Sample records for extratropical planetary waves

  1. Hemispheric asymmetries in the quasibiennial oscillation signature on the mid- to high-latitude circulation of the stratosphere.

    PubMed

    Peña-Ortiz, C; García-Herrera, R; Ribera, P; Calvo, N

    2008-12-01

    The quasibiennial oscillation (QBO) dominates the variability of the equatorial stratosphere and also affects the circulation and temperature of the extratropical region. In this paper we review previous work showing that the mid- to high-latitude circulation is weaker (stronger) when QBO easterlies (westerlies) dominate in the low equatorial stratosphere. The accepted explanation for the extratropical QBO signature is based on the QBO modulation of upward propagating planetary Rossby waves. This mechanism is consistent with the strong seasonality observed in the extratropical QBO. The largest QBO signature in the northern extratropical stratosphere occurs during winter when the dominating westerly wind allows the penetration of planetary waves in the northern stratosphere. However, during the southern winter, planetary waves do not disrupt the southern stratospheric vortex and the largest QBO signature is found during the late spring (November). To further illustrate these mechanisms, we analyze the QBO signature on the mid- to high-latitude circulation of the stratosphere using data from the ERA-40 reanalysis. The extratropical signature in both hemispheres is evaluated as a function of the latitude-height structure of the zonal wind in the tropical region in order to determine how the extratropical response depends on the vertical phase structure of the tropical QBO. We also analyze the QBO impact on planetary wave activity in order to determine how this modulation can explain the observed extratropical QBO signal.

  2. Wave modulation of the extratropical tropopause inversion layer

    NASA Astrophysics Data System (ADS)

    Pilch Kedzierski, Robin; Matthes, Katja; Bumke, Karl

    2017-03-01

    This study aims to quantify how much of the observed strength and variability in the zonal-mean extratropical tropopause inversion layer (TIL) comes from the modulation of the temperature field and its gradients around the tropopause by planetary- and synoptic-scale waves. By analyzing high-resolution observations, it also puts other TIL enhancing mechanisms into context.Using gridded Global Positioning System radio occultation (GPS-RO) temperature profiles from the COSMIC mission (2007-2013), we are able to extract the extratropical wave signal by a simplified wavenumber-frequency domain filtering method and quantify the resulting TIL enhancement. By subtracting the extratropical wave signal, we show how much of the TIL is associated with other processes, at mid- and high latitudes, for both hemispheres and all seasons.The transient and reversible modulation by planetary- and synoptic-scale waves is almost entirely responsible for the TIL in midlatitudes. This means that wave-mean flow interactions, inertia-gravity waves and the residual circulation are of minor importance for the strength and variability in the midlatitude TIL.At polar regions, the extratropical wave modulation is dominant for the TIL strength as well, but there is also a clear fingerprint from sudden stratospheric warmings (SSWs) and final warmings in both hemispheres. Therefore, polar vortex breakups are partially responsible for the observed polar TIL strength in winter (if SSWs occur) and spring. Also, part of the polar summer TIL strength cannot be explained by extratropical wave modulation.We suggest that our wave modulation mechanism integrates several TIL enhancing mechanisms proposed in previous literature while robustly disclosing the overall outcome of the different processes involved. By analyzing observations only, our study identifies which mechanisms dominate the extratropical TIL strength and their relative contribution. It remains to be determined, however, which roles the different planetary- and synoptic-scale wave types play within the total extratropical wave modulation of the TIL, as well as what causes the observed amplification of extratropical waves near the tropopause.

  3. Coupling of the quasi-biennial oscillation and the extratropical circulation in the stratosphere through planetary wave transport

    NASA Technical Reports Server (NTRS)

    O'Sullivan, Donal; Salby, Murry L.

    1990-01-01

    The effects of tropical winds on the extratropical circulation are examined using calculations of eddy transport with tropical flow that is representative of the easterly and westerly phases of the quasi-biennial oscillation (QBO). A dependence of extratropical circulation on tropical winds and the QBO is shown to originate in planetary wave transport. Also, the effects of low latitude flow on high latitude circulation and the behavior of the vortex in opposite phases of the QBO are examined.

  4. Quasi-biennial modulation of planetary-wave fluxes in the Northern Hemisphere winter

    NASA Technical Reports Server (NTRS)

    Dunkerton, Timothy J.; Baldwin, Mark P.

    1991-01-01

    Using 25 years of National Meteorological Center (NMC) data for 1964-88 the relation between tropical and extratropical quasi-biennial oscillations (QBOs) was examined for zonally averaged quantities and planetary-wave Eliassen-Palm fluxes in the Northern Hemisphere winter. The extratropical QBO discussed by Holton and Tan (1980) existed in both temporal halves of the dataset. Autocorrelation analysis demonstrated that it was an important mode of interannual variability in the extratropical winter stratosphere. Correlation with the tropics was strongest when 40-mb equatorial winds were used to define the tropical QBO. Easterly phase at 40 mb implied a weaker than normal polar night jet and warmer than normal polar temperature and vice versa. An opposite relationship was obtained using 10-mb equatorial winds. The association between tropical and extratropical QBOs was observed in about 90 percent of the winters and was statistically significant. It is shown that planetary-wave Eliassen-Palm fluxes were generally consistent with the extratropical QBO. These fluxes were more (less) convergent in the midlatitude (subtropical) upper stratosphere in the 40-mb east (= easterly) phase category relative to the west category.

  5. Extratropical signature of the quasi-biennial oscillation

    NASA Technical Reports Server (NTRS)

    Ruzmaikin, Alexander; Feynman, Joan; Jiang, Xun; Yung, Yuk L.

    2005-01-01

    Using the assimilated data from the National Centers for Environmental Prediction (NCEP) reanalysis, we show that the extratropical signature of the tropical quasi-biennial oscillation (QBO) is seen mostly in the North Annular Mode (NAM) of atmospheric variability. To understand the extratropical manifestation of the QBO, we discuss two effects that have been suggested earlier: (1) The extratropical circulation is driven by the QBO modulation of the planetary wave flux, and (2) the extratropical circulation is driven by the QBO-induced meridional circulation. We found that the first effect is seen in wave 1 in the beginning of winter and in wave 2 in the end of winter. The QBO-induced circulation affects midlatitude regions over the entire winter. To investigate the QBONAM coupling, we use an equation that relates the stream function of the meridional circulation and the polar cap averaged temperature, which is a proxy for the NAM index. In addition to the annual (omega)a and the QBO frequency (omega)Q the spectrum of its solutions indicates the satellite frequencies at (omega)a +/- (o.

  6. The planetary waves dynamics and interannual course of meteorological parameters of the high latitude stratosphere and mesosphere of the Northern and Southern Hemispheres during the 20th and 21st solar cycles and different phases of QBO

    NASA Technical Reports Server (NTRS)

    Kidiyarova, V. G.; Fomina, N. N.

    1989-01-01

    The part of energy of the planetary waves which enters the stratosphere depends on conditions of planetary wave generation and propagation through the tropopause, and the part of planetary wave energy which enters the mesosphere depends on conditions of planetary wave propagation through the stratopause. An attempt is made to estimate connections between extratropical middle atmosphere temperature long term variations and portions of energy of planetary waves which enter the mesosphere and stratosphere during winter seasons in Northern and Southern Hemispheres. Interannual variations of temperatures at the 30 km and 70 km levels are investigated for the central winter months of the period 1970 to 1986. This period includes the descending branch of the 20th solar cycle and the whole 21st cycle. Calculations are made on the basis of measurements at Heiss Island and Molodezhnaya.

  7. Atmospheric Rivers and Their Role in Extreme Precipitation in the Midwest U.S.

    DTIC Science & Technology

    2013-03-01

    located in the warm sector of extratropical cyclones (warm conveyor belt) and can be characterized by strong winds (low level jet) and large water...the associated synoptic-scale extratropical cyclone and subsequent frontal processes of each planetary wave, resulting in narrow regions of moisture...normal falls during AR storms during the winter on the West Coast. During the summer, precipitation enhancements were not as significant (mostly due

  8. Modeling the quasi-biennial oscillation's effect on the winter stratospheric circulation

    NASA Technical Reports Server (NTRS)

    O'Sullivan, Donal; Young, Richard E.

    1992-01-01

    The influence of the equatorial quasi-biennial oscillation (QBO) on the winter middle atmosphere is modeled with a mechanistic global primitive equation model. The model's polar vortex evolution is sensitive to the lower stratosphere's tropical winds, with the polar vortex becoming more (less) disturbed as the lower stratospheric winds are more easterly (westerly). This agrees with the observed relationship between wintertime polar circulation strength and the phase of the QBO in the lower stratosphere. In these experiments it is the extratropical planetary Rossby waves that provide the tropical-extratropical coupling mechanism. More easterly tropical winds in the lower stratosphere act to confine the extratropical Rossby waves farther north and closer to the vortex at the QBO altitudes, weakening the vortex relative to the case of westerly QBO phase. While the QBO winds occur in the lower stratosphere, the anomaly in the polar vortex strength is strongest at higher levels.

  9. Investigate wave-mean flow interaction and transport in the extratropical winter stratosphere

    NASA Technical Reports Server (NTRS)

    Smith, Anne K.

    1993-01-01

    The grant supported studies using several models along with observations in order to investigate some questions of wave-mean flow interaction and transport in the extratropical winter stratosphere. A quasi-geostrophic wave model was used to investigate the possibility that resonant growth of planetary wave 2 may have played a role in the sudden stratospheric warming of February 1979. The results of the time-dependent integration support the interpretation of resonance during February, 1979. Because of the possibility that the model treatment of critical line interactions exerted a controlling influence on the atmospheric dynamics, a more accurate model was needed for wave-mean flow interaction studies. A new model was adapted from the 3-dimensional primitive equation model developed by K. Rose and G. Brasseur. In its present form the model is global, rather than hemispheric; it contains an infrared cooling algorithm and a parameterized solar heating; it has parameterized gravity wave drag; and the chemistry has been entirely revised.

  10. The GISS global climate-middle atmosphere model. II - Model variability due to interactions between planetary waves, the mean circulation and gravity wave drag

    NASA Technical Reports Server (NTRS)

    Rind, D.; Suozzo, R.; Balachandran, N. K.

    1988-01-01

    The variability which arises in the GISS Global Climate-Middle Atmosphere Model on two time scales is reviewed: interannual standard deviations, derived from the five-year control run, and intraseasonal variability as exemplified by statospheric warnings. The model's extratropical variability for both mean fields and eddy statistics appears reasonable when compared with observations, while the tropical wind variability near the stratopause may be excessive possibly, due to inertial oscillations. Both wave 1 and wave 2 warmings develop, with connections to tropospheric forcing. Variability on both time scales results from a complex set of interactions among planetary waves, the mean circulation, and gravity wave drag. Specific examples of these interactions are presented, which imply that variability in gravity wave forcing and drag may be an important component of the variability of the middle atmosphere.

  11. Universal planetary tectonics (supertectonics)

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2009-04-01

    Universal planetary tectonics (supertectonics) G. Kochemasov IGEM of the Russian Academy of Sciences, Moscow, Russia, kochem.36@mail.ru The wave planetology [1-3 & others] proceeds from the following: "planetary structures are made by orbits and rotations". A uniform reason makes uniform structures. Inertia-gravity waves arising in planetary bodies due to their movements in Keplerian elliptical orbits with periodically changing accelerations warp these bodies in such way that they acquire polyhedron shapes (after interference of standing waves of four directions). Strong Newtonian gravity makes bodies larger than ~400 to 500 km in diameter globular and polyhedra are rarely seen. Only geomorphologic, geologic and geophysical mapping can develop these hidden structures. But small bodies, normally less than ~ 300 to 400 km in diameter, often show parts of the polyhedra, rarely fully developed forms (the asteroid Steins and satellite Amalthea present rather perfect forms of "diamond"). Depending on warping wavelengths (they make harmonics) various Plato's figures superimposed on each other can be distinguished. The fundamental wave 1 produces a tetrahedron, intrinsically dichotomic figure in which a vertex (contraction) always is opposed to a face (expansion). From the recent examples the best is the saturnian northern hexagon (a face) opposed to the southern hurricane (a vertex). The first overtone wave 2 is responsible for creation of structural octahedra. Whole ‘diamonds" and their parts are known [4, 5]. Other overtones produce less developed (because of smaller wave amplitudes) planetary shapes complicating main forms. Thus, the first common structural peculiarity of planetary bodies is their polyhedron nature. Not less important is the second common structural peculiarity. As all globular or smaller more or less isometric bodies rotate, they have an angular momentum. It is inevitably different in tropic and extra-tropic belts having uneven radii or distances to the rotation axe. But this unevenness is undesirable because it creates tectonic stresses and increases energetic status that is against the natural tendency to minimize these physical characteristics. So, a body tends to lower angular momentum of tropics and increase it in extra-tropics. With the same angular velocity it remains only mass and radius to play in this tendency. Tropical belt is destructed (for an example, the lithosphere disintegration in solid bodies), extra-tropical belts add dense material (plumes), expand - the constructive tendency [6]. Both tectonic peculiarities-polyhedrons and constructive - destructive tendencies - are common for celestial bodies of various classes. They are characteristic for our star, planets, satellites and small bodies. That is why a term "supertectonics" seems rather suitable. References: [1] Kochemasov G.G. Concerted wave supergranulation of the solar system bodies // 16th Russian-American microsymposium on planetology, Abstracts, Moscow, Vernadsky Inst. (GEOKHI), 1992, 36-37. [2] Kochemasov G.G. Tectonic dichotomy, sectoring and granulation of Earth and other celestial bodies // Proceedings of the International Symposium on New Concepts in Global Tectonics, "NCGT-98 TSUKUBA", Geological Survey of Japan, Tsukuba, Nov 20-23, 1998, p. 144-147. [3] Kochemasov G.G. Theorems of wave planetary tectonics // Geophys. Res. Abstr., 1999, V.1, №3, 700. [4] Kochemasov G.G. Plato' polyhedra as shapes of small icy satellites // Geophys. Res. Abstracts, Vol. 10, 2008, EGU2008-A-01271, CD-ROM; [5] Kochemasov G.G. (1999) "Diamond" and "dumb-bells"-like shapes of celestial bodies induced by inertia-gravity waves // 30th Vernadsky-Brown microsymposium on comparative planetology, Abstracts, Moscow, Vernadsky Inst.,, 49-50; [6] Kochemasov G.G. Tectonics of rotating celestial globes // Vernadsky-Brown microsymposium 48, 20-22 Oct. 2008, Moscow, Abstr. m48_20.

  12. Stationary eddies in the Mars general circulation as simulated by the NASA-Ames GCM

    NASA Technical Reports Server (NTRS)

    Barnes, J. R.; Pollack, J. B.; Haberle, Robert M.

    1993-01-01

    Quasistationary eddies are prominent in a large set of simulations of the Mars general circulation performed with the NASA-Ames GCM. Various spacecraft observations have at least hinted at the existence of such eddies in the Mars atmosphere. The GCM stationary eddies appear to be forced primarily by the large Mars topography, and (to a much lesser degree) by spatial variations in the surface albedo and thermal inertia. The stationary eddy circulations exhibit largest amplitudes at high altitudes (above 30-40 km) in the winter extratropical regions. In these regions they are of planetary scale, characterized largely by zonal wavenumbers 1 and 2. Southern Hemisphere winter appears to be dominated by a very strong wave 1 pattern, with both waves 1 and 2 being prominent in the Northern Hemisphere winter regime. This difference seems to be basically understandable in terms of differences in the topography in the two hemispheres. The stationary eddies in the northern winter extratropics are found to increase in amplitude with dust loading. This behavior appears to be at least partly associated with changes in the structure of the zonal-mean flow that favor a greater response to wave 1 topographic forcing. There are also strong stationary eddy circulations in the tropics and in the summer hemisphere. The eddies in the summer subtropics and extratropics arc substantially stronger in southern summer than in northern summer. The summer hemisphere stationary circulations are relatively shallow and are characterized by smaller zonal scales than those in the winter extratropics.

  13. Seasonal variation of the stratospheric circulation

    NASA Technical Reports Server (NTRS)

    Hirota, I.; Shiotani, M.

    1985-01-01

    An extensive analysis is made of the extratropical stratospheric circulation in terms of the seasonal variation of large-scale motion fields, with the aid of height and temperature data obtained from the TIROS satellite. Special attention is paid to a comparison of climatological aspects between the Northern Hemisphere (NH) and the Southern Hemisphere (SH). In order to see the general picture of the annual mach of the upper stratosphere, the zonal mean values of geopotential height of the 1 mb level at 70 deg N and 70 deg S were plotted on the daily basis throughout a year. It is observed that, during the winter, the zonal mean 1 mb height in the NH is much more variable than that in the SH. It is also notable that the SH height is rather oscillatory throughout the longer period from midwinter to early summer. Since the zonal mean height in the polar latitude is a rough measure of the mean zonal flow in extratropical latitudes, the difference of the seasonal variation between the two hemispheres mentioned above is considered to be due mainly to the planetary wave-mean flow interaction in the middle atmosphere. The wave activity in the middle atmosphere is represented more rigorously by the Eliassen-Palm flux associated with vertically propagating planetary waves forced from below. The day-to-day variation of the EP flux in the upper stratosphere shows that the wave activity varies intermittently with a characteristic time scale of about two weeks.

  14. Interannual Variability and Trends of Extratropical Ozone. Part 1; Northern Hemisphere

    NASA Technical Reports Server (NTRS)

    Yung, Yuk L.

    2008-01-01

    The authors apply principal component analysis (PCA) to the extratropical total column ozone from the combined merged ozone data product and the European Centre for Medium-Range Weather Forecasts assimilated ozone from January 1979 to August 2002. The interannual variability (IAV) of extratropical O-3 in the Northern Hemisphere (NH) is characterized by four main modes. Attributable to dominant dynamical effects, these four modes account for nearly 60% of the total ozone variance in the NH. The patterns of variability are distinctly different from those derived for total O-3 in the tropics. To relate the derived patterns of O-3 to atmospheric dynamics, similar decompositions are performed for the 30 100-Wa geopotential thickness. The results reveal intimate connections between the IAV of total ozone and the atmospheric circulation. The first two leading modes are nearly zonally symmetric and represent the connections to the annular modes and the quasi-biennial oscillation. The other two modes exhibit in-quadrature, wavenumber-1 structures that, when combined, describe the displacement of the polar vortices in response to planetary waves. In the NH, the extrema of these combined modes have preferred locations that suggest fixed topographical and land-sea thermal forcing of the involved planetary waves. Similar spatial patterns and trends in extratropical column ozone are simulated by the Goddard Earth Observation System chemistryclimate model (GEOS-CCM). The decreasing O-3 trend is captured in the first mode. The largest trend occurs at the North Pole, with values similar to-1 Dobson Unit (DU) yr(-1). There is almost no trend in tropical O-3. The trends derived from PCA are confirmed using a completely independent method, empirical mode decomposition, for zonally averaged O-3 data. The O-3 trend is also captured by mode 1 in the GEOS-CCM, but the decrease is substantially larger than that in the real atmosphere.

  15. Global QBO in circulation and ozone. Part 2: A simple mechanistic model

    NASA Technical Reports Server (NTRS)

    Tung, K. K.; Yang, H.

    1994-01-01

    Although the phenomenon of equatorial quasi-biennial oscillation is relatively well understood, the problem of how the equatorially confined quasi-biennial oscillation (QBO) wave forcing can induce a signal in the extratropics of comparable or larger magnitude remains unsolved. A simple mechanistic model is constructed to provide a quantitative test of the hypothesis that the phenomenon of extratropical QBO is mainly caused by an anomalous seasonal circulation induced by an anomalous Eliassen-Palm (E-P) flux divergence. The anomaly in E-P flux divergence may be caused in turn by the relative poleward and downward shift of the region of irreversible mixing (breaking) of the extratropical planetary waves during the easterly phase of the equatorial QBO as compared to its westerly phase. The hemispheric nature of the anomaly wave forcing in solstice seasons (viz., no wave breaking in the summer hemisphere) induces a global circulation anomaly that projects predominantly into the first few zonal Hough modes of Plumb. Such a global QBO circulation pattern, although difficult to measure directly, is reflected in the distribution of stratospheric tracers transported by it. Our model produces a global pattern of QBO anomaly in column ozone that appears to account for much of the unfiltered interannual variability in the column ozone observed by the total ozone mapping spectrometer (TOMS) instrument aboard the Nimbus satellite. Furthermore, the model produces the characteristic spectrum of the observation with peaks at periods of 20 and 30 months.

  16. Global QBO in circulation and ozone. Part 2: A simple mechanistic model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tung, K.K.; Yang, H.

    1994-10-01

    Although the phenomenon of equatorial quasi-biennial oscillation is relatively well understood, the problem of how the equatorially confined quasi-biennial oscillation (QBO) wave forcing can induce a signal in the extratropics of comparable or larger magnitude remains unsolved. A simple mechanistic model is constructed to provide a quantitative test of the hypothesis that the phenomenon of extratropical QBO is mainly caused by an anomalous seasonal circulation induced by an anomalous Eliassen-Palm (E-P) flux divergence. The anomaly in E-P flux divergence may be caused in turn by the relative poleward and downward shift of the region of irreversible mixing (breaking) of themore » extratropical planetary waves during the easterly phase of the equatorial QBO as compared to its westerly phase. The hemispheric nature of the anomaly wave forcing in solstice seasons (viz., no wave breaking in the summer hemisphere) induces a global circulation anomaly that projects predominantly into the first few zonal Hough modes of Plumb. Such a global QBO circulation pattern, although difficult to measure directly, is reflected in the distribution of stratospheric tracers transported by it. Our model produces a global pattern of QBO anomaly in column ozone that appears to account for much of the unfiltered interannual variability in the column ozone observed by the total ozone mapping spectrometer (TOMS) instrument aboard the Nimbus satellite. Furthermore, the model produces the characteristic spectrum of the observation with peaks at periods of 20 and 30 months.« less

  17. Radiative effects of ozone waves on the Northern Hemisphere polar vortex and its modulation by the QBO

    NASA Astrophysics Data System (ADS)

    Silverman, Vered; Harnik, Nili; Matthes, Katja; Lubis, Sandro W.; Wahl, Sebastian

    2018-05-01

    The radiative effects induced by the zonally asymmetric part of the ozone field have been shown to significantly change the temperature of the NH winter polar cap, and correspondingly the strength of the polar vortex. In this paper, we aim to understand the physical processes behind these effects using the National Center for Atmospheric Research (NCAR)'s Whole Atmosphere Community Climate Model, run with 1960s ozone-depleting substances and greenhouse gases. We find a mid-winter polar vortex influence only when considering the quasi-biennial oscillation (QBO) phases separately, since ozone waves affect the vortex in an opposite manner. Specifically, the emergence of a midlatitude QBO signal is delayed by 1-2 months when radiative ozone-wave effects are removed. The influence of ozone waves on the winter polar vortex, via their modulation of shortwave heating, is not obvious, given that shortwave heating is largest during fall, when planetary stratospheric waves are weakest. Using a novel diagnostic of wave 1 temperature amplitude tendencies and a synoptic analysis of upward planetary wave pulses, we are able to show the chain of events that lead from a direct radiative effect on weak early fall upward-propagating planetary waves to a winter polar vortex modulation. We show that an important stage of this amplification is the modulation of individual wave life cycles, which accumulate during fall and early winter, before being amplified by wave-mean flow feedbacks. We find that the evolution of these early winter upward planetary wave pulses and their induced stratospheric zonal mean flow deceleration is qualitatively different between QBO phases, providing a new mechanistic view of the extratropical QBO signal. We further show how these differences result in opposite radiative ozone-wave effects between east and west QBOs.

  18. Relationship between the North Pacific Gyre Oscillation and the onset of stratospheric final warming in the northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Hu, Jinggao; Li, Tim; Xu, Haiming

    2018-01-01

    The seasonal timing or onset date of the stratospheric final warming (SFWOD) events has a considerable interannual variability. This paper reports a statistically significant relationship between the North Pacific Gyre Oscillation (NPGO) and SFWOD in the Northern Hemisphere in two sub-periods (1951-1978 and 1979-2015). Specifically, in the first (second) sub-period, the NPGO is negatively (positively) linked with SFWOD. Composite analyses associated with anomalous NPGO years are conducted to diagnose the dynamic processes of the NPGO-SFWOD link. During 1951-1978, positive NPGO years tend to strengthen the Pacific-North America (PNA) pattern in the mid-troposphere in boreal winter. The strengthened PNA pattern in February leads to strong planetary wave activity in the extratropical stratosphere from late February to March and causes the early onset of SFW in early April. By contrast, a strengthened Western Pacific pattern from January to early February in negative NPGO years causes a burst of planetary waves in both the troposphere and extratropical stratosphere from late January to mid-February and results in more winter stratospheric sudden warming events, which, in turn, leads to a dormant spring and a late onset of SFW in late April. During 1979-2015, positive (negative) NPGO years strongly strengthen (weaken) the mid-tropospheric Aleutian low and the Western Pacific pattern from January to mid-March, leading to increased (decreased) planetary wavenumber-1 activity in the stratosphere from mid- to late winter and thus more (less) winter stratospheric sudden warming events and late (early) onsets of SFW in early May (mid-April).

  19. The Analysis, Numerical Simulation, and Diagnosis of Extratropical Weather Systems

    DTIC Science & Technology

    1999-09-30

    The Analysis, Numerical Simulation, and Diagnosis of Extratropical Weather Systems Dr. Melvyn A. Shapiro NOAA/Environmental Technology Laboratory...formulation, and numerical prediction of the life cycles of synoptic-scale and mesoscale extratropical weather systems, including the influence of planetary...scale inter-annual and intra-seasonal variability on their evolution. These weather systems include: extratropical oceanic and land-falling cyclones

  20. Origin of the 2016 QBO Disruption and Its Relationship to Extreme El Niño Events

    NASA Astrophysics Data System (ADS)

    Barton, C. A.; McCormack, J. P.

    2017-11-01

    The descent of the westerly phase of the quasi-biennial oscillation (QBO) in equatorial stratospheric zonal wind was interrupted by the development of easterlies near 40 hPa ( 23 km altitude) in early 2016. We use tropical meteorological analyses of wind and temperature to describe in detail the special circumstances by which equatorward-propagating planetary waves produced this unprecedented disruption in the QBO. Our findings show that the subtropical easterly jet in the winter lower stratosphere during the 2015-2016 winter was anomalously weak owing to (1) the timing of the QBO relative to the annual cycle and (2) an extreme El Niño event. The weak jet allowed an unusually large flux of westward momentum to propagate from the extratropical Northern Hemisphere to the equator near the 40 hPa level. Consequently, the QBO westerlies at that level experienced sustained easterly acceleration from extratropical wave breaking, leading to the observed wind reversal.

  1. Development of an Extratropical Storm Wind, Wave, and Water Level Climatology for the Offshore Mid-Atlantic

    DTIC Science & Technology

    2015-08-01

    ER D C/ CH L TR -1 5- 11 Development of an Extratropical Storm Wind, Wave, and Water Level Climatology for the Offshore Mid-Atlantic...Development of an Extratropical Storm Wind, Wave, and Water Level Climatology for the Offshore Mid-Atlantic Michael F. Forte Field Research Facility...standards for offshore wind farm design and to establish a 100-year (yr) extratropical wind speed, wave height, and water level climatology for the

  2. 76 FR 74776 - Forum-Trends in Extreme Winds, Waves, and Extratropical Storms Along the Coasts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-01

    ... Winds, Waves, and Extratropical Storms Along the Coasts AGENCY: National Environmental Satellite, Data... information, please check the forum Web site at https://sites.google.com/a/noaa.gov/extreme-winds-waves.../noaa.gov/extreme-winds-waves-extratropical-storms/home . Topics To Be Addressed This forum will address...

  3. How robust is the Holton-Tan relationship?

    NASA Astrophysics Data System (ADS)

    Braesicke, Peter; Kerzenmacher, Tobias

    2017-04-01

    The Holton-Tan relationship explains a possible link between tropical and extratropical variability (foremost in the northern hemisphere). The idea can be rationalised using simple linear wave theory. The quasi-biennial oscillation in the tropical lower stratosphere can be regarded as a kind of switch that influences the propagation of planetary waves. In a westerly phase of the QBO planetary waves in the stratosphere can propagate more equatorward and the polar vortex remains strong and undisturbed. In an easterly phase of the QBO the propagation is more poleward and the polar vortex is weaker and more disturbed. However, the robustness of this relationship depends on the precise definition of the QBO phase and the criteria used to define the polar vortex strength. Here, we will revisit the basic Holton-Tan relationship and will explore how other factors (including the state of the El Nino-Southern Oscillation) modify the relationship. Using reanalysis data and idealised model experiments a possible range for robust manifestations of the Holton-Tan relationship is determined, thus providing an improved framework for a better understanding of teleconnections between tropical and polar latitudes.

  4. Dynamical Influence and Operational Impacts of an Extreme Mediterranean Cold Surge

    DTIC Science & Technology

    2013-06-01

    over 45 cm of snowfall in Souda Bay, Crete, which significantly impacted operations at Naval Support Activity Souda Bay. The extratropical wave...cold surge event and its dependence on the upstream synoptic scale events. 14. SUBJECT TERMS Extratropical Cyclone, Souda Bay...Activity Souda Bay. The extratropical wave associated with the cold surge could be classified as a classic life-cycle 1 wave break. The wave-breaking

  5. Ozone and stratospheric height waves for opposite phases of the QBO

    NASA Technical Reports Server (NTRS)

    Mo, Kingtse C.; Nogues-Paegle, Julia

    1994-01-01

    The stratospheric quasi-biennial oscillation (QBO) provides an important source of interannual variations in the Northern Hemisphere. O'sullivan and Salby (1990) related extra-tropical eddy transport with the phase of the tropical QBO. When the tropical wind is easterly, the zero wind line is shifted into the winter hemisphere. Enhanced wave activity in middle latitudes acts to weaken the polar vortex. When the tropical wind is in the westerly phase the situation reverses. Heights at 30 mb and ozone configurations are contrasted in this paper for these two QBO phases. When the winter vortex deforms due to the amplification of planetary waves 1 and 2, extends westward and equatorward, the complementary band of low vorticity air spirals in toward the pole from lower latitudes. Sometimes, these planetary waves break (Juckes and McIntyre, 1987) and an irreversible mixing of air takes place between high and mid-latitudes. Global ozone patterns, as obtained form satellite observations, appear to be affected by planetary wave breaking (Leovy et al. 1985). This mixing results on regions with uniform ozone and potential vorticity. In the Southern Hemisphere (SH), Newman and Randel (1988) using Total Ozone Mapping Spectrometer (TOMS) data and the NMC analyses have found strong spatial correlation between the October mean temperature in the lower stratosphere and total ozone for the 1979 through 1986 years. Recently Nogues-Paegle et al.(1992) analyzed SH ozone and height data from 1986 to 1989. They found that leading empirical orthogonal functions (EOFs) for both ozone and 50 mb heights exhibit zonal wave 1 and 2 and that the correlations between ozone and 50 mb principal components (PCs) are high. The results were found to be consistent with a linear planetary wave advecting a passive tracer. In this paper, the dominant patterns of variability for 30 mb NMC heights and TOMS total ozone are obtained for the winter to summer transition (January to May) in the Northern Hemisphere (NH) for the years 1987-1990.

  6. On the structure of climate variability near the tropopause and its relationship to equatorial planetary waves

    NASA Astrophysics Data System (ADS)

    Grise, Kevin M.

    The tropopause is an important interface in the climate system, separating the unique dynamical, chemical, and radiative regimes of the troposphere and stratosphere. Previous studies have demonstrated that the long-term mean structure and variability of the tropopause results from a complex interaction of stratospheric and tropospheric processes. This project provides new insight into the processes involved in the global tropopause region through two perspectives: (1) a high vertical resolution climatology of static stability and (2) an observational analysis of equatorial planetary waves. High vertical resolution global positioning system radio occultation profiles are used to document fine-scale features of the global static stability field near the tropopause. Consistent with previous studies, a region of enhanced static stability, known as the tropopause inversion layer (TIL), exists in a narrow layer above the extratropical tropopause and is strongest over polar regions during summer. However, in the tropics, the TIL possesses a unique horizontally and vertically varying structure with maxima located at ˜17 and ˜19 km. The upper feature peaks during boreal winter and has its largest magnitude between 10º and 15º latitude in both hemispheres; the lower feature exhibits a weaker seasonal cycle and is centered at the Equator. The spatial structure of both features resembles the equatorial planetary wave response to the climatological distribution of deep convection. Equatorial planetary waves not only dominate the climatological-mean general circulation near the tropical tropopause but also play an important role in its intraseasonal and interannual variability. The structure of the equatorial planetary waves emerges as the leading pattern of variability of the zonally asymmetric tropical atmospheric circulation. Regressions on an index of the equatorial planetary waves reveal that they are associated with a distinct pattern of equatorially symmetric climate variability characterized by variations in: (1) the distribution of convection in the deep tropics; (2) the eddy momentum flux convergence and the zonal-mean zonal wind in the tropical upper troposphere; (3) the mean meridional circulation of the tropical and subtropical troposphere; (4) temperatures in the tropical upper troposphere, the tropical lower stratosphere, and the subtropical troposphere of both hemispheres; and (5) the amplitude of the upper tropospheric anticyclones that straddle the Equator over the western tropical Pacific Ocean. The pulsation of the equatorial planetary waves in time provides a framework for interpreting a broad range of climate phenomena. Variability in the equatorial planetary waves is associated with variability in the tropical TIL and is linked to both the El Nino-Southern Oscillation and the Madden-Julian Oscillation (MJO). Evidence is presented that suggests that the MJO can be viewed as the linear superposition of: (1) the pulsation of the equatorial planetary waves at a fixed location and (2) a propagating component. Variability in the equatorial planetary waves may also contribute to variability in troposphere/stratosphere exchange and the width of the tropical belt.

  7. The life cycles of intense cyclonic and anticyclonic circulation systems observed over oceans

    NASA Technical Reports Server (NTRS)

    Smith, Phillip J.

    1993-01-01

    Full attention was now directed to the blocking case studies mentioned in previous reports. Coding and initial computational tests were completed for a North Atlantic blocking case that occurred in late October/early November 1985 and an upstream cyclone that developed rapidly 24 hours before block onset. This work is the subject of two papers accepted for presentation at the International Symposium on the Lifecycles of Extratropical Cyclones in Bergen, Norway, 27 June - 1 July 1994. This effort is currently highlighted by two features. The first is the extension of the Zwack-Okossi equation, originally formulated for the diagnosis of surface wave development, for application at any pressure level. The second is the separation of the basic large-scale analysis fields into synoptic-scale and planetary-scale components, using a two-dimensional Shapiro filter, and the corresponding partitioning of the Zwack-Okossi equation into synoptic-scale, planetary-scale, and synoptic/planetary-scale interaction terms. Preliminary tests suggest substantial contribution from the synoptic-scale and interaction terms.

  8. Observations of Convectively Coupled Kelvin Waves forced by Extratropical Wave Activity

    NASA Astrophysics Data System (ADS)

    Kiladis, G. N.; Biello, J. A.; Straub, K. H.

    2012-12-01

    It is well established by observations that deep tropical convection can in certain situations be forced by extratropical Rossby wave activity. Such interactions are a well-known feature of regions of upper level westerly flow, and in particular where westerlies and equatorward wave guiding by the basic state occur at low enough latitudes to interact with tropical and subtropical moisture sources. In these regions convection is commonly initiated ahead of upper level troughs, characteristic of forcing by quasi-geostrophic dynamics. However, recent observational evidence indicates that extratropical wave activity is also associated with equatorial convection even in regions where there is a "critical line" to Rossby wave propagation at upper levels, that is, where the zonal phase speed of the wave is equal to the zonal flow speed. A common manifestation of this type of interaction involves the initiation of convectively coupled Kelvin waves, as well as mixed Rossby-gravity (MRG) waves. These waves are responsible for a large portion of the convective variability within the ITCZ over the Indian, Pacific, and Atlantic sectors, as well as within the Amazon Basin of South America. For example, Kelvin waves originating within the western Pacific ITCZ are often triggered by Rossby wave activity propagating into the Australasian region from the South Indian Ocean extratropics. At other times, Kelvin waves are seen to originate along the eastern slope of the Andes. In the latter case the initial forcing is sometimes linked to a low-level "pressure surge," initiated by wave activity propagating equatorward from the South Pacific storm track. In yet other cases, such as over Africa, the forcing appears to be related to wave activity in the extratropics which is not necessarily propagating into low latitudes, but appears to "project" onto the Kelvin structure, in line with past theoretical and modeling studies. Observational evidence for extratropical forcing of Kelvin and MRG waves will be presented, and the seasonality of these statistical associations will be discussed. Extratropical forcing of equatorial waves appears to be most efficient during the solstice seasons by waves originating within the winter hemisphere and interacting with convection in the summer hemisphere. A companion presentation by J. Biello will examine the theoretical basis for these interactions.

  9. Comprehensive Condition Survey and Storm Waves, Circulation, and Sediment Study, Dana Point Harbor, California

    DTIC Science & Technology

    2014-12-01

    waters; 3) west to northwest local sea; 4) prefrontal local sea; 5) tropical storm swell; and 6) extratropical cyclone in the southern hemisphere...14-13 58 Prefrontal local sea The coastal zone within the south Orange County area is vulnerable under extratropical winter storm conditions (a...wave characteristics for severe extratropical storms during the 39 yr time period (1970–2008) are comparable to peak storm wave heights that were

  10. Synoptic-scale Rossby waves and the geographic distribution of lateral transport routes between the tropics and the extratropics in the lower stratosphere

    NASA Astrophysics Data System (ADS)

    Horinouchi, Takeshi; Sassi, Fabrizio; Boville, Byron A.

    2000-11-01

    Atmospheric transport between the tropics and the extratropics, in the lowest part of the stratosphere during Northern Hemisphere winter, is investigated. The role of synoptic-scale disturbances that propagate laterally into the tropics is examined using the middle atmosphere version of the National Center for Atmospheric Research Community Climate Model Version 3 general circulation model. In the lower stratosphere, synoptic-scale Rossby waves propagate vigorously from the northern (i.e., winter) extratropics through two ``westerly ducts,'' where the westerly zonal mean winds near the equator are favorable to Rossby wave propagation. The waves break in the westerly ducts and modify the mean potential vorticity (PV) structure to connect subtropical and equatorial regions of sharp PV gradients. Frequent wave breaking and the wave -induced PV structure create distinct routes where transport occurs vigorously between the tropics and the northern extratropics. Interhemispheric transport also occurs through regions associated with the westerly ducts. In the Southern (summer) Hemisphere lower stratosphere, synoptic-scale disturbances propagate mainly as ``tongues'' of PV elongated from extratropical disturbances. The transport between the tropics and the southern extratropics has a strong geographic preference but is dominated by the monsoon circulation, as was shown for the upper troposphere by Chen [1995]. PV tongues and other transient anomalies are of secondary importance.

  11. A teleconnection between subtropical convection and higher latitude wave activity in the Atlantic

    NASA Astrophysics Data System (ADS)

    Cruz, Antonio DeJesus

    Rossby waves are waves in potential vorticity that propagate along the extratropical tropopause and can be impacted by the advection of low-PV air originating from the subtropics. In this study, the subtropical precipitation influence on the extratropical Rossby wave activity during the Atlantic winter season is investigated for a ten year period. Using both TRMM and TIGGE 12-Hr forecasted precipitation data, heavy precipitation events were identified near the footprints regions of warm conveyor belts in the northern Atlantic, specifically in the Gulf of Mexico and Bermuda region. The extratropical Rossby waves were then analyzed using PV on a 320K surface. By use of wavelet transforms, the amplitude of the Rossby waves were analyzed as a function of wavelength and longitude. The interaction between a single heavy precipitation event and the extratropical Rossby waves was examined for the days preceding and the week following the event. A climatological analysis of heavy precipitation events was conducted on the winter seasons from 2006 - 2015. Case study and climatological analysis identified the following: A ridge in the Northern Atlantic undergoes amplification downstream of the heavy precipitation event in the days following the event. A southerly flow, likely associated with a warm conveyor belt, connects the region of the heavy precipitation event and the extratropical tropopause. The interaction was most prominent during the late winter season and during the heaviest of precipitation events. The teleconnection identified in this study highlights a mechanism by which cloud-scale subtropical precipitation is connected to synoptic scale extratropical dynamics in the Atlantic.

  12. Long-Range Statistical Forecasting of Korean Summer Precipitation

    DTIC Science & Technology

    2008-03-01

    in the equatorial Pacific during ENLN periods leads to tropical and extratropical atmospheric 10 circulation anomalies (e.g., Ford 2000). Part of...characteristic extratropical anomalies that occur during EN and LN events. Sardeshmukh and Hoskins (1988) proposed a mechanism by which anomalous tropical...forcing could induce an extratropical Rossby wave train response. Nitta (1987) and others identified a Rossby wave train response to off-equatorial

  13. 'Downward control' of the mean meridional circulation and temperature distribution of the polar winter stratosphere

    NASA Technical Reports Server (NTRS)

    Garcia, Rolando R.; Boville, Byron A.

    1994-01-01

    According to the 'downward control' principle, the extratropical mean vertical velocity on a given pressure level is approximately proportional to the meridional gradient of the vertically integrated zonal force per unit mass exerted by waves above that level. In this paper, a simple numerical model that includes parameterizations of both planetary and gravity wave breaking is used to explore the influence of gravity wave breaking in the mesosphere on the mean meridional circulation and temperature distribution at lower levels in the polar winter stratosphere. The results of these calculations suggest that gravity wave drag in the mesosphere can affect the state of the polar winter stratosphere down to altitudes below 30 km. The effect is most important when planetary wave driving is relatively weak: that is, during southern winter and in early northern winter. In southern winter, downwelling weakens by a factor of 2 near the stratospause and by 20% at 30 km when gravity wave drag is not included in the calculations. As a consequence, temperatures decrease considerably throughout the polar winter stratosphere (over 20 K above 40 km and as much as 8 K at 30 km, where the effect is enhanced by the long radiative relaxation timescale). The polar winter states obtained when gravity wave drag is omitted in this simple model resemble the results of simulations with some general circulation models and suggest that some of the shortcomings of the latter may be due to a deficit in mesospheric momentum deposition by small-scale gravity waves.

  14. GenCade Version 1 Model Theory and User’s Guide

    DTIC Science & Technology

    2012-12-01

    summer, severe waves associated with extratropical storms frequent during winter and spring, and severe waves associated with tropical storms during...that the majority of waves are from the southeast and the more severe waves associated with extratropical storms are from the east- southeast. This...decades to centuries. However, these tools should also resolve processes that occur at the scale of individual storms and tidal cycles to calculate

  15. AO/NAO Response to Climate Change. 2; Relative Importance of Low- and High-Latitude Temperature Changes

    NASA Technical Reports Server (NTRS)

    Rind, D.; Perlwitz, J.; Lonergan, P.; Lerner, J.

    2005-01-01

    Using a variety of GCM experiments with various versions of the GISS model, we investigate how different aspects of tropospheric climate changes affect the extratropical Arctic Oscillation (AO)/North Atlantic Oscillation (NAO) circulation indices. The results show that low altitude changes in the extratropical latitudinal temperature gradient can have a strong impact on eddy forcing of the extratropical zonal wind, in the sense that when this latitudinal temperature gradient increases, it helps force a more negative AO/NAO phase. In addition, local conditions at high latitudes can stabilize/destabilize the atmosphere, inducing negative/positive phase changes. To the extent that there is not a large temperature change in the tropical upper troposphere (either through reduced tropical sensitivity at the surface, or limited transport of this change to high levels), the changes in the low level temperature gradient can provide the dominate influence on the extratropical circulation, so that planetary wave meridional refraction and eddy angular momentum transport changes become uncorrelated with potential vorticity transports. In particular, the climate change that produces the most positive NAO phase change would have substantial warming in the tropical upper troposphere over the Pacific Ocean, with high latitude warming in the North Atlantic. An increase in positive phase of these circulation indices is still more likely than not, but it will depend on the degree of tropical and high latitude temperature response and the transport of low level warming into the upper troposphere. These are aspects that currently differ among the models used for predicting the effects of global warning, contributing to the lack of consensus of future changes in the AO/NAO.

  16. Response of the dynamic and thermodynamic structure of the stratosphere to the solar cycle in the boreal winter

    NASA Astrophysics Data System (ADS)

    Shi, Chunhua; Gao, Yannan; Cai, Juan; Guo, Dong; Lu, Yan

    2018-04-01

    The response of the dynamic and thermodynamic structure of the stratosphere to the solar cycle in the boreal winter is investigated based on measurements of the solar cycle by the Spectral Irradiance Monitor onboard the SORCE satellite, monthly ERA-Interim Reanalysis data from the European Center for Medium-Range Weather Forecasts, the radiative transfer scheme of the Beijing Climate Center (BCC-RAD) and a multiple linear regression model. The results show that during periods of strong solar activity, the solar shortwave heating anomaly from the climatology in the tropical upper stratosphere triggers a local warm anomaly and strong westerly winds in mid-latitudes, which strengthens the upward propagation of planetary wave 1 but prevents that of wave 2. The enhanced westerly jet makes a slight adjustment to the propagation path of wave 1, but prevents wave 2 from propagating upward, decreases the dissipation of wave 2 in the extratropical upper stratosphere and hence weakens the Brewer-Dobson circulation. The adiabatic heating term in relation to the Brewer-Dobson circulation shows anomalous warming in the tropical lower stratosphere and anomalous cooling in the mid-latitude upper stratosphere.

  17. The enso signal in the lower stratosphere: propagation via rossby waves.

    NASA Astrophysics Data System (ADS)

    Calvo, N.; Garcia Herrera, R.; Garcia, R.; Gallego, D.; Gimeno, L.; Hernandez, E.; Ribera, P.

    2003-04-01

    The ENSO signal on the lower stratosphere has been analyzed through the study of the relationship between SST in the Tropical Pacific and lower stratospheric temperatures from the Microwave Sounding Unit (MSU) using the t4 channel, which is sensitive to lower stratospheric temperature. Lagged point correlations have been calculated between the Niño3.4 index and MSU t4 monthly anomaly series at each grid point for the whole globe from January 1979 through December 2000. Correlation values are very similar in both tropics and extratropics, but their signs are opposite: positive in extratropical regions and negative in the tropics. Moreover, the significant correlation signal is longer lasting at middle latitudes, from lag 9 to lag 6, and much shorter in the Tropics, where it is significant only at lags 0 and 3. In the extratropical area, four regions are significant: Eurasia, the Southern Indian Ocean, and the North and South Pacific Oceans. The signal in Eurasia is the first to be observed (at lag 9) and it could be considered as a predictor of extreme ENSO events. The Pacific Ocean shows the PNA and PSA patterns. There, the signal appears earlier in the Southern Hemisphere (lag 6) because wind conditions at boreal summer (usually lag 6) do not favour the propagation of Rossby waves into the stratosphere. Further, the shape of the correlation patterns suggests that only planetary waves are able to propagate the ENSO signal into the stratosphere. In the tropics, the ENSO signal takes the form of a pair of Rossby gyres, observed in the Pacific Ocean at lags 0 and 3 as two regions of significant correlation located symmetricaly north and south of the Equator. The same analysis has been carried out for a period without any extreme events (SST anomalies in the Niño3.4 region smaller than 1 standard desviation), in which case no signal is observed in the lower stratosphere. This suggests that only strong ENSO (defined by anomalies larger than 1 standard desviation in the Niño3.4 area) produce a signal in the stratosphere. On the other hand, the signal does not appear to show any influence from the QBO. Taken together, all these results show that Rossby waves play a central role in the propagation of the ENSO signal into the stratosphere.

  18. Extratropical Weather Systems on Mars: Radiatively-Active Water Ice Effects

    NASA Technical Reports Server (NTRS)

    Hollingsworth, J. L.; Kahre, M. A.; Haberle, R. M.; Urata, R. A.; Montmessin, F.

    2017-01-01

    Extratropical, large-scale weather disturbances, namely transient, synoptic-period,baroclinic barotropic eddies - or - low- (high-) pressure cyclones (anticyclones), are components fundamental to global circulation patterns for rapidly rotating, differentially heated, shallow atmospheres such as Earth and Mars. Such "wave-like" disturbances that arise via (geophysical) fluid shear instability develop, mature and decay, and travel west-to-east in the middle and high latitudes within terrestrial-like planetary atmospheres. These disturbances serve as critical agents in the transport of heat and momentum between low and high latitudes of the planet. Moreover, they transport trace species within the atmosphere (e.g., water vapor/ice, other aerosols (dust), chemical species, etc). Between early autumn through early spring, middle and high latitudes on Mars exhibit strong equator-to-pole mean temperature contrasts (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that such strong baroclinicity supports vigorous, large-scale eastward traveling weather systems [Banfield et al., 2004; Barnes et al., 1993]. A good example of traveling weather systems, frontal wave activity and sequestered dust activity from MGS/MOC image analyses is provided in Figure 1 (cf. Wang et al. [2005]). Utilizing an upgraded and evolving version of the NASA Ames Research Center (ARC) Mars global climate model, investigated here are key dynamical and physical aspects of simulated northern hemisphere (NH) large-scale extratropica lweather systems,with and without radiatively-active water ice clouds. Mars Climate Model:

  19. Gravity Waves in the Southern Hemisphere Extratropical Winter in the 7-km GEOS-5 Nature Run

    NASA Astrophysics Data System (ADS)

    Holt, L. A.; Alexander, M. J.; Coy, L.; Putman, W.; Molod, A.; Pawson, S.

    2016-12-01

    This study investigates winter Southern Hemisphere extratropical gravity waves and their sources in a 7-km horizontal resolution global climate simulation, the GEOS-5 Nature Run (NR). Gravity waves are evaluated by comparing brightness temperature anomalies to those from the Atmospheric Infrared Sounder (AIRS). Gravity wave amplitudes, wavelengths, and propagation directions are also computed in the NR and AIRS. The NR shows good agreement with AIRS in terms of spatial patterns of gravity wave activity and propagation directions, but the NR amplitudes are smaller by about a factor of 5 and the wavelengths are about a factor of 2 longer than in AIRS. In addition to evaluating gravity wave characteristics, gravity wave sources in the NR are also investigated by relating diagnostics of tropospheric sources of gravity waves, such as precipitation, frontogenesis, and potential vorticity anomalies to absolute gravity wave momentum fluxes in the lower stratosphere. Strong precipitation events are the most strongly correlated with absolute momentum flux, supporting previous studies highlighting the importance of moist processes in the generation of Southern Hemisphere extratropical gravity waves. Additionally, gravity wave absolute momentum fluxes over land are compared to those over ocean, and the contribution of orographic and nonorographic gravity waves to the total absolute momentum flux is examined.

  20. Comparison of large-scale dynamical variability in the extratropical stratosphere among the JRA-55 family data sets: impacts of assimilation of observational data in JRA-55 reanalysis data

    NASA Astrophysics Data System (ADS)

    Taguchi, Masakazu

    2017-09-01

    This study compares large-scale dynamical variability in the extratropical stratosphere, such as major stratospheric sudden warmings (MSSWs), among the Japanese 55-year Reanalysis (JRA-55) family data sets. The JRA-55 family consists of three products: a standard product (STDD) of the JRA-55 reanalysis data and two sub-products of JRA-55C (CONV) and JRA-55AMIP (AMIP). CONV assimilates only conventional surface and upper-air observations without assimilation of satellite observations, whereas AMIP runs the same numerical weather prediction model without assimilation of observational data. A comparison of the occurrence of MSSWs in Northern Hemisphere (NH) winter shows that, compared to STDD, CONV delays several MSSWs by 1 to 4 days and also misses a few MSSWs. CONV also misses the Southern Hemisphere (SH) MSSW in September 2002. AMIP shows significantly fewer MSSWs in Northern Hemisphere winter and especially lacks MSSWs of the high aspect ratio of the polar vortex in which the vortex is highly stretched or split. A further examination of daily geopotential height differences between STDD and CONV reveals occasional peaks in both hemispheres that are separated from MSSWs. The delayed and missed MSSW cases have smaller height differences in magnitude than such peaks. The height differences for those MSSWs include large contributions from the zonal component, which reflects underestimations in the weakening of the zonal mean polar night jet in CONV. We also explore strong planetary wave forcings and associated polar vortex weakenings for STDD and AMIP. We find a lower frequency of strong wave forcings and weaker vortex responses to such wave forcings in AMIP, consistent with the lower MSSW frequency.

  1. Climate Analysis of Evaporation Ducts in the South China Sea

    DTIC Science & Technology

    2013-12-01

    variations that involve anomalies in extratropical and tropical atmospheric longwave patterns. Figure 43 shows the 200 mb GPH anomalies for the extreme...where the two figures overlap, especially in the extratropics (but with the 200 mb anomalies being slightly further to the west than those at 850 mb...barotropic structure. The global anomalies (Figure 43) show clear anomalous extratropical wave trains (e.g., the alternating positive and negative anomalies

  2. Wave Height and Water Level Variability on Lakes Michigan and St Clair

    DTIC Science & Technology

    2012-10-01

    Observations: http://www.ssec.wisc.edu/sose/glwx_activity.html 4. NASA Atlas of Extratropical Storm Tracks: http://data.giss.nasa.gov/stormtracks...term meteorological, ice, wave, and water level measurements. 15. SUBJECT TERMS Base flood elevation Coastal flood Extratropical storms Great...Box 1027 Detroit, MI 48231-1027 ERDC/CHL TR-12-23 ii Abstract The Great Lakes are subject to coastal flooding as a result of severe storms

  3. Vesta: its shape and deformed equatorial belt predicted by the wave planetology

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2012-09-01

    At EPSC2011 we stated: "Expected detailed images of Vesta sent by DAWN spacecraft certainly will show a prominent tectonic (must be also compositional) dichotomy of this large asteroid. The assuredness is based on some mainly the HST photos and the wave planetology fundamental conception: Theorem 1 - " Ce lestial bodies are dichotomous""[1]. Now a convexo-concave shape of Vesta is well known but the huge deep depression of the south hemisphere is assigned to two random large impacts almost at one place [2, 3]. This supposition has a very small probability, besides the largest asteroid Ceres also has a large depression at one side (the Piazzi basin). The theorem 1 of the wave planetology explains that all celestial bodies (not only small ones) are subjected to a warping action of the fundamental wave1 uplifting one side and subsiding (pressing in) the opposite one. This is a manifestation of the orbital energy acting in any body moving in keplerian noncircular orbit with changing acceleration (a). Arising inertia-gravity force F= (a1 - a2) x m is very important because of large planetary masses (m) and large cosmic speeds. Increase and decrease of accelerations were much larger in the beginning of planetary formation when orbits were more elliptical. Thus, pressing in of the subsiding hemisphere-segment is so strong that it often squeezes out some mantle material appearing as elevation-mound (compare to the Hawaii in the Pacific basin and look at Hyperion with a large basin and a mound at its center, Fig, 1, 2). Vesta's prominent subsiding equatorial belt with graben systems [4] (Fig. 4, 5) is a manifestation of another general planetary rule : " Rotating celestial body tends to even angular momenta of tropics and extra-tropics by regulating mass distribution and distance to the rotation axis " [5-7]. Often observed a sensible difference in appearance and structure between tropical and extra-tropical zones of various heavenly bodies including rocky and gas planets, satellites and Sun compels to look for a common reason of such phenomenon [5-7]. All bodies rotate and their spherical shape makes zones at different latitudes to have differing angular momenta as a distance to the rotation axis diminishes gradually from the equator to the poles (Fig. 3) (this is felt particularly when one launches rockets into space - preferable cheaper launches are from the equatorial regions - Kourou in the French Guyana is better than Baikonur in Kazakhstan). One of remarkable changes occurs at tropics. As a total rotating planetary body tends to have angular momenta of its tectonic blocks equilibrated it starts mechanisms leveling this basic physical property. At tropical zones (bulged also due to the rotation ellipsoid) the outer shell - crust as a consequence tends to be destroyed, sunk, subsided and shrunk; a density of crust material changes; the atmosphere reacts changing chemistry and structure; in terrestrial anthroposphere man looses its mass and stature (well known pygmioidness process). Ext ratropical belts, on the contrary, tend to add material and increase radius. Thus, a body tends to be like a cucumber but mighty gravity always makes it globular. Traces of this cosmic "struggle" very often are seen on surfaces of heavenly bodies as structurally distinguished tropical and extra-tropical zones (Fig. 4- 6). At Earth the wide planetary long tropical zone is marked by destruction of the crust. It is demonstrated by development of numerous islands of the Malay Archipelago (the Sunda Isls, Maluku Isls, Philippines) between the Southeastern Asia and Australia. In Africa and South America huge depressions of the Congo and Amazon Rivers develop. Seismicity of the tropical zone is significantly higher than outside of it that means more intensive destruction in the crust and the upper mantle of tropics [5-7]. At Mars the widespread enigmat ic chaotic and fretted terrains at the highland-lowland boundary could be considered as traces of the crust destruction. At Saturn a wide tropical zone usually has higher albedo than extratropical ones. Relat ively heavier methane clouds in the H-He atmosphere are absent around the equator and concentrated on the higher latitudes. In the subsided tropical zone of Titan the darker methane lowlands (Fig. 6) are normally rippled in at least two directions with spacing a few km to 20 km. This planetary pattern is comparable with a behavior of the basalt floor of terrestrial oceans [5-7]. Asteroid (mini-planet) Vesta also demonstrates drastic structural difference between equatorial and extra-equatorial zones. Folded and subsided equator shows troughs encircling most of Vesta and being up to 20 kms wide (Fig. 4). The north-south dichotomy is obvious in subsided southern hemisphere (less cratered) and uplifted the northern one (more cratered). Mars shows the inverse dichotomy, Earth the east-west one. Vesta's positive Bouguer anomaly at the tropics (Fig. 5, [4]) is due to uplifted denser material compensating angular momentum loss because of subsiding equatorial belt (Fig. 4). Fig. 1. Vesta, PIA14315.JPG, south hemisphere with basin and central mound Fig. 2. Hyperion, PIA07761.JPG. 175 x 120 x 100 km. Hemisphere with depression and central mound (compare with the Vestan south hemisphere depression and central mound, Fig. 1).

  4. Modeling the effects of UV variability and the QBO on the troposphere-stratosphere system. Part I: The middle atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balachandran, N.K.; Rind, D.

    1995-08-01

    Results of experiments with a GCM involving changes in UV input ({plus_minus}25%, {plus_minus}10%, {plus_minus}5% at wavelengths below 0.3 {mu}m) and simulated equatorial QBO are presented, with emphasis on the middle atmosphere response. The UV forcing employed is larger than observed during the last solar cycle and does not vary with wavelength, hence the relationship of these results to those from actual solar UV forcing should be treated with caution. The QBO alters the location of the zero wind line and the horizontal shear of the zonal wind in the low to middle stratosphere, while the UV change alters the magnitudemore » of the polar jet and the vertical shear of the zonal wind. Both mechanisms thus affect planetary wave propagation. The east phase of the QBO leads to tropical cooling and high-latitude warming in the lower stratosphere, with opposite effects in the upper stratosphere. This quadrupole pattern is also seen in the observations. The high-latitude responses are due to altered planetary wave effects, while the model`s tropical response in the upper stratosphere is due to gravity wave drag. Increased UV forcing warms tropical latitudes in the middle atmosphere, resulting in stronger extratropical west winds, an effect which peaks in the upper stratosphere/lower mesosphere with the more extreme UV forcing but at lower altitudes and smaller wind variations with the more realistic forcing. The increased vertical gradient of the zonal wind leads to increased vertical propagation of planetary waves, altering energy convergences and temperatures. The exact altitudes affected depend upon the UV forcing applied. Results with combined QBO and UV forcing show that in the Northern Hemisphere, polar warming for the east QBO is stronger when the UV input is reduced by 25% and 5% as increased wave propagation to high latitudes (east QBO effect) is prevented from then propagating vertically (reduced UV effect). 30 refs., 14 figs., 6 tabs.« less

  5. Modeling of Coastal Inundation, Storm Surge, and Relative Sea-Level Rise at Naval Station Norfolk, Norfolk, Virginia, U.S.A.

    DTIC Science & Technology

    2012-01-01

    of 2 m. ADDITIONAL INDEX WORDS: Nearshore hydrodynamic modeling, waves, synthetic tropical storms , extratropical storms , Hurricane Isabel, land...an increase in SLR and coastal storms , including hurricanes (tropical storms ) and winter storms ( extratropical storms ), will increase the risk of... storms ) corresponding to 50-year and 100-year return periods and a most probable winter storm ( extratropical ) that occurred in October 1982 (Burks-Copes

  6. Large-Scale, Extratropical Weather Systems within Mars' Atmosphere

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.

    2013-04-01

    During late autumn through early spring, extratropical regions on Mars exhibit profound mean zonal equator-to-pole thermal contrasts. The imposition of this strong meridional temperature variation supports intense eastward-traveling, synoptic weather systems (i.e., transient baroclinic/barotropic waves) within Mars' extratropical atmosphere. Such disturbances grow, mature and decay within the east-west varying seasonal-mean midlatitude jet stream (i.e., the polar vortex) on the planet. Near the surface, the weather disturbances indicated large-scale spiraling "comma"-shaped dust cloud structures and scimitar-shaped dust fronts, indicative of processes associated with cyclo-/fronto-genesis. The weather systems occur during specific seasons on Mars, and in both hemispheres. The northern hemisphere (NH) disturbances are significantly more intense than their counterparts in the southern hemisphere (SH). Further, the NH weather systems and accompanying frontal waves appear to have significant impacts on the transport of tracer fields (e.g., particularly dust and to some extent water species (vapor/ice) as well). And regarding dust, frontal waves appear to be key agents in the lifting, lofting, organization and transport of this particular atmospheric aerosol. In this paper, a brief background and supporting observations of Mars' extratropical weather systems is presented. This is followed by a short review of the theory and various modeling studies (i.e., ranging from highly simplified, mechanistic and full global circulation modeling investigations) which have been pursued. Finally, a discussion of outstanding issues and questions regarding the character and nature of Mars' extratropical traveling weather systems is offered.

  7. Diabatic modification of potential vorticity in extratropical cyclones

    NASA Astrophysics Data System (ADS)

    Chagnon, J.

    2012-12-01

    Representation of diabatic processes and their impact on extratropical cyclones is a likely source of skill degradation in operational numerical weather prediction systems. This investigation examines the source, structure, and magnitude of diabatic potential vorticity (PV) anomalies generated by small-scale and parameterized processes in both mesoscale and global model simulations of extratropical cyclones in the North Atlantic. Simulations of several cold season extratropical storms have been performed using the Met Office Unified Model. Several cases simulated were drawn from the DIAbatic influences on Mesoscale structures in ExTratropical cyclones (DIAMET) observational campaign during which the National Environmental Research Council (NERC) Facility for Airborne Atmospheric Measurement (FAAM) BAE-146 aircraft was deployed. The influence of specific modelled processes was quantified using a set of tracers, each of which represents a history of the PV contributed by a specific segment of the model (e.g., boundary-layer scheme, cloud microphysics, convection scheme , radiation, etc.). This presentation will highlight several differences and similarities in high and low resolution simulations. For example, in high resolution simulations, tropopause folds are sharpened by a tripolar PV anomaly arising from the convection, boundary-layer, and microphysics schemes; this structure is not present in coarser global model simulations. However, a dipole of PV straddling the tropopause is diagnosed in both coarse- and fine-resolution simulations. The PV dipole, which is strongly influenced by long-wave radiative cooling, increases the gradient of PV near the tropopause and therefore modifies the characteristics Rossby wave propagation and moist baroclinic wave growth.

  8. Large-Scale Extratropical Weather Systems in Mars' Atmosphere

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.

    2013-01-01

    During late autumn through early spring, extratropical regions on Mars exhibit profound mean zonal equator-to-pole thermal contrasts. The imposition of this strong meridional temperature variation supports intense eastward-traveling, synoptic weather systems (i.e., transient baroclinic/barotropic waves) within Mars' extratropical atmosphere. Such disturbances grow, mature and decay within the east-west varying seasonal-mean midlatitude jet stream (i.e., the polar vortex) on the planet. Near the surface, the weather disturbances indicated large-scale spiraling "comma"-shaped dust cloud structures and scimitar-shaped dust fronts, indicative of processes associated with cyclo-/fronto-genesis. The weather systems occur during specific seasons on Mars, and in both hemispheres. The northern hemisphere (NH) disturbances are significantly more intense than their counterparts in the southern hemisphere (SH). Further, the NH weather systems and accompanying frontal waves appear to have significant impacts on the transport of tracer fields (e.g., particularly dust and to some extent water species (vapor/ice) as well). And regarding dust, frontal waves appear to be key agents in the lifting, lofting, organization and transport of this particular atmospheric aerosol. In this paper, a brief background and supporting observations of Mars' extratropical weather systems is presented. This is followed by a short review of the theory and various modeling studies (i.e., ranging from highly simplified, mechanistic and full global circulation modeling investigations) which have been pursued. Finally, a discussion of outstanding issues and questions regarding the character and nature of Mars' extratropical traveling weather systems is offered.

  9. Kelvin-Helmholtz waves in extratropical cyclones passing over mountain ranges: KH Waves in Extratropical Cyclones over Mountain Ranges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medina, Socorro; Houze, Robert A.

    2016-02-19

    Kelvin–Helmholtz billows with horizontal scales of 3–4 km have been observed in midlatitude cyclones moving over the Italian Alps and the Oregon Cascades when the atmosphere was mostly statically stable with high amounts of shear and Ri < 0.25. In one case, data from a mobile radar located within a windward facing valley documented a layer in which the shear between down-valley flow below 1.2 km and strong upslope cross-barrier flow above was large. Several episodes of Kelvin–Helmholtz waves were observed within the shear layer. The occurrence of the waves appears to be related to the strength of the shear:more » when the shear attained large values, an episode of billows occurred, followed by a sharp decrease in the shear. The occurrence of large values of shear and Kelvin–Helmholtz billows over two different mountain ranges suggests that they may be important features occurring when extratropical cyclones with statically stable flow pass over mountain ranges.« less

  10. Extra-tropical QBO signals in angular momentum and wave forcing

    NASA Technical Reports Server (NTRS)

    Baldwin, Mark P.; Tung, Ka Kit

    1994-01-01

    Although the period of the equatorial stratospheric quasi-biennal oscillation (QBO) is approximately 30 months, quasi-biennial modulation of the extratropical annual cycle may be expected to produce additional spectral peaks at approximately to produce additional spectral peaks at approximately 8.6 and 20 months in the extratropics. Using Northern Hemisphere data for 1964-78 and global data for 1978-93 it is shown that these spectral peaks are robust in both angular momentum and Eliassen-Palm flux divergence. This spectral signature represents a circulation anomaly in both hemispheres, and implies a dynamical origin to the previously observed similar spectral peaks in column ozone in the extratropics.

  11. Numerical Modeling of Coastal Inundation and Sedimentation by Storm Surge, Tides, and Waves at Norfolk, Virginia, USA

    DTIC Science & Technology

    2012-07-01

    hurricanes (tropical) with a 50-year and a 100-year return period, and one winter storm ( extratropical ) occurred in October 1982. There are a total of 15...under the 0-m and 2-m SLR scenarios, respectively. • Tropical and extratropical storms induce extensive coastal inundation around the military...1 NUMERICAL MODELING OF COASTAL INUNDATION AND SEDIMENTATION BY STORM SURGE, TIDES, AND WAVES AT NORFOLK, VIRGINIA, USA Honghai Li 1 , Lihwa Lin 1

  12. "Storm Alley" on Saturn and "Roaring Forties" on Earth: two bright phenomena of the same origin

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2009-04-01

    "Storm Alley" on Saturn and "Roaring Forties' on Earth: two bright phenomena of the same origin. G. Kochemasov IGEM of the Russian Academy of Sciences, Moscow, Russia, kochem.36@mail.ru Persisting swirling storms around 35 parallel of the southern latitude in the Saturnian atmosphere and famous "Roaring Forties" of the terrestrial hydro- and atmosphere are two bright phenomena that should be explained by the same physical law. The saturnian "Storm Alley" (as it is called by the Cassini scientists) is a stable feature observed also by "Voyager". The Earth's "Roaring Forties" are well known to navigators from very remote times. The wave planetology [1-3 & others] explains this similarity by a fact that both atmospheres belong to rotating globular planets. This means that the tropic and extra-tropic belts of these bodies have differing angular momenta. Belonging to one body these belts, naturally, tend to equilibrate their angular momenta mainly by redistribution of masses and densities [4]. But a perfect equilibration is impossible as long as a rotating body (Saturn or Earth or any other) keeps its globular shape due to mighty gravity. So, a contradiction of tropics and extra-tropics will be forever and the zone mainly between 30 to 50 degrees in both hemispheres always will be a zone of friction, turbulence and strong winds. Some echoes of these events will be felt farther poleward up to 70 degrees. On Earth the Roaring Forties (40˚-50˚) have a continuation in Furious Fifties (50˚-60˚) and Shrieking (Screaming) Sixties (below 60˚, close to Antarctica). Below are some examples of excited atmosphere of Saturn imaged by Cassini. PIA09734 - storms within 46˚ south; PIA09778 - monitoring the Maelstrom, 44˚ north; PIA09787 - northern storms, 59˚ north; PIA09796 - cloud details, 44˚ north; PIA10413 - storms of the high north, 70˚ north; PIA10411 - swirling storms, "Storm Alley", 35˚ south; PIA10457 - keep it rolling, "Storm Alley", 35˚ south; PIA10439 - dance of the clouds, 47˚ south; PIA10437 - dual vortices, 33˚ north. In the Earth's case the turbulence touches the atmosphere, oceans and lithosphere. Navigators for sailing use strong westerly winds in Roaring Forties. Europe is often hit by anomalous, sometimes disasters weather conditions (though winds in the northern hemisphere are somehow softened by landmasses). In the crust of Eurasia, North America and in the Southern ocean along latitudes 46˚-48˚ there are two latitudinal geomorphologic planetary flexures marking transition of subsiding inward belts to uplifting outward (pole ward) belts [5]. These slow secular crust and lithosphere movements of opposite signs witness the tendency of rotating Earth to equilibrate angular momenta of its tropic and extra-tropic belts. Thus, both planets - the rocky sphere and the gaseous giant globe - obey the same fundamental law of nature and try to adjust uneven angular momenta of its tropic and extra-tropic belts marking transition between them by anomalous features. References: [1] Kochemasov G.G. Concerted wave supergranulation of the solar system bodies // 16th Russian-American microsymposium on planetology, Abstracts, Moscow, Vernadsky Inst. (GEOKHI), 1992, 36-37. [2] Kochemasov G.G. Tectonic dichotomy, sectoring and granulation of Earth and other celestial bodies // Proceedings of the International Symposium on New Concepts in Global Tectonics, "NCGT-98 TSUKUBA", Geological Survey of Japan, Tsukuba, Nov 20-23, 1998, p. 144-147. [3] Kochemasov G.G. Theorems of wave planetary tectonics // Geophys. Res. Abstr., 1999, V.1, №3, 700. [4] Kochemasov G.G. Tectonics of rotating celestial globes // Vernadsky-Brown microsymposium 48, 20-22 Oct. 2008, Moscow, Abstr. m48_20. [5] Kotov F. S. A reflection of planetary flexures in limits of the continental lithosphere // Tectonics and geodynamics of the continental lithosphere. Proceedings of the XXXVI Tectonic conference. T. I, 4-6 Febr. 2003, Ed. Yu.V. Karyakin, Moscow, GEOS, 2003, 370 pp (p. 305-308) (In Russian).

  13. Gravity Waves in the Atmosphere: Instability, Saturation, and Transport.

    DTIC Science & Technology

    1995-11-13

    role of gravity wave drag in the extratropical QBO , destabilization of large-scale tropical waves by deep moist convection, and a general theory of equatorial inertial instability on a zonally nonuniform, nonparallel flow.

  14. Arctic spring ozone reduction associated with projected sea ice loss

    NASA Astrophysics Data System (ADS)

    Deser, C.; Sun, L.; Tomas, R. A.; Polvani, L. M.

    2013-12-01

    The impact of Arctic sea ice loss on the stratosphere is investigated using the Whole-Atmosphere Community Climate Model (WACCM), by prescribing the sea ice in the late 20th century and late 21st century, respectively. The localized Sea Surface Temperature (SST) change associated with sea ice melt is also included in the future run. Overall, the model simulates a negative annular-mode response in the winter and spring. In the stratosphere, polar vortex strengthens from February to April, peaking in March. Consistent with it, there is an anomalous cooling in the high-latitude stratosphere, and polar cap ozone reduction is up to 20 DU. Since the difference between these two runs lies only in the sea ice and localized SST in the Arctic, the stratospheric circulation and ozone changes can be attributed to the surface forcing. Eliassen-Palm analysis reveals that the upward propagation of planetary waves is suppressed in the spring as a consequence of sea ice loss. The reduction in propagation causes less wave dissipation and thus less zonal wind deceleration in the extratropical stratosphere.

  15. Extratropical Forcing Triggered the 2015 Madden-Julian Oscillation-El Niño Event.

    PubMed

    Hong, Chi-Cherng; Hsu, Huang-Hsiung; Tseng, Wan-Ling; Lee, Ming-Ying; Chow, Chun-Hoe; Jiang, Li-Chiang

    2017-04-24

    In this paper, we report the triggering effect of extratropical perturbation on the onset of an atypical Madden-Julian Oscillation (MJO) and onset of the 2015-16 El Niño in March 2015. The MJO exhibited several unique characteristics: the effect of extratropical forcing, atypical genesis location and timing in the equatorial western Pacific, and the extremity of amplitudes in many aspects. The southward-penetrating northerly associated with the extratropical disturbances in the extratropical western North Pacific contributed to triggering the deep convection and westerly wind burst (WWB) and onset of the MJO over the anomalously warm tropical western Pacific in early March. The persisting strong WWB forced downwelling Kelvin wave-like oceanic perturbation that propagated eastward and led to the onset of the 2015-16 El Niño. The proposed novel extratropical forcing mechanism explaining the unique extratropics-MJO-El Niño association, based on both data diagnostics and numerical experiments, warrants further attention for a more detailed understanding of the onset of the MJO and its potential effect on El Niño.

  16. Thermal Tides During the 2001 Martian Global-Scale Dust Storm

    NASA Technical Reports Server (NTRS)

    Guzewich, Scott D.; Wilson, R. John; McConnochie, Timothy H.; Toigo, Anthony D.; Bandfield, Donald J.; Smith, Michael D.

    2014-01-01

    The 2001 (Mars Year 25) global dust storm radically altered the dynamics of the Martian atmosphere. Using observations from the Thermal Emission Spectrometer onboard the Mars Global Surveyor spacecraft and Mars WRF general circulation model simulations, we examine the changes to thermal tides and planetary waves caused by the storm. We find that the extratropical diurnal migrating tide is dramatically enhanced during the storm, particularly in the southern hemisphere, reaching amplitudes of more than 20 K. The tropical diurnal migrating tide is weakened to almost undetectable levels. The diurnal Kelvin waves are also significantly weakened, particularly during the period of global expansion at Ls=200deg-210deg. In contrast, the westward propagating diurnal wavenumber 2 tide strengthens to 4-8 K at altitudes above 30km. The wavenumber 1 stationary wave reaches amplitudes of 10-12 K at 50deg-70degN, far larger than is typically seen during this time of year. The phase of this stationary wave and the enhancement of the diurnal wavenumber 2 tide appear to be responses to the high-altitude westward propagating equatorial wavenumber 1 structure in dust mixing ratio observed during the storm in previous works. This work provides a global picture of dust storm wave dynamics that reveals the coupling between the tropics and high-latitude wave responses. We conclude that the zonal distribution of thermotidal forcing from atmospheric aerosol concentration is as important to understanding the atmospheric wave response as the total global mean aerosol optical depth.

  17. The latitudinal structure of recent changes in the boreal Brewer-Dobson circulation

    NASA Astrophysics Data System (ADS)

    Shi, C.; Guo, D.; Xu, J.; Powell, A. M., Jr.; Xu, T.

    2015-09-01

    Upwelling branch of the Brewer-Dobson circulation (BDC) controls the tropical lower stratospheric water vapor (WV) through dynamic cooling near the tropopause. Downwelling branch of BDC dominates the extratropical middle-lower stratospheric Hydrogen Chloride (HCl) by dynamic transport. Climatologically, a symmetric weakening BDC indicates increasing tropical lower stratospheric WV and decreasing extratropical middle-lower stratospheric HCl. However, the global ozone chemistry and related trace gas data records for the stratosphere data (GOZCARDS) show that the tropical lowermost stratospheric WV increased by 18 % decade-1 during 2001-2011 and the boreal mid-latitude lower stratospheric HCl rose 25 % decade-1 after 2006. We interpret this as resulting from a slowdown of the tropical upwelling and a speedup of the mid-latitude downwelling. This interpretation is supported by composite analysis of Eliasen-Palm Flux (EPF), zonal wind and regression of temperature on the EPF from the ERA-Interim data. Results present that the enhancing polar vortex and weakening planetary wave activity leads to a downwelling branch narrowing equatorward and a local speedup of 24 % at 20 hPa in the mid-latitudes. Moreover, there are regressive temperature increase of 1.5 K near the tropical tropopause and that of 0.5 K in the mid-latitude middle stratosphere, which also indicates the tropical upwelling slowdown and the mid-latitude downwelling speedup during 2001-2011.

  18. Understanding Rossby wave trains forced by the Indian Ocean Dipole

    NASA Astrophysics Data System (ADS)

    McIntosh, Peter C.; Hendon, Harry H.

    2018-04-01

    Convective variations over the tropical Indian Ocean associated with ENSO and the Indian Ocean Dipole force a Rossby wave train that appears to emanate poleward and eastward to the south of Australia and which causes climate variations across southern Australia and more generally throughout the Southern Hemisphere extratropics. However, during austral winter, the subtropical jet that extends from the eastern Indian Ocean into the western Pacific at Australian latitudes should effectively prohibit continuous propagation of a stationary Rossby wave from the tropics into the extratropics because the meridional gradient of mean absolute vorticity goes to zero on its poleward flank. The observed wave train indeed exhibits strong convergence of wave activity flux upon encountering this region of vanishing vorticity gradient and with some indication of reflection back into the tropics, indicating the continuous propagation of the stationary Rossby wave train from low to high latitudes is inhibited across the south of Australia. However, another Rossby wave train appears to emanate upstream of Australia on the poleward side of the subtropical jet and propagates eastward along the waveguide of the eddy-driven (sub-polar) jet into the Pacific sector of the Southern Ocean. This combination of evanescent wave train from the tropics and eastward propagating wave train emanating from higher latitudes upstream of Australia gives the appearance of a continuous Rossby wave train propagating from the tropical Indian Ocean into higher southern latitudes. The extratropical Rossby wave source on the poleward side of the subtropical jet stems from induced changes in transient eddy activity in the main storm track of the Southern Hemisphere. During austral spring, when the subtropical jet weakens, the Rossby wave train emanating from Indian Ocean convection is explained more traditionally by direct dispersion from divergence forcing at low latitudes.

  19. Stratospheric Influence on Summer Monsoon and Associated Planetary Wave Breaking and Mixing in the Subtropical Tropopause Region

    NASA Astrophysics Data System (ADS)

    Lubis, S. W.; Nakamura, N.

    2017-12-01

    Previous studies have shown that the monsoonal circulation plays an important role in planetary wave breaking (PWB). The highest frequency of breaking events occurs just downstream (east) of the monsoon region in summer. PWB induces mixing of potential vorticity (PV) and hence, alter the horizontal mixing in the atmosphere. Here, the authors hypothesize that the stratospheric easterlies in the boreal summer also play a significant role in the PWB and mixing associated with the summer monsoon. If the stratospheric winds were westerly in boreal summer, the frequency of PWB would be decreased due to more waves penetrating in the stratosphere, resulting in less horizontal PWB and thus reduced mixing in the subtropical tropopause region. The hypothesis is examined by using a set of idealized moist GFDL simulations. The monsoon circulation is produced by adding a land-sea contrast with a Gaussian-shaped mountains positioned in the midlatitudes. Other key ingredients for the monsoon, including albedo, oceanic warm pool, and Q-flux, were also ideally imposed in all simulations. Our control simulation produces a summer monsoon-like circulation similar to the observation. In particular, the thermally forced monsoonal circulation forms a prominent closed upper-level anticyclone that dominates the summertime upper-level flow. Associated with this circulation is an upward-bulging tropopause that forms a large reservoir of anomalously low PV. Consistent with previous studies, the well-defined tropospheric jet lies just poleward of the upper-level anticyclone, and acts as a dynamical barrier between the low-PV reservoir over the monsoonal region and the high-PV reservoir in the extratropics. This barrier disappears just northeast of the monsoon area in the jet exit region, allowing more quasi-planetary waves to break in this region. Repetitive wave breaking further weakens the PV gradient, leading to the formation of the surf zone and stronger mixing in this region. To quantify the role of the stratospheric circulation in the PWB and mixing associated with the summer monsoon, we add an artificial local cooling in the stratosphere and thereby preserve the stratospheric westerlies in summer. The extent to which PWB and mixing are modified by the presence of stratospheric westerlies will be discussed.

  20. The Seasonal and Interannual Variability of the Budgets of N2O and CCl3F

    NASA Technical Reports Server (NTRS)

    Wong, Sun; Prather, Michael J.; Rind, David H.

    1999-01-01

    The 6-year wind archives from the Goddard Institute for Space Studies/Global Climate-Middle Atmosphere Model (GISS/GCMAM) were in- put to the GISS/Harvard/Irvine Chemical Transport Model (G/H/I CTM) to study the seasonal and interannual variability of the budgets and distributions of nitrous oxide (N2O) and trichlorofluoromethane (CCl3F), with the corresponding chemical loss frequencies recycled and boundary conditions kept unchanged from year to year. The effects of ozone feedback and quasi-biennial oscillation (QBO) were not included. However, the role of circulation variation in driving the lifetime variability is investigated. It was found that the global loss rates of these tracers are related to the extratropical planetary wave activity, which drives the tropical upward mass flux. For N2O, a semiannual signal in the loss rate variation is associated with the interhemispheric asymmetry in the upper stratospheric wave activity. For CCl3F, the semiannual signal is weaker, associated with the comparatively uniform wave episodes in the lower stratosphere. The loss rates lag behind the wave activity by about 1-2 months. The interannual variation of the GCM generated winds drives the interannual variation of the annually averaged lifetime. The year-to-year variations of the annually averaged lifetimes can be about 3% for N2O and 4% for CCl3F.

  1. Extratropical Forcing Triggered the 2015 Madden–Julian Oscillation–El Niño Event

    PubMed Central

    Hong, Chi-Cherng; Hsu, Huang-Hsiung; Tseng, Wan-Ling; Lee, Ming-Ying; Chow, Chun-Hoe; Jiang, Li-Chiang

    2017-01-01

    In this paper, we report the triggering effect of extratropical perturbation on the onset of an atypical Madden–Julian Oscillation (MJO) and onset of the 2015–16 El Niño in March 2015. The MJO exhibited several unique characteristics: the effect of extratropical forcing, atypical genesis location and timing in the equatorial western Pacific, and the extremity of amplitudes in many aspects. The southward-penetrating northerly associated with the extratropical disturbances in the extratropical western North Pacific contributed to triggering the deep convection and westerly wind burst (WWB) and onset of the MJO over the anomalously warm tropical western Pacific in early March. The persisting strong WWB forced downwelling Kelvin wave-like oceanic perturbation that propagated eastward and led to the onset of the 2015–16 El Niño. The proposed novel extratropical forcing mechanism explaining the unique extratropics–MJO–El Niño association, based on both data diagnostics and numerical experiments, warrants further attention for a more detailed understanding of the onset of the MJO and its potential effect on El Niño. PMID:28436491

  2. Mechanisms for the extratropical QBO in circulation and ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinnersley, J.S.; Tung, K.K.

    1999-06-15

    A two-and-a-half-dimensional interactive stratospheric model, whose equatorial zonal wind was relaxed toward the observed Singapore zonal wind, was able to reproduce much of the observed quasi-biennial oscillation (QBO) variability in the column ozone, in its vertical distribution in the low and middle latitudes, and also in the high southern polar latitudes. To reveal the mechanisms responsible for producing the modeled QBO signal over the globe, several control runs were also performed. The authors find that the ozone variability in the lower stratosphere--and hence also in the column--is determined mainly by two dynamical mechanisms. In the low to midlatitudes it ismore » created by a direct QBO circulation. Unlike the classic picture of a nonseasonal two-cell QBO circulation symmetric about the equator, a more correct picture is a direct QBO circulation that is strongly seasonal, driven by the seasonality in diabatic heating, which is very weak in the summer hemisphere and strong in the winter hemisphere at low and midlatitudes. Transport by the climatological circulation and diffusion is found to be ineffective. At high latitudes, there is again a circulation anomaly, but here it is induced by the modulation of the planetary wave potential vorticity flux by the QBO. This so-called Holton-Tan mechanism is responsible for most of the QBO ozone signal poleward of 60[degree]. During spring in the modeled northern polar region, chaotic behavior is another important source of interannual variability, in addition to the interannual variability of planetary wave sources in the troposphere previously studied by the authors.« less

  3. Extratropical Cyclogenesis and Frontal Waves on Mars: Influences on Dust, Weather and the Planet's climate

    NASA Technical Reports Server (NTRS)

    Hollingsworth, J. L.; Kahre, Melinda A.

    2012-01-01

    Between late autumn and early spring, middle and high latitudes on Mars exhibit strong equatortopole mean temperature contrasts (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports vigorous, large-scale eastward traveling weather systems (i.e., transient synoptic periodwaves) [1,2]. For a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, these large-scale, extratropical weather disturbances are critical components of the global circulation. The wavelike disturbances act as agents in the transport of heat and momentum between low and high latitudes of the planet. Through cyclonic/anticyclonic winds, intense shear deformations, contractions-dilatations in temperature and density, and sharp perturbations amongst atmospheric tracers (i.e., dust, volatiles (e.g., water vapor) and condensates (e.g., water-ice cloud particles)), Mars extratropical weather systems have significant subsynoptic scale ramifications by supporting atmospheric frontal waves (Fig. 1).

  4. Structural Changes and Convective Processes in Tropical Cyclones as Seen in Infrared and Water Vapor Satellite Data

    DTIC Science & Technology

    2013-05-10

    tropical depression; yellow, a tropical storm ; red, a typhoon; and purple, an extratropical cyclone (after http://agora.ex.nii.ac.jp/digital- typhoon... storm (JTWC 2012). Tropical Storm Jelawat continued into the Sea of Japan, where it completed extratropical transition (JTWC 2012...including strong winds, storm surge, high waves, and heavy rainfall, threaten archipelagos, densely crowded coastlines, and naval forces ashore and

  5. Patterns of tropical Pacific convection anomalies and associated extratropical wave trains in AMIP5

    NASA Astrophysics Data System (ADS)

    Ding, Shuoyi; Chen, Wen; Graf, Hans-F.; Guo, Yuanyuan

    2018-05-01

    In this paper, the performance of 18 Coupled Model Intercomparison Project Phase 5 (CMIP5) models forced by observational SSTs in simulating the tropical Pacific convective variation and the atmospheric responses in the extratropics are assessed. The multi-model ensemble mean results of 18 CMIP5 models show that five major patterns of tropical Pacific convection anomaly in winter can indeed be well reproduced, however, the simulation of the corresponding extratropical responses for each pattern exists some deficiency except for the La Niña pattern compared with observations. We defined an optimized subset of well performing models (ACCESS1.0, CanAM4, CCSM4, CMCC-CM, HadGEM2-A, MPI-ESM-MR) in tropical Pacific deep convection according to the ranking of model skill score. These models exhibit approximately identical convection anomaly patterns in both amplitude and spatial structure to the observation, which potentially might improve the representation of extratropical teleconnections with the tropical Pacific, especially for the CP El Niño (CPEN), EP El Niño (EPEN) and western CP (W-CP) patterns. Both evident atmospheric anomalies of CPEN and EPEN patterns over the NA/E sector and the northeastward propagating wave trains of W-CP pattern can be quite well simulated in the high-skilled models.

  6. The role of precipitation in aerosol-induced changes in northern hemisphere wintertime stationary waves

    NASA Astrophysics Data System (ADS)

    Lewinschal, A.; Ekman, A. M. L.; Körnich, H.

    2012-04-01

    Aerosol particles have a considerable impact on the energy budget of the atmosphere due to their ability to scatter and absorb incoming solar radiation. Persistent particle emissions in certain regions of the world have lead to quasi-permanent aerosol forcing patterns. This spatially varying forcing pattern has the potential to modify temperature gradients that in turn alter pressure gradients and the atmospheric circulation. This study focuses on the effect of aerosol direct radiative forcing on northern hemisphere wintertime stationary waves. A global general circulation model based on the ECMWF operational forecast model is applied (EC-Earth). Aerosols are prescribed as monthly mean mixing ratios of sulphate, black carbon, organic carbon, dust and sea salt. Only the direct aerosol effect is considered. The climatic change is defined as the difference between model simulations using present-day and pre-industrial concentrations of aerosol particles. Data from 40-year long simulations using a coupled ocean-atmosphere model system are used. In EC-Earth, the high aerosol loading over South Asia leads to a surface cooling, which appears to enhance the South Asian winter monsoon and weaken the Indian Ocean Walker circulation. The anomalous Walker circulation leads to changes in tropical convective precipitation and consequent changes in latent heat release which effectively acts to generate planetary scale waves propagating into the extra-tropics. Using a steady-state linear model we verify that the aerosol-induced anomalous convective precipitation is a crucial link between the wave changes and the direct aerosol radiative forcing.

  7. Modeling Mars Cyclogenesis and Frontal Waves: Seasonal Variations and Implications on Dust Activity

    NASA Technical Reports Server (NTRS)

    Hollingsworth, J. L.; Kahre, M. A.

    2014-01-01

    Between late autumn through early spring,middle and high latitudes onMars exhibit strong equator-to-polemean temperature contrasts (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that such strong baroclinicity supports vigorous, large-scale eastward traveling weather systems (i.e., transient synoptic period waves) [1, 2]. For a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, these large-scale, extratropical weather disturbances are critical components of the global circulation. The wave-like disturbances serve as agents in the transport of heat and momentum between low and high latitudes of the planet. Through cyclonic/anticyclonic winds, intense shear deformations, contractions-dilatations in temperature and density, and sharp perturbations amongst atmospheric tracers (i.e., dust, volatiles (e.g., water vapor) and condensates (e.g., water-ice cloud particles)), Mars' extratropical weather systems have significant sub-synoptic scale ramifications by supporting atmospheric frontal waves (Fig. 1).

  8. Large-Scale, Synoptic-Period Weather Systems in Mars' Atmosphere

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.; Kahre, M.

    2013-10-01

    During late autumn through early spring, extratropical regions on Mars exhibit profound mean zonal equator-to-pole thermal contrasts associated with its waxing and waning seasonal polar ice caps. The imposition of this strong meridional temperature gradient supports intense eastward-traveling, synoptic-period weather systems (i.e., transient baroclinic/barotropic waves) within Mars' extratropical atmosphere. These disturbances grow, mature and decay within the east-west varying seasonal-mean middle and high-latitude westerly jet stream (i.e., the polar vortex) on the planet. Near the surface, such weather disturbances indicated distinctive, spiraling "comma"-shaped dust cloud structures of large scale, and scimitar-shaped dust fronts, indicative of processes associated with cyclo- and fronto-genesis. The weather systems are most intense during specific seasons on Mars, and in both hemispheres. The northern hemisphere (NH) disturbances appear to be significantly more vigorous than their counterparts in the southern hemisphere (SH). Further, the NH weather systems and accompanying frontal waves appear to have significant impacts on the transport of tracer fields (e.g., particularly dust and to some extent water species (vapor/ice) as well). Regarding dust, frontal waves appear to be key agents in the lifting, lofting, organization and transport of this atmospheric aerosol. A brief background and supporting observations of Mars' extratropical weather systems is presented. This is followed by various modeling studies (i.e., ranging from highly simplified, mechanistic and fully complex global circulation modeling investigations) that we are pursuing. In particular, transport of scalar quantities (e.g., tracers and high-order dynamically revealing diagnostic fields) are investigated. A discussion of outstanding issues and future modeling pursuits is offered related to Mars' extratropical traveling weather systems.

  9. Hindcast of extreme sea states in North Atlantic extratropical storms

    NASA Astrophysics Data System (ADS)

    Ponce de León, Sonia; Guedes Soares, Carlos

    2015-02-01

    This study examines the variability of freak wave parameters around the eye of northern hemisphere extratropical cyclones. The data was obtained from a hindcast performed with the WAve Model (WAM) model forced by the wind fields of the Climate Forecast System Reanalysis (CFSR). The hindcast results were validated against the wave buoys and satellite altimetry data showing a good correlation. The variability of different wave parameters was assessed by applying the empirical orthogonal functions (EOF) technique on the hindcast data. From the EOF analysis, it can be concluded that the first empirical orthogonal function (V1) accounts for greater share of variability of significant wave height (Hs), peak period (Tp), directional spreading (SPR) and Benjamin-Feir index (BFI). The share of variance in V1 varies for cyclone and variable: for the 2nd storm and Hs V1 contains 96 % of variance while for the 3rd storm and BFI V1 accounts only for 26 % of variance. The spatial patterns of V1 show that the variables are distributed around the cyclones centres mainly in a lobular fashion.

  10. A New Perspective on Increasing Activity of Extratropical Disturbances: Spatial and Temporal Trends of Wave Activity

    NASA Astrophysics Data System (ADS)

    Hsu, P. C.; Hsu, H. H.

    2016-12-01

    Changes in extratropical disturbance behavior could play an important role in climate dynamics and be responsible for a part of climate-related damage. However, robust observational evidence for long-term trends in the activity is still lacking, and understanding of how it is linked with climate phenomena is limited. In this study, we define an accumulated perturbation index (API) to quantify the variation in some scalar quantities of atmospheric disturbances. API measures the areas (e.g., % of total surface area of Earth) where a certain perturbation quantity exceeds the long-term mean value plus 0.5 standard deviations. This index reflects more realistically the ensemble impacts of a climate perturbation and/or trend (such as global warming and ENSO) on the extratropical disturbances, even though its impact on different regions might vary from year to year due to stochastic processes. API represents an integrated activity of extratropical disturbances at a given time relative to a long time span. API is calculated for the 5-day running mean and 10-30-day stream function fluctuations during DJF and JJA. The analysis reveals an increasing trend in API and variance of stream function, especially in the Southern Hemisphere. The findings suggest that atmospheric extratropical disturbances have strengthened in widening areas during the past six decades, even though there might not be robust trends in wave activity at regional scales. Whether the observed trends in API are associated with certain climate patterns is under investigation. Impact of global warming is likely one of the major sources for the increasing activity. The future change in API under global warming scenarios will be further studied by analyzing the projection of the CMIP5 models.

  11. Extreme coastal erosion enhanced by anomalous extratropical storm wave direction.

    PubMed

    Harley, Mitchell D; Turner, Ian L; Kinsela, Michael A; Middleton, Jason H; Mumford, Peter J; Splinter, Kristen D; Phillips, Matthew S; Simmons, Joshua A; Hanslow, David J; Short, Andrew D

    2017-07-20

    Extratropical cyclones (ETCs) are the primary driver of large-scale episodic beach erosion along coastlines in temperate regions. However, key drivers of the magnitude and regional variability in rapid morphological changes caused by ETCs at the coast remain poorly understood. Here we analyze an unprecedented dataset of high-resolution regional-scale morphological response to an ETC that impacted southeast Australia, and evaluate the new observations within the context of an existing long-term coastal monitoring program. This ETC was characterized by moderate intensity (for this regional setting) deepwater wave heights, but an anomalous wave direction approximately 45 degrees more counter-clockwise than average. The magnitude of measured beach volume change was the largest in four decades at the long-term monitoring site and, at the regional scale, commensurate with that observed due to extreme North Atlantic hurricanes. Spatial variability in morphological response across the study region was predominantly controlled by alongshore gradients in storm wave energy flux and local coastline alignment relative to storm wave direction. We attribute the severity of coastal erosion observed due to this ETC primarily to its anomalous wave direction, and call for greater research on the impacts of changing storm wave directionality in addition to projected future changes in wave heights.

  12. Constraints on Wave Drag Parameterization Schemes for Simulating the Quasi-Biennial Oscillation. Part II: Combined Effects of Gravity Waves and Equatorial Planetary Waves.

    NASA Astrophysics Data System (ADS)

    Campbell, Lucy J.; Shepherd, Theodore G.

    2005-12-01

    This study examines the effect of combining equatorial planetary wave drag and gravity wave drag in a one-dimensional zonal mean model of the quasi-biennial oscillation (QBO). Several different combinations of planetary wave and gravity wave drag schemes are considered in the investigations, with the aim being to assess which aspects of the different schemes affect the nature of the modeled QBO. Results show that it is possible to generate a realistic-looking QBO with various combinations of drag from the two types of waves, but there are some constraints on the wave input spectra and amplitudes. For example, if the phase speeds of the gravity waves in the input spectrum are large relative to those of the equatorial planetary waves, critical level absorption of the equatorial planetary waves may occur. The resulting mean-wind oscillation, in that case, is driven almost exclusively by the gravity wave drag, with only a small contribution from the planetary waves at low levels. With an appropriate choice of wave input parameters, it is possible to obtain a QBO with a realistic period and to which both types of waves contribute. This is the regime in which the terrestrial QBO appears to reside. There may also be constraints on the initial strength of the wind shear, and these are similar to the constraints that apply when gravity wave drag is used without any planetary wave drag.In recent years, it has been observed that, in order to simulate the QBO accurately, general circulation models require parameterized gravity wave drag, in addition to the drag from resolved planetary-scale waves, and that even if the planetary wave amplitudes are incorrect, the gravity wave drag can be adjusted to compensate. This study provides a basis for knowing that such a compensation is possible.

  13. Variability of Irreversible Poleward Transport in the Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Olsen, Mark; Douglass, Anne; Newman, Paul; Nash, Eric; Witte, Jacquelyn; Ziemke, Jerry

    2011-01-01

    The ascent and descent of the Brewer-Dobson circulation plays a large role in determining the distributions of many constituents in the extratropical lower stratosphere. However, relatively fast, quasi-horizontal transport out of the tropics and polar regions also significantly contribute to determining these distributions. The tropical tape recorder signal assures that there must be outflow from the tropics into the extratropical lower stratosphere. The phase of the quasi-biennial oscillation (QBO) and state of the polar vortex are known to modulate the transport from the tropical and polar regions, respectively. In this study we examine multiple years of ozone distributions in the extratropical lower stratosphere observed by the Aura Microwave Limb Sounder (MLS) and the Aura High Resolution Dynamic Limb Sounder (HIRDLS). The distributions are compared with analyses of irreversible, meridional isentropic transport. We show that there is considerable year-to-year seasonal variability in the amount of irreversible transport from the tropics, which is related to both the phase of the QBO and the state of the polar vortex. The reversibility of the transport is consistent with the number of observed breaking waves. The variability of the atmospheric index of refraction in the lower stratosphere is shown to be significantly correlated with the wave breaking and amount of irreversible transport. Finally, we will show that the seasonal extratropical stratosphere to troposphere transport of ozone can be substantially modulated by the amount of irreversible meridional transport in the lower stratosphere and we investigate how observable these differences are in data of tropospheric ozone.

  14. North Atlantic storm driving of extreme wave heights in the North Sea

    NASA Astrophysics Data System (ADS)

    Bell, R. J.; Gray, S. L.; Jones, O. P.

    2017-04-01

    The relationship between storms and extreme ocean waves in the North Sea is assessed using a long-period wave data set and storms identified in the Interim ECMWF Re-Analysis (ERA-Interim). An ensemble sensitivity analysis is used to provide information on the spatial and temporal forcing from mean sea-level pressure and surface wind associated with extreme ocean wave height responses. Extreme ocean waves in the central North Sea arise due to intense extratropical cyclone winds from either the cold conveyor belt (northerly-wind events) or the warm conveyor belt (southerly-wind events). The largest wave heights are associated with northerly-wind events which tend to have stronger wind speeds and occur as the cold conveyor belt wraps rearward round the cyclone to the cold side of the warm front. The northerly-wind events provide a larger fetch to the central North Sea to aid wave growth. Southerly-wind events are associated with the warm conveyor belts of intense extratropical cyclones that develop in the left upper tropospheric jet exit region. Ensemble sensitivity analysis can provide early warning of extreme wave events by demonstrating a relationship between wave height and high pressure to the west of the British Isles for northerly-wind events 48 h prior. Southerly-wind extreme events demonstrate sensitivity to low pressure to the west of the British Isles 36 h prior.

  15. The lagged connection of the positive NAO with the MJO phase 3 in a simplified atmospheric model

    NASA Astrophysics Data System (ADS)

    Shao, Xiaolu; Song, Jie; Li, Shuanglin

    2018-03-01

    Based on a simplified nonlinear model and reanalysis data, the lagged connection of the North Atlantic Oscillation (NAO) with the Madden-Julian Oscillation (MJO) in boreal winters is investigated. The positive NAO is observed to occur more frequently about 8-20 days after the onset of the MJO phase 3. A series of heating forcing experiments and initial-value experiments are conducted by utilizing the Geophysical Fluid Dynamics Laboratory (GFDL) dynamical core atmospheric model. The extratropical responses to the tropical heating associated with the MJO phase 3 are characterized by a wave train over the Pacific-North American region with an anticyclone anomaly over the northeastern Pacific and then followed by a positive-NAO-like pattern over the North Atlantic sector. These circulation anomalies generally match the observed lagged-connection well. At the earlier stage, the Rossby wave train excited by the MJO convection propagates into the North Atlantic, leading to a planetary wave anomaly with a low-over-high dipole prior to the positive NAO. At the later stage, the anomalous synoptic eddy vorticity forcing (EVF) streamfunction tendency has a negative-over-positive dipole, which plays a key role in the development of the positive NAO. Further analysis of the initial-value experiments indicates that, for the subsequent formation of the positive NAO, the anomalous circulation over the Indian Ocean aroused by the MJO phase 3 is more crucial than that over the northeastern Pacific.

  16. One common structural peculiarity of the Solar system bodies including the star, planets, satellites and resulting from their globes rotation

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2008-09-01

    Often observed a sensible difference in appearance and structure between tropical and extra-tropical zones of various heavenly bodies including rocky and gas planets, satellites and Sun compels to look for a common reason of such phenomenon. All bodies rotate and their spherical shape makes zones at different latitudes to have differing angular momenta as a distance to the rotation axis diminishes gradually from the equator to the poles (this is felt particularly when one launches rockets into space -preferable more cheap launches are from the equatorial regions - Kourou is better than Baikonur). One of remarkable changes occurs at tropics. As a single rotating planetary body tends to have angular momenta of its tectonic blocks equilibrated it starts mechanisms leveling this basic physical property. At tropical zones (bulged also due to the rotation ellipsoid) the outer shell - crust as a consequence tends to be destroyed, sunk, subsided and shrunk; a density of crust material changes; the atmosphere reacts changing chemistry and structure; in terrestrial anthroposphere man looses its mass and stature. But according to the Le Chatelier rule mechanisms with an opposing tendency also begin to act. At Earth the wide planetary long tropical zone is marked by destruction of the crust. It is demonstrated by development of numerous islands of the Malay Archipelago (the Sunda Isls., Maluku Isls, Philippines) between the Southeastern Asia and Australia. In Africa and South America huge depressions of the Congo and Amazon Rivers develops where the Archean crust is subsided to depths of more than 2 km. In the Pacific along the equator numerous islands of Micronesia occur. Subsidence of the basaltic oceanic crust is followed by an intensive folding and faulting of basalt and sedimentary layers (Fig. 1) as a larger mass must be held by a smaller space (a planetary radius is diminished). The central Atlantic is very demonstrative in this sense suffering huge transform fault zones changing to more quite tectonics to the north and south where basaltic effusions form large provinces. This addition of dense basalts to the crust plays to increasing angular momentum of the extra-tropical blocks. At Mars the widespread enigmatic chaotic and fretted terrains at the highland-lowland boundary could be considered as traces of the crust destruction along the wide tropical belt. A system of hillocks and their relics and separating them depressions is controlled by a crosscutting tectonics. Prevailing subsidence here is characteristic. At Saturn a wide tropical zone usually has higher albedo than extra-tropical ones. Relatively heavier methane clouds in the H-He atmosphere are absent around the equator and concentrated on the higher latitudes (Fig. 2). In the tropical zone of Titan the darker methane lowlands (Fig. 3) are normally rippled in at least two directions with spacing a few km to 20 km (such forms erroneously are taken as dunes) (Fig. 4). This subsidence rippling gradually is replaced by smooth surfaces of dark basins (possibly liquid methane) at the higher northern and at lesser degree southern latitudes. This planetary pattern (Fig. 3, 4) is comparable with a behavior of the basalt floor of terrestrial oceans. On Iapetus the wide equatorial zone of the bright trailing hemisphere is distinguished by relatively numerous craters with darkened floors (Fig. 5). This terrain connects both flanks of the dark leading hemisphere and is a continuation of its equatorial bulge (a squeezed out feature as a result of the dark hemisphere subsidence). Thus looks tending subside and disintegrate tropical terrain on the uplifted bright hemisphere. Around the Tethys' equator there is a band of slightly darker surface material (Fig. 6). It may be an area of less contaminated ice and ice with a different structure than ice at higher latitudes as think Cassini scientists. If it is coarser-grained (more loosely packed) and purer then the equatorial region tends to be less dense diminishing its angular momentum. A crosscutting wave rippling producing chains of square craters here is also clearly visible. Sun presents a special case because its equatorial region rotates faster than the higher latitudes. It could be attributed to an important loss of angular momentum by this region during formation of planets (significant transfer of momentum to the planetary system) and its compensation according to the Le Chatelier rule by the faster rotation. But, in turn, this faster rotation causes an intensive destruction of this region in tendency to keep " status quo". The photosphere is "perforated" by darker colder spots deep up to 300 (maybe more?) km - famous solar spots long to 200000 km and smaller pores (Fig. 7). In the chromosphere there is a remarkable loss of "heavy" Ca ion from this region (compare with the loss of methane from the equatorial region of Saturn). Under more close inspection of other planetary bodies this uniform separation of tropical and extra-tropical zones should be discovered.

  17. The dynamical link between deep Atlantic extratropical cyclones and intense Mediterranean cyclones

    NASA Astrophysics Data System (ADS)

    Raveh-Rubin, Shira; Flaounas, Emmanouil

    2017-04-01

    Breaking of atmospheric Rossby waves has been previously shown to lead to intense Mediterranean cyclones, one of the most prominent environmental risks in the region. Wave breaking may be enhanced by warm conveyor belts (WCBs) associated with extratropical cyclones developing over the Atlantic Ocean. More precisely, WCBs supply the upper troposphere with air masses of low potential vorticity that, in turn, amplify ridges and thus favor Rossby wave breaking. This study identifies and validates the relevance of the mechanism that connects Atlantic cyclones and intense mature Mediterranean cyclones through ridge amplification by WCBs. Using ECMWF ERA-Interim reanalyses and a feature-based approach, we analyze the 200 most intense Mediterranean cyclones for the years 1989-2008 and show that their majority (181 cases) is indeed associated with this mechanism upstream. Results show that multiple Atlantic cyclones are associated with each case of intense Mediterranean cyclone downstream. Moreover, the associated Atlantic cyclones are particularly deep compared to climatology.

  18. The transport of nitric oxide in the upper atmosphere by planetary waves and the zonal mean circulation

    NASA Technical Reports Server (NTRS)

    Jones, G. A.; Avery, S. K.

    1982-01-01

    A time-dependent numerical model was developed and used to study the interaction between planetary waves, the zonal mean circulation, and the trace constituent nitric oxide in the region between 55 km and 120 km. The factors which contribute to the structure of the nitric oxide distribution were examined, and the sensitivity of the distribution to changes in planetary wave amplitude was investigated. Wave-induced changes in the mean nitric oxide concentration were examined as a possible mechanism for the observed winter anomaly. Results indicate that vertically-propagating planetary waves induce a wave-like structure in the nitric oxide distribution and that at certain levels, transports of nitric oxide by planetary waves could significantly affect the mean nitric oxide distribution. The magnitude and direction of these transports at a given level was found to depend not only on the amplitude of the planetary wave, but also on the loss rate of nitric oxide at that level.

  19. Effects of eddy initial conditions on nonlinear forcing of planetary scale waves by amplifying baroclinic eddies

    NASA Technical Reports Server (NTRS)

    Young, Richard E.

    1986-01-01

    The previous study of Young and Villere concerning growth of planetary scale waves forced by wave-wave interactions of amplifying intermediate scale baroclinic eddies is extended to investigate effects of different eddy initial conditions. A global, spectral, primitive equation model is used for the calculations. For every set of eddy initial conditions considered, growth rates of planetary modes are considerably greater than growth rates computed from linear instability theory for a fixed zonally independent basic state. However, values of growth rates ranged over a factor of 3 depending on the particular set of eddy initial conditions used. Nonlinear forcing of planetary modes via wave-wave coupling becomes more important than baroclinic growth on the basic state at small values of the intermediate-scale modal amplitudes. The relative importance of direct transfer of kinetic energy from intermediate scales of motion to a planetary mode, compared to baroclinic conversion of available potential energy to kinetic energy within that planetary mode, depends on the individual case. In all cases, however, the transfer of either kinetic or available potential energy to the planetary modes was accomplished principally by wave-wave transfer from intermediate scale eddies, rather than from the zonally averaged state. The zonal wavenumber 2 planetary mode was prominent in all solutions, even in those for which eddy initial conditions were such that a different planetary mode was selectively forced at the start. General characteristics of the structural evolution of the planetary wave components of total heat and momentum flux, and modal structures themselves, were relatively insensitive to variations in eddy initial conditions, even though quantitative details varied from case to case.

  20. North Sea Storm Driving of Extreme Wave Heights

    NASA Astrophysics Data System (ADS)

    Bell, Ray; Gray, Suzanne; Jones, Oliver

    2017-04-01

    The relationship between storms and extreme ocean waves in the North sea is assessed using a long-period wave dataset and storms identified in the Interim ECMWF Re-Analysis (ERA-Interim). An ensemble sensitivity analysis is used to provide information on the spatial and temporal forcing from mean sea-level pressure and surface wind associated with extreme ocean wave height responses. Extreme ocean waves in the central North Sea arise due to either the winds in the cold conveyor belt (northerly-wind events) or winds in the warm conveyor belt (southerly-wind events) of extratropical cyclones. The largest wave heights are associated with northerly-wind events which tend to have stronger wind speeds and occur as the cold conveyor belt wraps rearwards round the cyclone to the cold side of the warm front. The northerly-wind events also provide a larger fetch to the central North Sea. Southerly-wind events are associated with the warm conveyor belts of intense extratropical storms developing in the right upper-tropospheric jet exit region. There is predictability in the extreme ocean wave events up to two days before the event associated with a strengthening of a high pressure system to the west (northerly-wind events) and south-west (southerly-wind events) of the British Isles. This acts to increase the pressure gradient over the British Isles and therefore drive stronger wind speeds in the central North sea.

  1. AO/NAO Response to Climate Change. 1; Respective Influences of Stratospheric and Tropospheric Climate Changes

    NASA Technical Reports Server (NTRS)

    Rind, D.; Perlwitz, J.; Lonergan, P.

    2005-01-01

    We utilize the GISS Global Climate Middle Atmosphere Model and 8 different climate change experiments, many of them focused on stratospheric climate forcings, to assess the relative influence of tropospheric and stratospheric climate change on the extratropical circulation indices (Arctic Oscillation, AO; North Atlantic Oscillation, NAO). The experiments are run in two different ways: with variable sea surface temperatures (SSTs) to allow for a full tropospheric climate response, and with specified SSTs to minimize the tropospheric change. The results show that tropospheric warming (cooling) experiments and stratospheric cooling (warming) experiments produce more positive (negative) AO/NAO indices. For the typical magnitudes of tropospheric and stratospheric climate changes, the tropospheric response dominates; results are strongest when the tropospheric and stratospheric influences are producing similar phase changes. Both regions produce their effect primarily by altering wave propagation and angular momentum transports, but planetary wave energy changes accompanying tropospheric climate change are also important. Stratospheric forcing has a larger impact on the NAO than on the AO, and the angular momentum transport changes associated with it peak in the upper troposphere, affecting all wavenumbers. Tropospheric climate changes influence both the A0 and NAO with effects that extend throughout the troposphere. For both forcings there is often vertical consistency in the sign of the momentum transport changes, obscuring the difference between direct and indirect mechanisms for influencing the surface circulation.

  2. The tropical tropopause inversion layer: variability and modulation by equatorial waves

    NASA Astrophysics Data System (ADS)

    Pilch Kedzierski, Robin; Matthes, Katja; Bumke, Karl

    2016-09-01

    The tropical tropopause layer (TTL) acts as a transition layer between the troposphere and the stratosphere over several kilometers, where air has both tropospheric and stratospheric properties. Within this region, a fine-scale feature is located: the tropopause inversion layer (TIL), which consists of a sharp temperature inversion at the tropopause and the corresponding high static stability values right above, which theoretically affect the dispersion relations of atmospheric waves like Rossby or inertia-gravity waves and hamper stratosphere-troposphere exchange (STE). Therefore, the TIL receives increasing attention from the scientific community, mainly in the extratropics so far. Our goal is to give a detailed picture of the properties, variability and forcings of the tropical TIL, with special emphasis on small-scale equatorial waves and the quasi-biennial oscillation (QBO).We use high-resolution temperature profiles from the COSMIC satellite mission, i.e., ˜ 2000 measurements per day globally, between 2007 and 2013, to derive TIL properties and to study the fine-scale structures of static stability in the tropics. The situation at near tropopause level is described by the 100 hPa horizontal wind divergence fields, and the vertical structure of the QBO is provided by the equatorial winds at all levels, both from the ERA-Interim reanalysis.We describe a new feature of the equatorial static stability profile: a secondary stability maximum below the zero wind line within the easterly QBO wind regime at about 20-25 km altitude, which is forced by the descending westerly QBO phase and gives a double-TIL-like structure. In the lowermost stratosphere, the TIL is stronger with westerly winds. We provide the first evidence of a relationship between the tropical TIL strength and near-tropopause divergence, with stronger (weaker) TIL with near-tropopause divergent (convergent) flow, a relationship analogous to that of TIL strength with relative vorticity in the extratropics.To elucidate possible enhancing mechanisms of the tropical TIL, we quantify the signature of the different equatorial waves on the vertical structure of static stability in the tropics. All waves show, on average, maximum cold anomalies at the thermal tropopause, warm anomalies above and a net TIL enhancement close to the tropopause. The main drivers are Kelvin, inertia-gravity and Rossby waves. We suggest that a similar wave modulation will exist at mid- and polar latitudes from the extratropical wave modes.

  3. Role of quasiresonant planetary wave dynamics in recent boreal spring-to-autumn extreme events

    PubMed Central

    Petoukhov, Vladimir; Petri, Stefan; Rahmstorf, Stefan; Coumou, Dim; Kornhuber, Kai; Schellnhuber, Hans Joachim

    2016-01-01

    In boreal spring-to-autumn (May-to-September) 2012 and 2013, the Northern Hemisphere (NH) has experienced a large number of severe midlatitude regional weather extremes. Here we show that a considerable part of these extremes were accompanied by highly magnified quasistationary midlatitude planetary waves with zonal wave numbers m = 6, 7, and 8. We further show that resonance conditions for these planetary waves were, in many cases, present before the onset of high-amplitude wave events, with a lead time up to 2 wk, suggesting that quasiresonant amplification (QRA) of these waves had occurred. Our results support earlier findings of an important role of the QRA mechanism in amplifying planetary waves, favoring recent NH weather extremes. PMID:27274064

  4. Multiscale low-frequency circulation modes in the global atmosphere

    NASA Technical Reports Server (NTRS)

    Lau, K.-M.; Sheu, P.-J.; Kang, I.-S.

    1994-01-01

    In this paper, fundamental multiscale circulation modes in the global atmosphere are identified with the objective of providing better understanding of atmospheric low-frequency variabilities over a wide range of spatial and temporal scales. With the use of a combination of rotated principal component technique, singular spectrum analysis, and phase space portraits, three categories of basic multiscale modes in the atmosphere are found. The first is the interannual-mode (IAM), which is dominated by time scales longer than a year and can be attributed to heating and circulation anomalies associated with the coupled tropical ocean-atmosphere, in particular the El Nino-Southern Oscillation. The second is a set of tropical intraseasonal modes consisting of three separate multiscale patterns (ISO-1, -2, -3) related to tropical heating that can be identified with the different phases of the Madden-Julian Oscillation (MJO), including its teleconnection to the extratropics. The ISO spatial and temporal patterns suggest that the extratropical wave train in the North Pacific and North America is related to heating over the Maritime Continent and that the evolution of the MJO around the equator may require forcing from the extratropics spawning convection over the Indian Ocean. The third category represents extratropical intraseasonal oscillations arising from internal dynamics of the basic-state circulation. In the Northern Hemisphere, there are two distinct circulation modes with multiple frequencies in this category: the Pacific/North America (PNA) and the North Atlantic/Eurasia (NAE). In the Southern Hemisphere, two phase-locked modes (PSA-1 and PSA-2) are found depicting an eastward propagating wave train from eastern Australia, via the Pacific South America to the South Atlantic. The extratropical modes exhibit temporal characteristics such as phase locking and harmonic oscillations possibly associated with quadratically nonlinear dynamical systems. Additionally, the observed monthly and seasonal anomalies arise from a complex interplay of the various multiscale low-frequency modes. The relative dominance of the different modes varies widely from month to month and from year to year. On the monthly time scale, while one or two mechanisms may dominate in one year, no single mechanism seems to dominate for all years. There are indications that when the IAM, that is, ENSO heating patterns are strong, the extratropical modes may be suppressed and vice versa. For the seasonal mean, the interannual mode tends to dominate and the contribution from the PNA remains quite significant.

  5. Organization of extratropical transients during El Nino

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoerling, M.P.; Ting, Mingfang

    Four observed El Nino-Southern Oscillation (ENSO) events are studied to determine the mechanisms responsible for the anomalous extratropical atmospheric circulation during northern winter. A parallel analysis of a GCM's response to El Nino is performed in order to assess if similar mechanisms are operative in the model atmosphere. The observed stationary wave anomalies over the Pacific/North American (PNA) region are found to be similar during the four winters despite appreciable differences in sea surface temperatures. The anomalous transient vorticity fluxes are remarkably robust over the North Pacific during each even, with an eastward extension of the climatological storm track leadingmore » to strong cyclonic forcing near 40[degrees]N, 150[degrees]W. This forcing is in phase with the seasonal mean Aleutian trough anomaly suggesting the important of eddy-mean flow interaction. By comparison, the intersample variability of the GCM response over the PNA region is found to exceed the observed inter-El Nino variability. This stems primarily from a large variability in the model's anomalous transients over the North Pacific. Further analysis reveals that extratropical vorticity transients are the primary mechanism maintaining the stationary wave anomalies over the PNA region during all four observed ENSO winters. In the case of the GCM, the organization of transient eddies is ill defined over the North Pacific, a behavior indicative of model error. A physical model is proposed to explain the robustness of the tropical controlling influence of the extratropical transients in nature. A simple equatorial Pacific heat source directly forces a tropical anticyclone whose phase relative to the climatological tropical anticyclone leads to an eastward extension of the subtropical jet stream. This mechanism appears to be equally effective for a heat source located either in the central or eastern Pacific basin. 36 refs., 14 figs.« less

  6. The influence of tropical heating displacements on the extratropical climate

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.

    1993-01-01

    The hypothesis is advanced that a latitudinal shift in the tropical convective heating pattern can significantly alter temperatures in the extratropics. Results of a simplified general circulation model (GCM) show that the shift of a prescribed tropical heating toward the summer pole, on time scales longer than a few weeks, leads to a more intense cross-equatorial 'winter' Hadley circulation, enhanced upper-level tropical easterlies, and a slightly stronger subtropical winter jet, accompanied by warming at the winter middle and high latitudes as a result of increased dynamical heating. The indications are that there is a robust connection between the net dynamic heating in the extratropics and the implied changes in the subtropical wind shear resulting from adjustments in the Hadley circulation associated with convective heating displacements in the tropics. The implications are that (1) the low-frequency temporal variability in the Hadley circulation may play an important role in modulating wave transport in the winter extratropics, (2) the global climate may be sensitive to those processes that control deep cumulus convection in the tropics, and (3) systematic temperature biases in GCMs may be reduced by improving the tropical rainfall simulation.

  7. The role of planetary waves in the tropospheric jet response to stratospheric cooling

    NASA Astrophysics Data System (ADS)

    Smith, Karen L.; Scott, Richard K.

    2016-03-01

    An idealized general circulation model is used to assess the importance of planetary-scale waves in determining the position of the tropospheric jet, specifically its tendency to shift poleward as winter stratospheric cooling is increased. Full model integrations are compared against integrations in which planetary waves are truncated in the zonal direction, and only synoptic-scale waves are retained. Two series of truncated integrations are considered, using (i) a modified radiative equilibrium temperature or (ii) a nudged-bias correction technique. Both produce tropospheric climatologies that are similar to the full model when stratospheric cooling is weak. When stratospheric cooling is increased, the results indicate that the interaction between planetary- and synoptic-scale waves plays an important role in determining the structure of the tropospheric mean flow and rule out the possibility that the jet shift occurs purely as a response to changes in the planetary- or synoptic-scale wave fields alone.

  8. Mars: destructive and constructive processes in its crust reflecting tendencies of leveling angular momenta of tropics and extra-tropics

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2009-04-01

    Mars: destructive and constructive processes in its crust reflecting tendencies of leveling angular momenta of tropics and extra-tropics. G. Kochemasov IGEM of the Russian Academy of Sciences A globular shape of rotating celestial bodies means that their tropical and extra-tropical belts have significantly different angular momenta. But such unevenness in a single body is disturbing because it increases level of tectonic stresses and energetic state what is against natural trends for minimizing these characteristics. To level partly this inequality bodies tend to diminish radius and mass in tropics and increase them in extra-tropics. Traces of these destructive and constructive actions are fixed in planetary geospheres of different classes of celestial bodies: Sun, planets, satellites, and asteroids. The remote geologic mapping of Mars reveals these traces rather obviously. "Mysterious" contact zone of the martian lowlands and highlands with obvious traces of destruction expressed in widespread development of chaotic and fretted terrains is a good evidence that could be considered in comparison with the equatorial and tropical belts of some other planetary bodies [1]. At Earth the wide planetary long tropical zone is marked by its destruction. It is demonstrated by development of numerous islands of the Archipelago between the South-East Asia and Australia. In Africa and South America huge depressions of the Congo and Amazon Rivers develops where the Archean crust is subsided to depths of more than 2 km. In the Pacific along the equator numerous islands of Micronesia occur. Subsidence of the basaltic oceanic crust is followed by an intensive folding and faulting of basalt and sedimentary layers as a larger mass must be held by a smaller space (a planetary radius is diminished). Seismicity of the tropical zone is significantly higher than outside of it that means more intensive destruction in the crust and the upper mantle of tropics. Mantle derived diamonds are more nitrogen rich (thus, heavier) in extra-tropical zones than in Africa where even unique diamonds with boron (it makes the carbon crystal less dense). Changes in the atmosphere follow the same trend. Its heavier components like carbon dioxide, methane, and ozone are less abundant in tropics and enrich the higher and lower latitudes. The oceanic level at the higher latitudes is 2 to 2.5 meters higher than at the equator that is usually explained by varying water temperature and salinity. In the anthroposphere the observed geospheric trend is visible very clearly. People with small mass and stature develop in the equatorial (in a wide sense) region of Earth. Not depending on a main morphological type (great race or geographical branch) people of this belt is significantly smaller in mass and stature than their counterparts of more northern and southern latitudes). This observation is supported by the dendrosphere where the mean timber density in the equatorial regions is somewhat less than in the extra-equatorial regions of tropics: for folia trees 693 kg/m3 against 757 kg/m3 [2]. On Iapetus the wide equatorial zone of the bright trailing hemisphere is distinguished by relatively numerous craters with darkened floors. The Sun's photosphere is "perforated" by darker colder spots deep up to 300 (maybe more?) km - famous solar spots long to 200000 km and smaller pores. In the chromosphere there is a remarkable loss of "heavy" Ca ion from this region (compare with a loss of methane from the equatorial region of Saturn)[3]. Though Mars' geospheres are studied not so fully as the Earth's ones, its surface mapping allowed to show that a special kind of craters - so called pedestal craters - are broadly developed polarward of 40˚ N and S latitudes [4, 5]. Usually they are considered as impact craters but more correctly they should be assigned to normal volcanic features expulsing volatile-rich silicate material (a kind of mud, thus "mud volcanoes'). Usually they are less than 10 km in diameter, morphologically fresh and surrounded by wide pedestals several times wider than crater bowls (what is one of indicators against an impact origin). Normally they occur on Amazonian and Hesperian formations. An intensive volcanism through pedestal craters in extra-tropic belts should be compared with intensive plume-driven basaltic terrestrial volcanism also in extra-tropics - both are constructive events. References: [1] Kochemasov G.G. Destruction of the martian tropical belt as means of the angular momentum equilibration between the tropical and extra-tropical regions // Geophys. Res. Abstr., V. 10, 2008, EGU2008-A-01270; [2] Timbers of the world, v.1,TRADA/The construction press Ltd.,1979; Timbers of the world, v.2,TRADA/The construction press Ltd, 1980; [3] Kochemasov G.G. Tectonics of rotating celestial globes // Vernadsky-Brown microsymposium 48, 20-22 Oct. 2008, Moscow, Abstr. m48_20; [4] Kadish S.J., Head J.W., Barlow N.G. Pedestal craters on Mars: distribution, characteristics, and implications for Amazonian climate change // LPS XXXIX, 2008, Abstract 1766.pdf.; [5] Kadish S.J., Head J.W., and Barlow N.G. Determining the ages of mid-latitude pedestal craters // Vernadsky-Brown microsymposium 48, 20-22 Oct. 2008, Moscow, Abstr. m48_17.

  9. Global Gravity Wave Variances from Aura MLS: Characteristics and Interpretation

    DTIC Science & Technology

    2008-12-01

    slight longitudinal variations, with secondary high- latitude peaks occurring over Greenland and Europe . As the QBO changes to the westerly phase, the...equatorial GW temperature variances from suborbital data (e.g., Eck- ermann et al. 1995). The extratropical wave variances are generally larger in the...emanating from tropopause altitudes, presumably radiated from tropospheric jet stream in- stabilities associated with baroclinic storm systems that

  10. A comparative study of the mechanisms of migrating diurnal tidal variability due to interaction with propagating planetary waves

    NASA Astrophysics Data System (ADS)

    Chang, Loren; Palo, Scott; Liu, Hanli

    The migrating diurnal tide is one of the dominant dynamical features of the Earth's Mesosphere and Lower Thermosphere (MLT) region, particularly at low latitudes. As an actively forced disturbance with a period of 24 hours and westward zonal wave number 1, the migrating diurnal tide represents the atmospheric response to the largest component of solar forcing, propagating upwards from excitation regions in the lower atmosphere. While the seasonal evolution of the migrating diurnal tide has been well explored, ground-based observations of the tide have exhibited a modulation of tidal amplitudes at periods related to those of propagating planetary waves generally present in the region, as well as a decrease in tidal amplitudes during large planetary wave events. Past studies have attributed tidal amplitude modulation to the presence of child waves generated as a byproduct of nonlinear wave-tide interactions. The resulting child waves have frequencies and wavenumbers that are the sum and difference of those of the parent waves. Many questions still remain about the nature and physical drivers responsible for such interactions. The conditions under which various planetary waves may or may not interact with the atmospheric tides, the overall effect on the tidal response, as well as the physical mechanisms coupling the planetary wave and the tide interaction, which has not clearly been determined. These questions are addressed in a recent modeling study, by examining two general categories of planetary waves that are known to attain significant amplitudes in the low latitude and equa-torial region where the migrating diurnal tide is dominant. These are the eastward propagating class of ultra fast Kelvin (UFK) waves with periods near three days which attain their largest amplitudes in the temperature and zonal wind fields of the equatorial lower thermosphere. The second wave examined is the quasi-two day wave (QTDW) which is a westward propagating Rossby wave and can amplify raplidly due to a nonlinear interaction with the mean flow and attain large amplitudes in both components of the wind field and the temperature field in the summer hemisphere over a period of a few days during post-solstice periods. The NCAR Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM) and Whole Atmosphere Community Climate Model (WACCM) are both state of the art general circulation models and are utilized to simulate the aforementioned planetary waves. The goal of this study is to identify specific changes in the structure of the migrat-ing diurnal tide due to interaction with these planetary waves and to understand the driving processes. The physical mechanisms that serve to couple the tide and the planetary waves are identified through analysis of the tidal momentum tendencies, the background atmosphere, as well as changes in tidal propagation. Results showing the impact of these planetary waves on the structure and evolution of the migrating diurnal tide will be presented.

  11. Effects of orography on planetary scale flow

    NASA Technical Reports Server (NTRS)

    Smith, R. B.

    1986-01-01

    The earth's orography is composed of a wide variety of scales, each contributing to the spectrum of atmospheric motions. A well studied subject (originating with Charney and Eliassen) is the direct forcing of planetary scale waves by the planetary scale orography: primarily the Tibetan plateau and the Rockies. However, because of the non-linear terms in the equations of dynamic meteorology, even the smallest scales of mountain induced flow can contribute to the planetary scale if the amplitude of the small scale disturbance is sufficintly large. Two possible mechanisms for this are illustrated. First, preferentially located lee cyclones can force planetary waves by their meridional transport of heat and momentum (Hansen and Chen). Recent theories are helping to explain the phenomena of lee cyclogenesis (e.g., Smith, 1984, J.A.S.). Second, mesoscale mountain wave and severe downslope wind phenomena produce such a large local drag, that planetary scale waves can be produced. The mechanism of upscale transfer is easy to understand in this case as the standing planetary scale wave has a wavelength which depends on the mean structure of the atmosphere, and not on the width of the mountain (just as in small scale lee wave theory). An example of a theoretical description of a severe wind flow with very large drag is shown.

  12. Planetary and tidal wave-type oscillations in the ionospheric sporadic E layers over Tehran region

    NASA Astrophysics Data System (ADS)

    Karami, K.; Ghader, S.; Bidokhti, A. A.; Joghataei, M.; Neyestani, A.; Mohammadabadi, A.

    2012-04-01

    It is believed that in the lower ionosphere, particularly in the ionospheric sporadic E (Es) layers (90-130 km), the planetary and tidal wave-type oscillations in the ionized component indicate the planetary and tidal waves in the neutral atmosphere. In the present work, the presence of wave-type oscillations, including planetary and tidal waves in the ionospheric sporadic E layers over Tehran region is examined. Data measured by a digital ionosonde at the ionospheric station of the Institute of Geophysics, University of Tehran, from July 2006 to June 2007 are used to investigate seasonal variations of planetary and tidal waves activities. For the purpose of accurate comparison between different seasons, wavelet transform is applied to time series of foEs and h‧Es, namely, the critical frequency and virtual height of Es layers, respectively. The results show that the sporadic E layers over Tehran region are strongly under the influence of upward propagation of waves from below. More specifically, among diverse range of periodicities in the sporadic E layers, we found that diurnal (24 hours) and semidiurnal (12 hours) oscillations in all seasons for both parameters. Moreover, terdiurnal (8 hours) tide-like variation is observed during spring and summer for foEs parameter and summer and winter for h‧Es. Furthermore, the results show that diurnal tidal waves obtain their maximum activities during autumn and winter seasons, and their activities decrease during the late spring and summer. In addition, periods of about 2, 4, 6, 10, 14, and 16 days in our observation verifies the hypothesis of upward propagation of planetary waves from lower atmosphere to the ionosphere. Moreover, planetary waves have their maximum activities during equinox.

  13. Ducting Conditions for Electromagnetic Wave Propagation in Tropical Disturbances from GPS Dropsonde Data

    DTIC Science & Technology

    2013-12-01

    depression, tropical storm , hurricane, extratropical cyclone, subtropical depression, subtropical storm , a low of no category, tropical wave, disturbance or...surface-based ducts, and elevated ducts. We further separate the duct occurrence based on the location relative to their respective storms . Based...on the number of soundings in different types of tropical disturbances, we chose to further analyze duct conditions in hurricanes and tropical storms

  14. Large-Scale Weather Disturbances in Mars’ Southern Extratropics

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.; Kahre, Melinda A.

    2015-11-01

    Between late autumn and early spring, Mars’ middle and high latitudes within its atmosphere support strong mean thermal gradients between the tropics and poles. Observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports intense, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). These extratropical weather disturbances are key components of the global circulation. Such wave-like disturbances act as agents in the transport of heat and momentum, and generalized scalar/tracer quantities (e.g., atmospheric dust, water-vapor and ice clouds). The character of large-scale, traveling extratropical synoptic-period disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a moderately high-resolution Mars global climate model (Mars GCM). This Mars GCM imposes interactively lifted and radiatively active dust based on a threshold value of the surface stress. The model exhibits a reasonable "dust cycle" (i.e., globally averaged, a dustier atmosphere during southern spring and summer occurs). Compared to their northern-hemisphere counterparts, southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather are examined. Simulations that adapt Mars’ full topography compared to simulations that utilize synthetic topographies emulating key large-scale features of the southern middle latitudes indicate that Mars’ transient barotropic/baroclinic eddies are highly influenced by the great impact basins of this hemisphere (e.g., Argyre and Hellas). The occurrence of a southern storm zone in late winter and early spring appears to be anchored to the western hemisphere via orographic influences from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate dynamical differences amongst the simulations and these are presented.

  15. Large-Scale Traveling Weather Systems in Mars’ Southern Extratropics

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.; Kahre, Melinda A.

    2017-10-01

    Between late fall and early spring, Mars’ middle- and high-latitude atmosphere supports strong mean equator-to-pole temperature contrasts and an accompanying mean westerly polar vortex. Observations from both the MGS Thermal Emission Spectrometer (TES) and the MRO Mars Climate Sounder (MCS) indicate that a mean baroclinicity-barotropicity supports intense, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). Such extratropical weather disturbances are critical components of the global circulation as they serve as agents in the transport of heat and momentum, and generalized scalar/tracer quantities (e.g., atmospheric dust, water-vapor and ice clouds). The character of such traveling extratropical synoptic disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a moderately high-resolution Mars global climate model (Mars GCM). This Mars GCM imposes interactively-lifted and radiatively-active dust based on a threshold value of the surface stress. The model exhibits a reasonable "dust cycle" (i.e., globally averaged, a dustier atmosphere during southern spring and summer occurs). Compared to the northern-hemisphere counterparts, the southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather are investigated, in addition to large-scale up-slope/down-slope flows and the diurnal cycle. A southern storm zone in late winter and early spring presents in the western hemisphere via orographic influences from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate dynamical differences amongst the simulations and these are presented.

  16. Large-Scale Traveling Weather Systems in Mars Southern Extratropics

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.; Kahre, Melinda A.

    2017-01-01

    Between late fall and early spring, Mars' middle- and high-latitude atmosphere supports strong mean equator-to-pole temperature contrasts and an accompanying mean westerly polar vortex. Observations from both the MGS Thermal Emission Spectrometer (TES) and the MRO Mars Climate Sounder (MCS) indicate that a mean baroclinicity-barotropicity supports intense, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). Such extratropical weather disturbances are critical components of the global circulation as they serve as agents in the transport of heat and momentum, and generalized scalar/tracer quantities (e.g., atmospheric dust, water-vapor and ice clouds). The character of such traveling extratropical synoptic disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a moderately high-resolution Mars global climate model (Mars GCM). This Mars GCM imposes interactively-lifted and radiatively-active dust based on a threshold value of the surface stress. The model exhibits a reasonable "dust cycle" (i.e., globally averaged, a dustier atmosphere during southern spring and summer occurs). Compared to the northern-hemisphere counterparts, the southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather are investigated, in addition to large-scale up-slope/down-slope flows and the diurnal cycle. A southern storm zone in late winter and early spring presents in the western hemisphere via orographic influences from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate dynamical differences amongst the simulations and these are presented.

  17. Energy transformations associated with the synoptic and planetary scales during the evolution of a blocking anticyclone and an upstream explosively-developing cyclone

    NASA Technical Reports Server (NTRS)

    Smith, Phillip J.; Tsou, Chih-Hua

    1992-01-01

    The eddy kinetic energy (KE), release of eddy potential energy, generation of eddy kinetic energy, and exchange between eddy and zonal kinetic energy are investigated for a blocking anticyclone over the North Atlantic Ocean and an extratropical cyclone that developed during January 17-21, 1979. The results indicate that KE was maintained by baroclinic conversion of potential to kinetic. As released potential energy was being used to generate KE, a portion of the KE was barotropically converted to zonal KE. These transformations were dominated by the synoptic-scale component. While changes in the mass field depended not only on the synoptic scale but also on the interactions between the synoptic and planetary scales, the corresponding changes in the eddy motion fields responded largely to synoptic-scale processes.

  18. Characteristics of storms driving wave-induced seafloor mobility on the U.S. East Coast continental shelf

    USGS Publications Warehouse

    Dalyander, P. Soupy; Butman, Bradford

    2015-01-01

    This study investigates the relationship between spatial and temporal patterns of wave-driven sediment mobility events on the U.S. East Coast continental shelf and the characteristics of the storms responsible for them. Mobility events, defined as seafloor wave stress exceedance of the critical stress of 0.35 mm diameter sand (0.2160 Pa) for 12 or more hours, were identified from surface wave observations at National Data Buoy Center buoys in the Middle Atlantic Bight (MAB) and South Atlantic Bight (SAB) over the period of 1997-2007. In water depths ranging from 36-48 m, there were 4-9 mobility events/year of 1-2 days duration. Integrated wave stress during events (IWAVES) was used as a combined metric of wave-driven mobility intensity and duration. In the MAB, over 67% of IWAVES was caused by extratropical storms, while in the SAB, greater than 66% of IWAVES was caused by tropical storms. On average, mobility events were caused by waves generated by storms located 800+ km away. Far-field hurricanes generated swell 2-4 days before the waves caused mobility on the shelf. Throughout most of the SAB, mobility events were driven by storms to the south, east, and west. In the MAB and near Cape Hatteras, winds from more northerly storms and low-pressure extratropical systems in the mid-western U.S. also drove mobility events. Waves generated by storms off the SAB generated mobility events along the entire U.S. East Coast shelf north to Cape Cod, while Cape Hatteras shielded the SAB area from swell originating to the north offshore of the MAB.

  19. In-situ Observations of Mid-latitude Forest Fire Plumes Deep in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Jost, Hans-Juerg; Drdla, Katja; Stohl, Andreas; Pfister, Leonhard; Loewenstein, Max; Lopez, Jimena P.; Hudson, Paula K.; Murphy, Daniel M.; Cziczo, Daniel J.; Fromm, Michael

    2004-01-01

    We observed a plume of air highly enriched in carbon monoxide and particles in the stratosphere at altitudes up to 15.8 km. It can be unambiguously attributed to North American forest fires. This plume demonstrates an extratropical direct transport path from the planetary boundary layer several kilometers deep into the stratosphere, which is not fully captured by large-scale atmospheric transport models. This process indicates that the stratospheric ozone layer could be sensitive to changes in forest burning associated with climatic warming.

  20. Observations by GLORIA of stirring and mixing in the UTLS following Rossby wave breaking in winter 2015/2016

    NASA Astrophysics Data System (ADS)

    Ungermann, Joern; Friedl-Vallon, Felix; Höpfner, Michael; Preusse, Peter; Riese, Martin

    2016-04-01

    The Gimbaled Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is an airborne infrared limb-imager combining a 2-D infrared detector with a Fourier transform spectrometer. It was operated aboard the German Gulfstream G550 research aircraft HALO during a series of simultaneous campaigns (POLSTRACC, SALSA, GWLCYCLE, GWEX) during the winter of 2015/2016 over Europe and the Arctic. This poster shows a set of GLORIA observations and analyses of 2-D trace gas cross-sections in the extratropical upper troposphere / lower stratosphere (UTLS). The spatially highly-resolved temperature, H2O, O3 and HNO3 data reveal an intricate layered structure in the extratropical Transition Layer (exTL). This heterogeneous structure was caused by Rossby wave breaking and is similar to the state found during previous measurements in summer 2012 over Europe. This study presents first analyses of the stirring and stratosphere-troposphere-exchange by means of backward-trajectory calculation.

  1. Mechanisms driving the global and seasonal structure of the 16-day planetary wave

    NASA Astrophysics Data System (ADS)

    Nguyen, V.; Chang, L. C.; Liu, H.; Palo, S. E.

    2013-12-01

    Past observations have shown that the effects of the quasi 16-day planetary wave, representing the second symmetric Rossby normal mode, are prevalent throughout the middle atmosphere and occasionally, some portions of the upper atmosphere. In the presented work, we investigate the mechanisms driving the propagation of the quasi 16-day planetary wave from a source in the lower atmosphere to higher altitudes by using the NCAR Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM). The quasi 16-day planetary wave is simulated in the model by introducing perturbations in geopotential height at the lower boundary of the model and comparing it to a control run. Analysis of the model runs over the course of a year show that the background zonal winds play an important role in driving seasonal changes in the quasi 16-day planetary wave structure. Derived quasi-geostrophic potential vorticity gradient and Eliassen-Palm flux from the model output also show that the penetration of the wave into regions of mean wind instability can drive wave amplification in certain regions. The model results are compared to the quasi 16-day wave structure derived from TIMED-SABER observations to identify similarities/differences between the model and observations, and provide further insight into the mechanisms driving the wave propagation.

  2. Sulfate geoengineering impact on methane transport and lifetime: results from the Geoengineering Model Intercomparison Project (GeoMIP)

    NASA Astrophysics Data System (ADS)

    Visioni, Daniele; Pitari, Giovanni; Aquila, Valentina; Tilmes, Simone; Cionni, Irene; Di Genova, Glauco; Mancini, Eva

    2017-09-01

    Sulfate geoengineering (SG), made by sustained injection of SO2 in the tropical lower stratosphere, may impact the CH4 abundance through several photochemical mechanisms affecting tropospheric OH and hence the methane lifetime. (a) The reflection of incoming solar radiation increases the planetary albedo and cools the surface, with a tropospheric H2O decrease. (b) The tropospheric UV budget is upset by the additional aerosol scattering and stratospheric ozone changes: the net effect is meridionally not uniform, with a net decrease in the tropics, thus producing less tropospheric O(1D). (c) The extratropical downwelling motion from the lower stratosphere tends to increase the sulfate aerosol surface area density available for heterogeneous chemical reactions in the mid-to-upper troposphere, thus reducing the amount of NOx and O3 production. (d) The tropical lower stratosphere is warmed by solar and planetary radiation absorption by the aerosols. The heating rate perturbation is highly latitude dependent, producing a stronger meridional component of the Brewer-Dobson circulation. The net effect on tropospheric OH due to the enhanced stratosphere-troposphere exchange may be positive or negative depending on the net result of different superimposed species perturbations (CH4, NOy, O3, SO4) in the extratropical upper troposphere and lower stratosphere (UTLS). In addition, the atmospheric stabilization resulting from the tropospheric cooling and lower stratospheric warming favors an additional decrease of the UTLS extratropical CH4 by lowering the horizontal eddy mixing. Two climate-chemistry coupled models are used to explore the above radiative, chemical and dynamical mechanisms affecting CH4 transport and lifetime (ULAQ-CCM and GEOSCCM). The CH4 lifetime may become significantly longer (by approximately 16 %) with a sustained injection of 8 Tg-SO2 yr-1 starting in the year 2020, which implies an increase of tropospheric CH4 (200 ppbv) and a positive indirect radiative forcing of sulfate geoengineering due to CH4 changes (+0.10 W m-2 in the 2040-2049 decade and +0.15 W m-2 in the 2060-2069 decade).

  3. The correlation of VLF propagation variations with atmospheric planetary-scale waves

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Deland, R. J.; Potemra, T. A.; Gavin, R. F.

    1973-01-01

    Variations in the received daytime phase of long distance, cesium-controlled, VLF transmission were compared to the height variations of the 10-mb isobaric surface during the first three months of 1965 and 1969. The VLF phase values are also compared to height variations of constant electron densities in the E-region and to variations of f-min which have been shown to be well correlated with planetary-scale variations in the stratosphere by Deland and Cavalieri (1973). The VLF phase variations show good correlation with these previous ionospheric measurements and with the 10-mb surfaces. The planetary scale waves in the stratosphere are shown to be travelling on the average eastward in 1965 and westward in 1969. These correlations are interpreted as due to the propagation of travelling planetary scale waves with westward tilted wave fronts. Upward energy transport due to the vertical structure of those waves is also discussed. These correlations provide further evidence for the coupling between the lower ionosphere at about 70 km altitude (the daytime VLF reflection height and the stratosphere, and they demonstrate the importance of planetary wave phenomena to VLF propagation.

  4. Rayleigh lidar observations of enhanced stratopause temperature over Gadanki (13.5° N, 79.2° E) during major stratospheric warming in 2006

    NASA Astrophysics Data System (ADS)

    Sridharan, S.; Sathishkumar, S.; Raghunath, K.

    2009-01-01

    Rayleigh lidar observations of temperature structure and gravity wave activity were carried out at Gadanki (13.5° N, 79.2° E) during January-February 2006. A major stratospheric warming event occurred at high latitude during the end of January and early February. There was a sudden enhancement in the stratopause temperature over Gadanki coinciding with the date of onset of the major stratospheric warming event which occurred at high latitudes. The temperature enhancement persisted even after the end of the high latitude major warming event. During the same time, the UKMO (United Kingdom Meteorological Office) zonal mean temperature showed a similar warming episode at 10° N and cooling episode at 60° N around the region of stratopause. This could be due to ascending (descending) motions at high (low) latitudes above the critical level of planetary waves, where there was no planetary wave flux. The time variation of the gravity wave potential energy computed from the temperature perturbations over Gadanki shows variabilities at planetary wave periods, suggesting a non-linear interaction between gravity waves and planetary waves. The space-time analysis of UKMO temperature data at high and low latitudes shows the presence of similar periodicities of planetary wave of zonal wavenumber 1.

  5. Modeling the effects of UV variability and the QBO on the troposphere-stratosphere system. Part II: The troposphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rind, D.; Balachandran, N.K.

    1995-08-01

    Results of experiments with a GCM involving changes in UV input ({plus_minus} 25%, {plus_minus}5% at wavelengths below 0.3 {mu}) and simulated equatorial QBO are presented, with emphasis on the tropospheric response. The QBO and UV changes alter the temperature in the lower stratosphere/upper troposphere warms, tropospheric eddy energy is reduced, leading to extratropical tropospheric cooling of some 0.5{degrees}C on the zonal average, and surface temperature changes up to {plus_minus}5{degrees}C locally. Opposite effects occur when the extratropical lower stratosphere/upper troposphere cools. Cooling or warming of the comparable region in the Tropics decreases/increases static stability, accelerating/decelerating the Hadley circulation. Tropospheric dynamical changesmore » are on the order of 5%. The combined UV/QBO effect in the troposphere results from its impact on the middle atmosphere; in the QBO east phase, more energy is refracted to higher latitudes, due to the increased horizontal shear of the zonal wind, but with increased UV, this energy propagates preferentially out of the polar lower stratosphere, in response to the increased vertical shear of the zonal winds; therefore, it is less effective in warming the polar lower stratosphere. Due to their impacts on planetary wave generation and propagation, all combinations of UV and QBO phases affect the longitudinal patterns of tropospheric temperatures and geopotential heights. The modeled perturbations often agree qualitatively with observations and are of generally similar orders of magnitude. The results are sensitive to the forcing employed. In particular, the nature of the tropospheric response depends upon the magnitude (and presumably wavelength) of the solar irradiance perturbation. The results of the smaller UV variations ({plus_minus}5%) are more in agreement with observations, showing clear differences between the UV impact in the east and west QBO phase. 34 refs., 15 figs., 3 tabs.« less

  6. Upper atmospheric planetary-wave and gravity-wave observations

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Woodrum, A.

    1973-01-01

    Previously collected data on atmospheric pressure, density, temperature and winds between 25 and 200 km from sources including Meteorological Rocket Network data, ROBIN falling sphere data, grenade release and pitot tube data, meteor winds, chemical release winds, satellite data, and others were analyzed by a daily-difference method, and results on the magnitude of atmospheric perturbations interpreted as gravity waves and planetary waves are presented. Traveling planetary-wave contributions in the 25-85 km range were found to have significant height and latitudinal variation. It was found that observed gravity-wave density perturbations and wind are related to one another in the manner predicted by gravity-wave theory. It was determined that, on the average, gravity-wave energy deposition or reflection occurs at all altitudes except the 55-75 km region of the mesosphere.

  7. Properties of QBO and SAO Generated by Gravity Waves

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Reddy, C. A.; Chan, K. L.; Porter, H. S.

    1999-01-01

    We present an extension for the 2D (zonal mean) version of our Numerical Spectral Mode (NSM) that incorporates Hines' Doppler spread parameterization (DSP) for small scale gravity waves (GW). This model is applied to describe the seasonal variations and the semi-annual and quasi-biennial oscillations (SAO and QBO). Our earlier model reproduced the salient features of the mean zonal circulation in the middle atmosphere, including the QBO extension into the upper mesosphere inferred from UARS measurements. In the present model we incorporate also tropospheric heating to reproduce the upwelling at equatorial latitudes associated with the Brewer-Dobson circulation that affects significantly the dynamics of the stratosphere as Dunkerton had pointed out. Upward vertical winds increase the period of the QBO observed from the ground. To compensate for that, one needs to increase the eddy diffusivity and the GW momentum flux, bringing the latter closer to values recommended in the DSP. The QBO period in the model is 30 months (mo), which is conducive to synchronize this oscillation with the seasonal cycle of solar forcing. Multi-year interannual oscillations are generated through wave filtering by the solar driven annual oscillation in the zonal circulation. Quadratic non-linearities generate interseasonal variations to produce a complicated pattern of variability associated with the QBO. The computed temperature amplitudes for the SAO and QBO are in substantial agreement with observations at equatorial and extratropical latitudes. At high latitudes, however, the observed QBO amplitudes are significantly larger, which may be a signature of propagating planetary waves not included in the present model. The assumption of hydrostatic equilibrium not being imposed, we find that the effects from the vertical Coriolis force associated with the equatorial oscillations are large for the vertical winds and significant for the temperature variations even outside the tropics but are relatively small for the zonal winds.

  8. Middle Atmosphere Dynamics with Gravity Wave Interactions in the Numerical Spectral Model: Tides and Planetary Waves

    NASA Technical Reports Server (NTRS)

    Mayr, Hans G.; Mengel, J. G.; Chan, K. L.; Huang, F. T.

    2010-01-01

    As Lindzen (1981) had shown, small-scale gravity waves (GW) produce the observed reversals of the zonal-mean circulation and temperature variations in the upper mesosphere. The waves also play a major role in modulating and amplifying the diurnal tides (DT) (e.g., Waltersheid, 1981; Fritts and Vincent, 1987; Fritts, 1995a). We summarize here the modeling studies with the mechanistic numerical spectral model (NSM) with Doppler spread parameterization for GW (Hines, 1997a, b), which describes in the middle atmosphere: (a) migrating and non-migrating DT, (b) planetary waves (PW), and (c) global-scale inertio gravity waves. Numerical experiments are discussed that illuminate the influence of GW filtering and nonlinear interactions between DT, PW, and zonal mean variations. Keywords: Theoretical modeling, Middle atmosphere dynamics, Gravity wave interactions, Migrating and non-migrating tides, Planetary waves, Global-scale inertio gravity waves.

  9. Supplemental Material for: Examining the Roles of the Easterly Wave Critical Layer and Vorticity Accretion During the Tropical Cyclogenesis of Hurricane Sandy

    DTIC Science & Technology

    2014-01-01

    equatorial waves, and extratropical intrusions. When convection is phase-locked to the underlying dynamic structure to such an extent that this...classification evidently guarantees (in all but a few instances) subsequent growth to a named tropical storm . It is not only the statistical narrowness of the...representing numerical simulations that moist vortical updrafts are the essential building blocks of the tropical storm within the rotating proto-vortex. These

  10. Nonlinear density waves in planetary rings

    NASA Technical Reports Server (NTRS)

    Borderies, Nicole; Goldreich, Peter; Tremaine, Scott

    1986-01-01

    The steady-state structure of planetary rings in the presence of density waves at the Lindblad resonances of a satellite is indicated. The study is based on the dispersion relation and damping rate for nonlinear density waves, derived by Shu et al. (1985) and by Borderies, Goldreich, and Tremaine (1985). It is shown that strong density waves lead to an enhancement of the background surface density in the wave zone.

  11. Traveling Weather Disturbances in Mars Southern Extratropics: Sway of the Great Impact Basins

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.

    2016-01-01

    As on Earth, between late autumn and early spring on Mars middle and high latitudes within its atmosphere support strong mean thermal contrasts between the equator and poles (i.e. "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports vigorous, large-scale eastward traveling weather systems (i.e. transient synoptic-period waves). Within a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, such large-scale, extratropical weather disturbances are critical components of the global circulation. These wave-like disturbances act as agents in the transport of heat and momentum, and moreover generalized tracer quantities (e.g., atmospheric dust, water vapor and water-ice clouds) between low and high latitudes of the planet. The character of large-scale, traveling extratropical synoptic-period disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a high-resolution Mars global climate model (Mars GCM). This global circulation model imposes interactively lifted (and radiatively active) dust based on a threshold value of the instantaneous surface stress. Compared to observations, the model exhibits a reasonable "dust cycle" (i.e. globally averaged, a more dusty atmosphere during southern spring and summer occurs). In contrast to their northern-hemisphere counterparts, southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense synoptically. Influences of the zonally asymmetric (i.e. east-west varying) topography on southern large-scale weather disturbances are examined. Simulations that adapt Mars' full topography compared to simulations that utilize synthetic topographies emulating essential large-scale features of the southern middle latitudes indicate that Mars' transient barotropic/baroclinic eddies are significantly influenced by the great impact basins of this hemisphere (e.g., Argyre and Hellas). In addition, the occurrence of a southern storm zone in late winter and early spring is keyed particularly to the western hemisphere via orographic influences arising from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate fundamental differences amongst such simulations and these are described.

  12. Traveling Weather Disturbances in Mars' Southern Extratropics: Sway of the Great Impact Basins

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.

    2016-04-01

    As on Earth, between late autumn and early spring on Mars middle and high latitudes within its atmosphere support strong mean thermal contrasts between the equator and poles (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports vigorous, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). Within a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, such large-scale, extratropical weather disturbances are critical components of the global circulation. These wave-like disturbances act as agents in the transport of heat and momentum, and moreover generalized tracer quantities (e.g., atmospheric dust, water vapor and water-ice clouds) between low and high latitudes of the planet. The character of large-scale, traveling extratropical synoptic-period disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a high-resolution Mars global climate model (Mars GCM). This global circulation model imposes interactively lifted (and radiatively active) dust based on a threshold value of the instantaneous surface stress. Compared to observations, the model exhibits a reasonable "dust cycle" (i.e., globally averaged, a more dusty atmosphere during southern spring and summer occurs). In contrast to their northern-hemisphere counterparts, southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense synoptically. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather disturbances are examined. Simulations that adapt Mars' full topography compared to simulations that utilize synthetic topographies emulating essential large-scale features of the southern middle latitudes indicate that Mars' transient barotropic/baroclinic eddies are significantly influenced by the great impact basins of this hemisphere (e.g., Argyre and Hellas). In addition, the occurrence of a southern storm zone in late winter and early spring is keyed particularly to the western hemisphere via orographic influences arising from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate fundamental differences amongst such simulations and these are described.

  13. Large-scale dynamics associated with clustering of extratropical cyclones affecting Western Europe

    NASA Astrophysics Data System (ADS)

    Pinto, Joaquim G.; Gómara, Iñigo; Masato, Giacomo; Dacre, Helen F.; Woollings, Tim; Caballero, Rodrigo

    2015-04-01

    Some recent winters in Western Europe have been characterized by the occurrence of multiple extratropical cyclones following a similar path. The occurrence of such cyclone clusters leads to large socio-economic impacts due to damaging winds, storm surges, and floods. Recent studies have statistically characterized the clustering of extratropical cyclones over the North Atlantic and Europe and hypothesized potential physical mechanisms responsible for their formation. Here we analyze 4 months characterized by multiple cyclones over Western Europe (February 1990, January 1993, December 1999, and January 2007). The evolution of the eddy driven jet stream, Rossby wave-breaking, and upstream/downstream cyclone development are investigated to infer the role of the large-scale flow and to determine if clustered cyclones are related to each other. Results suggest that optimal conditions for the occurrence of cyclone clusters are provided by a recurrent extension of an intensified eddy driven jet toward Western Europe lasting at least 1 week. Multiple Rossby wave-breaking occurrences on both the poleward and equatorward flanks of the jet contribute to the development of these anomalous large-scale conditions. The analysis of the daily weather charts reveals that upstream cyclone development (secondary cyclogenesis, where new cyclones are generated on the trailing fronts of mature cyclones) is strongly related to cyclone clustering, with multiple cyclones developing on a single jet streak. The present analysis permits a deeper understanding of the physical reasons leading to the occurrence of cyclone families over the North Atlantic, enabling a better estimation of the associated cumulative risk over Europe.

  14. Some observations on the role of planetary waves in determining the spring time ozone distribution in the Antarctic

    NASA Technical Reports Server (NTRS)

    Chandra, S.; Mcpeters, R. D.

    1986-01-01

    Ozone measurements from 1970 to 1984 from the Nimbus 4 backscattered ultraviolet and the Nimbus 7 solar backscattered ultraviolet spectrometers show significant decrease in total ozone only after 1979. The downward trend is most apparent in October south of 70 deg S in the longitude zone 0 to 30 deg W where planetary wave activity is weak. Outside this longitude region, the trend in total ozone is much smaller due to strong interannual variability of wave activity. This paper gives a phenomenological description of ozone depletion in the Antarctic region based on vertical advection and transient planetary waves.

  15. Significant wave heights from Sentinel-1 SAR: Validation and applications

    NASA Astrophysics Data System (ADS)

    Stopa, J. E.; Mouche, A.

    2017-03-01

    Two empirical algorithms are developed for wave mode images measured from the synthetic aperture radar aboard Sentinel-1 A. The first method, called CWAVE_S1A, is an extension of previous efforts developed for ERS2 and the second method, called Fnn, uses the azimuth cutoff among other parameters to estimate significant wave heights (Hs) and average wave periods without using a modulation transfer function. Neural networks are trained using colocated data generated from WAVEWATCH III and independently verified with data from altimeters and in situ buoys. We use neural networks to relate the nonlinear relationships between the input SAR image parameters and output geophysical wave parameters. CWAVE_S1A performs well and has reduced precision compared to Fnn with Hs root mean square errors within 0.5 and 0.6 m, respectively. The developed neural networks extend the SAR's ability to retrieve useful wave information under a large range of environmental conditions including extratropical and tropical cyclones in which Hs estimation is traditionally challenging.Plain Language SummaryTwo empirical algorithms are developed to estimate integral wave parameters from high resolution synthetic aperture radar (SAR) ocean images measured from recently launched the Sentinel 1 satellite. These methods avoid the use of the complicated image to wave mapping typically used to estimate sea state parameters. In addition, we are able to estimate wave parameters that are not able to be measured using existing techniques for the Sentinel 1 satellite. We use a machine learning technique to create a model that relates the ocean image properties to geophysical wave parameters. The models are developed using data from a numerical model because of the sufficiently large sample of global ocean conditions. We then verify that our developed models perform well with respect to independently measured wave observations from other satellite sensors and buoys. We successfully created models that estimate integrated wave parameters, like the commonly used significant wave height, accurately in a large range of sea states (up to 13 m). This allows the data from the SAR technology to be applied under a large range of environmental conditions including extra-tropical and tropical cyclones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860019433','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860019433"><span>A multidisciplinary study of planetary, solar and astrophysical radio emissions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gurnett, D. A.; Calvert, W.; Fielder, R.; Goertz, C.; Grabbe, C.; Kurth, W.; Mutel, R.; Sheerin, J.; Mellott, M.; Spangler, S.</p> <p>1986-01-01</p> <p>Combination of the related fields of planetary, solar, and astrophysical radio emissions was attempted in order to more fully understand the radio emission processes. Topics addressed include: remote sensing of astrophysical plasma turbulence; Alfven waves; astrophysical shock waves; surface waves; very long base interferometry results; very large array observations; solar magnetic flux; and magnetohydrodynamic waves as a tool for solar corona diagnostics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850066354&hterms=shock+elastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dshock%2Belastic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850066354&hterms=shock+elastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dshock%2Belastic"><span>Application of shock wave data to earth and planetary science</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ahrens, T. J.</p> <p>1985-01-01</p> <p>It is pointed out that shock wave data for: (1) low temperature condensable gases H2 and He, (2) H2O, CH4, NH3, CO, CO2, and N2 ices, and (3) silicates, metals, oxides and sulfides have many applications in geophysics and planetary science. The present paper is concerned with such applications. The composition of planetary interiors is discussed, taking into account the division of the major constituent of the planets in three groups on the basis of 'cosmic abundance' arguments, the H-He mixtures in the case of Jupiter and Saturn, shock wave data for hydrogen, and constraints on the internal structure of Uranus and Neptune. Attention is also given to the earth's mantle, shock wave data for mantle materials, the earth's core, impacts on planetary surfaces, elastic wave velocities as a function of pressure along the Hugoniot of iron, and reactions which yield the CO2 bearing atmospheres for Venus, earth, and Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840009658','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840009658"><span>Atmospheric planetary-wave response to external forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stevens, D. E.; Reiter, E. R.</p> <p>1983-01-01</p> <p>A summary of the progress report is given, covering the following areas: atmospheric circulation, planetary waves, adaption of the model to the Cyber 205, continental heat flux anomalies, and nonlinear evolution of inertial instabilities in the tropics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790047226&hterms=extratropical+storm&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dextratropical%2Bstorm','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790047226&hterms=extratropical+storm&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dextratropical%2Bstorm"><span>Martian extratropical cyclones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hunt, G. E.; James, P. B.</p> <p>1979-01-01</p> <p>Physical properties of summer-season baroclinic waves on Mars are discussed on the basis of vidicon images and infrared thermal mapping generated by Viking Orbiter 1. The two northern-hemisphere storm systems examined here appear to be similar to terrestrial mid-latitude cyclonic storms. The Martian storm clouds are probably composed of water ice, rather than dust or CO2 ice particles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.P33A1271H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.P33A1271H"><span>Effects of the planetary-scale waves on the temporal variations of the O2-1.27μm nightglow in the Venusian upper atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoshino, N.; Fujiwara, H.; Takagi, M.; Kasaba, Y.; Takahashi, Y.</p> <p>2009-12-01</p> <p>The O2-1.27 μm nightglow distribution, which has the peak intensity in the depression region of the day-to-night flow, gives us information of the wind field at about 95 km in Venus. The past nightglow observations [Crisp et al., 1996] showed that the intensity of the nightglow in the brightness region changed by 20 % in about one hour, and the brightness region disappeared in less than one day. The observation results obtained by Venus Express (VEX) also showed the temporal variations of the nightglow emission. Some simulation studies suggested contributions of gravity waves generated in the cloud deck (50-70 km) to the temporal variations. However, the causes of the temporal variations are still unknown. In recent years, the importance of planetary-scale waves for the dynamics of the Venusian atmosphere has been recognized. For example, Takagi and Matsuda [2006] suggested that the atmospheric superrotation was driven by the momentum transport due to the vertical propagation of the thermal tides generated in the Venus cloud deck. In order to estimate effects of the planetary-scale waves on the temporal variations of the nightglow, we have performed numerical simulations with a general circulation model (GCM), which includes the altitude region of 80 - about 200 km. The planetary-scale waves (thermal tides, Kelvin wave and Rosbby wave) are imposed at the lower boundary. The amplitudes and phase velocities of the waves are assumed from the study by Del Genio and Rossow [1990]. The nightglow intensity and its global distribution are calculated from the GCM results assuming the chemical equilibration. In this study, we investigate contributions of the planetary-scale waves on the temporal variations of the nightglow shown by past observations. In addition, we show the characteristics of the wave propagation and the interactions between the waves in the Venusian upper atmosphere. Venus Climate Orbiter (VCO), which will be launched in 2010 as the second Japanese planetary mission, is expected to provide precious information about the atmospheric waves at the cloud top (about 70 km) and the nightglow distributions in the thermosphere. We can understand effects of the atmospheric waves on the Venusian thermosphere quantitatively by performing simulations with new information about the atmospheric waves obtained from the detailed nightglow observations.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940020409&hterms=planetary+motion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dplanetary%2Bmotion','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940020409&hterms=planetary+motion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dplanetary%2Bmotion"><span>Regarding tracer transport in Mars' winter atmosphere in the presence of nearly stationary, forced planetary waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hollingsworth, Jeffrey L.; Haberle, R. M.; Houben, Howard C.</p> <p>1993-01-01</p> <p>Large-scale transport of volatiles and condensates on Mars, as well as atmospheric dust, is ultimately driven by the planet's global-scale atmospheric circulation. This circulation arises in part from the so-called mean meridional (Hadley) circulation that is associated with rising/poleward motion in low latitudes and sinking/equatorward motion in middle and high latitudes. Intimately connected to the mean circulation is an eddy-driven component due to large-scale wave activity in the planet's atmosphere. During winter this wave activity arises both from traveling weather systems (i.e., barotropic and baroclinic disturbances) and from 'forced' disturbances (e.g., the thermal tides and surface-forced planetary waves). Possible contributions to the effective (net) transport circulation from forced planetary waves are investigated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840034931&hterms=planetary+motion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dplanetary%2Bmotion','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840034931&hterms=planetary+motion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dplanetary%2Bmotion"><span>The response of stationary planetary waves to tropospheric forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Alpert, J. C.; Geller, M. A.; Avery, S. K.</p> <p>1983-01-01</p> <p>The lower boundary forcing of airflow over topography, and the internal forcing that results from the geographical distribution of diabatic heating, are studied in light of a steady state, linear, quasi-geostrophic model of stationary waves on a sphere. The lower boundary vertical motions forced by airflow over topography depend on whether the horizontal deflection of airflow around topographic features is taken into account, the level of the wind profile at which flow over topography is assumed to take place, and the topographic data set that was used in the forcing formulation. The lower boundary forcing is taken to be given by the observed stationary planetary wave in lower boundary geopotential height, and the internal forcing is computed using the planetary wave propagation equation on the observed wave structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010085854','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010085854"><span>Case Study Investigations of Large-Amplitude Inertia-Gravity Wave Environments and Mesoscale Structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bosart, Lance F.</p> <p>2001-01-01</p> <p>The research effort supported by NASA Grant NAG5-7469, awarded to the University at Albany, State University of New York (UA/SUNY), comprises the following two projects: (1) the observational study of large-amplitude inertia-gravity wave environments over the continental United States; and (2) the definition of opportunities and issues in extratropical cyclone dynamics and related phenomenological studies that may be addressed using high-resolution global datasets produced by the Data Assimilation Office (DAO) at the NASA/Goddard Space Flight Center.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGRA..118.4503R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGRA..118.4503R"><span>Planetary wave-gravity wave interactions during mesospheric inversion layer events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ramesh, K.; Sridharan, S.; Raghunath, K.; Vijaya Bhaskara Rao, S.; Bhavani Kumar, Y.</p> <p>2013-07-01</p> <p>lidar temperature observations over Gadanki (13.5°N, 79.2°E) show a few mesospheric inversion layer (MIL) events during 20-25 January 2007. The zonal mean removed SABER temperature shows warm anomalies around 50°E and 275°E indicating the presence of planetary wave of zonal wave number 2. The MIL amplitudes in SABER temperature averaged for 10°N-15°N and 70°E-90°E show a clear 2 day wave modulation during 20-28 January 2007. Prior to 20 January 2007, a strong 2day wave (zonal wave number 2) is observed in the height region of 80-90 km and it gets largely suppressed during 20-26 January 2007 as the condition for vertical propagation is not favorable, though it prevails at lower heights. The 10 day mean zonal wind over Tirunelveli (8.7°N, 77.8°E) shows deceleration of eastward winds indicating the westward drag due to wave dissipation. The nightly mean MF radar observed zonal winds show the presence of alternating eastward and westward winds during the period of 20-26 January 2007. The two dimensional spectrum of Rayleigh lidar temperature observations available for the nights of 20, 22, and 24 January 2007 shows the presence of gravity wave activity with periods 18 min, 38 min, 38 min, and vertical wavelengths 6.4 km, 4.0 km, 6.4 km respectively. From the dispersion relation of gravity waves, it is inferred that these waves are internal gravity waves rather than inertia gravity waves with the horizontal phase speeds of ~40 m/s, ~37 m/s, and ~50 m/s respectively. Assuming the gravity waves are eastward propagating waves, they get absorbed only in the eastward local wind fields of the planetary wave thereby causing turbulence and eddy diffusion which can be inferred from the estimation of large drag force due to the breaking of gravity wave leading to the formation of large amplitude inversion events in alternate nights. The present study shows that, the mesospheric temperature inversion is caused mainly due to the gravity wave breaking and the inversion amplitude may get modulated by the interaction between gravity waves and planetary waves. The eddy diffusion associated with gravity wave drag may also cause suppression in the planetary wave activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950030015&hterms=rolando+garcia&qs=N%3D0%26Ntk%3DAuthor-Name%26Ntx%3Dmode%2Bmatchall%26Ntt%3Drolando%2Bgarcia','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950030015&hterms=rolando+garcia&qs=N%3D0%26Ntk%3DAuthor-Name%26Ntx%3Dmode%2Bmatchall%26Ntt%3Drolando%2Bgarcia"><span>Application of a planetary wave breaking parameterization to stratospheric circulation statistics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Randel, William J.; Garcia, Rolando R.</p> <p>1994-01-01</p> <p>The planetary wave parameterization scheme developed recently by Garcia is applied to statospheric circulation statistics derived from 12 years of National Meteorological Center operational stratospheric analyses. From the data a planetary wave breaking criterion (based on the ratio of the eddy to zonal mean meridional potential vorticity (PV) gradients), a wave damping rate, and a meridional diffusion coefficient are calculated. The equatorward flank of the polar night jet during winter is identified as a wave breaking region from the observed PV gradients; the region moves poleward with season, covering all high latitudes in spring. Derived damping rates maximize in the subtropical upper stratosphere (the 'surf zone'), with damping time scales of 3-4 days. Maximum diffusion coefficients follow the spatial patterns of the wave breaking criterion, with magnitudes comparable to prior published estimates. Overall, the observed results agree well with the parameterized calculations of Garcia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910058435&hterms=rolando+garcia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D10%26Ntt%3Drolando%2Bgarcia','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910058435&hterms=rolando+garcia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D10%26Ntt%3Drolando%2Bgarcia"><span>Parameterization of planetary wave breaking in the middle atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Garcia, Rolando R.</p> <p>1991-01-01</p> <p>A parameterization of planetary wave breaking in the middle atmosphere has been developed and tested in a numerical model which includes governing equations for a single wave and the zonal-mean state. The parameterization is based on the assumption that wave breaking represents a steady-state equilibrium between the flux of wave activity and its dissipation by nonlinear processes, and that the latter can be represented as linear damping of the primary wave. With this and the additional assumption that the effect of breaking is to prevent further amplitude growth, the required dissipation rate is readily obtained from the steady-state equation for wave activity; diffusivity coefficients then follow from the dissipation rate. The assumptions made in the derivation are equivalent to those commonly used in parameterizations for gravity wave breaking, but the formulation in terms of wave activity helps highlight the central role of the wave group velocity in determining the dissipation rate. Comparison of model results with nonlinear calculations of wave breaking and with diagnostic determinations of stratospheric diffusion coefficients reveals remarkably good agreement, and suggests that the parameterization could be useful for simulating inexpensively, but realistically, the effects of planetary wave transport.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996A%26A...305..669L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996A%26A...305..669L"><span>A coherent nonlinear theory of auroral Langmuir-Alfven-whistler (LAW) events in the planetary magnetosphere.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lopes, S. R.; Chian, A. C.-L.</p> <p>1996-01-01</p> <p>A coherent nonlinear theory of three-wave coupling involving Langmuir, Alfven and whistler waves is formulated and applied to the observation of auroral LAW events in the planetary magnetosphere. The effects of pump depletion, dissipation and frequency mismatch in the nonlinear wave dynamics are analyzed. The relevance of this theory for understanding the fine structures of auroral whistler-mode emissions and amplitude modulations of auroral Langmuir waves is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997DPS....29.2407H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997DPS....29.2407H"><span>Jovian Planetary Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harrington, J.; Deming, D.</p> <p>1997-07-01</p> <p>We have found over two dozen discrete, linearly-propagating, periodic features in 5-{\\micron} images of Jovian cloud opacities (J. Harrington et al. 1996, Icarus 124, 32--44). Numerous spatially-sinusoidal temperature oscillations also appear in several passbands between 7 and 19 {\\microns} (D. Deming et al. 1997, Icarus 126, 301--312). Both types of Jovian planetary-scale features are zonally-oriented. They have always been detected when sought (1989, '91, '92, '93), and some individual features persist 100 Earth days or longer. These features are superficially consistent with Rossby waves, but they do not follow a simplistic dispersion relation based on cloud-top wind speeds. Planetary wavenumbers are never larger than 15, consistent with predictions based on the Rhines scale for Jupiter. There are many outstanding phenomenological questions: Where and how are the waves driven? How are waves at different atmospheric levels related? What are their true dispersion properties? How long do they last? We are continuing observations and will conduct a search of the Hubble Space Telescope archive for the \\sim 1{°ee} meridional cloud-belt deviations expected for Rossby waves. We are in the process of correlating wave detections of various types, times, and wavelengths with each other. Our goal is to constrain atmospheric stratification and vertical energy transport. Because Rossby waves propagate vertically, these features may probe conditions at the interface between the meteorological atmosphere and the planetary interior. Work supported by NASA Planetary Astronomy RTOP 196-41-54. Work performed while J. H. held a National Research Council - NASA Goddard Space Flight Center Research Associateship.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860014611','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860014611"><span>Current Scientific Issues in Large Scale Atmospheric Dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Miller, T. L. (Compiler)</p> <p>1986-01-01</p> <p>Topics in large scale atmospheric dynamics are discussed. Aspects of atmospheric blocking, the influence of transient baroclinic eddies on planetary-scale waves, cyclogenesis, the effects of orography on planetary scale flow, small scale frontal structure, and simulations of gravity waves in frontal zones are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000115617','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000115617"><span>Mesosphere Dynamics with Gravity Wave Forcing. 1; Diurnal and Semi-Diurnal Tides</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Porter, H. S.; Einaudi, Franco (Technical Monitor)</p> <p>2000-01-01</p> <p>We present results from a nonlinear, 3D, time dependent numerical spectral model (NSM), which extends from the ground up into the thermosphere and incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GW). Our focal point is the mesosphere that is dominated by wave interactions. We discuss diurnal and semi-diurnal tides ill the present paper (Part 1) and planetary waves in the companion paper (Part 2). To provide an understanding of the seasonal variations of tides, in particular with regard to gravity wave processes, numerical experiments are performed that lead to the following conclusions: 1. The large semiannual variations in tile diurnal tide (DT), with peak amplitudes observed around equinox, are produced primarily by GW interactions that involve, in part, planetary waves. 2. The DT, like planetary waves, tends to be amplified by GW momentum deposition, which reduces also the vertical wavelength. 3.Variations in eddy viscosity associated with GW interactions tend to peak in late spring and early fall and call also influence the DT. 4. The semidiurnal semidiurnal tide (SDT), and its phase in particular, is strongly influenced by the mean zonal circulation. 5. The SDT, individually, is amplified by GW's. But the DT filters out GW's such that the wave interaction effectively reduces the amplitude of the SDT, effectively producing a strong nonlinear interaction between the DT and SDT. 6.) Planetary waves generated internally by baroclinic instability and GW interaction produce large amplitude modulations of the DT and SDT.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730008777','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730008777"><span>Short and long periodic atmospheric variations between 25 and 200 km</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Justus, C. G.; Woodrum, A.</p> <p>1973-01-01</p> <p>Previously collected data on atmospheric pressure, density, temperature and winds between 25 and 200 km from sources including Meteorological Rocket Network data, ROBIN falling sphere data, grenade release and pitot tube data, meteor winds, chemical release winds, satellite data, and others were analyzed by a daily difference method and results on the distribution statistics, magnitude, and spatial structure of gravity wave and planetary wave atmospheric variations are presented. Time structure of the gravity wave variations were determined by the analysis of residuals from harmonic analysis of time series data. Planetary wave contributions in the 25-85 km range were discovered and found to have significant height and latitudinal variation. Long period planetary waves, and seasonal variations were also computed by harmonic analysis. Revised height variations of the gravity wave contributions in the 25 to 85 km height range were computed. An engineering method and design values for gravity wave magnitudes and wave lengths are given to be used for such tasks as evaluating the effects on the dynamical heating, stability and control of spacecraft such as the space shuttle vehicle in launch or reentry trajectories.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.8934K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.8934K"><span>The Role of the Stratosphere in Explosive Deepening of Extratropical Cyclones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Knippertz, Peter; Wilbraham, Robert; Trzeciak, Tomek; Owen, Jenny; Odell, Luke; Fink, Andreas H.; Pinto, Joaquim G.</p> <p>2014-05-01</p> <p>Using a combination of an automatic cyclone tracking method and a special version of the classical pressure tendency equation (PTE), changes in surface core pressure of extra-tropical cyclones can be related to contributions from horizontal temperature advection, vertical motion and diabatic processes, i.e. mainly latent heat release in clouds. Here, the PTE is evaluated in 3°x3° boxes located over the cyclone positions at 6-hourly basis, thus following the movement of a given storm at each time step. PTE calculations are performed from the surface to 100 hPa. Previous work has shown that this approach can be used to quantify the contribution of diabatic processes to cyclone deepening in an automated way, and can easily be applied to large gridded datasets, in this case ERA-Interim reanalyses. In order to close the mass budget in the PTE, geopotential height tendencies at the upper integration boundary (usually 100 hPa) need to be taken into account. Older studies have assumed this term to be negligible, and this has been confirmed with modern re-analysis data for many explosively deepening storms. However, some historical storms show a remarkable contribution from this term, indicating a substantial warming of the levels above 100hPa. An outstanding example is the Braer Storm of January 1993, which reached a record minimum core pressure of 914 hPa near Iceland. A stepwise increase of the upper integration boundary reveals that substantial geopotential height tendencies reach above 1 hPa. This unusual behaviour appears to be related to the propagation of a deep planetary wave trough from North America towards the North Atlantic basin. A similar but somewhat less dramatic behaviour was found for cyclone Wiebke. Another interesting example is storm Emma, which managed to sustain substantial deepening rates despite adverse positive geopotential height tendencies at 100 hPa. Future work will include a more robust statistical analysis of this problem and a better understanding of the nature and physical mechanism of the stratospheric influence on explosive cyclogenesis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990004376','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990004376"><span>Internal Dynamics and Boundary Forcing Characteristics Associated with Interannual Variability of the Asian Summer Monsoon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lau, K.- M.; Kim, K.-M.; Yang, S.</p> <p>1998-01-01</p> <p>In this paper, we present a description of the internal dynamics and boundary forcing characteristics of two major components of the Asian summer monsoon (ASM), i.e., the South Asian (SAM) and the Southeast-East Asian monsoon (SEAM). The description is based on a new monsoon-climate paradigm in which the variability of ASM is considered as the outcome of the interplay of a "fast" and an "intermediate" monsoon subsystem, under the influenced of the "slow" varying external forcings. Two sets of regional monsoon indices derived from dynamically consistent rainfall and wind data are used in this study. For SAM, the internal dynamics is represented by that of a "classical" monsoon system where the anomalous circulation is governed by Rossby-wave dynamics, i.e., generation of anomalous vorticity induced by an off-equatorial heat source is balanced by planetary vorticity advection. On the other hand, the internal dynamics of SEAM is characterized by a "hybrid" monsoon system featuring multi-cellular meridional circulation over the East Asian section, extending from the deep tropics to midlatitudes. These meridional-cells link tropical heating to extratropical circulation system via the East Asian jetstream, and are responsible for the characteristic occurrences of zonally oriented anomalous rainfall patterns over East Asian and the subtropical western Pacific. In the extratropical regions, the major upper level vorticity balance is by anomalous vorticity advection and generation by the anomalous divergent circulation. A consequence of this is that compared to SAM, the SEAM is associated with stronger teleconnection patterns to regions outside the ASM. A strong SAM is linked to basin-scale sea surface temperature (SST) fluctuation with significant signal in the equatorial eastern Pacific. During the boreal spring SST warming in the Arabian Sea and the subtropical western Pacific may lead to a strong SAM. For SEAM, interannual variability is tied to SSTA over the Sea of Japan and the South China Sea regions, while the linkage to equatorial basin-scale SSTA is weak at best. A large scale SSTA dipole with warming (cooling) in the subtropical central (eastern) Pacific foreshadows a strong SEAM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850042461&hterms=Leading+Change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DLeading%2BChange','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850042461&hterms=Leading+Change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DLeading%2BChange"><span>An assessment of thermal, wind, and planetary wave changes in the middle and lower atmosphere due to 11-year UV flux variations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Callis, L. B.; Alpert, J. C.; Geller, M. A.</p> <p>1985-01-01</p> <p>Hines (1974) speculated that solar-induced modifications of the middle and upper atmosphere may alter the transmissivity of the stratosphere to upwardly propagating atmospheric waves. It was suggested that subsequent constructive or destructive interference may result in a change of phase or amplitude of these waves in the troposphere leading to weather or climate changes. The present investigation has the objective to bring together both radiative transfer and planetary wave studies in an effort to assess specifically whether Hines mechanism can be initiated by the solar ultraviolet flux variability assumed to be associated with the 11-year solar cycle. The obtained results suggest that the presently studied mechanism, which links solar-induced zonal wind changes in the stratosphere and mesosphere to planetary wave changes in the troposphere, is not strong enough to cause substantive changes in the troposphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JASTP.171..225S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JASTP.171..225S"><span>Planetary wave-like oscillations in the ionosphere retrieved with a longitudinal chain of ionosondes at high northern latitudes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stray, Nora H.; Espy, Patrick J.</p> <p>2018-06-01</p> <p>This paper examines the influence of neutral dynamics on the high latitude ionosphere. Using a longitudinal chain of ionosondes at high northern latitudes (52°-65° N), planetary wave-like structures were observed in the spatial structure of the peak electron density in the ionosphere. Longitudinal wavenumbers S0, S1 and S2 have been extracted from these variations of the F layer. The observed wave activity in wavenumber one and two does not show any significant correlation with indices of magnetic activity, suggesting that this is not the primary driver. In addition, the motion of the S1 ionospheric wave structures parallels that of the S1 planetary waves observed in the winds of the mesosphere-lower-thermosphere derived from a longitudinal array of SuperDARN meteor-radar wind measurements. The time delay between the motions of the wave structures would indicate a indirect coupling, commensurate with the diffusion to the ionosphere of mesospheric atomic oxygen perturbations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSA53C..06F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSA53C..06F"><span>The Influence of Planetary Waves on Polar Mesospheric Clouds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>France, J. A.; Randall, C. E.; Harvey, L.; Siskind, D. E.; Lumpe, J. D.; Bailey, S. M.; Carstens, J. N.; Russell, J. M., III</p> <p>2016-12-01</p> <p>Polar mesospheric clouds (PMCs) form as a result of low temperatures and enhanced water vapor near the polar summer mesospause. These conditions occur as a result of upwelling associated with the upper branch of the gravity wave-driven global residual circulation, and are sensitive to changes in planetary wave breaking in the winter hemisphere through interhemispheric coupling (IHC). Observations by the Cloud Imaging and Particle Size (CIPS) instrument on the Aeronomy of Ice in the Mesosphere (AIM) satellite show an anomalous decline in northern hemisphere PMCs in August 2014. The decline is attributed to IHC triggered by planetary wave activity in the Antarctic stratosphere. The results indicate that the IHC in 2014 occurred via a pathway that previous studies have not emphasized. Based on Aura Microwave Limb Sounder data, we suggest that shifts in zonal winds in the summer stratosphere triggered a circulation change that led to the observed PMC decline. We also show that the 5-day planetary wave modulates the response to IHC, in that PMCs persist in the trough when zonal mean temperatures are too high to support PMCs, and are absent in the ridge when mean temperatures are low enough to support PMCs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990116841','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990116841"><span>Dynamical Meteorology of the Equatorial and Extratropical Stratosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dunkerton, Tomothy</p> <p>1999-01-01</p> <p>Observational studies were performed of westward propagating synoptic scale waves in the tropical troposphere, the structure of monsoon circulations in the upper troposphere and lower stratosphere, and zonally propagating features in deep tropical convection. The effect of the quasi-biennial oscillation (QBO) were investigated, and a numerical study of the QBO was performed using a two-dimensional model, highlighting the role of gravity waves in the momentum balance of the QBO. Vertical coupling of the troposphere and stratosphere was examined in polar regions on intraseasonal and interannual timescales. A deep circumpolar mode was discovered, now known as the Arctic Oscillation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010100385','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010100385"><span>Wind-Stress Simulations and Equatorial Dynamics in an AGCM. Part 1; Basic Results from a 1979-1999 Forced SST Experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bacmeister, Julio T.; Suarez, Max J.; Einaudi, Franco (Technical Monitor)</p> <p>2001-01-01</p> <p>This is the first of a two part study examining the connection of the equatorial momentum budget in an AGCM (Atmospheric General Circulation Model), with simulated equatorial surface wind stresses over the Pacific. The AGCM used in this study forms part of a newly developed coupled forecasting system used at NASA's Seasonal- to-Interannual Prediction Project. Here we describe the model and present results from a 20-year (1979-1999) AMIP-type experiment forced with observed SSTs (Sea Surface Temperatures). Model results are compared them with available observational data sets. The climatological pattern of extra-tropical planetary waves as well as their ENSO-related variability is found to agree quite well with re-analysis estimates. The model's surface wind stress is examined in detail, and reveals a reasonable overall simulation of seasonal interannual variability, as well as seasonal mean distributions. However, an excessive annual oscillation in wind stress over the equatorial central Pacific is found. We examine the model's divergent circulation over the tropical Pacific and compare it with estimates based on re-analysis data. These comparisons are generally good, but reveal excessive upper-level convergence in the central Pacific. In Part II of this study a direct examination of individual terms in the AGCM's momentum budget is presented. We relate the results of this analysis to the model's simulation of surface wind stress.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA551861','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA551861"><span>Communicating Coastal Risk Analysis in an Age of Climate Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2011-10-01</p> <p>extratropical storm systems); the geometry and geomorphology of the area (regional and local bathymetry and topography, including rivers, marshes, and...at risk from coastal hazards including storm surge inundation, precipitation driven flooding, waves, and coastal erosion. This population segment...will likely be exposed to increased risk as impacts of a changing climate are felt through elevated sea levels and potentially increased storm</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy..tmp..867D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy..tmp..867D"><span>Distinct winter patterns of tropical Pacific convection anomaly and the associated extratropical wave trains in the Northern Hemisphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ding, Shuoyi; Chen, Wen; Graf, Hans-F.; Guo, Yuanyuan; Nath, Debashis</p> <p>2017-11-01</p> <p>In this paper, distinct patterns of boreal winter convection anomalies over the tropical Pacific and associated wave trains in the extratropics are addressed. The first leading mode (EOF1) of convection anomalies as measured by outgoing longwave radiation demonstrates an east-west oscillation of deep convection with centers over the equatorial central Pacific (CP) and over the tropical western North Pacific and the Maritime Continent. The second leading mode (EOF2) is also a dipole pattern with opposite centers straddling 170°W, possibly modifying EOF1 to some extent. Combining the first two leading modes, five major categories of tropical convection anomalies can be identified for the period 1979/80-2012/13. The comparison between these five categories and the corresponding SST anomaly patterns indicates a nonlinear relationship between convection and SST. The combination of EOF1 and EOF2 with in-phase PCs exhibits an east-west dipole pattern with opposite signs over west of the dateline and the Maritime Continent. The negative phase of the two PCs, named La Niña pattern, induces a negative Pacific/North American—positive North Atlantic Oscillation teleconnection in the extratropics. Approximately opposite responses can be detected in its positive phase, named CP El Niño pattern. The negative PC2 superposing positive PC1, named EP El Niño pattern, shows the strongest convection anomalies with enhanced (depressed) convection over the eastern (western) Pacific and leads to a Tropical/Northern Hemisphere-like teleconnection pattern and an anomalous anticyclone extending from the North Pacific to the North Atlantic. The positive PC2 with neutral PC1, named western CP pattern, shows weakly enhanced convection to the west of the dateline as a response to local SST warming around the dateline. This convection anomaly pattern, although weak, is important and excites a northeastward wave train from the tropics to Greenland, resulting in surface air temperature cooling covering the northeastern North America and warmer and wetter conditions over Western Europe.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910007201','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910007201"><span>The effect of latent heat release on synoptic-to-planetary wave interactions and its implication for satellite observations: Theoretical modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Branscome, Lee E.; Bleck, Rainer; Obrien, Enda</p> <p>1990-01-01</p> <p>The project objectives are to develop process models to investigate the interaction of planetary and synoptic-scale waves including the effects of latent heat release (precipitation), nonlinear dynamics, physical and boundary-layer processes, and large-scale topography; to determine the importance of latent heat release for temporal variability and time-mean behavior of planetary and synoptic-scale waves; to compare the model results with available observations of planetary and synoptic wave variability; and to assess the implications of the results for monitoring precipitation in oceanic-storm tracks by satellite observing systems. Researchers have utilized two different models for this project: a two-level quasi-geostrophic model to study intraseasonal variability, anomalous circulations and the seasonal cycle, and a 10-level, multi-wave primitive equation model to validate the two-level Q-G model and examine effects of convection, surface processes, and spherical geometry. It explicitly resolves several planetary and synoptic waves and includes specific humidity (as a predicted variable), moist convection, and large-scale precipitation. In the past year researchers have concentrated on experiments with the multi-level primitive equation model. The dynamical part of that model is similar to the spectral model used by the National Meteorological Center for medium-range forecasts. The model includes parameterizations of large-scale condensation and moist convection. To test the validity of results regarding the influence of convective precipitation, researchers can use either one of two different convective schemes in the model, a Kuo convective scheme or a modified Arakawa-Schubert scheme which includes downdrafts. By choosing one or the other scheme, they can evaluate the impact of the convective parameterization on the circulation. In the past year researchers performed a variety of initial-value experiments with the primitive-equation model. Using initial conditions typical of climatological winter conditions, they examined the behavior of synoptic and planetary waves growing in moist and dry environments. Surface conditions were representative of a zonally averaged ocean. They found that moist convection associated with baroclinic wave development was confined to the subtropics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSEC34B1186M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSEC34B1186M"><span>Exploring Options for an Integrated Water Level Observation Network in Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McCammon, M.</p> <p>2016-02-01</p> <p>Portions' of Alaska's remote coastlines are among the Nation's most vulnerable to geohazards such as tsunami, extra-tropical storm surge, and erosion; and the availability of observations of water levels, ocean waves, and river discharge are severely lacking to support water level warnings and forecasts. Alaska is experiencing dramatic reductions in sea ice cover, changes in extra-tropical storm surge patterns, and thawing permafrost. These conditions are endangering coastal populations throughout the State. Gaps in the ocean observing system limit our State's ability to provide useful marine and sea ice forecasts, especially in the Arctic. A spectrum of observation platforms may provide an optimal solution for filling the most critical gaps in these coastal and ocean areas. The collaborations described in this talk and better leveraging of resources and capabilities across federal, state, and academic partners will provide the best opportunity for advancing our science capacity and capabilities in this remote region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PhDT.......113C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PhDT.......113C"><span>Migrating diurnal tide variability induced by propagating planetary waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chang, Loren C.</p> <p></p> <p>The migrating diurnal tide is one of the dominant dynamical features in the low latitudes of the Earth's Mesosphere and Lower Thermosphere (MLT) region, representing the atmospheric response to the largest component of solar forcing, propagating upwards from excitation regions in the lower atmosphere. Ground-based observations of the tide have resolved short term variations attributed to nonlinear interactions between the tide and planetary waves also in the region. However, the conditions, effects, and mechanisms of a planetary wave - tidal interaction are still unclear. These questions are addressed using the NCAR Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM) to examine two types of planetary waves, known to attain significant amplitudes in the low latitude and equatorial region where the migrating diurnal tide is dominant. The quasi-two day wave (QTDW) can rapidly amplify to large amplitudes from the summer hemisphere during post-solstice periods, while ultra fast Kelvin (UFK) waves occur sporadically in the temperature and zonal wind fields of the equatorial lower thermosphere. While child waves resulting from a nonlinear interaction are resolved in both cases, the response of the tidal structure and amplitudes to the two planetary waves differs significantly. In the case of the QTDW, the migrating diurnal tide displays a general amplitude decrease of 20 - 40%, as well as a shortening of vertical wavelength by roughly 4 km. Nonlinear advection is found to result in energy transfer to and from the tide, resulting in latitudinal smoothing of the tidal structure. The QTDW also produces significant changes to the mean zonal winds in the equator and at summer mid to high latitudes that can also account for changes in tidal amplitude and vertical wavelength. Filtering of gravity waves by the altered mean winds can also result in changes to the zonal mean zonal winds in the tropics. However, gravity wave momentum forcing on the tide is smaller than the advective tendencies throughout most of the MLT region, and cannot iv directly account for the changes in the tide during the QTDW model simulation. In the case of the UFK wave, baseline tidal amplitudes are found to show much smaller changes of 10% or less, despite the larger amplitudes of the UFK wave in the lower thermosphere region compared to the QTDW. Analysis of the nonlinear advective tendencies shows smaller magnitudes than those in the the case of the QTDW, with interaction regions limited primarily to a smaller region in latitude and altitude. Increased tidal convergence in the tropical lower thermosphere is attributed to eastward forcing of the background zonal mean winds by the UFK wave. Increasing the UFK wave forcing by an order of magnitude, although unrealistic, results in changes to the tide comparable in magnitude to the case of the QTDW. While child waves generated by nonlinear advection are present with both of the propagating planetary waves examined, the QTDW produces much greater tidal variability through both nonlinear and linear advection due to its broader horizontal and vertical structure, compared to the UFK wave. Planetary wave induced background atmosphere changes can also drive tidal variability, suggesting that changes to the tidal response in the MLT can also result from this indirect coupling mechanism, in addition to nonlinear advection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000116212','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000116212"><span>What Controls the Temperature of the Arctic Stratosphere during the Spring?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Newman, Paul A.; Nash, Eric R.; Rosenfield, Joan E.; Einaudi, Franco (Technical Monitor)</p> <p>2000-01-01</p> <p>Understanding the mechanisms that control the temperature of the polar lower stratosphere during spring is key to understanding ozone loss in the Arctic polar vortex. Spring ozone loss rates are directly tied to polar stratospheric temperatures by the formation of polar stratospheric clouds, and the conversion of chlorine species to reactive forms on these cloud particle surfaces. In this paper, we study those factors that control temperatures in the polar lower stratosphere. We use the National Centers for Environmental Prediction (NCEP)/NCAR reanalysis data covering the last two decades to investigate how planetary wave driving of the stratosphere is connected to polar temperatures. In particular, we show that planetary waves forced in the troposphere in mid- to late winter (January-February) are principally responsible for the mean polar temperature during the March period. These planetary waves are forced by both thermal and orographic processes in the troposphere, and propagate into the stratosphere in the mid and high latitudes. Strong mid-winter planetary wave forcing leads to a warmer Arctic lower stratosphere in early spring, while weak mid-winter forcing leads to cooler Arctic temperatures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Ge%26Ae..58..281K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Ge%26Ae..58..281K"><span>Propagation of Stationary Planetary Waves in the Upper Atmosphere under Different Solar Activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koval, A. V.; Gavrilov, N. M.; Pogoreltsev, A. I.; Shevchuk, N. O.</p> <p>2018-03-01</p> <p>Numerical modeling of changes in the zonal circulation and amplitudes of stationary planetary waves are performed with an accounting for the impact of solar activity variations on the thermosphere. A thermospheric version of the Middle/Upper Atmosphere Model (MUAM) is used to calculate the circulation in the middle and upper atmosphere at altitudes up to 300 km from the Earth's surface. Different values of the solar radio emission flux in the thermosphere are specified at a wavelength of 10.7 cm to take into account the solar activity variations. The ionospheric conductivities and their variations in latitude, longitude, and time are taken into account. The calculations are done for the January-February period and the conditions of low, medium, and high solar activity. It was shown that, during high-activity periods, the zonal wind velocities increases at altitudes exceeding 150 km and decreases in the lower layers. The amplitudes of planetary waves at high solar activity with respect to the altitude above 120 km or below 100 km, respectively, are smaller or larger than those at low activity. These differences correspond to the calculated changes in the refractive index of the atmosphere for stationary planetary waves and the Eliassen-Palm flux. Changes in the conditions for the propagation and reflection of stationary planetary waves in the thermosphere may influence the variations in their amplitudes and the atmospheric circulation, including the lower altitudes of the middle atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002JCli...15.1659H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002JCli...15.1659H"><span>Interannual and Decadal Variations of Planetary Wave Activity, Stratospheric Cooling, and Northern Hemisphere Annular Mode.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hu, Yongyun; Kit Tung, Ka</p> <p>2002-07-01</p> <p>Using NCEP-NCAR 51-yr reanalysis data, the interannual and decadal variations of planetary wave activity and its relationship to stratospheric cooling, and the Northern Hemisphere Annular mode (NAM), are studied. It is found that winter stratospheric polar temperature is highly correlated on a year-to-year basis with the Eliassen-Palm (E-P) wave flux from the troposphere, implying a dynamical control of the former by the latter, as often suggested. Greater (lower) wave activity from the troposphere implies larger (smaller) poleward heat flux into the polar region, which leads to warmer (colder) polar temperature. A similar highly correlated antiphase relationship holds for E-P flux divergence and the strength of the polar vortex in the stratosphere. It is tempting to extrapolate these relationships found for interannual timescales to explain the recent stratospheric polar cooling trend in the past few decades as caused by decreased wave activity in the polar region. This speculation is not supported by the data. On timescales of decades the cooling trend is not correlated with the trend in planetary wave activity. In fact, it is found that planetary wave amplitude, E-P flux, and E-P flux convergence all show little statistical evidence of decrease in the past 51 yr, while the stratosphere is experiencing a cooling trend and the NAM index has a positive trend during the past 30 yr. This suggests that the trends in the winter polar temperature and the NAM index can reasonably be attributed to the radiative cooling of the stratosphere, due possibly to increasing greenhouse gases and ozone depletion. It is further shown that the positive trend of the NAM index in the past few decades is not through the inhibition of upward planetary wave propagation from the troposphere to the stratosphere, as previously suggested.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...48.2135F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...48.2135F"><span>Asymmetry of the winter extra-tropical teleconnections in the Northern Hemisphere associated with two types of ENSO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Feng, Juan; Chen, Wen; Li, Yanjie</p> <p>2017-04-01</p> <p>Asymmetric atmospheric responses to ENSO are revisited after dividing it into two types: eastern-Pacific (EP) and central-Pacific (CP) ENSO. The EP ENSO triggers two obvious asymmetric atmospheric teleconnections: One is the Pacific-North American-like teleconnection. Its asymmetry is characterized by weaker amplitudes during the EP La Niña than EP El Niño, which is caused by a much weaker EP La Niña tropical forcing and the resultant weaker extra-tropical vorticity forcing. The other is the Atlantic-Eurasian teleconnection with negative height anomalies in the subtropical Atlantic and Eurasia and positive anomalies in the high-latitude Atlantic and northeast Asia, which appears during the EP La Niña but not during the EP El Niño. The background state plays a vital role in this asymmetry. The EP La Niña-type basic state is more conducive to propagation of the wave rays into the Atlantic-Eurasian region compared to EP El Niño situation. In contrast, the CP ENSO yields an Arctic Oscillation-like teleconnection, presenting an appreciable asymmetry in the subtropical amplitudes that are stronger during the CP El Niño than during the CP La Niña. In this case, the distinct effects of the different background state on the equatorward wave rays are responsible for this asymmetry. Under the CP El Niño-type background state, the equatorward wave rays tend to be reflected at the latitudes where the zonal wind equals zero (U = 0), and then successfully captured by the subtropical westerly jet. However, under the CP La Niña-type background state, the equatorward wave rays disappear at U = 0 latitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A43J..03N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A43J..03N"><span>An A-train climatology of extratropical cyclone clouds and precipitation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Naud, C. M.; Booth, J.; Del Genio, A. D.; van den Heever, S. C.; Posselt, D. J.</p> <p>2016-12-01</p> <p>It is demonstrated using the ERA-Interim product that synoptic to intraseasonal variabilities of extratropical circulation in the boreal storm track regions are strongly affected by the zonal convergence of the column-integrated eastward flux of local wave activity (LWA). In particular, from the multi-year daily samples of LWA fluxes, we find that the wintertime zonal LWA flux in the jet exit regions tends to maximize for an intermediate value of column-averaged LWA. This is because an increasing LWA decelerates the zonal flow, eventually weakening the eastward advection of LWA. From theory we argue that large wave events on the decreasing side of the flux curve with increasing LWA cannot be maintained as a stable steady state. Consistent with this argument, observed states corresponding to that side of flux curve often exhibit local wave breaking and blocking events. A close parallelism exists for the traffic flow problem, in which the traffic flux (traffic density times traffic speed) is often observed to maximize for an intermediate value of traffic density. This is because the traffic speed is controlled not only by the imposed speed limit but also by the traffic density — an increasingly heavy traffic slows down the flow naturally and eventually decreases the flux. Once the flux starts to decrease with an increasing traffic density, a traffic jam kicks in suddenly (Lighthill and Whitham 1955, Richards 1956). The above idea is demonstrated by a simple conceptual model based on the equivalent barotropic PV contour design (Nakamura and Huang 2017, JAS), which predicts a threshold of blocking onset. The idea also suggests that the LWA that gives the `flux capacity,' i.e., the maximum LWA flux at a given location, is a useful predictor of local wave breaking/block formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800032517&hterms=1076&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3D%2526%25231076','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800032517&hterms=1076&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3D%2526%25231076"><span>Wave tilt sounding of multilayered structures. [for probing of stratified planetary surface electrical properties and thickness</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Warne, L.; Jaggard, D. L.; Elachi, C.</p> <p>1979-01-01</p> <p>The relationship between the wave tilt and the electrical parameters of a multilayered structure is investigated. Particular emphasis is placed on the inverse problem associated with the sounding planetary surfaces. An inversion technique, based on multifrequency wave tilt, is proposed and demonstrated with several computer models. It is determined that there is close agreement between the electrical parameters used in the models and those in the inversion values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.1100R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.1100R"><span>Nonlinear Wave-Particle Interaction: Implications for Newborn Planetary and Backstreaming Proton Velocity Distribution Functions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Romanelli, N.; Mazelle, C.; Meziane, K.</p> <p>2018-02-01</p> <p>Seen from the solar wind (SW) reference frame, the presence of newborn planetary protons upstream from the Martian and Venusian bow shocks and SW protons reflected from each of them constitutes two sources of nonthermal proton populations. In both cases, the resulting proton velocity distribution function is highly unstable and capable of giving rise to ultralow frequency quasi-monochromatic electromagnetic plasma waves. When these instabilities take place, the resulting nonlinear waves are convected by the SW and interact with nonthermal protons located downstream from the wave generation region (upstream from the bow shock), playing a predominant role in their dynamics. To improve our understanding of these phenomena, we study the interaction between a charged particle and a large-amplitude monochromatic circularly polarized electromagnetic wave propagating parallel to a background magnetic field, from first principles. We determine the number of fix points in velocity space, their stability, and their dependence on different wave-particle parameters. Particularly, we determine the temporal evolution of a charged particle in the pitch angle-gyrophase velocity plane under nominal conditions expected for backstreaming protons in planetary foreshocks and for newborn planetary protons in the upstream regions of Venus and Mars. In addition, the inclusion of wave ellipticity effects provides an explanation for pitch angle distributions of suprathermal protons observed at the Earth's foreshock, reported in previous studies. These analyses constitute a mean to evaluate if nonthermal proton velocity distribution functions observed at these plasma environments present signatures that can be understood in terms of nonlinear wave-particle processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030102152','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030102152"><span>Mesospheric Non-Migrating Tides Generated With Planetary Waves. 1; Characteristics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, H. G.; Mengel, J. G.; Talaat, E. L.; Porter, H. S.; Chan, K. L.</p> <p>2003-01-01</p> <p>We discuss results from a modeling study with our Numerical Spectral Model (NSM) that specifically deals with the non-migrating tides generated in the mesosphere. The NSM extends from the ground to the thermosphere, incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GWs), and it describes the major dynamical features of the atmosphere including the wave driven equatorial oscillations (QBO and SAO), and the seasonal variations of tides and planetary waves. Accounting solely for the excitation sources of the solar migrating tides, the NSM generates through dynamical interactions also non-migrating tides in the mesosphere that are comparable in magnitude to those observed. Large non-migrating tides are produced in the diurnal and semi-diurnal oscillations for the zonal mean (m = 0) and in the semidiurnal oscillation for m = 1. In general, significant eastward and westward propagating tides are generated for all the zonal wave numbers m = 1 to 4. To identify the cause, the NSM is run without the solar heating for the zonal mean (m = 0), and the amplitudes of the resulting non-migrating tides are then negligibly small. In this case, the planetary waves are artificially suppressed, which are generated in the NSM through instabilities. This leads to the conclusion that the non-migrating tides are generated through non-linear interactions between planetary waves and migrating tides, as Forbes et al. and Talaat and Liberman had proposed. In an accompanying paper, we present results from numerical experiments, which indicate that gravity wave filtering contributes significantly to produce the non-linear coupling that is involved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT.......250C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT.......250C"><span>Balance models for equatorial planetary-scale dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chan, Ian Hiu-Fung</p> <p></p> <p>This thesis aims at advancing our understanding of large-scale dynamics in the tropics, specifically the characterization of slow planetary-scale motions through a balance theory; current balance theories in the tropics are unsatisfactory as they filter out Kelvin waves, which are an important component of variability, along with fast inertia-gravity (IG) waves. (Abstract shortened by UMI.).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080030230&hterms=planetary+motion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dplanetary%2Bmotion','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080030230&hterms=planetary+motion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dplanetary%2Bmotion"><span>Analysis of the Interactions of Planetary Waves with the Mean Flow of the Stratosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Newman, Paul A.</p> <p>2007-01-01</p> <p>During the winter period, large scale waves (planetary waves) are observed to propagate from the troposphere into the stratosphere. Such wave events have been recognized since the 1 950s. The very largest wave events result in major stratospheric warmings. These large scale wave events have typical durations of a few days to 2 weeks. The wave events deposit easterly momentum in the stratosphere, decelerating the polar night jet and warming the polar region. In this presentation we show the typical characteristics of these events via a compositing analysis. We will show the typical periods and scales of motion and the associated decelerations and warmings. We will illustrate some of the differences between major and minor warming wave events. We will further illustrate the feedback by the mean flow on subsequent wave events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFMGC31B0197B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFMGC31B0197B"><span>The Global Climate Anomaly in 1940-1942</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brönnimann, S.; Luterbacher, J.; Staehelin, J.; Svendby, T. M.</p> <p>2003-12-01</p> <p>An unprecedented climatic anomaly occurred in the tropics and in the Northern Hemisphere in 1940-1942. During a strong and prolonged El Niño [Bigg & Inoué, QJRMS 118 (1992), 125], extremely cold winters were observed in Europe, accompanied by very warm temperatures in Alaska and large parts of the Arctic and a cold North Pacific. The anomalies were strong (comprising the two coldest European winters of the 20th century) and extraordinarily persistent. In addition, exceptionally high values of total ozone are reported [Langlo, Geofys. Publ. 18/6 (1952)], pointing to an anomalous stratospheric circulation. Events of this magnitude have a strong economical and environmental impact; the 1940s anomaly even affected World War II. Studying this anomaly in detail contributes to (1) document the extent of 20th century climate variability, (2) understand large-scale coupling processes between the tropics and the extratropics and between the troposphere and the stratosphere and (3) develop tools to analyze past upper-level climate variability prior to 1948, i.e., the reanalysis period. For this study we have compiled, digitized, and re-evaluated several tens of thousands of temperature and pressure profiles from aircraft and radiosonde ascents up to 50 hPa [Brönnimann, Int. J. Clim. 23 (2003), 769]. The upper-air data were supplemented with data from the Earth's surface and used to statistically reconstruct monthly upper-level fields for the extratropical Northern Hemisphere up to 100 hPa [Brönnimann & Luterbacher, Clim. Dyn., submitted]. Although the quality of the reconstructed stratospheric fields is not comparable to more recent data, it is sufficient to allow a broad characterization of the circulation at 100 hPa during the early 1940s. In addition to upper-air data, several total ozone series from the 1940s were re-evaluated [Brönnimann et al., QJRMS 129 (2003), 2819], providing further information on the stratosphere. In this paper we present an analysis of these new data sets and compare the results to climate model data. It is demonstrated that the climate anomaly at the ground was accompanied in the lower stratosphere by a weak polar vortex and warm temperatures over the polar region, Eurasia, and the North Pacific. The total ozone data show a peak in 1940-1942 in all available records, at sites as far apart as China, North America, central Europe, and the Arctic. The co-occurrence of warm tropical SSTs (due to El Niño), a weak polar vortex and warm lower stratosphere over polar regions, and a total ozone increase is in agreement with findings by van Loon and Labitzke [Mon. Wea. Rev. 115 (1987), 357]. Using the 290-yr control run of the Community Climate System Model CCSM-2.0 provided by UCAR we show that such large-scale coupling events are related to an exceptionally large difference between tropical and northern-extratropical SSTs such as during strong El Niños. The coupling most likely proceeds through a change in planetary wave activity in the northern extratropics that manifests itself in a strong Aleutian low and a weak Icelandic low and in a disturbance of the polar vortex in the stratosphere. The 1940-1942 climate anomaly is not well known among scientists, but it is unprecedented in strength, yet exemplary in character, providing a unique opportunity to study large-scale climate variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890006875','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890006875"><span>Equatorial waves simulated by the NCAR community climate model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cheng, Xinhua; Chen, Tsing-Chang</p> <p>1988-01-01</p> <p>The equatorial planetary waves simulated by the NCAR CCM1 general circulation model were investigated in terms of space-time spectral analysis (Kao, 1968; Hayashi, 1971, 1973) and energetic analysis (Hayashi, 1980). These analyses are particularly applied to grid-point data on latitude circles. In order to test some physical factors which may affect the generation of tropical transient planetary waves, three different model simulations with the CCM1 (the control, the no-mountain, and the no-cloud experiments) were analyzed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920047950&hterms=planetary+motion&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dplanetary%2Bmotion','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920047950&hterms=planetary+motion&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dplanetary%2Bmotion"><span>The influence of planetary-wave transience on horizontal air motions in the stratosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Salby, Murry L.</p> <p>1992-01-01</p> <p>The influence of transience of the planetary-wave field on the horizontal air motions and tracer distributions in the stratosphere was investigated in equivalent barotropic calculations. Two classes of transience are considered: a monochromatic traveling wave, representative of discrete components such as the 5- and 16-day waves, and a second-order stochastic process representative of broadband variability. The response to each of these forms of unsteady forcing is investigated in terms of the characteristic time scale of the transience. Results are presented, and the implications these results have on stratospheric behavior are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880032560&hterms=rolando+garcia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D10%26Ntt%3Drolando%2Bgarcia','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880032560&hterms=rolando+garcia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D10%26Ntt%3Drolando%2Bgarcia"><span>Vacillations induced by interference of stationary and traveling planetary waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Salby, Murry L.; Garcia, Rolando R.</p> <p>1987-01-01</p> <p>The interference pattern produced when a traveling planetary wave propagates over a stationary forced wave is explored, examining the interference signature in a variety of diagnostics. The wave field is first restricted to a diatomic spectrum consisting of two components: a single stationary wave and a single monochromatic traveling wave. A simple barotropic normal mode propagating over a simple stationary plane wave is considered, and closed form solutions are obtained. The wave fields are then restricted spatially, providing more realistic structures without sacrificing the advantages of an analytical solution. Both stationary and traveling wave fields are calculated numerically with the linearized Primitive Equations in a realistic basic state. The mean flow reaction to the fluctuating eddy forcing which results from interference is derived. Synoptic geopotential behavior corresponding to the combined wave and mean flow fields is presented, and the synoptic signature in potential vorticity on isentropic surfaces is examined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020022492&hterms=wave+oscillation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dwave%2Boscillation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020022492&hterms=wave+oscillation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dwave%2Boscillation"><span>Modeling Tides, Planetary Waves, and Equatorial Oscillations in the MLT</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mengel, J. G.; Mayr, H. G.; Drob, D. P.; Porter, H. S.; Bhartia, P. K. (Technical Monitor)</p> <p>2001-01-01</p> <p>Applying Hines Doppler Spread Parameterization for gravity waves (GW), our 3D model reproduces some essential features that characterize the observed seasonal variations of tides and planetary waves in the upper mesosphere. In 2D, our model also reproduces the large Semi-Annual Oscillation (SAO) and Quasi Biennial Oscillation (QBO) observed in this region at low latitudes. It is more challenging to describe these features combined in a more comprehensive self consistent model, and we give a progress report that outlines the difficulties and reports some success. In 3D, the GW's are partially absorbed by tides and planetary waves to amplify them. Thus the waves are less efficient in generating the QBO and SAO at equatorial latitudes. Some of this deficiency is compensated by the fact that the GW activity is observed to be enhanced at low latitudes. Increasing the GW source has the desired effect to boost the QBO, but the effect is confined primarily to the stratosphere. With increasing altitude, the meridional circulation becomes more important in redistributing the momentum deposited in the background flow by the GW's. Another factor involved is the altitude at which the GW's originate, which we had originally chosen to be the surface. Numerical experiments show that moving this source altitude to the top of the troposphere significantly increases the efficiency for generating the QBO without affecting much the tides and planetary waves in the model. Attention to the details in which the GW source comes into play thus appears to be of critical importance in modeling the phenomenology of the MLT. Among the suite of numerical experiments reported, we present a simulation that produced significant variations of tides and planetary waves in the upper mesosphere. The effect is related to the QBO generated in the model, and GW filtering is the likely cause.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ams.confex.com/ams/92Annual/webprogram/Paper196615.html','USGSPUBS'); return false;" href="https://ams.confex.com/ams/92Annual/webprogram/Paper196615.html"><span>On the use of wave parameterizations and a storm impact scaling model in National Weather Service Coastal Flood and decision support operations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mignone, Anthony; Stockdon, H.; Willis, M.; Cannon, J.W.; Thompson, R.</p> <p>2012-01-01</p> <p>National Weather Service (NWS) Weather Forecast Offices (WFO) are responsible for issuing coastal flood watches, warnings, advisories, and local statements to alert decision makers and the general public when rising water levels may lead to coastal impacts such as inundation, erosion, and wave battery. Both extratropical and tropical cyclones can generate the prerequisite rise in water level to set the stage for a coastal impact event. Forecasters use a variety of tools including computer model guidance and local studies to help predict the potential severity of coastal flooding. However, a key missing component has been the incorporation of the effects of waves in the prediction of total water level and the associated coastal impacts. Several recent studies have demonstrated the importance of incorporating wave action into the NWS coastal flood program. To follow up on these studies, this paper looks at the potential of applying recently developed empirical parameterizations of wave setup, swash, and runup to the NWS forecast process. Additionally, the wave parameterizations are incorporated into a storm impact scaling model that compares extreme water levels to beach elevation data to determine the mode of coastal change at predetermined “hotspots” of interest. Specifically, the storm impact model compares the approximate storm-induced still water level, which includes contributions from tides, storm surge, and wave setup, to dune crest elevation to determine inundation potential. The model also compares the combined effects of tides, storm surge, and the 2 % exceedance level for vertical wave runup (including both wave setup and swash) to dune toe and crest elevations to determine if erosion and/or ocean overwash may occur. The wave parameterizations and storm impact model are applied to two cases in 2009 that led to significant coastal impacts and unique forecast challenges in North Carolina: the extratropical “Nor'Ida” event during 11-14 November and the large swell event from distant Hurricane Bill on 22 August. The coastal impacts associated with Nor'Ida were due to the combined effects of surge, tide, and wave processes and led to an estimated 5.8 million dollars in damage. While the impacts from Hurricane Bill were not as severe as Nor'Ida, they were mainly associated with wave processes. Thus, this event exemplifies the importance of incorporating waves into the total water level and coastal impact prediction process. These examples set the stage for potential future applications including adaption to the more complex topography along the New England coast.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFM.P32E..04H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFM.P32E..04H"><span>MGS Radio Science Measurements of Atmospheric Dynamics on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hinson, D. P.</p> <p>2001-12-01</p> <p>The Sun-synchronous, polar orbit of Mars Global Surveyor (MGS) provides frequent opportunities for radio occultation sounding of the neutral atmosphere. The basic result of each experiment is a profile of pressure and temperature versus planetocentric radius and geopotential. More than 4000 profiles were obtained during the 687-day mapping phase of the mission, and additional observations are underway. These measurements allow detailed characterization of planetary-scale dynamics, including stationary planetary (or Rossby) waves and transient waves produced by instability. For example, both types of dynamics were observed near 67° S during midwinter of the southern hemisphere (Ls=134° --160° ). Planetary waves are the most prominent dynamical feature in this subset of data. At zonal wave number s=1, both the temperature and geopotential fields tilt westward with increasing height, as expected for vertically-propagating planetary waves forced at the surface. The wave-2 structure is more nearly barotropic. The amplitude in geopotential height at Ls=150° increases from ~200 m near the surface to ~700 m at 10 Pa. The corresponding meridional wind speed increases from ~5 m s-1 near the surface to ~20 m s-1 at 10 Pa. Traveling ``baroclinic'' waves also appear intermittently during this interval. The dominant mode has a period of ~2 sols, s=3, and a peak amplitude of ~7 K at 300 Pa. Stong zonal variations in eddy amplitude signal the presence of a possible ``storm zone'' at 150° --330° E longitude. This talk will include other examples of these phenomena as well as comparisons with computer simulations by a Martian general circulation model (MGCM).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850022236','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850022236"><span>Atmospheric planetary wave response to external forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stevens, D. E.; Reiter, E. R.</p> <p>1985-01-01</p> <p>The tools of observational analysis, complex general circulation modeling, and simpler modeling approaches were combined in order to attack problems on the largest spatial scales of the earth's atmosphere. Two different models were developed and applied. The first is a two level, global spectral model which was designed primarily to test the effects of north-south sea surface temperature anomaly (SSTA) gradients between the equatorial and midlatitude north Pacific. The model is nonlinear, contains both radiation and a moisture budget with associated precipitation and surface evaporation, and utilizes a linear balance dynamical framework. Supporting observational analysis of atmospheric planetary waves is briefly summarized. More extensive general circulation models have also been used to consider the problem of the atmosphere's response, especially in the horizontal propagation of planetary scale waves, to SSTA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA513026','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA513026"><span>Statistics and Dynamics of Aircraft Encounters of Turbulence over Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-08-01</p> <p>America and Europe , and turbulence above Greenland is the fo- cus of this study. Turbulence derived from interactions with terrain and mountain waves can...Seasonal variations in the large- scale circulation (viz., storm tracks) will modify the frequency of occurrence of cyclones. Such variations coupled with...Greenland’s southern tip is from the southeast quadrant. The passage of extratropical cyclones to the south of the turbulent regions is one source of low</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P43E2928I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P43E2928I"><span>Measuring the accelerating effect of the planetary-scale waves on Venus observed with UVI/AKATSUKI and ground-based telescopes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Imai, M.; Kouyama, T.; Takahashi, Y.; Watanabe, S.; Yamazaki, A.; Yamada, M.; Nakamura, M.; Satoh, T.; Imamura, T.; Nakaoka, T.; Kawabata, M.; Yamanaka, M.; Kawabata, K. S.</p> <p>2017-12-01</p> <p>Venus has a global cloud layer, and the atmosphere rotates with the speed over 100 m/s. The scattering of solar radiance and absorber in clouds cause the strong dark and bright contrast in 365 nm unknown absorption bands. The Japanese Venus orbiter AKATSUKI and the onboard instrument UVI capture 100 km mesoscale cloud features over the entire visible dayside area. In contrast, planetary-scale features are observed when the orbiter is at the moderate distance from Venus and when the Sun-Venus-orbiter phase angle is smaller than 45 deg. Cloud top wind velocity was measured with the mesoscale cloud tracking technique, however, observations of the propagation velocity and its variation of the planetary-scale feature are not well conducted because of the limitation of the observable area. The purpose of the study is measuring the effect of wind acceleration by planetary-scale waves. Each cloud motion can be represented as the wind and phase velocity of the planetary-scale waves, respectively. We conducted simultaneous observations of the zonal motion of both mesoscale and planetary-scale feature using UVI/AKATSUKI and ground-based Pirka and Kanata telescopes in Japan. Our previous ground-based observation revealed the periodicity change of planetary-scale waves with a time scale of a couple of months. For the initial analysis of UVI images, we used the time-consecutive images taken in the orbit #32. During this orbit (from Nov. 13 to 20, 2016), 7 images were obtained with 2 hr time-interval in a day whose spatial resolution ranged from 10-35 km. To investigate the typical mesoscale cloud motion, the Gaussian-filters with sigma = 3 deg. were used to smooth geometrically mapped images with 0.25 deg. resolution. Then the amount of zonal shift for each 5 deg. latitudinal bands between the pairs of two time-consecutive images were estimated by searching the 2D cross-correlation maximum. The final wind velocity (or rotation period) for mesoscale features were determined with a small error about +/- 0.1-day period in equatorial region (Figure 2). The same method will be applied for planetary-scale features captured by UVI, and ground-based observations compensate the discontinuity in UVI data. At the presentation, the variability in winds and wave propagation velocity with the time scale of a couple of months will be shown.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030093643','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030093643"><span>Non-Migrating Diurnal Tides Generated with Planetary Waves in the Mesosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, H. G.; Mengel, J. G.; Talaat, E. R.; Porter, H. S.; Chan, K. L.</p> <p>2003-01-01</p> <p>We report here the results from a modeling study with our Numerical Spectral Model (NSM) that extends from the ground into thermosphere. The NSM incorporates Hines Doppler Spread Parameterization for small-scale gravity waves (GWs) and describes the major dynamical features of the atmosphere, including the wave driven equatorial oscillations (QBO and SAO), and the seasonal variations of tides and planetary waves. Accounting solely for the solar migrating tidal excitation sources, the NSM generates through dynamical interactions also non-migrating tides in the mesosphere that have amplitudes comparable to those observed. The model produces the diurnal (and semidiurnal) oscillations of the zonal mean (m = 0), and eastward and westward propagating tides for zonal wave numbers m = 1 to 4. To identify the mechanism of excitation for these tides, a numerical experiment is performed. The NSM is run without the heat source for the zonal-mean circulation and temperature variation, and the amplitudes of the resulting nonmigrating tides are then negligibly small. This leads to the conclusion that the planetary waves, which normally are excited in the NSM by instabilities but are suppressed in this case, generate the nonmigrating tides through nonlinear interactions with the migrating tides.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900052613&hterms=rolando+garcia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D10%26Ntt%3Drolando%2Bgarcia','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900052613&hterms=rolando+garcia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D10%26Ntt%3Drolando%2Bgarcia"><span>Air motions accompanying the development of a planetary wave critical layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Salby, Murry L.; O'Sullivan, Donal; Callaghan, Patrick; Garcia, Rolando R.</p> <p>1990-01-01</p> <p>The horizontal air motions accompanying the development of a planetary wave critical layer are presently investigated on the sphere, in terms of wave amplitude, the characteristics of the zonal flow, and dissipation. While attention is given to adiabatic motions, which should furnish an upper bound on the redistribution of conserved quantities by eddy stirring, nonconservative processes may be important in determining how large a role eddy stirring actually plays in the redistribution of atmospheric constituents. Nonconservative processes may also influence tracer distributions by directly affecting dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016E%26SS....3..362W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016E%26SS....3..362W"><span>Baroclinic mixing of potential vorticity as the principal sharpening mechanism for the extratropical Tropopause Inversion Layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Shu Meir; Geller, Marvin A.</p> <p>2016-09-01</p> <p>Previous works have shown that a dry, idealized general circulation model could produce many features of the extratropical Tropopause Inversion Layer (TIL). In particular, the following have been shown, but no explanations were given for these results. (1) A sharper extratropical TIL resulted more from increased horizontal resolution than from increased vertical resolution. (2) If the Equator-to-Pole temperature gradient was varied, the annual variation of the extratropical TIL found in observations could be reproduced. (3) The extratropical TIL altitude showed excellent correlation with the upper tropospheric relative vorticity, as had been previously proposed. (4) Increased horizontal model resolutions led to extratropical TILs that were at lower altitudes. We show that these conclusions follow from baroclinic mixing of high stratospheric potential vorticity into the troposphere being the principal sharpening mechanism for the extratropical TIL and the increased baroclinic activity occurring in higher horizontal resolution models. We furthermore suggest that the distance from the jet exerts a greater influence on the height and sharpness of the extratropical TIL than does the upper tropospheric relative vorticity, and this accounts for the annual behavior of the extratropical TIL found in observations and reproduced with a dry, mechanistic, global model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110023456','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110023456"><span>A Conjugate Study of Mean Winds and Planetary Waves Employing Enhanced Meteor Radars at Rio Grande, Argentina (53.8degS) and Juliusruh, Germany (54.6degN)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fritts, D. C.; Imura, H.; Lieberman, R.; Janches, D.; Singer, W.</p> <p>2011-01-01</p> <p>Two meteor radars with enhanced power and sensitivity and located at closely conjugate latitudes (54.6degN and 53.8degS) are employed for inter-hemispheric comparisons of mean winds and planetary wave structures. Our study uses data from June 2008 through May 2010 during which both radars provided nearly continuous wind measurements from approx.80 to 100 km. Monthly mean winds at 53.8degS exhibit a somewhat stronger westward mean zonal jet in spring and early summer at lower altitudes and no westward monthly mean winds at higher altitudes. In contrast, westward mean winds of approx.5-10 m/s at 54.6degN extend to above 96 km during late winter and early spring each year. Equatorward monthly mean winds extend approximately from spring to fall equinox at both latitudes, with amplitudes of approx.5-10 m/s and more rapid decreases in amplitude at 54.6degN at higher altitudes. Meridional mean winds are more variable at both latitudes during fall and winter, with both poleward and equatorward monthly means indicating longer-period variability. Planetary waves seen in the 2-day mean data are episodic and variable at both sites, exhibit dominant periodicities of approx.8-10 and 16-20 days and are more confined to late fall and winter at 54.6degN. At both latitudes, planetary waves in the two period bands coincide closely in time and exhibit similar horizontal velocity covariances that are positive (negative) at 54.6degN (53.8degS) during peak planetary wave responses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19970031744&hterms=solar+intensity+measurement&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dsolar%2Bintensity%2Bmeasurement','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19970031744&hterms=solar+intensity+measurement&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dsolar%2Bintensity%2Bmeasurement"><span>Spacecraft Radio Scintillation and Solar System Exploration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Woo, Richard</p> <p>1993-01-01</p> <p>When a wave propagates through a turbulent medium, scattering by the random refractive index inhomogeneities can lead to a wide variety of phenomena that have been the subject of extensive study. The observed scattering effects include amplitude or intensity scintillation, phase scintillation, angular broadening, and spectral broadening, among others. In this paper, I will refer to these scattering effects collectively as scintillation. Although the most familiar example is probably the twinkling of stars (light wave intensity scintillation by turbulence in the Earth's atmosphere), scintillation has been encountered and investigated in such diverse fields as ionospheric physics, oceanography, radio astronomy, and radio and optical communications. Ever since planetary spacecraft began exploring the solar system, scintillation has appeared during the propagation of spacecraft radio signals through planetary atmospheres, planetary ionospheres, and the solar wind. Early studies of these phenomena were motivated by the potential adverse effects on communications and navigation, and on experiments that use the radio link to conduct scientific investigations. Examples of the latter are radio occultation measurements (described below) of planetary atmospheres to deduce temperature profiles, and the search for gravitational waves. However,these concerns soon gave way to the emergence of spacecraft radio scintillation as a new scientific tool for exploring small-scale dynamics in planetary atmospheres and structure in the solar wind, complementing in situ and other remote sensing spacecraft measurements, as well as scintillation measurements using natural (celestial) radio sources. The purpose of this paper is to briefly describe and review the solar system spacecraft radio scintillation observations, to summarize the salient features of wave propagation analyses employed in interpreting them, to underscore the unique remote sensing capabilities and scientific relevance of the scintillation measurements, and to highlight some of the scientific results obtained to date. Special emphasis is placed on comparing the remote sensing features of planetary and terrestrial scintillation measurements, and on contrasting spacecraft and natural radio source scintillation measurements. I will first discuss planetary atmospheres and ionospheres, and then the solar wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JASTP.136..155M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JASTP.136..155M"><span>Coherent structures in the Es layer and neutral middle atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mošna, Zbyšek; Knížová, Petra Koucká; Potužníková, Kateřina</p> <p>2015-12-01</p> <p>The present paper shows results from the summer campaign performed during geomagnetically quiet period from June 1 to August 31, 2009. Within time-series of stratospheric and mesospheric temperatures at pressure levels 10-0.1 hPa, mesospheric winds measured in Collm, Germany, and the sporadic E-layer parameters foEs and hEs measured at the Pruhonice station we detected specific coherent wave-bursts in planetary wave domain. Permanent wave-like activity is observed in all analyzed data sets. However, the number of wave-like structures persistent in large range of height from the stratosphere to lower ionosphere is limited. The only coherent modes that are detected on consequent levels of the atmosphere are those corresponding to eigenmodes of planetary waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020070382&hterms=nash&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D90%26Ntt%3Dnash','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020070382&hterms=nash&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D90%26Ntt%3Dnash"><span>The Temperature of the Arctic and Antarctic Lower Stratosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Newman, Paul A.; Nash, Eric R.; Bhartia, P. K. (Technical Monitor)</p> <p>2002-01-01</p> <p>The temperature of the polar lower stratosphere during spring is the key factor in changing the magnitude of ozone loss in the polar vortices. In this talk, we will review the results of Newman et al. [2000] that quantitatively demonstrate that the polar lower stratospheric temperature is primarily controlled by planetary-scale waves. In particular, the tropospheric eddy heat flux in middle to late winter (January--February) is highly correlated with the mean polar stratospheric temperature during March. Strong midwinter planetary wave forcing leads to a warmer spring Arctic lower stratosphere in early spring, while weak midwinter forcing leads to cooler spring Arctic temperatures. In addition, this planetary wave driving also has a strong impact on the strength of the polar vortex. These results from the Northern Hemisphere will be contrasted with the Southern Hemisphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT........60P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT........60P"><span>Observations of the UTLS: An analysis of the double tropopause and its relationship to Rossby waves and the tropopause inversion layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peevey, Tanya</p> <p></p> <p>The upper troposphere lower stratosphere (UTLS) is a region of minimum temperatures that contains the tropopause. As a transition region between the troposphere and the stratosphere, the UTLS contains various processes that facilitate stratosphere-troposphere exchange (STE) which can redistribute radiatively important species such as water vapor or ozone. One potential marker for STE is the double tropopause (DT). Therefore this study seeks to further understand how DTs form and how they could enhance the current understanding of some STE processes in the UTLS. Using data from the High Resolution Dynamic Limb Sounder (HIRDLS), a data set with high vertical and horizontal resolution, newly discovered DT structures are found over the Pacific and Atlantic oceans that suggest a relationship between the DT and both storm tracks and Rossby waves. The association between DTs and storm tracks is examined by further analyzing the recently discovered and unexpected relationship between the DT and the tropopause inversion layer (TIL) in a developing baroclinic disturbance. Results show an increase in the number of DTs when the lapse rate of the extratropical TIL is less than -2°C/km, i.e. when the TIL is stronger and the local stability is higher. Composites of ERA-Interim DT profiles for three different TIL strengths shows that the vertical motion and relative vorticity both decrease as the TIL increases, which suggests the warm conveyor belt as a mechanism. This is investigated further with a case study analysis of a developing extratropical cyclone in the Pacific Ocean. Additionally, an analysis of DTs in relation to the large scale flow responsible for storm development shows a strong correlation between monthly Rossby wave activity, ozone laminae and DT variability. Further examination shows that if these waves break a DT will be found with a wave breaking event about 30% of the time in the eastern Pacific and eastern Atlantic oceans, both regions of poleward wave breaking. These results highlight a new and more complicated DT structure that is a product of both large scale dynamics and small scale vertical motions, thus adding new information to the current understanding of the UTLS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005JAtS...62.4178C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005JAtS...62.4178C"><span>Constraints on Wave Drag Parameterization Schemes for Simulating the Quasi-Biennial Oscillation. Part I: Gravity Wave Forcing.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Campbell, Lucy J.; Shepherd, Theodore G.</p> <p>2005-12-01</p> <p>Parameterization schemes for the drag due to atmospheric gravity waves are discussed and compared in the context of a simple one-dimensional model of the quasi-biennial oscillation (QBO). A number of fundamental issues are examined in detail, with the goal of providing a better understanding of the mechanism by which gravity wave drag can produce an equatorial zonal wind oscillation. The gravity wave driven QBOs are compared with those obtained from a parameterization of equatorial planetary waves. In all gravity wave cases, it is seen that the inclusion of vertical diffusion is crucial for the descent of the shear zones and the development of the QBO. An important difference between the schemes for the two types of waves is that in the case of equatorial planetary waves, vertical diffusion is needed only at the lowest levels, while for the gravity wave drag schemes it must be included at all levels. The question of whether there is downward propagation of influence in the simulated QBOs is addressed. In the gravity wave drag schemes, the evolution of the wind at a given level depends on the wind above, as well as on the wind below. This is in contrast to the parameterization for the equatorial planetary waves in which there is downward propagation of phase only. The stability of a zero-wind initial state is examined, and it is determined that a small perturbation to such a state will amplify with time to the extent that a zonal wind oscillation is permitted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4823715','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4823715"><span>Dynamics of 2013 Sudden Stratospheric Warming event and its impact on cold weather over Eurasia: Role of planetary wave reflection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Nath, Debashis; Chen, Wen; Zelin, Cai; Pogoreltsev, Alexander Ivanovich; Wei, Ke</p> <p>2016-01-01</p> <p>In the present study, we investigate the impact of stratospheric planetary wave reflection on tropospheric weather over Central Eurasia during the 2013 Sudden Stratospheric Warming (SSW) event. We analyze EP fluxes and Plumb wave activity fluxes to study the two and three dimensional aspects of wave propagation, respectively. The 2013 SSW event is excited by the combined influence of wavenumber 1 (WN1) and wavenumber 2 (WN2) planetary waves, which makes the event an unusual one and seems to have significant impact on tropospheric weather regime. We observe an extraordinary development of a ridge over the Siberian Tundra and the North Pacific during first development stage (last week of December 2012) and later from the North Atlantic in the second development stage (first week of January 2013), and these waves appear to be responsible for the excitation of the WN2 pattern during the SSW. The wave packets propagated upward and were then reflected back down to central Eurasia due to strong negative wind shear in the upper stratospheric polar jet, caused by the SSW event. Waves that propagated downward led to the formation of a deep trough over Eurasia and brought extreme cold weather over Kazakhstan, the Southern part of Russia and the Northwestern part of China during mid-January 2013. PMID:27051997</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27051997','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27051997"><span>Dynamics of 2013 Sudden Stratospheric Warming event and its impact on cold weather over Eurasia: Role of planetary wave reflection.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nath, Debashis; Chen, Wen; Zelin, Cai; Pogoreltsev, Alexander Ivanovich; Wei, Ke</p> <p>2016-04-07</p> <p>In the present study, we investigate the impact of stratospheric planetary wave reflection on tropospheric weather over Central Eurasia during the 2013 Sudden Stratospheric Warming (SSW) event. We analyze EP fluxes and Plumb wave activity fluxes to study the two and three dimensional aspects of wave propagation, respectively. The 2013 SSW event is excited by the combined influence of wavenumber 1 (WN1) and wavenumber 2 (WN2) planetary waves, which makes the event an unusual one and seems to have significant impact on tropospheric weather regime. We observe an extraordinary development of a ridge over the Siberian Tundra and the North Pacific during first development stage (last week of December 2012) and later from the North Atlantic in the second development stage (first week of January 2013), and these waves appear to be responsible for the excitation of the WN2 pattern during the SSW. The wave packets propagated upward and were then reflected back down to central Eurasia due to strong negative wind shear in the upper stratospheric polar jet, caused by the SSW event. Waves that propagated downward led to the formation of a deep trough over Eurasia and brought extreme cold weather over Kazakhstan, the Southern part of Russia and the Northwestern part of China during mid-January 2013.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19740020977&hterms=planetary+boundaries&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dplanetary%2Bboundaries','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19740020977&hterms=planetary+boundaries&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dplanetary%2Bboundaries"><span>Apparent relationship between solar-sector boundaries and 300-mb vorticity: Possible explanation in terms of upward propagation of planetary-scale waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Deland, R. J.</p> <p>1974-01-01</p> <p>The selection process for sector structure boundary crossings used in vorticity correlation studies is examined and the possible influence of ascending planetary scale waves is assessed. It is proposed that some of the observed correlations between geomagnetic and meteorological variations may be due to meteorological effects on the geometric variables, rather than due to common solar origin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PhyU...51..577O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PhyU...51..577O"><span>REVIEWS OF TOPICAL PROBLEMS: Generation of large-scale eddies and zonal winds in planetary atmospheres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Onishchenko, O. G.; Pokhotelov, O. A.; Astafieva, N. M.</p> <p>2008-06-01</p> <p>The review deals with a theoretical description of the generation of zonal winds and vortices in a turbulent barotropic atmosphere. These large-scale structures largely determine the dynamics and transport processes in planetary atmospheres. The role of nonlinear effects on the formation of mesoscale vortical structures (cyclones and anticyclones) is examined. A new mechanism for zonal wind generation in planetary atmospheres is discussed. It is based on the parametric generation of convective cells by finite-amplitude Rossby waves. Weakly turbulent spectra of Rossby waves are considered. The theoretical results are compared to the results of satellite microwave monitoring of the Earth's atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880041953&hterms=hinson&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D40%26Ntt%3Dhinson','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880041953&hterms=hinson&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D40%26Ntt%3Dhinson"><span>Past and future of radio occultation studies of planetary atmospheres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Eshleman, Von R.; Hinson, David P.; Tyler, G. Leonard; Lindal, Gunnar F.</p> <p>1987-01-01</p> <p>Measurements of radio waves that have propagated through planetary atmospheres have provided exploratory results on atmospheric constituents, structure, dynamics, and ionization for Venus, Mars, Titan, Jupiter, Saturn, and Uranus. Highlights of past results are reviewed in order to define and illustrate the potential of occultation and related radio studies in future planetary missions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000072434','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000072434"><span>Arctic Climate and Atmospheric Planetary Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cavalieri, D. J.; Haekkinen, S.</p> <p>2000-01-01</p> <p>Analysis of a fifty-year record (1946-1995) of monthly-averaged sea level pressure data provides a link between the phases of planetary-scale sea level pressure waves and Arctic Ocean and ice variability. Results of this analysis show: (1) a breakdown of the dominant wave I pattern in the late 1960's, (2) shifts in the mean phase of waves 1 and 2 since this breakdown, (3) an eastward shift in the phases of both waves 1 and 2 during the years of simulated cyclonic Arctic Ocean circulation relative to their phases during the years of anticyclonic circulation, (4) a strong decadal variability of wave phase associated with simulated Arctic Ocean circulation changes. Finally, the Arctic atmospheric circulation patterns that emerge when waves 1 and 2 are in their extreme eastern and western positions suggest an alternative approach to determine significant forcing patterns of sea ice and high-latitude variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850012132&hterms=project+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dproject%2Bwaves','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850012132&hterms=project+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dproject%2Bwaves"><span>PMP-2 Report: Equatorial Wave Dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hirota, I.</p> <p>1982-01-01</p> <p>The activities of the pre-MAP project 2 (PMP-2) from 1978 through 1981 are described. The following topics relating to the equatorial middle atmosphere are discussed briefly: (1) the semi-annual oscillation and Kelvin waves; (2) planetary Rossby waves; (3) upper mesospheric waves; and (4) gravity waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910039927&hterms=order+mixed&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dorder%2Bmixed','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910039927&hterms=order+mixed&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dorder%2Bmixed"><span>Observations of planetary mixed Rossby-gravity waves in the upper stratosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Randel, William J.; Boville, Byron A.; Gille, John C.</p> <p>1990-01-01</p> <p>Observational evidence is presented for planetary scale (zonal wave number 1-2) mixed Rossby-gravity (MRG) waves in the equatorial upper stratosphere (35-50 km). These waves are detected in LIMS measurements as coherently propagating temperature maxima of amplitude 0.1-0.3 K, which are antisymmetric (out of phase) about the equator, centered near 10-15 deg north and south latitude. These features have vertical wavelengths of order 10-15 km, periods near 2-3 days, and zonal phase velocities close to 200 m/s. Both eastward and westward propagating waves are found, and the observed vertical wavelengths and meridional structures are in good agreement with the MRG dispersion relation. Theoretical estimates of the zonal accelerations attributable to these waves suggest they do not contribute substantially to the zonal momentum balance in the middle atmosphere.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990114327&hterms=Tidal+waves&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DTidal%2Bwaves','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990114327&hterms=Tidal+waves&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DTidal%2Bwaves"><span>Studies of Tidal and Planetary Wave Variability in the Middle Atmosphere using UARS and Correlative MF Radar Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fritts, David C.</p> <p>1996-01-01</p> <p>The goals of this research effort have been to use MF radar and UARS/HRDI wind measurements for correlative studies of large-scale atmospheric dynamics, focusing specifically on the tidal and various planetary wave structures occurring in the middle atmosphere. We believed that the two data sets together would provide the potential for much more comprehensive studies than either by itself, since they jointly would allow the removal of ambiguities in wave structure that are difficult to resolve with either data set alone. The joint data were to be used for studies of wave structure, variability, and the coupling of these motions to mean and higher-frequency motions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950022709','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950022709"><span>Solar system plasma waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gurnett, Donald A.</p> <p>1995-01-01</p> <p>An overview is given of spacecraft observations of plasma waves in the solar system. In situ measurements of plasma phenomena have now been obtained at all of the planets except Mercury and Pluto, and in the interplanetary medium at heliocentric radial distances ranging from 0.29 to 58 AU. To illustrate the range of phenomena involved, we discuss plasma waves in three regions of physical interest: (1) planetary radiation belts, (2) planetary auroral acceleration regions and (3) the solar wind. In each region we describe examples of plasma waves that are of some importance, either due to the role they play in determining the physical properties of the plasma, or to the unique mechanism involved in their generation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1712310B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1712310B"><span>Dynamics of the middle atmosphere as observed by the ARISE project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blanc, Elisabeth</p> <p>2015-04-01</p> <p>The atmosphere is a complex system submitted to disturbances in a wide range of scales, including high frequency sources as volcanoes, thunderstorms, tornadoes and at larger scales, gravity waves from deep convection or wind over mountains, atmospheric tides and planetary waves. These waves affect the different atmospheric layers submitted to different temperature and wind systems which strongly control the general atmospheric circulation. The full description of gravity and planetary waves constitutes a challenge for the development of future models of atmosphere and climate. The objective of this paper is to present a review of recent advances obtained in this topic, especially in the framework of the ARISE (Atmospheric dynamics Research InfraStructure in Europe) project</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000118274&hterms=Wave+filter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DWave%2Bfilter','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000118274&hterms=Wave+filter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DWave%2Bfilter"><span>Modeling the Dynamics of the Middle Atmosphere and Lower Thermosphere Under the Influence of Gravity Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Porter, H. S.; Einaudi, Franco (Technical Monitor)</p> <p>2000-01-01</p> <p>Our Numerical Spectral Model (NSM), which extends from the ground up into the thermosphere, is non-linear, time-dependent and has been employed for 2D and 3D applications. The standard version of the NSM incorporates Hines' Doppler Spread Parameterization for small scale gravity waves (GW), but planetary waves generated in the troposphere have also been incorporated. The NSM has been applied to describe: (1) the anomalous seasonal variations of the zonal circulation and temperature in the upper mesosphere, (2) the equatorial oscillations (quasi-biennial and semi-annual oscillations (QBO and SAO)) extending from the stratosphere into the upper mesosphere, (3) the diurnal and semi-diurnal tides, and (4) the planetary waves that are excited in the mesosphere. With the emphasis to provide understanding, we present here results from numerical experiments with the NSM that shed light on the GW processes that are of central importance in the mesosphere and lower thermosphere. These are our conclusions: (1) The large semiannual variations in the diurnal tide (DT), with peak amplitudes observed around equinox, are produced primarily by GW interactions that involve, in part, planetary waves. The DT, like planetary waves, tends to be amplified by GW momentum deposition, which reduces also the vertical wavelength, but variations in eddy viscosity associated with GW interactions are also important. (2) The semidiurnal tide (SDT) and its phase in particular, is strongly influenced by the mean zonal circulation. The SDT, individually, is also amplified by GW. But the DT filters out GW such that the GW interaction effectively reduces the amplitude of the SDT, producing a strong nonlinear interaction between the DT and SDT. (3) Without external time dependent energy or momentum sources, planetary waves (PW) are generated in the model for zonal wavenumbers 1 to 4, which have amplitudes in the mesosphere above 50 km as large as 40 m/s and periods between 50 and 2 days. The waves are generated primarily during solstice conditions, which indicates that the baroclinic instability (associated with the GW induced reversal in the latitudinal temperature gradient) is playing an important role. Numerical experiment show that GW, directly, also greatly amplify the PW. A common feature of the PW generated in summer and winter is that their vertical wavelengths throughout the mesosphere are large, which indicates that the waves are not propagating freely but are generated throughout the region. Another common feature is that the PW propagate preferentially westward in summer and eastward in winter, being launched from the westward and eastward zonal winds that prevail respectively in summer and winter at altitudes below 80 km. (4) Planetary waves generated internally by baroclinic instability and GW interaction produce large amplitude modulations of the DT and SDT. In summary we conclude that GW play major roles in generating and amplifying the dynamical components in the MLT region and, acting principally through wave filtering, produce important non-linear interactions between the components.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012cosp...39.1619R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012cosp...39.1619R"><span>Simulation of Venus polar vortices with the non-hydrostatic general circulation model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rodin, Alexander V.; Mingalev, Oleg; Orlov, Konstantin</p> <p>2012-07-01</p> <p>The dynamics of Venus atmosphere in the polar regions presents a challenge for general circulation models. Numerous images and hyperspectral data from Venus Express mission shows that above 60 degrees latitude atmospheric motion is substantially different from that of the tropical and extratropical atmosphere. In particular, extended polar hoods composed presumably of fine haze particles, as well as polar vortices revealing mesoscale wave perturbations with variable zonal wavenumbers, imply the significance of vertical motion in these circulation elements. On these scales, however, hydrostatic balance commonly used in the general circulation models is no longer valid, and vertical forces have to be taken into account to obtain correct wind field. We present the first non-hydrostatic general circulation model of the Venus atmosphere based on the full set of gas dynamics equations. The model uses uniform grid with the resolution of 1.2 degrees in horizontal and 200 m in the vertical direction. Thermal forcing is simulated by means of relaxation approximation with specified thermal profile and time scale. The model takes advantage of hybrid calculations on graphical processors using CUDA technology in order to increase performance. Simulations show that vorticity is concentrated at high latitudes within planetary scale, off-axis vortices, precessing with a period of 30 to 40 days. The scale and position of these vortices coincides with polar hoods observed in the UV images. The regions characterized with high vorticity are surrounded by series of small vortices which may be caused by shear instability of the zonal flow. Vertical velocity component implies that in the central part of high vorticity areas atmospheric flow is downwelling and perturbed by mesoscale waves with zonal wavenumbers 1-4, resembling observed wave structures in the polar vortices. Simulations also show the existence of areas with strong vertical flow, concentrated in spiral branches extending from low latitude to the circumpolar vortex. Qualitatively this pattern suggest that the dynamics of the polar Venus atmosphere resembles that of terrestrial hurricanes, but is characterized with preferentially poleward and downwelling motions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900001499','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900001499"><span>Laboratory measurements of microwave and millimeter-wave properties of planetary atmospheric constituents</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Steffes, Paul G.</p> <p>1989-01-01</p> <p>Accurate data on microwave and millimeter-wave properties of potential planetary atmospheric constituents is critical for the proper interpretation of radio occultation measurements, and of radio astronomical observations of both continuum and spectral line emissions. Such data is also needed to correct for atmospheric effects on radar studies of surface reflectivity. Since the refractive and absorptive properties of atmospheric constituents often vary drastically from theoretically-predicted profiles, especially under the extreme conditions characteristic of the planetary atmosphere, laboratory measurements under simulated planetary conditions are required. This paper reviews the instrumentation and techniques used for laboratory measurement of the refractivity and absorptivity of atmospheric constituents at wavelengths longward of 1 mm, under simulated planetary conditions (temperature, pressure, and broadening gases). Techniques for measuring both gases and condensates are considered. Also reviewed are the relative accuracies of the various techniques. Laboratory measurements are reviewed which have already been made, and additional measurements which are needed for interpretation of data from Venus and the outer planets, are highlighted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A54G..03C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A54G..03C"><span>Contrasting the projected change in extreme extratropical cyclones in the two hemispheres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chang, E. K. M.</p> <p>2017-12-01</p> <p>Extratropical cyclones form an important part of the global circulation. They are responsible for much of the high impact weather in the mid-latitudes, including heavy precipitation, strong winds, and coastal storm surges. They are also the surface manifestation of baroclinic waves that are responsible for much of the transport of momentum, heat, and moisture across the mid-latitudes. Thus how these storms will change in the future is of much general interest. In particular, how the frequency of the extreme cyclones change are of most concern, since they are the ones that cause most damages. While the projection of a poleward shift of the Southern Hemisphere storm track and cyclone activity is widely accepted, together with a small decrease in the total number of extratropical cyclones, as discussed in the 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5), projected change in cyclone intensity is still rather uncertain. Several studies have suggested that cyclone intensity, in terms of absolute value of sea level pressure (SLP) minima or SLP perturbations, is projected to increase under global warming. However, other studies found no increase in wind speed around extratropical cyclones. In this study, CMIP5 multi-model projection of how the frequency of extreme cyclones in terms of near surface wind intensity may change under global warming has been examined. Results suggest significant increase in the occurrences of extreme cyclones in the Southern Hemisphere. In the Northern Hemisphere, CMIP5 models project a northeastward shift in extreme cyclone activity over the Pacific, and significant decrease over the Atlantic. Substantial differences are also found between projected changes in near surface wind intensity and wind intensity at 850 hPa, suggesting that wind change at 850 hPa is not a good proxy for change in surface wind intensity. Finally, projected changes in the large scale environment are examined to understand the dynamics behind these contrasting projected changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A33D3214W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A33D3214W"><span>Using sinuosity to measure the waviness of the extratropical circulation under climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, F.; Vavrus, S. J.; Martin, J. E.; Francis, J. A.</p> <p>2014-12-01</p> <p>Extreme weather events, such as heat and cold waves, droughts, and floods, have substantial social and economic impacts. Whether these extreme events are related to one of the prominent components of climate change --- Arctic Amplification (AA)--- is controversial. The hypothesis proposed by Francis and Vavrus (2012) is that a reduced meridional temperature gradient owing to AA will cause a weaker and wavier extratropical circulation, which will result in slower progression of weather systems and more atmospheric blocking events. To test this hypothesis we borrow the concept of "sinuosity" from geomorphology to measure the waviness of the boreal extratropical circulation. As applied here, sinuosity is defined as the ratio of the curvilinear length of a circumhemispheric geopotential height contour to the perimeter of its equivalent latitude, where the contour and the equivalent latitude enclose the same area. We use 500hPa daily geopotential heights from NCEP/NCAR Reanalysis and from the CESM climate model's historical and RCP8.5 greenhouse simulations to calculate sinuosity. Observations and simulations exhibit similar annual cycles of sinuosity, with the maximum sinuosity occurring in summer and minimum sinuosity during winter. Although no long-term trend (1948-2013) in sinuosity is observed in winter (DJF) or summer (JJA), a positive linear trend has occurred since the 1980s and accelerated after 1995 at middle latitudes (winter) and high latitudes (summer). The 500hPa zonal wind is found to weaken at latitudes where sinuosity increases. The change of sinuosity and corresponding zonal wind in RCP8.5 simulations is also explored. Our study finds a strong negative correlation between observed daily sinuosity and the daily Arctic Oscillation (AO) index in all seasons. This negative correlation and the tendency of CMIP5 models to simulate a negative AO-like pattern aloft during winter in a warmer climate suggest a trend toward a wavier extratropical atmospheric circulation in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060036766&hterms=Inertia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DInertia','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060036766&hterms=Inertia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DInertia"><span>Altimeter Observations of Baroclinic Oceanic Inertia-Gravity Wave Turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Glazman, R. E.; Cheng, B.</p> <p>1996-01-01</p> <p>For a wide range of nonlinear wave processes - from capillary to planetary waves - theory predicts the existence of Kolmogorov-type spectral cascades of energy and other conserved quantities occuring via nonlinear resonant wave-wave interactions. So far, observations of wave turbulence (WT) have been limited to small-scale processes such as surface gravity and capillary-gravity waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950016411','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950016411"><span>Langmuir-like waves and radiation in planetary foreshocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cairns, Iver H.; Robinson, P. A.; Anderson, R. R.; Gurnett, D. A.; Kurth, W. S.</p> <p>1995-01-01</p> <p>The basic objectives of this NASA Grant are to develop theoretical understandings (tested with spacecraft data) of the generation and characteristics of electron plasma waves, commonly known as Langmuir-like waves, and associated radiation near f(sub p) and 2f(sub p) in planetary foreshocks. (Here f(sub p) is plasma frequency.) Related waves and radiation in the source regions of interplanetary type III solar radio bursts provide a simpler observational and theoretical context for developing and testing such understandings. Accordingly, applications to type III bursts constitute a significant fraction of the research effort. The testing of the new Stochastic Growth Theory (SGT) for type III bursts, and its extension and testing for foreshock waves and radiation, constitutes a major longterm strategic goal of the research effort.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970005010','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970005010"><span>Maximum Langmuir Fields in Planetary Foreshocks Determined from the Electrostatic Decay Threshold</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Robinson, P. A.; Cairns, Iver H.</p> <p>1995-01-01</p> <p>Maximum electric fields of Langmuir waves at planetary foreshocks are estimated from the threshold for electrostatic decay, assuming it saturates beam driven growth, and incorporating heliospheric variation of plasma density and temperature. Comparisons with spacecraft observations yields good quantitative agreement. Observations in type 3 radio sources are also in accord with this interpretation. A single mechanism can thus account for the highest fields of beam driven waves in both contexts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870003618&hterms=Transformation+energies&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DTransformation%2Benergies','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870003618&hterms=Transformation+energies&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DTransformation%2Benergies"><span>Utilization of satellite cloud information to diagnose the energy state and transformations in extratropical cyclones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, P. J.</p> <p>1985-01-01</p> <p>An important component of the research was a continuing investigation of the impact of latent release on extratropical cyclone development. Previous efforts to accomplish this task have focused on the energy balance and the vertical motion field of an intense winter extratropical cyclone over the United States. During this fiscal year researchers turned their attention to a more fundamental diagnostic variable, the height tendency. Central to this effort is the use of a modified form of the quasi-geostrophic height tendency equation, in which geostrophic wind components have been replaced by observed winds and a latent heat release term has been added. This methodology was adopted to produce a simple diagnostic model which retains the essential mechanisms of quasi-geostrophic theory but more faithfully describes observed wave development when the Rossby Number approaches and exceeds 0.5. Results to date indicate that the new model yields height tendencies that are superior to those obtained from the quasi-geostrophic formulation and are sufficiently close to the observed tendencies to be a useful tool for diagnosing the principle large-scale forcing mechanisms in th e700-300 mb layer. Of the three forcing terms included in the new model, vortity advection is in general dominant. The most persistent challenge to this dominance is made by the thermal advection. On the whole, latent heat release plays a secondary role. Finally, during the rapid intensification observed for this cyclone, all three processes complement each other in forcing height falls.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.9092D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.9092D"><span>Breaking down the contribution of different meteorological mechanisms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dufour, Ambroise; Tilinina, Natalia; Zolina, Olga; Gulev, Sergey</p> <p>2017-04-01</p> <p>Several mechanisms are held responsible for extreme atmospheric moisture into the Arctic - our case study - : extratropical cyclones, breaking Rossby waves, blocking events, etc. Based on composite analysis, all these phenomena have been associated with above average meridional moisture transport. These individual conclusions call for a synthesis in order to share the credit between the different mechanisms. However, it is impossible to break down the respective contributions by simply using their composites due to the risk of double counting. Indeed, the different phenomena may occur simultaneously and have overlapping regions of influence. As a result, building composites for one phenomenon will likely count in a portion of the others as well. This ambiguity is raised within a probabilistic framework by viewing composites as conditional expectations. For a given event A, the composite is written as the sum of each event's contribution weighted by the event's conditional probability given A. The composites for a set of events can be interpreted as a linear system whose coefficents are conditional probabilities and whose solution is each event's individual contribution. Using data from ERA Interim and cyclone tracks from the Shirshov Institute of Oceanology, we solve the linear system in the case of moisture transport through 70°N. The main result is to downgrade the collective influence of extratropical cyclones due to the predominance of weak inconsequential cyclones. Transient eddies are nonetheless responsible for more than 90 % of the transport : it undermines the common but untested assumption that transient eddies are identical to extratropical cyclones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960038336&hterms=temperature+variability&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dtemperature%2Bvariability','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960038336&hterms=temperature+variability&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dtemperature%2Bvariability"><span>Temperature-dependent daily variability of precipitable water in special sensor microwave/imager observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gutowski, William J.; Lindemulder, Elizabeth A.; Jovaag, Kari</p> <p>1995-01-01</p> <p>We use retrievals of atmospheric precipitable water from satellite microwave observations and analyses of near-surface temperature to examine the relationship between these two fields on daily and longer time scales. The retrieval technique producing the data used here is most effective over the open ocean, so the analysis focuses on the southern hemisphere's extratropics, which have an extensive ocean surface. For both the total and the eddy precipitable water fields, there is a close correspondence between local variations in the precipitable water and near-surface temperature. The correspondence appears particularly strong for synoptic and planetary scale transient eddies. More specifically, the results support a typical modeling assumption that transient eddy moisture fields are proportional to transient eddy temperature fields under the assumption f constant relative humidity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA561949','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA561949"><span>A Climatological Study of Hurricane Force Extratropical Cyclones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-03-01</p> <p>extratropical cyclone by months in the Pacific basin. Most of the storms occur from October through March...hurricane force extratropical cyclone. Starting from left to right; the first column is the storm name, second column is the year, month, day, hour (UTC...2000 through 2007 illustrates that the number of hurricane-force extratropical cyclones is quite significant: approximately 500 storms , nearly evenly</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140000910','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140000910"><span>The 2010 Pakistan Flood and Russian Heat Wave: Teleconnection of Hydrometeorological Extremes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lau, William K. M.; Kim, Kyu-Myong</p> <p>2012-01-01</p> <p>In this paper, preliminary results are presented showing that the two record-setting extreme events during 2010 summer (i.e., the Russian heat wave-wildfires and Pakistan flood) were physically connected. It is found that the Russian heat wave was associated with the development of an extraordinarily strong and prolonged extratropical atmospheric blocking event in association with the excitation of a large-scale atmospheric Rossby wave train spanning western Russia, Kazakhstan, and the northwestern China-Tibetan Plateau region. The southward penetration of upper-level vorticity perturbations in the leading trough of the Rossby wave was instrumental in triggering anomalously heavy rain events over northern Pakistan and vicinity in mid- to late July. Also shown are evidences that the Russian heat wave was amplified by a positive feedback through changes in surface energy fluxes between the atmospheric blocking pattern and an underlying extensive land region with below-normal soil moisture. The Pakistan heavy rain events were amplified and sustained by strong anomalous southeasterly flow along the Himalayan foothills and abundant moisture transport from the Bay of Bengal in connection with the northward propagation of the monsoonal intraseasonal oscillation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA556072','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA556072"><span>The CI-Flow Project: A System for Total Water Level Prediction from the Summit to the Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2011-11-01</p> <p>round and may be applied to all types of coastal storms , including intense cool- season extratropical cyclones (i.e., nor’easters). In addition...associated with waves, tides, storm surge, rivers, and rainfall, including interactions at the tidal/surge interface Within this project, Cl-FLOW addresses...presented for Hurricane Isabel (2003), Hurricane Earl (20I0), and Tropical Storm Nicole (2010) for the Tar -Pamlico and Neuse River basins of North</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.2106K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.2106K"><span>Do tidal or swing waves roughen planetary surfaces?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kochemasov, Gennady G.</p> <p>2010-05-01</p> <p>Surfaces of the terrestrial planets and their moons are far from being smooth. They are warped by several wavelengths and show a remarkable regularity: their roughness increases with the solar distance. Thus, if for Mercury the surface relief range does not exceed several km, for Mars it is already about 30 km. Earth's range is 20 km, Venus' one 14 km. Recently it was shown that this row of ranges reflects ratios of the tectonic granules radii of terrestrial planets [1, 2]. These radii related to unity of reduced planetary globes (in a geometrical model all planets are represented by even circles [2]) are as follows: Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2. It means that in the great planetary circles (equators) there are 32, 12, 8, and 4 tectonic granules (now they all are mapped by remote methods) and their numbers are inversely proportional to the orbital frequencies of the planets: higher frequency - smaller granule, and, vice versa, lower frequency - larger granule. In this planetary law is a firm confirmation of the main conceptual point of the wave planetology: "Orbits make structures" [3]. But how this happens? A basic reason lies in the keplerian elliptical orbits implying periodical changes of planetary bodies accelerations. Periodical slowing down and speeding up produce inertia-gravity waves warping any celestial body. In rotating bodies this wave warping is divided in four directions: two orthogonal and two diagonal. An interference of these directions produces tectonic blocks of three kinds: uplifting, subsiding, and neutral. Sizes and amplitudes of the blocks (granules) depend on the warping wavelengths and increase with the solar distance. Thus, a relief-forming potential and the actual relief range observed on the planets increase in this direction [1, 2, 4]. But the tidal forces diminish in this direction. That is why they cannot be a reason for the relief-forming potential. Having in mind a swinging action of planetary orbits on heavenly bodies one might think of swing forces and swing waves (contrary to the tidal waves) producing the wave warping surfaces and the deeper planetary spheres [1]. Three observations in relation with this revelation might be mentioned. 1. An increasing surface roughness of the icy satellites of Saturn with increasing distances from the planet [5]. 2. Atmospheric masses of terrestrial planets increase with the diminishing solar distance as a sequence of more frequent wave oscillations - a sweeping out making atmospheres volatiles from planetary depths is facilitated by more frequent oscillations. 3. The inner rapidly orbiting satellites of Jupiter (Io), Saturn (Enceladus), and Neptun (Triton) are still emitting volatiles as a result of more thorough sweeping out their volatile stock. Mercury also has traces of some metals in its exosphere (MESSENGER data). References: [1] Kochemasov G.G. (2009) A regular row of planetary relief ranges connected with tectonic granulations of celestial bodies // New Concepts in Global Tectonics Newsletter, # 51, 58-61. [2] Kochemasov G.G. (2009) A quantitative geometric model of relief-forming potential in terrestrial planets // EPSC Abstracts, Vol. 4, EPSC2009-16-1. [3] Kochemasov G.G. (1998) Tectonic dichotomy, sectoring and granulation of Earth and other celestial bodies // Proceedings of the International Symposium on New Concepts in Global Tectonics, "NCGT-98 TSUKUBA", Geological Survey of Japan, Tsukuba, Nov 20-23, 1998, 144-147. [4] Kochemasov G.G. (1993) Relief-forming potential of planets // 18th Russian-American microsymposium on planetology, Abstracts, Oct. 9-10, 1993, Moscow, Vernadsky Inst. (GEOKHI), 27-28. [5] Thomas, P.C., Veverka, J., Helfenstein, P., Porco, C. et al. (2006) Shapes of the saturnian icy satellites // Lunar and Planetary Science Conference XXXVII, Houston, USA, Abstract 1639 pdf. CD-ROM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002cosp...34E.561Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002cosp...34E.561Q"><span>Study of Linear and Nonlinear Waves in Plasma Crystals Using the Box_Tree Code</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qiao, K.; Hyde, T.; Barge, L.</p> <p></p> <p>Dusty plasma systems play an important role in both astrophysical and planetary environments (protostellar clouds, planetary ring systems and magnetospheres, cometary environments) and laboratory settings (plasma processing or nanofabrication). Recent research has focussed on defining (both theoretically and experimentally) the different types of wave mode propagations, which are possible within plasma crystals. This is an important topic since several of the fundamental quantities for characterizing such crystals can be obtained directly from an analysis of the wave propagation/dispersion. This paper will discuss a num rical model fore 2D-monolayer plasma crystals, which was established using a modified box tree code. Different wave modes were examined by adding a time dependent potential to the code designed to simulate a laser radiation perturbation as has been applied in many experiments. Both linear waves (for example, longitudinal and transverse dust lattice waves) and nonlinear waves (solitary waves) are examined. The output data will also be compared with the results of corresponding experiments and discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6721191-experiments-tropical-stratospheric-mean-wind-variations-spectral-general-circulation-model','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6721191-experiments-tropical-stratospheric-mean-wind-variations-spectral-general-circulation-model"><span>Experiments on tropical stratospheric mean-wind variations in a spectral general circulation model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hamilton, K.; Yuan, L.</p> <p>1992-12-15</p> <p>A 30-level version of the rhomboidal-15 GFDL spectral climate model was constructed with roughly 2-km vertical resolution. This model fails to produce a realistic quasi-biennial oscillation (QBO) in the tropical stratosphere. Several simulations were conducted in which the zonal-mean winds and temperatures in the equatorial lower and middle stratosphere were instantaneously perturbed and the model was integrated while the mean state relaxed toward its equilibrium. The time scale for the mean wind relaxation varied from over one month at 40 km to a few months in the lower stratosphere. The wind relaxations in the model also displayed the downward phasemore » propagation characteristic of QBO wind reversals, and mean wind anomalies of opposite sign to the imposed perturbation appear at higher levels. In the GCM the downward propagation is clear only above about 20 mb. Detailed investigations were made of the zonal-mean zonal momentum budget in the equatorial stratosphere. The mean flow relaxations above 20 mb were mostly driven by the vertical Eliassen-Palm flux convergence. The anomalies in the horizontal Eliassen-Palm fluxes from extratropical planetary waves were found to be the dominant effect forcing the mean flow to its equilibrium at altitudes below 20 mb. The vertical eddy momentum fluxes near the equator in the model were decomposed using space-time Fourier analysis. While total fluxes associated with easterly and westerly waves are comparable to those used in simple mechanistic models of the QBO, the GCM has its flux spread over a broad range of wavenumbers and phase speeds. The effects of vertical resolution were studied by repeating part of the control integration with a 69-level version of the model with greatly enhance vertical resolution in the lower and middle stratosphere. The results showed that there is almost no sensitivity of the simulation in the tropical stratosphere to the increased vertical resolution. 34 refs., 16 figs., 3 tabs.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA630788','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA630788"><span>The Analysis, Numerical Simulation, and Diagnosis of Extratropical Weather Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2003-09-30</p> <p>The Analysis, Numerical Simulation, and Diagnosis of Extratropical Weather Systems Dr. Melvyn A. Shapiro NOAA/Office of Weather and Air Quality...predictability of extratropical cyclones. APPROACH My approach toward achieving the above objectives has been to foster national and...TITLE AND SUBTITLE The Analysis, Numerical Simulation, and Diagnosis of Extratropical Weather Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005JAtS...62.1694B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005JAtS...62.1694B"><span>A New Multiscale Model for the Madden-Julian Oscillation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Biello, Joseph A.; Majda, Andrew J.</p> <p>2005-06-01</p> <p>A multiscale model of the MJO is developed here that accounts, in a simplified fashion, for both the upscale transfer from synoptic to planetary scales of momentum and temperature from wave trains of thermally driven equatorial synoptic-scale circulations in a moving convective envelope as well as direct mean heating on planetary scales. This model involves idealized thermally driven congestus synoptic-scale fluctuations in the eastern part of the moving wave envelope and convective superclusters in the western part of the envelope. The model self-consistently reproduces qualitatively many of the detailed structural features of the planetary circulation in the observations of the MJO, including the vertical structure in both the westerly onset region and the strong westerly wind burst region, as well as the horizontal quadrupole planetary vortex structure. The westerly midlevel inflow in the strong westerly region and the quadrupole vortex are largely produced in the model by the upscale transport of momentum to the planetary scales, while the midlevel easterly jet in the westerly onset region is substantially strengthened by this process. The role of wave trains of tilted organized synoptic-scale circulations is crucial for this fidelity with observations. The appeal of the multiscale models developed below is their firm mathematical underpinnings, simplicity, and analytic tractability while remaining self-consistent with many of the features of the observational record.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA41A2608Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA41A2608Z"><span>Planetary Wave-Tide Interactions in Atmosphere-Ionosphere Coupling, Xiaoli Zhang, Jeffrey M. Forbes, Astrid Maute, and Maura E. Hagan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, X.; Forbes, J. M.; Maute, A. I.</p> <p>2017-12-01</p> <p>Planetary Wave-Tide Interactions in Atmosphere-Ionosphere Coupling Xiaoli Zhang, Jeffrey M. Forbes, Astrid Maute, and Maura E. Hagan The existence of secondary waves in the mesosphere and thermosphere due to nonlinear interactions between atmospheric tides and longer-period waves have been revealed in both satellite data and in the National Center for Atmospheric Research (NCAR) Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM). The longer-period waves include the quasi-2-day and 6-day westward-propagating "normal modes" of the atmosphere, and eastward-propagating ultra-fast Kelvin waves with periods between 2 and 4 days. The secondary waves add to both the temporal and longitude variability of the atmosphere beyond that associated with the linear superposition of the interacting waves, thus adding "complexity" to the system. Based on our knowledge of the processes governing atmosphere-ionosphere interactions, similar revelations are expected to occur in electric fields, vertical plasma drifts and F-region electron densities. Towards this end, examples of such ionospheric manifestations of wave-wave interactions in TIE-GCM simulations will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JASTP..90..172M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JASTP..90..172M"><span>Analysis of wave-like oscillations in parameters of sporadic E layer and neutral atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mošna, Z.; Koucká Knížová, P.</p> <p>2012-12-01</p> <p>The present study mainly concerns the wave-like activity in the ionospheric sporadic E layer (Es) and in the lower lying stratosphere. The proposed analysis involves parameters describing the state of plasma in the sporadic E layer. Critical frequencies foEs and layer heights hEs were measured at the Pruhonice station (50°N, 14.5°E) during summer campaigns 2004, 2006 and 2008. Further, we use neutral atmosphere (temperature data at 10 hPa) data from the same time interval. The analysis concentrates on vertically propagating wave-like structures within distant atmospheric regions. By means of continuous wavelet transform (CWT) we have detected significant wave-like oscillation at periods covering tidal and planetary oscillation domains both in the Es layer parameters (some of them were reported earlier, for instance in works of Abdu et al., 2003; Pancheva and Mitchel, 2004; Pancheva et al., 2003; Šauli and Bourdillon, 2008) and in stratospheric temperature variations. Further analyses using cross wavelet transform (XWT) and wavelet coherence analysis (WTC) show that despite high wave-like activity in a wide period range, there are only limited coherent wave-like bursts present in both spectra. Such common coherent wave bursts occur on periods close to eigen-periods of the terrestrial atmosphere. We suppose that vertical coupling between atmospheric regions realized by vertically propagating planetary waves occurs predominantly on periods close to those of Rossby modes. Analysis of the phase shift between data from distant atmospheric regions reveals high variability and very likely supports the non-linear scenario of the vertical coupling provided by planetary waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA561861','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA561861"><span>Climatological Factors Affecting Electromagnetic Surface Ducting in the Aegean Sea Region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-03-01</p> <p>low precipitation, and northeasterly winds, all due to changes in large scale circulations and a northward shift in extratropical storm tracks. The...differences over the Aegean region, that are governed by large-scale climate factors. a. Winter During winter, the Aegean area is subject to extratropical ... extratropical cyclones from entering the Aegean region, while opposite shifts can 18 allow extratropical cyclones to more frequently enter the Aegean</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA579958','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA579958"><span>Long-Range Forecasting of Surface Air Temperature and Precipitation for the Korean Peninsula</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-03-01</p> <p>tropics and extratropics and tend to produce their maximum extratropical impacts in the winter hemisphere. For example, ENLN have been shown to...convection anomalies during the summer that can extend across large portions of the extratropics (Figure 3). This tropical convection is significantly...anomalously frequent (less frequent) and strong (weak) extratropical cyclones tracking in a more northerly (southerly) path across the North Atlantic</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920001742','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920001742"><span>Investigation of the small-scale structure and dynamics of Uranus' atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Eshleman, Von R.; Hinson, David P.</p> <p>1991-01-01</p> <p>This document constitutes the final technical report of the Uranus Analysis Program. Papers and/or abstracts resulting from this research are presented. The following topics are covered: (1) past and future of radio occultation studies of planetary atmospheres; (2) equatorial waves in the stratosphere of Uranus; (3) the atmosphere of Uranus- results of radio occultation measurements with Voyager 2; (4) Uranus' atmospheric dynamics and circulation; (5) small-scale structure and dynamics in the atmosphere of Uranus; (6) evidence for inertia-gravity waves in the stratosphere of Uranus derived from Voyager 2 radio occultation data; and (7) planetary waves in the equatorial stratosphere of Uranus.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.3394A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.3394A"><span>Projected changes in significant wave height toward the end of the 21st century: Northeast Atlantic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aarnes, Ole Johan; Reistad, Magnar; Breivik, Øyvind; Bitner-Gregersen, Elzbieta; Ingolf Eide, Lars; Gramstad, Odin; Magnusson, Anne Karin; Natvig, Bent; Vanem, Erik</p> <p>2017-04-01</p> <p>Wind field ensembles from six CMIP5 models force wave model time slices of the northeast Atlantic over the last three decades of the 20th and the 21st centuries. The future wave climate is investigated by considering the RCP4.5 and RCP8.5 emission scenarios. The CMIP5 model selection is based on their ability to reconstruct the present (1971-2000) extratropical cyclone activity, but increased spatial resolution has also been emphasized. In total, the study comprises 35 wave model integrations, each about 30 years long, in total more than 1000 years. Here annual statistics of significant wave height are analyzed, including mean parameters and upper percentiles. There is general agreement among all models considered that the mean significant wave height is expected to decrease by the end of the 21st century. This signal is statistically significant also for higher percentiles, but less evident for annual maxima. The RCP8.5 scenario yields the strongest reduction in wave height. The exception to this is the north western part of the Norwegian Sea and the Barents Sea, where receding ice cover gives longer fetch and higher waves. The upper percentiles are reduced less than the mean wave height, suggesting that the future wave climate has higher variance than the historical period.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT........81W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT........81W"><span>A Study of the Extratropical Tropopause from Observations and Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Shu Meir</p> <p></p> <p>The extratropical tropopause is a familiar feature in meteorology; however, the understanding of the mechanisms for its existence, formation, maintenance and sharpness is still an active area of research. Son and Povalni (2007) used a simple general circulation model to produce the TIL (Tropopause Inversion Layer), and they found that the extratropical tropopause is more sensitive to the change of the horizontal resolution than to the change of the vertical resolution. The extratropical tropopause is sharper and lower in higher horizontal resolution. They also successfully mimicked the seasonal variation of the extratropical tropopause by changing the Equator-to-Pole temperature difference. They found these features of the extratropical tropopause, but they did not explain why these features were seen in their simplified model. In this research, we try to explain why these features of the extratropical tropopause are seen from both observations and the models. I have shown in my MS thesis that the distance from the jet is more associated with the extratropical tropopause than is the upper tropospheric relative vorticity (Wirth, 2001) from observations. In this research, the reproduction of the work is done from both the idealized and the full model run, and the results are similar to those from the observations, which show that even on synoptic time scales, the distance from the jet is more important in determining the extratropical tropopause height than is the upper tropospheric relative vorticity. It also explains the seasonal variations of the extratropical tropopause since the jet is more poleward in summer than in winter (the Equator-to-Pole temperature difference is smaller in summer than in winter), thus there is larger area at south of the jet which means the extratropical tropopause is sharper and higher at midlatitudes in summer than in winter. We believe that baroclinic mixing of PV is the key factor that sharpens the extratropical tropopause, and adequate horizontal resolution is needed to resolve the baroclinic mixing and the small-scale filamentary structures. We used many methods in this study to show that there is more baroclinic activity seen in higher horizontal resolution. We also compared the correlations of the tropopause height with three variations in different quantities (PV fluxes, the upper tropospheric vorticity, and heat fluxes), and found that the correlations of the tropopause height and PV fluxes are the highest among the three. Thus, we conclude that baroclinic mixing is the most important factor that controls the extratropical tropopause sharpness. This also explains why the extratropical tropopause is sharper at midlatitudes when higher horizontal resolution is used (see figure 2.4 in the thesis and figure 2 in Son and Polvani's (2007)) since there is more baroclinic activity in the higher horizontal resolution models. Since there is more baroclinic activity seen in higher horizontal resolution, the baroclinic eddy drag is larger, which intensifies the thermally direct cell. The stronger thermally direct cell with higher horizontal resolution has greater downward motion in higher latitudes, and thus lowers the extratropical tropopause more in higher horizontal resolution models, which explains why the extratropical tropopause is lower in higher horizontal than in lower horizontal resolution models, as in Son and Polvani's (2007) paper.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140017709','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140017709"><span>Probability of US Heat Waves Affected by a Subseasonal Planetary Wave Pattern</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Teng, Haiyan; Branstator, Grant; Wang, Hailan; Meehl, Gerald A.; Washington, Warren M.</p> <p>2013-01-01</p> <p>Heat waves are thought to result from subseasonal atmospheric variability. Atmospheric phenomena driven by tropical convection, such as the Asian monsoon, have been considered potential sources of predictability on subseasonal timescales. Mid-latitude atmospheric dynamics have been considered too chaotic to allow significant prediction skill of lead times beyond the typical 10-day range of weather forecasts. Here we use a 12,000-year integration of an atmospheric general circulation model to identify a pattern of subseasonal atmospheric variability that can help improve forecast skill for heat waves in the United States. We find that heat waves tend to be preceded by 15-20 days by a pattern of anomalous atmospheric planetary waves with a wavenumber of 5. This circulation pattern can arise as a result of internal atmospheric dynamics and is not necessarily linked to tropical heating.We conclude that some mid-latitude circulation anomalies that increase the probability of heat waves are predictable beyond the typical weather forecast range.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19740020969&hterms=Wave+Energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DWave%2BEnergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19740020969&hterms=Wave+Energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DWave%2BEnergy"><span>The aurora as a source of planetary-scale waves in the middle atmosphere. [atmospheric turbulence caused by auroral energy absorption</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chiu, Y. T.; Straus, J. M.</p> <p>1974-01-01</p> <p>Photographs of global scale auroral forms taken by scanning radiometers onboard weather satellites in 1972 show that auroral bands exhibit well organized wave motion with typical zonal wave number of 5 or so. The scale size of these waves is in agreement with that of well organized neutral wind fields in the 150- to 200-km region during the geomagnetic storm of May 27, 1967. Further, the horizontal scale size revealed by these observations are in agreement with that of high altitude traveling ionospheric disturbances. It is conjectured that the geomagnetic storm is a source of planetary and synoptic scale neutral atmospheric waves in the middle atmosphere. Although there is, at present, no observation of substorm related waves of this scale size at mesospheric and stratospheric altitudes, the possible existence of a new source of waves of the proper scale size to trigger instabilities in middle atmospheric circulation systems may be significant in the study of lower atmospheric response to geomagnetic activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008epsc.conf..965K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008epsc.conf..965K"><span>Equatorial Cross-Cutting Ripples on Titan - Regularly Warped Subsiding Methane Plains, not Eolian Dunes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kochemasov, G. G.</p> <p>2008-09-01</p> <p>Widely circulating opinion that titanian methane lowlands in a broad equatorial region are covered with eolian formations needs to be carefully checked. Of coarse, all three solid bodies with atmospheres in the inner solar system have dunes. Why do not have them on Titan? Most probably they do exist but discovered by radar up to now cross-cutting rippling features cannot be taken for them. For this there are several reasons. How it can be that prevailing "dune" strike coincides with prevailing wind direction? Normally (with some African exceptions) one sees real terrestrial dunes stretching across winds. And this is understandable from a point of view eolian dunes formation. This formation gives particular cross profile to dunes. Asymmetric profile - one slope is long and gentle and another one short and abrupt. But titanian "dunes" are mostly uniform and symmetric. And this characteristic is preserved for many hundreds of kilometers of very straight features. Then, the finest solid particles precipitation from the thick atmosphere of Titan should be distributed on the satellite surface more uniformly and cover dark lowlands and light icy highlands of the wide equatorial belt more or less evenly. But "dunes" are strictly associated with dark lowlands and tend to turn round light icy obstacles. Cindering smoggy particles to produce sands for making dunes is a pure imagination. Then, radar preferably sees one direction but nevertheless one or more crossing directions of rippling are distinguished (Fig.3, 4) They mean two wind directions at the same time or another wind direction at another time? If so, the earlier "dunes" should be more or less obliterated by the later ones. Nothing of the kind! Both crossing ripples directions are fresh. Then, eolian action is not seen at the higher latitudes (Fig. 5). There are no winds there? Probably it is not so. Only a liquid state of methane can help (but liquid should be disturbed by winds). Solid methane there is also probable. Very regular cross-cutting wavy forms hundred and thousand kilometers long have a spacing between ridges or grooves about 1-2 km (?) (PIA03555, PIA03566, PIA03567, PIA03568 ) or 10-20 km (PIA08454) -so called "cat scratches". The most long and wide ridge-groove system observed up to now (PIA08454 - a swath 6150 km long, 1120 km wide, almost a half length of the great planetary circle!) has the ridge-to-ridge spacing about 10-20 km; a width of ridges and grooves is nearly equal with variations to both sides; ridges are more bright, grooves are more dark; intersections of the ridge-groove systems creates chains of roundish features ("craters") of characteristic size (Fig. 3, 4). Observed wavy systems resemble dunes only at the first glance but actually are deformations of the ice-methane crust by very fine inertia-gravity waves aroused by the satellite movement in non-round elliptical keplerian orbit [3]. This movement with periodically changing accelerations arouse inertia-gravity forces and waves warping any celestial body notwithstanding its size, mass, density, chemical composition or physical state. In rotating bodies (but all bodies rotate!) these warping waves have a stationary character and 4 cross-cutting directions- ortho- and diagonal - producing uplifted (+), subsided (-) and neutral (0) tectonic blocks. Wavelengths are different but tied as harmonics. The fundamental wave1 produces ubiquitous tectonic dichotomy -two segments (2πR-structure), the first harmonics wave2 produces tectonic sectors (πR-structures) [1]. This structurization is adorned by individual for any body waves whose lengths are inversely proportional to their orbital frequencies: higher frequency - smaller waves and, vice versa, lower frequency - larger waves. These waves produce tectonic granules. There is a row of increasing granule sizes strictly tied to orbital frequencies: Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1. In this row Titan with its orbital frequency around its central body Saturn about 16 days occupies position before Mercury -πR/91 (Fig. 1). But Titan as a satellite has also another frequency around Sun - that of its master Saturn. A wave created by this frequency is too large to be confined in Titan (7.5πR granule) but it can, according to the wave theory modulate the higher frequency (the wave with granule πR/91) creating two side frequencies. They are obtained by division and multiplication of the higher frequency by the lower one: the modulations give the sizes πR/12 or 670 km and πR/667 or 12 km [(1/91 x 7.5)πR and (1/91 : 7.5)πR]. Both 670 and 12 km sizes are discernable on Titan's radar image PIA08454. The first as roundish white and dark areas (these granules were discerned and calculated earlier on the Hubble image of Titan in pre-Cassini era [2]). The second size is produced by an intersection of regular wavings-ripples (erroneously interpreted as dunes) with spacing about 10-20 km covering mainly smooth dark near equatorial parts of the satellite (Fig. 4). Titan's dichotomy -an opposition of mostly light (Xanadu) and dark hemispheres - is well known and also represents the wave structurization (2πR-structure). Often observed an essential difference in appearance and structure between tropical and extra-tropical zones of various heavenly bodies belonging to terrestrial rocky planets, giant gas planets, icy satellites (Fig.5, Titan) compels to look for a common reason of such phenomenon. All bodies rotate and their spherical shape makes zones at different latitudes to have differing angular momenta as a distance to the rotation axis diminishes gradually from the equator to the poles. As a single rotating planetary body tends to have angular momenta of its tectonic blocks equilibrated it starts mechanisms leveling this basic physical property. At equatorial zones (bulged also due to the rotation ellipsoid) the outer shell - crust tends to be destroyed, sunk, subsided and shrunk EPSC Abstracts, Vol. 3, EPSC2008-A-00029, 2008 European Planetary Science Congress, Author(s) 2008 as a consequence. At Titan this common planetary feature is expressed very clearly: subsiding dark plains at the equatorial region are not only widespread but also intensively warped (Fig. 2-4). This ubiquitous cross-cutting rippling in response to subsidence should not be confused with eolian forms [3]. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1, # 3, 700; [2] Kochemasov G.G. (2000) Titan: frequency modulation of warping waves // Geophys. Res. Abstr., v. 2, CD). [3] Kochemasov G.G. EUROPLANET-2006 Science Congress, Berlin, Germany, Sept. 22-26, 2006. Abstr. EPSC2006-A-00045 (CD-ROM).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990101871','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990101871"><span>Global Observation of Planetary-Scale Waves in UARS HRDI and WINDII MLT Winds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lieberman, Ruth</p> <p>1999-01-01</p> <p>The purpose of this study is to use examine planetary-scale motions in the UARS mesosphere and lower thermospheric data. The actual study was confined to HRDI winds and temperatures, since these observations were more continuous, and spanned the 60-120 km range. Three classes of waves were studied: fast equatorial Kelvin waves, nonmigrating tides, and the midlatitude 2-day wave. The purpose of the Kelvin wave and the 2-day wave studies was to test whether the waves significantly affect the mean flow. Such studies require high-quality spectral definitions in order to derive the wave heat and momentum flux divergence which can act in comination to drive the mean flow. Accordingly, HRDI winds from several special observing campaigns were used for analyses of fast (periods under 5 days) waves. The campaigns are characterized by continuous viewing by HRDI in 2 viewing directions, for periods of 10-12 days. Data sampled in this manner lend themselves quite well to "asynoptic spectral analysis", from which motions with periods as low as one day can be retrieved with relatively minimal aliasing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910034074&hterms=wave+oscillation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dwave%2Boscillation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910034074&hterms=wave+oscillation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dwave%2Boscillation"><span>Vertical structure and characteristics of 23-60 day (zonal) oscillations over the tropical latitudes during the winter months of 1986 - Results of equatorial wave campaign-II</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Raghavarao, R.; Suhasini, R.; Sridharan, R.; Krishnamurthy, B. V.; Nagpal, O. P.</p> <p>1990-01-01</p> <p>Results are presented of the equatorial wave campaign-II, a meteorological rocket study which was part of the Indian Middle Atmosphere Program. The equatorial wave campaign-II was conducted from Shar, India (13.7 deg N, 80.2 deg E) from January 15-February 28, 1986. By means of high altitude balloon and the RH-200 meteorological rocket, winds were measured from ground level up to 60 km altitude once each day during the 45-day period. The oscillation frequencies of the deviations in the east-west component of the winds from their mean at each 1-km height interval are obtained by the maximum entropy method. The phases and amplitudes of these frequencies are determined by use of the least squares method on the wind variation time series. Enhanced wave activity is shown to take place in the troposphere and lower mesosphere. The tropospheric waves observed suggest themselves to be Rossby waves of extratropical origin penetrating to tropical latitudes. The observed stratospheric/mesospheric waves appear to emanate from a source around the stratopause.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ERL....12f4011B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ERL....12f4011B"><span>Tropical circulation and precipitation response to ozone depletion and recovery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brönnimann, Stefan; Jacques-Coper, Martín; Rozanov, Eugene; Fischer, Andreas M.; Morgenstern, Olaf; Zeng, Guang; Akiyoshi, Hideharu; Yamashita, Yousuke</p> <p>2017-06-01</p> <p>Among the few well established changes in atmospheric circulation in recent decades are those caused by stratospheric ozone depletion. They include a strengthening and poleward contraction of the westerly atmospheric circulation over the Southern extratropics, i.e. a strengthening Southern Annular Mode (SAM), in austral spring and summer. Associated effects on extratropical temperature and precipitation and more recently subtropical precipitation have been documented and are understood in a zonal mean framework. We present zonally asymmetric effects of ozone depletion that reach into the tropics and affect atmospheric circulation and precipitation, including the South Pacific Convergence Zone (SPCZ), the most important rainband of the Southern Hemisphere. Using observation-based analyses and model simulations we show that over the 1961-1996 period, ozone depletion led to increased precipitation at the northern flank of the SPCZ and to decreased precipitation to the south. The effects originate from a flow pattern over the southwestern Pacific that extends equatorward and alters the propagation of synoptic waves and thus the position of the SPCZ. Model simulations suggest that anticipated stratospheric ozone recovery over the next decades will reverse these effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20090004538&hterms=iav&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Diav','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20090004538&hterms=iav&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Diav"><span>Interannual Variability and Trends of Extratropical Ozone, Part II: Southern Hemisphere. Part 2; Southern Hemisphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yung, Y. L.</p> <p>2008-01-01</p> <p>A principal component analysis (PCA) is applied to the Southern Hemisphere (SH) total column ozone following the method established for analyzing the data in the Northern Hemisphere (NH) in a companion paper. The interannual variability (IAV) of extratropical O-3 in the SH is characterized by four main modes, which account for 75% of the total variance. The first two leading modes are approximately zonally symmetric and relate to the Southern Hemisphere annular mode and the quasi-biennial oscillation. The third and fourth modes exhibit wavenumber-1 structures. Contrary to the Northern Hemisphere, the third and fourth are nor related to stationary waves. Similar results obtained for the 30 100-hPa geopotential thickness.The decreasing O3 trend in the SH is captured in the first mode. The largest trend is at the South Pole, with value similar to-2 Dobson Units (DU)/yr. Both the spatial pattern and trends in the column ozone are captured by the Goddard Earth Observation System chemistry-climate model (GEOS-CCM) in the SH.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRE..123..246G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRE..123..246G"><span>Equatorial Oscillation and Planetary Wave Activity in Saturn's Stratosphere Through the Cassini Epoch</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guerlet, S.; Fouchet, T.; Spiga, A.; Flasar, F. M.; Fletcher, L. N.; Hesman, B. E.; Gorius, N.</p> <p>2018-01-01</p> <p>Thermal infrared spectra acquired by Cassini/Composite InfraRed Spectrometer (CIRS) in limb-viewing geometry in 2015 are used to derive 2-D latitude-pressure temperature and thermal wind maps. These maps are used to study the vertical structure and evolution of Saturn's equatorial oscillation (SEO), a dynamical phenomenon presenting similarities with the Earth's quasi-biennal oscillation (QBO) and semi-annual oscillation (SAO). We report that a new local wind maximum has appeared in 2015 in the upper stratosphere and derive the descent rates of other wind extrema through time. The phase of the oscillation observed in 2015, as compared to 2005 and 2010, remains consistent with a ˜15 year period. The SEO does not propagate downward at a regular rate but exhibits faster descent rate in the upper stratosphere, combined with a greater vertical wind shear, compared to the lower stratosphere. Within the framework of a QBO-type oscillation, we estimate the absorbed wave momentum flux in the stratosphere to be on the order of ˜7 × 10-6 N m-2. On Earth, interactions between vertically propagating waves (both planetary and mesoscale) and the mean zonal flow drive the QBO and SAO. To broaden our knowledge on waves potentially driving Saturn's equatorial oscillation, we searched for thermal signatures of planetary waves in the tropical stratosphere using CIRS nadir spectra. Temperature anomalies of amplitude 1-4 K and zonal wave numbers 1 to 9 are frequently observed, and an equatorial Rossby (n = 1) wave of zonal wave number 3 is tentatively identified in November 2009.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA481224','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA481224"><span>The Predictability of Extratropical Transition and of its Impact on the Downstream Flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2008-03-28</p> <p>is predicted to reach a continent as an extratropical storm . Arguably the larger impact on predictability, however, occurs due to the above mentioned...Office of Naval Research Project The Predictability of Extratropical Transition and of its Impact on the Downstream Flow Award Number: N00014-06-1...12 0 76128 Karlsruhe 0 March 28, 2008 1 * 4 -d 60-( CONTENTS 3 Contents 1 Objectives 5 2 Scientific Importance 6 3 Extratropical Transition in</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EPSC....8..675T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EPSC....8..675T"><span>Atmospheric waves on Venus as seen by the Venus Express Radio Science Experiment VeRa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tellmann, S.; Häusler, B.; Hinson, D. P.; Tyler, G. L.; Andert, T. P.; Bird, M. K.; Imamura, T.; Pätzold, M.; Remus, S.</p> <p>2013-09-01</p> <p>Next to quasi-horizontal waves and eddies on near planetary scales, diurnally forced eddies and thermal tides, small-scale gravity waves and turbulence play a significant role in the development and maintenance of atmospheric super rotation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140011361','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140011361"><span>Sensitivity of the Atmospheric Response to Warm Pool El Nino Events to Modeled SSTs and Future Climate Forcings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hurwitz, Margaret M.; Garfinkel, Chaim I.; Newman, Paul A.; Oman, Luke D.</p> <p>2013-01-01</p> <p>Warm pool El Nino (WPEN) events are characterized by positive sea surface temperature (SST) anomalies in the central equatorial Pacific. Under present-day climate conditions, WPEN events generate poleward propagating wavetrains and enhance midlatitude planetary wave activity, weakening the stratospheric polar vortices. The late 21st century extratropical atmospheric response to WPEN events is investigated using the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM), version 2. GEOSCCM simulations are forced by projected late 21st century concentrations of greenhouse gases (GHGs) and ozone-depleting substances (ODSs) and by SSTs and sea ice concentrations from an existing ocean-atmosphere simulation. Despite known ocean-atmosphere model biases, the prescribed SST fields represent a best estimate of the structure of late 21st century WPEN events. The future Arctic vortex response is qualitatively similar to that observed in recent decades but is weaker in late winter. This response reflects the weaker SST forcing in the Nino 3.4 region and subsequently weaker Northern Hemisphere tropospheric teleconnections. The Antarctic stratosphere does not respond to WPEN events in a future climate, reflecting a change in tropospheric teleconnections: The meridional wavetrain weakens while a more zonal wavetrain originates near Australia. Sensitivity simulations show that a strong poleward wavetrain response to WPEN requires a strengthening and southeastward extension of the South Pacific Convergence Zone; this feature is not captured by the late 21st century modeled SSTs. Expected future increases in GHGs and decreases in ODSs do not affect the polar stratospheric responses to WPEN.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17..847P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17..847P"><span>Synoptic-Scale Behavior of the Extratropical Tropopause Inversion Layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pilch Kedzierski, Robin; Matthes, Katja; Bumke, Karl</p> <p>2015-04-01</p> <p>The Tropopause Inversion Layer (TIL) is a climatological feature of the tropopause region, characterized by enhanced static stability and strong temperature inversion in a thin layer (about 1km deep) right above the tropopause. It was discovered recently via tropopause-based averaging [Birner 2002]. The sharp static stability, temperature and wind shear gradients of the TIL theoretically shall inhibit stratosphere-troposphere exchange and influence the vertical propagation of planetary scale Rossby and small-scale gravity waves. High vertically resolved radiosonde and GPS radio occultation measurements show that the strength of the TIL is positively correlated with the tropopause height and anticyclonic conditions, and that it reaches its maximum strength in polar regions during summer [Birner 2006] [Randel and Wu, 2007 and 2010]. Our study takes advantage of the high density of vertical profiles (~2000 measurements per day, globally) measured by the COSMIC satellites (2007-present), in order to describe the synoptic-scale structures of the TIL and the differences between the seasonal climatologies from earlier studies and the real-time TIL. Also, using ERA-Interim reanalysis wind fields, we split relative vorticity into shear and curl terms and study separately their relation to TIL strength in cyclonic-anticyclonic conditions. We find that the TIL has a rich zonal structure, especially in midlatitude winter, and that its strength is instantly adjusted to the synoptic situation at near-tropopause level. The peaks of strongest TIL at midlatitude ridges in winter are stronger and much more frequent than any peaks found in polar summer. The roles of shear and curl vorticity differ substantially towards higher values of relative vorticity (both cyclonic and anticyclonic).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900002759','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900002759"><span>Use of satellite data and modeling to asses the influence of stratospheric processes on the troposphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nathan, Terrence R.; Yarger, Douglas N.</p> <p>1989-01-01</p> <p>The research is comprised of the following tasks: use of simple analytical and numerical models of a coupled troposphere-stratosphere system to examine the effects of radiation and ozone on planetary wave dynamics and the tropospheric circulation; use of satellite data obtained from the Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS) instrument and Solar Backscattered Ultraviolet (SBUV) experiment, in conjunction with National Meteorological Center (NMC) data, to determine the planetary wave vertical structures, dominant wave spectra, ozone spectra, and time variations in diabatic heating rate; and synthesis of the modeling and observational results to provide a better understanding of the effects that stratospheric processes have on tropospheric dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960038408','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960038408"><span>Planetary and synoptic-scale interactions during the life cycle of a mid-latitude blocking anticyclone over the North Atlantic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, Phillip J.</p> <p>1995-01-01</p> <p>The formation of a blocking anticyclone over the North Atlantic has been examined over its entire life-CyCle using the Zwack-Okossi (Z-O) equation as the diagnostic tool. This blocking anticyclone occurred in late October and early November of 1985. The data used were provided by the NASA Goddard Laboratory for Atmospheres on a global 2.O degree latitude by 2.5 degree longitudinal grid. The horizontal distribution of the atmospheric forcing mechanisms that were important to 500 mb block formation, maintenance and decay were examined. A scale-partitioned form of the Z-O equation was then used to examine the relative importance of forcing on the planetary and synoptic scales, and their interactions. As seen in previous studies, the results presented here show that upper tropospheric anticyclonic vorticity advection was the most important contributor to block formation and maintenance. However, adiabatic warming, and vorticity tilting were also important at various times during the block lifetime. In association with precursor surface cyclogenesis, the 300 mb jet streak in the downstream (upstream) from a long-wave trough (ridge) amplified significantly. This strengthening of the jet streak enhanced the anti-cyclonic vorticity advection field that aided the amplification of a 500 mb short-wave ridge. Tile partitioned height tendency results demonstrate that the interactions between the planetary and sn,noptic-scale through vorticity advection was the most important contributor to block formation. Planetary-scale, synoptic-scale. and their interactions contributed weakly to the maintenance of the blocking anticyclone with the advection of synoptic-scale vorticity by the planetary-scale flow playing a more important role. Planetary-scale decay ofthe long-wave ridge contributed to the demise of this blocking event.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.U24B..01L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.U24B..01L"><span>Assessing Extratropical Influence on Tropical Climatology and Variability with Regional Coupled Data Assimilation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lu, F.; Liu, Z.; Liu, Y.; Zhang, S.; Jacob, R. L.</p> <p>2017-12-01</p> <p>The Regional Coupled Data Assimilation (RCDA) method is introduced as a tool to study coupled climate dynamics and teleconnections. The RCDA method is built on an ensemble-based coupled data assimilation (CDA) system in a coupled general circulation model (CGCM). The RCDA method limits the data assimilation to the desired model components (e.g. atmosphere) and regions (e.g. the extratropics), and studies the ensemble-mean model response (e.g. tropical response to "observed" extratropical atmospheric variability). When applied to the extratropical influence on tropical climate, the RCDA method has shown some unique advantages, namely the combination of a fully coupled model, real-world observations and an ensemble approach. Tropical variability (e.g. El Niño-Southern Oscillation or ENSO) and climatology (e.g. asymmetric Inter-Tropical Convergence Zone or ITCZ) were initially thought to be determined mostly by local forcing and ocean-atmosphere interaction in the tropics. Since late 20th century, numerous studies have showed that extratropical forcing could affect, or even largely determine some aspects of the tropical climate. Due to the coupled nature of the climate system, however, the challenge of determining and further quantifying the causality of extratropical forcing on the tropical climate remains. Using the RCDA method, we have demonstrated significant control of extratropical atmospheric forcing on ENSO variability in a CGCM, both with model-generated and real-world observation datasets. The RCDA method has also shown robust extratropical impact on the tropical double-ITCZ bias in a CGCM. The RCDA method has provided the first systematic and quantitative assessment of extratropical influence on tropical climatology and variability by incorporating real world observations in a CGCM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1025149','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1025149"><span>Publications of the U.S. Army Engineer Research and Development Center: October 1999-December 2015</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2017-01-01</p> <p>Ebeling, R.W. Strom, J.E. Hite Jr., R.W. Haskins, and J.A. Evans ADA582963 ERDC TR-13-4 Aug 2013 Small Wind Turbine Installation Compatibility...M.W. Tubman ADA469604 ERDC/CHL TR-07-4 Jul 2007 Laboratory Study of Wind Effect on Runup over Fringing Reefs. Report 1, Data Report, by Z...Extratropical Storm Wind , Wave, and Water Level Climatology for the Offshore Mid-Atlantic, by M.F. Forte and J.L. Hanson ADA621324 ERDC/CHL TR</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150020913','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150020913"><span>Consideration of Dynamical Balances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Errico, Ronald M.</p> <p>2015-01-01</p> <p>The quasi-balance of extra-tropical tropospheric dynamics is a fundamental aspect of nature. If an atmospheric analysis does not reflect such balance sufficiently well, the subsequent forecast will exhibit unrealistic behavior associated with spurious fast-propagating gravity waves. Even if these eventually damp, they can create poor background fields for a subsequent analysis or interact with moist physics to create spurious precipitation. The nature of this problem will be described along with the reasons for atmospheric balance and techniques for mitigating imbalances. Attention will be focused on fundamental issues rather than on recipes for various techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840066730&hterms=air+asia&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dair%2Basia','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840066730&hterms=air+asia&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dair%2Basia"><span>The structure and energetics of midlatitude disturbances accompanying cold-air outbreaks over East Asia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lau, N.-C.; Lau, K.-M.</p> <p>1984-01-01</p> <p>The evolution of extratropical transient waves as they propagate eastward from the Eurasian land mass toward the Pacific during selected cold surge events in the winter Monsoon Experiment (MONEX) is studied. The outstanding cold surge episodes during MONEX are first identified, and the salient synoptic features related to these events are described using composite streamline charts. The structure of rapidly varying disturbances accompanying the cold surges and the associated energetics are examined, and the behavior of those fluctuations over relatively longer time scales is addressed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT.......238G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT.......238G"><span>Wave Driven Disturbances of the Thermal Structure in the Polar Winter Upper Stratosphere and Lower Mesosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Greer, Katelynn R.</p> <p></p> <p>The polar winter middle atmosphere is a dynamically active region that is driven primarily by wave activity. Planetary waves intermittently disturbed the region at different levels and the most spectacular type of disturbance is a major Sudden Stratospheric Warming (SSW). However, other types of extreme disturbances occur on a more frequent, intraseasonal basis. One such disturbance is a synoptic-scale "weather event" observed in lidar and rocket soundings, soundings from the TIMED/SABER instrument and UK Meteorological Office (MetO) assimilated data. These disturbances are most easily identified near 42 km where temperatures are elevated over baseline conditions by a remarkable 50 K and an associated cooling is observed near 75 km. As these disturbances have a coupled vertical structure extending into the lower mesosphere, they are termed Upper Stratospheric/Lower Mesospheric (USLM) disturbances. This research begins with description of the phenomenology of USLM events in observations and the assimilated data set MetO, develops a description of the dynamics responsible for their development and places them in the context of the family of polar winter middle atmospheric disturbances. Climatologies indicates that USLM disturbances are commonly occurring polar wintertime disturbances of the middle atmosphere, have a remarkably repeating thermal structure, are located on the East side of the polar low and are related planetary wave activity. Using the same methodology for identifying USLM events and building climatologies of these events, the Whole Atmosphere Community Climate Model WACCM version 4 is established to spontaneously and internally generate USLM disturbances. Planetary waves are seen to break at a level just above the stratopause and convergence of the EP-flux vector is occurring in this region, decelerating the eastward zonal-mean wind and inducing ageostrophic vertical motion to maintain mass continuity. The descending air increases the horizontal temperature gradient at 2 hPa and is responsible for the stratopause warming. Embedded in this planetary wave breaking process is baroclinic instability, as indicated by the Charney-Stern criteria and an EP-flux analysis decomposed by planetary and synoptic-scale waves. It is recognized that USLM events are part of a family of disturbances that occur in the polar winter middle atmosphere which have the potential to impact the entire atmospheric column. Relationships between USLM events, minor SSWs and major SSWs are examined and displayed through a Venn diagram which looked for events that were linked to each other (or not) by temporal evolution of the polar vortex within 14 days. Critically, every identified major SSW (in both MetO and WACCM) is preceded by a USLM disturbance, and the baroclinic instability that is embedded in the planetary wave breaking of USLM disturbances mark significant disruption to the middle atmosphere, which may aid in the forecast of major SSWs. This leads to the proposal of new dynamics based definitions of minor and major SSWs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040082210','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040082210"><span>Planetary-Scale Inertio Gravity Waves in the Numerical Spectral Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, H. G.; Mengel, J. R.; Talaat, E. R.; Porter, H. S.</p> <p>2004-01-01</p> <p>In the polar region of the upper mesosphere, horizontal wind oscillations have been observed with periods around 10 hours. Waves with such a period are generated in our Numerical Spectral Model (NSM), and they are identified as planetary-scale inertio gravity waves (IGW). These IGWs have periods between 9 and 11 hours and appear above 60 km in the zonal mean (m = 0), as well as in zonal wavenumbers m = 1 to 4. The waves can propagate eastward and westward and have vertical wavelengths around 25 km. The amplitudes in the wind field are typically between 10 and 20 m/s and can reach 30 m/s in the westward propagating component for m = 1 at the poles. In the temperature perturbations, the wave amplitudes above 100 km are typically 5 K and as large as 10 K for m = 0 at the poles. The IGWs are intermittent but reveal systematic seasonal variations, with the largest amplitudes occurring generally in late winter and spring. In the NSM, the IGW are generated like the planetary waves (PW). They are produced apparently by the instabilities that arise in the zonal mean circulation. Relative to the PWs, however, the IGWs propagate zonally with much larger velocities, such that they are not affected much by interactions with the background zonal winds. Since the IGWs can propagate through the mesosphere without much interaction, except for viscous dissipation, one should then expect that they reach the thermosphere with significant and measurable amplitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E2526P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E2526P"><span>Influence of tides and planetary waves on E sporadic layer at mid latitudes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pezzopane, Michael; Pignalberi, Alessio; Zuccheretti, Enrico</p> <p></p> <p>This paper describes the influence that tides and planetary waves have on the variability shown by the main characteristics of the E sporadic (Es) layer, that is the top frequency (ftEs) and the lowest virtual height (h’Es). The study is based on ionograms recorded during the summertime of 2013, a year falling in the maximum of solar activity of cycle 24, and precisely in June, July, August and September, by the Advanced Ionospheric Sounder by Istituto Nazionale di Geofisica e Vulcanologia (AIS-INGV) ionosondes installed at Rome (41.8°N, 12.5°E) and Gibilmanna (37.9°N, 14.0°E), Italy. We applied the height-time-intensity (HTI) methodology proposed by Haldoupis et al. (2006) to investigate how tides control the Es dynamics. As a whole, the HTI analysis showed that a well-defined semidiurnal periodicity characterizes the Es layer descent and occurrence for all the considered months, although in September some cases which showed a prevailing diurnal periodicity were recorded. Through the application of the wavelet analysis it was also found that the tidal oscillations shown by ftEs and h’Es are affected by a strong amplitude modulation with periods of several days but with important differences between the two parameters. This amplitude modulation is a proof that Es layers are indirectly affected by planetary waves through their nonlinear interaction with tides at lower altitudes; this nonlinear interaction produces the presence of secondary waves with frequencies that are the sum and difference of the primary waves frequencies involved in the interaction as proposed by Teitelbaum and Vial [1991]. This work adds to those that were already done by Haldoupis et al. (2004, 2006), and confirms that ionosonde data, especially those registered in summertime, can be used as a powerful tool for studying tidal and planetary waves properties, as well as their climatology, in the mesosphere-low-termosphere region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011epsc.conf..112K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011epsc.conf..112K"><span>Stickney Crater on Phobos and some other outstanding planetary depressions as features of crustal wave interference origin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kochemasov, G. G.</p> <p>2011-10-01</p> <p>Some not fully understood (enigmatic) large planetary depressions and geoid minima on planets and satellites are better understood as regular wave woven features, not random large impacts [1]. A main reason for this is their similar tectonic position in a regular sectoral network produced by interfering crossing standing waves warping any celestial body. These waves arise in the bodies due to their movements in keplerian elliptical orbits with changing accelerations. The fundamental wave1 produces universal tectonic dichotomy, its first overtone wave2 superposes on it sectoring - a regular network of risen and fallen blocks [2, 3]. Thus, deeply subsided sectoral blocks are formed on uplifted highland segments -hemispheres [1]. Examples of this pattern are shown in Fig. 1 to 8 on various globes and irregular bodies. The Moon - the SPA basin, Earth - Indian geoid min imum, Phobos - Stickney Crater, Miranda - an ovoid, Phoebe - a sector, Mars - Hellas Planitia, Lutetia - a deep sector indentation. Fig. 9 - a geometrical model of dichotomy and sectors format ion by wave interference.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850024160','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850024160"><span>A numerical analysis of transient planetary waves and the vertical structure in a meso-strato-troposphere model, part 1.4A</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zhang, K. S.; Sasamori, T.</p> <p>1984-01-01</p> <p>The structure of unstable planetary waves is computed by a quasi-geostrophic model extending from the surface up to 80 km by means of eigenvalue-eigenfunction techniques in spherical coordinates. Three kinds of unstable modes of distinct phase speeds and vertical structures are identified in the winter climate state: (1) the deep Green mode with its maximum amplitude in the stratosphere; (2) the deep Charney mode with its maximum amplitude in the troposphere: and (3) the shallow Charney mode which is largely confined to the troposphere. Both the Green mode and the deep Charney mode are characterized by very slow phase speeds. They are mainly supported by upward wave energy fluxes, but the local baroclinic energy conversion within the stratosphere also contributes in supporting these deep modes. The mesosphere and the troposphere are dynamically independent in the summer season decoupled by the deep stratospheric easterly. The summer mesosphere supports the easterly unstable waves 1-4. Waves 3 and 4 are identified with the observed mesospheric 2-day wave and 1.7-day wave, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994sri..reptQ....W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994sri..reptQ....W"><span>Plasma and radio waves from Neptune: Source mechanisms and propagation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wong, H. K.</p> <p>1994-03-01</p> <p>This report summarizes results obtained through the support of NASA Grant NAGW-2412. The objective of this project is to conduct a comprehensive investigation of the radio wave emission observed by the planetary radio astronomy (PRA) instrument on board Voyager 2 as if flew by Neptune. This study has included data analysis, theoretical and numerical calculations, ray tracing, and modeling to determine the possible source mechanism(s) and locations of the Neptune radio emissions. We have completed four papers, which are included in the appendix. The paper 'Modeling of Whistler Ray Paths in the Magnetosphere of Neptune' investigated the propagation and dispersion of lighting-generated whistler in the magnetosphere of Neptune by using three dimensional ray tracing. The two papers 'Numerical Simulations of Bursty Radio Emissions from Planetary Magnetospheres' and 'Numerical Simulations of Bursty Planetary Radio Emissions' employed numerical simulations to investigate an alternate source mechanism of bursty radio emissions in addition to the cyclotron maser instability. We have also studied the possible generation of Z and whistler mode waves by the temperature anisotropic beam instability and the result was published in 'Electron Cyclotron Wave Generation by Relativistic Electrons.' Besides the aforementioned studies, we have also collaborated with members of the PRA team to investigate various aspects of the radio wave data. Two papers have been submitted for publication and the abstracts of these papers are also listed in the appendix.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940028597','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940028597"><span>Plasma and radio waves from Neptune: Source mechanisms and propagation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wong, H. K.</p> <p>1994-01-01</p> <p>This report summarizes results obtained through the support of NASA Grant NAGW-2412. The objective of this project is to conduct a comprehensive investigation of the radio wave emission observed by the planetary radio astronomy (PRA) instrument on board Voyager 2 as if flew by Neptune. This study has included data analysis, theoretical and numerical calculations, ray tracing, and modeling to determine the possible source mechanism(s) and locations of the Neptune radio emissions. We have completed four papers, which are included in the appendix. The paper 'Modeling of Whistler Ray Paths in the Magnetosphere of Neptune' investigated the propagation and dispersion of lighting-generated whistler in the magnetosphere of Neptune by using three dimensional ray tracing. The two papers 'Numerical Simulations of Bursty Radio Emissions from Planetary Magnetospheres' and 'Numerical Simulations of Bursty Planetary Radio Emissions' employed numerical simulations to investigate an alternate source mechanism of bursty radio emissions in addition to the cyclotron maser instability. We have also studied the possible generation of Z and whistler mode waves by the temperature anisotropic beam instability and the result was published in 'Electron Cyclotron Wave Generation by Relativistic Electrons.' Besides the aforementioned studies, we have also collaborated with members of the PRA team to investigate various aspects of the radio wave data. Two papers have been submitted for publication and the abstracts of these papers are also listed in the appendix.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JASTP.122...34P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JASTP.122...34P"><span>A spectral study of the mid-latitude sporadic E layer characteristic oscillations comparable to those of the tidal and the planetary waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pignalberi, A.; Pezzopane, M.; Zuccheretti, E.</p> <p>2015-01-01</p> <p>In this paper different spectral analyses are employed to investigate the tidal and planetary wave periodicities imprinted in the following two main characteristics of the sporadic E (Es) layer: the top frequency (ftEs) and the lowest virtual height (h‧Es). The study is based on ionograms recorded during the summertime of 2013, and precisely in June, July, August and September, by the Advanced Ionospheric Sounder by Istituto Nazionale di Geofisica e Vulcanologia (AIS-INGV) ionosondes installed at Rome (41.8°N, 12.5°E) and Gibilmanna (37.9°N, 14.0°E), Italy. It was confirmed that the diurnal and semidiurnal atmospheric tides play a fundamental role in the formation of the mid-latitude Es layers, acting through their vertical wind-shear forcing of the long-living metallic ions in the lower thermosphere, and at the same time it was found that the planetary atmospheric waves might affect the Es layers acting through their horizontal wind-shear forcing with periods close to the normal Rossby modes, that is 2, 5, 10 and 16 days. The wavelet analysis shows also that the ftEs and h‧Es tidal oscillations undergo a strong amplitude modulation with periods of several days and with important differences between the two parameters. This amplitude modulation, characterizing markedly the first thirty days of the ftEs spectrogram, suggests that Es layers are affected indirectly by planetary waves through their nonlinear interaction with the atmospheric tides at lower altitudes. This study wants to be a continuation of the Haldoupis et al. (2004) work in order to verify their results for the foEs characteristic and on the other hand to extend the study also to the h‧Es characteristic not yet shown so far. Anyhow, the study confirms that ionosonde data, especially those registered in summertime, represent a powerful tool for studying tidal and planetary waves properties and their climatology in the mesosphere-low-thermosphere region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Icar..278..204I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Icar..278..204I"><span>Ground-based observation of the cyclic nature and temporal variability of planetary-scale UV features at the Venus cloud top level</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Imai, Masataka; Takahashi, Yukihiro; Watanabe, Makoto; Kouyama, Toru; Watanabe, Shigeto; Gouda, Shuhei; Gouda, Yuya</p> <p>2016-11-01</p> <p>A planetary-scale bright and dark UV feature, known as the ;Y-feature,; rotates around Venus with a period of 4-5 days and has been long-time interpreted as planetary waves. When assuming this, its rotation period and spatial structure might help to understand the propagation of the planetary-scale waves and find out their role in the acceleration-deceleration of the zonal wind speed, which is essential for understanding the super-rotation of the planet. The rotation period of the UV feature varied over the course of observation by the Pioneer Venus orbiter. However, in previous explorations of Venus such as Pioneer Venus and Venus Express, the spacecraft were operated in nearly fixed inertial space. As a result, the periodicity variations on sub-yearly timescales (one Venusian year is ∼224 Earth days) were obscured by the limitations of continuous dayside observations. We newly conducted six periods of ground-based Venus imaging observations at 365 nm from mid-August 2013 to the end of June 2014. Each observation period spanned over half or one month, enabling long-term monitoring of Venus' atmosphere above the equator region. Distributions of the relative brightness were obtained from the equatorial (EQ) to mid-latitudinal regions in both hemispheres, and from the cyclical variations of these distributions we deduced the rotation periods of the UV features of the cloud tops brightness. The relative brightness exhibited periods of 5.2 and 3.5 days above 90% of significance. The relative intensities of these two significant components also seemed subject to temporal variations. Although the 3.5-day component considered persists throughout the observation periods, its dominance over the longer period varied in a cyclic fashion. The prevailing first significant mode seems to change from 5.2-day waves to 3.5-day waves in about nine months, which is clearly inconsistent with the Venusian year. Clear periodic perturbations, indicating stability of the planetary-scale UV-feature, were observed only in the presence of single longer or shorter periodic waves. During the transition periods of dominant-wave changing, the amplitude of the relative brightness was largely changed. This can be explained by the deformation of the Y-shaped UV feature as observed by Pioneer Venus in 1979.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950033419&hterms=quasi+particle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dquasi%2Bparticle','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950033419&hterms=quasi+particle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dquasi%2Bparticle"><span>Transverse particle acceleration and diffusion in a planetary magnetic field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barbosa, D. D.</p> <p>1994-01-01</p> <p>A general model of particle acceleration by plasma waves coupled with adiabatic radial diffusion in a planetary magnetic field is developed. The model assumes that a spectrum of lower hybird waves is present to resonantly accelerate ions transverse to the magnetic field. The steady state Green's function for the combined radial diffusion and wave acceleration equation is found in terms of a series expansion. The results provide a rigorous demonstration of how a quasi-Maxwellian distribution function is formed in the absence of particle collisons and elucidate the nature of turbulent heating of magnetospheric plasmas. The solution is applied to the magnetosphere of Neptune for which a number of examples are given illustrating how the spectrum of pickup N(+) ions from Triton evolves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1438795','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1438795"><span>Sources of Intermodel Spread in the Lapse Rate and Water Vapor Feedbacks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Po-Chedley, Stephen; Armour, Kyle C.; Bitz, Cecilia M.</p> <p></p> <p>Sources of intermodel differences in the global lapse rate (LR) and water vapor (WV) feedbacks are assessed using CO 2 forcing simulations from 28 general circulation models. Tropical surface warming leads to significant warming and moistening in the tropical and extratropical upper troposphere, signifying a nonlocal, tropical influence on extratropical radiation and feedbacks. Model spread in the locally defined LR and WV feedbacks is pronounced in the Southern Ocean because of large-scale ocean upwelling, which reduces surface warming and decouples the surface from the tropospheric response. The magnitude of local extratropical feedbacks across models and over time is well characterizedmore » using the ratio of tropical to extratropical surface warming. It is shown that model differences in locally defined LR and WV feedbacks, particularly over the southern extratropics, drive model variability in the global feedbacks. The cross-model correlation between the global LR and WV feedbacks therefore does not arise from their covariation in the tropics, but rather from the pattern of warming exerting a common control on extratropical feedback responses. Because local feedbacks over the Southern Hemisphere are an important contributor to the global feedback, the partitioning of surface warming between the tropics and the southern extratropics is a key determinant of the spread in the global LR and WV feedbacks. It is also shown that model Antarctic sea ice climatology influences sea ice area changes and southern extratropical surface warming. In conclusion, as a result, model discrepancies in climatological Antarctic sea ice area have a significant impact on the intermodel spread of the global LR and WV feedbacks.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1438795-sources-intermodel-spread-lapse-rate-water-vapor-feedbacks','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1438795-sources-intermodel-spread-lapse-rate-water-vapor-feedbacks"><span>Sources of Intermodel Spread in the Lapse Rate and Water Vapor Feedbacks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Po-Chedley, Stephen; Armour, Kyle C.; Bitz, Cecilia M.; ...</p> <p>2018-03-23</p> <p>Sources of intermodel differences in the global lapse rate (LR) and water vapor (WV) feedbacks are assessed using CO 2 forcing simulations from 28 general circulation models. Tropical surface warming leads to significant warming and moistening in the tropical and extratropical upper troposphere, signifying a nonlocal, tropical influence on extratropical radiation and feedbacks. Model spread in the locally defined LR and WV feedbacks is pronounced in the Southern Ocean because of large-scale ocean upwelling, which reduces surface warming and decouples the surface from the tropospheric response. The magnitude of local extratropical feedbacks across models and over time is well characterizedmore » using the ratio of tropical to extratropical surface warming. It is shown that model differences in locally defined LR and WV feedbacks, particularly over the southern extratropics, drive model variability in the global feedbacks. The cross-model correlation between the global LR and WV feedbacks therefore does not arise from their covariation in the tropics, but rather from the pattern of warming exerting a common control on extratropical feedback responses. Because local feedbacks over the Southern Hemisphere are an important contributor to the global feedback, the partitioning of surface warming between the tropics and the southern extratropics is a key determinant of the spread in the global LR and WV feedbacks. It is also shown that model Antarctic sea ice climatology influences sea ice area changes and southern extratropical surface warming. In conclusion, as a result, model discrepancies in climatological Antarctic sea ice area have a significant impact on the intermodel spread of the global LR and WV feedbacks.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004cosp...35..262M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004cosp...35..262M"><span>Wave Activity (Planetary, Tidal) throughout the Middle Atmoshere (25-100 km) over the CUJO Network: Satellite and Medium Frequency (MF) Radar Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Manson, A.; Meek, C.; Chshyolkova, T.; Avery, S.; Thorsen, D.; MacDougall, J.; Hocking, W.; Murayama, Y.; Igarashi, K.</p> <p></p> <p>Planetary and tidal wave activity in the mesosphere-lower thermosphere (MLT), and assessment of wave activity sources in the lower atmosphere, are studied using combinations of ground based (GB) and satellite instruments (2000-2002). CUJO (Canada U.S. Japan Opportunity) comprises MF radar (MFR) systems at London (43°N, 81°W), Platteville (40°N, 105°W), Saskatoon (52°N, 107°W), Wakkanai (45°N, 142°E) and Yamagawa (31°N, 131°E). It offers a significant mid-latitude 7,000 km longitudinal sector in the North American-Pacific region, and a useful range of latitudes (12-14°) at two longitudes. CUJO provides winds and tides 70-100km. Satellite data include the daily values of the total ozone column measured by the Earth Probe (EP) TOMS (Total Ozone Mapping Spectrometer) and provides a measure of tropopause-lower stratospheric planetary wave activity as well as ozone variability. The so-called UKMO data (an assimilation system) are used for correlative purposes with the TOMS data. Climatologies of ozone and winds/tides involving frequency versus time (wavelet) contour plots for periods from 2-d to 30-d and the interval from mid 2000 to 2002, show that the changes with altitude, longitude and latitude are very significant and distinctive. Geometric-mean wavelets for the region of the 40°N MFRs demonstrate occasions during the autumn, winter and spring months when there are similarities in the spectral features of the lower atmosphere and at mesopause (85km) heights. Both direct planetary wave (PW) propagation into the MLT, non-linear PW-tide interactions, and disturbances in MLT tides associated with fluctuations in the ozone forcing are considered to be possible coupling processes. The complex horizontal wave numbers of the longer period oscillations are provided in frequency contour plots for the TOMS and UKMO data to demonstrate the differences between lower atmospheric and MLT wave motions and their directions of propagation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170002320&hterms=northern+hemispheres+mars&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dnorthern%2Bhemispheres%2Bmars','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170002320&hterms=northern+hemispheres+mars&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dnorthern%2Bhemispheres%2Bmars"><span>The Solsticial Pause on Mars. Part 1; A Planetary Wave Reanalysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lewis, Stephen R.; Mulholland, David P.; Read, Peter L.; Montabone, Luca; Wilson, R. John; Smith, Michael D.</p> <p>2015-01-01</p> <p>Large-scale planetary waves are diagnosed from an analysis of profiles retrieved from the Thermal Emission Spectrometer aboard the Mars Global Surveyor spacecraft during its scientific mapping phase. The analysis is conducted by assimilating thermal profiles and total dust opacity retrievals into a Mars global circulation model. Transient waves are largest throughout the northern hemisphere autumn, winter and spring period and almost absent during the summer. The southern hemisphere exhibits generally weaker transient wave behavior. A striking feature of the low-altitude transient waves in the analysis is that they show a broad subsidiary minimum in amplitude centred on the winter solstice, a period when the thermal contrast between the summer hemisphere and the winter pole is strongest and baroclinic wave activity might be expected to be strong. This behavior, here called the 'solsticial pause,' is present in every year of the analysis. This strong pause is under-represented in many independent model experiments, which tend to produce relatively uniform baroclinic wave activity throughout the winter. This paper documents and diagnoses the transient wave solsticial pause found in the analysis; a companion paper investigates the origin of the phenomenon in a series of model experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080007137','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080007137"><span>A Link between Variability of the Semidiurnal Tide and Planetary Waves in the Opposite Hemisphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, Anne K.; Pancheva, Dora V.; Mitchell, Nicholas J.; Marsh, Daniel R.; Russell, James M., III; Mlynczak, Martin G.</p> <p>2007-01-01</p> <p>Horizontal wind observations over four years from the meteor radar at Esrange (68 deg N) are analyzed to determine the variability of the semidiurnal tide. Simultaneous global observations of temperature and geopotential from the SABER satellite instrument are used to construct time series of planetary wave amplitudes and geostrophic mean zonal wind. During NH summer and fall, the temporal variability of the semidiurnal tide at Esrange is found to be well correlated with the amplitude of planetary wavenumber 1 in the stratosphere in high southern latitudes (i.e., in the opposite hemisphere). The correlations indicate that a significant part of the tidal variations at Esrange is due to dynamical interactions in the Southern Hemisphere. Other times of the year do not indicate a corresponding robust correlation pattern for the Esrange tides over multiple years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160007472&hterms=electronics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Delectronics','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160007472&hterms=electronics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Delectronics"><span>On the Connection Between Microbursts and Nonlinear Electronic Structures in Planetary Radiation Belts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Osmane, Adnane; Wilson, Lynn B., III; Blum, Lauren; Pulkkinen, Tuija I.</p> <p>2016-01-01</p> <p>Using a dynamical-system approach, we have investigated the efficiency of large-amplitude whistler waves for causing microburst precipitation in planetary radiation belts by modeling the microburst energy and particle fluxes produced as a result of nonlinear wave-particle interactions. We show that wave parameters, consistent with large amplitude oblique whistlers, can commonly generate microbursts of electrons with hundreds of keV-energies as a result of Landau trapping. Relativistic microbursts (greater than 1 MeV) can also be generated by a similar mechanism, but require waves with large propagation angles Theta (sub k)B greater than 50 degrees and phase-speeds v(sub phi) greater than or equal to c/9. Using our result for precipitating density and energy fluxes, we argue that holes in the distribution function of electrons near the magnetic mirror point can result in the generation of double layers and electron solitary holes consistent in scales (of the order of Debye lengths) to nonlinear structures observed in the radiation belts by the Van Allen Probes. Our results indicate a relationship between nonlinear electrostatic and electromagnetic structures in the dynamics of planetary radiation belts and their role in the cyclical production of energetic electrons (E greater than or equal to 100 keV) on kinetic timescales, which is much faster than previously inferred.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004JGRD..109.3304A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004JGRD..109.3304A"><span>Ozone perturbations in the Arctic summer lower stratosphere as a reflection of NOX chemistry and planetary scale wave activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Akiyoshi, H.; Sugita, T.; Kanzawa, H.; Kawamoto, N.</p> <p>2004-02-01</p> <p>Ozone concentration perturbations in the high-latitude lower stratosphere in the Northern Hemisphere were observed by Improved Limb Atmospheric Spectrometer (ILAS) after the polar vortex breakdown at the beginning of May 1997 and until the end of June of that same year. Simulations and a passive tracer experiment using the Center for Climate System Research/National Institute for Environmental Studies (CCSR/NIES) nudging chemical transport model (CTM) show that the low-ozone perturbations observed in May were caused by the Arctic polar vortex debris, while those after the end of May resulted from a dynamical elongation due to zonal wave number 2 planetary waves of the low-ozone region in the summer polar stratosphere, which had been developed by the catalytic ozone destruction cycle of NOX. These low-O3 air masses of different origin were advected or elongated from the polar region to the ILAS measurement points. An episodic event of a dynamical O3 perturbation in June 1997 on a chemically induced meridional O3 gradient is described. These results show that a timing of the polar vortex breakdown and activity of planetary waves after the breakdown may affect the O3 background gradient in the summer lower stratosphere at middle and high latitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010099435','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010099435"><span>Predictability of Zonal Means During Boreal Summer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schubert, Siegfried; Suarez, Max J.; Pegion, Philip J.; Kistler, Michael A.; Kumar, Arun; Einaudi, Franco (Technical Monitor)</p> <p>2001-01-01</p> <p>This study examines the predictability of seasonal means during boreal summer. The results are based on ensembles of June-July-August (JJA) simulations (started in mid May) carried out with the NASA Seasonal-to-Interannual Prediction Project (NSIPP-1) atmospheric general circulation model (AGCM) forced with observed sea surface temperatures (SSTS) and sea ice for the years 1980-1999. We find that the predictability of the JJA extra-tropical height field is primarily in the zonal mean component of the response to the SST anomalies. This contrasts with the cold season (January-February-March) when the predictability of seasonal means in the boreal extratropics is primarily in the wave component of the El Nino/Southern Oscillation (ENSO) response. Two patterns dominate the interannual variability of the ensemble mean JJA zonal mean height field. One has maximum variance in the tropical/subtropical upper troposphere, while the other has substantial variance in middle latitudes of both hemispheres. Both are symmetric with respect to the equator. A regression analysis suggests that the tropical/subtropical pattern is associated with SST anomalies in the far eastern tropical Pacific and the Indian Ocean, while the middle latitude pattern is forced by SST anomalies in the tropical Pacific just east of the dateline. The two leading zonal height patterns are reproduced in model runs forced with the two leading JJA SST patterns of variability. A comparison with observations shows a signature of the middle latitude pattern that is consistent with the occurrence of dry and wet summers over the United States. We hypothesize that both patterns, while imposing only weak constraints on extratropical warm season continental-scale climates, may play a role in the predilection for drought or pluvial conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JASTP.128....8K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JASTP.128....8K"><span>Gravity wave characteristics in the middle atmosphere during the CESAR campaign at Palma de Mallorca in 2011/2012: Impact of extratropical cyclones and cold fronts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kramer, R.; Wüst, S.; Schmidt, C.; Bittner, M.</p> <p>2015-06-01</p> <p>Based on a measuring campaign which was carried out at Mallorca (39.6°N, 2.7°E) as cooperation between Agència Estatal de Meteorologia (AEMET) and Deutsches Zentrum für Luft- und Raumfahrt, engl. 'German Aerospace Center' (DLR) in 2011/2012 (September-January), 143 radiosondes (day and night) providing vertical temperature and wind profiles were released. Additionally, nocturnal mesopause temperature measurements with a temporal resolution of about 1 min were conducted by the infrared (IR) - Ground-based Infrared P-branch Spectrometer (GRIPS) during the campaign period. Strongly enhanced gravity wave activity in the lower stratosphere is observed which can be attributed to a hurricane-like storm (so-called Medicane) and to passing by cold fronts. Statistical features of gravity wave parameters including energy densitiy and momentum fluxes are calculated. Gravity wave momentum fluxes turned out being up to five times larger during severe weather. Moreover, gravity wave horizontal propagation characteristics are derived applying hodograph and Stokes parameter analysis. Preferred directions are of southeast and northwest due to prevailing wind directions at Mallorca.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JGRC..116.2018C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JGRC..116.2018C"><span>Dynamics of the seasonal variation of the North Equatorial Current bifurcation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Zhaohui; Wu, Lixin</p> <p>2011-02-01</p> <p>The dynamics of the seasonal variation of the North Equatorial Current (NEC) bifurcation is studied using a 1.5-layer nonlinear reduced-gravity Pacific basin model and a linear, first-mode baroclinic Rossby wave model. The model-simulated bifurcation latitude exhibits a distinct seasonal cycle with the southernmost latitude in June and the northernmost latitude in November, consistent with observational analysis. It is found that the seasonal migration of the NEC bifurcation latitude (NBL) not only is determined by wind locally in the tropics, as suggested in previous studies, but is also significantly intensified by the extratropical wind through coastal Kelvin waves. The model further demonstrates that the amplitude of the NEC bifurcation is also associated with stratification. A strong (weak) stratification leads to a fast (slow) phase speed of first-mode baroclinic Rossby waves, and thus large (small) annual range of the bifurcation latitude. Therefore, it is expected that in a warm climate the NBL should have a large range of annual migration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040182234','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040182234"><span>Impact Processes in the Solar System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ahrens, Thomas J.</p> <p>2004-01-01</p> <p>The three main topics of this program as described initially in our May 2003 proposal are: 1) Shock-induced damage and attenuation in planetary materials. 2 ) Shock-induced melting and phase changes. 3) Impact-induced volatilization and vapor speciation of planetary materials Topic 4 has been the subject of a continuing investigation since approximately 1990. On Topic 5, we have a paper in preparation and have submitted a proposal to Astrobiology. 4) Responses of planetary atmospheres to giant impact, 5) Effects of impact-induced shock waves on microbial life</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017sf2a.conf..235A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017sf2a.conf..235A"><span>Towards a better understanding of tidal dissipation at corotation layers in differentially rotating stars and planets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Astoul, A.; Mathis, S.; Baruteau, C.; André, Q.</p> <p>2017-12-01</p> <p>Star-planet tidal interactions play a significant role in the dynamical evolution of close-in planetary systems. We investigate the propagation and dissipation of tidal inertial waves in a stellar/planetary convective region. We take into account a latitudinal differential rotation for the background flow, similar to what is observed in the envelope of low-mass stars like the Sun. Previous works have shown that differential rotation significantly alters the propagation and dissipation properties of inertial waves. In particular, when the Doppler-shifted tidal frequency vanishes in the fluid, a critical layer forms where tidal dissipation can be greatly enhanced. Our present work develops a local analytic model to better understand the propagation and dissipation properties of tidally forced inertial waves at critical layers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PCE....94...56F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PCE....94...56F"><span>On the relationship between atmospheric water vapour transport and extra-tropical cyclones development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferreira, Juan A.; Liberato, Margarida L. R.; Ramos, Alexandre M.</p> <p>2016-08-01</p> <p>In this study we seek to investigate the role of atmospheric water vapour on the intensification of extra-tropical cyclones over the North Atlantic Ocean and more specifically to investigate the linkage between atmospheric rivers' conditions leading to the explosive development of extra-tropical cyclones. Several WRF-ARW simulations for three recent extra-tropical storms that had major negative socio-economic impacts in the Iberian Peninsula and south-western Europe (Klaus, 2009; Gong, 2013 and Stephanie, 2014) are performed in which the water vapour content of the initial and boundary conditions are tuned. Analyses of the vertically integrated vapour transport show the dependence of the storms' development on atmospheric water vapour. In addition, results also show changes in the shape of the jet stream resulting in a reduction of the upper wind divergence, which in turn affects the intensification of the extra-tropical cyclones studied. This study suggests that atmospheric rivers tend to favour the conditions for explosive extra-tropical storms' development in the three case studies, as simulations performed without the existence of atmospheric rivers produce shallow mid-latitude cyclones, that is, cyclones that are not so intense as those on the reference simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFMPP23C..01M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFMPP23C..01M"><span>A Review of Pacific Interdecadal Climate Variability: Possible Mechanisms and Surface Climate Signatures in the Pacific Sector</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mantua, N. J.</p> <p>2004-12-01</p> <p>Many investigators have examined historical surface climate records from the Pacific sector and identified a relatively small number of spatial patterns varying at decadal to interdecadal time scales. "Pacific Decadal Variability" (PDV) is a label that has been used to describe this family of climate variations. Some patterns of PDV are contained completely within the northern extratropics, while others have signatures throughout the Pacific hemisphere on both sides of the equator. Mechanisms for observed patterns of PDV are not yet known, though a wide variety of hypotheses have been proposed. Various ocean-atmosphere mechanisms for PDV are contained within the extratropics, others within the tropics, while others involve tropical-extratropical interactions. Some investigators have proposed external forcing (solar, lunar, or volcanic) as potentially important for driving PDV. A relatively simple hypothesis couples ENSO forcing with upper ocean heat storage for extratropical PDV, and it suggests PDV predictability may be limited to ~2 year lead times. Paleo-PDV reconstructions have been based on materials throughout the Pacific sector using such things as extratropical tree-rings, tropical corals, extratropical clam shell growth rings, and ice cores. These different proxy records have generally provided different perspectives on paleo-PDV behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900005709','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900005709"><span>Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Steffes, Paul G.</p> <p>1989-01-01</p> <p>Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing atmospheric constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. Work performed has shown that laboratory measurements of the millimeter-wave opacity of ammonia between 7.5 mm and 9.3 mm and also at the 3.2 mm wavelength require a different lineshape to be used in the theoretical prediction for millimeter-wave ammonia opacity than was previously used. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both radio occultation experiments and radio astronomical observations, and over a range of frequencies which correspond to those used in both radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. It has been the goal of this investigation to conduct such measurements and to apply the results to a wide range of planetary observations, both spacecraft and earth-based, in order to determine the identity and abundance profiles of constituents in those planetary atmospheres.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMSA33A1624S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMSA33A1624S"><span>Short-Term TEC Perturbations Associated With Planetary Waves Occurrence in the Ionosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shagimuratov, I. I.; Karpov, I.; Krankowski, A.</p> <p>2008-12-01</p> <p>Analysis of TEC response to storm showed short-term perturbations which were observed after initial phase of geomagnetic storms. The perturbations demonstrated very well expressed latitudinal structure and were recognized on diurnal variations as surges of TEC enhancement of TEC. Ordinary such storm-time positive effect was associated with TAD. Duration of the perturbations was about 2-4 hours and their amplitude increased toward low latitudes. Such TEC perturbations have the longitudinal dependence. It is important that time location of surges have week dependence on latitude. The observed structure appeared to arrive from high latitudes, but at middle latitudes it was represented as a standing wave. It is assumed that such TEC perturbations can be produced due to superposition of the eastward and westward propagating planetary Poincare waves. The periods of these waves are usually several hours. Poincare waves can be excited at the atmosphere in storm time. At middle latitudes their superposition is as standing wave that forms observing TEC perturbations. In the report, the possibilities of application Poincare waves to the ionosphere dynamics studies are discussed and an explanation of the observed ionospheric effects is given.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015DPS....4741903T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015DPS....4741903T"><span>Stationary Planetary Waves in the Mars Winter Atmosphere as seen by the Radio Science Experiment MaRS on Mars Express</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tellmann, Silvia; Pätzold, Martin; Häusler, Bernd; Tyler, Leonard G.; Hinson, David P.</p> <p>2015-11-01</p> <p>Stationary (Rossby) Waves are excited by the interaction of the zonally varying topography with the strong eastward winter jets. They lead to distinctive longitudinal temperature variations which contribute significantly to the asymmetry of the seasonal polar CO2 ice caps and are also important for the dust redistribution in the planetary atmosphere.Radio Science profiles from the Mars Express Radio Science Experiment MaRS at northern and southern high latitudes are used to gain insight into winter stationary wave structures on both hemispheres.Mars Global Surveyor (MGS) radio occultation measurements from the same season and year with their exceptionally good longitudinal and temporal coverage can be used to estimate the influence of transient eddies. Transient waves are especially important in the northern winter hemisphere.Wave number 2 stationary waves, driven by topography, are dominant in the northern winter latitudes while the wave number 1 wave is the most significant wave number during southern winter. The wave amplitudes peak around winter solstice on both hemispheres.Radio occultation measurements provide the unique opportunity to determine simultaneous measurements of temperature and geopotential height structures. Assuming geostrophic balance, these measurements can be used to determine meridional winds and eddy heat fluxes which provide further insight into the contribution of stationary waves to the heat exchange between the poles and the lower latitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940014621','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940014621"><span>Planetary plasma waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gurnett, Donald A.</p> <p>1993-01-01</p> <p>The primary types of plasma waves observed in the vicinity of the planets Venus, Mars, Earth, Jupiter, Saturn, Uranus, and Neptune are described. The observations are organized according to the various types of plasma waves observed, ordered according to decreasing distance from the planet, starting from the sunward side of the planet, and ending in the region near the closest approach. The plasma waves observed include: electron plasma oscillations and ion acoustic waves; trapped continuum radiation; electron cyclotron and upper hybrid waves; whistler-mode emissions; electrostatic ion cyclotron waves; and electromagnetic ion cyclotron waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22047552-self-organization-large-scale-ulf-electromagnetic-wave-structures-interaction-nonuniform-zonal-winds-ionospheric-region','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22047552-self-organization-large-scale-ulf-electromagnetic-wave-structures-interaction-nonuniform-zonal-winds-ionospheric-region"><span>Self-organization of large-scale ULF electromagnetic wave structures in their interaction with nonuniform zonal winds in the ionospheric E region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Aburjania, G. D.; Chargazia, Kh. Z.</p> <p></p> <p>A study is made of the generation and subsequent linear and nonlinear evolution of ultralow-frequency planetary electromagnetic waves in the E region of a dissipative ionosphere in the presence of a nonuniform zonal wind (a sheared flow). Hall currents flowing in the E region and such permanent global factors as the spatial nonuniformity of the geomagnetic field and of the normal component of the Earth's angular velocity give rise to fast and slow planetary-scale electromagnetic waves. The efficiency of the linear amplification of planetary electromagnetic waves in their interaction with a nonuniform zonal wind is analyzed. When there are shearedmore » flows, the operators of linear problems are non-self-conjugate and the corresponding eigenfunctions are nonorthogonal, so the canonical modal approach is poorly suited for studying such motions and it is necessary to utilize the so-called nonmodal mathematical analysis. It is shown that, in the linear evolutionary stage, planetary electromagnetic waves efficiently extract energy from the sheared flow, thereby substantially increasing their amplitude and, accordingly, energy. The criterion for instability of a sheared flow in an ionospheric medium is derived. As the shear instability develops and the perturbation amplitude grows, a nonlinear self-localization mechanism comes into play and the process ends with the self-organization of nonlinear, highly localized, solitary vortex structures. The system thus acquires a new degree of freedom, thereby providing a new way for the perturbation to evolve in a medium with a sheared flow. Depending on the shape of the sheared flow velocity profile, nonlinear structures can be either purely monopole vortices or vortex streets against the background of the zonal wind. The accumulation of such vortices can lead to a strongly turbulent state in an ionospheric medium.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy...50.1993X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy...50.1993X"><span>Impact of northern Eurasian snow cover in autumn on the warm Arctic-cold Eurasia pattern during the following January and its linkage to stationary planetary waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Xinping; He, Shengping; Li, Fei; Wang, Huijun</p> <p>2018-03-01</p> <p>The connection between Eurasian snow cover (SC) in autumn and Eurasian winter mean surface air temperature (SAT) has been identified by many studies. However, some recent observations indicate that early and late winter climate sometimes shows an out-of-phase relationship, suggesting that the winter mean situation might obscure the important relationships that are relevant for scientific research and applications. This study investigates the relationship between October northern Eurasian SC (NESC; 58°-68°N, 30°-90°E) and Eurasian SAT during the winter months and finds a significant relationship only exists in January. Generally, following reduced October NESC, the East Asian trough and Ural high are intensified in January, and anomalous northeasterly winds prevail in mid-latitudes, causing cold anomalies over Eurasia. Meanwhile, anomalous southwesterly winds along the northern fringe of the Ural high favor warm anomalies in the Arctic. The dynamical mechanism for the connection between NESC in October and the warm Arctic-cold Eurasia (WACE) anomaly in January is further investigated from the perspective of quasi-stationary planetary wave activity. It is found that planetary waves with zonal wavenumber-1 (ZWN1) play a dominant role in this process. Specifically, the ZWN1 pattern of planetary-scale waves concurrent with October NESC anomaly extends from the surface to the upper-stratosphere. It persists in the stratosphere through November-December and propagates downward to the surface by the following January, making the connection between October NESC and January climate possible. Additionally, the influence of October NESC on the January WACE pattern has intensified since the early-2000s.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014DPS....4641512M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014DPS....4641512M"><span>Coherent Backscattering by Particulate Planetary Media of Nonspherical Particles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Muinonen, Karri; Penttila, Antti; Wilkman, Olli; Videen, Gorden</p> <p>2014-11-01</p> <p>The so-called radiative-transfer coherent-backscattering method (RT-CB) has been put forward as a practical Monte Carlo method to compute multiple scattering in discrete random media mimicking planetary regoliths (K. Muinonen, Waves in Random Media 14, p. 365, 2004). In RT-CB, the interaction between the discrete scatterers takes place in the far-field approximation and the wave propagation faces exponential extinction. There is a significant constraint in the RT-CB method: it has to be assumed that the form of the scattering matrix is that of the spherical particle. We aim to extend the RT-CB method to nonspherical single particles showing significant depolarization characteristics. First, ensemble-averaged single-scattering albedos and phase matrices of nonspherical particles are matched using a phenomenological radiative-transfer model within a microscopic volume element. Second, the phenomenologial single-particle model is incorporated into the Monte Carlo RT-CB method. In the ray tracing, the electromagnetic phases within the microscopic volume elements are omitted as having negligible lengths, whereas the phases are duly accounted for in the paths between two or more microscopic volume elements. We assess the computational feasibility of the extended RT-CB method and show preliminary results for particulate media mimicking planetary regoliths. The present work can be utilized in the interpretation of astronomical observations of asteroids and other planetary objects. In particular, the work sheds light on the depolarization characteristics of planetary regoliths at small phase angles near opposition. The research has been partially funded by the ERC Advanced Grant No 320773 entitled “Scattering and Absorption of Electromagnetic Waves in Particulate Media” (SAEMPL), by the Academy of Finland (contract 257966), NASA Outer Planets Research Program (contract NNX10AP93G), and NASA Lunar Advanced Science and Exploration Research Program (contract NNX11AB25G).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ClDy...47.3767Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ClDy...47.3767Y"><span>Towards a physical understanding of stratospheric cooling under global warming through a process-based decomposition method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Yang; Ren, R.-C.; Cai, Ming</p> <p>2016-12-01</p> <p>The stratosphere has been cooling under global warming, the causes of which are not yet well understood. This study applied a process-based decomposition method (CFRAM; Coupled Surface-Atmosphere Climate Feedback Response Analysis Method) to the simulation results of a Coupled Model Intercomparison Project, phase 5 (CMIP5) model (CCSM4; Community Climate System Model, version 4), to demonstrate the responsible radiative and non-radiative processes involved in the stratospheric cooling. By focusing on the long-term stratospheric temperature changes between the "historical run" and the 8.5 W m-2 Representative Concentration Pathway (RCP8.5) scenario, this study demonstrates that the changes of radiative radiation due to CO2, ozone and water vapor are the main divers of stratospheric cooling in both winter and summer. They contribute to the cooling changes by reducing the net radiative energy (mainly downward radiation) received by the stratospheric layer. In terms of the global average, their contributions are around -5, -1.5, and -1 K, respectively. However, the observed stratospheric cooling is much weaker than the cooling by radiative processes. It is because changes in atmospheric dynamic processes act to strongly mitigate the radiative cooling by yielding a roughly 4 K warming on the global average base. In particular, the much stronger/weaker dynamic warming in the northern/southern winter extratropics is associated with an increase of the planetary-wave activity in the northern winter, but a slight decrease in the southern winter hemisphere, under global warming. More importantly, although radiative processes dominate the stratospheric cooling, the spatial patterns are largely determined by the non-radiative effects of dynamic processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A41B2268C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A41B2268C"><span>The Energy Cascade Associated with the North Atlantic Oscillation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Castanheira, J. M.; Marques, C. A. F.</p> <p>2017-12-01</p> <p>The North Atlantic Oscillation or Arctic Oscillation (NAO/AO), in a more hemispheric expression, is the dominant mode of variability of the extratropical atmospheric circulation. In the literature which analyses the association of low frequency variability of the NAO/AO with other climate variables, it is very common to find the idea of circulation and climate impacts of the NAO/AO. It is usually suggested that the NAO influences the position of North Atlantic storm tracks and the related transport of heat and moisture. However, in spite of the long time since the NAO variability mode was uncovered (Walker and Bliss, 1932), its underlying dynamical mechanisms are not well understood yet. In fact, it is not yet consensual that the NAO influences the position of the storm tracks, being possible that the relationship is in the opposite way with the storm track activity influencing de NAO. In this communication we will present an analysis of anomalies of the energy cascade associated with the NAO. A detailed version of the Lorenz energy cycle, which decomposes the energy flows into baroclinic and barotropic terms and into zonal mean and eddy components, was applied to the 6-hourly ERA-I reanalysis for the period of 1979 to 2016. The obtained results show that the positive NAO phase is preceded by an significant increase of synoptic baroclinic eddy activity. The eddy available potential energy is converted into kinetic energy and transferred to barotropic synoptic eddies. Then, the kinetic energy is transferred upscale into the barotropic planetary waves, which reproduce the NAO pattern. Therefore, we conclude that the synoptic baroclinic eddy activity forces the NAO variability. No clear signal was found for a modulating role of the NAO in the baroclinic eddy activity.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC13I0787A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC13I0787A"><span>Sensitivity of Methane Lifetime and Transport to Sulfate Geoengineering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aquila, V.; Pitari, G.; Tilmes, S.; Cionni, I.; de Luca, N.; Di Genova, G.; Iachetti, D.</p> <p>2014-12-01</p> <p>Sulfate geoengineering, made by sustained injection of SO2 in the tropical lower stratosphere, may impact the abundance of tropospheric methane through several photochemical mechanisms affecting the tropospheric OH abundance and hence the methane lifetime. Changes of the stratospheric Brewer-Dobson circulation also play a role in the upper tropospheric CH4 transport. Three mechanisms lead to lower OH concentrations and a longer CH4 lifetime: (a) solar radiation scattering increases the planetary albedo and cools the surface, with a tropospheric water vapor decrease as a response to this cooling. (b) The tropospheric UV budget is upset by the additional aerosol scattering and stratospheric ozone changes: the net effect is meridionally not uniform, with a net decrease in the tropics, thus producing less tropospheric O(1D). (c) The extra-tropical downwelling motion from the lower stratosphere tends to increase the sulfate aerosol surface area density available for heterogeneous chemical reactions in the mid-upper troposphere, thus reducing the amount of NOx and tropospheric O3 production. On the other hand, the tropical lower stratosphere is warmed by solar and planetary radiation absorption by the aerosols. The heating rates perturbation are strongly latitude dependent, producing a significant change of the pole-to-equator temperature gradient and mean zonal wind distribution, with a net increase of tropical upwelling. A stronger meridional component of the Brewer-Dobson circulation increases the extra-tropical stratosphere to troposphere transport of CH4 poorer air, resulting in less CH4 transported in the UTLS. The net effect on tropospheric OH may be positive or negative depending on the net result of different superimposed species perturbations in the UTLS, i.e. CH4 (negative), NOy and O3 (positive). Three climate-chemistry coupled models are used here to explore the above radiative, chemical and dynamical mechanisms affecting the methane lifetime (ULAQ-CCM, GEOSCCM, CCSM-CAM4). First results show that the CH4 lifetime may become significantly longer (by about 10%) with a sustained injection of 2.5 Tg-S/yr started in year 2020, which implies an increase of tropospheric CH4 (200 ppbv) and a positive indirect radiative forcing of sulfate geoengineering due to CH4 changes (+0.1 W/m2 in the 2045).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA561824','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA561824"><span>The Potential Observation Network Design with Mesoscale Ensemble Sensitivities in Complex Terrain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-03-01</p> <p>in synoptic storms , extratropical transition and developing hurricanes. Because they rely on lagged covariances from a finite-sized ensemble, they...diagnose predictors of forecast error in synoptic storms , extratropical transition and developing hurricanes. Because they rely on lagged covariances...sensitivities can be used successfully to diagnose predictors of forecast error in synoptic storms (Torn and Hakim 2008), extratropical transition (Torn and</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AnGeo..23..305M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AnGeo..23..305M"><span>Wave activity (planetary, tidal) throughout the middle atmosphere (20-100km) over the CUJO network: Satellite (TOMS) and Medium Frequency (MF) radar observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Manson, A. H.; Meek, C. E.; Chshyolkova, T.; Avery, S. K.; Thorsen, D.; MacDougall, J. W.; Hocking, W.; Murayama, Y.; Igarashi, K.</p> <p>2005-02-01</p> <p>Planetary and tidal wave activity in the tropopause-lower stratosphere and mesosphere-lower thermosphere (MLT) is studied using combinations of ground-based (GB) and satellite instruments (2000-2002). The relatively new MFR (medium frequency radar) at Platteville (40° N, 105° W) has provided the opportunity to create an operational network of middle-latitude MFRs, stretching from 81° W-142° E, which provides winds and tides 70-100km. CUJO (Canada U.S. Japan Opportunity) comprises systems at London (43° N, 81° W), Platteville (40° N, 105° W), Saskatoon (52° N, 107° W), Wakkanai (45° N, 142° E) and Yamagawa (31° N, 131° E). It offers a significant 7000-km longitudinal sector in the North American-Pacific region, and a useful range of latitudes (12-14°) at two longitudes. Satellite data mainly involve the daily values of the total ozone column measured by the Earth Probe (EP) TOMS (Total Ozone Mapping Spectrometer) and provide a measure of tropopause-lower stratospheric planetary wave activity, as well as ozone variability. Climatologies of ozone and winds/tides involving frequency versus time (wavelet) contour plots for periods from 2-d to 30-d and the interval from mid 2000 to 2002, show that the changes with altitude, longitude and latitude are very significant and distinctive. Geometric-mean wavelets for the region of the 40° N MFRs demonstrate occasions during the autumn, winter and spring months when there are similarities in the spectral features of the lower atmosphere and at mesopause (85km) heights. Both direct planetary wave (PW) propagation into the MLT, nonlinear PW-tide interactions, and disturbances in MLT tides associated with fluctuations in the ozone forcing are considered to be possible coupling processes. The complex horizontal wave numbers of the longer period oscillations are provided in frequency contour plots for the TOMS satellite data to demonstrate the differences between lower atmospheric and MLT wave motions and their directions of propagation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IzAOP..54..114G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IzAOP..54..114G"><span>Wave Activity and Its Changes in the Troposphere and Stratosphere of the Northern Hemisphere in Winters of 1979-2016</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guryanov, V. V.; Eliseev, A. V.; Mokhov, I. I.; Perevedentsev, Yu. P.</p> <p>2018-03-01</p> <p>An analysis of spectra of wave disturbances with zonal wave numbers 1 ≤ k ≤ 10 is carried out using winter (November to March) ERA-Interim reanalysis geopotential data in the troposphere and stratosphere for 1979-2016. Contributions of eastward-traveling ( E), westward-traveling ( W), and stationary ( S) waves are estimated. The intensification of wave activity is observed in the tropical troposphere and stratosphere and in the upper stratosphere of the entire Northern Hemisphere. The intensification of wave activity in the tropics and subtropics is noted for waves of all types ( E, W, and S), while in the middle and higher latitudes it is related mainly to stationary and eastward waves. Near the subtropical tropopause, the energy of stationary waves has increased in recent decades. In addition, in the tropical and subtropical troposphere and in the subtropical lower stratosphere, the energy of the eastward-traveling waves in El Niño years may be one and a half times or twice the energy in La Niña years. The spectrally weighted zonal wave numbers for waves of all types ( E, W, and S) are the largest in the upper subtropical troposphere. The spectrally weighted zonal wave number for W and S waves is correlated with the Atlantic Multidecadal Oscillation index and varies by 15% in 1979-2016 (on an interdecadal time scale). The spectrally weighted wave period is larger in the stratosphere than in the troposphere. It is maximal in the middle extratropical stratosphere. The spectrally weighted wave periods correlate with the activity of sudden stratospheric warmings. The sign of this correlation depends on the latitude, atmospheric layer, and zonal wave number.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080039329&hterms=parallel+universe&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dparallel%2Buniverse','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080039329&hterms=parallel+universe&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dparallel%2Buniverse"><span>Sheaths: A Comparison of Magnetospheric, ICME, and Heliospheric Sheaths</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sibeck, D. G.; Richardson, J. D.; Liu, W.</p> <p>2007-01-01</p> <p>When a supersonic flow encounters an obstacles, shocks form to divert the flow around the obstacle. The region between the shock and the obstacle is the sheath, where the supersonic flow is compressed, heated, decelerated, and deflected. Supersonic flows, obstacles, and thus sheaths are observed on many scales throughout the Universe. We compare three examples seen in the heliosphere, illustrating the interaction of the solar wind with obstacles of three very different scales lengths. Magnetosheaths form behind planetary bow shocks on scales ranging from tens to 100 planetary radii. ICME sheath form behind shocks driven by solar disturbances on scale lengths of a few to tens of AU. The heliosheath forms behind the termination shock due to the obstacle presented by the interstellar medium on scale lengths of tens to a hundred AU. Despite this range in scales some common features have been observed. Magnetic holes, possibly due to mirror mode waves, have been observed in all three of these sheaths. Plasma depletion layers are observed in planetary and ICME sheaths. Other features observed in some sheaths are wave activity (ion cyclotron, plasma), energetic particles, transmission of Alfven waves/shocks, tangential discontinuities turbulence behind quasi-parallel shocks, standing slow mode waves, and reconnection on the obstacle boundary. We compare these sheath regions, discussing similarities and differences and how these may relate to the scale lengths of these regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850028490&hterms=Quasi+experiment&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DQuasi%2Bexperiment','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850028490&hterms=Quasi+experiment&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DQuasi%2Bexperiment"><span>Numerical experiments with a general circulation model concerning the distribution of ozone in the stratosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kurzeja, R. J.; Haggard, K. V.; Grose, W. L.</p> <p>1984-01-01</p> <p>The distribution of ozone below 60 km altitude has been simulated in two experiments employing a nine-layer quasi-geostrophic spectral model and linear parameterization of ozone photochemistry, the first of which included thermal and orographic forcing of the planetary scale waves, while the second omitted it. The first experiment exhibited a high latitude winter ozone buildup which was due to a Brewer-Dodson circulation forced by large amplitude (planetary scale) waves in the winter lower stratosphere. Photochemistry was also found to be important down to lower altitudes (20 km) in the summer stratosphere than had previously been supposed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740002240','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740002240"><span>Some observed seasonal changes in extratropical general circulation: A study in terms of vorticity. [seasonal migrations of extra tropical frontal jet streams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Srivatsangam, S.; Reiter, E. R.</p> <p>1973-01-01</p> <p>Extratropical eddy distributions in four months typical of the four seasons are treated in terms of temporal mean and temporal r.m.s. values of the geostrophic relative vorticity. The geographical distributions of these parameters at the 300 mb level show that the arithmetic mean fields are highly biased representatives of the extratropical eddy distributions. The zonal arithmetic means of these parameters are also presented. These show that the zonal-and-time mean relative vorticity is but a small fraction of the zonal mean of the temporal r.m.s. relative vorticity, K. The reasons for considering the r.m.s. values as the temporal normal values of vorticity in the extratropics are given in considerable detail. The parameter K is shown to be of considerable importance in locating the extratropical frontal jet streams (EFJ) in time-and-zonal average distributions. The study leads to an understanding of the seasonal migrations of the EFJ which have not been explored until now.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA611642','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA611642"><span>North Atlantic Coast Comprehensive Study Phase I: Statistical Analysis of Historical Extreme Water Levels with Sea Level Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-09-01</p> <p>14-7 ii Abstract The U.S. North Atlantic coast is subject to coastal flooding as a result of both severe extratropical storms (e.g., Nor’easters...Products and Services, excluding any kind of high-resolution hydrodynamic modeling. Tropical and extratropical storms were treated as a single...joint probability analysis and high-fidelity modeling of tropical and extratropical storms</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA601139','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA601139"><span>Extended-Range Prediction with Low-Dimensional, Stochastic-Dynamic Models: A Data-driven Approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-09-30</p> <p>statistically extratropical storms and extremes, and link these to LFV modes. Mingfang Ting, Yochanan Kushnir, Andrew W. Robertson, Lei Wang...forecast models, as well as in the understanding they have generated. Adam Sobel, Daehyun Kim and Shuguang Wang. Extratropical variability and...predictability. Determine the extent to which extratropical monthly and seasonal low-frequency variability (LFV, i.e. PNA, NAO, as well as other regional</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA557267','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA557267"><span>Western North Pacific Tropical Cyclone Formation and Structure Change in TCS-08</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2011-09-30</p> <p>cyclones often transition to a fast-moving and rapidly- developing extratropical cyclone that may contain gale-, storm -, or hurricane-force winds... storm begins the process of extratropical transition have revealed the role of vertical wind shear in defining structural variations related to the...horizontal wind radii as the storm starts the process of extratropical transition. Elsberry et al. (2011) have extended the analysis of the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA598320','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA598320"><span>Western North Pacific Tropical Cyclone Formation and Structure Change in TCS08</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-09-30</p> <p>transition to a fast-moving and rapidly- developing extratropical cyclone that may contain gale-, storm -, or hurricane-force winds, there is a need to...improve understanding and prediction of the extratropical transition phase of a decaying tropical cyclone. The structural evolution of the transition from...a tropical to an extratropical circulation involves rapid changes to the wind, cloud, and precipitation patterns that potentially impact maritime</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA574472','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA574472"><span>Western North Pacific Tropical Cyclone Formation and Structure Change in TCS-08</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-09-30</p> <p>cyclones often transition to a fast-moving and rapidly- developing extratropical cyclone that may contain gale-, storm -, or hurricane-force winds...there is a need to improve understanding and prediction of the extratropical transition phase of a decaying tropical cyclone. The structural evolution...of the transition from a tropical to an extratropical circulation involves rapid changes to the wind, cloud, and precipitation patterns that</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014NHESD...2.4363G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014NHESD...2.4363G"><span>Analysis of extreme wave events in the southern coast of Brazil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guimarães, P. V.; Farina, L.; Toldo, E.</p> <p>2014-06-01</p> <p>Using the model SWAN, high waves on the Southwestern Atlantic generated by extra-tropical cyclones are simulated from 2000 to 2010 and their impact on the Rio Grande do Sul coast is studied. The modeled waves are compared with buoy data and good agreement is found. The six extreme events in the period which presented significant wave heights above 5 m, on a particular point of interest, are investigated in detail. It is found that the cyclogenetic pattern between the latitudes 31.5 and 34° S, is the most favorable for developing high waves. Hovmöller diagrams for deep water show that the region between the south of Rio Grande do Sul up to latitude 31.5° S is the most energetic during a cyclone's passage, although the event of May 2008 indicate that the location of this region can vary, depending on the cyclone's displacement. On the oher hand, the Hovmöller diagrams for shallow water show that the different shoreface morphologies were responsable for focusing or dissipating the waves' energy; the regions found are in agreement with the observations of erosion and progradation regions. It can be concluded that some of the urban areas of the beaches of Hermenegildo, Cidreira, Pinhal, Tramandaí, Imbé and Torres have been more exposed during the extreme wave events at Rio Grande do Sul coast, and are more vulnerable to this natural hazard.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770051551&hterms=Tidal+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DTidal%2Bwaves','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770051551&hterms=Tidal+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DTidal%2Bwaves"><span>Theoretical aspects of tidal and planetary wave propagation at thermospheric heights</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Volland, H.; Mayr, H. G.</p> <p>1977-01-01</p> <p>A simple semiquantitative model is presented which allows analytic solutions of tidal and planetary wave propagation at thermospheric heights. This model is based on perturbation approximation and mode separation. The effects of viscosity and heat conduction are parameterized by Rayleigh friction and Newtonian cooling. Because of this simplicity, one gains a clear physical insight into basic features of atmospheric wave propagation. In particular, we discuss the meridional structures of pressure and horizontal wind (the solutions of Laplace's equation) and their modification due to dissipative effects at thermospheric heights. Furthermore, we solve the equations governing the height structure of the wave modes and arrive at a very simple asymptotic solution valid in the upper part of the thermosphere. That 'system transfer function' of the thermosphere allows one to estimate immediately the reaction of the thermospheric wave mode parameters such as pressure, temperature, and winds to an external heat source of arbitrary temporal and spatial distribution. Finally, the diffusion effects of the minor constituents due to the global wind circulation are discussed, and some results of numerical calculations are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28777612','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28777612"><span>Inertial Wave Turbulence Driven by Elliptical Instability.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Le Reun, Thomas; Favier, Benjamin; Barker, Adrian J; Le Bars, Michael</p> <p>2017-07-21</p> <p>The combination of elliptical deformation of streamlines and vorticity can lead to the destabilization of any rotating flow via the elliptical instability. Such a mechanism has been invoked as a possible source of turbulence in planetary cores subject to tidal deformations. The saturation of the elliptical instability has been shown to generate turbulence composed of nonlinearly interacting waves and strong columnar vortices with varying respective amplitudes, depending on the control parameters and geometry. In this Letter, we present a suite of numerical simulations to investigate the saturation and the transition from vortex-dominated to wave-dominated regimes. This is achieved by simulating the growth and saturation of the elliptical instability in an idealized triply periodic domain, adding a frictional damping to the geostrophic component only, to mimic its interaction with boundaries. We reproduce several experimental observations within one idealized local model and complement them by reaching more extreme flow parameters. In particular, a wave-dominated regime that exhibits many signatures of inertial wave turbulence is characterized for the first time. This regime is expected in planetary interiors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvL.119c4502L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvL.119c4502L"><span>Inertial Wave Turbulence Driven by Elliptical Instability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Le Reun, Thomas; Favier, Benjamin; Barker, Adrian J.; Le Bars, Michael</p> <p>2017-07-01</p> <p>The combination of elliptical deformation of streamlines and vorticity can lead to the destabilization of any rotating flow via the elliptical instability. Such a mechanism has been invoked as a possible source of turbulence in planetary cores subject to tidal deformations. The saturation of the elliptical instability has been shown to generate turbulence composed of nonlinearly interacting waves and strong columnar vortices with varying respective amplitudes, depending on the control parameters and geometry. In this Letter, we present a suite of numerical simulations to investigate the saturation and the transition from vortex-dominated to wave-dominated regimes. This is achieved by simulating the growth and saturation of the elliptical instability in an idealized triply periodic domain, adding a frictional damping to the geostrophic component only, to mimic its interaction with boundaries. We reproduce several experimental observations within one idealized local model and complement them by reaching more extreme flow parameters. In particular, a wave-dominated regime that exhibits many signatures of inertial wave turbulence is characterized for the first time. This regime is expected in planetary interiors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870038063&hterms=Continuum+theory&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DContinuum%2Btheory','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870038063&hterms=Continuum+theory&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DContinuum%2Btheory"><span>Magnetohydrodynamic and gasdynamic theories for planetary bow waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spreiter, John R.; Stahara, Stephen S.</p> <p>1985-01-01</p> <p>A bow wave was previously observed in the solar wind upstream of each of the first six planets. The observed properties of these bow waves and the associated plasma flows are outlined, and those features identified that can be described by a continuum magnetohydrodynamic flow theory. An account of the fundamental concepts and current status of the magnetohydrodynamic and gas dynamic theories for solar wind flow past planetary bodies is provided. This includes a critical examination of: (1) the fundamental assumptions of the theories; (2) the various simplifying approximations introduced to obtain tractable mathematical problems; (3) the limitations they impose on the results; and (4) the relationship between the results of the simpler gas dynamic-frozen field theory and the more accurate but less completely worked out magnetohydrodynamic theory. Representative results of the various theories are presented and compared.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860018274&hterms=planetary+motion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dplanetary%2Bmotion','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860018274&hterms=planetary+motion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dplanetary%2Bmotion"><span>Planetary wave-mean flow interaction in the stratosphere: A comparison between the Northern and Southern Hemispheres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shiotani, M.; Hirota, I.</p> <p>1985-01-01</p> <p>Based on satellite-derived data supplied by the National Meteorological Center (NMC), the dynamical interaction between planetary waves and mean zonal winds in the stratosphere is investigated. Special attention is paid to the differences between the Northern Hemisphere (NH) and the Southern Hemisphere (SH). An analysis is made using Eliassen-Palm (E-P) flux diagnostics for the period from June 1981 to May 1982. In a climatological sense, different seasonal evolutions of large-scale motions between the NH and the SH in the stratosphere are demonstrated. Vertical cross-section analysis is presented to show the day-to-day variation in the mean zonal wind and wave activity, in particular, the following phenomena: (1) the poleward shifting of the westerly jet, and (2) episodes after the shifting of the westerly jet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850005451','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850005451"><span>Magnetohydrodynamic and gasdynamic theories for planetary bow waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spreiter, J. R.; Stahara, S. S.</p> <p>1983-01-01</p> <p>A bow wave was previously observed in the solar wind upstream of each of the first six planets. The observed properties of these bow waves and the associated plasma flows are outlined, and those features identified that can be described by a continuum magnetohydrodynamic flow theory. An account of the fundamental concepts and current status of the magnetohydrodynamic and gas dynamic theories for solar wind flow past planetary bodies is provided. This includes a critical examination of: (1) the fundamental assumptions of the theories; (2) the various simplifying approximations introduced to obtain tractable mathematical problems; (3) the limitations they impose on the results; and (4) the relationship between the results of the simpler gas dynamic-frozen field theory and the more accurate but less completely worked out magnetohydrodynamic theory. Representative results of the various theories are presented and compared.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014NHESS..14.3195G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014NHESS..14.3195G"><span>Analysis of extreme wave events on the southern coast of Brazil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guimarães, P. V.; Farina, L.; Toldo, E. E., Jr.</p> <p>2014-12-01</p> <p>Using the wave model SWAN (simulating waves nearshore), high waves on the southwestern Atlantic generated by extra-tropical cyclones are simulated from 2000 to 2010, and their impact on the Rio Grande do Sul (RS) coast is studied. The modeled waves are compared with buoy data and good agreement is found. The six extreme events in the period that presented significant wave heights above 5 m, on a particular point of interest, are investigated in detail. It is found that the cyclogenetic pattern between the latitudes 31.5 and 34° S is the most favorable for developing high waves. Hovmöller diagrams for deep water show that the region between the south of Rio Grande do Sul up to a latitude of 31.5° S is the most energetic during a cyclone's passage, although the event of May 2008 indicates that the location of this region can vary, depending on the cyclone's displacement. On the other hand, the Hovmöller diagrams for shallow water show that the different shoreface morphologies were responsible for focusing or dissipating the waves' energy; the regions found are in agreement with the observations of erosion and progradation regions. It can be concluded that some of the urban areas of the beaches of Hermenegildo, Cidreira, Pinhal, Tramandaí, Imbé and Torres have been more exposed during the extreme wave events on the Rio Grande do Sul coast, and are more vulnerable to this natural hazard.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...48.2859R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...48.2859R"><span>Tracking the delayed response of the northern winter stratosphere to ENSO using multi reanalyses and model simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ren, Rongcai; Rao, Jian; Wu, Guoxiong; Cai, Ming</p> <p>2017-05-01</p> <p>The concurrent effects of the El Niño-Southern Oscillation (ENSO) on the northern winter stratosphere have been widely recognized; however, the delayed effects of ENSO in the next winter after mature ENSO have yet to be confirmed in multi reanalyses and model simulations. This study uses three reanalysis datasets, a long-term fully coupled model simulation, and a high-top general circulation model to examine ENSO's delayed effects in the stratosphere. The warm-minus-cold composite analyses consistently showed that, except those quick-decaying quasi-biennial ENSO events that reverse signs during July-August-September (JAS) in their decay years, ENSO events particularly those quasi-quadrennial (QQ) that persist through JAS, always have a significant effect on the extratropical stratosphere in both the concurrent winter and the next winter following mature ENSO. During the concurrent winter, the QQ ENSO-induced Pacific-North American (PNA) pattern corresponds to an anomalous wavenumber-1 from the upper troposphere to the stratosphere, which acts to intensify/weaken the climatological wave pattern during warm/cold ENSO. Associated with the zonally quasi-homogeneous tropical forcing in spring of the QQ ENSO decay years, there appear persistent and zonally quasi-homogeneous temperature anomalies in the midlatitudes from the upper troposphere to the lower stratosphere until summer. With the reduction in ENSO forcing and the PNA responses in the following winter, an anomalous wavenumber-2 prevails in the extratropics. Although the anomalous wave flux divergence in the upper stratospheric layer is still dominated by wavenumber-1, it is mainly caused by wavenumber-2 in the lower stratosphere. However, the wavenumber-2 activity in the next winter is always underestimated in the model simulations, and wavenumber-1 activity dominates in both winters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.A41F..01M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.A41F..01M"><span>Year of Tropical Convection (YOTC): Status and Research Agenda</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moncrieff, M. W.; Waliser, D. E.</p> <p>2009-12-01</p> <p>The realistic representation of tropical convection in global models is a long-standing challenge for numerical weather prediction and an emerging grand challenge for climate prediction in respect to its physical basis. Insufficient knowledge and practical capabilities in this area disadvantage the modeling and prediction of prominent multi-scale phenomena such as the ITCZ, ENSO, monsoons and their active/break periods, the MJO, subtropical stratus decks, near-surface ocean properties, and tropical cyclones. Science elements include the diurnal cycle of precipitation, multi-scale convective organization, the global energy and water cycle, and interaction between the tropics and extra-tropics which interact strongly on timescales of weeks-to-months: the intersection of weather and climate. To address such challenges, the WCRP and WWRP/THORPEX are conducting a joint international research project, the Year of Tropical Convection (YOTC) which is a coordinated observing, modeling and forecasting project. The focus-year and integrated framework is intended to exploit the vast observational datasets, the modern high-resolution modeling frameworks, and theoretical insights. The over-arching objective is to advance the characterization, diagnosis, modeling, parameterization and prediction of multi-scale organized tropical phenomena and their interaction with the global circulation. The “Year” (May 2008 - April 2010) is intended to leverage recent major investments in Earth Science infrastructure and overlapping observational activities, e.g., Asian Monsoon Years (AMY) and the THORPEX Pacific Asian Regional Campaign (T-PARC). The research agenda involves phenomena and scale-interactions that are problematic for prediction models and have important socio-economic implications: MJO and convectively coupled equatorial waves; easterly waves and tropical cyclones; the monsoons including their intraseasonal variability; the diurnal cycle of precipitation; and two-way tropical-extratropical interaction. This presentation will summarize the status of the above.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850012166','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850012166"><span>Winds and Waves (4 Min - 11 Yrs) in the Upper Middle Atmosphere (60-110 Km) at Saskatoon, Canada (52 Deg N, 107 Deg W): MF Radar (2.2 Mhz) Soundings 1973 - 1983</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Manson, A. H.; Meek, C. E.; Gregory, J. B.</p> <p>1984-01-01</p> <p>Examples of gravity waves (GW), tides, planetary waves (PW), and circulation effects in the upper middle atmosphere are presented. Energy densities of GW, tides, and PW are compared. Fourier and spectral analyses are applied to the data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFD.A5004C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFD.A5004C"><span>Observations of Equatorial Kelvin Waves and their Convective Coupling with the Atmosphere/Ocean Surface Layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Conry, Patrick; Fernando, H. J. S.; Leo, Laura; Blomquist, Byron; Amelie, Vincent; Lalande, Nelson; Creegan, Ed; Hocut, Chris; MacCall, Ben; Wang, Yansen; Jinadasa, S. U. P.; Wang, Chien; Yeo, Lik-Khian</p> <p>2016-11-01</p> <p>Intraseasonal disturbances with their genesis in the equatorial Indian Ocean (IO) are an important component of global climate. The disturbances, which include Madden-Julian Oscillation and equatorial Kelvin and Rossby waves in the atmosphere and ocean, carry energy which affects El Niño, cyclogenesis, and monsoons. A recent field experiment in IO (ASIRI-RAWI) observed disturbances at three sites across IO with arrays of instruments probing from surface layer to lower stratosphere. During the field campaign the most pronounced planetary-scale disturbances were Kelvin waves in tropical tropopause layer. In Seychelles, quasi-biweekly westerly wind bursts were documented and linked to the Kelvin waves aloft, which breakdown in the upper troposphere due to internal shear instabilities. Convective coupling between waves' phase in upper troposphere and surface initiates rapid (turbulent) vertical transport and resultant wind bursts at surface. Such phenomena reveal linkages between planetary-scale waves and small-scale turbulence in the surface layer that can affect air-sea property exchanges and should be parameterized in atmosphere-ocean general circulation models. Funded by ONR Grants N00014-14-1-0279 and N00014-13-1-0199.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910062352&hterms=1075&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3D%2526%25231075','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910062352&hterms=1075&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3D%2526%25231075"><span>Magnetospheric radio and plasma wave research - 1987-1990</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kurth, W. S.</p> <p>1991-01-01</p> <p>This review covers research performed in the area of magnetospheric plasma waves and wave-particle interactions as well as magnetospheric radio emissions. The report focuses on the near-completion of the discovery phase of radio and plasma wave phenomena in the planetary magnetospheres with the successful completion of the Voyager 2 encounters of Neptune and Uranus. Consideration is given to the advances made in detailed studies and theoretical investigations of radio and plasma wave phenomena in the terrestrial magnetosphere or in magnetospheric plasmas in general.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ACP....18.4217S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ACP....18.4217S"><span>The role of the winter residual circulation in the summer mesopause regions in WACCM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sanne Kuilman, Maartje; Karlsson, Bodil</p> <p>2018-03-01</p> <p>High winter planetary wave activity warms the summer polar mesopause via a link between the two hemispheres. Complex wave-mean-flow interactions take place on a global scale, involving sharpening and weakening of the summer zonal flow. Changes in the wind shear occasionally generate flow instabilities. Additionally, an altering zonal wind modifies the breaking of vertically propagating gravity waves. A crucial component for changes in the summer zonal flow is the equatorial temperature, as it modifies latitudinal gradients. Since several mechanisms drive variability in the summer zonal flow, it can be hard to distinguish which one is dominant. In the mechanism coined interhemispheric coupling, the mesospheric zonal flow is suggested to be a key player for how the summer polar mesosphere responds to planetary wave activity in the winter hemisphere. We here use the Whole Atmosphere Community Climate Model (WACCM) to investigate the role of the summer stratosphere in shaping the conditions of the summer polar mesosphere. Using composite analyses, we show that in the absence of an anomalous summer mesospheric temperature gradient between the equator and the polar region, weak planetary wave forcing in the winter would lead to a warming of the summer mesosphere region instead of a cooling, and vice versa. This is opposing the temperature signal of the interhemispheric coupling that takes place in the mesosphere, in which a cold and calm winter stratosphere goes together with a cold summer mesopause. We hereby strengthen the evidence that the variability in the summer mesopause region is mainly driven by changes in the summer mesosphere rather than in the summer stratosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSA41B2117Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSA41B2117Y"><span>Dramatic changes of the thermosphere and ionosphere caused by the quasi-two-day wave forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yue, J.; Wang, W.</p> <p>2013-12-01</p> <p>Traveling planetary waves, such as the quasi-two-day wave (QTDW), are one essential element of the mesosphere and lower thermosphere dynamics. These planetary waves have been observed to cause strong ionospheric day-to-day variations. However, the mechanisms of this effect either by penetrating directly into the thermosphere or by perturbing the dynamo electrodynamics have not been determined. We employ the NCAR TIME-GCM to simulate the interaction between traveling planetary waves and mean wind or tides, and the impact of this interaction on the ionospheric E-region dynamo, F-region plasma density, thermospheric density and O/N2. In particular, as shown in Figure 1, the TEC decreases by 20-30% during a strong QTDW event in the lower thermosphere from the TIME-GCM output. We find a simultaneously 20-30% decrease of O/N2 in the F2 peak in Figure 2. Therefore, the changes of the thermosphere general circulation, neutral temperature and eddy diffusivity are investigated to account for the O/N2 decrease. Because the QTDW dissipates in the lower thermosphere and drive the mean wind westward, the general circulation patterns are altered and the upwelling is enhanced. On the other hand, the QTDW interacts strongly with tides in the mesosphere and lower thermosphere, consequently changing the wind dynamo in the E-region. The effects of these interactions on the changes of the thermosphere and ionosphere will be reported. Decrease of TEC by the QTDW forcing Change of O/N2 by the QTDW forcing</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1413235L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1413235L"><span>Baroclinic stationary waves in aquaplanet models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lucarini, V.; Zappa, G.</p> <p>2012-04-01</p> <p>An aquaplanet model is used to study the nature of the highly persistent low frequency waves that have been observed in models forced by zonally symmetric boundary conditions. Using the Hayashi spectral analysis of the extratropical waves, we find that a quasi-stationary (QS) wave five belongs to a wave packet obeying a well defined dispersion relation with eastward group velocity. The components of the dispersion relation with k>5 baroclinically convert eddy available potential energy into eddy kinetic energy, while those with k<5 are baroclinically neutral. In agreement with the Green's model of baroclinic instability, the wave five is weakly unstable, and the inverse energy cascade, which had been previously proposed as a main forcing for this type of waves, only acts as a positive feedback on its predominantly baroclinic energetics. The QS wave is reinforced by a phase lock to an analogous pattern in the tropical convection, which provides further amplification to the wave. We also find that the Pedlosky bounds on the phase speed of unstable waves provide guidance in explaining the latitudinal structure of the energy conversion, which is shown to be more enhanced where the zonal westerly surface wind is weaker. The wave energy is then trapped in the wave guide created by the upper tropospheric jet stream. In agreement with Green's theory, as the equator to pole SST difference is reduced the stationary marginally stable component shifts toward higher wavenumbers, while the wave five becomes neutral and westward propagating. Some properties of the aquaplanet QS waves are found in interesting agreement with a low frequency wave observed by Salby (1982) in the southern hemisphere DJF, so that this perspective on low frequency variability might be, apart from its value in terms of basic geophysical fluid dynamics, of specific interest for studying the Earth's atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5786K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5786K"><span>The Source of Planetary Period Oscillations in Saturn's Magnetosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khurana, Krishan K.; Mitchell, Jonathan L.; Mueller, Ingo C. F.</p> <p>2017-04-01</p> <p>In this presentation, we resolve a three-decades old mystery of how Saturn is able to modulate its kilometric wave radiation and many field and plasma parameters at the planetary rotation period even though its magnetic field is extremely axisymmetric. Such waves emanating from the auroral regions of planets lacking solid surfaces have been used as clocks to measure the lengths of their days, because asymmetric internal magnetic fields spin-modulate wave amplitudes. A review by Carbary and Mitchell (2013, Periodicities in Saturn's magnetosphere, Reviews of Geophysics, 51, 1-30) on the topic summarized findings from over 200 research articles, on what the phenomena is, how it is manifested in a host of magnetospheric and auroral parameters; examined several proposed models and pointed out their shortcomings. The topic has now been explored in several topical international workshops, but the problem has remained unsolved so far. By quantitatively modeling the amplitudes and phases of these oscillations in the magnetic field observed by the Cassini spacecraft, we have now uncovered the generation mechanism responsible for these oscillations. We show that the observed oscillations are the manifestations of two global convectional conveyor belts excited in Saturn's upper atmosphere by auroral heating below its northern and southern auroral belts. We demonstrate that a feedback process develops in Saturn system such that the magnetosphere expends energy to drive convection in Saturn's upper stratosphere but gains back an amplified share in the form of angular momentum that it uses to enforce corotation in the magnetosphere and power its aurorae and radio waves. In essence, we have uncovered a new mechanism (convection assisted loss of angular momentum in an atmosphere) by which gaseous planets lose their angular momentum to their magnetospheres and outflowing plasma at rates far above previous predictions. We next show how the m = 1 convection system in the upper atmosphere generates the observed plasma and magnetic field periodicities. This breakthrough in our understanding of an important planetary physics problem has immediate and extensive applications in fields as diverse as theoretical fluid dynamics, planetary angular momentum loss, maintenance of corotation in planetary magnetospheres, astrophysical magneto-braking and future telescopic observations of planets and exoplanets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.3741K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.3741K"><span>Global Tropical Moisture Exports and their Influence on Extratropical Cyclone Activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Knippertz, P.; Wernli, H.; Gläser, G.</p> <p>2012-04-01</p> <p>Many case studies have shown that heavy precipitation events and rapid cyclogenesis in the extratropics can be fuelled by moist and warm tropical air masses. Often the tropical moisture export (TME) occurs through a longitudinally confined region in the subtropics. Here a climatology of TMEs to both hemispheres is constructed on the basis of seven-day forward trajectories, which were started daily from the tropical lower troposphere and which were required to reach a water vapour flux of at least 100 g kg-1 m s-1 somewhere poleward of 35 degrees. For this analysis 6-hourly European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim re-analysis data have been used for the 32-year period 1979-2010. A comparison with a TME climatology based upon the older ERA-40 re-analysis shows little sensitivity. The results are then related to the deepening of objectively identified (extratropical) cyclones in both hemispheres. On average TME trajectories move upwards and eastwards on their way across the subtropics in both hemispheres and are associated with both moisture and meridional-wind anomalies. TME shows four main regions of activity in both hemispheres: In the northern hemisphere these are the eastern Pacific ("Pineapple Express" region) with a marked activity maximum in boreal winter, the West Pacific with maximum activity in summer and autumn associated with the Asian monsoon, the narrow Great Plains region with a maximum in spring and summer associated with the North American monsoon and the western Atlantic or Gulf Stream region with a rather flat seasonal cycle. In the southern hemisphere activity peaks over the central and eastern Pacific, eastern South America and the adjacent Atlantic, the western Indian Ocean, and western Australia. Southern hemisphere TME activity peaks in boreal winter, particularly over the Atlantic and Pacific Oceans, which suggests a significant influence of northern hemispheric Rossby wave energy propagation across the equator. The interannual variability in several regions is significantly modulated by El Niño. A detailed analysis of TME encounters along individual extratropical cyclone tracks reveals several extraordinary cyclone-deepening events associated with TME trajectories (e.g. storm "Klaus" in January 2009). A statistical analysis quantifies the fraction of explosively deepening cyclones that occur with and without a TME influence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA950805','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA950805"><span>Communist China. Section 23. Weather and Climate. Part 3 - North China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1964-06-01</p> <p>Introduction 1 2. Climatic controls 2 a. General circulation and air masses 2 b. Migratory pressure systems and fronts 3 (1) Extratropical ...Sea-level pressure and surface airflow, January (map) 2 Fig. 2 Sea-level pressure and surface airflow, July (mop) 2 Fig. 3 Tracks of extratropical ...become weaker and less frequent as those of the invading monsoon become more prevalent. b. MIGRATORY PRESSURE SYSTEMS AND FRONTS (1) Extratropical</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA141215','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA141215"><span>The Use of Satellite Observed Cloud Patterns in Northern Hemisphere 300 mb and 1000/300 mb Numerical Analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1984-02-01</p> <p>prediction Extratropical cyclones Objective analysis Bogus techniques 20. ABSTRACT (Continue on reverse aide If necooearn mid Identify by block number) Jh A...quasi-objective statistical method for deriving 300 mb geopotential heights and 1000/300 mb thicknesses in the vicinity of extratropical cyclones 0I...with the aid of satellite imagery is presented. The technique utilizes satellite observed extratropical spiral cloud pattern parameters in conjunction</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..4411166W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..4411166W"><span>Tropical Forcing of the Summer East Atlantic Pattern</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wulff, C. Ole; Greatbatch, Richard J.; Domeisen, Daniela I. V.; Gollan, Gereon; Hansen, Felicitas</p> <p>2017-11-01</p> <p>The Summer East Atlantic (SEA) mode is the second dominant mode of summer low-frequency variability in the Euro-Atlantic region. Using reanalysis data, we show that SEA-related circulation anomalies significantly influence temperatures and precipitation over Europe. We present evidence that part of the interannual SEA variability is forced by diabatic heating anomalies of opposing signs in the tropical Pacific and Caribbean that induce an extratropical Rossby wave train. This precipitation dipole is related to SST anomalies characteristic of the developing El Niño-Southern Oscillation phases. Seasonal hindcast experiments forced with observed sea surface temperatures (SSTs) exhibit skill at capturing the interannual SEA variability corroborating the proposed mechanism and highlighting the possibility for improved prediction of boreal summer variability. Our results indicate that tropical forcing of the SEA likely played a role in the dynamics of the 2015 European heat wave.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860003364&hterms=Tidal+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DTidal%2Bwaves','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860003364&hterms=Tidal+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DTidal%2Bwaves"><span>Planetary and Gravity Waves in the Mesosphere and Lower Thermosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vincent, R. A.</p> <p>1985-01-01</p> <p>Rocket and ground based studies of the mesosphere and lower thermosphere show that waves play an important role in the dynamics of their region. The waves manifest themselves in wind, temperature, density, pressure, ionization and airglow fluctuations in the 80-120 km height range. Rockets have enabled the density and temperature structure to be measured with excellent height resolution, while long term studies of wind motions using MST, partial reflection and meteor radars and, more recently, lidar investigations of temperature and density, have enabled the temporal behaviour of the waves to be better understood. A composite of power spectra is shown of wind motions measured near the mesopause at widely separated locations and illustrates how wave energy is distributed as a function of frequency. The spectra show three distinct parts; (1) a long period section corresponding to periods longer than 24 h; (2) a section between 12 and 24 h priod where the spectra are dominated by narrow; peaks associated with the semidiurnal and diurnal tides and (3) a section at periods less than 12 h where the spectral density decreases montonically (except for the 8 h tidal peak). The long period section is associated with transient planetary scale waves while the short period motions are caused by gravity waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AtmRe.129....1M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AtmRe.129....1M"><span>Observational evidence of planetary wave influences on ozone enhancements over upper troposphere North Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mengistu Tsidu, Gizaw; Ture, Kassahun; Sivakumar, V.</p> <p>2013-07-01</p> <p>MOZAIC instrument measured enhanced ozone on two occasions in February, 1996 and 1997 at cruise altitude over North Africa. The cause and source of ozone enhancements over the region are investigated using additional reanalysis data from ERA-Interim. The ERA-Interim reprocessed GOME ozone indicated existence of enhancement as well. Both observational data revealed that the increase in ozone has wider latitudinal coverage extending from North Europe upto North Africa. The geopotential heights and zonal wind from ERA-Interim have indicated existence of planetary-scale flow that allowed meridional airmass exchanges between subtropics and higher latitudes. The presence of troughs-ridge pattern are attributable to large amplitude waves of zonal wavenumber 1-5 propagating eastward in the winter hemisphere westerly current as determined from Hayashi spectra as well as local fractional variance spectra determined from Multitaper Method-Singular Value Decomposition (MTM-SVD) spectral method. MTM-SVD is also used to understand the role of these waves on ozone enhancement and variability during the observation period in a mechanistic approach. A joint analysis of driving field, such as wind and potential vorticity (PV) for which only signals of the dominant zonal wavenumbers of prevailing planetary waves are retained, has revealed strong linkage between wave activity and ozone enhancement over the region at a temporal cycle of 5.8 days. One of these features is the displacement of the polar vortex southward during the enhancements, allowing strong airmass, energy and momentum exchanges. Evidence of cutoff laws that are formed within the deep trough, characteristics of Rossby wave breaking, is also seen in the ozone horizontal distribution at different pressure levels during the events. The reconstruction of signals with the cycle of 5.8 days has shown that the time and strength of enhancement depend on the circulation patterns dictated by planetary-scale flow relative to the location of observation. The positive PV anomalies upstream or at the observation region bring ozone rich airmass to the region while a negative PV anomaly upstream does the opposite. The position of the anomalies with time changes in accordance with the period of the waves involved. The snap shot of coherent variation of PV and ozone at different time during half cycle of the 5.8-day period has indicated that a region could experience positive (enhancement) or negative (depletion) ozone anomalies of different degree as the wave propagates eastward.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920033133&hterms=hinson&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D40%26Ntt%3Dhinson','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920033133&hterms=hinson&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D40%26Ntt%3Dhinson"><span>Equatorial waves in the stratosphere of Uranus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hinson, David P.; Magalhaes, Julio A.</p> <p>1991-01-01</p> <p>Analyses of radio occultation data from Voyager 2 have led to the discovery and characterization of an equatorial wave in the Uranus stratosphere. The observed quasi-periodic vertical atmospheric density variations are in close agreement with theoretical predictions for a wave that propagates vertically through the observed background structure of the stratosphere. Quantitative comparisons between measurements obtained at immersion and at emersion yielded constraints on the meridional and zonal structure of the wave; the fact that the two sets of measurements are correlated suggests a wave of planetary scale. Two equatorial wave models are proposed for the wave.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA561841','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA561841"><span>Potential Vorticity Streamers as Precursors to Tropical Cyclone Genesis in the Western Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-03-01</p> <p>study a developing system with an extratropical precursor (TCS-037) developing into Tropical Storm 16W (TS 16W)” (Schönenberger 2010). This subsection...tropopause maps), the TC genesis event is termed a tropical transition (TT) case. If no such extratropical feature 38 is present, the storm in... extratropical origin is deemed to play an important role in the dynamical evolution leading to tropical cyclogenesis. In contrast, non-TT storms</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930010772','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930010772"><span>Waves and instability in the atmosphere of Mars: NASA planetary atmospheres program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barnes, Jeffrey R.</p> <p>1990-01-01</p> <p>A broad range of phenomena were addressed by the study including the following: (1) polar warming; (2) forced stationary waves; (3) gravity waves; (4) transient baroclinic eddies; and (5) radiative-dynamical instabilities. A variety of numerical models have been employed in these studies, as well as analytical approaches. Some of the most significant results from this work are very briefly summarized.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JGRD..11614112D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JGRD..11614112D"><span>The energy cycle and structural evolution of cyclones over southeastern South America in three case studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dias Pinto, JoãO. Rafael; Da Rocha, Rosmeri PorfíRio</p> <p>2011-07-01</p> <p>In this paper, the Lorenz energy cycle over a limited area was applied for three cyclones with different origins and evolutions, where each of them was formed in an important cyclogenetic region near southeastern South America. The synoptic conditions and energetics were analyzed during each system's life cycle and showed important relationships between their energy cycle and the evolution of their vertical structure. In the case of the weak baroclinic cyclone which formed on Brazil's south-southeastern coast, the analysis showed that it originated through a midlevel cutoff low with contribution from barotropic instability. Its evolution would indicate potential transition to a hybrid system if the convective activity were stronger. The system that occurred in the La Plata River mouth had features of an oceanic bomb-type cyclogenesis and showed an important contribution from the available potential energy generation term through the latent heat release by the convection. Meanwhile, the system of the southern Argentina coast presented a classical baroclinic development of extratropical cyclogenesis in the energy cycle, from the wave amplification up to the final occlusion of the associated frontal system. These analyses revealed that the development of some cyclones that occur in eastern South America can present different mechanisms that are not related to the classical extratropical cyclogenesis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA612014','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA612014"><span>Drivers of Complexity in Humanitarian Operations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-12-04</p> <p>catastrophe (including any hurricane, tornado, storm, high water, wind-driven water, tidal wave, tsunami, earthquake, volcanic eruption , landslide, mudslide...shaking) Volcano Volcanic eruption General Flood Flash flood Mass movement wet Landslide Mudslide Extratropical cyclone (winter storm) Local storm Blizzard...24 1 Tornado 25 57 Volcanic   Eruption 26 0 Earthquake (Seismic Activity) 27 4 ^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014DPS....4642207C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014DPS....4642207C"><span>Numerical modeling of planetary-scale waves on Jupiter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cosentino, Richard; Morales-Juberias, Raul; Simon, Amy</p> <p>2014-11-01</p> <p>The atmosphere of Jupiter has multiple alternating east-wind wind jets with different cloud morphologies some of which can be explained by the presence of atmospheric waves. One jet feature observed by Cassini and HST at 30N, called the Jovian Ribbon for its similarity to Saturn's Ribbon, displays chaotic cloud morphology caused by multiple wave components with dominating planetary scale wave-numbers ranging from 13 to 30. Both the cloud morphology and the dominant wave numbers observed change as a function of time and correlate to changes in the jet's speed. The average speed of the westward jet where this Jovian Ribbon is found is small compared to other notable jets that display wave behavior, namely the high velocity eastward jets at 7N (hot spots) and 7S (chevrons). We present the results of numerical simulations that show how attributes like jet speed, location, vertical shear and other background properties of the atmosphere (e.g. static stability) contribute to the development and evolution of wave structures in jets similar to those observed. Additionally, we explore the effects of local convective events and other atmospheric disturbances such as spots, on the morphology of these jets and waves. This work was supported by NASA PATM grant number NNX14AH47G. Computing resources for this research were provided by NMT and Yellowstone at CISL.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1982AIPC...78..631A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1982AIPC...78..631A"><span>Shock wave apparatus for studying minerals at high pressure and impact phenomena on planetary surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ahrens, Thomas J.; Boslough, Mark B.; Ginn, Warren G.; Vassiliou, Mario S.; Lange, Manfred A.; Watt, J. Peter; Kondo, Ken-Ichi; Svendsen, Robert F.; Rigden, Sally M.; Stolper, Edward M.</p> <p>1982-04-01</p> <p>Shock wave and experimental impact phenomena research on geological and planetary materials is being carried out using two propellant (18 and 40 mm) guns (up to 2.5 km/sec) and a two-stage light gas gun (up to 7 km/sec). Equation of state measurements on samples initially at room temperture and at low and high temperatures are being conducted using the 40 mm propellant apparatus in conjunction with Helmholtz coils, and radiative detectors and, in the case of the light gas gun, with streak cameras. The 18 mm propellant gun is used for recovery experiments on minerals, impact on cryogenic targets, and radiative post-shock temperature measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020048709&hterms=tecnologia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dtecnologia','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020048709&hterms=tecnologia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dtecnologia"><span>Antarctic Polar Descent and Planetary Wave Activity Observed in ISAMS CO from April to July 1992</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Allen, D. R.; Stanford, J. L.; Nakamura, N.; Lopez-Valverde, M. A.; Lopez-Puertas, M.; Taylor, F. W.; Remedios, J. J.</p> <p>2000-01-01</p> <p>Antarctic polar descent and planetary wave activity in the upper stratosphere and lower mesosphere are observed in ISAMS CO data from April to July 1992. CO-derived mean April-to-May upper stratosphere descent rates of 15 K/day (0.25 km/day) at 60 S and 20 K/day (0.33 km/day) at 80 S are compared with descent rates from diabatic trajectory analyses. At 60 S there is excellent agreement, while at 80 S the trajectory-derived descent is significantly larger in early April. Zonal wavenumber 1 enhancement of CO is observed on 9 and 28 May, coincident with enhanced wave 1 in UKMO geopotential height. The 9 May event extends from 40 to 70 km and shows westward phase tilt with height, while the 28 May event extends from 40 to 50 km and shows virtually no phase tilt with height.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28818943','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28818943"><span>Zones, spots, and planetary-scale waves beating in brown dwarf atmospheres.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Apai, D; Karalidi, T; Marley, M S; Yang, H; Flateau, D; Metchev, S; Cowan, N B; Buenzli, E; Burgasser, A J; Radigan, J; Artigau, E; Lowrance, P</p> <p>2017-08-18</p> <p>Brown dwarfs are massive analogs of extrasolar giant planets and may host types of atmospheric circulation not seen in the solar system. We analyzed a long-term Spitzer Space Telescope infrared monitoring campaign of brown dwarfs to constrain cloud cover variations over a total of 192 rotations. The infrared brightness evolution is dominated by beat patterns caused by planetary-scale wave pairs and by a small number of bright spots. The beating waves have similar amplitudes but slightly different apparent periods because of differing velocities or directions. The power spectrum of intermediate-temperature brown dwarfs resembles that of Neptune, indicating the presence of zonal temperature and wind speed variations. Our findings explain three previously puzzling behaviors seen in brown dwarf brightness variations. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3840J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3840J"><span>The case for 6-component ground motion observations in planetary seismology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Joshi, Rakshit; van Driel, Martin; Donner, Stefanie; Nunn, Ceri; Wassermann, Joachim; Igel, Heiner</p> <p>2017-04-01</p> <p>The imminent INSIGHT mission will place a single seismic station on Mars to learn more about the structure of the Martian interior. Due to cost and difficulty, only single stations are currently feasible for planetary missions. We show that future single station missions should also measure rotational ground motions, in addition to the classic 3 components of translational motion. The joint, collocated, 6 component (6C) observations offer access to additional information that can otherwise only be obtained through seismic array measurements or are associated with large uncertainties. An example is the access to local phase velocity information from measurements of amplitude ratios of translations and rotations. When surface waves are available, this implies (in principle) that 1D velocity models can be estimated from Love wave dispersion curves. In addition, rotational ground motion observations can distinguish between Love and Rayleigh waves as well as S and P type motions. Wave propagation directions can be estimated by maximizing (or minimizing) coherence between translational and rotational motions. In combination with velocity-depth estimates, locations of seismic sources can be determined from a single station with little or no prior knowledge of the velocity structure. We demonstrate these points with both theoretical and real data examples using the vertical component of motion from ring laser recordings at Wettzell and all components of motion from the ROMY ring near Munich. Finally, we present the current state of technology concerning portable rotation sensors and discuss the relevance to planetary seismology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA03430.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA03430.html"><span>Extratropical Cyclone in the Southern Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2001-11-07</p> <p>These images acquired on October 11, 2001 by NASA Terra satellite portray an occluded extratropical cyclone situated in the Southern Ocean, about 650 kilometers south of the Eyre Peninsula, South Australia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA245365','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA245365"><span>IUTAM Symposium and NATO Advanced Research Workshop on Interpretation of Time Series from Nonlinear Mechanical Systems Held in Coventry, England on 26-30 August 1991. Conference Abstracts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1991-08-01</p> <p>day oscillation in the extratropical atmosphere as identified by multi-channel singular spectrum analysis 10:25 Coffee Break 10:50 Read Chaotic...day oscillation in the extratropical atmosphere as identified by multi-channel singular spectrum analysis M. Kimoto, M. Ghil and K.-C. Mo ABSTRACT...The three-dimensional spatial structure of an oscillatory mode in the Northern Hemisphere (NH) extratropics will be describe.d The oscillation is</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADB126979','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADB126979"><span>Forecasters Handbook for Japan and Adjacent Sea Areas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1988-06-01</p> <p>a strengthening Siberian high pressure cell. 4.5.1.1 Synoptic Patterns Summer is a season of reduced extratropical storm activity over the East China...the waters adjacent to eastern Asia, summer is a period of reduced extratropical storm activity over the Yellow Sea. Figure 2-6 (page 2-23) depicts...since the southeastern part of the sea is 6-15 closer to the extratropical storm tracks discussed in section 6.3.1.1 above. 6.3.1.3 Upper Level Winds</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.4399W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.4399W"><span>Standing wave contributions to the linear interference effect in stratosphere-troposphere coupling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Watt-Meyer, Oliver; Kushner, Paul</p> <p>2014-05-01</p> <p>A body of literature by Hayashi and others [Hayashi 1973, 1977, 1979; Pratt, 1976] developed a decomposition of the wavenumber-frequency spectrum into standing and travelling waves. These techniques directly decompose the power spectrum—that is, the amplitudes squared—into standing and travelling parts. This, incorrectly, does not allow for a term representing the covariance between these waves. We propose a simple decomposition based on the 2D Fourier transform which allows one to directly compute the variance of the standing and travelling waves, as well as the covariance between them. Applying this decomposition to geopotential height anomalies in the Northern Hemisphere winter, we show the dominance of standing waves for planetary wavenumbers 1 through 3, especially in the stratosphere, and that wave-1 anomalies have a significant westward travelling component in the high-latitude (60N to 80N) troposphere. Variations in the relative zonal phasing between a wave anomaly and the background climatological wave pattern—the "linear interference" effect—are known to explain a large part of the planetary wave driving of the polar stratosphere in both hemispheres. While the linear interference effect is robust across observations, models of varying degrees of complexity, and in response to various types of perturbations, it is not well understood dynamically. We use the above-described decomposition into standing and travelling waves to investigate the drivers of linear interference. We find that the linear part of the wave activity flux is primarily driven by the standing waves, at all vertical levels. This can be understood by noting that the longitudinal positions of the antinodes of the standing waves are typically close to being aligned with the maximum and minimum of the background climatology. We discuss implications for predictability of wave activity flux, and hence polar vortex strength variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMSA51B4093E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMSA51B4093E"><span>Ground Magnetic Manifestations of Atmosphere-Ionosphere Coupling by Planetary Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Elhawary, R.; Forbes, J. M.; Wu, Q.</p> <p>2014-12-01</p> <p>Understanding the relation between tides, planetary waves and geomagnetic solar quiet (Sq) variations is an important aspect of atmosphere-ionosphere coupling, and much remains to be learned. In this paper we quantify the contribution of the planetary waves (PW) at 6.5-, 10- and 16-day periods on the variability of ground magnetic perturbations. Solar quiet days with Kp index <3 are examined from six different stations at low and middle latitudes in two different longitudinal sectors [(IAGA code, geographic latitude, geomagnetic latitude, geographic longitude),(IRT 52.27°, 42.20°, 104.45°), (LZH,36.1°, 26.14°,103.84°),(PHU,21.03°,11.05°,105.95°),(FRD,38.30°, 48.14°,-52.73°),( SJG, 18.11°, 28.04°, -66.15°),( KOU, 5.21°, 14.61°, -77.37°)] during Sept 2008-Sept 2010.The ground-based geomagnetic perturbations are compared with co-located TIMED/TIDI measurements of PW wind amplitudes at the same periods near 110 km. The wind and magnetic field PW amplitudes are not highly correlated at each station, and reasons for that are discussed. The contributions of these PW to the total variability of the magnetic perturbations will be reported.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950033279&hterms=homogenization&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dhomogenization','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950033279&hterms=homogenization&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dhomogenization"><span>A PV view of the zonal mean distribution of temperature and wind in the extratropical troposphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sun, De-Zheng; Lindzen, Richard S.</p> <p>1994-01-01</p> <p>The dependence of the temperature and wind distribution of the zonal mean flow in the extratropical troposphere on the gradient of pontential vorticity along isentropes is examined. The extratropics here refer to the region outside the Hadley circulation. Of particular interest is whether the distribution of temperature and wind corresponding to a constant potential vorticity (PV) along isentropes resembles the observed, and the implications of PV homogenization along isentropes for the role of the tropics. With the assumption that PV is homogenized along isentropes, it is found that the temperature distribution in the extratropical troposphere may be determined by a linear, first-order partial differential equation. When the observed surface temperature distribution and tropical lapse rate are used as the boundary conditions, the solution of the equation is close to the observed temperature distribution except in the upper troposphere adjacent to the Hadley circulation, where the troposphere with no PV gradient is considerably colder. Consequently, the jet is also stronger. It is also found that the meridional distribution of the balanced zonal wind is very sensitive to the meridional distribution of the tropopause temperature. The result may suggest that the requirement of the global momentum balance has no practical role in determining the extratropical temperature distribution. The authors further investigated the sensitivity of the extratropical troposphere with constant PV along isentropes to changes in conditions at the tropical boundary (the edge of the Hadley circulation). It is found that the temperature and wind distributions in the extratropical troposphere are sensitive to the vertical distribution of PV at the tropical boundary. With a surface distribution of temperature that decreases linearly with latitude, the jet maximum occurs at the tropical boundary and moves with it. The overall pattern of wind distribution is not sensitive to the change of the position of the tropical boundary. Finally, the temperature and wind distributions of an extratropical troposphere with a finite PV gradient are calculated. It is found that the larger the isentropic PV gradient, the warmer the troposphere and the weaker the jet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27..231K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27..231K"><span>Global Lunar Geochemistry and Its Significant Parallel With Terrestrial One</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kochemasov, G.</p> <p></p> <p>Planetary geochemistry reflects planetary tectonic pattern. The most global tectonic feature is the ubiquitous dichotomy (Theorem 1, [1]) with one hemisphere of a di- minished radius (concave) opposed by the convex hemisphere with an increased ra- dius. The terrestrial case is well known: the pressed in Pacific hemisphere is opposed by the bulging out continental one. This tectonics finds its demonstration in global geochemistry: the concave part is filled with denser basalts, rich in Fe, Ti, and the convex part is built of more acidic less dense lithologies, on average of andesitic composition. Much smaller Moon (almost 100 times less massive) reveals the same tectonic-geochemical construction. The near concave side is occupied by Procellarum basin and large marea filled with dense basalts rich in Fe, Ti. The far convex side is built of less dense anarthosites. On both planetary bodies the convex hemispheres are complicated by large subsided sectors (Theorem 2, [1]) filled with, as required by Theorem 4 [1], denser basalts. At Earth it is the Indoceanic sector, on the Moon the South Pole-Aitken basin. Genetically they are similar and constitute regular parts of global tectono-geochemistry (here there is no place for random impact or plate tec- tonic origin of these deep global depressions, they are components of "wave1-wave2" produced structures). The Lunar Prospector global geochemical coverage [2] allows to make lunar - terrestrial parallels not only in dichotomic distribution of iron and ti- tanium but also in distribution of potassium and thorium marking a contact between two dichotomic hemispheres. At Earth the seismically active contact is famous by its andesitic volcanism. Andesites comparative to basalts are richer in K and Th. On the Moon this transitional zone between the dichotomic halves is enriched with Th and K as well [2]. The transition to highlands requires less dense than mare basalts lithologies and they appear as feldspar-rich KREEP basalts enriched with K and Th. The geochemical parallel between two planetary bodies is not occasional and is a con- sequence of the wave planetary tectonics. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics //Geophys. Res. Abstr., v.1, #3, 700; [2]Chevrel 1 S.D., Pinet P.C., Daydou Y. et al (2001) Global scale multielement analysis of the lunar surface using iron, titanium and thorium abundances // 34th Vernadsky-Brown microsymposium. Topics in comparative planetology. Moscow, Vernadsky Inst., Oct. 8-9, 2001,Abstracts, (CD-ROM).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22663480-thermal-phase-curve-offset-tidally-nontidally-locked-exoplanets-shallow-water-model','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22663480-thermal-phase-curve-offset-tidally-nontidally-locked-exoplanets-shallow-water-model"><span>The Thermal Phase Curve Offset on Tidally and Nontidally Locked Exoplanets: A Shallow Water Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Penn, James; Vallis, Geoffrey K, E-mail: jp492@exeter.ac.uk, E-mail: g.vallis@exeter.ac.uk</p> <p>2017-06-20</p> <p>Using a shallow water model with time-dependent forcing, we show that the peak of an exoplanet thermal phase curve is, in general, offset from the secondary eclipse when the planet is rotating. That is, the planetary hot spot is offset from the point of maximal heating (the substellar point) and may lead or lag the forcing; the extent and sign of the offset are functions of both the rotation rate and orbital period of the planet. We also find that the system reaches a steady state in the reference frame of the moving forcing. The model is an extension ofmore » the well-studied Matsuno–Gill model into a full spherical geometry and with a planetary-scale translating forcing representing the insolation received on an exoplanet from a host star. The speed of the gravity waves in the model is shown to be a key metric in evaluating the phase curve offset. If the velocity of the substellar point (relative to the planet’s surface) exceeds that of the gravity waves, then the hot spot will lag the substellar point, as might be expected by consideration of forced gravity wave dynamics. However, when the substellar point is moving slower than the internal wave speed of the system, the hottest point may lead the passage of the forcing. We provide an interpretation of this result by consideration of the Rossby and Kelvin wave dynamics, as well as, in the very slowly rotating case, a one-dimensional model that yields an analytic solution. Finally, we consider the inverse problem of constraining planetary rotation rate from an observed phase curve.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4542201','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4542201"><span>Quasi two day wave-related variability in the background dynamics and composition of the mesosphere/thermosphere and the ionosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chang, Loren C; Yue, Jia; Wang, Wenbin; Wu, Qian; Meier, R R</p> <p>2014-01-01</p> <p>Dissipating planetary waves in the mesosphere/lower thermosphere (MLT) region may cause changes in the background dynamics of that region, subsequently driving variability throughout the broader thermosphere/ionosphere system via mixing due to the induced circulation changes. We report the results of case studies examining the possibility of such coupling during the northern winter in the context of the quasi two day wave (QTDW)—a planetary wave that recurrently grows to large amplitudes from the summer MLT during the postsolstice period. Six distinct QTDW events between 2003 and 2011 are identified in the MLT using Sounding of the Atmosphere using Broadband Emission Radiometry temperature observations. Concurrent changes to the background zonal winds, zonal mean column O/N2 density ratio, and ionospheric total electron content (TEC) are examined using data sets from Thermosphere Ionosphere Mesosphere Energetics and Dynamics Doppler Interferometer, Global Ultraviolet Imager, and Global Ionospheric Maps, respectively. We find that in the 5–10 days following a QTDW event, the background zonal winds in the MLT show patterns of eastward and westward anomalies in the low and middle latitudes consistent with past modeling studies on QTDW-induced mean wind forcing, both below and at turbopause altitudes. This is accompanied by potentially related decreases in zonal mean thermospheric column O/N2, as well as to low-latitude TECs. The recurrent nature of the above changes during the six QTDW events examined point to an avenue for vertical coupling via background dynamics and chemistry of the thermosphere/ionosphere not previously observed. Key Points Dissipating planetary waves (PWs) in the MLT can drive background wind changes Mixing from dissipating PWs drive thermosphere/ionosphere composition changes First observations of QTDW-driven variability from this mechanism PMID:26312201</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26312201','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26312201"><span>Quasi two day wave-related variability in the background dynamics and composition of the mesosphere/thermosphere and the ionosphere.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chang, Loren C; Yue, Jia; Wang, Wenbin; Wu, Qian; Meier, R R</p> <p>2014-06-01</p> <p>Dissipating planetary waves in the mesosphere/lower thermosphere (MLT) region may cause changes in the background dynamics of that region, subsequently driving variability throughout the broader thermosphere/ionosphere system via mixing due to the induced circulation changes. We report the results of case studies examining the possibility of such coupling during the northern winter in the context of the quasi two day wave (QTDW)-a planetary wave that recurrently grows to large amplitudes from the summer MLT during the postsolstice period. Six distinct QTDW events between 2003 and 2011 are identified in the MLT using Sounding of the Atmosphere using Broadband Emission Radiometry temperature observations. Concurrent changes to the background zonal winds, zonal mean column O/N 2 density ratio, and ionospheric total electron content (TEC) are examined using data sets from Thermosphere Ionosphere Mesosphere Energetics and Dynamics Doppler Interferometer, Global Ultraviolet Imager, and Global Ionospheric Maps, respectively. We find that in the 5-10 days following a QTDW event, the background zonal winds in the MLT show patterns of eastward and westward anomalies in the low and middle latitudes consistent with past modeling studies on QTDW-induced mean wind forcing, both below and at turbopause altitudes. This is accompanied by potentially related decreases in zonal mean thermospheric column O/N 2 , as well as to low-latitude TECs. The recurrent nature of the above changes during the six QTDW events examined point to an avenue for vertical coupling via background dynamics and chemistry of the thermosphere/ionosphere not previously observed. Dissipating planetary waves (PWs) in the MLT can drive background wind changesMixing from dissipating PWs drive thermosphere/ionosphere composition changesFirst observations of QTDW-driven variability from this mechanism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740008472','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740008472"><span>Attenuation of stress waves in single and multi-layered structures. [mitigation of elastic and plastic stress waves during spacecraft landing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yang, J. C. S.; Tsui, C. Y.</p> <p>1972-01-01</p> <p>Analytical and experimental studies were made of the attenuation of the stress waves during passage through single and multilayer structures. The investigation included studies on elastic and plastic stress wave propagation in the composites and those on shock mitigating material characteristics such as dynamic stress-strain relations and energy absorbing properties. The results of the studies are applied to methods for reducing the stresses imposed on a spacecraft during planetary or ocean landings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ems..confE.381R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ems..confE.381R"><span>Circulation patterns and wave climate along the coast of the Iberian Peninsula</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rasilla Álvarez, D.; García Codrán, J. C.</p> <p>2010-09-01</p> <p>Evidences of an active erosion (beach retreat, falling cliffs, damaged infrastructures) are observed in many coastal areas around the Iberian Peninsula. Morphogenetic coastal processes result from individual episodes of storminess that can accelerate or mitigate the expected impacts of the global rising trend of average sea levels. Thus, a good understanding of the local forcing processes is required in order to assess the impacts of future sea levels. The spatial and temporal variability of the wave climate along the cost of the Iberian Peninsula and their relationships with regional scale circulation patterns and local-scale winds are the main objectives of this contribution. The oceanographic data set consists of observed hourly data from 7 buoys disseminated along the Spanish coastline, and hindcasted 3-hourly analogous parameters (SIMAR 44 database), provided by Puertos del Estado. Sea level pressure, surface 10m U and V wind components gridded data were obtained from NCEP Reanalysis, while storm tracks and cyclone statistics were extracted from the CDC Map Room Climate Products Storm Track Data (http://www.cdc.noaa.gov/map/clim/st_data.html). The influence of the local conditions was highlighted comparing meteorological data from the buoys and synop reports from coastal stations. To explore the regional atmospheric mechanisms responsible for the wave variability, a regional Eulerian approach (a synoptic typing) were combined with a larger-scale Lagrangian method, based on the analysis of storm-tracks over the area. The synoptic catalogue was obtained following a well-known procedure that combines Principal Component Analysis (PCA) for reduction purposes and clustering (Ward plus K-means) to define the circulation types. As expected, rougher wave climate are observed along the northern and western coast of the Iberian Peninsula, open to the Atlantic storms. The Mediterranean shorelines experiences calmer conditions, although the Gulf of Lions, Catalonian coast and Balearic Islands suffer stormier episodes than Mar de Alborán. Moderate wave power conditions occurred frequently by circulation patterns predominately stable and characterized by weak (mostly sea breezes) winds. Synoptic situations dominated by extra-tropical cyclones produced the highest, but least frequent wave power conditions. Depending on the location of the shorelines, three types of storm events are defined: 1. Long winds fetch and locally strong westerly and northwesterly winds expose the northern coast of Iberia to episodes of intense storminess. Extratropical disturbances tracking between the 50-60°N parallels are the main forcing mechanism of those episodes, many of them result of a cyclogenesis processes along the eastern coast of North America. In some cases, the systems evolves as a secondary cyclon, crossing the area southward of the 50°N parallel; significant wave heights can be as high as the northernmost cyclones, but the wave period is slightly lower. 2.Cyclones tracking along the 40°N parallel bring stormy conditions to the western coast and the Gulf of Cádiz area, associated to southwesterly winds. 3. Finally, the Mediterranean shoreline suffer the worst conditions during easterly and northeasterly wind events, usually dominanted by local disturbances formed along the Western Mediterranean basin. Trends observed on the different circulation patterns can explain the temporal evolution of the wave climate along the Spanish coast, characterized by calmer conditions on the south and an increase of the wave period on the north, without discernible wave height trend. The overall results indicated that this synoptic climatological approach provides a viable framework to establish and examine links between weather systems and wave conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020060726','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020060726"><span>Arctic Sea Ice Export Through Fram Strait and Atmospheric Planetary Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cavalieri, Donald J.; Koblinsky, Chester (Technical Monitor)</p> <p>2001-01-01</p> <p>A link is found between the variability of Arctic sea ice export through Ram Strait and the phase of the longest atmospheric planetary wave (zonal wave 1) in SLP for the period 1958-1997. Previous studies have identified a link between From Strait ice export and the North Atlantic Oscillation (NAO), but this link has been described as unstable because of a lack of consistency over time scales longer than the last two decades. Inconsistent and low correlations are also found between From Strait ice export and the Arctic Oscillation (AD) index. This paper shows that the phase of zonal wave 1 explains 60% - 70% of the simulated From Strait ice export variance over the Goodyear period 1958 - 1997. Unlike the NAB and AD links, these high variances are consistent for both the first and second halves of the Goodyear period. This consistency is attributed to the sensitivity of the wave I phase at high latitudes to the presence of secondary low pressure systems in the Barents Sea that serve to drive sea ice southward through From Strait. These results provide further evidence that the phase of zonal wave 1 in SLP at high latitudes drives regional as well as hemispheric low frequency Arctic Ocean and sea ice variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830022068','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830022068"><span>Planetary atmospheres program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1982-01-01</p> <p>Non-solar compositional models of the troposphere of Jupiter, halide cloud condensation and volatile element inventories on Venus, and shock-wave processing of interstellar cloud materials are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApJ...829...75L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApJ...829...75L"><span>A Weakly Nonlinear Model for the Damping of Resonantly Forced Density Waves in Dense Planetary Rings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki</p> <p>2016-10-01</p> <p>In this paper, we address the stability of resonantly forced density waves in dense planetary rings. Goldreich & Tremaine have already argued that density waves might be unstable, depending on the relationship between the ring’s viscosity and the surface mass density. In the recent paper Schmidt et al., we have pointed out that when—within a fluid description of the ring dynamics—the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping, but nonlinearity of the underlying equations guarantees a finite amplitude and eventually a damping of the wave. We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model. This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts density waves to be (linearly) unstable in a ring region where the conditions for viscous overstability are met. Sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. The wave’s damping lengths of the model depend on certain input parameters, such as the distance to the threshold for viscous overstability in parameter space and the ground state surface mass density.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA520947','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA520947"><span>Planetary Wave Breaking and Tropospheric Forcing as Seen in the Stratospheric Sudden Warming of 2006</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-02-01</p> <p>involved in this complex case ( Harnik et al. 2005). The forecasting experiments (Fig. 8) show, in this case, the importance of accurately forecasting the...Phoebus, 1992: The Navy’s operational atmospheric analysis. Wea. Forecasting, 7, 232–249. Harnik , N., R. K. Scott, and J. Perlwitz, 2005: Wave</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820022333','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820022333"><span>Studies of planetary upper atmospheres through occultations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Elliot, J. L.</p> <p>1982-01-01</p> <p>The structure, composition, dynamics and energy balance of planetary upper atmospheres through interpretation of steller occultation data from Uranus is discussed. The wave-optical problem of modelling strong scintillation for arbitrary turbulent atmospheres is studied, as well as influence of turbulence. It was concluded that quasi-global features of atmospheric structure are accurately determined by numerical inversion. Horizontally inhomogeneous structures are filtered out and have little effect on temperature profiles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A13C2084E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A13C2084E"><span>The Strength of Cloud Feedbacks and the Structure of Tropical Climate Change - A CESM Sensitivity Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Erfani, E.; Burls, N.</p> <p>2017-12-01</p> <p>The nature of local coupled ocean-atmosphere interactions within the tropics is determined by background conditions such as the depth of the equatorial thermocline, the water vapor content of the tropical atmosphere, and the radiative forcing of tropical clouds. These factors are set not only by the coupled tropical variability itself but also by extra-tropical conditions. For example, the strength of the cold tongue is ultimately controlled by the temperature of waters subducted in the extra-tropics and transported to the equator by the ocean subtropical cells (STCs). Similarly, inter-hemispheric asymmetries in extra-tropical atmospheric heating are communicated to the tropics affecting cross-equatorial heat transport and ITCZ position. Acknowledging from a fully coupled perspective the influence of both tropical and extra-tropical conditions, we are performing a suite of CESM experiments across which we systematically alter the strength of convective and stratus cloud feedbacks. By systematically exploring the sensitivity of the tropical coupled system to imposed changes in the strength of tropical and extra-tropical cloud feedbacks to CO2-induced warming this work aims to formalize our understanding of cloud controls on tropical climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950028636&hterms=Creativity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DCreativity','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950028636&hterms=Creativity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DCreativity"><span>The extratropical 40-day oscillation in the UCLA general circulation model. Part 1: Atmospheric angular momentum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Marcus, S. L.; Ghil, M.; Dickey, J. O.</p> <p>1994-01-01</p> <p>Variations in atmospheric angular momentum (AAM) are examined in a three-year simulation of the large-scale atmosphere with perpetual January forcing. The simulation is performed with a version of the University of California at Los Angeles (UCLA) general circulation model that contains no tropical Madden-Julian Oscillation (MJO). In addition, the results of three shorter experiments with no topography are analyzed. The three-year standard topography run contains no significant intraseasonal AAM periodicity in the tropics, consistent with the lack of the MJO, but produces a robust, 42-day AAM oscillation in the Northern Hemisphere (NH) extratropics. The model tropics undergoes a barotropic, zonally symmetric oscillation, driven by an exchange of mass with the NH extratropics. No intraseasonal periodicity is found in the average tropical latent heating field, indicating that the model oscillation is dynamically rather than thermodynamically driven. The no-mountain runs fail to produce an intraseasonal AAM oscillation, consistent with a topographic origin for the NH extratropical oscillation in the standard model. The spatial patterns of the oscillation in the 500-mb height field, and the relationship of the extratropical oscillation to intraseasonal variations in the tropics, will be discussed in Part 2 of this study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840024554&hterms=caplan&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dcaplan','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840024554&hterms=caplan&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dcaplan"><span>High Power K Sub a -band Transmitter for Planetary Radar and Spacecraft Uplink</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bhanji, A. M.; Hoppe, D. J.; Hartop, R. W.; Stone, E. W.; Imbriale, W. A.; Stone, D.; Caplan, M.</p> <p>1984-01-01</p> <p>A proposed conceptual design of a 400 kW continuous wave (CW)K sub a band transmitter and associated microwave components to be used for planetary radar and serve as a prototype for future spacecraft uplinks is discussed. System requirements for such a transmitter are presented. Performance of the proposed high-power millimeter wave tube, the gyroklystron is discussed. Parameters of the proposed power amplifier, beam supply, and monitor and control devices are also presented. Microwave transmission line components consisting of signal monitoring devices, signal filtering devices, and an overmoded corrugated feed are discussed. Finally, an assessment of the state of the art technology to meet the system requirements is given and possible areas of difficulty are summarized.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150015982','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150015982"><span>A Mechanism for Land-Atmosphere Feedback Involving Planetary Wave Structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koster, Randal D.; Chang, Yehui; Schubert, Siegfried D.</p> <p>2014-01-01</p> <p>While the ability of land surface conditions to influence the atmosphere has been demonstrated in various modeling and observational studies, the precise mechanisms by which land-atmosphere feedback occurs are still largely unknown particularly the mechanisms that allow land moisture state in one region to affect atmospheric conditions in another. Such remote impacts are examined here in the context of atmospheric general circulation model (AGCM) simulations, leading to the identification of one potential mechanism: the phase-locking and amplification of a planetary wave through the imposition of a spatial pattern of soil moisture at the land surface. This mechanism, shown here to be relevant in the AGCM, apparently also operates in nature, as suggested by supporting evidence found in reanalysis data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770004670','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770004670"><span>The covariance of temperature and ozone due to planetary-wave forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fraser, G. J.</p> <p>1976-01-01</p> <p>The cross-spectra of temperature and ozone mass mixing ratio at 42 km and 28 km has been determined for spring (1971) and summer (1971-2) over Christchurch, New Zealand (44 S, 172 E). The sources of data are the SCR and BUV experiments on Nimbus 4. The observed covariances are compared with a model in which the temperature and ozone perturbations are forced by an upward propagating planetary wave. The agreement between the observations and the model is reasonable. It is suggested that this cross-spectral method permits an estimate of the meridional gradient of ozone mass mixing ratio from measurements of the vertical profile of ozone mass mixing ratio at one location, supported by temperature profiles from at least two locations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3776809','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3776809"><span>Seasonality of Kawasaki Disease: A Global Perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Burns, Jane C.; Herzog, Lauren; Fabri, Olivia; Tremoulet, Adriana H.; Rodó, Xavier; Uehara, Ritei; Burgner, David; Bainto, Emelia; Pierce, David; Tyree, Mary; Cayan, Daniel</p> <p>2013-01-01</p> <p>Background Understanding global seasonal patterns of Kawasaki disease (KD) may provide insight into the etiology of this vasculitis that is now the most common cause of acquired heart disease in children in developed countries worldwide. Methods Data from 1970-2012 from 25 countries distributed over the globe were analyzed for seasonality. The number of KD cases from each location was normalized to minimize the influence of greater numbers from certain locations. The presence of seasonal variation of KD at the individual locations was evaluated using three different tests: time series modeling, spectral analysis, and a Monte Carlo technique. Results A defined seasonal structure emerged demonstrating broad coherence in fluctuations in KD cases across the Northern Hemisphere extra-tropical latitudes. In the extra-tropical latitudes of the Northern Hemisphere, KD case numbers were highest in January through March and approximately 40% higher than in the months of lowest case numbers from August through October. Datasets were much sparser in the tropics and the Southern Hemisphere extra-tropics and statistical significance of the seasonality tests was weak, but suggested a maximum in May through June, with approximately 30% higher number of cases than in the least active months of February, March and October. The seasonal pattern in the Northern Hemisphere extra-tropics was consistent across the first and second halves of the sample period. Conclusion Using the first global KD time series, analysis of sites located in the Northern Hemisphere extra-tropics revealed statistically significant and consistent seasonal fluctuations in KD case numbers with high numbers in winter and low numbers in late summer and fall. Neither the tropics nor the Southern Hemisphere extra-tropics registered a statistically significant aggregate seasonal cycle. These data suggest a seasonal exposure to a KD agent that operates over large geographic regions and is concentrated during winter months in the Northern Hemisphere extra-tropics. PMID:24058585</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24058585','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24058585"><span>Seasonality of Kawasaki disease: a global perspective.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Burns, Jane C; Herzog, Lauren; Fabri, Olivia; Tremoulet, Adriana H; Rodó, Xavier; Uehara, Ritei; Burgner, David; Bainto, Emelia; Pierce, David; Tyree, Mary; Cayan, Daniel</p> <p>2013-01-01</p> <p>Understanding global seasonal patterns of Kawasaki disease (KD) may provide insight into the etiology of this vasculitis that is now the most common cause of acquired heart disease in children in developed countries worldwide. Data from 1970-2012 from 25 countries distributed over the globe were analyzed for seasonality. The number of KD cases from each location was normalized to minimize the influence of greater numbers from certain locations. The presence of seasonal variation of KD at the individual locations was evaluated using three different tests: time series modeling, spectral analysis, and a Monte Carlo technique. A defined seasonal structure emerged demonstrating broad coherence in fluctuations in KD cases across the Northern Hemisphere extra-tropical latitudes. In the extra-tropical latitudes of the Northern Hemisphere, KD case numbers were highest in January through March and approximately 40% higher than in the months of lowest case numbers from August through October. Datasets were much sparser in the tropics and the Southern Hemisphere extra-tropics and statistical significance of the seasonality tests was weak, but suggested a maximum in May through June, with approximately 30% higher number of cases than in the least active months of February, March and October. The seasonal pattern in the Northern Hemisphere extra-tropics was consistent across the first and second halves of the sample period. Using the first global KD time series, analysis of sites located in the Northern Hemisphere extra-tropics revealed statistically significant and consistent seasonal fluctuations in KD case numbers with high numbers in winter and low numbers in late summer and fall. Neither the tropics nor the Southern Hemisphere extra-tropics registered a statistically significant aggregate seasonal cycle. These data suggest a seasonal exposure to a KD agent that operates over large geographic regions and is concentrated during winter months in the Northern Hemisphere extra-tropics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060051695&hterms=development+Deep+time&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Ddevelopment%2BDeep%2Btime','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060051695&hterms=development+Deep+time&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Ddevelopment%2BDeep%2Btime"><span>Deep Space Network Radiometric Remote Sensing Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Walter, Steven J.</p> <p>1994-01-01</p> <p>Planetary spacecraft are viewed through a troposphere that absorbs and delays radio signals propagating through it. Tropospheric water, in the form of vapor, cloud liquid, and precipitation, emits radio noise which limits satellite telemetry communication link performance. Even at X-band, rain storms have severely affected several satellite experiments including a planetary encounter. The problem will worsen with DSN implementation of Ka-band because communication link budgets will be dominated by tropospheric conditions. Troposphere-induced propagation delays currently limit VLBI accuracy and are significant sources of error for Doppler tracking. Additionally, the success of radio science programs such as satellite gravity wave experiments and atmospheric occultation experiments depends on minimizing the effect of water vapor-induced propagation delays. In order to overcome limitations imposed by the troposphere, the Deep Space Network has supported a program of radiometric remote sensing. Currently, water vapor radiometers (WVRs) and microwave temperature profilers (MTPs) support many aspects of the Deep Space Network operations and research and development programs. Their capability to sense atmospheric water, microwave sky brightness, and atmospheric temperature is critical to development of Ka-band telemetry systems, communication link models, VLBI, satellite gravity wave experiments, and radio science missions. During 1993, WVRs provided data for propagation model development, supported planetary missions, and demonstrated advanced tracking capability. Collection of atmospheric statistics is necessary to model and predict performance of Ka-band telemetry links, antenna arrays, and radio science experiments. Since the spectrum of weather variations has power at very long time scales, atmospheric measurements have been requested for periods ranging from one year to a decade at each DSN site. The resulting database would provide reliable statistics on daily, monthly, and seasonal variations. Only long-term monitoring will prevent biases from being introduced by an exceptionally wet or dry year. Support for planetary missions included tropospheric calibration for the recent Mars Observer gravity wave experiments and Ka-band link experiment (KaBLE). Additionally, several proposed radio science experiments such as profiling planetary atmospheres using satellite occultations and Ka-band gravitational wave searches require advanced radiometer technology development. Finally, there has been a consistent advanced technology program to advance satellite navigational and tracking capabilities. This year that included an experiment with radiometer based tropospheric calibration for a series of VLBI catalog measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..4412447F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..4412447F"><span>Do Southern Ocean Cloud Feedbacks Matter for 21st Century Warming?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Frey, W. R.; Maroon, E. A.; Pendergrass, A. G.; Kay, J. E.</p> <p>2017-12-01</p> <p>Cloud phase improvements in a state-of-the-art climate model produce a large 1.5 K increase in equilibrium climate sensitivity (ECS, the surface warming in response to instantaneously doubled CO2) via extratropical shortwave cloud feedbacks. Here we show that the same model improvements produce only a small surface warming increase in a realistic 21st century emissions scenario. The small 21st century warming increase is attributed to extratropical ocean heat uptake. Southern Ocean mean-state circulation takes up heat while a slowdown in North Atlantic circulation acts as a feedback to slow surface warming. Persistent heat uptake by extratropical oceans implies that extratropical cloud biases may not be as important to 21st century warming as biases in other regions. Observational constraints on cloud phase and shortwave radiation that produce a large ECS increase do not imply large changes in 21st century warming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRC..120.2973B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRC..120.2973B"><span>Surface wave effects in the NEMO ocean model: Forced and coupled experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Breivik, Øyvind; Mogensen, Kristian; Bidlot, Jean-Raymond; Balmaseda, Magdalena Alonso; Janssen, Peter A. E. M.</p> <p>2015-04-01</p> <p>The NEMO general circulation ocean model is extended to incorporate three physical processes related to ocean surface waves, namely the surface stress (modified by growth and dissipation of the oceanic wavefield), the turbulent kinetic energy flux from breaking waves, and the Stokes-Coriolis force. Experiments are done with NEMO in ocean-only (forced) mode and coupled to the ECMWF atmospheric and wave models. Ocean-only integrations are forced with fields from the ERA-Interim reanalysis. All three effects are noticeable in the extratropics, but the sea-state-dependent turbulent kinetic energy flux yields by far the largest difference. This is partly because the control run has too vigorous deep mixing due to an empirical mixing term in NEMO. We investigate the relation between this ad hoc mixing and Langmuir turbulence and find that it is much more effective than the Langmuir parameterization used in NEMO. The biases in sea surface temperature as well as subsurface temperature are reduced, and the total ocean heat content exhibits a trend closer to that observed in a recent ocean reanalysis (ORAS4) when wave effects are included. Seasonal integrations of the coupled atmosphere-wave-ocean model consisting of NEMO, the wave model ECWAM, and the atmospheric model of ECMWF similarly show that the sea surface temperature biases are greatly reduced when the mixing is controlled by the sea state and properly weighted by the thickness of the uppermost level of the ocean model. These wave-related physical processes were recently implemented in the operational coupled ensemble forecast system of ECMWF.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A13G0379S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A13G0379S"><span>Interannual variability in equatorial Kelvin waves in the upper troposphere and lower stratosphere, and relation to the background equatorial wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suzuki, J.; Nishi, N.; Fujiwara, M.; Yoneyama, K.</p> <p>2016-12-01</p> <p>We investigated the influence of the background wind regime on interannual variability in equatorial Kelvin waves in the upper troposphere and lower stratosphere using the European Centre for Medium-Range Weather Forecasts 40-year reanalysis data. We focused on variability in the number of Kelvin wave events as a function of the background westerly wind, given by the zonal wind index (ZWI) in the equatorial western hemisphere. The ZWI measures the strength of the upper branch of the Walker circulation in the western hemisphere. Although the ZWI is well correlated with the sea surface temperature in the Niño-3.4 region, nearly half of the peaks of positive (negative) ZWI cases occurred outside of the typical La Niña (El Niño) season (December to February), respectively. In the positive ZWI (stronger westerly) cases, both convective activity over the western Pacific and extratropical Rossby waves were enhanced. Kelvin waves over the western hemisphere appeared frequently at 200 hPa but barely reached 100 hPa due to the strong westerly wind under this level. In the negative ZWI period, on the other hand, the number of Kelvin waves at 200 hPa decreased due to the weaker convection; Kelvin waves reached 100 hPa and propagated even farther upward. We also investigated the relationship between the ZWI and the phase speed of Kelvin waves. Kelvin waves with relatively slow phase speeds are found in negative ZWI cases, but are not found in positive ZWI cases due to the westerly background wind below the altitudes where Kelvin waves commonly propagate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950034803&hterms=Qbo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DQbo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950034803&hterms=Qbo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DQbo"><span>Global QBO in circulation and ozone. Part 1: Reexamination of observational evidence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tung, K. K.; Yang, H.</p> <p>1994-01-01</p> <p>Observational evidence for a global quasi-biennial oscillation (QBO) pattern is reviewed. In particular, the presence of an extratropical, as well as an equatorial, component of the QBO signal in column ozone is established. It is found that the ozone interannual variability is such that as one moves away from the Tropics, the frequency spectrum of the anomaly changes from one that is dominated by the equatorial QBO frequency of 1/30 mo to a two-peak spectrum around the two frequencies: 1/30 mo and 1/20 mo. Instead of treating the 1/20 mo frequency as a separate phenomenon to be filtered away in extracting the QBO in the extratropics, as was previously done, the authors argue that both peaks are integral parts of the extratropical QBO phenomenon. The 1/20 mo frequency happens to be the difference combination of the QBO frequency 1/30 mo and the annual frequency 1/12 mo. Therefore, it can represent the result of the QBO modulating an annual cycle. The authors suggest that previous methods of extracting the extratropical QBO signal severely underestimated the contribution of the QBO to the interannual variability of ozone when data are filtered to pass only the component with the period of equatorial QBO. Further, it is argued that the transport of equatorial QBO ozone anomaly by a non-QBO circulation can at most account for 6-8 Dobson units (DU) of the observed interannual variability of column ozone in the extratropics. The remaining variability (up to 20 DU) probably cannot be produced without an anomaly in the transporting circulation in the extratropics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1988wiff.book.....C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1988wiff.book.....C"><span>Wave Interactions and Fluid Flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Craik, Alex D. D.</p> <p>1988-07-01</p> <p>This up-to-date and comprehensive account of theory and experiment on wave-interaction phenomena covers fluids both at rest and in their shear flows. It includes, on the one hand, water waves, internal waves, and their evolution, interaction, and associated wave-driven means flow and, on the other hand, phenomena on nonlinear hydrodynamic stability, especially those leading to the onset of turbulence. This study provide a particularly valuable bridge between these two similar, yet different, classes of phenomena. It will be of value to oceanographers, meteorologists, and those working in fluid mechanics, atmospheric and planetary physics, plasma physics, aeronautics, and geophysical and astrophysical fluid dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5523029-equatorial-waves-stratospheric-gcm-effects-vertical-resolution-gcm-general-circulation-model','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5523029-equatorial-waves-stratospheric-gcm-effects-vertical-resolution-gcm-general-circulation-model"><span>Equatorial waves in a stratospheric GCM: Effects of vertical resolution. [GCM (general circulation model)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Boville, B.A.; Randel, W.J.</p> <p>1992-05-01</p> <p>Equatorially trapped wave modes, such as Kelvin and mixed Rossby-gravity waves, are believed to play a crucial role in forcing the quasi-biennial oscillation (QBO) of the lower tropical stratosphere. This study examines the ability of a general circulation model (GCM) to simulate these waves and investigates the changes in the wave properties as a function of the vertical resolution of the model. The simulations produce a stratopause-level semiannual oscillation but not a QBO. An unfortunate property of the equatorially trapped waves is that they tend to have small vertical wavelengths ([le] 15 km). Some of the waves, believed to bemore » important in forcing the QBO, have wavelengths as short as 4 km. The short vertical wavelengths pose a stringent computational requirement for numerical models whose vertical grid spacing is typically chosen based on the requirements for simulating extratropical Rossby waves (which have much longer vertical wavelengths). This study examines the dependence of the equatorial wave simulation of vertical resolution using three experiments with vertical grid spacings of approximately 2.8, 1.4, and 0.7 km. Several Kelvin, mixed Rossby-gravity, and 0.7 km. Several Kelvin, mixed Rossby-gravity, and inertio-gravity waves are identified in the simulations. At high vertical resolution, the simulated waves are shown to correspond fairly well to the available observations. The properties of the relatively slow (and vertically short) waves believed to play a role in the QBO vary significantly with vertical resolution. Vertical grid spacings of about 1 km or less appear to be required to represent these waves adequately. The simulated wave amplitudes are at least as large as observed, and the waves are absorbed in the lower stratosphere, as required in order to force the QBO. However, the EP flux divergence associated with the waves is not sufficient to explain the zonal flow accelerations found in the QBO. 39 refs., 17 figs., 1 tab.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.6803B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.6803B"><span>Timescales of transport from the troposphere into the lowermost stratosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boenisch, Harald; Hoor, Peter; Wernli, Heini</p> <p>2010-05-01</p> <p>The lowermost stratosphere (LMS) as part of the extratropical UTLS can be divided into dynamically and chemically distinct regions. A layer of mixed tropospheric and stratospheric tracer characteristics in the proximity of the extratropical tropopause: the extratropical tropopause transition layer (ExTL). This chemically distinct layer roughly coincides with a layer of strongly enhanced thermal stratification: the tropopause inversion layer (TIL) (Birner, 2006). The LMS above the ExTL, also named the free LMS (Bönisch et al., 2009), is less coupled to the local extratropical troposphere. Simultaneous in-situ measurements of CO2 and SF6 have been used to calculate mean transport time from the troposphere to the measurement location in the free LMS (Bönisch et al., 2009) which is on the order of months. In this study, we will use backward trajectories driven by operational ECMWF analyses wind fields to investigate the TST timescales into the LMS using the LAGRANTO scheme (Wernli and Davies, 1997). We applied a statistical data set of trajectories, which were initialized on isentropes above the 2 PVU surface up to 450K and calculated backward over 270 days (9 month) for our analysis. The results will be compared with the results from mass balance studies based on in-situ observations (Hoor et al., 2005; Bönisch et al., 2009). Furthermore, a focus is on the role of timescales of TIL formation in the LMS. Birner, T.: Fine-scale structure of the extratropical tropopause region, Journal of Geophysical Research-Atmospheres, 111, Doi 10.1029/2005jd006301, 2006. Bönisch, H., Engel, A., Curtius, J., Birner, T., and Hoor, P.: Quantifying transport into the lowermost stratosphere using simultaneous in-situ measurements of sf6 and co2, Atmospheric Chemistry and Physics, 9, 5905-5919, 2009. Hoor, P., Gurk, C., Brunner, D., Hegglin, M. I., Wernli, H., and Fischer, H.: Seasonality and extent of extratropical tst derived from in-situ co measurements during spurt, Atmospheric Chemistry and Physics, 4, 1427-1442, 2004. Hoor, P., Fischer, H., and Lelieveld, J.: Tropical and extratropical tropospheric air in the lowermost stratosphere over europe: A co-based budget, Geophysical Research Letters, 32, Doi 10.1029/2004gl022018, 2005. Wernli, H., and Davies, H. C.: A lagrangian-based analysis of extratropical cyclones .1. The method and some applications, Quarterly Journal of the Royal Meteorological Society, 123, 467-489, 1997.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EPSC....8..682T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EPSC....8..682T"><span>Gravity Waves in the Martian Atmosphere detected by the Radio Science Experiment MaRS on Mars Express</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tellmann, S.; Pätzold, M.; Häusler, B.; Tyler, G. L.; Hinson, D. P.</p> <p>2013-09-01</p> <p>Gravity waves are an ubiquitous feature in all stably stratified planetary atmospheres. They are known to play a significant role in the energy and momentum budget of the Earth, and they are assumed to be of importance for the redistribution of energy and momentum throughout the Martian atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Icar..282....1N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Icar..282....1N"><span>The circulation pattern and day-night heat transport in the atmosphere of a synchronously rotating aquaplanet: Dependence on planetary rotation rate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Noda, S.; Ishiwatari, M.; Nakajima, K.; Takahashi, Y. O.; Takehiro, S.; Onishi, M.; Hashimoto, G. L.; Kuramoto, K.; Hayashi, Y.-Y.</p> <p>2017-01-01</p> <p>In order to investigate a possible variety of atmospheric states realized on a synchronously rotating aquaplanet, an experiment studying the impact of planetary rotation rate is performed using an atmospheric general circulation model (GCM) with simplified hydrological and radiative processes. The entire planetary surface is covered with a swamp ocean. The value of planetary rotation rate is varied from zero to the Earth's, while other parameters such as planetary radius, mean molecular weight and total mass of atmospheric dry components, and solar constant are set to the present Earth's values. The integration results show that the atmosphere reaches statistically equilibrium states for all runs; none of the calculated cases exemplifies the runaway greenhouse state. The circulation patterns obtained are classified into four types: Type-I characterized by the dominance of a day-night thermally direct circulation, Type-II characterized by a zonal wave number one resonant Rossby wave over a meridionally broad westerly jet on the equator, Type-III characterized by a long time scale north-south asymmetric variation, and Type-IV characterized by a pair of mid-latitude westerly jets. With the increase of planetary rotation rate, the circulation evolves from Type-I to Type-II and then to Type-III gradually and smoothly, whereas the change from Type-III to Type-IV is abrupt and discontinuous. Over a finite range of planetary rotation rate, both Types-III and -IV emerge as statistically steady states, constituting multiple equilibria. In spite of the substantial changes in circulation, the net energy transport from the day side to the night side remains almost insensitive to planetary rotation rate, although the partition into dry static energy and latent heat energy transports changes. The reason for this notable insensitivity is that the outgoing longwave radiation over the broad area of the day side is constrained by the radiation limit of a moist atmosphere, so that the transport to the night side, which is determined as the difference between the incoming solar radiation and the radiation limit, cannot change greatly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA32A..07S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA32A..07S"><span>A modeling study of the thermosphere-ionosphere interactions during the boreal winter and spring 2015-2016: Tidal and planetary-scale waves effect on the ionospheric structure.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sassi, F.; McDonald, S. E.; McCormack, J. P.; Tate, J.; Liu, H.; Kuhl, D.</p> <p>2017-12-01</p> <p>The 2015-2016 boreal winter and spring is a dynamically very interesting time in the lower atmosphere: a minor high latitude stratospheric warming occurred in February 2016; an interrupted descent of the QBO was found in the tropical stratosphere; and a large warm ENSO took place in the tropical Pacific Ocean. The stratospheric warming, the QBO and ENSO are known to affect in different ways the meteorology of the upper atmosphere in different ways: low latitude solar tides and high latitude planetary-scale waves have potentially important implications on the structure of the ionosphere. In this study, we use global atmospheric analyses from a high-altitude version of the High-Altitude Navy Global Environmental Model (HA-NAVGEM) to constrain the meteorology of numerical simulations of the Specified Dynamics Whole Atmosphere Community Climate Model, extended version (SD-WACCM-X). We describe the large-scale behavior of tropical tides and mid-latitude planetary waves that emerge in the lower thermosphere. The effect on the ionosphere is captured by numerical simulations of the Navy Highly Integrated Thermosphere Ionosphere Demonstration System (Navy-HITIDES) that uses the meteorology generated by SD-WACCM-X to drive ionospheric simulations during this time period. We will analyze the impact of various dynamical fields on the zonal behavior of the ionosphere by selectively filtering the relevant dynamical modes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18643582','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18643582"><span>Realization of localized Bohr-like wave packets.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mestayer, J J; Wyker, B; Lancaster, J C; Dunning, F B; Reinhold, C O; Yoshida, S; Burgdörfer, J</p> <p>2008-06-20</p> <p>We demonstrate a protocol to create localized wave packets in very-high-n Rydberg states which travel in nearly circular orbits around the nucleus. Although these wave packets slowly dephase and eventually lose their localization, their motion can be monitored over several orbital periods. These wave packets represent the closest analog yet achieved to the original Bohr model of the hydrogen atom, i.e., an electron in a circular classical orbit around the nucleus. The possible extension of the approach to create "planetary atoms" in highly correlated stable multiply excited states is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22522408-spiral-patterns-planetesimal-circumbinary-disks','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22522408-spiral-patterns-planetesimal-circumbinary-disks"><span>SPIRAL PATTERNS IN PLANETESIMAL CIRCUMBINARY DISKS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Demidova, Tatiana V.; Shevchenko, Ivan I., E-mail: iis@gao.spb.ru</p> <p></p> <p>Planet formation scenarios and the observed planetary dynamics in binaries pose a number of theoretical challenges, especially concerning circumbinary planetary systems. We explore the dynamical stirring of a planetesimal circumbinary disk in the epoch when the gas component disappears. For this purpose, following theoretical approaches by Heppenheimer and Moriwaki and Nakagawa, we develop a secular theory of the dynamics of planetesimals in circumbinary disks. If a binary is eccentric and its components have unequal masses, a spiral density wave is generated, engulfing the disk on a secular timescale, which may exceed 10{sup 7} yr, depending on the problem parameters. The spiralmore » pattern is transient; thus, its observed presence may betray a system’s young age. We explore the pattern both analytically and in numerical experiments. The derived analytical spiral is a modified lituus; it matches the numerical density wave in the gas-free case perfectly. Using the smoothed particle hydrodynamics scheme, we explore the effect of residual gas on the wave propagation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930010887','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930010887"><span>Nonlinear dynamics of global atmospheric and Earth system processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Saltzman, Barry</p> <p>1993-01-01</p> <p>During the past eight years, we have been engaged in a NASA-supported program of research aimed at establishing the connection between satellite signatures of the earth's environmental state and the nonlinear dynamics of the global weather and climate system. Thirty-five publications and four theses have resulted from this work, which included contributions in five main areas of study: (1) cloud and latent heat processes in finite-amplitude baroclinic waves; (2) application of satellite radiation data in global weather analysis; (3) studies of planetary waves and low-frequency weather variability; (4) GCM studies of the atmospheric response to variable boundary conditions measurable from satellites; and (5) dynamics of long-term earth system changes. Significant accomplishments from the three main lines of investigation pursued during the past year are presented and include the following: (1) planetary atmospheric waves and low frequency variability; (2) GCM studies of the atmospheric response to changed boundary conditions; and (3) dynamics of long-term changes in the global earth system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920072018&hterms=rolando+garcia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D10%26Ntt%3Drolando%2Bgarcia','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920072018&hterms=rolando+garcia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D10%26Ntt%3Drolando%2Bgarcia"><span>A new numerical model of the middle atmosphere. I - Dynamics and transport of tropospheric source gases</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Garcia, Rolando R.; Stordal, Frode; Solomon, Susan; Kiehl, Jeffrey T.</p> <p>1992-01-01</p> <p>Attention is given to a new model of the middle atmosphere which includes, in addition to the equations governing the zonal mean state, a potential vorticity equation for a single planetary-scale Rossby wave, and an IR radiative transfer code for the stratosphere and lower mesosphere, which replaces the Newtonian cooling parameterization used previously. It is shown that explicit computation of the planetary-scale wave field yields a more realistic representation of the zonal mean dynamics and the distribution of trace chemical species. Wave breaking produces a well-mixed 'surf zone' equatorward of the polar night vortex and drives a meridional circulation with downwelling on the poleward side of the vortex. This combination of mixing and downwelling produces shallow meridional gradients of trace gases in the subtropics and middle latitudes, and very steep gradients at the edge of the polar vortex. Computed distributions of methane and nitrous oxide are shown to agree well with observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AdAtS..34..360Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AdAtS..34..360Q"><span>Relationships between the extratropical ENSO precursor and leading modes of atmospheric variability in the Southern Hemisphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qin, Jianhuang; Ding, Ruiqiang; Wu, Zhiwei; Li, Jianping; Zhao, Sen</p> <p>2017-03-01</p> <p>Previous studies suggest that the atmospheric precursor of El Niño-Southern Oscillation (ENSO) in the extratropical Southern Hemisphere (SH) might trigger a quadrapole sea surface temperature anomaly (SSTA) in the South Pacific and subsequently influence the following ENSO. Such a quadrapole SSTA is referred to as the South Pacific quadrapole (SPQ). The present study investigated the relationships between the atmospheric precursor signal of ENSO and leading modes of atmospheric variability in the extratropical SH [including the SH annular mode (SAM), the first Pacific-South America (PSA1) mode, and the second Pacific-South America (PSA2) mode]. The results showed that the atmospheric precursor signal in the extratropical SH basically exhibits a barotropic wavenumber-3 structure over the South Pacific and is significantly correlated with the SAM and the PSA2 mode during austral summer. Nevertheless, only the PSA2 mode was found to be a precursor for the following ENSO. It leads the SPQ-like SSTA by around one month, while the SAM and the PSA1 mode do not show any obvious linkage with either ENSO or the SPQ. This suggests that the PSA2 mode may provide a bridge between the preceding circulation anomalies over the extratropical SH and the following ENSO through the SPQ-like SSTA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFMSA41A1057R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFMSA41A1057R"><span>Collaborative analysis of Planetary Waves in the Mesospheric Neutral Winds with SuperDARN and TIMED Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ruohoniemi, J. M.</p> <p>2004-12-01</p> <p>The SuperDARN HF radars are best known for observing the ExB drift of ionospheric plasma in the high-latitude F region. At mesospheric altitudes the trails of ionization produced by meteors provide another kind of target for radar backscatter, and the motions imparted to these trails by winds in the neutral atmosphere can be measured. In the northern hemisphere the coverage of mesospheric winds currently extends over a 180 deg longitude sector but is confined by propagation conditions to latitudes near 55 deg geographic. We have analyzed several extended periods of simultaneous observations of the neutral wind involving SuperDARN and the TIMED suite of instruments. Often, the winds show clear evidence of large-scale wave events. The quasi 2-day planetary waves are prominent and their occurrence is seen to depend on season. By comparing the wave characteristics between the satellite and ground observations we obtain a complete breakdown of the wave activity in terms of wave periods and zonal wavenumbers. In addition, the semidiurnal tide is a ubiquitous feature of the mid-latitude mesosphere. A single radar station cannot resolve the sun-synchronous component from other contributions at the semidiurnal frequency. We show that with a chain of radars along a latitude band, the true sun-synchronous, or migrating, component can be inferred. Joint analysis can be performed chiefly with data from the SABRE and TIDI instruments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/889817','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/889817"><span>Predicting Coupled Ocean-Atmosphere Modes with a Climate Modeling Hierarchy -- Final Report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Michael Ghil, UCLA; Andrew W. Robertson, IRI, Columbia Univ.; Sergey Kravtsov, U. of Wisconsin, Milwaukee</p> <p></p> <p>The goal of the project was to determine midlatitude climate predictability associated with tropical-extratropical interactions on interannual-to-interdecadal time scales. Our strategy was to develop and test a hierarchy of climate models, bringing together large GCM-based climate models with simple fluid-dynamical coupled ocean-ice-atmosphere models, through the use of advanced probabilistic network (PN) models. PN models were used to develop a new diagnostic methodology for analyzing coupled ocean-atmosphere interactions in large climate simulations made with the NCAR Parallel Climate Model (PCM), and to make these tools user-friendly and available to other researchers. We focused on interactions between the tropics and extratropics throughmore » atmospheric teleconnections (the Hadley cell, Rossby waves and nonlinear circulation regimes) over both the North Atlantic and North Pacific, and the ocean’s thermohaline circulation (THC) in the Atlantic. We tested the hypothesis that variations in the strength of the THC alter sea surface temperatures in the tropical Atlantic, and that the latter influence the atmosphere in high latitudes through an atmospheric teleconnection, feeding back onto the THC. The PN model framework was used to mediate between the understanding gained with simplified primitive equations models and multi-century simulations made with the PCM. The project team is interdisciplinary and built on an existing synergy between atmospheric and ocean scientists at UCLA, computer scientists at UCI, and climate researchers at the IRI.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ThApC.125...27C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ThApC.125...27C"><span>Winter westerly disturbance dynamics and precipitation in the western Himalaya and Karakoram: a wave-tracking approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cannon, Forest; Carvalho, Leila M. V.; Jones, Charles; Norris, Jesse</p> <p>2016-07-01</p> <p>Extratropical cyclones, including winter westerly disturbances (WWD) over central Asia, are fundamental features of the atmosphere that maintain energy, momentum, and moisture at global scales while intimately linking large-scale circulation to regional-scale meteorology. Within high mountain Asia, WWD are the primary contributor to regional precipitation during winter. In this work, we present a novel WWD tracking methodology, which provides an inventory of location, timing, intensity, and duration of events, allowing for a comprehensive study of the factors that relate WWD to orographic precipitation, on an individual event basis and in the aggregate. We identify the relationship between the strength of disturbances, the state of the background environment during their propagation, and precipitation totals in the Karakoram/western Himalaya. We observe significant differences in convective and mechanical instability contributions to orographic precipitation as a function of the relationship between the intensity of WWD and the background temperature and moisture fields, which exhibit strong intraseasonal variability. Precipitation is primarily orographically forced during intense WWD with strong cross-barrier winds, while weaker WWD with similar precipitation totals are observed to benefit from enhanced instability due to high moisture content and temperature at low levels, occurring primarily in the late winter/premonsoon. The contribution of these factors is observed to fluctuate on a per-case basis, indicating important influences of intraseasonal oscillations and tropical-extratropical interactions on regional precipitation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110007970','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110007970"><span>Convective and Wave Signatures in Ozone Profiles Over the Equatorial Americas: Views from TC4 (2007) and SHADOZ</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thompson, Anne M.; MacFarlane, Alaina M.; Morris, Gary A.; Yorks, John E.; Miller, Sonya K.; Taubman, Brett F.; Verver, Ge; Voemel, Holger; Avery, Melody A.; Hair, Johnathan W.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20110007970'); toggleEditAbsImage('author_20110007970_show'); toggleEditAbsImage('author_20110007970_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20110007970_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20110007970_hide"></p> <p>2009-01-01</p> <p>During the months of July-August 2007 NASA conducted a research campaign called the Tropical Composition, Clouds and Climate Coupling (TC4) experiment. Vertical profiles of ozone were measured daily using an instrument known as an ozonesonde, which is attached to a weather balloon and launch to altitudes in excess of 30 km. These ozone profiles were measured over coastal Las Tablas, Panama (7.8N, 80W) and several times per week at Alajuela, Costa Rica (ION, 84W). Meteorological systems in the form of waves, detected most prominently in 100- 300 in thick ozone layer in the tropical tropopause layer, occurred in 50% (Las Tablas) and 40% (Alajuela) of the soundings. These layers, associated with vertical displacements and classified as gravity waves ("GW," possibly Kelvin waves), occur with similar stricture and frequency over the Paramaribo (5.8N, 55W) and San Cristobal (0.925, 90W) sites of the Southern Hemisphere Additional Ozonesondes (SHADOZ) network. The gravity wave labeled layers in individual soundings correspond to cloud outflow as indicated by the tracers measured from the NASA DC-8 and other aircraft data, confirming convective initiation of equatorial waves. Layers representing quasi-horizontal displacements, referred to as Rossby waves, are robust features in soundings from 23 July to 5 August. The features associated with Rossby waves correspond to extra-tropical influence, possibly stratospheric, and sometimes to pollution transport. Comparison of Las Tablas and Alajuela ozone budgets with 1999-2007 Paramaribo and San Cristobal soundings shows that TC4 is typical of climatology for the equatorial Americas. Overall during TC4, convection and associated meteorological waves appear to dominate ozone transport in the tropical tropopause layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850012155','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850012155"><span>Midwinter Disturbances in the Middle Atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Labitzke, K.</p> <p>1984-01-01</p> <p>The Middle Atmosphere is coupled to the troposphere during winter because planetary scale waves can propagate upwards if the prevailing winds are from the west. It is during this time of the year that the well-known midwinter disturbances are observed which ultimately affect the whole of the Middle Atmosphere. The mechanism of these disturbances is not completely understood. The large-scale circulation features up to the upper mesosphere are investigated to demonstrate the synoptic-scale behavior of the midwinter disturbances. Ground-based and satellite observations are combined. The interannual variability of the disturbances is discussed briefly. It is shown that the QBO (Quasi Biennial Oscillation) of the equatorial stratosphere appears to modulate the planetary waves during the northern winters, in the troposphere as well as in the Middle Atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18599776','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18599776"><span>Mercury's magnetosphere after MESSENGER's first flyby.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Slavin, James A; Acuña, Mario H; Anderson, Brian J; Baker, Daniel N; Benna, Mehdi; Gloeckler, George; Gold, Robert E; Ho, George C; Killen, Rosemary M; Korth, Haje; Krimigis, Stamatios M; McNutt, Ralph L; Nittler, Larry R; Raines, Jim M; Schriver, David; Solomon, Sean C; Starr, Richard D; Trávnícek, Pavel; Zurbuchen, Thomas H</p> <p>2008-07-04</p> <p>Observations by MESSENGER show that Mercury's magnetosphere is immersed in a comet-like cloud of planetary ions. The most abundant, Na+, is broadly distributed but exhibits flux maxima in the magnetosheath, where the local plasma flow speed is high, and near the spacecraft's closest approach, where atmospheric density should peak. The magnetic field showed reconnection signatures in the form of flux transfer events, azimuthal rotations consistent with Kelvin-Helmholtz waves along the magnetopause, and extensive ultralow-frequency wave activity. Two outbound current sheet boundaries were observed, across which the magnetic field decreased in a manner suggestive of a double magnetopause. The separation of these current layers, comparable to the gyro-radius of a Na+ pickup ion entering the magnetosphere after being accelerated in the magnetosheath, may indicate a planetary ion boundary layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA346700','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA346700"><span>Planetary Waves and Mesoscale Disturbances in the Middle and Upper Atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1998-05-14</p> <p>processing of ionogram records made us to begin designing a computer - controlled system to collect, store, display and scale the ionograms in digital...circuit board " L - 154". L - 154 passed signals from the re- ceiver and the system of the control to computer in order to collect in for motion...the main purpose of the PSMOS project is the establishment of a ground-based mesopause observing system for the investigation of planetary scale</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910023361&hterms=planetary+motion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dplanetary%2Bmotion','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910023361&hterms=planetary+motion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dplanetary%2Bmotion"><span>Laboratory and theoretical models of planetary-scale instabilities and waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hart, John E.; Toomre, Juri</p> <p>1991-01-01</p> <p>Meteorologists and planetary astronomers interested in large-scale planetary and solar circulations recognize the importance of rotation and stratification in determining the character of these flows. The two outstanding problems of interest are: (1) the origins and nature of chaos in baroclinically unstable flows; and (2) the physical mechanisms responsible for high speed zonal winds and banding on the giant planets. The methods used to study these problems, and the insights gained, are useful in more general atmospheric and climate dynamic settings. Because the planetary curvature or beta-effect is crucial in the large scale nonlinear dynamics, the motions of rotating convecting liquids in spherical shells were studied using electrohydrodynamic polarization forces to generate radial gravity and centrally directed buoyancy forces in the laboratory. The Geophysical Fluid Flow Cell (GFFC) experiments performed on Spacelab 3 in 1985 were analyzed. The interpretation and extension of these results have led to the construction of efficient numerical models of rotating convection with an aim to understand the possible generation of zonal banding on Jupiter and the fate of banana cells in rapidly rotating convection as the heating is made strongly supercritical. Efforts to pose baroclinic wave experiments for future space missions using a modified version of the 1985 instrument have led us to develop theoretical and numerical models of baroclinic instability. Some surprising properties of both these models were discovered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002ASPC..272..263G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002ASPC..272..263G"><span>Planetary Rings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gordon, M. K.; Araki, S.; Black, G. J.; Bosh, A. S.; Brahic, A.; Brooks, S. M.; Charnoz, S.; Colwell, J. E.; Cuzzi, J. N.; Dones, L.; Durisen, R. H.; Esposito, L. W.; Ferrari, C.; Festou, M.; French, R. G.; Giuliatti-Winter, S. M.; Graps, A. L.; Hamilton, D. P.; Horanyi, M.; Karjalainen, R. M.; Krivov, A. V.; Krueger, H.; Larson, S. M.; Levison, H. F.; Lewis, M. C.; Lissauer, J. J.; Murray, C. D.; Namouni, F.; Nicholson, P. D.; Olkin, C. B.; Poulet, F.; Rappaport, N. J.; Salo, H. J.; Schmidt, J.; Showalter, M. R.; Spahn, F.; Spilker, L. J.; Srama, R.; Stewart, G. R.; Yanamandra-Fisher, P.</p> <p>2002-08-01</p> <p>The past two decades have witnessed dramatic changes in our view and understanding of planetary rings. We now know that each of the giant planets in the Solar System possesses a complex and unique ring system. Recent studies have identified complex gravitational interactions between the rings and their retinues of attendant satellites. Among the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the context of galactic disks), electromagnetic resonances, spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to collective instabilities, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto, or collisions between, parent bodies. Yet, as far as we have come, our understanding is far from complete. The fundamental questions confronting ring scientists at the beginning of the twenty-first century are those regarding the origin, age and evolution of the various ring systems, in the broadest context. Understanding the origin and age requires us to know the current ring properties, and to understand the dominant evolutionary processes and how they influence ring properties. Here we discuss a prioritized list of the key questions, the answers to which would provide the greatest improvement in our understanding of planetary rings. We then outline the initiatives, missions, and other supporting activities needed to address those questions, and recommend priorities for the coming decade in planetary ring science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011P%26SS...59.1039W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011P%26SS...59.1039W"><span>Comparative study of ion cyclotron waves at Mars, Venus and Earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wei, H. Y.; Russell, C. T.; Zhang, T. L.; Blanco-Cano, X.</p> <p>2011-08-01</p> <p>Ion cyclotron waves are generated in the solar wind when it picks up freshly ionized planetary exospheric ions. These waves grow from the free energy of the highly anisotropic distribution of fresh pickup ions, and are observed in the spacecraft frame with left-handed polarization and a wave frequency near the ion's gyrofrequency. At Mars and Venus and in the Earth's polar cusp, the solar wind directly interacts with the planetary exospheres. Ion cyclotron waves with many similar properties are observed in these diverse plasma environments. The ion cyclotron waves at Mars indicate its hydrogen exosphere to be extensive and asymmetric in the direction of the interplanetary electric field. The production of fast neutrals plays an important role in forming an extended exosphere in the shape and size observed. At Venus, the region of exospheric proton cyclotron wave production may be restricted to the magnetosheath. The waves observed in the solar wind at Venus appear to be largely produced by the solar-wind-Venus interaction, with some waves at higher frequencies formed near the Sun and carried outward by the solar wind to Venus. These waves have some similarity to the expected properties of exospherically produced proton pickup waves but are characterized by magnetic connection to the bow shock or by a lack of correlation with local solar wind properties respectively. Any confusion of solar derived waves with exospherically derived ion pickup waves is not an issue at Mars because the solar-produced waves are generally at much higher frequencies than the local pickup waves and the solar waves should be mostly absorbed when convected to Mars distance as the proton cyclotron frequency in the plasma frame approaches the frequency of the solar-produced waves. In the Earth's polar cusp, the wave properties of ion cyclotron waves are quite variable. Spatial gradients in the magnetic field may cause this variation as the background field changes between the regions in which the fast neutrals are produced and where they are re-ionized and picked up. While these waves were discovered early in the magnetospheric exploration, their generation was not understood until after we had observed similar waves in the exospheres of Mars and Venus.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1711120L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1711120L"><span>Extra-tropical Cyclones and Windstorms in Seasonal Forecasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leckebusch, Gregor C.; Befort, Daniel J.; Weisheimer, Antje; Knight, Jeff; Thornton, Hazel; Roberts, Julia; Hermanson, Leon</p> <p>2015-04-01</p> <p>Severe damages and large insured losses over Europe related to natural phenomena are mostly caused by extra-tropical cyclones and their related windstorm fields. Thus, an adequate representation of these events in seasonal prediction systems and reliable forecasts up to a season in advance would be of high value for society and economy. In this study, state-of-the-art seasonal forecast prediction systems are analysed (ECMWF, UK Met Office) regarding the general climatological representation and the seasonal prediction of extra-tropical cyclones and windstorms during the core winter season (DJF) with a lead time of up to four months. Two different algorithms are used to identify cyclones and windstorm events in these datasets. Firstly, we apply a cyclone identification and tracking algorithm based on the Laplacian of MSLP and secondly, we use an objective wind field tracking algorithm to identify and track continuous areas of extreme high wind speeds (cf. Leckebusch et al., 2008), which can be related to extra-tropical winter cyclones. Thus, for the first time, we can analyse the forecast of severe wind events near to the surface caused by extra-tropical cyclones. First results suggest a successful validation of the spatial climatological distributions of wind storm and cyclone occurrence in the seasonal forecast systems in comparison with reanalysis data (ECMWF-ERA40 & ERAInterim) in general. However, large biases are found for some areas. The skill of the seasonal forecast systems in simulating the year-to-year variability of the frequency of severe windstorm events and cyclones is investigated using the ranked probability skill score. Positive skill is found over large parts of the Northern Hemisphere as well as for the most intense extra-tropical cyclones and its related wind fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29890223','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29890223"><span>Evolutionary origin of the latitudinal diversity gradient in liverworts.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Laenen, Benjamin; Patiño, Jairo; Hagborg, Anders; Désamoré, Aurélie; Wang, Jian; Jonathan Shaw, A; Goffinet, Bernard; Vanderpoorten, Alain</p> <p>2018-06-08</p> <p>A latitudinal diversity gradient towards the tropics appears as one most recurrent patterns in ecology, but the mechanisms underlying this pattern remain an area of controversy. In angiosperms, the tropical conservatism hypothesis proposes that most groups originated in the tropics and are adapted to a tropical climatic regime, and that relatively few species have evolved physiological adaptations to cold, dry or unpredictable climates. This mechanism is, however, unlikely to apply across land plants, and in particular, to liverworts, a group of about 7500 species, whose ability to withstand cold much better than their tracheophyte counterparts is at odds with the tropical conservatism hypothesis. Molecular dating, diversification rate analyses and ancestral area reconstructions were employed to explore the evolutionary mechanisms that account for the latitudinal diversity gradient in liverworts. As opposed to angiosperms, tropical liverwort genera are not older than their extra-tropical counterparts (median stem age of tropical and extra-tropical liverwort genera of 24.35±39.65 Ma and 39.57±49.07 Ma, respectively), weakening the 'time for speciation hypothesis'. Models of ancestral area reconstructions with equal migration rates between tropical and extra-tropical regions outperformed models with asymmetrical migration rates in either direction. The symmetry and intensity of migrations between tropical and extra-tropical regions suggested by the lack of resolution in ancestral area reconstructions towards the deepest nodes are at odds with the tropical niche conservatism hypothesis. In turn, tropical genera exhibited significantly higher net diversification rates than extra-tropical ones, suggesting that the observed latitudinal diversity gradient results from either higher extinction rates in extra-tropical lineages or higher speciation rates in the tropics. We discuss a series of experiments to help deciphering the underlying evolutionary mechanisms. Copyright © 2018. Published by Elsevier Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/45780-global-qbo-circulation-ozone-part-reexamination-observational-evidence','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/45780-global-qbo-circulation-ozone-part-reexamination-observational-evidence"><span>Global QBO in circulation and ozone. Part 1: Reexamination of observational evidence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Tung, K.K.; Yang, H.</p> <p>1994-10-01</p> <p>Observational evidence for a global quasi-biennial oscillation (QBO) pattern is reviewed. In particular, the presence of an extratropical, as well as an equatorial, component of the QBO signal in column ozone is established. It is found that the ozone interannual variability is such that as one moves away from the Tropics, the frequency spectrum of the anomaly changes from one that is dominated by the equatorial QBO frequency of 1/30 mo to a two-peak spectrum around the two frequencies: 1/30 mo and 1/20 mo. Instead of treating the 1/20 mo frequency as a separate phenomenon to be filtered away inmore » extracting the QBO in the extratropics, as was previously done, the authors argue that both peaks are integral parts of the extratropical QBO phenomenon. The 1/20 mo frequency happens to be the difference combination of the QBO frequency 1/30 mo and the annual frequency 1/12 mo. Therefore, it can represent the result of the QBO modulating an annual cycle. The authors suggest that previous methods of extracting the extratropical QBO signal severely underestimated the contribution of the QBO to the interannual variability of ozone when data are filtered to pass only the component with the period of equatorial QBO. Further, it is argued that the transport of equatorial QBO ozone anomaly by a non-QBO circulation can at most account for 6-8 Dobson units (DU) of the observed interannual variability of column ozone in the extratropics. The remaining variability (up to 20 DU) probably cannot be produced without an anomaly in the transporting circulation in the extratropics.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A11F1936C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A11F1936C"><span>CYGNSS Surface Wind Observations and Surface Flux Estimates within Low-Latitude Extratropical Cyclones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crespo, J.; Posselt, D. J.</p> <p>2017-12-01</p> <p>The Cyclone Global Navigation Satellite System (CYGNSS), launched in December 2016, aims to improve estimates of surface wind speeds over the tropical oceans. While CYGNSS's core mission is to provide better estimates of surface winds within the core of tropical cyclones, previous research has shown that the constellation, with its orbital inclination of 35°, also has the ability to observe numerous extratropical cyclones that form in the lower latitudes. Along with its high spatial and temporal resolution, CYGNSS can provide new insights into how extratropical cyclones develop and evolve, especially in the presence of thick clouds and precipitation. We will demonstrate this by presenting case studies of multiple extratropical cyclones observed by CYGNSS early on in its mission in both Northern and Southern Hemispheres. By using the improved estimates of surface wind speeds from CYGNSS, we can obtain better estimates of surface latent and sensible heat fluxes within and around extratropical cyclones. Surface heat fluxes, driven by surface winds and strong vertical gradients of water vapor and temperature, play a key role in marine cyclogenesis as they increase instability within the boundary layer and may contribute to extreme marine cyclogenesis. In the past, it has been difficult to estimate surface heat fluxes from space borne instruments, as these fluxes cannot be observed directly from space, and deficiencies in spatial coverage and attenuation from clouds and precipitation lead to inaccurate estimates of surface flux components, such as surface wind speeds. While CYGNSS only contributes estimates of surface wind speeds, we can combine this data with other reanalysis and satellite data to provide improved estimates of surface sensible and latent heat fluxes within and around extratropical cyclones and throughout the entire CYGNSS mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750024584','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750024584"><span>Periodic analysis of total ozone and its vertical distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilcox, R. W.; Nastrom, G. D.; Belmont, A. D.</p> <p>1975-01-01</p> <p>Both total ozone and vertical distribution ozone data from the period 1957 to 1972 are analyzed. For total ozone, improved monthly zonal means for both hemispheres are computed by weighting individual station monthly means by a factor which compensates for the close grouping of stations in certain regions of latitude bands. Longitudinal variability show maxima in summer in both hemispheres, but, in winter, only in the Northern Hemisphere. The geographical distributions of the long term mean, and the annual, quasibiennial and semiannual waves in total ozone over the Northern Hemisphere are presented. The extratropical amplitude of the annual wave is by far the largest of the three, as much as 120 m atm cm over northern Siberia. There is a tendency for all three waves to have maxima in high latitudes. Monthly means of the vertical distribution of ozone determined from 3 to 8 years of ozonesonde data over North America are presented. Number density is highest in the Arctic near 18 km. The region of maximum number density slopes upward toward 10 N, where the long term mean is 45 x 10 to the 11th power molecules cm/3 near 26 km.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030102174','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030102174"><span>Mesospheric Non-Migrating Tides Generated With Planetary Waves: II Influence of Gravity Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, H. G.; Mengel, J. G.; Talaat, E. L.; Porter, H. S.; Chan, K. L.</p> <p>2003-01-01</p> <p>We demonstrated that, in our model, non-linear interactions between planetary waves (PW) and migrating tides could generate in the upper mesosphere non-migrating tides with amplitudes comparable to those observed. The Numerical Spectral Model (NSM) we employ incorporates Hines Doppler Spread Parameterization for small-scale gravity waves (GW), which affect in numerous ways the dynamics of the mesosphere. The latitudinal (seasonal) reversals in the temperature and zonal circulation, which are largely caused by GWs (Lindzen, 198l), filter the PWs and contribute to the instabilities that generate the PWs. The PWs in turn are amplified by the momentum deposition of upward propagating GWs, as are the migrating tides. The GWs thus affect significantly the migrating tides and PWs, the building blocks of non-migrating tides. In the present paper, we demonstrate that GW filtering also contributes to the non-linear coupling between PWs and tides. Two computer experiments are presented to make this point. In one, we simply turn off the GW source to show the effect. In the second case, we demonstrate the effect by selectively suppressing the momentum source for the m = 0 non-migrating tides.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910041874&hterms=stress+relationship&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dstress%2Brelationship','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910041874&hterms=stress+relationship&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dstress%2Brelationship"><span>The relationship of extratropical outgoing longwave radiation to monthly geopotential teleconnection patterns</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Charlock, Thomas P.; Bess, T. Dale; Smith, G. Louis; Rose, Fred G.</p> <p>1990-01-01</p> <p>The relationship between low frequency variations in extratropical fields of outgoing longwave radiation (OLR) and geopotential teleconnection patterns as determined by rotated principal components analysis of the NMC 500-mb heights is investigated in the Northern Hemisphere. The monthly broadband OLR is obtained from the Nimbus-6 and Nimbus-7 Wide-Field-Of-View radiometer record. Each of the main 500-mb teleconnection patterns has a characteristic signal in the OLR field for the month in which the 500-mb pattern occurs. The OLR signals mark cloud and diabatic heating events that are associated with the teleconnection patterns. A demonstration is given of correlation between extratropical monthly OLR and geopotential height. Coupled with the expected tropospheric response to radiation on monthly time scale. This demonstration stresses the importance of the radiation simulation in model studies of the low frequency variability of atmospheric circulation. The extratropical OLR does not appear to be a useful predictor for the 500-mb teleconnection patterns on a monthly time scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A43H2568R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A43H2568R"><span>Kelvin waves in the tropical stratosphere observed in OMPS-LP ozone measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Randel, W. J.; Park, M.</p> <p>2017-12-01</p> <p>We investigate equatorial waves in the tropical stratosphere using OMPS limb profiler (LP) ozone measurements spanning 2012-2017. The OMPS-LP data show clear evidence of eastward propagating planetary-scale Kelvin waves with periods near 15-20 days, and these feature are strongly modulated by the background winds linked to the quasi-biennial oscillation (QBO). We study coherence between OMPS-LP ozone and GPS radio occultation temperature measurements, and use these analyses to evaluate data quality and variability in the tropical stratosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H21E1524L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H21E1524L"><span>The Next-Generation Goddard Convective-Stratiform Heating Algorithm: New Retrievals for Tropical and Extra-tropical Environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lang, S. E.; Tao, W. K.; Iguchi, T.</p> <p>2017-12-01</p> <p>The Goddard Convective-Stratiform Heating (or CSH) algorithm has been used to estimate cloud heating over the global Tropics using TRMM rainfall data and a set of look-up-tables (LUTs) derived from a series of multi-week cloud-resolving model (CRM) simulations using the Goddard Cumulus Ensemble model (GCE). These simulations link satellite observables (i.e., surface rainfall and stratiform fraction) with cloud heating profiles, which are not directly observable. However, with the launch of GPM in 2014, the range over which such algorithms can be applied has been extended from the Tropics into higher latitudes, including cold season and synoptic weather systems. In response, the CSH algorithm and its LUTs have been revised both to improve the retrievals in the Tropics as well as expand retrievals to higher latitudes. For the Tropics, the GCE simulations used to build the LUTs were upgraded using larger 2D model domains (512 vs 256 km) and a new, improved Goddard 4-ice scheme as well as expanded with additional cases (4 land and 6 ocean in total). The new tropical LUTs are also re-built using additional metrics. Besides surface type, conditional rain intensity and stratiform fraction, the new LUTs incorporate echo top heights and low-level (0-2 km) vertical reflectivity gradients. CSH retrievals in the Tropics based on the new LUTs show significant differences from previous iterations using TRMM data or the old LUT metrics. For the Extra-tropics, 6 NU-WRF simulations of synoptic events (3 East Coast and 3 West Coast), including snow, were used to build new extra-tropical CSH LUTs. The LUT metrics for the extra-tropics are based on radar characteristics and freezing level height. The extra-tropical retrievals are evaluated with a self-consistency check approach using the model heating as `truth,' and freezing level height is used to transition CSH retrievals from the Tropics to Extra-tropics. Retrieved zonal average heating structures in the Extra-tropics are presented and show distinct differences from those in the Tropics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMIN43C1739F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMIN43C1739F"><span>An Analysis of the Extratropical Transition of Hurricane Arthur (2014) from a JPSS Proving Ground Perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Folmer, M. J.; Berndt, E.; Halverson, J. B.; Dunion, J. P.; Goldberg, M.</p> <p>2015-12-01</p> <p>As part of the GOES-R and JPSS Satellite Proving Grounds, multiple proxy and operational products were available to analyze and forecast the complex evolution of Hurricane Arthur (2014). The National Hurricane Center, Ocean Prediction Center, Weather Prediction Center, and NESDIS Satellite Analysis Branch were able to monitor the tropical and extratropical transition of Arthur using various convective and red, green, blue (RGB) products that have been introduced in recent years. During the extratropical transition, the Air Mass RGB (AM RGB) product and AIRS/CrIS ozone products were available as a compliment to water vapor imagery to identify the upper-level low with associated stratospheric drying that absorbed much of Arthur's energy. The AM RGB product provides forecasters with an enhanced view of various air masses that are combined into a single image and can help differentiate between possible stratospheric/tropospheric interactions, moist tropical air masses, and cool, continental/maritime air masses. Even though this product provides a wealth of qualitative information about the horizontal distribution of synoptic features, forecasters are also interested in more quantitative information such as the vertical distribution of temperature, moisture, and ozone which impact the coloring of the resulting AM RGB. Currently, NOAA Unique CrIS/ATMS Processing System (NUCAPS) temperature and moisture soundings are available in AWIPS-II as a point-based display. Traditionally, soundings are used to anticipate and forecast severe convection, however unique and valuable information can be gained from soundings for other forecasting applications, such as extratropical transition, especially in data sparse regions. Additional research has been conducted to look at how NUCAPS soundings might help forecasters identify the pre-extratropical transition environment, leading to earlier diagnosis and better public advisories. NUCAPS soundings, AIRS soundings, NOAA G-IV GPS dropwindsondes, and the AM RGB were analyzed leading up to and during Arthur's tropical to extratropical transition. The presentation will focus on the use of NUCAPS in concert with the AM RGB product to analyze Arthur's extratropical transition for use in NWS operations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990088419&hterms=Reddy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DReddy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990088419&hterms=Reddy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DReddy"><span>The Role of Gravity Waves in Generating Equatorial Oscillations in Modulating Atmospheric Tides</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Porter, H. S.; Reddy, C. A.</p> <p>1999-01-01</p> <p>We discuss a Numerical Spectral Mode (NSM) that extends from the ground up into the thermosphere and incorporates Hines' Doppler spread parameterization (DSP) for small scale gravity waves (GW). This model is applied to describe the seasonal variations in the mean zonal circulation, the semi-annual and quasi-biennial oscillations (SAO and QBO), as well as the tides and planetary waves in the middle atmosphere. Initial results showed that this model can reproduce the salient features observed, including the QBO extending into the upper mesosphere inferred from UARS measurements. The model has now been extended to simulate also: (a) the zonal circulation of the lower stratosphere and upper troposphere, and (b) the upwelling at equatorial latitudes associated with the Brewer Dobsen circulation that affects the dynamics significantly as pointed out by Dunkerton. Upward vertical winds increase the period of the QBO observed from the ground. To compensate for that, one needs to increase in the model the eddy diffusivity and the GW momentum flux, bringing the latter closer to values recommended in the DSP. This development is conducive to extending the QBO and SAO to higher latitudes through global scale momentum redistribution. Multi-year interannual oscillations are generated through wave filtering by the solar driven annual oscillation in the zonal circulation. In a 3D version of the model, wave momentum is absorbed and dissipated by tides and planetary waves. A somewhat larger GW source (well within the DSP range) is then required to generate realistic QBO and SAO amplitudes. Since GW momentum is deposited in the altitude regime of increasing winds, the amplitude of the diurnal tide is amplified and its vertical wavelength is reduced at altitudes between 70 and 120 km. Wave filtering by the mean zonal circulation causes the GW flux to peak during equinox, and this produces a large semi-annual variation in the tide that has been observed on UARS. Without the diurnal tide, the semidiurnal tide would also be modulated in this way. But the diurnal tide filters out the GW preferentially during equinox, so that the semidiurnal tide tends to peak during solstice. Under the influence of GW, the tides are modulated significantly by planetary waves that are generated preferentially during solstice in part due to baroclinic instability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A23F2426N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A23F2426N"><span>Scale Interactions in the Tropics from a Simple Multi-Cloud Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Niu, X.; Biello, J. A.</p> <p>2017-12-01</p> <p>Our lack of a complete understanding of the interaction between the moisture convection and equatorial waves remains an impediment in the numerical simulation of large-scale organization, such as the Madden-Julian Oscillation (MJO). The aim of this project is to understand interactions across spatial scales in the tropics from a simplified framework for scale interactions while a using a simplified framework to describe the basic features of moist convection. Using multiple asymptotic scales, Biello and Majda[1] derived a multi-scale model of moist tropical dynamics (IMMD[1]), which separates three regimes: the planetary scale climatology, the synoptic scale waves, and the planetary scale anomalies regime. The scales and strength of the observed MJO would categorize it in the regime of planetary scale anomalies - which themselves are forced from non-linear upscale fluxes from the synoptic scales waves. In order to close this model and determine whether it provides a self-consistent theory of the MJO. A model for diabatic heating due to moist convection must be implemented along with the IMMD. The multi-cloud parameterization is a model proposed by Khouider and Majda[2] to describe the three basic cloud types (congestus, deep and stratiform) that are most responsible for tropical diabatic heating. We implement a simplified version of the multi-cloud model that is based on results derived from large eddy simulations of convection [3]. We present this simplified multi-cloud model and show results of numerical experiments beginning with a variety of convective forcing states. Preliminary results on upscale fluxes, from synoptic scales to planetary scale anomalies, will be presented. [1] Biello J A, Majda A J. Intraseasonal multi-scale moist dynamics of the tropical atmosphere[J]. Communications in Mathematical Sciences, 2010, 8(2): 519-540. [2] Khouider B, Majda A J. A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis[J]. Journal of the atmospheric sciences, 2006, 63(4): 1308-1323. [3] Dorrestijn J, Crommelin D T, Biello J A, et al. A data-driven multi-cloud model for stochastic parametrization of deep convection[J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2013, 371(1991): 20120374.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1812029R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1812029R"><span>A coupled atmosphere-ocean-wave modeling approach for a Tropical Like Cyclone in the Mediterranean Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ricchi, Antonio; Miglietta, M. Marcello; Barbariol, Francesco; Benetazzo, Alvise; Bonaldo, Davide; Falcieri, Francesco; Russo, Aniello; Sclavo, Mauro; Carniel, Sandro</p> <p>2016-04-01</p> <p>In November 6-8, 2011, in the Balearic islands an extra-tropical depression developed into a Tropical-Like Cyclone (TLC) characterized by a deep-warm core, leading to a mean sea level pressure minimum of about 991 hPa, 10 m wind speeds higher than 28 m/s around the eye, and very intense rainfall, especially in the Gulf of Lion. To explore in detail the effect of the sea surface temperature on the Medicane evolution, we employed the coupled modeling system COAWST, which consists of the ROMS model for the hydrodynamic part, the WRF model for the meteorological part, and the SWAN for the surface wave modeling. All model run over 5 km domain (same domain for ROMS and SWAN). COAWST was used with different configurations: in Stand Alone (SA) mode (that is, with only the atmospheric part), in atmosphere-ocean coupled mode (AO), and in a fully coupled version including also surface waves (AOW). Several sensitivity simulations performed with the SA approach were undertaken to simulate the TLC evolution. Especially in the later stage of the lifetime, when the cyclone was weaker, the predictability appears limited. Sensitivity simulations have considered the effect of the cumulus scheme (using an explicit scheme the Medicane does not develop and remains an extra-tropical depression) and the PBL scheme (using MYJ or MYNN resulting "Medicane" are extremely similar, although the roughness appears rather different among the two experiments). Comparing the three runs, the effects of different simulations on the Medicane tracks are significant only in the later stage of the cyclone lifetime. In the overall modeled basin, wind intensity is higher in the SA case w.r.t. both coupled runs. When compared to case AO, winds are about 1 m/s larger, even though the spatial distribution is very similar (possibly because of the lower SST produced by case AO). Case AOW produces less intense winds then SA and AO case in the areas where the wave is most developed (differences are about 2-4 m/s), while they are more intense in the neighborhood of the eye of the cyclone. Moreover, the inclusion of the wave model (AOW) has implications in the water column, by changing the depth of the ocean mixed layer along the track of the Medicane, so that eventually the SST in AOW run is colder than in AO. The date chosen for the run initialization appears important: an earlier initial condition allows to properly simulate the evolution of the cyclone from the cyclogenesis and to include the effect of the air-sea interaction through the coupled models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DPS....4812118L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DPS....4812118L"><span>Damping of Resonantly Forced Density Waves in Dense Planetary Rings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki</p> <p>2016-10-01</p> <p>We address the stability of resonantly forced density waves in dense planetary rings.Already by Goldreich and Tremaine (1978) it has been argued that density waves might be unstable, depending on the relationship between the ring's viscosity and the surface mass density. In the recent paper (Schmidt et al. 2016) we have pointed out that when - within a fluid description of the ring dynamics - the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping.We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model.This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts linear instability of density waves in a ring region where the conditions for viscous overstability are met. In this case, sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. In general the model wave damping lengths depend on a set of input parameters, such as the distance to the threshold for viscous overstability and the ground state surface mass density.Our new model compares reasonably well with the streamline model for nonlinear density waves of Borderies et al. 1986.Deviations become substantial in the highly nonlinear regime, corresponding to strong satellite forcing.Nevertheless, we generally observe good or at least qualitative agreement between the wave amplitude profiles of both models. The streamline approach is superior at matching the total wave profile of waves observed in Saturn's rings, while our new damping relation is a comparably handy tool to gain insight in the evolution of the wave amplitude with distance from resonance, and the different regimes of wave formation and the dependence on the parameters of the model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12780100','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12780100"><span>Long-lived planetary vortices and their evolution: Conservative intermediate geostrophic model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sutyrin, Georgi G.</p> <p>1994-06-01</p> <p>Large, long-lived vortices, surviving during many turnaround times and far longer than the dispersive linear Rossby wave packets, are abundant in planetary atmospheres and oceans. Nonlinear effects which prevent dispersive decay of intense cyclones and anticyclones and provide their self-propelling propagation are revised here using shallow water equations and their balanced approximations. The main physical mechanism allowing vortical structures to be long-lived in planetary fluid is the quick fluid rotation inside their cores which prevents growth in the amplitude of asymmetric circulation arising due to the beta-effect. Intense vortices of both signs survive essentially longer than the linear Rossby wave packet if their azimuthal velocity is much larger than the Rossby wave speed. However, in the long-time evolution, cyclonic and anticyclonic vortices behave essentially differently that is illustrated by the conservative intermediate geostrophic model. Asymmetric circulation governing vortex propagation is described by the azimuthal mode m=1 for the initial value problem as well as for steadily propagating solutions. Cyclonic vortices move west-poleward decaying gradually due to Rossby wave radiation while anticyclonic ones adjust to non-radiating solitary vortices. Slow weakening of an intense cyclone with decreasing of its size and shrinking of the core is described assuming zero azimuthal velocity outside the core while drifting poleward. The poleward tendency of the cyclone motion relative to the stirring flow corresponds to characteristic trajectories of tropical cyclones in the Earth's atmosphere. The asymmetry in dispersion-nonlinear properties of cyclones and anticyclones is thought to be one of the essential reasons for the observed predominance of anticyclones among long-lived vortices in the atmospheres of the giant planets and also among intrathermoclinic eddies in the ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001JCli...14.4003F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001JCli...14.4003F"><span>How Do Tropical Sea Surface Temperatures Influence the Seasonal Distribution of Precipitation in the Equatorial Amazon?.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fu, Rong; Dickinson, Robert E.; Chen, Mingxuan; Wang, Hui</p> <p>2001-10-01</p> <p>Although the correlation between precipitation over tropical South America and sea surface temperatures (SSTs) over the Pacific and Atlantic has been documented since the early twentieth century, the impact of each ocean on the timing and intensity of the wet season over tropical South America and the underlying mechanisms have remained unclear. Numerical experiments have been conducted using the National Center for Atmospheric Research Community Climate Model Version 3 to explore these impacts. The results suggest the following.1)Seasonality of SSTs in the tropical Pacific and Atlantic has an important influence on precipitation in the eastern Amazon during the equinox seasons. The eastern side of the Amazon is influenced both by the direct thermal circulation of the Atlantic intertropical convergence zone (ITCZ) and by Rossby waves. These processes are enhanced by the seasonal cycles of SSTs in the tropical Atlantic and Pacific. SSTs affect Amazon precipitation much less during the solstice seasons and in the western Amazon.2)The seasonality of SSTs in the Atlantic more strongly affects Amazon rainfall than does that of the Pacific. Without the former, austral spring in the eastern equatorial Amazon would be a wet season, rather than the observed dry season. As a consequence of the lag at that time of the southward seasonal migration of the Atlantic SSTs behind that of the insolation, the Atlantic ITCZ centers itself near 10°N, instead of at the equator, imposing subsidence and low-level anticyclonic flow over the eastern equatorial Amazon, thus drying the air above the planetary boundary layer and reducing the low-level moisture convergence. Consequently, convection in the eastern Amazon is suppressed despite strong surface heating.3)Seasonality of the SSTs in the tropical Pacific also tends to reduce precipitation in the eastern Amazon during both spring and fall. In spring, subsidence is enhanced not only through a zonal direct circulation, but also through Rossby waves propagating from the extratropical South Pacific to subtropical South America. This teleconnection strengthens the South Atlantic convergence zone (SACZ) and the Nordeste low, in both cases reducing precipitation in the eastern Amazon. A direct thermal response to the Pacific SSTs enhances lower-level divergence and reduces precipitation from the northern tropical Atlantic to the northeastern Amazon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830046170&hterms=lecture&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dlecture','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830046170&hterms=lecture&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dlecture"><span>Upstream waves and particles /Tutorial Lecture/. [from shocks in interplanetary space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Russell, C. T.; Hoppe, M. M.</p> <p>1983-01-01</p> <p>The plasma waves, MHD waves, energetic electrons and ions associated with the proximity of the region upstream from terrestrial, planetary and interplanetary shocks are discussed in view of observations and current theories concerning their origin. These waves cannot be separated from the study of shock structure. Since the shocks are supersonic, they continually overtake any ULF waves created in the plasma in front of the shock. The upstream particles and waves are also of intrinsic interest because they provide a plasma laboratory for the study of wave-particle interactions in a plasma which, at least at the earth, is accessible to sophisticated probing. Insight may be gained into interstellar medium cosmic ray acceleration through the study of these phenomena.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA624770','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA624770"><span>The Analysis, Numerical Simulation, and Diagnosis of Extratropical Weather Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2000-09-30</p> <p>MRY) and I developed a collaboration with the NRL/SSMIS Lower-Atmospheric Sounding Capability program; Gene Poe (NRL, Team Leader). The effort is...Geophysical Society Annual Meeting (Nice, Fance ; April 2000), the Extratropical Cyclone Workshop (Monterey, CA; Sept. 2000), and in seminars at NCAR</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1430238-persistent-anomalies-extratropical-northern-hemisphere-wintertime-circulation-initiator-el-nino-southern-oscillation-events','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1430238-persistent-anomalies-extratropical-northern-hemisphere-wintertime-circulation-initiator-el-nino-southern-oscillation-events"><span>Persistent anomalies of the extratropical Northern Hemisphere wintertime circulation as an initiator of El Niño/Southern Oscillation events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Anderson, Bruce T.; Hassanzadeh, Pedram; Caballero, Rodrigo</p> <p>2017-08-31</p> <p>Climates across both hemispheres are strongly influenced by tropical Pacific variability associated with the El Niño/Southern Oscillation (ENSO). Conversely, extratropical variability also can affect the tropics. In particular, seasonal-mean alterations of near-surface winds associated with the North Pacific Oscillation (NPO) serve as a significant extratropical forcing agent of ENSO. However, it is still unclear what dynamical processes give rise to year-to-year shifts in these long-lived NPO anomalies. Here in this paper we show that intraseasonal variability in boreal winter pressure patterns over the Central North Pacific (CNP) imparts a significant signature upon the seasonal-mean circulations characteristic of the NPO. Furthermore » we show that the seasonal-mean signature results in part from year-to-year variations in persistent, quasi-stationary low-pressure intrusions into the subtropics of the CNP, accompanied by the establishment of persistent, quasi-stationary high-pressure anomalies over high latitudes of the CNP. Overall, we find that the frequency of these persistent extratropical anomalies (PEAs) during a given winter serves as a key modulator of intraseasonal variability in extratropical North Pacific circulations and, through their influence on the seasonal-mean circulations in and around the southern lobe of the NPO, the state of the equatorial Pacific 9–12 months later.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1430238','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1430238"><span>Persistent anomalies of the extratropical Northern Hemisphere wintertime circulation as an initiator of El Niño/Southern Oscillation events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Anderson, Bruce T.; Hassanzadeh, Pedram; Caballero, Rodrigo</p> <p></p> <p>Climates across both hemispheres are strongly influenced by tropical Pacific variability associated with the El Niño/Southern Oscillation (ENSO). Conversely, extratropical variability also can affect the tropics. In particular, seasonal-mean alterations of near-surface winds associated with the North Pacific Oscillation (NPO) serve as a significant extratropical forcing agent of ENSO. However, it is still unclear what dynamical processes give rise to year-to-year shifts in these long-lived NPO anomalies. Here in this paper we show that intraseasonal variability in boreal winter pressure patterns over the Central North Pacific (CNP) imparts a significant signature upon the seasonal-mean circulations characteristic of the NPO. Furthermore » we show that the seasonal-mean signature results in part from year-to-year variations in persistent, quasi-stationary low-pressure intrusions into the subtropics of the CNP, accompanied by the establishment of persistent, quasi-stationary high-pressure anomalies over high latitudes of the CNP. Overall, we find that the frequency of these persistent extratropical anomalies (PEAs) during a given winter serves as a key modulator of intraseasonal variability in extratropical North Pacific circulations and, through their influence on the seasonal-mean circulations in and around the southern lobe of the NPO, the state of the equatorial Pacific 9–12 months later.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1411544H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1411544H"><span>Dehydration and Lagrangian Cold Point in the extratropical Tropopause region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoor, P.; Wernli, H.</p> <p>2012-04-01</p> <p>The tropopause region of the tropics and extratropics is sensitive to modifications of the radiation budget through changes of radiatively active substances like ozone and water vapour. Both may also modify the temperature structure and the strengths of the tropopause inversion layer (TIL). Stratospheric water vapour is mainly controlled by dehydration in the tropics. Ascending air masses encounter their minimum temperature in the TTL region (tropical tropopause layer) which determines the water vapour fraction which enters the stratosphere. In the lowermost stratosphere of the extratropics however, the tropical signal might be lost due to mixing with airmasses which crossed the tropopause (TST: troposphere to stratosphere) at higher temperatures, therefore carrying more water vapour to the extratropical stratosphere. We investigate statistical 90 day backward trajectories to investigate the role of dehydration at the extratropical tropopause for the water vapour budget at the tropopause at mid and high latitudes. We use a set of 800000 trajectories for summer and winter, respectively, on the basis of ECMWF-T799L91 operational data (kinematic wind fields). We analyze the trajectories for the time and locations of their cold point and TST. Our results indicate that : 1) TST and dehydration occur at different locations 2) Dehydration occurs in general before trajectories enter the stratosphere 3) Dehydration of TST trajectories can occur in northern winter after TST in the region of high tropopauses over Siberia</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JASTP.167..184K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JASTP.167..184K"><span>Anomalous tropical planetary wave activity during 2015/2016 quasi biennial oscillation disruption</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kumar, Karanam Kishore; Mathew, Sneha Susan; Subrahmanyam, K. V.</p> <p>2018-01-01</p> <p>In the present communication, a record breaking duration (23 months) of the eastward phase of the QBO at 20 hPa is reported and details of the tropical wave activity during the recent anomalous QBO event are discussed. Two-dimensional Fourier analysis revealed the presence of 30-40 and 10-15 day westward propagating wave number 1 structures at 40 hPa pressure level over the equator. A combination of the mid-latitude Rossby waves and the 30-40 day oscillations seems to be the most probable mechanism for the observed disruption of the QBO.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.2064D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.2064D"><span>Rossby Wave Propagation into the Northern Hemisphere Stratosphere: The Role of Zonal Phase Speed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Domeisen, Daniela I. V.; Martius, Olivia; Jiménez-Esteve, Bernat</p> <p>2018-02-01</p> <p>Sudden stratospheric warming (SSW) events are to a dominant part induced by upward propagating planetary waves. While theory predicts that the zonal phase speed of a tropospheric wave forcing affects wave propagation into the stratosphere, its relevance for SSW events has so far not been considered. This study shows in a linear wave diagnostic and in reanalysis data that phase speeds tend eastward as waves propagate upward, indicating that the stratosphere preselects eastward phase speeds for propagation, especially for zonal wave number 2. This also affects SSW events: Split SSW events tend to be preceded by anomalously eastward zonal phase speeds. Zonal phase speed may indeed explain part of the increased wave flux observed during the preconditioning of SSW events, as, for example, for the record 2009 SSW event.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010069580','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010069580"><span>Laboratory for Extraterrestrial Physics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vondrak, Richard R. (Technical Monitor)</p> <p>2001-01-01</p> <p>The NASA Goddard Space Flight Center (GSFC) Laboratory for Extraterrestrial Physics (LEP) performs experimental and theoretical research on the heliosphere, the interstellar medium, and the magnetospheres and upper atmospheres of the planets, including Earth. LEP space scientists investigate the structure and dynamics of the magnetospheres of the planets including Earth. Their research programs encompass the magnetic fields intrinsic to many planetary bodies as well as their charged-particle environments and plasma-wave emissions. The LEP also conducts research into the nature of planetary ionospheres and their coupling to both the upper atmospheres and their magnetospheres. Finally, the LEP carries out a broad-based research program in heliospheric physics covering the origins of the solar wind, its propagation outward through the solar system all the way to its termination where it encounters the local interstellar medium. Special emphasis is placed on the study of solar coronal mass ejections (CME's), shock waves, and the structure and properties of the fast and slow solar wind. LEP planetary scientists study the chemistry and physics of planetary stratospheres and tropospheres and of solar system bodies including meteorites, asteroids, comets, and planets. The LEP conducts a focused program in astronomy, particularly in the infrared and in short as well as very long radio wavelengths. We also perform an extensive program of laboratory research, including spectroscopy and physical chemistry related to astronomical objects. The Laboratory proposes, develops, fabricates, and integrates experiments on Earth-orbiting, planetary, and heliospheric spacecraft to measure the characteristics of planetary atmospheres and magnetic fields, and electromagnetic fields and plasmas in space. We design and develop spectrometric instrumentation for continuum and spectral line observations in the x-ray, gamma-ray, infrared, and radio regimes; these are flown on spacecraft to study the interplanetary medium, asteroids, comets, and planets. Suborbital sounding rockets and groundbased observing platforms form an integral part of these research activities. This report covers the period from approximately October 1999 through September 2000.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011APS..DPPPM1008P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011APS..DPPPM1008P"><span>Influence of large-scale zonal flows on the evolution of stellar and planetary magnetic fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Petitdemange, Ludovic; Schrinner, Martin; Dormy, Emmanuel; ENS Collaboration</p> <p>2011-10-01</p> <p>Zonal flows and magnetic field are present in various objects as accretion discs, stars and planets. Observations show a huge variety of stellar and planetary magnetic fields. Of particular interest is the understanding of cyclic field variations, as known from the sun. They are often explained by an important Ω-effect, i.e., by the stretching of field lines because of strong differential rotation. We computed the dynamo coefficients for an oscillatory dynamo model with the help of the test-field method. We argue that this model is of α2 Ω -type and here the Ω-effect alone is not responsible for its cyclic time variation. More general conditions which lead to dynamo waves in global direct numerical simulations are presented. Zonal flows driven by convection in planetary interiors may lead to secondary instabilities. We showed that a simple, modified version of the MagnetoRotational Instability, i.e., the MS-MRI can develop in planteray interiors. The weak shear yields an instability by its constructive interaction with the much larger rotation rate of planets. We present results from 3D simulations and show that 3D MS-MRI modes can generate wave pattern at the surface of the spherical numerical domain. Zonal flows and magnetic field are present in various objects as accretion discs, stars and planets. Observations show a huge variety of stellar and planetary magnetic fields. Of particular interest is the understanding of cyclic field variations, as known from the sun. They are often explained by an important Ω-effect, i.e., by the stretching of field lines because of strong differential rotation. We computed the dynamo coefficients for an oscillatory dynamo model with the help of the test-field method. We argue that this model is of α2 Ω -type and here the Ω-effect alone is not responsible for its cyclic time variation. More general conditions which lead to dynamo waves in global direct numerical simulations are presented. Zonal flows driven by convection in planetary interiors may lead to secondary instabilities. We showed that a simple, modified version of the MagnetoRotational Instability, i.e., the MS-MRI can develop in planteray interiors. The weak shear yields an instability by its constructive interaction with the much larger rotation rate of planets. We present results from 3D simulations and show that 3D MS-MRI modes can generate wave pattern at the surface of the spherical numerical domain. The first author thanks DFG and PlanetMag project for financial support.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.5172S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.5172S"><span>Regional Wave Climates along Eastern Boundary Currents</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Semedo, Alvaro; Soares, Pedro</p> <p>2016-04-01</p> <p>Two types of wind-generated gravity waves coexist at the ocean surface: wind sea and swell. Wind sea waves are waves under growing process. These young growing waves receive energy from the overlaying wind and are strongly coupled to the local wind field. Waves that propagate away from their generation area and no longer receive energy input from the local wind are called swell. Swell waves can travel long distances across entire ocean basins. A qualitative study of the ocean waves from a locally vs. remotely generation perspective is important, since the air sea interaction processes is strongly modulated by waves and vary accordingly to the prevalence of wind sea or swell waves in the area. A detailed climatology of wind sea and swell waves along eastern boundary currents (EBC; California Current, Canary Current, in the Northern Hemisphere, and Humboldt Current, Benguela Current, and Western Australia Current, in the Southern Hemisphere), based on the ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-Interim reanalysis will be presented. The wind regime along EBC varies significantly from winter to summer. The high summer wind speeds along EBC generate higher locally generated wind sea waves, whereas lower winter wind speeds in these areas, along with stronger winter extratropical storms far away, lead to a predominance of swell waves there. In summer, the coast parallel winds also interact with coastal headlands, increasing the wind speed through a process called "expansion fan", which leads to an increase in the height of locally generated waves downwind of capes and points. Hence the spatial patterns of the wind sea or swell regional wave fields are shown to be different from the open ocean along EBC, due to coastal geometry and fetch dimensions. Swell waves will be shown to be considerably more prevalent and to carry more energy in winter along EBC, while in summer locally generated wind sea waves are either more comparable to swell waves or, particularly in the lee of headlands, or even more prevalent and more energized than swell. This study is part of the WRCP-JCOMM COWCLIP (Coordinated Ocean Wave Climate Project) effort.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880008707','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880008707"><span>Application of satellite data in observational and theoretical studies of the evolving structure of baroclinic waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Saltzman, Barry</p> <p>1987-01-01</p> <p>A variety of observational and theoretical studies were performed which were designed to clarify the relationship between satellite measurements of cloud and radiation and the evolution of transient and stationary circulation in middle latitudes. Satellite outgoing longwave radiation data are used to: (1) estimate the generation of available potential energy due to infrared radiation, and (2) show the extent to which these data can provide the signature of high and low frequency weather phenomena including blocking. In a significant series of studies the nonlinear, energetical, and predictability properties of these blocking situations, and the ralationship of blocking to the planetary, scale longwave structure are described. These studies form the background for continuing efforts to describe and theoretically account for these low frequency planetary wave phenomena in terms of their bimodal properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A54C..04F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A54C..04F"><span>Butterflies, Black swans and Dragon kings: How to use the Dynamical Systems Theory to build a "zoology" of mid-latitude circulation atmospheric extremes?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Faranda, D.; Yiou, P.; Alvarez-Castro, M. C. M.</p> <p>2015-12-01</p> <p>A combination of dynamical systems and statistical techniques allows for a robust assessment of the dynamical properties of the mid-latitude atmospheric circulation. Extremes at different spatial and time scales are not only associated to exceptionally intense weather structures (e.g. extra-tropical cyclones) but also to rapid changes of circulation regimes (thunderstorms, supercells) or the extreme persistence of weather structure (heat waves, cold spells). We will show how the dynamical systems theory of recurrence combined to the extreme value theory can take into account the spatial and temporal dependence structure of the mid-latitude circulation structures and provide information on the statistics of extreme events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870038513&hterms=impacts+ocean&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dimpacts%2Bocean','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870038513&hterms=impacts+ocean&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dimpacts%2Bocean"><span>A case study of GWE satellite data impact on GLA assimilation analyses of two ocean cyclones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gallimore, R. G.; Johnson, D. R.</p> <p>1986-01-01</p> <p>The effects of the Global Weather Experiment (GWE) data obtained on January 18-20, 1979 on Goddard Laboratory for Atmospheres assimilation analyses of simultaneous cyclones in the western Pacific and Atlantic oceans are examined. The ability of satellite data within assimilation models to determine the baroclinic structures of developing extratropical cyclones is evaluated. The impact of the satellite data on the amplitude and phase of the temperature structure within the storm domain, potential energy, and baroclinic growth rate is studied. The GWE data are compared with Data Systems Test results. It is noted that it is necessary to characterize satellite effects on the baroclinic structure of cyclone waves which degrade numerical weather predictions of cyclogenesis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880056308&hterms=models+linear&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmodels%2Blinear','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880056308&hterms=models+linear&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmodels%2Blinear"><span>Linear simulation of the stationary eddies in a GCM. II - The 'Mountain' model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nigam, Sumant; Held, Isaac M.; Lyons, Steven W.</p> <p>1988-01-01</p> <p>Linear stationary wave theory is used to account for zonal asymmetries of the winter-averaged tropospheric circulation obtained in a GCM. The eddy zonal velocity field in the upper troposphere indicates that the orographic and thermal plus transient contributions are nearly equal in amplitude, while the eddy meridional velocity field (which is dominated by shorter zonal scales) shows the orographic contribution to be dominant. The two contributions are found to be roughly in phase over the east Asian coast, and they contribute roughly equal amounts to the low level Siberian high. Results indicate that the 300 mb extratropical response to tropical forcing reaches 50 gpm over Alaska, and that the responses to sensible heating and lower tropospheric transients are strongly anticorrelated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990115473&hterms=Wave+filter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DWave%2Bfilter','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990115473&hterms=Wave+filter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DWave%2Bfilter"><span>The Role of Gravity Waves in Modulating Atmospheric Tides</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, H. G.; Mengel, J. G; Chan, K. L.; Porter, H. S.</p> <p>1999-01-01</p> <p>We discuss results for the diurnal and semidiurnal tides obtained from our 3-D, time dependent numerical spectral model (NMS), extending from the ground up into the thermosphere, which incorporates Hines' Doppler spread parameterization of small scale gravity waves (GW). In the DSP, GW momentum (and energy) are conserved as the waves modulate the background flow and are filtered by the flow.As a consequence, the GW interaction tightly couples the dynamic components of the middle atmosphere with strong non-linear interactions between mean zonal circulation, tides and planetary waves to produce complicated patterns of variability much like those observed. The major conclusions are: (1) Since GW momentum is deposited in the altitude regime of increasing winds, the amplitude of the diurnal tide is amplified and its vertical wavelength is reduced at altitudes between 80 and 120 km. Wave filtering by the mean zonal circulation (with peak velocities during solstice) causes the GW flux to peak during equinox, and this produces a large semi-annual variation in the tide that has been observed on UARS. (2) Without the diurnal tide, the semidiurnal tide would also be modulated in this way. But the diurnal tide filters out the GW preferentially during equinox, so that the semidiurnal tide, at higher altitudes, tends to peak during solstice. (3) Under the influence of GW, the tides are modulated also significantly by planetary waves, with periods between 2 and 30 days, which are generated preferentially during solstice in part due to baroclinic instability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008cosp...37.3094S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008cosp...37.3094S"><span>Signature of 3-4 day planetary waves in the equatorial ionospheric F layer height and medium frequency radar winds over Tirunelveli (8.7oN)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sundararaman, Sathishkumar</p> <p></p> <p>Signature of 3-4 day planetary waves in the equatorial ionospheric F layer height and medium frequency radar winds over Tirunelveli (8.7oN) S. Sathishkumar1, R. Dhanya1, K. Emperumal1, D. Tiwari2, S. Gurubaran1 and A. Bhattacharyya2 1. Equatorial Geophysical Research Laboratory, Indian Institute of Geomagnetism, Tirunelveli, India 2. Indian Institute of Geomagnetism, Navi Mumbai, India Email: sathishmaths@gmail.com Abstract The equatorial atmosphere-ionosphere system has been studied theoretically and observationally in the past. In the equatorial atmosphere, oscillations with periods of 3-4 days are often observed in the medium frequency (MF) radar over Tirunelveli (8.7oN, 77.8oE, 1.34oN geomag. lat.). Earlier observations show the clear evidence that these waves can propagate from the stratosphere to ionosphere. A digital ionosonde has been providing useful information on several ionospheric parameters from the same site. Simultaneous observations of mesospheric winds using medium frequency radar and F-layer height (h'F) from ionosonde reveal that the 3-4 day wave was evident in both the component during the 01 June 2007 and 31 July 2007. The 3-4 day wave could have an important role in the day to day variability of the equatorial ionosphere evening uplift. Results from an extensive analysis that is being carried out in the direction of 3-4 day wave present in the ionosphere will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910007198','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910007198"><span>Laboratory and theoretical models of planetary-scale instabilities and waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hart, John E.; Toomre, Juri</p> <p>1990-01-01</p> <p>Meteorologists and planetary astronomers interested in large-scale planetary and solar circulations recognize the importance of rotation and stratification in determining the character of these flows. In the past it has been impossible to accurately model the effects of sphericity on these motions in the laboratory because of the invariant relationship between the uni-directional terrestrial gravity and the rotation axis of an experiment. Researchers studied motions of rotating convecting liquids in spherical shells using electrohydrodynamic polarization forces to generate radial gravity, and hence centrally directed buoyancy forces, in the laboratory. The Geophysical Fluid Flow Cell (GFFC) experiments performed on Spacelab 3 in 1985 were analyzed. Recent efforts at interpretation led to numerical models of rotating convection with an aim to understand the possible generation of zonal banding on Jupiter and the fate of banana cells in rapidly rotating convection as the heating is made strongly supercritical. In addition, efforts to pose baroclinic wave experiments for future space missions using a modified version of the 1985 instrument led to theoretical and numerical models of baroclinic instability. Rather surprising properties were discovered, which may be useful in generating rational (rather than artificially truncated) models for nonlinear baroclinic instability and baroclinic chaos.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..122.8667D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..122.8667D"><span>Impacts of northern Tibetan Plateau on East Asian summer rainfall via modulating midlatitude transient eddies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Deng, Jiechun; Xu, Haiming; Shi, Ning; Zhang, Leying; Ma, Jing</p> <p>2017-08-01</p> <p>Roles of the Tibetan Plateau (TP) in forming and changing the seasonal Asian climate system have been widely explored. However, little is known about modulation effects of the TP on extratropical transient eddies (TEs) and subsequent synoptic responses of the East Asian rainfall. In this study, the Community Atmosphere Model version 5.1 coupled with a slab ocean model is employed to highlight the important role of the TP in regulating the upper-tropospheric transient wave train. Comparison between sensitivity experiments with and without the TP shows that the northern TP excites a strong anomalous anticyclone, which shifts the upper-level East Asian westerly jet northward and helps transfer barotropic and baroclinic energy from the mean flow to the synoptic TE flow. The transient wave train is primarily shifted northward by northern TP and is forced to propagate southeastward along the eastern flank of the TP until reaching eastern China. Before the strengthening of monsoonal southerlies, the TP-modulated transient wave train cools the troposphere, which decreases the static stability over northern China. Meanwhile, the associated anomalous warm advection induces ascending motion, leading to excessive rainfall by releasing unstable energy as the southerly strengthens. Due to the southeastward propagation of the wave train, anomalous heavy rainfall subsequently appears over eastern China from north to south, which increases day-to-day rainfall variation in this region. Additionally, occurrence of this upper-tropospheric transient wave train associated with low-level southerly peak is substantially increased by northern TP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E1996V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E1996V"><span>Gravity waves, Tides and Planetary wave characteristics revealed by network of MLT radars over Indian region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Venkat Ratnam, Madineni; Karanam, Kishore Kumar; Sunkara, Eswaraiah; Vijaya Bhaskara Rao, S.; Subrahmanyam, K. V.; Ramanjaneyulu, L.</p> <p>2016-07-01</p> <p>Mesosphere and Lower Thermosphere (MLT) mean winds, gravity waves, tidal and planetary wave characteristics are investigated using two years (2013-2015) of advanced meteor radar installed at Tirupathi (13.63oN, 79.4oE), India. The observations reveal the presence of high frequency gravity waves (30-120 minutes), atmospheric tides (diurnal, semi-diurnal and terr-diurnal) along with long period oscillations in both zonal and meridional winds. Background mean zonal winds show clear semi-annual oscillation in the mesosphere, whereas meridional winds are characterized by annual oscillation as expected. Diurnal tide amplitudes are significantly larger (60-80 m/s) than semi-diurnal (10-20 m/s) and terr-diurnal (5-8 m/s) tides and larger in meridional than zonal winds. The measured meridional components are in good agreement with Global Scale Wave Model (GSWM-09) predictions than zonal up to ~90 km in all the seasons, except fall equinox. Diurnal tidal phase matches well than the amplitudes between observations and model predictions. However, no similarity is being found in the semi-diurnal tides between observations and model. The measurements are further compared with nearby Thumba meteor radar (8.5oN, 77oE) observations. Some differences do exist between the measurements from Tirupati and Thumba meteor radar and model outputs at greater heights and the possible reasons are discussed. SVU meteor radar observations clearly showed the dominance of well-known ultra-fast kelvin waves (3.5 days), 5-8 day, 16 day, 27 day, and 30-40 day oscillations. Due to higher meteor count extending up to 110 km, we could investigate the variability of these PWs and oscillations covering wider range (70-110 km) for the first time. Significant change above 100 km is noticed in all the above mentioned PW activity and oscillations. We also used ERA-Interim reanalysis data sets available at 0.125x0.125 degree grids for investigating the characteristics of these PW right from surface to 1 hPa. The presence of these waves and oscillations right from upper troposphere to lower thermosphere simultaneously is noticed. Though these waves are expected to have higher wave number (higher horizontal wave lengths) few important differences are noticed between Tirupati and Thumba, that are separated by only 500 km. The implication of these waves and oscillations on the background atmosphere and vice versa are discussed. Thus, installation of SVU meteor radar made good complementary observations that can be effectively used to investigate vertical and lateral coupling. Role of these tides in modulating the mesopause altitude is further investigated using the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) on-board Thermosphere Ionosphere Mesosphere Energetics Dynamics (TIMED) satellite. It is found that mesopause altitude is always close to 100 km and is strongly affected by gravity waves, tides and planetary waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ClDy...46.3737C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ClDy...46.3737C"><span>The 2014 southeast Brazil austral summer drought: regional scale mechanisms and teleconnections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Coelho, Caio A. S.; de Oliveira, Cristiano Prestrelo; Ambrizzi, Tércio; Reboita, Michelle Simões; Carpenedo, Camila Bertoletti; Campos, José Leandro Pereira Silveira; Tomaziello, Ana Carolina Nóbile; Pampuch, Luana Albertani; Custódio, Maria de Souza; Dutra, Lívia Marcia Mosso; Da Rocha, Rosmeri P.; Rehbein, Amanda</p> <p>2016-06-01</p> <p>The southeast region of Brazil experienced in austral summer 2014 a major drought event leading to a number of impacts in water availability for human consumption, agricultural irrigation and hydropower production. This study aims to perform a diagnostic analysis of the observed climate conditions during this event, including an inspection of the occurred precipitation anomalies in the context of previous years, and an investigation of possible relationships with sea surface temperatures and atmospheric circulation patterns. The sea surface temperature analysis revealed that the southwestern South Atlantic Ocean region near the coast of southeast Brazil showed strong negative association with precipitation over southeast Brazil, indicating that increased sea temperatures in this ocean region are consistent with reduced precipitation as observed in summer 2014. The circulation analysis revealed prevailing anti-cyclonic anomalies at lower levels (850 hPa) with northerly anomalies to the west of southeast Brazil, channeling moisture from the Amazon towards Paraguay, northern Argentina and southern Brazil, and drier than normal air from the South Atlantic Ocean towards the southeast region of Brazil. This circulation pattern was found to be part of a large-scale teleconnection wave train linked with the subsidence branch of the Walker circulation in the tropical east Pacific, which in turn was generated by an anomalous tropical heat source in north/northeastern Australia. A regional Hadley circulation with an ascending branch to the south of the subsidence branch of the Walker circulation in the tropical east Pacific was identified as an important component connecting the tropical and extratropical circulation. The ascending branch of this Hadley circulation in the south Pacific coincided with an identified Rossby wave source region, which contributed to establishing the extratropical component of the large-scale wave train connecting the south Pacific and the Atlantic region surrounding southeast Brazil. This connection between the Pacific and the Atlantic was confirmed with Rossby ray tracing analyses. The local circulation response was associated to downward air motion (subsidence) over Southeast Brazil, contributing to the expressive negative precipitation anomalies observed during summer 2014, and leading to a major drought event in the historical context. The analysis of atmospheric and oceanic patterns of this event helped defining a schematic framework leading to the observed drought conditions in southeast Brazil, including the involved teleconnections, blocking high pressure, radiative and humidity transport effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AtmRe.199..128P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AtmRe.199..128P"><span>Characteristics of different convective parameterization schemes on the simulation of intensity and track of severe extratropical cyclones over North Atlantic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pradhan, P. K.; Liberato, Margarida L. R.; Ferreira, Juan A.; Dasamsetti, S.; Vijaya Bhaskara Rao, S.</p> <p>2018-01-01</p> <p>The role of the convective parameterization schemes (CPSs) in the ARW-WRF (WRF) mesoscale model is examined for extratropical cyclones (ETCs) over the North Atlantic Ocean. The simulation of very severe winter storms such as Xynthia (2010) and Gong (2013) are considered in this study. Most popular CPSs within WRF model, along with Yonsei University (YSU) planetary boundary layer (PBL) and WSM6 microphysical parameterization schemes are incorporated for the model experiments. For each storm, four numerical experiments were carried out using New Kain Fritsch (NKF), Betts-Miller-Janjic (BMJ), Grell 3D Ensemble (Gr3D) and no convection scheme (NCS) respectively. The prime objectives of these experiments were to recognize the best CPS that can forecast the intensity, track, and landfall over the Iberian Peninsula in advance of two days. The WRF model results such as central sea level pressure (CSLP), wind field, moisture flux convergence, geopotential height, jet stream, track and precipitation have shown sensitivity CPSs. The 48-hour lead simulations with BMJ schemes produce the best simulations both regarding ETCs intensity and track than Gr3D and NKF schemes. The average MAE and RMSE of intensities are least that (6.5 hPa in CSLP and 3.4 ms- 1 in the 10-m wind) found in BMJ scheme. The MAE and RMSE for and intensity and track error have revealed that NCS produces large errors than other CPSs experiments. However, for track simulation of these ETCs, at 72-, 48- and 24-hour means track errors were 440, 390 and 158 km respectively. In brevity, BMJ and Gr3D schemes can be used for short and medium range predictions of the ETCs over North Atlantic. For the evaluation of precipitation distributions using Gr3D scheme are good agreement with TRMM satellite than other CPSs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160011335','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160011335"><span>Improving 7-Day Forecast Skill by Assimilation of Retrieved AIRS Temperature Profiles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Susskind, Joel; Rosenberg, Bob</p> <p>2016-01-01</p> <p>We conducted a new set of Data Assimilation Experiments covering the period January 1 to February 29, 2016 using the GEOS-5 DAS. Our experiments assimilate all data used operationally by GMAO (Control) with some modifications. Significant improvement in Global and Southern Hemisphere Extra-tropical 7-day forecast skill was obtained when: We assimilated AIRS Quality Controlled temperature profiles in place of observed AIRS radiances, and also did not assimilate CrISATMS radiances, nor did we assimilate radiosonde temperature profiles or aircraft temperatures. This new methodology did not improve or degrade 7-day Northern Hemispheric Extra-tropical forecast skill. We are conducting experiments aimed at further improving of Northern Hemisphere Extra-tropical forecast skill.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020002330&hterms=wave+oscillation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dwave%2Boscillation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020002330&hterms=wave+oscillation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dwave%2Boscillation"><span>Model of Wave Driven Flow Oscillation for Solar Cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, Hans G.; Wolff, Charles L.; Einaudi, Franco (Technical Monitor)</p> <p>2001-01-01</p> <p>At low latitudes in the Earth's atmosphere, the observed zonal flow velocities are dominated by the semi-annual and quasi-biennial oscillations with periods of 6 months and 20 to 32 months respectively. These terrestrial oscillations, the SAO and QBO respectively, are driven by wave-mean flow interactions due to upward propagating planetary-scale waves (periods of days) and small-scale gravity waves (periods of hours). We are proposing (see also Mayr et al., GRL, 2001) that such a mechanism may drive long period oscillations (reversing flows) in stellar and planetary interiors, and we apply it to the Sun. The reversing flows would occur below the convective envelope where waves can propagate. We apply a simplified, one dimensional, analytical flow model that incorporates a gravity wave parameterization due to Hines (1997). Based on this analysis, our estimates show that relatively small wave amplitudes less than 10 m/s can produce zonal flow amplitudes of 20 m/s, which should be sufficient to generate the observed variations in the magnetic field. To produce the 22-year period of oscillation, a low buoyancy frequency must be chosen, and this places the proposed flow in a region that is close to (and below) the base of the convective envelope. Enhanced turbulence associated with this low stability should help to generate the dynamo currents. With larger stability at deeper levels in the solar interior, the model can readily produce also oscillations with much longer periods. To provide an understanding of the fluid dynamics involved, we present numerical results from a 2D model for the terrestrial atmosphere that exemplify the non-linear nature of the wave interaction for which a mechanical analog is the escapement mechanism of the clock.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApJ...833..126B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApJ...833..126B"><span>The Spiral Wave Instability Induced by a Giant Planet. I. Particle Stirring in the Inner Regions of Protoplanetary Disks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bae, Jaehan; Nelson, Richard P.; Hartmann, Lee</p> <p>2016-12-01</p> <p>We have recently shown that spiral density waves propagating in accretion disks can undergo a parametric instability by resonantly coupling with and transferring energy into pairs of inertial waves (or inertial-gravity waves when buoyancy is important). In this paper, we perform inviscid three-dimensional global hydrodynamic simulations to examine the growth and consequence of this instability operating on the spiral waves driven by a Jupiter-mass planet in a protoplanetary disk. We find that the spiral waves are destabilized via the spiral wave instability (SWI), generating hydrodynamic turbulence and sustained radially alternating vertical flows that appear to be associated with long wavelength inertial modes. In the interval 0.3 {R}{{p}}≤slant R≤slant 0.7{R}{{p}}, where R p denotes the semimajor axis of the planetary orbit (assumed to be 5 au), the estimated vertical diffusion rate associated with the turbulence is characterized by {α }{diff}∼ (0.2{--}1.2)× {10}-2. For the disk model considered here, the diffusion rate is such that particles with sizes up to several centimeters are vertically mixed within the first pressure scale height. This suggests that the instability of spiral waves launched by a giant planet can significantly disperse solid particles and trace chemical species from the midplane. In planet formation models where the continuous local production of chondrules/pebbles occurs over Myr timescales to provide a feedstock for pebble accretion onto these bodies, this stirring of solid particles may add a time constraint: planetary embryos and large asteroids have to form before a gas giant forms in the outer disk, otherwise the SWI will significantly decrease the chondrule/pebble accretion efficiency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850014017','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850014017"><span>Radio scintillations observed during atmospheric occultations of Voyager: Internal gravity waves at Titan and magnetic field orientations at Jupiter and Saturn. Ph.D. Thesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hinson, D. P.</p> <p>1983-01-01</p> <p>The refractive index of planetary atmospheres at microwave frequencies is discussed. Physical models proposed for the refractive irregularities in the ionosphere and neutral atmosphere serve to characterize the atmospheric scattering structures, and are used subsequently to compute theoretical scintillation spectra for comparison with the Voyager occultation measurements. A technique for systematically analyzing and interpreting the signal fluctuations observed during planetary occultations is presented and applied to process the dual-wavelength data from the Voyager radio occultations by Jupiter, Saturn, and Titan. Results concerning the plasma irregularities in the upper ionospheres of Jupiter and Saturn are reported. The measured orientation of the irregularities is used to infer the magnetic field direction at several locations in the ionospheres of these two planets; the occultation measurements conflict with the predictions of Jovian magnetic field models, but generally confirm current models of Saturn's field. Wave parameters, including the vertical fluxes of energy and momentum, are estimated, and the source of the internal gravity waves discovered in Titan's upper atmosphere is considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880004460','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880004460"><span>Global atmospheric circulation statistics: Four year averages</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wu, M. F.; Geller, M. A.; Nash, E. R.; Gelman, M. E.</p> <p>1987-01-01</p> <p>Four year averages of the monthly mean global structure of the general circulation of the atmosphere are presented in the form of latitude-altitude, time-altitude, and time-latitude cross sections. The numerical values are given in tables. Basic parameters utilized include daily global maps of temperature and geopotential height for 18 pressure levels between 1000 and 0.4 mb for the period December 1, 1978 through November 30, 1982 supplied by NOAA/NMC. Geopotential heights and geostrophic winds are constructed using hydrostatic and geostrophic formulae. Meridional and vertical velocities are calculated using thermodynamic and continuity equations. Fields presented in this report are zonally averaged temperature, zonal, meridional, and vertical winds, and amplitude of the planetary waves in geopotential height with zonal wave numbers 1-3. The northward fluxes of sensible heat and eastward momentum by the standing and transient eddies along with their wavenumber decomposition and Eliassen-Palm flux propagation vectors and divergences by the standing and transient eddies along with their wavenumber decomposition are also given. Large interhemispheric differences and year-to-year variations are found to originate in the changes in the planetary wave activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930050978&hterms=worlds+oceans&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dworlds%2Boceans','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930050978&hterms=worlds+oceans&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dworlds%2Boceans"><span>Comparison of ocean surface solar irradiance in the GLA General Circulation Model and satellite-based calculations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chertock, Beth; Sud, Y. C.</p> <p>1993-01-01</p> <p>A global, 7-year satellite-based record of ocean surface solar irradiance (SSI) is used to assess the realism of ocean SSI simulated by the nine-layer Goddard Laboratory for Atmospheres (GLA) General Circulation Model (GCM). January and July climatologies of net SSI produced by the model are compared with corresponding satellite climatologies for the world oceans between 54 deg N and 54 deg S. This comparison of climatologies indicates areas of strengths and weaknesses in the GCM treatment of cloud-radiation interactions, the major source of model uncertainty. Realism of ocean SSI is also important for applications such as incorporating the GLA GCM into a coupled ocean-atmosphere GCM. The results show that the GLA GCM simulates too much SSI in the extratropics and too little in the tropics, especially in the summer hemisphere. These discrepancies reach magnitudes of 60 W/sq m and more. The discrepancies are particularly large in the July case off the western coast of North America. Positive and negative discrepancies in SSI are shown to be consistent with discrepancies in planetary albedo.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26635077','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26635077"><span>Distant Influence of Kuroshio Eddies on North Pacific Weather Patterns?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ma, Xiaohui; Chang, Ping; Saravanan, R; Montuoro, Raffaele; Hsieh, Jen-Shan; Wu, Dexing; Lin, Xiaopei; Wu, Lixin; Jing, Zhao</p> <p>2015-12-04</p> <p>High-resolution satellite measurements of surface winds and sea-surface temperature (SST) reveal strong coupling between meso-scale ocean eddies and near-surface atmospheric flow over eddy-rich oceanic regions, such as the Kuroshio and Gulf Stream, highlighting the importance of meso-scale oceanic features in forcing the atmospheric planetary boundary layer (PBL). Here, we present high-resolution regional climate modeling results, supported by observational analyses, demonstrating that meso-scale SST variability, largely confined in the Kuroshio-Oyashio confluence region (KOCR), can further exert a significant distant influence on winter rainfall variability along the U.S. Northern Pacific coast. The presence of meso-scale SST anomalies enhances the diabatic conversion of latent heat energy to transient eddy energy, intensifying winter cyclogenesis via moist baroclinic instability, which in turn leads to an equivalent barotropic downstream anticyclone anomaly with reduced rainfall. The finding points to the potential of improving forecasts of extratropical winter cyclones and storm systems and projections of their response to future climate change, which are known to have major social and economic impacts, by improving the representation of ocean eddy-atmosphere interaction in forecast and climate models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120003670','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120003670"><span>Teleconnection, Regime Shift, and Predictability of Climate Extremes: A Case Study for the Russian Heat Wave and Pakistan Flood in Summer 2010</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lau, W. K.; Reale, O.; Kim, K.</p> <p>2011-01-01</p> <p>In this talk, we present observational evidence showing that the two major extremes events of the summer of 2010, i.e., the Russian heat wave and the Pakistan flood were physically connected. We find that the Pakistan flood was contributed by a series of unusually heavy rain events over the upper Indus River Basin in July-August. The rainfall regimes shifted from an episodic heavy rain regime in mid-to-late July to a steady heavy rain regime in August. An atmospheric Rossby wave associated with the development of the Russian heat wave was instrumental in spurring the episodic rain events , drawing moisture from the Bay of Bengal and the northern Arabian Sea. The steady rain regime was maintained primarily by monsoon moisture surges from the deep tropics. From experiments with the GEOS-5 forecast system, we assess the predictability of the heavy rain events associated with the Pakistan flood. Preliminary results indicate that there are significantly higher skills in the rainfall forecasts during the episodic heavy rain events in July, compared to the steady rain period in early to mid-August. The change in rainfall predictability may be related to scale interactions between the extratropics and the tropics resulting in a modulation of rainfall predictability by the circulation regimes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27917258','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27917258"><span>Modeling the QBO-Improvements resulting from higher-model vertical resolution.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Geller, Marvin A; Zhou, Tiehan; Shindell, D; Ruedy, R; Aleinov, I; Nazarenko, L; Tausnev, N L; Kelley, M; Sun, S; Cheng, Y; Field, R D; Faluvegi, G</p> <p>2016-09-01</p> <p>Using the NASA Goddard Institute for Space Studies (GISS) climate model, it is shown that with proper choice of the gravity wave momentum flux entering the stratosphere and relatively fine vertical layering of at least 500 m in the upper troposphere-lower stratosphere (UTLS), a realistic stratospheric quasi-biennial oscillation (QBO) is modeled with the proper period, amplitude, and structure down to tropopause levels. It is furthermore shown that the specified gravity wave momentum flux controls the QBO period whereas the width of the gravity wave momentum flux phase speed spectrum controls the QBO amplitude. Fine vertical layering is required for the proper downward extension to tropopause levels as this permits wave-mean flow interactions in the UTLS region to be resolved in the model. When vertical resolution is increased from 1000 to 500 m, the modeled QBO modulation of the tropical tropopause temperatures increasingly approach that from observations, and the "tape recorder" of stratospheric water vapor also approaches the observed. The transport characteristics of our GISS models are assessed using age-of-air and N 2 O diagnostics, and it is shown that some of the deficiencies in model transport that have been noted in previous GISS models are greatly improved for all of our tested model vertical resolutions. More realistic tropical-extratropical transport isolation, commonly referred to as the "tropical pipe," results from the finer vertical model layering required to generate a realistic QBO.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950048117&hterms=wave&qs=N%3D0%26Ntk%3DTitle%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dthe%2B5%2Bwave','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950048117&hterms=wave&qs=N%3D0%26Ntk%3DTitle%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dthe%2B5%2Bwave"><span>Observations of the 5-day wave in the mesosphere and lower thermosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wu, D. L.; Hays, P. B.; Skinner, W. R.</p> <p>1994-01-01</p> <p>The 5-day planetary wave has been detected in the winds measured by the High Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite (UARS) in the mesosphere and lower thermosphere (50-110 km). The appearances of the 5-day wave are transient, with a lifetime of 10-20 days in the two-year data set. The structures of selected 5-day wave events are in generally good agreement with the (1,1) Rossby normal mode for both zonal and meridional components. A climatology of the 5-day wave is presented for an altitude of 95 km and latitudes mainly between 40 deg S and 40 deg N.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1254689-localization-ultra-low-frequency-waves-multi-ion-plasmas-planetary-magnetosphere','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1254689-localization-ultra-low-frequency-waves-multi-ion-plasmas-planetary-magnetosphere"><span>Localization of ultra-low frequency waves in multi-ion plasmas of the planetary magnetosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Kim, Eun -Hwa; Johnson, Jay R.; Lee, Dong -Hun</p> <p>2015-01-01</p> <p>By adopting a 2D time-dependent wave code, we investigate how mode-converted waves at the Ion-Ion Hybrid (IIH) resonance and compressional waves propagate in 2D density structures with a wide range of field-aligned wavenumbers to background magnetic fields. The simulation results show that the mode-converted waves have continuous bands across the field line consistent with previous numerical studies. These waves also have harmonic structures in frequency domain and are localized in the field-aligned heavy ion density well. Lastly, our results thus emphasize the importance of a field-aligned heavy ion density structure for ultra-low frequency wave propagation, and suggest that IIH wavesmore » can be localized in different locations along the field line.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998APS..DPP.F3S24D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998APS..DPP.F3S24D"><span>Numerical and Analytical Investigation of the Energy and Momentum Exchange Between the Shocked Solar Wind and Topside Ionosphere for Non-Magnetic Planets and Moons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dobe, Z.; Shapiro, V. D.; Quest, K.; Szego, K.; Huba, J.</p> <p>1998-11-01</p> <p>Previously[1], we proposed a model of the planetary ions pick-up by the shocked solar wind flow developing in the mantle-turbulent boundary region surrounding the ionospheres of non-magnetic planets-Mars and Venus. In the present paper we are modifying this model taking into account the flow of the planetary elections immediately pick-up by E x B forces of the shocked solar wind. It is shown that flow of the cold planetary electrons drives a strong hydrodynamical instability of the electrostatic whistlers efficiently coupling planetary ions with the flow of the solar wind. The linear stage of the instability is investigated both analytically and numerically, and results are found to be in a good agreement. Nonlunear stage of the instability is investigated with the modified numerical hybrid code[2], and demonstrates both effects of acceleration and heating of the planetary ions by the solar wind. Field aligned electron acceleration is also investigated in a test particle approximation using wave power spectrum obtained in a self-consistent numerical simulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A43D2474L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A43D2474L"><span>A Teleconnection between the West Siberian Plain and the ENSO Region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liess, S.; Agrawal, S.; Chatterjee, S.; Kumar, V.</p> <p>2017-12-01</p> <p>This study presents a mechanism that links the El Niño/Southern Oscillation (ENSO) to extratropical waves that are deflected from the Northern Hemisphere polar regions and travel southeastward over Central Asia toward the west Pacific warm pool during northern winter. The initial wave pattern resembles the well-known East Atlantic-West Russia pattern. Here we show its influence on the ENSO region. We identify a tripole pattern between the West Siberian Plain and the two centers of action of ENSO with a graph-based approach. It indicates that the background state of ENSO with respect to global sea level pressure (SLP) has a significant negative correlation to the West Siberian Plain. The correlation with the background state, which is defined by the sum of the two centers of action of ENSO, is higher than each of the pairwise correlations with either of the ENSO centers alone. We define the centers with a clustering algorithm that detects regions with similar characteristics. The normalized monthly SLP time series for the two centers of ENSO (around Darwin, Australia and Tahiti) are area-averaged and the sum of both regions is considered as the background state of ENSO. This wave train can be detected throughout the troposphere and the lower stratosphere. Its origins can be traced back to atmospheric wave activity triggered by convection over the subtropical North Atlantic that emanates wave activity toward the West Siberian Plain. The same wave train also propagates to the central Pacific Ocean around Tahiti and can be used to predict the background state over the ENSO region. This background state also modifies the subtropical bridge between the tropical east Pacific and the subtropical North Atlantic, thus leading to a circumglobal wave train.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860018265&hterms=Tidal+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DTidal%2Bwaves','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860018265&hterms=Tidal+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DTidal%2Bwaves"><span>Normal mode Rossby waves observed in the upper stratosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hirooka, T.; Hirota, I.</p> <p>1985-01-01</p> <p>In recent years, observational evidence has been obtained for westward traveling planetary waves in the middle atmosphere with the aid of global data from satellites. There is no doubt that the fair portion of the observed traveling waves can be understood as the manifestation of the normal mode Rossby waves which are theoretically derived from the tidal theory. Some observational aspects of the structure and behavior of the normal model Rossby waves in the upper stratosphere are reported. The data used are the global stratospheric geopotential thickness and height analyses which are derived mainly from the Stratospheric Sounding Units (SSUs) on board TIROS-N and NOAA satellites. A clear example of the influence of the normal mode Rossby wave on the mean flow is reported. The mechanism considered is interference between the normal mode Rossby wave and the quasi-stationary wave.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18..429R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18..429R"><span>The waviness of the extratropical jet and daily weather extremes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Röthlisberger, Matthias; Martius, Olivia; Pfahl, Stephan</p> <p>2016-04-01</p> <p>In recent years the Northern Hemisphere mid-latitudes have experienced a large number of weather extremes with substantial socio-economic impact, such as the European and Russian heat waves in 2003 and 2010, severe winter floods in the United Kingdom in 2013/2014 and devastating winter storms such as Lothar (1999) and Xynthia (2010) in Central Europe. These have triggered an engaged debate within the scientific community on the role of human induced climate change in the occurrence of such extremes. A key element of this debate is the hypothesis that the waviness of the extratropical jet is linked to the occurrence of weather extremes, with a wavier jet stream favouring more extremes. Previous work on this topic is expanded in this study by analyzing the linkage between a regional measure of jet waviness and daily temperature, precipitation and wind gust extremes. We show that indeed such a linkage exists in many regions of the world, however this waviness-extremes linkage varies spatially in strength and sign. Locally, it is strong only where the relevant weather systems, in which the extremes occur, are affected by the jet waviness. Its sign depends on how the frequency of occurrence of the relevant weather systems is correlated with the occurrence of high and low jet waviness. These results go beyond previous studies by noting that also a decrease in waviness could be associated with an enhanced number of some weather extremes, especially wind gust and precipitation extremes over western Europe.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ClDy...44.2411F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ClDy...44.2411F"><span>The dynamical structure of intense Mediterranean cyclones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Flaounas, Emmanouil; Raveh-Rubin, Shira; Wernli, Heini; Drobinski, Philippe; Bastin, Sophie</p> <p>2015-05-01</p> <p>This paper presents and analyzes the three-dimensional dynamical structure of intense Mediterranean cyclones. The analysis is based on a composite approach of the 200 most intense cyclones during the period 1989-2008 that have been identified and tracked using the output of a coupled ocean-atmosphere regional simulation with 20 km horizontal grid spacing and 3-hourly output. It is shown that the most intense Mediterranean cyclones have a common baroclinic life cycle with a potential vorticity (PV) streamer associated with an upper-level cyclonic Rossby wave breaking, which precedes cyclogenesis in the region and triggers baroclinic instability. It is argued that this common baroclinic life cycle is due to the strongly horizontally sheared environment in the Mediterranean basin, on the poleward flank of the quasi-persistent subtropical jet. The composite life cycle of the cyclones is further analyzed considering the evolution of key atmospheric elements as potential temperature and PV, as well as the cyclones' thermodynamic profiles and rainfall. It is shown that most intense Mediterranean cyclones are associated with warm conveyor belts and dry air intrusions, similar to those of other strong extratropical cyclones, but of rather small scale. Before cyclones reach their mature stage, the streamer's role is crucial to advect moist and warm air towards the cyclones center. These dynamical characteristics, typical for very intense extratropical cyclones in the main storm track regions, are also valid for these Mediterranean cases that have features that are visually similar to tropical cyclones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940032743','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940032743"><span>Plasma and radio waves from Neptune: Source mechamisms and propagation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Menietti, J. Douglas</p> <p>1994-01-01</p> <p>The purpose of this project was to conduct a comprehensive investigation of the radio wave emission observed by the planetary radio astronomy (PRA) instrument on board Voyager 2 as it flew by Neptune. The study has included data analysis, theoretical and numerical calculations, and ray tracing to determine the possible source mechanisms and locations of the radiation, including the narrowband bursty and smooth components of the Neptune radio emission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMSA51B4087Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMSA51B4087Y"><span>Changes of the Ionosphere Caused By the Interaction Between the Quasi-Two-Day Wave and Tides</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yue, J.; Wang, W.; Chang, L. C.</p> <p>2014-12-01</p> <p>Traveling planetary waves, such as the quasi-two-day wave (QTDW), are one essential element of the mesosphere and lower thermosphere dynamics. These planetary waves have been observed to cause strong ionospheric day-to-day variations. We have understood that the QTDW can impact the thermosphere and ionosphere either by directly penetrating into the lower thermosphere and modulating E-region dynamo in a period of about 2-days, or by enhancing mixing and decreasing thermosphere O/N2 and in ionospheric electron density. In this work, we introduce the third mechanism of how the QTDW impacts the ionosphere, the QTDW-tidal interactions occurring in the mesosphere and lower thermosphere (MLT). We employ the NCAR TIME-GCM to simulate the interaction between the QTDW and tides, and the impact of this interaction on the ionospheric E-region dynamo, equatorial fountain effect, and F-region plasma density. We find that the tidal amplitudes and phases are dramatically altered during strong QTDW events during post-solstice. In particular, the amplitudes of the migrating tides can decrease as much as 20-30%. The changed tides result in different dynamo electric field, vertical ion drift, and thus different diurnal and semidiurnal cycles in F-region electron density.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.8067B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.8067B"><span>The role of microphysics in the development of mesoscale areas of high winds around occluded cyclones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baker, T. P.; Knippertz, P.; Blyth, A.</p> <p>2012-04-01</p> <p>Extratropical cyclones are an integral part of the weather in north-western Europe and can be associated with heavy precipitation and strong winds. While synoptic-scale aspects of these storms are often satisfactorily forecast several days in advance, mesoscale features within these systems such as bands of heavy rain or localized wind maxima, which are often the cause of the most damaging effects, are significantly less well understood and predicted by operational forecasts. Accurate predictions of the location, timing and intensity of these features are, however, highly important for the mitigation of the adverse effects that they bring. This is one of the motivations for the UK consortium DIAMET (DIAbatic influences on Mesoscale structures in ExtraTropical storms) that is focused on improving the understanding and predictability of these potentially damaging mesoscale features embedded within larger synoptic-scale extratropical storms. The project is based around a number of field campaigns using the Facility for Airborne Atmospheric Measurements (FAAM) BAe146 research aircraft along with other remote and in-situ measurements. An overview of the project will be presented by Geraint Vaughan in this session. This study analyses the effects of microphysics on the mesoscale dynamics within extratropical storms, in particular the high wind areas around occluded fronts wrapped around the core of a matured cyclonic storm. It has been hypothesized that evaporation and melting of hydrometeors in this region can lead to downward momentum transport and thereby increase near-surface winds (sometimes referred to as sting jets). The main tool for this study is the Weather Research and Forecasting (WRF) model. High-resolution simulations are run for several cases from the DIAMET field campaigns to examine how the development of strong winds around occluded fronts is affected by the microphysics. The model results using different microphysics schemes are compared with the observational data from the BAe146 aircraft and other sources such as wind profilers and radiosondes. In initial model simulations of a secondary frontal wave observed during the 2009 T-NAWDEX pilot flights, the microphysics in the parameterization scheme used has a large impact on the winds observed around the hook of the occlusion. The advanced double-moment Morrison and Thompson schemes show 12-hour mean 10m winds about 50% higher than the simpler WSM3 (WRF single moment) scheme in this area. These results suggest that ice processes could play an important role in the downward transport of momentum in this part of the cyclone. Further results from this and other cases from the field campaigns will be presented at the conference.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880005138','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880005138"><span>A study of the mechanism of internal gravity wave generation by quasigeostrophic meteorological motions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Medvedev, A. S.</p> <p>1987-01-01</p> <p>Numerous experiments on the detection of atmospheric waves in the frequency range from acoustic to planetary at meteor heights have revealed that important wave sources are meteorological processes in the troposphere (cyclones, atmospheric fronts, jet streams, etc.). A dynamical theory based on the others work include describing the adaptation of meteorological fields to the geostropic equilibrium state. According to this theory, wave motions appear as a result of constant competition between the maladjustment of the wind and pressure fields due to nonlinear effects and the tendency of the atmosphere to establish a quasi-geostrophic equilibrium of these fields. These meteorological fields are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1987maph...25..146M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1987maph...25..146M"><span>A study of the mechanism of internal gravity wave generation by quasigeostrophic meteorological motions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Medvedev, A. S.</p> <p>1987-08-01</p> <p>Numerous experiments on the detection of atmospheric waves in the frequency range from acoustic to planetary at meteor heights have revealed that important wave sources are meteorological processes in the troposphere (cyclones, atmospheric fronts, jet streams, etc.). A dynamical theory based on the others work include describing the adaptation of meteorological fields to the geostropic equilibrium state. According to this theory, wave motions appear as a result of constant competition between the maladjustment of the wind and pressure fields due to nonlinear effects and the tendency of the atmosphere to establish a quasi-geostrophic equilibrium of these fields. These meteorological fields are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004cosp...35..908K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004cosp...35..908K"><span>Density of the Human Body in Gravity Contrasting Tectonic Blocks of Earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kochemasov, G. G.</p> <p></p> <p>Short duration cosmic experiments with humans in reduced gravity might be compared with results of practically time unlimited (many thousand of years!) existence of man in conditions of planetary tectonic blocks with rather small gravity gradient. These blocks with differing planetary radii are formed in the terrestrial globe (as well as in other celestial bodies) as a result of its movement in an elliptical orbit inevitably causing inertia-gravity warping waves. Depending on the wavelengths, Earth is tectonically dichotomic (wave1, 2π R-structure), sectoral (wave2, π R-structure) and granular (wave4, π R/2-structure) [1]. Alternations of uplifts (+) and subsidences (-) in rotating Earth requires an equilibration of angular momenta of different levels blocks by differing densities of composing them objects. ``Objects'' are geological as well as biological ones. Oceans (-) are filled with dense basaltic rocks, continents (+) are built by less dense granites (andesites, on average). Homo sapiens, widely spread over Earth, equally accommodates himself to conditions of tectonic blocks with differing radii (densities). The most pronounced (amplitudinal) tectonic dichotomy is an opposition of the subsided (-) western pacific hemisphere to the uplifted (+) eastern continental hemisphere. Recently populated (12 to 3 thousand years ago) America and Pacific made migrating mongoloids denser (higher the Rohrer's index* of Indians and Polynesians) than inhabitants of native Asia. Asia itself is a sector of the planetary sectoral π R-structure of the eastern hemisphere with the center at the Pamirs-Hindukush. Around this center converge 2 uplifted sectors (Africa-Mediterranean ++, Asian +) separated by 2 subsided ones (Eurasian -, Indoceanic - -). The 4 great races developed on these sectors have their own ``body density'' characteristics. The uplifted Africa bears ``light'' negroids, subsided Eurasia ``heavy'' europeoids. In the former USSR population of the Asian sector (+) has less mineralized bones and less Fe/Mn in hairs (thus less dense hairs) than population of the Eurasian sector (-) [2]. The differentiation of the great races can be traced to the gene level: frequencies of their Rh-system genetic markers are clearly different. the ratio of man's weight to his height in the cube power (can be used also the simple ratio of man's weight to his height, that means the ``linear density'' of man). References : [1] Kochemasov G. G. Theorems of wave planetary tectonics // Geophys. Res. Abstr., V. 1, # 3, 1999,700; [2] Alexeeva T. I. Geographical environment and human biology // Moscow, Mysl, 1977, 302 pp. (in Russian).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.3262C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.3262C"><span>Projected Changes on the Global Surface Wave Drift Climate towards the END of the Twenty-First Century</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carrasco, Ana; Semedo, Alvaro; Behrens, Arno; Weisse, Ralf; Breivik, Øyvind; Saetra, Øyvind; Håkon Christensen, Kai</p> <p>2016-04-01</p> <p>The global wave-induced current (the Stokes Drift - SD) is an important feature of the ocean surface, with mean values close to 10 cm/s along the extra-tropical storm tracks in both hemispheres. Besides the horizontal displacement of large volumes of water the SD also plays an important role in the ocean mix-layer turbulence structure, particularly in stormy or high wind speed areas. The role of the wave-induced currents in the ocean mix-layer and in the sea surface temperature (SST) is currently a hot topic of air-sea interaction research, from forecast to climate ranges. The SD is mostly driven by wind sea waves and highly sensitive to changes in the overlaying wind speed and direction. The impact of climate change in the global wave-induced current climate will be presented. The wave model WAM has been forced by the global climate model (GCM) ECHAM5 wind speed (at 10 m height) and ice, for present-day and potential future climate conditions towards the end of the end of the twenty-first century, represented by the Intergovernmental Panel for Climate Change (IPCC) CMIP3 (Coupled Model Inter-comparison Project phase 3) A1B greenhouse gas emission scenario (usually referred to as a ''medium-high emissions'' scenario). Several wave parameters were stored as output in the WAM model simulations, including the wave spectra. The 6 hourly and 0.5°×0.5°, temporal and space resolution, wave spectra were used to compute the SD global climate of two 32-yr periods, representative of the end of the twentieth (1959-1990) and twenty-first (1969-2100) centuries. Comparisons of the present climate run with the ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-40 reanalysis are used to assess the capability of the WAM-ECHAM5 runs to produce realistic SD results. This study is part of the WRCP-JCOMM COWCLIP (Coordinated Ocean Wave Climate Project) effort.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999PPCF...41..305K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999PPCF...41..305K"><span>Electron beam interaction with space plasmas.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krafft, C.; Bolokitin, A. S.</p> <p>1999-12-01</p> <p>Active space experiments involving the controlled injection of electron beams and the formation of artificially generated currents can provide in many cases a calibration of natural phenomena connected with the dynamic interaction of charged particles with fields. They have a long history beginning from the launches of small rockets with electron guns in order to map magnetic fields lines in the Earth's magnetosphere or to excite artificial auroras. Moreover, natural beams of charged particles exist in many space and astrophysical plasmas and were identified in situ by several satellites; a few examples are beams connected with solar bursts, planetary foreshocks or suprathermal fluxes traveling in planetary magnetospheres. Many experimental and theoretical works have been performed in order to interpret or plan space experiments involving beam injection as well as to understand the physics of wave-particle interaction, as wave radiation, beam dynamics and background plasma modification.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010059956&hterms=Envision&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DEnvision','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010059956&hterms=Envision&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DEnvision"><span>Wave Driven Non-Linear Flow Oscillator for the 22-Year Solar Cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, H. G.; Wolff, C. L.; Hartle, R. E.; Einaudi, Franco (Technical Monitor)</p> <p>2000-01-01</p> <p>We propose that waves generate an oscillation in the Sun to account for the 22-year magnetic cycle. The mechanism we envision is analogous to that driving the Quasi Biennial Oscillation (QBO) observed in the terrestrial atmosphere, which is well understood in principal. Planetary waves and gravity waves deposit momentum in the background atmosphere and accelerate the flow under viscous dissipation. Analysis shows that such a momentum source represents a non-linearity of third or generally odd order, which generates also the fundamental frequency/period so that an oscillation is maintained without external time dependent forcing. For the Sun, we propose that the wave driven oscillation would occur just below the convection region, where the buoyancy frequency or convective stability becomes small to favor wave breaking and wave mean flow interaction. Using scale analysis to extrapolate from terrestrial to solar conditions, we present results from a simplified analytical model, applied to the equator, that incorporates Hines'Doppler Spread Parameterization for gravity waves (GW). Based on a parametric study, we conclude: (1) Depending on the adopted horizontal wavelengths of GW's, wave amplitudes < 10 m/s can be made to produce oscillating zonal winds of about 25 m/s that should be large enough to generate a corresponding oscillation in the main poloidal magnetic field; (2) The oscillation period can be made to be 22 years provided the buoyancy frequency (stability) is sufficiently small, which would place the oscillating wind field near the base of the convection region; (3) In this region, the turbulence associated with wave processes would be enhanced by low stability, and this also helps to produce the desired oscillation period and generate the dynamo currents that would produce the reversing magnetic field. We suggest that the above mechanism may also drive other long-period metronomes in planetary and stellar interiors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920069333&hterms=ultralow+power&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dultralow%2Bpower','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920069333&hterms=ultralow+power&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dultralow%2Bpower"><span>Ultralow frequency waves in the magnetotails of the earth and the outer planets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Khurana, Krishan K.; Chen, Sheng H.; Hammond, C. M.; Kivelson, Margaret G.</p> <p>1992-01-01</p> <p>Ultralow frequency waves with periods greater than two minutes are characteristic features of planetary magnetotails. At Jupiter, changes in the wave characteristics across the boundary between the plasma sheet and the lobe have been used to identify this important plasma boundary. In the terrestrial lobes the wave amplitude can be relatively large, especially during intervals of intense geomagnetic activity. The wave power seen in the lobes of the magnetotails of the earth, Jupiter, Saturn and Uranus is evaluated to evaluate a proposal by Smith et al. that the propagating waves generated by the Kelvin-Helmholtz instability on the magnetopause can heat the plasma through a resonant absorption of these waves. The results indicate that the wave power in the lobes is generally small and can be easily understood in the framework of coupled MHD waves generated in the plasma sheet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA344331','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA344331"><span>European Geophysical Society (23rd) General Assembly, Annales Geophysicae, Part 3, Space & Planetary Sciences, Supplement 3 to Volume 16 Held in Nice, France on 20-24 April 1998</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1998-01-01</p> <p>For the lower stratosphere diabatic heating sources and planetary wave activity will be discussed. Above 10 hPa observations are less frequent and...the observation durations being minutes-days; ~30 to 200 samples covering each source of the disturbances. The authors have been supported by STCU...the "classical" sinks. The observed stratospheric N20 mixing ratios will not be perturbed by the new source because of: (1) the inevitable loss</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012epsc.conf...42K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012epsc.conf...42K"><span>Regular structural and compositional characteristics of Mercury predicted by the wave planetology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kochemasov, G. G.</p> <p>2012-09-01</p> <p>In 1995 based on available at that time data for terrestrial planets a chart was built connecting them in respect of their chemistry, relief, and tectonic pattern. Mercury before the MESSENGER era has supplied very limited data on these characteristics. Thus, the chart was based mainly on understood regularit ies of changing cosmic parameters and Mercury as the nearest to Sun planet was assigned in advance as a dull low albedo variations, low relief, tectonically fine grained and with high Mg/Fe in the crust. To justify and explain by a wave interference action its fine tectonic granulation (πR/16) a radar image of its silhouette was used [1] (Fig. 1). The MESSENGER data later confirm this conclusion providing preliminary results of magnetic and gravity surveys [2, 3] (Fig. 2). The radar experiment shown very low alt itude variations (1-5 km), very smooth surface [4]. X-ray measurements shown very high Mg and low Fe abundances in the crust [5] that was quite a surprise to many planetary scientists but not for us, adherents of the wave planetology. The wave planetology [6-7 & others] states that any celestial body moving in non-circular but elliptical keplerian orbit with periodically changing acceleration suffers from a warping action of the inertia-gravity waves. In rotating bodies they have four ortho-and diagonal interfering directions producing uplifted, subsided, and neutral tectonic blocks. Their sizes depend on the warping wavelengths. The longest fundamental wave1 produces antipodean segments -hemis pheres (2πR-structure), its first overtone wave2 gives superposed tectonic sectors (πRstructure). On these already complicated pattern are superposed tectonic granules size of which is inversely proportional to orbital frequencies. Hence there is a regular row of tectonic granules s izes : Mercury π R/16, Venus πR/6, Earth πR/ 4, Mars πR/ 2, as teroids πR/1(coinc idence with the tectonic dichotomy).Thus, the mercurian tectonic granule size about 500 km across was predicted and now observed by the MESSENGER measurements: magnetic field variations, gravity anomalies, topographic uplifts [2- 4, 8]. As was shown earlier [9], there is a direct correlation between tectonic granule radii and relief ranges of terrestrial planets. The small relief range of Mercury (a few kms) corresponds with its fine tectonic granulation. Using petrography terms one may say that Mercury is "fine gra ined", Venus "mediu m grained", Ea rth "coars e grained", and Mars "pegmatoid". Thes e tectonic s tructures of rotating terrestrial planets force them to build subsided blocks of denser material than uplifted ones to keep more or less equilibrated their angular momenta. Higher relief range more significant must be density difference between risen and fallen tectonic blocks. In the row of terrestrial planets their s ubs ided "oceanic" areas become more Fe - rich (thus, denser) in direction from Mercury to Mars; their uplifted "highland" areas become mo re Si and alka lis -rich (thus, less dense) [10]. Mercury having the smallest tectonic granules and relief range has the smallest density diffe rence between "up" and "down" blocks and Mg -rich magmat ic lithologies in both [10, Fig. 3]. That is why Mercury has so dull appearance contrary to Mars with very high albedo difference between fallen north and risen south. In full agreement with the above regularity is an important conclusion of [11] about a regular rising K/Th in crusts from Mercury to Mars. To this one could add our earlier observation on decreasing atmospheric masses in the s ame direction due to diminis hing "wave s haking" - "sweeping out" volatiles fro m the solid bodies (the warping waves become larger and less frequent). Ratio of radiogenic to primordial argon in atmospheres regularly increases outwards: Venus 1, Earth 300, Mars 3000 [12]. Mercury shows very pronounced traces of very intensive degassing (numerous pits [13], contracting features). Surprising high sulfur content in X-ray measurements of Mercury should be cons idered as "tails " of intens ive degassing left on surface as fumaroles deposits. Thus one might conclude that its atmosphere, now lost, due to very intensive degassing could have been rather significant. One important structural peculiarity of rotating globular planetary bodies is their tendency to destroy tropical zones with the larger angular momentum to diminish it and to add some mass to extra-tropics to increase their angular momentum [14]. With this in mind one should interpret Xray data showing some increase of Fe content in Mg-rich rocks of the higher latitudes of Mercury [15]. The additional Fe instead of Mg increases rock density. In conclusion one should say that Mercury is the regular continuation of the terrestrial planets wave row with predictable characteristics.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JGRD..117.2105F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JGRD..117.2105F"><span>Drake Antarctic Agile Meteor Radar first results: Configuration and comparison of mean and tidal wind and gravity wave momentum flux measurements with Southern Argentina Agile Meteor Radar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fritts, D. C.; Janches, D.; Iimura, H.; Hocking, W. K.; Bageston, J. V.; Leme, N. M. P.</p> <p>2012-01-01</p> <p>A new generation meteor radar was installed at the Brazilian Antarctic Comandante Ferraz Base (62.1°S) in March 2010. This paper describes the motivations for the radar location, its measurement capabilities, and comparisons of measured mean winds, tides, and gravity wave momentum fluxes from April to June of 2010 and 2011 with those by a similar radar on Tierra del Fuego (53.8°S). Motivations for the radars include the “hotspot” of small-scale gravity wave activity extending from the troposphere into the mesosphere and lower thermosphere (MLT) centered over the Drake Passage, the maximum of the semidiurnal tide at these latitudes, and the lack of other MLT wind measurements in this latitude band. Mean winds are seen to be strongly modulated at planetary wave and longer periods and to exhibit strong coherence over the two radars at shorter time scales as well as systematic seasonal variations. The semidiurnal tide contributes most to the large-scale winds over both radars, with maximum tidal amplitudes during May and maxima at the highest altitudes varying from ˜20 to >70 ms-1. In contrast, the diurnal tide and various planetary waves achieve maximum winds of ˜10 to 20 ms-1. Monthly mean gravity wave momentum fluxes appear to reflect the occurrence of significant sources at lower altitudes, with relatively small zonal fluxes over both radars, but with significant, and opposite, meridional momentum fluxes below ˜85 km. These suggest gravity waves propagating away from the Drake Passage at both sites, and may indicate an important source region accounting in part for this “hotspot.”</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P21B2099T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P21B2099T"><span>Gravity Waves in the Atmosphere of Mars as seen by the Radio Science Experiment MaRS on Mars Express</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tellmann, S.; Paetzold, M.; Häusler, B.; Bird, M. K.; Tyler, G. L.; Hinson, D. P.</p> <p>2016-12-01</p> <p>Gravity waves are atmospheric waves whose restoring force is the buoyancy. They are known to play an essential role in the redistribution of energy, momentum and atmospheric constituents in all stably stratified planetary atmospheres. Possible excitation mechanisms comprise convection in an adjacent atmospheric layer, other atmospheric instabilities like wind shear instabilities, or air flow over orographic obstacles especially in combination with the strong winter jets on Mars. Gravity waves on Mars were observed in the lower atmosphere [1,2] but are also expected to play a major role in the cooling of the thermosphere [3] and the polar warming [4]. A fundamental understanding of the possible source mechanisms is required to reveal the influence of small scale gravity waves on the global atmospheric circulation. Radio occultation profiles from the MaRS experiment on Mars Express [5] with their exceptionally high vertical resolution can be used to study small-scale vertical gravity waves and their global distribution in the lower atmosphere from the planetary boundary layer up to 40 km altitude. Atmospheric instabilities, which are clearly identified in the data, are used to gain further insight into possible atmospheric processes contributing to the excitation of gravity waves. [1] Creasey, J. E., et al.,(2006), Geophys. Res. Lett., 33, L01803, doi:10.1029/2005GL024037. [2]Tellmann, S., et al.(2013), J. Geophys. Res. Planets, 118, 306-320, doi:10.1002/jgre.20058. [3]Medvedev, A. S., et al.(2015), J. Geophys. Res. Planets, 120, 913-927. doi:10.1002/2015JE004802.[4] Barnes, J. R. (1990), J. Geophys. Res., 95, B2, 1401-1421. [5] Pätzold, M., et al. (2016), Planet. Space Sci., 127, 44 - 90.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110023408','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110023408"><span>Drake Antarctic Agile Meteor Radar (DrAAMER) First Results: Configuration and Comparison of Mean and Tidal Wind and Gravity Wave Momentum Flux Measurements with SAAMER</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fritts, D. C.; Janches, D.; Iimura, H.; Hocking, W. K.; Bageston, J. V.; Pene, N. M.</p> <p>2011-01-01</p> <p>A new-generation meteor radar was installed at the Brazilian Antarctic Comandante Ferraz Base (62.1degS) in March 2010. This paper describes the motivations for the radar location, its measurement capabilities, and comparisons of measured mean winds, tides, and gravity wave momentum fluxes from April to June of 2010 and 2011 with those by a similar radar on Tierra del Fuego (53.8degS). Motivations for the radars include the "hotspot" of small-scale gravity wave activity extending from the troposphere into the mesosphere and lower thermosphere (MLT) centered over the Drake Passage, the maximum of the semidiurnal tide at these latitudes, and the lack of other MLT wind measurements in this latitude band. Mean winds are seen to be strongly modulated at planetary wave and longer periods and to exhibit strong coherence over the two radars at shorter time scales as well as systematic seasonal variations. The semidiurnal tide contribute most to the large-scale winds over both radars, with maximum tidal amplitudes during May and maxima at the highest altitudes varying from approx.20 to >70 m/s. In contrast, the diurnal tide and various planetary waves achieve maximum winds of approx.10 to 20 m/s. Monthly-mean gravity wave momentum fluxes appear to reflect the occurrence of significant sources at lower altitudes, with relatively small zonal fluxes over both radars, but with significant, and opposite, meridional momentum fluxes below approx.85 km. These suggest gravity waves propagating away from the Drake Passage at both sites, and may indicate an important source region accounting in part for this "hotspot".</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSM42B..08D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSM42B..08D"><span>Simulating Negative Pickup Ions and Ion Cyclotron Wave Generation at Europa (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Desai, R. T.; Cowee, M.; Gary, S. P.; Wei, H.; Coates, A. J.; Kataria, D. O.; Fu, X.</p> <p>2015-12-01</p> <p>The mass loading of space environments through the ionisation of planetary atmospheres is a fundamental process governing the plasma interactions and long term evolution of celestial bodies across the solar system. Regions containing significant pickup ion populations have been observed to exhibit a rich variety of electromagnetic plasma wave phenomena, the characteristics and properties of which can be used to infer the ion species present, their spatial and temporal distributions, and the global ionisation rates of the neutral material. In this study we present hybrid (kinetic ion, massless fluid electron) simulations of ion pickup and Ion Cyclotron (IC) waves observed in the Jovian magnetosphere and draw comparisons to sub-alfvénic pickup observed by Cassini in the Saturnian system, and also to supra-alfvénic pickup at planetary bodies immersed directly in the solar wind. At Jupiter, Europa has been identified as the secondary mass loader in the magnetosphere, orbiting within a neutral gas torus at ~9.38 Rj. Near Europa, Galileo magnetometer observations displayed bursty IC wave characteristics at the gyrofrequency of a number of species including SO2, K, Cl, O2, and Na, suggesting a complex mass loading environment. A particular deduction from the dataset was the presence of both positively and negatively charged pickup ions, inferred from the left and right hand polarisations of the transverse waves. Using hybrid simulations for both positively and negatively charged Cl pickup ions we are able to self-consistently reproduce the growth of both right and left hand near-circularly polarised waves in agreement with linear theory and, using the observed wave amplitudes, estimate Cl pickup ion densities at Europa.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990021050&hterms=project+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dproject%2Bwaves','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990021050&hterms=project+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dproject%2Bwaves"><span>Rossby Waves in the Protoplanetary Nebula</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sheehan, Daniel P.</p> <p>1998-01-01</p> <p>Fluid waves and instabilities are considered critical to the evolution of protoplanetary nebulae, particularly for their roles in mass, angular momentum, and energy transport. A number have been identified, however, notably absent, is an influential wave commonly found in planetary atmospheres and oceans: the planetary Rossby wave (PRW). Since, in the Earth's atmosphere, the PRW is of primary importance in shaping large-scale meteorological phenomena, it is reasonable to consider whether it might have similar importance in the protoplanetary nebula. The thrust of the research project this summer (1998) was to determine whether a nebular analog to the PRW is viable, a so-called nebular Rossby wave (NRW), and if so, to explore possible ramifications of this wave to the evolution of the nebula. This work was carried out primarily by S. Davis, J. Cuzzi and me, with significant discussions with P. Cassen. We believe we have established a good case for the NRW and as a result believe we have opened up a new and possibly interesting line of research in regard to the nebular development, in particular with regard to zonal jet formation, a potent accretion mechanism, and possible ties to vortex formation. The standard model of the protoplanetary nebula consists of a large disk of gas with about 1% entrained dust gravitationally bound to a large central mass, m(sub c) i.e., the protostar. The planet-forming region of the disk extends to roughly 100 A.U. in radius. Disk thickness, H, is believed to be on the order of 10-100 times less than disk radius. Disk lifetime is on the order of a million years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSEC21A..02R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSEC21A..02R"><span>Observations of Inner Shelf Flows Influenced by a Small-Scale River Plume in the Northern Gulf of Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roth, M.; MacMahan, J.; Reniers, A.; Ozgokmen, T. M.</p> <p>2016-02-01</p> <p>Recent work has demonstrated that wind and waves are important forcing mechanisms for the inner shelf vertical current structure. Here, the inner shelf flows are evaluated away from an adjacent inlet where a small-scale buoyant plume emerges. The plume's nearshore extent, speed, vertical thickness, and density are controlled by the passage of low-pressure extratropical cyclones that are common in the northern Gulf of Mexico. The colder, brackish plume water provides vertical stratification and a cross-shore density gradient with the warmer, saline oceanic water. An Acoustic Doppler Current Profiler (ADCP) was deployed in 10m water depth as part of an intensive 2-week experiment (SCOPE), which also obtained wind and cross-shelf temperature, salinity, and velocity. The 10m ADCP remained collecting an additional year of velocity observations. The plume was not always present, but episodically influenced the experiment site. When the plume reached the site, the alongshore surface and subsurface typically flowed in opposite directions, likely caused by plume-induced pressure gradients. Plumes that extended into the subsurface appear to have caused depth-averaged onshore flow above that expected from wind and wave-driven forcing. Observations from SCOPE and the 1-year ADCP are used to describe seasonal full-depth flow patterns influenced by wind, waves, and plume presence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AdAtS..31.1305L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AdAtS..31.1305L"><span>Numerical experiments on the impact of spring north pacific SSTA on NPO and unusually cool summers in Northeast China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lian, Yi; Zhao, Bin; Shen, Baizhu; Li, Shangfeng; Liu, Gang</p> <p>2014-11-01</p> <p>A set of numerical experiments designed to analyze the oceanic forcing in spring show that the combined forcing of cold (warm) El Niño (La Niña) phases in the Niño4 region and sea surface temperature anomalies (SSTA) in the westerly drifts region would result in abnormally enhanced NorthEast Cold Vortex (NECV) activities in early summer. In spring, the central equatorial Pacific El Niño phase and westerly drift SSTA forcing would lead to the retreat of non-adiabatic waves, inducing elliptic low-frequency anomalies of tropical air flows. This would enhance the anomalous cyclone-anticyclone-cyclone-anticyclone low-frequency wave train that propagates from the tropics to the extratropics and further to the mid-high latitudes, constituting a major physical mechanism that contributes to the early summer circulation anomalies in the subtropics and in the North Pacific mid-high latitudes. The central equatorial Pacific La Niña forcing in the spring would, on the one hand, induce teleconnection anomalies of high pressure from the Sea of Okhotsk to the Sea of Japan in early summer, and on the other hand indirectly trigger a positive low-frequency East Asia-Pacific teleconnection (EAP) wave train in the lower troposphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060039461&hterms=development+Deep+time&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Ddevelopment%2BDeep%2Btime','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060039461&hterms=development+Deep+time&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Ddevelopment%2BDeep%2Btime"><span>(abstract) Deep Space Network Radiometric Remote Sensing Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Walter, Steven J.</p> <p>1994-01-01</p> <p>Planetary spacecraft are viewed through a troposphere that absorbs and delays radio signals propagating through it. Tropospheric water, in the form of vapor, cloud liquid,and precipitation , emits radio noise which limits satellite telemetry communication link performance. Even at X-band, rain storms have severely affected several satellite experiments including a planetary encounter. The problem will worsen with DSN implementation of Ka-band becausecommunication link budgets will be dominated by tropospheric conditions. Troposphere-induced propagation delays currently limit VLBI accuracy and are significant sources of error for Doppler tracking. Additionally, the success of radio science programs such as satellite gravity wave experiments and atmospheric occultation experiments depends on minimizing the effect of watervapor-induced prop agation delays. In order to overcome limitations imposed by the troposphere, the Deep Space Network has supported a program of radiometric remote sensing. Currently, water vapor radiometers (WVRs) and microwave temperature profilers (MTPs) support many aspects of the Deep Space Network operations and research and development programs. Their capability to sense atmospheric water, microwave sky brightness, and atmospheric temperature is critical to development of Ka-band telemetry systems, communication link models, VLBI, satellite gravity waveexperiments, and r adio science missions. During 1993, WVRs provided data for propagation mode development, supp orted planetary missions, and demonstrated advanced tracking capability. Collection of atmospheric statistics is necessary to model and predict performance of Ka-band telemetry links, antenna arrays, and radio science experiments. Since the spectrum of weather variations has power at very long time scales, atmospheric measurements have been requested for periods ranging from one year to a decade at each DSN site. The resulting database would provide reliable statistics on daily, monthly, and seasonal variations. Only long-term monitoring will prevent biases from being introduced by an exceptionally wet or dry year. Support for planetary missions included tropospheric calibration for the recent Mars Observer gravity wave experiments and Ka-band link experiment (KaBLE). Additionally, several proposed radio science experiments such as profiling planetary atmospheres using satellite occultations and Ka-band gravitational wave searches require advanced radiometer technology development. Finally, there has been a consistent advanced technology program to advance satellite navigational and tracking capabilities. This year that included an experiment with radiometer based tropospheric calibration for a series of VLBI catalog measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850006051','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850006051"><span>Global Scale Atmospheric Processes Research Program Review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Worley, B. A. (Editor); Peslen, C. A. (Editor)</p> <p>1984-01-01</p> <p>Global modeling; satellite data assimilation and initialization; simulation of future observing systems; model and observed energetics; dynamics of planetary waves; First Global Atmospheric Research Program Global Experiment (FGGE) diagnosis studies; and National Research Council Research Associateship Program are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5380972','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5380972"><span>Wave-particle energy exchange directly observed in a kinetic Alfvén-branch wave</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gershman, Daniel J.; F-Viñas, Adolfo; Dorelli, John C.; Boardsen, Scott A.; Avanov, Levon A.; Bellan, Paul M.; Schwartz, Steven J.; Lavraud, Benoit; Coffey, Victoria N.; Chandler, Michael O.; Saito, Yoshifumi; Paterson, William R.; Fuselier, Stephen A.; Ergun, Robert E.; Strangeway, Robert J.; Russell, Christopher T.; Giles, Barbara L.; Pollock, Craig J.; Torbert, Roy B.; Burch, James L.</p> <p>2017-01-01</p> <p>Alfvén waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales, they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASA's Magnetospheric Multiscale (MMS) mission, we utilize Earth's magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfvén wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via nonlinear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations. PMID:28361881</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28361881','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28361881"><span>Wave-particle energy exchange directly observed in a kinetic Alfvén-branch wave.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gershman, Daniel J; F-Viñas, Adolfo; Dorelli, John C; Boardsen, Scott A; Avanov, Levon A; Bellan, Paul M; Schwartz, Steven J; Lavraud, Benoit; Coffey, Victoria N; Chandler, Michael O; Saito, Yoshifumi; Paterson, William R; Fuselier, Stephen A; Ergun, Robert E; Strangeway, Robert J; Russell, Christopher T; Giles, Barbara L; Pollock, Craig J; Torbert, Roy B; Burch, James L</p> <p>2017-03-31</p> <p>Alfvén waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales, they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASA's Magnetospheric Multiscale (MMS) mission, we utilize Earth's magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfvén wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via nonlinear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170002707','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170002707"><span>Wave-Particle Energy Exchange Directly Observed in a Kinetic Alfven-Branch Wave</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gershman, Daniel J.; F-Vinas, Adolfo; Dorelli, John C.; Boardsen, Scott A. (Inventor); Avanov, Levon A.; Bellan, Paul M.; Schwartz, Steven J.; Lavraud, Benoit; Coffey, Victoria N.; Chandler, Michael O.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170002707'); toggleEditAbsImage('author_20170002707_show'); toggleEditAbsImage('author_20170002707_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170002707_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170002707_hide"></p> <p>2017-01-01</p> <p>Alfven waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres, and astrophysical systems, but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASAs Magnetospheric Multiscale (MMS) mission, we utilize Earths magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfven wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via non-linear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JASTP.155...50O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JASTP.155...50O"><span>Modelling the descent of nitric oxide during the elevated stratopause event of January 2013</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Orsolini, Yvan J.; Limpasuvan, Varavut; Pérot, Kristell; Espy, Patrick; Hibbins, Robert; Lossow, Stefan; Raaholt Larsson, Katarina; Murtagh, Donal</p> <p>2017-03-01</p> <p>Using simulations with a whole-atmosphere chemistry-climate model nudged by meteorological analyses, global satellite observations of nitrogen oxide (NO) and water vapour by the Sub-Millimetre Radiometer instrument (SMR), of temperature by the Microwave Limb Sounder (MLS), as well as local radar observations, this study examines the recent major stratospheric sudden warming accompanied by an elevated stratopause event (ESE) that occurred in January 2013. We examine dynamical processes during the ESE, including the role of planetary wave, gravity wave and tidal forcing on the initiation of the descent in the mesosphere-lower thermosphere (MLT) and its continuation throughout the mesosphere and stratosphere, as well as the impact of model eddy diffusion. We analyse the transport of NO and find the model underestimates the large descent of NO compared to SMR observations. We demonstrate that the discrepancy arises abruptly in the MLT region at a time when the resolved wave forcing and the planetary wave activity increase, just before the elevated stratopause reforms. The discrepancy persists despite doubling the model eddy diffusion. While the simulations reproduce an enhancement of the semi-diurnal tide following the onset of the 2013 SSW, corroborating new meteor radar observations at high northern latitudes over Trondheim (63.4°N), the modelled tidal contribution to the forcing of the mean meridional circulation and to the descent is a small portion of the resolved wave forcing, and lags it by about ten days.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040031773','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040031773"><span>Modeling Study of Mesospheric Planetary Waves: Genesis and Characteristics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, H. G.; Mengel, J. G.; Talaat, E. L.; Porter, H. S.; Chan, K. L.</p> <p>2003-01-01</p> <p>In preparation for the measurements from the TIMED mission and coordinated ground based observations, we discuss results for the planetary waves (PWs) that appear in our Numerical Spectral Model (NSM). The present model accounts for a tropospheric heat source in the zonal mean (m = 0), which reproduces qualitatively the observed zonal jets near the tropopause and the accompanying reversal in the latitudinal temperature variations. We discuss the PWs that are solely generated internally, i.e., without the explicit excitation sources related to tropospheric convection or topography. Our analysis shows that PWs are not produced when the zonally averaged heat source into the atmosphere is artificially suppressed, and that the PWs generally are significantly weaker when the tropospheric source is not applied. Instabilities associated with the zonal mean temperature, pressure and wind fields, which still need to be explored, are exciting PWs that have amplitudes in the mesosphere comparable to those observed. Three classes of PWs are generated in the NSM. (1) Rossby waves, (2) Rossby gravity waves propagating westward at low latitudes, and (3) Eastward propagating equatorial Kelvin waves. A survey of the PWs reveals that the largest wind amplitudes tend to occur below 80 km in the winter hemisphere, but above that altitude they occur in the summer hemisphere where the amplitudes can approach 50 meters per second. It is shown that the non-migrating tides in the mesosphere, generated by non-linear coupling between migrating tides and PWs, are significantly larger for the model with the tropospheric heat source.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2013/1131/pdf/ofr2013-1131.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2013/1131/pdf/ofr2013-1131.pdf"><span>National assessment of hurricane-induced coastal erosion hazards: Mid-Atlantic Coast</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Doran, Kara S.; Stockdon, Hilary F.; Sopkin, Kristin L.; Thompson, David M.; Plant, Nathaniel G.</p> <p>2013-01-01</p> <p>Beaches serve as a natural buffer between the ocean and inland communities, ecosystems, and natural resources. However, these dynamic environments move and change in response to winds, waves, and currents. During extreme storms, changes to beaches can be large, and the results are sometimes catastrophic. Lives may be lost, communities destroyed, and millions of dollars spent on rebuilding. During storms, large waves may erode beaches, and high storm surge shifts the erosive force of the waves higher on the beach. In some cases, the combined effects of waves and surge may cause overwash (when waves and surge overtop the dune, transporting sand inland) or flooding. Building and infrastructure on or near a dune can be undermined during wave attack and subsequent erosion. During Hurricane Ivan in 2004, a five-story condominium in Orange Beach, Alabama, collapsed after the sand dune supporting the foundation eroded. Hurricane Sandy, which made landfall as an extra-tropical cyclone on October 29, 2012, caused erosion and undermining that destroyed roads, boardwalks, and foundations in Seaside Heights, New Jersey. Waves overtopping a dune can transport sand inland, covering roads and blocking evacuation routes or emergency relief. If storm surge inundates barrier island dunes, currents flowing across the island can create a breach, or a new inlet, completely severing evacuation routes. Waves and surge during Hurricane Sandy, which made landfall on October 29, 2012, left a breach that cut the road and bridge to Mantoloking, N.J. Extreme coastal changes caused by hurricanes may increase the vulnerability of communities both during a storm and to future storms. For example, when sand dunes on a barrier island are eroded substantially, inland structures are exposed to storm surge and waves. Absent or low dunes also allow water to flow inland across the island, potentially increasing storm surge in the back bay, on the soundside of the barrier, and on the mainland.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008epsc.conf...32K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008epsc.conf...32K"><span>The first Messenger data supporting main theses of the wave planetology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kochemasov, G. G.</p> <p>2008-09-01</p> <p>The first fundamental statement of the wave planetology [1-6 & others] is about ubiquity of tectonic dichotomy. All celestial bodies move, as it was established by I. Kepler, in non-round but elliptical orbits. This means that they all notwithstanding their sizes, masses, physical states and chemical compositions have alternating increasing and decreasing accelerations producing forces (Newton: F = m·a) warping celestial bodies. This wave warping rotating bodies (but all bodies rotate!) is decomposed into four orthogonal and diagonal directions of standing waves. An interference of these directions gives tectonic blocks of three kinds: uplifting (+), subsiding (-) and neutral (0). The block sizes depend on warping wavelengths. The fundamental wave long 2πR (R - a body radius) is present in all bodies thus making one hemisphere rising and the opposite one falling (more precise relation is 1/3 to 2/3 or 2/3 to 1/3). A geometrical proof of this relation is given in [6] where two famous tectonic dichotomies of Earth and Mars were explained by one wave reason. This ubiquitous phenomenon was described as the first theorem of the wave planetology: "Celestial bodies are dichotomous". There are many examples proving it among planets, satellites and asteroids, even Sun is dichotomous. But up to recent time the studied partially Mercury's surface was not a good example of this phenomenon as not fully visible Caloris basin didn't show its real dimension. Now, after the Messenger flyby we know that it is about 1500 km in diameter, that is about 1/3 of the Mercury's diameter and the rule is not violated. The third theorem of the wave planetary tectonics states: "Celestial bodies are granular". This means that celestial bodies are warped by individual waves lengths of which are inversely proportional to their orbital frequencies: higher frequency - finer granules, lower frequency - larger granules (Fig. 1). Observations fully support it not only in sense of granules diameters but also in granules amplitudes reflected in planetary relief range. It increases with the solar distances: Venus ~14, Earth ~20, Mars ~28-30 km. Without good topography on Mercury we theoretically assumed that this planet's relief range must be significantly lower (3-6 km) just to not violate the observed sequence (Fig. 2). The Messenger's measurements show that the real range does not exceed ~5 km. (small vertical relief differentiation is accompanied by small petrological differentiation expressed by a low albedo range, Fig. 2). One of Mercury's surprises is Caloris basin. Basins on planetary surfaces are normally lowlands filled with denser material (basalts for the terrestrial planets). Subsiding tectonic blocks - depressions - basins - occupying narrower and narrower space must be contracted, squeezed, wrinkled, rippled. This is confirmed in many occasions. But in the case of Caloris there is an extension confirmed by concentric and radial cracks. Uplifting and extending basin is a consequence of the wave tectonics. Waves have two phases (up and down) and a period after which the phases change. That is why initially subsided block - basin now (it started maybe a few milliards or hundreds millions years ago: the larger block - the longer wave phase period) experiences uplifting with extension. Is it the only case in the Solar system? Quite not. And Earth is a good example. Its southern mainly oceanic (thus subsided) hemisphere is filled with basalts, what is normal for planetary depressions. But precise geodynamic measurements show that the southern hemisphere increases lengths of its parallels that is expending. This dynamics is confirmed by widening modern planetary rifts in Atlantic, Indian ocean, Pacific in the southern direction and around Antarctic ("Southern" ocean) - a kind of the radial-concentric structure. A geochemical anomaly in oceanic basalts of this region ("DUPAL" anomaly after S.R. Hart, 1984) is characterized by relatively high Rb/Sr, Th/Pb, Th/U - a continental (uplifting) trend related to potassium enrichment. P. Castillo (1988) correlates this the largest mantle geochemical anomaly with a zone of decreased seismic velocities in the lower mantle - again decreased densities are tied to uplifting. The majority of hotspots are above the low velocity regions. Mesozoic continental flood basalts of the southern hemisphere (the Ferrar magmatic province) are low-Ti and high in Si, Rb/Sr, 87Sr/86Sr (initial 0. 707 - 0. 713)[7]. So, the shrunk planet due to cooling and important loss of volatiles [8] is no exception from the regular row of planets structurized by wave warping according to their solar distances.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA572180','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA572180"><span>Extended-Range Prediction with Low-Dimensional, Stochastic-Dynamic Models: A Data-driven Approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-09-30</p> <p>characterization of extratropical storms and extremes and link these to LFV modes. Mingfang Ting, Yochanan Kushnir, Andrew W. Robertson...simulating and predicting a wide range of climate phenomena including ENSO, tropical Atlantic sea surface temperatures (SSTs), storm track variability...into empirical prediction models. Use observations to improve low-order dynamical MJO models. Adam Sobel, Daehyun Kim. Extratropical variability</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA164845','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA164845"><span>A Summary of the Naval Postgraduate School Research Program.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1985-09-30</p> <p>new model will now be used in a variety of oceanic investigations including the response of the ocean to tropical and extratropical storms (R. L...Numerical Study of Maritime Extratropical e. Cyclones Using FGGE Data ........................... 249 Oceanic Current System Response to Atmospheric...In addition* Professor Jayachandran has performed statistical analyses of the storm tracking methodology used by the Naval Environmental Prediction</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA467246','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA467246"><span>Long-Range Operational Military Forecasts for Iraq</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2007-03-01</p> <p>http://www.afccc.af.mil 5 March 2007] .................................................. 4 Figure 3. Primary storm tracks for: (a) June, July, August...Laboratory ETC extratropical cyclone FA forecast accuracy FAR false alarm rate HSS Heidke skill score IO Indian Ocean IOZM Indian Ocean Zonal...precipitation is associated with transient extratropical cyclones (ETCs). Most of Iraq’s terrain is relatively flat with little change in elevation</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EaFut...6...61B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EaFut...6...61B"><span>Eurasian Winter Storm Activity at the End of the Century: A CMIP5 Multi-model Ensemble Projection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Basu, Soumik; Zhang, Xiangdong; Wang, Zhaomin</p> <p>2018-01-01</p> <p>Extratropical cyclone activity over Eurasia has exhibited a weakening trend in the recent decade. Extratropical cyclones bring precipitation and hence supply fresh water for winter crops in the mid- and high-latitude regions of Eurasia. Any changes in extratropical cyclone activity over Eurasia in the future may have a critical impact on winter agriculture and the economies of affected communities. However, potential future changes in regional storm activity over Eurasia have not been studied in detail. Therefore, in this study, we investigate anticipated changes in extratropical storm activity by the end of the century through a detailed examination of the historical and future emission scenarios from six different models from CMIP5. A statistical analysis of different parameters of storm activity using a storm identification and tracking algorithm reveals a decrease in the number of storms over mid-latitude regions. However, intense storms with longer duration are projected over high latitude Eurasia. A further examination of the physical mechanism for these changes reveals that a decrease in the meridional temperature gradient and a weakening of the vertical wind shear over the mid-latitudes are responsible for these changes in storm activity.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RvGeo..55..902S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RvGeo..55..902S"><span>Review of Tropical-Extratropical Teleconnections on Intraseasonal Time Scales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stan, Cristiana; Straus, David M.; Frederiksen, Jorgen S.; Lin, Hai; Maloney, Eric D.; Schumacher, Courtney</p> <p>2017-12-01</p> <p>The interactions and teleconnections between the tropical and midlatitude regions on intraseasonal time scales are an important modulator of tropical and extratropical circulation anomalies and their associated weather patterns. These interactions arise due to the impact of the tropics on the extratropics, the impact of the midlatitudes on the tropics, and two-way interactions between the regions. Observational evidence, as well as theoretical studies with models of complexity ranging from the linear barotropic framework to intricate Earth system models, suggest the involvement of a myriad of processes and mechanisms in generating and maintaining these interconnections. At this stage, our understanding of these teleconnections is primarily a collection of concepts; a comprehensive theoretical framework has yet to be established. These intraseasonal teleconnections are increasingly recognized as an untapped source of potential subseasonal predictability. However, the complexity and diversity of mechanisms associated with these teleconnections, along with the lack of a conceptual framework to relate them, prevent this potential predictability from being translated into realized forecast skill. This review synthesizes our progress in understanding the observed characteristics of intraseasonal tropical-extratropical interactions and their associated mechanisms, identifies the significant gaps in this understanding, and recommends new research endeavors to address the remaining challenges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030112972&hterms=Lower+class&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DLower%2Bclass','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030112972&hterms=Lower+class&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DLower%2Bclass"><span>Modeling Study of Planetary Waves in the Mesosphere Lower Thermosphere (MLT)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mengel, J. G.; Mayr, H. g.; Drob, D.; Porter, H. S.; Hines, C. O.</p> <p>2003-01-01</p> <p>For comparison with measurements from the TIMED satellite and coordinated ground based observations, we present results from our Numerical Spectral Model (NSM) that incorporates the Doppler Spread Parameterization (Hines, 1997) for small-scale gravity waves (GWs). We discuss the planetary waves (PWs) that are purely generated by dynamical interactions, i.e., without explicitly specifying excitation sources related for example to tropospheric convection or topography. With tropospheric heating that reproduces the observed zonal jets near the tropopause and the accompanying reversal in the latitudinal temperature variation, which is conducive to baroclinic instability, long period PWs are produced that propagate up into the stratosphere to affect the wave driven equatorial oscillations (QBO and SAO) extending into the upper mesosphere. The PWs in the model that dominate higher up in the MLT region, however, are to a large extent produced by instabilities under the influence of the zonal circulation and temperature variations in the middle atmosphere and they are amplified by GW interactions. Three classes of PWs are generated there. (1) Rossby waves that slowly propagate westward but are carried by the zonal mean (m = 0) winds to produce eastward and westward propagating PWs respectively in the winter and summer hemispheres below 80 km. Depending on the zonal wave number and magnitudes of the zonal winds under the influence of the equatorial oscillations, the PWs typically have periods between 2 and 20 days and their horizontal wind amplitudes can exceed 40 m/s in the lower mesosphere. (2) Rossby gravity waves that propagate westward at low latitudes, having periods around 2 days for zonal wave numbers m = 2 to 4. (3) Eastward propagating equatorial Kelvin waves generated in the upper mesosphere with periods between 2 and 3 days for m = 1 & 2. The seasonal variations of the PWs reveal that the largest wind amplitudes tend to occur below 80 km in the winter hemisphere, but above that altitude in the summer hemisphere to approach magnitudes as large as 50 m/s.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920036997&hterms=vertical+height&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dvertical%2Bheight','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920036997&hterms=vertical+height&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dvertical%2Bheight"><span>Vertical tilts of tropospheric waves - Observations and theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ebisuzaki, Wesley</p> <p>1991-01-01</p> <p>Two methods are used to investigate the vertical tilts of planetary waves as functions of zonal wavenumber and frequency. The vertical tilts are computed by cross-spectral analysis of the geopotential heights at different pressures. In the midlatitude troposphere, the eastward-moving waves had a westward tilt with height, as expected, but the westward-moving waves with frequencies higher than 0.2/d showed statistically significant eastward vertical tilts. For a free Rossby wave, this implies that the Eliassen-Palm flux is downward along with its energy propagation. A downward energy propagation suggests an upper-level source of these waves. It is proposed that the eastward-tilting waves were forced by the nonlinear interaction of stationary waves and baroclinically unstable cyclone-scale waves. The predicted vertical tilt and phase speed were consistent with the observations. In addition, simulations of a general circulation model were analyzed. In the control run, eastward-tilting waves disappeared when the sources of stationary waves were removed. This is consistent with the present theory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PhDT.........6T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PhDT.........6T"><span>Millimeter wave studies of circumstellar chemistry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tenenbaum, Emily Dale</p> <p>2010-06-01</p> <p>Millimeter wave studies of molecules in circumstellar envelopes and a planetary nebula have been conducted. Using the Submillimeter Telescope (SMT) of the Arizona Radio Observatory (ARO) on Mt. Graham, a comparative spectral survey from 215-285 GHz was carried out of the carbon-rich asymptotic giant branch star IRC +10216 and the oxygen-rich supergiant VY Canis Majoris. A total of 858 emission lines were observed in both objects, arising from 40 different molecules. In VY Canis Majoris, AlO, AlOH, and PO were detected for the first time in interstellar space. In IRC +10216, PH3 was detected for the first time beyond the solar system, and C3O, and CH2NH were found for the first time in a circumstellar envelope. Additionally, in the evolved planetary nebula, the Helix, H2CO, C2H, and cyclic-C3H2 were observed using the SMT and the Kitt Peak 12 m telescopes. The presence of these three molecules in the Helix suggests that relatively complex chemistry occurs in planetary nebulae, despite the harsh ultraviolet field. Overall, the research on molecules in circumstellar and planetary nebulae furthers our understanding of the nature of the material that is fed back into the interstellar medium from evolved stars. Besides telescope work, laboratory research was also conducted -- the rotational spectrum of ZnCl was measured and its bond length and rotational constants were determined. Lastly, in partial fulfillment of a graduate certificate in entrepreneurial chemistry, the commercial applications of terahertz spectroscopy were explored through literature research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMDI21A0392U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMDI21A0392U"><span>The Devil in the Dark: A Fully Self-Consistent Seismic Model for Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Unterborn, C. T.; Schmerr, N. C.; Irving, J. C. E.</p> <p>2017-12-01</p> <p>The bulk composition and structure of Venus is unknown despite accounting for 40% of the mass of all the terrestrial planets in our Solar System. As we expand the scope of planetary science to include those planets around other stars, the lack of measurements of basic planetary properties such as moment of inertia, core-size and thermal profile for Venus hinders our ability to compare the potential uniqueness of the Earth and our Solar System to other planetary systems. Here we present fully self-consistent, whole-planet density and seismic velocity profiles calculated using the ExoPlex and BurnMan software packages for various potential Venusian compositions. Using these models, we explore the seismological implications of the different thermal and compositional initial conditions, taking into account phase transitions due to changes in pressure, temperature as well as composition. Using mass-radius constraints, we examine both the centre frequencies of normal mode oscillations and the waveforms and travel times of body waves. Seismic phases which interact with the core, phase transitions in the mantle, and shallower parts of Venus are considered. We also consider the detectability and transmission of these seismic waves from within the dense atmosphere of Venus. Our work provides coupled compositional-seismological reference models for the terrestrial planet in our Solar System of which we know the least. Furthermore, these results point to the potential wealth of fundamental scientific insights into Venus and Earth, as well as exoplanets, which could be gained by including a seismometer on future planetary exploration missions to Venus, the devil in the dark.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFMOS11A1449E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFMOS11A1449E"><span>Pacific decadal variability in the view of linear equatorial wave theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Emile-Geay, J. B.; Cane, M. A.</p> <p>2006-12-01</p> <p>It has recently been proposed, within the framework of the linear shallow water equations, that tropical Pacific decadal variability can be accounted for by basin modes with eigenperiods of 10 to 20 years, amplifying a mid- latitude wind forcing with an essentially white spectrum (Cessi and Louazel 2001; Liu 2003). We question this idea here, using a different formalism of linear equatorial wave theory. We compute the Green's function for the wind forced response of a linear equatorial shallow water ocean, and use the results of Cane and Moore (1981) to obtain a compact, closed form expression for the motion of the equatorial thermocline, which applies to all frequencies lower than seasonal. At very low frequencies (decadal timescales), we recover the planetary geostrophic solution used by Cessi and Louazel (2001), as well as the equatorial wave solution of Liu (2003), and give a formal explanation for this convergence. Using this more general solution to explore more realistic wind forcings, we come to a different interpretation of the results. We find that the equatorial thermocline is inherently more sensitive to local than to remote wind forcing, and that planetary Rossby modes only weakly alter the spectral characteristics of the response. Tropical winds are able to generate a strong equatorial response with periods of 10 to 20 years, while midlatitude winds can only do so for periods longer than about 50 years. Since the decadal pattern of observed winds shows similar amplitude for tropical and midlatitude winds, we conclude that the latter are unlikely to be responsible for the observed decadal tropical Pacific SST variability. References : Cane, M. A., and Moore, D. W., 1981: A note on low-frequency equatorial basin modes. J. Phys. Oceanogr., 11(11), 1578 1584. Cessi, P., and Louazel, S., 2001: Decadal oceanic response to stochastic wind forcing. J. Phys. Oceanogr., 31, 3020 3029. Liu, Z., 2003: Tropical ocean decadal variability and resonance of planetary wave basin modes. J. Clim., 16(18), 1539 1550.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160003308','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160003308"><span>Impacts of Snow Darkening by Absorbing Aerosols on Eurasian Climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kim, Kyu-Myong; Lau, William K M.; Yasunari, Teppei J.; Kim, Maeng-Ki; Koster, Randal D.</p> <p>2016-01-01</p> <p>The deposition of absorbing aerosols on snow surfaces reduces snow-albedo and allows snowpack to absorb more sunlight. This so-called snow darkening effect (SDE) accelerates snow melting and leads to surface warming in spring. To examine the impact of SDE on weather and climate during late spring and early summer, two sets of NASA GEOS-5 model simulations with and without SDE are conducted. Results show that SDE-induced surface heating is particularly pronounced in Eurasian regions where significant depositions of dust transported from the North African deserts, and black carbon from biomass burning from Asia and Europe occur. In these regions, the surface heating due to SDE increases surface skin temperature by 3-6 degrees Kelvin near the snowline in spring. Surface energy budget analysis indicates that SDE-induced excess heating is associated with a large increase in surface evaporation, subsequently leading to a significant reduction in soil moisture, and increased risks of drought and heat waves in late spring to early summer. Overall, we find that rainfall deficit combined with SDE-induced dry soil in spring provide favorable condition for summertime heat waves over large regions of Eurasia. Increased frequency of summer heat waves with SDE and the region of maximum increase in heat-wave frequency are found along the snow line, providing evidence that early snowmelt by SDE may increase the risks of extreme summer heat wave. Our results suggest that climate models that do not include SDE may significantly underestimate the effect of global warming over extra-tropical continental regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JASTP.171...94P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JASTP.171...94P"><span>Tropospheric weather influenced by solar wind through atmospheric vertical coupling downward control</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prikryl, Paul; Bruntz, Robert; Tsukijihara, Takumi; Iwao, Koki; Muldrew, Donald B.; Rušin, Vojto; Rybanský, Milan; Turňa, Maroš; Šťastný, Pavel</p> <p>2018-06-01</p> <p>Occurrence of severe weather in the context of solar wind coupling to the magnetosphere-ionosphere-atmosphere (MIA) system is investigated. It is observed that significant snowfall, wind and heavy rain, particularly if caused by low pressure systems in winter, tend to follow arrivals of high-speed solar wind. Previously published statistical evidence that explosive extratropical cyclones in the northern hemisphere tend to occur within a few days after arrivals of high-speed solar wind streams from coronal holes (Prikryl et al., 2009, 2016) is corroborated for the southern hemisphere. Cases of severe weather events are examined in the context of the magnetosphere-ionosphere-atmosphere (MIA) coupling. Physical mechanism to explain these observations is proposed. The leading edge of high-speed solar wind streams is a locus of large-amplitude magneto-hydrodynamic waves that modulate Joule heating and/or Lorentz forcing of the high-latitude lower thermosphere generating medium-scale atmospheric gravity waves that propagate upward and downward through the atmosphere. Simulations of gravity wave propagation in a model atmosphere using the Transfer Function Model (Mayr et al., 1990) reveal that propagating waves originating in the lower thermosphere can excite a spectrum of gravity waves in the lower atmosphere. In spite of significantly reduced amplitudes but subject to amplification upon reflection in the upper troposphere, these gravity waves can provide a lift of unstable air to release instabilities in the troposphere and initiate convection to form cloud/precipitation bands. It is primarily the energy provided by release of latent heat that leads to intensification of storms. These results indicate that vertical coupling in the atmosphere exerts downward control from solar wind to the lower atmospheric levels influencing tropospheric weather development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850041586&hterms=wind+monitor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dwind%2Bmonitor','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850041586&hterms=wind+monitor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dwind%2Bmonitor"><span>An overview of wave-mean flow interactions during the winter of 1978-79 derived from LIMS observations. [Limb Infrared Monitor of Stratosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gille, J. C.; Lyjak, L. V.</p> <p>1984-01-01</p> <p>Gradient winds, Eliassen-Palm (EP) fluxes and flux divergences, and the squared refractive index for planetary waves have been calculated from mapped data from the Limb Infrared Monitor of the Stratosphere (LIMS) experiment on Nimbus 7. The changes in the zonal mean atmospheric state, from early winter through 3 disturbances, is described. Convergence or divergence of the EP fluxes clearly produces changes in the zonal mean wind. The steering of the waves by the refractive index structure is not as clear on a daily basis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800026918&hterms=Gravitational+motion+system&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DGravitational%2Bmotion%2Bsystem','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800026918&hterms=Gravitational+motion+system&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DGravitational%2Bmotion%2Bsystem"><span>Influence of a weak gravitational wave on a bound system of two point-masses. [of binary stars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Turner, M. S.</p> <p>1979-01-01</p> <p>The problem of a weak gravitational wave impinging upon a nonrelativistic bound system of two point masses is considered. The geodesic equation for each mass is expanded in terms of two small parameters, v/c and dimensionless wave amplitude, in a manner similar to the post-Newtonian expansion; the geodesic equations are resolved into orbital and center-of-mass equations of motion. The effect of the wave on the orbit is determined by using Lagrange's planetary equations to calculate the time evolution of the orbital elements. The gauge properties of the solutions and, in particular, the gauge invariance of the secular effects are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18046401','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18046401"><span>Lightning on Venus inferred from whistler-mode waves in the ionosphere.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Russell, C T; Zhang, T L; Delva, M; Magnes, W; Strangeway, R J; Wei, H Y</p> <p>2007-11-29</p> <p>The occurrence of lightning in a planetary atmosphere enables chemical processes to take place that would not occur under standard temperatures and pressures. Although much evidence has been reported for lightning on Venus, some searches have been negative and the existence of lightning has remained controversial. A definitive detection would be the confirmation of electromagnetic, whistler-mode waves propagating from the atmosphere to the ionosphere. Here we report observations of Venus' ionosphere that reveal strong, circularly polarized, electromagnetic waves with frequencies near 100 Hz. The waves appear as bursts of radiation lasting 0.25 to 0.5 s, and have the expected properties of whistler-mode signals generated by lightning discharges in Venus' clouds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130014118','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130014118"><span>Submillimeter Planetary Atmospheric Chemistry Exploration Sounder</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schlecht, Erich T.; Allen, Mark A.; Gill, John J.; Choonsup, Lee; Lin, Robert H.; Sin, Seth; Mehdi, Imran; Siegel, Peter H.; Maestrini, Alain</p> <p>2013-01-01</p> <p>Planetary Atmospheric Chemistry Exploration Sounder (SPACES), a high-sensitivity laboratory breadboard for a spectrometer targeted at orbital planetary atmospheric analysis. The frequency range is 520 to 590 GHz, with a target noise temperature sensitivity of 2,500 K for detecting water, sulfur compounds, carbon compounds, and other atmospheric constituents. SPACES is a prototype for a powerful tool for the exploration of the chemistry and dynamics of any planetary atmosphere. It is fundamentally a single-pixel receiver for spectral signals emitted by the relevant constituents, intended to be fed by a fixed or movable telescope/antenna. Its front-end sensor translates the received signal down to the 100-MHz range where it can be digitized and the data transferred to a spectrum analyzer for processing, spectrum generation, and accumulation. The individual microwave and submillimeter wave components (mixers, LO high-powered amplifiers, and multipliers) of SPACES were developed in cooperation with other programs, although with this type of instrument in mind. Compared to previous planetary and Earth science instruments, its broad bandwidth (approx. =.13%) and rapid tunability (approx. =.10 ms) are new developments only made possible recently by the advancement in submillimeter circuit design and processing at JPL.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008epsc.conf..665K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008epsc.conf..665K"><span>Equatorial Cross-Cutting Ripples on Titan - Regularly Warped Subsiding Methane Plains, not Eolian Dunes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kochemasov, G. G.</p> <p>2008-09-01</p> <p>Widely circulating opinion that titanian methane lowlands in a broad equatorial region are covered with eolian formations needs to be carefully checked. Of coarse, all three solid bodies with atmospheres in the inner solar system have dunes. Why do not have them on Titan? Most probably they do exist but discovered by radar up to now cross-cutting rippling features cannot be taken for them. For this there are several reasons. How it can be that prevailing "dune" strike coincides with prevailing wind direction? Normally (with some African exceptions) one sees real terrestrial dunes stretching across winds. And this is understandable from a point of view eolian dunes formation. This formation gives particular cross profile to dunes. Asymmetric profile - one slope is long and gentle and another one short and abrupt. But titanian "dunes" are mostly uniform and symmetric. And this characteristic is preserved for many hundreds of kilometers of very straight features. Then, the finest solid particles precipitation from the thick atmosphere of Titan should be distributed on the satellite surface more uniformly and cover dark lowlands and light icy highlands of the wide equatorial belt more or less evenly. But "dunes" are strictly associated with dark lowlands and tend to turn round light icy obstacles. Cindering smoggy particles to produce sands for making dunes is a pure imagination. Then, radar preferably sees one direction but nevertheless one or more crossing directions of rippling are distinguished (Fig.3, 4) They mean two wind directions at the same time or another wind direction at another time? If so, the earlier "dunes" should be more or less obliterated by the later ones. Nothing of the kind! Both crossing ripples directions are fresh. Then, eolian action is not seen at the higher latitudes (Fig. 5). There are no winds there? Probably it is not so. Only a liquid state of methane can help (but liquid should be disturbed by winds). Solid methane there is also probable. Very regular cross-cutting wavy forms hundred and thousand kilometers long have a spacing between ridges or grooves about 1-2 km (?) (PIA03555, PIA03566, PIA03567, PIA03568 ) or 10-20 km (PIA08454) -so called "cat scratches". The most long and wide ridge-groove system observed up to now (PIA08454 - a swath 6150 km long, 1120 km wide, almost a half length of the great planetary circle!) has the ridge-to-ridge spacing about 10-20 km; a width of ridges and grooves is nearly equal with variations to both sides; ridges are more bright, grooves are more dark; intersections of the ridge-groove systems creates chains of roundish features ("craters") of characteristic size (Fig. 3, 4). Observed wavy systems resemble dunes only at the first glance but actually are deformations of the ice-methane crust by very fine inertia-gravity waves aroused by the satellite movement in non-round elliptical keplerian orbit [3]. This movement with periodically changing accelerations arouse inertia-gravity forces and waves warping any celestial body notwithstanding its size, mass, density, chemical composition or physical state. In rotating bodies (but all bodies rotate!) these warping waves have a stationary character and 4 cross-cutting directions- ortho- and diagonal - producing uplifted (+), subsided (-) and neutral (0) tectonic blocks. Wavelengths are different but tied as harmonics. The fundamental wave1 produces ubiquitous tectonic dichotomy -two segments (2πR-structure), the first harmonics wave2 produces tectonic sectors (πR-structures) [1]. This structurization is adorned by individual for any body waves whose lengths are inversely proportional to their orbital frequencies: higher frequency - smaller waves and, vice versa, lower frequency - larger waves. These waves produce tectonic granules. There is a row of increasing granule sizes strictly tied to orbital frequencies: Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1. In this row Titan with its orbital frequency around its central body Saturn about 16 days occupies position before Mercury -πR/91 (Fig. 1). But Titan as a satellite has also another frequency around Sun - that of its master Saturn. A wave created by this frequency is too large to be confined in Titan (7.5πR granule) but it can, according to the wave theory modulate the higher frequency (the wave with granule πR/91) creating two side frequencies. They are obtained by division and multiplication of the higher frequency by the lower one: the modulations give the sizes πR/12 or 670 km and πR/667 or 12 km [(1/91 x 7.5)πR and (1/91 : 7.5)πR]. Both 670 and 12 km sizes are discernable on Titan's radar image PIA08454. The first as roundish white and dark areas (these granules were discerned and calculated earlier on the Hubble image of Titan in pre-Cassini era [2]). The second size is produced by an intersection of regular wavings-ripples (erroneously interpreted as dunes) with spacing about 10-20 km covering mainly smooth dark near equatorial parts of the satellite (Fig. 4). Titan's dichotomy -an opposition of mostly light (Xanadu) and dark hemispheres - is well known and also represents the wave structurization (2πR-structure). Often observed an essential difference in appearance and structure between tropical and extra-tropical zones of various heavenly bodies belonging to terrestrial rocky planets, giant gas planets, icy satellites (Fig.5, Titan) compels to look for a common reason of such phenomenon. All bodies rotate and their spherical shape makes zones at different latitudes to have differing angular momenta as a distance to the rotation axis diminishes gradually from the equator to the poles. As a single rotating planetary body tends to have angular momenta of its tectonic blocks equilibrated it starts mechanisms leveling this basic physical property. At equatorial zones (bulged also due to the rotation ellipsoid) the outer shell - crust tends to be destroyed, sunk, subsided and shrunk as a consequence. At Titan this common planetary feature is expressed very clearly: subsiding dark plains at the equatorial region are not only widespread but also intensively warped (Fig. 2-4). This ubiquitous cross-cutting rippling in response to subsidence should not be confused with eolian forms [3].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18517919','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18517919"><span>Dynamo action with wave motion.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tilgner, A</p> <p>2008-03-28</p> <p>It is shown that time dependent velocity fields in a fluid conductor can act as dynamos even when the same velocity fields frozen in at any particular time cannot. This effect is observed in propagating waves in which the time dependence is simply a steady drift of a fixed velocity pattern. The effect contributes to magnetic field generation in numerical models of planetary dynamos and relies on the property that eigenmodes of the induction equation are not all orthogonal to each other.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDD34008L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDD34008L"><span>Homogeneous internal wave turbulence driven by tidal flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Le Reun, Thomas; Favier, Benjamin; Le Bars, Michael; Erc Fludyco Team</p> <p>2017-11-01</p> <p>We propose a novel investigation of the stability of strongly stratified planetary fluid layers undergoing periodic tidal distortion in the limit where rotational effects are negligible compared to buoyancy. With the help of a local model focusing on a small fluid area compared to the global layer, we find that periodic tidal distortion drives a parametric subharmonic resonance of internal. This instability saturates into an homogeneous internal wave turbulence pervading the whole fluid interior: the energy is injected in the unstable waves which then feed a succession of triadic resonances also generating small spatial scales. As the timescale separation between the forcing and Brunt-Väisälä is increased, the temporal spectrum of this turbulence displays a -2 power law reminiscent of the Garrett and Munk spectrum measured in the oceans (Garett & Munk 1979). Moreover, in this state consisting of a superposition of waves in weak non-linear interaction, the mixing efficiency is increased compared to classical, Kolmogorov-like stratified turbulence. This study is of wide interest in geophysical fluid dynamics ranging from oceanic turbulence and tidal heating in icy satellites to dynamo action in partially stratified planetary cores as it could be the case in the Earth. We acknowledge support from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant Agreement No. 681835-FLUDYCO-ERC-2015-CoG).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA143162','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA143162"><span>Large-Scale Atmosphere-Ocean Coupling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1984-05-01</p> <p>connection. between Pacific tropical diabatic heating anomalies and extratropical circulation system over the North Pacific from East Asia to the...and G. J. Boer, 1972: REFERENCES The General Circulation of the Tropical Atmosphere and Interaction with Extratropical Latitudes. Vol. 1. MIT Press...implications for the development of severe convective storms . Mom. We& Rev.. Chang, C.-P., and K. M. Lau, 1980: Northeasterly cold surges 167, 682-703. and</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA199385','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA199385"><span>Severe Weather Guide - Mediterranean Ports. 7. Marseille</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1988-03-01</p> <p>the afternoon. Upper—level westerlies and the associated storm track is moved northward during summer, so extratropical cyclones and associated...autumn as the extratropical storm track moves southward. Precipitation amount is the highest of the year, with an average of 3 inches (76 mm) for the...18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Storm haven Mediterranean meteorology Marseille port</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS31A1703R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS31A1703R"><span>Implications of Sea Level Rise on Coastal Flood Hazards</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roeber, V.; Li, N.; Cheung, K.; Lane, P.; Evans, R. L.; Donnelly, J. P.; Ashton, A. D.</p> <p>2012-12-01</p> <p>Recent global and local projections suggest the sea level will be on the order of 1 m or higher than the current level by the end of the century. Coastal communities and ecosystems in low-lying areas are vulnerable to impacts resulting from hurricane or large swell events in combination with sea-level rise. This study presents the implementation and results of an integrated numerical modeling package to delineate coastal inundation due to storm landfalls at future sea levels. The modeling package utilizes a suite of numerical models to capture both large-scale phenomena in the open ocean and small-scale processes in coastal areas. It contains four components to simulate (1) meteorological conditions, (2) astronomical tides and surge, (3) wave generation, propagation, and nearshore transformation, and (4) surf-zone processes and inundation onto dry land associated with a storm event. Important aspects of this package are the two-way coupling of a spectral wave model and a storm surge model as well as a detailed representation of surf and swash zone dynamics by a higher-order Boussinesq-type wave model. The package was validated with field data from Hurricane Ivan of 2005 on the US Gulf coast and applied to tropical and extratropical storm scenarios respectively at Eglin, Florida and Camp Lejeune, North Carolina. The results show a nonlinear increase of storm surge level and nearshore wave energy with a rising sea level. The exacerbated flood hazard can have major consequences for coastal communities with respect to erosion and damage to infrastructure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P13C2569A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P13C2569A"><span>Planetary Wind Determination by Doppler Tracking of a Small Entry Probe Network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Atkinson, D. H.; Asmar, S.; Lazio, J.; Preston, R. A.</p> <p>2017-12-01</p> <p>To understand the origin and chemical/dynamical evolution of planetary atmospheres, measurements of atmospheric chemistries and processes including dynamics are needed. In situ measurements of planetary winds have been demonstrated on multiple occasions, including the Pioneer multiprobe and Venera missions to Venus, and the Galileo/Jupiter and Huygens/Titan probes. However, with the exception of Pioneer Venus, the retrieval of the zonal (east-west) wind profile has been limited to a single atmospheric slice. significantly improved understanding of the global dynamics requires sampling of multiple latitudes, times of day, and seasons. Simultaneous tracking of a small network of probes would enable measurements of spatially distributed winds providing a substantially improved characterization of a planet's global atmospheric circulation. Careful selection of descent locations would provide wind measurements at latitudes receiving different solar insolations, longitudes reflecting different times of day, and different seasons if both hemispheres are targeted. Doppler wind retrievals are limited by the stability of the probe and carrier spacecraft clocks, and must be equipped with an ultrastable oscillator, accelerometers for reconstructing the probe entry trajectory, and pressure / temperature sensors for determination of descent speed. A probe were equipped with both absolute and dynamic pressure sensors can measure planet center-relative and atmosphere-relative descent speeds, enabling the measurement of vertical winds from convection or atmospheric waves. Possible ambiguities arising from the assumption of no north-south winds could be removed if the probe were simultaneously tracked from the carrier spacecraft as well as from the Earth or a second spacecraft. The global circulation of an atmosphere comprising waves and flows that vary with location and depth is inherently tied to the thermal, chemical, and energy structure of the atmosphere. Wind measurements along a single vertical atmospheric slice cannot adequately represent the overall dynamical properties of the atmosphere. To more completely characterize the dynamical structure of a planetary atmosphere, it is proposed that future in situ planetary missions include a network of small probes dedicated to wind measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E1652K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E1652K"><span>Magnetosphere of Mercury : Observations and Insights from MESSENGER</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krimigis, Stamatios</p> <p></p> <p>The MESSENGER spacecraft executed three flyby encounters with Mercury in 2008 and 2009, was inserted into orbit about Mercury on 18 March 2011, and has returned a wealth of data on the magnetic field, plasma, and energetic particle environment of Mercury. These observations reveal a profoundly dynamic and active solar wind interaction. In addition to establishing the average structures of the bow shock, magnetopause, northern cusp, and tail plasma sheet, MESSENGER measurements document magnetopause boundary processes (reconnection and surface waves), global convection and dynamics (tail loading and unloading, magnetic flux transport, and Birkeland currents), surface precipitation of particles (protons and electrons), particle heating and acceleration, and wave generation processes (ions and electrons). Mercury’s solar wind interaction presents new challenges to our understanding of the physics of magnetospheres. The offset of the planetary moment relative to the geographic equator creates a larger hemispheric asymmetry relative to magnetospheric dimensions than at any other planet. The prevalence, magnitude, and repetition rates of flux transfer events at the magnetopause as well as plasmoids in the magnetotail indicate that, unlike at Earth, episodic convection may dominate over steady-state convection. The magnetopause reconnection rate is not only an order of magnitude greater than at Earth, but reconnection occurs over a much broader range of interplanetary magnetic field orientations than at Earth. Finally, the planetary body itself plays a significant role in Mercury’s magnetosphere. Birkeland currents close through the planet, induction at the planetary core-mantle boundary modifies the magnetospheric response to solar wind pressure excursions, the surface in darkness exhibits sporadic X-ray fluorescence consistent with precipitation of 10 to 100 keV electrons, magnetospheric plasmas precipitate directly onto the planetary surface and contribute to sputtering, and planetary ions are often present with sufficient densities and energies to substantially modify the plasma pressures and hence magnetospheric dynamics.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38.1245C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38.1245C"><span>Quasi-biennial variation of equatorial waves as seen in satellite remote sensing data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Zeyu</p> <p></p> <p>The quasi-biennial oscillation (QBO) in zonal winds in the lower stratosphere at the Equator is the most prominent inter-annual variation signal in the middle atmosphere. Theoretically, it is driven by the drag from the damping of equatorial waves including the equatorially trapped planetary scale waves, such as Kelvin waves propagating eastward and Rossby-gravity waves propagating westward, inertio-gravity waves and gravity waves. In current research, the tem-perature data collected by the SABER/TIMED mission in 2002-2009 are used to investigate the equatorial waves activities. The Fast Fourier Synoptic Mapping (FFSM) method is applied to delineate planetary wave components with the zonal wavenumber spanning over -6 to +6, hereby, positive (negative) wavenumber is assigned to westward (eastward) propagating waves. Limited by the SABER/TIMED sampling scheme, only the waves with periods longer than one day can be resolved. Focusing on the height region 70-10 hPa where the QBO signal is most significant, it is clearly observed that the composite activity of all the eastward waves exhibit QBO like variation. Specifically, for each QBO cycle, the activity at 50 hPa level is characterized by the occurrence of a substantially clear minimum that coincides to the fast downward propagation of the westerly phase, the typical pattern of the QBO phenomenon. Phase speed spectra are derived by using the FFSM analysis results. And vertical shear of the zonal wind is derived by using the rawinsonde data at Singapore. Comparison of the phase speed spectra and the wind shear indicates that the minimum is due to the westerly shear below 30 hPa. Between the minimum, significant wave activities emerge, thus the property for the components are investigated. Results show that in height range 70-10 hPa, both wave 1 to wave 3 are prominent during the inter-minimum period for each QBO cycle. At 50 hPa level, wave 1 component exhibits amplitude spectral peak at three kinds of period, 8, 11 and 20 day. Meanwhile, shifting to shorter period is seen as wave number increases, for example, the 20-day period spectrum is attenuated substantially for wave 2 and wave 3 components. Moreover, results also show that although with small amplitude, wave 4 and wave 5 with shorter periods of 4-7 days are discernable in particular in the inter-minimum period. Further details will be presented in the talk.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1413060V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1413060V"><span>Joint probabilities of extreme precipitation and wind gusts in Germany</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>von Waldow, H.; Martius, O.</p> <p>2012-04-01</p> <p>Extreme meteorological events such as storms, heavy rain, floods, droughts and heat waves can have devastating consequences for human health, infrastructure and ecosystems. Concomitantly occurring extreme events might interact synergistically to produce a particularly hazardous impact. The joint occurrence of droughts and heat waves, for example, can have a very different impact on human health and ecosystems both in quantity and quality, than just one of the two extreme events. The co-occurrence of certain types of extreme events is plausible from physical and dynamical considerations, for example heavy precipitation and high wind speeds in the pathway of strong extratropical cyclones. The winter storm Kyrill not only caused wind gust speeds well in excess of 30 m/s across Europe, but also brought 24 h precipitation sums greater than the mean January accumulations in some regions. However, the existence of such compound risks is currently not accounted for by insurance companies, who assume independence of extreme weather events to calculate their premiums. While there are established statistical methods to model the extremes of univariate meteorological variables, the modelling of multidimensional extremes calls for an approach that is tailored to the specific problem at hand. A first step involves defining extreme bivariate wind/precipitation events. Because precipitation and wind gusts caused by the same cyclone or convective cell do not occur at exactly the same location and at the same time, it is necessary to find a sound definition of "extreme compound event" for this case. We present a data driven method to choose appropriate time and space intervals that define "concomitance" for wind and precipitation extremes. Based on station data of wind speed and gridded precipitation data, we arrive at time and space intervals that compare well with the typical time and space scales of extratropical cyclones, i.e. a maximum time lag of 1 day and a maximum distance of about 300 km between associated wind and rain events. After modelling extreme precipitation and wind separately, we explore the practicability of characterising their joint distribution using a bivariate threshold excess model. In particular, we present different dependence measures and report about the computational feasibility and available computer codes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JGRD..11514108P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JGRD..11514108P"><span>Analysis of migrating diurnal tides detected in FORMOSAT-3/COSMIC temperature data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pirscher, B.; Foelsche, U.; Borsche, M.; Kirchengast, G.; Kuo, Y.-H.</p> <p>2010-07-01</p> <p>The characteristics of atmospheric tides in the upper troposphere and lower stratosphere region are investigated using radio occultation (RO) measurements performed by the Formosa Satellite Mission-3/Constellation Observing System for Meteorology, Ionosphere, and Climate (FORMOSAT-3/COSMIC) satellite constellation and compared to tides observed in short-term forecast model fields of European Centre for Medium-Range Weather Forecasts (ECMWF) and National Centers for Environmental Prediction (NCEP). Spectral analysis of 2 years of monthly data (2007 to 2008) yields the migrating diurnal tide to be the largest spectral component. This diurnal tide shows similar temporal, latitudinal, and altitudinal characteristics in all data sets equatorward of 50°. Beyond 50°, COSMIC local time sampling is insufficient within 1 month, which prevents space-time spectral analysis from isolating atmospheric waves. Diurnal tides of temperature are characterized by largest amplitudes in the tropics (0.8 K to 1.0 K at an altitude of 30 km). Amplitudes of diurnal tides analyzed in model data are more pronounced by ˜20%. An annual cycle of the amplitudes, characteristically linked to the movement of the intertropical convergence zone, is clearly revealed. Tropical diurnal phase features downward progression of waves fronts with a vertical wavelength of 20 km. Extratropical diurnal tides are most pronounced in the model data sets with amplitudes of up to 0.5 K at 30 km. In this analysis we also see the influence of high-altitude initialization of RO data by background information in using data processed by two different centers (University Corporation for Atmospheric Research (UCAR) and Wegener Center (WEGC)). UCAR data, initialized by a climatology without tidal information, exhibit no appreciable extratropical diurnal tides, while WEGC data, initialized by ECMWF forecasts, show more pronounced ones. Overall the results underpin the utility of the local-time resolving COSMIC RO constellation data for monitoring diurnal tide dynamics in the stratosphere. The agreement between observational and model data further confirms that the tidal dynamics is appropriately captured in the models, which is important for other (middle/upper) atmosphere models relying on ECMWF or NCEP dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040082190&hterms=Asian&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DAsian','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040082190&hterms=Asian&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DAsian"><span>The North Pacific as a Regulator of Summertime Climate Over North America and the Asian Monsoon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lau, William K. M.; Wang, H.</p> <p>2004-01-01</p> <p>The interannual variability of summertime rainfall over the U.S. may be linked to climate anomalies over Pacific and East Asia through teleconnection patterns that may be components of recurring global climate modes in boreal summer (Lau and Weng 2002). In this study, maintenance of the boreal summer teleconnection patterns is investigated. The particular focus is on the potential effects of North Pacific air-sea interaction on climate anomalies over the U.S. Observational data, reanalysis and outputs of a series of NASA NSIPP AGCM and AGCM coupled to NASA GSFC MLO model experiments are used. Statistical analysis of observations and NSIPP AMIP type simulations indicates that, the interannual variability of observed warm season precipitation over the U.S. is related to SST variation in both tropical and North Pacific, whereas the NSIPP AMIP simulated summertime US. precipitation variation mainly reflects impact of ENS0 in tropical Pacific. This implies the potential importance of air-sea interaction in North Pacific in contributing to the interannual variability of observed summer climate over the U.S. The anomalous atmospheric circulation associated with the dominant summertime teleconnection modes in both observations and NSIPP AMIP simulations are further diagnosed, using stationary wave modeling approach. In observations, for the two dominant modes, both anomalous diabatic heating and anomalous transients significantly contribute to the anomalous circulation. The distributions of the anomalous diabatic heating and transient forcing are quadrature configured over North Pacific and North America, so that both forcings act constructively to maintain the teleconnection patterns. The contrast between observations and NSIPP AMIP simulations from stationary wave modeling diagnosis confirms the previous conclusion based on statistical analysis. To better appreciate the role of extra-tropical air-sea interaction in maintaining the summertime teleconnection pattern, various dynamical and physical fields and their inter- linkage in the series of NSIPP AGCM and AGCM coupled to MLO model experiments are examined in-depth. Based on comparison between different model experiments, we will discuss the physical and dynamical mechanisms through which the air-sea interaction in extratropics, and transient mean flow interactions over the North Pacific, affects interannual variation of U.S. climate during boreal summer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850061955&hterms=plastic+impacts&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dplastic%2Bimpacts','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850061955&hterms=plastic+impacts&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dplastic%2Bimpacts"><span>Shock wave properties of anorthosite and gabbro. [to model hypervelocity impact cratering on planetary surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Boslough, M. B.; Ahrens, T. J.</p> <p>1985-01-01</p> <p>Huyoniot data on San Gabriel anorthosite and San Marcos gabbro to 11 GPA are presented. Release paths in the stress-density plane and sound velocities are reported as determined from partial velocity data. Electrical interference effects precluded the determination of accurate release paths for the gabbro. Because of the loss of shear strength in the shocked state, the plastic behavior exhibited by anorthosite indicates that calculations of energy partitioning due to impact onto planetary surfaces based on elastic-plastic models may underestimate the amount of internal energy deposited in the impacted surface material.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.U11A0007N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.U11A0007N"><span>Economic costs of extratropical storms under climate change: An application of FUND</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Narita, D.; Tol, R.; Anthoff, D.</p> <p>2009-12-01</p> <p>Extratropical cyclones have attracted some attention in climate policy circles as a possible significant damage factor of climate change. This study conducts an assessment of economic impacts of increased storm activities under climate change with the integrated assessment model FUND 3.5. FUND is a model that calculates damages of climate change for 16 regions by making use of exogenous scenarios of socioeconomic variables (for details of our estimation approach, see our working paper whose URL is indicated below). Our estimation shows that in the base case, the direct economic damage of enhanced storms due to climate change amounts to $2.8 billion globally (approximately 38% of the total economic loss of storms at present) at the year 2100, while the ratio to the world GDP is 0.0009%. The regional results (Figure 1) indicate that the economic effect of extratropical storms with climate change would have relatively minor importance for the US (USA): The enhanced extratropical storm damage (less than 0.001% of GDP for the base case) is one order of magnitude lower than the tropical cyclone damage (roughly 0.01% GDP) calculated by the same version of FUND. In the regions without strong tropical cyclone influence, such as Western Europe (WEU) and Australia and New Zealand (ANZ), the extratropical storms might have some more significance as a possible damage factor of climate change. Especially for the latter, the direct economic damage could amount to more than 0.006% of GDP. Still, the impact is small relative to the income growth expected in these regions. Figure 1. Increased direct economic loss at the year 2100 for selected regions (results are shown for the three different baselines: the years 1986-2005, 1976-2005, and 1996-2005). US - USA; Canada - CAN; Western Europe - WEU; Australia and New Zealand - ANZ.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..12213436J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..12213436J"><span>Multiyear Composite View of Ozone Enhancements and Stratosphere-to-Troposphere Transport in Dry Intrusions of Northern Hemisphere Extratropical Cyclones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jaeglé, Lyatt; Wood, Robert; Wargan, Krzysztof</p> <p>2017-12-01</p> <p>We examine the role of extratropical cyclones in stratosphere-to-troposphere (STT) exchange with cyclone-centric composites of O3 retrievals from the Microwave Limb Sounder (MLS) and the Tropospheric Emission Spectrometer (TES), contrasting them to composites obtained with the Modern-Era Retrospective-analysis for Research and Applications (MERRA and MERRA-2) reanalyses and the GEOS-Chem chemical transport model. We identify 15,978 extratropical cyclones in the northern hemisphere (NH) for 2005-2012. The lowermost stratosphere (261 hPa) and middle troposphere (424 hPa) composites feature a 1,000 km wide O3 enhancement in the dry intrusion (DI) airstream to the southwest of the cyclone center, coinciding with a lowered tropopause, enhanced potential vorticity, and decreased H2O. MLS composites at 261 hPa show that the DI O3 enhancements reach a 210 ppbv maximum in April. At 424 hPa, TES composites display maximum O3 enhancements of 27 ppbv in May. The magnitude and seasonality of these enhancements are captured by MERRA and MERRA-2, but GEOS-Chem is a factor of 2 too low. The MERRA-2 composites show that the O3-rich DI forms a vertically aligned structure between 300 and 800 hPa, wrapping cyclonically with the warm conveyor belt. In winter and spring DIs, O3 is enhanced by 100 ppbv or 100-130% at 300 hPa, with significant enhancements below 500 hPa (6-20 ppbv or 15-30%). We estimate that extratropical cyclones result in a STT flux of 119 ± 56 Tg O3 yr-1, accounting for 42 ± 20% of the NH extratropical O3 STT flux. The STT flux in cyclones displays a strong dependence on westerly 300 hPa wind speeds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JOUC...17..461Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JOUC...17..461Z"><span>Extratropical Transition and Re-Intensification of Typhoon Toraji (2001): Large-Scale Circulations, Structural Characteristics, and Mechanism Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, Xiande; Wu, Lixin; Wang, Qi</p> <p>2018-06-01</p> <p>With the use of data from the National Centers for Environmental Prediction Climate Forecast System Reanalysis, the environment and structure of typhoon Toraji (2001) are investigated during the re-intensification (RI) stage of its extratropical transition (ET), a process in which a tropical cyclone transforms into an extratropical or mid-latitude cyclone. The results provide detailed insight into the ET system and identify the specific features of the system, including wind field, a cold and dry intrusion, and a frontal structure in the RI stage. The irrotational wind provides the values of upper-and lower-level jets within the transitioning tropical cyclone and the cyclone over Shandong Peninsula, accompanied with the reduced radius of maximum surface winds around the cyclone center in the lower troposphere. Simultaneously, dry air intrusion enhances the formation of fronts and leads to strong potential instability in the southwest and northeast quadrants. The distribution of frontogenesis shows that the tilting term associated with vertical motion dominates the positive frontogenesis surrounding the cyclone center, especially in the RI stage. The diagnostics of the kinetic energy budget suggest that the divergent kinetic energy generation whose time evolution corresponds well to that of cyclone center pressure is the primary factor for the development of Toraji in the lower troposphere. The ET of Toraji is a compound pattern that contains a development similar to that of a B-type extratropical cyclone within the maintaining phase and an A-type extratropical cyclone within the strengthening period, which corresponds to the distribution of the E-P fluxes with vertically downward propagation in the maintaining stage and upwards momentum in the strengthening phase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A22E..06P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A22E..06P"><span>Seasonal Extratropical Storm Activity Potential Predictability and its Origins during the Cold Seasons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pingree-Shippee, K. A.; Zwiers, F. W.; Atkinson, D. E.</p> <p>2016-12-01</p> <p>Extratropical cyclones (ETCs) often produce extreme hazardous weather conditions, such as high winds, blizzard conditions, heavy precipitation, and flooding, all of which can have detrimental socio-economic impacts. The North American east and west coastal regions are both strongly influenced by ETCs and, subsequently, land-based, coastal, and maritime economic sectors in Canada and the USA all experience strong adverse impacts from extratropical storm activity from time to time. Society would benefit if risks associated with ETCs and storm activity variability could be reliably predicted for the upcoming season. Skillful prediction would enable affected sectors to better anticipate, prepare for, manage, and respond to storm activity variability and the associated risks and impacts. In this study, the potential predictability of seasonal variations in extratropical storm activity is investigated using analysis of variance to provide quantitative and geographical observational evidence indicative of whether it may be possible to predict storm activity on the seasonal timescale. This investigation will also identify origins of the potential predictability using composite analysis and large-scale teleconnections (Southern Oscillation, Pacific Decadal Oscillation, and North Atlantic Oscillation), providing the basis upon which seasonal predictions can be developed. Seasonal potential predictability and its origins are investigated for the cold seasons (OND, NDJ, DJF, JFM) during the 1979-2015 time period using daily mean sea level pressure, absolute pressure tendency, and 10-m wind speed from the ECMWF ERA-Interim reanalysis as proxies for extratropical storm activity. Results indicate potential predictability of seasonal variations in storm activity in areas strongly influenced by ETCs and with origins in the investigated teleconnections. For instance, the North Pacific storm track has considerable potential predictability and with notable origins in the SO and PDO.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001JGR...10622725V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001JGR...10622725V"><span>A study of the dynamics of the equatorial lower stratosphere by use of ultra-long-duration balloons, 1. Planetary scales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vial, F.; Hertzog, A.; Mechoso, C. R.; Basdevant, C.; Cocquerez, P.; Dubourg, V.; Nouel, F.</p> <p>2001-10-01</p> <p>In the late southern winter of 1998, Center National d'Études Spatiales (CNES), the French Space Agency, released six 10-m-diameter, superpressure balloons from a location near Quito, Ecuador. Three balloons collapsed soon after launching, but the remaining three drifted westward for a few weeks at altitudes between 19 and 20 km. Two of those balloons crossed the Pacific Ocean before falling above the ``maritime continent,'' while the other completed a revolution around the Earth and crossed the Pacific for a second time before its final fall. Despite the small number and the relatively short duration of the flights, the balloons provided a unique in situ data set for the lower equatorial stratosphere. This part 1 of a two-part paper describes this data set and analyzes outstanding features in the planetary scales. Part 2 focuses on gravity-wave scale. It is argued that balloon trajectories over the Pacific are primarily determined by the westward drift during the easterly phase of the equatorial quasi-biennial oscillation (QBO) and the meridional velocity field of a mixed Rossby-gravity (Yanai) wave with an apparent period of 4 days and zonal wave number 4. This wave appears to have two episodes of amplification during the balloon flights. It is also argued that the balloons show evidence of oscillations with periods between 2 and 4 days and of a Kelvin wave with an apparent period close to 10 days and zonal wave number 1. In this way, the balloon behavior provided a pictorial view of air parcel trajectory in the equatorial lower stratosphere. It is stated that larger balloon campaigns can provide excellent in situ data sets for studies on the dynamics and composition of the middle atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRA..119.1287M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRA..119.1287M"><span>TIME-GCM study of the ionospheric equatorial vertical drift changes during the 2006 stratospheric sudden warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maute, A.; Hagan, M. E.; Richmond, A. D.; Roble, R. G.</p> <p>2014-02-01</p> <p>This modeling study quantifies the daytime low-latitude vertical E×B drift changes in the longitudinal wave number 1 (wn1) to wn4 during the major extended January 2006 stratospheric sudden warming (SSW) period as simulated by the National Center for Atmospheric Research thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM), and attributes the drift changes to specific tides and planetary waves (PWs). The largest drift amplitude change (approximately 5 m/s) is seen in wn1 with a strong temporal correlation to the SSW. The wn1 drift is primarily caused by the semidiurnal westward propagating tide with zonal wave number 1 (SW1), and secondarily by a stationary planetary wave with zonal wave number 1 (PW1). SW1 is generated by the nonlinear interaction of PW1 and the migrating semidiurnal tide (SW2) at high latitude around 90-100 km. The simulations suggest that the E region PW1 around 100-130 km at the different latitudes has different origins: at high latitudes, the PW1 is related to the original stratospheric PW1; at midlatitudes, the model indicates PW1 is due to the nonlinear interaction of SW1 and SW2 around 95-105 km; and at low latitudes, the PW1 might be caused by the nonlinear interaction between DE2 and DE3. The time evolution of the simulated wn4 in the vertical E×B drift amplitude shows no temporal correlation with the SSW. The wn4 in the low-latitude vertical drift is attributed to the diurnal eastward propagating tide with zonal wave number 3 (DE3), and the contributions from SE2, TE1, and PW4 are negligible.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011BAAS...43..025J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011BAAS...43..025J"><span>Obituary: Thomas Julian Ahrens (1936-2010)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jeanloz, Raymond; Asimow, Paul</p> <p>2011-12-01</p> <p>Thomas J. Ahrens, a leader in the use of shock waves to study planetary interiors and impact phenomena, died at his home in Pasadena, California on November 24, 2010, at the age of 74. He was the California Institute of Technology's Fletcher Jones Professor of Geophysics, formally emeritus since 2005 but professionally active to the end. Tom was a pioneer in experimental and numerical studies of the effects of hypervelocity impact, arguably the most important geophysical process in the formation, growth and - in many cases - surface evolution of planets. As a professor at Caltech, he established the foremost university laboratory for shock wave experiments, where students and research associates from around the world pursued basic research in geophysics, planetary science and other disciplines. Previously, high-pressure shock experiments were primarily conducted in national laboratories, where they were initially associated with development of nuclear weapons. The shock wave laboratory at Caltech was noted for key measurements addressing major questions in planetary geophysics. Equation-of-state studies on silicate melts showed that magma deep in Earth's mantle could be denser than the coexisting crystals, implying downward transport of melts (and associated heat) rather than the upward eruption of lavas observed in volcanic regions at Earth's surface. Shock-melting experiments on iron at pressures of Earth's core provide a crucial constraint on the temperature at the center of our planet. And studies of hydrous, carbonate and sulphate minerals under shock compression document how climate-altering molecules can be released by major impacts, such as the K/T event associated with the most recent mass extinction of biota in Earth history. In addition, Tom was a leader in numerical simulation of cratering, bringing the most recent laboratory measurements into the modeling of planetary impacts. Tom's training was in geophysics and applied experimental physics, as exemplified by the ultrasonic wave-velocity measurements of his Ph.D. research at Rensselaer Polytechnic Institute (geophysics Ph.D. in 1962, following a B.S. in geology and geophysics from Massachusetts Institute of Technology in 1957, and M.S. in geophysics from Caltech in 1958). He served in the U.S. Army (1959-60) and was employed at Stanford Research Institute (1962-67), where he conducted shock wave experiments, before joining the faculty at Caltech in 1967. With such a broad background, Tom combined condensed-matter physics, continuum mechanics, petrology and seismology, for instance in characterizing polymorphic phase transformations in Earth's mantle (1967 J. Geophys. Res. Paper with Y. Syono); using shock wave measurements to interpret seismological data on Earth's deep interior (1969 Rev. Geophysics paper with D. L. Anderson and A. E. Ringwood); modeling geodynamic effects of phase-transition kinetics (1975 Rev. Geophysics paper with G. Shubert); characterizing the effects of gravity and crustal strength on crater formation (1981 Rev. Geophysics paper with J. D. O'Keefe); and quantifying impact erosion of terrestrial planetary atmospheres (1993 Annual Review of Earth and Planetary Sciences). The span of his science was also reflected in collaborations with - among others - Paul D. Asimow, George R. Rossman and Edward M. Stolper at Caltech, as well as Arthur C. Mitchell and William J. Nellis at Lawrence Livermore National Laboratory. His accomplishments included conducting the first shock-wave experiments on lunar samples and solid hydrogen; measuring the first absorption spectra of minerals under shock loading; discovering major phase changes in CaO, FeO, KAlSi3O8, and KFeS2; measuring shock temperatures in silicates, metals, and oxides; conducting the first planetary cratering calculations for mass of melted and vaporized material, and mass and energy of ejecta as a function of planetary escape velocity; experimentally documenting shock vaporization on volatile-bearing minerals, and applying the results to understanding the formation of oceans and atmospheres; conducting the first dynamic-compression experiments on molten silicates, with applications to characterizing the maximum depth of volcanism on terrestrial planets, as well as the crystallization sequence of magma oceans; performing the first thermodynamic calculations delineating the impact-shock conditions for melting and vaporization of planetary materials; carrying out the first smoothed particle hydrodynamic calculations to investigate energy partitioning upon impact in self-gravitating planetary systems; and conducting the first quantitative tensile failure studies for brittle media, relating crack-density to elastic velocity deficits and the onset of damage. Tom was also Co-Investigator on the NASA Cosmic Dust Analyzer Experiment, and the NASA/ESA Cassini Mission to Saturn. Honors included the AGU Hess Medal, Geological Society of America Day Medal, Meteoritical Society Barringer Medal, APS Shock Compression of Condensed Matter' Topical Groups's Duvall Medal and AAAS Newcomb-Cleveland Prize. He had been President of AGU's Tectonophysics Section, Editor of Journal of Geophysical Research, founding member of both the Mineral and Rock Physics and Study of Earth's Deep Interior focus groups, and Editor - more like key driving force - for AGU's Handbook of Physical Constants. He was a fellow of the AGU, American Academy of Arts and Sciences, American Association for the Advancement of Science, and Geochemical Society; and member of the U.S. National Academy of Sciences, as well as Foreign Associate of the Russian Academy of Sciences. Main-belt asteroid 4739 Tomahrens (1985 TH1) was named after him. Tom made it clear, however, that it was his students (more than 30), research associates (15 or more) and many collaborators who were the real mark of success. No doubt driven by the need to sustain a major, expensive research facility, as well as to satisfy an inner drive, he maintained a daunting work schedule - including evenings, weekends and holidays - that challenged and stimulated so many around him, perhaps even frightening or frustrating some. He could play as hard as he worked, enjoying sailing, skiing and other outdoor activities over the years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JASTP.171..201K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JASTP.171..201K"><span>Comparisons of planetary wave propagation to the upper atmosphere during stratospheric warming events at different QBO phases</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koval, Andrey V.; Gavrilov, Nikolai M.; Pogoreltsev, Alexander I.; Savenkova, Elena N.</p> <p>2018-06-01</p> <p>The dynamical coupling of the lower and upper atmosphere by planetary waves (PWs) is studied. Numerical simulations of planetary wave (PW) amplitudes during composite sudden stratospheric warming (SSW) events in January-February are made using a model of general circulation of the middle and upper atmosphere with initial and boundary conditions typical for the westerly and easterly phases of quasi-biennial oscillation (QBO). The changes in PW amplitudes in the middle atmosphere before, during and after SSW event for the different QBO phases are considered. Near the North Pole, the increase in the mean temperature during SSW reaches 10-30 K at altitudes 30-50 km for four pairs of the model runs with the eQBO and wQBO, which is characteristic for the sudden stratospheric warming event. Amplitudes of stationary PWs in the middle atmosphere of the Northern hemisphere may differ up to 30% during wQBO and eQBO before and during the SSW. After the SSW event SPW amplitudes are substantially larger during wQBO phase. PW refractivity indices and Eliassen-Palm flux vectors are calculated. The largest EP-fluxes in the middle atmosphere correspond to PWs with zonal wavenumber m=1. Simulated changes in PW amplitudes correspond to inhomogeneities of the global circulation, refractivity index and EP-flux produced by the changes in QBO phases. Comparisons of differences in PW characteristics and circulation between the wQBO and eQBO show that PWs could provide effective coupling mechanism and transport dynamical changes from local regions of the lower atmosphere to distant regions of the upper atmosphere of both hemispheres.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.7872P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.7872P"><span>The dynamics of cyclone clustering in re-analysis and a high-resolution climate model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Priestley, Matthew; Pinto, Joaquim; Dacre, Helen; Shaffrey, Len</p> <p>2017-04-01</p> <p>Extratropical cyclones have a tendency to occur in groups (clusters) in the exit of the North Atlantic storm track during wintertime, potentially leading to widespread socioeconomic impacts. The Winter of 2013/14 was the stormiest on record for the UK and was characterised by the recurrent clustering of intense extratropical cyclones. This clustering was associated with a strong, straight and persistent North Atlantic 250 hPa jet with Rossby wave-breaking (RWB) on both flanks, pinning the jet in place. Here, we provide for the first time an analysis of all clustered events in 36 years of the ERA-Interim Re-analysis at three latitudes (45˚ N, 55˚ N, 65˚ N) encompassing various regions of Western Europe. The relationship between the occurrence of RWB and cyclone clustering is studied in detail. Clustering at 55˚ N is associated with an extended and anomalously strong jet flanked on both sides by RWB. However, clustering at 65(45)˚ N is associated with RWB to the south (north) of the jet, deflecting the jet northwards (southwards). A positive correlation was found between the intensity of the clustering and RWB occurrence to the north and south of the jet. However, there is considerable spread in these relationships. Finally, analysis has shown that the relationships identified in the re-analysis are also present in a high-resolution coupled global climate model (HiGEM). In particular, clustering is associated with the same dynamical conditions at each of our three latitudes in spite of the identified biases in frequency and intensity of RWB.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015IAUGA..2232646P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015IAUGA..2232646P"><span>Lunar Radio_phase Ranging in Chinese Lunar Lander Mission for Astrometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ping, Jinsong; Meng, Qiao; Li, Wenxiao; Wang, Mingyuan; Wang, Zhen; Zhang, Tianyi; Han, Songtao</p> <p>2015-08-01</p> <p>The radio tracking data in lunar and planetary missions can be directly applied for scientific investigation. The variations of phase and of amplitude of the radio carrier wave signal linked between the spacecraft and the ground tracking antenna are used to deduce the planetary atmospheric and ionospheric structure, planetary gravity field, mass, ring, ephemeris, and even to test the general relativity. In the Chinese lunar missions, we developed the lunar and planetary radio science receiver to measure the distance variation between the tracking station-lander by means of open loop radio phase tracking. Using this method in Chang’E-3 landing mission, a lunar radio_phase ranging (LRR) technique was realized at Chinese deep space tracking stations and astronomical VLBI stations with H-maser clocks installed. Radio transponder and transmitter had been installed on the Chang’E-3/4. Transponder will receive the uplink S/X band radio wave transmitted from the two newly constructed Chinese deep space stations, where the high quality hydrogen maser atomic clocks have been used as local time and frequency standard. The clocks between VLBI stations and deep space stations can be synchronized to UTC standard within 20 nanoseconds using satellite common view methods. In the near future there will be a plan to improve this accuracy to 5 nanoseconds or better, as the level of other deep space network around world. In the preliminary LRR experiments of Chang'E-3, the obtained 1sps phase ranging observables have a resolution of 0.2 millimeter or better, with a fitting RMS about 2~3 millimeter, after the atmospheric and ionospheric errors removed. This method can be a new astrometric technique to measure the Earth tide and rotation, lunar orbit, tides and liberation, by means of solo observation or of working together with Lunar Laser Ranging. After differencing the ranging, we even obtained 1sps doppler series of 2-way observables with resolution of 0.07mm/second, which can be used to check the uplimit for low frequency (0.001~1 Hz) gravitational wave detection between the Earth and the Moon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA551911','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA551911"><span>Climate and Weather Analysis of Afghanistan Thunderstorms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2011-09-01</p> <p>dry, continental polar (cP) air. The subtropical jet (STJ) and Extratropical storm track tend to lie south of Kabul. Mean high SFC temperatures...March-April-May (MAM). Note that AFG lies to the east of a broad trough centered over southern Europe and to the west of broad ridge centered over... Extratropical Cyclone FAR False Alarm Rate FOB Forward Operating Base FRN Forecaster Reference Notebook GFS Global Forecast System GoA</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A31P..03K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A31P..03K"><span>Prediction of North Pacific Height Anomalies During Strong Madden-Julian Oscillation Events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kai-Chih, T.; Barnes, E. A.; Maloney, E. D.</p> <p>2017-12-01</p> <p>The Madden Julian Oscillation (MJO) creates strong variations in extratropical atmospheric circulations that have important implications for subseasonal-to-seasonal prediction. In particular, certain MJO phases are characterized by a consistent modulation of geopotential height in the North Pacific and adjacent regions across different MJO events. Until recently, only limited research has examined the relationship between these robust MJO tropical-extratropical teleconnections and model prediction skill. In this study, reanalysis data (MERRA and ERA-Interim) and ECMWF ensemble hindcasts are used to demonstrate that robust teleconnections in specific MJO phases and time lags are also characterized by excellent agreement in the prediction of geopotential height anoma- lies across model ensemble members at forecast leads of up to 3 weeks. These periods of enhanced prediction capabilities extend the possibility for skillful extratropical weather prediction beyond traditional 10-13 day limits. Furthermore, we also examine the phase dependency of teleconnection robustness by using Linear Baroclinic Model (LBM) and the result is consistent with the ensemble hindcasts : the anomalous heating of MJO phase 2 (phase 6) can consistently generate positive (negative) geopotential height anomalies around the extratropical Pacific with a lead of 15-20 days, while other phases are more sensitive to the variaion of the mean state.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990028485&hterms=ozone+layer&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dozone%2Blayer','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990028485&hterms=ozone+layer&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dozone%2Blayer"><span>Seasonal Ozone Variations in the Isentropic Layer between 330 and 380 K as Observed by SAGE 2: Implications of Extratropical Cross-Tropopause Transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wang, Pi-Huan; Cunnold, Derek M.; Zawodny, Joseph M.; Pierce, R. Bradley; Olson, Jennifer R.; Kent, Geoffrey S.; Skeens, Kristi, M.</p> <p>1998-01-01</p> <p>To provide observational evidence on the extratropical cross-tropopause transport between the stratosphere and the troposphere via quasi-isentropic processes in the middleworld (the part of the atmosphere in which the isentropic surfaces intersect the tropopause), this report presents an analysis of the seasonal variations of the ozone latitudinal distribution in the isentropic layer between 330 K and 380 K based on the measurements from the Stratospheric Aerosol and Gas Experiment (SAGE) II. The results from SAGE II data analysis are consistent with (1) the buildup of ozone-rich air in the extratropical middleworld through the large-scale descending mass circulation during winter, (2) the spread of ozone-rich air in the isentropic layer from midlatitudes to subtropics via quasi-isentropic transport during spring, (3) significant photochemical ozone removal and the absence of an ozone-rich supply of air to the layer during summer, and (4) air mass exchange between the subtropics and the extratropics during the summer monsoon period. Thus the SAGE II observed ozone seasonal variations in the middleworld are consistent with the existing model calculated annual cycle of the diabatic circulation as well as the conceptual role of the eddy quasi-adiabatic transport in the stratosphere-troposphere exchange reported in the literature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy..tmp...16H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy..tmp...16H"><span>The contrasting climate response to tropical and extratropical energy perturbations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hawcroft, Matt; Haywood, Jim M.; Collins, Mat; Jones, Andy</p> <p>2018-01-01</p> <p>The link between cross-equatorial energy transport, the double-intertropical convergence zone (DI) problem and biases in tropical and extratropical albedo and energy budgets in climate models have been investigated in multiple studies, though DI biases persist in many models. Here, a coupled climate model, HadGEM2-ES, is used to investigate the response to idealised energy perturbations in the tropics and extratropics, in both the northern and southern hemispheres, through the imposition of stratospheric aerosols that reflect incoming radiation. The impact on the tropical climate of high and low latitude forcing strongly contrasts, with large changes in tropical precipitation and modulation of the DI bias when the tropics are cooled as precipitation moves away from the cooled hemisphere. These responses are muted when the extratropics are cooled, as the meridional energy transport anomalies that are excited by these energy budget anomalies are partitioned between the atmosphere and ocean. The results here highlight the persistence of the DI bias in HadGEM2-ES, indicating why little progress has been made in rectifying these problems through many generations of climate models. A highly linear relationship between cross-equatorial atmospheric energy transport, tropical precipitation asymmetry and tropical sea surface temperature biases is also demonstrated, giving some suggestion as to where improvements in these large scale, persistent biases may be achieved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850004542','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850004542"><span>Magnetohydrodynamic and gasdynamic theories for planetary bow waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spreiter, J. R.; Stahara, S. S.</p> <p>1984-01-01</p> <p>The observed properties of bow waves and the associated plasma flows are outlined, along with those features identified that can be described by a continuum magnetohydrodynamic flow theory as opposed to a more detailed multicomponent particle and field plasma theory. The primary objectives are to provide an account of the fundamental concepts and current status of the magnetohydrodynamic and gas dynamic theories for solar wind flow past planetary bodies. This includes a critical examination of: (1) the fundamental assumptions of the theories; (2) the various simplifying approximations introduced to obtain tractable mathematical problems; (3) the limitations they impose on the results; and (4) the relationship between the results of the simpler gas dynamic-frozen field theory and the more accurate but less completely worked out magnetohydrodynamic theory. Representative results of the various theories are presented and compared. A number of deficiencies, ambiguities, and suggestions for improvements are discussed, and several significant extensions of the theory required to provide comparable results for all planets, their satellites, and comets are noted.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A43D2479B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A43D2479B"><span>United States Temperature and Precipitation Extremes: Phenomenology, Large-Scale Organization, Physical Mechanisms and Model Representation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Black, R. X.</p> <p>2017-12-01</p> <p>We summarize results from a project focusing on regional temperature and precipitation extremes over the continental United States. Our project introduces a new framework for evaluating these extremes emphasizing their (a) large-scale organization, (b) underlying physical sources (including remote-excitation and scale-interaction) and (c) representation in climate models. Results to be reported include the synoptic-dynamic behavior, seasonality and secular variability of cold waves, dry spells and heavy rainfall events in the observational record. We also study how the characteristics of such extremes are systematically related to Northern Hemisphere planetary wave structures and thus planetary- and hemispheric-scale forcing (e.g., those associated with major El Nino events and Arctic sea ice change). The underlying physics of event onset are diagnostically quantified for different categories of events. Finally, the representation of these extremes in historical coupled climate model simulations is studied and the origins of model biases are traced using new metrics designed to assess the large-scale atmospheric forcing of local extremes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009APS..PSF.K1001G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009APS..PSF.K1001G"><span>The Sounds of Space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gurnett, Donald</p> <p>2009-11-01</p> <p>The popular concept of space is that it is a vacuum, with nothing of interest between the stars, planets, moons and other astronomical objects. In fact most of space is permeated by plasma, sometimes quite dense, as in the solar corona and planetary ionospheres, and sometimes quite tenuous, as is in planetary radiation belts. Even less well known is that these space plasmas support and produce an astonishing large variety of waves, the ``sounds of space.'' In this talk I will give you a tour of these space sounds, starting with the very early discovery of ``whistlers'' nearly a century ago, and proceeding through my nearly fifty years of research on space plasma waves using spacecraft-borne instrumentation. In addition to being of scientific interest, some of these sounds can even be described as ``musical,'' and have served as the basis for various musical compositions, including a production called ``Sun Rings,'' written by the well-known composer Terry Riley, that has been performed by the Kronos Quartet to audiences all around the world.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850023417','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850023417"><span>Troposphere-stratosphere (surface-55 km) monthly general circulation statistics for the Northern Hemisphere-four year averages</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wu, M. F.; Geller, M. A.; Olson, J. G.; Gelman, M. E.</p> <p>1984-01-01</p> <p>This report presents four year averages of monthly mean Northern Hemisphere general circulation statistics for the period from 1 December 1978 through 30 November 1982. Computations start with daily maps of temperature for 18 pressure levels between 1000 and 0.4 mb that were supplied by NOAA/NMC. Geopotential height and geostrophic wind are constructed using the hydrostatic and geostrophic formulae. Fields presented in this report are zonally averaged temperature, mean zonal wind, and amplitude and phase of the planetary waves in geopotential height with zonal wavenumbers 1-3. The northward fluxes of heat and eastward momentum by the standing and transient eddies along with their wavenumber decomposition and Eliassen-Palm flux propagation vectors and divergences by the standing and transient eddies along with their wavenumber decomposition are also given. Large annual and interannual variations are found in each quantity especially in the stratosphere in accordance with the changes in the planetary wave activity. The results are shown both in graphic and tabular form.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890020518','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890020518"><span>Middle atmosphere thermal structure during MAP/WINE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Offermann, D.</p> <p>1989-01-01</p> <p>Middle atmosphere temperatures were measured during the MAP/WINE campaign by various ground-based techniques, by rocket instruments, and by satellites. Respective data were analyzed for atmospheric thermal mean state as well as for long and short period variations. A brief survey of the results is given. Monthly mean temperatures agree well with the new CIRA model. Long period (planetary) waves frequently exhibit peculiar vertical amplitude and phase structures, resembling those of standing waves. Short period oscillations tend to begin breaking well below the stratosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1890466','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1890466"><span>Achieving high-density states through shock-wave loading of precompressed samples</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Jeanloz, Raymond; Celliers, Peter M.; Collins, Gilbert W.; Eggert, Jon H.; Lee, Kanani K. M.; McWilliams, R. Stewart; Brygoo, Stéphanie; Loubeyre, Paul</p> <p>2007-01-01</p> <p>Materials can be experimentally characterized to terapascal pressures by sending a laser-induced shock wave through a sample that is precompressed inside a diamond-anvil cell. This combination of static and dynamic compression methods has been experimentally demonstrated and ultimately provides access to the 10- to 100-TPa (0.1–1 Gbar) pressure range that is relevant to planetary science, testing first-principles theories of condensed matter, and experimentally studying a new regime of chemical bonding. PMID:17494771</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840014027&hterms=state+climate&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dstate%2Bclimate','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840014027&hterms=state+climate&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dstate%2Bclimate"><span>Diagnosis of the GLAS climate model's stationary planetary waves using a linearized steady state model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Youngblut, C.</p> <p>1984-01-01</p> <p>Orography and geographically fixed heat sources which force a zonally asymmetric motion field are examined. An extensive space-time spectral analysis of the GLAS climate model (D130) response and observations are compared. An updated version of the model (D150) showed a remarkable improvement in the simulation of the standing waves. The main differences in the model code are an improved boundary layer flux computation and a more realistic specification of the global boundary conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990109147','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990109147"><span>Influence of Transport on Two-Dimensional Model Simulation. Tracer Sensitivity to 2-D Model Transport. 1; Long Lived Tracers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fleming, Eric L.; Jackman, Charles H.; Considine, David B.; Stolarski, Richard S.</p> <p>1999-01-01</p> <p>In this study, we examine the sensitivity of long lived tracers to changes in the base transport components in our 2-D model. Changes to the strength of the residual circulation in the upper troposphere and stratosphere and changes to the lower stratospheric K(sub zz) had similar effects in that increasing the transport rates decreased the overall stratospheric mean age, and increased the rate of removal of material from the stratosphere. Increasing the stratospheric K(sub yy) increased the mean age due to the greater recycling of air parcels through the middle atmosphere, via the residual circulation, before returning to the troposphere. However, increasing K(sub yy) along with self-consistent increases in the corresponding planetary wave drive, which leads to a stronger residual circulation, more than compensates for the K(sub yy)-effect, and produces significantly younger ages throughout the stratosphere. Simulations with very small tropical stratospheric K(sub yy) decreased the globally averaged age of air by as much as 25% in the middle and upper stratosphere, and resulted in substantially weaker vertical age gradients above 20 km in the extratropics. We found only very small stratospheric tracer sensitivity to the magnitude of the horizontal mixing across the tropopause, and to the strength of the mesospheric gravity wave drag and diffusion used in the model. We also investigated the transport influence on chemically active tracers and found a strong age-tracer correlation, both in concentration and calculated lifetimes. The base model transport gives the most favorable overall comparison with a variety of inert tracer observations, and provides a significant improvement over our previous 1995 model transport. Moderate changes to the base transport were found to provide modest agreement with some of the measurements. Transport scenarios with residence times ranging from moderately shorter to slightly longer relative to the base case simulated N2O lifetimes that were within the observational estimates of Volk et al. [1997]. However, only scenarios with rather fast transport rates were comparable with the Volk et al. estimates of CFCl3 lifetimes. This is inconsistent with model-measurement comparisons of mean age in which the base model or slightly slower transport rates compared the most favorably with balloon SF6 data. For all comparisons shown, large transport changes away from the base case resulted in simulations that were outside the range of measurements, and in many cases, far outside this range.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005APS..DPPRI1b03H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005APS..DPPRI1b03H"><span>Laboratory study of dense planetary interiors and giant impacts using laser-driven shock waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hicks, Damien</p> <p>2005-10-01</p> <p>The behavior of matter at Megabar pressures, a few times solid density, and eV temperatures presents a fundamental challenge, one that is critical to our understanding of dense planetary interiors, planetary evolution models, and giant impacts. Under these conditions bulk matter is strongly coupled, with temperatures approaching the Fermi energy and electron wavelengths comparable to the interatomic spacing - a quantum-classical ``transition'' regime not amenable to many of the traditional theoretical approaches used in condensed matter or plasma physics. The laser-driven shock wave has matured into a powerful tool for accessing and probing these conditions with several new techniques having been developed recently. Measurements of the equation-of-state and transport properties of important planetary materials including silica ( SiO2 ) and hydrogen have been performed. In particular, silica - the major constituent of terrestrial planets - has been shown to undergo an insulator-to-conductor transition above melting at conditions similar to those in giant impacts (such as the one believed to have created the Moon) and at the earth's core-mantle boundary. This continuous transformation, occurring at pressures between 1 to ˜4 Mbar, is accompanied by an anomalously high specific heat that returns to the Dulong-Petit value at completion of the transformation. This is suggestive of a ``bond-breaking'' process in the condensed system - analogous to dissociation in a gas - as the fluid transforms from liquid to dense plasma. Work performed in collaboration with T. R. Boehly, P. M. Celliers, J. H. Eggert, J. E. Miller, D. D. Meyerhofer, and G. W. Collins under the auspices of the US DOE by LLNL under Contract No. W-7405-ENG-48 and by the U. Rochester under Cooperative Agreement No. DE-FC03-92SF19460.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009DPS....41.5803S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009DPS....41.5803S"><span>Planetary Structures And Simulations Of Large-scale Impacts On Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Swift, Damian; El-Dasher, B.</p> <p>2009-09-01</p> <p>The impact of large meteroids is a possible cause for isolated orogeny on bodies devoid of tectonic activity. On Mars, there is a significant, but not perfect, correlation between large, isolated volcanoes and antipodal impact craters. On Mercury and the Moon, brecciated terrain and other unusual surface features can be found at the antipodes of large impact sites. On Earth, there is a moderate correlation between long-lived mantle hotspots at opposite sides of the planet, with meteoroid impact suggested as a possible cause. If induced by impacts, the mechanisms of orogeny and volcanism thus appear to vary between these bodies, presumably because of differences in internal structure. Continuum mechanics (hydrocode) simulations have been used to investigate the response of planetary bodies to impacts, requiring assumptions about the structure of the body: its composition and temperature profile, and the constitutive properties (equation of state, strength, viscosity) of the components. We are able to predict theoretically and test experimentally the constitutive properties of matter under planetary conditions, with reasonable accuracy. To provide a reference series of simulations, we have constructed self-consistent planetary structures using simplified compositions (Fe core and basalt-like mantle), which turn out to agree surprisingly well with the moments of inertia. We have performed simulations of large-scale impacts, studying the transmission of energy to the antipodes. For Mars, significant antipodal heating to depths of a few tens of kilometers was predicted from compression waves transmitted through the mantle. Such heating is a mechanism for volcanism on Mars, possibly in conjunction with crustal cracking induced by surface waves. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMDI34A..06D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMDI34A..06D"><span>Applying new seismic analysis techniques to the lunar seismic dataset: New information about the Moon and planetary seismology on the eve of InSight</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dimech, J. L.; Weber, R. C.; Knapmeyer-Endrun, B.; Arnold, R.; Savage, M. K.</p> <p>2016-12-01</p> <p>The field of planetary science is poised for a major advance with the upcoming InSight mission to Mars due to launch in May 2018. Seismic analysis techniques adapted for use on planetary data are therefore highly relevant to the field. The heart of this project is in the application of new seismic analysis techniques to the lunar seismic dataset to learn more about the Moon's crust and mantle structure, with particular emphasis on `deep' moonquakes which are situated half-way between the lunar surface and its core with no surface expression. Techniques proven to work on the Moon might also be beneficial for InSight and future planetary seismology missions which face similar technical challenges. The techniques include: (1) an event-detection and classification algorithm based on `Hidden Markov Models' to reclassify known moonquakes and look for new ones. Apollo 17 gravimeter and geophone data will also be included in this effort. (2) Measurements of anisotropy in the lunar mantle and crust using `shear-wave splitting'. Preliminary measurements on deep moonquakes using the MFAST program are encouraging, and continued evaluation may reveal new structural information on the Moon's mantle. (3) Probabilistic moonquake locations using NonLinLoc, a non-linear hypocenter location technique, using a modified version of the codes designed to work with the Moon's radius. Successful application may provide a new catalog of moonquake locations with rigorous uncertainty information, which would be a valuable input into: (4) new fault plane constraints from focal mechanisms using a novel approach to Bayes' theorem which factor in uncertainties in hypocenter coordinates and S-P amplitude ratios. Preliminary results, such as shear-wave splitting measurements, will be presented and discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910001998','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910001998"><span>Large-scale dynamics and transport in the stratosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Plumb, R. A.</p> <p>1990-01-01</p> <p>Stationary planetary waves in the southern stratosphere display a characteristic seasonal cycle. Previous research based on a one-dimensional model suggests that this behavior is mainly determined by seasonally varying transmission properties of the atmosphere with respect to wave propagation. The issue is investigated with the help of a hemispheric, linear, quasigeostrophic model. It reproduces well some of the observed qualitative features and is internally consistent in the sense that its seasonal wave cycle can be explained in terms of varying wave transmission properties of the mean circulation. On the other hand, the model does not yield the observed seasonal cycle. Despite considerable sensitivity to modifications in the basic state wind and dissipation parametrization, the model could not be reasonably fit to reproduce the observed seasonal cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4669523','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4669523"><span>Distant Influence of Kuroshio Eddies on North Pacific Weather Patterns?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ma, Xiaohui; Chang, Ping; Saravanan, R.; Montuoro, Raffaele; Hsieh, Jen-Shan; Wu, Dexing; Lin, Xiaopei; Wu, Lixin; Jing, Zhao</p> <p>2015-01-01</p> <p>High-resolution satellite measurements of surface winds and sea-surface temperature (SST) reveal strong coupling between meso-scale ocean eddies and near-surface atmospheric flow over eddy-rich oceanic regions, such as the Kuroshio and Gulf Stream, highlighting the importance of meso-scale oceanic features in forcing the atmospheric planetary boundary layer (PBL). Here, we present high-resolution regional climate modeling results, supported by observational analyses, demonstrating that meso-scale SST variability, largely confined in the Kuroshio-Oyashio confluence region (KOCR), can further exert a significant distant influence on winter rainfall variability along the U.S. Northern Pacific coast. The presence of meso-scale SST anomalies enhances the diabatic conversion of latent heat energy to transient eddy energy, intensifying winter cyclogenesis via moist baroclinic instability, which in turn leads to an equivalent barotropic downstream anticyclone anomaly with reduced rainfall. The finding points to the potential of improving forecasts of extratropical winter cyclones and storm systems and projections of their response to future climate change, which are known to have major social and economic impacts, by improving the representation of ocean eddy–atmosphere interaction in forecast and climate models. PMID:26635077</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AMT....11.1019T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AMT....11.1019T"><span>Global spectroscopic survey of cloud thermodynamic phase at high spatial resolution, 2005-2015</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thompson, David R.; Kahn, Brian H.; Green, Robert O.; Chien, Steve A.; Middleton, Elizabeth M.; Tran, Daniel Q.</p> <p>2018-02-01</p> <p>The distribution of ice, liquid, and mixed phase clouds is important for Earth's planetary radiation budget, impacting cloud optical properties, evolution, and solar reflectivity. Most remote orbital thermodynamic phase measurements observe kilometer scales and are insensitive to mixed phases. This under-constrains important processes with outsize radiative forcing impact, such as spatial partitioning in mixed phase clouds. To date, the fine spatial structure of cloud phase has not been measured at global scales. Imaging spectroscopy of reflected solar energy from 1.4 to 1.8 µm can address this gap: it directly measures ice and water absorption, a robust indicator of cloud top thermodynamic phase, with spatial resolution of tens to hundreds of meters. We report the first such global high spatial resolution survey based on data from 2005 to 2015 acquired by the Hyperion imaging spectrometer onboard NASA's Earth Observer 1 (EO-1) spacecraft. Seasonal and latitudinal distributions corroborate observations by the Atmospheric Infrared Sounder (AIRS). For extratropical cloud systems, just 25 % of variance observed at GCM grid scales of 100 km was related to irreducible measurement error, while 75 % was explained by spatial correlations possible at finer resolutions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910045760&hterms=Qbo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DQbo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910045760&hterms=Qbo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DQbo"><span>The influence of the equatorial QBO on sudden stratospheric warmings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Holton, James R.; Austin, John</p> <p>1991-01-01</p> <p>A global primitive-equation model of the stratosphere and mesosphere is integrated for specified planetary-wave forcing at the 100-mb level with mean zonal flow conditions corresponding to the westerly and easterly phases of the equatorial QBO, respectively. The responses in the two QBO phases were compared for integrations with wavenumber-1 forcing-amplitude maxima at 100 mb and 60 deg N varying from 100 to 400 m. The phase of the QBO had little effect on the results in the weak-wave (100-m) cases, which did not produce warmings, and strong-wave (400-m) cases, which produced major sudden warmings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870015826','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870015826"><span>Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Steffes, Paul G.</p> <p>1987-01-01</p> <p>Laboratory measurements were conducted to evaluate properties of atmospheric gases under simulated conditions for the outer planets. A significant addition to this effort was the capability to make such measurements at millimeter wavelengths. Measurements should soon be completed on the millimeter wave absorption from ammonia under Jovian conditions. Also studied will be the feasibility of measuring the microwave and millimeter wave properties of phosphine (PH3) under simulated Jovian conditions. Further analysis and application of the laboratory results to microwave and millimeter wave absorption data for the outer planet, such as Voyager Radio Occultation experiments, will be pursued.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030093552','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030093552"><span>Inertio Gravity Waves in the Upper Mesosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, H. G.; Mengel, J. G.; Talaat, E. L.; Porter, H. S.; Chan, K. L.</p> <p>2003-01-01</p> <p>In the polar region of the upper mesosphere, horizontal wind oscillations have been observed with periods around 10 hours (Hernandez et al., 1992). Such waves are generated in our Numerical Spectral Model (NSM) and appear to be inertio gravity waves (IGW). Like the planetary waves (PW) in the model, the IGWs are generated by instabilities that arise in the mean zonal circulation. In addition to stationary waves for m = 0, eastward and westward propagating waves for m = 1 to 4 appear above 70 km that grow in magnitude up to about 110 km, having periods between 9 and 11 hours. The m = 1 westward propagating IGWs have the largest amplitudes, which can reach at the poles 30 m/s. Like PWs, the IGWs are intermittent but reveal systematic seasonal variations, with the largest amplitudes occurring generally in winter and spring. The IGWs propagate upward with a vertical wavelength of about 20 km.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1361175-wave-particle-energy-exchange-directly-observed-kinetic-alfven-branch-wave','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1361175-wave-particle-energy-exchange-directly-observed-kinetic-alfven-branch-wave"><span>Wave-particle energy exchange directly observed in a kinetic Alfvén-branch wave</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Gershman, Daniel J.; F-Viñas, Adolfo; Dorelli, John C.; ...</p> <p>2017-03-31</p> <p>Alfvén waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales, they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASA’s Magnetospheric Multiscale (MMS) mission, we utilize Earth’s magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfvén wave. Electronsmore » confined between adjacent wave peaks may have contributed to saturation of damping effects via nonlinear particle trapping. As a result, the investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1361175','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1361175"><span>Wave-particle energy exchange directly observed in a kinetic Alfvén-branch wave</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gershman, Daniel J.; F-Viñas, Adolfo; Dorelli, John C.</p> <p></p> <p>Alfvén waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales, they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASA’s Magnetospheric Multiscale (MMS) mission, we utilize Earth’s magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfvén wave. Electronsmore » confined between adjacent wave peaks may have contributed to saturation of damping effects via nonlinear particle trapping. As a result, the investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PNAS..11412144R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PNAS..11412144R"><span>Giant boulders and Last Interglacial storm intensity in the North Atlantic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rovere, Alessio; Casella, Elisa; Harris, Daniel L.; Lorscheid, Thomas; Nandasena, Napayalage A. K.; Dyer, Blake; Sandstrom, Michael R.; Stocchi, Paolo; D'Andrea, William J.; Raymo, Maureen E.</p> <p>2017-11-01</p> <p>As global climate warms and sea level rises, coastal areas will be subject to more frequent extreme flooding and hurricanes. Geologic evidence for extreme coastal storms during past warm periods has the potential to provide fundamental insights into their future intensity. Recent studies argue that during the Last Interglacial (MIS 5e, ˜128–116 ka) tropical and extratropical North Atlantic cyclones may have been more intense than at present, and may have produced waves larger than those observed historically. Such strong swells are inferred to have created a number of geologic features that can be observed today along the coastlines of Bermuda and the Bahamas. In this paper, we investigate the most iconic among these features: massive boulders atop a cliff in North Eleuthera, Bahamas. We combine geologic field surveys, wave models, and boulder transport equations to test the hypothesis that such boulders must have been emplaced by storms of greater-than-historical intensity. By contrast, our results suggest that with the higher relative sea level (RSL) estimated for the Bahamas during MIS 5e, boulders of this size could have been transported by waves generated by storms of historical intensity. Thus, while the megaboulders of Eleuthera cannot be used as geologic proof for past “superstorms,” they do show that with rising sea levels, cliffs and coastal barriers will be subject to significantly greater erosional energy, even without changes in storm intensity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29087331','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29087331"><span>Giant boulders and Last Interglacial storm intensity in the North Atlantic.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rovere, Alessio; Casella, Elisa; Harris, Daniel L; Lorscheid, Thomas; Nandasena, Napayalage A K; Dyer, Blake; Sandstrom, Michael R; Stocchi, Paolo; D'Andrea, William J; Raymo, Maureen E</p> <p>2017-11-14</p> <p>As global climate warms and sea level rises, coastal areas will be subject to more frequent extreme flooding and hurricanes. Geologic evidence for extreme coastal storms during past warm periods has the potential to provide fundamental insights into their future intensity. Recent studies argue that during the Last Interglacial (MIS 5e, ∼128-116 ka) tropical and extratropical North Atlantic cyclones may have been more intense than at present, and may have produced waves larger than those observed historically. Such strong swells are inferred to have created a number of geologic features that can be observed today along the coastlines of Bermuda and the Bahamas. In this paper, we investigate the most iconic among these features: massive boulders atop a cliff in North Eleuthera, Bahamas. We combine geologic field surveys, wave models, and boulder transport equations to test the hypothesis that such boulders must have been emplaced by storms of greater-than-historical intensity. By contrast, our results suggest that with the higher relative sea level (RSL) estimated for the Bahamas during MIS 5e, boulders of this size could have been transported by waves generated by storms of historical intensity. Thus, while the megaboulders of Eleuthera cannot be used as geologic proof for past "superstorms," they do show that with rising sea levels, cliffs and coastal barriers will be subject to significantly greater erosional energy, even without changes in storm intensity.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>