alien societies in much the same way that artificial life modeling techniques offer the potential to model hypothetical exobiological phenomena. NASA recently announced its intention to begin exploring the possibility of including artificial life research within the broad portfolio of scientific fields comprised by the interdisciplinary astrobiology research endeavor. It may be appropriate for SETI researchers to likewise commence an exploration of the possible inclusion of artificial exo-society modeling within the SETI research endeavor. Artificial exo-society modeling might be particularly useful in a post-detection environment by (1) coherently organizing the set of data points derived from a detected ETI signal, (2) mapping trends in the data points over time (assuming receipt of an extended ETI signal), and (3) projecting such trends forward to derive alternative cultural evolutionary scenarios for the exo-society under analysis. The latter exercise might be particularly useful to compensate for the inevitable time lag between generation of an ETI signal and receipt of an ETI signal on Earth. For this reason, such an exercise might be a helpful adjunct to the decisional process contemplated by Paragraph 9 of the Declaration of Principles Concerning Activities Following the Detection of Extraterrestrial Intelligence.

  10. Educating My Replacement

    NASA Astrophysics Data System (ADS)

    Tarter, Jill

    The search for extraterrestrial intelligence (SETI) could succeed tomorrow, decades from now, or never. The nature of this scientific exploration is such that we cannot predict success on any timescale; we only know that if we do not search, we cannot succeed. Having spent my scientific career in this field, I know perhaps better than anyone that the researchers of tomorrow may hold the key. Thus I have an enormous and vested interest in trying to educate the next generation of scientists. Because SETI excites such enthusiasm in young and old alike, I have an excellent opportunity to capture hearts and minds and leverage this interest into science education at many levels. Astrobiology is the new banner for inter- and cross-disciplinary investigations aimed at answering the big question "Are we alone?" The story of cosmic evolution is one that scientists at the SETI Institute have been telling for decades. We have used it as the framework for developing supplementary materials for elementary and middle schools called Life In The Universe. Currently we are tackling a year-long curriculum called Voyages Through Time for ninth grade students. This curriculum is delivered on CD-ROM and supported by the web. It focuses on evolution as a theme and stresses the contributions made from all the traditionally isolated branches of science --- and by the way, it's fun! I am a product of the post-Sputnik era and the American emphasis on science and engineering education. In the New York City bedroom community where I grew up, every school bond issue passed at every election. So I am appalled at the difficulties, the impecuniousness, and bureaucratic nonsense our pilot and field test teachers encounter on a daily basis. I am also overjoyed that even under such unreasonable conditions, I meet enthusiastic teachers who care about their students and are dedicated to helping them achieve the best possible education. Not all students will become scientists, nor should they. However, in partnership with the dedicated teachers out there, I think I can help promote the critical thinking skills and scientific literacy of the next generation of voters. Hopefully, I can also help train my replacement to be a better scientist, capable of seizing all the opportunities generated by advances in technology and our improved understanding of the universe to craft search strategies with greater probability of success than those I have initiated.

  11. An infrared search for extraterrestrial laser signals

    NASA Technical Reports Server (NTRS)

    Betz, A.

    1986-01-01

    The focus of project SETI is on microwave frequencies, where receivers fundamentally have the best sensitivity for the detection of narrow band signals. Such receivers, when coupled to existing radio telescopes, form an optimum system for broad area searches over the sky. Detection of narrow band infrared signals is best done with a laser heterodyne reciever similar in function to a microwave spectral line receiver. A receiver was built for astrophysical observations at 30 THz (10 microns) and the spectrometer is being adapted for SETI work. The receiver uses a small CO2 laser as the local oscillator, a HgCdTe diode as the photomixer, and a multichannel intermediate frequency (IF) filterbank. An advanced multichannel IF processor is now being built to detect infrared line radiation in 1000 spectral channels each 1 MHz wide. When completed this processor will be used with a ground based telescope next year for a survey of several hundred selected stars for narrow band CO2 laser signals at 30 THz.

  12. The Ethical Implications for Discovery of Extraterrestrial Life

    NASA Astrophysics Data System (ADS)

    Stuart, Jill

    2012-05-01

    Ethical frameworks seek to normatively structure our behaviour and preconstitute expectations with regards to moral activity towards each other as well as other creatures and even non-sentient objects such as the environment. This paper considers how ongoing ethical discussions relating to earth-based interactions can be used as analogies to inform nascent conversations about potential future encounters with extraterrestrial life—while also highlighting where these geocentric conversations may fail to capture the unique dynamics of potential extraterrestrial encounters. The paper specifically considers the spectrum of ethical frameworks currently used in earth-based interactions and how they might apply outside the geocentric referent; from ethics towards non- sentient life on earth such as plants and the environment; to ethics towards sentient but ‘unintelligent' life; to intelligent life nonetheless deemed less intelligent than humans. Next the paper considers interactions that we have yet to (knowingly) have encountered here on earth: the ethics of interactions with life more intelligent than ourselves; and finally the ethics of interaction with robotic ‘post-biological' forms, which some specialists in extraterrestrial communications have speculated will likely be the form of ‘creatures' to be encountered should contact with extraterrestrials ever be made. Finally the paper will address deeper philosophical-ethical questions about the significance of such an exercise in shifting ethical frameworks from an anthropocentric perspective.

  13. Chemical studies on the existence of extraterrestrial life.

    PubMed

    Ponnamperuma, C; Honda, Y; Navarro-González, R

    1992-01-01

    Although the search for extraterrestrial intelligence has not produced any direct evidence of extraterrestrial life, the emergence of life on Earth, which appears to be controlled by universal laws of physics and chemistry, must have been repeated elsewhere in the universe. The experimental approaches in our laboratory to understand the origin of life on the Earth are summarized in an attempt to obtain a better insight into the chemical basis of extraterrestrial life.

  14. SETI in vivo: testing the we-are-them hypothesis

    NASA Astrophysics Data System (ADS)

    Makukov, Maxim A.; Shcherbak, Vladimir I.

    2018-04-01

    After it was proposed that life on Earth might descend from seeding by an earlier extraterrestrial civilization motivated to secure and spread life, some authors noted that this alternative offers a testable implication: microbial seeds could be intentionally supplied with a durable signature that might be found in extant organisms. In particular, it was suggested that the optimal location for such an artefact is the genetic code, as the least evolving part of cells. However, as the mainstream view goes, this scenario is too speculative and cannot be meaningfully tested because encoding/decoding a signature within the genetic code is something ill-defined, so any retrieval attempt is doomed to guesswork. Here we refresh the seeded-Earth hypothesis in light of recent observations, and discuss the motivation for inserting a signature. We then show that `biological SETI' involves even weaker assumptions than traditional SETI and admits a well-defined methodological framework. After assessing the possibility in terms of molecular and evolutionary biology, we formalize the approach and, adopting the standard guideline of SETI that encoding/decoding should follow from first principles and be convention-free, develop a universal retrieval strategy. Applied to the canonical genetic code, it reveals a non-trivial precision structure of interlocked logical and numerical attributes of systematic character (previously we found these heuristically). To assess this result in view of the initial assumption, we perform statistical, comparison, interdependence and semiotic analyses. Statistical analysis reveals no causal connection of the result to evolutionary models of the genetic code, interdependence analysis precludes overinterpretation, and comparison analysis shows that known variations of the code lack any precision-logic structures, in agreement with these variations being post-LUCA (i.e. post-seeding) evolutionary deviations from the canonical code. Finally, semiotic analysis shows that not only the found attributes are consistent with the initial assumption, but that they make perfect sense from SETI perspective, as they ultimately maintain some of the most universal codes of culture.

  15. SETI Observations of Low Mass Stars at the SETI Institute

    NASA Astrophysics Data System (ADS)

    Harp, Gerald R.

    2017-05-01

    Are planets orbiting low-mass stars suitable for the development of life? Observations in the near future, including radio, will help to assess whether atmospheres do persist over long timescales for planets orbiting nearby M dwarfs, and clarify the nature of the radiation that penetrates to the surface of these planets. These are important ingredients for assessing planetary habitability, yet the question of habitability can be answered only with the positive measurement of an unambiguous biosignature. Radio and optical SETI observations capable of detecting technological activities of intelligent inhabitants could provide the most compelling evidence for the habitability of exoplanets orbiting M dwarfs. In this presentation we shall consider what information can be gleaned from our observations so far. The SETI Institute is currently undertaking a large survey of 20,000 low mass stars that is now about 30% complete. The frequency coverage on each star is about 450 MHz bandwidth (per star) over a range of selected frequencies from 1-10 GHz. From these observations we derive quantitative results relating to the probability that M dwarfs are actually inhabited.

  16. Extraterrestrial Intelligence: What Would it Mean?

    NASA Astrophysics Data System (ADS)

    Impey, Chris

    2015-04-01

    Results from NASA's Kepler mission imply a hundred million Earth-like habitable worlds in the Milky Way galaxy, many of which formed billions of years before the Earth. Each of these worlds is likely to have all of the ingredients needed for biology. The real estate of time and space for the evolution of intelligent life is formidable, begging the question of whether or not we are alone in the universe. The implications of making contact have been explored extensively in science fiction and the popular culture, but less frequently in the serious scientific literature. Astronomers have carried out searches for extraterrestrial intelligence for over half a century, with no success so far. In practice, it is easier to search for alien technology than to discern intelligence of unknown function and form. In this talk, the modes of technology that can currently be detected are summarized, along with the implications of a timing argument than any detected civilization is likely to be much more advanced than ours. Fermi's famous question ``Where Are They?'' is as well posed now as it was sixty years ago. The existence of extraterrestrial intelligence would have profound practical, cultural, and religious implications for humanity.

  17. An examination of astrophysical habitats for targeted SETI

    NASA Technical Reports Server (NTRS)

    Doyle, Laurance R.; Mckay, Christopher P.; Reynolds, Ray T.; Whitmire, Daniel P.; Matese, John J.

    1991-01-01

    Planetary atmospheric radiative transfer models have recently given valuable insights into the definition of the solar system's ecoshell. In addition, however, results have indicated that constraints on solar evolution also need to be addressed, with even minor solar variations, (mass loss, for example), having important consequences from an exobiological standpoint. Following the definition of the solar system's ecoshell evolution, the ecoshells around different stellar spectral types can then be modeled. In this study the astrophysical constraints on the definition of ecoshells and possible exobiological habitats includes: (1) the investigation of the evolution of the solar system's ecoshell under different initial solar/stellar model conditions as indicated by both solar abundance considerations as well as planetary evidence; (2) an outline of considerations necessary to define the ecoshells around the most abundant spectral-type stars, the K and M stars looking at the effects on exobiological habitats of planetary rotational tidal locking effects, and stellar flare/chromospheric-activity cycles, among other effects; (3) a preliminary examination of the factors defining the expected ecoshells around binary stars determining the of regular stellar eclipses, and the expected shortening of the semi-major axis. These results can then be applied to the targeted microwave search for extraterrestrial intelligent signals by constraining the ecoshell space in the solar neighborhood.

  18. World Ships: The Solar-Photon Sail Option

    NASA Astrophysics Data System (ADS)

    Matloff, G. L.

    The World Ship, a spacecraft large enough to simulate a small-scale terrestrial internal environment, may be the best feasible option to transfer members of a technological civilization between neighboring stars. Because of the projected size of these spacecraft, journey durations of ~1,000 years seem likely. One of the propulsion options for World Ships is the hyper-thin, likely space-manufactured solar-photon sail, unfurled as close to the migrating civilization's home star as possible. Because the sail and associated structure can be wound around the habitat while not in use, it represents the only known ultimately feasible interstellar propulsion system that can be applied for en route galactic-cosmic ray shielding as well as acceleration/ deceleration. This paper reviews the three suggested sail configurations that can be applied to world ship propulsion: parachute, hollow-body and hoop sails. Possible existing and advanced sail and structure materials and the predicted effects on the sail of the near-Sun space environment are reviewed. Consideration of solar-photon-sail World Ships also affects SETI (the Search for Extraterrestrial Intelligence). Can we detect such craft in flight? When in a star's lifetime is migration using such craft likely? What classes of stars are good candidates for solar-sail World-Ship searches?

  19. Project Cyclops: a Design Study of a System for Detecting Extraterrestrial Intelligent Life

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The requirements in hardware, manpower, time and funding to conduct a realistic effort aimed at detecting the existence of extraterrestrial intelligent life are examined. The methods used are limited to present or near term future state-of-the-art techniques. Subjects discussed include: (1) possible methods of contact, (2) communication by electromagnetic waves, (3) antenna array and system facilities, (4) antenna elements, (5) signal processing, (6) search strategy, and (7) radio and radar astronomy.

  20. The Quest for Contact: NASA's Search for Extraterrestrial Intelligence

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This video details the history and current efforts of NASA's Search for Extraterrestrial Intelligence program. The video explains the use of radiotelescopes to monitor electromagnetic frequencies reaching the Earth, and the analysis of this data for patterns or signals that have no natural origin. The video presents an overview of Frank Drake's 1960 'Ozma' experiment, the current META experiment, and planned efforts incorporating an international Deep Space Network of radiotelescopes that will be trained on over 800 stars.

  1. CCIR paper on the radiocommunications requirements for systems to search for extraterrestrial life

    NASA Technical Reports Server (NTRS)

    Nightingale, D.

    1978-01-01

    The allocation and propagation of radio frequency bands to be used in the search for extraterrestrial intelligence is considered. Topics discussed include: propagation factors; preferred frequency bands; system characteristics and requirements; and interference.

  2. Information Theory Applied to Dolphin Whistle Vocalizations with Possible Application to SETI Signals

    NASA Astrophysics Data System (ADS)

    Doyle, Laurance R.; McCowan, Brenda; Hanser, Sean F.

    2002-01-01

    Information theory allows a quantification of the complexity of a given signaling system. We are applying information theory to dolphin whistle vocalizations, humpback whale songs, squirrel monkey chuck calls, and several other animal communication systems' in order to develop a quantitative and objective way to compare inter species communication systems' complexity. Once signaling units have been correctly classified the communication system must obey certain statistical distributions in order to contain complexity whether it is human languages, dolphin whistle vocalizations, or even a system of communication signals received from an extraterrestrial source.

  3. Proceedings of the Astrobiology Science Conference 2010. Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond

    NASA Technical Reports Server (NTRS)

    2010-01-01

    The Program of the 2010 Astrobiology Science Conference: Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond, included sessions on: 50 Years of Exobiology and Astrobiology: Greatest Hits; Extraterrestrial Molecular Evolution and Pre-Biological Chemistry: From the Interstellar Medium to the Solar System I; Human Exploration, Astronaut Health; Diversity in Astrobiology Research and Education; Titan: Past, Present, and Future; Energy Flow in Microbial Ecosystems; Extraterrestrial Molecular Evolution and Prebiological Chemistry: From the Interstellar Medium to the Solar System II; Astrobiology in Orbit; Astrobiology and Interdisciplinary Communication; Science from Rio Tinto: An Acidic Environment; Can We Rule Out Spontaneous Generation of RNA as the Key Step in the Origin of Life?; How Hellish Was the Hadean Earth?; Results from ASTEP and Other Astrobiology Field Campaigns I; Prebiotic Evolution: From Chemistry to Life I; Adaptation of Life in Hostile Space Environments; Extrasolar Terrestrial Planets I: Formation and Composition; Collaborative Tools and Technology for Astrobiology; Results from ASTEP and Other Astrobiology Field Campaigns II; Prebiotic Evolution: From Chemistry to Life II; Survival, Growth, and Evolution of Microrganisms in Model Extraterrestrial Environments; Extrasolar Terrestrial Planets II: Habitability and Life; Planetary Science Decadal Survey Update; Astrobiology Research Funding; Bioessential Elements Through Space and Time I; State of the Art in Life Detection; Terrestrial Evolution: Implications for the Past, Present, and Future of Life on Earth; Psychrophiles and Polar Environments; Life in Volcanic Environments: On Earth and Beyond; Geochronology and Astrobiology On and Off the Earth; Bioessential Elements Through Space and Time II; Origins and Evolution of Genetic Systems; Evolution of Advanced Life; Water-rich Asteroids and Moons: Composition and Astrobiological Potential; Impact Events and Evolution; A Warm, Wet Mars?; Titan Versus Europa - Potential for Astrobiology; Habitability Potential of Mars; Biosignatures: Tools and Development I; Origins of Molecular Asymmetry, Homochirality, and Life Detection; Deserts and Evaporite Basins and Associated Microbialite Systems; Ancient Life and Synthetic Biology: Crossroad of the Past and Future; Biosignatures: Tools and Development II; Free Oxygen: Proxies, Causes, and Consequences; Life in Modern Microbialite Systems - Function and Adaptation; Hydrothermal Systems and Organosynthesis Processes: Origin and Evolution of Life; Where Should We Go on Mars to Seek Signs of Life?; Search for Intelligent Life I. Innovative SETI Observing Programs and Future Directions; Integrating Astrobiology Research Across and Beyond the Community; Education in Astrobiology in K-12; Search for Intelligent Life II. Global Engagement and Interstellar Message Construction; Poster sessions included: Extraterrestrial Molecular Evolution and Pre-Biological Chemistry; Prebiotic Evolution: From Chemistry to Life; RNA World; Terrestrial Evolution: Implications for the Past, Present, and Future of Life on Earth; Hydrothermal Systems and Organosynthesis Processes: Origin and Evolution of Life; Virology and Astrobiology; Horizontal Genetic Transfer and Properties of Ancestral Organisms; Life in Volcanic Environments: On Earth and Beyond; Impact Events and Evolution; Evolution of Advanced Life; Evolution of Intelligent Life; Education in Astrobiology in K-12; Origins of Molecular Asymmetry, Homochirality, and Life Detection; Astrobiology and Interdisciplinary Communication; Diversity in Astrobiology Research and Education; Integrating Astrobiology Research Across and Beyond the Community; Policy and Societal Issues: Dealing with Potential Bumps in the Astrobiology Road Ahead; Results from ASTEP and Other Astrobiology Field Campaigns; Energy Flow in Microbial Ecosystems; Psychrophiles and Polar Environments; Deserts and Evaporite Basins and Associated Microbialite stems; Life in Modern Microbialite Systems - Function and Adaptation; Free Oxygen: Proxies, Causes, and Consequences; Bioessential Elements Through Space and Time; Water-rich Asteroids and Moons: Composition and Astrobiological Potential; Biosignatures: Tools and Developments; Robotics and Instrumentation for Astrobiology; State of the Art in Life Detection; Astrobiology in Orbit; Survival, Growth, and Evolution of Microrganisms in Model Extraterrestrial Evolution; Search for Intelligent Life; Habitability Potential of Mars; How and Where Should We Seek Signs of Life on Mars?; Titan: Past, Present, and Future; Extrasolar Terrestrial Planets: Formation, Composition, Diversity, Habitability and Life; Human Exploration, Astronaut Health; Science from Rio Tinto: An Acidic Environment and Adaptation of Life in Hostile Space Environments;

  4. The universe, life, and intelligence (Sixth enlarged edition)

    NASA Astrophysics Data System (ADS)

    Shklovskii, Iosif Samuilovich

    This classic work examines the possibility of the existence of life (including intelligent life) on other planetary systems. This enlarged edition includes essays on the search for extraterrestrial civilizations and the possibility of communication with intelligent beings on other planets.

  5. Cultural aspects of SETI

    NASA Technical Reports Server (NTRS)

    Billingham, John

    1991-01-01

    The paper presents a broad range of issues that raise important questions about the search for exterrestrial life forms or intelligence. The history of the concept of plurality of inhabited worlds is reviewed, and disciplinary areas are cited that are considered crucial for SETI. Such issues involve analogs of the discovery of ETI, immediate responses to such detections, and the significance of journalistic and media response. The responses of religion is also considered, and it is suggested that humankind respond to the discovery of ETI with a single voice and message. The issues discussed demonstrate the need for explicit protocols that would be followed after any discovery of the types discussed.

  6. The impact of contact

    NASA Astrophysics Data System (ADS)

    Finney, B.

    1986-10-01

    Scenarios of the impact on human society of radio contact with an extraterrestrial civilization are presented. Some believe that contact with advanced extraterrestrials would quickly devastate the human spirit, while others believe that these super-intelligent beings would show the inhabitants of the earth how to live in peace. It is proposed that the possible existence of extraterrestrial civilizations and the development of means of studying and communicating with them need to be considered.

  7. SETI Observations of Exoplanets with the Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Harp, G. R.; Richards, Jon; Tarter, Jill C.; Dreher, John; Jordan, Jane; Shostak, Seth; Smolek, Ken; Kilsdonk, Tom; Wilcox, Bethany R.; Wimberly, M. K. R.; Ross, John; Barott, W. C.; Ackermann, R. F.; Blair, Samantha

    2016-12-01

    We report radio SETI observations on a large number of known exoplanets and other nearby star systems using the Allen Telescope Array (ATA). Observations were made over about 19000 hr from 2009 May to 2015 December. This search focused on narrowband radio signals from a set totaling 9293 stars, including 2015 exoplanet stars and Kepler objects of interest and an additional 65 whose planets may be close to their habitable zones. The ATA observations were made using multiple synthesized beams and an anticoincidence filter to help identify terrestrial radio interference. Stars were observed over frequencies from 1 to 9 GHz in multiple bands that avoid strong terrestrial communication frequencies. Data were processed in near-real time for narrowband (0.7-100 Hz) continuous and pulsed signals with transmitter/receiver relative accelerations from -0.3 to 0.3 m s-2. A total of 1.9 × 108 unique signals requiring immediate follow-up were detected in observations covering more than 8 × 106 star-MHz. We detected no persistent signals from extraterrestrial technology exceeding our frequency-dependent sensitivity threshold of 180-310 × 10-26 W m-2.

  8. The biological universe: the twentieth-century extraterrestrial life debate and the limits of science

    NASA Astrophysics Data System (ADS)

    Dick, Steven J.

    Throughout the twentieth century, from the furor over Percival Lowell's claim of canals on Mars to the sophisticated Search for Extraterrestrial Intelligence, otherworldly life has often intrigued and occasionally consumed science and the public. Does `biological law' reign throughout the universe? Are there other histories, religions, and philosophies outside of those on Earth? Do extraterrestrial minds ponder the mysteries of the universe? The attempts toanswer these often asked questions form one of the most interesting chapters in the history of science and culture, and The Biological Universe is the first book to provide a rich and colorful history of those attempts during the twentieth century. Covering a broad range of topics, including the search for life in the solar system, the origins of life, UFOs, and aliens in science fiction, Steven J. Dick shows how the concept of extraterrestrial intelligence is a world view of its own, a `biophysical cosmology' that seeks confirmation no less than physical views of the universe.

  9. The biological universe. The twentieth century extraterrestrial life debate and the limits of science.

    NASA Astrophysics Data System (ADS)

    Dick, S. J.

    Throughout the twentieth century, from the furor over Percival Lowell's claim of canals on Mars to the sophisticated Search for Extraterrestrial Intelligence, otherworldly life has often intrigued and occasionally consumed science and the public. Does 'biological law' reign throughout the universe? Are there other histories, religions, and philosophies outside of those on Earth? Do extraterrestrial minds ponder the mysteries of the universe? The attempts to answer these often asked questions form one of the most interesting chapters in the history of science and culture, and this is the first book to provide a rich and colorful history of those attempts during the twentieth century. Covering a broad range of topics, including the search for life in the solar system, the origins of life, UFOs, and aliens in science fiction, the author shows how the concept of extraterrestrial intelligence is a world view of its own, a 'biophysical cosmology' that seeks confirmation no less than physical views of the universe.

  10. The demography of extraterrestrial civilizations

    NASA Technical Reports Server (NTRS)

    Billingham, J.

    1981-01-01

    Studies carried out within the last ten years on the nature and distribution of extraterrestrial intelligent life are reviewed. Arguments for the absence of intelligent life in the Galaxy based on the assumption that at least some of these would have engaged in colonization and for the presence of colonies of extraterrestrials in some undiscovered location in the solar system are presented, and it is noted that both these views rest on the notion that interstellar travel can be achieved at high velocities in very large vehicles, which has been questioned. Alternative suggestions concerning interstellar exploration by automated probes and the possible extended time scale and motivation for galactic colonization are pointed out. Attention is then given to arguments for the extreme smallness of one of the factors in the Drake equation used to estimate the number of communicative extraterrestrial civilizations in the Galaxy, including the frequency of single stars, the likelihood that planets with the correct initial composition and conditions for life are at the proper distance from their stars, the probability of the formation of DNA and the origin of life, and the time for the evolution of intelligence. It is concluded that it seems likely that other civilizations exist in the Galaxy, although the number and distribution of such civilizations may only be determined by the detection of one or more examples.

  11. Astrobiological Phase Transition: Towards Resolution of Fermi's Paradox

    NASA Astrophysics Data System (ADS)

    Ćirković, Milan M.; Vukotić, Branislav

    2008-12-01

    Can astrophysics explain Fermi’s paradox or the “Great Silence” problem? If available, such explanation would be advantageous over most of those suggested in literature which rely on unverifiable cultural and/or sociological assumptions. We suggest, instead, a general astrobiological paradigm which might offer a physical and empirically testable paradox resolution. Based on the idea of James Annis, we develop a model of an astrobiological phase transition of the Milky Way, based on the concept of the global regulation mechanism(s). The dominant regulation mechanisms, arguably, are γ-ray bursts, whose properties and cosmological evolution are becoming well-understood. Secular evolution of regulation mechanisms leads to the brief epoch of phase transition: from an essentially dead place, with pockets of low-complexity life restricted to planetary surfaces, it will, on a short (Fermi-Hart) timescale, become filled with high-complexity life. An observation selection effect explains why we are not, in spite of the very small prior probability, to be surprised at being located in that brief phase of disequilibrium. In addition, we show that, although the phase-transition model may explain the “Great Silence”, it is not supportive of the “contact pessimist” position. To the contrary, the phase-transition model offers a rational motivation for continuation and extension of our present-day Search for ExtraTerrestrial Intelligence (SETI) endeavours. Some of the unequivocal and testable predictions of our model include the decrease of extinction risk in the history of terrestrial life, the absence of any traces of Galactic societies significantly older than human society, complete lack of any extragalactic intelligent signals or phenomena, and the presence of ubiquitous low-complexity life in the Milky Way.

  12. Astrobiological phase transition: towards resolution of Fermi's paradox.

    PubMed

    Cirković, Milan M; Vukotić, Branislav

    2008-12-01

    Can astrophysics explain Fermi's paradox or the "Great Silence" problem? If available, such explanation would be advantageous over most of those suggested in literature which rely on unverifiable cultural and/or sociological assumptions. We suggest, instead, a general astrobiological paradigm which might offer a physical and empirically testable paradox resolution. Based on the idea of James Annis, we develop a model of an astrobiological phase transition of the Milky Way, based on the concept of the global regulation mechanism(s). The dominant regulation mechanisms, arguably, are gamma-ray bursts, whose properties and cosmological evolution are becoming well-understood. Secular evolution of regulation mechanisms leads to the brief epoch of phase transition: from an essentially dead place, with pockets of low-complexity life restricted to planetary surfaces, it will, on a short (Fermi-Hart) timescale, become filled with high-complexity life. An observation selection effect explains why we are not, in spite of the very small prior probability, to be surprised at being located in that brief phase of disequilibrium. In addition, we show that, although the phase-transition model may explain the "Great Silence", it is not supportive of the "contact pessimist" position. To the contrary, the phase-transition model offers a rational motivation for continuation and extension of our present-day Search for ExtraTerrestrial Intelligence (SETI) endeavours. Some of the unequivocal and testable predictions of our model include the decrease of extinction risk in the history of terrestrial life, the absence of any traces of Galactic societies significantly older than human society, complete lack of any extragalactic intelligent signals or phenomena, and the presence of ubiquitous low-complexity life in the Milky Way.

  13. Survey of 25 years of observations with the aim of detecting intelligent extraterrestrial beings

    NASA Astrophysics Data System (ADS)

    Vallee, J. P.

    1985-02-01

    Observational programs intended to detect the presence of intelligent extraterrestrial life or to locate stars with potentially life-supporting planets are surveyed for the period 1960-1985. The astrometric, spectroscopic, photometric, and linear-polarimetric techniques employed are explained; the 45 programs undertaken are listed in tables; a typical observation at Algonquin Radioastronomy Observatory is described; theoretical computations of the number of life-supporting planets are summarized; and hypotheses advanced to explain the fact that no contact appears to have been made are discussed.

  14. On the improbability of intelligent extraterrestrials

    NASA Astrophysics Data System (ADS)

    Bond, A.

    1982-05-01

    Discussions relating to the prevalence of extraterrestrial life generally remain ambiguous due to the lack of a suitable model for the development of biology. In this paper a simple model is proposed based on neutral evolution theory which leads to quantitative values for the genome growth rate within a biosphere. It is hypothesised that the genome size is a measure of organism complexity and hence an indicator of the likelihood of intelligence. The calculations suggest that organisms with the complexity of human beings may be rare and only occur with a probability below once per galaxy.

  15. 2014 Summer Series - Jill Tarter - Searching for ET: An Investment In Our Long Future

    NASA Image and Video Library

    2014-07-31

    SETI marked it's semi-centennial as a scientific exploration in 2010. Now that exoplanets have been discovered in such abundance and diversity, and Earth 2.0 is a reasonable expectation, it seems more relevant than ever to ask the 'Are we alone?' question. What should we be doing to improve our capability to detect intelligent life beyond Earth? There are lots of technical questions about how to move forward, but the most difficult question of all may be how do we integrate and support this vast, and potentially long-term endeavor into a world of short-term thinking? How do we justify continued investment in SETI?

  16. A scheme for a high-power, low-cost transmitter for deep space applications

    NASA Astrophysics Data System (ADS)

    Scheffer, L. K.

    2005-10-01

    Applications such as planetary radars and spacecraft communications require transmitters with extremely high effective isotropic radiated power. Until now, this has been done by combining a high-power microwave source with a large reflective antenna. However, this arrangement has a number of disadvantages. It is costly, since the steerable reflector alone is quite expensive, and for spacecraft communications, the need to transmit hurts the receive performance. For planetary radars, the utilization is very low since the antenna must be shared with other applications such as radio astronomy or spacecraft communications. This paper describes a potential new way of building such transmitters with lower cost, greater versatility, higher reliability, and potentially higher power. The basic idea is a phased array with a very large number of low-power elements, built with mass production techniques that have been optimized for consumer markets. The antennas are built en mass on printed circuit boards and are driven by chips, built with consumer complementary metal-oxide-semiconductor technology, that adjust the phase of each element. Assembly and maintenance should be comparatively inexpensive since the boards need only be attached to large, flat, unmoving, ground-level infrastructure. Applications to planetary radar and spacecraft communications are examined. Although we would be unlikely to use such a facility in this way, an implication for Search for Extraterrestrial Intelligence (SETI) is that high-power beacons are easier to build than had been thought.

  17. Societal Statistics by virtue of the Statistical Drake Equation

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    2012-09-01

    The Drake equation, first proposed by Frank D. Drake in 1961, is the foundational equation of SETI. It yields an estimate of the number N of extraterrestrial communicating civilizations in the Galaxy given by the product N=Ns×fp×ne×fl×fi×fc×fL, where: Ns is the number of stars in the Milky Way Galaxy; fp is the fraction of stars that have planetary systems; ne is the number of planets in a given system that are ecologically suitable for life; fl is the fraction of otherwise suitable planets on which life actually arises; fi is the fraction of inhabited planets on which an intelligent form of life evolves; fc is the fraction of planets inhabited by intelligent beings on which a communicative technical civilization develops; and fL is the fraction of planetary lifetime graced by a technical civilization. The first three terms may be called "the astrophysical terms" in the Drake equation since their numerical value is provided by astrophysical considerations. The fourth term, fl, may be called "the origin-of-life term" and entails biology. The last three terms may be called "the societal terms" inasmuch as their respective numerical values are provided by anthropology, telecommunication science and "futuristic science", respectively. In this paper, we seek to provide a statistical estimate of the three societal terms in the Drake equation basing our calculations on the Statistical Drake Equation first proposed by this author at the 2008 IAC. In that paper the author extended the simple 7-factor product so as to embody Statistics. He proved that, no matter which probability distribution may be assigned to each factor, if the number of factors tends to infinity, then the random variable N follows the lognormal distribution (central limit theorem of Statistics). This author also proved at the 2009 IAC that the Dole (1964) [7] equation, yielding the number of Habitable Planets for Man in the Galaxy, has the same mathematical structure as the Drake equation. So the number of Habitable Planets follows the lognormal distribution as well. But the Dole equation is described by the first FOUR factors of the Drake equation. Thus, we may "divide" the 7-factor Drake equation by the 4-factor Dole equation getting the probability distribution of the last-3-factor Drake equation, i.e. the probability distribution of the SOCIETAL TERMS ONLY. These we study in detail in this paper, achieving new statistical results about the SOCIETAL ASPECTS OF SETI.

  18. An observational program to search for radio signals from extraterrestrial intelligence through the use of existing facilities

    NASA Technical Reports Server (NTRS)

    Edelson, R. E.

    1976-01-01

    It is argued that a substantial portion of the capability for detecting microwave signals from extraterrestrial civilizations lies not in the application of ever larger antenna collecting areas but rather in the application of millions or billions of simultaneous frequency-channel observations combined with rapid and powerful data processing techniques. The application of these methods to existing facilities is discussed in terms of a program of modest expense and duration which will seek to discover certain classes of extraterrestrial signals of intelligent origin while defining boundaries to the search problem throughout the range of interest. This program will investigate radio-astronomical phenomena of interest and simultaneously define the background of environmental radiation in order to determine physical limitations on both the search strategies and the potential for deep-space communications. Signal parameters that must be determined are examined along with the potential of existing radio-astronomical facilities for detecting narrow-band signals. A seven-year program is described which will carry out a search for extraterrestrial intelligence over 80% of the sky and over the entire frequency range from 1 to 25 GHz with a sensitivity limit varying from 10 to the -21st power W/sq cm at the lowest frequencies to 10 to the -19th power W/sq cm at the higher frequencies.

  19. Development of extraterrestrial intelligence and physical laws

    NASA Astrophysics Data System (ADS)

    Troitskij, V. S.

    This paper considers the restrictions imposed by physical laws on the development of life and intelligence in the form of extraterrestrial civilizations. For this purpose intelligence is defined as the community of intelligent beings, joined by the exchange of mass, energy and information both between themselves and with the external medium. Due to the limitation of the velocity of exchange of information and, in particular, mass and energy exchange, the dimensions of the intelligence cannot exceed some light days, i.e. they are limited by the habitable zone about their star. It is shown that the energy consumption should not exceed the energy output of their star for the sake of preserving the cosmic near-star zone of life from energetic pollution. With the above restrictions of the energy product it takes millions of years to create an omnidirectional beacon-transmitter signals from which would be received by the contemporary antennas in all our Galaxy. It is realistic to create an omnidirectional beacon operating in the range of no more than 100-1000 light years.

  20. Optical search for extraterrestrial intelligence with Air Cerenkov telescopes.

    PubMed

    Eichler, D; Beskin, G

    2001-01-01

    We propose using large Air Cerenkov telescopes (ACTs) to search for optical, pulsed signals from extraterrestrial intelligence. Such dishes collect tens of photons from a nanosecond-scale pulse of isotropic equivalent power of tens of solar luminosities at a distance of 100 pc. The field of view for giant ACTs can be on the order of 10 square degrees, and they will be able to monitor 10-100 stars simultaneously for nanosecond pulses of about 6th magnitude or brighter. Using the Earth's diameter as a baseline, orbital motion of the planet could be detected by timing the pulse arrivals.

  1. Extraterrestrial intelligence: an observational approach.

    PubMed

    Murray, B; Gulkis, S; Edelson, R E

    1978-02-03

    The microwave region of the electromagnetic spectrum, a plausible regime for signals from extraterrestrial intelligences, is largely unexplored. With new technology, particularly in data processing and low-noise reception, surveys can be conducted over broad regions of frequency and space with existing antennas at flux densities plausible for interstellar signals. An all-sky, broad-band survey lasting perhaps 5 years can be structured so that even negative results would establish significant boundaries on the regime in which such signals may be found. The technology and techniques developed and much of the data acquired would be applicable to radio astronomy and deep-space communications.

  2. Communicating Concepts about Altruism in Interstellar Messages

    NASA Astrophysics Data System (ADS)

    Vakoch, Douglas A.

    2002-01-01

    This project identifies key principles of altruism that can be translated into interstellar messages for communication with extraterrestrial intelligence. The message contents will focus specifically on the evolution of altruism, drawing on recent insights in evolutionary biology, with particular emphasis on sociobiological accounts of kin selection and reciprocal altruism. This focus on altruism for message contents has several advantages. First, the subject can be translated into interstellar messages both via an existing formal interstellar language and via pictorial messages. For example, aspects of reciprocal altruism can be described through mathematical modeling, such as game theoretic approaches, which in turn can be described readily in the interstellar language Lincos. Second, concentrating on altruism as a message content may facilitate communications with extraterrestrial intelligence. Some scientists have argued that humans may be expected to communicate something about their moral status and development in an exchange with extraterrestrials. One of the most salient ways that terrestrial and extraterrestrial civilizations might be expected to evaluate one another is in terms of ethical motivations. Indeed, current search strategies assume some measure of altruism on the part of transmitting civilizations; with no guarantee of a response, the other civilization would be providing information to us with no direct payoff. Thus, concepts about altruism provide an appropriate content for interstellar messages, because the concepts themselves might be understood by extraterrestrial civilizations.

  3. Are We Alone? GAVRT Search for Extra Terrestrial Intelligence (SETI) Project

    NASA Astrophysics Data System (ADS)

    Bensel, Holly; Cool, Ian; St. Mary's High School Astronomy Club; St. Mary's Middle School Astronomy Club

    2017-01-01

    The Goldstone Apple Valley Radio Telescope Program (GAVRT) is a partnership between NASA’s Jet Propulsion Laboratory and the Lewis Center for Educational Research. The program is an authentic science investigation program for students in grades K through 12 and offers them the ability to learn how to be a part of a science team while they are making a real contribution to scientific knowledge.Using the internet from their classroom, students take control of a 34-meter decommissioned NASA radio telescope located at the Goldstone Deep Space Network complex in California. Students collect data on strong radio sources and work in collaboration with professional radio astronomers to analyze the data.Throughout history man has wondered if we were alone in the Universe. SETI - or the Search for Extra Terrestrial Intelligence - is one of the programs offered through GAVRT that is designed to help answer that question. By participating in SETI, students learn about science by doing real science and maybe, if they get very lucky, they might make the most important discovery of our lifetime: Intelligent life beyond Earth!At St. Mary’s School, students in grades 6-12 have participated in the project since its inception. The St. Mary’s Middle School Astronomy Club is leading the way in their relentless search for ET and radio telescope studies. Students use the radio telescope to select a very small portion of the Milky Way Galaxy - or galactic plane - and scan across it over and over in the hopes of finding a signal that is not coming from humans or radio interference. The possibility of being the first to discover an alien signal has kept some students searching for the past three years. For them to discover something of this magnitude is like winning the lottery: small chance of winning - big payoff. To that end, the club is focusing on several portions of the Milky Way where they have detected a strong candidate in the past. The hope is to pick it up a second and third time. If that happens, the club will be one step closer to proving intelligent life does exist.

  4. The Extraterrestrial Life Debate from Antiquity to 1900

    NASA Astrophysics Data System (ADS)

    Crowe, Michael J.; Dowd, Matthew F.

    This chapter provides an overview of the Western historical debate regarding extraterrestrial life from antiquity to the beginning of the twentieth century. Though schools of thought in antiquity differed on whether extraterrestrial life existed, by the Middle Ages, the Aristotelian worldview of a unified, finite cosmos without extraterrestrials was most influential, though there were such dissenters as Nicholas of Cusa. That would change as the Copernican revolution progressed. Scholars such as Bruno, Kepler, Galileo, and Descartes would argue for a Copernican system of a moving Earth. Cartesian and Newtonian physics would eventually lead to a view of the universe in which the Earth was one of many planets in one of many solar systems extended in space. As this cosmological model was developing, so too were notions of extraterrestrial life. Popular and scientific writings, such as those by Fontenelle and Huygens, led to a reversal of fortunes for extraterrestrials, who by the end of the century were gaining recognition. From 1700 to 1800, many leading thinkers discussed extraterrestrial intelligent beings. In doing so, they relied heavily on arguments from analogy and such broad principles and ideas as the Copernican Principle, the Principle of Plenitude, and the Great Chain of Being. Physical evidence for the existence of extraterrestrials was minimal, and was always indirect, such as the sighting of polar caps on Mars, suggesting similarities between Earth and other places in the universe. Nonetheless, the eighteenth century saw writers from a wide variety of genres—science, philosophy, theology, literature—speculate widely on extraterrestrials. In the latter half of the century, increasing research in stellar astronomy would be carried out, heavily overlapping with an interest in extraterrestrial life. By the end of the eighteenth century, belief in intelligent beings on solar system planets was nearly universal and certainly more common than it would be by 1900, or even today. Moreover, natural theology led to most religious thinkers being comfortable with extraterrestrials, at least until 1793 when Thomas Paine vigorously argued that although belief in extraterrestrial intelligence was compatible with belief in God, it was irreconcilable with belief in God becoming incarnate and redeeming Earth's sinful inhabitants. In fact, some scientific analyses, such as Newton's determination of the comparative masses and densities of planets, as well as the application of the emerging recognition of the inverse square law for light and heat radiation, might well have led scientists to question whether all planets are fully habitable. Criticism would become more prevalent throughout the nineteenth century, and especially after 1860, following such events as the "Moon Hoax" and Whewell's critique of belief in extraterrestrials. Skepticism about reliance on arguments from analogy and on such broad metaphysical principles as the Principle of Plenitude also led scientists to be cautious about claims for higher forms of life elsewhere in the universe. At the start of the twentieth century, the controversy over the canals of Mars further dampened enthusiasm for extraterrestrials. By 1915 astronomers had largely rejected belief in higher forms of life anywhere in our solar system and were skeptical about the island universe theory.

  5. The implications of the discovery of extra-terrestrial life for religion.

    PubMed

    Peters, Ted

    2011-02-13

    This paper asks about the future of religion: (i) Will confirmation of extra-terrestrial intelligence (ETI) cause terrestrial religion to collapse? 'No' is the answer based upon a summary of the 'Peters ETI Religious Crisis Survey'. Then the paper examines four specific challenges to traditional doctrinal belief likely to be raised at the detection of ETI: (ii) What is the scope of God's creation? (iii) What can we expect regarding the moral character of ETI? (iv) Is one earthly incarnation in Jesus Christ enough for the entire cosmos, or should we expect multiple incarnations on multiple planets? (v) Will contact with more advanced ETI diminish human dignity? More than probable contact with extra-terrestrial intelligence will expand the Bible's vision so that all of creation--including the 13.7 billion year history of the universe replete with all of God's creatures--will be seen as the gift of a loving and gracious God.

  6. The moral status of extraterrestrial life.

    PubMed

    Persson, Erik

    2012-10-01

    If we eventually discover extraterrestrial life, do we have any moral obligations for how to treat the life-forms we find; does it matter whether they are intelligent, sentient, or just microbial-and does it matter that they are extraterrestrial? In this paper, I examine these questions by looking at two of the basic questions in moral philosophy: What does it take to be a moral object? and What has value of what kind? I will start with the first of these questions by looking at the most important attempts to answer this question on our own planet and by asking whether and how they could be applied to extraterrestrial life. The results range from a very strong protection of all extraterrestrial life and all extraterrestrial environments, whether inhabited or not, to total exclusion of extraterrestrial life. Subsequently, I also examine whether extraterrestrial life that lacks moral status can have value to human or alien life with moral status, and if that could generate any obligations for how to treat extraterrestrial life. Based on this analysis, I conclude that extraterrestrial life-forms can have both instrumental value and end value to moral objects, which has strong implications for how to treat them.

  7. Cultural Resources and Cognitive Frames: Keys to an Anthropological Approach to Prediction

    NASA Astrophysics Data System (ADS)

    Lowrie, Ian

    In this chapter, I suggest a methodological and theoretical framework for preliminary investigations designed to gauge the potential societal response to the discovery of either microbial or intelligent extraterrestrial life. The uncritical use of analogies to the ethnographic record of contact between societies and the discovery of extraterrestrial life has been, rightfully, the target of sharp criticism since the earliest days of the scientific search for this life. However, I argue that by approaching this record with different epistemological premises, and shifting the focus from the material to the symbolic and cognitive dimensions of this contact, one can avoid many of the pitfalls of the analogical mode of argumentation, and provide a solid conceptual basis for the development of an adequate heuristic. Specifically, I draw upon the germinal debate between Sahlins and Obeyesekere over the nature of human meaning-making in the face of radically other societies and their meanings to treat the discovery of an intelligent civilization. In parallel, I draw upon Sharp's discussion of the relationship between the changes in the symbolic order and the material organization of society to suggest that much of this analysis also applies to the discovery of extraterrestrial microbial life. In both cases, I do not argue for a one-to-one correspondence between the historical and the contemporary, but rather use these arguments as illustrations of what I see as particularly profitable modes of conceptualizing the universal human processes of making sense out of novel objects and phenomena. Finally, this chapter argues for a mixed-methods quantitative-qualitative investigation into the character and distribution of societal resources for understanding life and intelligence, rather than the extraterrestrial as such. The qualitative is advanced as a necessary adjunct to the quantitative, as the best method for gaining access to the repertoire of cultural frames upon which people more or less unconsciously draw in forming their understandings of the world. The focus on life and intelligence is justified both insofar as they are the categories which will be brought to bear on the extraterrestrial in terms of integrating it into people's worldviews, and insofar as these categories are substantially more implicated in both societal and personal stability than that of the extraterrestrial as such.

  8. Evolution

    NASA Astrophysics Data System (ADS)

    Peter, Ulmschneider

    When we are looking for intelligent life outside the Earth, there is a fundamental question: Assuming that life has formed on an extraterrestrial planet, will it also develop toward intelligence? As this is hotly debated, we will now describe the development of life on Earth in more detail in order to show that there are good reasons why evolution should culminate in intelligent beings.

  9. Searching for extraterrestrial civilizations

    NASA Technical Reports Server (NTRS)

    Kuiper, T. B. H.; Morris, M.

    1977-01-01

    Three interrelated assumptions are critically examined in an attempt to outline a productive strategy for a search for extraterrestrial intelligence. Questions concerning the feasibility of interstellar travel are investigated. It is concluded that the probability of interstellar travel is high enough that, given a modest number of advanced civilizations, at least one of them will engage in interstellar voyages and colonize the galaxy. Assuming, however, that technological civilizations are rare the galaxy would be essentially unpopulated. Attention is given to the present lack of contact with extraterrestrial beings and frequencies for interstellar beacons.

  10. Can we Communicate with Aliens?

    NASA Astrophysics Data System (ADS)

    Csányi, V.; Kampis, Gy.

    The subject of this paper is: what answer can be given if the aliens are neither animals nor humans of an unknown culture, but specimens of an extraterrestrial intelligence? If we generalize this question, we may ask, how and to what extent is communication possible among intelligent beings?

  11. Gravitational Microlensing Events as a Target for the SETI project

    NASA Astrophysics Data System (ADS)

    Rahvar, Sohrab

    2016-09-01

    The detection of signals from a possible extrasolar technological civilization is one of the most challenging efforts of science. In this work, we propose using natural telescopes made of single or binary gravitational lensing systems to magnify leakage of electromagnetic signals from a remote planet that harbors Extraterrestrial Intelligent (ETI) technology. Currently, gravitational microlensing surveys are monitoring a large area of the Galactic bulge to search for microlensing events, finding more than 2000 events per year. These lenses are capable of playing the role of natural telescopes, and, in some instances, they can magnify radio band signals from planets orbiting around the source stars in gravitational microlensing systems. Assuming that the frequency of electromagnetic waves used for telecommunication in ETIs is similar to ours, we propose follow-up observation of microlensing events with radio telescopes such as the Square Kilometre Array (SKA), the Low Frequency Demonstrators, and the Mileura Wide-Field Array. Amplifying signals from the leakage of broadcasting by an Earth-like civilization will allow us to detect them as far as the center of the Milky Way galaxy. Our analysis shows that in binary microlensing systems, the probability of amplification of signals from ETIs is more than that in single microlensing events. Finally, we propose the use of the target of opportunity mode for follow-up observations of binary microlensing events with SKA as a new observational program for searching ETIs. Using optimistic values for the factors of the Drake equation provides detection of about one event per year.

  12. Astronomy and religion (1780-1915). Four case studies involving ideas of extraterrestrial life

    NASA Astrophysics Data System (ADS)

    Crowe, Michael J.

    The present essay discusses four examples of interactions, two from the eighteenth century and two from the nineteenth. All four cases concern the relations between religion and the astronomical claim that intelligent beings exist elsewhere in space. In each of these four cases religious claims influenced astronomy. Cases 3 and 4 share a feature not usually encountered in studies on the interactions of astronomy and religion in that they are instances where not just theistic belief but in fact core doctrines of a specific religion, Christianity, influenced astronomy. I begin by surveying the interactions between religion and the idea of extraterrestrial intelligent life in the early modern period.

  13. The search for extraterrestrial intelligence.

    PubMed

    Wilson, T L

    2001-02-22

    As far as we know, humanity is alone in the Universe: there is no definite evidence for the existence of extraterrestrial life, let alone extraterrestrial civilizations (ETCs) capable of communicating or travelling over interstellar distances. Yet popular speculation about the existence of ETCs abounds, including reports of alien visitations either now or in the past. But there is a middle way. It is now possible to put limits on the existence of ETCs of varying capabilities, within arbitrary distances from the Solar System, and conceive of real-world strategies whereby we might communicate with ETCs, or they with us.

  14. Extraterrestrial intelligent beings do not exist

    NASA Astrophysics Data System (ADS)

    Tipler, F. J.

    1980-09-01

    The singularity vs. the plurality of inhabited worlds in the universe is debated. Attention is given to astrophysical constraints on the evolution of intelligent species and to motivations for interstellar communication and exploration. It is argued that it is plausible that there is only one inhabited planet in the universe.

  15. The next steps in Seti-Italia science and technology

    NASA Astrophysics Data System (ADS)

    Montebugnoli, Stelio; Cosmovici, Cristiano; Monari, Jader; Pluchino, Salvatore; Zoni, Luca; Bartolini, Marco; Orlati, Andrea; Salerno, Emma; Schillirò, Francesco; Pupillo, Giuseppe; Perini, Federico; Bianchi, Germano; Tani, Mattia; Amico, Leonardo

    2010-02-01

    The Italian Medicina Radioastronomy Station (nearby Bologna) is equipped with two antennas: the 32 mt (VLBI) dish and the Northern Cross, a large T-shaped parabolic/cylindrical antenna (30.000 sqm). So far Seti observations have been performed using a SERENDIP IV high resolution spectrometer connected to the VLBI dish in "piggy back" mode configuration. In order to facilitate data interpretation and to introduce innovative methods to search for possible extraterrestrial signals, we are planning to make use of the large UHF Northern Cross transit telescope. Sky observations performed at least within two months, could provide for each day a number of matrices labeled according to the observing sidereal time. The entire set of matrices will be characterized by an averaged spectrum on each row per day. Keeping constant the transit antenna declination, a coherent signal coming from a definite position of the sky, would produce a "flag on" in the same submatrix at the same sidereal time. Detections collected in this way could be considered "confirmed" since they always come from the same region of the sky and are observed regularly. An extremely powerful processing board based on a multi-FPGAs (Field Programmable Gate Array) core was developed and is now under programming. This is conceived to be the processing core for this new kind of investigations.

  16. OSETI with STACEE: a search for nanosecond optical transients from nearby stars.

    PubMed

    Hanna, D S; Ball, J; Covault, C E; Carson, J E; Driscoll, D D; Fortin, P; Gingrich, D M; Jarvis, A; Kildea, J; Lindner, T; Mueller, C; Mukherjee, R; Ong, R A; Ragan, K; Williams, D A; Zweerink, J

    2009-05-01

    We have used the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) high-energy gamma-ray detector to look for fast blue-green laser pulses from the vicinity of 187 stars. The STACEE detector offers unprecedented light-collecting capability for the detection of nanosecond pulses from such lasers. We estimate STACEE's sensitivity to be approximately 10 photons/m(2) at a wavelength of 420 nm. The stars have been chosen because their characteristics are such that they may harbor habitable planets, and they are relatively close to Earth. Each star was observed for 10 minutes, and we found no evidence for laser pulses in any of the data sets. Key Words: Search for extraterrestrial intelligence-Optical search for extraterrestrial intelligence-Interstellar communication-Laser.

  17. SETI as a part of Big History

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    2014-08-01

    Big History is an emerging academic discipline which examines history scientifically from the Big Bang to the present. It uses a multidisciplinary approach based on combining numerous disciplines from science and the humanities, and explores human existence in the context of this bigger picture. It is taught at some universities. In a series of recent papers ([11] through [15] and [17] through [18]) and in a book [16], we developed a new mathematical model embracing Darwinian Evolution (RNA to Humans, see, in particular, [17] and Human History (Aztecs to USA, see [16]) and then we extrapolated even that into the future up to ten million years (see 18), the minimum time requested for a civilization to expand to the whole Milky Way (Fermi paradox). In this paper, we further extend that model in the past so as to let it start at the Big Bang (13.8 billion years ago) thus merging Big History, Evolution on Earth and SETI (the modern Search for ExtraTerrestrial Intelligence) into a single body of knowledge of a statistical type. Our idea is that the Geometric Brownian Motion (GBM), so far used as the key stochastic process of financial mathematics (Black-Sholes models and related 1997 Nobel Prize in Economics!) may be successfully applied to the whole of Big History. In particular, in this paper we derive

  18. Aerosol Optical Depth Retrievals from High-Resolution Commercial Satellite Imagery Over Areas of High Surface Reflectance

    DTIC Science & Technology

    2006-06-01

    angle Imaging SpectroRadiometer MODIS Moderate Resolution Imaging Spectroradiometer NGA National Geospatial Intelligence Agency POI Principles of...and µ , the cosine of the viewing zenith angle and the effect of the variation of each of these variables on total optical depth. Extraterrestrial ...Eq. (34). Additionally, solar zenith angle also plays a role in the third term on the RHS of Eq. (34) by modifying extraterrestrial spectral solar

  19. Reactions to receipt of a message from extraterrestrial intelligence: a cross-cultural empirical study

    NASA Astrophysics Data System (ADS)

    Vakoch, D. A.; Lee, Y.-S.

    2000-06-01

    If we ever receive a message from extraterrestrial intelligence (ETI), the societal impact may be significant. To date, several authors have speculated on factors that may predict people's reactions, but there have been no systematic empirical studies on the range of responses. One obstacle to conducting such studies is that there has been no questionnaire to assess such reactions. In the current study we have designed a psychometrically sound set of scales to assess six beliefs: (1) that extraterrestrial life exists, (2) that ETI would be benevolent and that we should respond to a message, (3) that ETI would be malevolent, (4) that message receipt would be unsettling, (5) that message receipt would be religiously significant and (6) that experts should determine the content of a reply. We report on the construction and use of these new scales, drawing on data gathered from American and Chinese undergraduate students. Respondents also completed measures of alienation, optimism, anthropocentrism and religiosity. This allowed us to predict beliefs about ETI based on personal characteristics and beliefs of the respondents.

  20. Creatures in the Classroom: Preservice Teacher Beliefs About Fantastic Beasts, Magic, Extraterrestrials, Evolution and Creationism

    NASA Astrophysics Data System (ADS)

    Losh, Susan Carol; Nzekwe, Brandon

    2011-05-01

    Faculty have long expressed concern about pseudoscience belief among students. Most US research on such beliefs examines evolution-creation issues among liberal arts students, the general public, and occasionally science educators. Because of their future influence on youth, we examined basic science knowledge and several pseudoscience beliefs among 540 female and 123 male upperclass preservice teachers, comparing them with representative samples of comparably educated American adults. Future teachers resembled national adults on basic science knowledge. Their scores on evolution; creationism; intelligent design; fantastic beasts; magic; and extraterrestrials indices depended on the topic. Exempting science education, preservice teachers rejected evolution, accepting Biblical creation and intelligent design accounts. Sizable minorities "awaited more evidence" about fantastic beasts, magic, or extraterrestrials. Although gender, disciplinary major, grade point average, science knowledge, and two religiosity measures related to beliefs about evolution-creation, these factors were generally unassociated with the other indices. The findings suggest more training is needed for preservice educators in the critical evaluation of material evidence. We also discuss the judicious use of pseudoscience beliefs in such training.

  1. Orbital Debris: Technical and Legal Issues and Solutions

    DTIC Science & Technology

    2006-08-01

    States will seek to minimize the creation of space debris. NASA, the intelligence community, and DoD, in cooperation with the private sector, will...205 and accompanying text. 388 Raymond T. Swenson, “Pollution of the Extraterrestrial Environment” (1985) 25 A.F. L. Rev. 70 at 79. “Article IX is...Hastings Int’l & Comp. L. Rev. 125. Swenson, Raymond T. “Pollution of the Extraterrestrial Environment” (1985) 25 A.F. L. Rev. 70. Tan, David

  2. The recognition of extraterrestrial intelligence

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1975-01-01

    The departure from radiative equilibrium - represented by radio, television and radar technology - in the microwave spectrum of the earth is easily detectable over interstellar distances. Even with a technology no more advanced than our own, a civilization on a planet of a nearby star could easily determine, by auto-correlation techniques, the artificiality of these radio signals. Possible message contents for interstellar discourse of a modulated signal at any accessible frequency include (1) m-dimensional imagery represented by the transmission of numbers which are the products of m prime numbers; and (2) the use of a common mathematics, physics or astronomy to convey a range of information on more difficult subjects. The only direct attempts to date to communicate with extraterrestrial intelligence - the plaques aboard the Pioneer 10 and 11 spacecraft - are discussed briefly.

  3. Sensitive detection of narrowband pulses.

    PubMed

    Cullers, D K

    1986-01-01

    Highly monochromatic signals, such as TV carriers, can be detected sensitively by using a narrow filter (b < or = 1 Hz) and performing power accumulation on its output. If instead a low-duty-cycle pulsed signal of the same total energy is present, the sensitivity of a square law device, followed by a thresholding operation (to eliminate most samples containing only noise), followed by the algorithm to be described, is greater by about 7 dB in typical cases. This is particularly interesting to SETI because such a pulsed signal is exactly what is sent by a rotating beacon with a directional antenna. Such a pulsed signal is, therefore, a good candidate for an extraterrestrial beacon. Software for detecting this signal type is now ready for field testing with the NASA Multichannel Spectrum Analyzer (MCSA).

  4. GRAVITATIONAL MICROLENSING EVENTS AS A TARGET FOR THE SETI PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahvar, Sohrab, E-mail: rahvar@sharif.edu

    2016-09-01

    The detection of signals from a possible extrasolar technological civilization is one of the most challenging efforts of science. In this work, we propose using natural telescopes made of single or binary gravitational lensing systems to magnify leakage of electromagnetic signals from a remote planet that harbors Extraterrestrial Intelligent (ETI) technology. Currently, gravitational microlensing surveys are monitoring a large area of the Galactic bulge to search for microlensing events, finding more than 2000 events per year. These lenses are capable of playing the role of natural telescopes, and, in some instances, they can magnify radio band signals from planets orbitingmore » around the source stars in gravitational microlensing systems. Assuming that the frequency of electromagnetic waves used for telecommunication in ETIs is similar to ours, we propose follow-up observation of microlensing events with radio telescopes such as the Square Kilometre Array (SKA), the Low Frequency Demonstrators, and the Mileura Wide-Field Array. Amplifying signals from the leakage of broadcasting by an Earth-like civilization will allow us to detect them as far as the center of the Milky Way galaxy. Our analysis shows that in binary microlensing systems, the probability of amplification of signals from ETIs is more than that in single microlensing events. Finally, we propose the use of the target of opportunity mode for follow-up observations of binary microlensing events with SKA as a new observational program for searching ETIs. Using optimistic values for the factors of the Drake equation provides detection of about one event per year.« less

  5. Implications of directed energy for SETI

    NASA Astrophysics Data System (ADS)

    Lubin, Philip

    2016-09-01

    We compute the detectability of directed-energy (DE) sources from distant civilizations that may exist. Recent advances in our own DE technology suggest that our eventual capabilities will radically enhance our capacity to broadcast our presence and hence allow us to ponder the reverse case of detection. We show that DE systems are detectable at vast distances, possibly across the entire horizon, which profoundly alters conceivable search strategies for extra-terrestrial, technologically-advanced civilizations. Even modest searches are extremely effective at detecting or constraining many civilization classes. A single civilization anywhere in our galaxy of comparable technological advancement to our own can be detected with near unity probability with a cluster of 0.1 m telescopes on Earth. A 1 m class telescope can detect a single civilization anywhere in the Andromeda galaxy. A search strategy is proposed using small Earth-based telescopes to observe 1012-1020 stellar and planetary systems. Such observations could address whether there exist other civilizations which are broadcasting with similar or more advanced DE capability. We show that such searches have near-unity probability of detecting comparably advanced civilizations anywhere in our galaxy within a few years, assuming the civilization: (1) adopts a simple "intelligent targeting" beacon strategy; (2) is beaconing at a wavelength we can detect; (3) broadcast the beacon long enough for the light to reach Earth now. In this blind-beacon, blind-search strategy, the civilization need not know where we are nor do we need to know where they are. The same basic strategy can be extended to extragalactic distances.

  6. GLOBULAR CLUSTERS AS CRADLES OF LIFE AND ADVANCED CIVILIZATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefano, R. Di; Ray, A., E-mail: rdistefano@cfa.harvard.edu, E-mail: akr@tifr.res.in

    2016-08-10

    Globular clusters are ancient stellar populations in compact dense ellipsoids. There is no star formation and there are no core-collapse supernovae, but several lines of evidence suggest that globular clusters are rich in planets. If so, and if advanced civilizations can develop there, then the distances between these civilizations and other stars would be far smaller than typical distances between stars in the Galactic disk, facilitating interstellar communication and travel. The potent combination of long-term stability and high stellar densities provides a globular cluster opportunity. Yet the very proximity that promotes interstellar travel also brings danger, as stellar interactions canmore » destroy planetary systems. We find, however, that large portions of many globular clusters are “sweet spots,” where habitable-zone planetary orbits are stable for long times. Globular clusters in our own and other galaxies are, therefore, among the best targets for searches for extraterrestrial intelligence (SETI). We use the Drake equation to compare the likelihood of advanced civilizations in globular clusters to that in the Galactic disk. We also consider free-floating planets, since wide-orbit planets can be ejected to travel through the cluster. Civilizations spawned in globular clusters may be able to establish self-sustaining outposts, reducing the probability that a single catastrophic event will destroy the civilization. Although individual civilizations may follow different evolutionary paths, or even be destroyed, the cluster may continue to host advanced civilizations once a small number have jumped across interstellar space. Civilizations residing in globular clusters could therefore, in a sense, be immortal.« less

  7. Globular Clusters as Cradles of Life and Advanced Civilizations

    NASA Astrophysics Data System (ADS)

    Di Stefano, R.; Ray, A.

    2016-08-01

    Globular clusters are ancient stellar populations in compact dense ellipsoids. There is no star formation and there are no core-collapse supernovae, but several lines of evidence suggest that globular clusters are rich in planets. If so, and if advanced civilizations can develop there, then the distances between these civilizations and other stars would be far smaller than typical distances between stars in the Galactic disk, facilitating interstellar communication and travel. The potent combination of long-term stability and high stellar densities provides a globular cluster opportunity. Yet the very proximity that promotes interstellar travel also brings danger, as stellar interactions can destroy planetary systems. We find, however, that large portions of many globular clusters are “sweet spots,” where habitable-zone planetary orbits are stable for long times. Globular clusters in our own and other galaxies are, therefore, among the best targets for searches for extraterrestrial intelligence (SETI). We use the Drake equation to compare the likelihood of advanced civilizations in globular clusters to that in the Galactic disk. We also consider free-floating planets, since wide-orbit planets can be ejected to travel through the cluster. Civilizations spawned in globular clusters may be able to establish self-sustaining outposts, reducing the probability that a single catastrophic event will destroy the civilization. Although individual civilizations may follow different evolutionary paths, or even be destroyed, the cluster may continue to host advanced civilizations once a small number have jumped across interstellar space. Civilizations residing in globular clusters could therefore, in a sense, be immortal.

  8. Wide-bandwidth high-resolution search for extraterrestrial intelligence

    NASA Technical Reports Server (NTRS)

    Horowitz, Paul

    1992-01-01

    Research accomplished in the following areas is discussed: the antenna configuration; HEMT low-noise amplifiers; the downconverter; the Fast Fourier Transform Array; the backend array; and the backend and workstation.

  9. The telecommunications and data acquisition report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Progress in the development and operations of the Deep Space Network along with developments in Earth-based radio technology as applied to geodynamics, astrophysics, and the search for extraterrestrial intelligence are reported.

  10. The Biological Universe

    NASA Astrophysics Data System (ADS)

    Dick, Steven J.

    1999-12-01

    Throughout the twentieth century, from the furor over Percival Lowell's claim of canals on Mars to the sophisticated Search for Extraterrestrial Intelligence, otherworldly life has often intrigued and occasionally consumed science and the public. The Biological Universe provides a rich and colorful history of the attempts during the twentieth century to answer questions such as whether "biological law" reigns throughout the universe and whether there are other histories, religions, and philosophies outside those on Earth. Covering a broad range of topics, including the search for life in the solar system, the origins of life, UFOs, and aliens in science fiction, Steven J. Dick shows how the concept of extraterrestrial intelligence is a world view of its own, a "biophysical cosmology" that seeks confirmation no less than physical views of the universe. This book will fascinate astronomers, historians of science, biochemists, and science fiction readers.

  11. Impossible Predictions of the Unprecedented: Analogy, History, and the Work of Prognostication

    NASA Astrophysics Data System (ADS)

    Denning, Kathryn

    At the beginning of exobiology and SETI as research programs circa 1960, it was reasonable and responsible for scientists and others to consider the potential effects of a detection of other life, or contact with it, upon humanity. It is no coincidence that this was a time of reckoning with the power of science and technology. The Cold War was settling in, space programs were beginning, and the technologies of war and those of discovery were then, as now, intertwined, in a way that made Carl Sagan, Philip Morrison, Joshua Lederberg, and others, concerned for humanity's future, and the future of life. Those concerns are as well-founded as ever. However, 50 years on, after half a century of predictions and untested hypotheses, we still only know that a detection of extraterrestrial life could come tomorrow, in the next century, or never. Many potential scenarios have been identified and explored, planetary protection protocols have been implemented for astrobiology, policy concerning SETI detections has been created and debated, and some valuable empirical work has been done concerning potential cultural reactions. We might now reasonably ask: what are our real goals here? And do they match what we are actually accomplishing? Are these exercises still beneficial, or are they reaching the point of diminishing returns? Might there be undesirable effects of prognostications about detection and contact? Elsewhere, I have discussed at some length what I think can sensibly be done to prepare for a detection. This leaves me with a further argument to make here: first, that the use of historical analogies of intercultural contact on Earth to predict or explore the potential consequences of contact with ETI may now be essentially useless or perhaps worse than useless; second, that the longstanding practice of prediction about contact now also invites scrutiny in terms of its utility; and third, that turning our attention to pressing topics at the intersection of astrobiology, SETI, and society, could be worthwhile for scholars of humanity.

  12. Energy of Extra-Terrestrial Civilizations according to Evo-SETI Theory

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    2018-03-01

    Consider two great scientists of the past: Kepler (1571-1630) and Newton (1642-1727). Kepler discovered his three laws of planetary motion by observing Mars: he knew experimentally that his three laws were correct, but he didn't even suspect that all three mathematical laws could be derived as purely mathematical consequences by a "superior" mathematical law. The latter was the Law of Gravitation that Newton gave the world together with his supreme mathematical discovery of the Calculus, necessary for that mathematical derivation. We think we did the same for the "molecular clock", the experimental law of genetics discovered in 1962 by Émile Zuckerkandl (1922-2013) and Linus Pauling (1901-1994) and derived by us as a purely mathematical consequence of our mathematical Evo-SETI Theory. Let us now summarize how this mathematical derivation was achieved. Darwinian evolution over the last 3.5 billion years was an increase in the number of living species from one (RNA ?) to the current (say) 50 million. This increasing trend in time looks like being exponential, but one may not assume an exact exponential curve since many species went extinct in the past, especially in the five, big mass extinctions. Thus, the simple exponential curve must be replaced by a stochastic process having an exponential mean value. Borrowing from financial mathematics (the "Black-Sholes models"), this "exponential" stochastic process is called Geometric Brownian Motion (GBM). Its probability density function (pdf) is a lognormal (and not a Gaussian) (Proof: see Ref. [3], Chapter 30, and Ref. [4], and, more in general, refs. [2] and [5]). Lognormal also is the pdf of the statistical number of communicating ExtraTerrestrial (ET) civilizations in the Galaxy at a certain fixed time, like a snapshot: this result was obtained in 2008 by this author as his solution to the Statistical Drake Equation of SETI (Proof: see Ref. [1]). Thus, the GBM of Darwinian evolution may also be regarded as the extension in time of the Statistical Drake equation (Proof: see ref. [4]). But the key step ahead made by this author in his Evo-SETI (Evolution and SETI) mathematical theory was to realize that life also is just a b-lognormal in time: every living organism (a cell, a human, a civilization, even an ET civilization) is born at a certain time b ("birth"), grows up to a peak p (with an ascending inflexion point in between, a for adolescence), then declines from p to s (senility, i.e. descending inflexion point) and finally declines linearly and dies at a final instant d (death). In other words, the infinite tail of the b-lognormal was cut away and replaced by just a straight line between s and d, leading to simple mathematical formulae ("History Formulae") allowing one to find this "finite b-lognormal" when the three instants b, s, and d are assigned. Next our crucial Peak-Locus Theorem comes. It means that the GBM exponential may be regarded as the geometric locus of all the peaks of a one-parameter (i.e. the peak time p) family of b-lognormals. Since b-lognormals are pdf-s, the area under each of them always equals 1 (normalization condition) and so, going from left to right on the time axis, the b-lognormals become more and more "peaky", and so they last less and less in time. This is precisely what happened in Human History: civilizations that lasted a millennium each (like Ancient Greece and Rome) lasted just a few centuries in later times (like the Italian Renaissance and Portuguese, Spanish, French, British and USA Empires) but they were more and more advanced in the "level of civilization". This "level of civilization" is what physicists call entropy. Also, in refs. [3,4], this author proved that, for all GBMs, the (Shannon) Entropy of the b-lognormals in his Peak-Locus Theorem grows linearly in time. The Molecular Clock (refs. [6] through [11]), well known to geneticists since 1962, shows that the DNA base-substitutions occur linearly in time since they are neutral with respect to Darwinian selection. This is Kimura's neutral theory of molecular evolution. The conclusion is that the Molecular Clock and the linear increase of EvoEntropy in time are just the same thing! In other words, we derived the Molecular Clock mathematically as a part of our Evo-SETI Theory. In addition, our EvoEntropy, i.e. the Shannon Entropy of the b-lognormal (with the minus sign reversed and starting at zero at the time of the origin of Life on Earth) is just the new Evo-SETI Scale to measure the evolution of life on Exoplanets (measured in bits). That was the situation prior to the present paper, firstly presented at the SETI II Session of the Adelaide IAC in October 2017. In fact, just as classical thermodynamics entails both energy and entropy, so our Evo-SETI Theory needs entailing the energy used by a living Species or Civilization along its whole lifetime in addition to its entropy (i.e. Molecular Clock). In other words still, while the Molecular Clock is a measure of the advancement in evolution, the energy required to get that advancement is another topic not faced by this author prior to 2017. However, in the present paper we were able to add the consideration of energy in addition to entropy by replacing the b-lognormal probability densities previously used by a new curve, finite in the time, that we call "logpar". This logpar is made up by an ascending b-lognormal in the time between the birth and the peak of the living organism, followed by a descending parabola in the time between its peak and death. The logpar curve is not normalized to one: the area under the logpar curve may be any positive number since it represents the energy requested by the organism to live over its entire lifetime "birth-to-death". In other words still, we mathematically demonstrate in this paper that just three instants (birth b, peak p and death d) must be assigned in order to make the mathematical logpar curve perfectly described. The history of the Roman Civilization fits to this description in that we not only know when Rome was funded (753 B.C.) and reached its peak (117 A.D.) but also when it collapsed (in the West), i.e. 476 A.D. Its energy is then estimated in terms of money (Sestertii) and so we dare to say that our Evo-SETI Theory so extended adequately describes not only the Entropy but also the Energy of Rome. In conclusion, we think that our invention of the logpar power curve provides a new, formidable mathematical tool for our Evo-SETI mathematical description of Life, History and SETI.

  13. The telecommunications and data acquisition progress report 42-64

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A. (Editor)

    1981-01-01

    Progress in the development and operations of the Deep Space Network is reported. Developments in Earth-based radio technology as applied to geodynamics, astrophysics, and the radio search for extraterrestrial intelligence are included.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benford, James N.; Benford, Dominic J., E-mail: jimbenford@gmail.com

    The most observable leakage radiation from an advanced civilization may well be from the use of power beaming to transfer energy and accelerate spacecraft. Applications suggested for power beaming involve launching spacecraft to orbit, raising satellites to a higher orbit, and interplanetary concepts involving space-to-space transfers of cargo or passengers. We also quantify beam-driven launch to the outer solar system, interstellar precursors, and ultimately starships. We estimate the principal observable parameters of power beaming leakage. Extraterrestrial civilizations would know their power beams could be observed, and so could put a message on the power beam and broadcast it for ourmore » receipt at little additional energy or cost. By observing leakage from power beams we may find a message embedded on the beam. Recent observations of the anomalous star KIC 8462852 by the Allen Telescope Array (ATA) set some limits on extraterrestrial power beaming in that system. We show that most power beaming applications commensurate with those suggested for our solar system would be detectable if using the frequency range monitored by the ATA, and so the lack of detection is a meaningful, if modest, constraint on extraterrestrial power beaming in that system. Until more extensive observations are made, the limited observation time and frequency coverage are not sufficiently broad in frequency and duration to produce firm conclusions. Such beams would be visible over large interstellar distances. This implies a new approach to the SETI search: instead of focusing on narrowband beacon transmissions generated by another civilization, look for more powerful beams with much wider bandwidth. This requires a new approach for their discovery by telescopes on Earth. Further studies of power beaming applications should be performed, potentially broadening the parameter space of the observable features that we have discussed here.« less

  15. Publications of the exobiology program for 1983: A special bibliography

    NASA Technical Reports Server (NTRS)

    Pleasant, L. G. (Compiler); Devincenzi, D. L. (Compiler)

    1984-01-01

    A list of 1983 publications resulting from research pursued under the auspices of NASA's Exobiology Program is given. Topics in the fields of biological, chemical, and planetary evolution; geochemistry; and intelligent extraterrestrial life are listed.

  16. Wide-bandwidth high-resolution search for extraterrestrial intelligence

    NASA Technical Reports Server (NTRS)

    Horowitz, Paul

    1993-01-01

    Research accomplished during the third 6-month period is summarized. Research covered the following: dual-horn antenna performance; high electron mobility transistors (HEMT) low-noise amplifiers; downconverters; fast Fourier transform (FFT) array; and backend 'feature recognizer' array.

  17. Galactic punctuated equilibrium: how to undermine Carter's anthropic argument in astrobiology.

    PubMed

    Cirković, Milan M; Vukotić, Branislav; Dragićević, Ivana

    2009-06-01

    A new strategy by which to defeat Carter's "anthropic" argument against extraterrestrial life and intelligence is presented. Our approach is based on relaxing hidden uniformitarian assumptions and considering instead a dynamical succession of evolutionary regimes governed by both global (Galaxy-wide) and local (planet- or planetary system-limited) regulation mechanisms. Notably, our increased understanding of the nature of supernovae, gamma-ray bursts, and strong coupling between the Solar System and the Galaxy, and the theories of "punctuated equilibria" and "macroevolutionary regimes" are in full accordance with the regulation-mechanism picture. The application of this particular strategy highlights the limits of application of Carter's argument and indicates that, in the real universe, its applicability conditions are not satisfied. We conclude that drawing far-reaching conclusions about the scarcity of extraterrestrial intelligence and the prospects of our efforts to detect it on the basis of this argument is unwarranted.

  18. Would the Discovery of ETI Provoke a Religious Crisis?

    NASA Astrophysics Data System (ADS)

    Peters, Ted

    Noting how some prophets of crisis forecast that traditional religious traditions are vulnerable to challenge if not collapse upon confirmation of the existence of extraterrestrial intelligent beings, this chapter subjects this claim to examination. Citing findings from the Peters ETI Religious Crisis Survey, we find evidence that those who affirm religious belief have no difficulty affirming the existence of ETI and incorporating ETI into their respective worldviews. This applies to Orthodox Christians, Roman Catholics, mainline Protestants, Evangelical Protestants, Jews, Mormons, Buddhists, and to those who self-identify as non-religious. Surprisingly, the self-identified non-religious respondents are the only ones who fear a religious crisis precipitated by contact with extraterrestrials, a crisis expected to happen to others but not to themselves. Turning to the new field of Astrotheology, the question of de-centering both geocentrism and anthropocentrism is raised in light of the prospect of discovering intelligent celestial neighbors.

  19. An experiment protocol for a search for radio signals of extraterrestrial intelligent origin in the presence of man-made radio frequency sources

    NASA Technical Reports Server (NTRS)

    Edelson, R. E.

    1977-01-01

    Some aspects of signal extraction in a microwave search for evidence of extraterrestrial intelligence are examined. Parametric relations are summarized which are applicable to a microwave search of constrained duration that employs FFT spectrum-analyzer receivers, with sensitivity enhancement by spectrum accumulation and detection by a threshold criterion. Three types of natural and man-made false alarms are identified, the probability of false alarm in a single data channel is computed, and the implications of false alarms for a constant-beamwidth sky survey are considered. It is shown that the key to an efficient search is the prompt and unambiguous elimination of false alarms. An experimental protocol is suggested which eliminates spurious signals primarily through procedural techniques involving antenna repointing, delayed repeated observations, and storage of particular historical parameters for suspect signals.

  20. The cosmic gorilla effect or the problem of undetected non terrestrial intelligent signals

    NASA Astrophysics Data System (ADS)

    G. De la Torre, Gabriel; Garcia, Manuel A.

    2018-05-01

    This article points to a long lasting problem in space research and cosmology, the problem of undetected signs of non terrestrial life and civilizations. We intentionally avoid the term extraterrestrial as we consider other possibilities that may arise but not fall strictly within the extraterrestrial scope. We discuss the role of new physics including dark matter and string theory in the search for life and other non terrestrial intelligence. A new classification for non terrestrial civilizations with three types and five dimensions is also provided. We also explain how our own neurophysiology, psychology and consciousness can play a major role in this search of non terrestrial civilizations task and how they have been neglected up to this date. To test this, 137 adults were evaluated using the cognitive reflection test, an attention/awareness questionnaire and a visuospatial searching task with aerial view images to determine the presence of inattentional blindness.

  1. The Problem of Extraterrestrial Civilizations and Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2015-07-01

    The problem of extraterrestrial intelligence is the best example of multidisciplinary science. Here philosophy and religion, astronomy, radiophysics, spectrography, space flights and astronautics, geology and planetology, astroecology, chemistry and biology, history and archaeology, psychology, sociology, linguistics, diplomacy, UFOs and peculiar phenomena are involved. Among these many-sided studies, astronomers have probably displayed the most progress by discovering thousands of extrasolar planets. At present, a number of search programs are being accomplished, including those with space telescopes, and planets in so-called "habitable zone" are considered as most important ones, for which various orbital and physical parameters are being calculated. As the discovery of extraterrestrial life is the final goal, a special attention is given to Earth-like planets, for the discovery of which most sensitive technical means are necessary.

  2. The transcension hypothesis: Sufficiently advanced civilizations invariably leave our universe, and implications for METI and SETI

    NASA Astrophysics Data System (ADS)

    Smart, John M.

    2012-09-01

    The emerging science of evolutionary developmental ("evo devo") biology can aid us in thinking about our universe as both an evolutionary system, where most processes are unpredictable and creative, and a developmental system, where a special few processes are predictable and constrained to produce far-future-specific emergent order, just as we see in the common developmental processes in two stars of an identical population type, or in two genetically identical twins in biology. The transcension hypothesis proposes that a universal process of evolutionary development guides all sufficiently advanced civilizations into what may be called "inner space," a computationally optimal domain of increasingly dense, productive, miniaturized, and efficient scales of space, time, energy, and matter, and eventually, to a black-hole-like destination. Transcension as a developmental destiny might also contribute to the solution to the Fermi paradox, the question of why we have not seen evidence of or received beacons from intelligent civilizations. A few potential evolutionary, developmental, and information theoretic reasons, mechanisms, and models for constrained transcension of advanced intelligence are briefly considered. In particular, we introduce arguments that black holes may be a developmental destiny and standard attractor for all higher intelligence, as they appear to some to be ideal computing, learning, forward time travel, energy harvesting, civilization merger, natural selection, and universe replication devices. In the transcension hypothesis, simpler civilizations that succeed in resisting transcension by staying in outer (normal) space would be developmental failures, which are statistically very rare late in the life cycle of any biological developing system. If transcension is a developmental process, we may expect brief broadcasts or subtle forms of galactic engineering to occur in small portions of a few galaxies, the handiwork of young and immature civilizations, but constrained transcension should be by far the norm for all mature civilizations. The transcension hypothesis has significant and testable implications for our current and future METI and SETI agendas. If all universal intelligence eventually transcends to black-hole-like environments, after which some form of merger and selection occurs, and if two-way messaging (a send-receive cycle) is severely limited by the great distances between neighboring and rapidly transcending civilizations, then sending one-way METI or probes prior to transcension becomes the only real communication option. But one-way messaging or probes may provably reduce the evolutionary diversity in all civilizations receiving the message, as they would then arrive at their local transcensions in a much more homogenous fashion. If true, an ethical injunction against one-way messaging or probes might emerge in the morality and sustainability systems of all sufficiently advanced civilizations, an argument known as the Zoo hypothesis in Fermi paradox literature, if all higher intelligences are subject to an evolutionary attractor to maximize their local diversity, and a developmental attractor to merge and advance universal intelligence. In any such environment, the evolutionary value of sending any interstellar message or probe may simply not be worth the cost, if transcension is an inevitable, accelerative, and testable developmental process, one that eventually will be discovered and quantitatively described by future physics. Fortunately, transcension processes may be measurable today even without good physical theory, and radio and optical SETI may each provide empirical tests. If transcension is a universal developmental constraint, then without exception all early and low-power electromagnetic leakage signals (radar, radio, television), and later, optical evidence of the exoplanets and their atmospheres should reliably cease as each civilization enters its own technological singularities (emergence of postbiological intelligence and life forms) and recognizes that they are on an optimal and accelerating path to a black-hole-like environment. Furthermore, optical SETI may soon allow us to map an expanding area of the galactic habitable zone we may call the galactic transcension zone, an inner ring that contains older transcended civilizations, and a missing planets problem as we discover that planets with life signatures occur at a much lower frequencies in this inner ring than in the remainder of the habitable zone.

  3. The development of extraterrestrial civilizations and physical laws

    NASA Astrophysics Data System (ADS)

    Troitskii, V. S.

    Consideration is given to the limiting characteristics of extraterrestrial civilizations as allowed by physical laws, and to the possible pathways and levels of development of such civilizations. The concept of an extraterrestrial civilization is defined in terms of the exchange of information, energy and matter both within a community of intelligent beings and between the community and its environment. The possible characteristics of such a civilization are then examined, including amount of populated space, population and population density, energy requirements and supply, information content, transportation capacity and lifetimes, and it is shown that the space occupiable by an extraterrestrial civilization is limited to the space around its star, due to the finite velocity of transport processes. The development of a type II civilization, making use of energy on the order of that put out by its star, is then examined, and constraints on energy production in such a civilization making impossible the establishment of an omnidirectional radio beacon detectable throughout the Galaxy are pointed out.

  4. The Theory of Everything and the future of life

    NASA Astrophysics Data System (ADS)

    Karthik, Trishank

    2004-10-01

    This paper is a philosophical essay on metaphysics, in which we develop a justification for Algorithmic Communication with Extraterrestrial Intelligence by considering the relationship between the Theory of Everything and the future of life or physical eschatology.

  5. THE Ĝ SEARCH FOR EXTRATERRESTRIAL CIVILIZATIONS WITH LARGE ENERGY SUPPLIES. IV. THE SIGNATURES AND INFORMATION CONTENT OF TRANSITING MEGASTRUCTURES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Jason T.; Cartier, Kimberly M. S.; Zhao, Ming

    2016-01-01

    Arnold, Forgan, and Korpela et al. noted that planet-sized artificial structures could be discovered with Kepler as they transit their host star. We present a general discussion of transiting megastructures, and enumerate 10 potential ways their anomalous silhouettes, orbits, and transmission properties would distinguish them from exoplanets. We also enumerate the natural sources of such signatures. Several anomalous objects, such as KIC 12557548 and CoRoT-29, have variability in depth consistent with Arnold’s prediction and/or an asymmetric shape consistent with Forgan’s model. Since well-motivated physical models have so far provided natural explanations for these signals, the ETI hypothesis is not warrantedmore » for these objects, but they still serve as useful examples of how non-standard transit signatures might be identified and interpreted in a SETI context. Boyajian et al. recently announced KIC 8462852, an object with a bizarre light curve consistent with a “swarm” of megastructures. We suggest that this is an outstanding SETI target. We develop the normalized information content statistic M to quantify the information content in a signal embedded in a discrete series of bounded measurements, such as variable transit depths, and show that it can be used to distinguish among constant sources, interstellar beacons, and naturally stochastic or artificial, information-rich signals. We apply this formalism to KIC 12557548 and a specific form of beacon suggested by Arnold to illustrate its utility.« less

  6. The Search for Extraterrestrial Civilizations with Large Energy Supplies. IV. The Signatures and Information Content of Transiting Megastructures

    NASA Astrophysics Data System (ADS)

    Wright, Jason T.; Cartier, Kimberly M. S.; Zhao, Ming; Jontof-Hutter, Daniel; Ford, Eric B.

    2016-01-01

    Arnold, Forgan, and Korpela et al. noted that planet-sized artificial structures could be discovered with Kepler as they transit their host star. We present a general discussion of transiting megastructures, and enumerate 10 potential ways their anomalous silhouettes, orbits, and transmission properties would distinguish them from exoplanets. We also enumerate the natural sources of such signatures. Several anomalous objects, such as KIC 12557548 and CoRoT-29, have variability in depth consistent with Arnold’s prediction and/or an asymmetric shape consistent with Forgan’s model. Since well-motivated physical models have so far provided natural explanations for these signals, the ETI hypothesis is not warranted for these objects, but they still serve as useful examples of how non-standard transit signatures might be identified and interpreted in a SETI context. Boyajian et al. recently announced KIC 8462852, an object with a bizarre light curve consistent with a “swarm” of megastructures. We suggest that this is an outstanding SETI target. We develop the normalized information content statistic M to quantify the information content in a signal embedded in a discrete series of bounded measurements, such as variable transit depths, and show that it can be used to distinguish among constant sources, interstellar beacons, and naturally stochastic or artificial, information-rich signals. We apply this formalism to KIC 12557548 and a specific form of beacon suggested by Arnold to illustrate its utility.

  7. Long-term prospects: Mitigation of supernova and gamma-ray burst threat to intelligent beings

    NASA Astrophysics Data System (ADS)

    Ćirković, Milan M.; Vukotić, Branislav

    2016-12-01

    We consider global catastrophic risks due to cosmic explosions (supernovae, magnetars and gamma-ray bursts) and possible mitigation strategies by humans and other hypothetical intelligent beings. While by their very nature these events are so huge to daunt conventional thinking on mitigation and response, we wish to argue that advanced technological civilizations would be able to develop efficient responses in the domain of astroengineering within their home planetary systems. In particular, we suggest that construction of shielding swarms of small objects/particles confined by electromagnetic fields could be one way of mitigating the risk of cosmic explosions and corresponding ionizing radiation surges. Such feats of astroengineering could, in principle, be detectable from afar by advanced Dysonian SETI searches.

  8. Life sciences on the moon

    NASA Astrophysics Data System (ADS)

    Horneck, G.

    Despite of the fact that the lunar environment lacks essential prerequisites for supporting life, lunar missions offer new and promising opportunities to the life sciences community. Among the disciplines of interest are exobiology, radiation biology, ecology and human physiology. In exobiology, the Moon offers an ideal platform for studies related to the understanding of the principles, leading to the origin, evolution and distribution of life. These include the analysis of lunar samples and meteorites in relatively pristine conditions, radioastronomical search for other planetary systems or Search for Extra-Terrestrial Intelligence (SETI), and studies on the role of radiation in evolutionary processes and on the environmental limits for life. For radiation biology, the Moon provides an unique laboratory with built-in sources for optical as well as ionising radiation to investigate the biological importance of the various components of cosmic and solar radiation. Before establishing a lunar base, precursor missions will provide a characterisation of the radiation field, determination of depth dose distributions in different absorbers, the installation of a solar flare alert system, and a qualification of the biological efficiency of the mixed radiation environment. One of the most challenging projects falls into the domain of ecology with the establishment for the first time of an artificial ecosystem on a celestial body beyond the Earth. From this venture, a better understanding of the dynamics regulating our terrestrial biosphere is expected. It will also serve as a precursor of bioregenerative life support systems for a lunar base. The establishment of a lunar base with eventually long-term human presence will raise various problems in the fields of human physiology and health care, psychology and sociology. Protection guidelines for living in this hostile environment have to be established.

  9. Filosofiya Kanta i sovremennaya kosmologiya %t Kant's philosophy and modern cosmology

    NASA Astrophysics Data System (ADS)

    Mikhajlov, K. A.

    In this article practically for the first time we make an attempt to analyse the essence and solution of a number of important problems of modern cosmology, such as those connected with the so called "anthropic principle" (AP), from the point of view of Kant's transcendental philosophy. With this aim in view, philosophical and methodological bases and consequences of AP, its contents and place in the history of science and philosophy of science are investigated. As well as this, the main principles of Kant's theory of knowledge are analysed. The philosophical contents of Kant's transcendental deduction are similar to B. Karter's AP. Kant's concept of time and his solution of the problem of the objective existence of the Universe are compared with the principles and conclusions of J. Wheeler's quantum theory of Universe creation. In this connection, Kant's interpretation of such concepts as "nature", "external object", "the object of the past", "existence", "the object of experience", "objectivity" are considered. The principal role of human conscience in the construction of the scientific picture of the Universe is shown. The ontological status of the past as the time modus and Time itself is analysed. Objectivity is understood as the necessary knowledge about the object coinciding with the object itself. The second part of the paper is devoted to the analysis of the modern state of research in the field of "SETI-problem" from the point of view of Kant's philosophy. The problem of the possible correlation of the pictures of the Universe by different intelligent beings is considered. G. Panovkin's theory of extraterrestrial civilisations is compared with Kant's theory of the substance of thought.

  10. The early atmosphere: a new picture.

    PubMed

    Levine, J S

    1986-01-01

    Over the last several years, many of the fundamental ideas concerning the composition and chemical evolution of the Earth's early atmosphere have changed. While many aspects of this subject are clouded--either uncertain or unknown, a new picture is emerging. We are just beginning to understand how astronomical, geochemical, and atmospheric processes each contributed to the development of the gaseous envelope around the third planet from the sun some 4.6 billion years ago and how that envelope chemically evolved over the history of our planet. Simple compounds in that gaseous envelope, energized by atmospheric lightning and/or solar ultraviolet radiation, formed molecules of increasing complexity that eventually evolved into the first living systems on our planet. This process is called "chemical evolution" and immediately preceded biological evolution; once life developed and evolved, it began to alter the chemical composition of the atmosphere that provided the very essence of its creation. Photosynthetic organisms which have the ability to biochemically transform carbon dioxide and water to carbohydrates, which they use for food, produce large amounts of molecular oxygen (O2) as a by-product of the reaction. Atmospheric oxygen photochemically formed ozone, which absorbs ultraviolet radiation from the sun and shields the Earth's surface from this biologically lethal radiation. Once atmospheric ozone levels increased sufficiently, life could leave the safety of the oceans and go ashore for the first time. Throughout the history of our planet, there has been strong interaction between life and the atmosphere. Understanding our cosmic roots is particularly relevant as we embark on a search for life outside the Earth. At this very moment, several radio telescopes around the world are searching for extraterrestrial intelligence (SETI).

  11. Modeling an Optical and Infrared Search for Extraterrestrial Intelligence Survey with Exoplanet Direct Imaging

    NASA Astrophysics Data System (ADS)

    Vides, Christina; Macintosh, Bruce; Ruffio, Jean-Baptiste; Nielsen, Eric; Povich, Matthew Samuel

    2018-01-01

    Gemini Planet Imager (GPI) is a direct high contrast imaging instrument coupled to the Gemini South Telescope. Its purpose is to image extrasolar planets around young (~<100Myr) and relatively close (=< 100 pc) stars in the near infrared. Using a combination of adaptive optics (AO) and image processing techniques, the signal of a planet can be differentiated from diffraction in the images. A coronagraph is vital to achieving high contrast images at small angular separations (=<0.2 arcseconds).With the emergence of OIRSETI (Optical and Infrared Search for Extraterrestrial Intelligence), we modeled GPI’s capabilities to detect an extraterrestrial continuous wave (CW) laser broadcasted within the H-band have been modeled. By using sensitivity evaluated for actual GPI observations of young target stars, we produced models of the CW laser power as a function of distance from the star that could be detected if GPI were to observe nearby (~ 3-5 pc) planet-hosting G-type stars. We took a variety of transmitters into consideration in producing these modeled values. GPI is known to be sensitive to both pulsed and CW coherent electromagnetic radiation. The results were compared to similar studies and it was found that these values are competitive to other optical and infrared observations.

  12. Captain Cook, the Terrestrial Planet Finder and the search for extraterrestrial intelligence

    NASA Technical Reports Server (NTRS)

    Beichman, C.

    2002-01-01

    A recently completed NASA study has concluded that a Terrestrial Planet Finder could be launched within a decade to detect terrestrial planets around nearby stars. Such a mission, complemented by projects (Kepler and Eddington) that will provide statistical information on the frequency of Earth-sized planets in the habitable zone, will determine key terms in the Drake equation that describes the number of intelligent civilizations in the Universe.

  13. Where are the dolphins?

    PubMed

    Cohen, J; Stewart, I

    2001-02-22

    Interest in extraterrestrial life has tended to focus on a search for extrasolar planets similar to the Earth. But what of forms of intelligent life that are very different from those found on Earth? Some features of life will not be peculiar to our planet, and alien life will resemble ours in such universals. But if intelligent, non-humanoid aliens exist, where might they be? Would they wish to visit Earth and would we know if they did?

  14. A Verification of Optical Depth Retrievals From High Resolution Satellite Imagery

    DTIC Science & Technology

    2007-03-01

    extraterrestrial solar intensity can be as high as 0.5 in clean atmospheres but can drop to 0.2-0.3 in polluted areas, indicating that ground-level solar... intelligence . Also, lack of temporal resolution can specifically affect time sensitive operations. These early methods and limitations will be...This study showed that panchromatic imagery proved to be quite consistent. Other platforms such as UAVs or other intelligence gathering means

  15. Five Strategies for Detecting Intelligence

    NASA Astrophysics Data System (ADS)

    Tough, Allen

    If highly intelligent life has evolved elsewhere in our galaxy, how might scientists detect it? This paper compares eleven search strategies on three dimensions. Which strategies are most likely to detect extraterrestrial intelligence or technology? Which strategies, if successful, will likely contribute a wealth of knowledge? What is the current status of actual projects? In order to detect evidence of extraterrestrial intelligence or technology many light-years from Earth, astronomers can search for (1) radio signals, using various approaches, (2) laser or other optical signals, (3) other incoming signals, or (4) signs of an astroengineering project or Dyson sphere. Scientists could also (5) broadcast a radio message asking distant civilizations to respond. Additional strategies arise because any civilizations in our galaxy are probably much older than us and will therefore have technology far beyond ours. A technologically sophisticated civilization could likely send a small but super-smart probe to explore our solar system. An alien probe in our solar system, beyond the Moon, might be detected (6) by ongoing astronomy and space exploration, or (7) by a dedicated search for evidence of a probe or its byproducts. If a super-smart probe has reached Earth, it might be detected (8) by routine military and intelligence monitoring, (9) by an invitation to ETI on the World Wide Web, (10) by achieving peace or some other threshold that the probe requires before contact, or (11) by developing rigorous new research designs to study anomalous phenomena.

  16. Publications of the exobiology program for 1984: A special bibliography

    NASA Technical Reports Server (NTRS)

    Wallace, J. S. (Compiler); Devincenzi, D. L. (Compiler)

    1986-01-01

    A bibliography of NASA exobiology programs is given. Planetary environments; chemical evolution; organic geochemistry; extraterrestrial intelligence; and the effect of planetary solar and astrophysical phenomena on the evolution of complex life in the universe are among the topics listed.

  17. Project Ozma: The Birth of Observational SETI

    NASA Astrophysics Data System (ADS)

    Shuch, H. Paul

    It was an idea whose time had come, but nobody dared admit that out loud. Frank Drake, in particular, was keeping silent. Like many of his generation, he had long speculated about the existence of extraterrestrial life, and pondered how we humans might probe for direct evidence of our cosmic companions. Now, in 1959, the young astronomer was finally in a position to do more than ponder. At 29, he had just completed graduate school, the ink on his Harvard diploma as wet as he was behind the ears. As the new kid on the block at the National Radio Astronomy Observatory, he had access to the tools necessary to mount a credible search for radio evidence of distant technological civilizations. Drake knew enough to tread lightly; a publicly announced hunt for Little Green Men would be tantamount to professional suicide, so he approached his superior with understandable trepidation.

  18. Interstellar Travel and Galactic Colonization: Insights from Percolation Theory and the Yule Process.

    PubMed

    Lingam, Manasvi

    2016-06-01

    In this paper, percolation theory is employed to place tentative bounds on the probability p of interstellar travel and the emergence of a civilization (or panspermia) that colonizes the entire Galaxy. The ensuing ramifications with regard to the Fermi paradox are also explored. In particular, it is suggested that the correlation function of inhabited exoplanets can be used to observationally constrain p in the near future. It is shown, by using a mathematical evolution model known as the Yule process, that the probability distribution for civilizations with a given number of colonized worlds is likely to exhibit a power-law tail. Some of the dynamical aspects of this issue, including the question of timescales and generalizing percolation theory, were also studied. The limitations of these models, and other avenues for future inquiry, are also outlined. Complex life-Extraterrestrial life-Panspermia-Life detection-SETI. Astrobiology 16, 418-426.

  19. Telecommunications and data acquisition

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A. (Editor)

    1981-01-01

    Deep Space Network progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations is reported. In addition, developments in Earth based radio technology as applied to geodynamics, astrophysics, and the radio search for extraterrestrial intelligence are reported.

  20. Verification of Aerosol Optical Depth Retrievals using Cloud Shadows Retrieved from Satellite Imagery

    DTIC Science & Technology

    2008-03-01

    ASTER imagery used in this investigation were obtained through the National Geospatial- Intelligence Agency via the Commercial Satellite Imagery...Naval Postgraduate School, CA, 5-10, 143-152. Wehrli, C., 1985: Extraterrestrial Solar Spectrum – Publ. 615. Physical Meteorological

  1. SETI as an educational tool

    NASA Astrophysics Data System (ADS)

    Vaile, R. A.

    SETI offers an extraordinary catalyst in our search for a better education. While the glamour of movie images increased the general public awareness of the term "SETI", we are challenged to improve the level of public understanding of the fundamental scientific and technological issues involved in SETI. It is also critical to keep in mind the reality of human existence. No country seems entirely at peace, whether one considers cultural, trade, military, or heritage issues; no country seems content with the breadth and standards of education for following generations. However, SETI requires generations to participate across cultures, and this long-term human involvement must be sustained through both education and communication across many disciplines and different cultures. For both these major roles, SETI appears to offer a tantalising range and depth, both in educational tools, and in superb tests of communication skills. This paper considers the educational influence of roles evoked by SETI issues. We will briefly consider the range in expertise needed in SETI, the means of improving the public SETI awareness, and mechanisms through which such education may explore the consequences of any SETI result (whether judged as successful or not). Examples of the use of SETI in formal secondary and University education are briefly reviewed.

  2. Life Beyond Earth and the Evolutionary Synthesis

    NASA Astrophysics Data System (ADS)

    Vakoch, Douglas A.

    For many astronomers, the progressive development of life has been seen as a natural occurrence given proper environmental conditions on a planet: even though such beings would not be identical to humans, there would be significant parallels. A striking contrast is seen in writings of nonphysical scientists, who have held more widely differing views. But within this diversity, reasons for differences become more apparent when we see how views about extraterrestrials can be related to the differential emphasis placed on modern evolutionary theory by scientists of various disciplines. One clue to understanding the differences between the biologists, paleontologists, and anthropologists who speculated on extraterrestrials is suggested by noting who wrote on the subject. Given the relatively small number of commentators on the topic, it seems more than coincidental that four of the major contributors to the evolutionary synthesis in the 1930s and 1940s are among them. Upon closer examination it is evident that the exobiological arguments of Theodosius Dobzhansky and George Gaylord Simpson and, less directly, of H. J. Muller and Ernst Mayr are all related to their earlier work in formulating synthetic evolution. By examining the variety of views held by nonphysical scientists, we can see that there were significant disagreements between them about evolution into the 1960s. By the mid-1980s, many believed that "higher" life, particularly intelligent life, probably occurs quite infrequently in the universe; nevertheless, some held out the possibility that convergence of intelligence could occur across worlds. Regardless of the final conclusions these scientists reached about the likely prevalence of extraterrestrial intelligence, the use of evolutionary arguments to support their positions became increasingly common.

  3. An Introduction to Astrobiology

    NASA Astrophysics Data System (ADS)

    Rothery, David A.; Gilmour, Iain; Sephton, Mark A.

    2011-08-01

    1. Origin of life; 2. Habitable world; 3. Mars; 4. Icy bodies: Europa and elsewhere; 5. Titan; 6. The detection of exoplanets; 7. The nature of exoplanetary systems; 8. How to find life on exoplanets; 9. Extraterrestrial intelligence; Answers and comments; Appendices; Glossary; Further reading; Acknowledgements; Figure references; Index.

  4. The telecommunications and data acquisition report

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A.

    1980-01-01

    Deep Space Network progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implemention, and operations is documented. In addition, developments in Earth based radio technology as applied to geodynamics, astrophysics, and the radio search for extraterrestrial intelligence are reported.

  5. The telecommunications and data acquisition report

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A. (Editor)

    1982-01-01

    Progress in the development and operations of the Deep Space Network is reported. Developments in Earth-based radio technology as applied to other research programs are also reported. These programs include geodynamics, astrophysics, and radio searching for extraterrestrial intelligence in the microwave region of the electromagnetic spectrum.

  6. The Telecommunications and Data Acquisition report

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A. (Editor)

    1981-01-01

    Progress in the development and operations of the Deep Space Network is reported including develoments in Earth-based radio technology as applied to other research programs. These programs are: geodynamics, astrophysics, and the radio search for extraterrestrial intelligence in the microwave region of the electromagnetic spectrum.

  7. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1986-01-01

    Deep Space Network progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations is documented. In addition, developments in Earth-based radio technology as applied to geodynamics, astrophysics and the radio search for extraterrestrial intelligence are reported.

  8. OTHER: A multidisciplinary approach to the search for other inhabited worlds

    NASA Astrophysics Data System (ADS)

    Funes, J.; Lares, M.; De los Rios, M.; Martiarena, M.; Ahumada, A. V.

    2017-10-01

    We present project OTHER (Otros mundos, tierra, humanidad, and espacio remoto), a multidisciplinary laboratory of ideas, that addresses questions related to the scientific search for extraterrestrial intelligent life such as: what is life? how did it originate? what might be the criteria that we adopt to identify what we might call an extraterrestrial civilization? As a starting point, we consider the Drake equation which offers a platform from which to address these questions in a multidisciplinary approach. As part of the project OTHER, we propose to develop and explain the last two parameters of the Drake equation that we call the cultural factors: the fraction of intelligent civilizations that want or seek to communicate , and the average life time of the same, . The innovation of the project OTHER is the multidisciplinary approach in the context of the Argentine community. Our goal is to provide new ideas that could offer new perspectives on the old question: Are we alone?

  9. A high-sensitivity search for extraterrestrial intelligence at lambda 18 cm

    NASA Technical Reports Server (NTRS)

    Tarter, J.; Cuzzi, J.; Black, D.; Clark, T.

    1980-01-01

    A targeted high-sensitivity search for narrow-band signals near a wavelength of 18 cm has been conducted using the 91-m radiotelescope of the National Radio Astronomy Observatory. The search included 201 nearby solar-type stars and achieved a frequency resolution of 5.5 Hz over a 1.4-MHz bandwidth. This high spectral resolution was obtained through a non-real-time reduction procedure using a Mark I VLBI recording terminal in conjunction with the CDC 7600 computational facility at the NASA-Ames Research Center. This is the first high-resolution search for narrow-band signals in this wavelength regime. To date it is the most sensitive search per unit observing time of any search strategy which does not postulate a unique magic frequency. Data show no evidence for narrow-band signals due to extraterrestrial intelligence at a 12-standard-deviation upper limit on signal strength of 1.1 x 10 to the -23rd W/sq m.

  10. Interplanetary and interstellar optical communication between intelligent beings: a historical approach

    NASA Astrophysics Data System (ADS)

    Lemarchand, Guillermo A.

    1996-06-01

    A review of the different proposals made to establish contact with hypothetical planetary neighbors is done. For almost 100 years (approximately 1822-1921) the dominant paradigm for signaling extraterrestrial beings, were based in the exchange of light beam signals. After the success of wireless transatlantic communications and the discovery of radio signals from the cosmos, the main scientific proposals to contact extraterrestrials were based on radio signals. Nevertheless, the development of lasers and other nonlinear optical devices, led into a new set of proposals to use them for interplanetary and interstellar communication means. A review of these proposals and the detection of extraterrestrial technological activities in the optical domain is made. A summary of the requirements needed to explore the astrophysics of shortest timescales is described, in order to develop the nano and sub-nanosecond detectors that could be used to detect interstellar pulsed laser signals.

  11. Evolution of Life and SETI (Evo-SETI)

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    When SETI scientists will be able to discover a signal or just some signs of an Extra-Terrestrial (ET) Civilization, those ETs should turn out to be technologically advanced at least as much as Humans, if not more, or much more so. Comparing the technological level of two different Civilizations is then a key issue in SETI. But at the moment we only know about the development of life on Earth over the last 3.5 billion years. We thus need to mathematically model the evolution of life on Earth (RNA to Humans) and then apply our results to other extra-solar planets to find out “where they stand” along their evolution of life. In a series of recent papers and in a book (refs. [1] through [4]) this author introduced a new statistical model embracing SETI, Darwinian Evolution and Human History into a unified statistical picture and concisely called Evo-SETI (Evolution & SETI). The relevant mathematical instruments are: 1) The statistical generalization of the Drake equation yielding the number N of communicating ET civilizations in the Galaxy. Assuming that each input variable in the Drake equation was a random variable, rather than just a pure number, N was shown to follow the lognormal probability distribution having as mean value the sum of the input mean values, and as variance the sum of the input variances (ref. [1]). 2) Geometric Brownian Motion (GBM), the stochastic process representing Evolution as the stochastic increase of the number of Species living on Earth over the last 3.5 billion years. This GBM is well-known in the mathematics of finances (Black-Sholes models). Its main features are that its probability density function (pdf) is a lognormal pdf, and its mean value is either an increasing, or, more rarely (as in the Mass Extinctions of the past) a decreasing exponential of the time. 3) The probability distributions known as b-lognormals, i.e. lognormals starting at a certain positive instant b>0 rather than at the origin. These b-lognormals were then forced by us to have their peak value located on the exponential mean-value curve of the GBM (this is the so-called “Peak-Locus Theorem”). In the framework of Darwinian Evolution, the resulting mathematical construction was shown to identify with Cladistics (refs. [2], [3], [4]). 4) The (Shannon) Entropy of such b-lognormals is then seen to represent the “degree of progress” reached by each living organism or by each big set of living organisms, like historic human civilizations. Having understood this fact, Human History may then be cast into the language of b-lognormals that are more and more organized in time (i.e. having smaller and smaller entropy, or smaller and smaller “chaos”), and have their peaks located on the increasing GBM exponential. This exponential is thus the “trend of progress” in Human History. 5) But our most striking new result is about the well-known “Molecular Clock of Evolution”, namely the “constant rate of Evolution at the molecular level” as shown by Kimura’s Neutral Theory of Molecular Evolution. We showed that that the Molecular Clock identifies with Entropy in our Evo-SETI model because they both grew linearly in time since the origin of life. 6) Furthermore, we applid our Evo-SETI model to lognormal stochastic processes other then the GBMs. For instance, we showed that the Markov-Korotayev (2007-2008, refs. [5], [6]) model for Darwinian Evolution identifies with an Evo-SETI model for which the mean value of the lognormal stochastic process is a cubic (third degree polynomial) function of the time. In conclusion: we have provided a vast mathematical model capable of embracing Molecular Evolution, SETI and Entropy into a simple set of statistical equations based upon b-lognormals pdfs and lognormal stochastic processes Keywords: Molecular Clock, Darwinian evolution, statistical Drake equation, lognormal probability densities, geometric Brownian motion, entropy. REFERENCES [1] Maccone, C. (2008), “The Statistical Drake Equation”, paper #IAC-08-A4.1.4 presented on October 1st, 2008, at the 59th International Astronautical Congress (IAC) held in Glasgow, Scotland, UK, September 29th thru October 3rd, 2008, later published in Acta Astronautica, Vol. 67 (2010), pages 1366-1383. [2] Maccone, C. (2011, b), “A Mathematical Model for Evolution and SETI”, Origins of Life and Evolutionary Biospheres (OLEB), Vol. 41, pages 609-619, available online December 3rd, 2011. [3] Maccone, C. (2012), “Mathematical SETI”, a 724-pages book published by Praxis-Springer in the fall of 2012. ISBN, ISBN-10: 3642274366 | ISBN-13: 978-3642274367 | Edition: 2012 [4] Maccone, C., (2013), “SETI, Evolution and Human History merged into a Mathematical Model”, International Journal of Astrobiology, Vol. 12, issue 3 (2013), pages 218-245. Available online since April 23, 2013. [5] Markov A., Korotayev A., “Phanerozoic marine biodiversity follows a hyperbolic trend”, Paleoworld, Volume 16, Issue 4, December 2007, Pages 311-318. [6] Markov A., Korotayev A., “Hyperbolic growth of marine and continental biodiversity through the Phanerozoic and community evolution”, Journal of General Biology. Volume 69, 2008, N. 3, pp. 175-194.

  12. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1985-01-01

    Deep Space Network (DSN) progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operation is discussed. In addition, developments in Earth-based radio technology as applied to geodynamics, astrophysics and the radio search for extraterrestrial intelligence are reported.

  13. Comments on the frequency of the occurrence of extraterrestrial civilizations

    NASA Astrophysics Data System (ADS)

    Shklovskii, I. S.

    Arguments in favor of the hypothesis that intelligent life exists nowhere in the universe except on earth are presented, noting the fact of the 'silence' of the universe. These arguments are related to considerations on the place of human beings in the biological hierarchy.

  14. SETI data controllers

    NASA Technical Reports Server (NTRS)

    Gosline, R. M.

    1988-01-01

    Three data controllers developed for the SETI project are described. Two are used primarily for recording and playback of SETI data from the Radio Science Surveillance System (RSSS). The third is used as a SETI station controller for DSS 13.

  15. The introduction of an additional probability coefficient in evaluating the possibility of the existence of extraterrestrial intelligent beings

    NASA Astrophysics Data System (ADS)

    Barth, H.

    An hypothesis is presented concerning the crucial influence of tides on the evolutionary transition from aquatic to land animal forms. The hypothesis suggests that the evolution of higher forms of life on a planet also depends on the existence of a planet-moon system in which the mass ratio of both constituents must be approximately equal to that of the earth-moon system, which is 81:1. The hypothesis is taken into account in the form of the probability factor fb in Drake's formula for estimating the presumed extraterrestrial civilizations in Milky Way which may conceivably make contact.

  16. Wide-bandwidth high-resolution search for extraterrestrial intelligence

    NASA Technical Reports Server (NTRS)

    Horowitz, Paul

    1992-01-01

    This interim report summarizes the research accomplished during the initial 6-month period of the grant. Activities associated with antenna configurations, the channelizing downconverter, the fast Fourier transform array, the DSP (digital signal processing) array, and the backend and UNIX workstation are discussed. Publications submitted during the reporting period are listed.

  17. Recent Developments in the Scientific Study of UFO's

    ERIC Educational Resources Information Center

    Salisbury, Frank B.

    1975-01-01

    Reviews the interest of the last few years, both inside and outside the scientific community, in unidentified flying objects (UFO), placing special emphasis on the extraterrestrial intelligence hypothesis. Cites numerous examples of UFO sightings and urges that the investigation of UFO's proceed in a scientific manner, despite skeptical public…

  18. The telecommunications and data acquisition report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Progress in the development and operations of the Deep Space Network is reported. Developments in Earth based radio technology as applied to geodynamics, astrophysics, and radio astronomy's use of the deep space stations for a radio search for extraterrestrial intelligence in the microwave region of the electromagnetic spectrum are reported.

  19. 3D Self-Localisation From Angle of Arrival Measurements

    DTIC Science & Technology

    2009-04-01

    systems can provide precise position information. However, there are situations where GPS is not adequate such as indoor, underwater, extraterrestrial or...Transactions on Pattern Analysis and Machine Intelligence , Vol. 22, No. 6, June 2000, pp 610-622. 7. Torrieri, D.J., "Statistical Theory of Passive Location

  20. Amino acid sequence of a trypsin inhibitor from a Spirometra (Spirometra erinaceieuropaei).

    PubMed

    Sanda, A; Uchida, A; Itagaki, T; Kobayashi, H; Inokuchi, N; Koyama, T; Iwama, M; Ohgi, K; Irie, M

    2001-12-01

    A trypsin inhibitor that is highly homologous with bovine pancreatic trypsin inhibitor (BPTI) was co-purified along with RNase from Spirometra (Spirometra erinaceieuropaei). The amino acid sequence of this inhibitor (SETI) and the nucleotide sequence of the cDNA encoding this protein were determined by protein chemistry and gene technology. SETI contains 68 amino acid residues and has a molecular mass of 7,798 Da. SETI has 31 amino acid residues that are identical with BPTI's sequence, including 6 half-cystine and 5 aromatic amino acid residues. The active site Lys residue in BPTI is replaced by an Arg residue in SETI. SETI is an effective inhibitor of trypsin and moderately inhibits a-chymotrypsin, but less inhibits elastase or subtilisin. SETI was expressed by E. coli containing a PelB vector carrying the SETI encoding cDNA; an expression yield of 0.68 mg/l was obtained. The phylogenetic relationship of SETI and the other BPTI-like trypsin inhibitors was analyzed using most likelihood inference methods.

  1. Is Your Gut Conscious? Is an Extraterrestrial?

    NASA Astrophysics Data System (ADS)

    Vos Post, Jonathan

    2011-10-01

    This paper speculates on questions intending to be taken scientifically rather than metaphysically: "Can the human gut (enteric nervous system) be conscious?"; "Can your immune system think?"; "Could consciousness be coded in DNA?"; "What do we mean when asserting that an Extraterrestrial is Thinking, or is Conscious? We explore through reference to theory, experiment, and computational models by Christof Koch (Caltech), Barbara Wold (Caltech), and Stuart Kauffman (University of Calgary, Tampere University of Technology, Santa Fe Institute). We use a tentative new definition of thinking, designed to be applicable for humans, cetecea, corvids, artificial intelligences, and extraterrestrial intelligences of any substrate (i.e. Life as We Do Not Know It): "Thinking is the occurrence, transformation, and storage in a mind or brain (or simulation thereof) of information-bearing structures (representations) of one kind or another, such as thoughts, concept, percepts, ideas, impressions, notions, rules, schemas, images, phantasms, or subpersonal representations." We use the framework for Consciousness developed by Francis Crick and Christof Koch. We try to describe scientific goals, but discuss Philosophy sufficient to avoid naïve philosophical category errors (thus are careful not to conflate thought, consciousness, and language) Penrose, Hameroff, and Kauffman speculate (differently) that CNS consciousness is a macroscopic quantum phenomenon. Might intestinal, immune system, or genetic regulatory network dynamics exhibit emergent cooperative quantum effects? The speculations are in the context of Evolution by Natural Selection, presumed to operate throughout the Cosmos, and recent work in the foundations of Computational Biology and Quantum Mechanics.

  2. The Implications of the Discovery of Extraterrestrial Life for Religion and Theology

    NASA Astrophysics Data System (ADS)

    Peters, Ted

    2012-05-01

    This paper asks about the future of religion: (1) Will confirmation of ETI cause terrestrial religion to collapse? "No" is the answer based upon a summary of the "Peters ETI Religious Crisis Survey." Then three questions are posed to the astrotheologian: (2) What is the scope of God's creation? (3) What can we expect when we encounter ETI? (4) Will contact with more advanced ETI diminish human dignity? The paper's thesis is that contact with extraterrestrial intelligence will expand the existing Christian vision that all of creation — including the 13.7 billion year history of the universe replete with all of God's creatures — is the gift of a loving and gracious God.

  3. Is mankind unique?

    NASA Astrophysics Data System (ADS)

    Martin, A. R.; Bond, A.

    1983-05-01

    The 'Fermi Paradox' - if extraterrestrial intelligent beings exist elsewhere in the Galaxy, then we should see signs of their presence - has remained unresolved for over 35 years. This paper presents some simple arguments which appear to rule out the possibility of a highly populated galaxy, and which suggest instead that mankind may in fact live in an otherwise uninhabited galaxy.

  4. Physics of atmospheric luminous anomalies: a sieve for SETI?

    NASA Astrophysics Data System (ADS)

    Teodorani, M.

    2004-06-01

    Anomalous atmospheric light phenomena reoccur in many locations of Earth, some of which have become a laboratory area for a rigorous instrumented study of the involved physics. Three Italian missions to Hessdalen (Norway) furnished crucial multi-wavelength data, the analysis of which has recently permitted us to establish that the very most part of light phenomena are caused by a geophysical mechanism producing light balls whose structure and radiant characteristics are very similar to the ones of ball lightning. While most of light phenomena in Hessdalen and elsewhere can now be successfully explained within the framework of a natural mechanism, a residual of "locally overlapping data" remains presently unexplained. To investigate them also the ETV (Extraterrestrial Visitation) working hypothesis is taken into account. It is shown how the search for ETV (SETV), consistent with the assumption of interstellar and galactic diffusion, can be carried out only from a rigorous data screening coming originally from the study of natural phenomena.

  5. The Search for Extraterrestrial Intelligence in Earth's Solar Transit Zone.

    PubMed

    Heller, René; Pudritz, Ralph E

    2016-04-01

    Over the past few years, astronomers have detected thousands of planets and candidate planets by observing their periodic transits in front of their host stars. A related method, called transit spectroscopy, might soon allow studies of the chemical imprints of life in extrasolar planetary atmospheres. Here, we address the reciprocal question, namely, from where is Earth detectable by extrasolar observers using similar methods. We explore Earth's transit zone (ETZ), the projection of a band around Earth's ecliptic onto the celestial plane, where observers can detect Earth transits across the Sun. ETZ is between 0.520° and 0.537° wide due to the noncircular Earth orbit. The restricted Earth transit zone (rETZ), where Earth transits the Sun less than 0.5 solar radii from its center, is about 0.262° wide. We first compile a target list of 45 K and 37 G dwarf stars inside the rETZ and within 1 kpc (about 3260 light-years) using the Hipparcos catalogue. We then greatly enlarge the number of potential targets by constructing an analytic galactic disk model and find that about 10(5) K and G dwarf stars should reside within the rETZ. The ongoing Gaia space mission can potentially discover all G dwarfs among them (several 10(4)) within the next 5 years. Many more potentially habitable planets orbit dim, unknown M stars in ETZ and other stars that traversed ETZ thousands of years ago. If any of these planets host intelligent observers, they could have identified Earth as a habitable, or even as a living, world long ago, and we could be receiving their broadcasts today. The K2 mission, the Allen Telescope Array, the upcoming Square Kilometer Array, or the Green Bank Telescope might detect such deliberate extraterrestrial messages. Ultimately, ETZ would be an ideal region to be monitored by the Breakthrough Listen Initiatives, an upcoming survey that will constitute the most comprehensive search for extraterrestrial intelligence so far.

  6. The Search for Extraterrestrial Intelligence in Earth's Solar Transit Zone

    NASA Astrophysics Data System (ADS)

    Heller, René; Pudritz, Ralph E.

    2016-04-01

    Over the past few years, astronomers have detected thousands of planets and candidate planets by observing their periodic transits in front of their host stars. A related method, called transit spectroscopy, might soon allow studies of the chemical imprints of life in extrasolar planetary atmospheres. Here, we address the reciprocal question, namely, from where is Earth detectable by extrasolar observers using similar methods. We explore Earth's transit zone (ETZ), the projection of a band around Earth's ecliptic onto the celestial plane, where observers can detect Earth transits across the Sun. ETZ is between 0.520° and 0.537° wide due to the noncircular Earth orbit. The restricted Earth transit zone (rETZ), where Earth transits the Sun less than 0.5 solar radii from its center, is about 0.262° wide. We first compile a target list of 45 K and 37 G dwarf stars inside the rETZ and within 1 kpc (about 3260 light-years) using the Hipparcos catalogue. We then greatly enlarge the number of potential targets by constructing an analytic galactic disk model and find that about 105 K and G dwarf stars should reside within the rETZ. The ongoing Gaia space mission can potentially discover all G dwarfs among them (several 104) within the next 5 years. Many more potentially habitable planets orbit dim, unknown M stars in ETZ and other stars that traversed ETZ thousands of years ago. If any of these planets host intelligent observers, they could have identified Earth as a habitable, or even as a living, world long ago, and we could be receiving their broadcasts today. The K2 mission, the Allen Telescope Array, the upcoming Square Kilometer Array, or the Green Bank Telescope might detect such deliberate extraterrestrial messages. Ultimately, ETZ would be an ideal region to be monitored by the Breakthrough Listen Initiatives, an upcoming survey that will constitute the most comprehensive search for extraterrestrial intelligence so far.

  7. On the Hypothesis of Control of the Universe

    NASA Astrophysics Data System (ADS)

    Kalanov, Temur Z.

    2007-04-01

    The problem of the SETI is not solved till now because idea of the SETI represents a methodological error in cosmology and astrophysics. This fact means that one should prove existence of Supreme Intelligence in a correct way. In this connection, the hypothesis of control of the Universe is proposed. The hypothesis is based on the new point of view [1] according to which information is essence of the Universe, and material objects are manifestation of the essence. The hypothesis is formulated as follows: (1) the Universe represents the cybernetic system; (2) the cybernetic system is a set of mutual connected elements which receive, memorize, process, and transmit information; (3) each material element (for example, atom, molecule, man, the Earth, the Sun) is a unity of opposites: the controlling aspect and the controllable aspect; (4) the Universe as a system is a unity of opposites: the controlling aspect and the controllable aspect. Consequently, the Universe is controlled by the certain object. Thus, the problem of definition of the controlling object arises. Correct solution of this problem is the key to exploration of the Universe. Ref.: [1] T.Z. Kalanov, ``On the hypothesis of Universe's ``system block'' ''. Bulletin of the APS, Vol. 51, No. 2 (2006), p. 61.

  8. Searching for ET with Help from Three Million Volunteers: The SETI@Home, Serendip, Sevendip and Spck SETI Programs

    NASA Astrophysics Data System (ADS)

    Werthimer, Dan; Anderson, David; Bowyer, Stuart; Cobb, Jeff; Demorest, Paul

    2002-01-01

    We summarize results from two radio and two optical SETI programs based at the University of California, Berkeley. We discuss the most promising candidate signals from these searches and present plans for future SETI searches, including SERENDIP V and SETI@home II. The ongoing SERENDIP sky survey searches for radio signals at the 300 meter Arecibo Observatory. SERENDIP IV uses a 168 million channel spectrum analyser and a dedicated receiver to take data 24 hours a day, year round. The sky survey covers a 100 MHz band centered at the 21 cm line (1420 MHz) and declinations from -2 to +38 degrees. SETI@home uses desktop computers of 3.5 million volunteers to analyse 50 Terabytes of data taken at Arecibo. The SETI@home sky survey is 10 times more sensitive and searches a much wider variety of signal types than SERRENDIP IV but covers only a 2.5 MHz band. SETI@home is the planet's largest supercomputer, averaging 25 Tflops. SETI@home participants have contributed over a million years of computing time so far. The SEVENDIP optical pulse search looks for nS time scale pulses at optical wavelengths. It utilizes an automated 30 inch telescope, three ultra fast photo multiplier tubes and a coincidence detector. The target list includes F,G,K and M stars, globular cluster and galaxies. The SPOCK optical SETI program searches for narrow band continuous signals using spectra taken by Marcy and his colleagues in their planet search at Keck observatory.

  9. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1986-01-01

    This publication, one of a series formerly titled The Deep Space Network (DSN) Progress Report, documents DSN progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations. In addition, developments in Earth-based radio technology as applied to geodynamics, astrophysics, and the radio search for extraterrestrial intelligence are reported.

  10. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1984-01-01

    Activities in space communication, radio navigation, radio science, and ground-based astronomy are reported. Advanced systems for the Deep Space Network and its Ground-Communications Facility are discussed including station control and system technology. Network sustaining as well as data and information systems are covered. Studies of geodynamics, investigations of the microwave spectrum, and the search for extraterrestrial intelligence are reported.

  11. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1988-01-01

    This publication, one of a series formerly titled The Deep Space Network Progress Report, documents DSN progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations. In addition, developments in earth-based radio technology as applied to geodynamics, astrophysics, and the radio search for extraterrestrial intelligence are reported.

  12. Thiokol Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Graves, S. R.

    2000-01-01

    This paper presents viewgraphs on thiokol solid rocket motors. The topics include: 1) Communications; 2) Military and government intelligence; 3) Positioning satellites; 4) Remote sensing; 5) Space burial; 6) Science; 7) Space manufacturing; 8) Advertising; 9) Space rescue space debris management; 10) Space tourism; 11) Space settlements; 12) Hazardous waste disposal; 13) Extraterrestrial resources; 14) Fast package delivery; and 15) Space utilities.

  13. The Telecommunications and Data Acquisition Report. [Deep Space Network

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1986-01-01

    This publication, one of a series formerly titled The Deep Space Network Progress Report, documents DSN progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations. In addition, developments in Earth-based radio technology as applied to geodynamics, astrophysics and the radio search for extraterrestrial intelligence are reported.

  14. Search for Artificial Stellar Sources of Infrared Radiation.

    PubMed

    Dyson, F J

    1960-06-03

    If extraterrestrial intelligent beings exist and have reached a high level of technical development, one by-product of their energy metabolism is likely to be the large-scale conversion of starlight into far-infrared radiation. It is proposed that a search for sources of infrared radiation should accompany the recently initiated search for interstellar radio communications.

  15. Measuring the effect of an astrobiology course on student optimism regarding extraterrestrial life

    NASA Astrophysics Data System (ADS)

    Morgan, David L.

    2017-07-01

    Students in an introductory undergraduate Astrobiology course were given a pre/post-test based on the Drake Equation in an attempt to measure changes in their perceptions regarding the prevalence of life in the Galaxy after taking the course. The results indicated that, after taking the course, the students were considerably more optimistic, by a 2 to 1 margin or more, about the prospect of habitable planets, the origin of life, and the evolution of intelligence in other planetary systems. The results suggest that, while it may not be the explicit goal of an astrobiology course to change student beliefs about the abundance or rarity of extraterrestrial life, such changes in opinion can and do occur.

  16. Stellivore extraterrestrials? Binary stars as living systems

    NASA Astrophysics Data System (ADS)

    Vidal, Clément

    2016-11-01

    We lack signs of extraterrestrial intelligence (ETI) despite decades of observation in the whole electromagnetic spectrum. Could evidence be buried in existing data? To recognize ETI, we first propose criteria discerning life from non-life based on thermodynamics and living systems theory. Then we extrapolate civilizational development to both external and internal growth. Taken together, these two trends lead to an argument that some existing binary stars might actually be ETI. Since these hypothetical beings feed actively on stars, we call them "stellivores". I present an independent thermodynamic argument for their existence, with a metabolic interpretation of interacting binary stars. The jury is still out, but the hypothesis is empirically testable with existing astrophysical data.

  17. SETI-Italia 2003 status report and first results of a KL transform algorithm for ETI signal detection

    NASA Astrophysics Data System (ADS)

    Montebugnoli, S.; Bortolotti, C.; Cattani, A.; Maccaferri, A.; Orlati, A.; Poloni, M.; Poppi, S.; Monari, J.; Roma, M.; Pari, P. P.; Teodorani, M.; Righini, S.; Maccone, C.; Caliendo, D.; Cosmovici, C. B.; D'Amico, N.

    2006-02-01

    SETI-Italia is the Italian national SETI Program. It is run as a part of the Italian Bioastronomy Project, by IRA (Istituto di Radioastronomia) a subsidiary of the Istituto Nazionale di Astrofisica. At the moment, Italy is the only European country conducting a continuous SETI “listening” program, while occasional SETI searches may be conducted in France and the Ukraine. Outside Europe, continuous SETI programs are conducted in the USA, Australia and Argentina. The SETI-Italia activities started early in 1998 with a Serendip IV system connected in piggy-back mode to the Medicina VLBI 32-m antenna dish. In the years 2002/2003, considerable efforts were devoted to set up a fast computational system capable of computing the KLT (Karhunen Loève transform). This is a virtually new mathematical procedure in SETI, and is much more general than the FFT. It can search for the presence of signals both narrow-band and wide-band embedded in noise both coloured and white. The mathematical features the KLT have already been described in this Conference by Claudio Maccone [Innovative SETI by the KLT, Pešek Lecture 2003, paper # IAA.9.1.01 presented in Bremen, in this 2003 International Astronautical Congress [1]; Telecommunications, KLT and Relativity, vol. 1, IPI Press, Colorado Springs, CO, 1994, ISBN #1-880930-04-8 [2].]. Our software implementation of the KLT follows these lines and also is indebted to some basic ideas put forward by Robert S. Dixon [On the detection of unknown signals, in: G. Seth Shostak (Ed.), Third Decennial US USSR Conference on SETI, Astronomical Society of the Pacific Conference Series, vol. 47, 1993, pp. 128 140] of the Ohio State Radio Observatory as early as 1993.

  18. Factors affecting calculation of L

    NASA Astrophysics Data System (ADS)

    Ciotola, Mark P.

    2001-08-01

    A detectable extraterrestrial civilization can be modeled as a series of successive regimes over time each of which is detectable for a certain proportion of its lifecycle. This methodology can be utilized to produce an estimate for L. Potential components of L include quantity of fossil fuel reserves, solar energy potential, quantity of regimes over time, lifecycle patterns of regimes, proportion of lifecycle regime is actually detectable, and downtime between regimes. Relationships between these components provide a means of calculating the lifetime of communicative species in a detectable state, L. An example of how these factors interact is provided, utilizing values that are reasonable given known astronomical data for components such as solar energy potential while existing knowledge about the terrestrial case is used as a baseline for other components including fossil fuel reserves, quantity of regimes over time, and lifecycle patterns of regimes, proportion of lifecycle regime is actually detectable, and gaps of time between regimes due to recovery from catastrophic war or resource exhaustion. A range of values is calculated for L when parameters are established for each component so as to determine the lowest and highest values of L. roadmap for SETI research at the SETI Institute for the next few decades. Three different approaches were identified. 1) Continue the radio search: build an affordable array incorporating consumer market technologies, expand the search frequency, and increase the target list to 100,000 stars. This array will also serve as a technology demonstration and enable the international radio astronomy community to realize an array that is a hundred times larger and capable (among other things) of searching a million stars. 2) Begin searches for very fast optical pulses from a million stars. 3) As Moore's Law delivers increased computational capacity, build an omni-directional sky survey array capable of detecting strong, transient, radio signals from billions of stars. SETI could succeed tomorrow, or it may be an endeavor for multiple generations. We are a very young technology in a very old galaxy. While our own leakage radiation continues to outshine the Sun at many frequencies, we remain detectable to others. When our use of the spectrum becomes more efficient, it will be time to consider deliberate transmissions and the really tough questions: Who will speak for Earth? What will they say?

  19. Carl Sagan's Cosmic Connection

    NASA Astrophysics Data System (ADS)

    Sagan, Carl; Agel, Jerome

    2000-08-01

    Foreword Freeman Dyson; Personal reflections Ann Druyan; Preface; Part I. Cosmic Perspective: 1. A transitional animal; 2. The Unicorn of Cetus; 3. A message from earth; 4. A message to earth; 5. Experiments in utopias; 6. Chauvinism; 7. Space exploration as a human enterprise I. The scientific interest; 8. Space exploration as a human enterprise II. The public interest; 9. Space exploration as a human enterprise III. The historical interest; Part II. The Solar System: 10. On teaching the first grade; 11. 'The ancient and legendary Gods of old'; 12. The Venus detective story; 13. Venus is hell; 14. Science and 'intelligence'; 15. The moons of Barsoom; 16. The mountains of Mars I. Observations from earth; 17. The mountains of Mars II. Observations from space; 18. The canals of Mars; 19. The lost pictures of Mars; 20. The Ice Age and the cauldron; 21. Beginnings and ends of the Earth; 22. Terraforming the plants; 23. The exploration and utlization of the solar system; Part III. Beyond the Solar System: 24. Some of my best friends are dolphins; 25. 'Hello, central casting? Send me twenty extraterrestrials'; 26. The cosmic connection; 27. Extraterrestrial life: an idea whose time has come; 28. Has the Earth been visited?; 29. A search strategy for detecting extraterrestrial intelligence; 30. If we succeed 31. Cables, drums, and seashells; 32. The night freight to the stars; 33. Astroengineering; 34. Twenty questions: a classification of cosmic civilisations; 35. Galactic cultural exchanges; 36. A passage to elsewhere; 37. Starfolk I. A Fable; 38. Starfolk II. A future; 39. Starfolk III. The cosmic Cheshire cats; Epilog David Morrison; Index.

  20. Low molecular weight squash trypsin inhibitors from Sechium edule seeds.

    PubMed

    Laure, Hélen J; Faça, Vítor M; Izumi, Clarice; Padovan, Júlio C; Greene, Lewis J

    2006-02-01

    Nine chromatographic components containing trypsin inhibitor activity were isolated from Sechium edule seeds by acetone fractionation, gel filtration, affinity chromatography and RP-HPLC in an overall yield of 46% of activity and 0.05% of protein. The components obtained with highest yield of total activity and highest specific activity were sequenced by Edman degradation and their molecular masses determined by mass spectrometry. The inhibitors contained 31, 32 and 27 residues per molecule and their sequences were: SETI-IIa, EDRKCPKILMRCKRDSDCLAKCTCQESGYCG; SETI-IIb, EEDRKCPKILMRCKRDSDCLAKCTCQESGYCG and SETI-V, CPRILMKCKLDTDCFPTCTCRPSGFCG. SETI-IIa and SETI-IIb, which differed by an amino-terminal E in the IIb form, were not separable under the conditions employed. The sequences are consistent with consensus sequences obtained from 37 other inhibitors: CPriI1meCk_DSDCla_C_C_G_CG, where capital letters are invariant amino acid residues and lower case letters are the most preserved in this position. SETI-II and SETI-V form complexes with trypsin with a 1:1 stoichiometry and have dissociation constants of 5.4x10(-11)M and 1.1x10(-9)M, respectively.

  1. An iconic approach to communicating musical concepts in interstellar messages

    NASA Astrophysics Data System (ADS)

    Vakoch, Douglas A.

    2010-12-01

    Some characteristics of terrestrial music may be meaningful to extraterrestrial civilizations by virtue of the connection between acoustics and mathematics—both of which might be known by technologically advanced extraterrestrial intelligence. For example, a fundamental characteristic of terrestrial polyphonic music is found the number of tones used various scales, insofar as the number of tones represents a compromise between competing musical demands; the number of tones in a scale, however, also reflects some of the perceptual characteristics of the species developing that music. Thus, in the process of communicating something about the structure of terrestrial music through interstellar messages, additional information about human perceptual and cognitive processes can also be conveyed. This paper also discusses methods for sending signals that bear information through the form of the very frequencies in which the signals are transmitted. If the challenges of creating intelligible messages are greater than often thought, the advantage of reduced conventionality of encoding the message by using an iconic format of this sort may be of significant value. Such an approach would allow the incremental introduction of musical concepts, somewhat akin to the step-by-step tutorials in mathematics and logic that form the basis of Freudenthal's Lincos.

  2. JPL's role in the SETI program

    NASA Technical Reports Server (NTRS)

    Klein, M. J.

    1986-01-01

    The goal of the JPL SETI Team is to develop the strategies and the instrumentation required to carry out an effective, yet affordable, SETI Microwave Observing Program. The primary responsibility for JPL is the development and implementation of the Sky Survey component of the bimodal search program recommended by the SETI Science Working Group (NASA Technical Paper 2244, 1983). JPL is also responsible for the design and implementation of microwave analog instrumentation (including antenna feed systems, low noise RF amplifiers, antenna monitor and control interfaces, etc.) to cover the microwave window for the Sky Survey and the Target Search observations. The primary site for the current SETI Field Test activity is the Venus Station of the Goldstone Deep Space Communication Complex. A SETI controller was constructed and installed so that pre-programmed and real time SETI monitor and control data can be sent to and from the station controller. This unit will be interfaced with the MCSA. A SETI Hardware Handbook was prepared to describe the various systems that will be used by the project at the Venus Station; the handbook is frequently being expanded and updated. The 65,000 channel FFT Spectrum analyzer in the RFI Surveillance System was modified to permit operation with variable resolutions (300 Hz to less than 1 Hz) and with real-time accumulation, which will enhance the capability of the system for testing Sky Survey search strategies and signal detection algorithms.

  3. A Statistical Approach to Illustrate the Challenge of Astrobiology for Public Outreach.

    PubMed

    Foucher, Frédéric; Hickman-Lewis, Keyron; Westall, Frances; Brack, André

    2017-10-26

    In this study, we attempt to illustrate the competition that constitutes the main challenge of astrobiology, namely the competition between the probability of extraterrestrial life and its detectability. To illustrate this fact, we propose a simple statistical approach based on our knowledge of the Universe and the Milky Way, the Solar System, and the evolution of life on Earth permitting us to obtain the order of magnitude of the distance between Earth and bodies inhabited by more or less evolved past or present life forms, and the consequences of this probability for the detection of associated biosignatures. We thus show that the probability of the existence of evolved extraterrestrial forms of life increases with distance from the Earth while, at the same time, the number of detectable biosignatures decreases due to technical and physical limitations. This approach allows us to easily explain to the general public why it is very improbable to detect a signal of extraterrestrial intelligence while it is justified to launch space probes dedicated to the search for microbial life in the Solar System.

  4. A Statistical Approach to Illustrate the Challenge of Astrobiology for Public Outreach

    PubMed Central

    Westall, Frances; Brack, André

    2017-01-01

    In this study, we attempt to illustrate the competition that constitutes the main challenge of astrobiology, namely the competition between the probability of extraterrestrial life and its detectability. To illustrate this fact, we propose a simple statistical approach based on our knowledge of the Universe and the Milky Way, the Solar System, and the evolution of life on Earth permitting us to obtain the order of magnitude of the distance between Earth and bodies inhabited by more or less evolved past or present life forms, and the consequences of this probability for the detection of associated biosignatures. We thus show that the probability of the existence of evolved extraterrestrial forms of life increases with distance from the Earth while, at the same time, the number of detectable biosignatures decreases due to technical and physical limitations. This approach allows us to easily explain to the general public why it is very improbable to detect a signal of extraterrestrial intelligence while it is justified to launch space probes dedicated to the search for microbial life in the Solar System. PMID:29072614

  5. Classification of extraterrestrial civilizations

    NASA Astrophysics Data System (ADS)

    Tang, Tong B.; Chang, Grace

    1991-06-01

    A scheme of classification of extraterrestrial intelligence (ETI) communities based on the scope of energy accessible to the civilization in question is proposed as an alternative to the Kardeshev (1964) scheme that includes three types of civilization, as determined by their levels of energy expenditure. The proposed scheme includes six classes: (1) a civilization that runs essentially on energy exerted by individual beings or by domesticated lower life forms, (2) harnessing of natural sources on planetary surface with artificial constructions, like water wheels and wind sails, (3) energy from fossils and fissionable isotopes, mined beneath the planet surface, (4) exploitation of nuclear fusion on a large scale, whether on the planet, in space, or from primary solar energy, (5) extensive use of antimatter for energy storage, and (6) energy from spacetime, perhaps via the action of naked singularities.

  6. SETI with Help from Five Million Volunteers: The Berkeley SETI Efforts

    NASA Astrophysics Data System (ADS)

    Korpela, E. J.; Anderson, D. P.; Bankay, R.; Cobb, J.; Foster, G.; Howard, A.; Lebofsky, M.; Marcy, G.; Parsons, A.; Siemion, A.; von Korff, J.; Werthimer, D.; Douglas, K. A.

    2009-12-01

    We summarize radio and optical SETI programs based at the University of California, Berkeley. The ongoing SERENDIP V sky survey searches for radio signals at the 300 meter Arecibo Observatory. The currently installed configuration supports 128 million channels over a 200 MHz bandwidth with 1.6 Hz spectral resolution. Frequency stepping allows the spectrometer to cover the full 300 MHz band of the Arecibo L-band receivers. The final configuration will allow data from all 14 receivers in the Arecibo L-band Focal Array to be monitored simultaneously with over 1.8 billion simultaneous channels. SETI@home uses desktop computers volunteers to analyze over 100 TB of at taken at Arecibo. Over 5 million volunteers have run SETI@home during its 10 year history. The SETI@home sky survey is 10 times more sensitive than SERENDIP V but it covers only a 2.5 MHz band, centered on 1420 MHz. SETI@home searches a much wider parameter space, including 14 octaves of signal bandwidth and 15 octaves of pulse period with Doppler drift corrections from -100 Hz/s to +100 Hz/s. The ASTROPULSE project is the first SETI search for μs time scale pulses in the radio spectrum. Because short pulses are dispersed by the interstellar medium, and amount of dispersion is unknown, ASTROPULSE must search through 30,000 possible dispersions. Substantial computing power is required to conduct this search, so the project will use volunteers and their personal computers to carry out the computation (using distributed computing similar to SETI@home). The SEVENDIP optical pulse search looks for ns time scale pulses at visible wavelengths. It utilizes an automated 30 inch telescope, three ultra fast photo multiplier tubes and a coincidence detector. The target list includes F,G,K and M stars, globular cluster and galaxies.

  7. Galactic exploration by directed self-replicating probes, and its implications for the Fermi paradox

    NASA Astrophysics Data System (ADS)

    Barlow, Martin T.

    2013-01-01

    This paper proposes a long-term scheme for robotic exploration of the galaxy, and then considers the implications in terms of the `Fermi paradox' and our search for extraterrestrial intelligence (ETI). We discuss the `Galactic ecology' of civilizations in terms of the parameters T (time between ET civilizations arising) and L, the lifetime of these civilizations. Six different regions are described.

  8. Interplanetary Radio Transmission Through Serial Ionospheric and Material Barriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fields, David; Kennedy, Robert G; Roy, Kenneth I

    2013-01-01

    A usual first principle in planning radio astronomy observations from the earth is that monitoring must be carried out well above the ionospheric plasma cutoff frequency (~5 MHz). Before space probes existed, radio astronomy was almost entirely done above 6 MHz, and this value is considered a practical lower limit by most radio astronomers. Furthermore, daytime ionization (especially D-layer formation) places additional constraints on wave propagation, and waves of frequency below 10-20 MHz suffer significant attenuation. More careful calculations of wave propagation through the earth s ionosphere suggest that for certain conditions (primarily the presence of a magnetic field) theremore » may be a transmission window well below this assumed limit. Indeed, for receiving extraterrestrial radiation below the ionospheric plasma cutoff frequency, a choice of VLF frequency appears optimal to minimize loss. The calculation, experimental validation, and conclusions are presented here. This work demonstrates the possibility of VLF transmission through the ionosphere and various subsequent material barriers. Implications include development of a new robust communications channel, communications with submerged or subterranean receivers / instruments on or offworld, and a new approach to SETI.« less

  9. Writing Parallel Parameter Sweep Applications with pMatlab

    DTIC Science & Technology

    2011-01-01

    formulate this type of problem in a leader-worker paradigm. The SETI @Home project is a well- known leader-worker parallel application [1]. The SETI ...their results back to the SETI @Home servers when they are done computing the job. Because each job is independent, it does not matter if the 415th job

  10. The problem of active SETI: An overview

    NASA Astrophysics Data System (ADS)

    Musso, Paolo

    2012-09-01

    In the present paper (originally presented at the First IAA Symposium on Searching for Life Signatures hold at the UNESCO on 22-26 September 2008) I try to summarize the results of all my previous studies on active SETI and its possible dangers for us, also considering some new topics, in order to provide a possibly complete overview of the whole matter. First, I try to evaluate the possible risks of an indirect contact with aliens, from the social, cultural, and religious point of view; then, the possible risks related with receiving information about alien science and technology; finally, the risk that active SETI could increase the probability of a physical contact with hostile aliens. My conclusion is that active SETI is very unlikely to be dangerous for us, but, at present, such a possibility cannot be completely excluded. Surprisingly, it turns out that a very important point to be assessed in order to improve our evaluation of active SETI is the pace of our technological progress. Some suggestions about the policy that international community should adopt towards active SETI are also included.

  11. Innovative SETI by the KLT

    NASA Astrophysics Data System (ADS)

    Maccone, C.

    SETI searches are, by definition, the extraction of very weak radio signals out of the cosmic background noise. When SETI was born in 1959, it was "natural" to attempt this extraction by the only detection algorithm well known at the time: the Fourier Transform (FT). In fact: 1) SETI radio astronomers had adopted the viewpoint that a candidate ET signal would necessarily be a sinusoidal carrier, i.e. a very narrow-band signal. Over such a narrow band, the background noise is necessarily white. And so, the basic assumption behind the FT that the background noise must be white was "perfectly matched" to SETI for the next fifty years! 2) In addition, the Americans, J. W. Cooley and J. W. Tukey discovered in April 1965 that all the FT computations could be speeded up to N*ln(N) (rather than N2) (N is the number of numbers to be processed) by their own Fast Fourier Transform (FFT). Then, SETI radio astronomers all over the world gladly and unquestioningly adopted the new FFT forever. In 1983, however, the French SETI radio astronomer, François Biraud, dared to challenge this view (ref. [6]). He argued that we only can make guesses about ET's telecommunication systems, and that the shifting trend on Earth was from narrow-band to wide-band telecommunications. Thus, a new transform, other than the FFT, was needed that could detect signals over both narrow and wide bands, regardless of the colored noise distribution over any finite bandwidth. Such a transform had actually been pointed out as early as 1946 by the Finn mathematician, Kari Karhunen, and the French mathematician, Michel Loève, and is thus named KLT for them. In conclusion, François Biraud suggested to "look for the unknown in SETI" by adopting the KLT rather than the FFT. The same ideas were reached independently by this author also, and starting 1987, he too was "preaching the KLT": first at the SETI Institute, then (since 1990) at the Italian CNR (now called INAF) SETI facilities at Medicina, near Bologna. Their director, Stelio Montebugnoli, was willing to pay attention to him. Little by little, bright students succeeded in programming the KLT algorithm for the Medicina radio telescopes. Finally, by the year 2000, the advent of programmable cards, mastered by Montebugnoli, made the "miracle" happen. The KLT for SETI is now a reality at the SETI-Italia facilities and for the first time in history. This paper describes the KLT with a final section devoted to the advantages of installing the KLT on LOFAR and the SKA, i.e. to detecting leakage from nearby stars. Bursts, Pulses and Flickering: Wide-field monitoring of the dynamic radio sky Kerastari, Tripolis, Greece 12-15 June, 2007

  12. Recent progress and future plans on the search for extraterrestrial intelligence.

    PubMed

    Papagiannis, M D

    1985-11-14

    The possibility of life in other parts of the Universe has long occupied the human mind, but actual searches only began in 1960 with Project OZMA conducted by Frank Drake. In the past 25 years, we have made impressive progress, and this new field has gained broad scientific recognition including the support of the US and the Soviet National Academies, and the endorsement of the International Astronomical Union.

  13. Publications of the exobiology program for 1986: A special bibliography

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A list of 1986 publications resulting from research pursued under the auspices of NASA's Exobiology Program is contained. Research supported by the program is explored in the areas of cosmic evolution of biogenic compounds, prebiotic evolution, early evolution of life, and evolution of advanced life. Premission and preproject activities supporting these areas are supported in the areas of solar system exploration and search for extraterrestrial intelligence.

  14. The Breakthrough Listen Search for Intelligent Life: 1.1-1.9 GHz Observations of 692 Nearby Stars

    NASA Astrophysics Data System (ADS)

    Enriquez, J. Emilio; Siemion, Andrew; Foster, Griffin; Gajjar, Vishal; Hellbourg, Greg; Hickish, Jack; Isaacson, Howard; Price, Danny C.; Croft, Steve; DeBoer, David; Lebofsky, Matt; MacMahon, David H. E.; Werthimer, Dan

    2017-11-01

    We report on a search for engineered signals from a sample of 692 nearby stars using the Robert C. Byrd Green Bank Telescope, undertaken as part of the Breakthrough Listen Initiative search for extraterrestrial intelligence. Observations were made over 1.1-1.9 GHz (L band), with three sets of five-minute observations of the 692 primary targets, interspersed with five-minute observations of secondary targets. By comparing the “ON” and “OFF” observations, we are able to identify terrestrial interference and place limits on the presence of engineered signals from putative extraterrestrial civilizations inhabiting the environs of the target stars. During the analysis, 11 events passed our thresholding algorithm, but a detailed analysis of their properties indicates that they are consistent with known examples of anthropogenic radio-frequency interference. We conclude that, at the time of our observations, none of the observed systems host high-duty-cycle radio transmitters emitting between 1.1 and 1.9 GHz with an Equivalent Isotropic Radiated Power of ˜1013 W, which is readily achievable by our own civilization. Our results suggest that fewer than ˜0.1% of the stellar systems within 50 pc possess the type of transmitters searched in this survey.

  15. Evolution of a Planetary System. SETI Academy Planet Project.

    ERIC Educational Resources Information Center

    Search for Extraterrestrial Intelligence Inst., Mountain View, CA.

    The SETI Academy Planet Project provides an exciting, informative, and creative series of activities for elementary students (grades 5-6) in these activities each student plays the role of a cadet at the SETI Academy, a fictitious institution. This unit examines the evolution of stars and planets which is an important aspect of the search for…

  16. Seventeen Key Developments in the History of the Extraterrestrial Life Debate

    NASA Astrophysics Data System (ADS)

    Crowe, Michael J.

    2010-01-01

    The extraterrestrial life debate, rather than beginning in the twentieth century, was already underway in classical antiquity and has continued almost without interruption until the present. This historical presentation, based on the presenter's many years of historical research including visits to over forty research libraries, will survey seventeen of the most significant, exciting, and/or controversial turning points in this debate, involving those associated with such figures as Aristotle, Epicurus, Cusa, Copernicus, Bruno, Kepler, Fontenelle, Huygens, Herschel, Paine, Locke, Whewell, Proctor, Schiaparelli, Lowell, Maunder, Antoniadi, Wallace, Hubble, Brock, and the discoverers of the exoplanets. The discussion will include both astronomical and cultural issues and challenge various historical interpretations that appear in the literature. It will also provide some suggestions concerning the role that non-scientific issues, including metaphysical and religious issues, have at times played in the debate. Among the theses proposed in this talk are: (1) this debate has centered on one of the great questions humanity faces, (2) some of the effects that are predicted to follow if astronomers detect extraterrestrial intelligent beings have already occurred, and (3) not only has astronomy affected the debate, but the debate has had significant impacts on astronomy.

  17. L: How Long Do They Last?

    NASA Astrophysics Data System (ADS)

    Shostak, Seth

    The Drake equation, a commonly-used starting point for discussions about the likelihood of finding extraterrestrial intelligence, is now nearly a halfcentury old. It dates from 1961, a year after Frank Drake made his pioneering radio search for artificial signals from other worlds. That search, dubbed Project Ozma, was a 200-hour scrutiny of two nearby, Sun-like stars for transmissions spectrally situated near the 1420 MHz line of neutral hydrogen, and was conducted with an 85-foot antenna at the National Radio Astronomy Observatory in Green Bank, West Virginia (Drake, 1960; Kellermann and Seielstad, 1986). These efforts to find easy evidence of intelligence in other star systems provoked considerable public interest, including a major article in Saturday Review (Lear, 1960).

  18. Uncommon Sense - The Heretical Nature of Science

    NASA Astrophysics Data System (ADS)

    Cromer, Alan

    1995-08-01

    Most people believe that science arose as a natural end-product of our innate intelligence and curiosity, as an inevitable stage in human intellectual development. But physicist and educator Alan Cromer disputes this belief. Cromer argues that science is not the natural unfolding of human potential, but the invention of a particular culture, Greece, in a particular historical period. Indeed, far from being natural, scientific thinking goes so far against the grain of conventional human thought that if it hadn't been discovered in Greece, it might not have been discovered at all.In Uncommon Sense , Alan Cromer develops the argument that science represents a radically new and different way of thinking. Using Piaget's stages of intellectual development, he shows that conventional thinking remains mired in subjective, "egocentric" ways of looking at the world--most people even today still believe in astrology, ESP, UFOs, ghosts and other paranormal phenomena--a mode of thought that science has outgrown. He provides a fascinating explanation of why science began in Greece, contrasting the Greek practice of debate to the Judaic reliance on prophets for acquiring knowledge. Other factors, such as a maritime economy and wandering scholars (both of which prevented parochialism) and an essentially literary religion not dominated by priests, also promoted in Greece an objective, analytical way of thinking not found elsewhere in the ancient world. He examines India and China and explains why science could not develop in either country. In China, for instance, astronomy served only the state, and the private study of astronomy was forbidden. Cromer also provides a perceptive account of science in Renaissance Europe and of figures such as Copernicus, Galileo, and Newton. Along the way, Cromer touches on many intriguing topics, arguing, for instance, that much of science is essential complete; there are no new elements yet to be discovered. He debunks the vaunted SETI (Search for Extraterrestrial Intelligence) project, which costs taxpayers millions each year, showing that physical limits--such as the melting point of metal--put an absolute limit on the speed of space travel, making trips to even the nearest star all but impossible. Finally, Cromer discusses the deplorable state of science education in America and suggests several provocative innovations to improve high school education, including a radical proposal to give all students an intensive eighth and ninth year program, eliminating the last two years of high school.Uncommon Sense is an illuminating look at science, filled with provocative observations. Whether challenging Thomas Kuhn's theory of scientific revolutions, or extolling the virtues of Euclid's Elements , Alan Cromer is always insightful, outspoken, and refreshingly original.

  19. Pulsar-aided SETI experimental observations

    NASA Technical Reports Server (NTRS)

    Heidmann, J.; Biraud, F.; Tarter, J.

    1989-01-01

    The rotational frequencies of pulsars are used to select preferred radio frequencies for SETI. Pulsar rotational frequencies are converted into SETI frequencies in the 1-10 GHz Galactic radio window. Experimental observations using the frequencies are conducted for target stars closer than 25 parsecs, unknown targets in a globular cluster, and unknown targets in the Galaxy closer than 2.5 kpc. The status of these observations is discussed.

  20. Examination of the embargo hypothesis as an explanation for the Great Silence

    NASA Astrophysics Data System (ADS)

    Deardorff, J. W.

    1987-08-01

    The embargo or quarantine hypothesis for explaining the 'Great Silence' is reviewed and found to be more plausible than the view that, at most, earth might expect to receive radio messages from some distant star. The latter hypothesis is shown to be compatible with extraterrestrial technologies only a few hundred years in advance of those on earth, whereas the embargo hypothesis more reasonably infers that they should be tens of thousands of years in advance and in control of any contact with humanity. Reasons why the embargo hypothesis has received insufficient attention are presented; they involve failure to allow for the application of both greatly advanced technology and high ethical values by maturing societies of extraterrestrial intelligence. The implication of the embargo hypothesis for space development is that planets already harboring diverse biota are ethically off-limits for exploitive colonization.

  1. Extraterrestrial Life as the Great Analogy, Two Centuries Ago and in Modern Astrobiology

    NASA Astrophysics Data System (ADS)

    Sullivan, Woodruff T.

    Mainstream ideas on the existence of extraterrestrial life in the late 18th and early 19th centuries are examined, with a focus on William Herschel, one of the greatest astronomers of all time. Herschel viewed all of the planets and moons of our solar system as inhabited, and gave logical arguments that even the Sun, and by extension all of the stars, was a giant planet fit for habitation by intelligent beings. The importance for astrobiology both two centuries ago and now of the type of inductive reasoning called "analogy" is emphasized. Analogy is an imperfect tool, but given that we have only one known case of life and of a life-bearing planet, it is very difficult to make progress in astrobiology without resorting to analogy, in particular between known life and possible other life. We cannot overcome the "N = 1 Problem" without resorting to this "Great Analogy" to guide our research.

  2. Fermi's paradox, extraterrestrial life and the future of humanity: a Bayesian analysis

    NASA Astrophysics Data System (ADS)

    Verendel, Vilhelm; Häggström, Olle

    2017-01-01

    The Great Filter interpretation of Fermi's great silence asserts that Npq is not a very large number, where N is the number of potentially life-supporting planets in the observable universe, p is the probability that a randomly chosen such planet develops intelligent life to the level of present-day human civilization, and q is the conditional probability that it then goes on to develop a technological supercivilization visible all over the observable universe. Evidence suggests that N is huge, which implies that pq is very small. Hanson (1998) and Bostrom (2008) have argued that the discovery of extraterrestrial life would point towards p not being small and therefore a very small q, which can be seen as bad news for humanity's prospects of colonizing the universe. Here we investigate whether a Bayesian analysis supports their argument, and the answer turns out to depend critically on the choice of prior distribution.

  3. Innovation in Primary School Construction: Community Participation in Seti Zone, Nepal. Educational Building Report 20. A Case Study.

    ERIC Educational Resources Information Center

    Tamang, H. D.; Dharam, K. C.

    Nepal is one of the poorest countries in the world. In 1981 the Education for Rural Development in Seti Zone Project--more commonly known as the "Seti Project"--was part of the Nepalese government's effort to develop a system of basic education in that far western region of Nepal. The early success of the project provided the impetus for…

  4. M855A1 Enhanced Performance Round (EPR) Media Day

    DTIC Science & Technology

    2011-05-04

    Distribution is unlimited. Other requests shall be referred to the Office of the Project Manager for Maneuver Ammunition Systems, ATTN: SFAE-AMO-MAS- SETI ... SETI ,Picatinny,NJ,07806-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S...the Project Manager for Maneuver Ammunition Systems, ATTN: SFAE- AMO-MAS- SETI , Picatinny, NJ Distribution Statement A: Approved for Public Release

  5. Mindmodeling@Home. . . and Anywhere Else You Have Idle Processors

    DTIC Science & Technology

    2009-07-01

    the continuous growth rate of end-user processing capability around the world. The first volunteer computing project was SETI @Home. It was... SETI @Home remains the longest running and one of the most popular volunteer computing projects in the world. This actually is an impressive feat...volunteer computing projects available to those interested in donating their idle processor time to scientific pursuits. Most of them, including SETI

  6. Siblings for SETI

    NASA Astrophysics Data System (ADS)

    Frisch, D.; Melia, F.

    1983-09-01

    The SAO Catalog of about 260,000 stars was studied to arrive at a sample of 'sibling', sun-like G-stars whose possible planetary systems' intelligent beings might feel drawn to single out each other for directional listening and broadcasting. A set of mostly untabulated sibling candidate stars can be defined, given a direction and a small solid angle that are mutually interesting to members of that set, so that overlapping broadcast/receiving cones can be selected on the basis of commonality. It is suggested that the double cone about the direction of the galactic center, whose half angle is 1/137 radian, is an almost inevitable choice in which sending and receiving with current technology can reach to about 1 kpsc, yielding an estimated 1000 G-star sibling candidates.

  7. Dynamics of neurons controlling movements of a locust hind leg. III. Extensor tibiae motor neurons.

    PubMed

    Newland, P L; Kondoh, Y

    1997-06-01

    Imposed movements of the apodeme of the femoral chordotonal organ (FeCO) of the locust hind leg elicit resistance reflexes in extensor and flexor tibiae motor neurons. The synaptic responses of the fast and slow extensor tibiae motor neurons (FETi and SETi, respectively) and the spike responses of SETi were analyzed with the use of the Wiener kernel white noise method to determine their response properties. The first-order Wiener kernels computed from soma recordings were essentially monophasic, or low passed, indicating that the motor neurons were primarily sensitive to the position of the tibia about the femorotibial joint. The responses of both extensor motor neurons had large nonlinear components. The second-order kernels of the synaptic responses of FETi and SETi had large on-diagonal peaks with two small off-diagonal valleys. That of SETi had an additional elongated valley on the diagonal, which was accompanied by two off-diagonal depolarizing peaks at a cutoff frequency of 58 Hz. These second-order components represent a half-wave rectification of the position-sensitive depolarizing response in FETi and SETi, and a delayed inhibitory input to SETi, indicating that both motor neurons were directionally sensitive. Model predictions of the responses of the motor neurons showed that the first-order (linear) characterization poorly predicted the actual responses of FETi and SETi to FeCO stimulation, whereas the addition of the second-order (nonlinear) term markedly improved the performance of the model. Simultaneous recordings from the soma and a neuropilar process of FETi showed that its synaptic responses to FeCO stimulation were phase delayed by about -30 degrees at 20 Hz, and reduced in amplitude by 30-40% when recorded in the soma. Similar configurations of the first and second-order kernels indicated that the primary process of FETi acted as a low-pass filter. Cross-correlation between a white noise stimulus and a unitized spike discharge of SETi again produced well-defined first- and second-order kernels that showed that the SETi spike response was also dependent on positional inputs. An elongated negative valley on the diagonal, characteristic of the second-order kernel of the synaptic response in SETi, was absent in the kernel from the spike component, suggesting that information is lost in the spike production process. The functional significance of these results is discussed in relation to the behavior of the locust.

  8. A New Empirical Constraint on the Prevalence of Technological Species in the Universe.

    PubMed

    Frank, A; Sullivan, W T

    2016-05-01

    In this article, we address the cosmic frequency of technological species. Recent advances in exoplanet studies provide strong constraints on all astrophysical terms in the Drake equation. Using these and modifying the form and intent of the Drake equation, we set a firm lower bound on the probability that one or more technological species have evolved anywhere and at any time in the history of the observable Universe. We find that as long as the probability that a habitable zone planet develops a technological species is larger than ∼10(-24), humanity is not the only time technological intelligence has evolved. This constraint has important scientific and philosophical consequences. Life-Intelligence-Extraterrestrial life. Astrobiology 2016, 359-362.

  9. Intelligent Design, A Young Universe, Astrology, UFO's, and More: Tackling Astronomical Pseudo-science

    NASA Astrophysics Data System (ADS)

    Fraknoi, A.

    2008-11-01

    During IYA educators and scientists will interact with the public in many ways. There will likely be public questions at IYA events about pseudo-scientific topics. While the particular pseudo-sciences that are in vogue change with time, these days popular astronomical pseudo-science includes creationism and intelligent design (and their denial of the age of the universe), astrology, UFO's as extra-terrestrial spaceships, selling star names, the ``face'' on Mars, the claim that the moon landings were a hoax, etc. We discuss some of the recent surveys of belief in pseudo-science and some ways to respond to questions about these topics. A separate resource guide to help answer questions about astronomical pseudoscience is also included in this volume.

  10. KIC 12557548 and Similar Stars as SETI Targets

    NASA Astrophysics Data System (ADS)

    Star Cartier, Kimberly Michelle

    2015-01-01

    This project aims to construct a robust information theoretic metric to quantify anomalous transit light curves and compare regular and irregular transits in a reproducible way. Using this metric we can distinguish natural transits from predicted extraterrestrial intelligence (ETI) communication that utilizes transiting mega-structures to alter the transit shape and depth in a measurable way. KIC-12557548b (KIC-1255b) is such an anomalous planet, with highly variable consecutive transit depths and shapes that have been explained by Rappaport et al. (2012) and Croll et al. (2014) as due to a disintegrating sub-Mercury sized planet with a debris tail encompassing the planetary orbit. However, Arnold (2005) and later Forgan (2013) presented models showing that planet-sized, non-circular artificial structures transiting their host star could be identified as non-natural by light curves anomalous in their duration and asymmetry, as in the case of KIC-1255b. If such mega-engineering structures were able to alter their aspects on orbital timescales, the resulting transit depths could be used to transmit information at low bandwidth. We use KIC-1255b as a benchmark case for separating anomalous transit signals that resemble ETI predictions but are naturally occurring. To do this, we use the Kullback-Leibler (KL) divergence of the KIC-1255b transit depth time series to quantify the entropy of the transit depth series. We calibrate our relative entropy metric by calculating the KL divergence of the Kepler-5b transits, which are markedly constant compared to KIC-1255b. Artificially generated transit depth time series data using Arnold's beacons allow us to calculate the KL divergence of predicted ETI communications and show that while KIC-1255b might match ETI predictions of shape and depth variations, the entropy content of the datasets are distinct by our metric. Thus we can use the entropy metric to test other cases of anomalous transits to separate out those transiting planets that can be explained through natural models and those for which an ETI hypothesis might be entertained.

  11. MindModeling@Home . . . and Anywhere Else You Have Idle Processors

    DTIC Science & Technology

    2009-12-01

    was SETI @Home. It was established in 1999 for the purpose of demonstrating the utility of “distributed grid computing” by providing a mechanism for...the public imagination, and SETI @Home remains the longest running and one of the most popular volunteer computing projects in the world. This...pursuits. Most of them, including SETI @Home, run on a software architecture called the Berkeley Open Infrastructure for Network Computing (BOINC). Some of

  12. Kurzweil's Singularity as a part of Evo-SETI Theory

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    2017-03-01

    Ray Kurzweil's famous 2006 book "The Singularity Is Near" predicted that the Singularity (i.e. computers taking over humans) would occur around the year 2045. In this paper we prove that Kurzweil's prediction is in agreement with the "Evo-SETI" (Evolution and SETI)" mathematical model that this author has developed over the last five years in a series of mathematical papers published in both Acta Astronautica and the International Journal of Astrobiology.

  13. Evo-SETI SCALE to measure Life on Exoplanets

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    2016-04-01

    Darwinian Evolution over the last 3.5 billion years was an increase in the number of living species from 1 (RNA?) to the current 50 million. This increasing trend in time looks like being exponential, but one may not assume an exactly exponential curve since many species went extinct in the past, even in mass extinctions. Thus, the simple exponential curve must be replaced by a stochastic process having an exponential mean value. Borrowing from financial mathematics (;Black-Scholes models;), this ;exponential; stochastic process is called Geometric Brownian Motion (GBM), and its probability density function (pdf) is a lognormal (not a Gaussian) (Proof: see ref. Maccone [3], Chapter 30, and ref. Maccone [4]). Lognormal also is the pdf of the statistical number of communicating ExtraTerrestrial (ET) civilizations in the Galaxy at a certain fixed time, like a snapshot: this result was found in 2008 by this author as his solution to the Statistical Drake Equation of SETI (Proof: see ref. Maccone [1]). Thus, the GBM of Darwinian Evolution may also be regarded as the extension in time of the Statistical Drake equation (Proof: see ref. Maccone [4]). But the key step ahead made by this author in his Evo-SETI (Evolution and SETI) mathematical model was to realize that LIFE also is just a b-lognormal in time: every living organism (a cell, a human, a civilization, even an ET civilization) is born at a certain time b (;birth;), grows up to a peak p (with an ascending inflexion point in between, a for adolescence), then declines from p to s (senility, i.e. descending inflexion point) and finally declines linearly and dies at a final instant d (death). In other words, the infinite tail of the b-lognormal was cut away and replaced by just a straight line between s and d, leading to simple mathematical formulae (;History Formulae;) allowing one to find this ;finite b-lognormal; when the three instants b, s, and d are assigned. Next the crucial Peak-Locus Theorem comes. It means that the GBM exponential may be regarded as the geometric locus of all the peaks of a one-parameter (i.e. the peak time p) family of b-lognormals. Since b-lognormals are pdf-s, the area under each of them always equals 1 (normalization condition) and so, going from left to right on the time axis, the b-lognormals become more and more ;peaky;, and so they last less and less in time. This is precisely what happened in human history: civilizations that lasted millennia (like Ancient Greece and Rome) lasted just centuries (like the Italian Renaissance and Portuguese, Spanish, French, British and USA Empires) but they were more and more advanced in the ;level of civilization;. This ;level of civilization; is what physicists call ENTROPY. Also, in refs. Maccone [3] and [4], this author proved that, for all GBMs, the (Shannon) Entropy of the b-lognormals in his Peak-Locus Theorem grows LINEARLY in time. The Molecular Clock, well known to geneticists since 50 years, shows that the DNA base-substitutions occur LINEARLY in time since they are neutral with respect to Darwinian selection. In simple words: DNA evolved by obeying the laws of quantum physics only (microscopic laws) and not by obeying assumed ;Darwinian selection laws; (macroscopic laws). This is Kimura's neutral theory of molecular evolution. The conclusion is that the Molecular Clock and the b-lognormal Entropy are the same thing. At last, we reach the new, original result justifying the publication of this paper. On exoplanets, molecular evolution is proceeding at about the same rate as it did proceed on Earth: rather independently of the physical conditions of the exoplanet, if the DNA had the possibility to evolve in water initially. Thus, Evo-Entropy, i.e. the (Shannon) Entropy of the generic b-lognormal of the Peak-Locus Theorem, provides the Evo-SETI SCALE to measure the evolution of life on exoplanets.

  14. A critical review of the state of foreign space technology

    NASA Technical Reports Server (NTRS)

    Grey, J.; Gerard, M.

    1978-01-01

    A conference was held to exchange technical information in the area of space technology. Soviet system capability and technology both in Intersputnik and in the domestic Ekran system was discussed in detail. The thermonic power conversion system used in the Soviet Topaz nuclear power reactor was described in detail. Other areas of examination included: (1) Bioastronautics; (2) Space based industry; (3) Propulsion; (4) Astrodynamics; (5) Contact with extraterrestrial intelligence; and (6) Space rescue and safety.

  15. The Telecommunications and Data Acquisition

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A. (Editor)

    1981-01-01

    Progress in the development and operations of the Deep Space Network is reported including developments in Earth based radio technology as applied to other research programs. These programs include application of radio interferometry at microwave frequencies to geodetic measurements and geodynamics, use of deep space stations individually and in pairs as an interferometer by radio astronomers for astrophysics research by direct observations of radio sources, and radio search for extraterrestrial intelligence in the microwave region of the electromagnetic spectrum.

  16. The Convergence of Intelligences

    NASA Astrophysics Data System (ADS)

    Diederich, Joachim

    Minsky (1985) argued an extraterrestrial intelligence may be similar to ours despite very different origins. ``Problem- solving'' offers evolutionary advantages and individuals who are part of a technical civilisation should have this capacity. On earth, the principles of problem-solving are the same for humans, some primates and machines based on Artificial Intelligence (AI) techniques. Intelligent systems use ``goals'' and ``sub-goals'' for problem-solving, with memories and representations of ``objects'' and ``sub-objects'' as well as knowledge of relations such as ``cause'' or ``difference.'' Some of these objects are generic and cannot easily be divided into parts. We must, therefore, assume that these objects and relations are universal, and a general property of intelligence. Minsky's arguments from 1985 are extended here. The last decade has seen the development of a general learning theory (``computational learning theory'' (CLT) or ``statistical learning theory'') which equally applies to humans, animals and machines. It is argued that basic learning laws will also apply to an evolved alien intelligence, and this includes limitations of what can be learned efficiently. An example from CLT is that the general learning problem for neural networks is intractable, i.e. it cannot be solved efficiently for all instances (it is ``NP-complete''). It is the objective of this paper to show that evolved intelligences will be constrained by general learning laws and will use task-decomposition for problem-solving. Since learning and problem-solving are core features of intelligence, it can be said that intelligences converge despite very different origins.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, G. R.; Richards, Jon; Tarter, Jill C.

    We report radio SETI observations on a large number of known exoplanets and other nearby star systems using the Allen Telescope Array (ATA). Observations were made over about 19000 hr from 2009 May to 2015 December. This search focused on narrowband radio signals from a set totaling 9293 stars, including 2015 exoplanet stars and Kepler objects of interest and an additional 65 whose planets may be close to their habitable zones. The ATA observations were made using multiple synthesized beams and an anticoincidence filter to help identify terrestrial radio interference. Stars were observed over frequencies from 1 to 9 GHzmore » in multiple bands that avoid strong terrestrial communication frequencies. Data were processed in near-real time for narrowband (0.7–100 Hz) continuous and pulsed signals with transmitter/receiver relative accelerations from −0.3 to 0.3 m s{sup −2}. A total of 1.9 × 10{sup 8} unique signals requiring immediate follow-up were detected in observations covering more than 8 × 10{sup 6} star-MHz. We detected no persistent signals from extraterrestrial technology exceeding our frequency-dependent sensitivity threshold of 180–310 × 10{sup −26} W m{sup −2}.« less

  18. Spatial Characterization of Polycyclic Aromatic Hydrocarbons in 2008 TC3 Samples

    NASA Astrophysics Data System (ADS)

    Sabbah, Hassan; Morrow, A.; Zare, R. N.; Jenniskens, P.

    2009-09-01

    Hassan Sabbah1, Amy L. Morrow1, Richard N. Zare1 and Petrus Jenniskens2 1Stanford University, Stanford, California 94305, 2 SETI Institute, Carl Sagan Center, 515 North Whisman Road, Mountain View, California 94043, USA. In October 2006 a small asteroid (2-3 meters) was observed in outer space. On October 7, 2008, it entered the Earth's atmosphere creating a fireball over Northern Sudan. Some 280 meteorites were collected by the University of Khartoum. In order to explore the existence of organic materials, specifically polycyclic aromatic hydrocarbons (PAHs), we applied two-step laser desorption laser ionization mass spectrometry (L2MS) to some selected fragments. This technique consists of desorbing with a pulsed infrared laser beam the solid materials into a gaseous phase with no fragmentation followed by resonance enhanced multiphoton ionization to analyze the PAH content. L2MS was already applied to an array of extraterrestrial objects including interplanetary dust particles IDPs, carbonaceous chondrites and comet coma particles. Moreover, spatial resolution of PAHs in 2008 TC3 samples was achieved to explore the heterogeneity within individual fragments. The results of these studies and their contribution to understanding the formation of this asteroid will be discussed.

  19. Might Astrobiological Findings Evoke a Religious Crisis?

    NASA Astrophysics Data System (ADS)

    Peters, T.; Froehlig, J. L.

    2009-12-01

    What might be the likely impact of confirmed discovery of extraterrestrial life—microbial or intelligent life—on terrestrial religion? Many have speculated that the anthropo-centrism and earth-centrism which allegedly have characterized our religious traditions would be confronted with a crisis. Would new knowledge that we are not alone in the universe lead to a collapse of traditional religious belief? This presentation will summarize the results of the Peters Religious Crisis Survey of 1325 respondents. This survey shows that the majority of adherents to Christianity, Islam, Judaism, and Buddhism demonstrate little or no anxiety regarding the prospect of contact with extraterrestrial life, even if they express some doubts regarding their respective religious tradition and the traditions of others. This presentation will also show that theological speculation regarding other worlds has sparked lively debate beginning as far back as the middle ages and continuing into our present era. Ted Peters is a research and teaching scholar with the Center for Theology and the Natural Sciences at the Graduate Theological Union in Berkeley, California. He is co-editor of the journal, Theology and Science, and author of the books, The Evolution of Terrestrial and Extraterrestrial Life (Pandora 2008) and Playing God? Genetic Determinism and Human Freedom (Routledge, rev. ed., 2003).

  20. The Search for Extraterrestrial Life

    NASA Astrophysics Data System (ADS)

    Peter, Ulmschneider

    Looking at the nature, origin, and evolution of life on Earth is one way of assessing whether extraterrestrial life exists on Earth-like planets elsewhere (see Chaps. 5 and 6). A more direct approach is to search for favorable conditions and traces of life on other celestial bodies, both in the solar system and beyond. Clearly, there is little chance of encountering nonhuman intelligent beings in the solar system. But there could well be primitive life on Mars, particularly as in the early history of the solar system the conditions on Mars were quite similar to those on Earth. In addition, surprisingly favorable conditions for life once existed on the moons of Jupiter. Yet even if extraterrestrial life is not encountered in forthcoming space missions, it would be of utmost importance to recover fossils of past organisms as such traces would greatly contribute to our basic understanding of the formation of life. In addition to the planned missions to Mars and Europa, there are extensive efforts to search for life outside the solar system. Rapid advances in the detection of extrasolar planets, outlined in Chap. 3, are expected to lead to the discovery of Earth-like planets in the near future. But how can we detect life on these distant bodies?

Top