Science.gov

Sample records for extremal conditional quantile

  1. Analysis of changes in extreme temperature and precipitation using quantile regression

    NASA Astrophysics Data System (ADS)

    Lee, Kyoungmi; Baek, Hee-Jeong; Cho, ChunHo

    2013-04-01

    One of the important research areas in climatology is to identify whether the long-period tendencies of change in meteorological variables appear. In the past, the analysis has been limited by the estimation of long-period trends for annual or seasonal average values on meteorological variables. However, recently, the interest in the trends regarding the whole range of values for meteorological variables, including the extreme ones, has arisen. The quantile regression is the regression analysis method for estimating the regression slopes for the values of any quantile from 0 to 1 of dependent variable distributions. This method provides a more complete picture for the conditional distribution of the dependent variable given the independent variable when both lower and upper or all quantiles are of interest. This study examines the changes in regional extreme temperature and precipitation in South Korea using quantile regression, which is applied to analyze trends, not only in the mean but in all parts of the data distribution. The results show considerable diversity across space and quantile level in South Korea. For daily temperatures in winter, the slopes in lower quantiles generally have a more distinct increase trend compared to the upper quantiles. The time series for daily minimum temperature during the winter season only shows a significant increasing trend in the lower quantile. In case of summer, most sites show an increase trend in both lower and upper quantiles for daily minimum temperature, while there are a number of sites with a decrease trend for daily maximum temperature. It was also found that the increase trend of extreme low temperature in large urban areas (0.80°C/decade) is much larger than in rural areas (0.54°C/decade) due to the effects of urbanization. Extreme climate events can have greater negative impacts on society, economy and natural environments than changes in climate means. The fast growth of population and industrialization in

  2. Estimating the Extreme Behaviors of Students Performance Using Quantile Regression--Evidences from Taiwan

    ERIC Educational Resources Information Center

    Chen, Sheng-Tung; Kuo, Hsiao-I.; Chen, Chi-Chung

    2012-01-01

    The two-stage least squares approach together with quantile regression analysis is adopted here to estimate the educational production function. Such a methodology is able to capture the extreme behaviors of the two tails of students' performance and the estimation outcomes have important policy implications. Our empirical study is applied to the…

  3. Smooth conditional distribution function and quantiles under random censorship.

    PubMed

    Leconte, Eve; Poiraud-Casanova, Sandrine; Thomas-Agnan, Christine

    2002-09-01

    We consider a nonparametric random design regression model in which the response variable is possibly right censored. The aim of this paper is to estimate the conditional distribution function and the conditional alpha-quantile of the response variable. We restrict attention to the case where the response variable as well as the explanatory variable are unidimensional and continuous. We propose and discuss two classes of estimators which are smooth with respect to the response variable as well as to the covariate. Some simulations demonstrate that the new methods have better mean square error performances than the generalized Kaplan-Meier estimator introduced by Beran (1981) and considered in the literature by Dabrowska (1989, 1992) and Gonzalez-Manteiga and Cadarso-Suarez (1994).

  4. Sensitivity of extreme flood quantile estimation to rainfall-runoff modeling

    NASA Astrophysics Data System (ADS)

    Mathevet, T.; Garavaglia, F.; Paquet, E.; Garçon, R.

    2012-04-01

    EDF (Électricité de France) design floods of dam spillways are now computed using a probabilistic method named SCHADEX (Climatic-hydrological simulation of extreme foods (Paquet et al., 2006, Garavaglia et al., 2009, 2010). This method aims at estimating extreme flood quantiles by the combination of a weather pattern based rainfall probabilistic model and a conceptual rainfall-runoff model. Extreme floods quantiles are estimated through a runoff generation process that combines a stochastic generation of rainfall events and a semi-continuous rainfall-runoff simulation. The aim of this paper is to investigate the sensitivity of extreme flood quantile estimation to the rainfall-runoff model (structure, parameters) used in the simulation framework. To explore this topic we have used two rainfall-runoff models (i.e. MORDOR model (Garçon et al., 1996) and GR4J model (Andreassian et al., 2006)) with four different objective functions (based on Nash-Sutcliffe and Kling-Gupta efficiencies) and a classical split-sample scheme. This testing strategy has been applied to calibrate models on a set of 30 French watersheds at different time-steps (mainly daily and 4 to 12 hours). When calibrated, models were used within the SCHADEX method and flood quantiles were evaluated at different return levels in interpolation and extrapolation (10, 100, 1000 years return-period). The main result of this comparative study is that extreme flood quantile estimations are more sensitive to (i) the objective function used and (ii) the time series length and period used for model calibration then (iii) the rainfall-runoff structure. Within this comparative study, the mean variability on a 1000 years return-period is up to 20%. Another interesting result is that, for a same objective function and time series period, the influence of the rainfall-runoff model is relatively moderated in extrapolation domain because the two rainfall-runoff models converged towards their asymptotic behaviours, but

  5. HIGHLIGHTING DIFFERENCES BETWEEN CONDITIONAL AND UNCONDITIONAL QUANTILE REGRESSION APPROACHES THROUGH AN APPLICATION TO ASSESS MEDICATION ADHERENCE

    PubMed Central

    BORAH, BIJAN J.; BASU, ANIRBAN

    2014-01-01

    The quantile regression (QR) framework provides a pragmatic approach in understanding the differential impacts of covariates along the distribution of an outcome. However, the QR framework that has pervaded the applied economics literature is based on the conditional quantile regression method. It is used to assess the impact of a covariate on a quantile of the outcome conditional on specific values of other covariates. In most cases, conditional quantile regression may generate results that are often not generalizable or interpretable in a policy or population context. In contrast, the unconditional quantile regression method provides more interpretable results as it marginalizes the effect over the distributions of other covariates in the model. In this paper, the differences between these two regression frameworks are highlighted, both conceptually and econometrically. Additionally, using real-world claims data from a large US health insurer, alternative QR frameworks are implemented to assess the differential impacts of covariates along the distribution of medication adherence among elderly patients with Alzheimer’s disease. PMID:23616446

  6. Study on quantile estimates of extreme precipitation and their spatiotemporal consistency adjustment over the Huaihe River basin

    NASA Astrophysics Data System (ADS)

    Shao, Yuehong; Wu, Junmei; Li, Min

    2017-01-01

    The quantile estimates and spatiotemporal consistency of extreme precipitation are studied by regional linear frequency analysis for Huaihe River basin in China. Firstly, the study area can be categorized into six homogeneous regions by using cluster analysis, heterogeneity measure, and discordancy measure. In the next step, we determine the optimum distribution for each homogeneous region by using two criteria of Monte Carlo simulations and the root-mean-square error (RMSE) of the sample L-moments. A diagram of L-moments ratio is used to further judge and validate the optimum distribution. The generalized extreme value (GEV), generalized normal (GNO), and generalized logistic (GLO) for 24-h duration are determined to be the more appropriate distribution based on the two criteria, L-moments ratio plot, and the tail thickness of curve in adjacent regions. A summary assessment can provide the more reasonable distribution, which avoids arbitrary results from single test. An important practical element of this study that was missing from previous works is the quantile spatiotemporal consistency analysis, which helps identify non-monotonicity among quantiles at different durations and reduces the gradient of estimates in the adjacent regions. Abnormality and spatial discontinuation can be removed by distributing the surplus of the ratio and twice different interpolation. A complete set of spatiotemporal consistent quantile estimates for various duration (24 h, 3 days, 5 days, and 7 days) and return periods (from 2 to 1000 years) can be obtained by using the abovementioned method in the study area, which are in the agreement with the observed precipitation extremes. It will provide important basis for hydrometeorological research, which is of significant scientific and practical merit.

  7. On the prediction of extreme flood quantiles at ungauged locations with spatial copula

    NASA Astrophysics Data System (ADS)

    Durocher, Martin; Chebana, Fateh; Ouarda, Taha B. M. J.

    2016-02-01

    The present study investigates the use of the spatial copula approach for predicting flood quantiles at ungauged basins. Spatial copulas are the formalization of traditional geostatistics by copulas. In regional flood frequency analysis (RFFA), the regression of flood quantiles is often carried out at the logarithmic scale. Consequently, traditional interpolation methods introduce a bias and provide suboptimal predictions. In this study, the copula framework is examined for offering proper corrections in this framework. Moreover, copula techniques separate the regional distribution of flood quantiles from spatial dependence. This provides a full probabilistic model that represents a more flexible framework where proper combinations of regional distribution and dependence can be adapted to various situations that are encountered in RFFA. The adequacy of the investigated methodology is evaluated on a real world case study involving hydrometric stations from southern Quebec, Canada. Results show that the spatial copula framework is able to deal with the problem of bias, is robust to the presence of problematic stations and may improve the quality of quantile predictions while reducing the level of complexity of the models used in RFFA.

  8. Improving Global Forecast System of extreme precipitation events with regional statistical model: Application of quantile-based probabilistic forecasts

    NASA Astrophysics Data System (ADS)

    Shastri, Hiteshri; Ghosh, Subimal; Karmakar, Subhankar

    2017-02-01

    Forecasting of extreme precipitation events at a regional scale is of high importance due to their severe impacts on society. The impacts are stronger in urban regions due to high flood potential as well high population density leading to high vulnerability. Although significant scientific improvements took place in the global models for weather forecasting, they are still not adequate at a regional scale (e.g., for an urban region) with high false alarms and low detection. There has been a need to improve the weather forecast skill at a local scale with probabilistic outcome. Here we develop a methodology with quantile regression, where the reliably simulated variables from Global Forecast System are used as predictors and different quantiles of rainfall are generated corresponding to that set of predictors. We apply this method to a flood-prone coastal city of India, Mumbai, which has experienced severe floods in recent years. We find significant improvements in the forecast with high detection and skill scores. We apply the methodology to 10 ensemble members of Global Ensemble Forecast System and find a reduction in ensemble uncertainty of precipitation across realizations with respect to that of original precipitation forecasts. We validate our model for the monsoon season of 2006 and 2007, which are independent of the training/calibration data set used in the study. We find promising results and emphasize to implement such data-driven methods for a better probabilistic forecast at an urban scale primarily for an early flood warning.

  9. Estimating geographic variation on allometric growth and body condition of Blue Suckers with quantile regression

    USGS Publications Warehouse

    Cade, B.S.; Terrell, J.W.; Neely, B.C.

    2011-01-01

    Increasing our understanding of how environmental factors affect fish body condition and improving its utility as a metric of aquatic system health require reliable estimates of spatial variation in condition (weight at length). We used three statistical approaches that varied in how they accounted for heterogeneity in allometric growth to estimate differences in body condition of blue suckers Cycleptus elongatus across 19 large-river locations in the central USA. Quantile regression of an expanded allometric growth model provided the most comprehensive estimates, including variation in exponents within and among locations (range = 2.88–4.24). Blue suckers from more-southerly locations had the largest exponents. Mixed-effects mean regression of a similar expanded allometric growth model allowed exponents to vary among locations (range = 3.03–3.60). Mean relative weights compared across selected intervals of total length (TL = 510–594 and 594–692 mm) in a multiplicative model involved the implicit assumption that allometric exponents within and among locations were similar to the exponent (3.46) for the standard weight equation. Proportionate differences in the quantiles of weight at length for adult blue suckers (TL = 510, 594, 644, and 692 mm) compared with their average across locations ranged from 1.08 to 1.30 for southern locations (Texas, Mississippi) and from 0.84 to 1.00 for northern locations (Montana, North Dakota); proportionate differences for mean weight ranged from 1.13 to 1.17 and from 0.87 to 0.95, respectively, and those for mean relative weight ranged from 1.10 to 1.18 and from 0.86 to 0.98, respectively. Weights for fish at longer lengths varied by 600–700 g within a location and by as much as 2,000 g among southern and northern locations. Estimates for the Wabash River, Indiana (0.96–1.07 times the average; greatest increases for lower weights at shorter TLs), and for the Missouri River from Blair, Nebraska, to Sioux City, Iowa (0.90

  10. A Methodology for Robust Multiproxy Paleoclimate Reconstructions and Modeling of Temperature Conditional Quantiles

    PubMed Central

    Janson, Lucas; Rajaratnam, Bala

    2014-01-01

    Great strides have been made in the field of reconstructing past temperatures based on models relating temperature to temperature-sensitive paleoclimate proxies. One of the goals of such reconstructions is to assess if current climate is anomalous in a millennial context. These regression based approaches model the conditional mean of the temperature distribution as a function of paleoclimate proxies (or vice versa). Some of the recent focus in the area has considered methods which help reduce the uncertainty inherent in such statistical paleoclimate reconstructions, with the ultimate goal of improving the confidence that can be attached to such endeavors. A second important scientific focus in the subject area is the area of forward models for proxies, the goal of which is to understand the way paleoclimate proxies are driven by temperature and other environmental variables. One of the primary contributions of this paper is novel statistical methodology for (1) quantile regression with autoregressive residual structure, (2) estimation of corresponding model parameters, (3) development of a rigorous framework for specifying uncertainty estimates of quantities of interest, yielding (4) statistical byproducts that address the two scientific foci discussed above. We show that by using the above statistical methodology we can demonstrably produce a more robust reconstruction than is possible by using conditional-mean-fitting methods. Our reconstruction shares some of the common features of past reconstructions, but we also gain useful insights. More importantly, we are able to demonstrate a significantly smaller uncertainty than that from previous regression methods. In addition, the quantile regression component allows us to model, in a more complete and flexible way than least squares, the conditional distribution of temperature given proxies. This relationship can be used to inform forward models relating how proxies are driven by temperature. PMID:25587203

  11. A Methodology for Robust Multiproxy Paleoclimate Reconstructions and Modeling of Temperature Conditional Quantiles.

    PubMed

    Janson, Lucas; Rajaratnam, Bala

    Great strides have been made in the field of reconstructing past temperatures based on models relating temperature to temperature-sensitive paleoclimate proxies. One of the goals of such reconstructions is to assess if current climate is anomalous in a millennial context. These regression based approaches model the conditional mean of the temperature distribution as a function of paleoclimate proxies (or vice versa). Some of the recent focus in the area has considered methods which help reduce the uncertainty inherent in such statistical paleoclimate reconstructions, with the ultimate goal of improving the confidence that can be attached to such endeavors. A second important scientific focus in the subject area is the area of forward models for proxies, the goal of which is to understand the way paleoclimate proxies are driven by temperature and other environmental variables. One of the primary contributions of this paper is novel statistical methodology for (1) quantile regression with autoregressive residual structure, (2) estimation of corresponding model parameters, (3) development of a rigorous framework for specifying uncertainty estimates of quantities of interest, yielding (4) statistical byproducts that address the two scientific foci discussed above. We show that by using the above statistical methodology we can demonstrably produce a more robust reconstruction than is possible by using conditional-mean-fitting methods. Our reconstruction shares some of the common features of past reconstructions, but we also gain useful insights. More importantly, we are able to demonstrate a significantly smaller uncertainty than that from previous regression methods. In addition, the quantile regression component allows us to model, in a more complete and flexible way than least squares, the conditional distribution of temperature given proxies. This relationship can be used to inform forward models relating how proxies are driven by temperature.

  12. Maximum likelihood estimation of the parameters and quantiles of the general extreme-value distribution from censored samples

    NASA Astrophysics Data System (ADS)

    Phien, Huynh Ngoc; Fang, Tsu-Shang Emma

    1989-01-01

    The General Extreme Value (GEV) distribution has become increasingly popular, as has the use of historic information, in flood frequency analysis during recent years. Both call for a systematic investigation of the properties of the maximum likelihood (ML) estimators obtained from censored samples. In this study, such an investigation was made for the type-1 censoring believed to be more frequently encountered in practical situations. All the mathematical equations needed for obtaining the ML estimators of the parameters and the quantiles (represented by the T- year event) were derived and Monte Carlo experiments were carried out to determine their sampling properties. It was found that censoring may reduce the bias of the parameter estimators but does not necessarily increase the variances. It was also found that the variances-covariances of the parameter estimators, and hence the variance of the T- year event, are better approximated by using the observed rather than the Fisher information matrix.

  13. Mineralogy under extreme conditions

    SciTech Connect

    Shu, Jinfu

    2012-02-07

    We have performed measurements of minerals based on the synchrotron source for single crystal and powder X-ray diffraction, inelastic scattering, spectroscopy and radiography by using diamond anvil cells. We investigated the properties of iron (Fe), iron-magnesium oxides (Fe, Mg)O, silica(SiO{sub 2}), iron-magnesium silicates (Fe, Mg)SiO{sub 3} under simulated high pressure-high temperature extreme conditions of the Earth's crust, upper mantle, low mantle, core-mantle boundary, outer core, and inner core. The results provide a new window on the investigation of the mineral properties at Earth's conditions.

  14. (Welding under extreme conditions)

    SciTech Connect

    Davis, S.A.

    1989-09-29

    The traveler was an invited member of the United States delegation and representative of the Basic Energy Science Welding Science program at the 42nd Annual International Institute of Welding (IIW) Assembly and Conference held in Helsinki, Finland. The conference and the assembly was attended by about 600 delegates representing 40 countries. The theme of the conference was welding under extreme conditions. The conference program contained several topics related to welding in nuclear, arctic petrochemical, underwater, hyperbaric and space environments. At the annual assembly the traveler was a delegate (US) to two working groups of the IIW, namely Commission IX and welding research study group 212. Following the conference the traveler visited the Danish Welding Institute in Copenhagen and the Risoe National Laboratory in Roskilde. Prior to the conference the traveler visited Lappeenranta University of Technology and presented an invited seminar entitled Recent Advances in Welding Science and Technology.''

  15. An Investigation of Quantile Function Estimators Relative to Quantile Confidence Interval Coverage.

    PubMed

    Wei, Lai; Wang, Dongliang; Hutson, Alan D

    In this article, we investigate the limitations of traditional quantile function estimators and introduce a new class of quantile function estimators, namely, the semi-parametric tail-extrapolated quantile estimators, which has excellent performance for estimating the extreme tails with finite sample sizes. The smoothed bootstrap and direct density estimation via the characteristic function methods are developed for the estimation of confidence intervals. Through a comprehensive simulation study to compare the confidence interval estimations of various quantile estimators, we discuss the preferred quantile estimator in conjunction with the confidence interval estimation method to use under different circumstances. Data examples are given to illustrate the superiority of the semi-parametric tail-extrapolated quantile estimators. The new class of quantile estimators is obtained by slight modification of traditional quantile estimators, and therefore, should be specifically appealing to researchers in estimating the extreme tails.

  16. Detectors in Extreme Conditions

    SciTech Connect

    Blaj, G.; Carini, G.; Carron, S.; Haller, G.; Hart, P.; Hasi, J.; Herrmann, S.; Kenney, C.; Segal, J.; Tomada, A.

    2015-08-06

    Free Electron Lasers opened a new window on imaging the motion of atoms and molecules. At SLAC, FEL experiments are performed at LCLS using 120Hz pulses with 1012 - 1013 photons in 10 femtoseconds (billions of times brighter than the most powerful synchrotrons). This extreme detection environment raises unique challenges, from obvious to surprising. Radiation damage is a constant threat due to accidental exposure to insufficiently attenuated beam, focused beam and formation of ice crystals reflecting the beam onto the detector. Often high power optical lasers are also used (e.g., 25TW), increasing the risk of damage or impeding data acquisition through electromagnetic pulses (EMP). The sample can contaminate the detector surface or even produce shrapnel damage. Some experiments require ultra high vacuum (UHV) with strict design, surface contamination and cooling requirements - also for detectors. The setup is often changed between or during experiments with short turnaround times, risking mechanical and ESD damage, requiring work planning, training of operators and sometimes continuous participation of the LCLS Detector Group in the experiments. The detectors used most often at LCLS are CSPAD cameras for hard x-rays and pnCCDs for soft x-rays.

  17. Survival in Extreme Conditions.

    ERIC Educational Resources Information Center

    Bloom, Martin; Halsema, James

    1983-01-01

    Explores the psychosocial and environmental configurations involved in the survival of 500 civilians in a Japanese internment camp in the Philippines during World War II. Although conditions were very harsh, the survival rate of this group was better than expected. Discusses available demographic, social organizational, and cultural information.…

  18. Extreme Conditions Modeling Workshop Report

    SciTech Connect

    Coe, R. G.; Neary, V. S.; Lawson, M. J.; Yu, Y.; Weber, J.

    2014-07-01

    Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL) hosted the Wave Energy Converter (WEC) Extreme Conditions Modeling (ECM) Workshop in Albuquerque, NM on May 13th-14th, 2014. The objective of the workshop was to review the current state of knowledge on how to model WECs in extreme conditions (e.g. hurricanes and other large storms) and to suggest how U.S. Department of Energy (DOE) and national laboratory resources could be used to improve ECM methods for the benefit of the wave energy industry.

  19. How Cells Endure Extreme Conditions

    SciTech Connect

    2009-01-01

    One of natures most gripping feats of survival is now better understood. For the first time, Berkeley Lab scientists observed the chemical changes in individual cells that enable them to survive in conditions that should kill them. http://newscenter.lbl.gov/feature-stories/2009/07/07/cells-endure-extremes/

  20. Extreme Conditions Modeling Workshop Report

    SciTech Connect

    Coe, Ryan Geoffrey; Neary, Vincent Sinclair; Lawon, Michael J.; Yu, Yi-Hsiang; Weber, Jochem

    2014-07-01

    Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL) hosted the Wave Energy Converter (WEC) Extreme Conditions Modeling (ECM) Workshop in Albuquerque, New Mexico on May 13–14, 2014. The objective of the workshop was to review the current state of knowledge on how to numerically and experimentally model WECs in extreme conditions (e.g. large ocean storms) and to suggest how national laboratory resources could be used to improve ECM methods for the benefit of the wave energy industry. More than 30 U.S. and European WEC experts from industry, academia, and national research institutes attended the workshop, which consisted of presentations from W EC developers, invited keynote presentations from subject matter experts, breakout sessions, and a final plenary session .

  1. Parametric modeling of quantile regression coefficient functions.

    PubMed

    Frumento, Paolo; Bottai, Matteo

    2016-03-01

    Estimating the conditional quantiles of outcome variables of interest is frequent in many research areas, and quantile regression is foremost among the utilized methods. The coefficients of a quantile regression model depend on the order of the quantile being estimated. For example, the coefficients for the median are generally different from those of the 10th centile. In this article, we describe an approach to modeling the regression coefficients as parametric functions of the order of the quantile. This approach may have advantages in terms of parsimony, efficiency, and may expand the potential of statistical modeling. Goodness-of-fit measures and testing procedures are discussed, and the results of a simulation study are presented. We apply the method to analyze the data that motivated this work. The described method is implemented in the qrcm R package.

  2. Materials Response under extreme conditions

    SciTech Connect

    Remington, B A; Lorenz, K T; Pollaine, S; McNaney, J M

    2005-10-06

    Solid state experiments at extreme pressures, 10-100 GPa (0.1-1 Mbar) and strain rates (10{sup 6}-10{sup 8} s{sup -1}) are being developed on high-energy laser facilities. The goal is an experimental capability to test constitutive models for high-pressure, solid-state strength for a variety of materials. Relevant constitutive models are discussed, and our progress in developing a quasi-isentropic, ramped-pressure, shockless drive is given. Designs to test the constitutive models with experiments measuring perturbation growth due to the Rayleigh-Taylor instability in solid-state samples are presented.

  3. Complex Plasma Research Under Extreme Conditions

    SciTech Connect

    Ishihara, Osamu

    2008-09-07

    Complex plasma research under extreme conditions is described. The extreme conditions include low-dimensionality for self-organized structures of dust particles, dust magnetization in high magnetic field, criticality in phase transition, and cryogenic environment for Coulomb crystals and dust dynamics.

  4. Raman spectroscopy under extreme conditions

    SciTech Connect

    Goncharov, A F; Crowhurst, J C

    2004-11-05

    We report the results of Raman measurements of various materials under simultaneous conditions of high temperature and high pressure in the diamond anvil cell (DAC). High temperatures are generated by laser heating or internal resistive (ohmic) heating or a combination of both. We present Raman spectra of cubic boron nitride (cBN) to 40 GPa and up to 2300 K that show a continuous pressure and temperature shift of the frequency of the transverse optical mode. We have also obtained high-pressure Raman spectra from a new noble metal nitride, which we synthesized at approximately 50 GPa and 2000 K. We have obtained high-temperature spectra from pure nitrogen to 39 GPa and up to 2000 K, which show the presence of a hot band that has previously been observed in CARS measurements. These measurements have also allowed us to constrain the melting curve and to examine changes in the intramolecular potential with pressure.

  5. Quantiles Regression Approach to Identifying the Determinant of Breastfeeding Duration

    NASA Astrophysics Data System (ADS)

    Mahdiyah; Norsiah Mohamed, Wan; Ibrahim, Kamarulzaman

    In this study, quantiles regression approach is applied to the data of Malaysian Family Life Survey (MFLS), to identify factors which are significantly related to the different conditional quantiles of the breastfeeding duration. It is known that the classical linear regression methods are based on minimizing residual sum of squared, but quantiles regression use a mechanism which are based on the conditional median function and the full range of other conditional quantile functions. Overall, it is found that the period of breastfeeding is significantly related to place of living, religion and total number of children in the family.

  6. Non-crossing weighted kernel quantile regression with right censored data.

    PubMed

    Bang, Sungwan; Eo, Soo-Heang; Cho, Yong Mee; Jhun, Myoungshic; Cho, HyungJun

    2016-01-01

    Regarding survival data analysis in regression modeling, multiple conditional quantiles are useful summary statistics to assess covariate effects on survival times. In this study, we consider an estimation problem of multiple nonlinear quantile functions with right censored survival data. To account for censoring in estimating a nonlinear quantile function, weighted kernel quantile regression (WKQR) has been developed by using the kernel trick and inverse-censoring-probability weights. However, the individually estimated quantile functions based on the WKQR often cross each other and consequently violate the basic properties of quantiles. To avoid this problem of quantile crossing, we propose the non-crossing weighted kernel quantile regression (NWKQR), which estimates multiple nonlinear conditional quantile functions simultaneously by enforcing the non-crossing constraints on kernel coefficients. The numerical results are presented to demonstrate the competitive performance of the proposed NWKQR over the WKQR.

  7. Conditional simulations for fields of extreme precipitation

    NASA Astrophysics Data System (ADS)

    Bechler, Aurélien; Vrac, Mathieu; Bel, Liliane

    2014-05-01

    Many environmental models, such as hydrological models, require input data, e.g. precipitation values, correctly simulated and distributed, even at locations where no observation is available. This is particularly true for extreme events that may be of high importance for impact studies. The last decade has seen max-stable processes emerge as a powerful tool for the statistical modeling of spatial extremes. Recently, such processes have been used in climate context to perform simulations at ungauged sites based on empirical distributions of a spatial field conditioned by observed values in some locations. In this work conditional simulations of extremal t process are investigated, taking benefits of its spectral construction. The methodology of conditional simulations proposed by Dombry et al. [2013] for Brown-Resnick and Schlather models is adapted for the extremal t process with some improvements which enlarge the possible number of conditional points. A simulation study enables to highlight the role of the different parameters of the model and to emphasize the importance of the steps of the algorithm. In this work, we focus on the French Mediterranean basin, which is a key spot of occurrences of meteorological extremes such as heavy precipitation. Indeed, major extreme precipitation are regularly observed in this region near the 'cévenol" mountains. The modeling and the understanding of these extreme precipitation - the so-called 'cévenol events" - are of major importance for hydrological studies in this complex terrain since they often trigger major floods in this region. The application of our methodology on real data in this region shows that the model and the algorithm perform well provided the stationary assumptions are fulfilled.

  8. Materials Degradation and Fatigue Under Extreme Conditions

    DTIC Science & Technology

    1997-10-29

    molecularly-thin fluids of very different structure were contrasted: a globular molecule, branched alkanes, and a polymer brush in near-theta solution...34 A. Dhinojwala, L. Cai, and S. Granick, Langmuir 12, 4537 (1996). 28. "New Approaches to Measure Interfacial Rheology of Confined Fluids ," A...Degradation of Fluorocarbon Lubricants; Molecular Tribology of Perfluoroether Lubricants; Fluids , Including Lubricants Under Extreme Conditions of

  9. Wave runup during extreme storm conditions

    NASA Astrophysics Data System (ADS)

    Senechal, Nadia; Coco, Giovanni; Bryan, Karin R.; Holman, Rob A.

    2011-07-01

    Video measurements of wave runup were collected during extreme storm conditions characterized by energetic long swells (peak period of 16.4 s and offshore height up to 6.4 m) impinging on steep foreshore beach slopes (0.05-0.08). These conditions induced highly dissipative and saturated conditions over the low-sloping surf zone while the swash zone was associated with moderately reflective conditions (Iribarren parameters up to 0.87). Our data support previous observations on highly dissipative beaches showing that runup elevation (estimated from the variance of the energy spectrum) can be scaled using offshore wave height alone. The data is consistent with the hypothesis of runup saturation at low frequencies (down to 0.035 Hz) and a hyperbolic-tangent fit provides the best statistical predictor of runup elevations.

  10. Mixtures of planetary ices at extreme conditions.

    PubMed

    Lee, Mal-Soon; Scandolo, Sandro

    2011-02-08

    The interiors of Neptune and Uranus are believed to be primarily composed of a fluid mixture of methane and water. The mixture is subjected to pressures up to several hundred gigapascal, causing the ionization of water. Laboratory and simulation studies so far have focused on the properties of the individual components. Here we show, using first-principle molecular dynamic simulations, that the properties of the mixed fluid are qualitatively different with respect to those of its components at the same conditions. We observe a pressure-induced softening of the methane-water intermolecular repulsion that points to an enhancement of mixing under extreme conditions. Ionized water causes the progressive ionization of methane and the mixture becomes electronically conductive at milder conditions than pure water, indicating that the planetary magnetic field of Uranus and Neptune may originate at shallower depths than currently assumed.

  11. Assessing surface air temperature variability using quantile regression

    NASA Astrophysics Data System (ADS)

    Timofeev, A. A.; Sterin, A. M.

    2014-12-01

    Many researches in climate change currently involve linear trends, based on measured variables. And many of them only consider trends in mean values, whereas it is clear, that not only means, but also whole shape of distribution changes over time and requires careful assessment. For example extreme values including outliers may get bigger, while median has zero slope.Quantile regression provides a convenient tool, that enables detailed analysis of changes in full range of distribution by producing a vector of quantile trends for any given set of quantiles.We have applied quantile regression to surface air temperature observations made at over 600 weather stations across Russian Federation during last four decades. The results demonstrate well pronounced regions with similar values of significant trends in different parts of temperature value distribution (left tail, middle part, right tail). The uncertainties of quantile trend estimations for several spatial patterns of trends over Russia are estimated and analyzed for each of four seasons.For temperature trend estimation over vast territories, quantile regression is an effort consuming approach, but is more informative than traditional instrument, to assess decadal evolution of temperature values, including evolution of extremes.Partial support of ERA NET RUS ACPCA joint project between EU and RBRF 12-05-91656-ЭРА-А is highly appreciated.

  12. Consistent model identification of varying coefficient quantile regression with BIC tuning parameter selection

    PubMed Central

    Zheng, Qi; Peng, Limin

    2016-01-01

    Quantile regression provides a flexible platform for evaluating covariate effects on different segments of the conditional distribution of response. As the effects of covariates may change with quantile level, contemporaneously examining a spectrum of quantiles is expected to have a better capacity to identify variables with either partial or full effects on the response distribution, as compared to focusing on a single quantile. Under this motivation, we study a general adaptively weighted LASSO penalization strategy in the quantile regression setting, where a continuum of quantile index is considered and coefficients are allowed to vary with quantile index. We establish the oracle properties of the resulting estimator of coefficient function. Furthermore, we formally investigate a BIC-type uniform tuning parameter selector and show that it can ensure consistent model selection. Our numerical studies confirm the theoretical findings and illustrate an application of the new variable selection procedure. PMID:28008212

  13. Matter Under Extreme Conditions: The Early Years

    NASA Astrophysics Data System (ADS)

    Keeler, R. Norris; Gibson, Carl H.

    2012-03-01

    Extreme conditions in natural flows are examined, starting with a turbulent big bang. A hydro-gravitational-dynamics cosmology model is adopted. Planck-Kerr turbulence instability causes Planck-particle turbulent combustion. Inertial-vortex forces induce a non-turbulent ki- netic energy cascade to Planck-Kolmogorov scales where vorticity is produced, overcoming 10113 Pa Planck-Fortov pressures. The spinning, expanding fireball has a slight deficit of Planck antiparticles. Space and mass-energy powered by gluon viscous stresses expand exponentially at speeds >1025 c. Turbulent temperature and spin fluctuations fossilize at scales larger than ct, where c is light speed and t is time. Because "dark-energy" antigravity forces vanish when infla- tion ceases, and because turbulence produces entropy, the universe is closed and will collapse and rebound. Density and spin fossils of big bang turbulent mixing trigger structure formation in the plasma epoch. Fragmenting protosuperclustervoids and protoclustervoids produce weak tur- bulence until the plasma-gas transition give chains of protogalaxies with the morphology of tur- bulence. Chain galaxy clusters observed at large redshifts ~8.6 support this interpretation. Pro- togalaxies fragment into clumps, each with a trillion Earth-mass H-He gas planets. These make stars, supernovae, the first chemicals, the first oceans and the first life soon after the cosmologi- cal event.

  14. Extraordinary survival of nanobacteria under extreme conditions

    NASA Astrophysics Data System (ADS)

    Bjorklund, Michael; Ciftcioglu, Neva; Kajander, E. Olavi

    1998-07-01

    Nanobacteria show high resistance to gamma irradiation. To further examine their survival in extreme conditions several disinfecting and sterilizing chemicals as well as autoclaving, UV light, microwaves, heating and drying treatments were carried out. The effect of antibiotics used in cell culture were also evaluated. Two forms of nanobacteria were used in the tests: nanobacteria cultured in serum containing medium, and nanobacteria cultured in serum-free medium, the latter being more mineralized. Nanobacteria, having various amounts of apatite on their surfaces, were used to analyze the degree of protection given by the mineral. The chemicals tested included ethanol, glutaraldehyde, formalin, hypochlorite, hydrogen peroxide, hydrochloric acid, sodium hydroxide, detergents, and commercial disinfectants at concentrations generally used for disinfection. After chemical and physical treatments for various times, the nanobacteria were subcultered to detect their survival. The results show unique and wide resistance of nanobacteria to common agents used in disinfection. It can also be seen that the mineralization of the nanobacterial surface furthermore increases the resistance. Survival of nanobacteria is unique among living bacteria, but it can be compared with that observed in spores. Interestingly, nanobacteria have metabolic rate as slow as bacterial spores. A slow metabolic rate and protective structures, like mineral, biofilm and impermeable cell wall, can thus explain the observations made.

  15. Analysis of retirement income adequacy using quantile regression: A case study in Malaysia

    NASA Astrophysics Data System (ADS)

    Alaudin, Ros Idayuwati; Ismail, Noriszura; Isa, Zaidi

    2015-09-01

    Quantile regression is a statistical analysis that does not restrict attention to the conditional mean and therefore, permitting the approximation of the whole conditional distribution of a response variable. Quantile regression is a robust regression to outliers compared to mean regression models. In this paper, we demonstrate how quantile regression approach can be used to analyze the ratio of projected wealth to needs (wealth-needs ratio) during retirement.

  16. Quantile regression provides a fuller analysis of speed data.

    PubMed

    Hewson, Paul

    2008-03-01

    Considerable interest already exists in terms of assessing percentiles of speed distributions, for example monitoring the 85th percentile speed is a common feature of the investigation of many road safety interventions. However, unlike the mean, where t-tests and ANOVA can be used to provide evidence of a statistically significant change, inference on these percentiles is much less common. This paper examines the potential role of quantile regression for modelling the 85th percentile, or any other quantile. Given that crash risk may increase disproportionately with increasing relative speed, it may be argued these quantiles are of more interest than the conditional mean. In common with the more usual linear regression, quantile regression admits a simple test as to whether the 85th percentile speed has changed following an intervention in an analogous way to using the t-test to determine if the mean speed has changed by considering the significance of parameters fitted to a design matrix. Having briefly outlined the technique and briefly examined an application with a widely published dataset concerning speed measurements taken around the introduction of signs in Cambridgeshire, this paper will demonstrate the potential for quantile regression modelling by examining recent data from Northamptonshire collected in conjunction with a "community speed watch" programme. Freely available software is used to fit these models and it is hoped that the potential benefits of using quantile regression methods when examining and analysing speed data are demonstrated.

  17. Evaluating environmental joint extremes for the offshore industry using the conditional extremes model

    NASA Astrophysics Data System (ADS)

    Ewans, Kevin; Jonathan, Philip

    2014-02-01

    Understanding extreme ocean environments and their interaction with fixed and floating structures is critical for the design of offshore and coastal facilities. The joint effect of various ocean variables on extreme responses of offshore structures is fundamental in determining the design loads. For example, it is known that mean values of wave periods tend to increase with increasing storm intensity, and a floating system responds in a complex way to both variables. Specification of joint extremes in design criteria has often been somewhat ad hoc, being based on fairly arbitrary combinations of extremes of variables estimated independently. Such approaches are even outlined in design guidelines. Mathematically more consistent estimates of the joint occurrence of extreme environmental variables fall into two camps in the offshore industry - response-based and response-independent. Both are outlined here, with emphasis on response-independent methods, particularly those based on the conditional extremes model recently introduced by (Heffernan and Tawn, 2004), which has a solid theoretical motivation. We illustrate an application of the conditional extremes model to joint estimation of extreme storm peak significant wave height and peak period at a northern North Sea location, incorporating storm direction as a model covariate. We also discuss joint estimation of extreme current profiles with depth off the North West Shelf of Australia. Methods such as the conditional extremes model provide valuable additions to the metocean engineer's toolkit.

  18. Dynamic ionization of water under extreme conditions

    SciTech Connect

    Goncharov, A F; Goldman, N; Fried, L E; Crowhurst, J C; Kuo, I W; Mundy, C J; Zaug, J M

    2004-07-19

    Raman spectroscopy has been used to study fluid water at approximately 1000 K and 2 to 60 GPa in a laser heated diamond anvil cell. First principles molecular dynamics (MD) simulations have also been employed to simulate water under similar conditions. The experimental Raman intensity of the O-H stretch mode was observed to decrease with pressure, and beyond 50 GPa this mode was no longer visible. At approximately the same pressure we inferred a change in the slope of the melting curve. Consistent with these experimental observations, the MD simulations show that water under these conditions forms a dynamically ionized liquid state, which is dominated by very short lived (<10 fs) H{sub 2}O, H{sub 3}O{sup +} and O{sup 2-} species.

  19. Extreme Quantile Estimation in Binary Response Models

    DTIC Science & Technology

    1990-03-01

    of responses for stimulus xi. Solution of the following equations yields MLEs for a and q7. Denoting I as the log-likelihood, we have a, k ri-nP(xi) 1...emphasize that P(x) is unknown and hence this not simply a matter of finding equation roots. The procedure is sequential and will converge to xlop...For instance, if testing at X05 we expect forty samples to be required for two responses at this stimulus level alone. The n- Zill design, discussed by

  20. [Guidelines on asthma in extreme environmental conditions].

    PubMed

    Drobnic, Franchek; Borderías Clau, Luis

    2009-01-01

    Asthma is a highly prevalent chronic disease which, if not properly controlled, can limit the patient's activities and lifestyle. In recent decades, owing to the diffusion of educational materials, the application of clinical guidelines and, most importantly, the availability of effective pharmacological treatment, most patients with asthma are now able to lead normal lives. Significant social changes have also taken place during the same period, including more widespread pursuit of sporting activities and tourism. As a result of these changes, individuals with asthma can now participate in certain activities that were inconceivable for these patients only a few years ago, including winter sports, underwater activities, air flight, and travel to remote places with unusual environmental conditions (deserts, high mountain environments, and tropical regions). In spite of the publication of several studies on this subject, our understanding of the effects of these situations on patients with asthma is still limited. The Spanish Society of Pulmonology and Thoracic Surgery (SEPAR) has decided to publish these recommendations based on the available evidence and expert opinion in order to provide information on this topic to both doctors and patients and to avert potentially dangerous situations that could endanger the lives of these patients.

  1. Quantile Regression with Censored Data

    ERIC Educational Resources Information Center

    Lin, Guixian

    2009-01-01

    The Cox proportional hazards model and the accelerated failure time model are frequently used in survival data analysis. They are powerful, yet have limitation due to their model assumptions. Quantile regression offers a semiparametric approach to model data with possible heterogeneity. It is particularly powerful for censored responses, where the…

  2. Multiple imputation for cure rate quantile regression with censored data.

    PubMed

    Wu, Yuanshan; Yin, Guosheng

    2017-03-01

    The main challenge in the context of cure rate analysis is that one never knows whether censored subjects are cured or uncured, or whether they are susceptible or insusceptible to the event of interest. Considering the susceptible indicator as missing data, we propose a multiple imputation approach to cure rate quantile regression for censored data with a survival fraction. We develop an iterative algorithm to estimate the conditionally uncured probability for each subject. By utilizing this estimated probability and Bernoulli sample imputation, we can classify each subject as cured or uncured, and then employ the locally weighted method to estimate the quantile regression coefficients with only the uncured subjects. Repeating the imputation procedure multiple times and taking an average over the resultant estimators, we obtain consistent estimators for the quantile regression coefficients. Our approach relaxes the usual global linearity assumption, so that we can apply quantile regression to any particular quantile of interest. We establish asymptotic properties for the proposed estimators, including both consistency and asymptotic normality. We conduct simulation studies to assess the finite-sample performance of the proposed multiple imputation method and apply it to a lung cancer study as an illustration.

  3. Contrasting OLS and Quantile Regression Approaches to Student "Growth" Percentiles

    ERIC Educational Resources Information Center

    Castellano, Katherine Elizabeth; Ho, Andrew Dean

    2013-01-01

    Regression methods can locate student test scores in a conditional distribution, given past scores. This article contrasts and clarifies two approaches to describing these locations in terms of readily interpretable percentile ranks or "conditional status percentile ranks." The first is Betebenner's quantile regression approach that results in…

  4. Focus issue on the Study of Matter at Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Saini, Naurang L.; Saxena, Surendra K.; Bansil, Arun

    2015-09-01

    Study of matter at extreme conditions encompasses many different approaches for understanding the physics, chemistry and materials science underlying processes, products and technologies important for society. Although extreme conditions have been associated traditionally with research in areas of geology, mineral and earth sciences, the field has expanded in the recent years to include work on energy related materials and quantum functional materials from hard to soft matter. With the motivation to engage a large number of scientists with various disciplinary interests, ranging from physics, chemistry, geophysics to materials science, the study of matter at extreme conditions has been the theme of a series of conferences hosted by the High Pressure Science Society of America (HiPSSA) and the Center for the Study of Matter at Extreme Conditions (CeSMEC) of Florida International University (FIU), Miami. These SMEC (Study of Matter at Extreme Conditions) conferences are aimed at providing a unique platform for leading researchers to meet and share cutting-edge developments, and to bridge established fields under this interdisciplinary umbrella for research on materials. The seventh meeting in the SMEC series was held during March 23-30, 2013, while sailing from Miami to the Caribbean Islands, and concluded with great enthusiasm.

  5. Quantile Regression Models for Current Status Data.

    PubMed

    Ou, Fang-Shu; Zeng, Donglin; Cai, Jianwen

    2016-11-01

    Current status data arise frequently in demography, epidemiology, and econometrics where the exact failure time cannot be determined but is only known to have occurred before or after a known observation time. We propose a quantile regression model to analyze current status data, because it does not require distributional assumptions and the coefficients can be interpreted as direct regression effects on the distribution of failure time in the original time scale. Our model assumes that the conditional quantile of failure time is a linear function of covariates. We assume conditional independence between the failure time and observation time. An M-estimator is developed for parameter estimation which is computed using the concave-convex procedure and its confidence intervals are constructed using a subsampling method. Asymptotic properties for the estimator are derived and proven using modern empirical process theory. The small sample performance of the proposed method is demonstrated via simulation studies. Finally, we apply the proposed method to analyze data from the Mayo Clinic Study of Aging.

  6. Estimating equivalence with quantile regression

    USGS Publications Warehouse

    Cade, B.S.

    2011-01-01

    Equivalence testing and corresponding confidence interval estimates are used to provide more enlightened statistical statements about parameter estimates by relating them to intervals of effect sizes deemed to be of scientific or practical importance rather than just to an effect size of zero. Equivalence tests and confidence interval estimates are based on a null hypothesis that a parameter estimate is either outside (inequivalence hypothesis) or inside (equivalence hypothesis) an equivalence region, depending on the question of interest and assignment of risk. The former approach, often referred to as bioequivalence testing, is often used in regulatory settings because it reverses the burden of proof compared to a standard test of significance, following a precautionary principle for environmental protection. Unfortunately, many applications of equivalence testing focus on establishing average equivalence by estimating differences in means of distributions that do not have homogeneous variances. I discuss how to compare equivalence across quantiles of distributions using confidence intervals on quantile regression estimates that detect differences in heterogeneous distributions missed by focusing on means. I used one-tailed confidence intervals based on inequivalence hypotheses in a two-group treatment-control design for estimating bioequivalence of arsenic concentrations in soils at an old ammunition testing site and bioequivalence of vegetation biomass at a reclaimed mining site. Two-tailed confidence intervals based both on inequivalence and equivalence hypotheses were used to examine quantile equivalence for negligible trends over time for a continuous exponential model of amphibian abundance. ?? 2011 by the Ecological Society of America.

  7. Non-Stationary Hydrologic Frequency Analysis using B-Splines Quantile Regression

    NASA Astrophysics Data System (ADS)

    Nasri, B.; St-Hilaire, A.; Bouezmarni, T.; Ouarda, T.

    2015-12-01

    Hydrologic frequency analysis is commonly used by engineers and hydrologists to provide the basic information on planning, design and management of hydraulic structures and water resources system under the assumption of stationarity. However, with increasing evidence of changing climate, it is possible that the assumption of stationarity would no longer be valid and the results of conventional analysis would become questionable. In this study, we consider a framework for frequency analysis of extreme flows based on B-Splines quantile regression, which allows to model non-stationary data that have a dependence on covariates. Such covariates may have linear or nonlinear dependence. A Markov Chain Monte Carlo (MCMC) algorithm is used to estimate quantiles and their posterior distributions. A coefficient of determination for quantiles regression is proposed to evaluate the estimation of the proposed model for each quantile level. The method is applied on annual maximum and minimum streamflow records in Ontario, Canada. Climate indices are considered to describe the non-stationarity in these variables and to estimate the quantiles in this case. The results show large differences between the non-stationary quantiles and their stationary equivalents for annual maximum and minimum discharge with high annual non-exceedance probabilities. Keywords: Quantile regression, B-Splines functions, MCMC, Streamflow, Climate indices, non-stationarity.

  8. Forecasting peak asthma admissions in London: an application of quantile regression models.

    PubMed

    Soyiri, Ireneous N; Reidpath, Daniel D; Sarran, Christophe

    2013-07-01

    Asthma is a chronic condition of great public health concern globally. The associated morbidity, mortality and healthcare utilisation place an enormous burden on healthcare infrastructure and services. This study demonstrates a multistage quantile regression approach to predicting excess demand for health care services in the form of asthma daily admissions in London, using retrospective data from the Hospital Episode Statistics, weather and air quality. Trivariate quantile regression models (QRM) of asthma daily admissions were fitted to a 14-day range of lags of environmental factors, accounting for seasonality in a hold-in sample of the data. Representative lags were pooled to form multivariate predictive models, selected through a systematic backward stepwise reduction approach. Models were cross-validated using a hold-out sample of the data, and their respective root mean square error measures, sensitivity, specificity and predictive values compared. Two of the predictive models were able to detect extreme number of daily asthma admissions at sensitivity levels of 76 % and 62 %, as well as specificities of 66 % and 76 %. Their positive predictive values were slightly higher for the hold-out sample (29 % and 28 %) than for the hold-in model development sample (16 % and 18 %). QRMs can be used in multistage to select suitable variables to forecast extreme asthma events. The associations between asthma and environmental factors, including temperature, ozone and carbon monoxide can be exploited in predicting future events using QRMs.

  9. Estimating effects of limiting factors with regression quantiles

    USGS Publications Warehouse

    Cade, B.S.; Terrell, J.W.; Schroeder, R.L.

    1999-01-01

    In a recent Concepts paper in Ecology, Thomson et al. emphasized that assumptions of conventional correlation and regression analyses fundamentally conflict with the ecological concept of limiting factors, and they called for new statistical procedures to address this problem. The analytical issue is that unmeasured factors may be the active limiting constraint and may induce a pattern of unequal variation in the biological response variable through an interaction with the measured factors. Consequently, changes near the maxima, rather than at the center of response distributions, are better estimates of the effects expected when the observed factor is the active limiting constraint. Regression quantiles provide estimates for linear models fit to any part of a response distribution, including near the upper bounds, and require minimal assumptions about the form of the error distribution. Regression quantiles extend the concept of one-sample quantiles to the linear model by solving an optimization problem of minimizing an asymmetric function of absolute errors. Rank-score tests for regression quantiles provide tests of hypotheses and confidence intervals for parameters in linear models with heteroscedastic errors, conditions likely to occur in models of limiting ecological relations. We used selected regression quantiles (e.g., 5th, 10th, ..., 95th) and confidence intervals to test hypotheses that parameters equal zero for estimated changes in average annual acorn biomass due to forest canopy cover of oak (Quercus spp.) and oak species diversity. Regression quantiles also were used to estimate changes in glacier lily (Erythronium grandiflorum) seedling numbers as a function of lily flower numbers, rockiness, and pocket gopher (Thomomys talpoides fossor) activity, data that motivated the query by Thomson et al. for new statistical procedures. Both example applications showed that effects of limiting factors estimated by changes in some upper regression quantile (e

  10. Response of Simple, Model Systems to Extreme Conditions

    SciTech Connect

    Ewing, Rodney C.; Lang, Maik

    2015-07-30

    The focus of the research was on the application of high-pressure/high-temperature techniques, together with intense energetic ion beams, to the study of the behavior of simple oxide systems (e.g., SiO2, GeO2, CeO2, TiO2, HfO2, SnO2, ZnO and ZrO2) under extreme conditions. These simple stoichiometries provide unique model systems for the analysis of structural responses to pressure up to and above 1 Mbar, temperatures of up to several thousands of kelvin, and the extreme energy density generated by energetic heavy ions (tens of keV/atom). The investigations included systematic studies of radiation- and pressure-induced amorphization of high P-T polymorphs. By studying the response of simple stoichiometries that have multiple structural “outcomes”, we have established the basic knowledge required for the prediction of the response of more complex structures to extreme conditions. We especially focused on the amorphous state and characterized the different non-crystalline structure-types that result from the interplay of radiation and pressure. For such experiments, we made use of recent technological developments, such as the perforated diamond-anvil cell and in situ investigation using synchrotron x-ray sources. We have been particularly interested in using extreme pressures to alter the electronic structure of a solid prior to irradiation. We expected that the effects of modified band structure would be evident in the track structure and morphology, information which is much needed to describe theoretically the fundamental physics of track-formation. Finally, we investigated the behavior of different simple-oxide, composite nanomaterials (e.g., uncoated nanoparticles vs. core/shell systems) under coupled, extreme conditions. This provided insight into surface and boundary effects on phase stability under extreme conditions.

  11. Extreme conditions of elastic constants and principal axes of anisotropy

    NASA Astrophysics Data System (ADS)

    Ostrosablin, N. I.

    2016-07-01

    This paper describes the derivation of extreme conditions of each elasticity coefficient (Young's modulus, shear modulus, et al.,) for the general case of linear-elastic anisotropic materials. The stationarity conditions are obtained, and they determine the orthogonal coordinate systems being the principal axes of anisotropy, where the number of independent elasticity constants decreases from 21 to 18 and, in some cases of anisotropy, to 15 or lower. The example of a material with cubic symmetry is given.

  12. Improving Warfighters’ Sustainment and Performance in Extreme Environmental Conditions

    DTIC Science & Technology

    2008-02-18

    performance; 2) reduced stress-induced damage (such as oxidative stress and inflammation, among others) in vital organs (heart, liver , kidneys, and brain); and...among others) in vital organs (heart, liver , kidneys, and brain); and 3) increased the body’s tolerance to these extreme environmental conditions; 5...and the activation of molecular cell survival pathways via activation of erythropoietin ( EPO ), vascular endothelial growth factor (VEGF), hypoxia

  13. Ultrasonic Technique for Density Measurement of Liquids in Extreme Conditions

    PubMed Central

    Kazys, Rymantas; Sliteris, Reimondas; Rekuviene, Regina; Zukauskas, Egidijus; Mazeika, Liudas

    2015-01-01

    An ultrasonic technique, invariant to temperature changes, for a density measurement of different liquids under in situ extreme conditions is presented. The influence of geometry and material parameters of the measurement system (transducer, waveguide, matching layer) on measurement accuracy and reliability is analyzed theoretically along with experimental results. The proposed method is based on measurement of the amplitude of the ultrasonic wave, reflected from the interface of the solid/liquid medium under investigation. In order to enhance sensitivity, the use of a quarter wavelength acoustic matching layer is proposed. Therefore, the sensitivity of the measurement system increases significantly. Density measurements quite often must be performed in extreme conditions at high temperature (up to 220 °C) and high pressure. In this case, metal waveguides between piezoelectric transducer and the measured liquid are used in order to protect the conventional transducer from the influence of high temperature and to avoid depolarization. The presented ultrasonic density measurement technique is suitable for density measurement in different materials, including liquids and polymer melts in extreme conditions. A new calibration algorithm was proposed. The metrological evaluation of the measurement method was performed. The expanded measurement uncertainty Uρ = 7.4 × 10−3 g/cm3 (1%). PMID:26262619

  14. Quantile regression applied to spectral distance decay

    USGS Publications Warehouse

    Rocchini, D.; Cade, B.S.

    2008-01-01

    Remotely sensed imagery has long been recognized as a powerful support for characterizing and estimating biodiversity. Spectral distance among sites has proven to be a powerful approach for detecting species composition variability. Regression analysis of species similarity versus spectral distance allows us to quantitatively estimate the amount of turnover in species composition with respect to spectral and ecological variability. In classical regression analysis, the residual sum of squares is minimized for the mean of the dependent variable distribution. However, many ecological data sets are characterized by a high number of zeroes that add noise to the regression model. Quantile regressions can be used to evaluate trend in the upper quantiles rather than a mean trend across the whole distribution of the dependent variable. In this letter, we used ordinary least squares (OLS) and quantile regressions to estimate the decay of species similarity versus spectral distance. The achieved decay rates were statistically nonzero (p < 0.01), considering both OLS and quantile regressions. Nonetheless, the OLS regression estimate of the mean decay rate was only half the decay rate indicated by the upper quantiles. Moreover, the intercept value, representing the similarity reached when the spectral distance approaches zero, was very low compared with the intercepts of the upper quantiles, which detected high species similarity when habitats are more similar. In this letter, we demonstrated the power of using quantile regressions applied to spectral distance decay to reveal species diversity patterns otherwise lost or underestimated by OLS regression. ?? 2008 IEEE.

  15. The Matter in Extreme Conditions (MEC) instrument at LCLS

    NASA Astrophysics Data System (ADS)

    Nagler, Bob

    2015-06-01

    The last five years have seen the commissioning of and first user experiments on both the Free Electron Laser in Hamburg (FLASH) and the Linac Coherent Light Source (LCLS) in Stanford, and more are slated to come online in the next couple of years . The high photon frequency (i.e. larger than the plasma frequency of solid density), short pulse length (i.e. 10s to 100s of femtoseconds) and large photon number per pulse (i.e. 1012 photons per pulse) make it an ideal source to create and study states of matter at high energy density, a long-standing scientific challenge. Indeed, while matter in extreme conditions, which for the purpose of this talk we define as states under pressure up to hundreds of GPa and with temperatures ranging between 1eV and 1000eV, has been studied through dynamic shock compression and there has been significant progress made over many decades. However, large uncertainties still exist in the atomic structure and crystallographic structure, existence of high pressure phases, scattering factors, and equation of state of matter in extreme conditions. The Matter in Extreme Condition (MEC) instrument at LCLS is designed to overcome the unique experimental challenges that the study of matter in extreme conditions bring. It combines a suite of diagnostics and high power and energy optical lasers, which are standard fare in this research field, with the unmatched LCLS X-ray beam, to create an instrument that will be at the forefront of, and have a major impact on MEC science, in particular in the field of high pressure, warm dense matter, high energy density, and ultra-high intensity laser-matter interaction studies. The LCLS beam allows for unique investigation in all these extreme states using diagnostic methods such as X-ray Thomson Scattering, X-ray emission spectroscopy, X-ray diffraction, X-ray absorption spectroscopy, X-ray phase-contrast imaging, and pumping specific absorption lines to study (dense) plasma kinetics. Augmented with optical

  16. Wireless pilot monitoring system for extreme race conditions.

    PubMed

    Pino, Esteban J; Arias, Diego E; Aqueveque, Pablo; Melin, Pedro; Curtis, Dorothy W

    2012-01-01

    This paper presents the design and implementation of an assistive device to monitor car drivers under extreme conditions. In particular, this system is designed in preparation for the 2012 Atacama Solar Challenge to be held in the Chilean desert. Actual preliminary results show the feasibility of such a project including physiological and ambient sensors, real-time processing algorithms, wireless data transmission and a remote monitoring station. Implementation details and field results are shown along with a discussion of the main problems found in real-life telemetry monitoring.

  17. Extreme Drought Conditions in the Rio Grande/Bravo Basin

    NASA Astrophysics Data System (ADS)

    Gutiérrez, F.; Dracup, J. A.

    2001-12-01

    The Treaty of February 3, 1944 entitled "Utilization of Waters of the Colorado and Tijuana Rivers and of the Rio Grande" between the U.S. and Mexico regulates the distribution of flows of the rivers between these two countries. The treaty is based on hydrological data available up to 1944. Using new (historical and paleoclimatological) data, the water balance presented in the Treaty is re-examinated and the 431,721,000 m3/year allocation for USA during "extreme drought conditions" is re-evaluated. The authors define "extreme drought conditions" for this basin and a hydrological drought analysis is carried out using a streamflow simulation model. The analysis is complemented with an analysis of the effects of the El Niño - Southern Oscillation and the Pacific Decadal Oscillation on precipitation and streamflow. The results of this research will be applicable to potential changes in the current water resources management policies on the basin. Given the social, economical and political importance of this basin, the findings of this research potentially will have significant impacts. This research is founded by the NSF fund SAHRA (Science and Technology Center to study and promote the "Sustainability of Water Resources in Semi-Arid Regions" at the University of Arizona).

  18. Simulating Quantile Models with Applications to Economics and Management

    NASA Astrophysics Data System (ADS)

    Machado, José A. F.

    2010-05-01

    The massive increase in the speed of computers over the past forty years changed the way that social scientists, applied economists and statisticians approach their trades and also the very nature of the problems that they could feasibly tackle. The new methods that use intensively computer power go by the names of "computer-intensive" or "simulation". My lecture will start with bird's eye view of the uses of simulation in Economics and Statistics. Then I will turn out to my own research on uses of computer- intensive methods. From a methodological point of view the question I address is how to infer marginal distributions having estimated a conditional quantile process, (Counterfactual Decomposition of Changes in Wage Distributions using Quantile Regression," Journal of Applied Econometrics 20, 2005). Illustrations will be provided of the use of the method to perform counterfactual analysis in several different areas of knowledge.

  19. Quantile treatment effects of job loss on health.

    PubMed

    Schiele, Valentin; Schmitz, Hendrik

    2016-09-01

    Studies on health effects of job loss mostly estimate mean effects. We argue that the effects might differ over the distribution of the health status and use quantile regression methods to provide a more complete picture. To take the potential endogeneity of job loss into account, we estimate quantile treatment effects where we rely on job loss due to plant closures. We find that the effect of job loss indeed varies across the mental and physical health distribution. Job loss due to plant closures affects physical health adversely for individuals in the middle and lower part of the health distribution while those in best physical condition do not seem to be affected. The results for mental health, though less distinct, point in the same direction. We find no effects on BMI.

  20. Material dynamics under extreme conditions of pressure and strain rate

    SciTech Connect

    Remington, B A; Allen, P; Bringa, E; Hawreliak, J; Ho, D; Lorenz, K T; Lorenzana, H; Meyers, M A; Pollaine, S W; Rosolankova, K; Sadik, B; Schneider, M S; Swift, D; Wark, J; Yaakobi, B

    2005-09-06

    Solid state experiments at extreme pressures (10-100 GPa) and strain rates ({approx}10{sup 6}-10{sup 8}s{sup -1}) are being developed on high-energy laser facilities, and offer the possibility for exploring new regimes of materials science. These extreme solid-state conditions can be accessed with either shock loading or with a quasi-isentropic ramped pressure drive. Velocity interferometer measurements establish the high pressure conditions. Constitutive models for solid-state strength under these conditions are tested by comparing 2D continuum simulations with experiments measuring perturbation growth due to the Rayleigh-Taylor instability in solid-state samples. Lattice compression, phase, and temperature are deduced from extended x-ray absorption fine structure (EXAFS) measurements, from which the shock-induced {alpha}-{omega} phase transition in Ti and the {alpha}-{var_epsilon} phase transition in Fe are inferred to occur on sub-nanosec time scales. Time resolved lattice response and phase can also be measured with dynamic x-ray diffraction measurements, where the elastic-plastic (1D-3D) lattice relaxation in shocked Cu is shown to occur promptly (< 1 ns). Subsequent large-scale molecular dynamics (MD) simulations elucidate the microscopic dynamics that underlie the 3D lattice relaxation. Deformation mechanisms are identified by examining the residual microstructure in recovered samples. The slip-twinning threshold in single-crystal Cu shocked along the [001] direction is shown to occur at shock strengths of {approx}20 GPa, whereas the corresponding transition for Cu shocked along the [134] direction occurs at higher shock strengths. This slip-twinning threshold also depends on the stacking fault energy (SFE), being lower for low SFE materials. Designs have been developed for achieving much higher pressures, P > 1000 GPa, in the solid state on the National Ignition Facility (NIF) laser.

  1. Lower Extremity Overuse Conditions Affecting Figure Skaters During Daily Training

    PubMed Central

    Campanelli, Valentina; Piscitelli, Francesco; Verardi, Luciano; Maillard, Pauline; Sbarbati, Andrea

    2015-01-01

    Background Most ice figure skaters train and compete with ongoing issues in the lower extremities, which are often overlooked by the skaters and considered injuries only when they prevent the athletes from skating. Although not severe, these conditions impair the quality of daily training and compromise the skaters’ state of mind and performances. Purpose (1) To determine the point prevalence of the ongoing lower extremity overuse conditions in a population of ice figure skaters of all ages and levels and (2) to identify the risk factors contributing to the development of the most common ongoing conditions. Study Design Cross-sectional study; Level of evidence, 3. Methods A total of 95 skaters of all ages and skating levels were evaluated in a single examination in the middle of the competitive season. Data collection consisted of a questionnaire, clinical examination, and measurement of the skaters’ characteristics and the equipment used. Results Retrocalcaneal bursitis was the most common problem, affecting at least 1 foot in 34% of the skaters evaluated, followed by posterior heel skin calluses and superficial calcaneal bursitis, which affected 29% and 28% of skaters, respectively. The prevalence of the majority of these conditions was 10% to 32% higher in elite skaters than in nonelite skaters. Higher boot–foot length difference was associated with greater risk of superficial calcaneal bursitis in the landing foot of elite skaters, while higher body weight and greater in-skate ankle flexibility were associated with the development of retrocalcaneal bursitis in nonelite skaters. Only 30 skaters (32%) wore the appropriate boot size, while 57 skaters (51%) could not dorsiflex their ankles properly while wearing skates. Conclusion The heel represents a major area of concern for the high prevalence of calcaneal bursitis and calluses in proximity of the Achilles tendon, suggesting that improvements on the boot heel cup design should take priority. The

  2. The electrical conductivity of silicate liquids at extreme conditions

    NASA Astrophysics Data System (ADS)

    Scipioni, R.; Stixrude, L. P.

    2015-12-01

    Could the Earth have had a silicate dynamo early in its history? One requirement is that the electrical conductivity of silicate liquids be sufficiently high. However, very little is known about this property at the extreme conditions of pressure and temperature that prevailed in the magma ocean. We have computed from first principles molecular dynamics simulations the dc conductivity of liquid Silica SiO2 at pressure and temperature conditions spanning those of the magma ocean and super-Earth interiors. We find semi-metallic values of the conductivity at conditions typical of the putative basal magma ocean in the Early Earth. The variation of the conductivity with pressure and temperature displays interesting behavior that we rationalize on the basis of the closing the pseudo-gap at the Fermi level. For temperatures lower than T < 20,000 K electrical conductivity exhibits a maximum at intermediate compressions. We further explain this behavior in terms of stuctural changes that occur in silica liquid at high pressure; we find that the structure approaches that of the iso-electronic rare earth element Ne. We compare with Hugoniot data, including the equation of state, heat capacity, and reflectivity. The behavior of the heat capacity is different to that inferred from multiple Hugoniot experiments. These differences and the effect of including exact exchange on the calculations are discussed. Our results have important consequences for magnetic field generation in the early Earth and super-Earths.

  3. Modeling energy expenditure in children and adolescents using quantile regression.

    PubMed

    Yang, Yunwen; Adolph, Anne L; Puyau, Maurice R; Vohra, Firoz A; Butte, Nancy F; Zakeri, Issa F

    2013-07-15

    Advanced mathematical models have the potential to capture the complex metabolic and physiological processes that result in energy expenditure (EE). Study objective is to apply quantile regression (QR) to predict EE and determine quantile-dependent variation in covariate effects in nonobese and obese children. First, QR models will be developed to predict minute-by-minute awake EE at different quantile levels based on heart rate (HR) and physical activity (PA) accelerometry counts, and child characteristics of age, sex, weight, and height. Second, the QR models will be used to evaluate the covariate effects of weight, PA, and HR across the conditional EE distribution. QR and ordinary least squares (OLS) regressions are estimated in 109 children, aged 5-18 yr. QR modeling of EE outperformed OLS regression for both nonobese and obese populations. Average prediction errors for QR compared with OLS were not only smaller at the median τ = 0.5 (18.6 vs. 21.4%), but also substantially smaller at the tails of the distribution (10.2 vs. 39.2% at τ = 0.1 and 8.7 vs. 19.8% at τ = 0.9). Covariate effects of weight, PA, and HR on EE for the nonobese and obese children differed across quantiles (P < 0.05). The associations (linear and quadratic) between PA and HR with EE were stronger for the obese than nonobese population (P < 0.05). In conclusion, QR provided more accurate predictions of EE compared with conventional OLS regression, especially at the tails of the distribution, and revealed substantially different covariate effects of weight, PA, and HR on EE in nonobese and obese children.

  4. Porous materials for thermal management under extreme conditions.

    PubMed

    Clyne, T W; Golosnoy, I O; Tan, J C; Markaki, A E

    2006-01-15

    A brief analysis is presented of how heat transfer takes place in porous materials of various types. The emphasis is on materials able to withstand extremes of temperature, gas pressure, irradiation, etc. i.e. metals and ceramics, rather than polymers. A primary aim is commonly to maximize either the thermal resistance (i.e. provide insulation) or the rate of thermal equilibration between the material and a fluid passing through it (i.e. to facilitate heat exchange). The main structural characteristics concern porosity (void content), anisotropy, pore connectivity and scale. The effect of scale is complex, since the permeability decreases as the structure is refined, but the interfacial area for fluid-solid heat exchange is, thereby, raised. The durability of the pore structure may also be an issue, with a possible disadvantage of finer scale structures being poor microstructural stability under service conditions. Finally, good mechanical properties may be required, since the development of thermal gradients, high fluid fluxes, etc. can generate substantial levels of stress. There are, thus, some complex interplays between service conditions, pore architecture/scale, fluid permeation characteristics, convective heat flow, thermal conduction and radiative heat transfer. Such interplays are illustrated with reference to three examples: (i) a thermal barrier coating in a gas turbine engine; (ii) a Space Shuttle tile; and (iii) a Stirling engine heat exchanger. Highly porous, permeable materials are often made by bonding fibres together into a network structure and much of the analysis presented here is oriented towards such materials.

  5. Ab initio Raman spectroscopy of water under extreme conditions

    NASA Astrophysics Data System (ADS)

    Rozsa, Viktor; Pan, Ding; Wan, Quan; Galli, Giulia

    Water exhibits one of the most complex phase diagrams of any binary compound. Despite extensive studies, the melting lines of high-pressure ice phases remain very controversial, with reports differing by hundreds of Kelvin. The boundary between ice VII and liquid phase is particularly disputed, with recent work exploring plasticity and amorphization mediating the transition. Raman measurements are often used to fingerprint melting, yet their interpretation is difficult without atomistic modeling. Here, we report a study of high P/T water where we computed Raman spectra using a method combining ab initio molecular dynamics and density functional perturbation theory, as implemented in the Qbox code. Spectra were computed for the liquid at 10 and 20 GPa, both at 1000 K, and for solid ice VII (20 GPa, 500 K). Decomposing the spectra into inter and intra molecular contributions provided insight into the dynamics of the hydrogen-bonded network at extreme conditions. The relevance of our simulation results for models of water in Earth, Uranus, and Neptune will be discussed, and an interpretation of existing experiments at high pressure will be presented.

  6. Focusing adaptive-optics for neutron spectroscopy at extreme conditions

    SciTech Connect

    Simeoni, G. G.; Valicu, R. G.; Borchert, G.; Böni, P.; Rasmussen, N. G.; Yang, F.; Kordel, T.; Holland-Moritz, D.; Kargl, F.; Meyer, A.

    2015-12-14

    Neutron Spectroscopy employing extreme-conditions sample environments is nowadays a crucial tool for the understanding of fundamental scientific questions as well as for the investigation of materials and chemical-physical properties. For all these kinds of studies, an increased neutron flux over a small sample area is needed. The prototype of a focusing neutron guide component, developed and produced completely at the neutron source FRM II in Garching (Germany), has been installed at the time-of-flight (TOF) disc-chopper neutron spectrometer TOFTOF and came into routine-operation. The design is based on the compressed Archimedes' mirror concept for finite-size divergent sources. It represents a unique device combining the supermirror technology with Adaptive Optics, suitable for broad-bandwidth thermal-cold TOF neutron spectroscopy (here optimized for 1.4–10 Å). It is able to squeeze the beam cross section down to a square centimeter, with a more than doubled signal-to-background ratio, increased efficiency at high scattering angles, and improved symmetry of the elastic resolution function. We present a comparison between the simulated and measured beam cross sections, as well as the performance of the instrument within real experiments. This work intends to show the unprecedented opportunities achievable at already existing instruments, along with useful guidelines for the design and construction of next-generation neutron spectrometers.

  7. Focusing adaptive-optics for neutron spectroscopy at extreme conditions

    NASA Astrophysics Data System (ADS)

    Simeoni, G. G.; Valicu, R. G.; Borchert, G.; Böni, P.; Rasmussen, N. G.; Yang, F.; Kordel, T.; Holland-Moritz, D.; Kargl, F.; Meyer, A.

    2015-12-01

    Neutron Spectroscopy employing extreme-conditions sample environments is nowadays a crucial tool for the understanding of fundamental scientific questions as well as for the investigation of materials and chemical-physical properties. For all these kinds of studies, an increased neutron flux over a small sample area is needed. The prototype of a focusing neutron guide component, developed and produced completely at the neutron source FRM II in Garching (Germany), has been installed at the time-of-flight (TOF) disc-chopper neutron spectrometer TOFTOF and came into routine-operation. The design is based on the compressed Archimedes' mirror concept for finite-size divergent sources. It represents a unique device combining the supermirror technology with Adaptive Optics, suitable for broad-bandwidth thermal-cold TOF neutron spectroscopy (here optimized for 1.4-10 Å). It is able to squeeze the beam cross section down to a square centimeter, with a more than doubled signal-to-background ratio, increased efficiency at high scattering angles, and improved symmetry of the elastic resolution function. We present a comparison between the simulated and measured beam cross sections, as well as the performance of the instrument within real experiments. This work intends to show the unprecedented opportunities achievable at already existing instruments, along with useful guidelines for the design and construction of next-generation neutron spectrometers.

  8. Fast temperature spectrometer for samples under extreme conditions

    SciTech Connect

    Zhang, Dongzhou; Jackson, Jennifer M.; Sturhahn, Wolfgang; Zhao, Jiyong; Alp, E. Ercan; Toellner, Thomas S.; Hu, Michael Y.

    2015-01-15

    We have developed a multi-wavelength Fast Temperature Readout (FasTeR) spectrometer to capture a sample’s transient temperature fluctuations, and reduce uncertainties in melting temperature determination. Without sacrificing accuracy, FasTeR features a fast readout rate (about 100 Hz), high sensitivity, large dynamic range, and a well-constrained focus. Complimenting a charge-coupled device spectrometer, FasTeR consists of an array of photomultiplier tubes and optical dichroic filters. The temperatures determined by FasTeR outside of the vicinity of melting are, generally, in good agreement with results from the charge-coupled device spectrometer. Near melting, FasTeR is capable of capturing transient temperature fluctuations, at least on the order of 300 K/s. A software tool, SIMFaster, is described and has been developed to simulate FasTeR and assess design configurations. FasTeR is especially suitable for temperature determinations that utilize ultra-fast techniques under extreme conditions. Working in parallel with the laser-heated diamond-anvil cell, synchrotron Mössbauer spectroscopy, and X-ray diffraction, we have applied the FasTeR spectrometer to measure the melting temperature of {sup 57}Fe{sub 0.9}Ni{sub 0.1} at high pressure.

  9. [Sports and extreme conditions. Cardiovascular incidence in long term exertion and extreme temperatures (heat, cold)].

    PubMed

    Melin, B; Savourey, G

    2001-06-30

    During ultra-endurance exercise, both increase in body temperature and dehydration due to sweat losses, lead to a decrease in central blood volume. The heart rate drift allows maintaining appropriate cardiac output, in order to satisfy both muscle perfusion and heat transfer requirements by increasing skin blood flow. The resulting dehydration can impair thermal regulation and increase the risks of serious accidents as heat stroke. Endurance events, lasting more than 8 hours, result in large sweat sodium chloride losses. Thus, ingestion of large amounts of water with poor salt intake can induce symptomatic hyponatremia (plasma sodium < 130 mEq/L) which is also a serious accident. Heat environment increases the thermal constraint and when the air humidity is high, evaporation of sweat is compromise. Thus, thermal stress becomes uncompensable which increases the risk of cardiovascular collapse. Cold exposure induces physiological responses to maintain internal temperature by both limiting thermal losses and increasing metabolic heat production. Cold can induce accidental hypothermia and local frost-bites; moreover, it increases the risk of arrhythmia during exercise. Some guidelines (cardiovascular fitness, water and electrolyte intakes, protective clothing) are given for each extreme condition.

  10. Orographic Signature on Multiscale Statistics of Extreme Rainfall: Conditional downscaling with emphasis on extremes

    NASA Astrophysics Data System (ADS)

    Foufoula-Georgiou, E.; Ebtehaj, M.

    2010-09-01

    Rainfall intensity and spatio-temporal patterns often show a strong dependency on the underlying terrain. The main objective of this work is to study the statistical signature imprinted by orography on the spatial structure of rainfall and its temporal evolution at multiple scales, with the aim to develop a consistent theoretical basis for conditional downscaling of precipitation given the topographic information of the underlying terrain. The results of an extensive analysis of the high resolution stage II Doppler radar data of the Rapidan storm, June 1995, over the Appalachian Mountains is reported in this study. The orographic signature on the elementary statistical structure of the precipitation fields is studied via a variable-intensity thresholding scheme. This signature is further explored at multiple scales via analysis of the dependence of precipitation fields on the underlying terrain both in Fourier and Wavelet domains. The Generalized Normal distribution is found to be a suitable probability model to explain the variability of the rainfall wavelet coefficients and its dependence on the underlying elevations. These results provide a new perspective for more accurate statistical downscaling of the orographic precipitation over complex terrain with emphasis on extremes.

  11. A quantile count model of water depth constraints on Cape Sable seaside sparrows

    USGS Publications Warehouse

    Cade, B.S.; Dong, Q.

    2008-01-01

    1. A quantile regression model for counts of breeding Cape Sable seaside sparrows Ammodramus maritimus mirabilis (L.) as a function of water depth and previous year abundance was developed based on extensive surveys, 1992-2005, in the Florida Everglades. The quantile count model extends linear quantile regression methods to discrete response variables, providing a flexible alternative to discrete parametric distributional models, e.g. Poisson, negative binomial and their zero-inflated counterparts. 2. Estimates from our multiplicative model demonstrated that negative effects of increasing water depth in breeding habitat on sparrow numbers were dependent on recent occupation history. Upper 10th percentiles of counts (one to three sparrows) decreased with increasing water depth from 0 to 30 cm when sites were not occupied in previous years. However, upper 40th percentiles of counts (one to six sparrows) decreased with increasing water depth for sites occupied in previous years. 3. Greatest decreases (-50% to -83%) in upper quantiles of sparrow counts occurred as water depths increased from 0 to 15 cm when previous year counts were 1, but a small proportion of sites (5-10%) held at least one sparrow even as water depths increased to 20 or 30 cm. 4. A zero-inflated Poisson regression model provided estimates of conditional means that also decreased with increasing water depth but rates of change were lower and decreased with increasing previous year counts compared to the quantile count model. Quantiles computed for the zero-inflated Poisson model enhanced interpretation of this model but had greater lack-of-fit for water depths > 0 cm and previous year counts 1, conditions where the negative effect of water depths were readily apparent and fitted better with the quantile count model.

  12. Extreme Conditioning Programs: Potential Benefits and Potential Risks.

    PubMed

    Knapik, Joseph J

    2015-01-01

    CrossFit, Insanity, Gym Jones, and P90X are examples of extreme conditioning programs (ECPs). ECPs typically involve high-volume and high-intensity physical activities with short rest periods between movements and use of multiple joint exercises. Data on changes in fitness with ECPs are limited to CrossFit investigations that demonstrated improvements in muscle strength, muscular endurance, aerobic fitness, and body composition. However, no study has directly compared CrossFit or other ECPs to other more traditional forms of aerobic and resistance training within the same investigation. These direct comparisons are needed to more adequately evaluate the effectiveness of ECPs. Until these studies emerge, the comparisons with available literature suggest that improvements in CrossFit, in terms of muscular endurance (push-ups, sit-ups), strength, and aerobic capacity, appear to be similar to those seen in more traditional training programs. Investigations of injuries in ECPs are limited to two observational studies that suggest that the overall injury rate is similar to that seen in other exercise programs. Several cases of rhabdomyolysis and cervical carotid artery dissections have been reported during CrossFit training. The symptoms, diagnosis, and treatment of these are reviewed here. Until more data on ECPs emerge, physical training should be aligned with US Army doctrine. If ECPs are included in exercise programs, trainers should (1) have appropriate training certifications, (2) inspect exercise equipment regularly to assure safety, (3) introduce ECPs to new participants, (4) ensure medical clearance of Soldiers with special health problems before participation in ECPs, (4) tailor ECPs to the individual Soldier, (5) adjust rest periods to optimize recovery and reduce fatigue, (6) monitor Soldiers for signs of overtraining, rhabdomyolysis, and other problems, and (7) coordinate exercise programs with other unit training activities to eliminate redundant activities

  13. Thorium Chemistry in Oxo-Tellurium System under Extreme Conditions.

    PubMed

    Xiao, Bin; Kegler, Philip; Bosbach, Dirk; Alekseev, Evgeny V

    2017-03-06

    Through the use of a high-temperature/high-pressure synthesis method, four thorium oxo-tellurium compounds with different tellurium valence states were isolated. The novel inorganic phases illustrate the intrinsic complexity of the actinide tellurium chemistry under extreme conditions of pressure and temperature. Th2Te3O11 is the first instance of a mixed-valent oxo-tellurium compound, and at the same time, Te exhibits three different coordination environments (Te(IV)O3, Te(IV)O4, and Te(VI)O6) within a single structure. These three types of Te polyhedra are further fused together, resulting in a [Te3O11](8-) fragment. Na4Th2(Te(VI)3O15) and K2Th(Te(VI)O4)3 are the first alkaline thorium tellurates described in the literature. Both compounds are constructed from ThO9 tricapped trigonal prisms and Te(VI)O6 octahedra. Na4Th2(Te(VI)3O15) is a three-dimensional framework based on Th2O15 and Te2O10 dimers, while K2Th(Te(VI)O4)3 contains tungsten oxide bronze like Te layers linked by ThO9 polyhedra. The structure of β-Th(Te(IV)O3)(SO4) is built from infinite thorium chains cross-linked by Te(IV)O3(2-) and SO4(2-) anions. Close structural analysis suggests that β-Th(Te(IV)O3)(SO4) is highly related to the structure of α-Th(SeO4)2. Additionally, the Raman spectra are recorded and the characteristic peaks are assigned based on a comparison of reported tellurites or tellurates.

  14. Final Report for Project. Quark matter under extreme conditions

    SciTech Connect

    Incera, Vivian; Ferrer, Efrain

    2015-12-31

    The results obtained in the two years of the grant have served to shine new light on several important questions about the phases of quantum chromodynamics (QCD) under extreme conditions that include quark matter at high density, as well quark-gluon plasma at high temperatures, both in the presence of strong magnetic fields. The interest in including an external magnetic field on these studies is motivated by the generation of large magnetic fields in off-central heavy-ion collisions and by their common presence in astrophysical compact objects, the two scenarios where the physics of quark matter becomes relevant. The tasks carried out in this DOE project led us, among other things, to discover the first connection between the physics of very dense quark matter and novel materials as for instance topological insulators and Weyl semimetals; they allowed us to find a physical explanation for and a solution to a standing puzzle in the apparent effect of a magnetic field on the critical temperature of the QCD chiral transition; and they led us to establish by the first time that the core of the observed two-solar-mass neutron stars could be made up of quark matter in certain inhomogeneous chiral phases in a magnetic field and that this was consistent with current astrophysical observations. A major goal established by the Nuclear Science Advisory committee in its most recent report “Reaching for the Horizon” has been “to truly understand how nuclei and strongly interacting matter in all its forms behave and can predict their behavior in new settings.” The results found in this DOE project have all contributed to address this goal, and thus they are important for advancing fundamental knowledge in the area of nuclear physics and for enhancing our understanding of the role of strong magnetic fields in the two settings where they are most relevant, neutron stars and heavy-ion collisions.

  15. Quantile regression in environmental health: Early life lead exposure and end-of-grade exams.

    PubMed

    Magzamen, Sheryl; Amato, Michael S; Imm, Pamela; Havlena, Jeffrey A; Coons, Marjorie J; Anderson, Henry A; Kanarek, Marty S; Moore, Colleen F

    2015-02-01

    Conditional means regression, including ordinary least squares (OLS), provides an incomplete picture of exposure-response relationships particularly if the primary interest resides in the tail ends of the distribution of the outcome. Quantile regression (QR) offers an alternative methodological approach in which the influence of independent covariates on the outcome can be specified at any location along the distribution of the outcome. We implemented QR to examine heterogeneity in the influence of early childhood lead exposure on reading and math standardized fourth grade tests. In children from two urban school districts (n=1,076), lead exposure was associated with an 18.00 point decrease (95% CI: -48.72, -3.32) at the 10th quantile of reading scores, and a 7.50 point decrease (95% CI: -15.58, 2.07) at the 90th quantile. Wald tests indicated significant heterogeneity of the coefficients across the distribution of quantiles. Math scores did not show heterogeneity of coefficients, but there was a significant difference in the lead effect at the 10th (β=-17.00, 95% CI: -32.13, -3.27) versus 90th (β=-4.50, 95% CI: -10.55, 4.50) quantiles. Our results indicate that lead exposure has a greater effect for children in the lower tail of exam scores, a result that is masked by conditional means approaches.

  16. The Reactivity of Energetic Materials At Extreme Conditions

    SciTech Connect

    Fried, L E

    2006-10-23

    shock conditions, for example, energetic materials undergo rapid heating to a few thousand degrees and are subjected to a compression of hundreds of kilobars, resulting in almost 30% volume reduction. Complex chemical reactions are thus initiated, in turn releasing large amounts of energy to sustain the detonation process. Clearly, understanding of the various chemical events at these extreme conditions is essential in order to build predictive material models. Scientific investigations into the reactive process have been undertaken over the past two decades. However, the sub-{micro}s time scale of explosive reactions, in addition to the highly exothermic conditions of an explosion, make experimental investigation of the decomposition pathways difficult at best. More recently, new computational approaches to investigate condensed-phase reactivity in energetic materials have been developed. Here we focus on two different approaches to condensed-phase reaction modeling: chemical equilibrium methods and atomistic modeling of condensed-phase reactions. These are complementary approaches to understanding the chemical reactions of high explosives. Chemical equilibrium modeling uses a highly simplified thermodynamic picture of the reaction process, leading to a convenient and predictive model of detonation and other decomposition processes. Chemical equilibrium codes are often used in the design of new materials, both at the level of synthesis chemistry and formulation. Atomistic modeling is a rapidly emerging area. The doubling of computational power approximately every 18 months has made atomistic condensed-phase modeling more feasible. Atomistic calculations employ far fewer empirical parameters than chemical equilibrium calculations. Nevertheless, the atomistic modeling of chemical reactions requires an accurate global Born-Oppenheimer potential energy surface. Traditionally, such a surface is constructed by representing the potential energy surface with an analytical fit

  17. Matter in Extreme Conditions Instrument - Conceptual Design Report

    SciTech Connect

    Boyce, R.F.; Boyce, R.M.; Haller, G.; Hastings, J.B.; Hays, G.; Lee, H.J.; Lee, R.W.; Nagler, B.; Scharfenstein, M.; Marsh, D.; White, W.E.; /SLAC

    2009-12-09

    The SLAC National Accelerator Laboratory (SLAC), in collaboration with Argonne National Laboratory (ANL), Lawrence Livermore National Laboratory (LLNL), and the University of California at Los Angeles (UCLA), is constructing a Free-Electron Laser (FEL) research facility. The FEL has already met its performance goals in the wavelength range 1.5 nm - 0.15 nm. This facility, the Linac Coherent Light Source (LCLS), utilizes the SLAC 2-Mile Linear Accelerator (linac) and will produce sub-picosecond pulses of short wavelength X-rays with very high peak brightness and almost complete transverse coherence. The final one-third of the SLAC linac is used as the source of electrons for the LCLS. The high energy electrons are transported across the SLAC Research Yard, into a tunnel which houses a long undulator. In passing through the undulator, the electrons are bunched by the force of their own synchrotron radiation and produce an intense, monochromatic, spatially coherent beam of X-rays. By varying the electron energy, the FEL X-ray wavelength is tunable from 1.5 nm to 0.15 nm. The LCLS includes two experimental halls as well as X-ray optics and infrastructure necessary to create a facility that can be developed for research in a variety of disciplines such as atomic physics, materials science, plasma physics and biosciences. This Conceptual Design Report, the authors believe, confirms the feasibility of designing and constructing an X-ray instrument in order to exploit the unique scientific capability of LCLS by creating extreme conditions and study the behavior of plasma under those controlled conditions. This instrument will address the Office of Science, Fusion Energy Sciences, mission objective related to study of Plasma and Warm Dense Matter as described in the report titled LCLS, the First Experiments, prepared by the LCLS Scientific Advisory Committee (SAC) in September 2000. The technical objective of the LCLS Matter in Extreme Conditions (MEC) Instrument project is

  18. Principles of Quantile Regression and an Application

    ERIC Educational Resources Information Center

    Chen, Fang; Chalhoub-Deville, Micheline

    2014-01-01

    Newer statistical procedures are typically introduced to help address the limitations of those already in practice or to deal with emerging research needs. Quantile regression (QR) is introduced in this paper as a relatively new methodology, which is intended to overcome some of the limitations of least squares mean regression (LMR). QR is more…

  19. Evolution of extraordinarily low and high temperature, precipitation and runoff periods over Germany since 1950 - A quantile regression approach

    NASA Astrophysics Data System (ADS)

    Wagner, J.; Donner, R. V.

    2012-04-01

    Properly describing temporal changes in the occurrence of extreme high or low temperatures, precipitation and runoff is of key importance for properly assessing the potential local impacts of ongoing climatic changes and estimating possible future trends. Unfortunately, the applicability of traditional extreme value statistics to non-stationary climate data is often restricted by the available amount of data. As a possible alternative, quantile regression techniques allow estimating temporal trends in arbitrary quantiles of the distribution of the corresponding hydro-meteorological observables. Besides the basic linear variant, there are nonparametric approaches available that allow characterizing quantile trends without an explicit prescription of a certain functional form. In this work, we study observational records of German temperature and precipitation as well as runoff time series obtained using the hydrological model SWIM for the second half of the 20th century. Particularly, we compare trends in very high and low quantiles of the associated probability distribution functions and compare them to the outcome of classical extreme value statistics. Our results allow a detailed characterization of the regional patterns of quantile trends and their temporary increase and decrease.

  20. Measuring the structure factor of simple fluids under extreme conditions

    NASA Astrophysics Data System (ADS)

    Weck, Gunnar

    2013-06-01

    The structure and dynamics of fluids, although a long standing matter of investigations, is still far from being well established. In particular, with the existence of a first order liquid-liquid phase transition (LLT) discovered in liquid phosphorus at 0.9 GPa and 1300 K it is now recognized that the fluid state could present complex structural changes. At present, very few examples of LLTs have been clearly evidenced, which may mean that a larger range of densities must be probed. First order transitions between a molecular and a polymeric liquid have been recently predicted by first principles calculations in liquid nitrogen at 88 GPa and 2000 K and in liquid CO2 at 45 GPa and 1850 K. The only device capable of reaching these extreme conditions is the diamond anvil cell (DAC), in which, the sample is sandwiched between two diamond anvils of thickness 100 times larger. Consequently, the diffracted signal from the sample is very weak compared to the Compton signal of the anvils, and becomes hardly measurable for pressures above ~20 GPa. A similar problem has been faced by the high pressure community using large volume press so as to drastically reduce the x-ray background from the sample environment. In the angle-dispersive diffraction configuration, it was proposed to use a multichannel collimator (MCC). This solution has been implemented to fit the constraints of the Paris-Edimburg (PE) large volume press and it is now routinely used on beamline ID27 of the European Synchrotron Radiation Facility. In this contribution, we present our adaptation of the MCC device accessible at ID27 for the DAC experiment. Because of the small sample volume a careful alignment procedure between the MCC slits and the DAC had to be implemented. The data analysis procedure initially developed by Eggert et al. has also been completed in order to take into account the complex contribution of the MCC slits. A large reduction of the Compton diffusion from the diamond anvils is obtained

  1. Extreme Anthropogenic Loads and the Northern Ecosystem Condition.

    PubMed

    Kryuchkov, Vasiliy V

    1993-11-01

    In the extreme North, the polar region of Siberian Russia, the largest mining and processing enterprises for metallic and nonmetallic ores, coal, oil, and gas are situated. The extremely vulnerable boreal and polar ecosystems of the North are responding adversely to the impact of these activities, and are in danger of collapse because of them. The mechanisms of such impacts, their formation, continuous extension, and merger have been studied. The deforested and destroyed areas of former forest-tundra and taiga ecosystems resemble the Arctic zones of a much harsher environment more than the typical Arctic zones where they occur.

  2. Extreme anthropogenic loads and the northern ecosystem condition

    SciTech Connect

    Kryuckkov, V.V. )

    1993-11-01

    In the extreme North, the polar region of siberian Russia, the largest mining and processing enterprises for metallic and nonmetallic ores, coal, oil, and gas are situated. The extremely vulnerable boreal and polar ecosystems of the north are responding adversely to the impact of these activities, and are in danger of collapse because of them. The mechanisms of such impacts, their formation, continuous extension, and merger have been studied. The deforested and destroyed areas of former forest-tundra and taiga ecosystems resemble the Arctic zones of a much harsher environment more than the typical Arctic zones where they occur. 5 refs., 3 figs., 2 tabs.

  3. OB-stars as extreme condition test beds

    NASA Astrophysics Data System (ADS)

    Puls, Joachim; Sundqvist, Jon O.; Rivero González, Jorge G.

    2011-07-01

    Massive stars are inherently extreme objects, in terms of radiation, mass loss, rotation, and sometimes also magnetic fields. Concentrating on a (personally biased) subset of processes related to pulsations, rapid rotation and its interplay with mass-loss, and the bi-stability mechanism, we will discuss how active (and normal) OB stars can serve as appropriate laboratories to provide further clues.

  4. Biological effects of extreme environmental conditions. [considering limits of biosphere

    NASA Technical Reports Server (NTRS)

    Imshenetskiy, A. A.

    1975-01-01

    Actions of extreme physical and chemical space factors on microorganisms and plants are elaborated in order to establish limits for the biosphere. Considered are effects of low and high temperatures; ionizing and ultraviolet radiation; various gases; and effects of vibration, desiccation and acceleration.

  5. Regularized quantile regression under heterogeneous sparsity with application to quantitative genetic traits

    PubMed Central

    He, Qianchuan; Kong, Linglong; Wang, Yanhua; Wang, Sijian; Chan, Timothy A.; Holland, Eric

    2016-01-01

    Genetic studies often involve quantitative traits. Identifying genetic features that influence quantitative traits can help to uncover the etiology of diseases. Quantile regression method considers the conditional quantiles of the response variable, and is able to characterize the underlying regression structure in a more comprehensive manner. On the other hand, genetic studies often involve high-dimensional genomic features, and the underlying regression structure may be heterogeneous in terms of both effect sizes and sparsity. To account for the potential genetic heterogeneity, including the heterogeneous sparsity, a regularized quantile regression method is introduced. The theoretical property of the proposed method is investigated, and its performance is examined through a series of simulation studies. A real dataset is analyzed to demonstrate the application of the proposed method. PMID:28133403

  6. Quantile equivalence to evaluate compliance with habitat management objectives

    USGS Publications Warehouse

    Cade, Brian S.; Johnson, Pamela R.

    2011-01-01

    Equivalence estimated with linear quantile regression was used to evaluate compliance with habitat management objectives at Arapaho National Wildlife Refuge based on monitoring data collected in upland (5,781 ha; n = 511 transects) and riparian and meadow (2,856 ha, n = 389 transects) habitats from 2005 to 2008. Quantiles were used because the management objectives specified proportions of the habitat area that needed to comply with vegetation criteria. The linear model was used to obtain estimates that were averaged across 4 y. The equivalence testing framework allowed us to interpret confidence intervals for estimated proportions with respect to intervals of vegetative criteria (equivalence regions) in either a liberal, benefit-of-doubt or conservative, fail-safe approach associated with minimizing alternative risks. Simple Boolean conditional arguments were used to combine the quantile equivalence results for individual vegetation components into a joint statement for the multivariable management objectives. For example, management objective 2A required at least 809 ha of upland habitat with a shrub composition ≥0.70 sagebrush (Artemisia spp.), 20–30% canopy cover of sagebrush ≥25 cm in height, ≥20% canopy cover of grasses, and ≥10% canopy cover of forbs on average over 4 y. Shrub composition and canopy cover of grass each were readily met on >3,000 ha under either conservative or liberal interpretations of sampling variability. However, there were only 809–1,214 ha (conservative to liberal) with ≥10% forb canopy cover and 405–1,098 ha with 20–30%canopy cover of sagebrush ≥25 cm in height. Only 91–180 ha of uplands simultaneously met criteria for all four components, primarily because canopy cover of sagebrush and forbs was inversely related when considered at the spatial scale (30 m) of a sample transect. We demonstrate how the quantile equivalence analyses also can help refine the numerical specification of habitat objectives and explore

  7. Nonparametric inference on quantile lost lifespan.

    PubMed

    Balmert, Lauren; Jeong, Jong-Hyeon

    2017-03-01

    In this article, the existing concept of reversed percentile residual life, or percentile inactivity time, is recast to show that it can be used for routine analysis of time-to-event data under right censoring to summarize "life lost," which poses several advantages over the existing methods for survival analysis. An estimating equation approach is adopted to avoid estimation of the probability density function of the underlying time-to-event distribution to estimate the variance of the quantile estimator. Additionally a K-sample test statistic is proposed to test the ratio of the quantile lost lifespans. Simulation studies are performed to assess finite properties of the proposed K-sample statistic in terms of coverage probability and power. The proposed method is illustrated with a real data example from a breast cancer study.

  8. Extreme extensibility of copper foil under compound forming conditions.

    PubMed

    Yu, Qingbo; Liu, Xianghua; Tang, Delin

    2013-12-19

    A copper foil with an extreme extensibility up to 43,684% was obtained without any intermediate annealing by means of asynchronous rolling with high tension. It was found that under the combination of compression, shearing and tension, the copper foil represents a wonderful phenomenon. As the reduction increases, the specimen hardness increases up to a peak value 138 HV0.05 when the foil thickness rolled to around 100 μm, and then it decreases down to 78 HV0.05 when the foil thickness rolled to the final size 19 μm. It tells us that the strain-softening effect occurs when the foil thickness is rolled down to a threshold level. The experimental results bring us some fresh ideas different with the traditional understanding on the strain-hardening mechanism of metals, which provides an experimental basis to establish the forming mechanism of the thin foil.

  9. ANALYSIS ON CENSORED QUANTILE RESIDUAL LIFE MODEL VIA SPLINE SMOOTHING.

    PubMed

    Ma, Yanyuan; Wei, Ying

    2012-01-01

    We propose a general class of quantile residual life models, where a specific quantile of the residual life time, conditional on an individual has survived up to time t, is a function of certain covariates with their coefficients varying over time. The varying coefficients are assumed to be smooth unspecified functions of t. We propose to estimate the coefficient functions using spline approximation. Incorporating the spline representation directly into a set of unbiased estimating equations, we obtain a one-step estimation procedure, and we show that this leads to a uniformly consistent estimator. To obtain further computational simplification, we propose a two-step estimation approach in which we estimate the coefficients on a series of time points first, and follow this with spline smoothing. We compare the two methods in terms of their asymptotic efficiency and computational complexity. We further develop inference tools to test the significance of the covariate effect on residual life. The finite sample performance of the estimation and testing procedures are further illustrated through numerical experiments. We also apply the methods to a data set from a neurological study.

  10. The Extreme Conditions Beamline P02.2 and the Extreme Conditions Science Infrastructure at PETRA III

    PubMed Central

    Liermann, H.-P.; Konôpková, Z.; Morgenroth, W.; Glazyrin, K.; Bednarčik, J.; McBride, E. E.; Petitgirard, S.; Delitz, J. T.; Wendt, M.; Bican, Y.; Ehnes, A.; Schwark, I.; Rothkirch, A.; Tischer, M.; Heuer, J.; Schulte-Schrepping, H.; Kracht, T.; Franz, H.

    2015-01-01

    A detailed description is presented of the Extreme Conditions Beamline P02.2 for micro X-ray diffraction studies of matter at simultaneous high pressure and high/low temperatures at PETRA III, in Hamburg, Germany. This includes performance of the X-ray optics and instrumental resolution as well as an overview of the different sample environments available for high-pressure studies in the diamond anvil cell. Particularly emphasized are the high-brilliance and high-energy X-ray diffraction capabilities of the beamline in conjunction with the use of fast area detectors to conduct time-resolved compression studies in the millisecond time regime. Finally, the current capability of the Extreme Conditions Science Infrastructure to support high-pressure research at the Extreme Conditions Beamline and other PETRA III beamlines is described. PMID:26134794

  11. Quantile regression modeling for Malaysian automobile insurance premium data

    NASA Astrophysics Data System (ADS)

    Fuzi, Mohd Fadzli Mohd; Ismail, Noriszura; Jemain, Abd Aziz

    2015-09-01

    Quantile regression is a robust regression to outliers compared to mean regression models. Traditional mean regression models like Generalized Linear Model (GLM) are not able to capture the entire distribution of premium data. In this paper we demonstrate how a quantile regression approach can be used to model net premium data to study the effects of change in the estimates of regression parameters (rating classes) on the magnitude of response variable (pure premium). We then compare the results of quantile regression model with Gamma regression model. The results from quantile regression show that some rating classes increase as quantile increases and some decrease with decreasing quantile. Further, we found that the confidence interval of median regression (τ = O.5) is always smaller than Gamma regression in all risk factors.

  12. Atmosphere and water loss from early Mars under extreme solar wind and extreme ultraviolet conditions.

    PubMed

    Terada, Naoki; Kulikov, Yuri N; Lammer, Helmut; Lichtenegger, Herbert I M; Tanaka, Takashi; Shinagawa, Hiroyuki; Zhang, Tielong

    2009-01-01

    The upper limits of the ion pickup and cold ion outflow loss rates from the early martian atmosphere shortly after the Sun arrived at the Zero-Age-Main-Sequence (ZAMS) were investigated. We applied a comprehensive 3-D multi-species magnetohydrodynamic (MHD) model to an early martian CO(2)-rich atmosphere, which was assumed to have been exposed to a solar XUV [X-ray and extreme ultraviolet (EUV)] flux that was 100 times higher than today and a solar wind that was about 300 times denser. We also assumed the late onset of a planetary magnetic dynamo, so that Mars had no strong intrinsic magnetic field at that early period. We found that, due to such extreme solar wind-atmosphere interaction, a strong magnetic field of about approximately 4000 nT was induced in the entire dayside ionosphere, which could efficiently protect the upper atmosphere from sputtering loss. A planetary obstacle ( approximately ionopause) was formed at an altitude of about 1000 km above the surface due to the drag force and the mass loading by newly created ions in the highly extended upper atmosphere. We obtained an O(+) loss rate by the ion pickup process, which takes place above the ionopause, of about 1.5 x 10(28) ions/s during the first < or =150 million years, which is about 10(4) times greater than today and corresponds to a water loss equivalent to a global martian ocean with a depth of approximately 8 m. Consequently, even if the magnetic protection due to the expected early martian magnetic dynamo is neglected, ion pickup and sputtering were most likely not the dominant loss processes for the planet's initial atmosphere and water inventory. However, it appears that the cold ion outflow into the martian tail, due to the transfer of momentum from the solar wind to the ionospheric plasma, could have removed a global ocean with a depth of 10-70 m during the first < or =150 million years after the Sun arrived at the ZAMS.

  13. Managing more than the mean: using quantile regression to identify factors related to large elk groups.

    PubMed

    Brennan, Angela; Cross, Paul C; Creel, Scott

    2015-12-01

    Animal group size distributions are often right-skewed, whereby most groups are small, but most individuals occur in larger groups that may also disproportionately affect ecology and policy. In this case, examining covariates associated with upper quantiles of the group size distribution could facilitate better understanding and management of large animal groups.We studied wintering elk groups in Wyoming, where group sizes span several orders of magnitude, and issues of disease, predation and property damage are affected by larger group sizes. We used quantile regression to evaluate relationships between the group size distribution and variables of land use, habitat, elk density and wolf abundance to identify conditions important to larger elk groups.We recorded 1263 groups ranging from 1 to 1952 elk and found that across all quantiles of group size, group sizes were larger in open habitat and on private land, but the largest effect occurred between irrigated and non-irrigated land [e.g. the 90th quantile group size increased by 135 elk (95% CI = 42, 227) on irrigation].Only upper quantile group sizes were positively related to broad-scale measures of elk density and wolf abundance. For wolf abundance, this effect was greater on elk groups found in open habitats and private land than those in closed habitats or public land. If we had limited our analysis to mean or median group sizes, we would not have detected these effects. Synthesis and applications. Our analysis of elk group size distributions using quantile regression suggests that private land, irrigation, open habitat, elk density and wolf abundance can affect large elk group sizes. Thus, to manage larger groups by removal or dispersal of individuals, we recommend incentivizing hunting on private land (particularly if irrigated) during the regular and late hunting seasons, promoting tolerance of wolves on private land (if elk aggregate in these areas to avoid wolves) and creating more winter range and

  14. Chemistry of H2O and HF Under Extreme Conditions

    SciTech Connect

    Fried, L; Goldman, N; Kuo, I W; Mundy, C

    2005-11-28

    The predicted high pressure superionic phases of water and HF are investigated via ab initio molecular dynamics. These phases could potentially be achieved through either static compression with heating or through shock compression. We study water at densities of 2.0-3.0 g/cc (34-115 GPa) along the 2000K isotherm.We find that extremely rapid (superionic) diffusion of protons occurs in a fluid phase at pressures between 34 and 58 GPa. A transition to a stable body-centered cubic (bcc) O lattice with superionic proton conductivity is observed between 70 and 75 GPa, a much higher pressure than suggested in prior work. We find that all molecular species at pressures greater than 75 GPa are too short lived to be classified as bound states. Up to 95 GPa, we find a solid superionic phase characterized by covalent O-H bonding. Above 95 GPa, a transient network phase is found characterized by symmetric O-H hydrogen bonding with nearly 50% covalent character. Ab initio molecular dynamics simulations of HF were conducted at densities of 1.8-4.0 g/cc along the 900 K isotherm. According to our simulations, a unique form of (symmetric) hydrogen bonding could play a significant role in superionic conduction. Our work shows that superionic phases could be more prevalent in hydrogen bonded systems than previously thought, such as HCl and HBr.

  15. Behavior of whey protein concentrates under extreme storage conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The overseas demand for whey protein concentrates (WPC) has increased steadily in recent years. Emergency aid foods often include WPC, but shelf-life studies of whey proteins under different shipment and storage conditions have not been conducted in the last 50 yr. Microbial quality, compound form...

  16. Extreme drought: summary of hydrologic conditions in Georgia, 2011

    USGS Publications Warehouse

    Knaak, Andrew E.; Frantz, Eric R.; Peck, Michael F.

    2013-01-01

    The United States Geological Survey (USGS) Georgia Water Science Center (GaWSC) maintains a long-term hydrologic monitoring network of more than 320 realtime streamgages, including 10 real-time lake-level monitoring stations and 63 realtime water-quality monitors. Additionally, the GaWSC operates more than 180 groundwater wells, 35 of which are real-time. One of the many benefits from this monitoring network is that the data analyses provide an overview of the hydrologic conditions of rivers, creeks, reservoirs, and aquifers in Georgia.

  17. Extreme drought-summary of hydrologic conditions in Georgia, 2012

    USGS Publications Warehouse

    Knaak, Andrew E.; Peck, Michael F.

    2014-01-01

    The U.S. Geological Survey (USGS) Georgia Water Science Center (GaWSC) maintains a long-term hydrologic monitoring network of more than 330 real-time streamgages, including 10 real-time lake-level monitoring stations, 63 real-time water-quality monitors, and 48 water-quality sampling stations. Additionally, the GaWSC operates more than 180 groundwater monitoring wells, 42 of which are real-time. One of the many benefits from this monitoring network is that the data analyses provide a well distributed overview of the hydrologic conditions of creeks, rivers, reservoirs, and aquifers in Georgia.

  18. TRISO-Coated Fuel Durability Under Extreme Conditions

    SciTech Connect

    Reimanis, Ivar; Gorman, Brian; Butt, Darryl

    2014-03-30

    The PIs propose to examine TRISO-coated particles (SiC and ZrC coatings) in an integrated two-part study. In the first part, experiments will be performed to assess the reaction kinetics of the carbides under CO-CO2 environments at temperatures up to 1800 degree C. Kinetic model will be applied to describe the degradation. Scanning and transmission electron microscopy will be employed to establish the chemical and microstructure evolution under the imposed environmental conditions. The second part of the proposed work focuses on establishing the role of the high temperature, environmental exposure described above on the mechanical behavior of TRISO-coated particles. Electron microscopy and other advanced techniques will be subsequently performed to evaluate failure mechanisms. The work is expected to reveal relationships between corrosion reactions, starting material characteristics (polytype of SiC, impurity concentration, flaw distribution), flaw healing behavior, and crack growth.

  19. Matter under Extreme Conditions: Advances Based on Static Compression

    NASA Astrophysics Data System (ADS)

    Hemley, Russell

    2008-04-01

    Current technological advances make it possible to perform experiments on materials at static or sustained conditions to multimegabar pressures (several hundred GPa) and several thousand degree (˜1 eV) temperatures. Densities of condensed matter can now be increased over an order of magnitude, causing novel transformations and new physical and chemical phenomena to occur. Growth in this area has been made possible by advances in diamond-anvil cell methods coupled with a wide range of probes, including x-ray diffraction, spectroscopy, inelastic scattering, radiography, and infrared spectroscopy using synchrotron radiation. Examples include investigations of dense hydrogen; transformations in molecular materials; novel ceramics; new types of superconductors, electronic, and magnetic materials; and liquids and amorphous materials. Particularly exciting are new developments in time resolved methods and coupling of static and dynamic compression techniques made possible by the creation of new large-scale facilities and novel technologies.

  20. The Sphagnum microbiome supports bog ecosystem functioning under extreme conditions.

    PubMed

    Bragina, Anastasia; Oberauner-Wappis, Lisa; Zachow, Christin; Halwachs, Bettina; Thallinger, Gerhard G; Müller, Henry; Berg, Gabriele

    2014-09-01

    Sphagnum-dominated bogs represent a unique yet widely distributed type of terrestrial ecosystem and strongly contribute to global biosphere functioning. Sphagnum is colonized by highly diverse microbial communities, but less is known about their function. We identified a high functional diversity within the Sphagnum microbiome applying an Illumina-based metagenomic approach followed by de novo assembly and MG-RAST annotation. An interenvironmental comparison revealed that the Sphagnum microbiome harbours specific genetic features that distinguish it significantly from microbiomes of higher plants and peat soils. The differential traits especially support ecosystem functioning by a symbiotic lifestyle under poikilohydric and ombrotrophic conditions. To realise a plasticity-stability balance, we found abundant subsystems responsible to cope with oxidative and drought stresses, to exchange (mobile) genetic elements, and genes that encode for resistance to detrimental environmental factors, repair and self-controlling mechanisms. Multiple microbe-microbe and plant-microbe interactions were also found to play a crucial role as indicated by diverse genes necessary for biofilm formation, interaction via quorum sensing and nutrient exchange. A high proportion of genes involved in nitrogen cycle and recycling of organic material supported the role of bacteria for nutrient supply. 16S rDNA analysis indicated a higher structural diversity than that which had been previously detected using PCR-dependent techniques. Altogether, the diverse Sphagnum microbiome has the ability to support the life of the host plant and the entire ecosystem under changing environmental conditions. Beyond this, the moss microbiome presents a promising bio-resource for environmental biotechnology - with respect to novel enzymes or stress-protecting bacteria.

  1. A multiscale strength model for extreme loading conditions

    NASA Astrophysics Data System (ADS)

    Barton, N. R.; Bernier, J. V.; Becker, R.; Arsenlis, A.; Cavallo, R.; Marian, J.; Rhee, M.; Park, H.-S.; Remington, B. A.; Olson, R. T.

    2011-04-01

    We present a multiscale strength model in which strength depends on pressure, strain rate, temperature, and evolving dislocation density. Model construction employs an information passing paradigm to span from the atomistic level to the continuum level. Simulation methods in the overall hierarchy include density functional theory, molecular statics, molecular dynamics, dislocation dynamics, and continuum based approaches. Given the nature of the subcontinuum simulations upon which the strength model is based, the model is particularly appropriate to strain rates in excess of 104 s-1. Strength model parameters are obtained entirely from the hierarchy of simulation methods to obtain a full strength model in a range of loading conditions that so far has been inaccessible to direct measurement of material strength. Model predictions compare favorably with relevant high energy density physics (HEDP) experiments that have bearing on material strength. The model is used to provide insight into HEDP experimental observations and to make predictions of what might be observable using dynamic x-ray diffraction based experimental methods.

  2. Studies on carbon nanotubes and fullerenes under extreme conditions.

    PubMed

    Avasthi, D K; Kumar, Amit; Singhal, Rahul; Tripathi, Ambuj; Misra, D S

    2010-06-01

    Ion beam irradiation of materials can cause defect creation as well as defect annealing depending on the ion beam parameters such as ion fluence and the energy loss of ions in materials. In present review, we report the behaviour of carbon nanotubes under exteme conditions such as laser irradiation and ion irradiation. The reorientation of the crystalline planes in confined single crystal nickel nanorods inside carbon nano tube, induced by heavy ion irradiation, is reported. Axial buckling of nickel nanorods as well as walls of carbon nano tubes in nickel encapsulated carbon nano tubes under swift heavy ion irradiation at high fluence is observed. At high fluence, amorphization of nickel nanorods inside carbon nanotubes is also observed. Axial buckling and amorphization under ion irradiation at high fluence are dependent on the number of walls in carbon nanotubes. High resolution transmission electron microscopy was used to investigate the reorientations, buckling and amorphization of metal filled nanotubes. Synthesis of carbon nanowires by ion irradiation of fullerene and their field emission properties with comparison to that of unirradiated and irradiated carbon nanotubes are reported. An international scenario with future prospects of ion beam studies in carbon nanotube is briefed.

  3. Incipient and Progressive Damage in Polyethylene Under Extreme Tensile Conditions

    SciTech Connect

    Furmanski, Jevan; Brown, Eric; Trujillo, Carl P.; Martinez, Daniel Tito; Gray, George T. III

    2012-06-07

    The Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) test was developed at LANL by Gray and coworkers to probe the tensile response of materials at large strains (>1) and high strain-rates (>1000/s) by firing projectiles through a conical die at 300-700 m/s. This technique has recently been applied to various polymers, such as the fluoropolymers PTFE (Teflon) and the chemically similar PCTFE, which respectively exhibited catastrophic fragmentation and distributed dynamic necking. This work details investigations of the Dyn-Ten-Ext response of high density polyethylene, both to failure and sub-critical conditions. At large extrusion ratios ({approx}7.4) and high velocities, such as those previously employed, HDPE catastrophically fragmented in a craze-like manner in the extruded jet. At more modest extrusion ratios and high velocities the specimen extruded a stable jet that ruptured cleanly, and at lower velocities was recovered intact after sustaining substantial internal damage. Thermomechanical finite element simulations showed that the damage corresponded to a locus of shear stress in the presence of hydrostatic tension. X-ray computed tomography corroborated the prediction of a shear damage mechanism by finding the region of partially damaged material to consist of macroscopic shear-mode cracks nearly aligned with the extrusion axis, originating from the location of damage inception.

  4. Ultrastructural morphologic changes in mycobacterial biofilm in different extreme condition.

    PubMed

    Kumar, Virendra; Sachan, Tarun Kumar; Sharma, Pragya; Rawat, Krishna Dutta

    2015-02-01

    The aim of this study was to investigate the morphologic and ultrastructural features of biofilms of slow and fast-growing mycobacteria in different stress conditions, presence and absence of oleic acid albumin dextrose catalase (OADC) enrichment and at different temperatures: 30, 37 and 42 °C. Four hundred mycobacterial isolates were taken. The biomass of each biofilm was quantified using a modified microtiter plate assay method. Isolates were divided into those that formed fully established biofilms, moderately attached biofilms and weakly adherent biofilms by comparison with a known biofilm-forming strain. The large quantity of biofilm was produced by Mycobacterium smegmatis at temperature 37 and 42 °C as compared to 30 °C. Mycobacterium fortuitum and M. avium developed large amount of biofilm at 30 °C as compared to 37 and 42 °C. Mycobacterium tuberculosis developed strong biofilm at 37 °C and no biofilm at 30 and 42 °C in Sauton's media. The selected non-tuberculous mycobacteria and H37Rv developed strong biofilm in the presence of OADC enrichment in Sauton's medium. Microscopic examination of biofilms by scanning electron microscopy revealed that poorly adherent biofilm formers failed to colonize the entire surface of the microtiter well. While moderately adherent biofilm formers grew in uniform monolayers but failed to develop a mature three-dimensional structure. SEM analysis of an isolate representative of the group formed fully established biofilms with a textured, multi-layered, three-dimensional structure.

  5. The matter in extreme conditions instrument at the Linac Coherent Light Source

    DOE PAGES

    Nagler, Bob; Arnold, Brice; Bouchard, Gary; ...

    2015-04-21

    The LCLS beam provides revolutionary capabilities for studying the transient behavior of matter in extreme conditions. The particular strength of the Matter in Extreme Conditions instrument is that it combines the unique LCLS beam with high-power optical laser beams, and a suite of dedicated diagnostics tailored for this field of science. In this paper an overview of the beamline, the capabilities of the instrumentation, and selected highlights of experiments and commissioning results are presented.

  6. [Sportsmanship and physical preparedness of junior physicians to work in extreme conditions].

    PubMed

    Timofeev, D A; Madzigon, L K

    2010-04-01

    Were examined characteristics of physical development and preparedness of physicians with different value of successfulness of activity in extreme conditions for the period of their first specialization in internship training. Was shown that to the end of study physiological resources of physicians decrease, it could have negative consequences on their activity in extreme conditions. Was made a conclusion that it's necessary to add lessons of physical preparedness, when the main attention would be paid to development of force qualities.

  7. The Matter in Extreme Conditions instrument at the Linac Coherent Light Source

    PubMed Central

    Nagler, Bob; Arnold, Brice; Bouchard, Gary; Boyce, Richard F.; Boyce, Richard M.; Callen, Alice; Campell, Marc; Curiel, Ruben; Galtier, Eric; Garofoli, Justin; Granados, Eduardo; Hastings, Jerry; Hays, Greg; Heimann, Philip; Lee, Richard W.; Milathianaki, Despina; Plummer, Lori; Schropp, Andreas; Wallace, Alex; Welch, Marc; White, William; Xing, Zhou; Yin, Jing; Young, James; Zastrau, Ulf; Lee, Hae Ja

    2015-01-01

    The LCLS beam provides revolutionary capabilities for studying the transient behavior of matter in extreme conditions. The particular strength of the Matter in Extreme Conditions instrument is that it combines the unique LCLS beam with high-power optical laser beams, and a suite of dedicated diagnostics tailored for this field of science. In this paper an overview of the beamline, the capabilities of the instrumentation, and selected highlights of experiments and commissioning results are presented. PMID:25931063

  8. Ensuring the consistancy of Flow Direction Curve reconstructions: the 'quantile solidarity' approach

    NASA Astrophysics Data System (ADS)

    Poncelet, Carine; Andreassian, Vazken; Oudin, Ludovic

    2015-04-01

    Flow Duration Curves (FDCs) are a hydrologic tool describing the distribution of streamflows at a catchment outlet. FDCs are usually used for calibration of hydrological models, managing water quality and classifying catchments, among others. For gauged catchments, empirical FDCs can be computed from streamflow records. For ungauged catchments, on the other hand, FDCs cannot be obtained from streamflow records and must therefore be obtained in another manner, for example through reconstructions. Regression-based reconstructions are methods relying on the evaluation of quantiles separately from catchments' attributes (climatic or physical features).The advantage of this category of methods is that it is informative about the processes and it is non-parametric. However, the large number of parameters required can cause unwanted artifacts, typically reconstructions that do not always produce increasing quantiles. In this paper we propose a new approach named Quantile Solidarity (QS), which is applied under strict proxy-basin test conditions (Klemes, 1986) to a set of 600 French catchments. Half of the catchments are considered as gauged and used to calibrate the regression and compute residuals of the regression. The QS approach consists in a three-step regionalization scheme, which first links quantile values to physical descriptors, then reduces the number of regression parameters and finally exploits the spatial correlation of the residuals. The innovation is the utilisation of the parameters continuity across the quantiles to dramatically reduce the number of parameters. The second half of catchment is used as an independent validation set over which we show that the QS approach ensures strictly growing FDC reconstructions in ungauged conditions. Reference: V. KLEMEŠ (1986) Operational testing of hydrological simulation models, Hydrological Sciences Journal, 31:1, 13-24

  9. Modeling energy expenditure in children and adolescents using quantile regression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advanced mathematical models have the potential to capture the complex metabolic and physiological processes that result in energy expenditure (EE). Study objective is to apply quantile regression (QR) to predict EE and determine quantile-dependent variation in covariate effects in nonobese and obes...

  10. Matching a Distribution by Matching Quantiles Estimation

    PubMed Central

    Sgouropoulos, Nikolaos; Yao, Qiwei; Yastremiz, Claudia

    2015-01-01

    Motivated by the problem of selecting representative portfolios for backtesting counterparty credit risks, we propose a matching quantiles estimation (MQE) method for matching a target distribution by that of a linear combination of a set of random variables. An iterative procedure based on the ordinary least-squares estimation (OLS) is proposed to compute MQE. MQE can be easily modified by adding a LASSO penalty term if a sparse representation is desired, or by restricting the matching within certain range of quantiles to match a part of the target distribution. The convergence of the algorithm and the asymptotic properties of the estimation, both with or without LASSO, are established. A measure and an associated statistical test are proposed to assess the goodness-of-match. The finite sample properties are illustrated by simulation. An application in selecting a counterparty representative portfolio with a real dataset is reported. The proposed MQE also finds applications in portfolio tracking, which demonstrates the usefulness of combining MQE with LASSO. PMID:26692592

  11. Matching a Distribution by Matching Quantiles Estimation.

    PubMed

    Sgouropoulos, Nikolaos; Yao, Qiwei; Yastremiz, Claudia

    2015-04-03

    Motivated by the problem of selecting representative portfolios for backtesting counterparty credit risks, we propose a matching quantiles estimation (MQE) method for matching a target distribution by that of a linear combination of a set of random variables. An iterative procedure based on the ordinary least-squares estimation (OLS) is proposed to compute MQE. MQE can be easily modified by adding a LASSO penalty term if a sparse representation is desired, or by restricting the matching within certain range of quantiles to match a part of the target distribution. The convergence of the algorithm and the asymptotic properties of the estimation, both with or without LASSO, are established. A measure and an associated statistical test are proposed to assess the goodness-of-match. The finite sample properties are illustrated by simulation. An application in selecting a counterparty representative portfolio with a real dataset is reported. The proposed MQE also finds applications in portfolio tracking, which demonstrates the usefulness of combining MQE with LASSO.

  12. Estimation of peak discharge quantiles for selected annual exceedance probabilities in northeastern Illinois

    USGS Publications Warehouse

    Over, Thomas; Saito, Riki J.; Veilleux, Andrea; Sharpe, Jennifer B.; Soong, David T.; Ishii, Audrey

    2016-06-28

    This report provides two sets of equations for estimating peak discharge quantiles at annual exceedance probabilities (AEPs) of 0.50, 0.20, 0.10, 0.04, 0.02, 0.01, 0.005, and 0.002 (recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, respectively) for watersheds in Illinois based on annual maximum peak discharge data from 117 watersheds in and near northeastern Illinois. One set of equations was developed through a temporal analysis with a two-step least squares-quantile regression technique that measures the average effect of changes in the urbanization of the watersheds used in the study. The resulting equations can be used to adjust rural peak discharge quantiles for the effect of urbanization, and in this study the equations also were used to adjust the annual maximum peak discharges from the study watersheds to 2010 urbanization conditions.The other set of equations was developed by a spatial analysis. This analysis used generalized least-squares regression to fit the peak discharge quantiles computed from the urbanization-adjusted annual maximum peak discharges from the study watersheds to drainage-basin characteristics. The peak discharge quantiles were computed by using the Expected Moments Algorithm following the removal of potentially influential low floods defined by a multiple Grubbs-Beck test. To improve the quantile estimates, generalized skew coefficients were obtained from a newly developed regional skew model in which the skew increases with the urbanized land use fraction. The drainage-basin characteristics used as explanatory variables in the spatial analysis include drainage area, the fraction of developed land, the fraction of land with poorly drained soils or likely water, and the basin slope estimated as the ratio of the basin relief to basin perimeter.This report also provides the following: (1) examples to illustrate the use of the spatial and urbanization-adjustment equations for estimating peak discharge quantiles at

  13. The Effectiveness of Drinking and Driving Policies for Different Alcohol-Related Fatalities: A Quantile Regression Analysis

    PubMed Central

    Ying, Yung-Hsiang; Wu, Chin-Chih; Chang, Koyin

    2013-01-01

    To understand the impact of drinking and driving laws on drinking and driving fatality rates, this study explored the different effects these laws have on areas with varying severity rates for drinking and driving. Unlike previous studies, this study employed quantile regression analysis. Empirical results showed that policies based on local conditions must be used to effectively reduce drinking and driving fatality rates; that is, different measures should be adopted to target the specific conditions in various regions. For areas with low fatality rates (low quantiles), people’s habits and attitudes toward alcohol should be emphasized instead of transportation safety laws because “preemptive regulations” are more effective. For areas with high fatality rates (or high quantiles), “ex-post regulations” are more effective, and impact these areas approximately 0.01% to 0.05% more than they do areas with low fatality rates. PMID:24084673

  14. Regional flood frequency analysis using spatial proximity and basin characteristics: Quantile regression vs. parameter regression technique

    NASA Astrophysics Data System (ADS)

    Ahn, Kuk-Hyun; Palmer, Richard

    2016-09-01

    Despite wide use of regression-based regional flood frequency analysis (RFFA) methods, the majority are based on either ordinary least squares (OLS) or generalized least squares (GLS). This paper proposes 'spatial proximity' based RFFA methods using the spatial lagged model (SLM) and spatial error model (SEM). The proposed methods are represented by two frameworks: the quantile regression technique (QRT) and parameter regression technique (PRT). The QRT develops prediction equations for flooding quantiles in average recurrence intervals (ARIs) of 2, 5, 10, 20, and 100 years whereas the PRT provides prediction of three parameters for the selected distribution. The proposed methods are tested using data incorporating 30 basin characteristics from 237 basins in Northeastern United States. Results show that generalized extreme value (GEV) distribution properly represents flood frequencies in the study gages. Also, basin area, stream network, and precipitation seasonality are found to be the most effective explanatory variables in prediction modeling by the QRT and PRT. 'Spatial proximity' based RFFA methods provide reliable flood quantile estimates compared to simpler methods. Compared to the QRT, the PRT may be recommended due to its accuracy and computational simplicity. The results presented in this paper may serve as one possible guidepost for hydrologists interested in flood analysis at ungaged sites.

  15. Resistance of Microorganisms to Extreme Environmental Conditions and Its Contribution to Astrobiology

    NASA Astrophysics Data System (ADS)

    Rampelotto, Pabulo Henrique

    2010-06-01

    In the last decades, substantial changes have occurred regarding what scientists consider the limits of habitable environmental conditions. For every extreme environmental condition investigated, a variety of microorganisms have shown that not only can they tolerate these conditions, but that they also often require these extreme conditions for survival. Microbes can return to life even after hundreds of millions of years. Furthermore, a variety of studies demonstrate that microorganisms can survive under extreme conditions, such as ultracentrifugation, hypervelocity, shock pressure, high temperature variations, vacuums, and different ultraviolet and ionizing radiation intensities, which simulate the conditions that microbes could experience during the ejection from one planet, the journey through space, as well as the impact in another planet. With these discoveries, our knowledge about the biosphere has grown and the putative boundaries of life have expanded. The present work examines the recent discoveries and the principal advances concerning the resistance of microorganisms to extreme environmental conditions, and analyzes its contributions to the development of the main themes of astrobiology: the origins of life, the search for extraterrestrial life, and the dispersion of life in the Universe.

  16. Model averaging quantiles from data censored by a limit of detection.

    PubMed

    Nysen, Ruth; Faes, Christel; Ferrari, Pietro; Verger, Philippe; Aerts, Marc

    2016-03-01

    In chemical risk assessment, it is important to determine the quantiles of the distribution of concentration data. The selection of an appropriate distribution and the estimation of particular quantiles of interest are largely hindered by the omnipresence of observations below the limit of detection, leading to left-censored data. The log-normal distribution is a common choice, but this distribution is not the only possibility and alternatives should be considered as well. Here, we focus on several distributions that are related to the log-normal distribution or that are seminonparametric extensions of the log-normal distribution. Whereas previous work focused on the estimation of the cumulative distribution function, our interest here goes to the estimation of quantiles, particularly in the left tail of the distribution where most of the left-censored data are located. Two different model averaged quantile estimators are defined and compared for different families of candidate models. The models and methods of selection and averaging are further investigated through simulations and illustrated on data of cadmium concentration in food products. The approach is extended to include covariates and to deal with uncertainty about the values of the limit of detection. These extensions are illustrated with (134) cesium measurements from Fukushima Prefecture, Japan. We can conclude that averaged models do achieve good performance characteristics in case no useful prior knowledge about the true distribution is available; that there is no structural difference in the performance of the direct and indirect method; and that, not surprisingly, only the true or closely approximating model can deal with extremely high percentages of censoring.

  17. Influence of extreme ambient temperatures and anaerobic conditions on Peltigera aphthosa (L.) Willd. viability

    NASA Astrophysics Data System (ADS)

    Dyakov, M. Yu.; Insarova, I. D.; Kharabadze, D. E.; Ptushenko, V. V.; Shtaer, O. V.

    2015-11-01

    Lichen are symbiotic systems constituted by heterotrophic fungi (mycobionts) and photosynthetic microorganism (photobionts). These organisms can survive under extreme stress conditions. The aim of this work was to study the influence of low (- 70 °C) or high (+ 70 °C) temperatures, temperature fluctuations from + 70 °C to - 70 °C, and anaerobic conditions on P. aphthosa (L.) Willd. viability. None of the studied stress factors affected significantly photosynthetic and respiratory activity of the thalli. No changes in morphology or ultrastructure of the cells were revealed for both photobiont and mycobiont components after extreme temperature treatment of P. aphthosa thalli. The data show the extreme tolerance of P. aphthosa to some stress factors inherent to the space flight conditions.

  18. Infrared and Terahertz Spectroscopy of Strongly Correlated Electron Systems under Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Kimura, Shin-ichi; Okamura, Hidekazu

    2013-02-01

    Owing to its high brilliance, infrared and terahertz synchrotron radiation (IR/THz-SR) has emerged as a powerful tool for spectroscopy under extreme (i.e., technically more difficult) experimental conditions such as high pressure, high magnetic field, high spatial resolution, and a combination of these. The methodologies for pressure- and magnetic-field-dependent spectroscopy and microscopy using IR/THz-SR have advanced rapidly worldwide. By applying them to strongly correlated electron systems (SCESs), many experimental studies have been performed on their electronic structures and phonon/molecular vibration modes under extreme conditions. Here, we review the recent progress of methodologies of IR/THz-SR spectroscopy and microscopy, and the experimental results on SCESs and other systems obtained under extreme conditions.

  19. Statistical analysis of extreme river flows

    NASA Astrophysics Data System (ADS)

    Mateus, Ayana; Caeiro, Frederico; Gomes, Dora Prata; Sequeira, Inês J.

    2016-12-01

    Floods are recurrent events that can have a catastrophic impact. In this work we are interested in the analysis of a data set of gauged daily flows from the Whiteadder Water river, Scotland. Using statistic techniques based on extreme value theory, we estimate several extreme value parameters, including extreme quantiles and return periods of high levels.

  20. Disease mapping via negative binomial regression M-quantiles.

    PubMed

    Chambers, Ray; Dreassi, Emanuela; Salvati, Nicola

    2014-11-30

    We introduce a semi-parametric approach to ecological regression for disease mapping, based on modelling the regression M-quantiles of a negative binomial variable. The proposed method is robust to outliers in the model covariates, including those due to measurement error, and can account for both spatial heterogeneity and spatial clustering. A simulation experiment based on the well-known Scottish lip cancer data set is used to compare the M-quantile modelling approach with a disease mapping approach based on a random effects model. This suggests that the M-quantile approach leads to predicted relative risks with smaller root mean square error. The paper concludes with an illustrative application of the M-quantile approach, mapping low birth weight incidence data for English Local Authority Districts for the years 2005-2010.

  1. The Extreme Male Brain Theory and Gender Role Behaviour in Persons with an Autism Spectrum Condition

    ERIC Educational Resources Information Center

    Stauder, J. E. A.; Cornet, L. J. M.; Ponds, R. W. H. M.

    2011-01-01

    According to the Extreme Male Brain theory persons with autism possess masculinised cognitive traits. In this study masculinisation of gender role behaviour is evaluated in 25 persons with an autism spectrum condition (ASC) and matched controls with gender role behaviour as part of a shortened version of the Minnesota Multiphasic Personality…

  2. Special Features of the Carbonitriding of Parts of Instrument Bearings Designed for Extreme Service Conditions

    NASA Astrophysics Data System (ADS)

    Smirnov, A. E.; Shevchenko, S. Yu.; Shchipunov, V. S.; Kunyaev, V. E.; Seval'nev, G. S.

    2016-09-01

    A study is made of complexly alloyed steel 8Kh4V9F2-Sh, which is used for fabricating parts of engineering bearings operating under extreme conditions. Vacuum processes are shown to be preferable to gas carburizing for hardening the races of precision bearings. Vacuum carburizing is shown to be an effective technique for forming quality diffusion layers.

  3. Comparison of Extreme Pressure Additive Treat Rates in Soybean and Mineral Oils Under Boundary Lubrication Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditionally, it is considered that, under boundary lubrication conditions, the reduction in friction and wear is mostly dependent on Extreme Pressure (EP) additives, rather than the basestock. However, several studies indicate that vegetable oils also contribute to the lubricity under this regime...

  4. Matter under extreme conditions probed by a seeded free-electron-laser

    SciTech Connect

    Bencivenga, F.; Principi, E.; Cucini, R.; Danailov, M. B.; Demidovich, A.; D’Amico, F.; Di Fonzo, S.; Gessini, A.; Kurdi, N.; Mahne, N.; Raimondi, L.; Zangrando, M.; Masciovecchio, C.; Giangrisostomi, E.; Battistoni, A.; Svetina, C.; Di Cicco, A.; Gunnella, R.; Hatada, K.; Filipponi, A.; and others

    2015-08-17

    FERMI is the first user dedicated seeded free-electron-laser (FEL) working in the extreme ultraviolet (XUV) and soft x-ray range. The EIS-TIMEX experimental end-station was availabe to external users since from the beginning of the user operation of the facility, in Dicember 2012. EIS-TIMEX has been conceived to exploit the unique properties of the FERMI source to study matter under extreme and metastable thermodynamic conditions. We hereby report on its basic parameters and applications, which includes very low jitter (i.e., high time resolution) pump-probe measurements.

  5. Relationship between Urbanization and Cancer Incidence in Iran Using Quantile Regression.

    PubMed

    Momenyan, Somayeh; Sadeghifar, Majid; Sarvi, Fatemeh; Khodadost, Mahmoud; Mosavi-Jarrahi, Alireza; Ghaffari, Mohammad Ebrahim; Sekhavati, Eghbal

    2016-01-01

    Quantile regression is an efficient method for predicting and estimating the relationship between explanatory variables and percentile points of the response distribution, particularly for extreme percentiles of the distribution. To study the relationship between urbanization and cancer morbidity, we here applied quantile regression. This cross-sectional study was conducted for 9 cancers in 345 cities in 2007 in Iran. Data were obtained from the Ministry of Health and Medical Education and the relationship between urbanization and cancer morbidity was investigated using quantile regression and least square regression. Fitting models were compared using AIC criteria. R (3.0.1) software and the Quantreg package were used for statistical analysis. With the quantile regression model all percentiles for breast, colorectal, prostate, lung and pancreas cancers demonstrated increasing incidence rate with urbanization. The maximum increase for breast cancer was in the 90th percentile (β=0.13, p-value<0.001), for colorectal cancer was in the 75th percentile (β=0.048, p-value<0.001), for prostate cancer the 95th percentile (β=0.55, p-value<0.001), for lung cancer was in 95th percentile (β=0.52, p-value=0.006), for pancreas cancer was in 10th percentile (β=0.011, p-value<0.001). For gastric, esophageal and skin cancers, with increasing urbanization, the incidence rate was decreased. The maximum decrease for gastric cancer was in the 90th percentile(β=0.003, p-value<0.001), for esophageal cancer the 95th (β=0.04, p-value=0.4) and for skin cancer also the 95th (β=0.145, p-value=0.071). The AIC showed that for upper percentiles, the fitting of quantile regression was better than least square regression. According to the results of this study, the significant impact of urbanization on cancer morbidity requirs more effort and planning by policymakers and administrators in order to reduce risk factors such as pollution in urban areas and ensure proper nutrition

  6. A hierarchical Bayesian GEV model for improving local and regional flood quantile estimates

    NASA Astrophysics Data System (ADS)

    Lima, Carlos H. R.; Lall, Upmanu; Troy, Tara; Devineni, Naresh

    2016-10-01

    We estimate local and regional Generalized Extreme Value (GEV) distribution parameters for flood frequency analysis in a multilevel, hierarchical Bayesian framework, to explicitly model and reduce uncertainties. As prior information for the model, we assume that the GEV location and scale parameters for each site come from independent log-normal distributions, whose mean parameter scales with the drainage area. From empirical and theoretical arguments, the shape parameter for each site is shrunk towards a common mean. Non-informative prior distributions are assumed for the hyperparameters and the MCMC method is used to sample from the joint posterior distribution. The model is tested using annual maximum series from 20 streamflow gauges located in an 83,000 km2 flood prone basin in Southeast Brazil. The results show a significant reduction of uncertainty estimates of flood quantile estimates over the traditional GEV model, particularly for sites with shorter records. For return periods within the range of the data (around 50 years), the Bayesian credible intervals for the flood quantiles tend to be narrower than the classical confidence limits based on the delta method. As the return period increases beyond the range of the data, the confidence limits from the delta method become unreliable and the Bayesian credible intervals provide a way to estimate satisfactory confidence bands for the flood quantiles considering parameter uncertainties and regional information. In order to evaluate the applicability of the proposed hierarchical Bayesian model for regional flood frequency analysis, we estimate flood quantiles for three randomly chosen out-of-sample sites and compare with classical estimates using the index flood method. The posterior distributions of the scaling law coefficients are used to define the predictive distributions of the GEV location and scale parameters for the out-of-sample sites given only their drainage areas and the posterior distribution of the

  7. Preparation of monolithic silica-chitin composite under extreme biomimetic conditions.

    PubMed

    Bazhenov, Vasilii V; Wysokowski, Marcin; Petrenko, Iaroslav; Stawski, Dawid; Sapozhnikov, Philipp; Born, René; Stelling, Allison L; Kaiser, Sabine; Jesionowski, Teofil

    2015-05-01

    Chitin is a widespread renewable biopolymer that is extensively distributed in the natural world. The high thermal stability of chitin provides an opportunity to develop novel inorganic-organic composites under hydrothermal synthesis conditions in vitro. For the first time, in this work we prepared monolithic silica-chitin composite under extreme biomimetic conditions (80°C and pH 1.5) using three dimensional chitinous matrices isolated from the marine sponge Aplysina cauliformis. The resulting material was studied using light and fluorescence microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy. A mechanism for the silica-chitin interaction after exposure to these hydrothermal conditions is proposed and discussed.

  8. [Experimental evaluation of actoprotective activity of nitrogen-containing heterocyclic compounds derivatives in extreme conditions].

    PubMed

    Tsublova, E G; Ivanova, T G; Ivanova, T N; Iasnetsov, V V

    2013-07-01

    In experiments on nonlinear male mice the ability of new derivatives of nitrogen-containing heterocyclic compounds to increase the physical working capacity in conditions of hyperthermia, hypothermia and acute normobaric hypoxia and hypercapnia has been investigated. It is established, that pyridine derivative IBHF-11 has more expressed positive action in the said conditions. It provided increase of the working capacity of animals at all kinds of extreme influence, and the value of positive action was comparable, and in conditions of acute normobaric hypoxia and hypercapnia exceeded those at the reference products bemitil and bromantan.

  9. Deterioration modeling for condition assessment of flexible pavements considering extreme weather events

    NASA Astrophysics Data System (ADS)

    Hashemi Tari, Yasamin; Shahini Shamsabadi, Salar; Birken, Ralf; Wang, Ming

    2015-04-01

    Accurate pavement management systems are essential for states' Department Of Transportation and roadway agencies to plan for cost-effective maintenance and repair (M and R) strategies. Pavement deterioration model is an imperative component of any pavement management system since the future budget and M and R plans would be developed based on the predicted pavement performance measures. It is crucial for the pavement deterioration models to consider the factors that significantly aggravate the pavement condition. While many studies have highlighted the impact of different environmental, load, and pavement's structure on the life cycle of the pavement, effect of extreme weather events such as Floods and Snow Storms have often been overlooked. In this study, a pavement deterioration model is proposed which would consider the effect of traffic loads, climate conditions, and extreme weather events. Climate, load and performance data has been compiled for over twenty years and for eight states using the Long Term Pavement Performance (LTPP) and National Oceanic and Atmospheric Administration (NOAA) databases. A stepwise regression approach is undertaken to quantify the effect of the extreme weather events, along with other influential factors on pavement performance in terms of International Roughness Index (IRI). Final results rendered more than 90% correlation with the quantified impact values of extreme weather events.

  10. Distribution patterns of terricolous and saxicolous lichens in extreme desert conditions

    NASA Astrophysics Data System (ADS)

    Temina, M.

    2012-04-01

    The investigation of biodiversity in stressful habitats is of great interest because it elucidates relationships between organisms and their environment, as well as revealing the mechanisms of their survival and adaptation to extreme conditions. Deserts represent such stressful habitats where harsh climate and limited resources greatly influence the formation of biota. In order to understand the link between microscale environmental variability in extreme arid conditions and lichen biodiversity patterns, we conducted the present study. For this purpose, the structure and distribution of lichen communities on soil and cobbles at six stations at "Evolution Canyon" III (EC III), Nahal Shaharut, in the extreme southern Negev, Israel, were examined. The opposite slopes of the canyon represented specific ecological niches characterized by sharply different microclimatic conditions. The following characteristics of lichen communities were studied: species richness, systematic diversity, biogeographical elements, frequencies and distribution of species, their morphological and anatomical characteristics, reproductive strategy, and ecological peculiarities. In the research site three environmental variables were evaluated: soil moisture, and temperatures of soil and cobbles. The Canonical Correspondence Analysis was used to study the influence of these ecological variables on the distribution of lichen species. The lichen diversity of EC III was very poor and comprised 12 species (3 cyanoliches on soil vs. 9 phycolichens on cobbles). Most of them belong to a specific group of arid endemic elements, adapted to survive in extreme arid conditions in the deserts of the Levant. The harsh desert conditions of the canyon negatively influence the reproductive ability of lichens. This influence is expressed in the decreased sizes of fruit bodies in some species, and the frequent occurrence of sterile specimens among lichens found in the canyon. A comparative analysis of structure

  11. Estimating risks to aquatic life using quantile regression

    USGS Publications Warehouse

    Schmidt, Travis S.; Clements, William H.; Cade, Brian S.

    2012-01-01

    One of the primary goals of biological assessment is to assess whether contaminants or other stressors limit the ecological potential of running waters. It is important to interpret responses to contaminants relative to other environmental factors, but necessity or convenience limit quantification of all factors that influence ecological potential. In these situations, the concept of limiting factors is useful for data interpretation. We used quantile regression to measure risks to aquatic life exposed to metals by including all regression quantiles (τ  =  0.05–0.95, by increments of 0.05), not just the upper limit of density (e.g., 90th quantile). We measured population densities (individuals/0.1 m2) of 2 mayflies (Rhithrogena spp., Drunella spp.) and a caddisfly (Arctopsyche grandis), aqueous metal mixtures (Cd, Cu, Zn), and other limiting factors (basin area, site elevation, discharge, temperature) at 125 streams in Colorado. We used a model selection procedure to test which factor was most limiting to density. Arctopsyche grandis was limited by other factors, whereas metals limited most quantiles of density for the 2 mayflies. Metals reduced mayfly densities most at sites where other factors were not limiting. Where other factors were limiting, low mayfly densities were observed despite metal concentrations. Metals affected mayfly densities most at quantiles above the mean and not just at the upper limit of density. Risk models developed from quantile regression showed that mayfly densities observed at background metal concentrations are improbable when metal mixtures are at US Environmental Protection Agency criterion continuous concentrations. We conclude that metals limit potential density, not realized average density. The most obvious effects on mayfly populations were at upper quantiles and not mean density. Therefore, we suggest that policy developed from mean-based measures of effects may not be as useful as policy based on the concept of

  12. Variable Selection for Nonparametric Quantile Regression via Smoothing Spline AN OVA

    PubMed Central

    Lin, Chen-Yen; Bondell, Howard; Zhang, Hao Helen; Zou, Hui

    2014-01-01

    Quantile regression provides a more thorough view of the effect of covariates on a response. Nonparametric quantile regression has become a viable alternative to avoid restrictive parametric assumption. The problem of variable selection for quantile regression is challenging, since important variables can influence various quantiles in different ways. We tackle the problem via regularization in the context of smoothing spline ANOVA models. The proposed sparse nonparametric quantile regression (SNQR) can identify important variables and provide flexible estimates for quantiles. Our numerical study suggests the promising performance of the new procedure in variable selection and function estimation. Supplementary materials for this article are available online. PMID:24554792

  13. Dynamic response analysis of a heavy commercial vehicle subjected to extreme road operating conditions

    NASA Astrophysics Data System (ADS)

    Chinnaraj, K.; Mangalaramanan, S. P.; Lakshmana Rao, C.

    2009-08-01

    Wheel excitations measured on a heavy commercial vehicle by driving it through extreme road operating conditions, are considered as inputs to perform dynamic response analysis in a simulated laboratory and computational environment. From initial modal analysis results using finite elements, critical vehicle frame rail locations are identified for dynamic laboratory strain measurements on a six poster road load simulator that employs dynamic wheel excitations as input. Dynamic stresses calculated from measured strain values are then compared with computationally obtained stress results on each of these locations. This study also points out all geometric locations and vibration modes that may affect the design behavior of the frame members under extreme road operating conditions. The results obtained from this work can be considered for further fatigue life prediction and design optimization of chassis frame rail assembly.

  14. Extreme conditions over Europe and North America: role of the Atlantic Multidecadal Variability

    NASA Astrophysics Data System (ADS)

    Ruprich-Robert, Yohan; Msadek, Rym; Delworth, Tom

    2016-04-01

    The Atlantic Multidecadal Variability (AMV) is the result and possibly the source of marked modulations of the climate over many areas of the globe. For instance, the relatively warm and dry climate of North America throughout the 30-yr interval of 1931-60, during which the Dust Bowl and the 1950's drought occurred, has been linked to the concomitant warm phase of the AMV. During this period relative warm and wet conditions prevailed over Europe. After 1960, the Atlantic began to cool, and for almost three decades the North American climate turned wetter and cooler whereas Europe experienced cooler and dryer conditions. However, the shortness of the historical observations compared to the AMV period suggested by longer proxy (~60-80yr) does not allow to firmly conclude on the causal effect of the AMV. We use a model approach to isolate the causal role of the AMV on the occurrence of extreme events over Europe and North America. We present experiments based on two GFDL global climate models, a low resolution version, CM2.1 and a higher resolution model for the atmospheric component, FLOR. In both model experiments sea surface temperatures in the North Atlantic sector are restored to the observed AMV pattern, while the other basins are left fully coupled. In order to explore and robustly isolate the AMV impacts on extreme events, we use large ensemble simulations (100 members for CM2.1 and 50 for FLOR) that we run for 20 years. We find that a positive phase of the AMV increases the frequency of occurrence of drought over North America and of extremely cold/warm conditions over Northern/Central Europe during winter/summer. Interestingly, we find that the AMV impacts on these extreme conditions are modulated by the Pacific response to the AMV itself. Members that develop a weak Pacific response show more extreme events over Europe whereas those that develop a strong Pacific response show more extreme events over North America.

  15. Straw mulching reduces the harmful effects of extreme hydrological and temperature conditions in citrus orchards.

    PubMed

    Liu, Yi; Wang, Jing; Liu, Dongbi; Li, Zhiguo; Zhang, Guoshi; Tao, Yong; Xie, Juan; Pan, Junfeng; Chen, Fang

    2014-01-01

    Extreme weather conditions with negative impacts can strongly affect agricultural production. In the Danjiangkou reservoir area, citrus yields were greatly influenced by cold weather conditions and drought stress in 2011. Soil straw mulching (SM) practices have a major effect on soil water and thermal regimes. A two-year field experiment was conducted to evaluate whether the SM practices can help achieve favorable citrus fruit yields. Results showed that the annual total runoff was significantly (P<0.05) reduced with SM as compared to the control (CK). Correspondingly, mean soil water storage in the top 100 cm of the soil profile was increased in the SM as compared to the CK treatment. However, this result was significant only in the dry season (Jan to Mar), and not in the wet season (Jul to Sep) for both years. Interestingly, the SM treatment did not significantly increase citrus fruit yield in 2010 but did so in 2011, when the citrus crop was completely destroyed (zero fruit yield) in the CK treatment plot due to extremely low temperatures during the citrus overwintering stage. The mulch probably acted as an insulator, resulting in smaller fluctuations in soil temperature in the SM than in the CK treatment. The results suggested that the small effects on soil water and temperature changes created by surface mulch had limited impact on citrus fruit yield in a normal year (e.g., in 2010). However, SM practices can positively impact citrus fruit yield in extreme weather conditions.

  16. Quantile uncertainty and value-at-risk model risk.

    PubMed

    Alexander, Carol; Sarabia, José María

    2012-08-01

    This article develops a methodology for quantifying model risk in quantile risk estimates. The application of quantile estimates to risk assessment has become common practice in many disciplines, including hydrology, climate change, statistical process control, insurance and actuarial science, and the uncertainty surrounding these estimates has long been recognized. Our work is particularly important in finance, where quantile estimates (called Value-at-Risk) have been the cornerstone of banking risk management since the mid 1980s. A recent amendment to the Basel II Accord recommends additional market risk capital to cover all sources of "model risk" in the estimation of these quantiles. We provide a novel and elegant framework whereby quantile estimates are adjusted for model risk, relative to a benchmark which represents the state of knowledge of the authority that is responsible for model risk. A simulation experiment in which the degree of model risk is controlled illustrates how to quantify Value-at-Risk model risk and compute the required regulatory capital add-on for banks. An empirical example based on real data shows how the methodology can be put into practice, using only two time series (daily Value-at-Risk and daily profit and loss) from a large bank. We conclude with a discussion of potential applications to nonfinancial risks.

  17. Analysis of extreme summers and prior late winter/spring conditions in central Europe

    NASA Astrophysics Data System (ADS)

    Träger-Chatterjee, C.; Müller, R. W.; Bendix, J.

    2013-05-01

    Drought and heat waves during summer in mid-latitudes are a serious threat to human health and agriculture and have negative impacts on the infrastructure, such as problems in energy supply. The appearance of such extreme events is expected to increase with the progress of global warming. A better understanding of the development of extremely hot and dry summers and the identification of possible precursors could help improve existing seasonal forecasts in this regard, and could possibly lead to the development of early warning methods. The development of extremely hot and dry summer seasons in central Europe is attributed to a combined effect of the dominance of anticyclonic weather regimes and soil moisture-atmosphere interactions. The atmospheric circulation largely determines the amount of solar irradiation and the amount of precipitation in an area. These two variables are themselves major factors controlling the soil moisture. Thus, solar irradiation and precipitation are used as proxies to analyse extreme sunny and dry late winter/spring and summer seasons for the period 1958-2011 in Germany and adjacent areas. For this purpose, solar irradiation data from the European Center for Medium Range Weather Forecast 40-yr and interim re-analysis dataset, as well as remote sensing data are used. Precipitation data are taken from the Global Precipitation Climatology Project. To analyse the atmospheric circulation geopotential data at 850 hPa are also taken from the European Center for Medium Range Weather Forecast 40-yr and interim re-analysis datasets. For the years in which extreme summers in terms of high solar irradiation and low precipitation are identified, the previous late winter/spring conditions of solar irradiation and precipitation in Germany and adjacent areas are analysed. Results show that if the El Niño-Southern Oscillation (ENSO) is not very intensely developed, extremely high solar irradiation amounts, together with extremely low precipitation

  18. Reduced CO2 fertilization effect in temperate C3 grasslands under more extreme weather conditions

    NASA Astrophysics Data System (ADS)

    Obermeier, W. A.; Lehnert, L. W.; Kammann, C. I.; Müller, C.; Grünhage, L.; Luterbacher, J.; Erbs, M.; Moser, G.; Seibert, R.; Yuan, N.; Bendix, J.

    2016-12-01

    The increase in atmospheric greenhouse gas concentrations from anthropogenic activities is the major driver of recent global climate change. The stimulation of plant photosynthesis due to rising atmospheric carbon dioxide concentrations ([CO2]) is widely assumed to increase the net primary productivity (NPP) of C3 plants--the CO2 fertilization effect (CFE). However, the magnitude and persistence of the CFE under future climates, including more frequent weather extremes, are controversial. Here we use data from 16 years of temperate grassland grown under `free-air carbon dioxide enrichment’ conditions to show that the CFE on above-ground biomass is strongest under local average environmental conditions. The observed CFE was reduced or disappeared under wetter, drier and/or hotter conditions when the forcing variable exceeded its intermediate regime. This is in contrast to predictions of an increased CO2 fertilization effect under drier and warmer conditions. Such extreme weather conditions are projected to occur more intensely and frequently under future climate scenarios. Consequently, current biogeochemical models might overestimate the future NPP sink capacity of temperate C3 grasslands and hence underestimate future atmospheric [CO2] increase.

  19. Dietary diversity, socioeconomic status and maternal body mass index (BMI): quantile regression analysis of nationally representative data from Ghana, Namibia and Sao Tome and Principe

    PubMed Central

    Amugsi, Dickson A; Dimbuene, Zacharie T; Bakibinga, Pauline; Kimani-Murage, Elizabeth W; Haregu, Tilahun Nigatu; Mberu, Blessing

    2016-01-01

    Objectives To (a) assess the association between dietary diversity (DD) score, socioeconomic status (SES) and maternal body mass index (BMI), and (b) the variation of the effects of DD and SES at different points of the conditional distribution of the BMI. Methods The study used Demographic and Health Surveys round 5 data sets from Ghana, Namibia and Sao Tome and Principe. The outcome variable for the analysis was maternal BMI. The DD score was computed using 24-hour dietary recall data. Quantile regression (QR) was used to examine the relationship between DD and SES, and maternal BMI, adjusting for other covariates. The QR allows the covariate effects to vary across the entire distribution of maternal BMI. Results Women who consumed an additional unit of DD achieved an increase of 0.245 in BMI for those in the 90th quantile in Ghana. The effect of household wealth increases for individuals across all quantiles of the BMI distribution and in all the 3 countries. A unit change in the household wealth score was associated with an increase of 0.038, 0.052 and 0.065 units increase in BMI for individuals in the 5th quantile in Ghana, Namibia and Sao Tome and Principe, respectively. Also, 0.237, 0.301 and 0.174 units increased for those in the 90th quantile in Ghana, Namibia and Sao Tome and Principe, respectively. Education had a significant positive effect on maternal BMI across all quantiles in Namibia and negative effect at the 5th, 10th and 90th quantiles in Sao Tome and Principe. Conclusions There is heterogeneity in the effects of DD and SES on maternal BMI. Studies focusing on the effects of diet and socioeconomic determinants on maternal BMI should examine patterns of effects at different points of the conditional distribution of the BMI and not just the average effect. PMID:27678544

  20. Interventions for the prevention and management of neck/upper extremity musculoskeletal conditions: a systematic review.

    PubMed

    Boocock, M G; McNair, P J; Larmer, P J; Armstrong, B; Collier, J; Simmonds, M; Garrett, N

    2007-05-01

    Considered from medical, social or economic perspectives, the cost of musculoskeletal injuries experienced in the workplace is substantial, and there is a need to identify the most efficacious interventions for their effective prevention, management and rehabilitation. Previous reviews have highlighted the limited number of studies that focus on upper extremity intervention programmes. The aim of this study was to evaluate the findings of primary, secondary and/or tertiary intervention studies for neck/upper extremity conditions undertaken between 1999 and 2004 and to compare these results with those of previous reviews. Relevant studies were retrieved through the use of a systematic approach to literature searching and evaluated using a standardised tool. Evidence was then classified according to a "pattern of evidence" approach. Studies were categorised into subgroups depending on the type of intervention: mechanical exposure interventions; production systems/organisational culture interventions and modifier interventions. 31 intervention studies met the inclusion criteria. The findings provided evidence to support the use of some mechanical and modifier interventions as approaches for preventing and managing neck/upper extremity musculoskeletal conditions and fibromyalgia. Evidence to support the benefits of production systems/organisational culture interventions was found to be lacking. This review identified no single-dimensional or multi-dimensional strategy for intervention that was considered effective across occupational settings. There is limited information to support the establishment of evidence-based guidelines applicable to a number of industrial sectors.

  1. Interventions for the prevention and management of neck/upper extremity musculoskeletal conditions: a systematic review

    PubMed Central

    Boocock, M G; McNair, P J; Larmer, P J; Armstrong, B; Collier, J; Simmonds, M; Garrett, N

    2007-01-01

    Considered from medical, social or economic perspectives, the cost of musculoskeletal injuries experienced in the workplace is substantial, and there is a need to identify the most efficacious interventions for their effective prevention, management and rehabilitation. Previous reviews have highlighted the limited number of studies that focus on upper extremity intervention programmes. The aim of this study was to evaluate the findings of primary, secondary and/or tertiary intervention studies for neck/upper extremity conditions undertaken between 1999 and 2004 and to compare these results with those of previous reviews. Relevant studies were retrieved through the use of a systematic approach to literature searching and evaluated using a standardised tool. Evidence was then classified according to a “pattern of evidence” approach. Studies were categorised into subgroups depending on the type of intervention: mechanical exposure interventions; production systems/organisational culture interventions and modifier interventions. 31 intervention studies met the inclusion criteria. The findings provided evidence to support the use of some mechanical and modifier interventions as approaches for preventing and managing neck/upper extremity musculoskeletal conditions and fibromyalgia. Evidence to support the benefits of production systems/organisational culture interventions was found to be lacking. This review identified no single‐dimensional or multi‐dimensional strategy for intervention that was considered effective across occupational settings. There is limited information to support the establishment of evidence‐based guidelines applicable to a number of industrial sectors. PMID:16973739

  2. Censored Quantile Instrumental Variable Estimates of the Price Elasticity of Expenditure on Medical Care.

    PubMed

    Kowalski, Amanda

    2016-01-02

    Efforts to control medical care costs depend critically on how individuals respond to prices. I estimate the price elasticity of expenditure on medical care using a censored quantile instrumental variable (CQIV) estimator. CQIV allows estimates to vary across the conditional expenditure distribution, relaxes traditional censored model assumptions, and addresses endogeneity with an instrumental variable. My instrumental variable strategy uses a family member's injury to induce variation in an individual's own price. Across the conditional deciles of the expenditure distribution, I find elasticities that vary from -0.76 to -1.49, which are an order of magnitude larger than previous estimates.

  3. Spline methods for approximating quantile functions and generating random samples

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.; Matthews, C. G.

    1985-01-01

    Two cubic spline formulations are presented for representing the quantile function (inverse cumulative distribution function) of a random sample of data. Both B-spline and rational spline approximations are compared with analytic representations of the quantile function. It is also shown how these representations can be used to generate random samples for use in simulation studies. Comparisons are made on samples generated from known distributions and a sample of experimental data. The spline representations are more accurate for multimodal and skewed samples and to require much less time to generate samples than the analytic representation.

  4. Regional flood quantile estimation for a Weibull Model

    NASA Astrophysics Data System (ADS)

    Boes, Duane C.; Heo, Jun-Haeng; Salas, Jose D.

    1989-05-01

    Estimation of annual flood quantiles at a given site, based on a regional Weibull model with independence in space and time, is considered. A common shape parameter over sites, motivated by an index flood assumption, was assumed. An exact simple formula for the Cramer-Rao lower bound for the variance of unbiased estimators of the quantile is obtained, and the gain of regional flood frequency analysis over single-site analysis can be quantified via this formula. The estimation techniques of the method of moments, the method of probability-weighted moments, and the method of maximum likelihood are compared.

  5. Isolation and Characterization of Bacteria Capable of Tolerating the Extreme Conditions of Clean Room Environments▿

    PubMed Central

    La Duc, Myron T.; Dekas, Anne; Osman, Shariff; Moissl, Christine; Newcombe, David; Venkateswaran, Kasthuri

    2007-01-01

    In assessing the bacterial populations present in spacecraft assembly, spacecraft test, and launch preparation facilities, extremophilic bacteria (requiring severe conditions for growth) and extremotolerant bacteria (tolerant to extreme conditions) were isolated. Several cultivation approaches were employed to select for and identify bacteria that not only survive the nutrient-limiting conditions of clean room environments but can also withstand even more inhospitable environmental stresses. Due to their proximity to spacefaring objects, these bacteria pose a considerable risk for forward contamination of extraterrestrial sites. Samples collected from four geographically distinct National Aeronautics and Space Administration clean rooms were challenged with UV-C irradiation, 5% hydrogen peroxide, heat shock, pH extremes (pH 3.0 and 11.0), temperature extremes (4°C to 65°C), and hypersalinity (25% NaCl) prior to and/or during cultivation as a means of selecting for extremotolerant bacteria. Culture-independent approaches were employed to measure viable microbial (ATP-based) and total bacterial (quantitative PCR-based) burdens. Intracellular ATP concentrations suggested a viable microbial presence ranging from below detection limits to 106 cells/m2. However, only 0.1 to 55% of these viable cells were able to grow on defined culture medium. Isolated members of the Bacillaceae family were more physiologically diverse than those reported in previous studies, including thermophiles (Geobacillus), obligate anaerobes (Paenibacillus), and halotolerant, alkalophilic species (Oceanobacillus and Exiguobacterium). Non-spore-forming microbes (α- and β-proteobacteria and actinobacteria) exhibiting tolerance to the selected stresses were also encountered. The multiassay cultivation approach employed herein enhances the current understanding of the physiological diversity of bacteria housed in these clean rooms and leads us to ponder the origin and means of translocation of

  6. Adhesiveness of a new testosterone-in-adhesive matrix patch after extreme conditions.

    PubMed

    Raynaud, Jean-Pierre; Augès, Marie; Liorzou, Laurent; Turlier, Virginie; Lauze, Christophe

    2009-06-22

    The objective of the study was to evaluate the adhesiveness of a new thin, transparent and comfortable testosterone-in-adhesive matrix patch, Testopatch, after extreme conditions. The study was a single-centre, open-label with randomization of sites (upper arms, lower back, thighs) and sides (left, right) of two 45 cm(2) patches, in 24 healthy subjects. Patches were symmetrically applied on one of the three sites. One patch was removed after 2.0 h, under resting conditions and the other patch was removed at 3.5 h, after extreme conditions (physical exercise, sauna, whirl bath). Adhesiveness was assessed of the area stuck and the measure of the forces necessary for patch removal using a Peel Patch Tester. Local safety was assessed at 2.0 and 3.5 h. After physical exercise and after sauna, patch adhesiveness was excellent (95%) when applied on the thigh and very good (90%) on the upper arm. Forces of patch removal were significantly lower at 3.5 h than 2.0 h, and at the lower back compared to the other application sites. There were no adverse effects. Slight erythema was observed that was considered to be clinically insignificant. Testopatch was safe and displayed adhesiveness, compatible with physical activities.

  7. Synchrotron Studies Under Extreme Conditions: Tackling the Multi-Phase with the Multi-Anvil

    NASA Astrophysics Data System (ADS)

    Whitaker, M. L.; Chen, H.; Vaughan, M. T.; Weidner, D. J.

    2012-12-01

    Understanding the properties and behaviors of materials and multi-phase aggregates under conditions of high pressure and temperature are vital to unraveling the mysteries that lie beneath the surface of the planet. Advances in in situ experimental techniques utilizing synchrotron radiation at these extreme conditions have helped to provide answers to many fundamental questions that were previously unattainable. In particular, the Multi-Anvil apparatus has proven to be an invaluable tool for studying the morphological characteristics and physical properties of materials under extreme conditions as a function of pressure, temperature, stress, strain, and time. Moreover, the science is still continuing to evolve, and we have begun to step outside the realm of the static into the study of dynamic processes and their real-time responses to changes in the aforementioned variables, and even to the frequency and rate of these changes. This presentation will discuss the evolution and present state of the art in synchrotron-based multi-anvil techniques at the COMPRES-funded X17MAC Facility at the National Synchrotron Light Source, of which Professor R.C. Liebermann has been an integral player during his scientific career, and particularly during his tenure as President of COMPRES.

  8. Normal and Extreme Wind Conditions for Power at Coastal Locations in China

    PubMed Central

    Gao, Meng; Ning, Jicai; Wu, Xiaoqing

    2015-01-01

    In this paper, the normal and extreme wind conditions for power at 12 coastal locations along China’s coastline were investigated. For this purpose, the daily meteorological data measured at the standard 10-m height above ground for periods of 40–62 years are statistically analyzed. The East Asian Monsoon that affects almost China’s entire coastal region is considered as the leading factor determining wind energy resources. For most stations, the mean wind speed is higher in winter and lower in summer. Meanwhile, the wind direction analysis indicates that the prevalent winds in summer are southerly, while those in winter are northerly. The air densities at different coastal locations differ significantly, resulting in the difference in wind power density. The Weibull and lognormal distributions are applied to fit the yearly wind speeds. The lognormal distribution performs better than the Weibull distribution at 8 coastal stations according to two judgement criteria, the Kolmogorov–Smirnov test and absolute error (AE). Regarding the annual maximum extreme wind speed, the generalized extreme value (GEV) distribution performs better than the commonly-used Gumbel distribution. At these southeastern coastal locations, strong winds usually occur in typhoon season. These 4 coastal provinces, that is, Guangdong, Fujian, Hainan, and Zhejiang, which have abundant wind resources, are also prone to typhoon disasters. PMID:26313256

  9. Normal and Extreme Wind Conditions for Power at Coastal Locations in China.

    PubMed

    Gao, Meng; Ning, Jicai; Wu, Xiaoqing

    2015-01-01

    In this paper, the normal and extreme wind conditions for power at 12 coastal locations along China's coastline were investigated. For this purpose, the daily meteorological data measured at the standard 10-m height above ground for periods of 40-62 years are statistically analyzed. The East Asian Monsoon that affects almost China's entire coastal region is considered as the leading factor determining wind energy resources. For most stations, the mean wind speed is higher in winter and lower in summer. Meanwhile, the wind direction analysis indicates that the prevalent winds in summer are southerly, while those in winter are northerly. The air densities at different coastal locations differ significantly, resulting in the difference in wind power density. The Weibull and lognormal distributions are applied to fit the yearly wind speeds. The lognormal distribution performs better than the Weibull distribution at 8 coastal stations according to two judgement criteria, the Kolmogorov-Smirnov test and absolute error (AE). Regarding the annual maximum extreme wind speed, the generalized extreme value (GEV) distribution performs better than the commonly-used Gumbel distribution. At these southeastern coastal locations, strong winds usually occur in typhoon season. These 4 coastal provinces, that is, Guangdong, Fujian, Hainan, and Zhejiang, which have abundant wind resources, are also prone to typhoon disasters.

  10. The phase-contrast imaging instrument at the matter in extreme conditions endstation at LCLS

    DOE PAGES

    Nagler, Bob; Schropp, Andreas; Galtier, Eric C.; ...

    2016-10-07

    Here, we describe the phase-contrast imaging instrument at the Matter in Extreme Conditions (MEC) endstation of the Linac Coherent Light Source. The instrument can image phenomena with a spatial resolution of a few hundreds of nanometers and at the same time reveal the atomic structure through X-ray diffraction, with a temporal resolution better than 100 fs. It was specifically designed for studies relevant to high-energy-density science and can monitor, e.g., shock fronts, phase transitions, or void collapses. This versatile instrument was commissioned last year and is now available to the MEC user community.

  11. Spatiotemporal patterns and trends of Indian monsoonal rainfall extremes

    NASA Astrophysics Data System (ADS)

    Malik, Nishant; Bookhagen, Bodo; Mucha, Peter J.

    2016-02-01

    In this study, we provide a comprehensive analysis of trends in the extremes during the Indian summer monsoon (ISM) months (June to September) at different temporal and spatial scales. Our goal is to identify and quantify spatiotemporal patterns and trends that have emerged during the recent decades and may be associated with changing climatic conditions. Our analysis primarily relies on quantile regression that avoids making any subjective choices on spatial, temporal, or intensity pattern of extreme rainfall events. Our analysis divides the Indian monsoon region into climatic compartments that show different and partly opposing trends. These include strong trends toward intensified droughts in Northwest India, parts of Peninsular India, and Myanmar; in contrast, parts of Pakistan, Northwest Himalaya, and Central India show increased extreme daily rain intensity leading to higher flood vulnerability. Our analysis helps explain previously contradicting results of trends in average ISM rainfall.

  12. Spatiotemporal patterns and trends of Indian monsoonal rainfall extremes

    PubMed Central

    Malik, Nishant; Bookhagen, Bodo; Mucha, Peter J.

    2016-01-01

    In this study, we provide a comprehensive analysis of trends in the extremes during the Indian summer monsoon (ISM) months (June to September) at different temporal and spatial scales. Our goal is to identify and quantify spatiotemporal patterns and trends that have emerged during the recent decades and may be associated with changing climatic conditions. Our analysis primarily relies on quantile regression that avoids making any subjective choices on spatial, temporal, or intensity pattern of extreme rainfall events. Our analysis divides the Indian monsoon region into climatic compartments that show different and partly opposing trends. These include strong trends towards intensified droughts in Northwest India, parts of Peninsular India, and Myanmar; in contrast, parts of Pakistan, Northwest Himalaya, and Central India show increased extreme daily rain intensity leading to higher flood vulnerability. Our analysis helps explain previously contradicting results of trends in average ISM rainfall. PMID:27909349

  13. Analysis of variance, normal quantile-quantile correlation and effective expression support of pooled expression ratio of reference genes for defining expression stability.

    PubMed

    Priyadarshi, Himanshu; Das, Rekha; Kumar, Shivendra; Kishore, Pankaj; Kumar, Sujit

    2017-01-01

    Identification of a reference gene unaffected by the experimental conditions is obligatory for accurate measurement of gene expression through relative quantification. Most existing methods directly analyze variability in crossing point (Cp) values of reference genes and fail to account for template-independent factors that affect Cp values in their estimates. We describe the use of three simple statistical methods namely analysis of variance (ANOVA), normal quantile-quantile correlation (NQQC) and effective expression support (EES), on pooled expression ratios of reference genes in a panel to overcome this issue. The pooling of expression ratios across the genes in the panel nullify the sample specific effects uniformly affecting all genes that are falsely reflected as instability. Our methods also offer the flexibility to include sample specific PCR efficiencies in estimations, when available, for improved accuracy. Additionally, we describe a correction factor from the ANOVA method to correct the relative fold change of a target gene if no truly stable reference gene could be found in the analyzed panel. The analysis is described on a synthetic data set to simplify the explanation of the statistical treatment of data.

  14. Identification of extreme motor phenotypes in Huntington's disease.

    PubMed

    Braisch, Ulrike; Hay, Birgit; Muche, Rainer; Rothenbacher, Dietrich; Landwehrmeyer, G Bernhard; Long, Jeffrey D; Orth, Michael

    2017-04-01

    The manifestation of motor signs in Huntington's disease (HD) has a well-known inverse relationship with HTT CAG repeat length, but the prediction is far from perfect. The probability of finding disease modifiers is enhanced in individuals with extreme HD phenotypes. We aimed to identify extreme HD motor phenotypes conditional on CAG and age, such as patients with very early or very late onset of motor manifestation. Retrospective data were available from 1,218 healthy controls and 9,743 HD participants with CAG repeats ≥40, and a total of about 30,000 visits. Boundaries (2.5% and 97.5% quantiles) for extreme motor phenotypes (UHDRS total motor score (TMS) and motor age-at-onset) were estimated using quantile regression for longitudinal data. More than 15% of HD participants had an extreme TMS phenotype for at least one visit. In contrast, only about 4% of participants were consistent TMS extremes at two or more visits. Data from healthy controls revealed an upper cut-off of 13 for the TMS representing the extreme of motor ratings for a normal aging population. In HD, boundaries of motor age-at-onset based on diagnostic confidence or derived from the TMS data cut-off in controls were similar. In summary, a UHDRS TMS of more than 13 in an individual carrying the HD mutation indicates a high likelihood of motor manifestations of HD irrespective of CAG repeat length or age. The identification of motor phenotype extremes can be useful in the search for disease modifiers, for example, genetic or environmental such as medication. © 2016 Wiley Periodicals, Inc.

  15. Extreme Sea Conditions in Shallow Water: Estimation based on in-situ measurements

    NASA Astrophysics Data System (ADS)

    Le Crom, Izan; Saulnier, Jean-Baptiste

    2013-04-01

    The design of marine renewable energy devices and components is based, among others, on the assessment of the environmental extreme conditions (winds, currents, waves, and water level) that must be combined together in order to evaluate the maximal loads on a floating/fixed structure, and on the anchoring system over a determined return period. Measuring devices are generally deployed at sea over relatively short durations (a few months to a few years), typically when describing water free surface elevation, and extrapolation methods based on hindcast data (and therefore on wave simulation models) have to be used. How to combine, in a realistic way, the action of the different loads (winds and waves for instance) and which correlation of return periods should be used are highly topical issues. However, the assessment of the extreme condition itself remains a not-fully-solved, crucial, and sensitive task. Above all in shallow water, extreme wave height, Hmax, is the most significant contribution in the dimensioning process of EMR devices. As a case study, existing methodologies for deep water have been applied to SEMREV, the French marine energy test site. The interest of this study, especially at this location, goes beyond the simple application to SEMREV's WEC and floating wind turbines deployment as it could also be extended to the Banc de Guérande offshore wind farm that are planned close by. More generally to pipes and communication cables as it is a redundant problematic. The paper will first present the existing measurements (wave and wind on site), the prediction chain that has been developed via wave models, the extrapolation methods applied to hindcast data, and will try to formulate recommendations for improving this assessment in shallow water.

  16. Quantile Regression in the Study of Developmental Sciences

    ERIC Educational Resources Information Center

    Petscher, Yaacov; Logan, Jessica A. R.

    2014-01-01

    Linear regression analysis is one of the most common techniques applied in developmental research, but only allows for an estimate of the average relations between the predictor(s) and the outcome. This study describes quantile regression, which provides estimates of the relations between the predictor(s) and outcome, but across multiple points of…

  17. Formation of molten metal films during metal-on-metal slip under extreme interfacial conditions

    NASA Astrophysics Data System (ADS)

    Liou, Nai-Shang; Okada, Makoto; Prakash, Vikas

    2004-09-01

    The present paper describes results of plate-impact pressure-shear friction experiments conducted to study time-resolved growth of molten metal films during dry metal-on-metal slip under extreme interfacial conditions. By employing tribo-pairs comprising hard tool-steel against relatively low melt-point metals such as 7075-T6 aluminum alloys, interfacial friction stress ranging from 100 to 400 MPa and slip speeds of approximately 100 m/ s have been generated. These relatively high levels of friction stress combined with high slip-speeds generate conditions conducive for interfacial temperatures to approach the melting point of the lower melt point metal (Al alloy) comprising the tribo-pair. A Lagrangian finite element code is developed to understand the evolution of the thermo-mechanical fields and their relationship to the observed slip response. The code accounts for dynamic effects, heat conduction, contact with friction, and full thermo-mechanical coupling. At temperatures below the melting point the material is described as an isotropic thermally softening elastic-viscoplastic solid. For material elements with temperatures in excess of the melt point a purely Newtonian fluid constitutive model is employed. The results of the hybrid experimental-computational study provides new insights into the thermoelastic-plastic interactions during high speed metal-on-metal slip under extreme interfacial conditions. During the early part of frictional slip the coefficient of kinetic friction is observed to decrease with increasing slip velocity. During the later part transition in interfacial slip occurs from dry metal-on-metal sliding to the formation of molten Al films at the tribo-pair interface. Under these conditions the interfacial resistance approaches the shear strength of the molten aluminum alloy under normal pressures of approximately 1- 3 GPa and shear strain rates of ˜10 7 s-1. The results of the study indicate that under these extreme conditions molten

  18. Quantitative evaluation of the mitochondrial proteomes of Drosophila melanogaster adapted to extreme oxygen conditions.

    PubMed

    Yin, Songyue; Xue, Jin; Sun, Haidan; Wen, Bo; Wang, Quanhui; Perkins, Guy; Zhao, Huiwen W; Ellisman, Mark H; Hsiao, Yu-hsin; Yin, Liang; Xie, Yingying; Hou, Guixue; Zi, Jin; Lin, Liang; Haddad, Gabriel G; Zhou, Dan; Liu, Siqi

    2013-01-01

    Mitochondria are the primary organelles that consume oxygen and provide energy for cellular activities. To investigate the mitochondrial mechanisms underlying adaptation to extreme oxygen conditions, we generated Drosophila strains that could survive in low- or high-oxygen environments (LOF or HOF, respectively), examined their mitochondria at the ultrastructural level via transmission electron microscopy, studied the activity of their respiratory chain complexes, and quantitatively analyzed the protein abundance responses of the mitochondrial proteomes using Isobaric tag for relative and absolute quantitation (iTRAQ). A total of 718 proteins were identified with high confidence, and 55 and 75 mitochondrial proteins displayed significant differences in abundance in LOF and HOF, respectively, compared with the control flies. Importantly, these differentially expressed mitochondrial proteins are primarily involved in respiration, calcium regulation, the oxidative response, and mitochondrial protein translation. A correlation analysis of the changes in the levels of the mRNAs corresponding to differentially regulated mitochondrial proteins revealed two sets of proteins with different modes of regulation (transcriptional vs. post-transcriptional) in both LOF and HOF. We believe that these findings will not only enhance our understanding of the mechanisms underlying adaptation to extreme oxygen conditions in Drosophila but also provide a clue in studying human disease induced by altered oxygen tension in tissues and cells.

  19. Fitness to work of astronauts in conditions of action of the extreme emotional factors

    NASA Astrophysics Data System (ADS)

    Prisniakova, L. M.

    2004-01-01

    The theoretical model for the quantitative determination of influence of a level of emotional exertion on the success of human activity is presented. The learning curves of fixed words in the groups with a different level of the emotional exertion are analyzed. The obtained magnitudes of time constant T depending on a type of the emotional exertion are a quantitative measure of the emotional exertion. Time constants could also be of use for a prediction of the characteristic of fitness to work of an astronaut in conditions of extreme factors. The inverse of the sign of influencing on efficiency of activity of the man is detected. The paper offers a mathematical model of the relation between successful activity and motivations or the emotional exertion (Yerkes-Dodson law). Proposed models can serve by the theoretical basis of the quantitative characteristics of an estimation of activity of astronauts in conditions of the emotional factors at a phase of their selection.

  20. Influence of Extreme Storage Conditions on Extra Virgin Olive Oil Parameters: Traceability Study

    PubMed Central

    Escudero, Alfredo; Pacheco, Rafael

    2016-01-01

    This study reflects the effect of extreme storage conditions on several extra virgin olive oil (EVOO) varieties (arbequina, hojiblanca, and picual). The conditions were simulated in the laboratory, by means of heating treatments in stove at different temperatures (40 and 60°C) and times (two and three weeks). The aim is the evaluation of the deterioration of the quality parameters and minority components, which are responsible for the nutritional and therapeutic properties (fatty acids, polyphenols, pigments, and tocopherols), and organoleptic qualities. The quality criteria and limits used in this work are according to International Olive Council. The results contribute to the control of the traSceability for the commercialization of the EVOO. PMID:28042493

  1. Space-Borne Ku-Band Radar Observations of Extreme Surface Water Conditions

    NASA Astrophysics Data System (ADS)

    Nghiem, S. V.

    2005-12-01

    Acceleration of the global water cycle may lead to an exacerbation of hydrologic extremes. A multitude of extreme events has occurred in the last decade over the world including droughts, floods, record snow accumulation, and minimal ice cover with severe environmental and socioeconomic impacts. This paper presents an overview of the capabilities of space-borne Ku-band radar to measure extreme conditions of surface water including liquid and solid phases on land, ice, and oceans. Ku-band backscatter data acquired globally by the QuikSCAT satellite scatterometer are used to obtain the results. Hurricane Katrina in 2005 is the deadliest and costliest in U.S. with far-reaching impacts. Radar results of surface water over southern and eastern U.S. reveal the extreme extent of precipitation water deposited on land surface compared to the case of Hurricane Ivan in 2004. Radar monitoring of surface water pattern in California shows the extreme prolonged duration of precipitation-induced water in the 2005 wettest winter season over a century causing widespread flooding and landslide. For drought monitoring, radar maps of precipitation frequency over the U.S. Midwest in summer seasons indicate a sharp change to a severe drought in 2003 from the most frequent rains in 2000. Kenya experienced the worst drought in 45 years affecting more than 3 million people in 2000 when the radar data over Nairobi identified the collapse of the long rain season. Since then, satellite radar time-series up to July 2005 shows the consistency of the annual bimodal precipitation seasons suggesting an improvement in the local drought conditions. In cold land regions, backscatter data map seasonal snowmelt processes showing large variabilities in time and in space over the northern hemisphere. Satellite Ku-band radar measurements of snow accumulation on the Greenland ice sheet identify and map the record snow accumulation in the first quarter of 2005, verified with field observations and

  2. Three responses of wetland conditions to climatic extremes in the Prairie Pothole Region

    USGS Publications Warehouse

    Cressey, Ryann L.; Austin, Jane; Stafford, Joshua D.

    2016-01-01

    Wetlands in central North Dakota were revisited after 50 years to assess changes following extreme drought and a prolonged wet period. We compared data collected during 1961–1966 to current (2013–2014) wetland conditions. We revisited 80 wetlands in 2013 and 2014 across three study areas and measured wetland area, ponded-water depth, and specific conductance. Wetlands at the three study areas responded to prolonged wet conditions in one of three ways. Wetlands at Crystal Springs became larger, and had deeper ponds of lower specific conductance in 2013–14 compared to the 1960s. Wetlands at Cottonwood were larger with deeper ponds of slightly higher specific conductance in 2013–2014. Wetlands at Mt. Moriah had only subtle changes in size, pond depth, and specific conductance between periods. Prolonged wet conditions led to merging of most wetlands (defined as the outer edge of wet-meadow vegetation) at Crystal Springs and a few wetlands at Cottonwood. Low topographic relief at Crystal Springs and Cottonwood contributed to storage of excess water in wetlands with associated responses to prolonged wet conditions. In contrast, higher topographic relief and natural outlets into two intermittent streams at Mt. Moriah resulted in wetlands being less impacted by prolonged wet conditions.

  3. Concrete Condition Assessment Using Impact-Echo Method and Extreme Learning Machines.

    PubMed

    Zhang, Jing-Kui; Yan, Weizhong; Cui, De-Mi

    2016-03-26

    The impact-echo (IE) method is a popular non-destructive testing (NDT) technique widely used for measuring the thickness of plate-like structures and for detecting certain defects inside concrete elements or structures. However, the IE method is not effective for full condition assessment (i.e., defect detection, defect diagnosis, defect sizing and location), because the simple frequency spectrum analysis involved in the existing IE method is not sufficient to capture the IE signal patterns associated with different conditions. In this paper, we attempt to enhance the IE technique and enable it for full condition assessment of concrete elements by introducing advanced machine learning techniques for performing comprehensive analysis and pattern recognition of IE signals. Specifically, we use wavelet decomposition for extracting signatures or features out of the raw IE signals and apply extreme learning machine, one of the recently developed machine learning techniques, as classification models for full condition assessment. To validate the capabilities of the proposed method, we build a number of specimens with various types, sizes, and locations of defects and perform IE testing on these specimens in a lab environment. Based on analysis of the collected IE signals using the proposed machine learning based IE method, we demonstrate that the proposed method is effective in performing full condition assessment of concrete elements or structures.

  4. Concrete Condition Assessment Using Impact-Echo Method and Extreme Learning Machines

    PubMed Central

    Zhang, Jing-Kui; Yan, Weizhong; Cui, De-Mi

    2016-01-01

    The impact-echo (IE) method is a popular non-destructive testing (NDT) technique widely used for measuring the thickness of plate-like structures and for detecting certain defects inside concrete elements or structures. However, the IE method is not effective for full condition assessment (i.e., defect detection, defect diagnosis, defect sizing and location), because the simple frequency spectrum analysis involved in the existing IE method is not sufficient to capture the IE signal patterns associated with different conditions. In this paper, we attempt to enhance the IE technique and enable it for full condition assessment of concrete elements by introducing advanced machine learning techniques for performing comprehensive analysis and pattern recognition of IE signals. Specifically, we use wavelet decomposition for extracting signatures or features out of the raw IE signals and apply extreme learning machine, one of the recently developed machine learning techniques, as classification models for full condition assessment. To validate the capabilities of the proposed method, we build a number of specimens with various types, sizes, and locations of defects and perform IE testing on these specimens in a lab environment. Based on analysis of the collected IE signals using the proposed machine learning based IE method, we demonstrate that the proposed method is effective in performing full condition assessment of concrete elements or structures. PMID:27023563

  5. Birthweight Related Factors in Northwestern Iran: Using Quantile Regression Method

    PubMed Central

    Fallah, Ramazan; Kazemnejad, Anoshirvan; Zayeri, Farid; Shoghli, Alireza

    2016-01-01

    Introduction: Birthweight is one of the most important predicting indicators of the health status in adulthood. Having a balanced birthweight is one of the priorities of the health system in most of the industrial and developed countries. This indicator is used to assess the growth and health status of the infants. The aim of this study was to assess the birthweight of the neonates by using quantile regression in Zanjan province. Methods: This analytical descriptive study was carried out using pre-registered (March 2010 - March 2012) data of neonates in urban/rural health centers of Zanjan province using multiple-stage cluster sampling. Data were analyzed using multiple linear regressions andquantile regression method and SAS 9.2 statistical software. Results: From 8456 newborn baby, 4146 (49%) were female. The mean age of the mothers was 27.1±5.4 years. The mean birthweight of the neonates was 3104 ± 431 grams. Five hundred and seventy-three patients (6.8%) of the neonates were less than 2500 grams. In all quantiles, gestational age of neonates (p<0.05), weight and educational level of the mothers (p<0.05) showed a linear significant relationship with the i of the neonates. However, sex and birth rank of the neonates, mothers age, place of residence (urban/rural) and career were not significant in all quantiles (p>0.05). Conclusion: This study revealed the results of multiple linear regression and quantile regression were not identical. We strictly recommend the use of quantile regression when an asymmetric response variable or data with outliers is available. PMID:26925889

  6. Statistical techniques for modeling extreme price dynamics in the energy market

    NASA Astrophysics Data System (ADS)

    Mbugua, L. N.; Mwita, P. N.

    2013-02-01

    Extreme events have large impact throughout the span of engineering, science and economics. This is because extreme events often lead to failure and losses due to the nature unobservable of extra ordinary occurrences. In this context this paper focuses on appropriate statistical methods relating to a combination of quantile regression approach and extreme value theory to model the excesses. This plays a vital role in risk management. Locally, nonparametric quantile regression is used, a method that is flexible and best suited when one knows little about the functional forms of the object being estimated. The conditions are derived in order to estimate the extreme value distribution function. The threshold model of extreme values is used to circumvent the lack of adequate observation problem at the tail of the distribution function. The application of a selection of these techniques is demonstrated on the volatile fuel market. The results indicate that the method used can extract maximum possible reliable information from the data. The key attraction of this method is that it offers a set of ready made approaches to the most difficult problem of risk modeling.

  7. Influenza transmission during extreme indoor conditions in a low-resource tropical setting

    NASA Astrophysics Data System (ADS)

    Tamerius, James; Ojeda, Sergio; Uejio, Christopher K.; Shaman, Jeffrey; Lopez, Brenda; Sanchez, Nery; Gordon, Aubree

    2016-08-01

    Influenza transmission occurs throughout the planet across wide-ranging environmental conditions. However, our understanding of the environmental factors mediating transmission is evaluated using outdoor environmental measurements, which may not be representative of the indoor conditions where influenza is transmitted. In this study, we examined the relationship between indoor environment and influenza transmission in a low-resource tropical population. We used a case-based ascertainment design to enroll 34 households with a suspected influenza case and then monitored households for influenza, while recording indoor temperature and humidity data in each household. We show that the indoor environment is not commensurate with outdoor conditions and that the relationship between indoor and outdoor conditions varies significantly across homes. We also show evidence of influenza transmission in extreme indoor environments. Specifically, our data suggests that indoor environments averaged 29 °C, 18 g/kg specific humidity, and 68 % relative humidity across 15 transmission events observed. These indoor settings also exhibited significant temporal variability with temperatures as high as 39 °C and specific and relative humidity increasing to 22 g/kg and 85 %, respectively, during some transmission events. However, we were unable to detect differences in the transmission efficiency by indoor temperature or humidity conditions. Overall, these results indicate that laboratory studies investigating influenza transmission and virus survival should increase the range of environmental conditions that they assess and that observational studies investigating the relationship between environment and influenza activity should use caution using outdoor environmental measurements since they can be imprecise estimates of the conditions that mediate transmission indoors.

  8. The fate of carbon dioxide in water-rich fluids under extreme conditions

    PubMed Central

    Pan, Ding; Galli, Giulia

    2016-01-01

    Investigating the fate of dissolved carbon dioxide under extreme conditions is critical to understanding the deep carbon cycle in Earth, a process that ultimately influences global climate change. We used first-principles molecular dynamics simulations to study carbonates and carbon dioxide dissolved in water at pressures (P) and temperatures (T) approximating the conditions of Earth’s upper mantle. Contrary to popular geochemical models assuming that molecular CO2(aq) is the major carbon species present in water under deep Earth conditions, we found that at 11 GPa and 1000 K, carbon exists almost entirely in the forms of solvated carbonate (CO32−) and bicarbonate (HCO3−) ions and that even carbonic acid [H2CO3(aq)] is more abundant than CO2(aq). Furthermore, our simulations revealed that ion pairing between Na+ and CO32−/HCO3− is greatly affected by P-T conditions, decreasing with increasing pressure at 800 to 1000 K. Our results suggest that in Earth’s upper mantle, water-rich geofluids transport a majority of carbon in the form of rapidly interconverting CO32− and HCO3− ions, not solvated CO2(aq) molecules. PMID:27757424

  9. The fate of carbon dioxide in water-rich fluids under extreme conditions.

    PubMed

    Pan, Ding; Galli, Giulia

    2016-10-01

    Investigating the fate of dissolved carbon dioxide under extreme conditions is critical to understanding the deep carbon cycle in Earth, a process that ultimately influences global climate change. We used first-principles molecular dynamics simulations to study carbonates and carbon dioxide dissolved in water at pressures (P) and temperatures (T) approximating the conditions of Earth's upper mantle. Contrary to popular geochemical models assuming that molecular CO2(aq) is the major carbon species present in water under deep Earth conditions, we found that at 11 GPa and 1000 K, carbon exists almost entirely in the forms of solvated carbonate ([Formula: see text]) and bicarbonate ([Formula: see text]) ions and that even carbonic acid [H2CO3(aq)] is more abundant than CO2(aq). Furthermore, our simulations revealed that ion pairing between Na(+) and [Formula: see text]/[Formula: see text] is greatly affected by P-T conditions, decreasing with increasing pressure at 800 to 1000 K. Our results suggest that in Earth's upper mantle, water-rich geofluids transport a majority of carbon in the form of rapidly interconverting [Formula: see text] and [Formula: see text] ions, not solvated CO2(aq) molecules.

  10. The National Ignition Facility: an experimental platform for studying behavior of matter under extreme conditions

    NASA Astrophysics Data System (ADS)

    Moses, Edward

    2011-11-01

    The National Ignition Facility (NIF), a 192-beam Nd-glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light, is now operational at Lawrence Livermore National Laboratory (LLNL). As the world's largest and most energetic laser system, NIF serves as the national center for the U.S. Department of Energy (DOE) and National Nuclear Security Administration to achieve thermonuclear burn in the laboratory and to explore the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from all of its 192 extremely energetic laser beams into a mm3-sized target, NIF can reach the conditions required to initiate fusion reactions. NIF can also provide access to extreme scientific environments: temperatures about 100 million K, densities of 1,000 g/cm3, and pressures 100 billion times atmospheric pressure. These conditions have never been created before in a laboratory and exist naturally only in interiors of the planetary and stellar environments as well as in nuclear weapons. Since August 2009, the NIF team has been conducting experiments in support of the National Ignition Campaign (NIC)—a partnership among LLNL, Los Alamos National Laboratory, General Atomics, the University of Rochester, Sandia National Laboratories, as well as a number of universities and international collaborators. The results from these initial experiments show promise for the relatively near-term achievement of ignition. Capsule implosion experiments at energies up to 1.2 MJ have demonstrated laser energetics, radiation temperatures, and symmetry control that scale to ignition conditions. Of particular importance is the demonstration of peak hohlraum temperatures near 300 eV with overall backscatter less than 10%. Cryogenic target capability and additional diagnostics are being installed in preparation for layered target deuterium-tritium implosions to be conducted later in 2010. Important national security and basic science experiments have

  11. Impacts of extreme hydro-meteorological conditions on ecosystem functioning and productivity patterns across Australia

    NASA Astrophysics Data System (ADS)

    Huete, Alfredo; Ma, Xuanlong; Xie, Zunyi; Restrepo-Coupe, Natalia; Ponce-Campos, Guillermo

    2016-04-01

    As Earth's climate continues to change, the frequency and intensity of warm droughts, extreme precipitation patterns, and heat waves will alter in potentially different ways, ecosystem structure and functioning with major impacts on carbon and water balance, and food security. The extreme hydro-meteorological conditions that are presently impacting Australia approach those anticipated with future climate change and thus provide unique opportunities to study ecological sensitivity and functional responses and cross-biome productivity changes using contemporary, in-situ and satellite observational datasets. Here, we combined satellite vegetation index products from MODIS and AVHRR, total water storage (TWS) from the GRACE twin satellites, precipitation data and in-situ tower flux measurements to characterise ecosystem sensitivity, and analyse climate change impacts on ecosystem productivity and resilience. Recent advances in eddy covariance tower flux measurements and spatially contiguous remote sensing data provide innovative and promising capabilities to extend ecosystem functioning and productivity studies from local to regional and continental scales. In general, Australia exhibited ecosystem-level shifts in water demands with water availability across wet and dry years, and over all biomes analysed (arid grasslands to humid forests). In the drier years, higher ecosystem water use efficiencies (WUEe) enabled plants to maintain higher levels of productivity than would otherwise be expected for the lower amounts of rainfall and available water. Further, there were unique, functional class-specific coping strategies to drought and water availability. With prolonged warm drought conditions, biomes became increasingly water-limited and WUEe continued to increase until reaching a 'dry edge' threshold, a cross biome maximum WUEe, that cannot be sustained with further reductions in water availability and could potentially break down ecosystem resilience and induce

  12. The Proteome of a Healthy Human during Physical Activity under Extreme Conditions

    PubMed Central

    Larina, I. M.; Ivanisenko, V. A.; Nikolaev, E. N.; Grigorev, A. I.

    2014-01-01

    The review examines the new approaches in modern systems biology, in terms of their use for a deeper understanding of the physiological adaptation of a healthy human in extreme environments. Human physiology under extreme conditions of life, or environmental physiology, and systems biology are natural partners. The similarities and differences between the object and methods in systems biology, the OMICs (proteomics, transcriptomics, metabolomics) disciplines, and other related sciences have been studied. The latest data on environmental human physiology obtained using systems biology methods are discussed. The independent achievements of systems biology in studying the adaptation of a healthy human to physical activity, including human presence at high altitude, to the effects of hypoxia and oxidative stress have been noted. A reasonable conclusion is drawn that the application of the methods and approaches used in systems biology to study the molecular pattern of the adaptive mechanisms that develop in the human body during space flight can provide valuable fundamental knowledge and fill the picture of human metabolic pathways. PMID:25349715

  13. Diamonds on Diamond: structural studies at extreme conditions on the Diamond Light Source.

    PubMed

    McMahon, M I

    2015-03-06

    Extreme conditions (EC) research investigates how the structures and physical and chemical properties of materials change when subjected to extremes of pressure and temperature. Pressures in excess of one million times atmospheric pressure can be achieved using a diamond anvil cell, and, in combination with high-energy, micro-focused radiation from a third-generation synchrotron such as Diamond, detailed structural information can be obtained using either powder or single-crystal diffraction techniques. Here, I summarize some of the research drivers behind international EC research, and then briefly describe the techniques by which high-quality diffraction data are obtained. I then highlight the breadth of EC research possible on Diamond by summarizing four examples from work conducted on the I15 and I19 beamlines, including a study which resulted in the first research paper from Diamond. Finally, I look to the future, and speculate as to the type of EC research might be conducted at Diamond over the next 10 years.

  14. Assessing the Land-Ocean Interaction under Extreme Climate Change Condition - a Modeling Approach

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Wang, T.; Leung, R.; Balaguru, K.; Hibbard, K. A.

    2011-12-01

    Many modeling applications, at global and regional scales, have demonstrated that numerical models are useful tools to quantify the uncertainty and the interactions between natural physical and biogeochemical processes and human activities in coastal regions. A regional integrated assessment modeling framework to investigate the interactions of agriculture and land use, coastal ecological issues, energy supply and effects of climate changes is under development by Pacific Northwest National Laboratory (PNNL), with specific application to the Gulf of Mexico. The Gulf is vulnerable to the direct impacts of climate changes, such as sea level rise, hurricane-induced storm surge and extreme floods due to high precipitation and river run-off. This presentation will focus on the coastal modeling aspect of this integrated modeling approach. An unstructured-grid finite volume coastal ocean model, which has the capability of simulating coastal circulation, wave and storm surges, sediment transport and biogeochemical processes, is applied to simulate hurricane storm surges and extreme flood events in the coastal region of Gulf of Mexico. Specifically, storm surge along the US Southeast coasts and freshwater plume in the Mississippi Delta were simulated and compared to observations. Numerical sensitivity studies with boundary conditions and forcing indicated the urgent need of a real observation network as well as the importance of accurate model predictions at regional scales to drive the model at smaller scales. The implication of natural pressures, such as storm surge and flooding to biogeochemical processes and marine ecosystem will be discussed.

  15. The Microbial Sulfur Cycle at Extremely Haloalkaline Conditions of Soda Lakes

    PubMed Central

    Sorokin, Dimitry Y.; Kuenen, J. Gijs; Muyzer, Gerard

    2011-01-01

    Soda lakes represent a unique ecosystem with extremely high pH (up to 11) and salinity (up to saturation) due to the presence of high concentrations of sodium carbonate in brines. Despite these double extreme conditions, most of the lakes are highly productive and contain a fully functional microbial system. The microbial sulfur cycle is among the most active in soda lakes. One of the explanations for that is high-energy efficiency of dissimilatory conversions of inorganic sulfur compounds, both oxidative and reductive, sufficient to cope with costly life at double extreme conditions. The oxidative part of the sulfur cycle is driven by chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacteria (SOB), which are unique for soda lakes. The haloalkaliphilic SOB are present in the surface sediment layer of various soda lakes at high numbers of up to 106 viable cells/cm3. The culturable forms are so far represented by four novel genera within the Gammaproteobacteria, including the genera Thioalkalivibrio, Thioalkalimicrobium, Thioalkalispira, and Thioalkalibacter. The latter two were only found occasionally and each includes a single species, while the former two are widely distributed in various soda lakes over the world. The genus Thioalkalivibrio is the most physiologically diverse and covers the whole spectrum of salt/pH conditions present in soda lakes. Most importantly, the dominant subgroup of this genus is able to grow in saturated soda brines containing 4 M total Na+ – a so far unique property for any known aerobic chemolithoautotroph. Furthermore, some species can use thiocyanate as a sole energy source and three out of nine species can grow anaerobically with nitrogen oxides as electron acceptor. The reductive part of the sulfur cycle is active in the anoxic layers of the sediments of soda lakes. The in situ measurements of sulfate reduction rates and laboratory experiments with sediment slurries using sulfate, thiosulfate, or elemental sulfur as

  16. The microbial sulfur cycle at extremely haloalkaline conditions of soda lakes.

    PubMed

    Sorokin, Dimitry Y; Kuenen, J Gijs; Muyzer, Gerard

    2011-01-01

    Soda lakes represent a unique ecosystem with extremely high pH (up to 11) and salinity (up to saturation) due to the presence of high concentrations of sodium carbonate in brines. Despite these double extreme conditions, most of the lakes are highly productive and contain a fully functional microbial system. The microbial sulfur cycle is among the most active in soda lakes. One of the explanations for that is high-energy efficiency of dissimilatory conversions of inorganic sulfur compounds, both oxidative and reductive, sufficient to cope with costly life at double extreme conditions. The oxidative part of the sulfur cycle is driven by chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacteria (SOB), which are unique for soda lakes. The haloalkaliphilic SOB are present in the surface sediment layer of various soda lakes at high numbers of up to 10(6) viable cells/cm(3). The culturable forms are so far represented by four novel genera within the Gammaproteobacteria, including the genera Thioalkalivibrio, Thioalkalimicrobium, Thioalkalispira, and Thioalkalibacter. The latter two were only found occasionally and each includes a single species, while the former two are widely distributed in various soda lakes over the world. The genus Thioalkalivibrio is the most physiologically diverse and covers the whole spectrum of salt/pH conditions present in soda lakes. Most importantly, the dominant subgroup of this genus is able to grow in saturated soda brines containing 4 M total Na(+) - a so far unique property for any known aerobic chemolithoautotroph. Furthermore, some species can use thiocyanate as a sole energy source and three out of nine species can grow anaerobically with nitrogen oxides as electron acceptor. The reductive part of the sulfur cycle is active in the anoxic layers of the sediments of soda lakes. The in situ measurements of sulfate reduction rates and laboratory experiments with sediment slurries using sulfate, thiosulfate, or elemental sulfur as

  17. Extreme weather conditions reduce the CO2 fertilization effect in temperate C3 grasslands

    NASA Astrophysics Data System (ADS)

    Obermeier, Wolfgang; Lehnert, Lukas; Kammann, Claudia; Müller, Christoph; Grünhage, Ludger; Luterbacher, Jürg; Erbs, Martin; Yuan, Naiming; Bendix, Jörg

    2016-04-01

    The increase in atmospheric greenhouse gas concentrations from anthropogenic activities is the major driver of global climate change. The rising atmospheric carbon dioxide (CO2) concentrations may stimulate plant photosynthesis and, thus, cause a net sink effect in the global carbon cycle. As a consequence of an enhanced photosynthesis, an increase in the net primary productivity (NPP) of C3 plants (termed CO2 fertilization) is widely assumed. This process is associated with a reduced stomatal conductance of leaves as the carbon demand of photosynthesis is met earlier. This causes a higher water-use efficiency and, hence, may reduce water stress in plants exposed to elevated CO2 concentrations ([eCO2]). However, the magnitude and persistence of the CO2 fertilization effect under a future climate including more frequent weather extremes are controversial. To test the CO2 fertilization effect for Central European grasslands, a data set comprising 16 years of biomass samples and environmental variables such as local weather and soil conditions was analysed by means of a novel approach. The data set was recorded on a "Free Air Carbon dioxide Enrichment" (FACE) experimental site which allows to quantify the CO2 fertilization effect under naturally occurring climate variations. The results indicate that the CO2 fertilization effect on the aboveground biomass is strongest under local average environmental conditions. Such intermediate regimes were defined by the mean +/- 1 standard deviation of the long-term average in the respective variable three months before harvest. The observed CO2 fertilization effect was reduced or vanished under drier, wetter and hotter conditions when the respective variable exceeded the bounds of the intermediate regimes. Comparable conditions, characterized by a higher frequency of more extreme weather conditions, are predicted for the future by climate projections. Consequently, biogeochemical models may overestimate the future NPP sink

  18. Towards a better understanding of the structure of nano-minerals at ambient and extreme conditions

    SciTech Connect

    Parise, John B.; Ehm, Lars; Michel, F. Marc; Antao, Sytle; Chupas, Peter J.; Lee, Peter L.; Martin, C. David; Shastri, Sarvjit

    2009-01-29

    The high-pressure (HP) behavior of nano-crystalline mackinawite (n-FeS) with particle sizes of 6, 7, and 8 nm has been investigated by high-energy X-ray total scattering and pair distribution function analysis. An irreversible first-order structural phase transition from tetragonal mackinawite to orthorhombic FeS-II was observed at about 3 GPa. The transition is induced by the closure of the van-der-Waals gap in the layered mackinawite structure. A grain size effect on the transition pressure and the compressibility was observed. The n-FcS study is an example of a broad class of nano-crystalline minerals where the total scattering (TS) approach provides significant new information on local-, intermediate- and long-range structure. Under extreme conditions, of pressure in this case, straightforward modifications allow quantitative descriptions of the transformations mechanisms.

  19. Death from Hypothermia during a Training Course under "Extreme Conditions": Related to Two Cases.

    PubMed

    Perich, Pierre; Tuchtan, Lucile; Bartoli, Christophe; Léonetti, Georges; Piercecchi-Marti, Marie-Dominique

    2016-03-01

    Death from hypothermia following exhaustion or from various complicated pathologies is no longer a frequent cause of death among combat troops. During a training course under "extreme conditions" in the French Alps, two young African officers died. Confronted with these two clinically confirmed cases of hypothermia, the unknown anatomopathological and biological specificities associated with death from hypothermia were highlighted. In these typical and clinically confirmed cases of death from subacute exhaustion hypothermia, none of the signs revealed by the autopsy were specific. Although some recent publications have addressed the utility of postmortem biochemical markers when establishing a diagnosis, with no anamnesis, with no knowledge or analysis of the circumstances of death, and without an in situ examination of the body, it appears difficult, if not impossible, to confirm that death was caused by hypothermia.

  20. Sensitivity of mitomycin C and nitrogen mustard crosslinks to extreme alkaline conditions

    SciTech Connect

    Gruenert, D.C.; Cleaver, J.E.

    1984-09-17

    DNA-DNA crosslinks in cells treated with mitomycin C, nitrogen mustard, or decarbamoyl mitomycin C were measured in alkaline isopycnic gradients as a function of pH. Crosslinks from cells treated with mitomycin C and nitrogen mustard, which react with DNA purines, could be detected at pH 12.5 but not at pH 14. No crosslinks from cells treated with decarbamoyl mitomycin C were detected at either pH. Previous studies with cells exposed to psoralen derivatives plus 360 nm light, which produce DNA-DNA crosslinks with pyrimidines, demonstrated stable crosslinks at pH 14. These studies indicate that DNA-DNA crosslinks involving DNA purines are much less stable at high pH than those involving pyrimidines, and that methods involving exposure to extreme alkaline conditions may give inaccurate information for some agents. 25 references, 1 figure.

  1. Sudden pore pressure rise and rapid landslide initiation induced under extreme rainfall conditions - a case study

    NASA Astrophysics Data System (ADS)

    Fukuoka, Hiroshi; Wang, Fawu; Wang, Gonghui

    2010-05-01

    Since July 19 to 26, 2009, western Japan had a severe rainstorms and caused floods and landslides. Most of the landslides are debris slide - debris flows. Most devastated case took place in Hofu city, Japan. On July 21, extremely intense rainstorm caused numerous debris flows and mud flows in the hillslopes Some of the debris flows destroyed residential houses and home for elderly people, and finally killed 14 residents. Debris flow distribution map was prepared soon based on airphoto interpretation. Japanese Meteorological Agency runs nation-wide ground-based rain gauge network as well as radar rain gauges, which provide hourly to 10 minutes precipitation distribution real-time with spatial resolution of about 5 km. Distribution of daily (cumulative) precipitation of July 21 shows (1) The cumulative precipitation from 6 am -- 12 am of the day was evaluated that their return period could be 200 - 600 years statistically. In 2009, another extraordinary rainfall, of which intensity was evaluated as less than 100 years more more, caused floods in another city claiming many residents lives on the way to evacuation area. Those frequent extraordinary extreme rainfall is not concluded as the consequence of global warming nor climate change, however, those frequency of extreme rainfall events affecting societies are obviously increasing in Japan, too. As for the Hofu city case, it was proved that debris flows took place in the high precipitation area and covered by covered by weathered granite sands and silts which is called "masa". This sands has been proved susceptible against landslides under extreme rainfall conditions. However, the transition from slide - debris flow process is not well revealed, except authors past experiment on the similar masa samples in June 1999 Hiroshima debris flow case. Authors have embedded pore pressure control system for the undrained ring shear apparatus. Strongly weathered sandy soils were sampled just on the smooth and flat granitic

  2. Why can tiAicrsiYN-based adaptive coatings deliver exceptional performance under extreme frictional conditions?

    PubMed

    Beake, Ben D; Fox-Rabinovich, German S; Losset, Yannick; Yamamoto, Kenji; Agguire, Myriam H; Veldhuis, Stephen C; Endrino, Jose L; Kovalev, Anatoliy I

    2012-01-01

    Adaptive TiAlCrSiYN-based coatings show promise under the extreme tribological conditions of dry ultra-high-speed (500-700 m min-1) machining of hardened tool steels. During high speed machining, protective sapphire and mullite-like tribo-films form on the surface of TiAlCrSiYN-based coatings resulting in beneficial heat-redistribution in the cutting zone. XRD and HRTEM data show that the tribo-films act as a thermal barrier creating a strong thermal gradient. The data are consistent with the temperature decreasing from approximately 1100-1200 degrees C at the outer surface to approximately 600 degrees C at the tribo-film/coating interface. The mechanical properties of the multilayer TiAICrSiYN/TiA1CrN coating were measured by high temperature nanoindentation. It retains relatively high hardness (21 GPa) at 600 degrees C. The nanomechanical properties of the underlying coating layer provide a stable low wear environment for the tribo-films to form and regenerate so it can sustain high temperatures under operation (600 degrees C). This combination of characteristics explains the high wear resistance of the multilayer TiAlCrSiYN/TiAICrN coating under extreme operating conditions. TiAlCrSiYN and TiAlCrN monolayer coatings have a less effective combination of adaptability and mechanical characteristics and therefore lower tool life. The microstructural reasons for different optimum hardness and plasticity between monolayer and multilayer coatings are discussed.

  3. Atmospheric conditions associated to an extreme rainfall event on Madeira Island (Portugal)

    NASA Astrophysics Data System (ADS)

    Couto, Flavio; Salgado, Rui; João Costa, Maria

    2013-04-01

    Located in the Noth Atlantic Ocean (32°75'N and 17°00'W), the Madeira Island presents favourable conditions for orographic precipitation development, sometimes responsible for high records and floods, such as on 20 February 2010, when the island was affected by the worst flash floods in its recent history, causing more than 40 deaths and huge economic losses. After this disaster, there is a growing interest in understanding the main mechanisms and atmospheric conditions that are relevant to the establishment of extreme rainfall and consequently flash flood occurrences in the island. This study describes the meteorological aspects associated to a case study of high rainfall amounts in Madeira on 25 January 2011. In this case, flash floods and socio-economic damages were not reported, but precipitation above 300 mm in less than 24 hours were observed in Madeira's highlands. The heavy rainfall episode is studied based on rain gauge and satellite observations, as well as numerical simulation with the Mesoscale Non-Hydrostatic Model (MESO-NH). The MESO-NH simulation initialized and forced by ECMWF analysis have been performed with 3 horizontal domains (9, 3 and 1 km resolution), making use of the grid nesting technique. The evolution of the mean sea level pressure field (MSLP) was analyzed from the outer domain outputs, while the other meteorological variables were further explored using the 1 km resolution results. The simulation showed that the orography is crucial in the formation and intensification of the localized heavy rainfall in the island. A remarkable aspect is the fact that this episode occurred in a low-cape environment. Related to the synoptic environment, this event was characterized by a low pressure system centered to the southeastern of the island, in opposition to the results obtained for other extreme events occurred in the past two years, when the high precipitation amounts were due to the effects of the orography on the passage of cold fronts

  4. High-fidelity numerical modeling of the Upper Mississippi River under extreme flood condition

    NASA Astrophysics Data System (ADS)

    Khosronejad, Ali; Le, Trung; DeWall, Petra; Bartelt, Nicole; Woldeamlak, Solomon; Yang, Xiaolei; Sotiropoulos, Fotis

    2016-12-01

    We present data-driven numerical simulations of extreme flooding in a large-scale river coupling coherent-structure resolving hydrodynamics with bed morphodynamics under live-bed conditions. The study area is a ∼ 3.2 km long and ∼ 300 m wide reach of the Upper Mississippi River, near Minneapolis MN, which contains several natural islands and man-made hydraulic structures. We employ the large-eddy simulation (LES) and bed-morphodynamic modules of the Virtual Flow Simulator (VFS-Rivers) model, a recently developed in-house code, to investigate the flow and bed evolution of the river during a 100-year flood event. The coupling of the two modules is carried out via a fluid-structure interaction approach using a nested domain approach to enhance the resolution of bridge scour predictions. We integrate data from airborne Light Detection and Ranging (LiDAR), sub-aqueous sonar apparatus on-board a boat and in-situ laser scanners to construct a digital elevation model of the river bathymetry and surrounding flood plain, including islands and bridge piers. A field campaign under base-flow condition is also carried out to collect mean flow measurements via Acoustic Doppler Current Profiler (ADCP) to validate the hydrodynamic module of the VFS-Rivers model. Our simulation results for the bed evolution of the river under the 100-year flood reveal complex sediment transport dynamics near the bridge piers consisting of both scour and refilling events due to the continuous passage of sand dunes. We find that the scour depth near the bridge piers can reach to a maximum of ∼ 9 m. The data-driven simulation strategy we present in this work exemplifies a practical simulation-based-engineering-approach to investigate the resilience of infrastructures to extreme flood events in intricate field-scale riverine systems.

  5. Relative importance of ring and tail currents to Dst under extremely disturbed conditions

    NASA Astrophysics Data System (ADS)

    Kalegaev, V. V.; Makarenkov, E. V.

    2008-02-01

    Relative ring current (RC) and tail current (TC) contributions to Dst were investigated on the basis of the statistical study of 70 magnetic storms of different intensities. Special attention was paid to the extremely disturbed conditions during magnetic storms in October-November 2003. Variations of the magnetic field produced by magnetospheric currents on the Earth's surface were calculated using paraboloid model of the magnetosphere A2000 [Alexeev, I.I., Belenkaya, E.S., Kalegaev, V.V., Feldstein, Y.I., Grafe, A., 1996. Journal of Geophysical Research 101,7737; Alexeev, I.I., Kalegaev, V.V., Belenkaya, E.S., Bobrovnikov, S.Yu., Feldstein, Ya.I., Gromova, L.I., 2001. Journal of Geophysical Research 106, 25683], taking into account the effect of terrestrial induced currents. For each magnetic storm we calculated Dst and contributions produced by large-scale magnetospheric current systems. The relative RC and TC contributions for each event at the storm maximum were examined in relationship to the peak pressure-corrected Dst value. Analysis of Dst sources confirms the conclusions of Kalegaev and Ganushkina [2005. In: Pulkkinen, T., Tsyganenko, N.A., Friedel, R.H.W. (Eds.), Physics and Modeling of the Inner Magnetosphere, AGU Geophysical Monograph 155. AGU, Washington, DC, p. 293] and Kalegaev and Makarenkov [2006. Geomagnetism and Aeronomy 46, 570] about saturation of the TC effect under extremely disturbed conditions. The RC becomes the dominant Dst source during severe magnetic storms, but during moderate storms its contribution to Dst is comparable with TC's contribution. The RC injection amplitude increases with the growth of magnetospheric disturbance level.

  6. Diurnal variations of hormonal secretion, alertness and cognition in extreme chronotypes under different lighting conditions

    PubMed Central

    Maierova, L.; Borisuit, A.; Scartezzini, J.-L.; Jaeggi, S. M.; Schmidt, C.; Münch, M.

    2016-01-01

    Circadian rhythms in physiology and behavior are modulated by external factors such as light or temperature. We studied whether self-selected office lighting during the habitual waking period had a different impact on alertness, cognitive performance and hormonal secretion in extreme morning and evening chronotypes (N = 32), whose preferred bed- and wake-up times differed by several hours. The self-selected lighting condition was compared with constant bright light and a control condition in dim light. Saliva samples for hormonal analyses, subjective ratings of alertness, wellbeing, visual comfort and cognitive performance were regularly collected. Between the self-selected and the bright, but not the dim lighting condition, the onset of melatonin secretion in the evening (as marker for circadian phase) was significantly different for both chronotypes. Morning chronotypes reported a faster increase in sleepiness during the day than evening chronotypes, which was associated with higher cortisol secretion. Wellbeing, mood and performance in more difficult cognitive tasks were better in bright and self-selected lighting than in dim light for both chronotypes, whereas visual comfort was best in the self-selected lighting. To conclude, self-selection of lighting at work might positively influence biological and cognitive functions, and allow for inter-individual differences. PMID:27646174

  7. Recent Extreme Forest Fire Activity in Western Russia: Fire Danger Conditions, Fire Behavior and Smoke Transport

    NASA Astrophysics Data System (ADS)

    Stocks, B. J.; Fromm, M.; Goldammer, J.; Carr, R.; Sukhinin, A. I.

    2010-12-01

    During the summer of 2010, widespread forest and peatland fires in western Russia burned over hundreds of thousands of hectares, burning over croplands, destroying hundreds of homes, and directly causing the death of more than 50 people. Unprecedented drought conditions, combined with an extended heat wave, resulted in extreme fire danger conditions and explosive fire behavior in a region of Russia not noted for large fires. Several fires exhibited pyroconvection, injecting smoke directly into the upper troposphere and lower stratosphere, while deep-burning fires created major regional smoke problems. This smoke persisted in the heavily-populated areas around Moscow, exposing millions to high levels of ozone and particulate matter, and creating both immediate and longer-term health risks. This presentation will explore the drought conditions leading to the catastrophic fire behavior experienced in western Russia, and analyze fire behavior in terms of fuel consumption, smoke production, fire intensity levels, and pyroconvection. Impacts of regional and long-range smoke transport will also be discussed.

  8. Statistical Analysis of TEC Enhancements during Geomagnetic Disturbances in Extreme Solar Conditions

    NASA Astrophysics Data System (ADS)

    Su, F.

    2014-12-01

    In the past decades, a remarkable set of comprehensive studies and review articles enriched theresearch of the Earth's ionospheric response to geomagnetic disturbances[Prolss, 1995; Buonsanto,1999; Mendillo, 2006]. However, comparative studies of TEC response during geomagnetic disturbances in solar minimum and solar maximum have not been reported yet. Here we present some new results of TEC enhancements during geomagnetic disturbancesin extreme solar maximum and deep solar minimum. The JPL TEC maps from 12/01/2000 to 12/31/2003 during high solar activity and from 01/01/2007 to 12/31/2010 during low solar activity are used. The deviation of TEC is defined as the differences between TEC and TECq, which represents the 27-day sliding smooth median. The geomagnetic disturbances selected have peaks of geomagnetic index Ap>20. We found that the winter anomaly appears in both extreme solar cycle conditions and has longer-lived patterns than other seasons.The nighttime enhancement is more significant in solar maximum than solar minimum. The mean duration of TEC enhancements is longer in solar minimum than solar maximum. The mean delay at the beginning of positive anomaly responds fastest at around 1500 LT and slowest at around midnight during solar minimum.The mean intensity of enhancements is stronger at higher latitudes and weaker at lower latitudes, and the mean delay is smaller at higher latitudes and larger at lower latitudes in both extreme solar cycle conditions. Acknowledgments: Thiswork was supportedby the National Natural Science Foundation of China under Grants 41204107. We thank JPL and Word Data Center for Geomagnetism at Kyoto University for making available the data. Prolss, G. W., Ionospheric F region storms, in Handbook of Atmospheric Electrodynamics, vol. 2, edited by H. Volland, pp. 195 - 248, CRC Press,Boca Raton, Fla., 1995. Buonsanto, M., Ionospheric storm: A review,Space Science Review, vol. 88, pp. 563 - 601, 1999. Mendillo, M.: Storms in the

  9. Establishment and performance of an experimental green roof under extreme climatic conditions.

    PubMed

    Klein, Petra M; Coffman, Reid

    2015-04-15

    Green roofs alter the surface energy balance and can help in mitigating urban heat islands. However, the cooling of green roofs due to evapotranspiration strongly depends on the climatic conditions, and vegetation type and density. In the Southern Central Plains of the United States, extreme weather events, such as high winds, heat waves and drought conditions pose challenges for successful implementation of green roofs, and likely alter their standard performance. The National Weather Center Experimental Green Roof, an interdisciplinary research site established in 2010 in Norman, OK, aimed to investigate the ecological performance and surface energy balance of green roof systems. Starting in May 2010, 26 months of vegetation studies were conducted and the radiation balance, air temperature, relative humidity, and buoyancy fluxes were monitored at two meteorological stations during April-October 2011. The establishment of a vegetative community trended towards prairie plant dominance. High mortality of succulents and low germination of grasses and herbaceous plants contributed to low vegetative coverage. In this condition succulent diversity declined. Bouteloua gracilis and Delosperma cooperi showed typological dominance in harsh climatic conditions, while Sedum species experienced high mortality. The plant community diversified through volunteers such as Euphorbia maculate and Portulaca maculate. Net radiation measured at a green-roof meteorological station was higher than at a control station over the original, light-colored roofing material. These findings indicate that the albedo of the green roof was lower than the albedo of the original roofing material. The low vegetative coverage during the heat and drought conditions in 2011, which resulted in the dark substrate used in the green roof containers being exposed, likely contributed to the low albedo values. Nevertheless, air temperatures and buoyancy fluxes were often lower over the green roof indicating

  10. Characterization of Multi-Scale Atmospheric Conditions Associated with Extreme Precipitation in the Transverse Ranges of Southern California

    NASA Astrophysics Data System (ADS)

    Oakley, N.; Kaplan, M.; Ralph, F. M.

    2015-12-01

    The east-west oriented Transverse Ranges of Southern California have historically experienced shallow landslides and debris flows that threaten life and property. Steep topography, soil composition, and frequent wildfires make this area susceptible to mass wasting. Extreme rainfall often acts as a trigger for these events. This work characterizes atmospheric conditions at multiple scales during extreme (>99th percentile) 1-day precipitation events in the major sub-ranges of the Transverse Ranges. Totals from these 1-day events generally exceed the established sub-daily intensity-duration thresholds for shallow landslides and debris flows in this region. Daily extreme precipitation values are derived from both gridded and station-based datasets over the period 1958-2014. For each major sub-range, extreme events are clustered by atmospheric feature and direction of moisture transport. A composite analysis of synoptic conditions is produced for each cluster to create a conceptual model of atmospheric conditions favoring extreme precipitation. The vertical structure of the atmosphere during these extreme events is also examined using observed and modeled soundings. Preliminary results show two atmospheric features to be of importance: 1) closed and cutoff low-pressure systems, areas of counter-clockwise circulation that can produce southerly flow orthogonal to the Transverse Range ridge axes; and 2) atmospheric rivers that transport large quantities of water vapor into the region. In some cases, the closed lows and atmospheric rivers work in concert with each other to produce extreme precipitation. Additionally, there is a notable east-west dipole of precipitation totals during some extreme events between the San Gabriel and Santa Ynez Mountains where extreme values are observed in one range and not the other. The cause of this relationship is explored. The results of this work can help forecasters and emergency responders determine the likelihood that an event will

  11. Robust and efficient estimation with weighted composite quantile regression

    NASA Astrophysics Data System (ADS)

    Jiang, Xuejun; Li, Jingzhi; Xia, Tian; Yan, Wanfeng

    2016-09-01

    In this paper we introduce a weighted composite quantile regression (CQR) estimation approach and study its application in nonlinear models such as exponential models and ARCH-type models. The weighted CQR is augmented by using a data-driven weighting scheme. With the error distribution unspecified, the proposed estimators share robustness from quantile regression and achieve nearly the same efficiency as the oracle maximum likelihood estimator (MLE) for a variety of error distributions including the normal, mixed-normal, Student's t, Cauchy distributions, etc. We also suggest an algorithm for the fast implementation of the proposed methodology. Simulations are carried out to compare the performance of different estimators, and the proposed approach is used to analyze the daily S&P 500 Composite index, which verifies the effectiveness and efficiency of our theoretical results.

  12. Predicting the solubility of gases in Nitrile Butadiene Rubber in extreme conditions using molecular simulation

    NASA Astrophysics Data System (ADS)

    Khawaja, Musab; Molinari, Nicola; Sutton, Adrian; Mostofi, Arash

    In the oil and gas industry, elastomer seals play an important role in protecting sensitive monitoring equipment from contamination by gases - a problem that is exacerbated by the high pressures and temperatures found down-hole. The ability to predict and prevent such permeative failure has proved elusive to-date. Nitrile butadiene rubber (NBR) is a common choice of elastomer for seals due to its resistance to heat and fuels. In the conditions found in the well it readily absorbs small molecular weight gases. How this behaviour changes quantitatively for different gases as a function of temperature and pressure is not well-understood. In this work a series of fully atomistic simulations are performed to understand the effect of extreme conditions on gas solubility in NBR. Widom particle insertion is used to compute solubilities. The importance of sampling and allowing structural relaxation upon compression are highlighted, and qualitatively reasonable trends reproduced. Finally, while at STP it has previously been shown that the solubility of CO2 is higher than that of He in NBR, we observe that under the right circumstances it is possible to reverse this trend.

  13. Nutritional condition of Pacific Black Brant wintering at the extremes of their range

    USGS Publications Warehouse

    Mason, D.D.; Barboza, P.S.; Ward, D.H.

    2006-01-01

    Endogenous stores of energy allow birds to survive periods of severe weather and food shortage during winter. We documented changes in lipid, protein, moisture, and ash in body tissues of adult female Pacific Black Brant (Branta bernicla nigricans) and modeled the energetic costs of wintering. Birds were collected at the extremes of their winter range, in Alaska and Baja California, Mexico. Body lipids decreased over winter for birds in Alaska but increased for those in Baja California. Conversely, body protein increased over winter for Brant in Alaska and remained stable for birds in Baja California. Lipid stores likely fuel migration for Brant wintering in Baja California and ensure winter survival for those in Alaska. Increases in body protein may support earlier reproduction for Brant in Alaska. Predicted energy demands were similar between sites during late winter but avenues of expenditure were different. Birds in Baja California spent more energy on lipid synthesis while those in Alaska incurred higher thermoregulatory costs. Estimated daily intake rates of eelgrass were similar between sites in early winter; however, feeding time was more constrained in Alaska because of high tides and short photoperiods. Despite differences in energetic costs and foraging time, Brant wintering at both sites appeared to be in good condition. We suggest that wintering in Alaska may be more advantageous than long-distance migration if winter survival is similar between sites and constraints on foraging time do not impair body condition. ?? The Cooper Ornithological Society 2006.

  14. Aerobic carboxydotrophy under extremely haloalkaline conditions in Alkalispirillum/Alkalilimnicola strains isolated from soda lakes.

    PubMed

    Sorokin, Dimitry Yu; Tourova, Tatjana P; Kovaleva, Olga L; Kuenen, J Gijs; Muyzer, Gerard

    2010-03-01

    Aerobic enrichments from soda lake sediments with CO as the only substrate resulted in the isolation of five bacterial strains capable of autotrophic growth with CO at extremely high pH and salinity. The strains belonged to the Alkalispirillum/Alkalilimnicola cluster in the Gammaproteobacteria, where the ability to oxidize CO, but not growth with CO, has been demonstrated previously. The growth with CO was possible only at an oxygen concentration below 5 % and CO concentration below 20 % in the gas phase. The isolates were also capable of growth with formate but not with H(2). The carboxydotrophic growth occurred within a narrow pH range from 8 to 10.5 (optimum at 9.5) and a broad salt concentration from 0.3 to 3.5 M total Na(+) (optimum at 1.0 M). Cells grown on CO had high respiration activity with CO and formate, while the cells grown on formate actively oxidized formate alone. In CO-grown cells, CO-dehydrogenase (CODH) activity was detectable both in soluble and membrane fractions, while the NAD-independent formate dehydrogenase (FDH) resided solely in membranes. The results of total protein profiling and the failure to detect CODH with conventional primers for the coxL gene indicated that the CO-oxidizing enzyme in haloalkaliphilic isolates might differ from the classical aerobic CODH complex. A single cbbL gene encoding the RuBisCO large subunit was detected in all strains, suggesting the presence of the Calvin cycle of inorganic carbon fixation. Overall, these results demonstrated the possibility of aerobic carboxydotrophy under extremely haloalkaline conditions.

  15. Confidence intervals for expected moments algorithm flood quantile estimates

    USGS Publications Warehouse

    Cohn, T.A.; Lane, W.L.; Stedinger, J.R.

    2001-01-01

    Historical and paleoflood information can substantially improve flood frequency estimates if appropriate statistical procedures are properly applied. However, the Federal guidelines for flood frequency analysis, set forth in Bulletin 17B, rely on an inefficient "weighting" procedure that fails to take advantage of historical and paleoflood information. This has led researchers to propose several more efficient alternatives including the Expected Moments Algorithm (EMA), which is attractive because it retains Bulletin 17B's statistical structure (method of moments with the Log Pearson Type 3 distribution) and thus can be easily integrated into flood analyses employing the rest of the Bulletin 17B approach. The practical utility of EMA, however, has been limited because no closed-form method has been available for quantifying the uncertainty of EMA-based flood quantile estimates. This paper addresses that concern by providing analytical expressions for the asymptotic variance of EMA flood-quantile estimators and confidence intervals for flood quantile estimates. Monte Carlo simulations demonstrate the properties of such confidence intervals for sites where a 25- to 100-year streamgage record is augmented by 50 to 150 years of historical information. The experiments show that the confidence intervals, though not exact, should be acceptable for most purposes.

  16. Spring Ephemerals Adapt to Extremely High Light Conditions via an Unusual Stabilization of Photosystem II

    PubMed Central

    Tu, Wenfeng; Li, Yang; Liu, Wu; Wu, Lishuan; Xie, Xiaoyan; Zhang, Yuanming; Wilhelm, Christian; Yang, Chunhong

    2016-01-01

    Ephemerals, widely distributed in the Gobi desert, have developed significant characteristics to sustain high photosynthetic efficiency under high light (HL) conditions. Since the light reaction is the basis for photosynthetic conversion of solar energy to chemical energy, the photosynthetic performances in thylakoid membrane of the spring ephemerals in response to HL were studied. Three plant species, namely two C3 spring ephemeral species of Cruciferae: Arabidopsis pumila (A. pumila) and Sisymbrium altissimum (S. altissimum), and the model plant Arabidopsis thaliana (A. thaliana) were chosen for the study. The ephemeral A. pumila, which is genetically close to A. thaliana and ecologically in the same habitat as S. altissimum, was used to avoid complications arising from the superficial differences resulted from comparing plants from two extremely contrasting ecological groups. The findings manifested that the ephemerals showed significantly enhanced activities of photosystem (PS) II under HL conditions, while the activities of PSII in A. thaliana were markedly decreased under the same conditions. Detailed analyses of the electron transport processes revealed that the increased plastoquinone pool oxidization, together with the enhanced PSI activities, ensured a lowered excitation pressure to PSII of both ephemerals, and thus facilitated the photosynthetic control to avoid photodamage to PSII. The analysis of the reaction centers of the PSs, both in terms of D1 protein turnover kinetics and the long-term adaptation, revealed that the unusually stable PSs structure provided the basis for the ephemerals to carry out high photosynthetic performances. It is proposed that the characteristic photosynthetic performances of ephemerals were resulted from effects of the long-term adaptation to the harsh environments. PMID:26779223

  17. Mixed hidden Markov quantile regression models for longitudinal data with possibly incomplete sequences.

    PubMed

    Marino, Maria Francesca; Tzavidis, Nikos; Alfò, Marco

    2016-01-01

    Quantile regression provides a detailed and robust picture of the distribution of a response variable, conditional on a set of observed covariates. Recently, it has be been extended to the analysis of longitudinal continuous outcomes using either time-constant or time-varying random parameters. However, in real-life data, we frequently observe both temporal shocks in the overall trend and individual-specific heterogeneity in model parameters. A benchmark dataset on HIV progression gives a clear example. Here, the evolution of the CD4 log counts exhibits both sudden temporal changes in the overall trend and heterogeneity in the effect of the time since seroconversion on the response dynamics. To accommodate such situations, we propose a quantile regression model, where time-varying and time-constant random coefficients are jointly considered. Since observed data may be incomplete due to early drop-out, we also extend the proposed model in a pattern mixture perspective. We assess the performance of the proposals via a large-scale simulation study and the analysis of the CD4 count data.

  18. Surf zone, infragravity wave energy flux, and runup in extreme conditions

    NASA Astrophysics Data System (ADS)

    Fiedler, J. W.; Brodie, K. L.; McNinch, J.; Guza, R. T.

    2014-12-01

    Waves, currents, and sand levels were observed on a 1.4 km-long cross-shore transect extending from the back beach to ~11 m water depth at Agate Beach, Oregon in Fall 2013. Wave runup and water table fluctuations on this low slope (1:80) beach were measured with a cliff-mounted scanning Lidar and buried pressure sensors. Significant wave heights at an offshore buoy in 128m depth ranged from small (0.5m) to extreme (7.5m), with peak periods between 4-22 seconds. Infragravity frequency (nominally 0.01 Hz) horizontal runup excursions exceeded 100m, and infragravity cross-shore velocity exceeded 3 m/s. Cross-shore patterns of infragravity wave energy flux, observed with seven co-located pressure and current meters, indicate 'proto-saturation' of the inner surfzone in extreme conditions. That is, the intensification of incident wave forcing (e.g. higher energy, longer swell) leads to a wider surfzone and an increase in the shoreward infragravity wave energy seaward of the surfzone, but produces more modest increases in flux in the inner surfzone, and in the runup. Nonlinear energy balances, based on the observations, show transfer of energy from sea-swell to infragravity waves, and vice-versa. The infragravity energy balance closes in cases with low energy incident sea-swell. With more energetic incident waves, there is an unexplained inner surfzone energy sink at the lowest IG frequencies (0.004-0.02 Hz). Ongoing work aims to quantify the effect on infragravity energy balances by infragravity wave breaking and bottom friction. Additionally, the estimates may be degraded by contamination with rotational velocities of surfzone eddies. Whatever the dynamical explanation, infragravity wave runup on a low slope beach in high-energy conditions is limited significantly by dissipation. The slow rate of runup increase suggests nascent, or 'proto' saturation. This work was supported by the U.S. Army Corps of Engineers.

  19. Flood quantile estimation at ungauged sites by Bayesian networks

    NASA Astrophysics Data System (ADS)

    Mediero, L.; Santillán, D.; Garrote, L.

    2012-04-01

    Estimating flood quantiles at a site for which no observed measurements are available is essential for water resources planning and management. Ungauged sites have no observations about the magnitude of floods, but some site and basin characteristics are known. The most common technique used is the multiple regression analysis, which relates physical and climatic basin characteristic to flood quantiles. Regression equations are fitted from flood frequency data and basin characteristics at gauged sites. Regression equations are a rigid technique that assumes linear relationships between variables and cannot take the measurement errors into account. In addition, the prediction intervals are estimated in a very simplistic way from the variance of the residuals in the estimated model. Bayesian networks are a probabilistic computational structure taken from the field of Artificial Intelligence, which have been widely and successfully applied to many scientific fields like medicine and informatics, but application to the field of hydrology is recent. Bayesian networks infer the joint probability distribution of several related variables from observations through nodes, which represent random variables, and links, which represent causal dependencies between them. A Bayesian network is more flexible than regression equations, as they capture non-linear relationships between variables. In addition, the probabilistic nature of Bayesian networks allows taking the different sources of estimation uncertainty into account, as they give a probability distribution as result. A homogeneous region in the Tagus Basin was selected as case study. A regression equation was fitted taking the basin area, the annual maximum 24-hour rainfall for a given recurrence interval and the mean height as explanatory variables. Flood quantiles at ungauged sites were estimated by Bayesian networks. Bayesian networks need to be learnt from a huge enough data set. As observational data are reduced, a

  20. Radar observations of magnetospheric activity during extremely quiet solar wind conditions

    NASA Astrophysics Data System (ADS)

    Walker, A. D. M.; Baker, K. B.; Pinnock, M.; Dudeney, J. R.; Rash, J. P. S.

    2002-04-01

    During a period of extremely quiet solar wind conditions from 8 to 10 March 1997, strong activity was observed by the Southern Hemisphere Auroral Radar Experiment Super Dual Auroral Radar Network radars in the Antarctic premidnight ionosphere. This activity took the form of quasiperiodic flow bursts with ionospheric drift velocities exceeding 2 km s-1. Data from the Satellite Experiments Simultaneous with Antarctic Measurements (SESAME) automated geophysical observatories in Antarctica and Defense Meteorological Satellite Program and Polar satellites are used with the radar data to study the convection flow in the southern polar ionosphere at the time of these flow bursts. The study shows that the bursts occurred with an approximate period of 12 min. Their direction was westward, and they were superimposed on a background westward flow. In the premidnight sector this is interpreted as a flow associated with dipolarization of the magnetotail tail field. There is a band of strong particle precipitation associated with the flow bursts. The location suggests that they occur deep in the magnetotail and cannot be associated with any lobe reconnection. They are at a latitude near the region where a viscously driven convection cell is expected to exist, and their sense is that of the return convection flow in such a cell. The results suggest that there is an internal magnetospheric mechanism for sporadic energy release in the magnetotail that need not be associated with changes in solar wind reconnection on the magnetopause.

  1. Smell-taste dysfunctions in extreme weight/eating conditions: analysis of hormonal and psychological interactions.

    PubMed

    Fernández-Aranda, Fernando; Agüera, Zaida; Fernández-García, Jose C; Garrido-Sanchez, Lourdes; Alcaide-Torres, Juan; Tinahones, Francisco J; Giner-Bartolomé, Cristina; Baños, Rosa M; Botella, Cristina; Cebolla, Ausias; de la Torre, Rafael; Fernández-Real, Jose M; Ortega, Francisco J; Frühbeck, Gema; Gómez-Ambrosi, Javier; Granero, Roser; Islam, Mohamed A; Jiménez-Murcia, Susana; Tárrega, Salomé; Menchón, José M; Fagundo, Ana B; Sancho, Carolina; Estivill, Xavier; Treasure, Janet; Casanueva, Felipe F

    2016-02-01

    (1) The objective of this study is to analyze differences in smell-taste capacity between females in extreme weight/eating conditions (EWC) and (2) to explore the interaction between smell/taste capacity, gastric hormones, eating behavior and body mass index (BMI). The sample comprised 239 females in EWC [64 Anorexia nervosa (AN) and 80 age-matched healthy-weight controls, and 59 obese and 36 age-matched healthy-weight controls]. Smell and taste assessments were performed through "Sniffin' Sticks" and "Taste Strips," respectively. The assessment measures included the eating disorders inventory-2, the symptom check list 90-revised, and The Dutch Eating Behavior Questionnaire, as well as peptides from the gastrointestinal tract [Ghrelin, peptide YY, cholecystokinin]. Smell capacity was differentially associated across EWC groups. Smell was clearly impaired in obese participants and increased in AN (hyposmia in Obesity was 54.3 and 6.4 % in AN), but taste capacity did not vary across EWC. Ghrelin levels were significantly decreased in obese subjects and were related to smell impairment. EWC individuals showed a distinct smell profile and circulating ghrelin levels compared to controls. Smell capacity and ghrelin may act as moderators of emotional eating and BMI.

  2. Lorenz-Mie digital holographic microscopy on complex colloids and at extreme pressure conditions (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Saglimbeni, Filippo; Bianchi, Silvio; Di Leonardo, Roberto; Padgett, Miles J.; Gibson, Graham; Bowman, Richard W.; Paradossi, Gaio

    2016-03-01

    Lorenz-Mie scattering theory allows to predict the field scattered by spherical objects illuminated by coherent light. By fitting the fringe pattern resulting from the interference of incident and scattered light, it is possible to track and size colloidal particles with a few nanometer precision. Using digital holographic microscopy (DHM) we extend the applications of Lorenz-Mie theory to hollow spherical structures and to extremely high pressure conditions. On the one hand, we geometrically and optically characterize complex colloids as polymer-shelled microbubbles, with high precision, low costs and short acquisition time. These microbubbles are likely to be unique tools for targeted drug delivery and are currently used as contrast agents for sonography. We measured size, shell thickness and refractive index for hundreds of polymeric microbubbles showing that shell thickness displays a large variation that is strongly correlated with its refractive index and thus with its composition. On the other hand we demonstrate that DHM can be used for accurate 3D tracking and sizing of a holographically trapped colloidal probe in a diamond anvil cell (DAC). Polystyrene beads were trapped in water up to Gigapascal pressures while simultaneously recording in-line holograms at 1 KHz frame rate. This technique may potentially provide a new method for spatially resolved pressure measurements inside a DAC.

  3. Characteristics of the global ionospheric electron density during the extreme solar minimum condition

    NASA Astrophysics Data System (ADS)

    Jee, G.

    2010-12-01

    The last solar minimum period between the cycles 23 and 24 was anomalously low and lasted long compared with previous solar minimums. The resulting solar irradiance received in the Earth’s upper atmosphere was extremely low and therefore it can readily be expected that the upper atmosphere should be greatly affected by this low solar activity. There were several studies on this effect but many of them was on the thermosphere (Solomon et al., 2010; Emmert et al., 2010). According to these studies, the thermospheric temperature was cooler and the density was lower than the previous solar minimum periods. The low solar irradiance during the last solar minimum should also affect the ionosphere, not only via the lower ion-electron production due to the lower EUV radiation but also through the interactions with the thermosphere that was already influenced by the low solar irradiance. In this study, we utilized the measurements of total electron content (TEC) from the TOPEX and JASON satellites during the periods of 1992 to 2010, which includes the last two solar minimums, in order to investigate the differences between the ionospheric behaviors during the two minimum conditions. Initially the levels of the global ionization will be examined during these minimum periods and then further discussions will be continued on the details of the ionospheric behavior such as the seasonal and storm-time variations.

  4. 360⁰ -View of Quantum Theory and Ab Initio Simulation at Extreme Conditions: 2014 Sanibel Symposium

    SciTech Connect

    Cheng, Hai-Ping

    2016-09-02

    The Sanibel Symposium 2014 was held February 16-21, 2014, at the King and Prince, St. Simons Island, GA. It was successful in bringing condensed-matter physicists and quantum chemists together productively to drive the emergence of those specialties. The Symposium had a significant role in preparing a whole generation of quantum theorists. The 54th Sanibel meeting looked to the future in two ways. We had 360⁰-View sessions to honor the exceptional contributions of Rodney Bartlett (70), Bill Butler (70), Yngve Öhrn (80), Fritz Schaefer (70), and Malcolm Stocks (70). The work of these five has greatly impacted several generations of quantum chemists and condensed matter physicists. The “360⁰” is the sum of their ages. More significantly, it symbolizes a panoramic view of critical developments and accomplishments in theoretical and computational chemistry and physics oriented toward the future. Thus, two of the eight 360⁰-View sessions focused specifically on younger scientists. The 360⁰-View program was the major component of the 2014 Sanibel meeting. Another four sessions included a sub-symposium on ab initio Simulations at Extreme Conditions, with focus on getting past the barriers of present-day Born-Oppenheimer molecular dynamics by advances in finite-temperature density functional theory, orbital-free DFT, and new all-numerical approaches.

  5. Synchrotron radiation and high pressure: new light on materials under extreme conditions.

    PubMed

    Hemley, Russell J; Mao, Ho-kwang; Struzhkin, Viktor V

    2005-03-01

    With the steady development of static high-pressure techniques in recent years, it is now possible to probe in increasing detail the novel behavior of materials subjected to extreme conditions of multimegabar pressures (>300 GPa) and temperatures from cryogenic states to thousands of degrees. By and large, the growth in this area has been made possible by accelerating developments in diamond-anvil cell methods coupled with new synchrotron radiation techniques. Significant advances have occurred in high-pressure powder and single-crystal diffraction, spectroscopy, inelastic scattering, radiography, and infrared spectroscopy. A brief overview of selected highlights in each of these classes of experiments is presented that illustrate both the state-of-the-art as well as current technical and scientific challenges. The experiments have been made possible by the development of a spectrum of new techniques at both third- and second-generation high-energy sources together with key advances in high-pressure technology. The results have implications for a variety of problems in physics, chemistry, materials science, geoscience, planetary science, and biology.

  6. Modeling of the Human - Operator in a Complex System Functioning Under Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Getzov, Peter; Hubenova, Zoia; Yordanov, Dimitar; Popov, Wiliam

    2013-12-01

    Problems, related to the explication of sophisticated control systems of objects, operating under extreme conditions, have been examined and the impact of the effectiveness of the operator's activity on the systems as a whole. The necessity of creation of complex simulation models, reflecting operator's activity, is discussed. Organizational and technical system of an unmanned aviation complex is described as a sophisticated ergatic system. Computer realization of main subsystems of algorithmic system of the man as a controlling system is implemented and specialized software for data processing and analysis is developed. An original computer model of a Man as a tracking system has been implemented. Model of unmanned complex for operators training and formation of a mental model in emergency situation, implemented in "matlab-simulink" environment, has been synthesized. As a unit of the control loop, the pilot (operator) is simplified viewed as an autocontrol system consisting of three main interconnected subsystems: sensitive organs (perception sensors); central nervous system; executive organs (muscles of the arms, legs, back). Theoretical-data model of prediction the level of operator's information load in ergatic systems is proposed. It allows the assessment and prediction of the effectiveness of a real working operator. Simulation model of operator's activity in takeoff based on the Petri nets has been synthesized.

  7. Recent trends in heavy precipitation extremes over Germany: A thorough intercomparison between different statistical approaches

    NASA Astrophysics Data System (ADS)

    Donner, Reik; Passow, Christian

    2016-04-01

    comparison with GEV and GP-based approaches, quantile regression approaches thus allow for more flexibility and make full use of all available observational values, no matter if extreme or not. Due to the latter fact, trends in extreme values can be more easily assessed based on shorter time series. However, the question under which conditions and to what extent regression and extreme value theory-based approaches provide consistent results has not yet been fully explored. In this study, we provide a thorough inter-comparison between the recent trends in extreme precipitation events (assessed in terms of daily precipitation sums) from a large set of German weather stations as revealed by the classical (monthly) block maxima method with linearly time-dependent GEV parameters and linear quantile regression of the full time series. For the study period from 1951 to 2006, our main findings are as follows: (1) The spatial patterns of quantile trends for various high (>90%) percentiles and trends in the location parameter of the GEV distribution are qualitatively consistent and exhibit significant correlations, which, however, clearly deviate from an ideal correspondence. (2) In comparison with the trend parameters, the intercepts of the respective linear models for the GEV location parameter and different quantiles exhibit considerably larger mutual correlation values. (3) Quantile regression indicates more stations with strongly positive trends in extreme precipitation than the block maxima method. Moreover, the significance statements provided by the GEV statistics are more conservative than those resulting from quantile regression. Significant upward trends are generally restricted to Southern and Western Germany and are almost completely absent in the Northeastern part of the country. (4) More complex GEV models including linear trends in both location and dispersion parameter need to be considered only for a small subset of all stations (202 out of 2342). In most cases

  8. Characterization of extremely low frequency magnetic fields from diesel, gasoline and hybrid cars under controlled conditions.

    PubMed

    Hareuveny, Ronen; Sudan, Madhuri; Halgamuge, Malka N; Yaffe, Yoav; Tzabari, Yuval; Namir, Daniel; Kheifets, Leeka

    2015-01-30

    This study characterizes extremely low frequency (ELF) magnetic field (MF) levels in 10 car models. Extensive measurements were conducted in three diesel, four gasoline, and three hybrid cars, under similar controlled conditions and negligible background fields. Averaged over all four seats under various driving scenarios the fields were lowest in diesel cars (0.02 μT), higher for gasoline (0.04-0.05 μT) and highest in hybrids (0.06-0.09 μT), but all were in-line with daily exposures from other sources. Hybrid cars had the highest mean and 95th percentile MF levels, and an especially large percentage of measurements above 0.2 μT. These parameters were also higher for moving conditions compared to standing while idling or revving at 2500 RPM and higher still at 80 km/h compared to 40 km/h. Fields in non-hybrid cars were higher at the front seats, while in hybrid cars they were higher at the back seats, particularly the back right seat where 16%-69% of measurements were greater than 0.2 μT. As our results do not include low frequency fields (below 30 Hz) that might be generated by tire rotation, we suggest that net currents flowing through the cars' metallic chassis may be a possible source of MF. Larger surveys in standardized and well-described settings should be conducted with different types of vehicles and with spectral analysis of fields including lower frequencies due to magnetization of tires.

  9. Methanogenesis at extremely haloalkaline conditions in the soda lakes of Kulunda Steppe (Altai, Russia).

    PubMed

    Sorokin, Dimitry Y; Abbas, Ben; Geleijnse, Mitchell; Pimenov, Nikolai V; Sukhacheva, Marina V; van Loosdrecht, Mark C M

    2015-04-01

    Microbial methanogenesis at extreme conditions of saline alkaline soda lakes has, so far, been poorly investigated. Despite the obvious domination of sulfidogenesis as the therminal anaerobic process in the hypersaline soda lakes of Kulunda Steppe (Altai, southwestern Siberia), high concentrations of methane were detected in the anaerobic sediments. Potential activity measurements with different substrates gave results significantly deviating from what is commonly found in hypersaline habitats with neutral pH. In particular, not only a non-competitive methylotrophic pathway was active, but also lithotrophic and, in some cases, even acetate-dependent methanogenesis was found to be present in hypersaline soda lake sediments. All three pathways were functioning exclusively within the alkaline pH range between 8 and 10.5, while the salt concentration was the key factor influencing the activity. Methylotrophic and, to a lesser extent, lithotrophic methanogenesis were active up to soda-saturating conditions (4 M total Na(+)). Acetate-dependent methanogenesis was observed at salinities below 3 M total Na(+). Detection of methanogens in sediments using the mcrA gene as a functional marker demonstrated domination of methylotrophic genera Methanolobus and Methanosalsum and lithotrophic Methanocalculus. In a few cases, acetoclastic Methanosaeta was detected, as well as two deep lineage methanogens. Cultivation results corresponded well to the mcrA-based observations. Enrichments for natronophilic methylotrophic methanogens resulted in isolation of Methanolobus strains at moderate salinity, while at salt concentrations above 2 M Na(+) a novel member of the genus Methanosalsum was dominating. Enrichments with H2 or formate invariably resulted in domination of close relatives of Methanocalculus natronophilus. Enrichments with acetate at low salt concentration yielded two acetoclastic alkaliphilic Methanosaeta cultures, while at salinity above 1 M Na(+) syntrophic associations

  10. Characterization of Extremely Low Frequency Magnetic Fields from Diesel, Gasoline and Hybrid Cars under Controlled Conditions

    PubMed Central

    Hareuveny, Ronen; Sudan, Madhuri; Halgamuge, Malka N.; Yaffe, Yoav; Tzabari, Yuval; Namir, Daniel; Kheifets, Leeka

    2015-01-01

    This study characterizes extremely low frequency (ELF) magnetic field (MF) levels in 10 car models. Extensive measurements were conducted in three diesel, four gasoline, and three hybrid cars, under similar controlled conditions and negligible background fields. Averaged over all four seats under various driving scenarios the fields were lowest in diesel cars (0.02 μT), higher for gasoline (0.04–0.05 μT) and highest in hybrids (0.06–0.09 μT), but all were in-line with daily exposures from other sources. Hybrid cars had the highest mean and 95th percentile MF levels, and an especially large percentage of measurements above 0.2 μT. These parameters were also higher for moving conditions compared to standing while idling or revving at 2500 RPM and higher still at 80 km/h compared to 40 km/h. Fields in non-hybrid cars were higher at the front seats, while in hybrid cars they were higher at the back seats, particularly the back right seat where 16%–69% of measurements were greater than 0.2 μT. As our results do not include low frequency fields (below 30 Hz) that might be generated by tire rotation, we suggest that net currents flowing through the cars’ metallic chassis may be a possible source of MF. Larger surveys in standardized and well-described settings should be conducted with different types of vehicles and with spectral analysis of fields including lower frequencies due to magnetization of tires. PMID:25647323

  11. Structural and Mechanical Properties of Intermediate Filaments under Extreme Conditions and Disease

    NASA Astrophysics Data System (ADS)

    Qin, Zhao

    Intermediate filaments are one of the three major components of the cytoskeleton in eukaryotic cells. It was discovered during the recent decades that intermediate filament proteins play key roles to reinforce cells subjected to large-deformation as well as participate in signal transduction. However, it is still poorly understood how the nanoscopic structure, as well as the biochemical properties of these protein molecules contribute to their biomechanical functions. In this research we investigate the material function of intermediate filaments under various extreme mechanical conditions as well as disease states. We use a full atomistic model and study its response to mechanical stresses. Learning from the mechanical response obtained from atomistic simulations, we build mesoscopic models following the finer-trains-coarser principles. By using this multiple-scale model, we present a detailed analysis of the mechanical properties and associated deformation mechanisms of intermediate filament network. We reveal the mechanism of a transition from alpha-helices to beta-sheets with subsequent intermolecular sliding under mechanical force, which has been inferred previously from experimental results. This nanoscale mechanism results in a characteristic nonlinear force-extension curve, which leads to a delocalization of mechanical energy and prevents catastrophic fracture. This explains how intermediate filament can withstand extreme mechanical deformation of > 1 00% strain despite the presence of structural defects. We combine computational and experimental techniques to investigate the molecular mechanism of Hutchinson-Gilford progeria syndrome, a premature aging disease. We find that the mutated lamin tail .domain is more compact and stable than the normal one. This altered structure and stability may enhance the association of intermediate filaments with the nuclear membrane, providing a molecular mechanism of the disease. We study the nuclear membrane association

  12. Parametric modeling of quantile regression coefficient functions with censored and truncated data.

    PubMed

    Frumento, Paolo; Bottai, Matteo

    2017-02-09

    Quantile regression coefficient functions describe how the coefficients of a quantile regression model depend on the order of the quantile. A method for parametric modeling of quantile regression coefficient functions was discussed in a recent article. The aim of the present work is to extend the existing framework to censored and truncated data. We propose an estimator and derive its asymptotic properties. We discuss goodness-of-fit measures, present simulation results, and analyze the data that motivated this article. The described estimator has been implemented in the R package qrcm.

  13. Cold-water coral growth under extreme environmental conditions, the Cape Lookout area, NW Atlantic

    NASA Astrophysics Data System (ADS)

    Mienis, F.; Duineveld, G. C. A.; Davies, A. J.; Lavaleye, M. M. S.; Ross, S. W.; Seim, H.; Bane, J.; van Haren, H.; Bergman, M. J. N.; de Haas, H.; Brooke, S.; van Weering, T. C. E.

    2014-05-01

    day, which is the largest temperature variability as measured so far in a cold-water coral habitat. Warm events, related to Gulf Stream meanders, had the duration of roughly 1 week and the current during these events was directed to the NNE. The consequences of such events must be significant given the strong effects of temperature on the metabolism of cold-water corals. Furthermore, elevated acoustic backscatter values and high mass fluxes were also recorded during these events, indicating a second stressor that may affect the corals. The abrasive nature of sand in combination with strong currents might sand blast the corals. We conclude that cold-water corals near Cape Lookout live under extreme conditions that limit mound growth at present.

  14. A Combination of Extreme Environmental Conditions Favor the Prevalence of Endospore-Forming Firmicutes

    PubMed Central

    Filippidou, Sevasti; Wunderlin, Tina; Junier, Thomas; Jeanneret, Nicole; Dorador, Cristina; Molina, Veronica; Johnson, David R.; Junier, Pilar

    2016-01-01

    Environmental conditions unsuitable for microbial growth are the rule rather than the exception in most habitats. In response to this, microorganisms have developed various strategies to withstand environmental conditions that limit active growth. Endospore-forming Firmicutes (EFF) deploy a myriad of survival strategies in order to resist adverse conditions. Like many bacterial groups, they can form biofilms and detect nutrient scarcity through chemotaxis. Moreover, within this paraphyletic group of Firmicutes, ecophysiological optima are diverse. Nonetheless, a response to adversity that delimits this group is the formation of wet-heat resistant spores. These strategies are energetically demanding and therefore might affect the biological success of EFF. Therefore, we hypothesize that abundance and diversity of EFF should be maximized in those environments in which the benefits of these survival strategies offsets the energetic cost. In order to address this hypothesis, geothermal and mineral springs and drillings were selected because in these environments of steep physicochemical gradients, diversified survival strategies may become a successful strategy.We collected 71 samples from geothermal and mineral environments characterized by none (null), single or multiple limiting environmental factors (temperature, pH, UV radiation, and specific mineral composition). To measure success, we quantified EFF gene copy numbers (GCN; spo0A gene) in relation to total bacterial GCN (16S rRNA gene), as well as the contribution of EFF to community composition. The quantification showed that relative GCN for EFF reached up to 20% at sites characterized by multiple limiting environmental factors, whereas it corresponded to less than 1% at sites with one or no limiting environmental factor. Pyrosequencing of the 16S rRNA gene supports a higher contribution of EFF at sites with multiple limiting factors. Community composition suggested a combination of phylotypes for which active

  15. A Combination of Extreme Environmental Conditions Favor the Prevalence of Endospore-Forming Firmicutes.

    PubMed

    Filippidou, Sevasti; Wunderlin, Tina; Junier, Thomas; Jeanneret, Nicole; Dorador, Cristina; Molina, Veronica; Johnson, David R; Junier, Pilar

    2016-01-01

    Environmental conditions unsuitable for microbial growth are the rule rather than the exception in most habitats. In response to this, microorganisms have developed various strategies to withstand environmental conditions that limit active growth. Endospore-forming Firmicutes (EFF) deploy a myriad of survival strategies in order to resist adverse conditions. Like many bacterial groups, they can form biofilms and detect nutrient scarcity through chemotaxis. Moreover, within this paraphyletic group of Firmicutes, ecophysiological optima are diverse. Nonetheless, a response to adversity that delimits this group is the formation of wet-heat resistant spores. These strategies are energetically demanding and therefore might affect the biological success of EFF. Therefore, we hypothesize that abundance and diversity of EFF should be maximized in those environments in which the benefits of these survival strategies offsets the energetic cost. In order to address this hypothesis, geothermal and mineral springs and drillings were selected because in these environments of steep physicochemical gradients, diversified survival strategies may become a successful strategy.We collected 71 samples from geothermal and mineral environments characterized by none (null), single or multiple limiting environmental factors (temperature, pH, UV radiation, and specific mineral composition). To measure success, we quantified EFF gene copy numbers (GCN; spo0A gene) in relation to total bacterial GCN (16S rRNA gene), as well as the contribution of EFF to community composition. The quantification showed that relative GCN for EFF reached up to 20% at sites characterized by multiple limiting environmental factors, whereas it corresponded to less than 1% at sites with one or no limiting environmental factor. Pyrosequencing of the 16S rRNA gene supports a higher contribution of EFF at sites with multiple limiting factors. Community composition suggested a combination of phylotypes for which active

  16. Evaluation of Spatio-temporal Drought using Water Resource Quantile Map

    NASA Astrophysics Data System (ADS)

    Moon, Soojin; Suh, Aesook; Kang, Boosik

    2016-04-01

    Among those various natural disasters, the drought which is contrasted to the flood is not defined in only one case and it is true that the standard to estimate and conclude the drought is in vague with the long-term water insufficiency following the local and time-periodic rainfall disparity. Drought indices is mainly used as an index for evaluating drought. However, it is not an absolute indicator that can evaluate drought. Depending on the characteristics of each index in a variety of conditions such as local and environment, after grasping a better applicability in the use surfaces to suit the purpose of the user, using the appropriate index to be drought evaluation shall. After considering the various characteristics such as regional and environment with each index, the drought index have to use appropriately. Accordingly, there has been a lot of research for drought monitoring. However, objective method that can be evaluated experts as well as the general people on the actual drought situation, is deficient. In this study, it suggested RSQM (Real-time Storage Quantile Map) and RRQM (Real-time Riverflow Quantile Map) in the way to calculating the quantile of the current value corresponding to the usual value of the annual value river water level and storage rate of multi-purpose dam. It was calculated the probability distribution by selecting a typical water level stations and multipurpose dam of each basin. And the RSQM and RRQM were comparison and analysis to SPI and PDSI Index. These schemes can be objectively judged insufficient degree and drought conditions in water in real time. The RSQM and RSQM are meaning the supply potential of water resources and stress value of river environment. RRQM is mainly due to represent the adjusted value of downstream of multi-purpose dam. Accordingly it does not show the tendency of the representation of the drought to match exactly. However, RRQM is more directly represented about visually showing drought conditions

  17. Complex layered dental restorations: Are they recognizable and do they survive extreme conditions?

    PubMed

    Soon, Alistair S; Bush, Mary A; Bush, Peter J

    2015-09-01

    Recent research has shown that restorative dental materials can be recognized by microscopy and elemental analysis (scanning electron microscopy/energy dispersive X-ray spectroscopy and X-ray fluorescence; SEM/EDS and XRF) and that this is possible even in extreme conditions, such as cremation. These analytical methods and databases of dental materials properties have proven useful in DVI (disaster victim identification) of a commercial plane crash in 2009, and in a number of other victim identification cases. Dental materials appear on the market with ever expanding frequency. With their advent, newer methods of restoration have been proposed and adopted in the dental office. Methods might include placing multiple layers of dental materials, where they have different properties including adhesion, viscosity, or working time. These different dental materials include filled adhesives, flowable resins, glass ionomer cements, composite resins, liners and sealants. With possible combinations of different materials in these restorations, the forensic odontologist is now confronted with a new difficulty; how to recognize each individual material. The question might be posed if it is even possible to perform this task. Furthermore, an odontologist might be called upon to identify a victim under difficult circumstances, such as when presented with fragmented or incinerated remains. In these circumstances the ability to identify specific dental materials could assist in the identification of the deceased. Key to use of this information is whether these new materials and methods are detailed in the dental chart. Visual or radiographic inspection may not reveal the presence of a restoration, let alone the possible complex nature of that restoration. This study demonstrates another scientific method in forensic dental identification.

  18. PREFACE: International Symposium on Molecular Conductors: Novel Functions of Molecular Conductors under Extreme Conditions (ISMC 2008)

    NASA Astrophysics Data System (ADS)

    Takahashi, Toshihiro; Suzumura, Yoshikazu

    2008-02-01

    The International Symposium on Molecular Conductors 2008 (ISMC2008) was held as the second international symposium of the project entitled `Novel Functions of Molecular Conductors under Extreme Conditions', which was supported by the Grant-in-aid for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Science and Technology in Japan. The project lasted from September 2003 to March 2008, and was completed by this symposium held at Okazaki Conference Center, Institute for Molecular Science, Okazaki, Japan (23-25 July 2008), which about 100 scientists attended. During the symposium, five project teams gave summary talks and exciting talks were given on the topics developed recently not only by the members of the project but also by other scientists including invited speakers from abroad, who are doing active research on molecular conductors. It is expected that papers presented in the symposium will give valuable hints for the next step in the research of this field. Therefore the organizers of this symposium decided to publish this proceedings in order to demonstrate these activities, not only for the local community of the project, but also for the broad society of international scientists who are interested in molecular conductors. The editors, who are also the organizers of this symposium, believe that this proceedings provides a significant and relevant contribution to the field of molecular conductors since it is the first time we have published such a proceedings as an electronic journal. We note that all papers published in this volume of Journal of Physics: Conference Series have been peer reviewed by expert referees. Editors made every effort to satisfy the criterion of a proceedings journal published by IOP Publishing. Toshihiro Takahashi and Yoshikazu Suzumura Editors: Toshihiro Takahashi (Gakushuin University) (Chairman) Kazushi Kanoda (University of Tokyo) Seiichi Kagoshima (University of Tokyo) Takehiko Mori (Tokyo

  19. Matter under extreme conditions experiments at the Linac Coherent Light Source

    NASA Astrophysics Data System (ADS)

    Glenzer, S. H.; Fletcher, L. B.; Galtier, E.; Nagler, B.; Alonso-Mori, R.; Barbrel, B.; Brown, S. B.; Chapman, D. A.; Chen, Z.; Curry, C. B.; Fiuza, F.; Gamboa, E.; Gauthier, M.; Gericke, D. O.; Gleason, A.; Goede, S.; Granados, E.; Heimann, P.; Kim, J.; Kraus, D.; MacDonald, M. J.; Mackinnon, A. J.; Mishra, R.; Ravasio, A.; Roedel, C.; Sperling, P.; Schumaker, W.; Tsui, Y. Y.; Vorberger, J.; Zastrau, U.; Fry, A.; White, W. E.; Hasting, J. B.; Lee, H. J.

    2016-05-01

    The matter in extreme conditions end station at the Linac Coherent Light Source (LCLS) is a new tool enabling accurate pump-probe measurements for studying the physical properties of matter in the high-energy density (HED) physics regime. This instrument combines the world’s brightest x-ray source, the LCLS x-ray beam, with high-power lasers consisting of two nanosecond Nd:glass laser beams and one short-pulse Ti:sapphire laser. These lasers produce short-lived states of matter with high pressures, high temperatures or high densities with properties that are important for applications in nuclear fusion research, laboratory astrophysics and the development of intense radiation sources. In the first experiments, we have performed highly accurate x-ray diffraction and x-ray Thomson scattering measurements on shock-compressed matter resolving the transition from compressed solid matter to a co-existence regime and into the warm dense matter state. These complex charged-particle systems are dominated by strong correlations and quantum effects. They exist in planetary interiors and laboratory experiments, e.g., during high-power laser interactions with solids or the compression phase of inertial confinement fusion implosions. Applying record peak brightness x-rays resolves the ionic interactions at atomic (Ångstrom) scale lengths and measure the static structure factor, which is a key quantity for determining equation of state data and important transport coefficients. Simultaneously, spectrally resolved measurements of plasmon features provide dynamic structure factor information that yield temperature and density with unprecedented precision at micron-scale resolution in dynamic compression experiments. These studies have demonstrated our ability to measure fundamental thermodynamic properties that determine the state of matter in the HED physics regime.

  20. An Invariant-Preserving ALE Method for Solids under Extreme Conditions

    SciTech Connect

    Sambasivan, Shiv Kumar; Christon, Mark A

    2012-07-17

    We are proposing a fundamentally new approach to ALE methods for solids undergoing large deformation due to extreme loading conditions. Our approach is based on a physically-motivated and mathematically rigorous construction of the underlying Lagrangian method, vector/tensor reconstruction, remapping, and interface reconstruction. It is transformational because it deviates dramatically from traditionally accepted ALE methods and provides the following set of unique attributes: (1) a three-dimensional, finite volume, cell-centered ALE framework with advanced hypo-/hyper-elasto-plastic constitutive theories for solids; (2) a new physically and mathematically consistent reconstruction method for vector/tensor fields; (3) advanced invariant-preserving remapping algorithm for vector/tensor quantities; (4) moment-of-fluid (MoF) interface reconstruction technique for multi-material problems with solids undergoing large deformations. This work brings together many new concepts, that in combination with emergent cell-centered Lagrangian hydrodynamics methods will produce a cutting-edge ALE capability and define a new state-of-the-art. Many ideas in this work are new, completely unexplored, and hence high risk. The proposed research and the resulting algorithms will be of immediate use in Eulerian, Lagrangian and ALE codes under the ASC program at the lab. In addition, the research on invariant preserving reconstruction/remap of tensor quantities is of direct interest to ongoing CASL and climate modeling efforts at LANL. The application space impacted by this work includes Inertial Confinement Fusion (ICF), Z-pinch, munition-target interactions, geological impact dynamics, shock processing of powders and shaped charges. The ALE framework will also provide a suitable test-bed for rapid development and assessment of hypo-/hyper-elasto-plastic constitutive theories. Today, there are no invariant-preserving ALE algorithms for treating solids with large deformations. Therefore

  1. Extremality Conditions and Regularity of Solutions to Optimal Partition Problems Involving Laplacian Eigenvalues

    NASA Astrophysics Data System (ADS)

    Ramos, Miguel; Tavares, Hugo; Terracini, Susanna

    2016-04-01

    Let {Ω subset {R}^N} be an open bounded domain and {m in {N}}. Given {k_1,ldots,k_m in {N}}, we consider a wide class of optimal partition problems involving Dirichlet eigenvalues of elliptic operators, of the following form inf{F({λ_{k1}}(ω_1),ldots,λ_{k_m}(ω_m)): (ω_1,ldots, ω_m) in {P}_m(Ω)}, where {λ_{k_i}(ω_i)} denotes the k i -th eigenvalue of {(-Δ,H10(ω_i))} counting multiplicities, and {{P}_m(Ω)} is the set of all open partitions of {Ω}, namely {P}_m(Ω)={(ω_1, ldots, ω_m):ω_i subset Ω open, ωi \\capω_j=emptyset forall i ≠ j }. While the existence of a quasi-open optimal partition {(ω_1,ldots, ω_m)} follows from a general result by Bucur, Buttazzo and Henrot [Adv Math Sci Appl 8(2):571-579, 1998], the aim of this paper is to associate with such minimal partitions and their eigenfunctions some suitable extremality conditions and to exploit them, proving as well the Lipschitz continuity of some eigenfunctions, and the regularity of the partition in the sense that the free boundary {\\cup_{i=1}^m partial ωi \\cap Ω} is, up to a residual set, locally a {C^{1,α}} hypersurface. This last result extends the ones in the paper by Caffarelli and Lin [J Sci Comput 31(1-2):5-18, 2007] to the case of higher eigenvalues.

  2. In situ insights to Se (S) partitioning between silicate and metallic melts at extreme conditions

    NASA Astrophysics Data System (ADS)

    Borchert, M.; Petitgirard, S.; Appel, K.; Watenphul, A.; Morgenroth, W.

    2012-12-01

    The Earth's core mainly consists of a metallic Fe-Ni mixture. However, seismic observations show that the density is about 5-10% lower than expected for an Fe-Ni alloy under similar pressure and temperature conditions (e.g., [1,2]). This discovery initiated numerous studies to identify and quantify light elements in the Earth0s core. Among others, sulphur has been suggested to be a promisingly candidate to alloy with the metallic core because of its depletion in the crust and the mantle relative to other volatile elements by several orders of magnitude (e.g., [3-5]). In the last decades, several experimental studies have aimed to quantify the sulphur content in the Earth's core and to determine its influence on the physical properties (e.g., [6]). However, experimental data on sulphur partitioning between silicate and metallic liquids at pressures and temperatures relevant for core-mantle boundary conditions are missing. This lack is due to pressure and temperature limitations of conventional experimental approaches (up to 25 GPa and 2200 K). New developments, like laser-heated diamond-anvil cells (LDAC), allow studies at core-mantle boundary conditions, but in-situ chemical analysis of sulphur in LDACs is impossible due to the high absorption of S fluorescence in the diamonds. Instead of sulphur, selenium can be used to model sulphur partitioning between silicate and metallic melts at elevated PT conditions. This is based on the fact that sulphur and selenium can be considered as geochemical twins ([7,8]). The main advantage of this approach is the much higher excitation energy of selenium compared to sulphur, which enables in-situ XRF analysis in LDACs. Here, we present preliminary data on Se partitioning between silicate and metallic melt at extreme conditions. The experiments have been performed in double-sided laser-heated LDACs at the high pressure beamlines P02.2 (DESY, Germany) and ID27 (ESRF, France) as described in [9]. Micro-XRF mappings are used to

  3. Cold-water coral growth under extreme environmental conditions, the Cape Lookout area, NW Atlantic

    NASA Astrophysics Data System (ADS)

    Mienis, F.; Duineveld, G.; Davies, A. J.; Lavaleye, M. J. N.; Ross, S. W.; Seim, H.; Bane, J.; van Haren, H.; Bergman, M.; de Haas, H.; Brooke, S.; van Weering, T.

    2013-12-01

    far in a cold-water coral habitat. Warm events, related to Gulf Stream meanders, had the duration of roughly one week and the current during these events was directed to the NNE. The consequences of such events must be significant given the strong effects of temperature on the metabolism of cold-water corals. Furthermore, elevated acoustic backscatter values and high mass fluxes were also recorded during these events, indicating a second stressor that may affect the corals. The abrasive nature of sand in combination with strong currents might sand blast the corals. We conclude that cold-water corals near Cape Lookout live under extreme conditions that limit mound growth at present.

  4. Optical properties of CO2 under extreme conditions: measured and simulated data

    NASA Astrophysics Data System (ADS)

    Stefani, Stefania; Piccioni, Giuseppe; Snels, Marcel; Rodin, Alexander V.; Ignatiev, Nikolay; Adriani, Alberto

    The modelling of the transmittance of gases at extreme conditions, in particular at high pres-sure and high temperature, in some cases is not as accurate as it would need for an accurate determination of the physical-chemical parameters in deep atmospheres. To better interpret the data coming from space borne remote sensing instruments, in particular those flying at Venus Express spacecraft, we have built a laboratory set-up to measure the optical properties of gases at high pressures and/or temperatures. A Fourier transform infrared (FT-IR) interferometer has been integrated with a special customized high pressure -high temperature (HP-HT) gas cell. The system has been employed to measure CO2 transmittance under conditions typically found in the deep atmosphere of Venus. This set-up is able to operate in a wide spectral range, from 350 to 25000 cm-1 (0.4 to 29 m ), with a relatively high spectral resolution, from 10 to 0.07 cm-1. The HP-HT gas cell is adapted to pressures up to about 50 bar (real limitation being the CO2 source) and a temperature up to 350C. Measurements were done varying the pressure ranging from 1 to 50 bar and the temperature from 298 to 550K. Measurements have been compared with synthetic spectra obtained using two different models: one implementing a line by line calculation and another, which takes into account the line mixing effect in the strong collision approximation. A preliminary comparison leads us to conclude that in the real gases under pressure higher than only a few bars, the shape of the spectral lines no longer follows the conventional Voigt form. In particular, the absorption in the far wings of strong ro-vibrational bands at a few hundred cm-1 from band cores, is 103-104 times weaker than predicted by the Lorentz profile, which also results in stronger absorption near the band cores. A remarkable agreement between measurements and synthetic spectra based on the strong col-lision approximation provides a strong argument in

  5. (When and where) Do extreme climate events trigger extreme ecosystem responses? - Development and initial results of a holistic analysis framework

    NASA Astrophysics Data System (ADS)

    Hauber, Eva K.; Donner, Reik V.

    2015-04-01

    In the context of ongoing climate change, extremes are likely to increase in magnitude and frequency. One of the most important consequences of these changes is that the associated ecological risks and impacts are potentially rising as well. In order to better anticipate and understand these impacts, it therefore becomes more and more crucial to understand the general connection between climate extremes and the response and functionality of ecosystems. Among other region of the world, Europe presents an excellent test case for studies concerning the interaction between climate and biosphere, since it lies in the transition region between cold polar and warm tropical air masses and thus covers a great variety of different climatic zones and associated terrestrial ecosystems. The large temperature differences across the continent make this region particularly interesting for investigating the effects of climate change on biosphere-climate interactions. However, previously used methods for defining an extreme event typically disregard the necessity of taking seasonality as well as seasonal variance appropriately into account. Furthermore, most studies have focused on the impacts of individual extreme events instead of considering a whole inventory of extremes with their respective spatio-temporal extents. In order to overcome the aforementioned research gaps, this work introduces a new approach to studying climate-biosphere interactions associated with extreme events, which comprises three consecutive steps: (1) Since Europe exhibits climatic conditions characterized by marked seasonality, a novel method is developed to define extreme events taking into account the seasonality in all quantiles of the probability distribution of the respective variable of interest. This is achieved by considering kernel density estimates individually for each observation date during the year, including the properly weighted information from adjacent dates. By this procedure, we obtain

  6. Quantitative Proteomic Analysis of Germination of Nosema bombycis Spores under Extremely Alkaline Conditions.

    PubMed

    Liu, Han; Chen, Bosheng; Hu, Sirui; Liang, Xili; Lu, Xingmeng; Shao, Yongqi

    2016-01-01

    The microsporidian Nosema bombycis is an obligate intracellular pathogen of the silkworm Bombyx mori, causing the epidemic disease Pebrine and extensive economic losses in sericulture. Although N. bombycis forms spores with rigid spore walls that protect against various environmental pressures, ingested spores germinate immediately under the extremely alkaline host gut condition (Lepidoptera gut pH > 10.5), which is a key developmental turning point from dormant state to infected state. However, to date this process remains poorly understood due to the complexity of the animal digestive tract and the lack of genetic tools for microsporidia. Here we show, using an in vitro spore germination model, how the proteome of N. bombycis changes during germination, analyse specific metabolic pathways employed in detail, and validate key functional proteins in vivo in silkworms. By a label-free quantitative proteomics approach that is directly based on high-resolution mass spectrometry (MS) data, a total of 1136 proteins were identified with high confidence, with 127 proteins being significantly changed in comparison to non-germinated spores. Among them, structural proteins including polar tube protein 1 and 3 and spore wall protein (SWP) 4 and 30 were found to be significantly down-regulated, but SWP9 significantly up-regulated. Some nucleases like polynucleotide kinase/phosphatase and flap endonucleases 1, together with a panel of hydrolases involved in protein degradation and RNA cleavage were overrepresented too upon germination, which implied that they might play important roles during spore germination. The differentially regulated trends of these genes were validated, respectively, by quantitative RT-PCR and 3 proteins of interest were confirmed by Western blotting analyses in vitro and in vivo. Furthermore, the pathway analysis showed that abundant up- and down-regulations appear involved in the glycolysis, pentose phosphate pathway, purine, and pyrimidine metabolism

  7. Materials response under extreme conditions: a path to materials science above 1000 GPa

    NASA Astrophysics Data System (ADS)

    Remington, Bruce

    2005-07-01

    Solid state experiments at extreme pressures (10-100 GPa) and strain rates (1.e6 -- 1.e8 1/s) are being developed on high-energy laser facilities. [1] A quasi-isentropic, ramped-pressure (shockless) drive is being developed on the Omega laser. [2] Constitutive models for solid-state strength under these conditions are tested with experiments measuring perturbation growth due to the Rayleigh-Taylor instability in solid-state samples. [3] Lattice compression, phase, and temperature are deduced from extended x-ray absorption fine structure (EXAFS) measurements, from which the shock-induced alpha-omega phase transition in Ti is inferred to occur on sub-nanosec time scales. [4] Time resolved lattice response and phase can be inferred from dynamic x-ray diffraction measurements, where the elastic-plastic (1D-3D) lattice relaxation in shocked Cu is shown to occur promptly (sub-nsec). [5] Large-scale MD simulations have elucidated the microscopic dynamics that underlie the 3D lattice relaxation. [6] Deformation mechanisms, such as the slip-twinning transition in shocked single-crystal Cu, are identified by examining the residual microstructure in recovered samples. [7] Designs will be shown for reaching much higher pressures, (greater than 1000 GPa), in the solid state on the NIF laser. [8] *This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48. [1] B.A. Remington et al., Met. Mat. Trans. 35A, 2587 (2004). [2] J. Edwards et al., PRL 92, 075002 (2004). [3] K.T. Lorenz et al., PoP, in press (May, 2005). [4] B. Yaakobi et al., PRL 92, 095504 (2004). [5] A. Loveridge-Smith et al., PRL 86, 2349 (2001). [6] E.M. Bringa et al., Nature, submitted (March, 2005). [7] M.S. Schneider et al., Met. Mat. Trans. 35A, 2633 (2004). [8] B.A. Remington et al., in press, ApSS 298 (July, 2005).

  8. Quantitative Proteomic Analysis of Germination of Nosema bombycis Spores under Extremely Alkaline Conditions

    PubMed Central

    Liu, Han; Chen, Bosheng; Hu, Sirui; Liang, Xili; Lu, Xingmeng; Shao, Yongqi

    2016-01-01

    The microsporidian Nosema bombycis is an obligate intracellular pathogen of the silkworm Bombyx mori, causing the epidemic disease Pebrine and extensive economic losses in sericulture. Although N. bombycis forms spores with rigid spore walls that protect against various environmental pressures, ingested spores germinate immediately under the extremely alkaline host gut condition (Lepidoptera gut pH > 10.5), which is a key developmental turning point from dormant state to infected state. However, to date this process remains poorly understood due to the complexity of the animal digestive tract and the lack of genetic tools for microsporidia. Here we show, using an in vitro spore germination model, how the proteome of N. bombycis changes during germination, analyse specific metabolic pathways employed in detail, and validate key functional proteins in vivo in silkworms. By a label-free quantitative proteomics approach that is directly based on high-resolution mass spectrometry (MS) data, a total of 1136 proteins were identified with high confidence, with 127 proteins being significantly changed in comparison to non-germinated spores. Among them, structural proteins including polar tube protein 1 and 3 and spore wall protein (SWP) 4 and 30 were found to be significantly down-regulated, but SWP9 significantly up-regulated. Some nucleases like polynucleotide kinase/phosphatase and flap endonucleases 1, together with a panel of hydrolases involved in protein degradation and RNA cleavage were overrepresented too upon germination, which implied that they might play important roles during spore germination. The differentially regulated trends of these genes were validated, respectively, by quantitative RT-PCR and 3 proteins of interest were confirmed by Western blotting analyses in vitro and in vivo. Furthermore, the pathway analysis showed that abundant up- and down-regulations appear involved in the glycolysis, pentose phosphate pathway, purine, and pyrimidine metabolism

  9. Quantile regression neural networks: Implementation in R and application to precipitation downscaling

    NASA Astrophysics Data System (ADS)

    Cannon, Alex J.

    2011-09-01

    The qrnn package for R implements the quantile regression neural network, which is an artificial neural network extension of linear quantile regression. The model formulation follows from previous work on the estimation of censored regression quantiles. The result is a nonparametric, nonlinear model suitable for making probabilistic predictions of mixed discrete-continuous variables like precipitation amounts, wind speeds, or pollutant concentrations, as well as continuous variables. A differentiable approximation to the quantile regression error function is adopted so that gradient-based optimization algorithms can be used to estimate model parameters. Weight penalty and bootstrap aggregation methods are used to avoid overfitting. For convenience, functions for quantile-based probability density, cumulative distribution, and inverse cumulative distribution functions are also provided. Package functions are demonstrated on a simple precipitation downscaling task.

  10. The effect of visual field condition on kinetic in upper extremities and e.m.g in lower extremities while performing reaching in normal adults

    PubMed Central

    Park, Hyekang; Kang, Youngeun; Yoo, Minah; Lee, Bomjin; Yang, Jeongok; Lee, Joongsook; Han, Dongwook; Oh, Taeyoung

    2017-01-01

    [Purpose] The aims of this study was to investigate mean velocity and angle of shoulder joint, activation of tibialis anterior and gastrocnemius according to both eyes, dominant eye and non-dominant eye condition during reaching task in normal adults. [Subjects and Methods] Our research recruited 24 participants (male 11, female 13) in Silla University. Participants were performed reaching out movement by conditions of both eye, dominants eye, non-dominants eye. The target was placed at 45 degree diagonal direction and distance far away 130% of their arm length. Kinetic analysis of the upper extremities was investigated by QUALISYS 3-dimensional motion analysis system. Muscle activation were measured by EMG during reaching tasks. The collected data were statistically processed using the SPSS for win version 20.0. [Results] There was a significant difference of shoulder joint velocity of flexion, abduction and internal rotation according to visual field condition during reaching tasks. There was no significant difference of shoulder joint angle and muscle activation according to visual field conditions during reaching tasks. [Conclusion] In conclusion, visual field has an influence on shoulder joint velocity. Therefore, the visual field may be to play an important role in reach performance. PMID:28210047

  11. Investigating the Effects of Simulated Space conditions on Novel Extremely Halophilic Archaea: Halovarius Luteus gen. nov., sp. nov.

    NASA Astrophysics Data System (ADS)

    Feshangsaz, Niloofar; Van Loon, ing.. Jack J. W. A.; Nazmi, Kamran; Semsarha, Farid

    2016-07-01

    Studying halophiles from different environments of Earth provide new insights into our search for life in the universe. Haloarchaea show some unique characteristics and physiological adaptations like acidic proteins against harsh environments such as natural brine with salt concentration approaching saturation (5 M) and regions with low active water. These properties make haloarchaea interesting candidate for astrobiological studies. Halovarius luteus gen. nov., sp. nov. a novel extremely halophilic archaeon from Urmia salt lake, in Iran has been chosen to explore its resistance against a series of extreme conditions. The aim of this study is to assess the resistance of strain DA50T under the effects of simulated space conditions like simulated microgravity, hypergravity, and desiccation. In this paper we will discuss the results of these studies where we specifically focus on changes in carotenoid pigments production and whole cell proteome. This is the first report of very novel Iranian archaea in response to extreme space conditions. The pigments were extracted by acetone and methanol. Pigments were analyzed by scanning the absorbance spectrum in the UV-VIS spectrophotometer. And they were separated by TLC. Whole protein from cell lysate supernatant was extracted after lysis with Bacterial Protein Extraction Reagent and fractionated by RP-HPLC using C18 column. Proteome analyzed by electrophoresis (SDS-PAGE), and MALDI-TOF. Carotenoid pigments are formed under different extreme conditions such as dry environment and gravitational changes. Also the protein composition exhibits alterations after exposure to the same conditions. Our conclusion is that pigments and proteins formation depend on the growth circumstances. Halophiles use this as an adaptation to survive under different environmental conditions.

  12. Drop-box Weir for Measuring Flow Rates Under Extreme Flow Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sediment and large rocks often are transported in runoff during extreme events. The sediment can deposit in a runoff-measuring structure and give erroneous readings. The drop-box weir (DBW) is one of only a few flow-measuring devices capable of measuring sediment-laden flows. Recent studies have ...

  13. Analysis and modeling of extreme temperatures in several cities in northwestern Mexico under climate change conditions

    NASA Astrophysics Data System (ADS)

    García-Cueto, O. Rafael; Cavazos, M. Tereza; de Grau, Pamela; Santillán-Soto, Néstor

    2014-04-01

    The generalized extreme value distribution is applied in this article to model the statistical behavior of the maximum and minimum temperature distribution tails in four cities of Baja California in northwestern Mexico, using data from 1950-2010. The approach used of the maximum of annual time blocks. Temporal trends were included as covariates in the location parameter (μ), which resulted in significant improvements to the proposed models, particularly for the extreme maximum temperature values in the cities of Mexicali, Tijuana, and Tecate, and the extreme minimum temperature values in Mexicali and Ensenada. These models were used to estimate future probabilities over the next 100 years (2015-2110) for different time periods, and they were compared with changes in the extreme (P90th and P10th) percentiles of maximum and minimum temperature scenarios for a set of six general circulation models under low (RCP4.5) and high (RCP8.5) radiative forcings. By the end of the twenty-first century, the scenarios of the changes in extreme maximum summer temperature are of the same order in both the statistical model and the high radiative scenario (increases of 4-5 °C). The low radiative scenario is more conservative (increases of 2-3 °C). The winter scenario shows that minimum temperatures could be less severe; the temperature increases suggested by the probabilistic model are greater than those projected for the end of the century by the set of global models under RCP4.5 and RCP8.5 scenarios. The likely impacts on the region are discussed.

  14. Peptide synthesis in aqueous environments: the role of extreme conditions on peptide bond formation and peptide hydrolysis.

    PubMed

    Schreiner, Eduard; Nair, Nisanth N; Marx, Dominik

    2009-09-30

    The mechanisms and free energetics underlying the formation of peptides from alpha-amino acids and alpha-amino acid N-carboxyanhydrides (NCAs) in bulk water at both ambient and extreme temperature and pressure conditions were investigated using accelerated ab initio molecular dynamics. In particular, peptide bond formation using an activated amino acid in form of its NCA, subsequent decarboxylation, as well as hydrolysis of the formed peptide were studied using glycine. It is shown to what extent thermodynamic conditions affect the reaction mechanisms qualitatively and the energetics quantitatively in solution. In particular, the zwitterionic intermediate in the peptidization step found in ambient water degenerates into a transient species in hot-pressurized water, whereas the hydrolysis reaction is found to follow qualitatively different pathways at ambient and extreme conditions. The work also quantifies the impact of extreme solvent conditions on both peptide bond formation and peptide hydrolysis in aqueous media. Beyond the specific case, the results provide important insights into how elevated temperatures and increased pressures affect organic reactions in aqueous solutions.

  15. Quantile-Quantile Plots:. AN Approach for the Inter-Species Comparison of Promoter Architecture in Eukaryotes

    NASA Astrophysics Data System (ADS)

    Feldmeier, Kaspar; Kilian, Joachim; Harter, Klaus; Wanke, Dierk; Berendzen, Kenneth W.

    2011-01-01

    Regulatory non-coding DNA is important to drive gene transcription and thereby influence mRNA and consequently protein abundance. Therefore, biologists and bioinformation scientists aim to extract meaningful information from these sequence regions, in particular upstream regulation regions called promoters, and conclude on regulatory sequence function. While some approaches have been successful for single genes or a single genome, it is an open question whether information on promoter function can readily be transferred between different species. Thus, it is useful for biologists to know more about the general structure and composition of promoters including the occurrence of cisregulatory DNA-elements (CREs) to be able to compare promoter architecture between organisms. To approach this task, we utilized the fully sequenced genomes of the plant model organisms: mouse-ear cress (Arabidopsis thaliana), western balsam poplar (Populus trichocarpa), Sorghum bicolor and rice (Oryza sativa). For the interspecies comparison we made use of quantile-quantile (QQ)-plots of the variances of hexanucleotides or known functional CREs of core-promoter regions. Here, we suggest that the differences in promoter architecture correlate with the sizes of the intergenic space, i.e. regions, in which the promoters are located. In contrast, analysis of CREs is hampered by the general lack of well characterized transcription factor-CRE-relationships.

  16. Enhancing Local Climate Projections of Precipitation: Assets and Limitations of Quantile Mapping Techniques for Statistical Downscaling

    NASA Astrophysics Data System (ADS)

    Ivanov, Martin; Kotlarski, Sven; Schär, Christoph

    2015-04-01

    The Swiss CH2011 scenarios provide a portfolio of climate change scenarios for the region of Switzerland, specifically tailored for use in climate impact research. Although widely applied by a variety of end-users, these scenarios are subject to several limitations related to the underlying delta change methodology. Examples are difficulties to appropriately account for changes in the spatio-temporal variability of meteorological fields and for changes in extreme events. The recently launched ELAPSE project (Enhancing local and regional climate change projections for Switzerland) is connected to the EU COST Action VALUE (www.value-cost.eu) and aims at complementing CH2011 by further scenario products, including a bias-corrected version of daily scenarios at the site scale. For this purpose the well-established empirical quantile mapping (QM) methodology is employed. Here, daily temperature and precipitation output of 15 GCM-RCM model chains of the ENSEMBLES project is downscaled and bias-corrected to match observations at weather stations in Switzerland. We consider established QM techniques based on all empirical quantiles or linear interpolation between the empirical percentiles. In an attempt to improve the downscaling of extreme precipitation events, we also apply a parametric approximation of the daily precipitation distribution by a dynamically weighted mixture of a Gamma distribution for the bulk and a Pareto distribution for the right tail for the first time in the context of QM. All techniques are evaluated and intercompared in a cross-validation framework. The statistical downscaling substantially improves virtually all considered distributional and temporal characteristics as well as their spatial distribution. The empirical methods have in general very similar performances. The parametric method does not show an improvement over the empirical ones. Critical sites and seasons are highlighted and discussed. Special emphasis is placed on investigating the

  17. A First-Principles Multi-phase Equation of State of Carbon under Extreme Conditions

    SciTech Connect

    Correa, A A; Benedict, X L; Young, D A; Schwegler, E; Bonev, S A

    2008-02-01

    We describe the construction of a multi-phase equation of state for carbon at extreme pressures based on ab initio electronic structure calculations of two solid phases (diamond and BC8) and the liquid. Solid-phase free energies are built from knowledge of the cold curves and phonon calculations, together with direct ab initio molecular dynamics calculations of the equation of state, which are used to extract anharmonic corrections to the phonon free energy. The liquid free energy is constructed based on results from molecular dynamics calculations and constraints determined from previously calculated melting curves, assuming a simple solid-like free energy model. The resulting equation of state is extended to extreme densities and temperatures with a Thomas Fermi-based free energy model. Comparisons to available experimental results are discussed.

  18. Response of shoal grass, Halodule wrightii, to extreme winter conditions in the Lower Laguna Madre, Texas

    USGS Publications Warehouse

    Hicks, D.W.; Onuf, C.P.; Tunnell, J.W.

    1998-01-01

    Effects of a severe freeze on the shoal grass, Halodule wrightii, were documented through analysis of temporal and spatial trends in below-ground biomass. The coincidence of the second lowest temperature (-10.6??C) in 107 years of record, 56 consecutive hours below freezing, high winds and extremely low water levels exposed the Laguna Madre, TX, to the most severe cold stress in over a century. H. wrightii tolerated this extreme freeze event. Annual pre- and post-freeze surveys indicated that below-ground biomass estimated from volume was Unaffected by the freeze event. Nor was there any post-freeze change in biomass among intertidal sites directly exposed to freezing air temperatures relative to subtidal sites which remained submerged during the freezing period.

  19. Influence of quality control variables on failure of graphite/epoxy under extreme moisture conditions

    NASA Technical Reports Server (NTRS)

    Clements, L. L.; Lee, P. R.

    1980-01-01

    Tension tests on graphite/epoxy composites were performed to determine the influence of various quality control variables on failure strength as a function of moisture and moderate temperatures. The extremely high and low moisture contents investigated were found to have less effect upon properties than did temperature or the quality control variables of specimen flaws and prepreg batch to batch variations. In particular, specimen flaws were found to drastically reduce the predicted strength of the composite, whereas specimens from different batches of prepreg displayed differences in strength as a function of temperature and extreme moisture exposure. The findings illustrate the need for careful specimen preparation, studies of flaw sensitivity, and careful quality control in any study of composite materials.

  20. Influence of quality control variables on failure of graphite/epoxy under extreme moisture conditions

    NASA Technical Reports Server (NTRS)

    Clements, L. L.; Lee, P. R.

    1982-01-01

    Tension tests on graphite/epoxy composites were performed to determine the influence of various quality control variables on failure strength as a function of moisture and moderate temperatures. The extremely high and low moisture contents investigated were found to have less effect upon properties than did temperature or the quality control variables of specimen flaws and prepreg batch to batch variations. In particular, specimen flaws were found to drastically reduce the predicted strength of the composite, whereas specimens from different batches of prepreg displayed differences in strength as a function of temperature and extreme moisture exposure. The findings illustrate the need for careful specimen preparation, studies of flaw sensitvity, and careful quality control in any study of composite materials. Previously announced in STAR as N80-33493

  1. Sediment Dynamics Within Buffer Zone and Sinkhole Splay Areas Under Extreme Soil Disturbance Conditions

    NASA Astrophysics Data System (ADS)

    Schoonover, Jon E.; Crim, Jackie F.; Williard, Karl W. J.; Groninger, John W.; Zaczek, James J.; Pattumma, Klairoong

    2015-09-01

    Sedimentation dynamics were assessed in sinkholes within training areas at Ft. Knox Military Installation, a karst landscape subjected to decades of tracked vehicle use and extreme soil disturbance. Sinkholes sampled were sediment-laden and behaved as intermittent ponds. Dendrogeomorphic analyses were conducted using willow trees ( Salix spp.) located around the edge of 18 sinkholes to estimate historical sedimentation rates, and buried bottles were installed in 20 sinkholes at the center, outer edge, and at the midpoint between the center and edge to estimate annual sedimentation rates. Sedimentation data were coupled with vegetation characteristics of sinkhole buffers to determine relationships among these variables. The dendrogeomorphic method estimated an average accumulation rate of 1.27 cm year-1 translating to a sediment loss rate of 46.1 metric ton year-1 from the training areas. However, sediment export to sinkholes was estimated to be much greater (118.6 metric ton year-1) via the bottle method. These data suggest that the latter method provided a more accurate estimate since accumulation was greater in the center of sinkholes compared to the periphery where dendrogeomorphic data were collected. Vegetation data were not tightly correlated with sedimentation rates, suggesting that further research is needed to identify a viable proxy for direct measures of sediment accumulation in this extreme deposition environment. Mitigation activities for the sinkholes at Ft. Knox's tank training area, and other heavily disturbed karst environments where extreme sedimentation exists, should consider focusing on flow path and splay area management.

  2. Analysis of the impacts of EC-Earth Global Circulation Model in the RCP45 climate change scenario on maximum daily streamflow quantiles at global scale

    NASA Astrophysics Data System (ADS)

    Silvestro, Francesco; Campo, Lorenzo; Rudari, Roberto; Herold, Christian; De Angeli, Silvia; Gabellani, Simone; D'Andrea, Mirko; Rodila, Denisa

    2016-04-01

    Climate changes can have an impact on various components of hydrological cycle. From a risk assessment point of view it is certainly interesting understanding how extreme streamflow values can change as a consequence of climate variability. In order to do this the outputs of a climate model (EC-EARTH) that accounts for a standard climate scenario were used to feed a hydrological model and to generate 140 years (1960-2100) of continuous streamflow simulations in a large number of stations that cover all the world. These time series were then post-processed in order to evaluate how annual daily maximum streamflow quantiles change because of climate scenarios. The analysis highlights that in many cases there is an increment or a decrease of the quantiles for fixed return periods, but only in a reduced number of situations these variation lay out of the confidence intervals of the quantiles estimated in current climate. The analysis was carried out on over 5000 stations distributed in all continents and spanned the period 1960-2100 according to the climate scenario RCP45.

  3. Spectral distance decay: Assessing species beta-diversity by quantile regression

    USGS Publications Warehouse

    Rocchinl, D.; Nagendra, H.; Ghate, R.; Cade, B.S.

    2009-01-01

    Remotely sensed data represents key information for characterizing and estimating biodiversity. Spectral distance among sites has proven to be a powerful approach for detecting species composition variability. Regression analysis of species similarity versus spectral distance may allow us to quantitatively estimate how beta-diversity in species changes with respect to spectral and ecological variability. In classical regression analysis, the residual sum of squares is minimized for the mean of the dependent variable distribution. However, many ecological datasets are characterized by a high number of zeroes that can add noise to the regression model. Quantile regression can be used to evaluate trend in the upper quantiles rather than a mean trend across the whole distribution of the dependent variable. In this paper, we used ordinary least square (ols) and quantile regression to estimate the decay of species similarity versus spectral distance. The achieved decay rates were statistically nonzero (p < 0.05) considering both ols and quantile regression. Nonetheless, ols regression estimate of mean decay rate was only half the decay rate indicated by the upper quantiles. Moreover, the intercept value, representing the similarity reached when spectral distance approaches zero, was very low compared with the intercepts of upper quantiles, which detected high species similarity when habitats are more similar. In this paper we demonstrated the power of using quantile regressions applied to spectral distance decay in order to reveal species diversity patterns otherwise lost or underestimated by ordinary least square regression. ?? 2009 American Society for Photogrammetry and Remote Sensing.

  4. Differing Response of Extreme Precipitation to Changing Boundary Conditions in Simulations with Parametrized and Explicit Convection

    NASA Astrophysics Data System (ADS)

    Meredith, Edmund; Maraun, Douglas; Semenov, Vladimir; Park, Wonsun

    2015-04-01

    Recent studies have shown that the representation of extreme precipitation in climate models is much more sensitive to model resolution than that of mean precipitation. With global and regional circulation models simulating both present and future climates at ever-increasing resolution, it is only a matter of time before convection resolving climate projections become the norm. In the meantime, regional climate models provide an efficient and inexpensive tool to assess what, if any, impact explicitly resolved convection may have on the representation of precipitation extremes in warmer climates with enhanced boundary forcings. To compare the response of precipitation extremes in models with parametrized and explicitly resolved convection to changing boundary forcings, we select the July 2012 precipitation extreme near the Black Sea town of Krymsk as a recent showcase example. The event was related to a slow moving low pressure system crossing the eastern Black Sea, advecting warm and moist air towards the coast. Two waves of convection resulted in precipitation totals that dwarfed all previous events in the instrumental record, dating back to the 1930s, and over 170 deaths. We carry out ensemble sensitivity experiments with a triply nested configuration of the WRF regional model, for a domain covering the eastern Black Sea. The event is simulated at 15 km, 3 km and 600 m resolution. The model's ability to reproduce the event with observed forcings is first verified, before a series of additional ensembles with altered boundary forcings, in our case sea surface temperature (SST), is created. These ensembles consist of subtracting (adding) the 1982 - 2012 trend in Black Sea SST from (to) the observed 2012 SST field in 20% increments, giving a total of 11 ensembles whose SST differ from the observed field by between -100% and +100% of the warming trend. Aggregating all data to the 15 km grid, we compare the responses of hourly precipitation maxima to incrementally

  5. Associations of blood pressure with common factors among left-behind farmers in rural China: a cross-sectional study using quantile regression analysis.

    PubMed

    Shen, Xingrong; Li, Kaichun; Chen, Penglai; Feng, Rui; Liang, Han; Tong, Guixian; Chen, Jing; Chai, Jing; Shi, Yong; Xie, Shaoyu; Wang, Debin

    2015-01-01

    The whole range of blood pressure (BP) has important implications. Yet, published studies focus primarily on hypertension and hypotension, the two extremes of BP continuum. This study aims at exploring quantile-specific associations of BP with common factors. The study used cross-sectional survey, collected information about gender, age, education, body mass index (BMI), alcohol intake, diet risk behavior, life event index, physical activity, fasting capillary glucose (FCG), and systolic/diastolic blood pressure (SBP/DBP) and pulse pressure (PP) from farmers living in 18 villages from rural Anhui, China, and performed descriptive and multivariate and quantile regression (QR) analysis of associations of SBP, DBP, or PP with the 9 factors surveyed. A total of 4040 (86.3%) eligible farmers completed the survey. Average hypertension prevalence rate and SBP, DBP, and PP values estimated 43.20 ± 0.50% and 141.37 ± 21.98, 87.76 ± 12.23, and 53.63 ± 15.72 mm Hg, respectively. Multivariate regression analysis revealed that all the 9 factors were significantly (P < 0.05) associated with one or more of SBP, DBP, and PP. QR coefficients of SBP, DBP, or PP with different factors demonstrated divergent patterns and age, BMI, FCG, and life event index showed substantial trends along the quantile axis. Hypertension prevalence rate was high among the farmers. QR modeling provided more detailed view on associations of SBP, DBP, or PP with different factors and uncovered apparent quantile-related patterns for part of the factors. Both the population group studied and the trends in QR coefficients identified merit specific attention.

  6. Longitudinal quantile regression in the presence of informative dropout through longitudinal-survival joint modeling.

    PubMed

    Farcomeni, Alessio; Viviani, Sara

    2015-03-30

    We propose a joint model for a time-to-event outcome and a quantile of a continuous response repeatedly measured over time. The quantile and survival processes are associated via shared latent and manifest variables. Our joint model provides a flexible approach to handle informative dropout in quantile regression. A Monte Carlo expectation maximization strategy based on importance sampling is proposed, which is directly applicable under any distributional assumption for the longitudinal outcome and random effects. We consider both parametric and nonparametric assumptions for the baseline hazard. We illustrate through a simulation study and an application to an original data set about dilated cardiomyopathies.

  7. Asymmetric impact of rainfall on India's food grain production: evidence from quantile autoregressive distributed lag model

    NASA Astrophysics Data System (ADS)

    Pal, Debdatta; Mitra, Subrata Kumar

    2016-10-01

    This study used a quantile autoregressive distributed lag (QARDL) model to capture asymmetric impact of rainfall on food production in India. It was found that the coefficient corresponding to the rainfall in the QARDL increased till the 75th quantile and started decreasing thereafter, though it remained in the positive territory. Another interesting finding is that at the 90th quantile and above the coefficients of rainfall though remained positive was not statistically significant and therefore, the benefit of high rainfall on crop production was not conclusive. However, the impact of other determinants, such as fertilizer and pesticide consumption, is quite uniform over the whole range of the distribution of food grain production.

  8. Carbon under extreme conditions: phase boundaries and electronic properties from first-principles theory.

    PubMed

    Correa, Alfredo A; Bonev, Stanimir A; Galli, Giulia

    2006-01-31

    At high pressure and temperature, the phase diagram of elemental carbon is poorly known. We present predictions of diamond and BC8 melting lines and their phase boundary in the solid phase, as obtained from first-principles calculations. Maxima are found in both melting lines, with a triple point located at approximately 850 GPa and approximately 7,400 K. Our results show that hot, compressed diamond is a semiconductor that undergoes metalization upon melting. In contrast, in the stability range of BC8, an insulator to metal transition is likely to occur in the solid phase. Close to the diamond/liquid and BC8/liquid boundaries, molten carbon is a low-coordinated metal retaining some covalent character in its bonding up to extreme pressures. Our results provide constraints on the carbon equation of state, which is of critical importance for devising models of Neptune, Uranus, and white dwarf stars, as well as of extrasolar carbon-rich planets.

  9. Water Under the Extreme Conditions of Planetary Interiors: Symmetric Hydrogen Bonding in the Superionic Phase

    SciTech Connect

    Goldman, N; Fried, L E

    2005-07-08

    The predicted superionic phase of water is investigated via ab initio molecular dynamics at densities of 2.0-3.0 g/cc (34-115 GPa) along the 2000 K isotherm. They find that extremely rapid (superionic) diffusion of protons occurs in a fluid phase at pressures between 34 and 58 GPa. A transition to a stable body-centered cubic (bcc) O lattice with superionic proton conductivity is observed between 70 and 75 GPa, a much higher pressure than suggested in prior work. They find that all molecular species at pressures greater than 75 GPa are too short lived to be classified as bound states. Above 95 GPa, a transient network phase is found characterized by symmetric O-H hydrogen bonding with nearly 50% covalent character.

  10. Equation of state density models for hydrocarbons in ultradeep reservoirs at extreme temperature and pressure conditions

    NASA Astrophysics Data System (ADS)

    Wu, Yue; Bamgbade, Babatunde A.; Burgess, Ward A.; Tapriyal, Deepak; Baled, Hseen O.; Enick, Robert M.; McHugh, Mark A.

    2013-10-01

    The necessity of exploring ultradeep reservoirs requires the accurate prediction of hydrocarbon density data at extreme temperatures and pressures. In this study, three equations of state (EoS) models, Peng-Robinson (PR), high-temperature high-pressure volume-translated PR (HTHP VT-PR), and perturbed-chain statistical associating fluid theory (PC-SAFT) EoS are used to predict the density data for hydrocarbons in ultradeep reservoirs at temperatures to 523 K and pressures to 275 MPa. The calculated values are compared with experimental data. The results show that the HTHP VT-PR EoS and PC-SAFT EoS always perform better than the regular PR EoS for all the investigated hydrocarbons.

  11. Carbon under extreme conditions: Phase boundaries and electronic properties from first-principles theory

    SciTech Connect

    Correa, Alfredo A.; Bonev, Stanimir A.; Galli, Giulia

    2006-01-23

    At high pressure and temperature, the phase diagram of elemental carbon is poorly known. We present predictions of diamond and BC8 melting lines and their phase boundary in the solid phase, as obtained from first-principles calculations. Maxima are found in both melting lines, with a triple point located at ≈ 850 GPa and ≈ 7,400 K. Our results show that hot, compressed diamond is a semiconductor that undergoes metalization upon melting. In contrast, in the stability range of BC8, an insulator to metal transition is likely to occur in the solid phase. Close to the diamond/liquid and BC8/liquid boundaries, molten carbon is a low-coordinated metal retaining some covalent character in its bonding up to extreme pressures. Lastly, our results provide constraints on the carbon equation of state, which is of critical importance for devising models of Neptune, Uranus, and white dwarf stars, as well as of extrasolar carbon-rich planets.

  12. The Effects of Visual Field Conditions on Electromyography of the Lower Extremities during Reaching Tasks in Healthy Adults

    PubMed Central

    Park, Jun Hyuk; Lee, Kyeong Soon; Oh, Tae Young

    2014-01-01

    [Purpose] The purpose of this study was to identify the effects of visual field condition on electromyography of the lower extremities during arm reaching in healthy adults, and to compare differences in electromyography of the lower extremities between young and old adults according to visual fields condition. [Subjects and Methods] Twenty-nine young persons in their 20s and 19 elderly persons in their 60s, a total of 48 persons, participated in this study. Prior to participation in the study, each subject signed an informed consent form to comply with ethics guidelines dictated by the ethics committee for research at Silla University, Korea. We collected the muscle activation data for both of tibialis anterior and gastrocnemius muscle during reaching by subjects using electromyography. Data analysis with SPSS for Window Version 20.0 was performed using repeated one-way analysis of variance according to visual fields and age. [Results] There were no significantly differences between subjects in their 20s and 60s to visual field conditions except for left tibialis anterior muscle activation during left-side reaching. Left tibialis anterior muscle activation in subjects in their 60s was higher than in subjects in their 20s during left-side reaching. [Conclusion] We determined that tibialis anterior muscle activation in subjects in their 60s was higher than in subjects in their 20s. We suggest that visual field conditions are the important factor for physical therapy interventions to improve balance and priority of intervention . PMID:24764630

  13. Analysis of U.S. freight-train derailment severity using zero-truncated negative binomial regression and quantile regression.

    PubMed

    Liu, Xiang; Saat, M Rapik; Qin, Xiao; Barkan, Christopher P L

    2013-10-01

    Derailments are the most common type of freight-train accidents in the United States. Derailments cause damage to infrastructure and rolling stock, disrupt services, and may cause casualties and harm the environment. Accordingly, derailment analysis and prevention has long been a high priority in the rail industry and government. Despite the low probability of a train derailment, the potential for severe consequences justify the need to better understand the factors influencing train derailment severity. In this paper, a zero-truncated negative binomial (ZTNB) regression model is developed to estimate the conditional mean of train derailment severity. Recognizing that the mean is not the only statistic describing data distribution, a quantile regression (QR) model is also developed to estimate derailment severity at different quantiles. The two regression models together provide a better understanding of train derailment severity distribution. Results of this work can be used to estimate train derailment severity under various operational conditions and by different accident causes. This research is intended to provide insights regarding development of cost-efficient train safety policies.

  14. Hyperstoichiometric Oxygen in Fluorite-type U3O8 Formed at Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Fuxiang; Lang, Maik; Ewing, Rod; Department of Earth and Environmental Sciences Team

    2014-03-01

    U3O8 was obtained by annealing UO3 in a reducing atmosphere at 200 °C. Powder sample of β-U3O8 was pressurized at room temperature up to 37.5 GPa and XRD patterns clearly indicated that a phase transition occurred between 3-11 GPa. The high-pressure phase is a fluorite-like structure. The high-pressure phase was then laser heated to over 1700 K in the diamond anvil cell at high pressure conditions. No phase transition was found at high pressure/ temperature conditions, and the fluorite-like structure of U3O8 is even fully quenchable. The lattice parameter of the fluorite-like high-pressure phase is 5.425 Å at ambient conditions, which is smaller than that of the stoichiometric UO2. Previous experiments have shown that the stoichiometric uranium dioxide (UO2) is not stable at high pressure conditions and starts to transform to a cotunnite structure at ~ 30 GPa. When heating the sample at high pressure, the critical transition pressure is greatly reduced. However, the fluorite-like high-pressure phase of U3O8 is very stable at high pressure/high temperature conditions. The enhanced phase stability is believed to be related to the presence of extra oxygen (or U vacancies) in the structure.

  15. Halophilic archaea on Earth and in space: growth and survival under extreme conditions.

    PubMed

    Oren, Aharon

    2014-12-13

    Salts are abundant on Mars, and any liquid water that is present or may have been present on the planet is expected to be hypersaline. Halophilic archaea (family Halobacteriaceae) are the microorganisms best adapted to life at extremes of salinity on Earth. This paper reviews the properties of the Halobacteriaceae that may make the group good candidates for life also on Mars. Many species resist high UV and gamma radiation levels; one species has survived exposure to vacuum and radiation during a space flight; and there is at least one psychrotolerant species. Halophilic archaea may survive for millions of years within brine inclusions in salt crystals. Many species have different modes of anaerobic metabolism, and some can use light as an energy source using the light-driven proton pump bacteriorhodopsin. They are also highly tolerant to perchlorate, recently shown to be present in Martian soils, and some species can even use perchlorate as an electron acceptor to support anaerobic growth. The presence of characteristic carotenoid pigments (α-bacterioruberin and derivatives) makes the Halobacteriaceae easy to identify by Raman spectroscopy. Thus, if present on Mars, such organisms may be detected by Raman instrumentation planned to explore Mars during the upcoming ExoMars mission.

  16. Different thermal conditions of the extremities affect thermoregulation in clothed man.

    PubMed

    Jeong, W S; Tokura, H

    1993-01-01

    The effects of different types of clothing on human deep body temperature were studied with six healthy male subjects in a supine posture. Two clothing ensembles were employed for the present study: A covered the whole body area with garments except the face (1.97 clo) and B covered only the trunk and the upper half of the extremities with garments (1.53 clo). The experiment was carried out in a climatic chamber at 55% +/- 5% relative humidity under cooling and warming temperatures: the temperature was changed from 22 degrees C to 10 degrees C (cooling) and returned to 22 degrees C again (warming). The major findings were: rectal temperature (T(re)) continued to decrease gradually in A throughout the experiment, whereas in B it increased during cooling, and returned to previous levels during warming. As a result, T(re) and chest skin temperature were maintained at a higher level in B than in A. Internal tissue conductances were greater in A than in B both during cooling and during warming. Thermal comfort appeared to have been influenced more by the rate of skin temperature change than by the level of skin temperature per se. It was concluded that peripheral vasoconstriction in B induced less heat flow from core to shell, and, thus, the core temperature was maintained at a higher level in B than in A.

  17. Carbon under extreme conditions: Phase boundaries and electronic properties from first-principles theory

    DOE PAGES

    Correa, Alfredo A.; Bonev, Stanimir A.; Galli, Giulia

    2006-01-23

    At high pressure and temperature, the phase diagram of elemental carbon is poorly known. We present predictions of diamond and BC8 melting lines and their phase boundary in the solid phase, as obtained from first-principles calculations. Maxima are found in both melting lines, with a triple point located at ≈ 850 GPa and ≈ 7,400 K. Our results show that hot, compressed diamond is a semiconductor that undergoes metalization upon melting. In contrast, in the stability range of BC8, an insulator to metal transition is likely to occur in the solid phase. Close to the diamond/liquid and BC8/liquid boundaries, moltenmore » carbon is a low-coordinated metal retaining some covalent character in its bonding up to extreme pressures. Lastly, our results provide constraints on the carbon equation of state, which is of critical importance for devising models of Neptune, Uranus, and white dwarf stars, as well as of extrasolar carbon-rich planets.« less

  18. [Deep-sea research ground for the study of living matter properties in extreme conditions].

    PubMed

    Polikarpov, G G

    2011-01-01

    The Black Sea hollow bottom is a promising research ground in the field of deep-sea radiochemoecology and exobiology. It has turned out to be at the intersection of the earth and cosmic scientific interests such as deep-sea marine radiochemoecology from the perspective of the study of extreme biogeocenological properties of the Earth biosphere and exobiology from the standpoint of the study of life phenomena (living matter) outside the Earth biosphere, i.e. on other planets and during hypothetical transfer of spores in the outer space. The potential of this ground is substantiated with the data published by the author and co-workers on accumulation of 90Sr, 137Cs and Pu isotopes with silts of bathyal pelo-contour, on the quality of deep-sea hydrogen sulphide waters (after their contact with air) for vital functions of planktonic and benthic aerobes, as well as the species composition of marine, freshwater and terrestrial plants grown from the spores collected from the bottom sediments of the Black Sea bathyal. Discussion was based on V.I. Vernadsky's ideas about the living matter and biosphere, which allowed conclusions about the biospheric and outer space role of the described phenomena.

  19. Model Related Estimates of time dependent quantiles of peak flows - case study for selected catchments in Poland

    NASA Astrophysics Data System (ADS)

    Strupczewski, Witold G.; Bogdanowich, Ewa; Debele, Sisay

    2016-04-01

    Under Polish climate conditions the series of Annual Maxima (AM) flows are usually a mixture of peak flows of thaw- and rainfall- originated floods. The northern, lowland regions are dominated by snowmelt floods whilst in mountainous regions the proportion of rainfall floods is predominant. In many stations the majority of AM can be of snowmelt origin, but the greatest peak flows come from rainfall floods or vice versa. In a warming climate, precipitation is less likely to occur as snowfall. A shift from a snow- towards a rain-dominated regime results in a decreasing trend in mean and standard deviations of winter peak flows whilst rainfall floods do not exhibit any trace of non-stationarity. That is why a simple form of trends (i.e. linear trends) are more difficult to identify in AM time-series than in Seasonal Maxima (SM), usually winter season time-series. Hence it is recommended to analyse trends in SM, where a trend in standard deviation strongly influences the time -dependent upper quantiles. The uncertainty associated with the extrapolation of the trend makes it necessary to apply a relationship for trend which has time derivative tending to zero, e.g. we can assume a new climate equilibrium epoch approaching, or a time horizon is limited by the validity of the trend model. For both winter and summer SM time series, at least three distributions functions with trend model in the location, scale and shape parameters are estimated by means of the GAMLSS package using the ML-techniques. The resulting trend estimates in mean and standard deviation are mutually compared to the observed trends. Then, using AIC measures as weights, a multi-model distribution is constructed for each of two seasons separately. Further, assuming a mutual independence of the seasonal maxima, an AM model with time-dependent parameters can be obtained. The use of a multi-model approach can alleviate the effects of different and often contradictory trends obtained by using and identifying

  20. A Quantile Domain Perspective on the Relationships between Optimal Grouping, Spacing and Stratification Problems.

    DTIC Science & Technology

    1982-06-01

    these results a quantile domain analog of a theorem due to Adatia and Chan (1981, Scand. Actuar . J., 193-202) on the equi- valence of optimal grouping...10 REFERENCES Adatia, A. and Chan, L. K. (1981). Relations between stratified, grouped and selected order statistics samples. Scand. Actuar . J., 193...these results a quantile domain analog of a theorem due to Adatia and Chan (1981, Scand. Actuar . J., DD I .o 1473 EDIo, TION O1 1 ov $is OSOLEE S/N

  1. Role of the tissue free amino acids in adaptation of medicinal leeches Hirudo medicinalis L., 1758 to extreme climatic conditions.

    PubMed

    Chernaya, L V; Kovalchuk, L A; Nokhrina, E S

    2016-01-01

    The first comparison of the spectra of free amino acids in tissues of the medicinal leeches H. medicinalis from different climatic and geographical Eurasian areas has been performed. Adaptation of H. medicinalis to extreme climatic conditions occurs via intensification of the amino acid metabolism resulting from a significant increase in the content of essential amino acids. Accumulation of arginine, histidine, and lysine (3.6-, 3.9-, and 2.0-fold increases, respectively) has proved to play a special protective role in adaptation of H. medicinalis to the low positive temperatures.

  2. Studies of nuclei under the extreme conditions of density, temperature, isospin asymmetry and the phase diagram of hadronic matter

    SciTech Connect

    Mekjian, Aram

    2016-10-18

    The main emphasis of the entire project is on issues having to do with medium energy and ultra-relativistic energy and heavy ion collisions. A major goal of both theory and experiment is to study properties of hot dense nuclear matter under various extreme conditions and to map out the phase diagram in density or chemical potential and temperature. My studies in medium energy nuclear collisions focused on the liquid-gas phase transition and cluster yields from such transitions. Here I developed both the statistical model of nuclear multi-fragmentation and also a mean field theory.

  3. Extreme temperatures increase the deleterious consequences of inbreeding under laboratory and semi-natural conditions.

    PubMed

    Kristensen, Torsten N; Barker, J Stuart F; Pedersen, Kamilla S; Loeschcke, Volker

    2008-09-07

    The majority of experimental studies of the effects of population bottlenecks on fitness are performed under laboratory conditions, which do not account for the environmental complexity that populations face in nature. In this study, we test inbreeding depression in multiple replicates of inbred when compared with non-inbred lines of Drosophila melanogaster under different temperature conditions. Egg-to-adult viability, developmental time and sex ratio of emerging adults are studied under low, intermediate and high temperatures under laboratory as well as semi-natural conditions. The results show inbreeding depression for egg-to-adult viability. The level of inbreeding depression is highly dependent on test temperature and is observed only at low and high temperatures. Inbreeding did not affect the developmental time or the sex ratio of emerging adults. However, temperature affected the sex ratio with more females relative to males emerging at low temperatures, suggesting that selection against males in pre-adult life stages is stronger at low temperatures. The coefficient of variation (CV) of egg-to-adult viability within and among lines is higher for inbred flies and generally increases at stressful temperatures. Our results contribute to knowledge on the environmental dependency of inbreeding under different environmental conditions and emphasize that climate change may impact negatively on fitness through synergistic interactions with the genotype.

  4. Phase Transformation of U3O8 and Enhanced Structural Stability at Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Fuxiang; Lang, Maik; Ewing, Rodney

    2013-06-01

    A powder sample of β-U3O8 was pressurized at room temperature up to 37.5 GPa with a symmetric diamond anvil cell. XRD patterns clearly indicated that a phase transition occurred between 3-11 GPa. The high-pressure phase is a fluorite-like structure. The fluorite-like structure is stable up to 37.5 GPa. The high-pressure phase was then laser heated to over 1700 K in the diamond anvil cell at high pressure conditions. No phase transition was found at high pressure/ temperature conditions, and the fluorite-like structure of U3O8 is even fully quenchable. The lattice parameter of the fluorite-like high-pressure phase is 5.425 Å at ambient conditions, which is smaller than that of the stoichiometric UO2. Previous experiments have shown that the stoichiometric uranium dioxide (UO2) is not stable at high pressure conditions and starts to transform to a cotunnite structure at ~30 GPa. When heating the sample at high pressure, the critical transtion pressure is greatly reduced. However, the fluorite-like high-pressure phase of U3O8 is very stable at high pressure/high temperature conditions. The enhanced phase stability is believed to be related to the presence of extra oxygen (or U vacancies) in the structure. This work was supported by Materials Science of Actinides, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award No. DE-SC0001089.

  5. Penetration Depth Measurements Using a Tunnel Diode Oscillator in Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Agosta, Charles C.

    2004-03-01

    The tunnel diode oscillator (TDO) has been used as a tool in condensed matter physics for over 30 years. We will discuss the application of the TDO to measure rf penetration depth in small metallic and superconducting samples in the range of 10 -1500 MHz. Our technique involves placing a sample in or on the inductor of a self-resonant tank circuit powered by a tunnel diode, and measuring the impedance of the sample by recording the frequency and amplitude shift as a function of magnetic field or temperature. This technique is very sensitive to the properties of the electrons in a sample, does not require contacts on a sample, can be used for arbitrarily small samples, is very compatible with pulsed magnetic fields, and works well in pressure cells. We will begin by giving a brief history of the TDO in condensed matter physics. We will describe the electronic theory of the TDO showing the important parameters necessary to keep the circuit stable and oscillating in different venues such as very low temperatures and pulsed magnetic fields. We will also describe some of the trade offs between stability and sensitivity in these extreme environments. We will then discuss how to interpret the data produced by the TDO, concentrating on the description of rf penetration in metallic and type II superconducting samples. Finally, as examples of the power of this TDO method, we will show Fermi surface measurements, type II superconducting phase diagrams, including details of the vortex system, and very recent results showing evidence of an inhomogeneous superconducting state. Support for this project has come from the NHMFL and the NSF

  6. Transformation and accumulation of PAH and bound residues in soil under extreme conditions - a risk assessment approach

    NASA Astrophysics Data System (ADS)

    Eschenbach, Annette

    2010-05-01

    The degradation of PAH in contaminated soil does not proceed completely in the majority of cases. However microorganisms which are able to degrade PAH are present in PAH-contaminated soils normally. A total degradation of PAH in contaminated soils is often limited by a lack of bioavailability, which results from a lack of mass transfer. The analytical depletion of contaminants in soil is not only based on degradation processes but also on a fixation or immobilization of the xenobiotic substances as stronger adsorbed to or bound residues in the soil matrix. These bound residues were verified by using 14C-labelled PAH in different soil samples. To evaluate the long term fate of theses PAH-residues the stability and transformation of 14C-labelled non-extractable PAH-residues was investigated in detail under different extreme ecological and climate conditions such as biological stress, freezing and thawing cycles, and chemical worst case conditions. The transformation and remobilization of non-extractable PAH-residues was observed in long-time experiments and was very limited in general (Eschenbach et al. 2001). Only small amounts of non extractable residues were transformed and converted to CO2 and thereby detoxified. However the treatment with a complexing agent led to an increase of extractable 14C-activity. In a further set of experiments the long term risk of a groundwater contamination was assessed. Therefore the elution rate of 14C-PAH was investigated by a routinely usable column test system. It was found that the PAH elution was not solely controlled by desorption processes. The extractable PAH concentrations and elution rates were affected by the mineralization and formation of bound residues as well. For the assessment of the maximum PAH release rate the soil material was treated by extreme and worst case conditions as well. The impact of the elution of bidestillated water, of repeated freeze-thaw cycles and a simulation of acidic rain was investigated. The

  7. Extreme Hydrothermal Conditions Near an Active Geological Fault, DFDP-2B Borehole, Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Sutherland, R.; Townend, J.; Toy, V.; Allen, M.; Baratin, L. M.; Barth, N. C.; Beacroft, L.; Benson, A.; Boese, C. M.; Boles, A.; Boulton, C. J.; Capova, L.; Carpenter, B. M.; Celerier, B. P.; Chamberlain, C. J.; Conze, R.; Cooper, A.; Coussens, J.; Coutts, A.; Cox, S.; Craw, L.; Doan, M. L.; Eccles, J. D.; Faulkner, D.; Grieve, J.; Grochowski, J.; Gulley, A.; Henry, G.; Howarth, J. D.; Jacobs, K. M.; Jeppson, T.; Kato, N.; Keys, S.; Kirilova, M.; Kometani, Y.; Lukács, A.; Langridge, R.; Lin, W.; Little, T.; Mallyon, D.; Mariani, E.; Marx, R.; Massiot, C.; Mathewson, L.; Melosh, B.; Menzies, C. D.; Moore, J.; Morales, L. F. G.; Morgan, C.; Mori, H.; Niemeijer, A. R.; Nishikawa, O.; Nitsch, O.; Paris Cavailhes, J.; Pooley, B.; Prior, D. J.; Pyne, A.; Sauer, K. M.; Savage, M. K.; Schleicher, A.; Schmitt, D. R.; Shigematsu, N.; Taylor-Offord, S.; Tobin, H. J.; Upton, P.; Valdez, R. D.; Weaver, K.; Wiersberg, T.; Williams, J. N.; Yeo, S.; Zimmer, M.; Broderick, N.

    2015-12-01

    The DFDP-2B borehole sampled rocks above and within the upper part of the Alpine Fault, New Zealand, to a depth of 893 m in late 2014. The experiment was the first to drill a major geological fault zone that is active and late in its earthquake cycle. We determined ambient fluid pressures 8-10% above hydrostatic and a geothermal gradient of 130-150 °C/km in rocks above the fault. These unusual ambient conditions can be explained by a combination of: rock advection that transports heat from depth by uplift and oblique slip on the fault; and fluid advection through fractured rock, driven by topographic forcing, which concentrates heat and causes fluid over-pressure in the valley. Highly-anomalous ambient conditions can exist in the vicinity of active faults, and earthquake and mineralization processes occur within these zones.

  8. Stability of fluorite-type La2Ce2O7 under extreme conditions

    DOE PAGES

    Zhang, F. X.; Tracy, C. L.; Lang, M.; ...

    2016-03-03

    Here, the structural stability of fluorite-type La2Ce2O7 was studied at pressure up to ~40 GPa and under hydrothermal conditions (~1 GPa, 350 °C), respectively, using synchrotron x-ray diffraction (XRD) and Raman scattering measurements. XRD measurements indicated that fluorite-type La2Ce2O7 is not stable at pressures greater than 22.6 GPa and slowly transforms to a high-pressure phase. The high-pressure phase is not stable and changes back to the fluorite-type structure when pressure is released. The La2Ce2O7 fluorite is also not stable under hydrothermal conditions and begins to react with water at 200~250 °C. Both Raman and XRD results suggest that lanthanum hydroxidemore » La(OH)3 and La3+-doped CeO2 fluorite are the dominant products after hydrothermal treatment.« less

  9. EFFECTS OF EXTREME AND UNUSUAL CONDITIONS ON LANA ALLOYS: INTERIM REPORT, FY14 (U)

    SciTech Connect

    Shanahan, Kirk L.

    2014-04-25

    The TTP proposed research aimed at determining: a) the rate at which these changes occurred and the effect of initial conditions, especially in the early phases of Hydrogen Heat Treatment (HHT), b) whether or not different LANA alloys would show similar effects, and c) whether common contaminants/poisons impacted LANA alloy hydride chemistry similarly to what had been found for Pd and Pd-alloy hydride chemistry.

  10. Hyper-dry conditions provide new insights into the cause of extreme floods after wildfire

    USGS Publications Warehouse

    Moody, John A.; Ebel, Brian A.

    2012-01-01

    A catastrophic wildfire in the foothills of the Rocky Mountains near Boulder, Colorado provided a unique opportunity to investigate soil conditions immediately after a wildfire and before alteration by rainfall. Measurements of near-surface (θ; and matric suction, ψ), rainfall, and wind velocity were started 8 days after the wildfire began. These measurements established that hyper-dryconditions (θ 3 cm-3; ψ > ~ 3 x 105 cm) existed and provided an in-situ retention curve for these conditions. These conditions exacerbate the effects of water repellency (natural and fire-induced) and limit the effectiveness of capillarity and gravity driven infiltration into fire-affected soils. The important consequence is that given hyper-dryconditions, the critical rewetting process before the first rain is restricted to the diffusion–adsorption of water-vapor. This process typically has a time scale of days to weeks (especially when the hydrologic effects of the ash layer are included) that is longer than the typical time scale (minutes to hours) of some rainstorms, such that under hyper-dryconditions essentially no rain infiltrates. The existence of hyper-dryconditions provides insight into why, frequently during the first rain storm after a wildfire, nearly all rainfall becomes runoff causing extremefloods and debris flows.

  11. MECHANICAL STRENGTH RESPONSES OF POLED LEAD ZIRCONATE TITANATE UNDER EXTREME ELECTRIC FIELD AND VARIOUS TEMPERATURE CONDITIONS

    SciTech Connect

    Wang, Hong; Matsunaga, Tadashi; Zhang, Kewei; Lin, Hua-Tay; Wereszczak, Andrew A

    2016-01-01

    PZT (lead zirconate titanate), particularly PZT-5A, is used in a variety of critical actuation and sensing systems because of its high Curie temperature and large piezoelectric coefficients. However, PZT is susceptible to mechanical failure. The evaluation of the mechanical strength of the material under the target working conditions is very important. This study presents part of the recent experimental developments in mechanical testing and evaluation of PZT materials at Oak Ridge National Laboratory. Ball-on-ring and four-point bending testing setups were used, with modifications made to account for testing requirements from high-level electric field and elevated temperature. The poled PZT-5A or equivalent material was tested under various specimen and testing conditions. The parameters of the distribution of strengths (characteristic strength and Weibull modulus) are discussed in relation to the testing conditions. Fractographic results based on scanning electron microscopy are also presented and discussed. The related data can serve as input for the design of piezoceramic devices, not only those used in energy systems like fuel injectors in heavy-duty diesel engines, but also those used in structural health monitoring, energy harvesting, and other critical systems in aerospace and civil engineering.

  12. Dielectric properties of water under extreme conditions and transport of carbonates in the deep Earth.

    PubMed

    Pan, Ding; Spanu, Leonardo; Harrison, Brandon; Sverjensky, Dimitri A; Galli, Giulia

    2013-04-23

    Water is a major component of fluids in the Earth's mantle, where its properties are substantially different from those at ambient conditions. At the pressures and temperatures of the mantle, experiments on aqueous fluids are challenging, and several fundamental properties of water are poorly known; e.g., its dielectric constant has not been measured. This lack of knowledge of water dielectric properties greatly limits our ability to model water-rock interactions and, in general, our understanding of aqueous fluids below the Earth's crust. Using ab initio molecular dynamics, we computed the dielectric constant of water under the conditions of the Earth's upper mantle, and we predicted the solubility products of carbonate minerals. We found that MgCO3 (magnesite)--insoluble in water under ambient conditions--becomes at least slightly soluble at the bottom of the upper mantle, suggesting that water may transport significant quantities of oxidized carbon. Our results suggest that aqueous carbonates could leave the subducting lithosphere during dehydration reactions and could be injected into the overlying lithosphere. The Earth's deep carbon could possibly be recycled through aqueous transport on a large scale through subduction zones.

  13. Extreme Hypoxic Conditions Induce Selective Molecular Responses and Metabolic Reset in Detached Apple Fruit

    PubMed Central

    Cukrov, Dubravka; Zermiani, Monica; Brizzolara, Stefano; Cestaro, Alessandro; Licausi, Francesco; Luchinat, Claudio; Santucci, Claudio; Tenori, Leonardo; Van Veen, Hans; Zuccolo, Andrea; Ruperti, Benedetto; Tonutti, Pietro

    2016-01-01

    The ripening physiology of detached fruit is altered by low oxygen conditions with profound effects on quality parameters. To study hypoxia-related processes and regulatory mechanisms, apple (Malus domestica, cv Granny Smith) fruit, harvested at commercial ripening, were kept at 1°C under normoxic (control) and hypoxic (0.4 and 0.8 kPa oxygen) conditions for up to 60 days. NMR analyses of cortex tissue identified eight metabolites showing significantly different accumulations between samples, with ethanol and alanine displaying the most pronounced difference between hypoxic and normoxic treatments. A rapid up-regulation of alcohol dehydrogenase and pyruvate-related metabolism (lactate dehydrogenase, pyruvate decarboxylase, alanine aminotransferase) gene expression was detected under both hypoxic conditions with a more pronounced effect induced by the lowest (0.4 kPa) oxygen concentration. Both hypoxic conditions negatively affected ACC synthase and ACC oxidase transcript accumulation. Analysis of RNA-seq data of samples collected after 24 days of hypoxic treatment identified more than 1000 genes differentially expressed when comparing 0.4 vs. 0.8 kPa oxygen concentration samples. Genes involved in cell-wall, minor and major CHO, amino acid and secondary metabolisms, fermentation and glycolysis as well as genes involved in transport, defense responses, and oxidation-reduction appeared to be selectively affected by treatments. The lowest oxygen concentration induced a higher expression of transcription factors belonging to AUX/IAA, WRKY, HB, Zinc-finger families, while MADS box family genes were more expressed when apples were kept under 0.8 kPa oxygen. Out of the eight group VII ERF members present in apple genome, two genes showed a rapid up-regulation under hypoxia, and western blot analysis showed that apple MdRAP2.12 proteins were differentially accumulated in normoxic and hypoxic samples, with the highest level reached under 0.4 kPa oxygen. These data suggest

  14. Extreme climatic conditions and health service utilisation across rural and metropolitan New South Wales

    NASA Astrophysics Data System (ADS)

    Jegasothy, Edward; McGuire, Rhydwyn; Nairn, John; Fawcett, Robert; Scalley, Benjamin

    2017-03-01

    Periods of successive extreme heat and cold temperature have major effects on human health and increase rates of health service utilisation. The severity of these events varies between geographic locations and populations. This study aimed to estimate the effects of heat waves and cold waves on health service utilisation across urban, regional and remote areas in New South Wales (NSW), Australia, during the 10-year study period 2005-2015. We divided the state into three regions and used 24 over-dispersed or zero-inflated Poisson time-series regression models to estimate the effect of heat waves and cold waves, of three levels of severity, on the rates of ambulance call-outs, emergency department (ED) presentations and mortality. We defined heat waves and cold waves using excess heat factor (EHF) and excess cold factor (ECF) metrics, respectively. Heat waves generally resulted in increased rates of ambulance call-outs, ED presentations and mortality across the three regions and the entire state. For all of NSW, very intense heat waves resulted in an increase of 10.8% (95% confidence interval (CI) 4.5, 17.4%) in mortality, 3.4% (95% CI 0.8, 7.8%) in ED presentations and 10.9% (95% CI 7.7, 14.2%) in ambulance call-outs. Cold waves were shown to have significant effects on ED presentations (9.3% increase for intense events, 95% CI 8.0-10.6%) and mortality (8.8% increase for intense events, 95% CI 2.1-15.9%) in outer regional and remote areas. There was little evidence for an effect from cold waves on health service utilisation in major cities and inner regional areas. Heat waves have a large impact on health service utilisation in NSW in both urban and rural settings. Cold waves also have significant effects in outer regional and remote areas. EHF is a good predictor of health service utilisation for heat waves, although service needs may differ between urban and rural areas.

  15. Explosive Chemistry: Simulating the Chemistry of Energetic Materials at Extreme Conditions

    SciTech Connect

    Reed, E J; Manaa, M R; Fried, L E

    2003-11-18

    In the brief instant of a high-explosive detonation, the shock wave produces a pressure 500,000 times that of the Earth's atmosphere, the detonation wave travels as fast as 10 kilometers per second, and internal temperatures soar up to 5,500 Kelvin. As the shock propagates through the energetic material, the rapid heating coupled with compression that results in almost 30% volume reduction, initiate complex chemical reactions. A dense, highly reactive supercritical fluid is established behind the propagating detonation front. Energy release from the exothermic chemical reactions serve in turn to drive and sustain the detonation process until complete reactivity is reached. Several experimental results suggest the existence of strong correlations between the applied mechanical stress and shocks, the local heterogeneity and defects (dislocations, vacancies, cracks, impurities, etc.), and the onset of chemical reactions. The reaction chemistry of energetic materials at high pressure and temperature is, therefore, of considerable importance in understanding processes that these materials experience under impact and detonation conditions. Chemical decomposition models are critical ingredients in order to predict, among other things, the measured times to explosion and the conditions for ignition of hot spots, localized regions of highly concentrated energy associated with defects. To date, chemical kinetic rates of condense-phase energetic materials at detonation conditions are virtually non-existent, and basic questions such as: (a) which bond in a given energetic molecule breaks first, and (b) what type of chemical reactions (unimolecular versus bimolecular, etc.) that dominate early in the decomposition process, are still largely unknown.

  16. SIPEX 2012: Extreme sea-ice and atmospheric conditions off East Antarctica

    NASA Astrophysics Data System (ADS)

    Heil, P.; Stammerjohn, S.; Reid, P.; Massom, R. A.; Hutchings, J. K.

    2016-09-01

    In 2012, Antarctic sea-ice coverage was marked by weak annual-mean climate anomalies that consisted of opposing anomalies early and late in the year (some setting new records) which were interspersed by near-average conditions for most of the austral autumn and winter. Here, we investigate the ocean-ice-atmosphere system off East Antarctica, prior to and during the Sea Ice Physics and Ecosystems eXperiment [SIPEX] 2012, by exploring relationships between atmospheric and oceanic forcing together with the sea-ice and snow characteristics. During August and September 2012, just prior to SIPEX 2012, atmospheric circulation over the Southern Ocean was near-average, setting up the ocean-ice-atmosphere system for near-average conditions. However, below-average surface pressure and temperature as well as strengthened circumpolar winds prevailed during June and July 2012. This led to a new record (19.48×106 km2) in maximum Antarctic sea-ice extent recorded in late September. In contrast to the weak circum-Antarctic conditions, the East Antarctic sector (including the SIPEX 2012 region) experienced positive sea-ice extent and concentration anomalies during most of 2012, coincident with negative atmospheric pressure and sea-surface temperature anomalies. Heavily deformed sea ice appeared to be associated with intensified wind stress due to increased cyclonicity as well as an increased influx of sea ice from the east. This increased westward ice flux is likely linked to the break-up of nearly 80% of the Mertz Glacier Tongue in 2010, which strongly modified the coastal configuration and hence the width of the westward coastal current. Combined with favourable atmospheric conditions the associated changed coastal configuration allowed more sea ice to remain within the coastal current at the expense of a reduced northward flow in the region around 141°-145°E. In addition a westward propagating positive anomaly of sea-ice extent from the western Ross Sea during austral winter

  17. Quantification of Cation Sorption to Engineered Barrier Materials Under Extreme Conditions

    SciTech Connect

    Powell, Brian; Schlautman, Mark; Rao, Linfeng; Nitsche, Heino; Gregorich, Kenneth

    2016-02-02

    The objective of this research is to examine mechanisms and thermodynamics of actinide sorption to engineered barrier materials (iron (oxyhydr)oxides and bentonite clay) for nuclear waste repositories under high temperature and high ionic strength conditions using a suite of macroscopic and microscopic techniques which will be coupled with interfacial reaction models. Gaining a mechanistic understanding of interfacial processes governing the sorption/sequestration of actinides at mineral-water interfaces is fundamental for the accurate prediction of actinide behavior in waste repositories. Although macroscale sorption data and various spectroscopic techniques have provided valuable information regarding speciation of actinides at solid-water interfaces, significant knowledge gaps still exist with respect to sorption mechanisms and the ability to quantify sorption, particularly at high temperatures and ionic strengths. This objective is addressed through three major tasks: (1) influence of oxidation state on actinide sorption to iron oxides and clay minerals at elevated temperatures and ionic strengths; (2) calorimetric titrations of actinide-mineral suspensions; (3) evaluation of bentonite performance under repository conditions. The results of the work will include a qualitative conceptual model and a quantitative thermodynamic speciation model describing actinide partitioning to minerals and sediments, which is based upon a mechanistic understanding of specific sorption processes as determined from both micro-scale and macroscale experimental techniques. The speciation model will be a thermodynamic aqueous and surface complexation model of actinide interactions with mineral surfaces that is self-consistent with macroscopic batch sorption data, calorimetric and potentiometric titrations, X-ray absorption Spectroscopy (XAS, mainly Extended X-ray Absorption Fine Structure (EXAFS)), and electron microscopy analyses. The novelty of the proposed work lies largely in

  18. Electromyographic Reliability and Analysis of Selected Lower Extremity Muscles During Lateral Step-Up Conditions

    PubMed Central

    Worrell, Teddy W.; Crisp, Elizabeth; LaRosa, Christopher

    1998-01-01

    Objective: To determine 1) the electromyographic (EMG) reliability within and between testing sessions; 2) the effect of sex on the EMG activity of the vastus medialis oblique (VMO), vastus lateralis (VL), hamstring (HS), and gluteus maximus (GM) and VMO:VL ratios during maximal voluntary isometric contraction (MVIC) and lateral step-up (LSU) conditions; and 3) the muscle recruitment and VMO:VL ratios during MVIC and LSU conditions. Design and Setting: Subjects participated in a familiarization session and two testing sessions in which they performed a 20.32-cm (8-in) LSU with and without resistance while the EMG activity was monitored for the VMO, VL, HS, and GM muscles. Subjects: Nineteen subjects performed LSUs holding 25% body weight (Group 25%), and 13 subjects performed LSUs holding 10% body weight (Group 10%). There were 32 subjects total: 19 males and 13 females. Measurements: Statistical analyses included a two-way analysis of variance (ANOVA) to compare sex and testing conditions for percentage of MVIC and VMO:VL ratios; three-way repeated-measures ANOVA to compare muscle, resistance, and session factors for percentage of MVIC; and a two-way repeated-measures ANOVA to compare conditions and session factors for VMO:VL ratios. These analyses were performed for both groups. Results: Reliability results revealed good intrasession and poor intersession intraclass correlation coefficients. No difference existed in muscle recruitment or VMO:VL ratios between males and females for either group. The three-way ANOVA revealed a significant two-way interaction (muscle × resistance) for both groups. Post hoc testing revealed the following EMG recruitment patterns: VMO > HS, GM, VL;VL > HS, GM; HS = GM for both groups. For Group 25%, the two-way ANOVA revealed greater VMO:VL ratios during MVIC for session one than for LSU. Conclusions: Intrasession reliability was higher than intersession reliability, but similar conclusions were reached concerning muscle recruitment

  19. Laboratory measurements of materials in extreme conditions; The use of high energy radiation sources for high pressure studies

    SciTech Connect

    Cauble, R.; Remington, B.A.

    1998-06-01

    High energy lasers can be used to study material conditions that are appropriate fort inertial confinement fusion: that is, materials at high densities, temperatures, and pressures. Pulsed power devices can offer similar opportunities. The National Ignition Facility (NIF) will be a high energy multi-beam laser designed to achieve the thermonuclear ignition of a mm-scale DT-filled target in the laboratory. At the same time, NE will provide the physics community with a unique tool for the study of high energy density matter at states unreachable by any other laboratory technique. Here we describe how these lasers and pulsed power tools can contribute to investigations of high energy density matter in the areas of material properties and equations of state, extend present laboratory shock techniques such as high-speed jets to new regimes, and allow study of extreme conditions found in astrophysical phenomena.

  20. Sputtering at Mars: MAVEN observations of precipitating and escaping oxygen during nominal and extreme conditions

    NASA Astrophysics Data System (ADS)

    Curry, Shannon; Luhmann, Janet; Dong, Chuanfei; Ma, Yingjuan; Leblanc, Francois; Modolo, Ronan; Brain, David; Gruesbeck, Jacob; Hara, Takuya; Halekas, Jasper; Dong, Yaxue; Williamson, Hayley N.; Johnson, Robert E.; McFadden, James; Espley, Jared R.; Mitchell, David; Connerney, Jack; Eparvier, Frank; Lillis, Robert J.; Jakosky, Bruce

    2016-10-01

    Sputtering is believed to be one of the dominant escape mechanisms during the early epochs of our solar system when the solar activity and EUV intensities were much higher than the present day. Mars lacks a global dynamo magnetic field, which creates a scenario where the solar wind directly interacts with the upper atmosphere and newly created ions can be picked up and swept away by the background convection electric field. These pick-up ions can directly escape or precipitate back into the atmosphere and induce atmospheric sputtering of neutrals.The MAVEN spacecraft has observed the Mars upper atmosphere, ionosphere, magnetic topology and interactions with the Sun and solar wind during numerous Interplanetary Coronal Mass Ejection (ICME) impacts spanning from March 2015 to June 2016. ICMEs are associated with enhanced solar wind velocities, densities and magnetic field strength, and often drive heavy ion precipitation at much higher rates than during nominal conditions. Thus, ICMEs provide a unique environment for observing sputtering. We will compare MAVEN observations of heavy ion precipitation during nominal conditions as well as during ICMEs. Additionally, we will present global MHD and test particle simulations of the ICMEs in order to calculate sputtering escape rates for oxygen. Finally, we will use the observed and modeled sputtering escape rates to provide an initial estimate of the total sputtered atmospheric escape from Mars over billions of years.

  1. Southern giant Petrel Macronectes giganteus nest attendance patterns under extreme weather conditions.

    PubMed

    Schulz, Uwe Horst; Krüger, Lucas; Petry, Maria Virginia

    2014-08-01

    Differences in nest attendance between genders in seabirds may be related to morphological differences. Southern giant petrel is a dimorphic species with gender-specific foraging behavior. The objective of this study was to investigate sex-related differences in nest attendance during the breeding period of southern giant petrels by presence/absence patterns of both sexes during incubation and compare use of the colony after nest failure. Fourteen birds were tagged with digitally coded radio-transmitters in a colony at Elephant Island, Antarctica, in the beginning of 2009/2010 breeding season. Females were present during 18 periods (min. 3 days, max. 9 days) and males only in five periods (min. 2 days, max. 13 days). The difference in mean number of radio signals per day between females (4330; s.e. 313.5) and males (2691; s.e. 248.6) was highly significant (t = 4.3; d.f. = 199; P < 0.001; Fig. 4 ). As consequence of the severe weather conditions that year, all tagged birds failed to reproduce. After abandonment of the nests, the presence of both genders decreased drastically, although the tagged individuals stayed in the area. Under severe weather conditions female Southern Giant Petrels continue breeding while males abandon the nest earlier.

  2. Modulation of Pleurodeles waltl DNA Polymerase mu Expression by Extreme Conditions Encountered during Spaceflight

    PubMed Central

    Baatout, Sarah; Frippiat, Jean-Pol

    2013-01-01

    DNA polymerase µ is involved in DNA repair, V(D)J recombination and likely somatic hypermutation of immunoglobulin genes. Our previous studies demonstrated that spaceflight conditions affect immunoglobulin gene expression and somatic hypermutation frequency. Consequently, we questioned whether Polμ expression could also be affected. To address this question, we characterized Polμ of the Iberian ribbed newt Pleurodeles waltl and exposed embryos of that species to spaceflight conditions or to environmental modifications corresponding to those encountered in the International Space Station. We noted a robust expression of Polμ mRNA during early ontogenesis and in the testis, suggesting that Polμ is involved in genomic stability. Full-length Polμ transcripts are 8–9 times more abundant in P. waltl than in humans and mice, thereby providing an explanation for the somatic hypermutation predilection of G and C bases in amphibians. Polμ transcription decreases after 10 days of development in space and radiation seem primarily involved in this down-regulation. However, space radiation, alone or in combination with a perturbation of the circadian rhythm, did not affect Polμ protein levels and did not induce protein oxidation, showing the limited impact of radiation encountered during a 10-day stay in the International Space Station. PMID:23936065

  3. Microbial mediated formation of Fe-carbonate minerals under extreme acidic conditions

    PubMed Central

    Sánchez-Román, Mónica; Fernández-Remolar, David; Amils, Ricardo; Sánchez-Navas, Antonio; Schmid, Thomas; Martin-Uriz, Patxi San; Rodríguez, Nuria; McKenzie, Judith A.; Vasconcelos, Crisogono

    2014-01-01

    Discovery of Fe-carbonate precipitation in Rio Tinto, a shallow river with very acidic waters, situated in Huelva, South-western Spain, adds a new dimension to our understanding of carbonate formation. Sediment samples from this low-pH system indicate that carbonates are formed in physico-chemical conditions ranging from acid to neutral pH. Evidence for microbial mediation is observed in secondary electron images (Fig. 1), which reveal rod-shaped bacteria embedded in the surface of siderite nanocrystals. The formation of carbonates in Rio Tinto is related to the microbial reduction of ferric iron coupled to the oxidation of organic compounds. Herein, we demonstrate for the first time, that Acidiphilium sp. PM, an iron-reducing bacterium isolated from Rio Tinto, mediates the precipitation of siderite (FeCO3) under acidic conditions and at a low temperature (30°C). We describe nucleation of siderite on nanoglobules in intimate association with the bacteria cell surface. This study has major implications for understanding carbonate formation on the ancient Earth or extraterrestrial planets. PMID:24755961

  4. Microbial mediated formation of Fe-carbonate minerals under extreme acidic conditions.

    PubMed

    Sánchez-Román, Mónica; Fernández-Remolar, David; Amils, Ricardo; Sánchez-Navas, Antonio; Schmid, Thomas; San Martin-Uriz, Patxi; Rodríguez, Nuria; McKenzie, Judith A; Vasconcelos, Crisogono

    2014-04-23

    Discovery of Fe-carbonate precipitation in Rio Tinto, a shallow river with very acidic waters, situated in Huelva, South-western Spain, adds a new dimension to our understanding of carbonate formation. Sediment samples from this low-pH system indicate that carbonates are formed in physico-chemical conditions ranging from acid to neutral pH. Evidence for microbial mediation is observed in secondary electron images (Fig. 1), which reveal rod-shaped bacteria embedded in the surface of siderite nanocrystals. The formation of carbonates in Rio Tinto is related to the microbial reduction of ferric iron coupled to the oxidation of organic compounds. Herein, we demonstrate for the first time, that Acidiphilium sp. PM, an iron-reducing bacterium isolated from Rio Tinto, mediates the precipitation of siderite (FeCO3) under acidic conditions and at a low temperature (30°C). We describe nucleation of siderite on nanoglobules in intimate association with the bacteria cell surface. This study has major implications for understanding carbonate formation on the ancient Earth or extraterrestrial planets.

  5. Helium bubble formation in ultrafine and nanocrystalline tungsten under different extreme conditions

    DOE PAGES

    El-atwani, O.; Hattar, Khalid Mikhiel; Hinks, J. A.; ...

    2014-12-25

    We investigated the effects of helium ion irradiation energy and sample temperature on the performance of grain boundaries as helium sinks in ultrafine grained and nanocrystalline tungsten. Irradiations were performed at displacement and non-displacement energies and at temperatures above and below that required for vacancy migration. Microstructural investigations were performed using Transmission Electron Microscopy (TEM) combined with either in-situ or ex-situ ion irradiation. Under helium irradiation at an energy which does not cause atomic displacements in tungsten (70 eV), regardless of temperature and thus vacancy migration conditions, bubbles were uniformly distributed with no preferential bubble formation on grain boundaries. Moreover,more » at energies that can cause displacements, bubbles were observed to be preferentially formed on the grain boundaries only at high temperatures where vacancy migration occurs. Under these conditions, the decoration of grain boundaries with large facetted bubbles occurred on nanocrystalline grains with dimensions less than 60 nm. Finally, we discuss the importance of vacancy supply and the formation and migration of radiation-induced defects on the performance of grain boundaries as helium sinks and the resulting irradiation tolerance of ultrafine grained and nanocrystalline tungsten to bubble formation.« less

  6. Helium bubble formation in ultrafine and nanocrystalline tungsten under different extreme conditions

    SciTech Connect

    El-atwani, O.; Hattar, Khalid Mikhiel; Hinks, J. A.; Greaves, G.; Harilal, S. S.; Hassanein, A.

    2014-12-25

    We investigated the effects of helium ion irradiation energy and sample temperature on the performance of grain boundaries as helium sinks in ultrafine grained and nanocrystalline tungsten. Irradiations were performed at displacement and non-displacement energies and at temperatures above and below that required for vacancy migration. Microstructural investigations were performed using Transmission Electron Microscopy (TEM) combined with either in-situ or ex-situ ion irradiation. Under helium irradiation at an energy which does not cause atomic displacements in tungsten (70 eV), regardless of temperature and thus vacancy migration conditions, bubbles were uniformly distributed with no preferential bubble formation on grain boundaries. Moreover, at energies that can cause displacements, bubbles were observed to be preferentially formed on the grain boundaries only at high temperatures where vacancy migration occurs. Under these conditions, the decoration of grain boundaries with large facetted bubbles occurred on nanocrystalline grains with dimensions less than 60 nm. Finally, we discuss the importance of vacancy supply and the formation and migration of radiation-induced defects on the performance of grain boundaries as helium sinks and the resulting irradiation tolerance of ultrafine grained and nanocrystalline tungsten to bubble formation.

  7. Synchrotron Radiation and High Pressure: New Light on Materials Under Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Hemley, Russell

    2005-03-01

    Current technological advances now make it possible to perform experiments on materials subjected to static or sustained conditions up to multimegabar pressures (>300 GPa) and from cryogenic temperatures to several thousand degrees (˜0.5 eV range). With these techniques, densities of condensed matter can be increased over an order of magnitude, causing numerous transformations and new physical and chemical phenomena to occur. Growth in this area largely been made possible by accelerating developments in diamond-anvil cell methods coupled with new synchrotron radiation techniques. Significant advances have occurred in x-ray diffraction, spectroscopy, inelastic scattering, radiography, and infrared spectroscopy. With recent developments, structure refinements based on polycrystalline data up to multimegabar pressures have been possible. Single-crystal methods have been extended to megabar pressure, with the prospect of full crystallographic refinements. `Three- dimensional' diffraction data can be collected for determining strength, deformation, and elastic tensors at high P-T conditions. Studies carried out during the past three years provide numerous breakthroughs in high-pressure x-ray spectroscopy and a broad range of inelastic scattering methods. Other experiments have exploited the use of x-ray radiography over a range of pressures. Finally, synchrotron infrared measurements have revealed a wealth of high-pressure phenomena, particularly for molecular systems. Examples to be discussed include investigations of dense hydrogen; transformations in molecular materials; novel ceramics; new types of superconductors, electronic, and magnetic materials; and liquids and amorphous materials.

  8. Synoptic and meteorological drivers of extreme ozone concentrations over Europe

    NASA Astrophysics Data System (ADS)

    Otero, Noelia Felipe; Sillmann, Jana; Schnell, Jordan L.; Rust, Henning W.; Butler, Tim

    2016-04-01

    The present work assesses the relationship between local and synoptic meteorological conditions and surface ozone concentration over Europe in spring and summer months, during the period 1998-2012 using a new interpolated data set of observed surface ozone concentrations over the European domain. Along with local meteorological conditions, the influence of large-scale atmospheric circulation on surface ozone is addressed through a set of airflow indices computed with a novel implementation of a grid-by-grid weather type classification across Europe. Drivers of surface ozone over the full distribution of maximum daily 8-hour average values are investigated, along with drivers of the extreme high percentiles and exceedances or air quality guideline thresholds. Three different regression techniques are applied: multiple linear regression to assess the drivers of maximum daily ozone, logistic regression to assess the probability of threshold exceedances and quantile regression to estimate the meteorological influence on extreme values, as represented by the 95th percentile. The relative importance of the input parameters (predictors) is assessed by a backward stepwise regression procedure that allows the identification of the most important predictors in each model. Spatial patterns of model performance exhibit distinct variations between regions. The inclusion of the ozone persistence is particularly relevant over Southern Europe. In general, the best model performance is found over Central Europe, where the maximum temperature plays an important role as a driver of maximum daily ozone as well as its extreme values, especially during warmer months.

  9. Synoptic and meteorological drivers of extreme ozone concentrations over Europe

    NASA Astrophysics Data System (ADS)

    Otero, N.; Sillmann, J.; Schnell, J. L.; Rust, H. W.; Butler, T.

    2016-02-01

    The present work assesses the relationship between local and synoptic meteorological conditions and surface ozone concentration over Europe in spring and summer months, during the period 1998-2012 using a new interpolated data set of observed surface ozone concentrations over the European domain. Along with local meteorological conditions, the influence of large-scale atmospheric circulation on surface ozone is addressed through a set of airflow indices computed with a novel implementation of a grid-by-grid weather type classification across Europe. Drivers of surface ozone over the full distribution of maximum daily 8 h average values are investigated, along with drivers of the extreme high percentiles and exceedances or air quality guideline thresholds. Three different regression techniques are applied: multiple linear regression to assess the drivers of maximum daily ozone, logistic regression to assess the probability of threshold exceedances and quantile regression to estimate the meteorological influence on extreme values, as represented by the 95th percentile. The relative importance of the input parameters (predictors) is assessed by a backward stepwise regression procedure that allows the identification of the most important predictors in each model. Spatial patterns of model performance exhibit distinct variations between regions. The inclusion of the ozone persistence is particularly relevant over southern Europe. In general, the best model performance is found over central Europe, where the maximum temperature plays an important role as a driver of maximum daily ozone as well as its extreme values, especially during warmer months.

  10. Biological Membranes in Extreme Conditions: Simulations of Anionic Archaeal Tetraether Lipid Membranes

    PubMed Central

    Pineda De Castro, Luis Felipe; Dopson, Mark

    2016-01-01

    In contrast to the majority of organisms that have cells bound by di-ester phospholipids, archaeal membranes consist of di- and tetraether phospholipids. Originating from organisms that withstand harsh conditions (e.g., low pH and a wide range of temperatures) such membranes have physical properties that make them attractive materials for biological research and biotechnological applications. We developed force-field parameters based on the widely used Generalized Amber Force Field (GAFF) to enable the study of anionic tetraether membranes of the model archaean Sulfolobus acidocaldarius by computer simulations. The simulations reveal that the physical properties of these unique membranes depend on the number of cyclopentane rings included in each lipid unit, and on the size of cations that are used to ensure charge neutrality. This suggests that the biophysical properties of Sulfolobus acidocaldarius cells depend not only on the compositions of their membranes but also on the media in which they grow. PMID:27167213

  11. Comparison of wetlands in different hydrogeological settings under conditions of extreme climate variability

    USGS Publications Warehouse

    Winter, T.; Rosenberry, D.; Kelly, E.; LaBaugh, J.

    2005-01-01

    Wetlands in the Cottonwood Lake area in North Dakota, USA, are underlain by poorly permeable till and have little groundwater input. Lakes and wetlands in the Shingobee River headwaters in Minnesota are underlain by permeable sand and have substantial groundwater input. Hydrological, chemical, and biological characteristics of these ecosystems have been monitored since 1977. Both sites experienced the second worst drought of the 20th century followed by the wettest period in more than a century. At Cottonwood Lake, plants that invaded the dry wetlands during the drought were flooded during the wet period and became a food source for animals. This resulted in successive substantial population increases and declines of plankton, invertebrates, amphibians and waterfowl. Substantial groundwater input buffered the lakes and wetlands in the Shingobee area against the changing water conditions. Only subtle changes in water chemistry and plankton populations were observed during the transition from drought to deluge.

  12. The molecular gas in luminous infrared galaxies - I. CO lines, extreme physical conditions and their drivers

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Padelis P.; van der Werf, Paul P.; Xilouris, E. M.; Isaak, K. G.; Gao, Yu; Mühle, S.

    2012-11-01

    We report results from a large molecular line survey of luminous infrared galaxies (LIRGs; L IR ≳1011 L) in the local Universe (z ≤ 0.1), conducted during the last decade with the James Clerk Maxwell Telescope and the IRAM 30-m telescope. This work presents the CO and 13CO line data for 36 galaxies, further augmented by multi-J total CO line luminosities available for other infrared (IR) bright galaxies from the literature. This yields a combined sample of N = 70 galaxies with the star formation (SF) powered fraction of their IR luminosities spanning L IR (*)˜(1010-2×1012) L and a wide range of morphologies. Simple comparisons of their available CO spectral line energy distributions (SLEDs) with local ones, as well as radiative transfer models, discern a surprisingly wide range of average interstellar medium (ISM) conditions, with most of the surprises found in the high-excitation regime. These take the form of global CO SLEDs dominated by a very warm (Tkin ≳100 K) and dense (n ≥ 104 cm-3) gas phase, involving galaxy-sized (˜(few) × 109 M⊙) gas mass reservoirs under conditions that are typically found only for ˜(1-3) per cent of mass per typical SF molecular cloud in the Galaxy. Furthermore, some of the highest excitation CO SLEDs are found in ultraluminous infrared galaxies (ULIRGs; LIR ≥ 1012 L⊙) and surpass even those found solely in compact SF-powered hot spots in Galactic molecular clouds. Strong supersonic turbulence and high cosmic ray energy densities rather than far-ultraviolet/optical photons or supernova remnant induced shocks from individual SF sites can globally warm the large amounts of dense gas found in these merger-driven starbursts and easily power their extraordinary CO line excitation. This exciting possibility can now be systematically investigated with Herschel and the Atacama Large Milimeter Array (ALMA). As expected for an IR-selected (and thus SF rate selected) galaxy sample, only few 'cold' CO SLEDs are found, and for

  13. X-ray Raman Scattering at Extreme Conditions: Insights to Local Structure, Oxidation and Spin state

    NASA Astrophysics Data System (ADS)

    Wilke, M.; Sternemann, C.; Sahle, C.; Spiekermann, G.; Nyrow, A.; Weis, C.; Cerantola, V.; Schmidt, C.; Yavas, H.

    2015-12-01

    In the last decades, X-ray spectroscopic techniques using very intense synchrotron radiation (SR) have become indispensable tools for studying geomaterials. Due to the rather low absorption of hard X-rays, SR opens up the possibility to perform measurements in high-pressure, high temperature cells. The range of elements accessible by X-ray absorption spectroscopy (XAFS) techniques in these cells is limited by the absorption of X-rays due to the sample environment, i.e. the diamond windows. The indirect measurement of XAFS spectra by inelastic X-ray Raman scattering (XRS) provides a workaround to access absorption edges at low energies (e.g. low Z elements). Therefore, XRS enables measurements that are similar to electron energy loss spectroscopy but offer to measure at in-situ conditions and not just in vacuum. Measurements of the O K-edge of H2O from ambient to supercritical PT-conditions (up to 600°C @ 134 MPa; 400°C @ 371 MPa) were used to trace structural changes of the hydrogen-bonded network, which controls many physical and chemical properties of H2O [1]. The Fe M3,2-edge measured by XRS were used to characterize the oxidation state and local structure in crystalline compounds and glasses [2]. Furthermore, the M3,2 yields detailed insight to the crystal-field splitting and electronic spin state. In a reconnaissance study, the pressure-induced high-spin to low-spin transition of Fe in FeS between 6 and 8 GPa was measured. By multiplet calculations of the spectra for octahedral Fe2+, a difference in crystal field splitting between the two states of ca. 1.7 eV was estimated [3]. Finally, we successfully assessed the electronic structure of Fe in siderite by measurements of M and L-edge up to 50 GPa, covering the spin transition between 40 and 45 GPa. [1] Sahle et al. (2013) PNAS, doi: 10.1073/pnas.1220301110.. [2] Nyrow et al. (2014) Contrib Mineral Petrol 167, 1012. [3] Nyrow et al. (2014) Appl Phys Lett 104, 262408.

  14. Mechanical Behavior of Tissue Simulants and Soft Tissues Under Extreme Loading Conditions

    NASA Astrophysics Data System (ADS)

    Kalcioglu, Zeynep Ilke

    Recent developments in computer-integrated surgery and in tissue-engineered constructs necessitate advances in experimental and analytical techniques in characterizing properties of mechanically compliant materials such as gels and soft tissues, particularly for small sample volumes. One goal of such developments is to quantitatively predict and mimic tissue deformation due to high rate impact events typical of industrial accidents and ballistic insults. This aim requires advances in mechanical characterization to establish tools and design principles for tissue simulant materials that can recapitulate the mechanical responses of hydrated soft tissues under dynamic contact-loading conditions. Given this motivation, this thesis studies the mechanical properties of compliant synthetic materials developed for tissue scaffold applications and of soft tissues, via modifying an established contact based technique for accurate, small scale characterization under fully hydrated conditions, and addresses some of the challenges in the implementation of this method. Two different engineered material systems composed of physically associating block copolymer gels, and chemically crosslinked networks including a solvent are presented as potential tissue simulants for ballistic applications, and compared directly to soft tissues from murine heart and liver. In addition to conventional quasistatic and dynamic bulk mechanical techniques that study macroscale elastic and viscoelastic properties, new methodologies are developed to study the small scale mechanical response of the aforementioned material systems to concentrated impact loading. The resistance to penetration and the energy dissipative constants are quantified in order to compare the deformation of soft tissues and mechanically optimized simulants, and to identify the underlying mechanisms by which the mechanical response of these tissue simulant candidates are modulated. Finally, given that soft tissues are biphasic in

  15. ON THE EXTREME POSITIVE STAR FORMATION FEEDBACK CONDITION IN SCUBA SOURCES

    SciTech Connect

    Silich, Sergiy; Tenorio-Tagle, Guillermo; Hueyotl-Zahuantitla, Filiberto; Munoz-Tunon, Casiana; Wuensch, Richard; Palous, Jan

    2010-03-01

    We present a detailed study of the hydrodynamics of the matter reinserted by massive stars via stellar winds and supernovae explosions in young assembling galaxies. We show that the interplay between the thermalization of the kinetic energy provided by massive stars, radiative cooling of the thermalized plasma, and the gravitational pull of the host galaxy lead to three different hydrodynamic regimes. These are: (1) the quasi-adiabatic supergalactic winds; (2) the bimodal flows, with mass accumulation in the central zones and gas expulsion from the outer zones of the assembling galaxy; and (3) the gravitationally bound regime, for which all of the gas returned by massive stars remains bound to the host galaxy and is likely to be reprocessed into further generations of stars. Which of the three possible solutions takes place depends on the mass of the star-forming region, its mechanical luminosity (or star formation rate), and its size. The model predicts that massive assembling galaxies with large star formation rates similar to those detected in Submillimeter Common-User Bolometric Array sources ({approx}1000 M{sub sun} yr{sup -1}) are likely to evolve in a positive star formation feedback condition, either in the bimodal or in the gravitationally bound regime. This implies that star formation in these sources may have little impact on the intergalactic medium and result instead into a fast interstellar matter enrichment, as observed in high redshift quasars.

  16. Anaerobic digestion of the microalga Spirulina at extreme alkaline conditions: biogas production, metagenome, and metatranscriptome

    PubMed Central

    Nolla-Ardèvol, Vímac; Strous, Marc; Tegetmeyer, Halina E.

    2015-01-01

    A haloalkaline anaerobic microbial community obtained from soda lake sediments was used to inoculate anaerobic reactors for the production of methane rich biogas. The microalga Spirulina was successfully digested by the haloalkaline microbial consortium at alkaline conditions (pH 10, 2.0 M Na+). Continuous biogas production was observed and the obtained biogas was rich in methane, up to 96%. Alkaline medium acted as a CO2 scrubber which resulted in low amounts of CO2 and no traces of H2S in the produced biogas. A hydraulic retention time (HRT) of 15 days and 0.25 g Spirulina L−1 day−1 organic loading rate (OLR) were identified as the optimal operational parameters. Metagenomic and metatranscriptomic analysis showed that the hydrolysis of the supplied substrate was mainly carried out by Bacteroidetes of the “ML635J-40 aquatic group” while the hydrogenotrophic pathway was the main producer of methane in a methanogenic community dominated by Methanocalculus. PMID:26157422

  17. A Molecular Dynamics Study of Chemical Reactions of Solid Pentaerythritol Tetranitrate at Extreme Conditions

    SciTech Connect

    Wu, C J; Manaa, M R; Fried, L E

    2006-05-30

    We have carried out density functional based tight binding (DFTB) molecular dynamics (MD) simulation to study energetic reactions of solid Pentaerythritol Tetranitrate (PETN) at conditions approximating the Chapman-Jouguet (CJ) detonation state. We found that the initial decomposition of PETN molecular solid is characterized by uni-molecular dissociation of the NO{sub 2}groups. Interestingly, energy release from this powerful high explosive was found to proceed in several stages. The large portion of early stage energy release was found to be associated with the formation of H{sub 2}O molecules within a few picoseconds of reaction. It took nearly four times as long for majority of CO{sub 2} products to form, accompanied by a slow oscillatory conversion between CO and CO{sub 2}. The production of N{sub 2} starts after NO{sub 2} loses its oxygen atoms to hydrogen or carbon atoms to form H{sub 2}O or CO. We identified many intermediate species that emerge and contribute to reaction kinetics, and compared our simulation with a thermo-chemical equilibrium calculation. In addition, a detailed chemical kinetics of formation of H{sub 2}O, CO, and CO{sub 2} were developed. Rate constants of formations of H{sub 2}O, CO{sub 2} and N{sub 2} were reported.

  18. Bayesian quantile regression-based nonlinear mixed-effects joint models for time-to-event and longitudinal data with multiple features.

    PubMed

    Huang, Yangxin; Chen, Jiaqing

    2016-12-30

    This article explores Bayesian joint models for a quantile of longitudinal response, mismeasured covariate and event time outcome with an attempt to (i) characterize the entire conditional distribution of the response variable based on quantile regression that may be more robust to outliers and misspecification of error distribution; (ii) tailor accuracy from measurement error, evaluate non-ignorable missing observations, and adjust departures from normality in covariate; and (iii) overcome shortages of confidence in specifying a time-to-event model. When statistical inference is carried out for a longitudinal data set with non-central location, non-linearity, non-normality, measurement error, and missing values as well as event time with being interval censored, it is important to account for the simultaneous treatment of these data features in order to obtain more reliable and robust inferential results. Toward this end, we develop Bayesian joint modeling approach to simultaneously estimating all parameters in the three models: quantile regression-based nonlinear mixed-effects model for response using asymmetric Laplace distribution, linear mixed-effects model with skew-t distribution for mismeasured covariate in the presence of informative missingness and accelerated failure time model with unspecified nonparametric distribution for event time. We apply the proposed modeling approach to analyzing an AIDS clinical data set and conduct simulation studies to assess the performance of the proposed joint models and method. Copyright © 2016 John Wiley & Sons, Ltd.

  19. The family as a determinant of stunting in children living in conditions of extreme poverty: a case-control study

    PubMed Central

    Reyes, Hortensia; Pérez-Cuevas, Ricardo; Sandoval, Araceli; Castillo, Raúl; Santos, José Ignacio; Doubova, Svetlana V; Gutiérrez, Gonzalo

    2004-01-01

    Background Malnutrition in children can be a consequence of unfavourable socioeconomic conditions. However, some families maintain adequate nutritional status in their children despite living in poverty. The aim of this study was to ascertain whether family-related factors are determinants of stunting in young Mexican children living in extreme poverty, and whether these factors differ between rural or urban contexts. Methods A case-control study was conducted in one rural and one urban extreme poverty level areas in Mexico. Cases comprised stunted children aged between 6 and 23 months. Controls were well-nourished children. Independent variables were defined in five dimensions: family characteristics; family income; household allocation of resources and family organisation; social networks; and child health care. Information was collected from 108 cases and 139 controls in the rural area and from 198 cases and 211 controls in the urban area. Statistical analysis was carried out separately for each area; unconditional multiple logistic regression analyses were performed to obtain the best explanatory model for stunting. Results In the rural area, a greater risk of stunting was associated with father's occupation as farmer and the presence of family networks for child care. The greatest protective effect was found in children cared for exclusively by their mothers. In the urban area, risk factors for stunting were father with unstable job, presence of small social networks, low rate of attendance to the Well Child Program activities, breast-feeding longer than six months, and two variables within the family characteristics dimension (longer duration of parents' union and migration from rural to urban area). Conclusions This study suggests the influence of the family on the nutritional status of children under two years of age living in extreme poverty areas. Factors associated with stunting were different in rural and urban communities. Therefore, developing and

  20. SOFI/Substrate integrity testing for cryogenic propellant tanks at extreme thermal gradient conditions

    NASA Astrophysics Data System (ADS)

    Haynes, M.; Fabian, P.

    2015-12-01

    Liquid propellant tank insulation for space flight requires low weight as well as high insulation factors. Use of Spray-On Foam Insulation (SOFI) is an accepted, cost effective technique for insulating a single wall cryogenic propellant tank and has been used extensively throughout the aerospace industry. Determining the bond integrity of the SOFI to the metallic substrate as well as its ability to withstand the in-service strains, both mechanical and thermal, is critical to the longevity of the insulation. This determination has previously been performed using highly volatile, explosive cryogens, which increases the test costs enormously, as well as greatly increasing the risk to both equipment and personnel. CTD has developed a new test system, based on a previous NASA test that simulates the mechanical and thermal strains associated with filling a large fuel tank with a cryogen. The test enables a relatively small SOFI/substrate sample to be monitored for any deformations, delaminations, or disjunctures during the cooling and mechanical straining process of the substrate, and enables the concurrent application of thermal and physical strains to two specimens at the same time. The thermal strains are applied by cooling the substrate to the desired cryogen temperature (from 4 K to 250 K) while maintaining the outside surface of the SOFI foam at ambient conditions. Multiple temperature monitoring points are exercised to ensure even cooling across the substrate, while at the same time, surface temperatures of the SOFI can be monitored to determine the heat flow. The system also allows for direct measurement of the strains in the substrate during the test. The test system as well as test data from testing at 20 K, for liquid Hydrogen simulation, will be discussed.

  1. Men in extreme conditions: some medical and psychological aspects of the Auschwitz concentration camp.

    PubMed

    Radil-Weiss, T

    1983-08-01

    The second world war ended many years ago. Most of those who survived the stay at the German concentration camp at Auschwitz have already died of the consequences of their imprisonment; those still alive are already in the last third of their life. Is there any point in returning to the experiences of those days? Consideration of the mental hygiene of former prisoners cautions us that perhaps we should not do it. But consideration of the general interest holds that we are not entitled to ignore any knowledge that can contribute to social development--including medicine and psychology--even if acquired under unspeakably awful conditions. In addition, since the war new generations have grown up that play an increasingly significant role in various spheres of life but have little concrete information about those events; they can neither rationally nor emotionally understand how the horrors connected with fascism and the war could have happened. In a sense it is encouraging that they cannot grasp such inhuman behavior; nevertheless, we must adhere to the following motto: "Nothing must be forgotten, nobody will be forgotten." We owe it to those millions who did not survive--both the victims of the Holocaust and those who fought against it. These are arguments in favor of returning to the facts that are ineffaceably recorded somewhere in our memories. In doing so, however, we must remember that at times we are revisiting experiences of a boy of 14 as recalled by a 50-year-old man. The material below, examining the medical as well as psychological aspects of imprisonment at Auschwitz, is based on my own memories, as an adolescent imprisoned at Auschwitz. I have tried to move from this individual account to more general statements, although the methodological apparatus on which scientific analysis is usually based is absent.

  2. Underwater Ambient Noise and Sperm Whale Click Detection during Extreme Wind Speed Conditions

    NASA Astrophysics Data System (ADS)

    Newcomb, Joal J.; Wright, Andrew J.; Kuczaj, Stan; Thames, Rachel; Hillstrom, Wesley R.; Goodman, Ralph

    2004-11-01

    The Littoral Acoustic Demonstration Center (LA DC) deployed three Environmental Acoustic Recording System (EARS) buoys in the northern Gulf of Mexico during the summers of 2001 (LADC 01) and 2002 (LADC 02). The hydrophone of each buoy was approximately 50m from the bottom in water depths of 645m to 1034m. During LADC 01 Tropical Storm Barry passed within 93nmi east of the EARS buoys. During LADC 02 Tropical Storm Isidore and Hurricane Lili passed within approximately 73nmi and 116nmi, respectively, west of the EARS buoys. The proximity of these storm systems to the EARS buoys, in conjunction with wind speed data from three nearby NDBC weather buoys, allows for the direct comparison of underwater ambient noise levels with high wind speeds. These results are compared to the G. M. Wenz spectra at frequencies from 1kHz to 5.5kHz. In addition, the impact of storm conditions on sperm whale clicks was assessed. In particular, although the time period during the closest approach of TS Barry tended to produce lower click rates, this time period did not have the greatest incidence of non-detection at all the EARS buoys. It follows that storm-related masking noise could not have been responsible for all the observed trends. The data suggest that sperm whales may have left the vicinity of the deepest EARS buoy (nearest TS Barry's storm track) during the storm and possibly moved into the shallower waters around the other EARS buoys. It also appears that sperm whales may not have returned to the deepest EARS area, or did not resume normal behavior immediately after the storm, as the click rate did not recover to pre-storm levels during the period after TS Barry had dissipated. Results of these analyses and the ambient noise analysis will be presented. (Research supported by ONR).

  3. Spirituality and Aging in Place: The Impact of Extreme Climatic Conditions on Domestic Gardening Practice.

    PubMed

    Adams, Joanne; Pascal, Jan; Dickson-Swift, Virginia

    2014-12-01

    There is limited research exploring how domestic water restrictions imposed as a result of drought conditions impact upon the lives of independently living older people. Within this age group (60 years plus), the domestic garden frequently forms an intrinsic component of ongoing health and well-being. Gardening practice offers components of both mental and physical activity and, for many older people, leads to emotional and spiritual connection on a number of levels. The capacity of older people to maintain a garden during a period of water restrictions is greatly reduced, and the resulting impact on health and well-being is considerable. A recent study, conducted in south-eastern Australia, aimed to determine the benefits to health and well-being of maintaining a domestic garden for older people and the impact of water restrictions on garden practice. This occurred at a time following a prolonged period of drought and, in central Victoria, a complete ban on outside watering. In-depth qualitative interviews were conducted with 10 gardeners aged between 60 and 83 who had tended their garden over an extended period. The lived experience of gardening was explored through hermeneutic phenomenological analysis. Clear benefits to health and well-being were established, and yet, the essence of this experience lay in the capacity of gardeners to remain connected to their garden despite change. The crisis imposed by ongoing drought and restricted use of water generated a strong impetus for adaptation, resilience and acceptance of change. The spiritual nature of gardening practice clearly emerged and appeared to intensify the experience of gardening and consolidate adaption to change on a number of levels.

  4. Assessing the impact of local meteorological variables on surface ozone in Hong Kong during 2000-2015 using quantile and multiple line regression models

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Fan, Shaojia; Guo, Hai; Gao, Bo; Sun, Jiaren; Chen, Laiguo

    2016-11-01

    The quantile regression (QR) method has been increasingly introduced to atmospheric environmental studies to explore the non-linear relationship between local meteorological conditions and ozone mixing ratios. In this study, we applied QR for the first time, together with multiple linear regression (MLR), to analyze the dominant meteorological parameters influencing the mean, 10th percentile, 90th percentile and 99th percentile of maximum daily 8-h average (MDA8) ozone concentrations in 2000-2015 in Hong Kong. The dominance analysis (DA) was used to assess the relative importance of meteorological variables in the regression models. Results showed that the MLR models worked better at suburban and rural sites than at urban sites, and worked better in winter than in summer. QR models performed better in summer for 99th and 90th percentiles and performed better in autumn and winter for 10th percentile. And QR models also performed better in suburban and rural areas for 10th percentile. The top 3 dominant variables associated with MDA8 ozone concentrations, changing with seasons and regions, were frequently associated with the six meteorological parameters: boundary layer height, humidity, wind direction, surface solar radiation, total cloud cover and sea level pressure. Temperature rarely became a significant variable in any season, which could partly explain the peak of monthly average ozone concentrations in October in Hong Kong. And we found the effect of solar radiation would be enhanced during extremely ozone pollution episodes (i.e., the 99th percentile). Finally, meteorological effects on MDA8 ozone had no significant changes before and after the 2010 Asian Games.

  5. Syntrophic associations from hypersaline soda lakes converting organic acids and alcohols to methane at extremely haloalkaline conditions.

    PubMed

    Sorokin, Dimitry Y; Abbas, Ben; Geleijnse, Mitchell; Kolganova, Tatjana V; Kleerebezem, Robbert; van Loosdrecht, Mark C M

    2016-09-01

    Until now anaerobic oxidation of VFA at high salt-pH has been demonstrated only at sulfate-reducing conditions. Here, we present results of a microbiological investigation of anaerobic conversion of organic acids and alcohols at methanogenic conditions by syntrophic associations enriched from hypersaline soda lakes in Central Asia. Sediment incubation experiments showed active, albeit very slow, methane formation from acetate, propionate, butyrate and C2 C4 alcohols at pH 10 and various levels of salinity. Enrichments of syntrophic associations using hydrogenotrophic members of the genus Methanocalculus from soda lakes as partners resulted in several highly enriched cultures converting acetate, propionate, butyrate, benzoate and EtOH to methane. Most syntrophs belonged to Firmicutes, while the propionate-oxidizer formed a novel lineage within the family Syntrophobacteraceae in the Deltaproteobacteria. The acetate-oxidizing syntroph was identified as 'Ca. Syntrophonatronum acetioxidans' previously found to oxidize acetate at sulfate-reducing conditions up to salt-saturating concentrations. Butyrate and a benzoate-degrading syntrophs represent novel genus-level lineages in Syntrophomonadales which are proposed as Candidatus taxons 'Syntrophobaca', 'Syntrophocurvum' and 'Syntropholuna'. Overall, despite very slow growth, the results indicated the presence of a functionally competent syntrophic community in hypersaline soda lakes, capable of efficient oxidation of fermentation products to methane at extremely haloalkaline conditions.

  6. Properties of a planar electric double layer under extreme conditions investigated by classical density functional theory and Monte Carlo simulations.

    PubMed

    Zhou, Shiqi; Lamperski, Stanisław; Zydorczak, Maria

    2014-08-14

    Monte Carlo (MC) simulation and classical density functional theory (DFT) results are reported for the structural and electrostatic properties of a planar electric double layer containing ions having highly asymmetric diameters or valencies under extreme concentration condition. In the applied DFT, for the excess free energy contribution due to the hard sphere repulsion, a recently elaborated extended form of the fundamental measure functional is used, and coupling of Coulombic and short range hard-sphere repulsion is described by a traditional second-order functional perturbation expansion approximation. Comparison between the MC and DFT results indicates that validity interval of the traditional DFT approximation expands to high ion valences running up to 3 and size asymmetry high up to diameter ratio of 4 whether the high valence ions or the large size ion are co- or counter-ions; and to a high bulk electrolyte concentration being close to the upper limit of the electrolyte mole concentration the MC simulation can deal with well. The DFT accuracy dependence on the ion parameters can be self-consistently explained using arguments of liquid state theory, and new EDL phenomena such as overscreening effect due to monovalent counter-ions, extreme layering effect of counter-ions, and appearance of a depletion layer with almost no counter- and co-ions are observed.

  7. Association of irisin with fat mass, resting energy expenditure, and daily activity in conditions of extreme body mass index.

    PubMed

    Pardo, María; Crujeiras, Ana B; Amil, María; Aguera, Zaida; Jiménez-Murcia, Susana; Baños, Rosa; Botella, Cristina; de la Torre, Rafael; Estivill, Xavier; Fagundo, Ana B; Fernández-Real, Jose M; Fernández-García, José C; Fruhbeck, Gema; Gómez-Ambrosi, Javier; Rodríguez, Roser; Tinahones, Francisco J; Fernández-Aranda, Fernando; Casanueva, Felipe F

    2014-01-01

    FNDC5/irisin has been recently postulated as beneficial in the treatment of obesity and diabetes because it is induced in muscle by exercise, increasing energy expenditure. However, recent reports have shown that WAT also secretes irisin and that circulating irisin is elevated in obese subjects. The aim of this study was to evaluate irisin levels in conditions of extreme BMI and its correlation with basal metabolism and daily activity. The study involved 145 female patients, including 96 with extreme BMIs (30 anorexic (AN) and 66 obese (OB)) and 49 healthy normal weight (NW). The plasma irisin levels were significantly elevated in the OB patients compared with the AN and NW patients. Irisin also correlated positively with body weight, BMI, and fat mass. The OB patients exhibited the highest REE and higher daily physical activity compared with the AN patients but lower activity compared with the NW patients. The irisin levels were inversely correlated with daily physical activity and directly correlated with REE. Fat mass contributed to most of the variability of the irisin plasma levels independently of the other studied parameters. Conclusion. Irisin levels are influenced by energy expenditure independently of daily physical activity but fat mass is the main contributing factor.

  8. Production of cryoprotectant extracellular polysaccharide substances (EPS) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H under extreme conditions.

    PubMed

    Marx, Joseph G; Carpenter, Shelly D; Deming, Jody W

    2009-01-01

    Extracellular polysaccharide substances (EPS) play critical roles in microbial ecology, including the colonization of extreme environments in the ocean, from sea ice to the deep sea. After first developing a sugar-free growth medium, we examined the relative effects of temperature, pressure, and salinity on EPS production (on a per cell basis) by the obligately marine and psychrophilic gamma-proteobacterium, Colwellia psychrerythraea strain 34H. Over growth-permissive temperatures of approximately 10 to -4 degrees C, EPS production did not change, but from -8 to -14 degrees C when samples froze, EPS production rose dramatically. Similarly, at growth-permissive hydrostatic pressures of 1-200 atm (1 atm = 101.325 kPa) (at -1 and 8 degrees C), EPS production was unchanged, but at higher pressures of 400 and 600 atm EPS production rose markedly. In salinity tests at 10-100 parts per million (and -1 and 5 degrees C), EPS production increased at the freshest salinity tested. Extreme environmental conditions thus appear to stimulate EPS production by this strain. Furthermore, strain 34H recovered best from deep-freezing to -80 degrees C (not found for Earthly environments) if first supplemented with a preparation of its own EPS, rather than other cryoprotectants like glycerol, suggesting EPS production as both a survival strategy and source of compounds with potentially novel properties for biotechnological and other applications.

  9. Regionalisation of a distributed method for flood quantiles estimation: Revaluation of local calibration hypothesis to enhance the spatial structure of the optimised parameter

    NASA Astrophysics Data System (ADS)

    Odry, Jean; Arnaud, Patrick

    2016-04-01

    here is to develop a SHYREG evaluation scheme focusing on both local and regional performances. Indeed, it is necessary to maintain the accuracy of at site flood quantiles estimation while identifying a configuration leading to a satisfactory spatial pattern of the calibrated parameter. This ability to be regionalised can be appraised by the association of common regionalisation techniques and split sample validation tests on a set of around 1,500 catchments representing the whole diversity of France physiography. Also, the presence of many nested catchments and a size-based split sample validation make possible to assess the relevance of the calibrated parameter spatial structure inside the largest catchments. The application of this multi-objective evaluation leads to the selection of a version of SHYREG more suitable for regionalisation. References: Arnaud, P., Cantet, P., Aubert, Y., 2015. Relevance of an at-site flood frequency analysis method for extreme events based on stochastic simulation of hourly rainfall. Hydrological Sciences Journal: on press. DOI:10.1080/02626667.2014.965174 Aubert, Y., Arnaud, P., Ribstein, P., Fine, J.A., 2014. The SHYREG flow method-application to 1605 basins in metropolitan France. Hydrological Sciences Journal, 59(5): 993-1005. DOI:10.1080/02626667.2014.902061

  10. Exploring Mbar shock conditions and isochorically heated aluminum at the Matter in Extreme Conditions end station of the Linac Coherent Light Source

    SciTech Connect

    Doppner, T.; LePape, S.; Ma, T.; Pak, A.; Turnbull, D.; Fletcher, L. B.; Lee, H. J.; Galtier, E.; Nagler, B.; Gauthier, M.; Heimann, P.; Hastings, J. B.; Zastrau, U.; Glenzer, S. H.; White, T.; Gregori, G.; Wei, M.; Barbrel, B.; Falcone, R. W.

    2014-08-11

    Recent experiments performed at the Matter in Extreme Conditions end station of the Linac Coherent Light Source (LCLS) have demonstrated the first spectrally resolved measurements of plasmons from isochorically heated aluminum. The experiments have been performed using a seeded 8-keV x-ray laser beam as a pump and probe to both volumetrically heat and scatterx-rays from aluminum. Collective x-ray Thomson scattering spectra show a well-resolved plasmon feature that is down-shifted in energy by 19 eV. In addition, Mbar shock pressures from laser-compressed aluminum foils using velocity interferometer system for any reflector have been measured. Furthermore, the combination of experiments fully demonstrates the possibility to perform warm dense matter studies at the LCLS with unprecedented accuracy and precision.

  11. Exploring Mbar shock conditions and isochorically heated aluminum at the Matter in Extreme Conditions end station of the Linac Coherent Light Source

    DOE PAGES

    Doppner, T.; LePape, S.; Ma, T.; ...

    2014-08-11

    Recent experiments performed at the Matter in Extreme Conditions end station of the Linac Coherent Light Source (LCLS) have demonstrated the first spectrally resolved measurements of plasmons from isochorically heated aluminum. The experiments have been performed using a seeded 8-keV x-ray laser beam as a pump and probe to both volumetrically heat and scatterx-rays from aluminum. Collective x-ray Thomson scattering spectra show a well-resolved plasmon feature that is down-shifted in energy by 19 eV. In addition, Mbar shock pressures from laser-compressed aluminum foils using velocity interferometer system for any reflector have been measured. Furthermore, the combination of experiments fully demonstratesmore » the possibility to perform warm dense matter studies at the LCLS with unprecedented accuracy and precision.« less

  12. Exploring Mbar shock conditions and isochorically heated aluminum at the Matter in Extreme Conditions end station of the Linac Coherent Light Source (invited)a)

    NASA Astrophysics Data System (ADS)

    Fletcher, L. B.; Lee, H. J.; Barbrel, B.; Gauthier, M.; Galtier, E.; Nagler, B.; Döppner, T.; LePape, S.; Ma, T.; Pak, A.; Turnbull, D.; White, T.; Gregori, G.; Wei, M.; Falcone, R. W.; Heimann, P.; Zastrau, U.; Hastings, J. B.; Glenzer, S. H.

    2014-11-01

    Recent experiments performed at the Matter in Extreme Conditions end station of the Linac Coherent Light Source (LCLS) have demonstrated the first spectrally resolved measurements of plasmons from isochorically heated aluminum. The experiments have been performed using a seeded 8-keV x-ray laser beam as a pump and probe to both volumetrically heat and scatter x-rays from aluminum. Collective x-ray Thomson scattering spectra show a well-resolved plasmon feature that is down-shifted in energy by 19 eV. In addition, Mbar shock pressures from laser-compressed aluminum foils using velocity interferometer system for any reflector have been measured. The combination of experiments fully demonstrates the possibility to perform warm dense matter studies at the LCLS with unprecedented accuracy and precision.

  13. Monitoring Surface Moisture of Crater-fill Sediment in Extreme hydroclimatic conditions (Ubehebe Volcanic Field, Death Valley, California).

    NASA Astrophysics Data System (ADS)

    Bonaccorsi, R.; Zent, A.; McKay, C. P.

    2014-12-01

    The long term monitoring of soil surface moisture is key for constraining surface hydrology processes in extreme weather and climatic settings and their impact on biological and geological components of desert environments. We tested and applied the use of miniature data loggers to acquire novel Temperature (T) and water content (weight percent, wt%) of fine-grained sediments deposited during rain events at Ubehebe Crater (UC), the larger and deeper crater within a volcanic field in Death Valley. The Miniaturized in situ systems are compliant with Death Valley National Park's regulations to conduct scientific research in wilderness and sacred sites. About 130,000 hours of recorded soil moisture and temperature were acquired in relation to the hydroclimatic conditions (2009-current). Total annual rainfall in the area range from ~50mm to <250 mm/y in water years (WY) 2004-to date. These values are representative of the climatic context of the Mojave Region as they encompass the wettest (2005, 2011) and driest years (2002, 2007, 2012, 2013, 2014) of the last ~120 years (Western Regional Climate Center, www.wrcc.dri.edu). To date, surface (0.5 cm to 2 cm-depth) moisture of intra-crater deposits can vary from dry-very dry (1-3wt % to - 10 wt%) to wet-saturated (10-60 wt%). Over saturated conditions occur in ephemeral ponds, which appear to form once a year as a result of winter and summer rainstorms, and may last for one-two weeks (2009-2014 study years). Summer storms can yield ca. 40% to 60% of the total annual precipitation (WY 2011 thru 2014). The intensity and temporal distribution of annual storms together with ground temperature extremes (-16 to +67 ºC) influence moisture distribution and retention within the crater's floor.

  14. Calibrating river bathymetry via image to depth quantile transformation

    NASA Astrophysics Data System (ADS)

    Legleiter, C. J.

    2015-12-01

    Remote sensing has emerged as a powerful means of measuring river depths, but standard algorithms such as Optimal Band Ratio Analysis (OBRA) require field measurements to calibrate image-derived estimates. Such reliance upon field-based calibration undermines the advantages of remote sensing. This study introduces an alternative approach based on the probability distribution of depths dd within a reach. Provided a quantity XX related to dd can be derived from a remotely sensed data set, image-to-depth quantile transformation (IDQT) infers depths throughout the image by linking the cumulative distribution function (CDF) of XX to that of dd. The algorithm involves determining, for each pixel in the image, the CDF value for that particular value of X/bar{X} and then inferring the depth at that location from the inverse CDF of the scaled depths d/dbard/bar{d}, where the overbar denotes a reach mean. For X/bar{X}, an empirical CDF can be derived directly from pixel values or a probability distribution fitted. Similarly, the CDF of d/dbard/bar{d} can be obtained from field data or from a theoretical model of the frequency distribution of dd within a reach; gamma distributions have been used for this purpose. In essence, the probability distributions calibrate XX to dd while the image provides the spatial distribution of depths. IDQT offers a number of advantages: 1) direct field measurements of dd during image acquisition are not absolutely necessary; 2) because the XX vs. dd relation need not be linear, negative depth estimates along channel margins and shallow bias in pools are avoided; and 3) because individual pixels are not linked to specific depth measurements, accurate geo-referencing of field and image data sets is not critical. Application of OBRA and IDQT to a gravel-bed river indicated that the new, probabilistic algorithm was as accurate as the standard, regression-based approach and lead to more hydraulically reasonable bathymetric maps.

  15. Log Pearson type 3 quantile estimators with regional skew information and low outlier adjustments

    NASA Astrophysics Data System (ADS)

    Griffis, V. W.; Stedinger, J. R.; Cohn, T. A.

    2004-07-01

    The recently developed expected moments algorithm (EMA) [, 1997] does as well as maximum likelihood estimations at estimating log-Pearson type 3 (LP3) flood quantiles using systematic and historical flood information. Needed extensions include use of a regional skewness estimator and its precision to be consistent with Bulletin 17B. Another issue addressed by Bulletin 17B is the treatment of low outliers. A Monte Carlo study compares the performance of Bulletin 17B using the entire sample with and without regional skew with estimators that use regional skew and censor low outliers, including an extended EMA estimator, the conditional probability adjustment (CPA) from Bulletin 17B, and an estimator that uses probability plot regression (PPR) to compute substitute values for low outliers. Estimators that neglect regional skew information do much worse than estimators that use an informative regional skewness estimator. For LP3 data the low outlier rejection procedure generally results in no loss of overall accuracy, and the differences between the MSEs of the estimators that used an informative regional skew are generally modest in the skewness range of real interest. Samples contaminated to model actual flood data demonstrate that estimators which give special treatment to low outliers significantly outperform estimators that make no such adjustment.

  16. Assessment of Weighted Quantile Sum Regression for Modeling Chemical Mixtures and Cancer Risk

    PubMed Central

    Czarnota, Jenna; Gennings, Chris; Wheeler, David C

    2015-01-01

    In evaluation of cancer risk related to environmental chemical exposures, the effect of many chemicals on disease is ultimately of interest. However, because of potentially strong correlations among chemicals that occur together, traditional regression methods suffer from collinearity effects, including regression coefficient sign reversal and variance inflation. In addition, penalized regression methods designed to remediate collinearity may have limitations in selecting the truly bad actors among many correlated components. The recently proposed method of weighted quantile sum (WQS) regression attempts to overcome these problems by estimating a body burden index, which identifies important chemicals in a mixture of correlated environmental chemicals. Our focus was on assessing through simulation studies the accuracy of WQS regression in detecting subsets of chemicals associated with health outcomes (binary and continuous) in site-specific analyses and in non-site-specific analyses. We also evaluated the performance of the penalized regression methods of lasso, adaptive lasso, and elastic net in correctly classifying chemicals as bad actors or unrelated to the outcome. We based the simulation study on data from the National Cancer Institute Surveillance Epidemiology and End Results Program (NCI-SEER) case–control study of non-Hodgkin lymphoma (NHL) to achieve realistic exposure situations. Our results showed that WQS regression had good sensitivity and specificity across a variety of conditions considered in this study. The shrinkage methods had a tendency to incorrectly identify a large number of components, especially in the case of strong association with the outcome. PMID:26005323

  17. Assessment of weighted quantile sum regression for modeling chemical mixtures and cancer risk.

    PubMed

    Czarnota, Jenna; Gennings, Chris; Wheeler, David C

    2015-01-01

    In evaluation of cancer risk related to environmental chemical exposures, the effect of many chemicals on disease is ultimately of interest. However, because of potentially strong correlations among chemicals that occur together, traditional regression methods suffer from collinearity effects, including regression coefficient sign reversal and variance inflation. In addition, penalized regression methods designed to remediate collinearity may have limitations in selecting the truly bad actors among many correlated components. The recently proposed method of weighted quantile sum (WQS) regression attempts to overcome these problems by estimating a body burden index, which identifies important chemicals in a mixture of correlated environmental chemicals. Our focus was on assessing through simulation studies the accuracy of WQS regression in detecting subsets of chemicals associated with health outcomes (binary and continuous) in site-specific analyses and in non-site-specific analyses. We also evaluated the performance of the penalized regression methods of lasso, adaptive lasso, and elastic net in correctly classifying chemicals as bad actors or unrelated to the outcome. We based the simulation study on data from the National Cancer Institute Surveillance Epidemiology and End Results Program (NCI-SEER) case-control study of non-Hodgkin lymphoma (NHL) to achieve realistic exposure situations. Our results showed that WQS regression had good sensitivity and specificity across a variety of conditions considered in this study. The shrinkage methods had a tendency to incorrectly identify a large number of components, especially in the case of strong association with the outcome.

  18. Log Pearson type 3 quantile estimators with regional skew information and low outlier adjustments

    USGS Publications Warehouse

    Griffis, V.W.; Stedinger, J.R.; Cohn, T.A.

    2004-01-01

    [1] The recently developed expected moments algorithm (EMA) [Cohn et al., 1997] does as well as maximum likelihood estimations at estimating log-Pearson type 3 (LP3) flood quantiles using systematic and historical flood information. Needed extensions include use of a regional skewness estimator and its precision to be consistent with Bulletin 17B. Another issue addressed by Bulletin 17B is the treatment of low outliers. A Monte Carlo study compares the performance of Bulletin 17B using the entire sample with and without regional skew with estimators that use regional skew and censor low outliers, including an extended EMA estimator, the conditional probability adjustment (CPA) from Bulletin 17B, and an estimator that uses probability plot regression (PPR) to compute substitute values for low outliers. Estimators that neglect regional skew information do much worse than estimators that use an informative regional skewness estimator. For LP3 data the low outlier rejection procedure generally results in no loss of overall accuracy, and the differences between the MSEs of the estimators that used an informative regional skew are generally modest in the skewness range of real interest. Samples contaminated to model actual flood data demonstrate that estimators which give special treatment to low outliers significantly outperform estimators that make no such adjustment.

  19. Hexafluorobenzene under extreme conditions

    DOE PAGES

    Pravica, Michael; Sneed, Daniel; Wang, Yonggang; ...

    2016-02-24

    Here, we report the results from three high pressure expts. on hexafluorobenzene (C6F6). In the first expt., Raman spectra were recorded up to 34.4 GPa. A phase transition from I → II was obsd. near 2 GPa. Near 8.8 GPa, a phase transition to an unreported phase (III) commenced. Above 20.6 GPa, yet another phase was obsd. (IV). Pressure cycling was employed to det. that, below 25.6 GPa, all pressure-induced alterations were reversible. However, at pressures above 20 GPa, dramatic spectral changes and broadening were obsd. at 25.6 and 34.4 GPa. The sample irreversibly changed into a soft solid withmore » waxlike consistency when pressure was reduced to ambient and was recoverable. In the second expt., IR spectra were collected up to 14.6 GPa. The phase transition (II → III) near 8.8 GPa was confirmed. An angular dispersive X-ray diffraction expt. was conducted to 25.6 GPa. Phase transitions above 1.4 GPa (I → II), above 5.5 GPa (II → III), above 10 GPa (III → IV), and above 15.5 GPa (IV → V) were obsd. Near 25.6 GPa long-range cryst. order was lost as the X-ray diffraction spectrum presented evidence of an amorphous solid.« less

  20. Matter Under Extreme Conditions

    DTIC Science & Technology

    2006-03-01

    tunneling dynamics M. Martinis Quantum Horizons and Spacetime Non-commutativity M. Eckert-Maksić Synthesis of organometallic compounds under high pressure...44 Brijuni Conference IX, Brijuni, Croatia, 30.07.-03.08.2004. QUANTUM HORIZONS AND SPACETIME NON-COMMUTATIVITY Mladen MARTINIS...in the curved spacetime with classical event horizon are troubled by the singularity at the horizon. This problem may be solved by treating the

  1. Imaging Under Extreme Conditions

    DTIC Science & Technology

    2015-07-28

    electron energy-loss spectroscopy, and photon-induced near - field microscopy , the PINEM effect. Publications of research at Caltech were reported in... Microscopy : Mathematical Formulation of the Relation Between the Experimental Observables and the Optically Driven Charge Density of Nanoparticles ...sub-particle imaging, electron energy-loss spectroscopy, and photon-induced near - field microscopy , the PINEM effect. Publications of research at

  2. QCD In Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Wilczek, Frank

    Introduction Symmetry and the Phenomena of QCD Apparent and Actual Symmetries Asymptotic Freedom Confinement Chiral Symmetry Breaking Chiral Anomalies and Instantons High Temperature QCD: Asymptotic Properties Significance of High Temperature QCD Numerical Indications for Quasi-Free Behavior Ideas About Quark-Gluon Plasma Screening Versus Confinement Models of Chiral Symmetry Breaking More Refined Numerical Experiments High-Temperature QCD: Phase Transitions Yoga of Phase Transitions and Order Parameters Application to Glue Theories Application to Chiral Transitions Close Up on Two Flavors A Genuine Critical Point! (?) High-Density QCD: Methods Hopes, Doubts, and Fruition Another Renormalization Group Pairing Theory Taming the Magnetic Singularity High-Density QCD: Color-Flavor Locking and Quark-Hadron Continuity Gauge Symmetry (Non)Breaking Symmetry Accounting Elementary Excitations A Modified Photon Quark-Hadron Continuity Remembrance of Things Past More Quarks Fewer Quarks and Reality

  3. Habitability in Extreme Conditions

    NASA Astrophysics Data System (ADS)

    de Lobkowicz, Ysaline; de Crombrugghe, Guerric; Le Maire, Victor; Jago, Alban; Denies, Jonathan; van Vynckt, Delphine; Reydams, Marc; Mertens, Alexandre

    A manned space mission could be perfectly prepared in terms of sciences and technologies, but without a good habitat, a place where the needs of the crew are respected, this isolation and confinement can turn into a nightmare. There is the limitation of engineering: it is more than important to take care about architecture, when human lives are part of the experiment. The goal of the research is the analysis of the hard life of isolation and confinement in Mars' hostile environment and how architecture is a way to improve it. The objective is to place the human in the middle of the analysis. What does a person really need? Therefore Maslow's idea, the pyramid of primary needs, gives us the hierarchy to follow: first survival, food and beverage, then sleep, and only then protection, social activities and work. [1] No more luxury. If all these aspects are respected, a human is able to survive, like it did since so many years. The idea is that each of these main activities has to be related to a different type of space, to provide variability in this close environment. For example, work and relaxing areas have to be separated; a human being needs time for himself, without concentration. A workspace and a relaxing area have a different typology, different colours and lighting, dimensions, furniture. This has also to be respected in a spacecraft. For this research, different sources are used, mainly in the psychological aspect, which is the most important. [2] Therefore questionnaires, interviews, diaries of past expeditions are full of treasures. We do not have to search too far: on earth; polar expeditions, submarines, military camps, etc., give a lot of information. Some very realistic simulations, as on the Mars Desert Research Station (MDRS), will also be used as material: a good analysis of the defaults and well-organized part of the station can conduct to important conclusions. [3] A found analysis and a well-designed habitat are considerable keys for the success of the mission. References: [1] A. Maslow (1943) Theory of Human Motivation [2] J. Stuster (1996) Bold Endeavors, Lessons from Polar and Space Exploration [3] Mars Society, Mars Desert Research Station in Utah

  4. Chemistry at Extreme Conditions

    SciTech Connect

    Zaug, J M; Fried, L E; Abramson, E H; Hansen, D W; Crowhurst, J C; Howard, W M

    2002-08-08

    We present equation of state results from impulsively stimulated light scattering (ISLS) experiments conducted in diamond anvil cells on pure supercritical fluids. We have made measurements on fluid H{sub 2}O (water), and CH{sub 3}OH (methanol). Sound speeds measured through ISLS have allowed us to refine existing potential models used in the exponential-6 (EXP-6) detonation product library [Fried, L. E., and Howard, W. M., J. Chem. Phys. 109 (17): 7338-7348 (1998).]. The refined models allow us to more accurately assess the chemical composition at the Chapman-Jouget (C-J) state of common energetic materials. We predict that water is present in appreciable quantities at the C-J state of energetic materials HMX, RDX, and nitro methane.

  5. Hexafluorobenzene under extreme conditions

    SciTech Connect

    Pravica, Michael; Sneed, Daniel; Wang, Yonggang; Smith, Quinlan; White, Melanie

    2016-02-24

    Here, we report the results from three high pressure expts. on hexafluorobenzene (C6F6). In the first expt., Raman spectra were recorded up to 34.4 GPa. A phase transition from I → II was obsd. near 2 GPa. Near 8.8 GPa, a phase transition to an unreported phase (III) commenced. Above 20.6 GPa, yet another phase was obsd. (IV). Pressure cycling was employed to det. that, below 25.6 GPa, all pressure-induced alterations were reversible. However, at pressures above 20 GPa, dramatic spectral changes and broadening were obsd. at 25.6 and 34.4 GPa. The sample irreversibly changed into a soft solid with waxlike consistency when pressure was reduced to ambient and was recoverable. In the second expt., IR spectra were collected up to 14.6 GPa. The phase transition (II → III) near 8.8 GPa was confirmed. An angular dispersive X-ray diffraction expt. was conducted to 25.6 GPa. Phase transitions above 1.4 GPa (I → II), above 5.5 GPa (II → III), above 10 GPa (III → IV), and above 15.5 GPa (IV → V) were obsd. Near 25.6 GPa long-range cryst. order was lost as the X-ray diffraction spectrum presented evidence of an amorphous solid.

  6. Extreme thermodynamic conditions: novel stoichiometries, violations of textbook chemistry, and intriguing possibilities for the synthesis of new materials

    NASA Astrophysics Data System (ADS)

    Stavrou, Elissaios

    As evidenced by numerous experimental and theoretical studies, application of high pressure can dramatically modify the atomic arrangement and electronic structures of both elements and compounds. However, the great majority of research has been focused on the effect of pressure on compounds with constant stoichiometries (typically those stable under ambient conditions). Recent theoretical predictions, using advanced search algorithms, suggest that composition is another important variable in the search for stable compounds, i.e. that the more stable stoichiometry at elevated pressures is not a priory the same as that at ambient pressure. Indeed, thermodynamically stable compounds with novel compositions were theoretically predicted and experimentally verified even in relatively simple chemical systems including: Na-Cl, C-N, Li-H, Na-H, Cs-N, H-N, Na-He, Xe-Fe. These materials are stable due to the formation of novel chemical bonds that are absent, or even forbidden, at ambient conditions. Tuning the composition of the system thus represents another important, but poorly explored approach to the synthesis of novel materials. By varying the stoichiometry one can design novel materials with enhanced properties (e.g. high energy density, hardness, superconductivity etc.), that are metastable at ambient conditions and synthesized at thermodynamic conditions less extreme than that those required for known stoichiometries. Moreover, current outstanding questions, ``anomalies'' and ``paradoxes'' in geo- and planetary science (e.g. the Xenon paradox) could be addressed based on the stability of surprising, stoichiometries that challenge our traditional ``textbook'' picture. In this talk, I will briefly present recent results and highlight the need of close synergy between experimental and theoretical efforts to understand the challenging and complex field of variable stoichiometry under pressure. Finally, possible new routes for the synthesis of novel materials will be

  7. The Conditions Underpinning Extreme Star Formation in ULIRGs and LIRGs as Revealed by Herschel Far-Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Vasquez, Gabriel A.; Ashby, Matthew; Smith, Howard Alan; McTier, Moiya; Melendez, Marcio

    2016-01-01

    We present a systematic survey of molecular and atomic line fluxes in all star-forming galaxies observed by the Herschel PACs instrument with detectable OH lines that also contain Herschel SPIRE FTS spectra, to determine how physical conditions vary as a function of star formation rate. Specifically, we measured selected CO, H2O, [CI], and [NII] integrated line fluxes in a sample of 145 star-forming galaxies covering a range of far-infrared luminosities ranging from 109 to above 1012 LSun . Thus, our sample includes typical, quiescent galaxies as well as Luminous Infrared Galaxies (LIRGs) and Ultra Luminous Infrared Galaxies (ULIRGs), known to be creating stars extremely rapidly. We find evidence suggesting that ULIRGs with far-infrared luminosities of LFIR> 1012 LSun require an additional heating mechanism other than UV heating from star formation, while LIRGs and less luminous star-forming galaxies may be heated primarily by their star formation. We also find that the [NII] 3P1 - 3P0 fine structure line flux and those of the CO J=5-4, CO J=7-6, and CO J=8-7 transitions are generally weaker for ULIRGs compared to LIRGs and less luminous star-forming galaxies, while we find the CO J=11-10, CO J=12-11, and CO J=13-12 transitions are generally stronger. In all these respects, ULIRGs are shown to differ significantly from other galaxies undergoing less extreme star formation. This work was supported in part by the NSF REU and DoD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution.

  8. The [CII]/[NII] far-infrared line ratio at z>5: extreme conditions for “normal” galaxies

    NASA Astrophysics Data System (ADS)

    Pavesi, Riccardo; Riechers, Dominik; Capak, Peter L.; Carilli, Chris Luke; Sharon, Chelsea E.; Stacey, Gordon J.; Karim, Alexander; Scoville, Nicholas; Smolcic, Vernesa

    2017-01-01

    Thanks to the Atacama Large (sub-)Millimeter Array (ALMA), observations of atomic far-infrared fine structure lines are a very productive way of measuring physical properties of the interstellar medium (ISM) in galaxies at high redshift, because they provide an unobscured view into the physical conditions of star formation. While the bright [CII] line has become a routine probe of the dynamical properties of the gas, its intensity needs to be compared to other lines in order to establish the physical origin of the emission. [NII] selectively traces the emission coming from the ionized fraction of the [CII]-emitting gas, offering insight into the phase structure of the ISM. Here we present ALMA measurements of [NII] 205 μm fine structure line emission from a representative sample of galaxies at z=5-6 spanning two orders of magnitude in star formation rate (SFR). Our results show at least two different regimes of ionized gas properties for galaxies in the first billion years of cosmic time, separated by their L[CII]/L[NII] ratio. First, we find extremely low [NII] emission compared to [CII] from a “typical” Lyman Break Galaxy (LBG-1), likely due to low dust content and reminiscent of local dwarfs. Second, the dusty Lyman Break Galaxy HZ10 and the extreme starburst AzTEC-3 show ionized gas fractions typical of local star-forming galaxies and show hints of spatial variations in their [CII]/[NII] line ratio. These observations of far-infrared lines in “normal” galaxies at z>5 yield some of the first constraints on ISM models for young galaxies in the first billion years of cosmic time and shed light on the observed evolution of the dust and gas properties.

  9. Quantile rank maps: a new tool for understanding individual brain development

    PubMed Central

    Chen, Huaihou; Kelly, Clare; Castellanos, Xavier; He, Ye; Zuo, Xi-Nian; Reiss, Philip T.

    2015-01-01

    We propose a novel method for neurodevelopmental brain mapping that displays how an individual’s values for a quantity of interest compare with age-specific norms. By estimating smoothly age-varying distributions at a set of brain regions of interest, we derive age-dependent region-wise quantile ranks for a given individual, which can be presented in the form of a brain map. Such quantile rank maps could potentially be used for clinical screening. Bootstrap-based confidence intervals are proposed for the quantile rank estimates. We also propose a recalibrated Kolmogorov-Smirnov test for detecting group differences in the age-varying distribution. This test is shown to be more robust to model misspecification than a linear regression-based test. The proposed methods are applied to brain imaging data from the Nathan Kline Institute Rockland Sample and from the Autism Brain Imaging Data Exchange (ABIDE) sample. PMID:25585020

  10. L-statistics for Repeated Measurements Data With Application to Trimmed Means, Quantiles and Tolerance Intervals

    PubMed Central

    Assaad, Houssein I.; Choudhary, Pankaj K.

    2016-01-01

    The L-statistics form an important class of estimators in nonparametric statistics. Its members include trimmed means and sample quantiles and functions thereof. This article is devoted to theory and applications of L-statistics for repeated measurements data, wherein the measurements on the same subject are dependent and the measurements from different subjects are independent. This article has three main goals: (a) Show that the L-statistics are asymptotically normal for repeated measurements data. (b) Present three statistical applications of this result, namely, location estimation using trimmed means, quantile estimation and construction of tolerance intervals. (c) Obtain a Bahadur representation for sample quantiles. These results are generalizations of similar results for independently and identically distributed data. The practical usefulness of these results is illustrated by analyzing a real data set involving measurement of systolic blood pressure. The properties of the proposed point and interval estimators are examined via simulation.

  11. Managing more than the mean: Using quantile regression to identify factors related to large elk groups

    USGS Publications Warehouse

    Brennan, Angela K.; Cross, Paul C.; Creely, Scott

    2015-01-01

    Synthesis and applications. Our analysis of elk group size distributions using quantile regression suggests that private land, irrigation, open habitat, elk density and wolf abundance can affect large elk group sizes. Thus, to manage larger groups by removal or dispersal of individuals, we recommend incentivizing hunting on private land (particularly if irrigated) during the regular and late hunting seasons, promoting tolerance of wolves on private land (if elk aggregate in these areas to avoid wolves) and creating more winter range and varied habitats. Relationships to the variables of interest also differed by quantile, highlighting the importance of using quantile regression to examine response variables more completely to uncover relationships important to conservation and management.

  12. Spatial quantile regression using INLA with applications to childhood overweight in Malawi.

    PubMed

    Mtambo, Owen P L; Masangwi, Salule J; Kazembe, Lawrence N M

    2015-04-01

    Analyses of childhood overweight have mainly used mean regression. However, using quantile regression is more appropriate as it provides flexibility to analyse the determinants of overweight corresponding to quantiles of interest. The main objective of this study was to fit a Bayesian additive quantile regression model with structured spatial effects for childhood overweight in Malawi using the 2010 Malawi DHS data. Inference was fully Bayesian using R-INLA package. The significant determinants of childhood overweight ranged from socio-demographic factors such as type of residence to child and maternal factors such as child age and maternal BMI. We observed significant positive structured spatial effects on childhood overweight in some districts of Malawi. We recommended that the childhood malnutrition policy makers should consider timely interventions based on risk factors as identified in this paper including spatial targets of interventions.

  13. Characteristics and controls of extremely large wildfires in the western Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Fernandes, Paulo M.; Barros, Ana M. G.; Pinto, Anita; Santos, João. A.

    2016-08-01

    Large fires account for a disproportionally high percentage of area burned with potentially severe environmental and socioeconomic impacts. This study characterizes extremely large fires (ELFs; 2500-24,843 ha) in Portugal (1998-2013) and the concomitant fuel and weather conditions, analyzing the response of ELF size to their variation. ELF burned less shrubland-grassland (33% of the total ELF area) than forest (59% of total), the latter primarily composed by pine and pine-eucalypt. High fuel hazard was the norm, as indicated by median values of 0.98 for fuel load as a fraction of potential (maximum) load and time since fire >14 years over 91% of the burned area. ELF occurred under anticyclonic circulation patterns, especially ridging, and 78% of them coincided with extreme fire danger days (corresponding to infrequent conditions) in conjunction with unstable atmosphere. Containment time, fire growth rate, and energy release metrics varied by 1 more order of magnitude than ELF size, hence indicating that size alone is insufficient to describe extreme fires. Distinct combinations between ambient weather conditions, atmospheric instability, and drought defined three categories of ELF as defined by size. Quantile regression indicated that increasingly larger fires showed gradually stronger responses to fire weather severity, highlighting the difficulty in restraining fire spread in flammable landscapes in the absence of extensive fuel treatments. Data limitations inherent to the methods used are discussed, and improvements to further advance the understanding of extreme fires are suggested.

  14. Extreme river flow dependence in Northern Scotland

    NASA Astrophysics Data System (ADS)

    Villoria, M. Franco; Scott, M.; Hoey, T.; Fischbacher-Smith, D.

    2012-04-01

    predominantly impermeable bedrock, with the Ewe's one being very wet. The Lossie(216km2) and Dulnain (272.2km2) both contain significant areas of glacial deposits. River flow in the Dulnain is usually affected by snowmelt. In all cases, the conditional probability of each of the three rivers (Dulnain, Lossie, Ewe) decreases as the event in the conditioning river (Ness) becomes more extreme. The Ewe, despite being the furthest of the three sites from the Ness shows the strongest dependence, with relatively high (>0.4) conditional probabilities even for very extreme events (>0.995). Although the Lossie is closer geographically to the Ness than the Ewe, it shows relatively low conditional probabilities and can be considered independent of the Ness for very extreme events (> 0.990). The conditional probabilities seem to reflect the different catchment characteristics and dominant precipitation generating events, with the Ewe being more similar to the Ness than the other two rivers. This interpretation suggests that the conditional method may yield improved estimates of extreme events, but the approach is time consuming. An alternative model that is easier to implement, using a spatial quantile regression, is currently being investigated, which would also allow the introduction of further covariates, essential as the effects of climate change are incorporated into estimation procedures.

  15. Quantile regression in the presence of monotone missingness with sensitivity analysis.

    PubMed

    Liu, Minzhao; Daniels, Michael J; Perri, Michael G

    2016-01-01

    In this paper, we develop methods for longitudinal quantile regression when there is monotone missingness. In particular, we propose pattern mixture models with a constraint that provides a straightforward interpretation of the marginal quantile regression parameters. Our approach allows sensitivity analysis which is an essential component in inference for incomplete data. To facilitate computation of the likelihood, we propose a novel way to obtain analytic forms for the required integrals. We conduct simulations to examine the robustness of our approach to modeling assumptions and compare its performance to competing approaches. The model is applied to data from a recent clinical trial on weight management.

  16. Desiccation and Mortality Dynamics in Seedlings of Different European Beech (Fagus sylvatica L.) Populations under Extreme Drought Conditions

    PubMed Central

    Bolte, Andreas; Czajkowski, Tomasz; Cocozza, Claudia; Tognetti, Roberto; de Miguel, Marina; Pšidová, Eva; Ditmarová, Ĺubica; Dinca, Lucian; Delzon, Sylvain; Cochard, Hervè; Ræbild, Anders; de Luis, Martin; Cvjetkovic, Branislav; Heiri, Caroline; Müller, Jürgen

    2016-01-01

    European beech (Fagus sylvatica L., hereafter beech), one of the major native tree species in Europe, is known to be drought sensitive. Thus, the identification of critical thresholds of drought impact intensity and duration are of high interest for assessing the adaptive potential of European beech to climate change in its native range. In a common garden experiment with one-year-old seedlings originating from central and marginal origins in six European countries (Denmark, Germany, France, Romania, Bosnia-Herzegovina, and Spain), we applied extreme drought stress and observed desiccation and mortality processes among the different populations and related them to plant water status (predawn water potential, ΨPD) and soil hydraulic traits. For the lethal drought assessment, we used a critical threshold of soil water availability that is reached when 50% mortality in seedling populations occurs (LD50SWA). We found significant population differences in LD50SWA (10.5–17.8%), and mortality dynamics that suggest a genetic difference in drought resistance between populations. The LD50SWA values correlate significantly with the mean growing season precipitation at population origins, but not with the geographic margins of beech range. Thus, beech range marginality may be more due to climatic conditions than to geographic range. The outcome of this study suggests the genetic variation has a major influence on the varying adaptive potential of the investigated populations. PMID:27379105

  17. Habitat use and movements of shovelnose sturgeon in Pool 13 of the upper Mississippi River during extreme low flow conditions

    USGS Publications Warehouse

    Curtis, Gary L.; Ramsey, John S.; Scarnecchia, Dennis L.

    1997-01-01

    We monitored habitat use and movement of 27 adult shovelnose sturgeon in Pool 13 of the upper Mississippi River, Iowa-Illinois, by radio-telemetry in April through August 1988. Our objective was to determine the response of this species to unusually low water conditions in the upper Mississippi River in 1988. Most (94%) telemetry contacts were made in 3 habitat types: main channel (50%), main channel border where wing dams were present (29%), and tailwaters of Lock and Dam 12 (15%). Habitat use in spring was affected by the extreme low flows. We often found tagged shovelnose sturgeon in the main channel and tailwaters during the spring period (11 March–20 May) where water velocities were highest. This was in contrast to other studies where shovelnose sturgeon did not occupy those areas during years with normal spring flows. Shovelnose sturgeon were typically found in areas with a sand bottom, mean water depth of 5.8 m, and mean bottom current velocity of 0.23 m sec-1. They occupied areas of swifter current but were not always found in the fastest current in their immediate vicinity. Tagged shovelnose sturgeon tended to remain in the upper, more riverine portion of the pool, and we observed no emigration from the study pool. Linear total range of movement from the tagging site ranged from 1.9 to 54.6 km during the study period.

  18. Communication: A novel method for generating molecular mixtures at extreme conditions: the case of hydrogen and oxygen.

    PubMed

    Pravica, Michael; Sneed, Daniel; White, Melanie; Wang, Yonggang

    2014-09-07

    We have successfully created a segregated mixture of hydrogen and oxygen at high pressure in a diamond anvil cell using hard x-ray photochemistry. A keyhole (two holes connected by an opening) sample chamber was created in a metallic gasket to support two segregated powders of ammonia borane and potassium perchlorate, respectively, in each hole at a pressure of ~5.0 GPa. Both holes were separately irradiated with synchrotron hard x-rays to release molecular oxygen and molecular hydrogen, respectively. Upon irradiation of the first KClO4-containing hole, solid reddish-orange O2 appeared in the region of irradiation and molecular oxygen was found to diffuse throughout the entire sample region. The second ammonia borane-containing hole was then irradiated and H2 was observed to form via Raman spectroscopy. Water also was observed in the ammonia borane-containing hole and possibly (in the form of ice VII) in the second hole. This unique experiment demonstrates the ability to easily create solid mixtures of simple molecular systems via x-ray irradiation and then react them via further irradiation which will aid the study of chemistry under extreme conditions.

  19. First-principles calculations for transition phase, mechanical and thermodynamic properties of ZnS under extreme condition

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Liu, Daijun; Ji, Junyi; Chen, Jianjun; Yu, Yang; Wu, Ruoxi

    2017-02-01

    The structural and mechanical properties of ZnS in both B3 and B1 phases have been investigated by the generalized gradient approximation (GGA) within the plane-wave pseudopotential density functional theory (DFT). The obtained lattice parameters and bulk modulus of ZnS for both B3 and B1 structures are well in line with the available theoretical and experimental results. Using the enthalpy-pressure data, we have predicted that the phase transition pressure of ZnS from B3 to B1 is 17.26 GPa, which is in good agreement with previous experimental values. The hydrostatic pressure-dependent elastic properties of the two structures, such as bulk modulus, shear modulus and Young’s modulus, are discussed. Then, the mechanical characteristics of ZnS, including ductile/brittle behavior and elastic anisotropy of the two cubic single-crystal structures, are investigated in details. Furthermore, the thermodynamic properties of ZnS under extreme condition are explored by quasi-harmonic Debye modeling. The calculated results show that the ductility and elastic anisotropy increase with pressure clearly except the ductility of B1. Besides, the temperature and pressure dependencies of the heat capacity and the Debye temperature are obtained and analyzed in the wide ranges.

  20. Flexible Dielectric Nanocomposites with Ultrawide Zero-Temperature Coefficient Windows for Electrical Energy Storage and Conversion under Extreme Conditions.

    PubMed

    Shehzad, Khurram; Xu, Yang; Gao, Chao; Li, Hanying; Dang, Zhi-Min; Hasan, Tawfique; Luo, Jack; Duan, Xiangfeng

    2017-03-01

    Polymer dielectrics offer key advantages over their ceramic counterparts such as flexibility, scalability, low cost, and high breakdown voltages. However, a major drawback that limits more widespread application of polymer dielectrics is their temperature-dependent dielectric properties. Achieving dielectric constants with low/zero-temperature coefficient (L/0TC) over a broad temperature range is essential for applications in diverse technologies. Here, we report a hybrid filler strategy to produce polymer composites with an ultrawide L/0TC window of dielectric constant, as well as a significantly enhanced dielectric value, maximum energy storage density, thermal conductivity, and stability. By creating a series of percolative polymer composites, we demonstrated hybrid carbon filler based composites can exhibit a zero-temperature coefficient window of 200 °C (from -50 to 150 °C), the widest 0TC window for all polymer composite dielectrics reported to date. We further show the electric and dielectric temperature coefficient of the composites is highly stable against stretching and bending, even under AC electric field with frequency up to 1 MHz. We envision that our method will push the functional limits of polymer dielectrics for flexible electronics in extreme conditions such as in hybrid vehicles, aerospace, power electronics, and oil/gas exploration.

  1. Communication: A novel method for generating molecular mixtures at extreme conditions: The case of hydrogen and oxygen

    SciTech Connect

    Pravica, Michael Sneed, Daniel; White, Melanie; Wang, Yonggang

    2014-09-07

    We have successfully created a segregated mixture of hydrogen and oxygen at high pressure in a diamond anvil cell using hard x-ray photochemistry. A keyhole (two holes connected by an opening) sample chamber was created in a metallic gasket to support two segregated powders of ammonia borane and potassium perchlorate, respectively, in each hole at a pressure of ∼5.0 GPa. Both holes were separately irradiated with synchrotron hard x-rays to release molecular oxygen and molecular hydrogen, respectively. Upon irradiation of the first KClO{sub 4}-containing hole, solid reddish-orange O{sub 2} appeared in the region of irradiation and molecular oxygen was found to diffuse throughout the entire sample region. The second ammonia borane-containing hole was then irradiated and H{sub 2} was observed to form via Raman spectroscopy. Water also was observed in the ammonia borane-containing hole and possibly (in the form of ice VII) in the second hole. This unique experiment demonstrates the ability to easily create solid mixtures of simple molecular systems via x-ray irradiation and then react them via further irradiation which will aid the study of chemistry under extreme conditions.

  2. Exploratory results from a new rotary shear designed to reproduce the extreme deformation conditions of crustal earthquakes

    NASA Astrophysics Data System (ADS)

    Di Toro, G.; Nielsen, S. B.; Spagnuolo, E.; Smith, S.; Violay, M. E.; Niemeijer, A. R.; Di Felice, F.; Di Stefano, G.; Romeo, G.; Scarlato, P.

    2011-12-01

    A challenging goal in experimental rock deformation is to reproduce the extreme deformation conditions typical of coseismic slip in crustal earthquakes: large slip (up to 50 m), slip rates (0.1-10 m/s), accelerations (> 10 m/s2) and normal stress (> 50 MPa). Moreover, fault zones usually contain non-cohesive rocks (gouges) and fluids. The integration of all these deformation conditions is such a technical challenge that there is currently no apparatus in the world that can reproduce seismic slip. Yet, the determination of rock friction at seismic slip rates remains one of the main unknowns in earthquake physics, as it cannot be determined (or very approximately) by seismic wave inversion analysis. In the last thirty years, rotary shear apparatus were designed that combine large normal stresses and slip but low slip rates (high-pressure rotary shears first designed by Tullis) or low normal stresses but large slip rates and slip (rotary shears first designed by Shimamoto). Here we present the results of experiments using a newly-constructed Slow to HIgh Velocity Apparatus (SHIVA), installed at INGV in Rome, which extends the combination of normal stress, slip and slip rate achieved by previous apparatus and reproduces the conditions likely to occur during an earthquake in the shallow crust. SHIVA uses two brushless engines (max power 300 kW, max torque 930 Nm) and an air actuator (thrust 5 tons) in a rotary shear configuration (nominally infinite displacement) to slide hollow rock cylinders (30/50 mm int./ext. diameter) at slip rates ranging from 10 micron/s up to 6.5 m/s, accelerations up to 80 m/s2 and normal stresses up to 50 MPa. SHIVA can also perform experiments in which the torque on the sample (rather than the slip rate) is progressively increased until spontaneous failure occurs: this experimental capability should better reproduce natural conditions. The apparatus is equipped with a sample chamber to carry out experiments in the presence of fluids (up to 15

  3. The potential of the lichen symbiosis to cope with the extreme conditions of outer space II: germination capacity of lichen ascospores in response to simulated space conditions.

    PubMed

    de Vera, J-P; Horneck, G; Rettberg, P; Ott, S

    2004-01-01

    Complementary to the already well-studied microorganisms, lichens, symbiotic organisms of the mycobiont (fungi) and the photobiont (algae), were used as "model systems" in which to examine the ecological potential to resist to extreme environments of outer space. Ascospores (sexual propagules of the mycobiont) of the lichens Fulgensia bracteata, Xanthoria elegans and Xanthoria parietina were exposed to selected space-simulating conditions (up to 16 h of space vacuum at 10(-3) Pa and UV radiation at 160 nm < or = lambda < or = 400 nm), while embedded in the lichen fruiting bodies. After exposure, the ascospores were discharged and their viability was tested as germination capacity on different culture media including those containing Mars regolith simulant. It was found that (i) the germination rate on media containing Mars regolith simulant was as high as on other mineral-containing media, (ii) if enclosed in the ascocarps, the ascospores survived the vacuum exposure, the UV-irradiation as well as the combined treatment of vacuum and UV to a high degree. In general, 50 % or more viable spores were recovered, with ascospores of X. elegans showing the highest survival. It is suggested that ascospores inside the ascocarps are well protected by the anatomical structure, the gelatinous layer and the pigments (parietin and carotene) against the space parameters tested.

  4. Rich Non-centrosymmetry in a Na-U-Te Oxo-System Achieved under Extreme Conditions.

    PubMed

    Xiao, Bin; Kegler, Philip; Bosbach, Dirk; Alekseev, Evgeny V

    2016-05-02

    Two new sodium uranyl tellurites and two new sodium uranyl tellurates have been synthesized from high-temperature/high-pressure conditions and structurally characterized. We demonstrated that crystalline phases, forming in a Na-U-Te system under extreme conditions, appear to favorably have non-centrosymmetric structures. Three out of four novel uranyl tellurium compounds, Na[(UO2)Te(IV)2O5(OH)], Na2[(UO2)(Te(VI)2O8)], and Na2[(UO2)Te(VI)O5], crystallize in non-centrosymmetric space groups. The crystal structure of Na[(UO2)Te(IV)2O5(OH)] is based on two-dimensional [UO2Te2O5(OH)](-) corrugated sheets, which are charge balanced by guest Na(+) cations. The structure of Na2[(UO2)Te(VI)2O8] is constructed from [(UO2)2Te2O8](2+) anionic layers composed of UO7 pentagonal bipyramids and TeO6 octahedra. Na2[(UO2)(Te(VI)O5)] is a new type of three-dimensional anionic open framework built from the interconnection of UO7 pentagonal bipyramids and TeO6 octahedra with different types of interlacing channels within the U-Te anionic framework. Na[(UO2)Te(IV)6O13(OH)], as the only centrosymmetric compound isolated in the Na-U-Te family, is crystallized in space group Pa3̅, and its structure is highly related to that of cliffordite (UO2(Te3O7)), which is composed from UO8 hexagonal bipyramids and TeO5 square pyramids. The vibrational modes associated with U-O, Te(IV)-O, and Te(VI)-O bonds are discussed, and the Raman spectra of the four compounds are characterized for signature bands.

  5. Peptide synthesis in aqueous environments: the role of extreme conditions and pyrite mineral surfaces on formation and hydrolysis of peptides.

    PubMed

    Schreiner, Eduard; Nair, Nisanth N; Wittekindt, Carsten; Marx, Dominik

    2011-06-01

    A comprehensive study of free energy landscapes and mechanisms of COS-mediated polymerization of glycine via N-carboxy anhydrides (NCAs, "Leuchs anhydrides") and peptide hydrolysis at the water-pyrite interface at extreme thermodynamic conditions is presented. Particular emphasis is set on the catalytic effects of the mineral surface including the putative role of the ubiquitous sulfur vacancy defects. It is found that the mere presence of a surface is able to change the free energetics of the elementary reaction steps. This effect can be understood in terms of a reduction of entropic contributions to the reactant state by immobilizing the reactants and/or screening them from bulk water in a purely geometric ("steric") sense. Additionally, the pyrite directly participates chemically in some of the reaction steps, thus changing the reaction mechanism qualitatively compared to the situation in bulk water. First, the adsorption of reactants on the surface can preform a product-like structure due to immobilizing and scaffolding them appropriately. Second, pyrite can act as a proton acceptor, thus replacing water in this role. Third, sulfur vacancies are found to increase the reactivity of the surface. The finding that the presence of pyrite speeds up the rate-determining step in the formation of peptides with respect to the situation in bulk solvent while stabilizing the produced peptide against hydrolysis is of particular interest to the hypothesis of prebiotic peptide formation at hydrothermal aqueous conditions. Apart from these implications, the generality of the studied organic reactions are of immediate relevance to many fields such as (bio)geochemistry, biomineralization, and environmental chemistry.

  6. Analysis of the influence of quantile regression model on mainland tourists' service satisfaction performance.

    PubMed

    Wang, Wen-Cheng; Cho, Wen-Chien; Chen, Yin-Jen

    2014-01-01

    It is estimated that mainland Chinese tourists travelling to Taiwan can bring annual revenues of 400 billion NTD to the Taiwan economy. Thus, how the Taiwanese Government formulates relevant measures to satisfy both sides is the focus of most concern. Taiwan must improve the facilities and service quality of its tourism industry so as to attract more mainland tourists. This paper conducted a questionnaire survey of mainland tourists and used grey relational analysis in grey mathematics to analyze the satisfaction performance of all satisfaction question items. The first eight satisfaction items were used as independent variables, and the overall satisfaction performance was used as a dependent variable for quantile regression model analysis to discuss the relationship between the dependent variable under different quantiles and independent variables. Finally, this study further discussed the predictive accuracy of the least mean regression model and each quantile regression model, as a reference for research personnel. The analysis results showed that other variables could also affect the overall satisfaction performance of mainland tourists, in addition to occupation and age. The overall predictive accuracy of quantile regression model Q0.25 was higher than that of the other three models.

  7. Analysis of the Influence of Quantile Regression Model on Mainland Tourists' Service Satisfaction Performance

    PubMed Central

    Wang, Wen-Cheng; Cho, Wen-Chien; Chen, Yin-Jen

    2014-01-01

    It is estimated that mainland Chinese tourists travelling to Taiwan can bring annual revenues of 400 billion NTD to the Taiwan economy. Thus, how the Taiwanese Government formulates relevant measures to satisfy both sides is the focus of most concern. Taiwan must improve the facilities and service quality of its tourism industry so as to attract more mainland tourists. This paper conducted a questionnaire survey of mainland tourists and used grey relational analysis in grey mathematics to analyze the satisfaction performance of all satisfaction question items. The first eight satisfaction items were used as independent variables, and the overall satisfaction performance was used as a dependent variable for quantile regression model analysis to discuss the relationship between the dependent variable under different quantiles and independent variables. Finally, this study further discussed the predictive accuracy of the least mean regression model and each quantile regression model, as a reference for research personnel. The analysis results showed that other variables could also affect the overall satisfaction performance of mainland tourists, in addition to occupation and age. The overall predictive accuracy of quantile regression model Q0.25 was higher than that of the other three models. PMID:24574916

  8. Gender Gaps in Mathematics, Science and Reading Achievements in Muslim Countries: A Quantile Regression Approach

    ERIC Educational Resources Information Center

    Shafiq, M. Najeeb

    2013-01-01

    Using quantile regression analyses, this study examines gender gaps in mathematics, science, and reading in Azerbaijan, Indonesia, Jordan, the Kyrgyz Republic, Qatar, Tunisia, and Turkey among 15-year-old students. The analyses show that girls in Azerbaijan achieve as well as boys in mathematics and science and overachieve in reading. In Jordan,…

  9. The Applicability of Confidence Intervals of Quantiles for the Generalized Logistic Distribution

    NASA Astrophysics Data System (ADS)

    Shin, H.; Heo, J.; Kim, T.; Jung, Y.

    2007-12-01

    The generalized logistic (GL) distribution has been widely used for frequency analysis. However, there is a little study related to the confidence intervals that indicate the prediction accuracy of distribution for the GL distribution. In this paper, the estimation of the confidence intervals of quantiles for the GL distribution is presented based on the method of moments (MOM), maximum likelihood (ML), and probability weighted moments (PWM) and the asymptotic variances of each quantile estimator are derived as functions of the sample sizes, return periods, and parameters. Monte Carlo simulation experiments are also performed to verify the applicability of the derived confidence intervals of quantile. As the results, the relative bias (RBIAS) and relative root mean square error (RRMSE) of the confidence intervals generally increase as return period increases and reverse as sample size increases. And PWM for estimating the confidence intervals performs better than the other methods in terms of RRMSE when the data is almost symmetric while ML shows the smallest RBIAS and RRMSE when the data is more skewed and sample size is moderately large. The GL model was applied to fit the distribution of annual maximum rainfall data. The results show that there are little differences in the estimated quantiles between ML and PWM while distinct differences in MOM.

  10. Calibrated Ensemble Forecasts using Quantile Regression Forests and Ensemble Model Output Statistics.

    NASA Astrophysics Data System (ADS)

    Taillardat, Maxime; Mestre, Olivier; Zamo, Michaël; Naveau, Philippe

    2016-04-01

    Ensembles used for probabilistic weather forecasting tend to be biased and underdispersive. This presentation proposes a statistical method for postprocessing ensembles based on Quantile Regression Forests (QRF), a generalization of random forests for quantile regression. This method does not fit a parametric probability density function like in Ensemble Model Output Statistics (EMOS) but provides an estimation of desired quantiles. This is a non-parametric approach which eliminates any assumption on the variable subject to calibration. This method can estimate quantiles using not only members of the ensemble but any predictor available including statistics on other variables for example. The method is applied to the Météo-France 35-members ensemble forecast (PEARP) for surface temperature and wind-speed for available lead times from 3 up to 54 hours and compared to EMOS. All postprocessed ensembles are much better calibrated than the PEARP raw ensemble and experiments on real data also show that QRF performs better than EMOS, and can bring a real gain for forecasters compared to EMOS. QRF provides sharp and reliable probabilistic forecasts. At last, classical scoring rules to verify predictive forecasts are completed by the introduction of entropy as a general measure of reliability.

  11. Generalizing Quantile Regression for Counting Processes with Applications to Recurrent Events

    PubMed Central

    Sun, Xiaoyan; Peng, Limin; Huang, Yijian; Lai, HuiChuan J.

    2015-01-01

    In survival analysis, quantile regression has become a useful approach to account for covariate effects on the distribution of an event time of interest. In this paper, we discuss how quantile regression can be extended to model counting processes, and thus lead to a broader regression framework for survival data. We specifically investigate the proposed modeling of counting processes for recurrent events data. We show that the new recurrent events model retains the desirable features of quantile regression such as easy interpretation and good model flexibility, while accommodating various observation schemes encountered in observational studies. We develop a general theoretical and inferential framework for the new counting process model, which unifies with an existing method for censored quantile regression. As another useful contribution of this work, we propose a sample-based covariance estimation procedure, which provides a useful complement to the prevailing bootstrapping approach. We demonstrate the utility of our proposals via simulation studies and an application to a dataset from the US Cystic Fibrosis Foundation Patient Registry (CFFPR). PMID:27212738

  12. Anthropogenic changes to seawater buffer capacity combined with natural reef metabolism induce extreme future coral reef CO2 conditions.

    PubMed

    Shaw, Emily C; McNeil, Ben I; Tilbrook, Bronte; Matear, Richard; Bates, Michael L

    2013-05-01

    Ocean acidification, via an anthropogenic increase in seawater carbon dioxide (CO2 ), is potentially a major threat to coral reefs and other marine ecosystems. However, our understanding of how natural short-term diurnal CO2 variability in coral reefs influences longer term anthropogenic ocean acidification remains unclear. Here, we combine observed natural carbonate chemistry variability with future carbonate chemistry predictions for a coral reef flat in the Great Barrier Reef based on the RCP8.5 CO2 emissions scenario. Rather than observing a linear increase in reef flat partial pressure of CO2 (pCO2 ) in concert with rising atmospheric concentrations, the inclusion of in situ diurnal variability results in a highly nonlinear threefold amplification of the pCO2 signal by the end of the century. This significant nonlinear amplification of diurnal pCO2 variability occurs as a result of combining natural diurnal biological CO2 metabolism with long-term decreases in seawater buffer capacity, which occurs via increasing anthropogenic CO2 absorption by the ocean. Under the same benthic community composition, the amplification in the variability in pCO2 is likely to lead to exposure to mean maximum daily pCO2 levels of ca. 2100 μatm, with corrosive conditions with respect to aragonite by end-century at our study site. Minimum pCO2 levels will become lower relative to the mean offshore value (ca. threefold increase in the difference between offshore and minimum reef flat pCO2 ) by end-century, leading to a further increase in the pCO2 range that organisms are exposed to. The biological consequences of short-term exposure to these extreme CO2 conditions, coupled with elevated long-term mean CO2 conditions are currently unknown and future laboratory experiments will need to incorporate natural variability to test this. The amplification of pCO2 that we describe here is not unique to our study location, but will occur in all shallow coastal environments where high

  13. Assessment of hydrological extremes in the basins of Shilka and Argun rivers (Far East of Russia) in changing conditions

    NASA Astrophysics Data System (ADS)

    Sokolova, Daria; Semenova, Olga; Vinogradova, Tatyana

    2016-04-01

    Eastern Transbaikal region of Russia is formed by the basins of the Argun and Shilka Rivers (the upreaches of the Amur River). This region is simultaneously under the flood and drought hazard threat due to the combination of dry continental climate and monsoon impacts. Observed intensification of extreme hazard events in the region requires the scientific base of development of adaptation and mitigation measures. The aim of the study is the analysis of long-term variability of hydrological characteristics of the region by the means of mathematical statistics and projection of hydrological extremes in changing conditions of climate and landscapes based on hydrological modelling. Our research consisted of two stages. Firstly, we developed the database of observed daily hydrographs for about 50 runoff gauges of the region with average continuous period of observations 50 years (up to 2013) and areas from 12.3 to 200000 km2. Statistical analysis of the data was conducted and the trends of changes were assessed and analyzed. At the second stage we selected four river watersheds as the objects of modelling, namely, the gauging stations at the rivers Zun-Cooka, Gazipur, Borzya and Mogoytuy, ranging in size from 100 to 4000 km2. The basins are characterized by the variety of runoff conditions. Average elevation is about 650 m, hilly plateaus dominate the relief. The landscapes are taiga and forest-steppe with discontinuous permafrost. The climate is continental, annual precipitation varies within the range 200-450 mm, runoff - from 30 to 100 mm. The objectives of modelling stage were 1) the estimation of the hydrological model's parameters and its validation at historical data, 2) development of conceptual scenarios of changes of climate and landscapes, 3) running the model in projection mode to assess the implications of possible changes in hydrological regime. High variability of climate and hydrological regime do not allow for conventional modelling procedures to be

  14. Increasing influence of the glutamate transporter inhibitor on glutamate release in low [Na +] media under extremal conditions.

    NASA Astrophysics Data System (ADS)

    Borisova, T.; Krisanova, N.; Himmelreich, N.

    The effect of the competitive nontransportable inhibitor DL-threo-beta-benzyloxyaspartate DL-TBOA on the release of glutamate in Ca 2 -free Na - and NMDG-supplemented media was evaluated after exposure of rats to extremal conditions 6 min incubation of synaptosomes with 10 mu M DL-TBOA in low Na media resulted in the increase in extracellular L- 14 C glutamate level for control animals by 2 0 pm 0 5 of total accumulated label and 100 mu M DL-TBOA - 3 5 pm 0 5 respectively The experimental data for animals subjected to centrifuge-induced hypergravity showed 4 0 pm 1 0 and 9 0 pm 2 0 increase in L- 14 C glutamate level for 10 mu M and 100 mu M DL-TBOA respectively D le 0 05 The enhancement of the extracellular level of L- 14 C glutamate after application of DL-TBOA would be expected to connect with the inhibition of L- 14 C glutamate uptake process It appears that DL-TBOA inhibited uptake more potently after hypergravity The effect of DL-TBOA on depolarization-induced carrier-mediated L- 14 C glutamate release increased after hypergravity loading in Na - and low Na NMDG- supplemented media 10 mu M DL-TBOA-induced decrease in L- 14 C glutamate release in Na - supplemented medium was 15 2 pm 2 2 in the control experiments and 26 2 pm 3 9 after loading D le 0 05 and in low Na medium was 37 0 pm 2 5 and 45 0 pm 3 4 respectively DL-TBOA was demonstrated to better inhibit the transporter-mediated

  15. Coordinated Hard Sphere Mixture (CHaSM): A fast approximate model for oxide and silicate melts at extreme conditions

    NASA Astrophysics Data System (ADS)

    Wolf, A. S.; Asimow, P. D.; Stevenson, D. J.

    2015-12-01

    Recent first-principles calculations (e.g. Stixrude, 2009; de Koker, 2013), shock-wave experiments (Mosenfelder, 2009), and diamond-anvil cell investigations (Sanloup, 2013) indicate that silicate melts undergo complex structural evolution at high pressure. The observed increase in cation-coordination (e.g. Karki, 2006; 2007) induces higher compressibilities and lower adiabatic thermal gradients in melts as compared with their solid counterparts. These properties are crucial for understanding the evolution of impact-generated magma oceans, which are dominated by the poorly understood behavior of silicates at mantle pressures and temperatures (e.g. Stixrude et al. 2009). Probing these conditions is difficult for both theory and experiment, especially given the large compositional space (MgO-SiO2-FeO-Al2O3-etc). We develop a new model to understand and predict the behavior of oxide and silicate melts at extreme P-T conditions (Wolf et al., 2015). The Coordinated Hard Sphere Mixture (CHaSM) extends the Hard Sphere mixture model, accounting for the range of coordination states for each cation in the liquid. Using approximate analytic expressions for the hard sphere model, this fast statistical method compliments classical and first-principles methods, providing accurate thermodynamic and structural property predictions for melts. This framework is applied to the MgO system, where model parameters are trained on a collection of crystal polymorphs, producing realistic predictions of coordination evolution and the equation of state of MgO melt over a wide P-T range. Typical Mg-coordination numbers are predicted to evolve continuously from 5.25 (0 GPa) to 8.5 (250 GPa), comparing favorably with first-principles Molecular Dynamics (MD) simulations. We begin extending the model to a simplified mantle chemistry using empirical potentials (generally accurate over moderate pressure ranges, <~30 GPa), yielding predictions rooted in statistical representations of melt structure

  16. Quasicrystals at extreme conditions: The role of pressure in stabilizing icosahedral Al63Cu24Fe13 at high temperature

    DOE PAGES

    Stagno, Vincenzo; Bindi, Luca; Park, Changyong; ...

    2015-11-20

    Icosahedrite, the first natural quasicrystal with composition Al63Cu24Fe13, was discovered in several grains of the Khatyrka meteorite, a unique CV3 carbonaceous chondrite. The presence in the meteorite fragments of icosahedrite strictly associated with high-pressure phases like ahrensite and stishovite indicates a formation conditions at high pressures and temperatures, likely during an impact-induced shock occurred in contact with the reducing solar nebula gas. In contrast, previous experimental studies on the stability of synthetic icosahedral AlCuFe, which were limited to ambient pressure, indicated incongruent melting at ~1123 K, while high-pressure experiments carried out at room temperature showed structural stability up to aboutmore » 35 GPa. These data are insufficient to experimentally constrain the formation and stability of icosahedrite under extreme conditions. Here we present the results of in situ high pressure experiments using diamond anvil cells of the compressional behavior of synthetic icosahedrite up to ~50 GPa at room temperature. Simultaneous high P-T experiments have been also carried out using both laser-heated diamond anvil cells combined with in situ synchrotron X-ray diffraction (at ~42 GPa) and multi-anvil apparatus (at 21 GPa) to investigate the structural evolution of icosahedral Al63Cu24Fe13 and crystallization of possible coexisting phases. The results demonstrate that the quasiperiodic symmetry of icosahedrite is retained over the entire experimental pressure range explored. In addition, we show that pressure acts to stabilize the icosahedral symmetry at temperatures much higher than previously reported. Based on our experimental study, direct crystallization of Al-Cu-Fe quasicrystals from an unusual Al-Cu-rich melt would be possible but limited to a narrow temperature range beyond which crystalline phases would form, like those observed in the Khatyrka meteorite. Here, an alternative mechanism would consist in late formation of

  17. Long-term monitoring reveals cold-water corals in extreme conditions off the southeast US coast

    NASA Astrophysics Data System (ADS)

    Mienis, F.; Duineveld, G.; Davies, A. J.; Ross, S. W.; Lavaleye, M.; Van Weering, T.

    2011-12-01

    Cold-water corals are common on the SE slope of the US (SEUS) from Florida to Cape Hatteras between depths of 400-600 m. Near Cape Hatteras cold-water corals have formed mound structures that are up to 60 m high, which are mainly covered by living colonies of the coral species Lophelia pertusa. Past explorations of major reef sites of N Carolina using remote and manned submersibles have shown living Lophelia pertusa colonies on the current facing side of the mound structures and a high biodiversity of associated fauna, especially fish. The coral areas lie in the vicinity of the Gulf Stream characterized by strong currents transporting relatively warm water northwards along the SEUS slope. Thus far little is known about the environmental conditions inside the SEUS coral communities and particularly the effects of the nearby Gulf Stream. In December 2009 two autonomous benthic landers were deployed amidst Lophelia reefs off Cape Lookout (NC) for a period of 6 months to define oceanographic patterns that are relevant for the development and persistence of cold-water coral ecosystems. Landers recorded temperature, fluorescence, turbidity, and current speed and direction. Furthermore, a sediment trap was mounted on the landers that collected material at a 16-days interval. A first analysis of the lander data shows that instability of the Gulf Stream causes rapid rises in temperature, current speed and turbidity lasting for days to more than a week. Peak temperature and turbidity levels are the highest measured in coral habitats studied so far. We did not see clear cut effects of Gulf Stream instabilities on the near bed flux of phytodetritus as opposed to reports of meanders inducing upwelling and enhanced production in the photic zone. Data analyzed so far suggest that cwc habitats of Cape Lookout experience extreme and adverse conditions for prolonged periods. The findings of this study are compared with methodologically similar studies that have been conducted in

  18. Unique Nature of the Quality of Life in the Context of Extreme Climatic, Geographical and Specific Socio-Cultural Living Conditions

    ERIC Educational Resources Information Center

    Kulik, Anastasia; Neyaskina, Yuliya; Frizen, Marina; Shiryaeva, Olga; Surikova, Yana

    2016-01-01

    This article presents the results of a detailed empirical research, aimed at studying the quality of life in the context of extreme climatic, geographical and specific sociocultural living conditions. Our research is based on the methodological approach including social, economical, ecological and psychological characteristics and reflecting…

  19. A Wind-Tunnel Investigation of Rotor Behavior Under Extreme Operating Conditions with a Description of Blade Oscillations Attributed to Pitch-Lag Coupling

    NASA Technical Reports Server (NTRS)

    McKee, John W.; Naeseth, Rodger L.

    1959-01-01

    A wind-tunnel investigation was made to study the behavior of a model helicopter rotor under extreme operating conditions. A 1/8-scale model of the front rotor of a tandem helicopter was built and tested to obtaining blade motion and rotor aerodynamic characteristics for conditions that could be encountered in high-speed pullout maneuvers. The data are presented without analysis. A description is given in an appendix of blade oscillations that were experienced during the course of the investigation and of the part that blade pitch-lag coupling played in contributing to the oscillatory condition.

  20. A probabilistic risk assessment for dengue fever by a threshold based-quantile regression

    NASA Astrophysics Data System (ADS)

    Chiu, Chuan-Hung; Tan, Yih-Chi; Wen, Tzai-Hung; Chien, Lung-Chang; Yu, Hwa-Lung

    2014-05-01

    This article introduces an important concept "return period" to analyze potential incident rate of dengue fever by bringing together two models: the quantile regression model and the threshold-based method. The return period provided the frequency of incidence of dengue fever, and established the risk maps for potential incidence of dengue fever to point out highest risk in certain areas. A threshold-based linear quantile regression model was constructed to find significantly main effects and interactions based on collinearity test and stepwise selection, and also showed the performance of our model via pseudo R2. Finally, the spatial risk maps of the specified return periods and average incident rates were given, and indicated that high population density place (e.g., residential area), water conservancy facilities, and corresponding interactions could lead to a positive influence on dengue fever. These factors would be the key point to disease protection in a given study area.

  1. Heterogeneous effects of oil shocks on exchange rates: evidence from a quantile regression approach.

    PubMed

    Su, Xianfang; Zhu, Huiming; You, Wanhai; Ren, Yinghua

    2016-01-01

    The determinants of exchange rates have attracted considerable attention among researchers over the past several decades. Most studies, however, ignore the possibility that the impact of oil shocks on exchange rates could vary across the exchange rate returns distribution. We employ a quantile regression approach to address this issue. Our results indicate that the effect of oil shocks on exchange rates is heterogeneous across quantiles. A large US depreciation or appreciation tends to heighten the effects of oil shocks on exchange rate returns. Positive oil demand shocks lead to appreciation pressures in oil-exporting countries and this result is robust across lower and upper return distributions. These results offer rich and useful information for investors and decision-makers.

  2. Quantiles, parametric-select density estimation, and bi-information parameter estimators

    NASA Technical Reports Server (NTRS)

    Parzen, E.

    1982-01-01

    A quantile-based approach to statistical analysis and probability modeling of data is presented which formulates statistical inference problems as functional inference problems in which the parameters to be estimated are density functions. Density estimators can be non-parametric (computed independently of model identified) or parametric-select (approximated by finite parametric models that can provide standard models whose fit can be tested). Exponential models and autoregressive models are approximating densities which can be justified as maximum entropy for respectively the entropy of a probability density and the entropy of a quantile density. Applications of these ideas are outlined to the problems of modeling: (1) univariate data; (2) bivariate data and tests for independence; and (3) two samples and likelihood ratios. It is proposed that bi-information estimation of a density function can be developed by analogy to the problem of identification of regression models.

  3. Participation and performance trends in ultra-endurance running races under extreme conditions - ‘Spartathlon’ versus ‘Badwater’

    PubMed Central

    2013-01-01

    approximately 40 to 45 years, and (c) the sex difference was at approximately 20%. Women will not outrun men in both Badwater and Spartathlon races. Master ultramarathoners can achieve a high level of performance in ultramarathons greater than 200 km under extreme conditions. PMID:23848985

  4. Future extreme water levels and floodplains in Gironde Estuary considering climate change

    NASA Astrophysics Data System (ADS)

    Laborie, V.; Hissel, F.; Sergent, P.

    2012-04-01

    Within THESEUS European project, an overflowing model of Gironde Estuary has been used to evaluate future surge levels at Le Verdon and future water levels at 6 specific sites of the estuary : le Verdon, Richard, Laména, Pauillac, Le Marquis and Bordeaux. It was then used to study the evolution of floodplains' location and areas towards 2100 in the entire Estuary. In this study, no breaching and no modification in the elevation of the dike was considered. The model was fed by several data sources : wind fields at Royan and Mérignac interpolated from the grid of the European Climatolologic Model CLM/SGA, a tide signal at Le Verdon, the discharges of Garonne (at La Réole), the Dordogne (at Pessac) and Isle (at Libourne). A simplified mathematical model of surge levels has been adjusted at Le Verdon with 10 surge storms and by using wind and pressure fields given by CLM/SGA. This adjustment was led so that the statistical analysis of the global signal at Le Verdon gives the same quantiles as the same analysis driven on maregraphic observations for the period [1960 ; 2000]. The assumption used for sea level rise was the pessimistic one of the French national institute for climate change: 60 cm in 2100. The model was then used to study the evolution of extreme water levels towards 2100. The analysis of surge levels at Le Verdon shows a decrease in quantiles which is coherent with the analysis of climatologic fields. The analysis of water levels shows that the increase in mean water levels quantiles represents only a part of sea level rise in Gironde Estuary. Moreover this effect seems to decrease from the maritime limit of the model towards upstream. Concerning floodplains, those corresponding to return periods from 2 to 100 years for present conditions and 3 slices [2010; 2039], [2040; 2069] and [2070; 2099] have been mapped for 3 areas in Gironde Estuary : around Le Verdon, at the confluence between Garonne and Dordogne, and near Bordeaux. Concerning the evolution

  5. Applying quantile regression for modeling equivalent property damage only crashes to identify accident blackspots.

    PubMed

    Washington, Simon; Haque, Md Mazharul; Oh, Jutaek; Lee, Dongmin

    2014-05-01

    Hot spot identification (HSID) aims to identify potential sites-roadway segments, intersections, crosswalks, interchanges, ramps, etc.-with disproportionately high crash risk relative to similar sites. An inefficient HSID methodology might result in either identifying a safe site as high risk (false positive) or a high risk site as safe (false negative), and consequently lead to the misuse the available public funds, to poor investment decisions, and to inefficient risk management practice. Current HSID methods suffer from issues like underreporting of minor injury and property damage only (PDO) crashes, challenges of accounting for crash severity into the methodology, and selection of a proper safety performance function to model crash data that is often heavily skewed by a preponderance of zeros. Addressing these challenges, this paper proposes a combination of a PDO equivalency calculation and quantile regression technique to identify hot spots in a transportation network. In particular, issues related to underreporting and crash severity are tackled by incorporating equivalent PDO crashes, whilst the concerns related to the non-count nature of equivalent PDO crashes and the skewness of crash data are addressed by the non-parametric quantile regression technique. The proposed method identifies covariate effects on various quantiles of a population, rather than the population mean like most methods in practice, which more closely corresponds with how black spots are identified in practice. The proposed methodology is illustrated using rural road segment data from Korea and compared against the traditional EB method with negative binomial regression. Application of a quantile regression model on equivalent PDO crashes enables identification of a set of high-risk sites that reflect the true safety costs to the society, simultaneously reduces the influence of under-reported PDO and minor injury crashes, and overcomes the limitation of traditional NB model in dealing

  6. Modelling the impact of road traffic on ground level ozone concentration using a quantile regression approach

    NASA Astrophysics Data System (ADS)

    Munir, Said; Chen, Haibo; Ropkins, Karl

    2012-12-01

    Road traffic is both a major source of ozone precursors (e.g. nitrogen oxides and hydrocarbons) and a potential local sink for ozone in the form of fresh nitric oxide (NO) that depletes ozone. This study investigates the effect of road traffic characteristics on ground level ozone concentration (ppb) applying a quantile regression model (QRM). QRM has certain advantages over other regression methods, including its applicability to non-normal ozone distribution and its ability to handle non-linearities in the relationship of ozone with its covariates. The paper is developed in two parts. In the first part ozone concentrations at urban and rural sites have been compared using data from 80 ozone monitoring sites throughout the UK. The model results in an average urban decrement of about 7 ppb (26%) but indicates variations at various quantiles of the ozone distribution, for instance the difference is 5.25 ppb (25%) and 10.78 ppb (30%) at quantile 0.1 and 0.99, respectively. In the second part the effect of road-traffic characteristics (traffic flow, speed and fleet composition) on urban decrement has been modelled, as a case study in Leeds, UK. The relationship between urban decrement and road traffic characteristics changes at different regimes of ozone distribution indicating a highly non-linear association. Flow of cars, buses and articulated heavy vehicles seem to have the strongest effect on urban decrement; however buses are the only category showing significant effect at all quantiles. The effect of average speed and motorcycles flow was not significant. The results of QRM show that up to 86% ozone variations between rural and urban sites can be explained with the help of traffic characteristics. The effect of various traffic scenarios on urban decrements has been investigated.

  7. The Effects of Exhaustive Military Activities in Man. The Performance of Small Isolated Military Units in Extreme Environmental Conditions

    DTIC Science & Technology

    2001-03-01

    it present itself, as the Arctic animals , dependant completely on yourself and your techniques. Not surviving, but cunning is the principle. The...drives through the ice, they are faced with a hard 9-3 job to free themselves, get out of the water, continue to a safe place where they with icing in the...than the basic needs for getting the soldier sufficient nourishment. For patrols operating for prolonged periods in extreme cold the caloric demand is

  8. How extreme are extremes?

    NASA Astrophysics Data System (ADS)

    Cucchi, Marco; Petitta, Marcello; Calmanti, Sandro

    2016-04-01

    High temperatures have an impact on the energy balance of any living organism and on the operational capabilities of critical infrastructures. Heat-wave indicators have been mainly developed with the aim of capturing the potential impacts on specific sectors (agriculture, health, wildfires, transport, power generation and distribution). However, the ability to capture the occurrence of extreme temperature events is an essential property of a multi-hazard extreme climate indicator. Aim of this study is to develop a standardized heat-wave indicator, that can be combined with other indices in order to describe multiple hazards in a single indicator. The proposed approach can be used in order to have a quantified indicator of the strenght of a certain extreme. As a matter of fact, extremes are usually distributed in exponential or exponential-exponential functions and it is difficult to quickly asses how strong was an extreme events considering only its magnitude. The proposed approach simplify the quantitative and qualitative communication of extreme magnitude

  9. Modelling the effects of maternal socio-demographic characteristics on the preterm and term birth weight distributions in Greece using quantile regression.

    PubMed

    Verropoulou, Georgia; Tsimbos, Cleon

    2013-05-01

    The present study aims at modelling the effects of maternal socio-demographic characteristics on the birth weight distribution in Greece. The analysis is based on nationwide vital registration micro-data; 103,266 single live births recorded in 2006 are considered. Quantile regression models, allowing for the effects of covariates to vary across the conditional distribution of the dependent variable, birth weight, are applied to preterm and term births separately. The statistical analysis shows that the effects of most factors differentiate across the birth weight distributions. Ordinary Least Squares (OLS) coefficients, on the other hand, systematically underestimate effects at the lower tail and overestimate effects among heavier babies. Hence, quantile regression has a strong advantage over the OLS method. The findings also indicate that birth weight distributions of term and preterm infants are distinct and should be analysed separately. For both distributions female sex, primiparity, age of mother over 35 and prior history of stillbirths and child deaths are related to lower birth weight while higher educational attainment has a protective effect. Among term births, illegitimacy, living in big metropolitan areas and immigrant status of the mother are also significant predictors. For preterm births the impact of age of mother, parity and, in particular, prior stillbirths or deceased children is very pronounced.

  10. The effect of extreme spring weather on body condition and stress physiology in Lapland longspurs and white-crowned sparrows breeding in the Arctic.

    PubMed

    Krause, Jesse S; Pérez, Jonathan H; Chmura, Helen E; Sweet, Shannan K; Meddle, Simone L; Hunt, Kathleen E; Gough, Laura; Boelman, Natalie; Wingfield, John C

    2016-10-01

    Climate change is causing rapid shifts in temperature while also increasing the frequency, duration, and intensity of extreme weather. In the northern hemisphere, the spring of 2013 was characterized as extreme due to record high snow cover and low temperatures. Studies that describe the effects of extreme weather on phenology across taxa are limited while morphological and physiological responses remain poorly understood. Stress physiology, as measured through baseline and stress-induced concentrations of cortisol or corticosterone, has often been studied to understand how organisms respond to environmental stressors. We compared body condition and stress physiology of two long-distance migrants breeding in low arctic Alaska - the white-crowned sparrow (Zonotrichia leucophrys) and Lapland longspur (Calcarius lapponicus) - in 2013, an extreme weather year, with three more typical years (2011, 2012, and 2014). The extended snow cover in spring 2013 caused measureable changes in phenology, body condition and physiology. Arrival timing for both species was delayed 4-5days compared to the other three years. Lapland longspurs had reduced fat stores, pectoralis muscle profiles, body mass, and hematocrit levels, while stress-induced concentrations of corticosterone were increased. Similarly, white-crowned sparrows had reduced pectoralis muscle profiles and hematocrit levels, but in contrast to Lapland longspurs, had elevated fat stores and no difference in mass or stress physiology relative to other study years. An understanding of physiological mechanisms that regulate coping strategies is of critical importance for predicting how species will respond to the occurrence of extreme events in the future due to global climate change.

  11. Extreme Air Pollution Conditions Adversely Affect Blood Pressure and Insulin Resistance: The Air Pollution and Cardiometabolic Disease Study.

    PubMed

    Brook, Robert D; Sun, Zhichao; Brook, Jeffrey R; Zhao, Xiaoyi; Ruan, Yanping; Yan, Jianhua; Mukherjee, Bhramar; Rao, Xiaoquan; Duan, Fengkui; Sun, Lixian; Liang, Ruijuan; Lian, Hui; Zhang, Shuyang; Fang, Quan; Gu, Dongfeng; Sun, Qinghua; Fan, Zhongjie; Rajagopalan, Sanjay

    2016-01-01

    Mounting evidence supports that fine particulate matter adversely affects cardiometabolic diseases particularly in susceptible individuals; however, health effects induced by the extreme concentrations within megacities in Asia are not well described. We enrolled 65 nonsmoking adults with metabolic syndrome and insulin resistance in the Beijing metropolitan area into a panel study of 4 repeated visits across 4 seasons since 2012. Daily ambient fine particulate matter and personal black carbon levels ranged from 9.0 to 552.5 µg/m(3) and 0.2 to 24.5 µg/m(3), respectively, with extreme levels observed during January 2013. Cumulative fine particulate matter exposure windows across the prior 1 to 7 days were significantly associated with systolic blood pressure elevations ranging from 2.0 (95% confidence interval, 0.3-3.7) to 2.7 (0.6-4.8) mm Hg per SD increase (67.2 µg/m(3)), whereas cumulative black carbon exposure during the previous 2 to 5 days were significantly associated with ranges in elevations in diastolic blood pressure from 1.3 (0.0-2.5) to 1.7 (0.3-3.2) mm Hg per SD increase (3.6 µg/m(3)). Both black carbon and fine particulate matter were significantly associated with worsening insulin resistance (0.18 [0.01-0.36] and 0.22 [0.04-0.39] unit increase per SD increase of personal-level black carbon and 0.18 [0.02-0.34] and 0.22 [0.08-0.36] unit increase per SD increase of ambient fine particulate matter on lag days 4 and 5). These results provide important global public health warnings that air pollution may pose a risk to cardiometabolic health even at the extremely high concentrations faced by billions of people in the developing world today.

  12. Coupled large-eddy simulation and morphodynamics of a large-scale river under extreme flood conditions

    NASA Astrophysics Data System (ADS)

    Khosronejad, Ali; Sotiropoulos, Fotis; Stony Brook University Team

    2016-11-01

    We present a coupled flow and morphodynamic simulations of extreme flooding in 3 km long and 300 m wide reach of the Mississippi River in Minnesota, which includes three islands and hydraulic structures. We employ the large-eddy simulation (LES) and bed-morphodynamic modules of the VFS-Geophysics model to investigate the flow and bed evolution of the river during a 500 year flood. The coupling of the two modules is carried out via a fluid-structure interaction approach using a nested domain approach to enhance the resolution of bridge scour predictions. The geometrical data of the river, islands and structures are obtained from LiDAR, sub-aqueous sonar and in-situ surveying to construct a digital map of the river bathymetry. Our simulation results for the bed evolution of the river reveal complex sediment dynamics near the hydraulic structures. The numerically captured scour depth near some of the structures reach a maximum of about 10 m. The data-driven simulation strategy we present in this work exemplifies a practical simulation-based-engineering-approach to investigate the resilience of infrastructures to extreme flood events in intricate field-scale riverine systems. This work was funded by a Grant from Minnesota Dept. of Transportation.

  13. A generalized sine condition and performance comparison of Wolter type II and Wolter-Schwarzschild extreme ultraviolet telescopes

    NASA Technical Reports Server (NTRS)

    Saha, T. T.

    1984-01-01

    An equation similar to the Abbe sine condition is derived for a Wolter type II telescope. This equation and the sine condition are then combined to produce a so called generalized sine condition. Using the law of reflection, Fermat's principle, the generalized sine condition, and simple geometry the surface equations for a Wolter type II telescope and an equivalent Wolter-Schwarzschild telescope are calculated. The performances of the telescopes are compared in terms of rms blur circle radius at the Gaussian focal plane and at best focus.

  14. Detecting Long-term Trend of Water Quality Indices of Dong-gang River, Taiwan Using Quantile Regression

    NASA Astrophysics Data System (ADS)

    Yang, D.; Shiau, J.

    2013-12-01

    ABSTRACT BODY: Abstract Surface water quality is an essential issue in water-supply for human uses and sustaining healthy ecosystem of rivers. However, water quality of rivers is easily influenced by anthropogenic activities such as urban development and wastewater disposal. Long-term monitoring of water quality can assess whether water quality of rivers deteriorates or not. Taiwan is a population-dense area and heavily depends on surface water for domestic, industrial, and agricultural uses. Dong-gang River is one of major resources in southern Taiwan for agricultural requirements. The water-quality data of four monitoring stations of the Dong-gang River for the period of 2000-2012 are selected for trend analysis. The parameters used to characterize water quality of rivers include biochemical oxygen demand (BOD), dissolved oxygen (DO), suspended solids (SS), and ammonia nitrogen (NH3-N). These four water-quality parameters are integrated into an index called river pollution index (RPI) to indicate the pollution level of rivers. Although widely used non-parametric Mann-Kendall test and linear regression exhibit computational efficiency to identify trends of water-quality indices, limitations of such approaches include sensitive to outliers and estimations of conditional mean only. Quantile regression, capable of identifying changes over time of any percentile values, is employed in this study to detect long-term trend of water-quality indices for the Dong-gang River located in southern Taiwan. The results show that Dong-gang River 4 stations from 2000 to 2012 monthly long-term trends in water quality.To analyze s Dong-gang River long-term water quality trends and pollution characteristics. The results showed that the bridge measuring ammonia Long-dong, BOD5 measure in that station on a downward trend, DO, and SS is on the rise, River Pollution Index (RPI) on a downward trend. The results form Chau-Jhou station also ahowed simialar trends .more and more near the

  15. Remote ischaemic conditioning in the context of type 2 diabetes and neuropathy: the case for repeat application as a novel therapy for lower extremity ulceration.

    PubMed

    Epps, J A; Smart, N A

    2016-09-09

    An emerging treatment modality for reducing damage caused by ischaemia-reperfusion injury is ischaemic conditioning. This technique induces short periods of ischaemia that have been found to protect against a more significant ischaemic insult. Remote ischaemic conditioning (RIC) can be administered more conveniently and safely, by inflation of a pneumatic blood pressure cuff to a suprasystolic pressure on a limb. Protection is then transferred to a remote organ via humoral and neural pathways. The diabetic state is particularly vulnerable to ischaemia-reperfusion injury, and ischaemia is a significant cause of many diabetic complications, including the diabetic foot. Despite this, studies utilising ischaemic conditioning and RIC in type 2 diabetes have often been disappointing. A newer strategy, repeat RIC, involves the repeated application of short periods of limb ischaemia over days or weeks. It has been demonstrated that this improves endothelial function, skin microcirculation, and modulates the systemic inflammatory response. Repeat RIC was recently shown to be beneficial for healing in lower extremity diabetic ulcers. This article summarises the mechanisms of RIC, and the impact that type 2 diabetes may have upon these, with the role of neural mechanisms in the context of diabetic neuropathy a focus. Repeat RIC may show more promise than RIC in type 2 diabetes, and its potential mechanisms and applications will also be explored. Considering the high costs, rates of chronicity and serious complications resulting from diabetic lower extremity ulceration, repeat RIC has the potential to be an effective novel advanced therapy for this condition.

  16. Use of historical information in extreme storm surges frequency analysis

    NASA Astrophysics Data System (ADS)

    Hamdi, Yasser; Duluc, Claire-Marie; Deville, Yves; Bardet, Lise; Rebour, Vincent

    2013-04-01

    The prevention of storm surge flood risks is critical for protection and design of coastal facilities to very low probabilities of failure. The effective protection requires the use of a statistical analysis approach having a solid theoretical motivation. Relating extreme storm surges to their frequency of occurrence using probability distributions has been a common issue since 1950s. The engineer needs to determine the storm surge of a given return period, i.e., the storm surge quantile or design storm surge. Traditional methods for determining such a quantile have been generally based on data from the systematic record alone. However, the statistical extrapolation, to estimate storm surges corresponding to high return periods, is seriously contaminated by sampling and model uncertainty if data are available for a relatively limited period. This has motivated the development of approaches to enlarge the sample extreme values beyond the systematic period. The nonsystematic data occurred before the systematic period is called historical information. During the last three decades, the value of using historical information as a nonsystematic data in frequency analysis has been recognized by several authors. The basic hypothesis in statistical modeling of historical information is that a perception threshold exists and that during a giving historical period preceding the period of tide gauging, all exceedances of this threshold have been recorded. Historical information prior to the systematic records may arise from high-sea water marks left by extreme surges on the coastal areas. It can also be retrieved from archives, old books, earliest newspapers, damage reports, unpublished written records and interviews with local residents. A plotting position formula, to compute empirical probabilities based on systematic and historical data, is used in this communication paper. The objective of the present work is to examine the potential gain in estimation accuracy with the

  17. NEAR-EXTREMAL BLACK HOLES AS INITIAL CONDITIONS OF LONG GRB SUPERNOVAE AND PROBES OF THEIR GRAVITATIONAL WAVE EMISSION

    SciTech Connect

    Van Putten, Maurice H. P. M.

    2015-09-01

    Long gamma-ray bursts (GRBs) associated with supernovae and short GRBs with extended emission (SGRBEE) from mergers are probably powered by black holes as a common inner engine, as their prompt GRB emission satisfies the same Amati correlation in the E{sub p,i}–E{sub iso} plane. We introduce modified Bardeen equations to identify hyper-accretion driving newly formed black holes in core-collapse supernovae to near-extremal spin as a precursor to prompt GRB emission. Subsequent spin-down is observed in the BATSE catalog of long GRBs. Spin-down provides a natural unification of long durations associated with the lifetime of black hole spin for normal long GRBs and SGRBEEs, given the absence of major fallback matter in mergers. The results point to major emissions unseen in high frequency gravitational waves. A novel matched filtering method is described for LIGO–Virgo and KAGRA broadband probes of nearby core-collapse supernovae at essentially maximal sensitivity.

  18. Biohydrogen production from glucose in upflow biofilm reactors with plastic carriers under extreme thermophilic conditions (70 degrees C).

    PubMed

    Zheng, Hang; Zeng, Raymond J; Angelidaki, Irini

    2008-08-01

    Biohydrogen could efficiently be produced in glucose-fed biofilm reactors filled with plastic carriers and operated at 70 degrees C. Batch experiments were, in addition, conducted to enrich and cultivate glucose-fed extreme-thermophilic hydrogen producing microorganisms from a biohydrogen CSTR reactor fed with household solid waste. Kinetic analysis of the biohydrogen enrichment cultures show that substrate (glucose) likely inhibited hydrogen production when its concentration was higher than 1 g/L. Different start up strategies were applied for biohydrogen production in biofilm reactors operated at 70 degrees C, and fed with synthetic medium with glucose as the only carbon and energy source. A biofilm reactor, started up with plastic carriers, that were previously inoculated with the enrichment cultures, resulted in higher hydrogen yield (2.21 mol H(2)/mol glucose consumed) but required longer start up time (1 month), while a biofilm reactor directly inoculated with the enrichment cultures reached stable state much faster (8 days) but with very low hydrogen yield (0.69 mol H(2)/mol glucose consumed). These results indicate that hydraulic pressure is necessary for successful immobilization of bacteria on carriers, while there is the risk of washing out specific high yielding bacteria.

  19. [Process strategy for ethanol production from lignocellulose feedstock under extremely low water usage and high solids loading conditions].

    PubMed

    Zhang, Jian; Chu, Deqiang; Yu, Zhanchun; Zhang, Xiaoxi; Deng, Hongbo; Wang, Xiusheng; Zhu, Zhinan; Zhang, Huaiqing; Dai, Gance; Bao, Jie

    2010-07-01

    The massive water and steam are consumed in the production of cellulose ethanol, which correspondingly results in the significant increase of energy cost, waster water discharge and production cost as well. In this study, the process strategy under extremely low water usage and high solids loading of corn stover was investigated experimentally and computationally. The novel pretreatment technology with zero waste water discharge was developed; in which a unique biodetoxification method using a kerosene fungus strain Amorphotheca resinae ZN1 to degrade the lignocellulose derived inhibitors was applied. With high solids loading of pretreated corn stover, high ethanol titer was achieved in the simultaneous saccharification and fermentation process, and the scale-up principles were studied. Furthermore, the flowsheet simulation of the whole process was carried out with the Aspen plus based physical database, and the integrated process developed was tested in the biorefinery mini-plant. Finally, the core technologies were applied in the cellulose ethanol demonstration plant, which paved a way for the establishment of an energy saving and environment friendly technology of lignocellulose biotransformation with industry application potential.

  20. Predicting crystal structures and properties of matter under extreme conditions via quantum mechanics: The pressure is on

    SciTech Connect

    Zurek, Eva; Grochala, Wojciech

    2014-11-27

    Experimental studies of compressed matter are now routinely conducted at pressures exceeding 1 mln atm (100 GPa) and occasionally they even surpass 10 mln atm (1 TPa). The structure and properties of solids that have been so significantly squeezed differ considerably from those know at ambient pressures (1 atm), often times leading to new and unexpected physics. Chemical reactivity is also substantially altered in the extreme pressure regime. In this feature paper we describe how synergy between theory and experiment can pave the road towards new experimental discoveries. Because chemical rules-of-thumb established at 1 atm often fail to predict the structures of solids under high pressure, automated crystal structure prediction (CSP) methods have been increasingly employed. After outlining the most important CSP techniques, we showcase a few examples from the recent literature that exemplify just how useful theory can be as an aid in the interpretation of experimental data, describe exciting theoretical predictions that are guiding experiment, and discuss when the computational methods that are currently routinely employed fail. Lastly, we forecast important problems that will be targeted by theory as theoretical methods undergo rapid development, along with the simultaneous increase of computational power.

  1. Predicting crystal structures and properties of matter under extreme conditions via quantum mechanics: The pressure is on

    DOE PAGES

    Zurek, Eva; Grochala, Wojciech

    2014-11-27

    Experimental studies of compressed matter are now routinely conducted at pressures exceeding 1 mln atm (100 GPa) and occasionally they even surpass 10 mln atm (1 TPa). The structure and properties of solids that have been so significantly squeezed differ considerably from those know at ambient pressures (1 atm), often times leading to new and unexpected physics. Chemical reactivity is also substantially altered in the extreme pressure regime. In this feature paper we describe how synergy between theory and experiment can pave the road towards new experimental discoveries. Because chemical rules-of-thumb established at 1 atm often fail to predict themore » structures of solids under high pressure, automated crystal structure prediction (CSP) methods have been increasingly employed. After outlining the most important CSP techniques, we showcase a few examples from the recent literature that exemplify just how useful theory can be as an aid in the interpretation of experimental data, describe exciting theoretical predictions that are guiding experiment, and discuss when the computational methods that are currently routinely employed fail. Lastly, we forecast important problems that will be targeted by theory as theoretical methods undergo rapid development, along with the simultaneous increase of computational power.« less

  2. Extreme value analysis for evaluating ozone control strategies.

    PubMed

    Reich, Brian; Cooley, Daniel; Foley, Kristen; Napelenok, Sergey; Shaby, Benjamin

    2013-06-01

    Tropospheric ozone is one of six criteria pollutants regulated by the US EPA, and has been linked to respiratory and cardiovascular endpoints and adverse effects on vegetation and ecosystems. Regional photochemical models have been developed to study the impacts of emission reductions on ozone levels. The standard approach is to run the deterministic model under new emission levels and attribute the change in ozone concentration to the emission control strategy. However, running the deterministic model requires substantial computing time, and this approach does not provide a measure of uncertainty for the change in ozone levels. Recently, a reduced form model (RFM) has been proposed to approximate the complex model as a simple function of a few relevant inputs. In this paper, we develop a new statistical approach to make full use of the RFM to study the effects of various control strategies on the probability and magnitude of extreme ozone events. We fuse the model output with monitoring data to calibrate the RFM by modeling the conditional distribution of monitoring data given the RFM using a combination of flexible semiparametric quantile regression for the center of the distribution where data are abundant and a parametric extreme value distribution for the tail where data are sparse. Selected parameters in the conditional distribution are allowed to vary by the RFM value and the spatial location. Also, due to the simplicity of the RFM, we are able to embed the RFM in our Bayesian hierarchical framework to obtain a full posterior for the model input parameters, and propagate this uncertainty to the estimation of the effects of the control strategies. We use the new framework to evaluate three potential control strategies, and find that reducing mobile-source emissions has a larger impact than reducing point-source emissions or a combination of several emission sources.

  3. Water supply patterns in two agricultural areas of Central Germany under climate change conditions

    NASA Astrophysics Data System (ADS)

    Tölle, M. H.; Moseley, C.; Panferov, O.; Busch, G.; Knohl, A.

    2012-04-01

    Increasing emissions of greenhouse gases and increasing prices for fossil fuels have highlighted the demand for CO2 "neutral" renewable energy sources, e.g. short rotation forestry systems used for bioenergy. These systems might be vulnerable to changes in temperature, precipitation and occurrence of extreme weather events. To estimate success or failure of such short rotation coppices in a certain area we need regional climate projections and risk assessment. Changes of water supply patterns in two agriculturally extensively used regions in Central Germany (around Göttingen and Großfahner) with different climate conditions but both in the temperate climate zone are explored. The study is carried out under present conditions as well as under projected climate change conditions (1971-2100) using A1B and B1 climate scenarios downscaled for Europe. Analysis of precipitation bias shows regional differences: a strong bias in Göttingen area and a weaker bias in the Großfahner area. A bias correction approach, Quantile mapping, is applied to the ensemble results for both areas for winter and summer seasons. By using quantile regression on the seasonal Standardized Precipitation Indices (SPIs) as indicator for water supply conditions we found that precipitation is expected to increase in winter in all quantiles of the distribution for Göttingen area during the 21th century. Heavy precipitation is also expected to increase for Großfahner area suggesting a trend to wetter extremes in winter for the future. This winter precipitation increase could trigger runoff and soil erosion risk enhancing the severity of floods. Increasing winter availability of water could enhance local water supply in spring. For both areas no significant change in summer was found over the whole time period. Although the climate change signal of the SPI indicate mild dryer conditions in summer at the end of the 21st century which may trigger water shortage and summer drying associated with above

  4. Application of empirical mode decomposition with local linear quantile regression in financial time series forecasting.

    PubMed

    Jaber, Abobaker M; Ismail, Mohd Tahir; Altaher, Alsaidi M

    2014-01-01

    This paper mainly forecasts the daily closing price of stock markets. We propose a two-stage technique that combines the empirical mode decomposition (EMD) with nonparametric methods of local linear quantile (LLQ). We use the proposed technique, EMD-LLQ, to forecast two stock index time series. Detailed experiments are implemented for the proposed method, in which EMD-LPQ, EMD, and Holt-Winter methods are compared. The proposed EMD-LPQ model is determined to be superior to the EMD and Holt-Winter methods in predicting the stock closing prices.

  5. Median and quantile tests under complex survey design using SAS and R.

    PubMed

    Pan, Yi; Caudill, Samuel P; Li, Ruosha; Caldwell, Kathleen L

    2014-11-01

    Techniques for conducting hypothesis testing on the median and other quantiles of two or more subgroups under complex survey design are limited. In this paper, we introduce programs in both SAS and R to perform such a test. A detailed illustration of the computations, macro variable definitions, input and output for the SAS and R programs are also included in the text. Urinary iodine data from National Health and Nutrition Examination Survey (NHANES) are used as examples for comparing medians between females and males as well as comparing the 75th percentiles among three salt consumption groups.

  6. Adaptive Coping under Conditions of Extreme Stress: Multilevel Influences on the Determinants of Resilience in Maltreated Children

    ERIC Educational Resources Information Center

    Cicchetti, Dante; Rogosch, Fred A.

    2009-01-01

    The study of resilience in maltreated children reveals the possibility of coping processes and resources on multiple levels of analysis as children strive to adapt under conditions of severe stress. In a maltreating context, aspects of self-organization, including self-esteem, self-reliance, emotion regulation, and adaptable yet reserved…

  7. Extreme late chronotypes and social jetlag challenged by Antarctic conditions in a population of university students from Uruguay.

    PubMed

    Tassino, Bettina; Horta, Stefany; Santana, Noelia; Levandovski, Rosa; Silva, Ana

    2016-01-01

    In humans, a person's chronotype depends on environmental cues and on individual characteristics, with late chronotypes prevailing in youth. Social jetlag (SJL), the misalignment between an individual׳s biological clock and social time, is higher in late chronotypes. Strong SJL is expected in Uruguayan university students with morning class schedules and very late entertainment activities. Sleep disorders have been reported in Antarctic inhabitants, that might be a response to the extreme environment or to the strictness of Antarctic life. We evaluated, for the first time in Uruguay, the chronotypes and SJL of 17 undergraduate students of the First Uruguayan Summer School on Antarctic Research, using Munich Chronotype Questionnaire (MCTQ) and sleep logs (SL) recorded during 3 phases: pre-Antarctic, Antarctic, and post-Antarctic. The midsleep point of free days corrected for sleep debt on work days (MSFsc,) was used as proxy of individuals' chronotype, whose values (around 6 a.m.) are the latest ever reported. We found a SJL of around 2 h in average, which correlated positively with MSFsc, confirming that late chronotypes generate a higher sleep debt during weekdays. Midsleep point and sleep duration significantly decreased between pre-Antarctic and Antarctic phases, and sleep duration rebounded to significant higher values in the post-Antarctic phase. Waking time, but not sleep onset time, significantly varied among phases. This evidence suggests that sleep schedules more likely depended on the social agenda than on the environmental light-dark shifts. High motivation of students towards Antarctic activities likely induced a subjective perception of welfare non-dependent on sleep duration.

  8. Extreme late chronotypes and social jetlag challenged by Antarctic conditions in a population of university students from Uruguay

    PubMed Central

    Tassino, Bettina; Horta, Stefany; Santana, Noelia; Levandovski, Rosa; Silva, Ana

    2016-01-01

    In humans, a person’s chronotype depends on environmental cues and on individual characteristics, with late chronotypes prevailing in youth. Social jetlag (SJL), the misalignment between an individual׳s biological clock and social time, is higher in late chronotypes. Strong SJL is expected in Uruguayan university students with morning class schedules and very late entertainment activities. Sleep disorders have been reported in Antarctic inhabitants, that might be a response to the extreme environment or to the strictness of Antarctic life. We evaluated, for the first time in Uruguay, the chronotypes and SJL of 17 undergraduate students of the First Uruguayan Summer School on Antarctic Research, using Munich Chronotype Questionnaire (MCTQ) and sleep logs (SL) recorded during 3 phases: pre-Antarctic, Antarctic, and post-Antarctic. The midsleep point of free days corrected for sleep debt on work days (MSFsc,) was used as proxy of individuals’ chronotype, whose values (around 6 a.m.) are the latest ever reported. We found a SJL of around 2 h in average, which correlated positively with MSFsc, confirming that late chronotypes generate a higher sleep debt during weekdays. Midsleep point and sleep duration significantly decreased between pre-Antarctic and Antarctic phases, and sleep duration rebounded to significant higher values in the post-Antarctic phase. Waking time, but not sleep onset time, significantly varied among phases. This evidence suggests that sleep schedules more likely depended on the social agenda than on the environmental light–dark shifts. High motivation of students towards Antarctic activities likely induced a subjective perception of welfare non-dependent on sleep duration. PMID:27226819

  9. Probing the structure of iron at extreme conditions by X-ray absorption near-edge structure calculations

    NASA Astrophysics Data System (ADS)

    Raji, A. T.; Scandolo, S.; Härting, M.; Britton, D. T.

    2013-03-01

    We present the K-edge X-ray absorption near edge spectra of hexagonal-closed packed iron at pressure and temperature conditions relevant to Earth's mantle conditions. The calculated spectra have been obtained using the first-principles scheme based on the continued-fraction approach and norm-conserving pseudopotentials. The atomic configurations used for the X-ray absorption near edge spectroscopy calculations were obtained from classical molecular dynamics simulations, using an optimized embedded-atom potential. We compare our calculated spectra to recently available experiment results (R. Boehler, H.G. Musshoff, R. Ditz, G. Aquilanti, and A. Trapananti, Rev. Sci. Instrum. 80 (2009), pp. 045103-045108) and identify the main features of the spectra that may indicate onset of melting in iron.

  10. A comparison of spent fuel shipping cask response to 10 CFR 71 normal conditions and realistic hot day extremes

    SciTech Connect

    Manson, S.J.; Gianoulakis, S.E.

    1994-04-01

    An examination of the effect of a realistic (though conservative) hot day environment on the thermal transient behavior of spent fuel shipping casks is made. These results are compared to those that develop under the prescribed normal thermal condition of 10 CFR 71. Of specific concern are the characteristics of propagating thermal waves, which are set up by diurnal variations of temperature and insolation in the outdoor environment. In order to arrive at a realistic approximation of these variations on a conservative hot day, actual temperature and insolation measurements have been obtained from the National Climatic Data Center (NCDC) for representatively hot and high heat flux days. Thus, the use of authentic meteorological data ensures the realistic approach sought. Further supporting the desired realism of the modeling effort is the use of realistic cask configurations in which multiple laminations of structural, shielding, and other materials are expected to attenuate the propagating thermal waves. The completed analysis revealed that the majority of wall temperatures, for a wide variety of spent fuel shipping cask configurations, fall well below those predicted by enforcement of the regulatory environmental conditions of 10 CFR 71. It was found that maximum temperatures at the cask surface occasionally lie above temperatures predicted under the prescribed regulatory conditions. However, the temperature differences are small enough that the normal conservative assumptions that are made in the course of typical cask evaluations should correct for any potential violations. The analysis demonstrates that diurnal temperature variations that penetrate the cask wall all have maxima substantially less than the corresponding regulatory solutions. Therefore it is certain that vital cask components and the spent fuel itself will not exceed the temperatures calculated by use of the conditions of 10 CFR 71.

  11. Metabolism and antioxidant defense in the larval chironomid Tanytarsus minutipalpus: adjustments to diel variations in the extreme conditions of Lake Magadi

    PubMed Central

    Wood, Chris M.; Bergman, Harold L.; Johannsson, Ora E.; Laurent, Pierre; Chevalier, Claudine; Kisipan, Mosiany L.; Kavembe, Geraldine D.; Papah, Michael B.; Brix, Kevin V.; De Boeck, Gudrun; Maina, John N.; Ojoo, Rodi O.; Bianchini, Adalto

    2017-01-01

    ABSTRACT Insect larvae are reported to be a major component of the simple but highly productive trophic web found in Lake Magadi (Kenya, Africa), which is considered to be one of the most extreme aquatic environments on Earth. Previous studies show that fish must display biochemical and physiological adjustments to thrive under the extreme conditions of the lake. However, information for invertebrates is lacking. In the present study, the occurrence of the larval chironomid Tanytarsus minutipalpus is reported in Lake Magadi for the first time. Additionally, changes in larval metabolism and antioxidant defense correlated with diel variations in the extremely hostile environmental conditions of the lake are described. Wide variations in water temperature (20.2-29.3°C) and dissolved oxygen content (3.2-18.6 mg O2 l−1) were observed at different times of day, without significant change in water pH (10.0±0.03). Temperature and dissolved oxygen were higher at 13:00 h (29.3±0.4°C and 18.6±1.0 mg O2 l−1) and 19:00 h (29.3±0.8°C and 16.2±1.6 mg O2 l−1) and lower at 01:00 h (21.1±0.1°C and 10.7±0.03 mg O2 l−1) and 07:00 h (20.2±0.4°C and 3.2±0.7 mg O2 l−1). Significant and parallel increases in parameters related to metabolism (cholinesterase, glucose, cholesterol, urea, creatinine and hemoglobin) and the antioxidant system (SOD, GPx, GR, GSH and GSSG) were observed in larvae collected at 13:00 h. In contrast, no significant changes were observed in pro-oxidants (ROS and NO), TOSC and oxidative damage parameters (LPO and DNA damage). Therefore, the observed increases in temperature and dissolved O2 content in Lake Magadi were associated with changes in the antioxidant system of T. minutipalpus larvae. Adjustments performed by the chironomid larvae were efficient in maintaining body homeostasis, as well as protecting biomolecules against oxidative damage, so that oxidative stress did not occur. GSH-GSSG and GPx-GR systems appeared to

  12. Metabolism and antioxidant defense in the larval chironomid Tanytarsus minutipalpus: adjustments to diel variations in the extreme conditions of Lake Magadi.

    PubMed

    Bianchini, Lucas F; Wood, Chris M; Bergman, Harold L; Johannsson, Ora E; Laurent, Pierre; Chevalier, Claudine; Kisipan, Mosiany L; Kavembe, Geraldine D; Papah, Michael B; Brix, Kevin V; De Boeck, Gudrun; Maina, John N; Ojoo, Rodi O; Bianchini, Adalto

    2017-01-15

    Insect larvae are reported to be a major component of the simple but highly productive trophic web found in Lake Magadi (Kenya, Africa), which is considered to be one of the most extreme aquatic environments on Earth. Previous studies show that fish must display biochemical and physiological adjustments to thrive under the extreme conditions of the lake. However, information for invertebrates is lacking. In the present study, the occurrence of the larval chironomid Tanytarsus minutipalpus is reported in Lake Magadi for the first time. Additionally, changes in larval metabolism and antioxidant defense correlated with diel variations in the extremely hostile environmental conditions of the lake are described. Wide variations in water temperature (20.2-29.3°C) and dissolved oxygen content (3.2-18.6 mg O2 l(-1)) were observed at different times of day, without significant change in water pH (10.0±0.03). Temperature and dissolved oxygen were higher at 13:00 h (29.3±0.4°C and 18.6±1.0 mg O2 l(-1)) and 19:00 h (29.3±0.8°C and 16.2±1.6 mg O2 l(-1)) and lower at 01:00 h (21.1±0.1°C and 10.7±0.03 mg O2 l(-1)) and 07:00 h (20.2±0.4°C and 3.2±0.7 mg O2 l(-1)). Significant and parallel increases in parameters related to metabolism (cholinesterase, glucose, cholesterol, urea, creatinine and hemoglobin) and the antioxidant system (SOD, GPx, GR, GSH and GSSG) were observed in larvae collected at 13:00 h. In contrast, no significant changes were observed in pro-oxidants (ROS and NO), TOSC and oxidative damage parameters (LPO and DNA damage). Therefore, the observed increases in temperature and dissolved O2 content in Lake Magadi were associated with changes in the antioxidant system of T. minutipalpus larvae. Adjustments performed by the chironomid larvae were efficient in maintaining body homeostasis, as well as protecting biomolecules against oxidative damage, so that oxidative stress did not occur. GSH-GSSG and GPx-GR systems appeared to play an

  13. Seasonal Prediction of Hydro-Climatic Extremes in the Greater Horn of Africa Under Evolving Climate Conditions to Support Adaptation Strategies

    NASA Astrophysics Data System (ADS)

    Tadesse, T.; Zaitchik, B. F.; Habib, S.; Funk, C. C.; Senay, G. B.; Dinku, T.; Policelli, F. S.; Block, P.; Baigorria, G. A.; Beyene, S.; Wardlow, B.; Hayes, M. J.

    2014-12-01

    The development of effective strategies to adapt to changes in the character of droughts and floods in Africa will rely on improved seasonal prediction systems that are robust to an evolving climate baseline and can be integrated into disaster preparedness and response. Many efforts have been made to build models to improve seasonal forecasts in the Greater Horn of Africa region (GHA) using satellite and climate data, but these efforts and models must be improved and translated into future conditions under evolving climate conditions. This has considerable social significance, but is challenged by the nature of climate predictability and the adaptability of coupled natural and human systems facing exposure to climate extremes. To address these issues, work is in progress under a project funded by NASA. The objectives of the project include: 1) Characterize and explain large-scale drivers in the ocean-atmosphere-land system associated with years of extreme flood or drought in the GHA. 2) Evaluate the performance of state-of-the-art seasonal forecast methods for prediction of decision-relevant metrics of hydrologic extremes. 3) Apply seasonal forecast systems to prediction of socially relevant impacts on crops, flood risk, and economic outcomes, and assess the value of these predictions to decision makers. 4) Evaluate the robustness of seasonal prediction systems to evolving climate conditions. The National Drought Mitigation Center (University of Nebraska-Lincoln, USA) is leading this project in collaboration with the USGS, Johns Hopkins University, University of Wisconsin-Madison, the International Research Institute for Climate and Society, NASA, and GHA local experts. The project is also designed to have active engagement of end users in various sectors, university researchers, and extension agents in GHA through workshops and/or webinars. This project is expected improve and implement new and existing climate- and remote sensing-based agricultural

  14. A comprehensive literature review of the pelvis and the lower extremity FE human models under quasi-static conditions.

    PubMed

    Al-Dirini, R M A; Thewlis, D; Paul, G

    2012-01-01

    Finite Element Modeling (FEM) has become a vital tool in the automotive design and development processes. FEM of the human body is a technique capable of estimating parameters that are difficult to measure in experimental studies with the human body segments being modeled as complex and dynamic entities. Several studies have been dedicated to attain close-to-real FEMs of the human body (Pankoke and Siefert 2007; Amann, Huschenbeth et al. 2009; ESI 2010). The aim of this paper is to identify and appraise the state-of-the art models of the human body which incorporate detailed pelvis and/or lower extremity models. Six databases and search engines were used to obtain literature, and the search was limited to studies published in English since 2000. The initial search results identified 636 pelvis-related papers, 834 buttocks-related papers, 505 thigh-related papers, 927 femur-related papers, 2039 knee-related papers, 655 shank-related papers, 292 tibia-related papers, 110 fibula-related papers, 644 ankle-related papers, and 5660 foot-related papers. A refined search returned 100 pelvis-related papers, 45 buttocks-related papers, 65 thigh-related papers, 162 femur-related papers, 195 knee-related papers, 37 shank-related papers, 80 tibia-related papers, 30 fibula-related papers and 102 ankle-related papers and 246 foot-related papers. The refined literature list was further restricted by appraisal against a modified LOW appraisal criteria. Studies with unclear methodologies, with a focus on populations with pathology or with sport related dynamic motion modeling were excluded. The final literature list included fifteen models and each was assessed against the percentile the model represents, the gender the model was based on, the human body segment/segments included in the model, the sample size used to develop the model, the source of geometric/anthropometric values used to develop the model, the posture the model represents and the finite element solver used for the

  15. Perceived neighborhood characteristics and the functional performance of elderly people in the Belo Horizonte Metropolitan Area, Minas Gerais State, Brazil: a quantile regression analysis.

    PubMed

    Ortiz, Renzo Joel Flores; Ferreira, Fabiane Ribeiro; Lima-Costa, Maria Fernanda; César, Cibele Comini

    2016-12-01

    This study aims to examine the relationship between neighborhood characteristics and the functional performance of elderly people living in the Belo Horizonte metropolitan area, Minas Gerais State, Brazil. Data of a representative sample of 2,033 elderly were analyzed using quantile regression. Functional performance was measured by the number of activities of daily living (ADL) the elderly had difficulty to perform. The neighborhood characteristics evaluated were: maintenance, trust, insecurity and defective sidewalks. Functional performance was found positively associated with the characteristic defective sidewalks, whose effect increased as the number of ADL the elderly had difficulty to perform increased. The results suggest that inadequate sidewalk conditions can contribute to functional losses in elderly people, especially among those who are functionally more compromised.

  16. Surface-active potential of biosurfactants produced in curd whey by Pseudomonas aeruginosa strain-PP2 and Kocuria turfanesis strain-J at extreme environmental conditions.

    PubMed

    Dubey, Kirti V; Charde, Pravin N; Meshram, Sudhir U; Shendre, Latika P; Dubey, Vijay S; Juwarkar, Asha A

    2012-12-01

    Surface-active potential of biosurfactants produced cost-effectively in curd whey by Pseudomonas aeruginosa strain-PP2 and Kocuria turfanesis strain-J were tested using parameters viz. surface tension (ST) reduction, F(CMC) (highest dilution factor to reach critical micelle concentration) and emulsification index (EI-24) of pesticides; monocrotophos and imidacloprid at extreme environmental conditions. Results have shown that ST reduction of biosurfactants was stable at pH 2-11. High F(CMC) of the biosurfactant in the fermented whey at low pH improved emulsification of pesticides. ST marginally increased at 5% and 15% NaCl, resulting in high EI-24 and F(CMC). Over a range of temperatures 30-121 °C, ST remained low with a higher F(CMC) and EI-24 at 60 °C than at 121 and 30 °C. The biosurfactants have shown differences in their surface-active property and have marked specificity to emulsify pesticides in extreme environmental conditions.

  17. Polyhedral ordered LiNi0.5Mn1.5O4 spinel with excellent electrochemical properties in extreme conditions

    NASA Astrophysics Data System (ADS)

    Chen, Zhanjun; Zhao, Ruirui; Li, Aiju; Hu, Hang; Liang, Gaoqin; Lan, Weijie; Cao, Zhifeng; Chen, Hongyu

    2015-01-01

    A polyhedral structured LiNi0.5Mn1.5O4 spinel (denoted as LNMO-P) is synthesized by using a polymer auxiliary method. The results of XRD, FT-IR, Raman, SEM and TEM measurements indicate that the LNMO-P exhibits a polyhedral structure with the size of approximately 2 μm and a major phase of P4332. Extreme condition testing, which means successively testing the rate capability, low-rate cyclability at 25 and 55 °C with the same half-cell as well as the high-rate cyclability at 25 and 55 °C with another half-cell, is also introduced to evaluate the electrochemical properties of the materials. The results indicate that the LNMO-P exhibits an acceptable power density for pure electric vehicle, a higher energy density and excellent cyclability for both low-rate and high-rate cycling at 25 °C; this might be attributed to the fact that the polyhedral structure is favor to lithium ion diffusion and suppression of lattice expansion. Although the capacity retention fades largely under high-rate cycling at 55 °C, this is ascribed to the synergistic effect of the electrolyte decomposition and corrosion reaction rather than the reason of LNMO-P itself. In brief, such a material is quite qualified for the actual application in electric vehicle even in extreme conditions.

  18. Consortium for Health and Military Performance and American College of Sports Medicine consensus paper on extreme conditioning programs in military personnel.

    PubMed

    Bergeron, Michael F; Nindl, Bradley C; Deuster, Patricia A; Baumgartner, Neal; Kane, Shawn F; Kraemer, William J; Sexauer, Lisa R; Thompson, Walter R; O'Connor, Francis G

    2011-01-01

    A potential emerging problem associated with increasingly popularized extreme conditioning programs (ECPs) has been identified by the military and civilian communities. That is, there is an apparent disproportionate musculoskeletal injury risk from these demanding programs, particularly for novice participants, resulting in lost duty time, medical treatment, and extensive rehabilitation. This is a significant and costly concern for the military with regard to effectively maintaining operational readiness of the Force. While there are certain recognized positive aspects of ECPs that address a perceived and/or actual unfulfilled conditioning need for many individuals and military units, these programs have limitations and should be considered carefully. Moreover, certain distinctive characteristics of ECPs appear to violate recognized accepted standards for safely and appropriately developing muscular fitness and are not uniformly aligned with established and accepted training doctrine. Accordingly, practical solutions to improve ECP prescription and implementation and reduce injury risk are of paramount importance.

  19. A Bayesian Approach to Multifractal Extremes

    NASA Astrophysics Data System (ADS)

    Tchiguirinskaia, Ioulia; Schertzer, Daniel; Lovejoy, Shaun

    2013-04-01

    Drivers such as climate change and rapid urbanisation will result in increasing flood problems in urban environments through this century. Problems encountered in existing flood defence strategies are often related to the data non-stationary, long range dependencies and the clustering of extremes often resulting in fat tailed (i.e., a power-law tail) probability distributions. We discuss how to better predict the floods by using a physically based approach established on systems that respect a scale symmetry over a wide range of space-time scales to determine the relationship between flood magnitude and return period for a wide range of aggregation periods. The classical quantile distributions unfortunately rely on two hypotheses that are questionable: stationarity and independency of the components of the time series. We pointed out that beyond the classical sampling of the extremes and its limitations, there is the possibility to eliminate long-range dependency by uncovering a white-noise process whose fractional integration generates the observed long-range dependent process. The results were obtained during the CEATI Project "Multifractals and physically based estimates of extreme floods". The ambition of this project was to investigate very large data sets of reasonable quality (e.g., daily stream flow data recorded for at least 20 years for several thousands of gages distributed all over Canada and the USA). The multifractal parameters such as the mean intermittency parameter and the multifractality index were estimated on 8332 time series. The results confirm the dependence of multifractal parameter estimates on the length of available data. Then developing a metric for parameter estimation error became a principal step in uncertainty evaluation with respect to the multifractal estimates. A technique for estimating confidence intervals with the help of a Bayesian approach was developed. A detailed comparison of multifractal quantile plots and paleoflood data

  20. Apparatus for measuring the emittance of materials from far infrared to visible wavelengths in extreme conditions of temperature

    NASA Astrophysics Data System (ADS)

    De Sousa Meneses, D.; Melin, P.; del Campo, L.; Cosson, L.; Echegut, P.

    2015-03-01

    A computer controlled circular turntable equipped with a blackbody reference and an integrated axisymmetric heating system based on a CO2 laser is at the heart of the reported device. It allows performing emittance measurements in the spectral domain ranging from far infrared up to visible light and in a wide range of temperature. The apparatus includes two spectrometers and was built to achieve optimal experimental conditions of measurement, i.e. environmental stability and single optical path for the acquisition of the thermal fluxes. The specific design of the apparatus is firstly described; applied procedures for the characterization of the blackbody reference, laser heating and the retrieval of the emittance spectra are given after. Finally measurements obtained for ruby, NdGaO3 and platinum are presented to illustrate the capacities of the apparatus.

  1. Serum POP concentrations are highly predictive of inner blubber concentrations at two extremes of body condition in northern elephant seals.

    PubMed

    Peterson, Michael G; Peterson, Sarah H; Debier, Cathy; Covaci, Adrian; Dirtu, Alin C; Malarvannan, Govindan; Crocker, Daniel E; Costa, Daniel P

    2016-11-01

    Long-lived, upper trophic level marine mammals are vulnerable to bioaccumulation of persistent organic pollutants (POPs). Internal tissues may accumulate and mobilize POP compounds at different rates related to the body condition of the animal and the chemical characteristics of individual POP compounds; however, collection of samples from multiple tissues is a major challenge to ecotoxicology studies of free-ranging marine mammals and the ability to predict POP concentrations in one tissue from another tissue remains rare. Northern elephant seals (Mirounga angustirostris) forage on mesopelagic fish and squid for months at a time in the northeastern Pacific Ocean, interspersed with two periods of fasting on land, which results in dramatic seasonal fluctuations in body condition. Using northern elephant seals, we examined commonly studied tissues in mammalian toxicology to describe relationships and determine predictive equations among tissues for a suite of POP compounds, including ΣDDTs, ΣPCBs, Σchlordanes, and ΣPBDEs. We collected paired blubber (inner and outer) and blood serum samples from adult female and male seals in 2012 and 2013 at Año Nuevo State Reserve (California, USA). For females (N = 24), we sampled the same seals before (late in molting fast) and after (early in breeding fast) their approximately seven month foraging trip. For males, we sampled different seals before (N = 14) and after (N = 15) their approximately four month foraging trip. We observed strong relationships among tissues for many, but not all compounds. Serum POP concentrations were strong predictors of inner blubber POP concentrations for both females and males, while serum was a more consistent predictor of outer blubber for males than females. The ability to estimate POP blubber concentrations from serum, or vice versa, has the potential to enhance toxicological assessment and physiological modeling. Furthermore, predictive equations may illuminate commonalities or

  2. Constraints on Earth's inner core composition inferred from measurements of the sound velocity of hcp-iron in extreme conditions.

    PubMed

    Sakamaki, Tatsuya; Ohtani, Eiji; Fukui, Hiroshi; Kamada, Seiji; Takahashi, Suguru; Sakairi, Takanori; Takahata, Akihiro; Sakai, Takeshi; Tsutsui, Satoshi; Ishikawa, Daisuke; Shiraishi, Rei; Seto, Yusuke; Tsuchiya, Taku; Baron, Alfred Q R

    2016-02-01

    Hexagonal close-packed iron (hcp-Fe) is a main component of Earth's inner core. The difference in density between hcp-Fe and the inner core in the Preliminary Reference Earth Model (PREM) shows a density deficit, which implies an existence of light elements in the core. Sound velocities then provide an important constraint on the amount and kind of light elements in the core. Although seismological observations provide density-sound velocity data of Earth's core, there are few measurements in controlled laboratory conditions for comparison. We report the compressional sound velocity (V P) of hcp-Fe up to 163 GPa and 3000 K using inelastic x-ray scattering from a laser-heated sample in a diamond anvil cell. We propose a new high-temperature Birch's law for hcp-Fe, which gives us the V P of pure hcp-Fe up to core conditions. We find that Earth's inner core has a 4 to 5% smaller density and a 4 to 10% smaller V P than hcp-Fe. Our results demonstrate that components other than Fe in Earth's core are required to explain Earth's core density and velocity deficits compared to hcp-Fe. Assuming that the temperature effects on iron alloys are the same as those on hcp-Fe, we narrow down light elements in the inner core in terms of the velocity deficit. Hydrogen is a good candidate; thus, Earth's core may be a hidden hydrogen reservoir. Silicon and sulfur are also possible candidates and could show good agreement with PREM if we consider the presence of some melt in the inner core, anelasticity, and/or a premelting effect.

  3. Surgery under extreme conditions in the aftermath of the 2010 Haiti earthquake: the importance of regional anesthesia.

    PubMed

    Missair, Andres; Gebhard, Ralf; Pierre, Edgar; Cooper, Lebron; Lubarsky, David; Frohock, Jeffery; Pretto, Ernesto A

    2010-01-01

    The 12 January 2010 earthquake that struck Port-au-Prince, Haiti caused >200,000 deaths, thousands of injuries requiring immediate surgical interventions, and 1.5 million internally displaced survivors. The earthquake destroyed or disabled most medical facilities in the city, seriously hampering the ability to deliver immediate life- and limb-saving surgical care. A Project Medishare/University of Miami Miller School of Medicine trauma team deployed to Haiti from Miami within 24 hours of the earthquake. The team began work at a pre-existing tent facility in the United Nations (UN) compound based at the airport, where they encountered 225 critically injured patients. However, non-sterile conditions, no means to administer oxygen, the lack of surgical equipment and supplies, and no anesthetics precluded the immediate delivery of general anesthesia. Despite these limitations, resuscitative care was administered, and during the first 72 hours following the event, some amputations were performed with local anesthesia. Because of these austere conditions, an anesthesiologist, experienced and equipped to administer regional block anesthesia, was dispatched three days later to perform anesthesia for limb amputations, debridements, and wound care using single shot block anesthesia until a better equipped tent facility was established. After four weeks, the relief effort evolved into a 250-bed, multi-specialty trauma/intensive care center staffed with >200 medical, nursing, and administrative staff. Within that timeframe, the facility and its staff completed 1,000 surgeries, including spine and pediatric neurological procedures, without major complications. This experience suggests that when local emergency medical resources are completely destroyed or seriously disabled, a surgical team staffed and equipped to provide regional nerve block anesthesia and acute pain management can be dispatched rapidly to serve as a bridge to more advanced field surgical and intensive care

  4. X-ray diffraction experiments on the Materials in Extreme Conditions (MEC) LCLS x-ray FEL beamline

    NASA Astrophysics Data System (ADS)

    Smith, Raymond; Fratanduono, Dayne; Wicks, June; Duffy, Tom; Lee, Hae Ja; Granados, Eduardo; Heimann, Philip; Gleason, Arianna; Bolme, Cynthia; Swift, Damian; Coppari, Federica; Eggert, Jon; Collins, Rip

    2015-06-01

    The experiments described here were conducted on the MEC beamline hutch at the SLAC Linac Coherent Light Source. A 10 ns 527 nm laser pulse was used to shock compress 60-100 μm thick NaCl and Graphite samples. LCLS x-rays (40 fs, 8 keV), scattered off the shocked sample, were recorded on several pixel array detectors positioned downstream. The diffracted x-ray pattern allows us to determine changes in crystal structure at Mbar pressures and over nanosecond timescales. In this talk we detail the experimental setup, the current capabilities of the MEC laser and the considerations for optimizing the target design. We will describe the wave interactions within the shock-compressed target and the use of a 1D hydrocode to describe the pressure, temperature and density conditions within the target assembly as a function of time and Lagrangian position. We present observations of the B1-B2 phase transition in NaCl and subsequent back transformation during release to ambient pressure, and compare these findings to gas gun and static data. We also present results from a preliminary study of the shock-induced graphite to diamond transformation.

  5. A theoretical study of the stability of anionic defects in cubic ZrO2 at extreme conditions

    DOE PAGES

    Samanta, Amit

    2016-02-19

    Using first principles density functional theory calculations, we present a study of the structure, mobility, and the thermodynamic stability of anionic defects in the high-temperature cubic phase of ZrO2. Our results suggest that the local structure of an oxygen interstitial depends on the charge state and the cubic symmetry of the anionic sublattice is unstable at 0 K. In addition, the oxygen interstitials and the vacancies exhibit symmetry breaking transitions to low-energy structures with tetragonal distortion of the oxygen sublattice at 0 K. However, the vibrational entropy stabilizes the defect structures with cubic symmetry at 2600–2980 K. The formation freemore » energies of the anionic defects and Gibbs free energy changes associated with different defect reactions are calculated by including the vibrational free energy contributions and the effect of pressure on these defect structures. By analyzing the defect chemistry, we obtain the defect concentrations at finite temperature and pressure conditions using the zero temperature ab initio results as input and find that at low oxygen partial pressures, neutral oxygen vacancies are most dominant and at high oxygen partial pressures, doubly charged anionic defects are dominant. As a result, the relevance of the results to the thermal protective coating capabilities of zirconium-based ceramic composites is elucidated.« less

  6. Magneto-hydrodynamic simulation of hypervelocity neutral plasma jets and their interactions with materials generating extreme conditions

    NASA Astrophysics Data System (ADS)

    Subramaniam, Vivek; Raja, Laxminarayan; Sitaraman, Hariswaran

    2014-10-01

    The development of a Magneto-hydrodynamics (MHD) numerical tool to study high density thermal plasma in a co-axial plasma gun is presented. The MHD governing equations are numerically solved using a matrix free implicit scheme in an unstructured grid finite volume framework. The MHD model is used to characterize the high energy jet which emanates from the accelerator. The solver is then used to predict the conditions created at the surface of a flat plate placed at a fixed distance from the exit of the gun. The model parameters are adjusted so that the energy density of the jet impacting the plate is of the same order of magnitude as that of the Edge Localized Mode (ELM) disruptions in thermonuclear fusion reactors. The idea is to use the pressure and temperature on the plate surface to obtain an estimate of the stress created on the plate due to jet impact. The model is used to quantify damage caused by ELM disruptions on the confining material surface.

  7. A theoretical study of the stability of anionic defects in cubic ZrO2 at extreme conditions

    SciTech Connect

    Samanta, Amit

    2016-02-19

    Using first principles density functional theory calculations, we present a study of the structure, mobility, and the thermodynamic stability of anionic defects in the high-temperature cubic phase of ZrO2. Our results suggest that the local structure of an oxygen interstitial depends on the charge state and the cubic symmetry of the anionic sublattice is unstable at 0 K. In addition, the oxygen interstitials and the vacancies exhibit symmetry breaking transitions to low-energy structures with tetragonal distortion of the oxygen sublattice at 0 K. However, the vibrational entropy stabilizes the defect structures with cubic symmetry at 2600–2980 K. The formation free energies of the anionic defects and Gibbs free energy changes associated with different defect reactions are calculated by including the vibrational free energy contributions and the effect of pressure on these defect structures. By analyzing the defect chemistry, we obtain the defect concentrations at finite temperature and pressure conditions using the zero temperature ab initio results as input and find that at low oxygen partial pressures, neutral oxygen vacancies are most dominant and at high oxygen partial pressures, doubly charged anionic defects are dominant. As a result, the relevance of the results to the thermal protective coating capabilities of zirconium-based ceramic composites is elucidated.

  8. The use of an electrothermal plasma gun to simulate the extremely high heat flux conditions of a tokamak disruption

    NASA Astrophysics Data System (ADS)

    Gilligan, John; Bourham, Mohamed

    1993-09-01

    Disruption damage conditions for future large tokamaks like ITER are nearly impossible to simulate on current tokamaks. The electrothermal plasma source SIRENS has been designed, constructed, and operated to produce high density (> 1025/m3), low temperature (1-3 eV) plasma formed by the ablation of the insulator with currents of up to 100 kA (100 μs pulse length) and energies up to 15 kJ. The source heat fluence (variable from 0.2 to 7 MJ/m2) is adequate for simulation of the thermal quench phase of plasma disruption in future fusion tokamaks. Different materials have been exposed to the high heat flux in SIRENS, where comparative erosion behavior was obtained. Vapor shield phenomena has been characterized for different materials, and the energy transmission factor through the shielding layer is obtained. The device is also equipped with a magnet capable of producing a parallel magnetic field (up to 16 T) over a 8 msec pulse length. The magnetic field is produced to decrease the turbulent energy transport through the vapor shield, which provides further reduction of surface erosion (magnetic vapor shield effect).

  9. The use of an electrothermal plasma gun to simulate the extremely high heat flux conditions of a tokamak disruption

    SciTech Connect

    Gilligan, J.; Bourham, M. )

    1993-09-01

    Disruption damage conditions for future large tokamaks like ITER are nearly impossible to simulate on current tokamaks. The electrothermal plasma source SIRENS has been designed, constructed, and operated to produce high density (> 10[sup 25]/m[sup 3]), low temperature (1-3 eV) plasma formed by the ablation of the insulator with currents of up to 100 kA (100 [mu]s pulse length) and energies up to 15 kJ. The source heat fluence (variable from 0.2 to 7 MJ/m[sup 2]) is adequate for simulation of the thermal quench phase of plasma disruption in future fusion tokamaks. Different materials have been exposed to the high heat flux in SIRENS, where comparative erosion behavior was obtained. Vapor shield phenomena has been characterized for different materials, and the energy transmission factor through the shielding layer is obtained. The device is also equipped with a magnet capable of producing a parallel magnetic field (up to 16 T) over a 8 msec pulse length. The magnetic field is produced to decrease the turbulent energy transport through the vapor shield, which provides further reduction of surface erosion (magnetic vapor shield effect).

  10. Temperature and moisture conditions for life in the extreme arid region of the Atacama desert: four years of observations including the El Nino of 1997-1998

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.; Friedmann, E. Imre; Gomez-Silva, Benito; Caceres-Villanueva, Luis; Andersen, Dale T.; Landheim, Ragnhild

    2003-01-01

    The Atacama along the Pacific Coast of Chile and Peru is one of the driest and possibly oldest deserts in the world. It represents an extreme habitat for life on Earth and is an analog for life in dry conditions on Mars. We report on four years (September 1994-October 1998) of climate and moisture data from the extreme arid region of the Atacama. Our data are focused on understanding moisture sources and their role in creating suitable environments for photosynthetic microorganisms in the desert surface. The average air temperature was 16.5 degrees C and 16.6 degrees C in 1995 and 1996, respectively. The maximum air temperature recorded was 37.9 degrees C, and the minimum was -5.7 degrees C. Annual average sunlight was 336 and 335 W m(-2) in 1995 and 1996, respectively. Winds averaged a few meters per second, with strong fohn winds coming from the west exceeding 12 m s(-1). During our 4 years of observation there was only one significant rain event of 2.3 mm, which occurred near midnight local time. We suggest that this event was a rainout of a heavy fog. It is of interest that the strong El Nino of 1997-1998 brought heavy rainfall to the deserts of Peru, but did not bring significant rain to the central Atacama in Chile. Dew occurred at our station frequently following high nighttime relative humidity, but is not a significant source of moisture in the soil or under stones. Groundwater also does not contribute to surface moisture. Only the one rain event of 2.3 mm resulted in liquid water in the soil and beneath stones for a total of only 65-85 h over 4 years. The paucity of liquid water under stones is consistent with the apparent absence of hypolithic (under-stone) cyanobacteria, the only known primary producers in such extreme deserts.

  11. Effects of extreme thermal conditions on plasticity in breeding phenology and double-broodedness of Great Tits and Blue Tits in central Poland in 2013 and 2014.

    PubMed

    Glądalski, Michał; Bańbura, Mirosława; Kaliński, Adam; Markowski, Marcin; Skwarska, Joanna; Wawrzyniak, Jarosław; Zieliński, Piotr; Bańbura, Jerzy

    2016-11-01

    Many avian species in Europe breed earlier as a result of higher temperatures caused by global climate changes. Climate change means not only higher temperatures but also more frequent extreme weather events, sometimes contrasting with the long-term trends. It was suggested that we should look closely at every extreme phenomenon and its consequences for the phenology of organisms. Examining the limits of phenotypic plasticity may be an important goal for future research. Extremely low spring temperatures in 2013 (coldest spring in 40 years) resulted in birds laying unusually late, and it was followed in 2014 by the earliest breeding season on record (warmest spring in 40 years). Here, we present results concerning breeding phenology and double-broodedness in the Great Tit (Parus major) and the Blue Tit (Cyanistes caeruleus) in 2013 and 2014 in an urban parkland and a deciduous forest in central Poland. Great Tits started laying eggs 18.2 days later in 2013 than in 2014 in the parkland, whereas the analogous difference was 21.1 days in the forest. Blue Tits started laying eggs in the parkland 18.5 days later in 2013 than in 2014, while the analogous difference was 21.6 days in the forest. The difference in the proportion of second clutches in Great Tits between 2013 (fewer second clutches) and 2014 (more second clutches) was highly significant in the parkland and in the forest. This rather large extent of breeding plasticity has developed in reaction to challenges of irregular inter-annual variability of climatic conditions. Such a buffer of plasticity may be sufficient for Blue Tits and Great Tits to adjust the timing of breeding to the upcoming climate changes.

  12. Effects of extreme thermal conditions on plasticity in breeding phenology and double-broodedness of Great Tits and Blue Tits in central Poland in 2013 and 2014

    NASA Astrophysics Data System (ADS)

    Glądalski, Michał; Bańbura, Mirosława; Kaliński, Adam; Markowski, Marcin; Skwarska, Joanna; Wawrzyniak, Jarosław; Zieliński, Piotr; Bańbura, Jerzy

    2016-11-01

    Many avian species in Europe breed earlier as a result of higher temperatures caused by global climate changes. Climate change means not only higher temperatures but also more frequent extreme weather events, sometimes contrasting with the long-term trends. It was suggested that we should look closely at every extreme phenomenon and its consequences for the phenology of organisms. Examining the limits of phenotypic plasticity may be an important goal for future research. Extremely low spring temperatures in 2013 (coldest spring in 40 years) resulted in birds laying unusually late, and it was followed in 2014 by the earliest breeding season on record (warmest spring in 40 years). Here, we present results concerning breeding phenology and double-broodedness in the Great Tit ( Parus major) and the Blue Tit ( Cyanistes caeruleus) in 2013 and 2014 in an urban parkland and a deciduous forest in central Poland. Great Tits started laying eggs 18.2 days later in 2013 than in 2014 in the parkland, whereas the analogous difference was 21.1 days in the forest. Blue Tits started laying eggs in the parkland 18.5 days later in 2013 than in 2014, while the analogous difference was 21.6 days in the forest. The difference in the proportion of second clutches in Great Tits between 2013 (fewer second clutches) and 2014 (more second clutches) was highly significant in the parkland and in the forest. This rather large extent of breeding plasticity has developed in reaction to challenges of irregular inter-annual variability of climatic conditions. Such a buffer of plasticity may be sufficient for Blue Tits and Great Tits to adjust the timing of breeding to the upcoming climate changes.

  13. Thermostatic and rheological responses of DPD fluid to extreme shear under modified Lees-Edwards boundary condition.

    PubMed

    Moshfegh, Abouzar; Ahmadi, Goodarz; Jabbarzadeh, Ahmad

    2015-12-01

    Thermodynamic, hydrodynamic and rheological interactions between velocity-dependent thermostats of Lowe-Andersen (LA) and Nosé-Hoover-Lowe-Andersen (NHLA), and modified Lees-Edwards (M-LEC) boundary condition were studied in the context of Dissipative Particle Dynamics method. Comparisons were made with original Lees-Edwards method to characterise the improvements that M-LEC offers in conserving the induced shear momentum. Different imposed shear velocities, heat bath collision/exchange frequencies and thermostating probabilities were considered. The presented analyses addressed an unusual discontinuity in momentum transfer that appeared in form of nonphysical jumps in velocity and temperature profiles. The usefulness of M-LEC was then quantified by evaluating the enhancements in obtained effective shear velocity, effective shear rate, Péclet number, and dynamic viscosity. System exchange frequency (Γ) with Maxwellian heat bath was found to play an important role, in that its larger values facilitated achieving higher shear rates with proper temperature control at the cost of deviation from an ideal momentum transfer. Similar dynamic viscosities were obtained under both shearing modes between LA and NHLA thermostats up to Γ = 10, whilst about twice the range of viscosity (1 < η < 20) was calculated for M-LEC at larger probabilities (ΓΔt > %). The main benefits of this modification were to facilitate momentum flow from shear boundaries to the system bulk. In addition, it was found that there exist upper thresholds for imposing shear on the system beyond which temperature cannot be controlled properly and nonphysical jumps reappear.

  14. Production of Secondary Metabolites in Extreme Environments: Food- and Airborne Wallemia spp. Produce Toxic Metabolites at Hypersaline Conditions

    PubMed Central

    Frisvad, Jens C.; Kocev, Dragi; Džeroski, Sašo; Gunde-Cimerman, Nina

    2016-01-01

    The food- and airborne fungal genus Wallemia comprises seven xerophilic and halophilic species: W. sebi, W. mellicola, W. canadensis, W. tropicalis, W. muriae, W. hederae and W. ichthyophaga. All listed species are adapted to low water activity and can contaminate food preserved with high amounts of salt or sugar. In relation to food safety, the effect of high salt and sugar concentrations on the production of secondary metabolites by this toxigenic fungus was investigated. The secondary metabolite profiles of 30 strains of the listed species were examined using general growth media, known to support the production of secondary metabolites, supplemented with different concentrations of NaCl, glucose and MgCl2. In more than two hundred extracts approximately one hundred different compounds were detected using high-performance liquid chromatography-diode array detection (HPLC-DAD). Although the genome data analysis of W. mellicola (previously W. sebi sensu lato) and W. ichthyophaga revealed a low number of secondary metabolites clusters, a substantial number of secondary metabolites were detected at different conditions. Machine learning analysis of the obtained dataset showed that NaCl has higher influence on the production of secondary metabolites than other tested solutes. Mass spectrometric analysis of selected extracts revealed that NaCl in the medium affects the production of some compounds with substantial biological activities (wallimidione, walleminol, walleminone, UCA 1064-A and UCA 1064-B). In particular an increase in NaCl concentration from 5% to 15% in the growth media increased the production of the toxic metabolites wallimidione, walleminol and walleminone. PMID:28036382

  15. Reduced mass absorption cross section of black carbon under an extremely polluted condition in southern suburb of Beijing, China

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wang, S.; Hua, Y.; Jiang, J.; Zhao, B.; Xing, J.; Jiang, S.; Cai, R.; Hao, J.

    2015-12-01

    Black carbon (BC), as one of the most important climate-warming agent, has been the focus of extensive studies in recent years. Mass absorption cross section (MAC) is a key parameter to assess the radiative forcing by linking the mass concentration with the radiation effect. In this study, we conducted a two-month field campaign in Beijing, the capital city of China, in a October and November, a period that severe PM2.5 pollution occurred. PM2.5 offline samples were collected daily onto quartz fiber filters by a Partisol 2300 Speciation Sampler. Size-segregated aerosol samples of the size ranged from 0.056 - 10 µm with 11 bins were collected onto quartz fiber filters by a cascade impactor developed by National Chiao Tung University (NCTU). A DRI Model 2001 thermal/optical carbon analyzer were used to analyze the samples. The MAC of BC is measured by a thermal-optical carbon analyzer. In contrast to previous studies, we found that after "shadow effect" has been corrected, the MAC is reduced from 14 m2/g to 5 m2/g with the increase of BC concentrations. There was no significant correlation between MAC with secondary inorganic aerosols. Such unexpected reduction in MAC of BC is possibly associated with the microphysical property of BC modulated under serious pollution condition. The study of size-segregated species concentrations shows that the size distribution of BC is unimodal, with the peak around 0.56-1.8 µm. The results also show the proportion of BC larger than 0.56 µm is significant increased. Additionally, "soot superaggregate", as distinct from conventional sub-micron aggregates, was found in the bins of BC with size ranged from 1 to1.8 µm. Such high carbon aerosol proportion and large BC size distribution suggests that emissions from residential biomass burning is dominant during this episode. This study suggests that the optical property for BC from different emission sectors should be considered in the estimation of radiative forcing.

  16. Understanding Changes in frequency of extreme rainfall over Central India

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, C. B.; Lall, U.

    2010-12-01

    There has been much recent interest in examining changes in rainfall extremes of the Indian Monsoon, especially over the so-called core monsoon (Central Indian) region. Few such studies however consider the attribution to climatic variables (indices) of the observed variability. Using gridded daily rainfall data from 1901-2004, an attempt is made here to understand the evolution of frequency of extreme rainfall over the core monsoon region, and its relationship to relevant climatic indices(Equatorial India Ocean SST, an index of the Indian Ocean Dipole, NINO indices (NINO 3.4 and 1.2)). Using an objective definition of "extreme rainfall"( such that the thresholds chosen vary with grids but not overtime), two types of analyses are carried out. First, using spectral analyses (Wavelet and Multi-Taper), the relationship between climate indices and frequency of extremes are investigated. Subsequently, in a very general framework of quantile regression for count data, the existence of time trends are analyzed jointly with significance of climate indices at distinct quantiles. This approach allows for separate effects of the climate indices at different quanitles, thereby allowing for a more detailed investigation of the various relationships of interest postulated in the literature.

  17. Expert consensus on facilitators and barriers to return-to-work following surgery for non-traumatic upper extremity conditions: a Delphi study.

    PubMed

    Peters, S E; Johnston, V; Ross, M; Coppieters, M W

    2017-02-01

    This Delphi study aimed to reach consensus on important facilitators and barriers for return-to-work following surgery for non-traumatic upper extremity conditions. In Round 1, experts ( n = 42) listed 134 factors, which were appraised in Rounds 2 and 3. Consensus (⩾85% agreement) was achieved for 13 facilitators (high motivation to return-to-work; high self-efficacy for return-to-work and recovery; availability of modified/alternative duties; flexible return-to-work arrangements; positive coping skills; limited heavy work exertion; supportive return-to-work policies; supportive supervisor/management; no catastrophic thinking; no fear avoidance to return-to-work; no fear avoidance to pain/activity; return to meaningful work duties; high job satisfaction) and six barriers (mood disorder diagnosis; pain/symptoms at more than one musculoskeletal site; heavy upper extremity exertions at work; lack of flexible return-to-work arrangements; lack of support from supervisor/management; high level of pain catastrophizing). Future prognostic studies are required to validate these biopsychosocial factors to further improve return-to-work outcomes.

  18. The Use of Quantile Regression to Forecast Higher Than Expected Respiratory Deaths in a Daily Time Series: A Study of New York City Data 1987-2000

    PubMed Central

    Soyiri, Ireneous N.; Reidpath, Daniel D.

    2013-01-01

    Forecasting higher than expected numbers of health events provides potentially valuable insights in its own right, and may contribute to health services management and syndromic surveillance. This study investigates the use of quantile regression to predict higher than expected respiratory deaths. Data taken from 70,830 deaths occurring in New York were used. Temporal, weather and air quality measures were fitted using quantile regression at the 90th-percentile with half the data (in-sample). Four QR models were fitted: an unconditional model predicting the 90th-percentile of deaths (Model 1), a seasonal / temporal (Model 2), a seasonal, temporal plus lags of weather and air quality (Model 3), and a seasonal, temporal model with 7-day moving averages of weather and air quality. Models were cross-validated with the out of sample data. Performance was measured as proportionate reduction in weighted sum of absolute deviations by a conditional, over unconditional models; i.e., the coefficient of determination (R1). The coefficient of determination showed an improvement over the unconditional model between 0.16 and 0.19. The greatest improvement in predictive and forecasting accuracy of daily mortality was associated with the inclusion of seasonal and temporal predictors (Model 2). No gains were made in the predictive models with the addition of weather and air quality predictors (Models 3 and 4). However, forecasting models that included weather and air quality predictors performed slightly better than the seasonal and temporal model alone (i.e., Model 3 > Model 4 > Model 2) This study provided a new approach to predict higher than expected numbers of respiratory related-deaths. The approach, while promising, has limitations and should be treated at this stage as a proof of concept. PMID:24147122

  19. The use of quantile regression to forecast higher than expected respiratory deaths in a daily time series: a study of New York City data 1987-2000.

    PubMed

    Soyiri, Ireneous N; Reidpath, Daniel D

    2013-01-01

    Forecasting higher than expected numbers of health events provides potentially valuable insights in its own right, and may contribute to health services management and syndromic surveillance. This study investigates the use of quantile regression to predict higher than expected respiratory deaths. Data taken from 70,830 deaths occurring in New York were used. Temporal, weather and air quality measures were fitted using quantile regression at the 90th-percentile with half the data (in-sample). Four QR models were fitted: an unconditional model predicting the 90th-percentile of deaths (Model 1), a seasonal/temporal (Model 2), a seasonal, temporal plus lags of weather and air quality (Model 3), and a seasonal, temporal model with 7-day moving averages of weather and air quality. Models were cross-validated with the out of sample data. Performance was measured as proportionate reduction in weighted sum of absolute deviations by a conditional, over unconditional models; i.e., the coefficient of determination (R1). The coefficient of determination showed an improvement over the unconditional model between 0.16 and 0.19. The greatest improvement in predictive and forecasting accuracy of daily mortality was associated with the inclusion of seasonal and temporal predictors (Model 2). No gains were made in the predictive models with the addition of weather and air quality predictors (Models 3 and 4). However, forecasting models that included weather and air quality predictors performed slightly better than the seasonal and temporal model alone (i.e., Model 3 > Model 4 > Model 2) This study provided a new approach to predict higher than expected numbers of respiratory related-deaths. The approach, while promising, has limitations and should be treated at this stage as a proof of concept.

  20. Large-scale processes relevant to extreme hot and dry summer conditions in the South Central U.S.: Comparing observations with CMIP5 simulations

    NASA Astrophysics Data System (ADS)

    Ryu, J. H.; Hayhoe, K.

    2015-12-01

    In recent years, record high temperatures combined with extreme precipitation deficits have led to record-breaking droughts that have affected the Southern Plains. The 2011 drought and heat wave caused over $12B in damages across the SP region. Here, we combine station data with reanalysis to identify the hottest summers in the last 30 years. Consistent with previous analysis, we find that very hot temperatures over the region are highly correlated both precipitation as well as soil moisture deficits. Atmospheric circulation in the SP region during summer is generally dominated by the North Atlantic Subtropical High (NASH), which extends westward from its winter position over the Atlantic. The anticyclonic circulation could play a role in reducing convective precipitation as well as preventing disturbances from moving into the SP region. Examining the NARR reanalysis for the hottest summers of record, we find that the anticyclonic circulation associated with the NASH extends over the SP region relatively earlier in the summer and results in a comparatively stronger anticyclonic circulation, which in turn seems to be influenced by the large-scale climate variability. Specifically, the negative phase of the Pacific/North American (PNA) teleconnection pattern is characterized by high pressure anomalies across the southeastern and south central U.S. during summer. The two hottest years in the last three decades (1980 and 2011) also correlate with the two strongest negative PNA phases over that time. One of the anticipated impacts of human-induced climate change is the increased risk of hot and potentially dry summers across the SP region. For that reason, we also assess to what extent CMIP5 models are able simulate the large-scale processes that, according to reanalysis, are closely related to extreme hot and dry summer conditions over the Southern Plains. Composite maps of extreme heat years simulated in the models do display a stronger-than-average anticyclonic

  1. A Quantile Regression Approach to Understanding the Relations among Morphological Awareness, Vocabulary, and Reading Comprehension in Adult Basic Education Students

    ERIC Educational Resources Information Center

    Tighe, Elizabeth L.; Schatschneider, Christopher

    2016-01-01

    The purpose of this study was to investigate the joint and unique contributions of morphological awareness and vocabulary knowledge at five reading comprehension levels in adult basic education (ABE) students. We introduce the statistical technique of multiple quantile regression, which enabled us to assess the predictive utility of morphological…

  2. [The ability for psych self-regulation as a factor in resistance to the stresses in extreme conditions of space flight].

    PubMed

    Vinokhodova, A G; Bystritskaia, A F; Smirnova, T M

    2005-01-01

    Significance of the ability for psych self-regulation in the context of resistance to the stresses of space flight was studied in an experiment with 9 test-subjects simulating such factors of space flights as 8 to 9-day isolation and confinement, some physiological effects of microgravity in a head-down position at -8 degrees for 7 d, artificial climate, and implementation of dock and piloting operations. Stress resistance, self-regulation, mental performance and behavior were assessed with the use of computerized tests "Mirror coordinograph", "Relaxometer", and "SOPR-monitoring". The ability to voluntary control psych was shown to be favorable to stress-resistance and rapid recovery of mental efficiency after the natural decline in consequence of the experimental simulation. The ability for psych self-regulation is one of the major criteria of professional selection for exposure to extreme conditions.

  3. Mercury critical concentrations to Enchytraeus crypticus (Annelida: Oligochaeta) under normal and extreme conditions of moisture in tropical soils - Reproduction and survival.

    PubMed

    Buch, Andressa Cristhy; Schmelz, Rüdiger M; Niva, Cintia Carla; Correia, Maria Elizabeth Fernandes; Silva-Filho, Emmanoel Vieira

    2017-03-05

    Soil provides many ecosystem services that are essential to maintain its quality and healthy development of the flora, fauna and human well-being. Environmental mercury levels may harm the survival and diversity of the soil fauna. In this respect, efforts have been made to establish limit values of mercury (Hg) in soils to terrestrial fauna. Soil organisms such as earthworms and enchytraeids have intimate contact with trace metals in soil by their oral and dermal routes, reflecting the potentially adverse effects of this contaminant. The main goal of this study was to obtain Hg critical concentrations under normal and extreme conditions of moisture in tropical soils to Enchytraeus crypticus to order to assess if climate change may potentiate their acute and chronic toxicity effects. Tropical soils were sampled from of two Forest Conservation Units of the Rio de Janeiro State - Brazil, which has been contaminated by Hg atmospheric depositions. Worms were exposed to three moisture conditions, at 20%, 50% and 80% of water holding capacity, respectively, and in combination with different Hg (HgCl2) concentrations spiked in three types of tropical soil (two natural soils and one artificial soil). The tested concentrations ranged from 0 to 512mg Hg kg(-1) dry weight. Results indicate that the Hg toxicity is higher under increased conditions of moisture, significantly affecting survival and reproduction rate.

  4. Using instant messaging to enhance the interpersonal relationships of Taiwanese adolescents: evidence from quantile regression analysis.

    PubMed

    Lee, Yueh-Chiang; Sun, Ya Chung

    2009-01-01

    Even though use of the internet by adolescents has grown exponentially, little is known about the correlation between their interaction via Instant Messaging (IM) and the evolution of their interpersonal relationships in real life. In the present study, 369 junior high school students in Taiwan responded to questions regarding their IM usage and their dispositional measures of real-life interpersonal relationships. Descriptive statistics, factor analysis, and quantile regression methods were used to analyze the data. Results indicate that (1) IM helps define adolescents' self-identity (forming and maintaining individual friendships) and social-identity (belonging to a peer group), and (2) how development of an interpersonal relationship is impacted by the use of IM since it appears that adolescents use IM to improve their interpersonal relationships in real life.

  5. A quantile-based scenario analysis approach to biomass supply chain optimization under uncertainty

    DOE PAGES

    Zamar, David S.; Gopaluni, Bhushan; Sokhansanj, Shahab; ...

    2016-11-21

    Supply chain optimization for biomass-based power plants is an important research area due to greater emphasis on renewable power energy sources. Biomass supply chain design and operational planning models are often formulated and studied using deterministic mathematical models. While these models are beneficial for making decisions, their applicability to real world problems may be limited because they do not capture all the complexities in the supply chain, including uncertainties in the parameters. This study develops a statistically robust quantile-based approach for stochastic optimization under uncertainty, which builds upon scenario analysis. We apply and evaluate the performance of our approach tomore » address the problem of analyzing competing biomass supply chains subject to stochastic demand and supply. Finally, the proposed approach was found to outperform alternative methods in terms of computational efficiency and ability to meet the stochastic problem requirements.« less

  6. A quantile-based scenario analysis approach to biomass supply chain optimization under uncertainty

    SciTech Connect

    Zamar, David S.; Gopaluni, Bhushan; Sokhansanj, Shahab; Newlands, Nathaniel K.

    2016-11-21

    Supply chain optimization for biomass-based power plants is an important research area due to greater emphasis on renewable power energy sources. Biomass supply chain design and operational planning models are often formulated and studied using deterministic mathematical models. While these models are beneficial for making decisions, their applicability to real world problems may be limited because they do not capture all the complexities in the supply chain, including uncertainties in the parameters. This study develops a statistically robust quantile-based approach for stochastic optimization under uncertainty, which builds upon scenario analysis. We apply and evaluate the performance of our approach to address the problem of analyzing competing biomass supply chains subject to stochastic demand and supply. Finally, the proposed approach was found to outperform alternative methods in terms of computational efficiency and ability to meet the stochastic problem requirements.

  7. Quantile-based Bayesian maximum entropy approach for spatiotemporal modeling of ambient air quality levels.

    PubMed

    Yu, Hwa-Lung; Wang, Chih-Hsin

    2013-02-05

    Understanding the daily changes in ambient air quality concentrations is important to the assessing human exposure and environmental health. However, the fine temporal scales (e.g., hourly) involved in this assessment often lead to high variability in air quality concentrations. This is because of the complex short-term physical and chemical mechanisms among the pollutants. Consequently, high heterogeneity is usually present in not only the averaged pollution levels, but also the intraday variance levels of the daily observations of ambient concentration across space and time. This characteristic decreases the estimation performance of common techniques. This study proposes a novel quantile-based Bayesian maximum entropy (QBME) method to account for the nonstationary and nonhomogeneous characteristics of ambient air pollution dynamics. The QBME method characterizes the spatiotemporal dependence among the ambient air quality levels based on their location-specific quantiles and accounts for spatiotemporal variations using a local weighted smoothing technique. The epistemic framework of the QBME method can allow researchers to further consider the uncertainty of space-time observations. This study presents the spatiotemporal modeling of daily CO and PM10 concentrations across Taiwan from 1998 to 2009 using the QBME method. Results show that the QBME method can effectively improve estimation accuracy in terms of lower mean absolute errors and standard deviations over space and time, especially for pollutants with strong nonhomogeneous variances across space. In addition, the epistemic framework can allow researchers to assimilate the site-specific secondary information where the observations are absent because of the common preferential sampling issues of environmental data. The proposed QBME method provides a practical and powerful framework for the spatiotemporal modeling of ambient pollutants.

  8. Environmental influence on mussel (Mytilus edulis) growth - A quantile regression approach

    NASA Astrophysics Data System (ADS)

    Bergström, Per; Lindegarth, Mats

    2016-03-01

    The need for methods for sustainable management and use of coastal ecosystems has increased in the last century. A key aspect for obtaining ecologically and economically sustainable aquaculture in threatened coastal areas is the requirement of geographic information of growth and potential production capacity. Growth varies over time and space and depends on a complex pattern of interactions between the bivalve and a diverse range of environmental factors (e.g. temperature, salinity, food availability). Understanding these processes and modelling the environmental control of bivalve growth has been central in aquaculture. In contrast to the most conventional modelling techniques, quantile regression can handle cases where not all factors are measured and provide the possibility to estimate the effect at different levels of the response distribution and give therefore a more complete picture of the relationship between environmental factors and biological response. Observation of the relationships between environmental factors and growth of the bivalve Mytilus edulis revealed relationships that varied both among level of growth rate and within the range of environmental variables along the Swedish west coast. The strongest patterns were found for water oxygen concentration level which had a negative effect on growth for all oxygen levels and growth levels. However, these patterns coincided with differences in growth among periods and very little of the remaining variability within periods could be explained indicating that interactive processes masked the importance of the individual variables. By using quantile regression and local regression (LOESS) this study was able to provide valuable information on environmental factors influencing the growth of M. edulis and important insight for the development of ecosystem based management tools of aquaculture activities, its use in mitigation efforts and successful management of human use of coastal areas.

  9. A probabilistic spatial dengue fever risk assessment by a threshold-based-quantile regression method.

    PubMed

    Chiu, Chuan-Hung; Wen, Tzai-Hung; Chien, Lung-Chang; Yu, Hwa-Lung

    2014-01-01

    Understanding the spatial characteristics of dengue fever (DF) incidences is crucial for governmental agencies to implement effective disease control strategies. We investigated the associations between environmental and socioeconomic factors and DF geographic distribution, are proposed a probabilistic risk assessment approach that uses threshold-based quantile regression to identify the significant risk factors for DF transmission and estimate the spatial distribution of DF risk regarding full probability distributions. To interpret risk, return period was also included to characterize the frequency pattern of DF geographic occurrences. The study area included old Kaohsiung City and Fongshan District, two areas in Taiwan that have been affected by severe DF infections in recent decades. Results indicated that water-related facilities, including canals and ditches, and various types of residential area, as well as the interactions between them, were significant factors that elevated DF risk. By contrast, the increase of per capita income and its associated interactions with residential areas mitigated the DF risk in the study area. Nonlinear associations between these factors and DF risk were present in various quantiles, implying that water-related factors characterized the underlying spatial patterns of DF, and high-density residential areas indicated the potential for high DF incidence (e.g., clustered infections). The spatial distributions of DF risks were assessed in terms of three distinct map presentations: expected incidence rates, incidence rates in various return periods, and return periods at distinct incidence rates. These probability-based spatial risk maps exhibited distinct DF risks associated with environmental factors, expressed as various DF magnitudes and occurrence probabilities across Kaohsiung, and can serve as a reference for local governmental agencies.

  10. Factors Associated with the Income Distribution of Full-Time Physicians: A Quantile Regression Approach

    PubMed Central

    Shih, Ya-Chen Tina; Konrad, Thomas R

    2007-01-01

    Objective Physician income is generally high, but quite variable; hence, physicians have divergent perspectives regarding health policy initiatives and market reforms that could affect their incomes. We investigated factors underlying the distribution of income within the physician population. Data Sources Full-time physicians (N=10,777) from the restricted version of the 1996–1997 Community Tracking Study Physician Survey (CTS-PS), 1996 Area Resource File, and 1996 health maintenance organization penetration data. Study Design We conducted separate analyses for primary care physicians (PCPs) and specialists. We employed least square and quantile regression models to examine factors associated with physician incomes at the mean and at various points of the income distribution, respectively. We accounted for the complex survey design for the CTS-PS data using appropriate weighted procedures and explored endogeneity using an instrumental variables method. Principal Findings We detected widespread and subtle effects of many variables on physician incomes at different points (10th, 25th, 75th, and 90th percentiles) in the distribution that were undetected when employing regression estimations focusing on only the means or medians. Our findings show that the effects of managed care penetration are demonstrable at the mean of specialist incomes, but are more pronounced at higher levels. Conversely, a gender gap in earnings occurs at all levels of income of both PCPs and specialists, but is more pronounced at lower income levels. Conclusions The quantile regression technique offers an analytical tool to evaluate policy effects beyond the means. A longitudinal application of this approach may enable health policy makers to identify winners and losers among segments of the physician workforce and assess how market dynamics and health policy initiatives affect the overall physician income distribution over various time intervals. PMID:17850525

  11. The Effect of Extreme Obesity on Outcomes of Treatment for Lumbar Spinal Conditions: Subgroup Analysis of the Spine Patient Outcomes Research Trial (SPORT)

    PubMed Central

    McGuire, Kevin J; Khaleel, Mohammed A; Rihn, Jeffrey A; Lurie, Jon D; Zhao, Wenyan; Weinstein, James N

    2015-01-01

    Study Design/Setting SPORT subgroup analysis Objective To evaluate the effect of extreme obesity on management of lumbar spinal stenosis (SpS), degenerative spondylolisthesis (DS), and intervertebral disc herniation (IDH) Summary of Background Data Prior SPORT analyses compared nonobese and obese. This study compares nonobese to class I obesity and class II/III extreme obesity. Methods For SpS, 250/634 nonobese, 104/167 obese, and 59/94 extremely obese patients underwent surgery. For DS, 233/376 nonobese, 90/129 obese, and 66/96 extremely obese patients had surgery. For IDH, 542/854 nonobese, 151/207 obese, 94/129 extremely obese patients had surgery. Outcomes included SF-36, Oswestry Disability Index, Stenosis/Sciatica Bothersomeness Index, Low Back Pain Bothersomeness Index, operative events, complications, and reoperations. Results Extremely obese patients had increased comorbidities. Baseline SF-36 physical function scores were lower for obese; lowest for extremely obese. For SpS, surgical treatment effect and operative events among groups were not significantly different. For DS, 4-year SF-36 physical function scores had greatest treatment effect in extremely obese. This observation was found in most primary outcome measures, and is attributable to the significantly poorer nonoperative outcomes. Operative times and wound infection rates were greatest for the extremely obese. Additional surgery at 3 and 4 years was higher in both obese cohorts. For IDH, extremely obese experienced less improvement post-op than obese and nonobese; however, nonoperative treatment for extremely obese patients was worse, resulting in treatment effect still greater in almost all measures. Operative time was greatest for extremely obese. Blood loss and length of stay was greater for both obese cohorts compared to non-obese. Conclusions Extremely obese with DS experienced longer operative times and increased infection. Operative time was greatest for extremely obese with IDH. DS and

  12. The influence of extreme river discharge conditions on the quality of suspended particulate matter in Rivers Meuse and Rhine (The Netherlands).

    PubMed

    Hamers, Timo; Kamstra, Jorke H; van Gils, Jos; Kotte, Marcel C; van Hattum, Albertus G M

    2015-11-01

    As a consequence of climate change, increased precipitation in winter and longer periods of decreased precipitation in summer are expected to cause more frequent episodes of very high or very low river discharge in the Netherlands. To study the impact of such extreme river discharge conditions on water quality, toxicity profiles and pollutant profiles were determined of suspended particulate matter (SPM) collected from Rivers Meuse and Rhine. Archived (1993-2003) and fresh (2009-2011) SPM samples were selected from the Dutch annual monitoring program of the national water bodies (MWTL), representing episodes with river discharge conditions ranging from very low to regular to very high. SPM extracts were tested in a battery of in vitro bioassays for their potency to interact with the androgen receptor (AR), the estrogen receptor (ER), the arylhydrocarbon receptor (AhR), and the thyroid hormone transporter protein transthyretin (TTR). SPM extracts were further tested for their mutagenic potency (Ames assay) and their potency to inhibit bacterial respiration (Vibrio fischeri bioluminescence assay). Target-analyzed pollutant concentrations of the SPM samples and additional sample information were retrieved from a public database of MWTL results. In vitro toxicity profiles and pollutant profiles were analyzed in relation to discharge conditions and in relation to each other using correlation analysis and multivariate statistics. Compared to regular discharge conditions, composition of SPM during very high River Meuse and Rhine discharges shifted to more coarse, sandy, organic carbon (OC) poor particles. On the contrary, very low discharge led to a shift to more fine, OC rich material, probably dominated by algae. This shift was most evident in River Meuse, which is characterized by almost stagnant water conditions during episodes of drought. During such episodes, SPM extracts from River Meuse demonstrated increased potencies to inhibit bacterial respiration and to

  13. The direct and indirect effects of the negative affectivity trait on self reported physical function among patients with upper extremity conditions.

    PubMed

    Talaei-Khoei, Mojtaba; Mohamadi, Amin; Mellema, Jos J; Tourjee, Stephen M; Ring, David; Vranceanu, Ana-Maria

    2016-12-30

    Negative affectivity is a personality trait that predisposes people to psychological distress and low life satisfaction. Negative affectivity may also affect pain intensity and physical function in patients with musculoskeletal conditions. We explored the association of negative affectivity to pain intensity and self-reported physical function, and tested whether pain intensity mediates the effect of negative affectivity on physical function. In a cross-sectional study, 102 patients with upper extremity musculoskeletal conditions presenting to an orthopedic surgeon completed self-report measures of negative affectivity, pain intensity, and physical function in addition to demographic and injury information. We used the Preacher and Hayes' bootstrapping approach to quantify the indirect effect of negative affectivity on physical function through pain intensity. Negative affectivity correlated with greater pain intensity and lower self-reported physical function significantly. Also, pain intensity mediated the association of negative affectivity with physical function. The indirect effect accounted for one-third of the total effect. To conclude, negative affectivity is associated with decreased engagement in daily life activities both directly, but also indirectly through increased pain intensity. Treatments targeting negative affectivity may be more economical and efficient for alleviation of pain and limitations associated with musculoskeletal illness than those addressing coping strategies or psychological distress.

  14. VARIABLE AND EXTREME IRRADIATION CONDITIONS IN THE EARLY SOLAR SYSTEM INFERRED FROM THE INITIAL ABUNDANCE OF {sup 10}Be IN ISHEYEVO CAIs

    SciTech Connect

    Gounelle, Matthieu; Chaussidon, Marc; Rollion-Bard, Claire

    2013-02-01

    A search for short-lived {sup 10}Be in 21 calcium-aluminum-rich inclusions (CAIs) from Isheyevo, a rare CB/CH chondrite, showed that only 5 CAIs had {sup 10}B/{sup 11}B ratios higher than chondritic correlating with the elemental ratio {sup 9}Be/{sup 11}B, suggestive of in situ decay of this key short-lived radionuclide. The initial ({sup 10}Be/{sup 9}Be){sub 0} ratios vary between {approx}10{sup -3} and {approx}10{sup -2} for CAI 411. The initial ratio of CAI 411 is one order of magnitude higher than the highest ratio found in CV3 CAIs, suggesting that the more likely origin of CAI 411 {sup 10}Be is early solar system irradiation. The low ({sup 26}Al/{sup 27}Al){sub 0} [{<=} 8.9 Multiplication-Sign 10{sup -7}] with which CAI 411 formed indicates that it was exposed to gradual flares with a proton fluence of a few 10{sup 19} protons cm{sup -2}, during the earliest phases of the solar system, possibly the infrared class 0. The irradiation conditions for other CAIs are less well constrained, with calculated fluences ranging between a few 10{sup 19} and 10{sup 20} protons cm{sup -2}. The variable and extreme value of the initial {sup 10}Be/{sup 9}Be ratios in carbonaceous chondrite CAIs is the reflection of the variable and extreme magnetic activity in young stars observed in the X-ray domain.

  15. Upper Extremity Length Equalization

    PubMed Central

    DeCoster, Thomas A.; Ritterbusch, John; Crawford, Mark

    1992-01-01

    Significant upper extremity length inequality is uncommon but can cause major functional problems. The ability to position and use the hand may be impaired by shortness of any of the long bones of the upper extremity. In many respects upper and lower extremity length problems are similar. They most commonly occur after injury to a growing bone and the treatment modalities utilized in the lower extremity may be applied to the upper extremity. These treatment options include epiphysiodesis, shortening osteotomy, angulatory correction osteotomy and lengthening. This report reviews the literature relative to upper extremity length inequality and equalization and presents an algorithm for evaluation and planning appropriate treatment for patients with this condition. This algorithm is illustrated by two clinical cases of posttraumatic shortness of the radius which were effectively treated. ImagesFigure 1Figure 2Figure 3

  16. Nonparametric conditional estimation

    SciTech Connect

    Owen, A.B.

    1987-01-01

    Many nonparametric regression techniques (such as kernels, nearest neighbors, and smoothing splines) estimate the conditional mean of Y given X = chi by a weighted sum of observed Y values, where observations with X values near chi tend to have larger weights. In this report the weights are taken to represent a finite signed measure on the space of Y values. This measure is studied as an estimate of the conditional distribution of Y given X = chi. From estimates of the conditional distribution, estimates of conditional means, standard deviations, quantiles and other statistical functionals may be computed. Chapter 1 illustrates the computation of conditional quantiles and conditional survival probabilities on the Stanford Heart Transplant data. Chapter 2 contains a survey of nonparametric regression methods and introduces statistical metrics and von Mises' method for later use. Chapter 3 proves some consistency results. Chapter 4 provides conditions under which the suitably normalized errors in estimating the conditional distribution of Y have a Brownian limit. Using von Mises' method, asymptotic normality is obtained for nonparametric conditional estimates of compactly differentiable statistical functionals.

  17. Correlation of denitrification-accepted fraction of electrons with NAD(P)H fluorescence for Pseudomonas aeruginosa performing simultaneous denitrification and respiration at extremely low dissolved oxygen conditions.

    PubMed

    Chen, Fan; Xia, Qing; Ju, Lu-Kwang

    2004-01-01

    In cystic fibrosis airway infection, Pseudomonas aeruginosa forms a microaerobic biofilm and undergoes significant physiological changes. It is important to understand the bacterium's metabolism at microaerobic conditions. In this work, the culture properties and two indicators (the denitrification-accepted e- fraction and an NAD(P)H fluorescence fraction) for the culture's "fractional approach" to a fully anaerobic denitrifying state were examined in continuous cultures with practically zero DO but different aeration rates. With decreasing aeration, specific OUR decreased while specific NAR and NIR increased and kept Y(ATP/S) relatively constant. P. aeruginosa thus appeared to effectively compensate for energy generation at microaerobic conditions with denitrification. At the studied dilution rate of 0.06 h(-1), the maximum specific OUR was 2.8 mmol O2/g cells-h and the Monod constant for DO, in the presence of nitrate, was extremely low (<0.001 mg/L). The cell yield Y(X/S) increased significantly (from 0.24 to 0.34) with increasing aeration, attributed to a roughly opposite trend of Y(ATP/X) (ATP generation required for cell growth). As for the denitrification-accepted e- fraction and the fluorescence fraction, both decreased with increasing aeration as expected. The two fractions, however, were not directly proportional. The fluorescence fraction changed more rapidly than the e- fraction at very low aeration rates, whereas the opposite was true at higher aeration. The results demonstrated the feasibility of using online NAD(P)H fluorescence to monitor sensitive changes of cellular physiology and provided insights to the shift of e- -accepting mechanisms of P. aeruginosa under microaerobic conditions.

  18. Bivariate extreme value distributions

    NASA Technical Reports Server (NTRS)

    Elshamy, M.

    1992-01-01

    In certain engineering applications, such as those occurring in the analyses of ascent structural loads for the Space Transportation System (STS), some of the load variables have a lower bound of zero. Thus, the need for practical models of bivariate extreme value probability distribution functions with lower limits was identified. We discuss the Gumbel models and present practical forms of bivariate extreme probability distributions of Weibull and Frechet types with two parameters. Bivariate extreme value probability distribution functions can be expressed in terms of the marginal extremel distributions and a 'dependence' function subject to certain analytical conditions. Properties of such bivariate extreme distributions, sums and differences of paired extremals, as well as the corresponding forms of conditional distributions, are discussed. Practical estimation techniques are also given.

  19. Extremal surface barriers

    NASA Astrophysics Data System (ADS)

    Engelhardt, Netta; Wall, Aron C.

    2014-03-01

    We present a generic condition for Lorentzian manifolds to have a barrier that limits the reach of boundary-anchored extremal surfaces of arbitrary dimension. We show that any surface with nonpositive extrinsic curvature is a barrier, in the sense that extremal surfaces cannot be continuously deformed past it. Furthermore, the outermost barrier surface has nonnegative extrinsic curvature. Under certain conditions, we show that the existence of trapped surfaces implies a barrier, and conversely. In the context of AdS/CFT, these barriers imply that it is impossible to reconstruct the entire bulk using extremal surfaces. We comment on the implications for the firewall controversy.

  20. Urban development under extreme hydrologic and weather conditions for El Paso-Juarez: Recommendations resulting from hydrologic modeling, GIS, and remote sensing analyses

    NASA Astrophysics Data System (ADS)

    Barud-Zubillaga, Alberto

    During the 2006 El Paso-Juarez flood there were many concerns regarding the capability of the existing stormwater system to handle 50- and 100-year flood events in El Paso, Texas and Juarez, Mexico area. Moreover in 2008, a considerable wet year from the normal 223 mm of annual precipitation for El Paso demonstrated that the area could very well received large amounts of precipitation at localized areas in short periods of time, representing a great flood threat to residents living in areas prone to flood. Some climate change projections for the area are exactly what had occurred over the last two decades; an increased number of torrential rainstorms over smaller concentrated pieces of land separated by longer years of drought between rainstorms. This study consisted in three projects focused on three critical regions within the El Paso-Juarez area that were greatly affected by the 2006 Flood. The goal was to identify if natural arroyos or the existent built stormwater system, could properly managed the projected precipitation patterns. The three projects described in this dissertation touch on the following points: (a) the importance of a reliable precipitation model that could accurately describes precipitation patterns in the region under extreme drought and wet climates conditions; (b) differences in land use/land cover characteristics as factors promoting or disrupting the possibility for flooding, and (c) limitations and capabilities of existent stormwater systems and natural arroyos as means to control flooding. Conclusions and recommendations are shown below, which apply not only to each particular project, but also to all study areas and similar areas in the El Paso-Juarez region. Urbanization can improve or worsen a pre-existing natural stormwater system if built under its required capacity. Such capacity should be calculated considering extreme weather conditions, based on a denser network of precipitation stations to capture the various microclimates

  1. Ultra-high performance fibre-reinforced concrete under impact: experimental analysis of the mechanical response in extreme conditions and modelling using the Pontiroli, Rouquand and Mazars model.

    PubMed

    Erzar, Benjamin; Pontiroli, Christophe; Buzaud, Eric

    2017-01-28

    To evaluate the vulnerability of ultra-high performance fibre-reinforced concrete (UHPFRC) infrastructure to rigid projectile penetration, over the last few years CEA-Gramat has led an experimental and numerical research programme in collaboration with French universities. During the penetration process, concrete is subjected to extreme conditions of pressure and strain rate. Plasticity mechanisms as well as dynamic tensile and/or shear damage are activated during the tunnelling phase and the cratering of the concrete target. Each mechanism has been investigated independently at the laboratory scale and the role of steel fibres especially has been analysed to understand their influence on the macroscopic behaviour. To extend the experimental results to the structural scale, penetration tests on UHPFRC slabs have been conducted by CEA-Gramat. The analysis of this dataset combined with material characterization experiments allows the role of steel fibres to be identified in the different plasticity and damage mechanisms occurring during penetration. In parallel, some improvements have been introduced into the concrete model developed by Pontiroli, Rouquand and Mazars (PRM model), especially to take into account the contribution made by the fibres in the tensile fracture process. After a primary phase of validation, the capabilities of the PRM model are illustrated by performing numerical simulations of projectile penetration into UHPFRC concrete structures.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  2. Ultra-high performance fibre-reinforced concrete under impact: experimental analysis of the mechanical response in extreme conditions and modelling using the Pontiroli, Rouquand and Mazars model

    NASA Astrophysics Data System (ADS)

    Erzar, Benjamin; Pontiroli, Christophe; Buzaud, Eric

    2017-01-01

    To evaluate the vulnerability of ultra-high performance fibre-reinforced concrete (UHPFRC) infrastructure to rigid projectile penetration, over the last few years CEA-Gramat has led an experimental and numerical research programme in collaboration with French universities. During the penetration process, concrete is subjected to extreme conditions of pressure and strain rate. Plasticity mechanisms as well as dynamic tensile and/or shear damage are activated during the tunnelling phase and the cratering of the concrete target. Each mechanism has been investigated independently at the laboratory scale and the role of steel fibres especially has been analysed to understand their influence on the macroscopic behaviour. To extend the experimental results to the structural scale, penetration tests on UHPFRC slabs have been conducted by CEA-Gramat. The analysis of this dataset combined with material characterization experiments allows the role of steel fibres to be identified in the different plasticity and damage mechanisms occurring during penetration. In parallel, some improvements have been introduced into the concrete model developed by Pontiroli, Rouquand and Mazars (PRM model), especially to take into account the contribution made by the fibres in the tensile fracture process. After a primary phase of validation, the capabilities of the PRM model are illustrated by performing numerical simulations of projectile penetration into UHPFRC concrete structures. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  3. Rhizosphere bacteria of Costularia spp. from ultramafic soils in New Caledonia: diversity, tolerance to extreme edaphic conditions, and role in plant growth and mineral nutrition.

    PubMed

    Gonin, Mathieu; Gensous, Simon; Lagrange, Alexandre; Ducousso, Marc; Amir, Hamid; Jourand, Philippe

    2013-03-01

    Rhizosphere bacteria were isolated from Costularia spp., pioneer sedges from ultramafic soils in New Caledonia, which is a hotspot of biodiversity in the South Pacific. Genus identification, ability to tolerate edaphic constraints, and plant-growth-promoting (PGP) properties were analysed. We found that 10(5) colony-forming units per gram of root were dominated by Proteobacteria (69%) and comprised 21 genera, including Burkholderia (28%), Curtobacterium (15%), Bradyrhizobium (9%), Sphingomonas (8%), Rhizobium (7%), and Bacillus (5%). High proportions of bacteria tolerated many elements of the extreme edaphic conditions: 82% tolerated 100 μmol·L(-1) chromium, 70% 1 mmol·L(-1) nickel, 63% 10 mmol·L(-1) manganese, 24% 1 mmol·L(-1) cobalt, and 42% an unbalanced calcium/magnesium ratio (1/16). These strains also exhibited multiple PGP properties, including the ability to produce ammonia (65%), indole-3-acetic acid (60%), siderophores (52%), and 1-aminocyclopropane-1-carboxylate (ACC) deaminase (39%); as well as the capacity to solubilize phosphates (19%). The best-performing strains were inoculated with Sorghum sp. grown on ultramafic substrate. Three strains significantly enhanced the shoot biomass by up to 33%. The most successful strains influenced plant nutrition through the mobilization of metals in roots and a reduction of metal transfer to shoots. These results suggest a key role of these bacteria in plant growth, nutrition, and adaptation to the ultramafic constraints.

  4. Flood frequency analysis with systematic and historical or paleoflood data based on the two-parameter general extreme value models

    NASA Astrophysics Data System (ADS)

    Frances, Felix; Salas, Jose D.; Boes, Duane C.

    1994-06-01

    Historical and paleoflood data have become an important source of information for flood frequency analysis. A number of studies have been proposed in the literature regarding the value of historical and paleoflood information for estimating flood quantiles. These studies have been generally based on computer simulation experiments. In this paper the value of using systematic and historical/paleoflood data relative to using systematic records alone is examined analytically by comparing the asymptotic variances of flood quantiles assuming a two-parameter general extreme value marginal distribution, type 1 and type 2 censored data, and maximum likelihood estimation method. The results of this study indicate that the value of historical and paleoflood data for estimating flood quantiles can be small or large depending on only three factors: the relative magnitudes of the length of the systematic record (N) and the length of the historical period (M); the return period (T) of the flood quantile of interest; and the return period (H) of the threshold level of perception. For instance, for N = 50, M = 50 and T = 500, the statistical gain for type 2 censoring becomes significantly larger than for type 1 censoring as H becomes greater than 100 years. In addition, computer experiments have shown that the results regarding the statistical gain based on asymptotic considerations are valid for the usual sample sizes.

  5. Response of the extremely halophilic Halococcus dombrowskii strain H4 to UV radiation and space conditions in the EXPOSE -ADAPT project on the International Space Station

    NASA Astrophysics Data System (ADS)

    Fendrihan, Sergiu; Grosbacher, Michael; Stan-Lotter, Helga

    2010-05-01

    The international project ADAPT focuses on the response of different microorganisms to outer space conditions. In 2007, the European Space Agency (ESA) has installed the Columbus laboratory and the exposure facility EXPOSE-E on the International Space Station (ISS). One of the microorganisms that were exposed for 18 months on the ISS is Halococcus dombrowskii strain H4, an extremely halophilic archaeon which was isolated from about 250 million years old alpine salt deposits (1). Ground experiments with Hcc. dombrowskii included irradiation with different wavelengths and doses of UV, using a Hg low pressure lamp, a solar simulator SOL2 (both at the DLR, Cologne) and a Mars UV simulation lamp (2). Cells were embedded in halite crystals which were formed on quartz discs by evaporation of high salt buffers. Methods for analyzing the effects of exposure on Hcc. dombrowskii include the estimation of colony forming units (CFUs), staining for viability with the BacLight LIVE/DEAD kit (2), establishing long term liquid cultures and determination of the formation of cyclobutane pyrimidine dimers (CPDs) with specific antibodies (3). Counting of viable (green) and dead (red) cells showed an apparent preservation of viability following exposure to about 21 kJ/m2 in ground experiments, but the calculated D37 (dose of 37 % survival) for Hcc. dombrowskii was about 400 kJ/m2 in salt crystals (2). CPDs were detected in about 6-8% of cells of Hcc. dombrowskii following exposure to a dose of 3000 kJ/m2 (200-400 nm). Preliminary results with the samples of Hcc. dombrowskii from the ISS suggested preservation of cellular morphology and stainability with the fluorescent dyes of the LIVE/DEAD kit, as well as formation of CPDs in about 2-3 % of the cells. The determination of the survival of cells by measuring proliferation requires months of incubation; data can be expected in May or June 2010. (1) Stan-Lotter H, Pfaffenhuemer M, Legat A, Busse H-J, Radax C, Gruber C (2002) Halococcus

  6. Understanding Child Stunting in India: A Comprehensive Analysis of Socio-Economic, Nutritional and Environmental Determinants Using Additive Quantile Regression

    PubMed Central

    Fenske, Nora; Burns, Jacob; Hothorn, Torsten; Rehfuess, Eva A.

    2013-01-01

    Background Most attempts to address undernutrition, responsible for one third of global child deaths, have fallen behind expectations. This suggests that the assumptions underlying current modelling and intervention practices should be revisited. Objective We undertook a comprehensive analysis of the determinants of child stunting in India, and explored whether the established focus on linear effects of single risks is appropriate. Design Using cross-sectional data for children aged 0–24 months from the Indian National Family Health Survey for 2005/2006, we populated an evidence-based diagram of immediate, intermediate and underlying determinants of stunting. We modelled linear, non-linear, spatial and age-varying effects of these determinants using additive quantile regression for four quantiles of the Z-score of standardized height-for-age and logistic regression for stunting and severe stunting. Results At least one variable within each of eleven groups of determinants was significantly associated with height-for-age in the 35% Z-score quantile regression. The non-modifiable risk factors child age and sex, and the protective factors household wealth, maternal education and BMI showed the largest effects. Being a twin or multiple birth was associated with dramatically decreased height-for-age. Maternal age, maternal BMI, birth order and number of antenatal visits influenced child stunting in non-linear ways. Findings across the four quantile and two logistic regression models were largely comparable. Conclusions Our analysis confirms the multifactorial nature of child stunting. It emphasizes the need to pursue a systems-based approach and to consider non-linear effects, and suggests that differential effects across the height-for-age distribution do not play a major role. PMID:24223839

  7. Early Warning Signals of Financial Crises with Multi-Scale Quantile Regressions of Log-Periodic Power Law Singularities.

    PubMed

    Zhang, Qun; Zhang, Qunzhi; Sornette, Didier

    2016-01-01

    We augment the existing literature using the Log-Periodic Power Law Singular (LPPLS) structures in the log-price dynamics to diagnose financial bubbles by providing three main innovations. First, we introduce the quantile regression to the LPPLS detection problem. This allows us to disentangle (at least partially) the genuine LPPLS signal and the a priori unknown complicated residuals. Second, we propose to combine the many quantile regressions with a multi-scale analysis, which aggregates and consolidates the obtained ensembles of scenarios. Third, we define and implement the so-called DS LPPLS Confidence™ and Trust™ indicators that enrich considerably the diagnostic of bubbles. Using a detailed study of the "S&P 500 1987" bubble and presenting analyses of 16 historical bubbles, we show that the quantile regression of LPPLS signals contributes useful early warning signals. The comparison between the constructed signals and the price development in these 16 historical bubbles demonstrates their significant predictive ability around the real critical time when the burst/rally occurs.

  8. Early Warning Signals of Financial Crises with Multi-Scale Quantile Regressions of Log-Periodic Power Law Singularities

    PubMed Central

    Zhang, Qun; Zhang, Qunzhi; Sornette, Didier

    2016-01-01

    We augment the existing literature using the Log-Periodic Power Law Singular (LPPLS) structures in the log-price dynamics to diagnose financial bubbles by providing three main innovations. First, we introduce the quantile regression to the LPPLS detection problem. This allows us to disentangle (at least partially) the genuine LPPLS signal and the a priori unknown complicated residuals. Second, we propose to combine the many quantile regressions with a multi-scale analysis, which aggregates and consolidates the obtained ensembles of scenarios. Third, we define and implement the so-called DS LPPLS Confidence™ and Trust™ indicators that enrich considerably the diagnostic of bubbles. Using a detailed study of the “S&P 500 1987” bubble and presenting analyses of 16 historical bubbles, we show that the quantile regression of LPPLS signals contributes useful early warning signals. The comparison between the constructed signals and the price development in these 16 historical bubbles demonstrates their significant predictive ability around the real critical time when the burst/rally occurs. PMID:27806093

  9. Experimenting seismological and GNSS equipment in extreme conditions in preparation for complex studies in the area of the Bulgarian Antarctic Base

    NASA Astrophysics Data System (ADS)

    Dimitrova, Liliya; Georgieva, Gergana; Raykova, Reneta; Gurev, Vasil; Georgiev, Ivan

    2015-04-01

    Study of seismicity and Earth's structure on Livingston Island and surrounding area is carrying out in the frame of the project "Creating an information base for study of seismicity and Earth's structure on Livingston island and surroundings through complex research in the Bulgarian Arctic Base area" supported by the Science Research Fund to Bulgarian Ministry of Education and Science for a period of 2 years including two Antarctic expeditions. The main goal of the project is to carry out a complex seismological and geodetic research based on data recorded by broadband seismic station and 2 GNSS receivers, which will be installed near the Bulgarian Antarctic Base on Livingston Island. Additionally, the velocity of the Perunica glassier (Livingston Island) will be estimated by processing and analyzing of GNSS data. The seismic station and GNSS receivers were installed on Vitosha Mountain, near Sofia, and were working during the winter to test the performance of the equipment in extreme weather conditions similar to the Antarctic climate. The seismological equipment included CMT40T seismometer and Reftek 130 digitizer. A thermo isolating cover was used to protect the seismic station. The power was supplied by a set of special batteries. The recorded seismological and geodetic data were stored into memory cards inside the apparatus. McNamara method was used to study ambient seismic noise. Effects of harsh weather conditions (wind, snowing, reining, low temperatures) and absence of man-made noise on the distribution of the noise power are investigated. Registered signals and noise power distribution were compared with records and noise power distribution of seismic station Vitosha (VTS). The result was used to estimate and improve the performance of the equipment. Registered seismic events were localized by application of Gallitzin method. A software for localization of the events on the base of three component registration was developed and tested. . Software was

  10. Estimating return periods for daily precipitation extreme events over the Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Santos, Eliane Barbosa; Lucio, Paulo Sérgio; Santos e Silva, Cláudio Moisés

    2016-11-01

    This paper aims to model the occurrence of daily precipitation extreme events and to estimate the return period of these events through the extreme value theory (generalized extreme value distribution (GEV) and the generalized Pareto distribution (GPD)). The GEV and GPD were applied in precipitation series of homogeneous regions of the Brazilian Amazon. The GEV and GPD goodness of fit were evaluated by quantile-quantile (Q-Q) plot and by the application of the Kolmogorov-Smirnov (KS) test, which compares the cumulated empirical distributions with the theoretical ones. The Q-Q plot suggests that the probability distributions of the studied series are appropriated, and these results were confirmed by the KS test, which demonstrates that the tested distributions have a good fit in all sub-regions of Amazon, thus adequate to study the daily precipitation extreme event. For all return levels studied, more intense precipitation extremes is expected to occur within the South sub-regions and the coastal area of the Brazilian Amazon. The results possibly will have some practical application in local extreme weather forecast.

  11. Some characterizations of unique extremality

    NASA Astrophysics Data System (ADS)

    Yao, Guowu

    2008-07-01

    In this paper, it is shown that some necessary characteristic conditions for unique extremality obtained by Zhu and Chen are also sufficient and some sufficient ones by them actually imply that the uniquely extremal Beltrami differentials have a constant modulus. In addition, some local properties of uniquely extremal Beltrami differentials are given.

  12. Estimating temporal changes in extreme rainfall in Sicily Region (Italy)

    NASA Astrophysics Data System (ADS)

    Bonaccorso, Brunella; Aronica, Giuseppe

    2016-04-01

    An intensification of extreme rainfall events have characterized several areas of peninsular and insular Italy since the early 2000s, suggesting an upward ongoing trend likely driven by climate change. In the present study temporal changes in 1-, 3-, 6-, 12- and 24-hour annual maxima rainfall series from more than 200 sites in Sicily region (Italy) are examined. A regional study is performed in order to reduce the uncertainty in change detection related to the limited length of the available records of extreme rainfall series. More specifically, annual maxima series are treated according to a regional flood index - type approach to frequency analysis, by assuming stationarity on a decadal time scale. First a cluster analysis using at-site characteristics is used to determine homogeneous rainfall regions. Then, potential changes in regional L-moment ratios are analyzed using a 10-year moving window. Furthermore, the shapes of regional growth curves, derived by splitting the records into separate decades, are compared. In addition, a jackknife procedure is used to assess uncertainty in the fitted growth curves and to identify significant trends in quantile estimates. Results reveal that, despite L-moment ratios show a general decreasing trend and that growth curves corresponding to the last decade (2000-2009) are usually less steep than the ones of the previous periods, rainfall quantile estimates have increased during the 2000s due to a large increase in regional average median, mainly in Western Sicily.

  13. Evaluation of the usefulness of historical and palaeological floods in quantile estimation

    NASA Astrophysics Data System (ADS)

    Guo, S. L.; Cunnane, C.

    1991-12-01

    The methods of incorporation of historical floods and palaeological information into flood frequency analysis, and the usefulness of doing so, have been evaluated by many hydrologists. These evaluations are not in complete agreement. The results of a Monte Carlo study are presented comparing different simulation procedures and assessing the value of historical floods for at-site flood frequency analysis on the assumption of a Gumbel (EVI) distribution. It is shown that historical floods and palaeological information provide a useful source of information additional to the recorded series, and have great value in flood frequency analysis when floods are drawn from the Gumbel distribution. Simulation procedures based on type II censoring result in the largest bias and root mean square error in quantile estimation. This may be due to their assumption of type II censoring in the production of their simulated samples, an assumption that has some limitations. In the present work it was found that the type I censored-data maximum likelihood estimator is a robust model for the Gumbel distribution and that the type II censored-data maximum likelihood estimator performs poorly when the data are in fact obtained by type I censoring.

  14. Asymptotic variance of flood quantile in log Pearson Type III distribution with historical information

    NASA Astrophysics Data System (ADS)

    Pilon, Paul J.; Adamowski, Kaz

    1993-03-01

    Maximum likelihood and censored sample theory are applied for flood frequency analysis purposes to the log Pearson Type III (LP3) distribution. The logarithmic likelihood functions are developed and solved in terms of fully specified floods, historical information, and parameters to be estimated. The asymptotic standard error of estimate of the T-year flood is obtained using the general equation for the variance of estimate of a function. The variances and covariances of the parameters are obtained through inversion of Fisher's information matrix. Monte Carlo studies to verify the accuracy of the derived asymptotic expression for the standard errors of the 10, 50, 100, and 500 year floods, indicate that these are accurate for both Type I and Type II censored samples, while the bias is less than 2.5%. Subsequently, the Type II censored data were subjected to a random, multiplicative error. Results indicate that historical information contributes greatly to the accuracy of estimation of the quantiles even when the error of its measurement becomes excessive.

  15. On Quantile Regression in Reproducing Kernel Hilbert Spaces with Data Sparsity Constraint.

    PubMed

    Zhang, Chong; Liu, Yufeng; Wu, Yichao

    2016-04-01

    For spline regressions, it is well known that the choice of knots is crucial for the performance of the estimator. As a general learning framework covering the smoothing splines, learning in a Reproducing Kernel Hilbert Space (RKHS) has a similar issue. However, the selection of training data points for kernel functions in the RKHS representation has not been carefully studied in the literature. In this paper we study quantile regression as an example of learning in a RKHS. In this case, the regular squared norm penalty does not perform training data selection. We propose a data sparsity constraint that imposes thresholding on the kernel function coefficients to achieve a sparse kernel function representation. We demonstrate that the proposed data sparsity method can have competitive prediction performance for certain situations, and have comparable performance in other cases compared to that of the traditional squared norm penalty. Therefore, the data sparsity method can serve as a competitive alternative to the squared norm penalty method. Some theoretical properties of our proposed method using the data sparsity constraint are obtained. Both simulated and real data sets are used to demonstrate the usefulness of our data sparsity constraint.

  16. A python module to normalize microarray data by the quantile adjustment method.

    PubMed

    Baber, Ibrahima; Tamby, Jean Philippe; Manoukis, Nicholas C; Sangaré, Djibril; Doumbia, Seydou; Traoré, Sekou F; Maiga, Mohamed S; Dembélé, Doulaye

    2011-06-01

    Microarray technology is widely used for gene expression research targeting the development of new drug treatments. In the case of a two-color microarray, the process starts with labeling DNA samples with fluorescent markers (cyanine 635 or Cy5 and cyanine 532 or Cy3), then mixing and hybridizing them on a chemically treated glass printed with probes, or fragments of genes. The level of hybridization between a strand of labeled DNA and a probe present on the array is measured by scanning the fluorescence of spots in order to quantify the expression based on the quality and number of pixels for each spot. The intensity data generated from these scans are subject to errors due to differences in fluorescence efficiency between Cy5 and Cy3, as well as variation in human handling and quality of the sample. Consequently, data have to be normalized to correct for variations which are not related to the biological phenomena under investigation. Among many existing normalization procedures, we have implemented the quantile adjustment method using the python computer language, and produced a module which can be run via an HTML dynamic form. This module is composed of different functions for data files reading, intensity and ratio computations and visualization. The current version of the HTML form allows the user to visualize the data before and after normalization. It also gives the option to subtract background noise before normalizing the data. The output results of this module are in agreement with the results of other normalization tools.

  17. On Quantile Regression in Reproducing Kernel Hilbert Spaces with Data Sparsity Constraint

    PubMed Central

    Zhang, Chong; Liu, Yufeng; Wu, Yichao

    2015-01-01

    For spline regressions, it is well known that the choice of knots is crucial for the performance of the estimator. As a general learning framework covering the smoothing splines, learning in a Reproducing Kernel Hilbert Space (RKHS) has a similar issue. However, the selection of training data points for kernel functions in the RKHS representation has not been carefully studied in the literature. In this paper we study quantile regression as an example of learning in a RKHS. In this case, the regular squared norm penalty does not perform training data selection. We propose a data sparsity constraint that imposes thresholding on the kernel function coefficients to achieve a sparse kernel function representation. We demonstrate that the proposed data sparsity method can have competitive prediction performance for certain situations, and have comparable performance in other cases compared to that of the traditional squared norm penalty. Therefore, the data sparsity method can serve as a competitive alternative to the squared norm penalty method. Some theoretical properties of our proposed method using the data sparsity constraint are obtained. Both simulated and real data sets are used to demonstrate the usefulness of our data sparsity constraint. PMID:27134575

  18. Using Quantile and Asymmetric Least Squares Regression for Optimal Risk Adjustment.

    PubMed

    Lorenz, Normann

    2016-06-13

    In this paper, we analyze optimal risk adjustment for direct risk selection (DRS). Integrating insurers' activities for risk selection into a discrete choice model of individuals' health insurance choice shows that DRS has the structure of a contest. For the contest success function (csf) used in most of the contest literature (the Tullock-csf), optimal transfers for a risk adjustment scheme have to be determined by means of a restricted quantile regression, irrespective of whether insurers are primarily engaged in positive DRS (attracting low risks) or negative DRS (repelling high risks). This is at odds with the common practice of determining transfers by means of a least squares regression. However, this common practice can be rationalized for a new csf, but only if positive and negative DRSs are equally important; if they are not, optimal transfers have to be calculated by means of a restricted asymmetric least squares regression. Using data from German and Swiss health insurers, we find considerable differences between the three types of regressions. Optimal transfers therefore critically depend on which csf represents insurers' incentives for DRS and, if it is not the Tullock-csf, whether insurers are primarily engaged in positive or negative DRS. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Extreme Heat

    MedlinePlus

    ... Emergencies Biological Threats Chemical Threats Cyber Incident Drought Earthquakes Extreme Heat Explosions Floods Hazardous Materials Incidents Home ... Emergencies Biological Threats Chemical Threats Cyber ... Heat Explosions Floods Hazardous Materials Incidents Home ...

  20. Influence of land-atmosphere feedbacks on climate extreme indices in a multi-model experiment under present and future conditions (GLACE-CMIP5)

    NASA Astrophysics Data System (ADS)

    Lorenz, Ruth; Pitman, Andy; Seneviratne, Sonia

    2014-05-01

    Extreme events can be directly influenced by land surface-atmosphere interactions. It is important to investigate how extreme events might change in the future and the role these interactions play in amplifying extremes. The data from the GLACE-CMIP5 experiments (Seneviratne et al., 2013) provide a unique opportunity to examine the influence of soil moisture on extremes in transient climate simulations from a range of climate models. The extreme indices we use are defined by the Expert Team on Climate Change Detection and Indices (ETCCDI) and contain a range of indices based on daily minimum and maximum temperature as well as daily precipitation. The ETCCDI indices are available from observational datasets, reanalysis and as well as CMIP5 runs. Hence, these indices are widely used and can be compared to other sources. In this paper, we analyze the effects of land surface feedbacks on the extremes and their trends in the different global climate models. Seneviratne, S. I., et al. (2013). Impact of soil moisture-climate feedbacks on CMIP5 projections: First results from the GLACE-CMIP5 experiment. GRL, 40(19), 5212-5217. doi:10.1002/grl.50956

  1. Gender differences in French GPs' activity: the contribution of quantile regressions.

    PubMed

    Dumontet, Magali; Franc, Carine

    2015-05-01

    In any fee-for-service system, doctors may be encouraged to increase the number of services (private activity) they provide to receive a higher income. Studying private activity determinants helps to predict doctors' provision of care. In the context of strong feminization and heterogeneity in general practitioners' (GP) behavior, we first aim to measure the effects of the determinants of private activity. Second, we study the evolution of these effects along the private activity distribution. Third, we examine the differences between male and female GPs. From an exhaustive database of French GPs working in private practice in 2008, we performed an ordinary least squares (OLS) regression and quantile regressions (QR) on the GPs' private activity. Among other determinants, we examined the trade-offs within the GPs' household considering his/her marital status, spousal income, and children. While the OLS results showed that female GPs had less private activity than male GPs (-13%), the QR results emphasized a private activity gender gap that increased significantly in the upper tail of the distribution. We also find gender differences in the private activity determinants, including family structure, practice characteristics, and case-mix variables. For instance, having a youngest child under 12 years old had a positive effect on the level of private activity for male GPs and a negative effect for female GPs. The results allow us to understand to what extent the supply of care differs between male and female GPs. In the context of strong feminization, this is essential to consider for organizing and forecasting the GPs' supply of care.

  2. Inferring river bathymetry via Image-to-Depth Quantile Transformation (IDQT)

    NASA Astrophysics Data System (ADS)

    Legleiter, Carl J.

    2016-05-01

    Conventional, regression-based methods of inferring depth from passive optical image data undermine the advantages of remote sensing for characterizing river systems. This study introduces and evaluates a more flexible framework, Image-to-Depth Quantile Transformation (IDQT), that involves linking the frequency distribution of pixel values to that of depth. In addition, a new image processing workflow involving deep water correction and Minimum Noise Fraction (MNF) transformation can reduce a hyperspectral data set to a single variable related to depth and thus suitable for input to IDQT. Applied to a gravel bed river, IDQT avoided negative depth estimates along channel margins and underpredictions of pool depth. Depth retrieval accuracy (R2 = 0.79) and precision (0.27 m) were comparable to an established band ratio-based method, although a small shallow bias (0.04 m) was observed. Several ways of specifying distributions of pixel values and depths were evaluated but had negligible impact on the resulting depth estimates, implying that IDQT was robust to these implementation details. In essence, IDQT uses frequency distributions of pixel values and depths to achieve an aspatial calibration; the image itself provides information on the spatial distribution of depths. The approach thus reduces sensitivity to misalignment between field and image data sets and allows greater flexibility in the timing of field data collection relative to image acquisition, a significant advantage in dynamic channels. IDQT also creates new possibilities for depth retrieval in the absence of field data if a model could be used to predict the distribution of depths within a reach.

  3. Inferring river bathymetry via Image-to-Depth Quantile Transformation (IDQT)

    USGS Publications Warehouse

    Legleiter, Carl

    2016-01-01

    Conventional, regression-based methods of inferring depth from passive optical image data undermine the advantages of remote sensing for characterizing river systems. This study introduces and evaluates a more flexible framework, Image-to-Depth Quantile Transformation (IDQT), that involves linking the frequency distribution of pixel values to that of depth. In addition, a new image processing workflow involving deep water correction and Minimum Noise Fraction (MNF) transformation can reduce a hyperspectral data set to a single variable related to depth and thus suitable for input to IDQT. Applied to a gravel bed river, IDQT avoided negative depth estimates along channel margins and underpredictions of pool depth. Depth retrieval accuracy (R25 0.79) and precision (0.27 m) were comparable to an established band ratio-based method, although a small shallow bias (0.04 m) was observed. Several ways of specifying distributions of pixel values and depths were evaluated but had negligible impact on the resulting depth estimates, implying that IDQT was robust to these implementation details. In essence, IDQT uses frequency distributions of pixel values and depths to achieve an aspatial calibration; the image itself provides information on the spatial distribution of depths. The approach thus reduces sensitivity to misalignment between field and image data sets and allows greater flexibility in the timing of field data collection relative to image acquisition, a significant advantage in dynamic channels. IDQT also creates new possibilities for depth retrieval in the absence of field data if a model could be used to predict the distribution of depths within a reach.

  4. Assessment of extreme value distributions for maximum temperature in the Mediterranean area

    NASA Astrophysics Data System (ADS)

    Beck, Alexander; Hertig, Elke; Jacobeit, Jucundus

    2015-04-01

    Extreme maximum temperatures highly affect the natural as well as the societal environment Heat stress has great effects on flora, fauna and humans and culminates in heat related morbidity and mortality. Agriculture and different industries are severely affected by extreme air temperatures. Even more under climate change conditions, it is necessary to detect potential hazards which arise from changes in the distributional parameters of extreme values, and this is especially relevant for the Mediterranean region which is characterized as a climate change hot spot. Therefore statistical approaches are developed to estimate these parameters with a focus on non-stationarities emerging in the relationship between regional climate variables and their large-scale predictors like sea level pressure, geopotential heights, atmospheric temperatures and relative humidity. Gridded maximum temperature data from the daily E-OBS dataset (Haylock et al., 2008) with a spatial resolution of 0.25° x 0.25° from January 1950 until December 2012 are the predictands for the present analyses. A s-mode principal component analysis (PCA) has been performed in order to reduce data dimension and to retain different regions of similar maximum temperature variability. The grid box with the highest PC-loading represents the corresponding principal component. A central part of the analyses is the model development for temperature extremes under the use of extreme value statistics. A combined model is derived consisting of a Generalized Pareto Distribution (GPD) model and a quantile regression (QR) model which determines the GPD location parameters. The QR model as well as the scale parameters of the GPD model are conditioned by various large-scale predictor variables. In order to account for potential non-stationarities in the predictors-temperature relationships, a special calibration and validation scheme is applied, respectively. Haylock, M. R., N. Hofstra, A. M. G. Klein Tank, E. J. Klok, P

  5. Factors associated with the level of CD4 cell counts at HIV diagnosis in a French cohort: a quantile regression approach.

    PubMed

    Bruneau, Léa; Billaud, Eric; Raffi, François; Hanf, Matthieu

    2017-03-01

    The consensus definition of late presentation for human immunodeficiency virus patient based on a CD4 threshold of 350 cells/mm(3) has limitations concerning risk factors identification since there is growing biomedical justification for earlier initiation of treatment. The objective was to overcome this problem by simultaneously determining factors associated with different levels of CD4 counts at the time of diagnosis. Between January 2000 and July 2014, 1179 patients with a first human immunodeficiency virus diagnosis and entering care in a French human immunodeficiency virus reference center were enrolled. Factors associated with each 5 percentile from 5th to 95th quantile of CD4 counts at diagnosis were simultaneously studied in a multivariable quantile regression model. At each of the quantiles, the factors identified as negatively associated with CD4 count at diagnosis were older age, male sex , foreign patients, hepatitis B virus or hepatitis C virus co-infection, employment status, non-MSM transmission, heterosexual transmission, suburban and rural's place of residence and earlier period of diagnosis. Association with CD4 count was not uniformly significant, most factors being significant for some quantiles. The only significant determinant for all quantiles was being born in a foreign country. These results are particularly helpful in the context of human immunodeficiency virus clinical care, management and prevention.

  6. The Trends in Excess Mortality in Winter vs. Summer in a Sub-Tropical City and Its Association with Extreme Climate Conditions

    PubMed Central

    Chau, Pui Hing; Woo, Jean

    2015-01-01

    While there is literature on excess winter mortality, there are few studies examining the evolution of its trend which may be changing in parallel with global warming. This study aimed to examine the trend in the excess mortality in winter as compared to summer among the older population in a sub-tropical city and to explore its association with extreme weather. We used a retrospective study based on the registered deaths among the older population in Hong Kong during 1976-2010. An Excess Mortality for Winter versus Summer (EMWS) Index was used to quantify the excess number of deaths in winter compared to summer. Multiple linear regressions were used to analyze the trends and its association with extreme weather. Overall, the EMWS Index for ischemic heart disease, cerebrovascular diseases, chronic lower respiratory diseases, pneumonia, and other causes were 43.0%, 34.2%, 42.7%, 23.4% and 17.6%, respectively. Significant decline was observed in the EMWS Index for chronic lower respiratory diseases and other causes. The trend in the index for cerebrovascular diseases depended on the age group, with older groups showing a decline but younger groups not showing any trend. Meteorological variables, in terms of extreme weather, were associated with the trends in the EMWS Index. We concluded that shrinking excess winter mortality from cerebrovascular diseases and chronic lower respiratory diseases was found in a sub-tropical city. These trends were associated with extreme weather, which coincided with global warming. PMID:25993635

  7. Spatio-temporal characteristics of the extreme precipitation by L-moment-based index-flood method in the Yangtze River Delta region, China

    NASA Astrophysics Data System (ADS)

    Yin, Yixing; Chen, Haishan; Xu, Chong-Yu; Xu, Wucheng; Chen, Changchun; Sun, Shanlei

    2016-05-01

    The regionalization methods, which "trade space for time" by pooling information from different locations in the frequency analysis, are efficient tools to enhance the reliability of extreme quantile estimates. This paper aims at improving the understanding of the regional frequency of extreme precipitation by using regionalization methods, and providing scientific background and practical assistance in formulating the regional development strategies for water resources management in one of the most developed and flood-prone regions in China, the Yangtze River Delta (YRD) region. To achieve the main goals, L-moment-based index-flood (LMIF) method, one of the most popular regionalization methods, is used in the regional frequency analysis of extreme precipitation with special attention paid to inter-site dependence and its influence on the accuracy of quantile estimates, which has not been considered by most of the studies using LMIF method. Extensive data screening of stationarity, serial dependence, and inter-site dependence was carried out first. The entire YRD region was then categorized into four homogeneous regions through cluster analysis and homogenous analysis. Based on goodness-of-fit statistic and L-moment ratio diagrams, generalized extreme-value (GEV) and generalized normal (GNO) distributions were identified as the best fitted distributions for most of the sub-regions, and estimated quantiles for each region were obtained. Monte Carlo simulation was used to evaluate the accuracy of the quantile estimates taking inter-site dependence into consideration. The results showed that the root-mean-square errors (RMSEs) were bigger and the 90 % error bounds were wider with inter-site dependence than those without inter-site dependence for both the regional growth curve and quantile curve. The spatial patterns of extreme precipitation with a return period of 100 years were finally obtained which indicated that there are two regions with highest precipitation