Insertion sequences enrichment in extreme Red sea brine pool vent.
Elbehery, Ali H A; Aziz, Ramy K; Siam, Rania
2017-03-01
Mobile genetic elements are major agents of genome diversification and evolution. Limited studies addressed their characteristics, including abundance, and role in extreme habitats. One of the rare natural habitats exposed to multiple-extreme conditions, including high temperature, salinity and concentration of heavy metals, are the Red Sea brine pools. We assessed the abundance and distribution of different mobile genetic elements in four Red Sea brine pools including the world's largest known multiple-extreme deep-sea environment, the Red Sea Atlantis II Deep. We report a gradient in the abundance of mobile genetic elements, dramatically increasing in the harshest environment of the pool. Additionally, we identified a strong association between the abundance of insertion sequences and extreme conditions, being highest in the harshest and deepest layer of the Red Sea Atlantis II Deep. Our comparative analyses of mobile genetic elements in secluded, extreme and relatively non-extreme environments, suggest that insertion sequences predominantly contribute to polyextremophiles genome plasticity.
Plant volatiles in extreme terrestrial and marine environments.
Rinnan, Riikka; Steinke, Michael; McGenity, Terry; Loreto, Francesco
2014-08-01
This review summarizes the current understanding on plant and algal volatile organic compound (VOC) production and emission in extreme environments, where temperature, water availability, salinity or other environmental factors pose stress on vegetation. Here, the extreme environments include terrestrial systems, such as arctic tundra, deserts, CO₂ springs and wetlands, and marine systems such as sea ice, tidal rock pools and hypersaline environments, with mangroves and salt marshes at the land-sea interface. The emission potentials at fixed temperature and light level or actual emission rates for phototrophs in extreme environments are frequently higher than for organisms from less stressful environments. For example, plants from the arctic tundra appear to have higher emission potentials for isoprenoids than temperate species, and hypersaline marine habitats contribute to global dimethyl sulphide (DMS) emissions in significant amounts. DMS emissions are more widespread than previously considered, for example, in salt marshes and some desert plants. The reason for widespread VOC, especially isoprenoid, emissions from different extreme environments deserves further attention, as these compounds may have important roles in stress resistance and adaptation to extremes. Climate warming is likely to significantly increase VOC emissions from extreme environments both by direct effects on VOC production and volatility, and indirectly by altering the composition of the vegetation. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Rettberg, P.; Ellis-Evans, C.; Prieur, D.; Loreto, F.; Walter, N.; Le Bris, N.; Elster, J.; Amils, R.; Marteinsson, V.
2008-09-01
Life in Extreme Environments is an emerging area of research in which Europe has considerable expertise but a relatively fragmented research infrastructure. The science of such environments has enormous relevance for our knowledge of the diversity and environmental limits of microbial, plant and animal life and the novel strategies employed for survival and growth. Such studies are essential in understanding how life established on the early Earth and in assessing the possibilities for life on other planetary bodies. These environments are also a rich source of novel exploitable compounds. At the European level, there is a need for better coordination of life in extreme environments research, the FP7-funded CAREX project aims to address this need by developing a clearly identifiable, dynamic and durable community. Establishing this community will encourage greater interdisciplinarity and increasing knowledge of extreme environments. It will provide a target for young career scientists and allow a more focussed dialogue with other science areas, with funding agencies, with industrial groups and with international organisations outside Europe. CAREX will last for three years and with a wide scope covering microbial life, plant adaptation and animal adaptation to various marine, polar, terrestrial extreme environments as well as outer space. CAREX's outputs will include a strategic roadmap for European life in extreme environments research (including enabling technologies), diverse opportunities for knowledge transfer, standardisation of methodologies, encouragement and support for early career scientists and a network of links to relevant organisations. These deliverables together with improved community networking, supported by newsletters, promotional leaflets, a series of science publications and an interactive web portal, will help consolidate the community and its identity. Outcomes will be facilitated through science/technology workshops, diverse forums, field/laboratory protocol intercomparisons, a summer school and individual grants to facilitate knowledge transfer. CAREX has evolved with the key players from the highly successful ESF "Investigating Life in Extreme Environments" initiative. For more information: www.carex-eu.org
A Neuroscience Approach to Optimizing Brain Resources for Human Performance in Extreme Environments
Paulus, Martin P.; Potterat, Eric G.; Taylor, Marcus K.; Van Orden, Karl F.; Bauman, James; Momen, Nausheen; Padilla, Genieleah A.; Swain, Judith L.
2009-01-01
Extreme environments requiring optimal cognitive and behavioral performance occur in a wide variety of situations ranging from complex combat operations to elite athletic competitions. Although a large literature characterizes psychological and other aspects of individual differences in performances in extreme environments, virtually nothing is known about the underlying neural basis for these differences. This review summarizes the cognitive, emotional, and behavioral consequences of exposure to extreme environments, discusses predictors of performance, and builds a case for the use of neuroscience approaches to quantify and understand optimal cognitive and behavioral performance. Extreme environments are defined as an external context that exposes individuals to demanding psychological and/or physical conditions, and which may have profound effects on cognitive and behavioral performance. Examples of these types of environments include combat situations, Olympic-level competition, and expeditions in extreme cold, at high altitudes, or in space. Optimal performance is defined as the degree to which individuals achieve a desired outcome when completing goal-oriented tasks. It is hypothesized that individual variability with respect to optimal performance in extreme environments depends on a well “contextualized” internal body state that is associated with an appropriate potential to act. This hypothesis can be translated into an experimental approach that may be useful for quantifying the degree to which individuals are particularly suited to performing optimally in demanding environments. PMID:19447132
NASA Technical Reports Server (NTRS)
Kaufman, J. W. (Editor)
1977-01-01
Guidelines are provided on terrestrial environment data specifically applicable for NASA aerospace vehicles and associated equipment development. Information is included on the general distribution of natural environment extremes in the conterminous United States that may be needed to specify design criteria in the transportation of space vehicle subsystems and components. Atmospheric attenuation was investigated since certain earth orbital experiment missions are influenced by the earth's atmosphere. A summary of climatic extremes for worldwide operational needs is also included. The latest available information on probable climatic extremes is presented with information on atmospheric chemistry, seismic criteria, and on a mathematical model to predict atmospheric dispersion of aerospace engine exhaust cloud rise and growth. Cloud phenomena are also considered.
Evaluating the Large-Scale Environment of Extreme Events Using Reanalyses
NASA Astrophysics Data System (ADS)
Bosilovich, M. G.; Schubert, S. D.; Koster, R. D.; da Silva, A. M., Jr.; Eichmann, A.
2014-12-01
Extreme conditions and events have always been a long standing concern in weather forecasting and national security. While some evidence indicates extreme weather will increase in global change scenarios, extremes are often related to the large scale atmospheric circulation, but also occurring infrequently. Reanalyses assimilate substantial amounts of weather data and a primary strength of reanalysis data is the representation of the large-scale atmospheric environment. In this effort, we link the occurrences of extreme events or climate indicators to the underlying regional and global weather patterns. Now, with greater than 3o years of data, reanalyses can include multiple cases of extreme events, and thereby identify commonality among the weather to better characterize the large-scale to global environment linked to the indicator or extreme event. Since these features are certainly regionally dependent, and also, the indicators of climate are continually being developed, we outline various methods to analyze the reanalysis data and the development of tools to support regional evaluation of the data. Here, we provide some examples of both individual case studies and composite studies of similar events. For example, we will compare the large scale environment for Northeastern US extreme precipitation with that of highest mean precipitation seasons. Likewise, southerly winds can shown to be a major contributor to very warm days in the Northeast winter. While most of our development has involved NASA's MERRA reanalysis, we are also looking forward to MERRA-2 which includes several new features that greatly improve the representation of weather and climate, especially for the regions and sectors involved in the National Climate Assessment.
USDA-ARS?s Scientific Manuscript database
Understanding naturally evolved adaptation to arid climates may be a key factor in developing crops that can thrive during extreme climate fluctuations. Malus sieversii (Ledeb.) M. Roem. is a wild apple species that has adapted to harsh environments in Kazakhstan, including extreme cold and dry reg...
Heat Shield for Extreme Entry Environment Technology (HEEET)
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj
2017-01-01
The Heat Shield for Extreme Entry Environment Technology (HEEET) project seeks to mature a game changing Woven Thermal Protection System (TPS) technology to enable in situ robotic science missions recommended by the NASA Research Council Planetary Science Decadal Survey committee. Recommended science missions include Venus probes and landers; Saturn and Uranus probes; and high-speed sample return missions.
Extreme Environments Capabilities at Glenn Research Center
NASA Technical Reports Server (NTRS)
Balcerski, Jeffrey; Kremic, Tibor; Arnett, Lori; Vento, Dan; Nakley, Leah
2016-01-01
The NASA Glenn Research Center has several facilities that can provide testing for extreme evironments of interest to the New Frontiers community. This includes the Glenn Extreme Enivironments Rig (GEER) which can duplicate the atmospheric chemistry and conditions for the Venus surface or any other planet with a hot environment. GRC also has several cryogenic facilities which have the capability to run with hydrogen atmospheres, hydrocarbon atmosphere, CO2 based atmospheres or nitrogen atmospheres. The cryogenic facilities have the capability to emulate Titan lakes.
Moving in extreme environments: what's extreme and who decides?
Cotter, James David; Tipton, Michael J
2014-01-01
Humans work, rest and play in immensely varied extreme environments. The term 'extreme' typically refers to insufficiency or excess of one or more stressors, such as thermal energy or gravity. Individuals' behavioural and physiological capacity to endure and enjoy such environments varies immensely. Adverse effects of acute exposure to these environments are readily identifiable (e.g. heat stroke or bone fracture), whereas adverse effects of chronic exposure (e.g. stress fractures or osteoporosis) may be as important but much less discernable. Modern societies have increasingly sought to protect people from such stressors and, in that way, minimise their adverse effects. Regulations are thus established, and advice is provided on what is 'acceptable' exposure. Examples include work/rest cycles in the heat, hydration regimes, rates of ascent to and duration of stay at altitude and diving depth. While usually valuable and well intentioned, it is important to realise the breadth and importance of limitations associated with such guidelines. Regulations and advisories leave less room for self-determination, learning and perhaps adaptation. Regulations based on stress (e.g. work/rest cycles relative to WBGT) are more practical but less direct than those based on strain (e.g. core temperature), but even the latter can be substantively limited (e.g. by lack of criterion validation and allowance for behavioural regulation in the research on which they are based). Extreme Physiology & Medicine is publishing a series of reviews aimed at critically examining the issues involved with self- versus regulation-controlled human movement acutely and chronically in extreme environments. These papers, arising from a research symposium in 2013, are about the impact of people engaging in such environments and the effect of rules and guidelines on their safety, enjoyment, autonomy and productivity. The reviews will cover occupational heat stress, sporting heat stress, hydration, diving, extreme loading, chronic unloading and high altitude. Ramifications include factors such as health and safety, productivity, enjoyment and autonomy, acute and chronic protection and optimising adaptation.
Embedded I&C for Extreme Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisner, Roger A.
2016-04-01
This project uses embedded instrumentation and control (I&C) technologies to demonstrate potential performance gains of nuclear power plant components in extreme environments. Extreme environments include high temperature, radiation, high pressure, high vibration, and high EMI conditions. For extreme environments, performance gains arise from moment-to-moment sensing of local variables and immediate application of local feedback control. Planning for embedding I&C during early system design phases contrasts with the traditional, serial design approach that incorporates minimal I&C after mechanical and electrical design is complete. The demonstration application involves the development and control of a novel, proof-of-concept motor/pump design. The motor and pumpmore » combination operate within the fluid environment, eliminating the need for rotating seals. Actively controlled magnetic bearings also replace failure-prone mechanical contact bearings that typically suspend rotating components. Such as design has the potential to significantly enhance the reliability and life of the pumping system and would not be possible without embedded I&C.« less
NASA Astrophysics Data System (ADS)
Guidetti, Roberto; Tiziana, Altiero; Cesari, Michele; Rizzo, Angela Maria; Bertolani, Roberto; Galletta, Giuseppe; Dalessandro, Maurizio; Rebecchi, Lorena
Extreme habitats are highly selective and can host only living organisms possessing specific adaptations to stressors. Among extreme habitats, space environment has particular charac-teristics of radiations, vacuum, microgravity and temperature, which induce rapid changes in living systems. Consequently, the response of multicellular complex organisms, able to colo-nize extreme environments, to space stresses can give very useful information on the ability to withstand a single stress or stress combinations. This knowledge on changes in living systems in space, with their similarity to the ageing processes, offers the opportunity to improve human life both on Earth and in space. Even though experimentation in space has often been carried out using unicellular organisms, multicellular organisms are very relevant in order to develop the appropriate countermeasures to avoid the risks imposed by environmental space in humans. The little attention received by multicellular organisms is probably due, other than to difficul-ties in the manipulation of biological materials in space, to the presence of only few organisms with the potential to tolerate environmental space stresses. Among them, tardigrades are small invertebrates representing an attractive animal model to study adaptive strategies for surviving extreme environments, including space environment. Tardigrades are little known microscopic aquatic animals (250-800 m in body length) distributed in different environments (from the deep sea to high mountains and deserts all over the world), and frequently inhabiting very unstable and unpredictable habitats (e.g. interstices of mosses, lichens, leaf litter, freshwater ponds, cryoconite holes). Their ability to live in the extreme environments is related to a wide variety of their life histories and adaptive strategies. A widespread and crucial strategy is cryptobiosis, a form of quiescence. It includes strategies such as anhydrobiosis and cryobiosis, characterized by a complete or almost complete metabolic standstill. The ability of tardigrades to colonize terrestrial habitats is linked to their well known ability to enter anhydrobiosis when their habi-tat desiccates. Tardigrades survive dehydration by entering a highly stable state of suspended animation due to complete desiccation (¿ 95Results on tardigrades open a window on the fu-ture perspective in astrobiology and in their applications. The discovery and identification of metabolites naturally synthesized by tardigrades to perform a remarkable protection against the damages to cellular components and DNA due to desiccation, radiation, microgravity and oxidation stresses, will be used to define the countermeasures to protect sensitive organisms, including humans, not naturally able to withstand extreme stresses under space conditions, for the future long-term explorations of our solar system, including Mars.
High Temperature Electronics for Intelligent Harsh Environment Sensors
NASA Technical Reports Server (NTRS)
Evans, Laura J.
2008-01-01
The development of intelligent instrumentation systems is of high interest in both public and private sectors. In order to obtain this ideal in extreme environments (i.e., high temperature, extreme vibration, harsh chemical media, and high radiation), both sensors and electronics must be developed concurrently in order that the entire system will survive for extended periods of time. The semiconductor silicon carbide (SiC) has been studied for electronic and sensing applications in extreme environment that is beyond the capability of conventional semiconductors such as silicon. The advantages of SiC over conventional materials include its near inert chemistry, superior thermomechanical properties in harsh environments, and electronic properties that include high breakdown voltage and wide bandgap. An overview of SiC sensors and electronics work ongoing at NASA Glenn Research Center (NASA GRC) will be presented. The main focus will be two technologies currently being investigated: 1) harsh environment SiC pressure transducers and 2) high temperature SiC electronics. Work highlighted will include the design, fabrication, and application of SiC sensors and electronics, with recent advancements in state-of-the-art discussed as well. These combined technologies are studied for the goal of developing advanced capabilities for measurement and control of aeropropulsion systems, as well as enhancing tools for exploration systems.
NASA Astrophysics Data System (ADS)
Giesige, C.; Nava, E.
2016-12-01
In the midst of a changing climate we have seen extremes in weather events: lightning, wildfires, hurricanes, tornadoes, and earthquakes. All of these ride on an imbalance of magnetic and electrical distribution about the earth including what goes on from the atmospheric and geophysic levels. There is relevance to the important role the sun plays in developing and feeding of the extreme weather events along with the sun's role helping to create a separation of charges on earth furthering climactic extremes. Focusing attention in North America and on how the sun, atmospheric and geophysic winds come together producing lightning events, there are connections between energy distribution in the environment, lightning caused wildfires, and extreme wildfire behavior. Lightning caused wildfires and extreme fire behavior have become enhanced with the changing climate conditions. Even with strong developments in wildfire science, there remains a lack in full understanding of connections that create a lightning caused wildfire event and lack of monitoring advancements in predicting extreme fire behavior. Several connections have been made in our research allowing us to connect multiple facets of the environment in regards to electric and magnetic influences on wildfires. Among them include: irradiance, winds, pressure systems, humidity, and topology. The connections can be made to develop better detection systems of wildfires, establish with more accuracy areas of highest risk for wildfire and extreme wildfire behavior, and prediction of wildfire behavior. A platform found within the environment can also lead to further understanding and monitoring of other extreme weather events in the future.
Brine organisms and the question of habitat-specific adaptation
NASA Technical Reports Server (NTRS)
Siegel, B. Z.; Siegel, S. M.; Speitel, T.; Waber, J.; Stoecker, R.
1984-01-01
The question of adaptivity to extremely saline water environments is discussed, with attention given to the evolutionary performance of four common organisms including Cladonia skottsbergii, Penicillium notatum, Nostoc, and Dunaliella salina. Samples of each organism were collected and subjected to experimental conditions similar to extreme marine and limnetic environments in the Dead Sea and Don Juan Pond in the upper Wright valley of Antarctica. Measurements were made of isotope uptake and carbon dioxide production, and photoautotrophs were taken. It is found that all of the organisms responded quickly to the need to adapt to the extreme environments. It is concluded that a degree of uncertainty exists in the perception that the abundance of bulk water on the earth is in itself essential for life.
NASA Astrophysics Data System (ADS)
Smith, N.; Sandal, G. M.; Leon, G. R.; Kjærgaard, A.
2017-08-01
Land-based extreme environments (e.g. polar expeditions, Antarctic research stations, confinement chambers) have often been used as analog settings for spaceflight. These settings share similarities with the conditions experienced during space missions, including confinement, isolation and limited possibilities for evacuation. To determine the utility of analog settings for understanding human spaceflight, researchers have examined the extent to which the individual characteristics (e.g., personality) of people operating in extreme environments can be generalized across contexts (Sandal, 2000) [1]. Building on previous work, and utilising new and pre-existing data, the present study examined the extent to which personal value motives could be generalized across extreme environments. Four populations were assessed; mountaineers (N =59), military personnel (N = 25), Antarctic over-winterers (N = 21) and Mars simulation participants (N = 12). All participants completed the Portrait Values Questionnaire (PVQ; Schwartz; 2) capturing information on 10 personal values. Rank scores suggest that all groups identified Self-direction, Stimulation, Universalism and Benevolence as important values and acknowledged Power and Tradition as being low priorities. Results from difference testing suggest the extreme environment groups were most comparable on Self-direction, Stimulation, Benevolence, Tradition and Security. There were significant between-group differences on five of the ten values. Overall, findings pinpointed specific values that may be important for functioning in challenging environments. However, the differences that emerged on certain values highlight the importance of considering the specific population when comparing results across extreme settings. We recommend that further research examine the impact of personal value motives on indicators of adjustment, group working, and performance. Information from such studies could then be used to aid selection and training processes for personnel operating in extreme settings, and in space.
Terrestrial environment (climatic) criteria guidelines for use in aerospace vehicle development
NASA Technical Reports Server (NTRS)
Turner, R. E. (Compiler); Hill, C. K. (Compiler)
1982-01-01
Guidelines on terrestrial environment data specifically applicable for NASA aerospace vehicles and associated equipment development are provided. The general distribution of natural environmental extremes in the conterminous United States that may be needed to specify design criteria in the transportation of space vehicle subsystems and components is considered. Atmospheric attenuation was included, since certain Earth orbital experiment missions are influenced by the Earth's atmosphere. Climatic extremes for worldwide operational needs is also included. Atmospheric chemistry, seismic criteria, and a mathematical model to predict atmospheric dispersion of aerospace engine exhaust cloud rise and growth are discussed. Atmospheric cloud phenomena are considered.
Wireless Sensor Applications in Extreme Aeronautical Environments
NASA Technical Reports Server (NTRS)
Wilson, William C.; Atkinson, Gary M.
2013-01-01
NASA aeronautical programs require rigorous ground and flight testing. Many of the testing environments can be extremely harsh. These environments include cryogenic temperatures and high temperatures (greater than 1500 C). Temperature, pressure, vibration, ionizing radiation, and chemical exposure may all be part of the harsh environment found in testing. This paper presents a survey of research opportunities for universities and industry to develop new wireless sensors that address anticipated structural health monitoring (SHM) and testing needs for aeronautical vehicles. Potential applications of passive wireless sensors for ground testing and high altitude aircraft operations are presented. Some of the challenges and issues of the technology are also presented.
NASA Technical Reports Server (NTRS)
Palinkas, Lawrence A.
2000-01-01
The papers presented in this section describe changes in behavior and performance in various isolated and confined extreme (ICE) environments, including Antarctic expeditions and research stations, space simulators and isolation chambers, and submarines. Each of these environments possesses characteristics that are in some way analogous to those found on long-duration space missions. Despite differences in length of mission, characteristics of mission personnel or crew, and characteristics in the physical environment, the various ICE environments described in this collection of papers appear to produce similar changes in behavior and performance. These changes include increased disturbances of mood, increased rates of psychiatric disorder, increased interpersonal tension, and a disruption of circadian rhythms. However, these environments do not inherently produce decrements in performance. Palinkas and colleagues suggest that prolonged exposure to the isolation and confinement in the Antarctic can actually have positive or "salutogenic" effects as well, evidenced by a decrease in mood disturbances and increase in performance measures.
[The acclimatization to extreme environments and its physiological mechanisms].
Wang, Hai; Liu, Wei; Yang, Dan-Feng; Zhao, Xiao-Ling; Long, Chao-Liang; Yin, Zhao-Yun; Liu, Jia-Ying
2012-11-01
Acclimatization is a process of biological adaptation when exposed to environmental factors such as hypoxia, cold and heat for prolonged periods of time, where non-genetical variations play a role in allowing subjects to tolerate hypoxic, cold or hot environments. This review focuses on the characteristics and mechanisms of acclimatization found through major research advances by our institute. First, the mechanisms underlying the acclimatization to extreme environments are complex. In our investigations, the physiological changes of multiple systems including the nervous, circulatory, respiratory, and hemopoietic system were demonstrated when the acclimatization to hypoxia was developed, and the underlying significance of hypoxia-inducible factor-1 (HIF-1) was investigated. Second, it is suggested that the development of acclimatization to extreme environments is complicated. Hypoxia and cold coexist at high altitude. Our investigations revealed the characteristics of negative cross-relationship in the acclimatization to hypoxia and cold. And third, it is interesting for us to understand that acclimatization to extreme environments is transferable among individuals, and the characteristics of heat acclimatization-inducing factor (HAlF) were presented. The above findings will provide a theoretical guidance for protective operations and help to establish a solid foundation for future research related to acclimatization.
Genomics and Metagenomics of Extreme Acidophiles in Biomining Environments
NASA Astrophysics Data System (ADS)
Holmes, D. S.
2015-12-01
Over 160 draft or complete genomes of extreme acidophiles (pH < 3) have been published, many of which are from bioleaching and other biomining environments, or are closely related to such microorganisms. In addition, there are over 20 metagenomic studies of such environments. This provides a rich source of latent data that can be exploited for understanding the biology of biomining environments and for advancing biotechnological applications. Genomic and metagenomic data are already yielding valuable insights into cellular processes, including carbon and nitrogen management, heavy metal and acid resistance, iron and sulfur oxido-reduction, linking biogeochemical processes to organismal physiology. The data also allow the construction of useful models of the ecophysiology of biomining environments and provide insight into the gene and genome evolution of extreme acidophiles. Additionally, since most of these acidophiles are also chemoautolithotrophs that use minerals as energy sources or electron sinks, their genomes can be plundered for clues about the evolution of cellular metabolism and bioenergetic pathways during the Archaean abiotic/biotic transition on early Earth. Acknowledgements: Fondecyt 1130683.
Endurance cycling results in extreme environments
NASA Technical Reports Server (NTRS)
Guertin, S. M.; Nguyen, D. N.; Scheick, L. Z.
2003-01-01
A new test bed for life testing flash memories in extreme environments is introducted. the test bed is based on a state-of-the-art development board. Since space applications often desire state-of-the-art devices, such a basis seems appropriate. Comparison of this tester to other such systems, including those with data presented here in the past is made. Limitations of different testers for varying applications are discussed. Recently developed data, using this test bed is also presented.
Extreme Science (LBNL Science at the Theater)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ajo-Franklin, Caroline; Klein, Spencer; Minor, Andrew
On Feb. 27, 2012 at the Berkeley Repertory Theatre, four Berkeley Lab scientists presented talks related to extreme science - and what it means to you. Topics include: Neutrino hunting in Antarctica. Learn why Spencer Klein goes to the ends of the Earth to search for these ghostly particles. From Chernobyl to Central Asia, Tamas Torok travels the globe to study microbial diversity in extreme environments. Andrew Minor uses the world's most advanced electron microscopes to explore materials at ultrahigh stresses and in harsh environments. And microbes that talk to computers? Caroline Ajo-Franklin is pioneering cellular-electrical connections that could helpmore » transform sunlight into fuel.« less
Terrestrial Applications of Extreme Environment Stirling Space Power Systems
NASA Technical Reports Server (NTRS)
Dyson, Rodger. W.
2012-01-01
NASA has been developing power systems capable of long-term operation in extreme environments such as the surface of Venus. This technology can use any external heat source to efficiently provide electrical power and cooling; and it is designed to be extremely efficient and reliable for extended space missions. Terrestrial applications include: use in electric hybrid vehicles; distributed home co-generation/cooling; and quiet recreational vehicle power generation. This technology can reduce environmental emissions, petroleum consumption, and noise while eliminating maintenance and environmental damage from automotive fluids such as oil lubricants and air conditioning coolant. This report will provide an overview of this new technology and its applications.
Yang, Ji; Li, Wen-Rong; Lv, Feng-Hua; He, San-Gang; Tian, Shi-Lin; Peng, Wei-Feng; Sun, Ya-Wei; Zhao, Yong-Xin; Tu, Xiao-Long; Zhang, Min; Xie, Xing-Long; Wang, Yu-Tao; Li, Jin-Quan; Liu, Yong-Gang; Shen, Zhi-Qiang; Wang, Feng; Liu, Guang-Jian; Lu, Hong-Feng; Kantanen, Juha; Han, Jian-Lin; Li, Meng-Hua; Liu, Ming-Jun
2016-01-01
Global climate change has a significant effect on extreme environments and a profound influence on species survival. However, little is known of the genome-wide pattern of livestock adaptations to extreme environments over a short time frame following domestication. Sheep (Ovis aries) have become well adapted to a diverse range of agroecological zones, including certain extreme environments (e.g., plateaus and deserts), during their post-domestication (approximately 8–9 kya) migration and differentiation. Here, we generated whole-genome sequences from 77 native sheep, with an average effective sequencing depth of ∼5× for 75 samples and ∼42× for 2 samples. Comparative genomic analyses among sheep in contrasting environments, that is, plateau (>4,000 m above sea level) versus lowland (<100 m), high-altitude region (>1500 m) versus low-altitude region (<1300 m), desert (<10 mm average annual precipitation) versus highly humid region (>600 mm), and arid zone (<400 mm) versus humid zone (>400 mm), detected a novel set of candidate genes as well as pathways and GO categories that are putatively associated with hypoxia responses at high altitudes and water reabsorption in arid environments. In addition, candidate genes and GO terms functionally related to energy metabolism and body size variations were identified. This study offers novel insights into rapid genomic adaptations to extreme environments in sheep and other animals, and provides a valuable resource for future research on livestock breeding in response to climate change. PMID:27401233
Biosignatures of Hypersaline Environments (Salt Crusts) an Analog for Mars
NASA Astrophysics Data System (ADS)
Smith, H. D.; Duncan, A. G.; Davilla, A. F.; McKay, C. P.
2016-05-01
Halophilic ecosystems are models for life in extreme environments including planetary surfaces such as Mars. Our research focuses on biosignatures in a salt crusts and the detection of these biomarkers by ground and orbital assests.
Radiation Assurance for the Space Environment
NASA Technical Reports Server (NTRS)
Barth, Janet L.; LaBel, Kenneth A.; Poivey, Christian
2004-01-01
The space radiation environment can lead to extremely harsh operating conditions for spacecraft electronic systems. A hardness assurance methodology must be followed to assure that the space radiation environment does not compromise the functionality and performance of space-based systems during the mission lifetime. The methodology includes a definition of the radiation environment, assessment of the radiation sensitivity of parts, worst-case analysis of the impact of radiation effects, and part acceptance decisions which are likely to include mitigation measures.
Mucci, Viviana
2018-01-01
Chest ultrasonography (CU) is a noninvasive imaging technique able to provide an immediate diagnosis of the underlying aetiology of acute respiratory failure and traumatic chest injuries. Given the great technologies, it is now possible to perform accurate CU in remote and adverse environments including the combat field, extreme sport settings, and environmental disasters, as well as during space missions. Today, the usage of CU in the extreme emergency setting is more likely to occur, as this technique proved to be a fast diagnostic tool to assist resuscitation manoeuvres and interventional procedures in many cases. A scientific literature review is presented here. This was based on a systematic search of published literature, on the following online databases: PubMed and Scopus. The following words were used: “chest sonography,” “ thoracic ultrasound,” and “lung sonography,” in different combinations with “extreme sport,” “extreme environment,” “wilderness,” “catastrophe,” and “extreme conditions.” This manuscript reports the most relevant usages of CU in the extreme setting as well as technological improvements and current limitations. CU application in the extreme setting is further encouraged here. PMID:29736195
NASA Astrophysics Data System (ADS)
Ryazanova, A. A.; Okladnikov, I. G.; Gordov, E. P.
2017-11-01
The frequency of occurrence and magnitude of precipitation and temperature extreme events show positive trends in several geographical regions. These events must be analyzed and studied in order to better understand their impact on the environment, predict their occurrences, and mitigate their effects. For this purpose, we augmented web-GIS called “CLIMATE” to include a dedicated statistical package developed in the R language. The web-GIS “CLIMATE” is a software platform for cloud storage processing and visualization of distributed archives of spatial datasets. It is based on a combined use of web and GIS technologies with reliable procedures for searching, extracting, processing, and visualizing the spatial data archives. The system provides a set of thematic online tools for the complex analysis of current and future climate changes and their effects on the environment. The package includes new powerful methods of time-dependent statistics of extremes, quantile regression and copula approach for the detailed analysis of various climate extreme events. Specifically, the very promising copula approach allows obtaining the structural connections between the extremes and the various environmental characteristics. The new statistical methods integrated into the web-GIS “CLIMATE” can significantly facilitate and accelerate the complex analysis of climate extremes using only a desktop PC connected to the Internet.
Orbital Electron Capture Rates in Extreme Astrophysical Environments
NASA Astrophysics Data System (ADS)
Martin, Matthew; McDonald, William; Leach, Kyle
2017-09-01
In an attempt to better understand EC decay rates in hot environments, we have developed a program to examine and parse all evaluated atomic and nuclear data. Taking into account the effects of ionization on accessible decay states and electron capture probabilities, half lives across the nuclear chart can be investigated without the need for theoretical estimates. Part of the ongoing project will include isolating stable isotopes that become unstable due to ionization and estimating their stability in these new environments. In addition, we hope to account for a thermal population of excited states to better simulate these environments. This should aide in the complete understanding of nuclear processes in these extreme astrophysical environments. This work is supported in part by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics.
Extreme Environment Technologies for Space and Terrestrial Applications
NASA Technical Reports Server (NTRS)
Balint, Tibor S.; Cutts, James A.; Kolawa, Elizabeth A.; Peterson, Craig E.
2008-01-01
Over the next decades, NASA's planned solar system exploration missions are targeting planets, moons and small bodies, where spacecraft would be expected to encounter diverse extreme environmental (EE) conditions throughout their mission phases. These EE conditions are often coupled. For instance, near the surface of Venus and in the deep atmospheres of giant planets, probes would experience high temperatures and pressures. In the Jovian system low temperatures are coupled with high radiation. Other environments include thermal cycling, and corrosion. Mission operations could also introduce extreme conditions, due to atmospheric entry heat flux and deceleration. Some of these EE conditions are not unique to space missions; they can be encountered by terrestrial assets from the fields of defense,oil and gas, aerospace, and automotive industries. In this paper we outline the findings of NASA's Extreme Environments Study Team, including discussions on state of the art and emerging capabilities related to environmental protection, tolerance and operations in EEs. We will also highlight cross cutting EE mitigation technologies, for example, between high g-load tolerant impactors for Europa and instrumented projectiles on Earth; high temperature electronics sensors on Jupiter deep probes and sensors inside jet engines; and pressure vessel technologies for Venus probes and sea bottom monitors. We will argue that synergistic development programs between these fields could be highly beneficial and cost effective for the various agencies and industries. Some of these environments, however, are specific to space and thus the related technology developments should be spear headed by NASA with collaboration from industry and academia.
Yang, Ji; Li, Wen-Rong; Lv, Feng-Hua; He, San-Gang; Tian, Shi-Lin; Peng, Wei-Feng; Sun, Ya-Wei; Zhao, Yong-Xin; Tu, Xiao-Long; Zhang, Min; Xie, Xing-Long; Wang, Yu-Tao; Li, Jin-Quan; Liu, Yong-Gang; Shen, Zhi-Qiang; Wang, Feng; Liu, Guang-Jian; Lu, Hong-Feng; Kantanen, Juha; Han, Jian-Lin; Li, Meng-Hua; Liu, Ming-Jun
2016-10-01
Global climate change has a significant effect on extreme environments and a profound influence on species survival. However, little is known of the genome-wide pattern of livestock adaptations to extreme environments over a short time frame following domestication. Sheep (Ovis aries) have become well adapted to a diverse range of agroecological zones, including certain extreme environments (e.g., plateaus and deserts), during their post-domestication (approximately 8-9 kya) migration and differentiation. Here, we generated whole-genome sequences from 77 native sheep, with an average effective sequencing depth of ∼5× for 75 samples and ∼42× for 2 samples. Comparative genomic analyses among sheep in contrasting environments, that is, plateau (>4,000 m above sea level) versus lowland (<100 m), high-altitude region (>1500 m) versus low-altitude region (<1300 m), desert (<10 mm average annual precipitation) versus highly humid region (>600 mm), and arid zone (<400 mm) versus humid zone (>400 mm), detected a novel set of candidate genes as well as pathways and GO categories that are putatively associated with hypoxia responses at high altitudes and water reabsorption in arid environments. In addition, candidate genes and GO terms functionally related to energy metabolism and body size variations were identified. This study offers novel insights into rapid genomic adaptations to extreme environments in sheep and other animals, and provides a valuable resource for future research on livestock breeding in response to climate change. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
NASA Technical Reports Server (NTRS)
Kremic, Tibor; Vento, Dan; Lalli, Nick; Palinski, Timothy
2014-01-01
Science, technology, and planetary mission communities have a growing interest in components and systems that are capable of working in extreme (high) temperature and pressure conditions. Terrestrial applications range from scientific research, aerospace, defense, automotive systems, energy storage and power distribution, deep mining and others. As the target environments get increasingly extreme, capabilities to develop and test the sensors and systems designed to operate in such environments will be required. An application of particular importance to the planetary science community is the ability for a robotic lander to survive on the Venus surface where pressures are nearly 100 times that of Earth and temperatures approach 500C. The scientific importance and relevance of Venus missions are stated in the current Planetary Decadal Survey. Further, several missions to Venus were proposed in the most recent Discovery call. Despite this interest, the ability to accurately simulate Venus conditions at a scale that can test and validate instruments and spacecraft systems and accurately simulate the Venus atmosphere has been lacking. This paper discusses and compares the capabilities that are known to exist within and outside the United States to simulate the extreme environmental conditions found in terrestrial or planetary surfaces including the Venus atmosphere and surface. The paper then focuses on discussing the recent additional capability found in the NASA Glenn Extreme Environment Rig (GEER). The GEER, located at the NASA Glenn Research Center in Cleveland, Ohio, is designed to simulate not only the temperature and pressure extremes described, but can also accurately reproduce the atmospheric compositions of bodies in the solar system including those with acidic and hazardous elements. GEER capabilities and characteristics are described along with operational considerations relevant to potential users. The paper presents initial operating results and concludes with a sampling of investigations or tests that have been requested or expected.
Relationship of psychological and physiological parameters during an arctic ski expedition
NASA Astrophysics Data System (ADS)
Bishop, Sheryl L.; Grobler, Lukas C.; SchjØll, Olaf
2001-08-01
Considerable data (primarily physiological) have been collected during expeditions in extreme environments over the last century. Physiological measurements have only recently been examined in association with the emotional or behavioral state of the subject. Establishing this psychophysiological relationship is essential to understanding fully the adaptation of humans to the stresses of extreme environments. This pilot study investigated the simultaneous collection of physiological, psychological and behavioral data from a two-man Greenland expedition in order to model how specific relationships between physiological and psychological adaptation to a polar environment may be identified. The data collected describes changes in adrenal and other hormonal activity and psychological functioning. Levels of cortisol and testosterone were calculated. Factors influencing the plasma profiles of the aforementioned included 24-hour sunlight, high calorific intake of more than 28 000 kJ/day and extreme physical exercise. There was a difference between individual psychological profiles as well as self-report stress and physiological stress.
Technology perspectives in the future exploration of extreme environments
NASA Astrophysics Data System (ADS)
Cutts, J.; Balint, T.; Kolawa, El.; Peterson, C.
2007-08-01
Solar System exploration is driven by high priority science goals and objectives at diverse destinations, as described in the NRC Decadal Survey and in NASA's 2006 Solar System Exploration (SSE) Roadmap. Proposed missions to these targets encounter extreme environments, including high or low temperatures, high pressure, corrosion, high heat flux, radiation and thermal cycling. These conditions are often coupled, such as low temperature and high radiation at Europa; and high temperature and high pressure near the surface of Venus. Mitigation of these environmental conditions frequently reaches beyond technologies developed for terrestrial applications, for example, by the automotive and oil industries. Therefore, space agencies require dedicated technology developments to enable these future missions. Within NASA, proposed missions are divided into three categories. Competed small (Discovery class) and medium (New Frontiers class) missions are cost capped, thus limiting significant technology developments. Therefore, large (Flagship class) missions are required not only to tackle key science questions which can't be addressed by smaller missions, but also to develop mission enabling technologies that can feed forward to smaller missions as well. In a newly completed extreme environment technology assessment at NASA, we evaluated technologies from the current State of Practice (SoP) to advanced concepts for proposed missions over the next decades. Highlights of this report are discussed here, including systems architectures, such as hybrid systems; protection systems; high temperature electronics; power generation and storage; mobility technologies; sample acquisition and mechanisms; and the need to test these technologies in relevant environments. It is expected that the findings - documented in detail in NASA's Extreme Environments Technologies report - would help identifying future technology investment areas, and in turn enable or enhance planned SSE missions, while reducing mission cost and risk.
NASA Astrophysics Data System (ADS)
Xu, S.; Curry, S.; Mitchell, D. L.; Luhmann, J. G.; Lillis, R. J.; Dong, C.
2017-12-01
Characterizing how the solar cycle affects the physics of the Mars-solar wind interaction can improve our understanding of Mars' atmospheric evolution and the plasma environment at Mars. In particular, solar transient events such as Interplanetary Coronal Mass Ejections (ICMEs) and Stream Interaction Regions (SIRs) significantly change the solar-wind interaction, including the magnetic topology and ion acceleration. However, both the Mars Express and Mars Atmosphere Volatile EvolutioN (MAVEN) missions have encountered relatively few extreme solar transient events due to the recent low solar activity (2004-2017). In contrast, Mars Global Surveyor (MGS) was operating during a relatively active solar maximum (1999-2003). Based on new results from MAVEN, this study reanalyzes MGS data to better understand how the Martian plasma environment responds to extreme solar events. In particular, we aim to investigate how the magnetic topology during these extreme events differs from the topology during quiet times. We conduct orbit comparisons of the magnetic topology inferred from MGS electron pitch angle distributions during quiet periods and extreme events to determine how the open and closed field patterns respond to extreme events.
Silicon Carbide Sensors and Electronics for Harsh Environment Applications
NASA Technical Reports Server (NTRS)
Evans, Laura J.
2007-01-01
Silicon carbide (SiC) semiconductor has been studied for electronic and sensing applications in extreme environment (high temperature, extreme vibration, harsh chemical media, and high radiation) that is beyond the capability of conventional semiconductors such as silicon. This is due to its near inert chemistry, superior thermomechanical and electronic properties that include high breakdown voltage and wide bandgap. An overview of SiC sensors and electronics work ongoing at NASA Glenn Research Center (NASA GRC) will be presented. The main focus will be two technologies currently being investigated: 1) harsh environment SiC pressure transducers and 2) high temperature SiC electronics. Work highlighted will include the design, fabrication, and application of SiC sensors and electronics, with recent advancements in state-of-the-art discussed as well. These combined technologies are studied for the goal of developing advanced capabilities for measurement and control of aeropropulsion systems, as well as enhancing tools for exploration systems.
Characterizing Space Environments with Long-Term Space Plasma Archive Resources
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Miller, J. Scott; Diekmann, Anne M.; Parker, Linda N.
2009-01-01
A significant scientific benefit of establishing and maintaining long-term space plasma data archives is the ready access the archives afford to resources required for characterizing spacecraft design environments. Space systems must be capable of operating in the mean environments driven by climatology as well as the extremes that occur during individual space weather events. Long- term time series are necessary to obtain quantitative information on environment variability and extremes that characterize the mean and worst case environments that may be encountered during a mission. In addition, analysis of large data sets are important to scientific studies of flux limiting processes that provide a basis for establishing upper limits to environment specifications used in radiation or charging analyses. We present applications using data from existing archives and highlight their contributions to space environment models developed at Marshall Space Flight Center including the Chandra Radiation Model, ionospheric plasma variability models, and plasma models of the L2 space environment.
Individual Differences in Adaptability to Isolated, Confined, and Extreme Environments.
Bartone, Paul T; Krueger, Gerald P; Bartone, Jocelyn V
2018-06-01
Future deep space missions will expose astronauts to more intense stressors than previously encountered. Isolation will be greater and more prolonged, living and work areas more confined, and communications and resupply channels to Earth longer and less reliable. Astronauts will need to function more autonomously, with less guidance and support from Earth. Thus, it is important to select and train astronauts who can adapt and function effectively under extreme and variable conditions. In order to identify factors linked to individual adaptability, we conducted a systematic review of the literature on cognitive and behavioral adaptation to isolated, confined, and extreme (ICE) environments. We searched PubMed, Embase, Web of Science, and PsychINFO databases for studies addressing individual adaptability to ICE environments. Studies were rated for quality and fidelity to long-duration space missions and key results extracted. There were 73 studies that met all inclusion criteria. Adaptability attributes for ICE environments include intelligence, emotional stability, self-control, openness, achievement facets of conscientiousness, optimism, mastery, introversion, hardiness, task-oriented coping, past experience, low need for social support, and adequate sleep. This review identifies individual factors linked to adaptability under ICE conditions. Further studies are needed to verify causal directions and determine the relative importance of these factors.Bartone PT, Krueger GP, Bartone JV. Individual differences in adaptability to isolated, confined, and extreme environments. Aerosp Med Hum Perform. 2018; 89(6):536-546.
2013-08-13
The Glenn Extreme Environment Chamber (GEER) simulates the extreme conditions found in space and tests many devices that will explore Venus to see if they can withstand the punishing environment and temperatures over 800 degrees F.
Evaluation of impairment of the upper extremity.
Blair, S J; McCormick, E; Bear-Lehman, J; Fess, E E; Rader, E
1987-08-01
Evaluation of impairment of the upper extremity is the product of a team effort by the physician, occupational therapist, physical therapist, and rehabilitation counselor. A careful recording of the anatomic impairment should be made because this is critical in determining the subsequent functional activities of the extremity. The measurement criteria for clinical and functional evaluation includes condition assessment instruments. Some assess the neurovascular system, others assess movements including the monitoring of articular motion and musculotendinous function. Sensibility assessment instruments measure sympathetic response and detect single joint stimulus, discrimination, quantification, and recognition abilities. A detailed description of each assessment is recorded and physical capacity evaluation is only one component of the entire vocational evaluation. This evaluation answers questions regarding the injured worker's ability to return to his previous job. The work simulator is a useful instrument that allows rehabilitation and testing of the injured upper extremity. Job site evaluation includes assessment criteria for work performance, work behavior, and work environment.
Radiation Hardened Electronics for Extreme Environments
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Watson, Michael D.
2007-01-01
The Radiation Hardened Electronics for Space Environments (RHESE) project consists of a series of tasks designed to develop and mature a broad spectrum of radiation hardened and low temperature electronics technologies. Three approaches are being taken to address radiation hardening: improved material hardness, design techniques to improve radiation tolerance, and software methods to improve radiation tolerance. Within these approaches various technology products are being addressed including Field Programmable Gate Arrays (FPGA), Field Programmable Analog Arrays (FPAA), MEMS Serial Processors, Reconfigurable Processors, and Parallel Processors. In addition to radiation hardening, low temperature extremes are addressed with a focus on material and design approaches.
Overview of Heatshield for Extreme Entry Environment Technology (HEEET)
NASA Technical Reports Server (NTRS)
Driver, David M.; Ellerby, Donald T.; Gasch, Matthew J.; Mahzari, Milad; Milos, Frank S.; Nishioka, Owen S.; Stackpoole, Margaret M.; Venkatapathy, Ethiraj; Young, Zion W.; Gage, Peter J.;
2018-01-01
The Heatshield for Extreme Entry Environment Technology (HEEET) projects objective is to mature a 3-D Woven Thermal Protection System (TPS) to Technical Readiness Level (TRL) 6 to support future NASA missions to destinations such as Venus and Saturn. The scope of the project, status of which will be discussed, encompasses development of manufacturing and integration processes, fabrication of a prototype 1m diameter engineering test unit (ETU) that will undergo a series of structural tests, characterizing material aerothermal performance including development of a material response model, and structural testing and analysis to develop tools to support design and establish system capability.
Science at the Theatre - Extreme Science - Promo Video
Klein, Spencer
2017-12-12
On Feb. 27 at 7 pm at the Berkeley Repertory Theatre, join four Berkeley Lab scientists as they discuss extreme science -- and what it means to you. Topics include: Neutrino hunting in Antarctica. Learn why Spencer Klein goes to the ends of the Earth to search for these ghostly particles. From Chernobyl to Central Asia, Tamas Torok travels the globe to study microbial diversity in extreme environments. Andrew Minor uses the world's most advanced electron microscopes to explore materials at ultrahigh stresses and in harsh environments. And microbes that talk to computers? Caroline Ajo-Franklin is pioneering cellular-electrical connections that could help transform sunlight into fuel. Go here for more information and to view videos of previous Science at the Theater events: http://www.lbl.gov/LBL-PID/fobl/
Science at the Theatre - Extreme Science - Promo Video
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, Spencer
On Feb. 27 at 7 pm at the Berkeley Repertory Theatre, join four Berkeley Lab scientists as they discuss extreme science -- and what it means to you. Topics include: Neutrino hunting in Antarctica. Learn why Spencer Klein goes to the ends of the Earth to search for these ghostly particles. From Chernobyl to Central Asia, Tamas Torok travels the globe to study microbial diversity in extreme environments. Andrew Minor uses the world's most advanced electron microscopes to explore materials at ultrahigh stresses and in harsh environments. And microbes that talk to computers? Caroline Ajo-Franklin is pioneering cellular-electrical connections thatmore » could help transform sunlight into fuel. Go here for more information and to view videos of previous Science at the Theater events: http://www.lbl.gov/LBL-PID/fobl/« less
Liu, Zheng-jia; Yu, Xing-xiu; Li, Lei; Huang, Mei
2011-08-01
Based on the ecological sensitivity-resilience-pressure (SRP) conceptual model, and selecting 13 indices including landscape diversity index, soil erosion, and elevation, etc. , the vulnerability of the eco-environment in Yimeng mountainous area of Shandong Province was assessed under the support of GIS and by using principal component analysis and hierarchy analytical method. According to the eco-environmental vulnerability index (EVI) values, the eco-environment vulnerability of study area was classified into 5 levels, i.e., slight (<1.8), light (1.8-2.8), moderate (2.8-3.5), heavy (3.5-4.0), and extreme vulnerability (>4.0). In the study area, moderately vulnerable area occupied 43.3% of the total, while the slightly, lightly, heavily, and extremely vulnerable areas occupied 6.1%, 33.8%, 15.9%, and 0.9%, respectively. The heavily and extremely vulnerable areas mainly located in the topographically complicated hilly area or the hill-plain ecotone with frequent human activities.
NASA Astrophysics Data System (ADS)
Goehring, E. C.; Carlsen, W.; Larsen, J.; Simms, E.; Smith, M.
2007-12-01
From Local to EXtreme Environments (FLEXE) is an innovative new project of the GLOBE Program that involves middle and high school students in systematic, facilitated analyses and comparisons of real environmental data. Through FLEXE, students collect and analyze data from various sources, including the multi-year GLOBE database, deep-sea scientific research projects, and direct measurements of the local environment collected by students using GLOBE sampling protocols. Initial FLEXE materials and training have focused on student understanding of energy transfer through components of the Earth system, including a comparison of how local environmental conditions differ from those found at deep-sea hydrothermal vent communities. While the importance of data acquisition, accuracy and replication is emphasized, FLEXE is also uniquely structured to deepen students' understanding of multiple aspects of the process and nature of science, including written communication of results and on-line peer review. Analyses of data are facilitated through structured, web-based interactions and culminating activities with at-sea scientists through an online forum. The project benefits from the involvement of a professional evaluator, and as the model is tested and refined, it may serve as a template for the inclusion of additional "extreme" earth systems. FLEXE is a partnership of the international GLOBE web- based education program and the NSF Ridge 2000 mid-ocean ridge and hydrothermal vent research program, and includes the expertise of the Center for Science and the Schools at Penn State University. International collaborators also include the InterRidge and ChEss international research programs.
Glenn Extreme Environment Rig (GEER)
2017-01-17
NASA Glenn research engineers prepare our extreme environments chamber (GEER) for a test. GEER, which simulates the extreme conditions found in space, tests many devices that will explore Venus to see if they can withstand the punishing environment and temperatures over 800˚F.
ERIC Educational Resources Information Center
Munoz-Plaza, Corrine; Quinn, Sandra Crouse; Rounds, Kathleen A.
2002-01-01
Lesbian, gay, bisexual and transgender youth (LGBT) continue to face extreme discrimination within the school environment. Existing literature suggests that LGBT youth are at high risk for a number of health problems, including suicide ideation and attempts, harassment, substance abuse, homelessness, and declining school performance. This…
Tips to Protect Workers in Cold Environments
A to Z Index | Newsroom | Contact Us | FAQs | ... may cause serious health problems such as trench foot, frostbite and hypothermia. In extreme cases, including cold water immersion, exposure can lead ...
Microbial diversity of extreme habitats in human homes.
Savage, Amy M; Hills, Justin; Driscoll, Katherine; Fergus, Daniel J; Grunden, Amy M; Dunn, Robert R
2016-01-01
High-throughput sequencing techniques have opened up the world of microbial diversity to scientists, and a flurry of studies in the most remote and extreme habitats on earth have begun to elucidate the key roles of microbes in ecosystems with extreme conditions. These same environmental extremes can also be found closer to humans, even in our homes. Here, we used high-throughput sequencing techniques to assess bacterial and archaeal diversity in the extreme environments inside human homes (e.g., dishwashers, hot water heaters, washing machine bleach reservoirs, etc.). We focused on habitats in the home with extreme temperature, pH, and chemical environmental conditions. We found a lower diversity of microbes in these extreme home environments compared to less extreme habitats in the home. However, we were nonetheless able to detect sequences from a relatively diverse array of bacteria and archaea. Habitats with extreme temperatures alone appeared to be able to support a greater diversity of microbes than habitats with extreme pH or extreme chemical environments alone. Microbial diversity was lowest when habitats had both extreme temperature and one of these other extremes. In habitats with both extreme temperatures and extreme pH, taxa with known associations with extreme conditions dominated. Our findings highlight the importance of examining interactive effects of multiple environmental extremes on microbial communities. Inasmuch as taxa from extreme environments can be both beneficial and harmful to humans, our findings also suggest future work to understand both the threats and opportunities posed by the life in these habitats.
Communities that thrive in extreme conditions captured from a freshwater lake.
Low-Décarie, Etienne; Fussmann, Gregor F; Dumbrell, Alex J; Bell, Graham
2016-09-01
Organisms that can grow in extreme conditions would be expected to be confined to extreme environments. However, we were able to capture highly productive communities of algae and bacteria capable of growing in acidic (pH 2), basic (pH 12) and saline (40 ppt) conditions from an ordinary freshwater lake. Microbial communities may thus include taxa that are highly productive in conditions that are far outside the range of conditions experienced in their host ecosystem. The organisms we captured were not obligate extremophiles, but were capable of growing in both extreme and benign conditions. The ability to grow in extreme conditions may thus be a common functional attribute in microbial communities. © 2016 The Author(s).
Extreme Environments: The Ghetto and the South Pole.
ERIC Educational Resources Information Center
Pierce, Chester M.
Extreme environments, such as polar regions or space crafts, provide an analogue for speculations concerning the needs of, educational provisions for, and environmental impacts on ghetto youth in kindergarten through the third grade. This discussion first centers on the common qualities of an extreme environment (whether exotic or mundane): forced…
Evaluation of Advanced COTS Passive Devices for Extreme Temperature Operation
NASA Technical Reports Server (NTRS)
Patterson, Richard; Hammoud, Ahmad; Dones, Keishla R.
2009-01-01
Electronic sensors and circuits are often exposed to extreme temperatures in many of NASA deep space and planetary surface exploration missions. Electronics capable of operation in harsh environments would be beneficial as they simplify overall system design, relax thermal management constraints, and meet operational requirements. For example, cryogenic operation of electronic parts will improve reliability, increase energy density, and extend the operational lifetimes of space-based electronic systems. Similarly, electronic parts that are able to withstand and operate efficiently in high temperature environments will negate the need for thermal control elements and their associated structures, thereby reducing system size and weight, enhancing its reliability, improving its efficiency, and reducing cost. Passive devices play a critical role in the design of almost all electronic circuitry. To address the needs of systems for extreme temperature operation, some of the advanced and most recently introduced commercial-off-the-shelf (COTS) passive devices, which included resistors and capacitors, were examined for operation under a wide temperature regime. The types of resistors investigated included high temperature precision film, general purpose metal oxide, and wirewound.
Genomes in Turmoil: Frugality Drives Microbial Community Structure in Extremely Acidic Environments
NASA Astrophysics Data System (ADS)
Holmes, D. S.
2016-12-01
Extremely acidic environments (To gain insight into these issues, we have conducted deep bioinformatic analyses, including metabolic reconstruction of key assimilatory pathways, phylogenomics and network scrutiny of >160 genomes of acidophiles, including representatives from Archaea, Bacteria and Eukarya and at least ten metagenomes of acidic environments [Cardenas JP, et al. pp 179-197 in Acidophiles, eds R. Quatrini and D. B. Johnson, Caister Academic Press, UK (2016)]. Results yielded valuable insights into cellular processes, including carbon and nitrogen management and energy production, linking biogeochemical processes to organismal physiology. They also provided insight into the evolutionary forces that shape the genomic structure of members of acidophile communities. Niche partitioning can explain diversity patterns in rapidly changing acidic environments such as bioleaching heaps. However, in spatially and temporally homogeneous acidic environments genome flux appears to provide deeper insight into the composition and evolution of acidic consortia. Acidophiles have undergone genome streamlining by gene loss promoting mutual coexistence of species that exploit complementarity use of scarce resources consistent with the Black Queen hypothesis [Morris JJ et al. mBio 3: e00036-12 (2012)]. Acidophiles also have a large pool of accessory genes (the microbial super-genome) that can be accessed by horizontal gene transfer. This further promotes dependency relationships as drivers of community structure and the evolution of keystone species. Acknowledgements: Fondecyt 1130683; Basal CCTE PFB16
Phosphatase activity in Antarctica soil samples as a biosignature of extant life
NASA Astrophysics Data System (ADS)
Sato, Shuji; Itoh, Yuki; Takano, Yoshinori; Fukui, Manabu; Kaneko, Takeo; Kobayashi, Kensei
Microbial activities have been detected in such extreme terrestrial environments as deep lithosphere, a submarine hydrothermal systems, stratosphere, and Antarctica. Microorganisms have adapted to such harsh environments by evolving their biomolecules. Some of these biomolecules such as enzymes might have different characteristics from those of organisms in ordinary environments. Many biosignatures (or biomarkers) have been proposed to detect microbial activities in such extreme environments. A number of techniques are proposed to evaluate biological activities in extreme environments including cultivation methods, assay of metabolism, and analysis of bioorganic compounds like amino acids and DNA. Enzyme activities are useful signature of extant life in extreme environments. Among many enzymes, phosphatase could be a good indicator of biological activities, since phosphate esters are essential for all the living terrestrial organisms. In addition, alkaline phosphatase is known as a typical zinc-containing metalloenzyme and quite stable in environments. We analyzed phosphatase activities in Antarctica soil samples to see whether they can be used as biosignatures for extant life. In addition, we characterized phosphatases extracted from the Antarctica soil samples, and compared with those obtained from other types of environments. Antarctica surface environments are quite severe environments for life since it is extremely cold and dry and exposed to strong UV and cosmic rays. We tried to evaluate biological activities in Antarctica by measuring phosphatase activities. Surface soil samples are obtained at the Sites 1-8 near Showa Base in Antarctica during the 47th Japan Antarctic exploration mission in 2005-6. Activities of acid phosphatase (ACP) and alkaline phosphatase (ALP) are measured spectrophotometrically after mixing the powdered sample and p-nitrophenyl phosphate solution (pH 6.5 for ACP, pH 8.0 for ALP). ALP was characterized after extraction from soils with Tris-HCl buffer (pH 9.0), where the activity was measured fluorometrically with 4-methylumbelliferyl phosphate (pH 8.0) as a substance. The soil of Site 8 (near a penguin rookery) showed almost the same level of ACP and ALP activities as usual surface soil sampled in YNU campus, while the soil of Sites 1-7 showed much less activities. ALP in the extract from the soil of Site 8 was characterized. It showed the maximal at 338 K, while ALP from the campus soil showed the maximal at 358 K. Gel filtration chromatography showed that the ALP activity was found only in the fraction whose molecular weights were over 60000. The ALP activity was diminished with EDTA and was recovered with addition of zinc ion. The present results showed that zinc-containing metalloenzymes, which had lower optimum temperature than those in usual environments, are present in Antarctica soil. It was suggested that phosphatases are good bio-signatures for extant life in extreme environments.
Golyshina, Olga V; Timmis, Kenneth N
2005-09-01
For several decades, the bacterium Acidithiobacillus (previously Thiobacillus) has been considered to be the principal acidophilic sulfur- and iron-oxidizing microbe inhabiting acidic environments rich in ores of iron and other heavy metals, responsible for the metal solubilization and leaching from such ores, and has become the paradigm of such microbes. However, during the last few years, new studies of a number of acidic environments, particularly mining waste waters, acidic pools, etc., in diverse geographical locations have revealed the presence of new cell wall-lacking archaea related to the recently described, acidophilic, ferrous-iron oxidizing Ferroplasma acidiphilum. These mesophilic and moderately thermophilic microbes, representing the family Ferroplasmaceae, were numerically significant members of the microbial consortia of the habitats studied, are able to mobilize metals from sulfide ores, e.g. pyrite, arsenopyrite and copper-containing sulfides, and are more acid-resistant than iron and sulfur oxidizing bacteria exhibiting similar eco-physiological properties. Ferroplasma cell membranes contain novel caldarchaetidylglycerol tetraether lipids, which have extremely low proton permeabilities, as a result of the bulky isoprenoid core, and which are probably a major contributor to the extreme acid tolerance of these cell wall-less microbes. Surprisingly, several intracellular enzymes, including an ATP-dependent DNA ligase have pH optima close to that of the external environment rather than of the cytoplasm. Ferroplasma spp. are probably the major players in the biogeochemical cycling of sulfur and sulfide metals in highly acidic environments, and may have considerable potential for biotechnological applications such as biomining and biocatalysis under extreme conditions.
Soft-Tissue Injuries Associated With High-Energy Extremity Trauma: Principles of Management.
Norris; Kellam
1997-01-01
The management of high-energy extremity trauma has evolved over the past several decades, and appropriate treatment of associated soft-tissue injuries has proved to be an important factor in achieving a satisfactory outcome. Early evaluation of the severely injured extremity is crucial. Severe closed injuries require serial observation of the soft tissues and early skeletal stabilization. Open injuries require early aggressive debridement of the soft tissues followed by skeletal stabilization. Temporary wound dressings should remain in place until definitive soft-tissue coverage has been obtained. Definitive soft-tissue closure will be expedited by serial debridements performed every 48 to 72 hours in a sterile environment. Skeletal union is facilitated by early bone grafting and/or modification of the stabilizing device. Aggressive rehabilitation, includ-ing early social reintegration, are crucial for a good functional outcome. Adherence to protocols is especially beneficial in the management of salvageable severely injured extremities.
Atomistic material behavior at extreme pressures
Beland, Laurent K.; Osetskiy, Yury N.; Stoller, Roger E.
2016-08-05
Computer simulations are routinely performed to model the response of materials to extreme environments, such as neutron (or ion) irradiation. The latter involves high-energy collisions from which a recoiling atom creates a so-called atomic displacement cascade. These cascades involve coordinated motion of atoms in the form of supersonic shockwaves. These shockwaves are characterized by local atomic pressures >15 GPa and interatomic distances <2 Å. Similar pressures and interatomic distances are observed in other extreme environment, including short-pulse laser ablation, high-impact ballistic collisions and diamond anvil cells. Displacement cascade simulations using four different force fields, with initial kinetic energies ranging frommore » 1 to 40 keV, show that there is a direct relationship between these high-pressure states and stable defect production. An important shortcoming in the modeling of interatomic interactions at these short distances, which in turn determines final defect production, is brought to light.« less
LiDAR in extreme environment: surveying in Antarctica
NASA Astrophysics Data System (ADS)
Abate, D.; Pierattini, S.; Bianchi Fasani, G.
2013-10-01
This study was performed under the patronage of the Italian National Research Programme in Antarctica (PNRA) with the aim to realize a high resolution Digital Elevation Model (DEM) of the moraine named "Boulder Clay" which insists approximately 7 km far from the Italian Research Base "Mario Zucchelli Station" in the Terra Nova Bay area. The DEM will be included in the project for the construction of two runways to be used as support facilities for the scientific research campaigns which take place on regular basis each year. Although the research efforts to realize a detailed cartography of the area is on-going, for the specific aim and urgency of this project it was decided to perform a laser scanning survey in this extreme environment in order to obtain contour lines describing the terrain elevation each 50 cm and volume analysis. The final result will be super imposed on a photogrammetric DEM with contour lines each 2.5 m and satellite images. This paper focus both on the final scientific data and on all the challenges have to be faced in such extreme and particular environment during the laser scanning survey.
Self-Recovery Experiments in Extreme Environments Using a Field Programmable Transistor Array
NASA Technical Reports Server (NTRS)
Stoica, Adrian; Keymeulen, Didier; Arslan, Tughrul; Duong, Vu; Zebulum, Ricardo; Ferguson, Ian; Guo, Xin
2004-01-01
Temperature and radiation tolerant electronics, as well as long life survivability are key capabilities required for future NASA missions. Current approaches to electronics for extreme environments focus on component level robustness and hardening. However, current technology can only ensure very limited lifetime in extreme environments. This paper describes novel experiments that allow adaptive in-situ circuit redesign/reconfiguration during operation in extreme temperature and radiation environments. This technology would complement material/device advancements and increase the mission capability to survive harsh environments. The approach is demonstrated on a mixed-signal programmable chip (FPTA-2), which recovers functionality for temperatures until 28 C and with total radiation dose up to 250kRad.
Gomez, Andrew Thomas; Rao, Ashwin
2016-03-01
Adventure and extreme sports often involve unpredictable and inhospitable environments, high velocities, and stunts. These activities vary widely and include sports like BASE jumping, snowboarding, kayaking, and surfing. Increasing interest and participation in adventure and extreme sports warrants understanding by clinicians to facilitate prevention, identification, and treatment of injuries unique to each sport. This article covers alpine skiing and snowboarding, skateboarding, surfing, bungee jumping, BASE jumping, and whitewater sports with emphasis on epidemiology, demographics, general injury mechanisms, specific injuries, chronic injuries, fatality data, and prevention. Overall, most injuries are related to overuse, trauma, and environmental or microbial exposure. Copyright © 2016 Elsevier Inc. All rights reserved.
2005-09-01
Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the...collection of information . Send comments regarding this burden estimate or any other aspect of this collection of information , including suggestions for
Human and team performance in extreme environments: Antarctica
NASA Technical Reports Server (NTRS)
Stuster, J.
1998-01-01
Analogous experience is often instructive when attempting to understand human behavior in extreme environments. The current paper refers to the experiences of polar explorers and remote duty personnel to help identify the factors that influence individual and team performance when small groups are isolated and confined for long durations. The principal factors discussed include organizational structure, intracrew communications, interpersonal relations, leadership style, personnel selection, and training. Behavioral implications also are addressed for the design of procedures and equipment to facilitate sustained individual and group performance under conditions of isolation and confinement. To be consistent with the theme of the symposium, this paper emphasizes the crew requirements for an international expedition to Mars.
NASA Technical Reports Server (NTRS)
Clifford, S. M. (Editor); Treiman, A. H. (Editor); Newsom, H. E. (Editor); Farmer, J. D. (Editor)
1997-01-01
Topics considered include: Geology alteration and life in an extreme environment; developing a chemical code to identify magnetic biominerals; effect of impacts on early Martin geologic evolution; spectroscopic identification of minerals in Hematite-bearing soils and sediments; exopaleontology and the search for a Fossil record on Mars; geochemical evolution of the crust of Mars; geological evolution of the early earth;solar-wind-induced erosion of the Mars atmosphere. Also included geological evolution of the crust of Mars.
Fiberoptic characteristics for extreme operating environments
NASA Technical Reports Server (NTRS)
Delcher, R. C.
1992-01-01
Fiberoptics could offer several major benefits for cryogenic liquid-fueled rocket engines, including lightning immunity, weight reduction, and the possibility of implementing a number of new measurements for engine condition monitoring. The technical feasibility of using fiberoptics in the severe environments posed by cryogenic liquid-fueled rocket engines was determined. The issues of importance and subsequent requirements for this use of fiberoptics were compiled. These included temperature ranges, moisture embrittlement succeptability, and the ability to withstand extreme shock and vibration levels. Different types of optical fibers were evaluated and several types of optical fibers' ability to withstand use in cryogenic liquid-fueled rocket engines was demonstrated through environmental testing of samples. This testing included: cold-bend testing, moisture embrittlement testing, temperature cycling, temperature extremes testing, vibration testing, and shock testing. Three of five fiber samples withstood the tests to a level proving feasibility, and two of these remained intact in all six of the tests. A fiberoptic bundle was also tested, and completed testing without breakage. Preliminary cabling and harnessing for fiber protection was also demonstrated. According to cable manufacturers, the successful -300 F cold bend, vibration, and shock tests are the first instance of any major fiberoptic cable testing below roughly -55 F. This program has demonstrated the basic technical feasibility of implementing optical fibers on cryogenic liquid-fueled rocket engines, and a development plan is included highlighting requirements and issues for such an implementation.
2016-04-01
SUBJECT TERMS carbon nanotubes, composite, electromagnetic shielding , extreme environments, magnetism , fibers, woven composite, boron nitride...AFRL-AFOSR-VA-TR-2016-0158 Magnetic -Field-Assisted Assembly of Ordered Multifunctional Ceramic Nanocomposites for Extreme Environments Konstantin...From - To) 15 Sep 2012 to 14 Nov 2017 4. TITLE AND SUBTITLE Magnetic -Field-Assisted Assembly of Ordered Multifunctional Ceramic Nanocomposites for
Toxicity at the Edge of Life: A Review on Cyanobacterial Toxins from Extreme Environments
Casero, María Cristina
2017-01-01
Cyanotoxins are secondary metabolites produced by cyanobacteria, of varied chemical nature and toxic effects. Although cyanobacteria thrive in all kinds of ecosystems on Earth even under very harsh conditions, current knowledge on cyanotoxin distribution is almost restricted to freshwaters from temperate latitudes. In this review, we bring to the forefront the presence of cyanotoxins in extreme environments. Cyanotoxins have been reported especially in polar deserts (both from the Arctic and Antarctica) and alkaline lakes, but also in hot deserts, hypersaline environments, and hot springs. Cyanotoxins detected in these ecosystems include neurotoxins—anatoxin-a, anatoxin-a (S), paralytic shellfish toxins, β-methylaminopropionic acid, N-(2-aminoethyl) glycine and 2,4-diaminobutyric acid- and hepatotoxins –cylindrospermopsins, microcystins and nodularins—with microcystins being the most frequently reported. Toxin production there has been linked to at least eleven cyanobacterial genera yet only three of these (Arthrospira, Synechococcus and Oscillatoria) have been confirmed as producers in culture. Beyond a comprehensive analysis of cyanotoxin presence in each of the extreme environments, this review also identifies the main knowledge gaps to overcome (e.g., scarcity of isolates and –omics data, among others) toward an initial assessment of ecological and human health risks in these amazing ecosystems developing at the very edge of life. PMID:28737704
Toxicity at the Edge of Life: A Review on Cyanobacterial Toxins from Extreme Environments.
Cirés, Samuel; Casero, María Cristina; Quesada, Antonio
2017-07-24
Cyanotoxins are secondary metabolites produced by cyanobacteria, of varied chemical nature and toxic effects. Although cyanobacteria thrive in all kinds of ecosystems on Earth even under very harsh conditions, current knowledge on cyanotoxin distribution is almost restricted to freshwaters from temperate latitudes. In this review, we bring to the forefront the presence of cyanotoxins in extreme environments. Cyanotoxins have been reported especially in polar deserts (both from the Arctic and Antarctica) and alkaline lakes, but also in hot deserts, hypersaline environments, and hot springs. Cyanotoxins detected in these ecosystems include neurotoxins-anatoxin-a, anatoxin-a (S), paralytic shellfish toxins, β-methylaminopropionic acid, N -(2-aminoethyl) glycine and 2,4-diaminobutyric acid- and hepatotoxins -cylindrospermopsins, microcystins and nodularins-with microcystins being the most frequently reported. Toxin production there has been linked to at least eleven cyanobacterial genera yet only three of these ( Arthrospira , Synechococcus and Oscillatoria ) have been confirmed as producers in culture. Beyond a comprehensive analysis of cyanotoxin presence in each of the extreme environments, this review also identifies the main knowledge gaps to overcome (e.g., scarcity of isolates and -omics data, among others) toward an initial assessment of ecological and human health risks in these amazing ecosystems developing at the very edge of life.
ERIC Educational Resources Information Center
Clarke, David H., Ed.; Eckert, Helen M., Ed.
The following papers are included in this collection: (1) "The Scientific Study of Athletes and Athletics" (Henry J. Montoye); (2) "The Limits of Human Performance" (David H. Clarke); (3) "Observations of Extraordinary Performances in an Extreme Environment and in a Training Environment" (E.R. Buskirk); (4) "Metabolic Requirements of Distance…
Climate change and health in Israel: adaptation policies for extreme weather events.
Green, Manfred S; Pri-Or, Noemie Groag; Capeluto, Guedi; Epstein, Yoram; Paz, Shlomit
2013-06-27
Climatic changes have increased the world-wide frequency of extreme weather events such as heat waves, cold spells, floods, storms and droughts. These extreme events potentially affect the health status of millions of people, increasing disease and death. Since mitigation of climate change is a long and complex process, emphasis has recently been placed on the measures required for adaptation. Although the principles underlying these measures are universal, preparedness plans and policies need to be tailored to local conditions. In this paper, we conducted a review of the literature on the possible health consequences of extreme weather events in Israel, where the conditions are characteristic of the Mediterranean region. Strong evidence indicates that the frequency and duration of several types of extreme weather events are increasing in the Mediterranean Basin, including Israel. We examined the public health policy implications for adaptation to climate change in the region, and proposed public health adaptation policy options. Preparedness for the public health impact of increased extreme weather events is still relatively limited and clear public health policies are urgently needed. These include improved early warning and monitoring systems, preparedness of the health system, educational programs and the living environment. Regional collaboration should be a priority.
NASA Technical Reports Server (NTRS)
Shea, M. A. (Editor); Heinrich, W. (Editor); Badhwar, G. D. (Editor)
1996-01-01
Both man and technological equipment must survive the near-earth space radiation environment, which can, under specific conditions, be extremely severe. This conference produced 17 papers on the dynamic space radiation environment covering: galactic, solar and trapped particles; nuclear fragmentation; nuclear interactions and transport theory; solar proton events; radiation shielding; and heavy ion fluences. Several papers present results from the recent SAMPEX mission.
NASA Astrophysics Data System (ADS)
Hazeli, K.; Kingstedt, O. T.
2017-05-01
It is critical to investigate the performance of electronic systems and their components under the environments experienced during proposed missions to improve spacecraft and robotic vehicle functionality and performance in extreme environments.
Eukaryotic Organisms in Extreme Acidic Environments, the Río Tinto Case
NASA Astrophysics Data System (ADS)
Angeles Aguilera, Angeles
2013-07-01
A major issue in microbial ecology is to identify the limits of life for growth and survival, and to understand the molecular mechanisms that define these limits. Thus, interest in the biodiversity and ecology of extreme environments has grown in recent years for several reasons. Some are basic and revolve around the idea that extreme environments are believed to reflect early Earth conditions. Others are related to the biotechnological potential of extremophiles. In this regard, the study of extremely acidic environments has become increasingly important since environmental acidity is often caused by microbial activity. Highly acidic environments are relatively scarce worldwide and are generally associated with volcanic activity or mining operations. For most acidic environments, low pH facilitates metal solubility, and therefore acidic waters tend to have high concentrations of heavy metals. However, highly acidic environments are usually inhabited by acidophilic and acidotolerant eukaryotic microorganisms such as algae, amoebas, ciliates, heliozoan and rotifers, not to mention filamentous fungi and yeasts. Here, we review the general trends concerning the diversity and ecophysiology of eukaryotic acidophilic microorganims, as well as summarize our latest results on this topic in one of the largest extreme acidic rivers, Río Tinto (SW, Spain).
Extreme Programming in a Research Environment
NASA Technical Reports Server (NTRS)
Wood, William A.; Kleb, William L.
2002-01-01
This article explores the applicability of Extreme Programming in a scientific research context. The cultural environment at a government research center differs from the customer-centric business view. The chief theoretical difficulty lies in defining the customer to developer relationship. Specifically, can Extreme Programming be utilized when the developer and customer are the same person? Eight of Extreme Programming's 12 practices are perceived to be incompatible with the existing research culture. Further, six of the nine 'environments that I know don't do well with XP' apply. A pilot project explores the use of Extreme Programming in scientific research. The applicability issues are addressed and it is concluded that Extreme Programming can function successfully in situations for which it appears to be ill-suited. A strong discipline for mentally separating the customer and developer roles is found to be key for applying Extreme Programming in a field that lacks a clear distinction between the customer and the developer.
Extremely halophilic archaea and the issue of long-term microbial survival
2011-01-01
Halophilic archaebacteria (haloarchaea) thrive in environments with salt concentrations approaching saturation, such as natural brines, the Dead Sea, alkaline salt lakes and marine solar salterns; they have also been isolated from rock salt of great geological age (195–250 million years). An overview of their taxonomy, including novel isolates from rock salt, is presented here; in addition, some of their unique characteristics and physiological adaptations to environments of low water activity are reviewed. The issue of extreme long-term microbial survival is considered and its implications for the search for extraterrestrial life. The development of detection methods for subterranean haloarchaea, which might also be applicable to samples from future missions to space, is presented. PMID:21984879
NASA Technical Reports Server (NTRS)
Ruttley, Tara M.; Robinson, Julie A.
2010-01-01
Ground-based space analog projects such as the NASA Extreme Environment Mission Operations (NEEMO) can be valuable test beds for evaluation of experimental design and hardware feasibility before actually being implemented on orbit. The International Space Station (ISS) is an closed-system laboratory that orbits 240 miles above the Earth, and is the ultimate extreme environment. Its inhabitants spend hours performing research that spans from fluid physics to human physiology, yielding results that have implications for Earth-based improvements in medicine and health, as well as those that will help facilitate the mitigation of risks to the human body associated with exploration-class space missions. ISS health and medical experiments focus on pre-flight and in-flight prevention, in-flight treatment, and postflight recovery of health problems associated with space flight. Such experiments include those on enhanced medical monitoring, bone and muscle loss prevention, cardiovascular health, immunology, radiation and behavior. Lessons learned from ISS experiments may not only be applicable to other extreme environments that face similar capability limitations, but also serve to enhance standards of care for everyday use on Earth.
Current Psychological Support for US astronauts on the International Space Station
NASA Technical Reports Server (NTRS)
Sipes, Walter; Fiedler, Edna
2007-01-01
This viewgraph presentation describes the psychological support services that are offered to the United States astronauts on the International Space Station (ISS). The contents include: 1) Operational Psychology; 2) NASA Extreme Environment Mission Operation (NEEMO); and 3) ISS.
Extreme Terrestrial Environments: Life in Thermal Stress and Hypoxia. A Narrative Review.
Burtscher, Martin; Gatterer, Hannes; Burtscher, Johannes; Mairbäurl, Heimo
2018-01-01
Living, working and exercising in extreme terrestrial environments are challenging tasks even for healthy humans of the modern new age. The issue is not just survival in remote environments but rather the achievement of optimal performance in everyday life, occupation, and sports. Various adaptive biological processes can take place to cope with the specific stressors of extreme terrestrial environments like cold, heat, and hypoxia (high altitude). This review provides an overview of the physiological and morphological aspects of adaptive responses in these environmental stressors at the level of organs, tissues, and cells. Furthermore, adjustments existing in native people living in such extreme conditions on the earth as well as acute adaptive responses in newcomers are discussed. These insights into general adaptability of humans are complemented by outcomes of specific acclimatization/acclimation studies adding important information how to cope appropriately with extreme environmental temperatures and hypoxia.
Extreme Terrestrial Environments: Life in Thermal Stress and Hypoxia. A Narrative Review
Burtscher, Martin; Gatterer, Hannes; Burtscher, Johannes; Mairbäurl, Heimo
2018-01-01
Living, working and exercising in extreme terrestrial environments are challenging tasks even for healthy humans of the modern new age. The issue is not just survival in remote environments but rather the achievement of optimal performance in everyday life, occupation, and sports. Various adaptive biological processes can take place to cope with the specific stressors of extreme terrestrial environments like cold, heat, and hypoxia (high altitude). This review provides an overview of the physiological and morphological aspects of adaptive responses in these environmental stressors at the level of organs, tissues, and cells. Furthermore, adjustments existing in native people living in such extreme conditions on the earth as well as acute adaptive responses in newcomers are discussed. These insights into general adaptability of humans are complemented by outcomes of specific acclimatization/acclimation studies adding important information how to cope appropriately with extreme environmental temperatures and hypoxia. PMID:29867589
Marine Extremophiles: A Source of Hydrolases for Biotechnological Applications
Dalmaso, Gabriel Zamith Leal; Ferreira, Davis; Vermelho, Alane Beatriz
2015-01-01
The marine environment covers almost three quarters of the planet and is where evolution took its first steps. Extremophile microorganisms are found in several extreme marine environments, such as hydrothermal vents, hot springs, salty lakes and deep-sea floors. The ability of these microorganisms to support extremes of temperature, salinity and pressure demonstrates their great potential for biotechnological processes. Hydrolases including amylases, cellulases, peptidases and lipases from hyperthermophiles, psychrophiles, halophiles and piezophiles have been investigated for these reasons. Extremozymes are adapted to work in harsh physical-chemical conditions and their use in various industrial applications such as the biofuel, pharmaceutical, fine chemicals and food industries has increased. The understanding of the specific factors that confer the ability to withstand extreme habitats on such enzymes has become a priority for their biotechnological use. The most studied marine extremophiles are prokaryotes and in this review, we present the most studied archaea and bacteria extremophiles and their hydrolases, and discuss their use for industrial applications. PMID:25854643
NASA Technical Reports Server (NTRS)
Demange, Jeffrey J.; Taylor, Shawn C.; Dunlap, Patrick H.; Steinetz, Bruce M.; Finkbeiner, Joshua R.; Proctor, Margaret P.
2014-01-01
The NASA Glenn Research Center (GRC), partnering with the University of Toledo, has a long history of developing and testing seal technologies for high-temperature applications. The GRC Seals Team has conducted research and development on high-temperature seal technologies for applications including advanced propulsion systems, thermal protection systems (airframe and control surface thermal seals), high-temperature preloading technologies, and other extreme-environment seal applications. The team has supported several high-profile projects over the past 30 years and has partnered with numerous organizations, including other government entities, academic institutions, and private organizations. Some of these projects have included the National Aerospace Space Plane (NASP), Space Shuttle Space Transport System (STS), the Multi-Purpose Crew Vehicle (MPCV), and the Dream Chaser Space Transportation System, as well as several high-speed vehicle programs for other government organizations. As part of the support for these programs, NASA GRC has developed unique seal-specific test facilities that permit evaluations and screening exercises in relevant environments. The team has also embarked on developing high-temperature preloaders to help maintain seal functionality in extreme environments. This paper highlights several propulsion-related projects that the NASA GRC Seals Team has supported over the past several years and will provide an overview of existing testing capabilities
NASA Astrophysics Data System (ADS)
Gusev, Oleg; Nakahara, Yuichi; Kikawada, Takahiro; Levinskikh, Margarita; Sychev, Vladimir; Okuda, Takashi
Some organisms showing no sign of living due to complete desiccation are nevertheless able to resume active life after rehydration. This peculiar biological state is referred to as "anhydrobiosis". Larvae of the sleeping chironomid, P. vanderplanki living in temporary pools in semi-arid areas on the African continent become completely desiccated upon drought, but can revive after water becomes available upon the next rain. The dried larvae can stand other extreme conditions, such as exposure to 100˚C, -270˚C, 100We have adopted several methods to evaluated DNA damage in cells of P. vanderplanki and cloned and analyzed expression of the main agent of genetic stress response showing that the larvae possess highly developed anti-stress genetic system, involving anti-oxidative stress genes, hsp and DNA reparation enzymes acting together to provide stability of proteins and DNA in the absence of water. From 2005, dried larvae were included in a number of research programs, including exposition to space environments onboard ISS and long-term exposure to outer space environment outside of ISS ("Expose-R" and"Biorisk" projects) and now are being considered for including into the Phobos-Grunt mission as a testing organism to analyze capability of resting stages of multicellular organism to interplanetary flights.
Microbial communities and their predicted metabolic functions in a desiccating acid salt lake.
Zaikova, Elena; Benison, Kathleen C; Mormile, Melanie R; Johnson, Sarah Stewart
2018-05-01
The waters of Lake Magic in Western Australia are among the most geochemically extreme on Earth. This ephemeral saline lake is characterized by pH as low as 1.6 salinity as high as 32% total dissolved solids, and unusually complex geochemistry, including extremely high concentrations of aluminum, silica, and iron. We examined the microbial composition and putative function in this extreme acid brine environment by analyzing lake water, groundwater, and sediment samples collected during the austral summer near peak evapoconcentration. Our results reveal that the lake water metagenome, surprisingly, was comprised of mostly eukaryote sequences, particularly fungi and to a lesser extent, green algae. Groundwater and sediment samples were dominated by acidophilic Firmicutes, with eukaryotic community members only detected at low abundances. The lake water bacterial community was less diverse than that in groundwater and sediment, and was overwhelmingly represented by a single OTU affiliated with Salinisphaera. Pathways associated with halotolerance were found in the metagenomes, as were genes associated with biosynthesis of protective carotenoids. During periods of complete desiccation of the lake, we hypothesize that dormancy and entrapment in fluid inclusions in halite crystals may increase long-term survival, leading to the resilience of complex eukaryotes in this extreme environment.
Brazilian research on extremophiles in the context of astrobiology
NASA Astrophysics Data System (ADS)
Duarte, Rubens T. D.; Nóbrega, Felipe; Nakayama, Cristina R.; Pellizari, Vivian H.
2012-10-01
Extremophiles are organisms adapted to grow at extreme ranges of environmental variables, such as high or low temperatures, acid or alkaline medium, high salt concentration, high pressures and so forth. Most extremophiles are micro-organisms that belong to the Archaea and Bacteria domains, and are widely spread across the world, which include the polar regions, volcanoes, deserts, deep oceanic sediments, hydrothermal vents, hypersaline lakes, acid and alkaline water bodies, and other extreme environments considered hostile to human life. Despite the tropical climate, Brazil has a wide range of ecosystems which include some permanent or seasonally extreme environments. For example, the Cerrado is a biome with very low soil pH with high Al+3 concentration, the mangroves in the Brazilian coast are anaerobic and saline, Pantanal has thousands of alkaline-saline lakes, the Caatinga arid and hot soils and the deep sea sediments in the Brazilian ocean shelf. These environments harbour extremophilic organisms that, coupled with the high natural biodiversity in Brazil, could be explored for different purposes. However, only a few projects in Brazil intended to study the extremophiles. In the frame of astrobiology, for example, these organisms could provide important models for defining the limits of life and hypothesize about life outside Earth. Brazilian microbiologists have, however, studied the extremophilic micro-organisms inhabiting non-Brazilian environments, such as the Antarctic continent. The experience and previous results obtained from the Brazilian Antarctic Program (PROANTAR) provide important results that are directly related to astrobiology. This article is a brief synopsis of the Brazilian experience in researching extremophiles, indicating the most important results related to astrobiology and some future perspectives in this area.
Code of Federal Regulations, 2010 CFR
2010-07-01
... EMERGENCY PLANNING AND NOTIFICATION Emergency Planning Who Must Comply § 355.12 What quantities of extremely... 40 Protection of Environment 27 2010-07-01 2010-07-01 false What quantities of extremely hazardous substances trigger emergency planning requirements? 355.12 Section 355.12 Protection of Environment...
NASA Technical Reports Server (NTRS)
Ramesham, Rajeshuni
2011-01-01
Surface mount electronic package test boards have been assembled using tin/lead (Sn/Pb) and lead-free (Pb-free or SnAgCu or SAC305) solders. The soldered surface mount packages include ball grid arrays (BGA), flat packs, various sizes of passive chip components, etc. They have been optically inspected after assembly and subsequently subjected to extreme temperature thermal cycling to assess their reliability or future deep space, long-term, extreme temperature environmental missions. In this study, the employed temperature range (-185oC to +125oC) covers military specifications (-55oC to +100oC), extreme old Martian (-120oC to +115oC), asteroid Nereus (-180oC to +25oC) and JUNO (-150oC to +120oC) environments. The boards were inspected at room temperature and at various intervals as a function of extreme temperature thermal cycling and bake duration. Electrical resistance measurements made at room temperature are reported and the tests to date have shown some change in resistance as a function of extreme temperature thermal cycling and some showed increase in resistance. However, the change in interconnect resistance becomes more noticeable with increasing number of thermal cycles. Further research work will be carried out to understand the reliability of packages under extreme temperature applications (-185oC to +125oC) via continuously monitoring the daisy chain resistance for BGA, Flat-packs, lead less chip packages, etc. This paper will describe the experimental reliability results of miniaturized passive components (01005, 0201, 0402, 0603, 0805, and 1206) assembled using surface mounting processes with tin-lead and lead-free solder alloys under extreme temperature environments.
NASA Astrophysics Data System (ADS)
Ramesham, Rajeshuni
2011-02-01
Surface mount electronic package test boards have been assembled using tin/lead (Sn/Pb) and lead-free (Pb-free or SnAgCu or SAC305) solders. The soldered surface mount packages include ball grid arrays (BGA), flat packs, various sizes of passive chip components, etc. They have been optically inspected after assembly and subsequently subjected to extreme temperature thermal cycling to assess their reliability for future deep space, long-term, extreme temperature environmental missions. In this study, the employed temperature range (-185°C to +125°C) covers military specifications (-55°C to +100°C), extreme cold Martian (-120°C to +115°C), asteroid Nereus (-180°C to +25°C) and JUNO (-150°C to +120°C) environments. The boards were inspected at room temperature and at various intervals as a function of extreme temperature thermal cycling and bake duration. Electrical resistance measurements made at room temperature are reported and the tests to date have shown some change in resistance as a function of extreme temperature thermal cycling and some showed increase in resistance. However, the change in interconnect resistance becomes more noticeable with increasing number of thermal cycles. Further research work will be carried out to understand the reliability of packages under extreme temperature applications (-185°C to +125°C) via continuously monitoring the daisy chain resistance for BGA, Flat-packs, lead less chip packages, etc. This paper will describe the experimental reliability results of miniaturized passive components (01005, 0201, 0402, 0603, 0805, and 1206) assembled using surface mounting processes with tin-lead and lead-free solder alloys under extreme temperature environments.
NOAA Environmental Satellite Measurements of Extreme Space Weather Events
NASA Astrophysics Data System (ADS)
Denig, W. F.; Wilkinson, D. C.; Redmon, R. J.
2015-12-01
For over 40 years the National Oceanic and Atmospheric Administration (NOAA) has continuously monitored the near-earth space environment in support of space weather operations. Data from this period have covered a wide range of geophysical conditions including periods of extreme space weather such as the great geomagnetic March 1989, the 2003 Halloween storm and the more recent St Patrick's Day storm of 2015. While not specifically addressed here, these storms have stressed our technology infrastructure in unexpected and surprising ways. Space weather data from NOAA geostationary (GOES) and polar (POES) satellites along with supporting data from the Air Force are presented to compare and contrast the space environmental conditions measured during extreme events.
Climate change and health in Israel: adaptation policies for extreme weather events
2013-01-01
Climatic changes have increased the world-wide frequency of extreme weather events such as heat waves, cold spells, floods, storms and droughts. These extreme events potentially affect the health status of millions of people, increasing disease and death. Since mitigation of climate change is a long and complex process, emphasis has recently been placed on the measures required for adaptation. Although the principles underlying these measures are universal, preparedness plans and policies need to be tailored to local conditions. In this paper, we conducted a review of the literature on the possible health consequences of extreme weather events in Israel, where the conditions are characteristic of the Mediterranean region. Strong evidence indicates that the frequency and duration of several types of extreme weather events are increasing in the Mediterranean Basin, including Israel. We examined the public health policy implications for adaptation to climate change in the region, and proposed public health adaptation policy options. Preparedness for the public health impact of increased extreme weather events is still relatively limited and clear public health policies are urgently needed. These include improved early warning and monitoring systems, preparedness of the health system, educational programs and the living environment. Regional collaboration should be a priority. PMID:23805950
Leveraging organismal biology to forecast the effects of climate change.
Buckley, Lauren B; Cannistra, Anthony F; John, Aji
2018-04-26
Despite the pressing need for accurate forecasts of ecological and evolutionary responses to environmental change, commonly used modelling approaches exhibit mixed performance because they omit many important aspects of how organisms respond to spatially and temporally variable environments. Integrating models based on organismal phenotypes at the physiological, performance and fitness levels can improve model performance. We summarize current limitations of environmental data and models and discuss potential remedies. The paper reviews emerging techniques for sensing environments at fine spatial and temporal scales, accounting for environmental extremes, and capturing how organisms experience the environment. Intertidal mussel data illustrate biologically important aspects of environmental variability. We then discuss key challenges in translating environmental conditions into organismal performance including accounting for the varied timescales of physiological processes, for responses to environmental fluctuations including the onset of stress and other thresholds, and for how environmental sensitivities vary across lifecycles. We call for the creation of phenotypic databases to parameterize forecasting models and advocate for improved sharing of model code and data for model testing. We conclude with challenges in organismal biology that must be solved to improve forecasts over the next decade.acclimation, biophysical models, ecological forecasting, extremes, microclimate, spatial and temporal variability.
Greenough, G; McGeehin, M; Bernard, S M; Trtanj, J; Riad, J; Engelberg, D
2001-05-01
Extreme weather events such as precipitation extremes and severe storms cause hundreds of deaths and injuries annually in the United States. Climate change may alter the frequency, timing, intensity, and duration of these events. Increases in heavy precipitation have occurred over the past century. Future climate scenarios show likely increases in the frequency of extreme precipitation events, including precipitation during hurricanes, raising the risk of floods. Frequencies of tornadoes and hurricanes cannot reliably be projected. Injury and death are the direct health impacts most often associated with natural disasters. Secondary effects, mediated by changes in ecologic systems and public health infrastructure, also occur. The health impacts of extreme weather events hinge on the vulnerabilities and recovery capacities of the natural environment and the local population. Relevant variables include building codes, warning systems, disaster policies, evacuation plans, and relief efforts. There are many federal, state, and local government agencies and nongovernmental organizations involved in planning for and responding to natural disasters in the United States. Future research on health impacts of extreme weather events should focus on improving climate models to project any trends in regional extreme events and as a result improve public health preparedness and mitigation. Epidemiologic studies of health effects beyond the direct impacts of disaster will provide a more accurate measure of the full health impacts and will assist in planning and resource allocation.
NASA Technical Reports Server (NTRS)
Kolawa, Elizabeth; Chen, Yuan; Mojarradi, Mohammad M.; Weber, Carissa Tudryn; Hunter, Don J.
2013-01-01
This paper describes the technology development and infusion of a motor drive electronics assembly for Mars Curiosity Rover under space extreme environments. The technology evaluation and qualification as well as space qualification of the assembly are detailed and summarized. Because of the uncertainty of the technologies operating under the extreme space environments and that a high level reliability was required for this assembly application, both component and assembly board level qualifications were performed.
Extreme Environments Test Capabilities at NASA GRC for Parker Hannifin Visit
NASA Technical Reports Server (NTRS)
Arnett, Lori
2016-01-01
The presentation includes general description on the following test facilities: Fuel Cell Testing Lab, Structural Dynamics Lab, Thermal Vacuum Test Facilities - including a description of the proposed Kinetic High Altitude Simulator concept, EMI Test Lab, and the Creek Road Cryogenic Complex - specifically the Small Multi-purpose Research Facility (SMiRF) and the Cryogenics Components Lab 7 (CCL-7).
NASA Astrophysics Data System (ADS)
McCarthy, M.; Dettinger, M. D.; Kauneckis, D. L.; Cox, D. A.; Albano, C.; Welborn, T.
2014-12-01
Atmospheric rivers (ARs) have historically caused ~80% of the most extreme winter storms and largest floods in California and parts of northwestern Nevada. In 2010, the U.S. Geological Survey developed the ARkStorm extreme-storm scenario to quantify risks from extreme winter storms and to allow stakeholders to explore and mitigate potential impacts. The scenario was constructed by concatenating two historical AR sequences and quantified by simulating them using a regional-weather model nested within global weather fields, resulting in a climatologically plausible 23-day storm sequence. The ARkStorm@Tahoe scenario was presented at six meetings with over 300 participants from local agencies, first-responders and local communities, each meeting having a different geographic or sectoral focus. These stakeholder meetings and an 18-question survey identified a wide range of social and ecological vulnerabilities to extreme winter storms, science and information needs to prepare and mitigate consequenses, and proactive measures to minimize impacts. Interruption of transportation, communications, and lack of power and backup fuel supplies were identified as the most likely and primary points of failure across multiple sectors and geographies, as these interruptions have cascading effects on natural and human environments by impeding emergency response efforts. Natural resource impacts of greatest concern include flooding, impacts to water quality, spread and establishment of invasive species, and interactions with other disturbance types (e.g., fire, landslides). Science needs include improved monitoring and models to facilitate better prediction and response, real-time and forecast inundation mapping to understand flood risks, and vulnerability assessments related to geomorphic hazards and water quality impacts. Results from this effort highlight several opportunities for increasing the resilience of communities and the environment to extreme storm events. Information collected in these meetings was used to develop a "tabletop" emergency-response exercise with over 120 participants in March 2014, as well as reports back to the community including specific recommendations for increasing preparedness, response, recovery, and resilience to extreme winter storm events.
Perspectives on biotechnological applications of archaea
Schiraldi, Chiara; Giuliano, Mariateresa; De Rosa, Mario
2002-01-01
Many archaea colonize extreme environments. They include hyperthermophiles, sulfur-metabolizing thermophiles, extreme halophiles and methanogens. Because extremophilic microorganisms have unusual properties, they are a potentially valuable resource in the development of novel biotechnological processes. Despite extensive research, however, there are few existing industrial applications of either archaeal biomass or archaeal enzymes. This review summarizes current knowledge about the biotechnological uses of archaea and archaeal enzymes with special attention to potential applications that are the subject of current experimental evaluation. Topics covered include cultivation methods, recent achievements in genomics, which are of key importance for the development of new biotechnological tools, and the application of wild-type biomasses, engineered microorganisms, enzymes and specific metabolites in particular bioprocesses of industrial interest. PMID:15803645
Perspectives on biotechnological applications of archaea.
Schiraldi, Chiara; Giuliano, Mariateresa; De Rosa, Mario
2002-09-01
Many archaea colonize extreme environments. They include hyperthermophiles, sulfur-metabolizing thermophiles, extreme halophiles and methanogens. Because extremophilic microorganisms have unusual properties, they are a potentially valuable resource in the development of novel biotechnological processes. Despite extensive research, however, there are few existing industrial applications of either archaeal biomass or archaeal enzymes. This review summarizes current knowledge about the biotechnological uses of archaea and archaeal enzymes with special attention to potential applications that are the subject of current experimental evaluation. Topics covered include cultivation methods, recent achievements in genomics, which are of key importance for the development of new biotechnological tools, and the application of wild-type biomasses, engineered microorganisms, enzymes and specific metabolites in particular bioprocesses of industrial interest.
Extreme marginalization: addiction and other mental health disorders, stigma, and imprisonment
Kreek, Mary Jeanne
2013-01-01
Major well-defined medical problems that are, in part, the unfortunate outcome of a negative social environment may include specific addictive diseases and other mental health disorders, in particular the affective disorders of anxiety, depression, social phobia, and post-traumatic stress syndrome. This overview touches on the topic of extreme marginalization associated with addiction and other mental health disorders, along with arrest, imprisonment, and parole. All of these are characterized by lasting stigma that hauntingly continues to impact upon each person suffering from any of these problems. PMID:21884162
ERIC Educational Resources Information Center
Furey, Paula C.
2003-01-01
In this article, the author presents a poem on the distribution and adaptation of blue-green algae (Cyanobacteria). The poem describes some of the diverse habitats of cyanobacteria including examples from extreme and unique environments such as hot springs, and polar bear hair. The poem also describes some of the adaptations of cyanobacteria…
Test and Evaluation of Architecture-Aware Compiler Environment
2011-11-01
biology, medicine, social sciences , and security applications. Challenges include extremely large graphs (the Facebook friend network has over...Operations with Temporal Binning ....................................................................... 32 4.12 Memory behavior and Energy per...five challenge problems empirically, exploring their scaling properties, computation and datatype needs, memory behavior , and temporal behavior
21 CFR 868.5470 - Hyperbaric chamber.
Code of Federal Regulations, 2013 CFR
2013-04-01
... hyperbaric chamber is a device that is intended to increase the environmental oxygen pressure to promote the movement of oxygen from the environment to a patient's tissue by means of pressurization that is greater than atmospheric pressure. This device does not include topical oxygen chambers for extremities (§ 878...
21 CFR 868.5470 - Hyperbaric chamber.
Code of Federal Regulations, 2014 CFR
2014-04-01
... hyperbaric chamber is a device that is intended to increase the environmental oxygen pressure to promote the movement of oxygen from the environment to a patient's tissue by means of pressurization that is greater than atmospheric pressure. This device does not include topical oxygen chambers for extremities (§ 878...
21 CFR 868.5470 - Hyperbaric chamber.
Code of Federal Regulations, 2012 CFR
2012-04-01
... hyperbaric chamber is a device that is intended to increase the environmental oxygen pressure to promote the movement of oxygen from the environment to a patient's tissue by means of pressurization that is greater than atmospheric pressure. This device does not include topical oxygen chambers for extremities (§ 878...
21 CFR 868.5470 - Hyperbaric chamber.
Code of Federal Regulations, 2011 CFR
2011-04-01
... hyperbaric chamber is a device that is intended to increase the environmental oxygen pressure to promote the movement of oxygen from the environment to a patient's tissue by means of pressurization that is greater than atmospheric pressure. This device does not include topical oxygen chambers for extremities (§ 878...
21 CFR 868.5470 - Hyperbaric chamber.
Code of Federal Regulations, 2010 CFR
2010-04-01
... hyperbaric chamber is a device that is intended to increase the environmental oxygen pressure to promote the movement of oxygen from the environment to a patient's tissue by means of pressurization that is greater than atmospheric pressure. This device does not include topical oxygen chambers for extremities (§ 878...
Quality-control of an hourly rainfall dataset and climatology of extremes for the UK.
Blenkinsop, Stephen; Lewis, Elizabeth; Chan, Steven C; Fowler, Hayley J
2017-02-01
Sub-daily rainfall extremes may be associated with flash flooding, particularly in urban areas but, compared with extremes on daily timescales, have been relatively little studied in many regions. This paper describes a new, hourly rainfall dataset for the UK based on ∼1600 rain gauges from three different data sources. This includes tipping bucket rain gauge data from the UK Environment Agency (EA), which has been collected for operational purposes, principally flood forecasting. Significant problems in the use of such data for the analysis of extreme events include the recording of accumulated totals, high frequency bucket tips, rain gauge recording errors and the non-operation of gauges. Given the prospect of an intensification of short-duration rainfall in a warming climate, the identification of such errors is essential if sub-daily datasets are to be used to better understand extreme events. We therefore first describe a series of procedures developed to quality control this new dataset. We then analyse ∼380 gauges with near-complete hourly records for 1992-2011 and map the seasonal climatology of intense rainfall based on UK hourly extremes using annual maxima, n-largest events and fixed threshold approaches. We find that the highest frequencies and intensities of hourly extreme rainfall occur during summer when the usual orographically defined pattern of extreme rainfall is replaced by a weaker, north-south pattern. A strong diurnal cycle in hourly extremes, peaking in late afternoon to early evening, is also identified in summer and, for some areas, in spring. This likely reflects the different mechanisms that generate sub-daily rainfall, with convection dominating during summer. The resulting quality-controlled hourly rainfall dataset will provide considerable value in several contexts, including the development of standard, globally applicable quality-control procedures for sub-daily data, the validation of the new generation of very high-resolution climate models and improved understanding of the drivers of extreme rainfall.
Quality‐control of an hourly rainfall dataset and climatology of extremes for the UK
Lewis, Elizabeth; Chan, Steven C.; Fowler, Hayley J.
2016-01-01
ABSTRACT Sub‐daily rainfall extremes may be associated with flash flooding, particularly in urban areas but, compared with extremes on daily timescales, have been relatively little studied in many regions. This paper describes a new, hourly rainfall dataset for the UK based on ∼1600 rain gauges from three different data sources. This includes tipping bucket rain gauge data from the UK Environment Agency (EA), which has been collected for operational purposes, principally flood forecasting. Significant problems in the use of such data for the analysis of extreme events include the recording of accumulated totals, high frequency bucket tips, rain gauge recording errors and the non‐operation of gauges. Given the prospect of an intensification of short‐duration rainfall in a warming climate, the identification of such errors is essential if sub‐daily datasets are to be used to better understand extreme events. We therefore first describe a series of procedures developed to quality control this new dataset. We then analyse ∼380 gauges with near‐complete hourly records for 1992–2011 and map the seasonal climatology of intense rainfall based on UK hourly extremes using annual maxima, n‐largest events and fixed threshold approaches. We find that the highest frequencies and intensities of hourly extreme rainfall occur during summer when the usual orographically defined pattern of extreme rainfall is replaced by a weaker, north–south pattern. A strong diurnal cycle in hourly extremes, peaking in late afternoon to early evening, is also identified in summer and, for some areas, in spring. This likely reflects the different mechanisms that generate sub‐daily rainfall, with convection dominating during summer. The resulting quality‐controlled hourly rainfall dataset will provide considerable value in several contexts, including the development of standard, globally applicable quality‐control procedures for sub‐daily data, the validation of the new generation of very high‐resolution climate models and improved understanding of the drivers of extreme rainfall. PMID:28239235
Development of a Temperature Sensor for Jet Engine and Space Missions Environments
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammoud, Ahmad; Culley, Dennis E.; Elbuluk, Malik
2008-01-01
Electronic systems in aerospace and in space exploration missions are expected to encounter extreme temperatures and wide thermal swings. To address the needs for extreme temperature electronics, research efforts exist at the NASA Glenn Research Center (GRC) to develop and evaluate electronics for extreme temperature operations, and to establish their reliability under extreme temperature operation and thermal cycling; conditions that are typical of both the aerospace and space environments. These efforts are supported by the NASA Fundamental Aeronautics/Subsonic Fixed Wing Program and by the NASA Electronic Parts and Packaging (NEPP) Program. This work reports on the results obtained on the development of a temperature sensor geared for use in harsh environments.
NASA Astrophysics Data System (ADS)
Seneviratne, S. I.; Nicholls, N.; Easterling, D.; Goodess, C. M.; Kanae, S.; Kossin, J.; Luo, Y.; Marengo, J.; McInnes, K.; Rahimi, M.; Reichstein, M.; Sorteberg, A.; Vera, C.; Zhang, X.
2012-04-01
In April 2009, the Intergovernmental Panel on Climate Change (IPCC) decided to prepare a new special report with involvement of the UN International Strategy for Disaster Reduction (ISDR) on the topic "Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation" (SREX, http://ipcc-wg2.gov/SREX/). This special report reviews the scientific literature on past and projected changes in weather and climate extremes, and the relevance of such changes to disaster risk reduction and climate change adaptation. The SREX Summary for Policymakers was approved at an IPCC Plenary session on November 14-18, 2011, and the full report is planned for release in February 2012. This presentation will provide an overview on the structure and contents of the SREX, focusing on Chapter 3: "Changes in climate extremes and their impacts on the natural physical environment" [1]. It will in particular present the main findings of the chapter, including differences between the SREX's conclusions and those of the IPCC Fourth Assessment of 2007, and the implications of this new assessment for disaster risk reduction. Finally, aspects relevant to impacts on the biogeochemical cycles will also be addressed. [1] Seneviratne, S.I., N. Nicholls, D. Easterling, C.M. Goodess, S. Kanae, J. Kossin, Y. Luo, J. Marengo, K. McInnes, M. Rahimi, M. Reichstein, A. Sorteberg, C. Vera, and X. Zhang, 2012: Changes in climate extremes and their impacts on the natural physical environment. In: Intergovernmental Panel on Climate Change Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation [Field, C. B., Barros, V., Stocker, T.F., Qin, D., Dokken, D., Ebi, K.L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M. and P. M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
Evaluation of teleoperated surgical robots in an enclosed undersea environment.
Doarn, Charles R; Anvari, Mehran; Low, Thomas; Broderick, Timothy J
2009-05-01
The ability to support surgical care in an extreme environment is a significant issue for both military medicine and space medicine. Telemanipulation systems, those that can be remotely operated from a distant site, have been used extensively by the National Aeronautics and Space Administration (NASA) for a number of years. These systems, often called telerobots, have successfully been applied to surgical interventions. A further extension is to operate these robotic systems over data communication networks where robotic slave and master are separated by a great distance. NASA utilizes the National Oceanographic and Atmospheric Administration (NOAA) Aquarius underwater habitat as an analog environment for research and technology evaluation missions, known as NASA Extreme Environment Mission Operations (NEEMO). Three NEEMO missions have provided an opportunity to evaluate teleoperated surgical robotics by astronauts and surgeons. Three robotic systems were deployed to the habitat for evaluation during NEEMO 7, 9, and 12. These systems were linked via a telecommunications link to various sites for remote manipulation. Researchers in the habitat conducted a variety of tests to evaluate performance and applicability in extreme environments. Over three different NEEMO missions, components of the Automated Endoscopic System for Optimal Positioning (AESOP), the M7 Surgical System, and the RAVEN were deployed and evaluated. A number of factors were evaluated, including communication latency and semiautonomous functions. The M7 was modified to permit a remote surgeon the ability to insert a needle into simulated tissue with ultrasound guidance, resulting in the world's first semi-autonomous supervisory-controlled medical task. The deployment and operation of teleoperated surgical systems and semi-autonomous, supervisory-controlled tasks were successfully conducted.
Advantage of Animal Models with Metabolic Flexibility for Space Research Beyond Low Earth Orbit
NASA Technical Reports Server (NTRS)
Griko, Yuri V.; Rask, Jon C.; Raychev, Raycho
2017-01-01
As the world's space agencies and commercial entities continue to expand beyond Low Earth Orbit (LEO), novel approaches to carry out biomedical experiments with animals are required to address the challenge of adaptation to space flight and new planetary environments. The extended time and distance of space travel along with reduced involvement of Earth-based mission support increases the cumulative impact of the risks encountered in space. To respond to these challenges, it becomes increasingly important to develop the capability to manage an organism's self-regulatory control system, which would enable survival in extraterrestrial environments. To significantly reduce the risk to animals on future long duration space missions, we propose the use of metabolically flexible animal models as "pathfinders," which are capable of tolerating the environmental extremes exhibited in spaceflight, including altered gravity, exposure to space radiation, chemically reactive planetary environments and temperature extremes. In this report we survey several of the pivotal metabolic flexibility studies and discuss the importance of utilizing animal models with metabolic flexibility with particular attention given to the ability to suppress the organism's metabolism in spaceflight experiments beyond LEO. The presented analysis demonstrates the adjuvant benefits of these factors to minimize damage caused by exposure to spaceflight and extreme planetary environments. Examples of microorganisms and animal models with dormancy capabilities suitable for space research are considered in the context of their survivability under hostile or deadly environments outside of Earth. Potential steps toward implementation of metabolic control technology in spaceflight architecture and its benefits for animal experiments and manned space exploration missions are discussed.
Advantage of Animal Models with Metabolic Flexibility for Space Research Beyond Low Earth Orbit
NASA Technical Reports Server (NTRS)
Griko, Yuri V.; Rask, Jon C.; Raychev, Raycho
2017-01-01
As the worlds space agencies and commercial entities continue to expand beyond Low Earth Orbit (LEO), novel approaches to carry out biomedical experiments with animals are required to address the challenge of adaptation to space flight and new planetary environments. The extended time and distance of space travel along with reduced involvement of Earth-based mission support increases the cumulative impact of the risks encountered in space. To respond to these challenges, it becomes increasingly important to develop the capability to manage an organisms self-regulatory control system, which would enable survival in extraterrestrial environments. To significantly reduce the risk to animals on future long duration space missions, we propose the use of metabolically flexible animal models as pathfinders, which are capable of tolerating the environmental extremes exhibited in spaceflight, including altered gravity, exposure to space radiation, chemically reactive planetary environments and temperature extremes.In this report we survey several of the pivotal metabolic flexibility studies and discuss the importance of utilizing animal models with metabolic flexibility with particular attention given to the ability to suppress the organism's metabolism in spaceflight experiments beyond LEO. The presented analysis demonstrates the adjuvant benefits of these factors to minimize damage caused by exposure to spaceflight and extreme planetary environments. Examples of microorganisms and animal models with dormancy capabilities suitable for space research are considered in the context of their survivability under hostile or deadly environments outside of Earth. Potential steps toward implementation of metabolic control technology in spaceflight architecture and its benefits for animal experiments and manned space exploration missions are discussed.
Space Vehicle Terrestrial Environment Design Requirements Guidelines
NASA Technical Reports Server (NTRS)
Johnson, Dale L.; Keller, Vernon W.; Vaughan, William W.
2006-01-01
The terrestrial environment is an important driver of space vehicle structural, control, and thermal system design. NASA is currently in the process of producing an update to an earlier Terrestrial Environment Guidelines for Aerospace Vehicle Design and Development Handbook. This paper addresses the contents of this updated handbook, with special emphasis on new material being included in the areas of atmospheric thermodynamic models, wind dynamics, atmospheric composition, atmospheric electricity, cloud phenomena, atmospheric extremes, and sea state. In addition, the respective engineering design elements are discussed relative to terrestrial environment inputs that require consideration. Specific lessons learned that have contributed to the advancements made in the application and awareness of terrestrial environment inputs for aerospace engineering applications are presented.
Charged Particle Environment Definition for NGST: L2 Plasma Environment Statistics
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Blackwell, William C.; Neergaard, Linda F.; Evans, Steven W.; Hardage, Donna M.; Owens, Jerry K.
2000-01-01
The plasma environment encountered by the Next Generation Space Telescope satellite in a halo orbit about L2 can include the Earth's magnetotail and magnetosheath in addition to the solar wind depending on the orbital radius chosen for the mission. Analysis of plasma environment impacts on the satellite requires knowledge of the average and extreme plasma characteristics to assess the magnitude of spacecraft charging and materials degradation expected for the mission lifetime. This report describes the analysis of plasma data from instruments onboard the IMP 8 and Geotail spacecraft used to produce the plasma database for the LRAD engineering-level phenomenology code developed to provide the NGST L2 environment definition.
Radiation and Plasma Environments for Lunar Missions
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Edwards, David L.; Altstatt, Richard L.; Diekmann, Anne M.; Blackwell, William C., Jr.; Harine, Katherine J.
2006-01-01
Space system design for lunar orbit and extended operations on the lunar surface requires analysis of potential system vulnerabilities to plasma and radiation environments to minimize anomalies and assure that environmental failures do not occur during the mission. Individual environments include the trapped particles in Earth s radiation belts, solar energetic particles and galactic cosmic rays, plasma environments encountered in transit to the moon and on the lunar surface (solar wind, terrestrial magnetosheath and magnetotail, and lunar photoelectrons), and solar ultraviolet and extreme ultraviolet photons. These are the plasma and radiation environments which contribute to a variety of effects on space systems including total ionizing dose and dose rate effects in electronics, degradation of materials in the space environment, and charging of spacecraft and lunar dust. This paper provides a survey of the relevant charged particle and photon environments of importance to lunar mission design ranging from the lowest (approx.few 10 s eV) photoelectron energies to the highest (approx.GeV) cosmic ray energies.
Heliospheric and Local Interstellar Space Weathering Environments of Extreme Kuiper Belt Objects
NASA Astrophysics Data System (ADS)
Cooper, J. F.; Sturner, S. J.
2017-12-01
Since the first direct detection of a Kuiper Belt Object (KBO), (15760) 1992 QB1, in 1992, observational evidence via direct detection has accumulated for thousands (and via inference for hundreds of thousands) of small to large icy bodies that populate the solar system from within the supersonic heliosphere out into the local interstellar medium (LISM). These objects have mainly been discovered when within the heliosphere but the orbits of the more extreme KBOs, fifteen percent of the total known KBO population, take them out into the heliosheath and about half of these continue further out into the LISM. Continuing observations will inevitably increase the known inventory of extreme KBOs, possibly including a few that may be accessible as near-encounter targets for a future interstellar probe mission directed beyond 200 AU into the upstream LISM. Here we review the known population of extreme KBOs and address the properties of the heliospheric and LISM environments that could potentially affect object visibility and surface composition. The twin Voyager spacecraft are our present source of in-situ measurements for the plasma and energetic particle environments, except that there are no plasma data from Voyager 1. Voyager 1 and 2 are now respectively in the LISM and the heliosheath after earlier passing through the outer regions of the supersonic heliosphere upstream of the solar wind termination shock. The Voyager data coverage is complemented by energetic neutral atom (ENA) measurements of the Interstellar Background Explorer (IBEX) and Cassini Orbiter spacecraft that can be used to infer proton flux spectra from models of ENA production in the outer heliosphere. High radiation background in the LISM has precluded sub-MeV energetic ion measurements by Voyager 1, so we use limits from Cummings et al. (ApJ, 2016) for molecular cloud ionization. This would be an important energy region to cover with interstellar probe measurements. These sources of plasma and energetic particle flux measurements are used to estimate values for space weathering parameters including surface energy flux and pressure, dosage vs. depth profiles for chemical processing of mixed ice surfaces, and ion sputtering rates. We further consider other space weathering processes including ultraviolet irradiation and meteoritic impact gardening.
Electronics for Extreme Environments
NASA Astrophysics Data System (ADS)
Patel, J. U.; Cressler, J.; Li, Y.; Niu, G.
2001-01-01
Most of the NASA missions involve extreme environments comprising radiation and low or high temperatures. Current practice of providing friendly ambient operating environment to electronics costs considerable power and mass (for shielding). Immediate missions such as the Europa orbiter and lander and Mars landers require the electronics to perform reliably in extreme conditions during the most critical part of the mission. Some other missions planned in the future also involve substantial surface activity in terms of measurements, sample collection, penetration through ice and crust and the analysis of samples. Thus it is extremely critical to develop electronics that could reliably operate under extreme space environments. Silicon On Insulator (SOI) technology is an extremely attractive candidate for NASA's future low power and high speed electronic systems because it offers increased transconductance, decreased sub-threshold slope, reduced short channel effects, elimination of kink effect, enhanced low field mobility, and immunity from radiation induced latch-up. A common belief that semiconductor devices function better at low temperatures is generally true for bulk devices but it does not hold true for deep sub-micron SOI CMOS devices with microscopic device features of 0.25 micrometers and smaller. Various temperature sensitive device parameters and device characteristics have recently been reported in the literature. Behavior of state of the art technology devices under such conditions needs to be evaluated in order to determine possible modifications in the device design for better performance and survivability under extreme environments. Here, we present a unique approach of developing electronics for extreme environments to benefit future NASA missions as described above. This will also benefit other long transit/life time missions such as the solar sail and planetary outposts in which electronics is out open in the unshielded space at the ambient space temperatures and always exposed to radiation. Additional information is contained in the original extended abstract.
On the edge of a deep biosphere: Real animals in extreme environments
NASA Astrophysics Data System (ADS)
Childress, James J.; Fisher, Charles F.; Felbeck, Horst; Girguis, Peter
This paper considers the possibility of animals living in a subsurface environment on the global mid-ocean ridge system. It considers the possible environments and looks at the possibilities of animal inhabitants of the subsurface biosphere based on adaptations of animals to other extreme habitats. We conclude that there are known bridging inhabitants of the subsurface biosphere, that part-time inhabitants are extremely likely, and that there could be full-time inhabitants if conditions are stable within the tolerance limits of metazoans for time periods of months.
NASA Technical Reports Server (NTRS)
Johnson, D. L. (Editor)
1993-01-01
Guidelines on terrestrial environment data specifically applicable in the development of design requirements/specifications for NASA aerospace vehicles and associated equipment development are provided. The primary geographic areas encompassed are the John F. Kennedy Space Center, FL; Vandenberg AFB, CA; Edwards AFB, CA; Michoud Assembly Facility, New Orleans, LA; John C. Stennis Space Center, MS; Lyndon B. Johnson Space Center, Houston, TX; and the White Sands Missile Range, NM. In addition, a section was included to provide information on the general distribution of natural environmental extremes in the conterminous United States that may be needed to specify design criteria in the transportation of space vehicle subsystems and components. A summary of climatic extremes for worldwide operational needs is also included. Although not considered as a specific vehicle design criterion, a section on atmospheric attenuation was added since sensors on certain Earth orbital experiment missions are influenced by the Earth's atmosphere. The latest available information on probable climatic extremes is presented and supersedes information presented in TM X-64589, TM X-64757, TM X-78118, and TM-82473. Information is included on atmospheric chemistry, seismic criteria, and on a mathematical model to predict atmospheric dispersion of aerospace engine exhaust cloud rise and growth. There is also a section on atmospheric cloud phenomena. The information is recommended for use in the development of aerospace vehicle and associated equipment design and operational criteria, unless otherwise stated in contract work specifications. The environmental data are primarily limited to information below 90 km.
NASA Astrophysics Data System (ADS)
Johnson, D. L.
1993-08-01
Guidelines on terrestrial environment data specifically applicable in the development of design requirements/specifications for NASA aerospace vehicles and associated equipment development are provided. The primary geographic areas encompassed are the John F. Kennedy Space Center, FL; Vandenberg AFB, CA; Edwards AFB, CA; Michoud Assembly Facility, New Orleans, LA; John C. Stennis Space Center, MS; Lyndon B. Johnson Space Center, Houston, TX; and the White Sands Missile Range, NM. In addition, a section was included to provide information on the general distribution of natural environmental extremes in the conterminous United States that may be needed to specify design criteria in the transportation of space vehicle subsystems and components. A summary of climatic extremes for worldwide operational needs is also included. Although not considered as a specific vehicle design criterion, a section on atmospheric attenuation was added since sensors on certain Earth orbital experiment missions are influenced by the Earth's atmosphere. The latest available information on probable climatic extremes is presented and supersedes information presented in TM X-64589, TM X-64757, TM X-78118, and TM-82473. Information is included on atmospheric chemistry, seismic criteria, and on a mathematical model to predict atmospheric dispersion of aerospace engine exhaust cloud rise and growth. There is also a section on atmospheric cloud phenomena. The information is recommended for use in the development of aerospace vehicle and associated equipment design and operational criteria, unless otherwise stated in contract work specifications. The environmental data are primarily limited to information below 90 km.
High-Performance, Radiation-Hardened Electronics for Space Environments
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Watson, Michael D.; Frazier, Donald O.; Adams, James H.; Johnson, Michael A.; Kolawa, Elizabeth A.
2007-01-01
The Radiation Hardened Electronics for Space Environments (RHESE) project endeavors to advance the current state-of-the-art in high-performance, radiation-hardened electronics and processors, ensuring successful performance of space systems required to operate within extreme radiation and temperature environments. Because RHESE is a project within the Exploration Technology Development Program (ETDP), RHESE's primary customers will be the human and robotic missions being developed by NASA's Exploration Systems Mission Directorate (ESMD) in partial fulfillment of the Vision for Space Exploration. Benefits are also anticipated for NASA's science missions to planetary and deep-space destinations. As a technology development effort, RHESE provides a broad-scoped, full spectrum of approaches to environmentally harden space electronics, including new materials, advanced design processes, reconfigurable hardware techniques, and software modeling of the radiation environment. The RHESE sub-project tasks are: SelfReconfigurable Electronics for Extreme Environments, Radiation Effects Predictive Modeling, Radiation Hardened Memory, Single Event Effects (SEE) Immune Reconfigurable Field Programmable Gate Array (FPGA) (SIRF), Radiation Hardening by Software, Radiation Hardened High Performance Processors (HPP), Reconfigurable Computing, Low Temperature Tolerant MEMS by Design, and Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments. These nine sub-project tasks are managed by technical leads as located across five different NASA field centers, including Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, Langley Research Center, and Marshall Space Flight Center. The overall RHESE integrated project management responsibility resides with NASA's Marshall Space Flight Center (MSFC). Initial technology development emphasis within RHESE focuses on the hardening of Field Programmable Gate Arrays (FPGA)s and Field Programmable Analog Arrays (FPAA)s for use in reconfigurable architectures. As these component/chip level technologies mature, the RHESE project emphasis shifts to focus on efforts encompassing total processor hardening techniques and board-level electronic reconfiguration techniques featuring spare and interface modularity. This phased approach to distributing emphasis between technology developments provides hardened FPGA/FPAAs for early mission infusion, then migrates to hardened, board-level, high speed processors with associated memory elements and high density storage for the longer duration missions encountered for Lunar Outpost and Mars Exploration occurring later in the Constellation schedule.
Thermodynamic Environments Supporting Extreme Convection in Subtropical South America
NASA Astrophysics Data System (ADS)
Rasmussen, K. L.; Trier, S. B.
2015-12-01
Extreme convection tends to form in the vicinity of mountain ranges, and the Andes in subtropical South America help spawn some of the most intense convection in the world. Subsequent to initiation, the convection often evolves into propagating mesoscale convective systems (MCSs) similar to those seen over the U.S. Great Plains and produces damaging tornadoes, hail, and floods across a wide agricultural region. In recent years, studies on the nature of convection in subtropical South America using spaceborne radar data have elucidated key processes responsible for their extreme characteristics, including a strong relationship between the Andes topography and convective initiation. Building on previous work, an investigation of the thermodynamic environment supporting some of the deepest convection in the world will be presented. In particular, an analysis of the thermodynamic destabilization in subtropical South America, which considers the parcel buoyancy minimum for conditionally unstable air parcels, will be presented. Additional comparisons between the nocturnal nature and related diurnal cycle of MCSs in subtropical South America the U.S. Great Plains will provide insights into the processes controlling MCS initiation and upscale growth.
Snow and ice ecosystems: not so extreme.
Maccario, Lorrie; Sanguino, Laura; Vogel, Timothy M; Larose, Catherine
2015-12-01
Snow and ice environments cover up to 21% of the Earth's surface. They have been regarded as extreme environments because of their low temperatures, high UV irradiation, low nutrients and low water availability, and thus, their microbial activity has not been considered relevant from a global microbial ecology viewpoint. In this review, we focus on why snow and ice habitats might not be extreme from a microbiological perspective. Microorganisms interact closely with the abiotic conditions imposed by snow and ice habitats by having diverse adaptations, that include genetic resistance mechanisms, to different types of stresses in addition to inhabiting various niches where these potential stresses might be reduced. The microbial communities inhabiting snow and ice are not only abundant and taxonomically diverse, but complex in terms of their interactions. Altogether, snow and ice seem to be true ecosystems with a role in global biogeochemical cycles that has likely been underestimated. Future work should expand past resistance studies to understanding the function of these ecosystems. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
What Is Life? What Was Life? What Will Life Be?
NASA Astrophysics Data System (ADS)
Deamer, D.
Our laboratory is exploring self-assembly processes and polymerization reactions of organic compounds in natural geothermal environments and related laboratory simulations. Although the physical environment that fostered primitive cellular life is still largely unconstrained, we can be reasonably confident that liquid water was required, together with a source of organic compounds and energy to drive polymerization reactions. There must also have been a process by which the compounds were sufficiently concentrated to undergo physical and chemical interactions. In earlier work we observed that macromolecules such as nucleic acids and proteins are readily encapsulated in membranous boundaries during wet-dry cycles such as those that would occur at the edges of geothermal springs or tide pools. The resulting structures are referred to as protocells, in that they exhibit certain properties of living cells and are models of the kinds of encapsulated macromolecular systems that would have led toward the first forms of cellular life. However, the assembly of protocells is markedly inhibited by conditions associated with extreme environments: High temperature, high salt concentrations, and low pH ranges. From a biophysical perspective, it follows that the most plausible planetary environment for the origin of cellular life would be an aqueous phase at moderate temperature ranges and low ionic strength, having a pH value near neutrality and divalent cations at submillimolar concentrations. This suggestion is in marked contrast to the view that life most likely began in a geothermal or marine environment, perhaps even the extreme environment of a hydrothermal vent. A more plausible site for the origin of cellular life would be fresh water pools maintained by rain falling on volcanic land masses resembling present-day Hawaii and Iceland. After the first cellular life was able to establish itself in a relatively benign environment, it would rapidly begin to adapt through Darwinian selection to more rigorous environments, including the extreme temperatures, salt concentrations and pH ranges that we now associate with the limits of life on the Earth.
The Limits of Life in the Deep Subsurface - Implications for the Origin of Life
NASA Astrophysics Data System (ADS)
Baross, John
2013-06-01
There are very few environments on Earth where life is absent. Microbial life has proliferated into habitats that span nearly every imaginable physico-chemical variable. Only the availability of liquid water and temperature are known to prevent the growth of organisms. The other extreme physical and chemical variables, such as pH, pressure, high concentrations of solutes, damaging radiation, and toxic metals, are life-prohibiting factors for most organisms but not for all. The deep subsurface environments span all of the extreme conditions encountered by life including habitat conditions not yet explored, such as those that combine high temperature, high and low pH and extreme pressures. Some of the ``extremophile'' microorganisms inhabiting the deep subsurface environments have been shown to be among the most ``ancient'' of extant life. Their genomes and physiologies have led to a broader understanding of the geological settings of early life, the most ancient energy pathways, and the importance of water/rock interactions and tectonics in the origin and early evolution of life. The case can now be made that deep subsurface environments contributed to life's origin and provided the habitat(s) for the earliest microbial communities. However, there is much more to be done to further our understanding on the role of moderate to high pressures and temperatures on the chemical and biochemical ``steps'' leading to life, and on the evolution and physiology of both ancient and present-day subsurface microbial communities.
Extreme Spacecraft Charging in Polar Low Earth Orbit
NASA Technical Reports Server (NTRS)
Colson, Andrew D.; Minow, Joseph I.; NeergaardParker, Linda
2012-01-01
Spacecraft in low altitude, high inclination (including sun-synchronous) orbits are widely used for remote sensing of the Earth's land surface and oceans, monitoring weather and climate, communications, scientific studies of the upper atmosphere and ionosphere, and a variety of other scientific, commercial, and military applications. These systems episodically charge to frame potentials in the kilovolt range when exposed to space weather environments characterized by a high flux of energetic (10 s kilovolt) electrons in regions of low background plasma density which is similar in some ways to the space weather conditions in geostationary orbit responsible for spacecraft charging to kilovolt levels. We first review the physics of space environment interactions with spacecraft materials that control auroral charging rates and the anticipated maximum potentials that should be observed on spacecraft surfaces during disturbed space weather conditions. We then describe how the theoretical values compare to the observational history of extreme charging in auroral environments. Finally, a set of extreme DMSP charging events are described varying in maximum negative frame potential from 0.6 kV to 2 kV, focusing on the characteristics of the charging events that are of importance both to the space system designer and to spacecraft operators. The goal of the presentation is to bridge the gap between scientific studies of auroral charging and the need for engineering teams to understand how space weather impacts both spacecraft design and operations for vehicles on orbital trajectories that traverse auroral charging environments.
Extreme Spacecraft Charging in Polar Low Earth Orbit
NASA Technical Reports Server (NTRS)
Colson, Andrew D.; Minow, Joseph I.; Parker, L. Neergaard
2012-01-01
Spacecraft in low altitude, high inclination (including sun -synchronous) orbits are widely used for remote sensing of the Earth fs land surface and oceans, monitoring weather and climate, communications, scientific studies of the upper atmosphere and ionosphere, and a variety of other scientific, commercial, and military applications. These systems episodically charge to frame potentials in the kilovolt range when exposed to space weather environments characterized by a high flux of energetic (approx.10 fs kilovolt) electrons in regions of low background plasma density. Auroral charging conditions are similar in some ways to the space weather conditions in geostationary orbit responsible for spacecraft charging to kilovolt levels. We first review the physics of space environment interactions with spacecraft materials that control auroral charging rates and the anticipated maximum potentials that should be observed on spacecraft surfaces during disturbed space weather conditions. We then describe how the theoretical values compare to the observational history of extreme charging in auroral environments. Finally, a set of extreme DMSP charging events are described varying in maximum negative frame potential from approx.0.6 kV to approx.2 kV, focusing on the characteristics of the charging events that are of importance both to the space system designer and to spacecraft operators. The goal of the presentation is to bridge the gap between scientific studies of auroral charging and the need for engineering teams to understand how space weather impacts both spacecraft design and operations for vehicles on orbital trajectories that traverse auroral charging environments.
Greenough, G; McGeehin, M; Bernard, S M; Trtanj, J; Riad, J; Engelberg, D
2001-01-01
Extreme weather events such as precipitation extremes and severe storms cause hundreds of deaths and injuries annually in the United States. Climate change may alter the frequency, timing, intensity, and duration of these events. Increases in heavy precipitation have occurred over the past century. Future climate scenarios show likely increases in the frequency of extreme precipitation events, including precipitation during hurricanes, raising the risk of floods. Frequencies of tornadoes and hurricanes cannot reliably be projected. Injury and death are the direct health impacts most often associated with natural disasters. Secondary effects, mediated by changes in ecologic systems and public health infrastructure, also occur. The health impacts of extreme weather events hinge on the vulnerabilities and recovery capacities of the natural environment and the local population. Relevant variables include building codes, warning systems, disaster policies, evacuation plans, and relief efforts. There are many federal, state, and local government agencies and nongovernmental organizations involved in planning for and responding to natural disasters in the United States. Future research on health impacts of extreme weather events should focus on improving climate models to project any trends in regional extreme events and as a result improve public health preparedness and mitigation. Epidemiologic studies of health effects beyond the direct impacts of disaster will provide a more accurate measure of the full health impacts and will assist in planning and resource allocation. PMID:11359686
Friction behavior of glass and metals in contact with glass in various environments
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1973-01-01
Sliding friction experiments have been conducted for heat-resistant glass and metals in contact with glass. These experiments were conducted in various environments including vacuum, moist air, dry air, octane, and stearic acid in hexadecane. Glass exhibited a higher friction force in moist air than it did in vacuum when in sliding contact with itself. The metals, aluminum, iron, and gold, all exhibited the same friction coefficient when sliding on glass in vacuum as glass sliding on glass. Gold-to-glass contacts were extremely sensitive to the environment despite the relative chemical inertness of gold.
Secondary Metabolites from Polar Organisms
Tian, Yuan; Li, Yan-Ling; Zhao, Feng-Chun
2017-01-01
Polar organisms have been found to develop unique defences against the extreme environment environment, leading to the biosynthesis of novel molecules with diverse bioactivities. This review covers the 219 novel natural products described since 2001, from the Arctic and the Antarctic microoganisms, lichen, moss and marine faunas. The structures of the new compounds and details of the source organism, along with any relevant biological activities are presented. Where reported, synthetic and biosynthetic studies on the polar metabolites have also been included. PMID:28241505
Automation Rover for Extreme Environments
NASA Technical Reports Server (NTRS)
Sauder, Jonathan; Hilgemann, Evan; Johnson, Michael; Parness, Aaron; Hall, Jeffrey; Kawata, Jessie; Stack, Kathryn
2017-01-01
Almost 2,300 years ago the ancient Greeks built the Antikythera automaton. This purely mechanical computer accurately predicted past and future astronomical events long before electronics existed1. Automata have been credibly used for hundreds of years as computers, art pieces, and clocks. However, in the past several decades automata have become less popular as the capabilities of electronics increased, leaving them an unexplored solution for robotic spacecraft. The Automaton Rover for Extreme Environments (AREE) proposes an exciting paradigm shift from electronics to a fully mechanical system, enabling longitudinal exploration of the most extreme environments within the solar system.
Qualification of Fiber Optic Cables for Martian Extreme Temperature Environments
NASA Technical Reports Server (NTRS)
Ramesham, Rajeshuni; Lindensmith, Christian A.; Roberts, William T.; Rainen, Richard A.
2011-01-01
Means have been developed for enabling fiber optic cables of the Laser Induced Breakdown Spectrometer instrument to survive ground operations plus the nominal 670 Martian conditions that include Martian summer and winter seasons. The purpose of this development was to validate the use of the rover external fiber optic cabling of ChemCam for space applications under the extreme thermal environments to be encountered during the Mars Science Laboratory (MSL) mission. Flight-representative fiber optic cables were subjected to extreme temperature thermal cycling of the same diurnal depth (or delta T) as expected in flight, but for three times the expected number of in-flight thermal cycles. The survivability of fiber optic cables was tested for 600 cumulative thermal cycles from -130 to +15 C to cover the winter season, and another 1,410 cumulative cycles from -105 to +40 C to cover the summer season. This test satisfies the required 3 times the design margin that is a total of 2,010 thermal cycles (670 x 3). This development test included functional optical transmission tests during the course of the test. Transmission of the fiber optic cables was performed prior to and after 1,288 thermal cycles and 2,010 thermal cycles. No significant changes in transmission were observed on either of the two representative fiber cables subject through the 3X MSL mission life that is 2,010 thermal cycles.
Feshbach Prize: New Phenomena and New Physics from Strongly-Correlated Quantum Matter
NASA Astrophysics Data System (ADS)
Carlson, Joseph A.
2017-01-01
Strongly correlated quantum matter is ubiquitous in physics from cold atoms to nuclei to the cold dense matter found in neutron stars. Experiments from table-top to the extremely large scale experiments including FRIB and LIGO will help determine the properties of matter across an incredible scale of distances and energies. Questions to be addressed include the existence of exotic states of matter in cold atoms and nuclei, the response of this correlated matter to external probes, and the behavior of matter in extreme astrophysical environments. A more complete understanding is required, both to understand these diverse phenomena and to employ this understanding to probe for new underlying physics in experiments including neutrinoless double beta decay and accelerator neutrino experiments. I will summarize some aspects of our present understanding and highlight several important prospects for the future.
Extremophiles and biotechnology: current uses and prospects
Coker, James A.
2016-01-01
Biotechnology has almost unlimited potential to change our lives in very exciting ways. Many of the chemical reactions that produce these products can be fully optimized by performing them at extremes of temperature, pressure, salinity, and pH for efficient and cost-effective outcomes. Fortunately, there are many organisms (extremophiles) that thrive in extreme environments found in nature and offer an excellent source of replacement enzymes in lieu of mesophilic ones currently used in these processes. In this review, I discuss the current uses and some potential new applications of extremophiles and their products, including enzymes, in biotechnology. PMID:27019700
Modern Advances in Ablative TPS
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj
2013-01-01
Topics covered include: Physics of Hypersonic Flow and TPS Considerations. Destinations, Missions and Requirements. State of the Art Thermal Protection Systems Capabilities. Modern Advances in Ablative TPS. Entry Systems Concepts. Flexible TPS for Hypersonic Inflatable Aerodynamic Decelerators. Conformal TPS for Rigid Aeroshell. 3-D Woven TPS for Extreme Entry Environment. Multi-functional Carbon Fabric for Mechanically Deployable.
Clinical and Educational Support for Space Flight via Telemedicine
NASA Technical Reports Server (NTRS)
1997-01-01
Session MP3 includes short reports on: (1) Telemedicine: A User's Perspective; (2) Health Care in Extreme Environments; (3) Integration of Emerging Technologies in Information and Telecommunications in Health Care Systems for Space; (4) Telemedicine and Environmental Medicine in Russia: A First Step in Basic Medical Education; and (5) Clinical Utility of Internet Telemedicine.
Antarctica: Scientific Journeys from McMurdo to the Pole.
ERIC Educational Resources Information Center
Brand, Judith, Ed.
2002-01-01
This issue of Exploratorium Magazine focuses on Antarctica. Antarctica has one of the most extreme climates in the world with an untouched environment inviting researchers with great opportunities for study. This issue describes the journey of four Exploratorium staff members to frozen Antarctica. Chapters include: (1) "Life at the Bottom of…
USDA-ARS?s Scientific Manuscript database
Oxygenic photosynthesis involves capture and conversion of light energy into chemical energy, a process fundamental to life including plant productivity on Earth. Photosynthetic electron transport is catalyzed by two photochemical reaction centres in series, photosystem II (PS II) and photosytem I (...
Design of an On-Line Query Language for Full Text Patent Search.
ERIC Educational Resources Information Center
Glantz, Richard S.
The design of an English-like query language and an interactive computer environment for searching the full text of the U.S. patent collection are discussed. Special attention is paid to achieving a transparent user interface, to providing extremely broad search capabilities (including nested substitution classes, Kleene star events, and domain…
Astrobiology as a tool for getting high school students interested in science
NASA Astrophysics Data System (ADS)
Van der Meer, B. W.; Alletto, James J.; Bryant, Dudley; Carini, Mike; Elliott, Larry; Gelderman, Richard; Mason, Wayne; McDaniel, Kerrie; McGruder, Charles H.; Rinehart, Claire; Tyler, Rico; Walker, Linda
2000-12-01
A workshop was held (10/99) for high school students and teachers on astrobiology. NASA provided support through an IDEAS grant. Out of 63 qualified applicants, 29 were accepted: 22 students (11 minorities) and 7 teachers. The worship was held on 2 successive weekends. Activities included: culturing microbes from human skin, discussing 'what is life?', building and using a 2-inch refractive telescope and a van-Leeuwenhoek- type microscope (each participant built and kept them), listening to lectures by Dr. Richard Gelderman on detecting extra solar planets and by Dr. Richard Hoover on life in extreme environments. Other activities included: collecting samples and isolating micro-organisms from the lost river cave, studying microbial life from extreme environments in the laboratory, using the internet as a research tool and debating the logistics and feasibility of a lunar colony. Written evaluations of the workshop led to the following conclusions: 48% of the students considered a possible career in the biological and/or astrophysical sciences, and half of these stated they were spurred on by the workshop itself.
High Temperature Piezoelectric Drill
NASA Technical Reports Server (NTRS)
Bao, Xiaoqi; Scott, James; Boudreau, Kate; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom; Zhang, Shujun
2009-01-01
The current NASA Decadal mission planning effort has identified Venus as a significant scientific target for a surface in-situ sampling/analyzing mission. The Venus environment represents several extremes including high temperature (460 deg C), high pressure (9 MPa), and potentially corrosive (condensed sulfuric acid droplets that adhere to surfaces during entry) environments. This technology challenge requires new rock sampling tools for these extreme conditions. Piezoelectric materials can potentially operate over a wide temperature range. Single crystals, like LiNbO3, have a Curie temperature that is higher than 1000 deg C and the piezoelectric ceramics Bismuth Titanate higher than 600 deg C. A study of the feasibility of producing piezoelectric drills that can operate in the temperature range up to 500 deg C was conducted. The study includes the high temperature properties investigations of engineering materials and piezoelectric ceramics with different formulas and doping. The drilling performances of a prototype Ultrasonic/Sonic Drill/Corer (USDC) using high temperate piezoelectric ceramics and single crystal were tested at temperature up to 500 deg C. The detailed results of our study and a discussion of the future work on performance improvements are presented in this paper.
Extreme Programming: Maestro Style
NASA Technical Reports Server (NTRS)
Norris, Jeffrey; Fox, Jason; Rabe, Kenneth; Shu, I-Hsiang; Powell, Mark
2009-01-01
"Extreme Programming: Maestro Style" is the name of a computer programming methodology that has evolved as a custom version of a methodology, called extreme programming that has been practiced in the software industry since the late 1990s. The name of this version reflects its origin in the work of the Maestro team at NASA's Jet Propulsion Laboratory that develops software for Mars exploration missions. Extreme programming is oriented toward agile development of software resting on values of simplicity, communication, testing, and aggressiveness. Extreme programming involves use of methods of rapidly building and disseminating institutional knowledge among members of a computer-programming team to give all the members a shared view that matches the view of the customers for whom the software system is to be developed. Extreme programming includes frequent planning by programmers in collaboration with customers, continually examining and rewriting code in striving for the simplest workable software designs, a system metaphor (basically, an abstraction of the system that provides easy-to-remember software-naming conventions and insight into the architecture of the system), programmers working in pairs, adherence to a set of coding standards, collaboration of customers and programmers, frequent verbal communication, frequent releases of software in small increments of development, repeated testing of the developmental software by both programmers and customers, and continuous interaction between the team and the customers. The environment in which the Maestro team works requires the team to quickly adapt to changing needs of its customers. In addition, the team cannot afford to accept unnecessary development risk. Extreme programming enables the Maestro team to remain agile and provide high-quality software and service to its customers. However, several factors in the Maestro environment have made it necessary to modify some of the conventional extreme-programming practices. The single most influential of these factors is that continuous interaction between customers and programmers is not feasible.
Arcjet Testing of Micro-Meteoroid Impacted Thermal Protection Materials
NASA Technical Reports Server (NTRS)
Agrawal, Parul; Munk, Michelle M.; Glaab, Louis J.
2013-01-01
There are several harsh space environments that could affect thermal protection systems and in turn pose risks to the atmospheric entry vehicles. These environments include micrometeoroid impact, extreme cold temperatures, and ionizing radiation during deep space cruise, all followed by atmospheric entry heating. To mitigate these risks, different thermal protection material samples were subjected to multiple tests, including hyper velocity impact, cold soak, irradiation, and arcjet testing, at various NASA facilities that simulated these environments. The materials included a variety of honeycomb packed ablative materials as well as carbon-based non-ablative thermal protection systems. The present paper describes the results of the multiple test campaign with a focus on arcjet testing of thermal protection materials. The tests showed promising results for ablative materials. However, the carbon-based non-ablative system presented some concerns regarding the potential risks to an entry vehicle. This study provides valuable information regarding the capability of various thermal protection materials to withstand harsh space environments, which is critical to sample return and planetary entry missions.
Paleoindian settlement of the high-altitude Peruvian Andes.
Rademaker, Kurt; Hodgins, Gregory; Moore, Katherine; Zarrillo, Sonia; Miller, Christopher; Bromley, Gordon R M; Leach, Peter; Reid, David A; Álvarez, Willy Yépez; Sandweiss, Daniel H
2014-10-24
Study of human adaptation to extreme environments is important for understanding our cultural and genetic capacity for survival. The Pucuncho Basin in the southern Peruvian Andes contains the highest-altitude Pleistocene archaeological sites yet identified in the world, about 900 meters above confidently dated contemporary sites. The Pucuncho workshop site [4355 meters above sea level (masl)] includes two fishtail projectile points, which date to about 12.8 to 11.5 thousand years ago (ka). Cuncaicha rock shelter (4480 masl) has a robust, well-preserved, and well-dated occupation sequence spanning the past 12.4 thousand years (ky), with 21 dates older than 11.5 ka. Our results demonstrate that despite cold temperatures and low-oxygen conditions, hunter-gatherers colonized extreme high-altitude Andean environments in the Terminal Pleistocene, within about 2 ky of the initial entry of humans to South America. Copyright © 2014, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Sutton, Akil K.
Hydrocarbon exploration, global navigation satellite systems, computed tomography, and aircraft avionics are just a few examples of applications that require system operation at an ambient temperature, pressure, or radiation level outside the range covered by military specifications. The electronics employed in these applications are known as "extreme environment electronics." On account of the increased cost resulting from both process modifications and the use of exotic substrate materials, only a handful of semiconductor foundries have specialized in the production of extreme environment electronics. Protection of these electronic systems in an extreme environment may be attained by encapsulating sensitive circuits in a controlled environment, which provides isolation from the hostile ambient, often at a significant cost and performance penalty. In a significant departure from this traditional approach, system designers have begun to use commercial off-the-shelf technology platforms with built in mitigation techniques for extreme environment applications. Such an approach simultaneously leverages the state of the art in technology performance with significant savings in project cost. Silicon-germanium is one such commercial technology platform that demonstrates potential for deployment into extreme environment applications as a result of its excellent performance at cryogenic temperatures, remarkable tolerance to radiation-induced degradation, and monolithic integration with silicon-based manufacturing. In this dissertation the radiation response of silicon-germanium technology is investigated, and novel transistor-level layout-based techniques are implemented to improve the radiation tolerance of HBT digital logic.
Occupational ergonomics in space
NASA Technical Reports Server (NTRS)
Stramler, J.
1992-01-01
Ergonomics is often defined simply as the study of work. Related or synonymous terms include human factors, human engineering, engineering psychology, and others. Occupational ergonomics is a term that has been proposed to describe the study of the working environment, including the physical consequences resulting from having an improperly designed workplace. The routine space working environment presents some problems not found in the typical Earthbound workplace. These include radiation, intravehicular contamination/pollution, temperature extremes, impact with other objects, limited psychosocial relationships, sensory deprivation, and reduced gravity. These are important workplace considerations, and may affect astronauts either directly at work or at some point during their life as a result of their work under these conditions. Some of the major issues associated with each of these hazards are presented.
Axelsson, Charles; van Sebille, Erik
2017-11-15
The leakage of large plastic litter (macroplastics) into the ocean is a major environmental problem. A significant fraction of this leakage originates from coastal cities, particularly during extreme rainfall events. As coastal cities continue to grow, finding ways to reduce this macroplastic leakage is extremely pertinent. Here, we explore why and how coastal cities can reduce macroplastic leakages during extreme rainfall events. Using nine global cities as a basis, we establish that while cities actively create policies that reduce plastic leakages, more needs to be done. Nonetheless, these policies are economically, socially and environmentally cobeneficial to the city environment. While the lack of political engagement and economic concerns limit these policies, lacking social motivation and engagement is the largest limitation towards implementing policy. We recommend cities to incentivize citizen and municipal engagement with responsible usage of plastics, cleaning the environment and preparing for future extreme rainfall events. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Fielder, Robert S.; Palmer, Matthew E.; Davis, Matthew A.; Engelbrecht, Gordon P.
2006-01-01
Luna Innovations has developed a novel, fiber optic, hybrid pressure-temperature sensor system for extremely high-temperature environments that is capable of reliable operation up to 1050 °C. This system is based on the extremely high-temperature fiber optic sensors already demonstrated during previous work. The novelty of the sensors presented here lies in the fact that pressure and temperature are measured simultaneously with a single fiber and a single transducer. This hybrid approach will enable highly accurate active temperature compensation and sensor self-diagnostics not possible with other platforms. Hybrid pressure and temperature sensors were calibrated by varying both pressure and temperature. Implementing active temperature compensation resulted in a ten-fold reduction in the temperature-dependence of the pressure measurement. Sensors were tested for operability in a relatively high neutron dose environment up to 6.9×1017 n/cm2. In addition to harsh environment survivability, fiber optic sensors offer a number of intrinsic advantages for space nuclear power applications including extremely low mass, immunity to electromagnetic interference, self diagnostics / prognostics, and smart sensor capability. Deploying fiber optic sensors on future space exploration missions would provide a substantial improvement in spacecraft instrumentation. Additional development is needed, however, before these advantages can be realized. This paper will highlight recent demonstrations of fiber optic sensors in environments relevant to space nuclear applications. Successes and lessons learned will be highlighted. Additionally, development needs will be covered which will suggest a framework for a coherent plan to continue work in this area.
NASA Technical Reports Server (NTRS)
Stough, Roger
2004-01-01
The purpose of this workshop was to survey existing health and safety policies as well as processes and practices for various extreme environments; to identify strengths and shortcomings of these processes; and to recommend parameters for inclusion in a generic approach to policy formulation, applicable to the broadest categories of extreme environments. It was anticipated that two additional workshops would follow. The November 7, 2003 workshop would be devoted to the evaluation of different model(s) and a concluding expert evaluation of the usefulness of the model using a policy formulation example. The final workshop was planned for March 2004.
The Arecibo Galaxy Environment Survey - VII. A dense filament with extremely long H I streams
NASA Astrophysics Data System (ADS)
Taylor, R.; Minchin, R. F.; Herbst, H.; Davies, J. I.; Rodriguez, R.; Vazquez, C.
2014-09-01
We present completed observations of the NGC 7448 galaxy group and background volume as part of the blind neutral hydrogen Arecibo Galaxy Environment Survey. Our observations cover a region spanning 5°× 4°, over a redshift range of approximately -2000
An Automaton Rover for Extreme Environments: Rethinking an Approach to Surface Mobility
NASA Astrophysics Data System (ADS)
Sauder, J.; Hilgemman, E.; Stack, K.; Kawata, J.; Parness, A.; Johnson, M.
2017-11-01
An Automaton Rover for Extreme Environments (AREE) enables long duration in-situ mobility on the surface of Venus through a simplified design and robust mechanisms. The goal is to design a rover capable of operating for months on the surface of Venus.
Wiegel, Juergen
2012-01-01
Around the world, there are numerous alkaline, hypersaline environments that are heated either geothermally or through intense solar radiation. It was once thought that such harsh environments were inhospitable and incapable of supporting a variety of life. However, numerous culture-dependent and -independent studies revealed the presence of an extensive diversity of aerobic and anaerobic bacteria and archaea that survive and grow under these multiple harsh conditions. This diversity includes the halophilic alkalithermophiles, a novel group of polyextremophiles that require for growth and proliferation the multiple extremes of high salinity, alkaline pH, and elevated temperature. Life under these conditions undoubtedly involves the development of unique physiological characteristics, phenotypic properties, and adaptive mechanisms that enable control of membrane permeability, control of intracellular osmotic balance, and stability of the cell wall, intracellular proteins, and other cellular constituents. This minireview highlights the ecology and growth characteristics of the extremely halophilic alkalithermophiles that have been isolated thus far. Biochemical, metabolic, and physiological properties of the extremely halophilic alkalithermophiles are described, and their roles in resistance to the combined stressors of high salinity, alkaline pH, and high temperature are discussed. The isolation of halophilic alkalithermophiles broadens the physicochemical boundaries for life and extends the boundaries for the combinations of the maximum salinity, pH, and temperature that can support microbial growth. PMID:22492435
Rodriguez, Eileen T; Tamis-LeMonda, Catherine S
2011-01-01
Children's home learning environments were examined in a low-income sample of 1,852 children and families when children were 15, 25, 37, and 63 months. During home visits, children's participation in literacy activities, the quality of mothers' engagements with their children, and the availability of learning materials were assessed, yielding a total learning environment score at each age. At 63 months, children's vocabulary and literacy skills were assessed. Six learning environment trajectories were identified, including environments that were consistently low, environments that were consistently high, and environments characterized by varying patterns of change. The skills of children at the extremes of learning environment trajectories differed by more than 1 SD and the timing of learning experiences related to specific emerging skills. © 2011 The Authors. Child Development © 2011 Society for Research in Child Development, Inc.
High-Performance, Radiation-Hardened Electronics for Space and Lunar Environments
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Adams, James H.; Cressler, John D.; Darty, Ronald C.; Johnson, Michael A.; Patrick, Marshall C.
2008-01-01
The Radiation Hardened Electronics for Space Environments (RHESE) project develops advanced technologies needed for high performance electronic devices that will be capable of operating within the demanding radiation and thermal extremes of the space, lunar, and Martian environment. The technologies developed under this project enhance and enable avionics within multiple mission elements of NASA's Vision for Space Exploration. including the Constellation program's Orion Crew Exploration Vehicle. the Lunar Lander project, Lunar Outpost elements, and Extra Vehicular Activity (EVA) elements. This paper provides an overview of the RHESE project and its multiple task tasks, their technical approaches, and their targeted benefits as applied to NASA missions.
Ultimately Reliable Pyrotechnic Systems
NASA Technical Reports Server (NTRS)
Scott, John H.; Hinkel, Todd
2015-01-01
This paper presents the methods by which NASA has designed, built, tested, and certified pyrotechnic devices for high reliability operation in extreme environments and illustrates the potential applications in the oil and gas industry. NASA's extremely successful application of pyrotechnics is built upon documented procedures and test methods that have been maintained and developed since the Apollo Program. Standards are managed and rigorously enforced for performance margins, redundancy, lot sampling, and personnel safety. The pyrotechnics utilized in spacecraft include such devices as small initiators and detonators with the power of a shotgun shell, detonating cord systems for explosive energy transfer across many feet, precision linear shaped charges for breaking structural membranes, and booster charges to actuate valves and pistons. NASA's pyrotechnics program is one of the more successful in the history of Human Spaceflight. No pyrotechnic device developed in accordance with NASA's Human Spaceflight standards has ever failed in flight use. NASA's pyrotechnic initiators work reliably in temperatures as low as -420 F. Each of the 135 Space Shuttle flights fired 102 of these initiators, some setting off multiple pyrotechnic devices, with never a failure. The recent landing on Mars of the Opportunity rover fired 174 of NASA's pyrotechnic initiators to complete the famous '7 minutes of terror.' Even after traveling through extreme radiation and thermal environments on the way to Mars, every one of them worked. These initiators have fired on the surface of Titan. NASA's design controls, procedures, and processes produce the most reliable pyrotechnics in the world. Application of pyrotechnics designed and procured in this manner could enable the energy industry's emergency equipment, such as shutoff valves and deep-sea blowout preventers, to be left in place for years in extreme environments and still be relied upon to function when needed, thus greatly enhancing safety and operational availability.
La Duc, Myron T; Dekas, Anne; Osman, Shariff; Moissl, Christine; Newcombe, David; Venkateswaran, Kasthuri
2007-04-01
In assessing the bacterial populations present in spacecraft assembly, spacecraft test, and launch preparation facilities, extremophilic bacteria (requiring severe conditions for growth) and extremotolerant bacteria (tolerant to extreme conditions) were isolated. Several cultivation approaches were employed to select for and identify bacteria that not only survive the nutrient-limiting conditions of clean room environments but can also withstand even more inhospitable environmental stresses. Due to their proximity to spacefaring objects, these bacteria pose a considerable risk for forward contamination of extraterrestrial sites. Samples collected from four geographically distinct National Aeronautics and Space Administration clean rooms were challenged with UV-C irradiation, 5% hydrogen peroxide, heat shock, pH extremes (pH 3.0 and 11.0), temperature extremes (4 degrees C to 65 degrees C), and hypersalinity (25% NaCl) prior to and/or during cultivation as a means of selecting for extremotolerant bacteria. Culture-independent approaches were employed to measure viable microbial (ATP-based) and total bacterial (quantitative PCR-based) burdens. Intracellular ATP concentrations suggested a viable microbial presence ranging from below detection limits to 10(6) cells/m(2). However, only 0.1 to 55% of these viable cells were able to grow on defined culture medium. Isolated members of the Bacillaceae family were more physiologically diverse than those reported in previous studies, including thermophiles (Geobacillus), obligate anaerobes (Paenibacillus), and halotolerant, alkalophilic species (Oceanobacillus and Exiguobacterium). Non-spore-forming microbes (alpha- and beta-proteobacteria and actinobacteria) exhibiting tolerance to the selected stresses were also encountered. The multiassay cultivation approach employed herein enhances the current understanding of the physiological diversity of bacteria housed in these clean rooms and leads us to ponder the origin and means of translocation of thermophiles, anaerobes, and halotolerant alkalophiles into these environments.
Connor, Richard C
2007-04-29
Bottlenose dolphins in Shark Bay, Australia, live in a large, unbounded society with a fission-fusion grouping pattern. Potential cognitive demands include the need to develop social strategies involving the recognition of a large number of individuals and their relationships with others. Patterns of alliance affiliation among males may be more complex than are currently known for any non-human, with individuals participating in 2-3 levels of shifting alliances. Males mediate alliance relationships with gentle contact behaviours such as petting, but synchrony also plays an important role in affiliative interactions. In general, selection for social intelligence in the context of shifting alliances will depend on the extent to which there are strategic options and risk. Extreme brain size evolution may have occurred more than once in the toothed whales, reaching peaks in the dolphin family and the sperm whale. All three 'peaks' of large brain size evolution in mammals (odontocetes, humans and elephants) shared a common selective environment: extreme mutual dependence based on external threats from predators or conspecific groups. In this context, social competition, and consequently selection for greater cognitive abilities and large brain size, was intense.
Data informatics for the Detection, Characterization, and Attribution of Climate Extremes
NASA Astrophysics Data System (ADS)
Collins, W.; Wehner, M. F.; O'Brien, T. A.; Paciorek, C. J.; Krishnan, H.; Johnson, J. N.; Prabhat, M.
2015-12-01
The potential for increasing frequency and intensity of extremephenomena including downpours, heat waves, and tropical cyclonesconstitutes one of the primary risks of climate change for society andthe environment. The challenge of characterizing these risks is thatextremes represent the "tails" of distributions of atmosphericphenomena and are, by definition, highly localized and typicallyrelatively transient. Therefore very large volumes of observationaldata and projections of future climate are required to quantify theirproperties in a robust manner. Massive data analytics are required inorder to detect individual extremes, accumulate statistics on theirproperties, quantify how these statistics are changing with time, andattribute the effects of anthropogenic global warming on thesestatistics. We describe examples of the suite of techniques the climate communityis developing to address these analytical challenges. The techniquesinclude massively parallel methods for detecting and trackingatmospheric rivers and cyclones; data-intensive extensions togeneralized extreme value theory to summarize the properties ofextremes; and multi-model ensembles of hindcasts to quantify theattributable risk of anthropogenic influence on individual extremes.We conclude by highlighting examples of these methods developed by ourCASCADE (Calibrated and Systematic Characterization, Attribution, andDetection of Extremes) project.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 28 2011-07-01 2011-07-01 false What quantities of extremely hazardous substances trigger emergency planning requirements? 355.12 Section 355.12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS...
Care and handling of container plants from storage to outplanting
Thomas D. Landis; R. Kasten Dumroese
2011-01-01
Nursery plants are in a period of high risk from the time they leave the protected environment of the nursery to when they are outplanted. During handling and shipping, nursery stock may be exposed to many damaging stresses, including extreme temperatures, desiccation, mechanical injuries, and storage molds. This is also the period of greatest financial risk, because...
TransFormers for Ensuring Long-Term Operations in Lunar Extreme Environments
NASA Technical Reports Server (NTRS)
Mantovani, J. G.; Stoica, A.; Alkalai, L.; Wilcox, B.; Quadrelli, M.
2016-01-01
"Surviving Extreme Space Environments" (EE) is one of NASA's Space Technology Grand Challenges. Power generation and thermal control are the key survival ingredients that allow a robotic explorer to cope with the EE using resources available to it, for example, by harvesting the local solar energy or by utilizing an onboard radioisotope thermoelectric generator (RTG). TransFormers (TFs) are a new technology concept designed to transform a localized area within a harsh extreme environment into a survivable micro-environment by projecting energy to the precise location where robots or humans operate. For example, TFs placed at a location on the rim of Shackleton Crater, which is illuminated by solar radiation for most of the year, would be able to reflect solar energy onto robots operating in the dark cold crater. TFs utilize a shape transformation mechanism to un-fold from a compact volume to a large reflective surface, and to control how much-and where-the energy is projected, and by adjusting for the changing position of the sun. TFs would enable in-situ resource utilization (ISRU) activities within locations of high interest that would normally be unreachable because of their extreme environment
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj
2016-01-01
This invited talk will give a brief overview of the integrated heat-shield system design that requires seams and the extreme environment conditions that HEEET should be demonstrated to be capable of thermal performance without fail. We have tested HEEET across many different facilities and at conditions that are extreme. The presentation will highlight the performance of both the acreage as well as integrated seam at these conditions. The Invite talks are 10 min and hence this presentation will be short.
Structural and Functional Studies of Archaeal Viruses*
Lawrence, C. Martin; Menon, Smita; Eilers, Brian J.; Bothner, Brian; Khayat, Reza; Douglas, Trevor; Young, Mark J.
2009-01-01
Viruses populate virtually every ecosystem on the planet, including the extreme acidic, thermal, and saline environments where archaeal organisms can dominate. For example, recent studies have identified crenarchaeal viruses in the hot springs of Yellowstone National Park and other high temperature environments worldwide. These viruses are often morphologically and genetically unique, with genomes that show little similarity to genes of known function, complicating efforts to understand their viral life cycles. Here, we review progress in understanding these fascinating viruses at the molecular level and the evolutionary insights coming from these studies. PMID:19158076
Materials @ LANL: Solutions for National Security Challenges
NASA Astrophysics Data System (ADS)
Teter, David
2012-10-01
Materials science activities impact many programmatic missions at LANL including nuclear weapons, nuclear energy, renewable energy, global security and nonproliferation. An overview of the LANL materials science strategy and examples of materials science programs will be presented. Major materials leadership areas are in materials dynamics, actinides and correlated electron materials, materials in radiation extremes, energetic materials, integrated nanomaterials and complex functional materials. Los Alamos is also planning a large-scale, signature science facility called MaRIE (Matter Radiation Interactions in Extremes) to address in-situ characterization of materials in dynamic and radiation environments using multiple high energy probes. An overview of this facility will also be presented.
Predictors of Behavior and Performance in Extreme Environments: The Antarctic Space Analogue Program
NASA Technical Reports Server (NTRS)
Palinkas, Lawrence A.; Gunderson, E K. Eric; Holland, A. W.; Miller, Christopher; Johnson, Jeffrey C.
2000-01-01
To determine which, if any, characteristics should be incorporated into a select-in approach to screening personnel for long-duration spaceflight, we examined the influence of crewmember social/ demographic characteristics, personality traits, interpersonal needs, and characteristics of station physical environments on performance measures in 657 American men who spent an austral winter in Antarctica between 1963 and 1974. During screening, subjects completed a Personal History Questionnaire which obtained information on social and demographic characteristics, the Deep Freeze Opinion Survey which assessed 5 different personality traits, and the Fundamental Interpersonal Relations Orientation-Behavior (FIRO-B) Scale which measured 6 dimensions of interpersonal needs. Station environment included measures of crew size and severity of physical environment. Performance was assessed on the basis of combined peer-supervisor evaluations of overall performance, peer nominations of fellow crewmembers who made ideal winter-over candidates, and self-reported depressive symptoms. Social/demographic characteristics, personality traits, interpersonal needs, and characteristics of station environments collectively accounted for 9-17% of the variance in performance measures. The following characteristics were significant independent predictors of more than one performance measure: military service, low levels of neuroticism, extraversion and conscientiousness, and a low desire for affection from others. These results represent an important first step in the development of select-in criteria for personnel on long-duration missions in space and other extreme environments. These criteria must take into consideration the characteristics of the environment and the limitations they place on meeting needs for interpersonal relations and task performance, as well as the characteristics of the individuals and groups who live and work in these environments.
Constructing and Screening a Metagenomic Library of a Cold and Alkaline Extreme Environment.
Glaring, Mikkel A; Vester, Jan K; Stougaard, Peter
2017-01-01
Natural cold or alkaline environments are common on Earth. A rare combination of these two extremes is found in the permanently cold (less than 6 °C) and alkaline (pH above 10) ikaite columns in the Ikka Fjord in Southern Greenland. Bioprospecting efforts have established the ikaite columns as a source of bacteria and enzymes adapted to these conditions. They have also highlighted the limitations of cultivation-based methods in this extreme environment and metagenomic approaches may provide access to novel extremophilic enzymes from the uncultured majority of bacteria. Here, we describe the construction and screening of a metagenomic library of the prokaryotic community inhabiting the ikaite columns.
Evaluating teams in extreme environments: from issues to answers.
Bishop, Sheryl L
2004-07-01
The challenge to effectively evaluating teams in extreme environments necessarily involves a wide range of physiological, psychological, and psychosocial factors. The high reliance on technology, the growing frequency of multinational and multicultural teams, and the demand for longer duration missions all further compound the complexity of the problem. The primary goal is the insurance of human health and well-being with expectations that such priorities will naturally lead to improved chances for performance and mission success. This paper provides an overview of some of the most salient immediate challenges for selecting, training, and supporting teams in extreme environments, gives exemplars of research findings concerning these challenges, and discusses the need for future research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devanathan, Ram
Nanomaterials in Extreme Environments Rostislav A. Andrievski and Arsen V. Khatchoyan Springer, 2016 106 pages, $99.00 (e-book $69.99) ISBN 978–3-319–25331–2 This slim volume is an extensive review of our current understanding of the response of nanostructured materials to extreme operating conditions, such as high temperature, flux of high energy neutrons, high pressure, mechanical stress, and oxidizing environments. The emphasis is on metallic materials, especially Cu alloys. Graphene-based materials, fullerenes, polymeric materials, nano-glasses and glass-ceramics are not covered by this review. The book has six chapters including an introduction and a brief conclusion. The introduction documents the growth of scientific interestmore » in nanostructured materials and stresses the need to study the behavior of nanomaterials under extreme conditions. This chapter also presents Herbert Gleiter’s classification of nanomaterials into twelve groups based on the shapes of the nanoscale features and chemical composition of the components of the nanostructure. The second chapter deals with the high temperature environment and the thermodynamics and kinetics of grain growth. The authors identify the lack of reliable thermodynamic data as a key limitation in this field. The discussion brings out the interplay of structural relaxation, redistribution of excess free volume, diffusion, and recrystallization in multicomponent nanostructures at elevated temperature. Chapter 3 focuses on the effects of ion and neutron irradiation on the structure and properties of nanomaterials. The authors do a good job of highlighting recent studies on the radiation tolerance of nanocrystalline oxides and rapid grain growth under irradiation. The material addresses both fission and fusion reactor applications. Chapter 4 reviews the effects of severe plastic deformation and cyclic loading on nanostructure formation and phase transformation. This chapter also explores the challenge of achieving high density while retaining nanostructural features during processing under extreme loads and high temperatures. Chapter 5 discusses the effects of corrosion on nanomaterials. The behavior of a variety of alloys and high melting point compounds in liquid media and high temperature oxidizing environments is reviewed. The concluding chapter identifies areas for further research. The book would have benefited from careful copy editing for use of the English language. Moreover, the excessive use of acronyms makes the text difficult to read. Each chapter ends with a section on the application of nanomaterials and a long list of references. The integration of theoretical approaches and simulation results with experimental data offers fresh insights into the behavior of nanomaterials. Overall, this book will serve as useful reference material for researchers interested in nanomaterials driven to extremes. Reviewer: Ram Devanathan is Technical Group Manager of Reactor Materials and Mechanical Design, Pacific Northwest National Laboratory, USA.« less
Hybrid Power Management Program Continued
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2002-01-01
Hybrid Power Management (HPM) is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The advanced power devices include ultracapacitors and photovoltaics. HPM has extremely wide potential with applications including power-generation, transportation, biotechnology, and space power systems. It may significantly alleviate global energy concerns, improve the environment, and stimulate the economy.
Conference Video for Booth at SAE World Congress Experience Conference
NASA Technical Reports Server (NTRS)
Harkey, Ann Marie
2017-01-01
Contents: Publicly released videos on technology transfer items available for licensing from NASA. Includes; Powder Handling Device for Analytical Instruments (Ames); 2. Fiber Optic Shape Sensing (FOSS) (Armstrong); 3. Robo-Glove (Johnson); 4. Modular Robotic Vehicle (Johnson); 5. Battery Management System (Johnson); 6. Active Response Gravity Offload System (ARGOS) (Johnson); 7. Contaminant Resistant Coatings for Extreme Environments (Langley); 8. Molecular Adsorber Coating (MAC) (Goddard); 9. Ultrasonic Stir Welding (Marshall). Also includes scenes from the International Space Station.
Simos, Nikolaos
2017-12-22
Nikolaos Simos of Brookhavenâs Energy Sciences and Technology Department and the National Synchrotron Light Source II Project presents, âExtreme Environments of Next-Generation Energy Systems and Materials: Can They Peacefully Co-Exist?â
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 28 2011-07-01 2011-07-01 false Do I have to aggregate extremely hazardous substances to determine the total quantity present? 355.14 Section 355.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO...
A walk on the tundra: Host-parasite interactions in an extreme environment
USDA-ARS?s Scientific Manuscript database
The Arctic is a vast, sparsely populated region that has captured the imagination and interest of explorers and scientists for generations. It is an environment of extremes and has been considered by many an inhospitable landscape and the last frontier to be explored. Despite the ‘hardships’ impos...
Microorganisms in extreme environments with a view to astrobiology in the outer solar system
NASA Astrophysics Data System (ADS)
Seckbach, Joseph; Chela-Flores, Julian
2015-09-01
We review the various manifestations of the evolution of life in extreme environments. We review those aspects of extremophiles that are most relevant for astrobiology. We are aware that geothermal energy triggering sources of heat in oceanic environments are not unique to our planet, a fact that was exposed by the Voyager mission images of volcanic activity on Io, the Jovian moon. Such activity exceeded by far what was known form terrestrial geology. The science of astrobiology has considered the possible presence of several moon oceans in the vicinity of both giant gas and icy planets. These watery environments include, not only Europa (strongly suggested by data from the Galileo mission), but the Voyager flybys exposed, not only the unusual geothermal activity on Io, but also the possible presence of subsurface oceans and some geothermal activity on the Neptune's moon Triton. More recently, calculations of Hussmann and coworkers with available data do not exclude that even Uranus moons may be candidates for bearing subsurface oceans. These possibilities invite a challenge that we gladly welcome, of preliminary discussions of habitability of extremophiles in so far novel environments for the science of astrobiology. Nevertheless, such exploration is currently believed to be feasible with the new generations of missions suggested for the time window of 2030 - 2040, or even earlier. We are envisaging, not only the current exploration of the moons of Saturn, but in the coming years we expect to go beyond to Uranus and Neptune to include dwarf planets and trans-neptunian worlds. Consequently, it is necessary to begin questioning whether the Europa-like conditions for the evolution of microorganisms are repeatable elsewhere. At present three new missions are in the process of being formulated, including the selection of payloads that will be necessary for the exploration of the various so far unexplored moons.
Analysis of Surface Charging for a Candidate Solar Sail Mission Using NASCAP-2K
NASA Technical Reports Server (NTRS)
Parker, Linda Neergaard; Minow, Joseph L.; Davis, V. A.; Mandell, Myron; Gardner, Barbara
2005-01-01
The characterization of the electromagnetic interaction for a solar sail in the solar wind environment and identification of viable charging mitigation strategies are critical solar sail mission design tasks. Spacecraft charging has important implications both for science applications and for lifetime and reliability issues of sail propulsion systems. To that end, surface charging calculations of a candidate 150-meter-class solar sail spacecraft for the 0.5 AU solar polar and 1.9 AU LI solar wind environments are performed. A model of the spacecraft with candidate materials having appropriate electrical properties is constructed using Object Toolkit. The spacecraft charging analysis is performed using Nascap-2k. the NASA/AFRL sponsored spacecraft charging analysis tool. Nominal and atypical solar wind environments appropriate for the 0.5 AU and 1.0 AU missions are used to establish current collection of solar wind ions and electrons. Finally, a geostationary orbit environment case is included to demonstrate a bounding example of extreme (negative) charging of a solar sail spacecraft. Results from the charging analyses demonstrate that minimal differential potentials (and resulting threat of electrostatic discharge) occur when the spacecraft is constructed entirely of conducting materials, as anticipated from standard guidelines for mitigation of spacecraft charging issues. Examples with dielectric materials exposed to the space environment exhibit differential potentials ranging from a few volts to extreme potentials in the kilovolt range.
Analysis of Surface Charging for a Candidate Solar Sail Mission Using Nascap-2k
NASA Technical Reports Server (NTRS)
Parker, Linda Neergaard; Minow, Joseph I.; Davis, Victoria; Mandell, Myron; Gardner, Barbara
2005-01-01
The characterization of the electromagnetic interaction for a solar sail in the solar wind environment and identification of viable charging mitigation strategies are critical solar sail mission design task. Spacecraft charging has important implications both for science applications and for lifetime and reliability issues of sail propulsion systems. To that end, surface charging calculations of a candidate 150-meter-class solar sail spacecraft for the 0.5 AU solar polar and 1.0 AU L1 solar wind environments are performed. A model of the spacecraft with candidate materials having appropriate electrical properties is constructed using Object Toolkit. The spacecraft charging analysis is performed using Nascap-2k, the NASA/AFRL sponsored spacecraft charging analysis tool. Nominal and atypical solar wind environments appropriate for the 0.5 AU and 1.0 AU missions are used to establish current collection of solar wind ions and electrons. Finally, a geostationary orbit environment case is included to demonstrate a bounding example of extreme (negative) charging of a solar sail spacecraft. Results from the charging analyses demonstrate that minimal differential potentials (and resulting threat of electrostatic discharge) occur when the spacecraft is constructed entirely of conducting materials, as anticipated from standard guidelines for mitigation of spacecraft charging issues. Examples with dielectric materials exposed to the space environment exhibit differential potentials ranging from a few volts to extreme potentials in the kilovolt range.
Xu, Kui; Ma, Chao; Lian, Jijian; Bin, Lingling
2014-01-01
Catastrophic flooding resulting from extreme meteorological events has occurred more frequently and drawn great attention in recent years in China. In coastal areas, extreme precipitation and storm tide are both inducing factors of flooding and therefore their joint probability would be critical to determine the flooding risk. The impact of storm tide or changing environment on flooding is ignored or underestimated in the design of drainage systems of today in coastal areas in China. This paper investigates the joint probability of extreme precipitation and storm tide and its change using copula-based models in Fuzhou City. The change point at the year of 1984 detected by Mann-Kendall and Pettitt’s tests divides the extreme precipitation series into two subsequences. For each subsequence the probability of the joint behavior of extreme precipitation and storm tide is estimated by the optimal copula. Results show that the joint probability has increased by more than 300% on average after 1984 (α = 0.05). The design joint return period (RP) of extreme precipitation and storm tide is estimated to propose a design standard for future flooding preparedness. For a combination of extreme precipitation and storm tide, the design joint RP has become smaller than before. It implies that flooding would happen more often after 1984, which corresponds with the observation. The study would facilitate understanding the change of flood risk and proposing the adaption measures for coastal areas under a changing environment. PMID:25310006
Xu, Kui; Ma, Chao; Lian, Jijian; Bin, Lingling
2014-01-01
Catastrophic flooding resulting from extreme meteorological events has occurred more frequently and drawn great attention in recent years in China. In coastal areas, extreme precipitation and storm tide are both inducing factors of flooding and therefore their joint probability would be critical to determine the flooding risk. The impact of storm tide or changing environment on flooding is ignored or underestimated in the design of drainage systems of today in coastal areas in China. This paper investigates the joint probability of extreme precipitation and storm tide and its change using copula-based models in Fuzhou City. The change point at the year of 1984 detected by Mann-Kendall and Pettitt's tests divides the extreme precipitation series into two subsequences. For each subsequence the probability of the joint behavior of extreme precipitation and storm tide is estimated by the optimal copula. Results show that the joint probability has increased by more than 300% on average after 1984 (α = 0.05). The design joint return period (RP) of extreme precipitation and storm tide is estimated to propose a design standard for future flooding preparedness. For a combination of extreme precipitation and storm tide, the design joint RP has become smaller than before. It implies that flooding would happen more often after 1984, which corresponds with the observation. The study would facilitate understanding the change of flood risk and proposing the adaption measures for coastal areas under a changing environment.
SET: a pupil detection method using sinusoidal approximation
Javadi, Amir-Homayoun; Hakimi, Zahra; Barati, Morteza; Walsh, Vincent; Tcheang, Lili
2015-01-01
Mobile eye-tracking in external environments remains challenging, despite recent advances in eye-tracking software and hardware engineering. Many current methods fail to deal with the vast range of outdoor lighting conditions and the speed at which these can change. This confines experiments to artificial environments where conditions must be tightly controlled. Additionally, the emergence of low-cost eye tracking devices calls for the development of analysis tools that enable non-technical researchers to process the output of their images. We have developed a fast and accurate method (known as “SET”) that is suitable even for natural environments with uncontrolled, dynamic and even extreme lighting conditions. We compared the performance of SET with that of two open-source alternatives by processing two collections of eye images: images of natural outdoor scenes with extreme lighting variations (“Natural”); and images of less challenging indoor scenes (“CASIA-Iris-Thousand”). We show that SET excelled in outdoor conditions and was faster, without significant loss of accuracy, indoors. SET offers a low cost eye-tracking solution, delivering high performance even in challenging outdoor environments. It is offered through an open-source MATLAB toolkit as well as a dynamic-link library (“DLL”), which can be imported into many programming languages including C# and Visual Basic in Windows OS (www.eyegoeyetracker.co.uk). PMID:25914641
Conference Support - Surgery in Extreme Environments - Center for Surgical Innovation
2007-01-01
flights. During this 16-day mission in April 1998, surgical procedures, including thoracotomies, laparotomies, craniotomies , laminectomies, and...fixation, craniotomy , laminectomy, and leg dissection. These experiments also permitted the evaluation of IV insertion using the autonomic protocol and...missions will be required to address: Repair of lacerations; wound cement, layered closure Incision and drainage of abscess Needle aspiration of
Extreme low temperature tolerance in woody plants
G. Richard Strimbeck; Paul G. Schaberg; Carl G. Fossdal; Wolfgang P. Schroder; Trygve D. Kjellsen
2015-01-01
Woody plants in boreal to arctic environments and high mountains survive prolonged exposure to temperatures below -40°C and minimum temperatures below -60°C, and laboratory tests show that many of these species can also survive immersion in liquid nitrogen at -196°C. Studies of biochemical changes that occur during acclimation, including recent proteomic and...
NASA Astrophysics Data System (ADS)
Droppo, R.; Pratt, L.; Suchecki, P. C.
2010-08-01
The Looking for Life in Extreme Environments workshop held at Indiana University Bloomington in July of 2009 was the first in a series of workshops for high-school teachers that are currently in development. The workshops' modules are based on the research of faculty members in the Departments of Geological Sciences, Biology, and Astronomy, the School of Education, and the School of Public and Environmental Affairs at Indiana University Bloomington; the modules use lessons from Exploring Deep-Subsurface Life. Earth Analogues for Possible Life on Mars: Lessons and Activities, curricular materials that were produced and edited by Lisa Pratt and Ruth Droppo and published by NASA in 2008. Exploring Deep-Subsurface Life is a workbook, a DVD (with closed-captioning), and a CD with the lessons in digital text format for adaptation to classroom needs and printing. Each lesson includes the National Education Standards that apply to the materials. The workbook's lessons are written with three considerations: Life Domains, Cellular Metabolism, and Extreme Environments and Microbes. Students are challenged to build, draw, measure, discuss, and participate in laboratory processes and experiments that help them understand and describe microbes and their environments. In the Capstone, the students write a grant proposal based on the three lessons' analogues. The DVD is collection of videotaped interviews with scientists in laboratories at Michigan State, Princeton, and Indiana University, who are working on water and gas samples they collected from deep gold mines in South Africa and the Canadian Arctic. The interview materials and some animated graphics are compiled into four video pieces that support and compliment the accompanying workbook lessons and activities, and offer students insight into the excitement of scientific discovery.
Military-specific application of nutritional supplements: a brief overview.
Hoedebecke, Kyle; Brink, Will
2015-01-01
The Soldiers of America's military endure numerous physical and mental challenges that demand strict physical fitness regimens, extreme mental agility, and a perpetual readiness to deploy at a moment's notice. The chronicity of these stressors has the potential to dramatically reduce performance - both directly and indirectly. Because of this risk, many Soldiers turn to nutritional supplements with hopes of optimizing performance. Increasing amounts of research have demonstrated that various supplements may enhance overall physical prowess, health, and offer quicker recovery in the face of corporal or psychological extremes. Most individuals, including many medical and nutrition professionals, possess only an elementary comprehension of nutritional supplements and their effect on Soldiers in training or combat environments. Nevertheless, a grasp of these details is required for safety and optimal benefits. Various compounds have been evaluated - to include evidence within the military setting - and found to augment endurance, increase cognitive function, decrease knee pain, or offer hearing or lung protection in the face of high-energy impulses. These efficacious outcomes may serve to augment the health and longevity of these Soldiers; however, continued research is needed for efficacy and long-term safety within specific environments.
Robust, Thin Optical Films for Extreme Environments
NASA Technical Reports Server (NTRS)
2006-01-01
The environment of space presents scientists and engineers with the challenges of a harsh, unforgiving laboratory in which to conduct their scientific research. Solar astronomy and X-ray astronomy are two of the more challenging areas into which NASA scientists delve, as the optics for this high-tech work must be extremely sensitive and accurate, yet also be able to withstand the battering dished out by radiation, extreme temperature swings, and flying debris. Recent NASA work on this rugged equipment has led to the development of a strong, thin film for both space and laboratory use.
Toward Reliable and Energy Efficient Wireless Sensing for Space and Extreme Environments
NASA Technical Reports Server (NTRS)
Choi, Baek-Young; Boyd, Darren; Wilkerson, DeLisa
2017-01-01
Reliability is the critical challenge of wireless sensing in space systems operating in extreme environments. Energy efficiency is another concern for battery powered wireless sensors. Considering the physics of wireless communications, we propose an approach called Software-Defined Wireless Communications (SDC) that dynamically decide a reliable channel(s) avoiding unnecessary redundancy of channels, out of multiple distinct electromagnetic frequency bands such as radio and infrared frequencies.We validate the concept with Android and Raspberry Pi sensors and pseudo extreme experiments. SDC can be utilized in many areas beyond space applications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 28 2011-07-01 2011-07-01 false How do I calculate the quantity of an extremely hazardous substance present in mixtures? 355.13 Section 355.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS...
Flexible Electronics-Based Transformers for Extreme Environments
NASA Technical Reports Server (NTRS)
Quadrelli, Marco B.; Stoica, Adrian; Ingham, Michel; Thakur, Anubhav
2015-01-01
This paper provides a survey of the use of modular multifunctional systems, called Flexible Transformers, to facilitate the exploration of extreme and previously inaccessible environments. A novel dynamics and control model of a modular algorithm for assembly, folding, and unfolding of these innovative structural systems is also described, together with the control model and the simulation results.
NASA Technical Reports Server (NTRS)
Carr, Gregory A.; Iannello, Christopher J.; Chen, Yuan; Hunter, Don J.; DelCastillo, Linda; Bradley, Arthur T.; Stell, Christopher; Mojarradi, Mohammad M.
2013-01-01
This paper is to present a concept of a modular and scalable High Temperature Boost (HTB) Power Processing Unit (PPU) capable of operating at temperatures beyond the standard military temperature range. The various extreme environments technologies are also described as the fundamental technology path to this concept. The proposed HTB PPU is intended for power processing in the area of space solar electric propulsion, where reduction of in-space mass and volume are desired, and sometimes even critical, to achieve the goals of future space flight missions. The concept of the HTB PPU can also be applied to other extreme environment applications, such as geothermal and petroleum deep-well drilling, where higher temperature operation is required.
NASA Technical Reports Server (NTRS)
Carr, Gregory A.; Iannello, Christopher J.; Chen, Yuan; Hunter, Don J.; Del Castillo, Linda; Bradley, Arthur T.; Stell, Christopher; Mojarradi, Mohammad M.
2013-01-01
This paper is to present a concept of a modular and scalable High Temperature Boost (HTB) Power Processing Unit (PPU) capable of operating at temperatures beyond the standard military temperature range. The various extreme environments technologies are also described as the fundamental technology path to this concept. The proposed HTB PPU is intended for power processing in the area of space solar electric propulsion, where the reduction of in-space mass and volume are desired, and sometimes even critical, to achieve the goals of future space flight missions. The concept of the HTB PPU can also be applied to other extreme environment applications, such as geothermal and petroleum deep-well drilling, where higher temperature operation is required.
Development and Testing of Mechanism Technology for Space Exploration in Extreme Environments
NASA Technical Reports Server (NTRS)
Tyler, Tony R.; Levanas, Greg; Mojarradi, Mohammad M.; Abel, Phillip B.
2011-01-01
The NASA Jet Propulsion Lab (JPL), Glenn Research Center (GRC), Langley Research Center (LaRC), and Aeroflex, Inc. have partnered to develop and test actuator hardware that will survive the stringent environment of the moon, and which can also be leveraged for other challenging space exploration missions. Prototype actuators have been built and tested in a unique low temperature test bed with motor interface temperatures as low as 14 degrees Kelvin. Several years of work have resulted in specialized electro-mechanical hardware to survive extreme space exploration environments, a test program that verifies and finds limitations of the designs at extreme temperatures, and a growing knowledge base that can be leveraged by future space exploration missions.
Global prevalence and distribution of genes and microorganisms involved in mercury methylation
Podar, Mircea; Gilmour, C. C.; Brandt, Craig C.; ...
2015-10-09
Mercury methylation produces the neurotoxic, highly bioaccumulative methylmercury (MeHg). Recent identification of the methylation genes (hgcAB) provides the foundation for broadly evaluating microbial Hg-methylation potential in nature without making explicit rate measurements. We first queried hgcAB diversity and distribution in all available microbial metagenomes, encompassing most environments. The genes were found in nearly all anaerobic, but not in aerobic, environments including oxygenated layers of the open ocean. Critically, hgcAB was effectively absent in ~1500 human microbiomes, suggesting a low risk of endogenous MeHg production. New potential methylation habitats were identified, including invertebrate guts, thawing permafrost, coastal dead zones, soils, sediments,more » and extreme environments, suggesting multiple routes for MeHg entry into food webs. Several new taxonomic groups potentially capable of Hg-methylation emerged, including lineages having no cultured representatives. We then begin to address long-standing evolutionary questions about Hg-methylation and ancient carbon fixation mechanisms while generating a new global view of Hg-methylation potential.« less
NASA Astrophysics Data System (ADS)
Horneck, Gerda; Moeller, Ralf
Spore-forming microbes are of particular concern in the context of planetary protection, be-cause their endospores are highly resistant to a variety of environmental extremes, including certain sterilization procedures and the harsh environment of outer space or planetary sur-faces (Nicholson et al., 2000; Horneck et al. 2009). Furthermore, isolates from space craft and space craft assembly facilities have been identified that form spores of an elevated resistance to various physical and chemical conditions, such as ionizing and UV radiation, desiccation and oxidative stress (La Duc et al., 2007). This observation led to the supposition that the spe-cial conditions of ultraclean spacecraft assembly facilities and the applied spacecraft cleaning and decontamination measures cause a selection of the most resistant organisms as survivors. To test this hypothesis, spores of B. pumilus SAFR-032 isolated from these environments as well as spores of the laboratory strain B. subtilis 168 were subjected to selected parameters of space in the experiment PROTECT during the EXPOSE-E mission (February 7, 2008 -September 12, 2009), attached to the EuTEF platform outside of the Columbus module of the International Space Station. The spores were mounted as dry layers onto spacecraft-qualified material (aluminum coupons) and exposed to the following parameters of space, applied sep-arately or in selected combinations: (i) space vacuum, (ii) solar extraterrestrial UV radiation including vacuum-UV, (iii) simulated Mars atmosphere and UV radiation climate, and (iv) galactic cosmic radiation. After recovery, visual inspection showed color changes of the sun-exposed spore samples from white to brownish demonstrating photochemical damage caused by solar extraterrestrial UV radiation. On-going analyses include studies of viability and capabil-ity of repair of damage, mutagenic spectrum, e.g. trp-revertants, rifampicin-resistant mutants, DNA lesion, global gene expression, and genomic and proteomic characterizations using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). First viability studies gave the following survival rates: 20 -30 References: Horneck,G., D.M. Klaus, R.L. Mancinelli (2010) Space microbiology, Microb. Mol. Biol. Rev. (in press) La Duc MT, Dekas A, Osman S, Moissl C, Newcombe D, Venkateswaran K. (2007) Isolation and character-ization of bacteria capable of tolerating the extreme conditions of clean room environments. Appl Environ Microbiol. 73, 2600-11. Nicholson WL, Munakata N, Horneck G, Melosh HJ, and Setlow P (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments, Microb. Mol. Biol. Rev. 64, 548-572.
Extreme alien light allows survival of terrestrial bacteria
NASA Astrophysics Data System (ADS)
Johnson, Neil; Zhao, Guannan; Caycedo, Felipe; Manrique, Pedro; Qi, Hong; Rodriguez, Ferney; Quiroga, Luis
2013-07-01
Photosynthetic organisms provide a crucial coupling between the Sun's energy and metabolic processes supporting life on Earth. Searches for extraterrestrial life focus on seeking planets with similar incident light intensities and environments. However the impact of abnormal photon arrival times has not been considered. Here we present the counterintuitive result that broad classes of extreme alien light could support terrestrial bacterial life whereas sources more similar to our Sun might not. Our detailed microscopic model uses state-of-the-art empirical inputs including Atomic Force Microscopy (AFM) images. It predicts a highly nonlinear survivability for the basic lifeform Rsp. Photometricum whereby toxic photon feeds get converted into a benign metabolic energy supply by an interplay between the membrane's spatial structure and temporal excitation processes. More generally, our work suggests a new handle for manipulating terrestrial photosynthesis using currently-available extreme value statistics photon sources.
The future of genomics in polar and alpine cyanobacteria
Anesio, Alexandre M; Sánchez-Baracaldo, Patricia
2018-01-01
Abstract In recent years, genomic analyses have arisen as an exciting way of investigating the functional capacity and environmental adaptations of numerous micro-organisms of global relevance, including cyanobacteria. In the extreme cold of Arctic, Antarctic and alpine environments, cyanobacteria are of fundamental ecological importance as primary producers and ecosystem engineers. While their role in biogeochemical cycles is well appreciated, little is known about the genomic makeup of polar and alpine cyanobacteria. In this article, we present ways that genomic techniques might be used to further our understanding of cyanobacteria in cold environments in terms of their evolution and ecology. Existing examples from other environments (e.g. marine/hot springs) are used to discuss how methods developed there might be used to investigate specific questions in the cryosphere. Phylogenomics, comparative genomics and population genomics are identified as methods for understanding the evolution and biogeography of polar and alpine cyanobacteria. Transcriptomics will allow us to investigate gene expression under extreme environmental conditions, and metagenomics can be used to complement tradition amplicon-based methods of community profiling. Finally, new techniques such as single cell genomics and metagenome assembled genomes will also help to expand our understanding of polar and alpine cyanobacteria that cannot readily be cultured. PMID:29506259
Xu, Jian; Li, Jiong-Tang; Jiang, Yanliang; Peng, Wenzhu; Yao, Zongli; Chen, Baohua; Jiang, Likun; Feng, Jingyan; Ji, Peifeng; Liu, Guiming; Liu, Zhanjiang; Tai, Ruyu; Dong, Chuanju; Sun, Xiaoqing; Zhao, Zi-Xia; Zhang, Yan; Wang, Jian; Li, Shangqi; Zhao, Yunfeng; Yang, Jiuhui; Sun, Xiaowen; Xu, Peng
2017-01-01
The Amur ide (Leuciscus waleckii) is a cyprinid fish that is widely distributed in Northeast Asia. The Lake Dali Nur population inhabits one of the most extreme aquatic environments on Earth, with an alkalinity up to 50 mmol/L (pH 9.6), thus providing an exceptional model with which to characterize the mechanisms of genomic evolution underlying adaptation to extreme environments. Here, we developed the reference genome assembly for L. waleckii from Lake Dali Nur. Intriguingly, we identified unusual expanded long terminal repeats (LTRs) with higher nucleotide substitution rates than in many other teleosts, suggesting their more recent insertion into the L. waleckii genome. We also identified expansions in genes encoding egg coat proteins and natriuretic peptide receptors, possibly underlying the adaptation to extreme environmental stress. We further sequenced the genomes of 10 additional individuals from freshwater and 18 from Lake Dali Nur populations, and we detected a total of 7.6 million SNPs from both populations. In a genome scan and comparison of these two populations, we identified a set of genomic regions under selective sweeps that harbor genes involved in ion homoeostasis, acid-base regulation, unfolded protein response, reactive oxygen species elimination, and urea excretion. Our findings provide comprehensive insight into the genomic mechanisms of teleost fish that underlie their adaptation to extreme alkaline environments. PMID:28007977
Teaching the abyss: living the art-science of nursing.
Ramey, Sandra L; Bunkers, Sandra Schmidt
2006-10-01
This column addresses how nurse educators can provide the teaching-learning experiences for novice nurses to develop the leadership competence to effectively practice nursing in an extremely demanding healthcare environment. The authors delve into Mitchell and Bunkers' use of the metaphor of an abyss to explore the lived experience of risking being with others in extremely intense interpersonal situations. Using reflection, students' journal narratives affirm connections made among past experiences and the new knowledge gleaned from exploring and naming the phenomenon of the abyss. Several teaching-learning strategies are offered as ways for addressing the leadership issues related to dealing with intense relational experiences in nursing practice, including exploring nurse theorist Rosemarie Rizzo Parse's essentials of leadership.
Advanced study of thermal behaviour of CSZ comparing with the classic YSZ coating
NASA Astrophysics Data System (ADS)
Dragomirescu, A.; Constantin, N.; Ştefan, A.; Manoliu, V.; Truşcă, R.
2017-01-01
Thermal barrier coatings (TBC) are advanced materials typically applied to metal surfaces subjected to extreme temperatures to protect them and increase their lifetime. Ceria stabilized zirconia ceramic layer (CSZ) is increasingly used as an alternative improved as replace for classical TBC system - yttria stabilized zirconia - thanks to superior properties, including mechanical and high resistance to thermal corrosion. The paper describes the thermal shock testing of two types of thermal barrier coatings used to protect a nickel super alloy. For the experimental procedure, it was used plate samples from nickel super alloy with a bond coat and a ceramic top coat. The top coat was different: on some samples, it was used YSZ and on others CSZ. Ni based super alloys have good corrosion resistance in reducing environments action, but poor in oxidizing conditions. Extreme environments can lead to loss of material by oxidation / corrosion, along with decreased mechanical properties of the substrate due to damaging elements which diffuses into the substrate at high temperatures. Using laboratory equipment, the TBC systems were exposed repeatedly to extreme high temperatures for a short time and then cooled. After the thermal shock tests, the samples were morph-structured characterized using electronic microscopy to analyze the changes. The experimental results were compared to rank the TBC systems in order of performance.
Hybrid photonic signal processing
NASA Astrophysics Data System (ADS)
Ghauri, Farzan Naseer
This thesis proposes research of novel hybrid photonic signal processing systems in the areas of optical communications, test and measurement, RF signal processing and extreme environment optical sensors. It will be shown that use of innovative hybrid techniques allows design of photonic signal processing systems with superior performance parameters and enhanced capabilities. These applications can be divided into domains of analog-digital hybrid signal processing applications and free-space---fiber-coupled hybrid optical sensors. The analog-digital hybrid signal processing applications include a high-performance analog-digital hybrid MEMS variable optical attenuator that can simultaneously provide high dynamic range as well as high resolution attenuation controls; an analog-digital hybrid MEMS beam profiler that allows high-power watt-level laser beam profiling and also provides both submicron-level high resolution and wide area profiling coverage; and all optical transversal RF filters that operate on the principle of broadband optical spectral control using MEMS and/or Acousto-Optic tunable Filters (AOTF) devices which can provide continuous, digital or hybrid signal time delay and weight selection. The hybrid optical sensors presented in the thesis are extreme environment pressure sensors and dual temperature-pressure sensors. The sensors employ hybrid free-space and fiber-coupled techniques for remotely monitoring a system under simultaneous extremely high temperatures and pressures.
Soghomonyan, Diana; Trchounian, Karen; Trchounian, Armen
2016-06-01
Millimeter waves (MMW) or electromagnetic fields of extremely high frequencies at low intensity is a new environmental factor, the level of which is increased as technology advance. It is of interest that bacteria and other cells might communicate with each other by electromagnetic field of sub-extremely high frequency range. These MMW affected Escherichia coli and many other bacteria, mainly depressing their growth and changing properties and activity. These effects were non-thermal and depended on different factors. The significant cellular targets for MMW effects could be water, cell plasma membrane, and genome. The model for the MMW interaction with bacteria is suggested; a role of the membrane-associated proton FOF1-ATPase, key enzyme of bioenergetic relevance, is proposed. The consequences of MMW interaction with bacteria are the changes in their sensitivity to different biologically active chemicals, including antibiotics. Novel data on MMW effects on bacteria and their sensitivity to different antibiotics are presented and discussed; the combined action of MMW and antibiotics resulted with more strong effects. These effects are of significance for understanding changed metabolic pathways and distinguish role of bacteria in environment; they might be leading to antibiotic resistance in bacteria. The effects might have applications in the development of technique, therapeutic practices, and food protection technology.
Fabrication of diamond based sensors for use in extreme environments
Samudrala, Gopi K.; Moore, Samuel L.; Vohra, Yogesh K.
2015-04-23
Electrical and magnetic sensors can be lithographically fabricated on top of diamond substrates and encapsulated in a protective layer of chemical vapor deposited single crystalline diamond. This process when carried out on single crystal diamond anvils employed in high pressure research is termed as designer diamond anvil fabrication. These designer diamond anvils allow researchers to study electrical and magnetic properties of materials under extreme conditions without any possibility of damaging the sensing elements. We describe a novel method for the fabrication of designer diamond anvils with the use of maskless lithography and chemical vapor deposition in this paper. This methodmore » can be utilized to produce diamond based sensors which can function in extreme environments of high pressures, high and low temperatures, corrosive and high radiation conditions. Here, we demonstrate applicability of these diamonds under extreme environments by performing electrical resistance measurements during superconducting transition in rare earth doped iron-based compounds under high pressures to 12 GPa and low temperatures to 10 K.« less
Fabrication of diamond based sensors for use in extreme environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samudrala, Gopi K.; Moore, Samuel L.; Vohra, Yogesh K.
Electrical and magnetic sensors can be lithographically fabricated on top of diamond substrates and encapsulated in a protective layer of chemical vapor deposited single crystalline diamond. This process when carried out on single crystal diamond anvils employed in high pressure research is termed as designer diamond anvil fabrication. These designer diamond anvils allow researchers to study electrical and magnetic properties of materials under extreme conditions without any possibility of damaging the sensing elements. We describe a novel method for the fabrication of designer diamond anvils with the use of maskless lithography and chemical vapor deposition in this paper. This methodmore » can be utilized to produce diamond based sensors which can function in extreme environments of high pressures, high and low temperatures, corrosive and high radiation conditions. Here, we demonstrate applicability of these diamonds under extreme environments by performing electrical resistance measurements during superconducting transition in rare earth doped iron-based compounds under high pressures to 12 GPa and low temperatures to 10 K.« less
Moving in extreme environments: extreme loading; carriage versus distance.
Lucas, Samuel J E; Helge, Jørn W; Schütz, Uwe H W; Goldman, Ralph F; Cotter, James D
2016-01-01
This review addresses human capacity for movement in the context of extreme loading and with it the combined effects of metabolic, biomechanical and gravitational stress on the human body. This topic encompasses extreme duration, as occurs in ultra-endurance competitions (e.g. adventure racing and transcontinental races) and expeditions (e.g. polar crossings), to the more gravitationally limited load carriage (e.g. in the military context). Juxtaposed to these circumstances is the extreme metabolic and mechanical unloading associated with space travel, prolonged bedrest and sedentary lifestyle, which may be at least as problematic, and are therefore included as a reference, e.g. when considering exposure, dangers and (mal)adaptations. As per the other reviews in this series, we describe the nature of the stress and the associated consequences; illustrate relevant regulations, including why and how they are set; present the pros and cons for self versus prescribed acute and chronic exposure; describe humans' (mal)adaptations; and finally suggest future directions for practice and research. In summary, we describe adaptation patterns that are often U or J shaped and that over time minimal or no load carriage decreases the global load carrying capacity and eventually leads to severe adverse effects and manifest disease under minimal absolute but high relative loads. We advocate that further understanding of load carrying capacity and the inherent mechanisms leading to adverse effects may advantageously be studied in this perspective. With improved access to insightful and portable technologies, there are some exciting possibilities to explore these questions in this context.
Research on Nitride Thin Films, Advanced Plasma Diagnostics, and Charged-Particle Processes
2006-07-01
Additionally, these components are being placed closer to the point of use--requiring that they operate in extreme temperature environments ...reasons for component failure. To operate in extreme temperature environments , electronic and electrical components must withstand higher ambient...hybrid and plug-in hybrid-powered automobiles, heart defibrillators , and industrial equipment will benefit from a new generation of capacitors. High
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 29 2012-07-01 2012-07-01 false The List of Extremely Hazardous Substances and Their Threshold Planning Quantities B Appendix B to Part 355 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS EMERGENCY PLANNING AND NOTIFICATION Pt....
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 28 2014-07-01 2014-07-01 false The List of Extremely Hazardous Substances and Their Threshold Planning Quantities A Appendix A to Part 355 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS EMERGENCY PLANNING AND NOTIFICATION Pt....
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 29 2012-07-01 2012-07-01 false The List of Extremely Hazardous Substances and Their Threshold Planning Quantities A Appendix A to Part 355 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS EMERGENCY PLANNING AND NOTIFICATION Pt....
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 28 2014-07-01 2014-07-01 false The List of Extremely Hazardous Substances and Their Threshold Planning Quantities B Appendix B to Part 355 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS EMERGENCY PLANNING AND NOTIFICATION Pt....
Passmore, Brandon; Cole, Zach; Whitaker, Bret; Barkley, Adam; McNutt, Ty; Lostetter, Alexander
2016-08-02
A multichip power module directly connecting the busboard to a printed-circuit board that is attached to the power substrate enabling extremely low loop inductance for extreme environments such as high temperature operation. Wire bond interconnections are taught from the power die directly to the busboard further enabling enable low parasitic interconnections. Integration of on-board high frequency bus capacitors provide extremely low loop inductance. An extreme environment gate driver board allows close physical proximity of gate driver and power stage to reduce overall volume and reduce impedance in the control circuit. Parallel spring-loaded pin gate driver PCB connections allows a reliable and reworkable power module to gate driver interconnections.
Kim, Aram; Kretch, Kari S; Zhou, Zixuan; Finley, James M
2018-05-09
Successful negotiation of obstacles during walking relies on the integration of visual information about the environment with ongoing locomotor commands. When information about the body and environment are removed through occlusion of the lower visual field, individuals increase downward head pitch angle, reduce foot placement precision, and increase safety margins during crossing. However, whether these effects are mediated by loss of visual information about the lower extremities, the obstacle, or both remains to be seen. Here, we used a fully immersive, virtual obstacle negotiation task to investigate how visual information about the lower extremities is integrated with information about the environment to facilitate skillful obstacle negotiation. Participants stepped over virtual obstacles while walking on a treadmill with one of three types of visual feedback about the lower extremities: no feedback, end-point feedback, or a link-segment model. We found that absence of visual information about the lower extremities led to an increase in the variability of leading foot placement after crossing. The presence of a visual representation of the lower extremities promoted greater downward head pitch angle during the approach to and subsequent crossing of an obstacle. In addition, having greater downward head pitch was associated with closer placement of the trailing foot to the obstacle, further placement of the leading foot after the obstacle, and higher trailing foot clearance. These results demonstrate that the fidelity of visual information about the lower extremities influences both feed-forward and feedback aspects of visuomotor coordination during obstacle negotiation.
Justin C. Davis; Steven B. Castleberry; John C. Kilgo
2010-01-01
Coarse woody debris (CWD) is thought to benefit herpetofauna in a variety of ways including serving as feeding sites, providing a moist environment, and providing protection from temperature extremes. We investigated the importance of CWD to amphibian and reptile communities in managed upland pine stands in the southeastern United States Coastal Plain during years 6...
Cultural and Gender Issues in Long-Duration Flights
NASA Technical Reports Server (NTRS)
1997-01-01
Session TA5 includes short reports concerning: (1) Psychological Issues During Long-Duration International Space Missions; (2) Psychosocial Issues in Crew Selection: Finding the Right Mix of the Right Stuff; (3) Culture, Gender and Mission Accomplishment: Operational Experience; (4) Interpersonal Tension in Multicultural Crews; (5) Personality and Coping in Extreme Environments; and (6) Application of Expedition and Polar Work Group Findings for Enhancing Performance in Space.
Dust as a Working Fluid for Heat Transfer Project
NASA Technical Reports Server (NTRS)
Mantovani, James G.
2015-01-01
The project known as "Dust as a Working Fluid" demonstrates the feasibility of a dust-based system for transferring heat radiatively into space for those space applications requiring higher efficiency, lower mass, and the need to operate in extreme vacuum and thermal environments - including operating in low or zero gravity conditions in which the dust can be conveyed much more easily than on Earth.
Overview of an Advanced Hypersonic Structural Concept Test Program
NASA Technical Reports Server (NTRS)
Stephens, Craig A.; Hudson, Larry D.; Piazza, Anthony
2007-01-01
This viewgraph presentation provides an overview of hypersonics M&S advanced structural concepts development and experimental methods. The discussion on concepts development includes the background, task objectives, test plan, and current status of the C/SiC Ruddervator Subcomponent Test Article (RSTA). The discussion of experimental methods examines instrumentation needs, sensors of interest, and examples of ongoing efforts in the development of extreme environment sensors.
Lightweight Modular Instrumentation for Planetary Applications
NASA Technical Reports Server (NTRS)
Joshi, P. B.
1993-01-01
An instrumentation, called Space Active Modular Materials ExperimentS (SAMMES), is developed for monitoring the spacecraft environment and for accurately measuring the degradation of space materials in low earth orbit (LEO). The SAMMES architecture concept can be extended to instrumentation for planetary exploration, both on spacecraft and in situ. The operating environment for planetary application will be substantially different, with temperature extremes and harsh solar wind and cosmic ray flux on lunar surfaces and temperature extremes and high winds on venusian and Martian surfaces. Moreover, instruments for surface deployment, which will be packaged in a small lander/rover (as in MESUR, for example), must be extremely compact with ultralow power and weight. With these requirements in mind, the SAMMES concept was extended to a sensor/instrumentation scheme for the lunar and Martian surface environment.
Kawamura, Kunio
2017-01-01
Although studies about the origin of life are a frontier in science and a number of effective approaches have been developed, drawbacks still exist. Examples include: (1) simulation of chemical evolution experiments (which were demonstrated for the first time by Stanley Miller); (2) approaches tracing back the most primitive life-like systems (on the basis of investigations of present organisms); and (3) constructive approaches for making life-like systems (on the basis of molecular biology), such as in vitro construction of the RNA world. Naturally, simulation experiments of chemical evolution under plausible ancient Earth environments have been recognized as a potentially fruitful approach. Nevertheless, simulation experiments seem not to be sufficient for identifying the scenario from molecules to life. This is because primitive Earth environments are still not clearly defined and a number of possibilities should be taken into account. In addition, such environments frequently comprise extreme conditions when compared to the environments of present organisms. Therefore, we need to realize the importance of accurate and convenient experimental approaches that use practical research tools, which are resistant to high temperature and pressure, to facilitate chemical evolution studies. This review summarizes improvements made in such experimental approaches over the last two decades, focusing primarily on our hydrothermal microflow reactor technology. Microflow reactor systems are a powerful tool for performing simulation experiments in diverse simulated hydrothermal Earth conditions in order to measure the kinetics of formation and degradation and the interactions of biopolymers. PMID:28974048
NASA Technical Reports Server (NTRS)
Johnson, Dale L.; Keller, Vernon W.; Vaughan, William W.
2005-01-01
The description and interpretation of the terrestrial environment (0-90 km altitude) is an important driver of aerospace vehicle structural, control, and thermal system design. NASA is currently in the process of reviewing the meteorological information acquired over the past decade and producing an update to the 1993 Terrestrial Environment Guidelines for Aerospace Vehicle Design and Development handbook. This paper addresses the contents of this updated handbook, with special emphasis on new material being included in the areas of atmospheric thermodynamic models, wind dynamics, atmospheric composition, atmospheric electricity, cloud phenomena, atmospheric extremes, sea state, etc. In addition, the respective engineering design elements will be discussed relative to the importance and influence of terrestrial environment inputs that require consideration and interpretation for design applications. Specific lessons learned that have contributed to the advancements made in the acquisition, interpretation, application and awareness of terrestrial environment inputs for aerospace engineering applications are discussed.
Series Elastic Actuators for legged robots
NASA Astrophysics Data System (ADS)
Pratt, Jerry E.; Krupp, Benjamin T.
2004-09-01
Series Elastic Actuators provide many benefits in force control of robots in unconstrained environments. These benefits include high force fidelity, extremely low impedance, low friction, and good force control bandwidth. Series Elastic Actuators employ a novel mechanical design architecture which goes against the common machine design principal of "stiffer is better." A compliant element is placed between the gear train and driven load to intentionally reduce the stiffness of the actuator. A position sensor measures the deflection, and the force output is accurately calculated using Hooke"s Law (F=Kx). A control loop then servos the actuator to the desired output force. The resulting actuator has inherent shock tolerance, high force fidelity and extremely low impedance. These characteristics are desirable in many applications including legged robots, exoskeletons for human performance amplification, robotic arms, haptic interfaces, and adaptive suspensions. We describe several variations of Series Elastic Actuators that have been developed using both electric and hydraulic components.
Van Horn, David J.; Okie, Jordan G.; Buelow, Heather N.; Gooseff, Michael N.; Barrett, John E.
2014-01-01
Microbial communities in extreme environments often have low diversity and specialized physiologies suggesting a limited resistance to change. The McMurdo Dry Valleys (MDV) are a microbially dominated, extreme ecosystem currently undergoing climate change-induced disturbances, including the melting of massive buried ice, cutting through of permafrost by streams, and warming events. These processes are increasing moisture across the landscape, altering conditions for soil communities by mobilizing nutrients and salts and stimulating autotrophic carbon inputs to soils. The goal of this study was to determine the effects of resource addition (water/organic matter) on the composition and function of microbial communities in the MDV along a natural salinity gradient representing an additional gradient of stress in an already extreme environment. Soil respiration and the activity of carbon-acquiring extracellular enzymes increased significantly (P < 0.05) with the addition of resources at the low- and moderate-salinity sites but not the high-salinity site. The bacterial community composition was altered, with an increase in Proteobacteria and Firmicutes with water and organic matter additions at the low- and moderate-salinity sites and a near dominance of Firmicutes at the high-salinity site. Principal coordinate analyses of all samples using a phylogenetically informed distance matrix (UniFrac) demonstrated discrete clustering among sites (analysis of similarity [ANOSIM], P < 0.05 and R > 0.40) and among most treatments within sites. The results from this experimental work suggest that microbial communities in this environment will undergo rapid change in response to the altered resources resulting from climate change impacts occurring in this region. PMID:24610850
Van Horn, David J; Okie, Jordan G; Buelow, Heather N; Gooseff, Michael N; Barrett, John E; Takacs-Vesbach, Cristina D
2014-05-01
Microbial communities in extreme environments often have low diversity and specialized physiologies suggesting a limited resistance to change. The McMurdo Dry Valleys (MDV) are a microbially dominated, extreme ecosystem currently undergoing climate change-induced disturbances, including the melting of massive buried ice, cutting through of permafrost by streams, and warming events. These processes are increasing moisture across the landscape, altering conditions for soil communities by mobilizing nutrients and salts and stimulating autotrophic carbon inputs to soils. The goal of this study was to determine the effects of resource addition (water/organic matter) on the composition and function of microbial communities in the MDV along a natural salinity gradient representing an additional gradient of stress in an already extreme environment. Soil respiration and the activity of carbon-acquiring extracellular enzymes increased significantly (P < 0.05) with the addition of resources at the low- and moderate-salinity sites but not the high-salinity site. The bacterial community composition was altered, with an increase in Proteobacteria and Firmicutes with water and organic matter additions at the low- and moderate-salinity sites and a near dominance of Firmicutes at the high-salinity site. Principal coordinate analyses of all samples using a phylogenetically informed distance matrix (UniFrac) demonstrated discrete clustering among sites (analysis of similarity [ANOSIM], P < 0.05 and R > 0.40) and among most treatments within sites. The results from this experimental work suggest that microbial communities in this environment will undergo rapid change in response to the altered resources resulting from climate change impacts occurring in this region.
NASA Astrophysics Data System (ADS)
Wada, Y.
2017-12-01
Increased occurrence of extreme climate events is one of the most damaging consequences of global climate change today and in the future. Estimating the impacts of such extreme events on global and regional water resources is therefore crucial for quantifying increasing risks from climate change. The quest for water security has been a struggle throughout human history. Only in recent years has the scale of this quest moved beyond the local, to the national and regional scales and to the planet itself. Absent or unreliable water supply, sanitation and irrigation services, unmitigated floods and droughts, and degraded water environments severely impact half of the planet's population. The scale and complexity of the water challenges faced by society, particularly but not only in the world's poorest regions, are now recognized, as is the imperative of overcoming these challenges for a stable and equitable world. IIASA's Water Futures and Solutions Initiative (WFAS) is an unprecedented inter-disciplinary scientific initiative to identify robust and adaptive portfolios of optional solutions across different economic sectors, including agriculture, energy and industry, and to test these solution-portfolios with multi-model ensembles of hydrologic and sector models to obtain a clearer picture of the trade-offs, risks, and opportunities. The results of WFaS scenarios and models provide a basis for long-term strategic planning of water resource development under changing environments and increasing climate extremes. And given the complexity of the water system, WFaS uniquely provides policy makers with optional sets of solutions that work together and that can be easily adapted as circumstances change in the future. As WFaS progresses, it will establish a network involving information exchange, mutual learning and horizontal cooperation across teams of researchers, public and private decision makers and practitioners exploring solutions at regional, national and local scales. The initiative includes a major stakeholder consultation component, to inform and guide the science and to test and refine policy and business outcome.
Extreme Environment Basing:Contingency Basing in Dense Urban and Megacity Environments
2016-05-24
the placement of a U.S. military contingency base. As stated above, the consideration given to the volume of displaced people caused by the base camp...population density , Dhaka, Bangladesh ........................... 29 B-1 The base camp development planning process...urban areas are not incredibly dense, a great many are. These places represent the extreme end of the urban spectrum for population density and city
Chenjie Huang; Y.L. Lin; M.L. Kaplan; Joseph J.J. Charney
2009-01-01
This study has employed both observational data and numerical simulation results to diagnose the synoptic-scale and mesoscale environments conducive to forest fires during the October 2003 extreme fire event in southern California. A three-stage process is proposed to illustrate the coupling of the synoptic-scale forcing that is evident from the observations,...
Life in extreme environments: how will humans perform on Mars?
NASA Technical Reports Server (NTRS)
Newman, D. J.
2000-01-01
This review of astronaut extravehicular activity (EVA) and the details of American and Soviet/Russian spacesuit design focuses on design recommendations to enhance astronaut safety and effectiveness. Innovative spacesuit design is essential, given the challenges of future exploration-class missions in which astronauts will be called upon to perform increasingly complex and physically demanding tasks in the extreme environments of microgravity and partial gravity.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 27 2010-07-01 2010-07-01 false Which threshold planning quantity do I use for an extremely hazardous substance present at my facility in solid form? 355.15 Section 355.15 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS EMERGENCY...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 29 2012-07-01 2012-07-01 false Which threshold planning quantity do I use for an extremely hazardous substance present at my facility in solid form? 355.15 Section 355.15 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS EMERGENCY...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 28 2011-07-01 2011-07-01 false Which threshold planning quantity do I use for an extremely hazardous substance present at my facility in solid form? 355.15 Section 355.15 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS EMERGENCY...
NASA Astrophysics Data System (ADS)
Kitazato, Hiroshi; Fujikura, Katsunori; Sumida, Paulo G. Y.; Pellizari, Vivian H.; Perez, Jose Angel
2017-12-01
The deep sea comprises a series of extreme environments, characterized by low temperatures, high hydraulic pressure, the virtual absence of sunlight, and the scarcity of organic nutrients. High hydraulic pressure prevents human access to these environments without using human-occupied submersibles (HOVs), landers or other instruments. Unlike the extreme outer space environments, visited by hundreds of astronauts, only three humans have accessed to the deepest point of the planet.
Microbes in subglacial environments: Significant biogeochemical agents?
NASA Astrophysics Data System (ADS)
Lanoil, B.; Gaidos, E.; Anderson, S.
2003-04-01
Recent studies have demonstrated the presence of abundant microbes in several subglacial environments, including alpine and polar glaciers and the giant Antarctic subglacial lake, Lake Vostok. Some indirect isotopic and geochemical evidence indicate that microbial communities may be active in these cold, dark, extreme environments. We have been using molecular biology, microbiology, and geochemistry tools to correlate the identity of microbes in subglacial systems with important geochemical parameters. Our studies have focused on several sites, including a subglacial volcanic caldera lake in Iceland (Grímsvötn; GI), a temperate alpine valley glacier in Alaska (Bench Glacier; BG), and a polythermal Arctic valley glacier in Nunavut, Canada (John Evans Glacier; JEG). Our preliminary data indicate the presence of some similar microbial groups in BG and JEG, perhaps reflecting a selection for organisms which are capable of growth under extreme physical conditions. However, there is also a large fraction of the communities which differ between the Alaskan and Canadian sites. The predicted physiologies of the variable community components appear to correlate well with the geochemistry of the BG and JEG. We have also detected C-fixation and heterotrophic activities at near in situ conditions in intact samples and/or in bacteria isolated from all three sites. Furthermore, subglacial pelagic and sediment-attached microbial communities at GI are significantly different than snow or ice communities, indicating that the subglacial community may be endemic to the caldera lake. Based on these data, we predict that microbes play important roles in chemical weathering processes, organic carbon turnover, and other (bio)geochemical processes in subglacial environments. Our results may have important implications for biogeochemical cycles, especially during periods in earth history when there was significant ice cover, e.g. the Quaternary and Neoproterozoic “Snowball Earth” events and may provide insights into habitats on other planets.
Telemedicine at the top of the world: the 1998 and 1999 Everest extreme expeditions.
Angood, P B; Satava, R; Doarn, C; Merrell, R
2000-01-01
The National Aeronautics and Space Administration (NASA) initially established a Commercial Space Center (CSC) in the Department of Surgery at Yale University School of Medicine to further develop and evaluate technologies in information systems, telecommunications applied to medicine, and physiologic sensors. The CSC is known as the Medical Informatics and Technology Applications Consortium (MITAC). The overall purpose for this NASA program is to leverage technology, innovation, and resources from industry and academia through collaborative partnerships. The Yale-NASA CSC/MITAC organized the Everest Extreme Expeditions (E3) for the spring Himalayan climbing seasons in the years 1998 and 1999. The primary mission was to deliver advanced medical support with global telemedicine capabilities to one of the world's most remote and hostile settings--Mount Everest. The purpose was both humanitarian (providing medical support) and scientific (conducting medical and technology research). The Yale team provided medical care for the Everest Base Camp community; conducted validation experiments for several types of advanced medical technologies in this remote, hostile environment; and performed real-time monitoring of selected climbers, while also assessing the basic science of altitude physiology. Additionally, the teams conducted outreach medical care to the citizens of Nepal and provided several educational forums for a variety of medical and nonmedical personnel--including school-age children. As part of the project's mission, the E3 medical teams at both Nepal and New Haven were on a 24-hour emergency call system to deliver medical care in the event of a crisis. Unlike most of the teams at Everest, the mission of E3 was not to climb the 29,028-foot mountain the Nepalese call Sagarmatha ("Sky Head"). The mountain served as an extreme testing ground for telemedicine. The lessons learned from this testbed are reviewed here and further clarify the abilities to provide better health care in remote and extreme environments--which for some may even be their home environment during/after a medical illness.
Energy and water in aestivating amphibians.
Carvalho, José E; Navas, Carlos A; Pereira, Isabel C
2010-01-01
The physiological mechanisms, behavioral adjustments, and ecological associations that allow animal species to live in extreme environments have evoked the attention of many zoologists. Often, extreme environments are defined as those believed to be limiting to life in terms of water, energetic availability, and temperature. These three elements seem extreme in a number of arid and semi-arid settings that even so have been colonized by amphibians. Because this taxon is usually seen as the quintessential water-dependent ectotherm tetrapods, their presence in a number of semi-arid environments poses a number of intriguing questions regarding microhabitat choice and physiological plasticity, particularly regarding the ecological and physiological correlates of behaviors granting avoidance of the harshest conditions of semi-arid environments. Such avoidance states, generally associated to the concept of aestivation, are currently seen as a diverse and complex phenomena varying from species to species and involving numerous behavioral and metabolic adjustments that enhance survival during the drought. This chapter reviews the physiological ecology of anuran aestivation, mainly from the perspective of water and energy balance.
Dinocyst taphonomy, impact craters, cyst ghosts, and the Paleocene-Eocene thermal maximum (PETM)
Edwards, Lucy E.
2012-01-01
Dinocysts recovered from sediments related to the Chesapeake Bay impact structure in Virginia and the earliest Eocene suboxic environment in Maryland show strange and intriguing details of preservation. Features such as curled processes, opaque debris, breakage, microborings and cyst ghosts, among others, invite speculation about catastrophic depositional processes, rapid burial and biological and chemical decay. Selected specimens from seven cores taken in the coastal plain of Virginia and Maryland show abnormal preservation features in various combinations that merit illustration, description, discussion and further study. Although the depositional environments described are extreme, many of the features discussed are known from, or could be found in, other environments. These environments will show both similarities to and differences from the extreme environments here.
Boisen, Kirsten A; Boisen, Anne; Thomsen, Stine Legarth; Matthiesen, Simon Meggers; Hjerming, Maiken; Hertz, Pernille Grarup
2015-12-09
There is a need for youth-friendly hospital environments as the ward environment may affect both patient satisfaction and health outcomes. To involve young people in designing youth-friendly ward environment. We arranged a design competition lasting 42 h (Hackathon). Students in architecture, design, engineering, communication and anthropology participated (27 young adults) - forming eight groups. Adolescents and young adults (AYA) with current or former cancer experience participated as sparring partners. We provided workspace and food during the weekend. The groups presented their products to a jury and relevant stakeholders. The groups created eight unique design concepts. The young designers were extremely flexible listening to ideas and experiences from the young patients, which led to common features including individual and flexible design, privacy in two-bed wardrooms and social contact with other hospitalized AYA. The winning project included an integrated concept for both wardrooms and the AYA day room, including logos and names for the rooms and an 'energy wall' in the day room. A hackathon event was an effective mode of youth participation. The design concepts and ideas were in line with current evidence regarding pleasing hospital environment and youth-friendly inpatient facilities and may be applicable to other young patients.
The operation of 0.35 μm partially depleted SOI CMOS technology in extreme environments
NASA Astrophysics Data System (ADS)
Li, Ying; Niu, Guofu; Cressler, John D.; Patel, Jagdish; Liu, S. T.; Reed, Robert A.; Mojarradi, Mohammad M.; Blalock, Benjamin J.
2003-06-01
We evaluate the usefulness of partially depleted SOI CMOS devices fabricated in a 0.35 μm technology on UNIBOND material for electronics applications requiring robust operation under extreme environment conditions consisting of low and/or high temperature, and under substantial radiation exposure. The threshold voltage, effective mobility, and the impact ionization parameters were determined across temperature for both the nFETs and the pFETs. The radiation response was characterized using threshold voltage shifts of both the front-gate and back-gate transistors. These results suggest that this 0.35 μm partially depleted SOI CMOS technology is suitable for operation across a wide range of extreme environment conditions consisting of: cryogenic temperatures down to 86 K, elevated temperatures up to 573 K, and under radiation exposure to 1.3 Mrad(Si) total dose.
2013-07-01
USA (2013); 2) Many environmental yeast are extremely radiation-resistant, accumulate nitrogenous Mn2+-Pi complexes, and highly resistant to...5 important in aerobic environments . Numerous organisms which accumulate “compatible solutes” fit this model, including representative archaea...cyanobacteria, lichens, alpine yeast, and tardigrades. 4.3 Knowns and Unknowns of Deinococcus Mn2+ Complexes It is worth reminding the reader
Community genomic analysis of an extremely acidophilic sulfur-oxidizing biofilm
Jones, Daniel S; Albrecht, Heidi L; Dawson, Katherine S; Schaperdoth, Irene; Freeman, Katherine H; Pi, Yundan; Pearson, Ann; Macalady, Jennifer L
2012-01-01
Highly acidic (pH 0–1) biofilms, known as ‘snottites', form on the walls and ceilings of hydrogen sulfide-rich caves. We investigated the population structure, physiology and biogeochemistry of these biofilms using metagenomics, rRNA methods and lipid geochemistry. Snottites from the Frasassi cave system (Italy) are dominated (>70% of cells) by Acidithiobacillus thiooxidans, with smaller populations including an archaeon in the uncultivated ‘G-plasma' clade of Thermoplasmatales (>15%) and a bacterium in the Acidimicrobiaceae family (>5%). Based on metagenomic evidence, the Acidithiobacillus population is autotrophic (ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), carboxysomes) and oxidizes sulfur by the sulfide–quinone reductase and sox pathways. No reads matching nitrogen fixation genes were detected in the metagenome, whereas multiple matches to nitrogen assimilation functions are present, consistent with geochemical evidence, that fixed nitrogen is available in the snottite environment to support autotrophic growth. Evidence for adaptations to extreme acidity include Acidithiobacillus sequences for cation transporters and hopanoid synthesis, and direct measurements of hopanoid membrane lipids. Based on combined metagenomic, molecular and geochemical evidence, we suggest that Acidithiobacillus is the snottite architect and main primary producer, and that snottite morphology and distributions in the cave environment are directly related to the supply of C, N and energy substrates from the cave atmosphere. PMID:21716305
Extreme-Environment Silicon-Carbide (SiC) Wireless Sensor Suite
NASA Technical Reports Server (NTRS)
Yang, Jie
2015-01-01
Phase II objectives: Develop an integrated silicon-carbide wireless sensor suite capable of in situ measurements of critical characteristics of NTP engine; Compose silicon-carbide wireless sensor suite of: Extreme-environment sensors center, Dedicated high-temperature (450 deg C) silicon-carbide electronics that provide power and signal conditioning capabilities as well as radio frequency modulation and wireless data transmission capabilities center, An onboard energy harvesting system as a power source.
Environmental hazards, hot, cold, altitude, and sun.
Dhillon, Sundeep
2012-09-01
There has been an increase in both recreational and adventure travel to extreme environments. Humans can successfully acclimatize to and perform reasonably well in extreme environments, provided that sufficient time is given for acclimatization (where possible) and that they use appropriate behavior. This is aided by a knowledge of the problems likely to be encountered and their prevention, recognition, and treatment. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.
Distributed Motor Controller (DMC) for Operation in Extreme Environments
NASA Technical Reports Server (NTRS)
McKinney, Colin M.; Yager, Jeremy A.; Mojarradi, Mohammad M.; Some, Rafi; Sirota, Allen; Kopf, Ted; Stern, Ryan; Hunter, Don
2012-01-01
This paper presents an extreme environment capable Distributed Motor Controller (DMC) module suitable for operation with a distributed architecture of future spacecraft systems. This motor controller is designed to be a bus-based electronics module capable of operating a single Brushless DC motor in extreme space environments: temperature (-120 C to +85 C required, -180 C to +100 C stretch goal); radiation (>;20K required, >;100KRad stretch goal); >;360 cycles of operation. Achieving this objective will result in a scalable modular configuration for motor control with enhanced reliability that will greatly lower cost during the design, fabrication and ATLO phases of future missions. Within the heart of the DMC lies a pair of cold-capable Application Specific Integrated Circuits (ASICs) and a Field Programmable Gate Array (FPGA) that enable its miniaturization and operation in extreme environments. The ASICs are fabricated in the IBM 0.5 micron Silicon Germanium (SiGe) BiCMOS process and are comprised of Analog circuitry to provide telemetry information, sensor interface, and health and status of DMC. The FPGA contains logic to provide motor control, status monitoring and spacecraft interface. The testing and characterization of these ASICs have yielded excellent functionality in cold temperatures (-135 C). The DMC module has demonstrated successful operation of a motor at temperature.
Effects of Radiation and Long-Term Thermal Cycling on EPC 1001 Gallium Nitride Transistors
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Scheick, Leif; Lauenstein, Jean-Marie; Casey, Megan; Hammoud, Ahmad
2012-01-01
Electronics designed for use in NASA space missions are required to work efficiently and reliably under harsh environment conditions. These include radiation, extreme temperatures, and thermal cycling, to name a few. Data obtained on long-term thermal cycling of new un-irradiated and irradiated samples of EPC1001 gallium nitride enhancement-mode transistors are presented. This work was done by a collaborative effort including GRC, GSFC, and support the NASA www.nasa.gov 1 JPL in of Electronic Parts and Packaging (NEPP) Program
Hybrid Power Management (HPM) Program Resulted in Several New Applications
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2003-01-01
Hybrid Power Management (HPM) is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The advanced power devices include ultracapacitors, fuel cells, and photovoltaics. HPM has extremely wide potential with applications from nanowatts to megawatts. Applications include power generation, transportation systems, biotechnology systems, and space power systems. HPM has the potential to significantly alleviate global energy concerns, improve the environment, and stimulate the economy.
Ruggedized downhole tool for real-time measurements and uses thereof
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hess, Ryan Falcone; Lindblom, Scott C.; Yelton, William G.
The present invention relates to ruggedized downhole tools and sensors, as well as uses thereof. In particular, these tools can operate under extreme conditions and, therefore, allow for real-time measurements in geothermal reservoirs or other potentially harsh environments. One exemplary sensor includes a ruggedized ion selective electrode (ISE) for detecting tracer concentrations in real-time. In one embodiment, the ISE includes a solid, non-conductive potting material and an ion selective material, which are disposed in a temperature-resistant electrode body. Other electrode configurations, tools, and methods are also described.
Microbial Diversity in Extreme Marine Habitats and Their Biomolecules
Poli, Annarita; Finore, Ilaria; Romano, Ida; Gioiello, Alessia; Lama, Licia; Nicolaus, Barbara
2017-01-01
Extreme marine environments have been the subject of many studies and scientific publications. For many years, these environmental niches, which are characterized by high or low temperatures, high-pressure, low pH, high salt concentrations and also two or more extreme parameters in combination, have been thought to be incompatible to any life forms. Thanks to new technologies such as metagenomics, it is now possible to detect life in most extreme environments. Starting from the discovery of deep sea hydrothermal vents up to the study of marine biodiversity, new microorganisms have been identified, and their potential uses in several applied fields have been outlined. Thermophile, halophile, alkalophile, psychrophile, piezophile and polyextremophile microorganisms have been isolated from these marine environments; they proliferate thanks to adaptation strategies involving diverse cellular metabolic mechanisms. Therefore, a vast number of new biomolecules such as enzymes, polymers and osmolytes from the inhabitant microbial community of the sea have been studied, and there is a growing interest in the potential returns of several industrial production processes concerning the pharmaceutical, medical, environmental and food fields. PMID:28509857
Phenotypic and genetic overlap between autistic traits at the extremes of the general population.
Ronald, Angelica; Happé, Francesca; Price, Thomas S; Baron-Cohen, Simon; Plomin, Robert
2006-10-01
To investigate children selected from a community sample for showing extreme autistic-like traits and to assess the degree to which these individual traits--social impairments (SIs), communication impairments (CIs), and restricted repetitive behaviors and interests (RRBIs)--are caused by genes and environments, whether all of them are caused by the same genes and environments, and how often they occur together (as required by an autism diagnosis). The most extreme-scoring 5% were selected from 3,419 8-year-old pairs in the Twins Early Development Study assessed on the Childhood Asperger Syndrome Test. Phenotypic associations between extreme traits were compared with associations among the full-scale scores. Genetic associations between extreme traits were quantified using bivariate DeFries-Fulker extremes analysis. Phenotypic relationships between extreme SIs, CIs, and RRBIs were modest. There was a degree of genetic overlap between them, but also substantial genetic specificity. This first twin study assessing the links between extreme individual autistic-like traits (SIs, CIs, and RRBIs) found that all are highly heritable but show modest phenotypic and genetic overlap. This finding concurs with that of an earlier study from the same cohort that showed that a total autistic symptoms score at the extreme showed high heritability and that SIs, CIs, and RRBIs show weak links in the general population. This new finding has relevance for both clinical models and future molecular genetic studies.
New Pharmacology Studies on the ISS
NASA Technical Reports Server (NTRS)
Wotring, Virginia E.; Pour, S.
2015-01-01
It is known that medications degrade over time and that extreme storage conditions will hasten their degradation. This is the basis of the HRP Risk of Ineffective or Toxic Medications Due to Long Term Storage. Gaps include questions about the effects of the spaceflight environment and about the potential for safe use of medications beyond their expiration dates. There are also open questions regarding effects of the spaceflight environment on human physiology and subsequent changes in how medications act on the body; these unanswered questions gave rise to the HRP Concern of Clinically Relevant Unpredicted Effects of Medication. Studies designed to address this Risk and Concern are described below.
Sediment dynamics of muddy coasts and estuaries in China: An introduction
NASA Astrophysics Data System (ADS)
Wang, Xiao Hua; Gan, Jianping; Lowe, Ryan
2018-06-01
Sustainable livelihoods and economic development is supported by effective management of coastal and estuarine assets, which represents a huge and, in many instances, extremely costly challenge, in particular given the multiple stakeholders with mixed interests in ports and harbours and the adjacent coastal and marine environments. Given the importance of the well-being of coastal environments, the rapid expansion of major ports has caused concerns within both the scientific community and the general public about the possible environmental consequences. The implications of these rapid coastal changes, including urbanization and industrialization, are often highly degraded natural systems, ecosystems with compromised functions, and intense conflict and competition between users.
Chen, Yuning; Liu, Na; Cao, Yingze; Lin, Xin; Xu, Liangxin; Zhang, Weifeng; Wei, Yen; Feng, Lin
2016-01-01
A superhydrophilic and underwater superoleophobic surface is fabricated by simply coating silica nanospheres onto a glass fiber membrane through a sol-gel process. Such membrane has a complex framework with micro and nano structures covering and presents a high efficiency (more than 98%) of oil-in-water emulsion separation under harsh environments including strong acidic and concentrated salty conditions. This membrane also possesses outstanding stability since no obvious decline in efficiency is observed after different kinds of oil-in-water emulsions separation, which provides it candidate for comprehensive applicability. PMID:27597570
NASA Astrophysics Data System (ADS)
Weatherwax, A. T.; Lanzerotti, L. J.; Rosenberg, T. J.; Detrick, D. L.; Clauer, C. R.; Ridley, A.; Mende, S. B.; Frey, H. U.; Ostgaard, N.; Sterling, R. W.; Inan, U. S.; Engebretson, M. J.; Petit, N.; Labelle, J.; Lynch, K.; Lessard, M.; Maclennan, C. G.; Doolittle, J. H.; Fukunishi, H.
2003-12-01
The several decades since the advent of space flight have witnessed the ever growing importance and relevance of the Earth's space environment for understanding the functioning of Earth within the solar system and for understanding the effects of the Sun's influence on technological systems deployed on Earth and in space. Achieving a comprehensive understanding of Earth's geospace environment requires knowledge of the ionosphere and magnetosphere in both polar regions. Outlined in this talk is a broad, multi-national plan to investigate in depth, from Antarctica and nominally conjugate regions in the Arctic, the electrodynamic system that comprises the space environment of Planet Earth. Specifics include (a) the phased development of a new and comprehensive upper atmosphere geophysical measurement program based upon distributed instruments operating in an extreme polar environments; (b) real time data collection via satellites; (c) a methodology to build synergistic data sets from a global distribution of southern and northern hemisphere instrument arrays; and (d) an integration with all levels of education including high school, undergraduate, graduate, and post-doctoral.
NASA Astrophysics Data System (ADS)
Zhou, Z.; Smith, J. A.; Yang, L.; Baeck, M. L.; Wright, D.; Liu, S.
2017-12-01
Regional frequency analyses of extreme rainfall are critical for development of engineering hydrometeorology procedures. In conventional approaches, the assumptions that `design storms' have specified time profiles and are uniform in space are commonly applied but often not appropriate, especially over regions with heterogeneous environments (due to topography, water-land boundaries and land surface properties). In this study, we present regional frequency analyses of extreme rainfall for Baltimore study region combining storm catalogs of rainfall fields derived from weather radar and stochastic storm transposition (SST, developed by Wright et al., 2013). The study region is Dead Run, a small (14.3 km2) urban watershed, in the Baltimore Metropolitan region. Our analyses build on previous empirical and modeling studies showing pronounced spatial heterogeneities in rainfall due to the complex terrain, including the Chesapeake Bay to the east, mountainous terrain to the west and urbanization in this region. We expand the original SST approach by applying a multiplier field that accounts for spatial heterogeneities in extreme rainfall. We also characterize the spatial heterogeneities of extreme rainfall distribution through analyses of rainfall fields in the storm catalogs. We examine the characteristics of regional extreme rainfall and derive intensity-duration-frequency (IDF) curves using the SST approach for heterogeneous regions. Our results highlight the significant heterogeneity of extreme rainfall in this region. Estimates of IDF show the advantages of SST in capturing the space-time structure of extreme rainfall. We also illustrate application of SST analyses for flood frequency analyses using a distributed hydrological model. Reference: Wright, D. B., J. A. Smith, G. Villarini, and M. L. Baeck (2013), Estimating the frequency of extreme rainfall using weather radar and stochastic storm transposition, J. Hydrol., 488, 150-165.
A Generalized Framework for Non-Stationary Extreme Value Analysis
NASA Astrophysics Data System (ADS)
Ragno, E.; Cheng, L.; Sadegh, M.; AghaKouchak, A.
2017-12-01
Empirical trends in climate variables including precipitation, temperature, snow-water equivalent at regional to continental scales are evidence of changes in climate over time. The evolving climate conditions and human activity-related factors such as urbanization and population growth can exert further changes in weather and climate extremes. As a result, the scientific community faces an increasing demand for updated appraisal of the time-varying climate extremes. The purpose of this study is to offer a robust and flexible statistical tool for non-stationary extreme value analysis which can better characterize the severity and likelihood of extreme climatic variables. This is critical to ensure a more resilient environment in a changing climate. Following the positive feedback on the first version of Non-Stationary Extreme Value Analysis (NEVA) Toolbox by Cheng at al. 2014, we present an improved version, i.e. NEVA2.0. The upgraded version herein builds upon a newly-developed hybrid evolution Markov Chain Monte Carlo (MCMC) approach for numerical parameters estimation and uncertainty assessment. This addition leads to a more robust uncertainty estimates of return levels, return periods, and risks of climatic extremes under both stationary and non-stationary assumptions. Moreover, NEVA2.0 is flexible in incorporating any user-specified covariate other than the default time-covariate (e.g., CO2 emissions, large scale climatic oscillation patterns). The new feature will allow users to examine non-stationarity of extremes induced by physical conditions that underlie the extreme events (e.g. antecedent soil moisture deficit, large-scale climatic teleconnections, urbanization). In addition, the new version offers an option to generate stationary and/or non-stationary rainfall Intensity - Duration - Frequency (IDF) curves that are widely used for risk assessment and infrastructure design. Finally, a Graphical User Interface (GUI) of the package is provided, making NEVA accessible to a broader audience.
NASA Technical Reports Server (NTRS)
Thomes, W. Joe; Ott, Melanie N.; Chuska, Richard; Switzer, Robert; Onuma, Eleanya; Blair, Diana; Frese, Erich; Matyseck, Marc
2016-01-01
Fiber optic assemblies have been used on spaceflight missions for many years as an enabling technology for routing, transmitting, and detecting optical signals. Due to the overwhelming success of NASA in implementing fiber optic assemblies on spaceflight science-based instruments, system scientists increasingly request fibers that perform in extreme environments while still maintaining very high optical transmission, stability, and reliability. Many new applications require fiber optic assemblies that will operate down to cryogenic temperatures as low as 20 Kelvin. In order for the fiber assemblies to operate with little loss in optical throughput at these extreme temperatures requires a system level approach all the way from how the fiber assembly is manufactured to how it is held, routed, and integrated. The NASA Goddard Code 562 Photonics Group has been designing, manufacturing, testing, and integrating fiber optics for spaceflight and other high reliability applications for nearly 20 years. Design techniques and lessons learned over the years are consistently applied to developing new fiber optic assemblies that meet these demanding environments. System level trades, fiber assembly design methods, manufacturing, testing, and integration will be discussed. Specific recent examples of ground support equipment for the James Webb Space Telescope (JWST); the Ice, Cloud and Land Elevation Satellite-2 (ICESat-2); and others will be included.
Chen, Lin-xing; Hu, Min; Huang, Li-nan; Hua, Zheng-shuang; Kuang, Jia-liang; Li, Sheng-jin; Shu, Wen-sheng
2015-07-01
The microbial communities in acid mine drainage have been extensively studied to reveal their roles in acid generation and adaption to this environment. Lacking, however, are integrated community- and organism-wide comparative gene transcriptional analyses that could reveal the response and adaptation mechanisms of these extraordinary microorganisms to different environmental conditions. In this study, comparative metagenomics and metatranscriptomics were performed on microbial assemblages collected from four geochemically distinct acid mine drainage (AMD) sites. Taxonomic analysis uncovered unexpectedly high microbial biodiversity of these extremely acidophilic communities, and the abundant taxa of Acidithiobacillus, Leptospirillum and Acidiphilium exhibited high transcriptional activities. Community-wide comparative analyses clearly showed that the AMD microorganisms adapted to the different environmental conditions via regulating the expression of genes involved in multiple in situ functional activities, including low-pH adaptation, carbon, nitrogen and phosphate assimilation, energy generation, environmental stress resistance, and other functions. Organism-wide comparative analyses of the active taxa revealed environment-dependent gene transcriptional profiles, especially the distinct strategies used by Acidithiobacillus ferrivorans and Leptospirillum ferrodiazotrophum in nutrients assimilation and energy generation for survival under different conditions. Overall, these findings demonstrate that the gene transcriptional profiles of AMD microorganisms are closely related to the site physiochemical characteristics, providing clues into the microbial response and adaptation mechanisms in the oligotrophic, extremely acidic environments.
Coaxial Cables for Martian Extreme Temperature Environments
NASA Technical Reports Server (NTRS)
Ramesham, Rajeshuni; Harvey, Wayne L.; Valas, Sam; Tsai, Michael C.
2011-01-01
Work was conducted to validate the use of the rover external flexible coaxial cabling for space under the extreme environments to be encountered during the Mars Science Laboratory (MSL) mission. The antennas must survive all ground operations plus the nominal 670-Martian-day mission that includes summer and winter seasons of the Mars environment. Successful development of processes established coaxial cable hardware fatigue limits, which were well beyond the expected in-flight exposures. In keeping with traditional qualification philosophy, this was accomplished by subjecting flight-representative coaxial cables to temperature cycling of the same depth as expected in-flight, but for three times the expected number of in-flight thermal cycles. Insertion loss and return loss tests were performed on the coaxial cables during the thermal chamber breaks. A vector network analyzer was calibrated and operated over the operational frequency range 7.145 to 8.450 GHz. Even though some of the exposed cables function only at UHF frequencies (approximately 400 MHz), the testing was more sensitive, and extending the test range down to 400 MHz would have cost frequency resolution. The Gore flexible coaxial cables, which were the subject of these tests, proved to be robust and displayed no sign of degradation due to the 3X exposure to the punishing Mars surface operations cycles.
NASA Astrophysics Data System (ADS)
Parker, Tim; Winberry, Paul; Huerta, Audrey; Bainbridge, Geoff; Devanney, Peter
2016-04-01
The integrated broadband Meridian Posthole and Compact seismic systems have been engineered and tested for extreme polar environments. Ten percent of the Earth's surface is covered in glacial ice and the dynamics of these environments is a strategic concern for all. The development for these systems was driven by researchers needing to densify observations in ice covered regions with difficult and limited logistics. Funding from an NSF MRI award, GEOICE and investment from the vendor enabled researchers to write the specifications for a hybrid family of instruments that can operate at -55C autonomously with very little power, 1 watt for the Meridian Compact system and 1.5 watts for the Meridian 120PH. Tilt tolerance in unstable ice conditions was a concern and these instruments have a range of up to +/-5 degrees. The form factor, extreme temperature tolerance and power load of the instruments has reduced the bulk of a complete station by 1/2 and simplified installation greatly allowing more instruments to be deployed with limited support and a lighter logistical load. These systems are being tested in the Antarctic at SouthPole Station and McMurdo for the second year and the investment has encouraged other instrument and power system vendors to offer polar rated equipment including telemetry for ancillary support.
NASA Astrophysics Data System (ADS)
Thomes, W. Joe; Ott, Melanie N.; Chuska, Richard; Switzer, Robert; Onuma, Eleanya; Blair, Diana; Frese, Erich; Matyseck, Marc
2016-09-01
Fiber optic assemblies have been used on spaceflight missions for many years as an enabling technology for routing, transmitting, and detecting optical signals. Due to the overwhelming success of NASA in implementing fiber optic assemblies on spaceflight science-based instruments, system scientists increasingly request fibers that perform in extreme environments while still maintaining very high optical transmission, stability, and reliability. Many new applications require fiber optic assemblies that will operate down to cryogenic temperatures as low as 20 Kelvin. In order for the fiber assemblies to operate with little loss in optical throughput at these extreme temperatures requires a system level approach all the way from how the fiber assembly is manufactured to how it is held, routed, and integrated. The NASA Goddard Code 562 Photonics Group has been designing, manufacturing, testing, and integrating fiber optics for spaceflight and other high reliability applications for nearly 20 years. Design techniques and lessons learned over the years are consistently applied to developing new fiber optic assemblies that meet these demanding environments. System level trades, fiber assembly design methods, manufacturing, testing, and integration will be discussed. Specific recent examples of ground support equipment for the James Webb Space Telescope (JWST); the Ice, Cloud and Land Elevation Satellite-2 (ICESat- 2); and others will be included.
Mao, Ho-kwang (Director, Center for Energy Frontier Research in Extreme Environments); EFree Staff
2017-12-09
'The Behavior of Hydrogen Under Extreme Conditions on Ultrafast Timescales ' was submitted by the Center for Energy Frontier Research in Extreme Environments (EFree) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. EFree is directed by Ho-kwang Mao at the Carnegie Institute of Washington and is a partnership of scientists from thirteen institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Energy Frontier Research in Extreme Environments is 'to accelerate the discovery and creation of energy-relevant materials using extreme pressures and temperatures.' Research topics are: catalysis (CO{sub 2}, water), photocatalysis, solid state lighting, optics, thermelectric, phonons, thermal conductivity, solar electrodes, fuel cells, superconductivity, extreme environment, radiation effects, defects, spin dynamics, CO{sub 2} (capture, convert, store), greenhouse gas, hydrogen (fuel, storage), ultrafast physics, novel materials synthesis, and defect tolerant materials.
NASA Technical Reports Server (NTRS)
Voronov, Oleg A (Inventor); Street, Kenneth (Inventor); Kear, Bernard H (Inventor)
2017-01-01
Systems, methods, and articles of manufacture related to composite materials are discussed herein. These materials can be based on a mixture of diamond particles with a matrix and fibers or fabrics. The matrix can be formed into the composite material through optional pressurization and via heat treatment. These materials display exceptionally low friction coefficient and superior wear resistance in extreme environments.
Solar Power Generation in Extreme Space Environments
NASA Technical Reports Server (NTRS)
Elliott, Frederick W.; Piszczor, Michael F.
2016-01-01
The exploration of space requires power for guidance, navigation, and control; instrumentation; thermal control; communications and data handling; and many subsystems and activities. Generating sufficient and reliable power in deep space through the use of solar arrays becomes even more challenging as solar intensity decreases and high radiation levels begin to degrade the performance of photovoltaic devices. The Extreme Environments Solar Power (EESP) project goal is to develop advanced photovoltaic technology to address these challenges.
Glenn Extreme Environments Rig (GEER) Independent Review
NASA Technical Reports Server (NTRS)
Jankovsky, Robert S.; Smiles, Michael D.; George, Mark A.; Ton, Mimi C.; Le, Son K.
2015-01-01
The Chief of the Space Science Project Office at Glenn Research Center (GRC) requested support from the NASA Engineering and Safety Center (NESC) to satisfy a request from the Science Mission Directorate (SMD) Associate Administrator and the Planetary Science Division Chief to obtain an independent review of the Glenn Extreme Environments Rig (GEER) and the operational controls in place for mitigating any hazard associated with its operation. This document contains the outcome of the NESC assessment.
The role of the reef-dune system in coastal protection in Puerto Morelos (Mexico)
NASA Astrophysics Data System (ADS)
Franklin, Gemma L.; Torres-Freyermuth, Alec; Medellin, Gabriela; Allende-Arandia, María Eugenia; Appendini, Christian M.
2018-04-01
Reefs and sand dunes are critical morphological features providing natural coastal protection. Reefs dissipate around 90 % of the incident wave energy through wave breaking, whereas sand dunes provide the final natural barrier against coastal flooding. The storm impact on coastal areas with these features depends on the relative elevation of the extreme water levels with respect to the sand dune morphology. However, despite the importance of barrier reefs and dunes in coastal protection, poor management practices have degraded these ecosystems, increasing their vulnerability to coastal flooding. The present study aims to theoretically investigate the role of the reef-dune system in coastal protection under current climatic conditions at Puerto Morelos, located in the Mexican Caribbean Sea, using a widely validated nonlinear non-hydrostatic numerical model (SWASH). Wave hindcast information, tidal level, and a measured beach profile of the reef-dune system in Puerto Morelos are employed to estimate extreme runup and the storm impact scale for current and theoretical scenarios. The numerical results show the importance of including the storm surge when predicting extreme water levels and also show that ecosystem degradation has important implications for coastal protection against storms with return periods of less than 10 years. The latter highlights the importance of conservation of the system as a mitigation measure to decrease coastal vulnerability and infrastructure losses in coastal areas in the short to medium term. Furthermore, the results are used to evaluate the applicability of runup parameterisations for beaches to reef environments. Numerical analysis of runup dynamics suggests that runup parameterisations for reef environments can be improved by including the fore reef slope. Therefore, future research to develop runup parameterisations incorporating reef geometry features (e.g. reef crest elevation, reef lagoon width, fore reef slope) is warranted.
NASA Astrophysics Data System (ADS)
Gusev, Oleg; Novikova, Nataliya; Sychev, Vladimir; Okuda, Takashi; Kikawada, Takahiro; Sakashita, Tetsuya; Mukae, Kyosuke
2012-07-01
Life in extreme or drastically changing environments in many cases leads to evolutionary evolvement of mechanisms of cross-resistance to different abiotic stresses, often never actually faced by the organism in its natural habitat. Larvae of the sleeping chironomidPolypedilum vanderplanki (Diptera) are able to resist complete desiccation and in the dry form survive under excess of various abiotic stresses, including exposure to space environment. One of the most intriguing features of the anhydrobiotic larvae is resistance to extremely high doses of different types of ionizing radiation. To understand the cross-tolerance mechanism, we have analyzed the structural changes in the nuclear DNA using transmission electron microscopy and DNA comet assays in relation to anhydrobiosis and radiation. We find that dehydration causes alterations in chromatin structure and a severe fragmentation of nuclear DNA in the cells of the larvae despite successful anhydrobiosis. The DNA fragmentation level and the recovery of DNA integrity in the rehydrated after anhydrobiosis larvae were similar to those of hydrated larvae irradiated with 70 Gy of high-linear energy transfer (LET) ions (4He+). In comparison, low-LET radiation (gamma rays) of the same dose causes less initial damage to the larvae, and recovery of DNA repair is complete within 24 h. Genome-wide analysis of mRNA expression in the larvae revealed that a large group of genes (including antioxidants, anhydrobiosis-specific biomolecules and protein-reparation enzymes) showed a similar patterns of activity in response to both desiccation and ionizing radiation. We conclude that t one of the factors explaining the relationship between the resistance to ionizing radiation and the ability to undergo anhydrobiosis in the sleeping chironomid would be an adaptation to desiccation-inflicted proteins and nuclear DNA damage.
NASA Astrophysics Data System (ADS)
Chetty, S.; Field, L. A.
2014-12-01
SWIMS III, is a low cost, autonomous sensor data gathering platform developed specifically for extreme/harsh cold environments. Arctic ocean's continuing decrease of summer-time ice is related to rapidly diminishing multi-year ice due to the effects of climate change. Ice911 Research aims to develop environmentally inert materials that when deployed will increase the albedo, enabling the formation and/preservation of multi-year ice. SWIMS III's sophisticated autonomous sensors are designed to measure the albedo, weather, water temperature and other environmental parameters. This platform uses low cost, high accuracy/precision sensors, extreme environment command and data handling computer system using satellite and terrestrial wireless solution. The system also incorporates tilt sensors and sonar based ice thickness sensors. The system is light weight and can be deployed by hand by a single person. This presentation covers the technical, and design challenges in developing and deploying these platforms.
The Mars Simulation Laboratory, University of Aarhus
NASA Astrophysics Data System (ADS)
Merrison, J. P.; Field, D.; Finster, K.; Lomstein, B. Aa.; Nørnberg, P.; Ramsing, N. B.; Uggerhøj, E.
2001-08-01
Present day Mars presents an extremely hostile environment to organic material. The average temperature is low (-50C), the atmospheric pressure is also low (7mbar) and there is little water over most of the planet. Chemically the surface is extremely oxidising and no signs of organic material have been detected. There is also a strong component of ultra violet radiation in the Martian sun light, lethal to most organisms. At Aarhus University we have constructed a Mars simulation environment which reproduces the physical, chemical and mineralogical conditions on Mars. It is hoped to set limits on where organic matter (or even life) might exist on Mars, for example at some depth under the surface, beneath the polar ice or within rocks. It is also possible to adjust the conditions in the simulation to investigate the most extreme environments in which organisms can be preserved or still function.
Growth of the Facultative Anaerobes from Antarctica, Alaska, and Patagonia at Low Temperatures
NASA Technical Reports Server (NTRS)
Pikuta, Elena V.; Hoover, Richard B.
2004-01-01
Psychotolerance, as an adaptation for surviving in extreme environments, is widespread among mesophilic microorganisms. Physico-chemical factors such as pressure, red-ox potential, pH and salinity could significantly alter the features of ecosystems by providing liquid water at subzero temperatures. Furthermore, organisms can respond to temperature changes by several known mechanisms, including changing the conformation capacities of constitutional proteins or by the synthesis of mucopolysaccharides around the cell wall and membrane. Such protective mechanisms make it possible for cells to not only passively survive low temperatures in a state of anabiosis, but also to be capable of actively metabolizing substrates and reproducing normally. The physiological and biochemical characteristics of the species, as well as genetics, could be remarkably changed due to adaptation and surviving in extreme environments. The cold shock genes of some of the studied strains of psychotolerant facultative anaerobes were reported previously. In this paper we present experimental data for psychotolerant, non spore-forming, facultative anaerobes isolated from geographically different cold regions of our planet. We show the growth response on changing from anaerobic conditions to aerobic with cultivation at low temperatures.
An Overview of SBIR Phase 2 Materials Structures for Extreme Environments
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2015-01-01
Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing Areas in Materials and Structures for Extreme Environments which is one of six core competencies at NASA Glenn Research Center. There are twenty three technologies featured with emphasis on a wide spectrum of applications such as fine-filament superconductor wire, composite oxide cathode materials, nano-composites, high radiation solar cell, wrapped multilayer insulation, thin aerogel, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.
NASA Technical Reports Server (NTRS)
Gunasekara, Onalli; Wong, Uland Y.; Furlong, Michael P.; Dille, Michael
2017-01-01
Current technologies of exploring habitable areas of icy moons are limited to flybys of space probes. This research project addresses long-term navigation of icy moons by developing a MATLAB adjustable trajectory based on the volume of plume material observed. Plumes expose materials from the sub-surface without accessing the subsurface. Aerial vehicles capable of scouting vapor plumes and detecting maximum plume material volumes, which are considered potentially habitable in inhospitable environments, would enable future deep-space missions to search for extraterrestrial organisms on the surface of icy moons. Although this platform is still a prototype, it demonstrates the potential aerial vehicles can have in improving the capabilities of long-term space navigation and enabling technology for detecting life in extreme environments. Additionally, this work is developing the capabilities that could be utilized as a platform for space biology research. For example, aerial vehicles that are sent to map extreme environments of icy moons or the planet Mars, could also carry small payloads with automated cell-biology experiments, designed to probe the biological response of low-gravity and high-radiation planetary environments, serving as a pathfinder for future human missions.
Copahue Geothermal System: A Volcanic Environment with Rich Extreme Prokaryotic Biodiversity
Urbieta, María Sofía; Willis Porati, Graciana; Segretín, Ana Belén; González-Toril, Elena; Giaveno, María Alejandra; Donati, Edgardo Rubén
2015-01-01
The Copahue geothermal system is a natural extreme environment located at the northern end of the Cordillera de los Andes in Neuquén province in Argentina. The geochemistry and consequently the biodiversity of the area are dominated by the activity of the Copahue volcano. The main characteristic of Copahue is the extreme acidity of its aquatic environments; ponds and hot springs of moderate and high temperature as well as Río Agrio. In spite of being an apparently hostile location, the prokaryotic biodiversity detected by molecular ecology techniques as well as cultivation shows a rich and diverse environment dominated by acidophilic, sulphur oxidising bacteria or archaea, depending on the conditions of the particular niche studied. In microbial biofilms, found in the borders of the ponds where thermal activity is less intense, the species found are completely different, with a high presence of cyanobacteria and other photosynthetic species. Our results, collected during more than 10 years of work in Copahue, have enabled us to outline geomicrobiological models for the different environments found in the ponds and Río Agrio. Besides, Copahue seems to be the habitat of novel, not yet characterised autochthonous species, especially in the domain Archaea. PMID:27682093
Copahue Geothermal System: A Volcanic Environment with Rich Extreme Prokaryotic Biodiversity.
Urbieta, María Sofía; Porati, Graciana Willis; Segretín, Ana Belén; González-Toril, Elena; Giaveno, María Alejandra; Donati, Edgardo Rubén
2015-07-08
The Copahue geothermal system is a natural extreme environment located at the northern end of the Cordillera de los Andes in Neuquén province in Argentina. The geochemistry and consequently the biodiversity of the area are dominated by the activity of the Copahue volcano. The main characteristic of Copahue is the extreme acidity of its aquatic environments; ponds and hot springs of moderate and high temperature as well as Río Agrio. In spite of being an apparently hostile location, the prokaryotic biodiversity detected by molecular ecology techniques as well as cultivation shows a rich and diverse environment dominated by acidophilic, sulphur oxidising bacteria or archaea, depending on the conditions of the particular niche studied. In microbial biofilms, found in the borders of the ponds where thermal activity is less intense, the species found are completely different, with a high presence of cyanobacteria and other photosynthetic species. Our results, collected during more than 10 years of work in Copahue, have enabled us to outline geomicrobiological models for the different environments found in the ponds and Río Agrio. Besides, Copahue seems to be the habitat of novel, not yet characterised autochthonous species, especially in the domain Archaea.
Denitrification by extremely halophilic bacteria
NASA Technical Reports Server (NTRS)
Hochstein, L. I.; Tomlinson, G. A.
1985-01-01
Extremely halophilic bacteria were isolated from widely separated sites by anaerobic enrichment in the presence of nitrate. The anaerobic growth of several of these isolates was accompanied by the production of nitrite, nitrous oxide, and dinitrogen. These results are a direct confirmation of the existence of extremely halophilic denitrifying bacteria, and suggest that such bacteria may be common inhabitants of hypersaline environments.
The Nature and Characteristics of Youthful Extremism
ERIC Educational Resources Information Center
Zubok, Iu. A.; Chuprov, V. I.
2010-01-01
Extremism is an acute problem of the present day. Moods of extremism are manifested in all spheres of the life and activities of young people--in education, work, business, political life, and leisure activity. They can be found in both individual and group social self-determination and are influenced by the immediate social environment as well as…
NASA Astrophysics Data System (ADS)
Nymmik, Rikho
Space environment models are intended for fairly describing the quantitative behavior of nature space environment. Usually, they are constructed on the basis of some experimental data set generalization, which is characteristic of the conditions that were taking place during measurement period. It is often to see that such models state and postulate realities of the past. The typical example of this point of view is the situation around extremely SEP events. During dozens of years models of such events have been based on the largest occurrences observed, which features were measured by some instruments with the reliability that was not always analyzed. It is obvious, that this way does not agree with reality, because any new extreme event conflicts with it. From this follow that space environment models can not be created by using numerical observed data only, when such data are changing in time, or have the probability nature. The model's goal is not only describing the average environment characteristics, but the predicting of extreme ones too. Such a prediction can only be result of analyzing the causes that stimulate environment change and taking them into account in model parameters. In this report we present the analysis of radiation environment formed by solar-generated high energy particles. A progresses and failures of SEP event modeling attempts are also shown and analyzed.
Localized corrosion of high performance metal alloys in an acid/salt environment
NASA Technical Reports Server (NTRS)
Macdowell, L. G.; Ontiveros, C.
1991-01-01
Various vacuum jacketed cryogenic supply lines at the Space Shuttle launch site at Kennedy Space Center use convoluted flexible expansion joints. The atmosphere at the launch site has a very high salt content, and during a launch, fuel combustion products include hydrochloric acid. This extremely corrosive environment has caused pitting corrosion failure in the thin walled 304L stainless steel flex hoses. A search was done to find a more corrosion resistant replacement material. The study focussed on 19 metal alloys. Tests which were performed include electrochemical corrosion testing, accelerated corrosion testing in a salt fog chamber, and long term exposure at a beach corrosion testing site. Based on the results of these tests, several nickel based alloys were found to have very high resistance to this corrosive environment. Also, there was excellent agreement between the electrochemical tests and the actual beach exposure tests. This suggests that electrochemical testing may be useful for narrowing the field of potential candidate alloys before subjecting samples to long term beach exposure.
Experimental methods for studying microbial survival in extraterrestrial environments.
Olsson-Francis, Karen; Cockell, Charles S
2010-01-01
Microorganisms can be used as model systems for studying biological responses to extraterrestrial conditions; however, the methods for studying their response are extremely challenging. Since the first high altitude microbiological experiment in 1935 a large number of facilities have been developed for short- and long-term microbial exposure experiments. Examples are the BIOPAN facility, used for short-term exposure, and the EXPOSE facility aboard the International Space Station, used for long-term exposure. Furthermore, simulation facilities have been developed to conduct microbiological experiments in the laboratory environment. A large number of microorganisms have been used for exposure experiments; these include pure cultures and microbial communities. Analyses of these experiments have involved both culture-dependent and independent methods. This review highlights and discusses the facilities available for microbiology experiments, both in space and in simulation environments. A description of the microorganisms and the techniques used to analyse survival is included. Finally we discuss the implications of microbiological studies for future missions and for space applications. Copyright 2009 Elsevier B.V. All rights reserved.
Optical silicones for use in harsh operating environments
NASA Astrophysics Data System (ADS)
Riegler, Bill; Bruner, Stephen J.; Elgin, Randall
2004-12-01
The optics industry widely uses silcones for various fiber optic cable potting applications and light emitting diode protection. Optics manufacturers know traditional silicone elastomers, gels, thixotropic gels, and fluids not only perform extremely well in high temperature applications, but also offer refractive index matching so that silicones can transmit light with admirable efficiency. However, because environmental conditions may affect a material's performance over time, one must also consider the conditions the device operates in to ensure long-term reliability. External environments may include exposure to a combination of UV light and temperature, while other environments may expose devices to hydrocarbon based fuels. This paper will delve into the chemistry of silicones and functional groups that lend themselves to properties such as temperature, fuel, and radiation resistance to show shy silicone is the material of choice for optic applications under normally harmful forms of exposure. Data will be presented to examine silicone's performance in these environment.
Physiological monitoring and analysis of a manned stratospheric balloon test program.
Garbino, Alejandro; Blue, Rebecca S; Pattarini, James M; Law, Jennifer; Clark, Jonathan B
2014-02-01
The Red Bull Stratos Project consisted of incremental high altitude parachute jumps [maximum altitude 127,852 ft (38,969 m)] from a pressurized capsule suspended from a stratospheric helium-filled balloon. A physiological monitoring system was worn by the parachutist to provide operational medical and acceleration data and to record a unique set of data in a supersonic environment. Various physiological parameters, including heart rate (HR), respiratory rate (RR), skin temperature, and triaxial acceleration, were collected during the ascent, high altitude float, free fall, and parachute opening and descent stages of multiple low- and high altitude jumps. Physiologic data were synchronized with global positioning system (GPS) and audiovisual data for a comprehensive understanding of the environmental stressors experienced. HR reached maximum during capsule egress and remained elevated throughout free fall and landing. RR reached its maximum during free fall. Temperature data were unreliable and did not provide useful results. The highest accelerations parameters were recorded during parachute opening and during landing. During each high altitude jump, immediately after capsule egress, the parachutist experienced a few seconds of microgravity during which some instability occurred. Control was regained as the parachutist entered denser atmosphere. The high altitude environment resulted in extremely high vertical speeds due to little air resistance in comparison to lower altitude jumps with similar equipment. The risk for tumbling was highest at initial step-off. Physiological responses included elevated HR and RR throughout critical phases of free fall. The monitoring unit performed well despite the austere environment and extreme human performance activities.
On the Use of Accelerated Aging Methods for Screening High Temperature Polymeric Composite Materials
NASA Technical Reports Server (NTRS)
Gates, Thomas S.; Grayson, Michael A.
1999-01-01
A rational approach to the problem of accelerated testing of high temperature polymeric composites is discussed. The methods provided are considered tools useful in the screening of new materials systems for long-term application to extreme environments that include elevated temperature, moisture, oxygen, and mechanical load. The need for reproducible mechanisms, indicator properties, and real-time data are outlined as well as the methodologies for specific aging mechanisms.
Proton Tolerance of SiGe Precision Voltage References for Extreme Temperature Range Electronics
NASA Astrophysics Data System (ADS)
Najafizadeh, Laleh; Bellini, Marco; Prakash, A. P. Gnana; Espinel, Gustavo A.; Cressler, John D.; Marshall, Paul W.; Marshall, Cheryl J.
2006-12-01
A comprehensive investigation of the effects of proton irradiation on the performance of SiGe BiCMOS precision voltage references intended for extreme environment operational conditions is presented. The voltage reference circuits were designed in two distinct SiGe BiCMOS technology platforms (first generation (50 GHz) and third generation (200 GHz)) in order to investigate the effect of technology scaling. The circuits were irradiated at both room temperature and at 77 K. Measurement results from the experiments indicate that the proton-induced changes in the SiGe bandgap references are minor, even down to cryogenic temperatures, clearly good news for the potential application of SiGe mixed-signal circuits in emerging extreme environments
NASA Technical Reports Server (NTRS)
1990-01-01
Despite a vast amount of research, little is known concerning the effect of group structure, and individuals' understanding of that structure, on conflict in Antarctic groups. The overall objective of the research discussed is to determine the interrelationships of group structure, social cognition, and group function and conflict in isolated and extreme environments. In the two decades following WWII, a large body of research focused on the physiological, psychological, and social psychological factors affecting the functioning of individuals and groups in a variety of extreme and isolated environments in both the Arctic and Antarctic. There are two primary reasons for further research of this type. First, Antarctic polar stations are considered to be natural laboratories for the social and behavioral sciences and provide an opportunity to address certain theoretical and empirical questions concerned with agreement and conflict in social groups in general and group behavior in extreme, isolated environments in particular. Recent advances in the analysis of social networks and intracultural variation have improved the methods and have shifted the theoretical questions. The research is motivated by three classes of questions: (1) What are the characteristics of the social relations among individuals working and living together in extreme and isolated environments?; (2) What do individuals understand about their group, how does that understanding develop, and how is it socially distributed?; and (3) What is the relationship between that understanding and the functioning of the social group? Answers to these questions are important if we are to advance our knowledge of how individuals and groups adapt to extreme environments. Second, although Antarctic winter-over candidates may be evaluated as qualified on the basis of individual characteristics, they may fail to adapt because of certain characteristics of the social group. Consequently, the ability of winter-over-groups to adapt to these extreme conditions has varied dramatically from year to year. In the past, differences in personality, background, and social status have led to conflicts between individuals or cliques precipitating, in turn, an overall decline in morale, failure to accomplish work tasks, and increases in insomnia, depression, anxiety, and alcohol abuse. A better understanding of the role of group structure and social cognition in processes of group adaptation and conflict in Antarctica would contribute towards the revision of existing screening methods, potentially leading to a reduction of group conflict and improved performance of scientific research and support activities. An improved screening protocol for the Antarctic would also have applications for other isolated environments such as scientific outposts and the proposed NASA space station. In sum, this research will (1) contribute significantly to our theoretical understanding of the role of social structure and cognition in the functioning of groups in isolation; (2) complement current work on health and adaptation in polar environments; and (3) provide for models of the formation of group structure that will aid in the development of improved procedures for assembling groups for the Antarctic and other isolated environments (e.g., space stations).
Cook, Curtiss B; Wellik, Kay E; Fowke, Margaret
2011-01-01
Many reports have documented the negative health consequences that environmental stressors can have on patients with diabetes. Studies examining the interaction between the environment and a patient with diabetes can be unified under a single discipline termed “geoenvironmental diabetology.” Geoenvironmental diabetology is defined more specifically as the study of how geophysical phenomena impact a patient with diabetes, to include effects on metabolic control, ancillary equipment (e.g., glucometers and insulin pumps), medications, supplies, access to care, and influences on the adaptive strategies employed by patients to care for their diabetes under extreme circumstances. Geological events such as natural disasters (e.g., earthquakes) or extreme weather (e.g., heat waves) are examples of stressors that can affect patients with diabetes and that can be included under the heading of geoenvironmental diabetology. As proposed here, geoenvironmental diabetology refers to how events in the physical world affect those with diagnosed diabetes, rather than how environmental factors might trigger development of disease. As the global prevalence of diabetes continues to increase, including in parts of the world that are especially vulnerable to disasters and climate change, further discussion is warranted on how to best prepare for management of diabetes under conditions of extreme geological and weather events and a changing climate. An overview is presented of various studies that have detailed how geoenvironmental phenomena can adversely affect patients with diabetes and concludes with a discussion of requirements for developing strategies for geoenvironmental diabetes management. PMID:21880222
Space Shuttle Pad Exposure Period Meteorological Parameters STS-1 Through STS-107
NASA Technical Reports Server (NTRS)
Overbey, B. G.; Roberts, B. C.
2005-01-01
During the 113 missions of the Space Transportation System (STS) to date, the Space Shuttle fleet has been exposed to the elements on the launch pad for approx. 4,195 days. The Natural Environments Branch at Marshall Space Flight Center archives atmospheric environments to which the Space Shuttle vehicles are exposed. This Technical Memorandum (TM) provides a summary of the historical record of the meteorological conditions encountered by the Space Shuttle fleet during the pad exposure period. Parameters included in this TM are temperature, relative humidity, wind speed, wind direction, sea level pressure, and precipitation. Extremes for each of these parameters for each mission are also summarized. Sources for the data include meteorological towers and hourly surface observations. Data are provided from the first launch of the STS in 1981 through the launch of STS-107 in 2003.
Kim, Aram; Zhou, Zixuan; Kretch, Kari S; Finley, James M
2017-07-01
The ability to successfully navigate obstacles in our environment requires integration of visual information about the environment with estimates of our body's state. Previous studies have used partial occlusion of the visual field to explore how information about the body and impending obstacles are integrated to mediate a successful clearance strategy. However, because these manipulations often remove information about both the body and obstacle, it remains to be seen how information about the lower extremities alone is utilized during obstacle crossing. Here, we used an immersive virtual reality (VR) interface to explore how visual feedback of the lower extremities influences obstacle crossing performance. Participants wore a head-mounted display while walking on treadmill and were instructed to step over obstacles in a virtual corridor in four different feedback trials. The trials involved: (1) No visual feedback of the lower extremities, (2) an endpoint-only model, (3) a link-segment model, and (4) a volumetric multi-segment model. We found that the volumetric model improved success rate, placed their trailing foot before crossing and leading foot after crossing more consistently, and placed their leading foot closer to the obstacle after crossing compared to no model. This knowledge is critical for the design of obstacle negotiation tasks in immersive virtual environments as it may provide information about the fidelity necessary to reproduce ecologically valid practice environments.
Schoepf, Verena; Stat, Michael; Falter, James L.; McCulloch, Malcolm T.
2015-01-01
Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events. PMID:26627576
Sibanda, Timothy; Selvarajan, Ramganesh; Tekere, Memory
2017-05-01
Synthetic extreme environments like carwash effluent tanks and drains are potential sources of biotechnologically important microorganisms and molecules which have, however, remained unexplored. Using culture- and molecular-based methods, a total of 17 bacterial isolates belonging to the genera Shewanella, Proteus, Paenibacillus, Enterobacter and Citrobacter, Aeromonas, Pseudomonas and Pantoea were identified. Hydrocarbon utilization and enzyme production screening assays showed that Aeromonas sp. CAC11, Paenibacillus sp. CAC12 and Paenibacillus sp. CAC13 and Citrobacter sp. PCW7 were able to degrade benzanthracene, naphthalene and diesel oil, Paenibacillus sp. CAC12 and Paenibacillus sp. CAC13 could produce cellulase enzyme, while Proteus sp. BPS2, Pseudomonas sp. SAS8 and Proteus sp. CAL3 could produce lipase. GC-MS analysis of bacterial secondary metabolites resulted in identification of 107 different compounds produced by Proteus sp. BPS2, Paenibacillus sp. CAC12, Pseudomonas sp. SAS8, Proteus sp. CAL3 and Paenibacillus sp. CAC13. Most of the compounds identified by both GC-MS and LC-MS have previously been determined to have antibacterial, antifungal and/or anticancer properties. Further, microbial metabolites which have previously been known to be produced only by plants or microorganisms found in natural extreme environments were also identified in this study. This research has revealed the immense bioresource potential of microorganisms inhabiting synthetic extreme environments. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Schoepf, Verena; Stat, Michael; Falter, James L; McCulloch, Malcolm T
2015-12-02
Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events.
Huss, Volker AR; Ciniglia, Claudia; Cennamo, Paola; Cozzolino, Salvatore; Pinto, Gabriele; Pollio, Antonino
2002-01-01
Background Little is known about phytoplankton communities inhabiting low pH environments such as volcanic and geothermal sites or acidic waters. Only specialised organisms are able to tolerate such extreme conditions. There is, thus, low species diversity. We have characterised the previously isolated acid tolerant Chlorella-like microalgae Viridiella fridericiana and Chlorella protothecoides var. acidicola by microscopical and biomolecular methods in order to assess their phylogenetic relationships. Results Both isolates belong to the trebouxiophycean lineage of chlorophytes. 18S and ITS1 sequence data clearly confirm that Viridiella fridericiana constitutes a new genus apart from the morphologically similar and likewise acid tolerant microalga Chlorella saccharophila. Chlorella protothecoides var. acidicola on the other hand is not a variety of Chlorella protothecoides but falls within a heterogeneous cluster consisting of Nannochloris, "Chlorella" spec. Yanaqocha, and Koliella, and is most closely related to algae which were also isolated from extreme environments. Conclusions The distribution of acid tolerant strains in the 18S rRNA tree shows that acquisition of acid tolerance was unlikely a monophyletic event in green microalgae. We propose that different strains have independently adapted to extreme environments. Some of them have spread worldwide and were able to colonise other extreme habitats. Considering the problems of successfully isolating acid tolerant strains, acidic soils could represent an unsuspected source of biological diversity with high potential for biotechnological utilisations. PMID:12194702
2008-09-23
Tech Talk on Extreme Rovers: Unveiling the latest findings of Robotic Exploration of Extreme Environments shown in the Immersve Theater NASA Ames Exploration Center Bldg 943A KbalidAl-Ali CMU - West gives presentation on 'Practical Rover Technology'
2008-09-23
Tech Talk on Extreme Rovers: Unveiling the latest findings of Robotic Exploration of Extreme Environments shown in the Immersve Theater NASA Ames Exploration Center Bldg 943A KbalidAl-Ali CMU - West gives presentation on 'Practical Rover Technology'
2008-09-23
Tech Talk on Extreme Rovers: Unveiling the latest findings of Robotic Exploration of Extreme Environments shown in the Immersve Theater NASA Ames Exploration Center Bldg 943A KbalidAl-Ali CMU - West gives presentation on 'Practical Rover Technology'
La Duc, Myron T.; Dekas, Anne; Osman, Shariff; Moissl, Christine; Newcombe, David; Venkateswaran, Kasthuri
2007-01-01
In assessing the bacterial populations present in spacecraft assembly, spacecraft test, and launch preparation facilities, extremophilic bacteria (requiring severe conditions for growth) and extremotolerant bacteria (tolerant to extreme conditions) were isolated. Several cultivation approaches were employed to select for and identify bacteria that not only survive the nutrient-limiting conditions of clean room environments but can also withstand even more inhospitable environmental stresses. Due to their proximity to spacefaring objects, these bacteria pose a considerable risk for forward contamination of extraterrestrial sites. Samples collected from four geographically distinct National Aeronautics and Space Administration clean rooms were challenged with UV-C irradiation, 5% hydrogen peroxide, heat shock, pH extremes (pH 3.0 and 11.0), temperature extremes (4°C to 65°C), and hypersalinity (25% NaCl) prior to and/or during cultivation as a means of selecting for extremotolerant bacteria. Culture-independent approaches were employed to measure viable microbial (ATP-based) and total bacterial (quantitative PCR-based) burdens. Intracellular ATP concentrations suggested a viable microbial presence ranging from below detection limits to 106 cells/m2. However, only 0.1 to 55% of these viable cells were able to grow on defined culture medium. Isolated members of the Bacillaceae family were more physiologically diverse than those reported in previous studies, including thermophiles (Geobacillus), obligate anaerobes (Paenibacillus), and halotolerant, alkalophilic species (Oceanobacillus and Exiguobacterium). Non-spore-forming microbes (α- and β-proteobacteria and actinobacteria) exhibiting tolerance to the selected stresses were also encountered. The multiassay cultivation approach employed herein enhances the current understanding of the physiological diversity of bacteria housed in these clean rooms and leads us to ponder the origin and means of translocation of thermophiles, anaerobes, and halotolerant alkalophiles into these environments. PMID:17308177
Lithobiontic life: "Atacama rocks are well and alive".
Gómez-Silva, Benito
2018-02-01
Our knowledge on the Microbiology of the Atacama Desert has increased steadily and substantially during the last two decades. This information now supports a paradigmatic change on the Atacama Desert from a sterile, uninhabitable territory to a hyperarid region colonized by a rich microbiota that includes extremophiles and extreme-tolerant microorganisms. Also, extensive reports are available on the prevalent physical and chemical environmental conditions, ecological niches and, the abundance, diversity and organization of the microbial life in the Atacama Desert. This territory is a highly desiccated environment due to the absence of regular rain events. Liquid water scarcity is the most serious environmental factor affecting the Atacama Desert microorganisms. The intense solar irradiation in this region contributes, in a synergistic fashion with desiccation, to limit the survival and growth of the microbial life. In order to overcome these two extreme conditions, successful microorganisms, organized as microbial consortia, take advantage of (a) the physical characteristics of lithic habitats, which provide sites for colonization on, within or below the rock substrate, the attenuation and filtration of the intense solar irradiation and, the collection of liquid water from incoming fog formations and by water vapour condensation and deliquescence on or within their surfaces, and (b) the biological adaptations of members of the microbial communities that allow them to synthesize hydrophilic macromolecules, antioxidants and UV-light absorbents. Lithic habitats have been considered specialized shelters where life forms can reach protection at environments subjected to extremes of desiccation and solar irradiation, here on Earth or elsewhere. This review is an overview of part of the scientific information collected on lithobionts from the Atacama Desert, their rock substrates and their strategies to cope with extremes of desiccation and intense photosynthetic active radiation and UV irradiations.
Bacterial and archaeal resistance to ionizing radiation
NASA Astrophysics Data System (ADS)
Confalonieri, F.; Sommer, S.
2011-01-01
Organisms living in extreme environments must cope with large fluctuations of temperature, high levels of radiation and/or desiccation, conditions that can induce DNA damage ranging from base modifications to DNA double-strand breaks. The bacterium Deinococcus radiodurans is known for its resistance to extremely high doses of ionizing radiation and for its ability to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Recently, extreme ionizing radiation resistance was also generated by directed evolution of an apparently radiation-sensitive bacterial species, Escherichia coli. Radioresistant organisms are not only found among the Eubacteria but also among the Archaea that represent the third kingdom of life. They present a set of particular features that differentiate them from the Eubacteria and eukaryotes. Moreover, Archaea are often isolated from extreme environments where they live under severe conditions of temperature, pressure, pH, salts or toxic compounds that are lethal for the large majority of living organisms. Thus, Archaea offer the opportunity to understand how cells are able to cope with such harsh conditions. Among them, the halophilic archaeon Halobacterium sp and several Pyrococcus or Thermococcus species, such as Thermococcus gammatolerans, were also shown to display high level of radiation resistance. The dispersion, in the phylogenetic tree, of radioresistant prokaryotes suggests that they have independently acquired radioresistance. Different strategies were selected during evolution including several mechanisms of radiation byproduct detoxification and subtle cellular metabolism modifications to help cells recover from radiation-induced injuries, protection of proteins against oxidation, an efficient DNA repair tool box, an original pathway of DNA double-strand break repair, a condensed nucleoid that may prevent the dispersion of the DNA fragments and specific radiation-induced proteins involved in radioresistance. Here, we compare mechanisms and discuss hypotheses suggested to contribute to radioresistance in several Archaea and Eubacteria.
[The heart in extreme sports: hyperbaric activity and microgravity].
Berrettini, Umberto; Landolfi, Angelo; Patteri, Giovanna
2008-10-01
The study of the cardiovascular and respiratory modifications in extreme environments could be useful for the understanding of the adaptive mechanisms of the body in particular conditions. The knowledge of how different environmental conditions in terms of extreme pressure, temperature and gravity modify the neurovegetative and cardiovascular system could be useful in daily practice for hypobaric and hyperbaric sports.
Valdes, Jorge; Ossandon, Francisco; Quatrini, Raquel; Dopson, Mark; Holmes, David S
2011-12-01
Acidithiobacillus thiooxidans is a mesophilic, extremely acidophilic, chemolithoautotrophic gammaproteobacterium that derives energy from the oxidation of sulfur and inorganic sulfur compounds. Here we present the draft genome sequence of A. thiooxidans ATCC 19377, which has allowed the identification of genes for survival and colonization of extremely acidic environments.
Albano, Christine M.; Cox, Dale A.; Dettinger, Michael; Shaller, Kevin; Welborn, Toby L.; McCarthy, Maureen
2014-01-01
Atmospheric rivers (ARs) are strongly linked to extreme winter precipitation events in the Western U.S., accounting for 80 percent of extreme floods in the Sierra Nevada and surrounding lowlands. In 2010, the U.S. Geological Survey developed the ARkStorm extreme storm scenario for California to quantify risks from extreme winter storms and to allow stakeholders to better explore and mitigate potential impacts. To explore impacts on natural resources and communities in montane and adjacent environments, we downscaled the scenario to the greater Lake Tahoe, Reno and Carson City region of northern Nevada and California. This ArkStorm@Tahoe scenario was presented at six stakeholder meetings, each with a different geographic and subject matter focus. Discussions were facilitated by the ARkStorm@Tahoe team to identify social and ecological vulnerabilities to extreme winter storms, science and information needs, and proactive measures that might minimize impacts from this type of event. Information collected in these meetings was used to develop a tabletop emergency response exercise and set of recommendations for increasing resilience to extreme winter storm events in both Tahoe and the downstream communities of Northern Nevada.Over 300 individuals participated in ARkStorm@Tahoe stakeholder meetings and the emergency response exercise, including representatives from emergency response, natural resource and ecosystem management, health and human services, public utilities, and businesses. Interruption of transportation, communications, and lack of power and backup fuel supplies were identified as the most likely and primary points of failure across multiple sectors and geographies, as these interruptions have cascading effects on natural and human systems by impeding emergency response efforts. Other key issues that arose in discussions included contamination risks to water supplies and aquatic ecosystems, especially in the Tahoe Basin and Pyramid Lake, interagency coordination, credentialing, flood management, and coordination of health and human services during such an event. Mitigation options were identified for each of the key issues. Several science needs were identified, particularly the need for improved flood inundation maps. Finally, key lessons learned were identified and may help to increase preparedness, response and recovery from extreme storms in the future.
NASA Astrophysics Data System (ADS)
Mayhew, L. E.; Childers, S. E.; Geist, D.
2005-12-01
The extreme physiochemical conditions, insularity, and wide range in ages of fumaroles of the Galapagos Islands provide an excellent opportunity to explore for novel microorganisms and to study life in extreme environments. This is the first study that measures microbial diversity of Galapagos fumaroles. Forty-seven samples were collected from six distinct fumarole fields on Sierra Negra and Alcedo volcanoes. Vulcan Chico, on Sierra Negra, was activated during the last eruption in 1979. Two of the other fumarole fields on Sierra Negra are associated with a long-lived fault system on the caldera floor and are therefore likely to be significantly older. The fault-associated fumaroles have widespread alteration haloes (up to 100 m in diameter) and thick deposits of native sulfur. The most vigorous of the fumarole fields on Alcedo activated in late 1993 to early 1994. The second fumarole field on Alcedo is associated with a recently extinct geyser and the third is located on a rhyolite vent. A diversity of colors was observed in the substrates at all of the fumarole fields and some may be the result of microbial activity. Collection sites were chosen on the basis of temperature and the variations in the substrate in order to obtain samples from a variety of environments. Temperatures at sample sites range from 25.0 to 178.5° C, and pH from 0 to 6. The material collected varies between sites and includes crystalline sulfur deposits, clay, sandy and rocky soils, and microbial mats. Substrate material is characterized by powder x-ray diffractometry and scanning electron microscopy and gases collected from five of the fumarole fields are being analyzed to test for chemical controls on the microbial populations. Genomic DNA is being extracted from all of the samples. Primers for Bacteria and Archaea are used for PCR amplification of the 16S rRNA gene. To date, 22 of 37 processed samples have amplifiable DNA. Microbial diversity of samples possessing amplifiable DNA is being assessed by denaturing gradient gel electrophoresis (DGGE). These results may reveal the presence of novel organisms and will provide insights into how vent age, insularity, temperature, pH, and geochemistry influence the microbial populations in extreme environments in the Galapagos Islands.
Nie, Xiao-wei; Sun, Li-jun; Hao, Yue-wen; Yang, Guang-xiao; Wang, Quan-ying
2011-03-01
To synthesize the minimal and artificial HRE, and to insert it into the anterior extremity of CMV promoter of a AAV plasmid, and then to construct the AAV regulated by hypoxic-responsive element which was introduced into 293 cell by method of Ca3(PO4)2 using three plasmids. Thus obtaining the adenoassociated virus vector regulated by hypoxic-responsive element was possibly used for gene therapy in ischemia angiocardiopathy and cerebrovascular disease. Artificially synthesize the 36 bp nucleotide sequences of four connection in series HIF-binding sites A/GCGTG(4×HBS)and a 35 bp nucleotide sequences spacing inserted into anterior extremity of CMV promoter TATA Box, then amplified by PCR. The cDNA fragment was confirmed to be right by DNA sequencing. Molecular biology routine method was used to construct a AAV vector regulated by minimal hypoxic-responsive element after the normal CMV promoter in AAV vector was replaced by the CMV promoter included minimal hypoxic-responsive element. Then, NT4-6His-PR39 fusogenic peptide was inserted into MCS of the plasmid, the recombinant AAV vector was obtained by three plasmid co-transfection in 293 cells, in which we can also investigate the expression of 6×His using immunochemistry in hypoxia environment. Artificial HRE was inserted into anterior extremity of CMV promoter and there was a correct spacing between the HRE and the TATA-box. The DNA sequencing and restriction enzyme digestion results indicated that the AAV regulated by hypoxic-responsive element was successfully constructed. Compared to the control group, the expressions of 6×His was significantly increased in the experimental groups in hypoxia environment, which confirmed that the AAV effectually regulated by the minimal HRE was inserted into anterior extremity of CMV promoter. The HRE is inserted into anterior extremity of CMV promoter to lack incision enzyme recognition site by PCR. And eukaryotic expression vector regulated by hypoxic-responsive is constructed. The AAV effectually regulated by the minimal HRE inserted into anterior extremity of CMV promoter. The vector is successfully constructed and it has important theoretical and practical value in the synteresis and therapy of ischemia angiocardiopathy and cerebrovascular disease.
Extreme Events and Disaster Risk Reduction - a Future Earth KAN initiative
NASA Astrophysics Data System (ADS)
Frank, Dorothea; Reichstein, Markus
2017-04-01
The topic of Extreme Events in the context of global environmental change is both a scientifically challenging and exciting topic, and of very high societal relevance. The Future Earth Cluster initiative E3S organized in 2016 a cross-community/co-design workshop on Extreme Events and Environments from Climate to Society (http://www.e3s-future-earth.eu/index.php/ConferencesEvents/ConferencesAmpEvents). Based on the results, co-design research strategies and established network of the workshop, and previous activities, E3S is thriving to establish the basis for a longer-term research effort under the umbrella of Future Earth. These led to an initiative for a Future Earth Knowledge Action Network on Extreme Events and Disaster Risk Reduction. Example initial key question in this context include: What are meaningful indices to describe and quantify impact-relevant (e.g. climate) extremes? Which system properties yield resistance and resilience to extreme conditions? What are the key interactions between global urbanization processes, extreme events, and social and infrastructure vulnerability and resilience? The long-term goal of this KAN is to contribute to enhancing the resistance, resilience, and adaptive capacity of socio-ecological systems across spatial, temporal and institutional scales, in particular in the light of hazards affected by ongoing environmental change (e.g. climate change, global urbanization and land use/land cover change). This can be achieved by enhanced understanding, prediction, improved and open data and knowledge bases for detection and early warning decision making, and by new insights on natural and societal conditions and governance for resilience and adaptive capacity.
An unusual archosaurian from the marine Triassic of China
NASA Astrophysics Data System (ADS)
Li, Chun; Wu, Xiao-Chun; Cheng, Yen-Nien; Sato, Tamaki; Wang, Liting
2006-04-01
A new Triassic archosaurian from China shows a number of aquatic specializations, of which the most striking is the extreme lateral compression of the long tail. Others that may also reflect aquatic adaptations include platelike scapula and coracoid, elongate neck with extremely long and slender ribs, and reduction of osteoderms. In contrast, its pelvic girdle and hind limb have no aquatic modifications. Anatomic features, taphonomy, and local geological data suggest that it may have lived in a coastal-island environment. This lifestyle, convergent with some Jurassic marine crocodyliforms that lived at least 40 million years later and the saltwater species of extant Crocodylus, contradicts with the prevailing view that Triassic archosaurians were restricted to nonmarine ecosystems. Its mosaic anatomy represents a previously unknown ecomorph within primitive archosaurians.
Shoulder injuries from alpine skiing and snowboarding. Aetiology, treatment and prevention.
Kocher, M S; Dupré, M M; Feagin, J A
1998-03-01
There has been a decrease in the overall injury rate and the rate of lower extremity injuries for alpine skiing, with a resultant increase in the ratio of upper extremity to lower extremity injuries. Upper extremity injuries account for 20 to 35% of all injuries during alpine skiing and nearly 50% of all injuries during snowboarding. The most common upper extremity injuries during skiing are sprain of the thumb metacarpal-phalangeal joint ulnar collateral ligament, and the most common in snowboarding is wrist fracture. Shoulder injuries from skiing and snowboarding have been less well characterised. With the increased ratio of upper to lower extremity injuries during alpine skiing and the boom in popularity of snowboarding, shoulder injuries will be seen with increasing frequency by those who care for alpine sport injuries. Shoulder injuries account for 4 to 11% of all alpine skiing injuries and 22 to 41% of upper extremity injuries. The rate of shoulder injuries during alpine skiing is 0.2 to 0.5 injuries per thousand skier-days. During snowboarding, shoulder injuries account for 8 to 16% of all injuries and 20 to 34% of upper extremity injuries. Falls are the most common mechanism of shoulder injury, in addition to pole planting during skiing and aerial manoeuvres during snowboarding. Common shoulder injuries during skiing and snowboarding are glenohumeral instability, rotator cuff strains, acromioclavicular separations and clavicle fractures. Less common shoulder injuries include greater tuberosity fractures, trapezius strains, proximal humerus fractures, biceps strains, glenoid fractures, scapula fractures, humeral head fractures, sterno-clavicular separations, acromion fractures and biceps tendon dislocation. Prevention of shoulder injuries during skiing and snowboarding may be possible through interventions in education and technique, conditioning and equipment and environment.
Functional studies in 79-year-olds. II. Upper extremity function.
Lundgren-Lindquist, B; Sperling, L
1983-01-01
As part of the Gerontological and Geriatric Population Study of 79-year-old people in Göteborg, a representative subsample comprising 112 women and 93 men took part in a study of upper extremity function. Thirty-eight per cent of the women and 37% of the men had disorders in the upper extremities. The investigation included tests of co-ordination, static strength in the key-grip and the transversal volar grip, power capacity in opening jars and a bottle, basal movements in the upper extremities in personal hygiene and dressing activities, function in the kitchen e.g. reaching shelves, manual tasks including tests of pronation and supination of the forearm. In the key-grip as well as in the transversal volar grip men showed a generally larger decrease in strength with age than women compared to 70-year-olds in a previous population study. Significant correlations were found between strength in the key-grip and the performance time in the test of co-ordination. Women produced about 66% of the muscular force of the men when opening jars. Significant correlations were found between strength in the transversal volar grip and the maximal torque for opening the jars. Female and male subjects who were not capable of handling the electric plug in the manual ability test had significantly weaker strength in the key-grip. The importance of designing products and adapting the environment so as to correspond to the functional capacity of the elderly, is emphasized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
"The Behavior of Hydrogen Under Extreme Conditions on Ultrafast Timescales" was submitted by the Center for Energy Frontier Research in Extreme Environments (EFree) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. EFree is directed by Ho-kwang Mao at the Carnegie Institute of Science in Washington, DC and is a partnership of scientists from thirteen institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office ofmore » Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Energy Frontier Research in Extreme Environments is 'to accelerate the discovery and creation of energy-relevant materials using extreme pressures and temperatures.' Research topics are: catalysis (CO2, water), photocatalysis, solid state lighting, optics, thermelectric, phonons, thermal conductivity, solar electrodes, fuel cells, superconductivity, extreme environment, radiation effects, defects, spin dynamics, CO2 (capture, convert, store), greenhouse gas, hydrogen (fuel, storage), ultrafast physics, novel materials synthesis, and defect tolerant materials.« less
Adaptive Tunable Laser Spectrometer for Space Applications
NASA Technical Reports Server (NTRS)
Flesch, Gregory; Keymeulen, Didier
2010-01-01
An architecture and process for the rapid prototyping and subsequent development of an adaptive tunable laser absorption spectrometer (TLS) are described. Our digital hardware/firmware/software platform is both reconfigurable at design time as well as autonomously adaptive in real-time for both post-integration and post-launch situations. The design expands the range of viable target environments and enhances tunable laser spectrometer performance in extreme and even unpredictable environments. Through rapid prototyping with a commercial RTOS/FPGA platform, we have implemented a fully operational tunable laser spectrometer (using a highly sensitive second harmonic technique). With this prototype, we have demonstrated autonomous real-time adaptivity in the lab with simulated extreme environments.
Extreme Geohazards: Reducing the Disaster Risk and Increasing Resilience
NASA Astrophysics Data System (ADS)
Plag, Hans-Peter; Stein, Seth; Brocklebank, Sean; Jules-Plag, Shelley; Marsh, Stuart; Campus, Paola
2013-04-01
Extreme geohazards have the potential to escalate the global sustainability crisis and put us close to the boundaries of the safe operating space for humanity. Exposure of human assets to geohazards has increased dramatically in recent decades, and the sensitivity of the built environment and the embedded socio-economic fabric have changed. We are putting the urban environment, including megacities, in harm's way. Paradoxically, innovation during recent decades, in particular, urban innovation, has increased the disaster risk and coupled this risk to the sustainability crisis. Only more innovation can reduce disaster risk and lead us out of the sustainability crisis. Extreme geohazards (volcanic eruptions, earthquakes, tsunamis) that occurred regularly throughout the last few millennia mostly did not cause major disasters because population density was low and the built environment was not sprawling into hazardous areas to the same extent as today. Similar extreme events today would cause unparalleled damage on a global scale and could worsen the sustainability crisis. Simulation of these extreme hazards under present conditions can help to assess the disaster risk. The Geohazards Community of Practice of the Group on Earth Observations (GEO) with support from the European Science Foundation is preparing a white paper assessing the contemporary disaster risks associated with extreme geohazards and developing a vision for science and society to engage in deliberations addressing this risk (see http://www.geohazcop.org/projects/extgeowp). Risk awareness and monitoring is highly uneven across the world, and this creates two kinds of problems. Firstly, potential hazards are much more closely monitored in wealthy countries than in the developing world. But the largest hazards are global in nature, and it is critical to get as much forewarning as possible to develop an effective response. The disasters and near-misses of the past show that adherence to scientific knowledge, particularly during the early warning phase, can reduce disasters. This suggests that a strong global monitoring system for geohazards is needed, not least to support the early detection of extreme hazards. Secondly, low risk awareness combined with poverty, corruption, and a lack of building codes and informed land use management creates the conditions to turn hazards into disasters throughout much of the developing world. Democratizing knowledge about extreme geohazards is very important in order to inform deliberations of disaster risks and community strategies that can reduce the disaster risk by increasing resilience and adaptive capacities without compromising the livelihood of communities. We use a four-order scheme to define disaster risk outcomes and associated societal processes. This framework can be implemented in the context of deliberative democracy and governance with participation of the community. The current dialog between science and society is not fully capable of supporting deliberative governance and a democratizing of knowledge. Most scientific knowledge is created independent of those who could put it to use, and a transition to co-design and co-development of knowledge involving a broad stakeholder base is necessary to address the disaster risk associated with extreme events. This transition may have the consequence of more responsibility and even liability for science.
Sleeve reaction chamber system
Northrup, M Allen [Berkeley, CA; Beeman, Barton V [San Mateo, CA; Benett, William J [Livermore, CA; Hadley, Dean R [Manteca, CA; Landre, Phoebe [Livermore, CA; Lehew, Stacy L [Livermore, CA; Krulevitch, Peter A [Pleasanton, CA
2009-08-25
A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.
The R-Shell approach - Using scheduling agents in complex distributed real-time systems
NASA Technical Reports Server (NTRS)
Natarajan, Swaminathan; Zhao, Wei; Goforth, Andre
1993-01-01
Large, complex real-time systems such as space and avionics systems are extremely demanding in their scheduling requirements. The current OS design approaches are quite limited in the capabilities they provide for task scheduling. Typically, they simply implement a particular uniprocessor scheduling strategy and do not provide any special support for network scheduling, overload handling, fault tolerance, distributed processing, etc. Our design of the R-Shell real-time environment fcilitates the implementation of a variety of sophisticated but efficient scheduling strategies, including incorporation of all these capabilities. This is accomplished by the use of scheduling agents which reside in the application run-time environment and are responsible for coordinating the scheduling of the application.
Removing Spilled Oil With Liquid Nitrogen
NASA Technical Reports Server (NTRS)
Snow, Daniel B.
1991-01-01
Technique proposed to reduce more quickly, contain, clean up, and remove petroleum products and such other pollutants as raw sewage and chemicals without damage to humans, animals, plants, or the environment. Unique and primary aspect of new technique is use of cryogenic fluid to solidify spill so it can be carried away in solid chunks. Liquid nitrogen (LN2), with boiling point at -320 degrees F (-196 degrees C), offers probably best tradeoff among extreme cold, cost, availability, and lack of impact on environment among various cryogenic fluids available. Other applications include extinguishing fires at such locations as oil derricks or platforms and at tank farms containing such petroleum products as gasoline, diesel fuel, and kerosene.
The vulnerability of commercial aircraft avionics to carbon fibers
NASA Technical Reports Server (NTRS)
Meyers, J. A.; Salmirs, S.
1980-01-01
Avionics components commonly used in commercial aircraft were tested for vulnerability to failure when operated in an environment with a high density of graphite fibers. The components were subjected to a series of exposures to graphite fibers of different lengths. Lengths used for the tests were (in order) 1 mm, 3 mm, and 10 mm. The test procedure included subjecting the equipment to characteristic noise and shock environments. Most of the equipment was invulnerable or did not fail until extremely high average exposures were reached. The single exception was an air traffic control transponder produced in the early 1960's. It had the largest case open area through which fibers could enter and it had no coated boards.
Technology Developments in Radiation-Hardened Electronics for Space Environments
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Howell, Joe T.
2008-01-01
The Radiation Hardened Electronics for Space Environments (RHESE) project consists of a series of tasks designed to develop and mature a broad spectrum of radiation hardened and low temperature electronics technologies. Three approaches are being taken to address radiation hardening: improved material hardness, design techniques to improve radiation tolerance, and software methods to improve radiation tolerance. Within these approaches various technology products are being addressed including Field Programmable Gate Arrays (FPGA), Field Programmable Analog Arrays (FPAA), MEMS, Serial Processors, Reconfigurable Processors, and Parallel Processors. In addition to radiation hardening, low temperature extremes are addressed with a focus on material and design approaches. System level applications for the RHESE technology products are discussed.
Hemispheric and Topographic Asymmetry of Magnetospheric Particle Irradiation for Icy Moon Surfaces
NASA Technical Reports Server (NTRS)
Cooper, John F.; Sturner, S. J.
2007-01-01
All surfaces of icy moons without significant atmospheres, i.e. all except Titan in the giant planet systems, are irradiated by hot plasma and more energetic charged particles from the local magnetospheric environments. This irradiation can significantly impact the chemical composition, albedo, and detectable presence of signs of life on the sensible surfaces, while also limiting lifetimes and science operations of orbital spacecraft for extreme radiation environments as at Europa. Planning of surface remote sensing and lander operations, and interpretation of remote sensing and in-situ measurements, should include consideration of natural shielding afforded by the body of the moon, by any intrinsic or induced magnetic fields as at Ganyrnede, and by topographic structures.
NASA's Hybrid Reality Lab: One Giant Leap for Full Dive
NASA Technical Reports Server (NTRS)
Delgado, Francisco J.; Noyes, Matthew
2017-01-01
This presentation demonstrates how NASA is using consumer VR headsets, game engine technology and NVIDIA's GPUs to create highly immersive future training systems augmented with extremely realistic haptic feedback, sound, additional sensory information, and how these can be used to improve the engineering workflow. Include in this presentation is an environment simulation of the ISS, where users can interact with virtual objects, handrails, and tracked physical objects while inside VR, integration of consumer VR headsets with the Active Response Gravity Offload System, and a space habitat architectural evaluation tool. Attendees will learn how the best elements of real and virtual worlds can be combined into a hybrid reality environment with tangible engineering and scientific applications.
Hurdles to Overcome to Model Carrington Class Events
NASA Astrophysics Data System (ADS)
Engel, M.; Henderson, M. G.; Jordanova, V. K.; Morley, S.
2017-12-01
Large geomagnetic storms pose a threat to both space and ground based infrastructure. In order to help mitigate that threat a better understanding of the specifics of these storms is required. Various computer models are being used around the world to analyze the magnetospheric environment, however they are largely inadequate for analyzing the large and extreme storm time environments. Here we report on the first steps towards expanding and robustifying the RAM-SCB inner magnetospheric model, used in conjunction with BATS-R-US and the Space Weather Modeling Framework, in order to simulate storms with Dst > -400. These results will then be used to help expand our modelling capabilities towards including Carrington-class events.
Heatshield for Extreme Entry Environment Technology (HEEET) for Missions to Saturn and Beyond
NASA Technical Reports Server (NTRS)
Ellerby, D.; Blosser, M.; Chinnapongse, R.; Fowler, M.; Gasch, M.; Hamm, K.; Kazemba, C.; Ma, J.; Milos, F.; Nishioka, O.;
2015-01-01
This poster provides an overview of the requirements, design, development and testing of the 3D Woven TPS being developed under NASAs Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a Thermal Protection System (TPS) capable of surviving entry into Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017.
NASA Technical Reports Server (NTRS)
Ellerby, D.; Beerman, A.; Blosser, M.; Boghozian, T.; Chavez-Garcia, J.; Chinnapongse, R.; Fowler, M.; Gage, P.; Gasch, M.; Gonzales, G.;
2015-01-01
This poster provides an overview of the requirements, design, development and testing of the 3D Woven TPS being developed under NASA's Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a Thermal Protection System (TPS) capable of surviving entry into Venus or Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017.
NASA Technical Reports Server (NTRS)
Ellerby, D.; Beerman, A.; Blosser, M.; Boghozian, T.; Chavez-Garcia, J.; Chinnapongse, R.; Fowler, M.; Gage, P.; Gasch, M.; Gonzaes, G.;
2015-01-01
This poster provides an overview of the requirements, design, development and testing of the 3D Woven TPS being developed under NASAs Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a Thermal Protection System (TPS) capable of surviving entry into Venus or Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017.
NASA Technical Reports Server (NTRS)
Ellerby, D.; Blosser, M.; Boghozian, T.; Chavez-Garcia, J.; Chinnapongse, R.; Fowler, M.; Gage, P.; Gasch, M.; Gonzales, G.; Hamm, K.;
2016-01-01
This poster provides an overview of the requirements, design, development and testing of the 3D Woven TPS being developed under NASA's Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a Thermal Protection System (TPS) capable of surviving entry into Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017.
Heatshield for Extreme Entry Environment Technology (HEEET) Development and Maturation Status
NASA Technical Reports Server (NTRS)
Ellerby, D.; Boghozian, T.; Driver, D.; Chavez-Garcia, J.; Fowler, M.; Gage, P.; Gasch, M.; Gonzales, G.; Kazemba, C.; Kellermann, C.;
2018-01-01
This poster provides an overview of the requirements, design, development and testing of the 3D (Three Dimensional) Woven TPS (Thermal Protection System) being developed under NASA's Heatshield for Extreme Entry Environment Technology (HEEET) project. Under this current program, NASA is working to develop a TPS capable of surviving entry into Saturn. A primary goal of the project is to build and test an Engineering Test Unit (ETU) to establish a Technical Readiness Level (TRL) of 6 for this technology by 2017.
STRUCTURAL SCALE LIFE PREDICTION OF AERO STRUCTURES EXPERIENCING COMBINED EXTREME ENVIRONMENTS
2017-07-01
representation is converted into a tetrahedral FE mesh using the software DREAM .3D. Due to a special voxel-identification scheme the FE mesh includes...research team met with DREAM .3D developers at AFRL (Drs. Mike Groeber and Sean Donegan) to discuss possible solutions. Together, the group proposed the...development of a DREAM .3D extension that can leverage the topological data structure within DREAM .3D instead of relying on an image-based
1992-05-01
programs has not been effectively accomplished. We can ascertain to a meaningful degree the impact of various types of stress (e.g. heat and work ...that this would produce an effective cross-pollination effect , as panel and panel member work inspired others not directly associated with the effort...include: 1. It has the least flexibility to political sensitivities. 2. There is structural inflexibility in format arrangements . 3. It is easiest to
Latin America and the Caribbean: Issues for the 109th Congress
2005-05-26
Dominican tax on drinks containing high fructose corn syrup , a major U.S. product, that had threatened the country’s chances of being included in the U.S...has complained about Mexico’s 20% tax on soft drinks made with high fructose corn syrup (HFCS), with devastating impact on HFCS sales. Under...unstable political environment. In Peru, President Alejandro Toledo remains extremely unpopular, but the economy has continued to grow at high levels
U.S. Army Corrosion Office's storage and quality requirements for military MEMS program
NASA Astrophysics Data System (ADS)
Zunino, J. L., III; Skelton, D. R.
2007-04-01
As the Army transforms into a more lethal, lighter and agile force, the technologies that support these systems must decrease in size while increasing in intelligence. Micro-electromechanical systems (MEMS) are one such technology that the Army and DOD will rely on heavily to accomplish these objectives. Conditions for utilization of MEMS by the military are unique. Operational and storage environments for the military are significantly different than those found in the commercial sector. Issues unique to the military include; high G-forces during gun launch, extreme temperature and humidity ranges, extended periods of inactivity (20 years plus) and interaction with explosives and propellants. The military operational environments in which MEMS will be stored or required to function are extreme and far surpass any commercial operating conditions. Security and encryption are a must for all MEMS communication, tracking, or data reporting devices employed by the military. Current and future military applications of MEMS devices include safety and arming devices, fuzing devices, various guidance systems, sensors/detectors, inertial measurement units, tracking devices, radio frequency devices, wireless Radio Frequency Identifications (RFIDs) and network systems, GPS's, radar systems, mobile base systems and information technology. MEMS embedded into these weapons systems will provide the military with new levels of speed, awareness, lethality, and information dissemination. The system capabilities enhanced by MEMS will translate directly into tactical and strategic military advantages.
NASA Astrophysics Data System (ADS)
Ramesham, Rajeshuni
2013-03-01
Life testing/qualification of reflowed (1st reflow) and reworked (1st reflow, 1st removal, and then 1st rework) advanced ceramic column grid array (CCGA) surface mount interconnect electronic packaging technologies for future flight projects has been studied to enhance the mission assurance of JPL-NASA projects. The reliability of reworked/reflowed surface mount technology (SMT) packages is very important for short-duration and long-duration deep space harsh extreme thermal environmental missions. The life testing of CCGA electronic packages under extreme thermal environments (for example: -185°C to +125°C) has been performed with reference to various JPL/NASA project requirements which encompass the temperature range studied. The test boards of reflowed and reworked CCGA packages (717 Xilinx package, 624, 1152, and 1272 column Actel Packages) were selected for the study to survive three times the total number of expected temperature cycles resulting from all environmental and operational exposures occurring over the life of the flight hardware including all relevant manufacturing, ground operations, and mission phases or cycles to failure to assess the life of the hardware. Qualification/life testing was performed by subjecting test boards to the environmental harsh temperature extremes and assessing any structural failures, mechanical failures or degradation in electrical performance solder-joint failures due to either overstress or thermal cycle fatigue. The large, high density, high input/output (I/O) electronic interconnect SMT packages such as CCGA have increased usage in avionics hardware of NASA projects during the last two decades. The test boards built with CCGA packages are expensive and often require a rework to replace a reflowed, reprogrammed, failed, redesigned, etc., CCGA packages. Theoretically speaking, a good rework process should have similar temperature-time profile as that used for the original manufacturing process of solder reflow. A multiple rework processes may be implemented with CCGA packaging technology to understand the effect of number of reworks on the reliability of this technology for harsh thermal environments. In general, reliability of the assembled electronic packages reduces as a function of number of reworks and the extent is not known yet. A CCGA rework process has been tried and implemented to design a daisy-chain test board consists of 624 and 717 packages. Reworked CCGA interconnect electronic packages of printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging and optical microscope techniques. The assembled boards after 1st rework and 1st reflow were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space JPL/NASA for moderate to harsh thermal mission environments. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling to determine intermittent failures. This paper provides the experimental reliability test results to failure of assemblies for the first time of reflowed and reworked CCGA packages under extreme harsh thermal environments.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 29 2013-07-01 2013-07-01 false Which threshold planning quantity do I use for an extremely hazardous substance present at my facility in solid form? 355.15 Section 355.15... § 355.15 Which threshold planning quantity do I use for an extremely hazardous substance present at my...
Radiation and Thermal Cycling Effects on EPC1001 Gallium Nitride Power Transistors
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Scheick, Leif Z.; Lauenstein, Jean M.; Casey, Megan C.; Hammoud, Ahmad
2012-01-01
Electronics designed for use in NASA space missions are required to work efficiently and reliably under harsh environment conditions. These include radiation, extreme temperatures, and thermal cycling, to name a few. Information pertaining to performance of electronic parts and systems under hostile environments is very scarce, especially for new devices. Such data is very critical so that proper design is implemented in order to ensure mission success and to mitigate risks associated with exposure of on-board systems to the operational environment. In this work, newly-developed enhancement-mode field effect transistors (FET) based on gallium nitride (GaN) technology were exposed to various particles of ionizing radiation and to long-term thermal cycling over a wide temperature range. Data obtained on control (un-irradiated) and irradiated samples of these power transistors are presented and the results are discussed.
Bio-inspired Computing for Robots
NASA Technical Reports Server (NTRS)
Laufenberg, Larry
2003-01-01
Living creatures may provide algorithms to enable active sensing/control systems in robots. Active sensing could enable planetary rovers to feel their way in unknown environments. The surface of Jupiter's moon Europa consists of fractured ice over a liquid sea that may contain microbes similar to those on Earth. To explore such extreme environments, NASA needs robots that autonomously survive, navigate, and gather scientific data. They will be too far away for guidance from Earth. They must sense their environment and control their own movements to avoid obstacles or investigate a science opportunity. To meet this challenge, CICT's Information Technology Strategic Research (ITSR) Project is funding neurobiologists at NASA's Jet Propulsion Laboratory (JPL) and selected universities to search for biologically inspired algorithms that enable robust active sensing and control for exploratory robots. Sources for these algorithms are living creatures, including rats and electric fish.
The Impact of Oxidative Stress on the Bone System in Response to the Space Special Environment.
Tian, Ye; Ma, Xiaoli; Yang, Chaofei; Su, Peihong; Yin, Chong; Qian, Ai-Rong
2017-10-12
The space special environment mainly includes microgravity, radiation, vacuum and extreme temperature, which seriously threatens an astronaut's health. Bone loss is one of the most significant alterations in mammalians after long-duration habitation in space. In this review, we summarize the crucial roles of major factors-namely radiation and microgravity-in space in oxidative stress generation in living organisms, and the inhibitory effect of oxidative stress on bone formation. We discussed the possible mechanisms of oxidative stress-induced skeletal involution, and listed some countermeasures that have therapeutic potentials for bone loss via oxidative stress antagonism. Future research for better understanding the oxidative stress caused by space environment and the development of countermeasures against oxidative damage accordingly may facilitate human beings to live more safely in space and explore deeper into the universe.
The Impact of Oxidative Stress on the Bone System in Response to the Space Special Environment
Tian, Ye; Ma, Xiaoli; Yang, Chaofei; Su, Peihong; Yin, Chong
2017-01-01
The space special environment mainly includes microgravity, radiation, vacuum and extreme temperature, which seriously threatens an astronaut’s health. Bone loss is one of the most significant alterations in mammalians after long-duration habitation in space. In this review, we summarize the crucial roles of major factors—namely radiation and microgravity—in space in oxidative stress generation in living organisms, and the inhibitory effect of oxidative stress on bone formation. We discussed the possible mechanisms of oxidative stress-induced skeletal involution, and listed some countermeasures that have therapeutic potentials for bone loss via oxidative stress antagonism. Future research for better understanding the oxidative stress caused by space environment and the development of countermeasures against oxidative damage accordingly may facilitate human beings to live more safely in space and explore deeper into the universe. PMID:29023398
Investigating Extreme Lifestyles through Mangrove Transcriptomics
ERIC Educational Resources Information Center
Dassanayake, Maheshi
2009-01-01
Mangroves represent phylogenetically diverse taxa in tropical coastal terrestrial habitats. They are extremophiles, evolutionarily adapted to tolerate flooding, anoxia, high temperatures, wind, and high and extremely variable salt conditions in typically resource-poor environments. The genetic basis for these adaptations is, however, virtually…
Mack, Jeremy S.; Berry, Kristin H.; Miller, David; Carlson, Andrea S.
2015-01-01
Agassiz's Desert Tortoises (Gopherus agassizii) spend >95% of their lives underground in cover sites that serve as thermal buffers from temperatures, which can fluctuate >40°C on a daily and seasonal basis. We monitored temperatures at 30 active tortoise cover sites within the Soda Mountains, San Bernardino County, California, from February 2004 to September 2006. Cover sites varied in type and structural characteristics, including opening height and width, soil cover depth over the opening, aspect, tunnel length, and surficial geology. We focused our analyses on periods of extreme temperature: in summer, between July 1 and September 1, and winter, between November 1 and February 15. With the use of multivariate regression tree analyses, we found cover-site temperatures were influenced largely by tunnel length and subsequently opening width and soil cover. Linear regression models further showed that increasing tunnel length increased temperature stability and dampened seasonal temperature extremes. Climate change models predict increased warming for southwestern North America. Cover sites that buffer temperature extremes and fluctuations will become increasingly important for survival of tortoises. In planning future translocation projects and conservation efforts, decision makers should consider habitats with terrain and underlying substrate that sustain cover sites with long tunnels and expanded openings for tortoises living under temperature extremes similar to those described here or as projected in the future.
... the smell. There are more smells in the environment than there are receptors, and any given molecule ... sensory nerve cells. Understand the effects of the environment (such as gasoline fumes, chemicals, and extremes of ...
Thermal stress, human performance, and physical employment standards.
Cheung, Stephen S; Lee, Jason K W; Oksa, Juha
2016-06-01
Many physically demanding occupations in both developed and developing economies involve exposure to extreme thermal environments that can affect work capacity and ultimately health. Thermal extremes may be present in either an outdoor or an indoor work environment, and can be due to a combination of the natural or artificial ambient environment, the rate of metabolic heat generation from physical work, processes specific to the workplace (e.g., steel manufacturing), or through the requirement for protective clothing impairing heat dissipation. Together, thermal exposure can elicit acute impairment of work capacity and also chronic effects on health, greatly contributing to worker health risk and reduced productivity. Surprisingly, in most occupations even in developed economies, there are rarely any standards regarding enforced heat or cold safety for workers. Furthermore, specific physical employment standards or accommodations for thermal stressors are rare, with workers commonly tested under near-perfect conditions. This review surveys the major occupational impact of thermal extremes and existing employment standards, proposing guidelines for improvement and areas for future research.
Extremophiles in Household Water Heaters
NASA Astrophysics Data System (ADS)
Wilpiszeski, R.; House, C. H.
2016-12-01
A significant fraction of Earth's microbial diversity comes from species living in extreme environments, but natural extreme environments can be difficult to access. Manmade systems like household water heaters serve as an effective proxy for thermophilic environments that are otherwise difficult to sample directly. As such, we are investigating the biogeography, taxonomic distribution, and evolution of thermophiles growing in domestic water heaters. Citizen scientists collected hot tap water culture- and filter- samples from 101 homes across the United States. We recovered a single species of thermophilic heterotroph from culture samples inoculated from water heaters across the United States, Thermus scotoductus. Whole-genome sequencing was conducted to better understand the distribution and evolution of this single species. We have also sequenced hyper-variable regions of the 16S rRNA gene from whole-community filter samples to identify the broad diversity and distribution of microbial cells captured from each water heater. These results shed light on the processes that shape thermophilic populations and genomes at a spatial resolution that is difficult to access in naturally occurring extreme ecosystems.
A Silicon Carbide Wireless Temperature Sensing System for High Temperature Applications
Yang, Jie
2013-01-01
In this article, an extreme environment-capable temperature sensing system based on state-of-art silicon carbide (SiC) wireless electronics is presented. In conjunction with a Pt-Pb thermocouple, the SiC wireless sensor suite is operable at 450 °C while under centrifugal load greater than 1,000 g. This SiC wireless temperature sensing system is designed to be non-intrusively embedded inside the gas turbine generators, acquiring the temperature information of critical components such as turbine blades, and wirelessly transmitting the information to the receiver located outside the turbine engine. A prototype system was developed and verified up to 450 °C through high temperature lab testing. The combination of the extreme temperature SiC wireless telemetry technology and integrated harsh environment sensors will allow for condition-based in-situ maintenance of power generators and aircraft turbines in field operation, and can be applied in many other industries requiring extreme environment monitoring and maintenance. PMID:23377189
Evaluation of Potential Climate Change Impacts on Particle Movement in Open Channel Flow
NASA Astrophysics Data System (ADS)
Lin, E.; Tsai, C.
2014-12-01
It is important to develop a forecast model to predict the trajectory of sediment particles when extreme flow events occur. In extreme flow environments, the stochastic jump diffusion particle tracking model (SJD-PTM) can be used to model the movement of sediment particles in response to extreme events. This proposed SJD-PTM can be separated into three main parts — a drift motion, a turbulence term and a jump term due to random occurrences of extreme flow events. The study is intended to modify the jump term, which models the abrupt changes of particle position in the extreme flow environments. The frequency of extreme flow occurrences might change due to many uncertain factors such as climate change. The study attempts to use the concept of the logistic regression and the parameter of odds ratio, namely the trend magnitude to investigate the frequency change of extreme flow event occurrences and its impact on sediment particle movement. With the SJD-PTM, the ensemble mean and variance of particle trajectory can be quantified via simulations. The results show that by taking the effect of the trend magnitude into consideration, the particle position and its uncertainty may undergo a significant increase. Such findings will have many important implications to the environmental and hydraulic engineering design and planning. For instance, when the frequency of the occurrence of flow events with higher extremity increases, particles can travel further and faster downstream. It is observed that flow events with higher extremity can induce a higher degree of entrainment and particle resuspension, and consequently more significant bed and bank erosion.
Effects of service environments on aluminum-brazed titanium (ABTi)
NASA Technical Reports Server (NTRS)
Cotton, W. L.
1978-01-01
Aluminum brazed titanium (ABTi) structures were evaluated during prolonged exposure to extreme environments: elevated temperature exposure to airline service fluids, hydraulic fluid, and seawater, followed by laboratory corrosion tests. Solid-face and perforated face honeycomb sandwich panel specimens, stressed panel assemblies, and faying surface brazed joints were tested. The corrosion resistance of ABTi is satisfactory for commercial airline service. Unprotected ABTi proved inherently resistant to attack by all of the extreme service aircraft environments except: seawater at 700 K (800 F) and above, dripping phosphate ester hydraulic fluid at 505 K (450 F), and a marine environment at ambient temperature. The natural oxides and deposits present on titanium surfaces in airline service provide protection against hot salt corrosion pitting. Coatings are required to protect titanium dripping phosphate ester fluid at elevated temperatures and to protect exposed acoustic honeycomb parts against corrosion in a marine environment.
Endolithic microniches support habitability
NASA Astrophysics Data System (ADS)
Gómez, F.; Rodríguez, N.; Rodríguez-Manfredi, J. A.; Fernández-Sampedro, M.; Amils, R.
2013-09-01
Particular micro-niches on extreme environments give us some clues about the habitability potential under protected environments with important connotations from an astrobiological point of view [1]. The salts precipitation patters in extreme environments can contribute to biomineralization processes which could be of special interest for organics but also life preservation on environmental harsh conditions. These "oasys" for organics and/or life forms are of special as trobiological interest and should attract our attention in other planets and we should be looking for it during rover exploration missions. Endolithic micro niches in Rio Tinto salts precipitates determine controlled scenarios where phototrops develop under controlled conditions. Rio Tinto, 100 km river located at South West of Spain, is being taken as a well reported Mars analog due to the similarities in the mineralogy of the system which that reported by MER Opportunity Rover missions which landed in Meridiani Planum where sedimentary deposits have been identified in different craters [2]. Interesting multi layered salty deposits were identified in Rio Tinto source area where endolithic micro niches were settled [3]. Green layers appear included in brown stratified salt precipitates. The crust deposit was between 5 mm and 1 cm width. The layered structure is deposited over rocks or over man made structures as dam or mining tunnels walls but always in places with specific environmental characteristics. It appears in not direct Sun light exposed places (shadow side of walls) with thermal and pH stability.
Deadman, J E; Infante-Rivard, C
2002-02-15
Exposures to extremely low frequency (ELF) magnetic fields have not been documented extensively in occupations besides the work environments of electric or telephone utilities. A 1980-1993 study of childhood acute lymphoblastic leukemia (ALL) in Québec, Canada, gathered detailed information about the occupations of 491 mothers of ALL cases and mothers of a similar number of healthy controls. This information was combined with published data on the intensities of ELF magnetic fields associated with sources or work environments to estimate ELF magnetic field exposures for a wide range of jobs commonly held by women. Estimated exposures for 61 job categories ranged from 0.03 to 0.68 microT; the 25th, 50th, and 75th percentiles were 0.135, 0.17, and 0.23 microT, respectively. By job category, the most highly exposed jobs (>0.23 microT) included bakery worker, cashier, cook and kitchen worker, electronics worker, residential and industrial sewing machine operator, and textile machine operator. By work environment, the most highly exposed job categories were electronics worker in an assembly plant (0.70 microT) and sewing machine operators in a textile factory (0.68 microT) and shoe factory (0.66 microT). These results provide new information on expected levels of exposure in a wide range of jobs commonly held by women.
Bounding Extreme Spacecraft Charging in the Lunar Environment
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Parker, Linda N.
2008-01-01
Robotic and manned spacecraft from the Apollo era demonstrated that the lunar surface in daylight will charge to positive potentials of a few tens of volts because the photoelectron current dominates the charging process. In contrast, potentials of the lunar surface in darkness which were predicted to be on the order of a hundred volts negative in the Apollo era have been shown more recently to reach values of a few hundred volts negative with extremes on the order of a few kilovolts. The recent measurements of night time lunar surface potentials are based on electron beams in the Lunar Prospector Electron Reflectometer data sets interpreted as evidence for secondary electrons generated on the lunar surface accelerated through a plasma sheath from a negatively charged lunar surface. The spacecraft potential was not evaluated in these observations and therefore represents a lower limit to the magnitude of the lunar negative surface potential. This paper will describe a method for obtaining bounds on the magnitude of lunar surface potentials from spacecraft measurements in low lunar orbit based on estimates of the spacecraft potential. We first use Nascap-2k surface charging analyses to evaluate potentials of spacecraft in low lunar orbit and then include the potential drops between the ambient space environment and the spacecraft to the potential drop between the lunar surface and the ambient space environment to estimate the lunar surface potential from the satellite measurements.
NASA Technical Reports Server (NTRS)
Pearson, S. D.; Vaughan, W. W.; Batts, G. W.; Jasper, G. L.
1996-01-01
The terrestrial environment is an important forcing function in the design and development of the launch vehicle. The scope of the terrestrial environment includes the following phenomena: Winds; Atmospheric Thermodynamic Models and Properties; Thermal Radiation; U.S. and World Surface Environment Extremes; Humidity; Precipitation, Fog, and Icing; Cloud Characteristics and Cloud Cover Models; Atmospheric Electricity; Atmospheric Constituents; Vehicle Engine Exhaust and Toxic Chemical Release; Occurrences of Tornadoes and Hurricanes; Geological Hazards, and Sea States. One must remember that the flight profile of any launch vehicle is in the terrestrial environment. Terrestrial environment definitions are usually limited to information below 90 km. Thus, a launch vehicle's operations will always be influenced to some degree by the terrestrial environment with which it interacts. As a result, the definition of the terrestrial environment and its interpretation is one of the key launch vehicle design and development inputs. This definition is a significant role, for example, in the areas of structures, control systems, trajectory shaping (performance), aerodynamic heating and take off/landing capabilities. The launch vehicle's capabilities which result from the design, in turn, determines the constraints and flight opportunities for tests and operations.
RADECS Short Course Session I: The Space Radiation Environment
NASA Technical Reports Server (NTRS)
Xapsos, Michael; Bourdarie, Sebastien
2007-01-01
The presented slides and accompanying paper focus on radiation in the space environment. Since space exploration has begun it has become evident that the space environment is a highly aggressive medium. Beyond the natural protection provided by the Earth's atmosphere, various types of radiation can be encountered. Their characteristics (energy and nature), origins and distributions in space are extremely variable. This environment degrades electronic systems and on-board equipment in particular and creates radiobiological hazards during manned space flights. Based on several years of space exploration, a detailed analysis of the problems on satellites shows that the part due to the space environment is not negligible. It appears that the malfunctions are due to problems linked to the space environment, electronic problems, design problems, quality problems, other issues, and unexplained reasons. The space environment is largely responsible for about 20% of the anomalies occurring on satellites and a better knowledge of that environment could only increase the average lifetime of space vehicles. This naturally leads to a detailed study of the space environment and of the effects that it induces on space vehicles and astronauts. Sources of radiation in the space environment are discussed here and include the solar activity cycle, galactic cosmic rays, solar particle events, and Earth radiation belts. Future challenges for space radiation environment models are briefly addressed.
Psychological adaptation and salutogenesis in space: Lessons from a series of studies
NASA Astrophysics Data System (ADS)
Ritsher, J. B.; Kanas, N. A.; Ihle, E. C.; Saylor, S. A.
2007-02-01
Individuals who adapt positively to an inhospitable or extreme environment can derive benefit from their experiences. This positive effect may include an initial improvement in mental health as someone adjusts to the environment (adaptation) as well as more sustained personal growth during the mission (salutogenesis). We review relevant findings from our prior work, including two post-mission surveys of astronauts and cosmonauts, and three studies of crewmembers during missions in a space station simulator, the Mir space station, and the International Space Station (ISS). We also present new analyses showing evidence for adaptation to ISS missions. This finding replicates our previous results from the simulation study, but this effect was not found on the Mir. A better understanding of psychological adaptation and salutogenesis during space flight should help us develop strategies to enhance crewmembers' in-flight stress tolerance and post-flight adjustment.
Rapid thermal cycling of new technology solar array blanket coupons
NASA Technical Reports Server (NTRS)
Scheiman, David A.; Smith, Bryan K.; Kurland, Richard M.; Mesch, Hans G.
1990-01-01
NASA Lewis Research Center is conducting thermal cycle testing of a new solar array blanket technologies. These technologies include test coupons for Space Station Freedom (SSF) and the advanced photovoltaic solar array (APSA). The objective of this testing is to demonstrate the durability or operational lifetime of the solar array interconnect design and blanket technology within a low earth orbit (LEO) or geosynchronous earth orbit (GEO) thermal cycling environment. Both the SSF and the APSA array survived all rapid thermal cycling with little or no degradation in peak performance. This testing includes an equivalent of 15 years in LEO for SSF test coupons and 30 years of GEO plus ten years of LEO for the APSA test coupon. It is concluded that both the parallel gap welding of the SSF interconnects and the soldering of the APSA interconnects are adequately designed to handle the thermal stresses of space environment temperature extremes.
Bacterial community initial development in proglacial soils of Larsemann hill, East Antarctica
NASA Astrophysics Data System (ADS)
Ma, H.; Yan, W.; Shi, G.; Sun, B.; Zhang, Y.; Xiao, X.
2016-12-01
Glacial forefields are considered ideal places to explore how microbial communities will response to climate-driven environmental changes. Our knowledge of how the bacterial community activities and structure was influenced by changing environment due to glacier retreat is still very limited, especially at the initial stage of glacier retreat. The short gradient soil samples including the ice free and ice covered sites were sampled in the forehead of East Antarctica ice sheet, in Larsemann Hills. By employing the Miseq sequencing methods, 1.8 x104 high-quality sequences were gotten for each sample and the bacterial diversity including abundant bacteria and rare bacteria were studied and compared between the gradient samples. Even though in such an extreme stress condition, the bacterial diversity was high. The coefficient of variance between the five sites of abundant group was 0.886 which was higher than that of the top 20 rare group (0.159) significantly (unpaired t test, p-value<0.0001) suggesting that the abundant bacterial communities were more sensitive to the ice sheet change in the initial stage than rare bacteria did. And the abundant bacteria contributed the community structure more than the rare bacteria did. The rare group acted more like seed bank to keep the community functionality in the forehead of sheet. And the ice thickness was the major factor to affect the abundant bacterial community. Given the fact that Antarctica environment was more sensitive to the global warming, the study about abundant and rare bacteria response to condition change will be helpful to precisely predict community response to climate change in polar region. This finding will improve the understanding about the relationship between community structure and environment condition in extreme stress condition.
Martin, Aiden A.; Filevich, Jorge; Straw, Marcus; ...
2017-10-23
Ultra-nanocrystalline diamond (UNCD) is increasingly being used in the fabrication of devices and coatings due to its excellent tribological properties, corrosion resistance, and biocompatibility. Here in this work, we study its response to irradiation with kiloelectronvolt electrons as a controlled model for extreme ionizing environments. Real time Raman spectroscopy reveals that the radiation-damage mechanism entails dehydrogenation of UNCD grain boundaries, and we show that the damage can be recovered by annealing at 883 K. Lastly, our results have significant practical implications for the implementation of UNCD in extreme environment applications, and indicate that the films can be used as radiationmore » sensors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Aiden A.; Filevich, Jorge; Straw, Marcus
Ultra-nanocrystalline diamond (UNCD) is increasingly being used in the fabrication of devices and coatings due to its excellent tribological properties, corrosion resistance, and biocompatibility. Here in this work, we study its response to irradiation with kiloelectronvolt electrons as a controlled model for extreme ionizing environments. Real time Raman spectroscopy reveals that the radiation-damage mechanism entails dehydrogenation of UNCD grain boundaries, and we show that the damage can be recovered by annealing at 883 K. Lastly, our results have significant practical implications for the implementation of UNCD in extreme environment applications, and indicate that the films can be used as radiationmore » sensors.« less
Can we colonize the solar system? Human biology and survival in the extreme space environment.
Launius, Roger D
2010-09-01
Throughout the history of the space age the dominant vision for the future has been great spaceships plying the solar system, and perhaps beyond, moving living beings from one planet to another. Spacesuited astronauts would carry out exploration, colonization, and settlement as part of a relentlessly forward looking movement of humanity beyond Earth. As time has progressed this image has not changed appreciably even as the full magnitude of the challenges it represents have become more and more apparent. This essay explores the issues associated with the human movement beyond Earth and raises questions about whether humanity will ever be able to survive in the extreme environment of space and the other bodies of the solar system. This paper deals with important historical episodes as well as wider conceptual issues about life in space. Two models of expansion beyond Earth are discussed: (1) the movement of microbes and other types of life on Earth that can survive the space environment and (2) the modification of humans into cyborgs for greater capability to survive in the extreme environments encountered beyond this planet. (c) 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Qian, Yu-Kun; Liang, Chang-Xia; Yuan, Zhuojian; Peng, Shiqiu; Wu, Junjie; Wang, Sihua
2016-05-01
Based on 25-year (1987-2011) tropical cyclone (TC) best track data, a statistical study was carried out to investigate the basic features of upper-tropospheric TC-environment interactions over the western North Pacific. Interaction was defined as the absolute value of eddy momentum flux convergence (EFC) exceeding 10 m s-1 d-1. Based on this definition, it was found that 18% of all six-hourly TC samples experienced interaction. Extreme interaction cases showed that EFC can reach ~120 m s-1 d-1 during the extratropical-cyclone (EC) stage, an order of magnitude larger than reported in previous studies. Composite analysis showed that positive interactions are characterized by a double-jet flow pattern, rather than the traditional trough pattern, because it is the jets that bring in large EFC from the upper-level environment to the TC center. The role of the outflow jet is also enhanced by relatively low inertial stability, as compared to the inflow jet. Among several environmental factors, it was found that extremely large EFC is usually accompanied by high inertial stability, low SST and strong vertical wind shear (VWS). Thus, the positive effect of EFC is cancelled by their negative effects. Only those samples during the EC stage, whose intensities were less dependent on VWS and the underlying SST, could survive in extremely large EFC environments, or even re-intensify. For classical TCs (not in the EC stage), it was found that environments with a moderate EFC value generally below ~25 m s-1 d-1 are more favorable for a TC's intensification than those with extremely large EFC.
White, Richard S A; Wintle, Brendan A; McHugh, Peter A; Booker, Douglas J; McIntosh, Angus R
2017-06-14
Despite growing concerns regarding increasing frequency of extreme climate events and declining population sizes, the influence of environmental stochasticity on the relationship between population carrying capacity and time-to-extinction has received little empirical attention. While time-to-extinction increases exponentially with carrying capacity in constant environments, theoretical models suggest increasing environmental stochasticity causes asymptotic scaling, thus making minimum viable carrying capacity vastly uncertain in variable environments. Using empirical estimates of environmental stochasticity in fish metapopulations, we showed that increasing environmental stochasticity resulting from extreme droughts was insufficient to create asymptotic scaling of time-to-extinction with carrying capacity in local populations as predicted by theory. Local time-to-extinction increased with carrying capacity due to declining sensitivity to demographic stochasticity, and the slope of this relationship declined significantly as environmental stochasticity increased. However, recent 1 in 25 yr extreme droughts were insufficient to extirpate populations with large carrying capacity. Consequently, large populations may be more resilient to environmental stochasticity than previously thought. The lack of carrying capacity-related asymptotes in persistence under extreme climate variability reveals how small populations affected by habitat loss or overharvesting, may be disproportionately threatened by increases in extreme climate events with global warming. © 2017 The Author(s).
Greven, Corina U; Merwood, Andrew; van der Meer, Jolanda M J; Haworth, Claire M A; Rommelse, Nanda; Buitelaar, Jan K
2016-04-01
Although attention deficit hyperactivity disorder (ADHD) is thought to reflect a continuously distributed quantitative trait, it is assessed through binary diagnosis or skewed measures biased towards its high, symptomatic extreme. A growing trend is to study the positive tail of normally distributed traits, a promising avenue, for example, to study high intelligence to increase power for gene-hunting for intelligence. However, the emergence of such a 'positive genetics' model has been tempered for ADHD due to poor phenotypic resolution at the low extreme. Overcoming this methodological limitation, we conduct the first study to assess the aetiologies of low extreme ADHD traits. In a population-representative sample of 2,143 twins, the Strength and Weaknesses of ADHD Symptoms and Normal behaviour (SWAN) questionnaire was used to assess ADHD traits on a continuum from low to high. Aetiological influences on extreme ADHD traits were estimated using DeFries-Fulker extremes analysis. ADHD traits were related to behavioural, cognitive and home environmental outcomes using regression. Low extreme ADHD traits were significantly influenced by shared environmental factors (23-35%) but were not significantly heritable. In contrast, high-extreme ADHD traits showed significant heritability (39-51%) but no shared environmental influences. Compared to individuals with high extreme or with average levels of ADHD traits, individuals with low extreme ADHD traits showed fewer internalizing and externalizing behaviour problems, better cognitive performance and more positive behaviours and positive home environmental outcomes. Shared environmental influences on low extreme ADHD traits may reflect passive gene-environment correlation, which arises because parents provide environments as well as passing on genes. Studying the low extreme opens new avenues to study mechanisms underlying previously neglected positive behaviours. This is different from the current deficit-based model of intervention, but congruent with a population-level approach to improving youth wellbeing. © 2015 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for Child and Adolescent Mental Health.
NASA Astrophysics Data System (ADS)
Hsu, Jiann-wien; Huang, Ding-wei
2009-12-01
We study the survival of extreme opinions in various processes of consensus formation. All the opinions are treated equally and subjected to the same rules of changing. We investigate three typical models to reach a consensus in each case: (A) personal influence, (B) influence from surroundings, and (C) influence to surroundings. Starting with uniformly distributed random opinions, our calculated results show that the extreme opinions can survive in both models (A) and (B), but not in model (C). We obtain a conclusion that both personal influence and passive adaptation to the environment are not sufficient enough to eradicate all the extreme opinions. Only the active persuasion to change the surroundings eliminates the extreme opinions completely.
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammoud, Ahmad
2012-01-01
Electronics designed for use in NASA space missions are required to work efficiently and reliably under harsh environment conditions. These Include radiation, extreme temperatures, thermal cycling, to name a few. Preliminary data obtained on new Gallium Nitride and Silicon Carbide power devices under exposure to radiation followed by long term thermal cycling are presented. This work was done in collaboration with GSFC and JPL in support of the NASA Electronic Parts and Packaging (NEPP) Program
Vertical GaN Devices for Power Electronics in Extreme Environments
2016-03-31
electronics applications. In this paper vertical p-n diodes and transistors fabricated on pseudo bulk low defect density (104 to 106 cm-2) GaN substrates are...holes in p-GaN has deleterious effect on p-n junction behavior (Fig. 2), p-GaN contacts, and channel control in junction field-effect transistors at...and transistors ) utilizing p-n junctions are suitable for most practical applications including automotive (210K < T < 423K) but may have limitations
Bill Would Expand U.S. Drought Monitoring
NASA Astrophysics Data System (ADS)
Zielinski, Sarah
2006-05-01
The collection and dissemination of drought information would be centralized within the U.S. National Oceanic and Atmospheric Administration (NOAA) under a newly proposed bill, which received support at a 4 May hearing before the U.S. House of Representatives Science Subcommittee on Environment, Technology, and Standards. The economic costs of drought average $6 to $8 billion each year in the United States, according to NOAA. The effects of prolonged drought include extreme wildfire conditions, water restrictions, and reduced crop yields.
Extreme Mapping: Looking for Water on the Moon
NASA Technical Reports Server (NTRS)
Cohen, Tamar
2016-01-01
There are many challenges when exploring extreme environments. Gathering accurate data to build maps about places that you cannot go is incredibly complex. NASA supports scientists by remotely operating robotic rovers to explore uncharted territories. One potential upcoming mission is to look for water near a lunar pole (the Resource Prospector mission). Learn about the technical hurdles and research steps that NASA takes before the mission. NASA practices on Earth with Mission Analogs which simulate the proposed mission. This includes going to lunar-type landscapes, building field networks, testing out rovers, instruments and operational procedures. NASA sets up remote science back rooms just as there are for actual missions. NASA develops custom Ground Data Systems software to support scientific mission planning and monitoring over variable time delays, and separate commanding software and infrastructure to operate the rovers.
Wu, Zhibin; Li, Nianping; Cui, Haijiao; Peng, Jinqing; Chen, Haowen; Liu, Penglong
2017-01-01
Existing thermal comfort field studies are mainly focused on the relationship between the indoor physical environment and the thermal comfort. In numerous chamber experiments, physiological parameters were adopted to assess thermal comfort, but the experiments’ conclusions may not represent a realistic thermal environment due to the highly controlled thermal environment and few occupants. This paper focuses on determining the relationships between upper extremity skin temperatures (i.e., finger, wrist, hand and forearm) and the indoor thermal comfort. Also, the applicability of predicting thermal comfort by using upper extremity skin temperatures was explored. Field studies were performed in office buildings equipped with split air-conditioning (SAC) located in the hot summer and cold winter (HSCW) climate zone of China during the summer of 2016. Psychological responses of occupants were recorded and physical and physiological factors were measured simultaneously. Standard effective temperature (SET*) was used to incorporate the effect of humidity and air velocity on thermal comfort. The results indicate that upper extremity skin temperatures are good indicators for predicting thermal sensation, and could be used to assess the thermal comfort in terms of physiological mechanism. In addition, the neutral temperature was 24.7 °C and the upper limit for 80% acceptability was 28.2 °C in SET*. PMID:28934173
Wu, Zhibin; Li, Nianping; Cui, Haijiao; Peng, Jinqing; Chen, Haowen; Liu, Penglong
2017-09-21
Existing thermal comfort field studies are mainly focused on the relationship between the indoor physical environment and the thermal comfort. In numerous chamber experiments, physiological parameters were adopted to assess thermal comfort, but the experiments' conclusions may not represent a realistic thermal environment due to the highly controlled thermal environment and few occupants. This paper focuses on determining the relationships between upper extremity skin temperatures (i.e., finger, wrist, hand and forearm) and the indoor thermal comfort. Also, the applicability of predicting thermal comfort by using upper extremity skin temperatures was explored. Field studies were performed in office buildings equipped with split air-conditioning (SAC) located in the hot summer and cold winter (HSCW) climate zone of China during the summer of 2016. Psychological responses of occupants were recorded and physical and physiological factors were measured simultaneously. Standard effective temperature (SET*) was used to incorporate the effect of humidity and air velocity on thermal comfort. The results indicate that upper extremity skin temperatures are good indicators for predicting thermal sensation, and could be used to assess the thermal comfort in terms of physiological mechanism. In addition, the neutral temperature was 24.7 °C and the upper limit for 80% acceptability was 28.2 °C in SET*.
Bohmeier, Maria; Perras, Alexandra K; Schwendner, Petra; Rabbow, Elke; Moissl-Eichinger, Christine; Cockell, Charles S; Vannier, Pauline; Marteinsson, Viggo T; Monaghan, Euan P; Ehrenfreund, Pascale; Garcia-Descalzo, Laura; Gómez, Felipe; Malki, Moustafa; Amils, Ricardo; Gaboyer, Frédéric; Westall, Frances; Cabezas, Patricia; Walter, Nicolas; Rettberg, Petra
2018-01-01
Abstract Four facultative anaerobic and two obligate anaerobic bacteria were isolated from extreme environments (deep subsurface halite mine, sulfidic anoxic spring, mineral-rich river) in the frame MASE (Mars Analogues for Space Exploration) project. The isolates were investigated under anoxic conditions for their survivability after desiccation up to 6 months and their tolerance to ionizing radiation up to 3000 Gy. The results indicated that tolerances to both stresses are strain-specific features. Yersinia intermedia MASE-LG-1 showed a high desiccation tolerance but its radiation tolerance was very low. The most radiation-tolerant strains were Buttiauxella sp. MASE-IM-9 and Halanaerobium sp. MASE-BB-1. In both cases, cultivable cells were detectable after an exposure to 3 kGy of ionizing radiation, but cells only survived desiccation for 90 and 30 days, respectively. Although a correlation between desiccation and ionizing radiation resistance has been hypothesized for some aerobic microorganisms, our data showed that there was no correlation between tolerance to desiccation and ionizing radiation, suggesting that the physiological basis of both forms of tolerances is not necessarily linked. In addition, these results indicated that facultative and obligate anaerobic organisms living in extreme environments possess varied species-specific tolerances to extremes. PMID:29474542
Digital Learning Network Education Events of NASA's Extreme Environments Mission Operations
NASA Technical Reports Server (NTRS)
Paul, Heather; Guillory, Erika
2007-01-01
NASA's Digital Learning Network (DLN) reaches out to thousands of students each year through video conferencing and web casting. The DLN has created a series of live education videoconferences connecting NASA s Extreme Environment Missions Operations (NEEMO) team to students across the United States. The programs are also extended to students around the world live web casting. The primary focus of the events is the vision for space exploration. During the programs, NEEMO Crewmembers including NASA astronauts, engineers and scientists inform and inspire students about the importance of exploration and share the impact of the project as it correlates with plans to return to the moon and explore the planet Mars. These events highlight interactivity. Students talk live with the aquanauts in Aquarius, the National Oceanic and Atmospheric Administration s underwater laboratory. With this program, NASA continues the Agency s tradition of investing in the nation's education programs. It is directly tied to the Agency's major education goal of attracting and retaining students in science, technology, and engineering disciplines. Before connecting with the aquanauts, the students conduct experiments of their own designed to coincide with mission objectives. This paper describes the events that took place in September 2006.
Bacterial diversity in fumarole environments of the Paricutín volcano, Michoacán (Mexico).
Medrano-Santillana, Miguel; Souza-Brito, Elcia Margaret; Duran, Robert; Gutierrez-Corona, Felix; Reyna-López, Georgina Elena
2017-05-01
Active volcanoes are among the most extreme environments on Earth. The extreme temperatures, presence of toxic heavy metals and low nutrient bioavailability favor the development of extremophiles. We characterized the physical-chemical parameters of and bacterial communities (T-RFLP and 16S rRNA gene libraries) inhabiting fumarole niches of the Paricutín volcano located in Michoacán (Mexico). This volcano, which surged in 1943, is one of the youngest volcanoes on Earth and the microbial diversity in this area is yet to be characterized. The sampling stations were characterized in a pH range from 5.34 to 7.89 and showed different temperatures (soil, 27-87 °C; air, 13.6-56 °C) with high concentrations of metals such as iron and arsenic. The most abundant bacterial populations, confirmed by T-RFLP and 16S rRNA gene libraries, were related to members of Firmicutes and Proteobacteria phyla including sequences associated with thermophiles and sulfate reducing bacteria. Overall, the Paricutín volcano showed low bacterial diversity and its prokaryotic diversity was characterized by the impossibility of amplifying Archaea-related sequences.
Portable ultrasonography in mass casualty incidents: The CAVEAT examination.
Stawicki, Stanislaw Peter; Howard, James M; Pryor, John P; Bahner, David P; Whitmill, Melissa L; Dean, Anthony J
2010-11-18
Ultrasonography used by practicing clinicians has been shown to be of utility in the evaluation of time-sensitive and critical illnesses in a range of environments, including pre-hospital triage, emergency department, and critical care settings. The increasing availability of light-weight, robust, user-friendly, and low-cost portable ultrasound equipment is particularly suited for use in the physically and temporally challenging environment of a multiple casualty incident (MCI). Currently established ultrasound applications used to identify potentially lethal thoracic or abdominal conditions offer a base upon which rapid, focused protocols using hand-carried emergency ultrasonography could be developed. Following a detailed review of the current use of portable ultrasonography in military and civilian MCI settings, we propose a protocol for sonographic evaluation of the chest, abdomen, vena cava, and extremities for acute triage. The protocol is two-tiered, based on the urgency and technical difficulty of the sonographic examination. In addition to utilization of well-established bedside abdominal and thoracic sonography applications, this protocol incorporates extremity assessment for long-bone fractures. Studies of the proposed protocol will need to be conducted to determine its utility in simulated and actual MCI settings.
Testing and evaluation for astronaut extravehicular activity (EVA) operability.
Shields, N; King, L C
1998-09-01
Because it is the human component that defines space mission success, careful planning is required to ensure that hardware can be operated and maintained by crews on-orbit. Several methods exist to allow researchers and designers to better predict how hardware designs will behave under the harsh environment of low Earth orbit, and whether designs incorporate the necessary features for Extra Vehicular Activity (EVA) operability. Testing under conditions of simulated microgravity can occur during the design concept phase when verifying design operability, during mission training, or concurrently with on-orbit mission operations. The bulk of testing is focused on normal operations, but also includes evaluation of credible mission contingencies or "what would happen if" planning. The astronauts and cosmonauts who fly these space missions are well prepared and trained to survive and be productive in Earth's orbit. The engineers, designers, and training crews involved in space missions subject themselves to Earth based simulation techniques that also expose them to extreme environments. Aircraft falling ten thousand feet, alternating g-loads, underwater testing at 45 foot depth, enclosure in a vacuum chamber and subject to thermal extremes, each carries with it inherent risks to the humans preparing for space missions.
Umanzor, Schery; Ladah, Lydia; Zertuche-González, José A
2017-10-01
Intertidal macroalgae can modulate their biophysical environment by ameliorating physical conditions and creating habitats. Exploring how seaweed aggregations made up of different species at different densities modify the local environment may help explain how associated organisms respond to the attenuation of extreme physical conditions. Using Silvetia compressa, Chondracanthus canaliculatus, and Pyropia perforata, we constructed monocultures representing the leathery, corticated and foliose functional forms as well as a mixed tri-culture assemblage including the former three, at four densities. Treatment quadrats were installed in the intertidal where we measured irradiance, temperature, particle retention, and water motion underneath the canopies. Additionally, we examined the abundance and richness of the understory microphytobenthos with settlement slides. We found that the density and species composition of the assemblages modulated the amelioration of extreme physical conditions, with macroalgal aggregations of greater structural complexity due to their form and density showing greater physical factor attenuation. However, increasing the number of species within a patch did not directly result in increased complexity and therefore, did not necessarily cause greater amelioration of the environment. Microphytobenthic composition was also affected by species composition and density, with higher abundances under S. compressa and C. canaliculatus canopies at high and mid densities. These results support the idea that the environmental modifications driven by these macroalgae have a significant effect on the dynamics of the intertidal environment by promoting distinct temporal and spatial patchiness in the microphytobenthos, with potentially significant effects on the overall productivity of these ecosystems. © 2017 Phycological Society of America.
2006-11-01
ExPOC), LinkQUest, and working w/ ExPOC, go to the known locations identified in the site survey exercise. 1. Does the direction a diver is...map/ survey an area MD-5 7 April 06 08:30 & 14:20 hrs MD-9 08:15 Prior to EVA surface exploration, robotic rovers could potentially identify...What ROV tasks can be controlled from the ground and what have to be controlled from w/in the habitat SITE SURVEY ROV Objectives (all on
Jung, Kyungyong; Kim, Dae Hwan; Ryu, Ji Young
2018-05-11
In this study, we explored the relationship between concealing emotions at work and musculoskeletal symptoms in Korean workers using data from a national, population-based survey. Data were obtained from the third Korean Working Conditions Survey in 2011. We investigated the prevalence of three musculoskeletal symptoms ("back pain", "pain in the upper extremities", and "pain in the lower extremities"). Multiple logistic regression analysis was also performed to determine odds ratios (ORs) for musculoskeletal symptoms according to concealing emotions at work, adjusting for socioeconomic factors. In both sexes, the emotion-concealing group showed a significantly higher prevalence of "pain in the upper extremities" and "pain in the lower extremities" than the non-emotion-concealing group. For back pain, male - but not female - workers who concealed their emotions showed a higher prevalence than their non-emotion-concealing counterparts; the difference was statistically significant. Adjusted ORs for musculoskeletal symptoms (excluding "back pain" for female workers) in the emotion-concealing group were significantly higher. Our study suggests that concealment of emotions is closely associated with musculoskeletal symptoms, and the work environment should operate in consideration not only of the physical health work condition of workers but also of their emotional efforts including concealing emotion at work.
Ho, Hung Chak; Wong, Man Sing; Yang, Lin; Shi, Wenzhong; Yang, Jinxin; Bilal, Muhammad; Chan, Ta-Chien
2018-03-01
Haze is an extreme weather event that can severely increase air pollution exposure, resulting in higher burdens on human health. Few studies have explored the health effects of haze, and none have investigated the spatiotemporal interaction between temperature, air quality and urban environment that may exacerbate the adverse health effects of haze. We investigated the spatiotemporal pattern of haze effects and explored the additional effects of temperature, air pollution and urban environment on the short-term mortality risk during hazy days. We applied a Poisson regression model to daily mortality data from 2007 through 2014, to analyze the short-term mortality risk during haze events in Hong Kong. We evaluated the adverse effect on five types of cause-specific mortality after four types of haze event. We also analyzed the additional effect contributed by the spatial variability of urban environment on each type of cause-specific mortality during a specific haze event. A regular hazy day (lag 0) has higher all-cause mortality risk than a day without haze (odds ratio: 1.029 [1.009, 1.049]). We have also observed high mortality risks associated with mental disorders and diseases of the nervous system during hazy days. In addition, extreme weather and air quality contributed to haze-related mortality, while cold weather and higher ground-level ozone had stronger influences on mortality risk. Areas with a high-density environment, lower vegetation, higher anthropogenic heat, and higher PM 2.5 featured stronger effects of haze on mortality than the others. A combined influence of haze, extreme weather/air quality, and urban environment can result in extremely high mortality due to mental/behavioral disorders or diseases of the nervous system. In conclusion, we developed a data-driven technique to analyze the effects of haze on mortality. Our results target the specific dates and areas with higher mortality during haze events, which can be used for development of health warning protocols/systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Declet-Barreto, J.; Wilhelmi, O.; Goggans, A.
2016-12-01
In this collaborative engagement, scientists are partnering with the District of Columbia (DC) to develop an extreme heat vulnerability assessment. To do so, we map socio-demographic and built environment indicators of extreme heat vulnerability in Census Tracts in DC neighborhoods. In order to provide information useful for DC public health and urban planning practitioners, we aggregate the indicators into an index of extreme heat vulnerability. We compare the index against heat-related call data from DC's 911 system to better understand the socio-spatial distribution of extreme heat-related health outcomes. Our assessment can help inform the District's Climate Adaptation Plan as well as increase public engagement in reducing vulnerability to extreme heat.
NASA Technical Reports Server (NTRS)
Brinckerhoff, William B.
2012-01-01
Exploration of our solar system over several decades has benefitted greatly from the sensitive chemical analyses offered by spaceflight mass spectrometers. When dealing with an unknown environment, the broadband detection capabilities of mass analyzers have proven extremely valuable in determining the composition and thereby the basic nature of space environments, including the outer reaches of Earth s atmosphere, interplanetary space, the Moon, and the planets and their satellites. Numerous mass analyzer types, including quadrupole, monopole, sector, ion trap, and time-of-flight have been incorporated in flight instruments and delivered robotically to a variety of planetary environments. All such instruments went through a rigorous process of application-specific development, often including significant miniaturization, testing, and qualification for the space environment. Upcoming missions to Mars and opportunities for missions to Venus, Europa, Saturn, Titan, asteroids, and comets provide new challenges for flight mass spectrometers that push to state of the art in fundamental analytical technique. The Sample Analysis at Mars (SAM) investigation on the recently-launch Mars Science Laboratory (MSL) rover mission incorporates a quadrupole analyzer to support direct evolved gas as well as gas chromatograph-based analysis of martian rocks and atmosphere, seeking signs of a past or present habitable environment. A next-generation linear ion trap mass spectrometer, using both electron impact and laser ionization, is being incorporated into the Mars Organic Molecule Analyzer (MOMA) instrument, which will be flown to Mars in 2018. These and other mass spectrometers and mission concepts at various stages of development will be described.
Extremophiles may be irrelevant to the origin of life.
Cleaves, H James; Chalmers, John H
2004-01-01
In recent years, Bacteria and Archaea have been discovered living in practically every conceivable terrestrial environment, including some previously thought to be too extreme for survival. Exploration of our solar system has revealed a number of extraterrestrial bodies that harbor environments analogous to many of the terrestrial environments in which extremophiles flourish. The recent discovery of more than 105 extrasolar planets suggests that planetary systems are quite common. These three findings have led some to speculate that life is therefore common in the universe, as life as we know it can seemingly survive almost anywhere there is liquid water. It is suggested here that while environments capable of supporting life may be common, this does not in itself support the notion that life is common in the universe. Given that interplanetary transfer of life may be unlikely, the actual origin of life may require specific environmental and geological conditions that may be much less common than the mere existence of liquid water.
NASA Technical Reports Server (NTRS)
Ryan, R. S.; Salter, L. D.; Young, G. M., III; Munafo, P. M.
1985-01-01
The planned missions for the space shuttle dictated a unique and technology-extending rocket engine. The high specific impulse requirements in conjunction with a 55-mission lifetime, plus volume and weight constraints, produced unique structural design, manufacturing, and verification requirements. Operations from Earth to orbit produce severe dynamic environments, which couple with the extreme pressure and thermal environments associated with the high performance, creating large low cycle loads and high alternating stresses above endurance limit which result in high sensitivity to alternating stresses. Combining all of these effects resulted in the requirements for exotic materials, which are more susceptible to manufacturing problems, and the use of an all-welded structure. The challenge of integrating environments, dynamics, structures, and materials into a verified SSME structure is discussed. The verification program and developmental flight results are included. The first six shuttle flights had engine performance as predicted with no failures. The engine system has met the basic design challenges.
Hatzenbuehler, Mark L.; McLaughlin, Katie A.
2013-01-01
Background Youth exposed to extreme adverse life conditions have blunted cortisol responses to stress. Purpose To examine whether growing up in highly stigmatizing environments similarly shapes stigmatized individuals’ physiological responses to identity-related stress. Methods We recruited 74 lesbian, gay, and bisexual young adults (mean age=23.68) from 24 states with varying levels of structural stigma surrounding homosexuality. State-level structural stigma was coded based on several dimensions, including policies that exclude sexual minorities from social institutions (e.g., same-sex marriage). Participants were exposed to a laboratory stressor, the Trier Social Stress Test (TSST), and neuroendocrine measures were collected. Results LGB young adults who were raised in highly stigmatizing environments as adolescents evidenced a blunted cortisol response following the TSST compared to those from low-stigma environments. Conclusions The stress of growing up in environments that target gays and lesbians for social exclusion may exert biological effects that are similar to traumatic life experiences. PMID:24154988
Response of selected microoganisms to experimental planetary environments
NASA Technical Reports Server (NTRS)
Foster, T. L.
1975-01-01
A microbial population profile of mixed Cape Canaveral soil samples is presented. During this investigation a few organisms were isolated which exhibit the ability to grow at 3 C, 32 C, and 55 C. Growth curves are shown for three of these isolates, one of which grows extremely well at all three temperatures. Also included are studies dealing with growth of soil populations at zero and subzero temperatures. Results indicate growth at 0 C and -5 C, but not at 15 C or -65 C. The effect of storage temperature on dry soil is presented, and results show that psychrophilic populations decrease when soil is stored at room temperature, but do not decrease when soil is stored at -65 C. Results of an experiment with the simulated Martian environment are presented and indicate that nonsporeforming rods, sporeforming rods, and cocci can reproduce in the simulated environment when nutrients and moisture are supplied. The sporeforming rods are the predominant suvivors when dry soil is subjected to this environment.
Tropical Aquatic Archaea Show Environment-Specific Community Composition
Silveira, Cynthia B.; Cardoso, Alexander M.; Coutinho, Felipe H.; Lima, Joyce L.; Pinto, Leonardo H.; Albano, Rodolpho M.; Clementino, Maysa M.; Martins, Orlando B.; Vieira, Ricardo P.
2013-01-01
The Archaea domain is ubiquitously distributed and extremely diverse, however, environmental factors that shape archaeal community structure are not well known. Aquatic environments, including the water column and sediments harbor many new uncultured archaeal species from which metabolic and ecological roles remain elusive. Some environments are especially neglected in terms of archaeal diversity, as is the case of pristine tropical areas. Here we investigate the archaeal composition in marine and freshwater systems from Ilha Grande, a South Atlantic tropical environment. All sampled habitats showed high archaeal diversity. No OTUs were shared between freshwater, marine and mangrove sediment samples, yet these environments are interconnected and geographically close, indicating environment-specific community structuring. Group II Euryarchaeota was the main clade in marine samples, while the new putative phylum Thaumarchaeota and LDS/RCV Euryarchaeota dominated freshwaters. Group III Euryarchaeota , a rare clade, was also retrieved in reasonable abundance in marine samples. The archaeal community from mangrove sediments was composed mainly by members of mesophilic Crenarchaeota and by a distinct clade forming a sister-group to Crenarchaeota and Thaumarchaeota. Our results show strong environment-specific community structuring in tropical aquatic Archaea, as previously seen for Bacteria. PMID:24086729
Thermal Evaluation of Fiber Bragg Gratings at Extreme Temperatures
NASA Technical Reports Server (NTRS)
Juergens, Jeffrey; Adamovsky, Grigory; Bhatt, Ramakrishna; Morscher, Gregory; Floyd, Bertram
2005-01-01
The development of integrated fiber optic sensors for use in aerospace health monitoring systems demands that the sensors be able to perform in extreme environments. In order to use fiber optic sensors effectively in an extreme environment one must have a thorough understanding of the sensor's capabilities, limitations, and performance under extreme environmental conditions. This paper reports on our current sensor evaluation examining the performance of freestanding fiber Bragg gratings (FBG) at extreme temperatures. While the ability of FBGs to survive at extreme temperatures has been established, their performance and long term survivability is not well documented. At extreme temperatures the grating structure would be expected to dissipate, degrading the sensors performance and eventually ceasing to return a detectable signal. The fiber jacket will dissipate leaving a brittle, unprotected fiber. For FBGs to be used in aerospace systems their performance and limitations need to be thoroughly understood at extreme temperatures. As the limits of the FBGs performance are pushed the long term survivability and performance of the sensor comes into question. We will not only examine the ability of FBGs to survive extreme temperatures but also look at their performance during many thermal cycles. This paper reports on test results of the performance of thermal cycling commercially available FBGs, at temperatures up to 1000 C, seen in aerospace applications. Additionally this paper will report on the performance of commercially available FBGs held at 1000 C for hundreds of hours. Throughout the evaluation process, various parameters of the FBGs performance were monitored and recorded. Several test samples were subjected to identical test conditions to allow for statistical analysis of the data. Test procedures, calibrations, referencing techniques, performance data, and interpretations and explanations of results are presented in the paper along with directions for future research.
NASA Technical Reports Server (NTRS)
Kolawa, Elizabeth; Chen, Yuan; Mojarradi, Mohammad M.; Tudryn Weber, Carissa
2013-01-01
In this paper, the technology development and infusion of the motor drive electronics assembly, along with the technology qualification and space qualification, is described and detailed. The process is an example of the qualification methodology for extreme environmen
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Scheidegger, Robert J.; Lauenstein, Jean-Marie; Casey, Megan; Scheick, Leif; Hammoud, Ahmad
2013-01-01
Power systems designed for use in NASA space missions are required to work reliably under harsh conditions including radiation, thermal cycling, and extreme temperature exposures. Silicon carbide devices show great promise for use in future power electronics systems, but information pertaining to performance of the devices in the space environment is very scarce. A silicon carbide N-channel enhancement-mode power MOSFET called the CMF20120 is of interest for use in space environments. Samples of the device were exposed to radiation followed by long-term thermal cycling to address their reliability for use in space applications. The results of the experimental work are presentd and discussed.
Nuclear fuel in a reactor accident.
Burns, Peter C; Ewing, Rodney C; Navrotsky, Alexandra
2012-03-09
Nuclear accidents that lead to melting of a reactor core create heterogeneous materials containing hundreds of radionuclides, many with short half-lives. The long-lived fission products and transuranium elements within damaged fuel remain a concern for millennia. Currently, accurate fundamental models for the prediction of release rates of radionuclides from fuel, especially in contact with water, after an accident remain limited. Relatively little is known about fuel corrosion and radionuclide release under the extreme chemical, radiation, and thermal conditions during and subsequent to a nuclear accident. We review the current understanding of nuclear fuel interactions with the environment, including studies over the relatively narrow range of geochemical, hydrological, and radiation environments relevant to geological repository performance, and discuss priorities for research needed to develop future predictive models.
Update Direct-Strike Lightning Environment for Stockpile-to-Target Sequence (Second Revision)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uman, Martin A.; Rakov, V. A.; Elisme, J. O.
2010-10-05
The University of Florida has surveyed all relevant publications reporting lightning characteristics and presents here an up-to-date version of the direct-strike lightning environment specifications for nuclear weapons published in 1989 by R. J. Fisher and M. A. Uman. Further, we present functional expressions for current vs. time, current derivative vs. time, second current derivative vs. time, charge transfer vs. time, and action integral (specific energy) vs. time for positive and negative first return strokes, for negative subsequent return strokes, and for positive and negative continuing currents; and we give sets of constants for these functional expressions so that the resultantmore » waveforms exhibit approximately the median and extreme lightning parameters presented in the updated direct strike environment. Fourier transforms of the return stroke current waveforms are presented. The results of our literature survey are included in three Appendices entitled Return Stroke Current, Continuing Current, and Positive Lightning.« less
Navy Omni-Directional Vehicle (ODV) development program
NASA Technical Reports Server (NTRS)
Mcgowen, Hillery
1994-01-01
The Omni-Directional Vehicle (ODV) development program sponsored by the Office of Naval Research at the Coastal Systems Station has investigated the application of ODV technology for use in the Navy shipboard environment. ODV technology as originally received by the Navy in the form of the Cadillac-Gage Side Mover Vehicle was applicable to the shipboard environment with the potential to overcome conditions of reduced traction, ship motion, decks heeled at high angles, obstacles, and confined spaces. Under the Navy program, ODV technology was investigated and a series of experimental vehicles were built and successfully tested under extremely demanding conditions. The ODV drive system has been found to be applicable to autonomous, remotely, or manually operated vehicles. Potential commercial applications include multi-directional forklift trucks, automatic guided vehicles employed in manufacturing environments, and remotely controlled platforms used in nuclear facilities or for hazardous waste clean up tasks.
Navy Omni-Directional Vehicle (ODV) development program
NASA Astrophysics Data System (ADS)
McGowen, Hillery
1994-02-01
The Omni-Directional Vehicle (ODV) development program sponsored by the Office of Naval Research at the Coastal Systems Station has investigated the application of ODV technology for use in the Navy shipboard environment. ODV technology as originally received by the Navy in the form of the Cadillac-Gage Side Mover Vehicle was applicable to the shipboard environment with the potential to overcome conditions of reduced traction, ship motion, decks heeled at high angles, obstacles, and confined spaces. Under the Navy program, ODV technology was investigated and a series of experimental vehicles were built and successfully tested under extremely demanding conditions. The ODV drive system has been found to be applicable to autonomous, remotely, or manually operated vehicles. Potential commercial applications include multi-directional forklift trucks, automatic guided vehicles employed in manufacturing environments, and remotely controlled platforms used in nuclear facilities or for hazardous waste clean up tasks.
Begay, R. Cruz; Chaudhari, Lisa S.; Esparza-Romero, Julian; Romero, Rene Urquidez; Schulz, Leslie O.
2013-01-01
Gardens are an important part of the environment as they play multiple roles and are central to the lifestyle and economy of many communities. The investigators use qualitative methods to explore patterns and perceptions about changes in gardening and cultivation in the community of Maycoba, Mexico. Maycoba is home to a large community of Pima Indians, an Indigenous population genetically prone to diabetes. Pima Indians living in the United States have been shown to have an extremely high prevalence of diabetes, but the genetically comparable Pimas in Maycoba, Mexico, were found to have little diabetes in the early 1990s. The authors examine home gardens and other cultivation in the area as an element of a changing environment and lifestyle during the past 15 years. Methods include interviews and focus groups. Preliminary findings are presented in this paper. PMID:25364623
NASA Microclimate Cooling Challenges
NASA Technical Reports Server (NTRS)
Trevino, Luis A.
2004-01-01
The purpose of this outline form presentation is to present NASA's challenges in microclimate cooling as related to the spacesuit. An overview of spacesuit flight-rated personal cooling systems is presented, which includes a brief history of cooling systems from Gemini through Space Station missions. The roles of the liquid cooling garment, thermal environment extremes, the sublimator, multi-layer insulation, and helmet visor UV and solar coatings are reviewed. A second section is presented on advanced personal cooling systems studies, which include heat acquisition studies on cooling garments, heat rejection studies on water boiler & radiators, thermal storage studies, and insulation studies. Past and present research and development and challenges are summarized for the advanced studies.
Preparing for International Travel and Global Medical Care.
Mahadevan, Swaminatha V; Strehlow, Matthew C
2017-05-01
Thorough pretravel preparation and medical consultation can mitigate avoidable health and safety risks. A comprehensive pretravel medical consultation should include an individualized risk assessment, immunization review, and discussion of arthropod protective measures, malaria prophylaxis, traveler's diarrhea, and injury prevention. Travel with children and jet lag reduction require additional planning and prevention strategies; travel and evacuation insurance may prove essential when traveling to less resourced countries. Consideration should also be given to other high-risk travel scenarios, including the provision of health care overseas, adventure and extreme sports, water environments and diving, high altitude, and terrorism/unstable political situations. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Daniels, G. E. (Editor)
1973-01-01
Guidelines are provided on probable climatic extremes and terrestrial environment data applicable to space vehicle and associated equipment design and development. Operational criteria for ground support sites are emphasized.
NASA Technical Reports Server (NTRS)
Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Del Castillo, Linda Y.; Fitzpatrick, Fred; Chen, Yuan
2016-01-01
Silicon-Carbide device technology has generated much interest in recent years. With superior thermal performance, power ratings and potential switching frequencies over its Silicon counterpart, Silicon-Carbide offers a greater possibility for high powered switching applications in extreme environment. In particular, Silicon-Carbide Metal-Oxide- Semiconductor Field-Effect Transistors' (MOSFETs) maturing process technology has produced a plethora of commercially available power dense, low on-state resistance devices capable of switching at high frequencies. A novel hard-switched power processing unit (PPU) is implemented utilizing Silicon-Carbide power devices. Accelerated life data is captured and assessed in conjunction with a damage accumulation model of gate oxide and drain-source junction lifetime to evaluate potential system performance at high temperature environments.
Climate-water quality relationships in Texas reservoirs
Gelca, Rodica; Hayhoe, Katharine; Scott-Fleming, Ian; Crow, Caleb; Dawson, D.; Patino, Reynaldo
2015-01-01
Water temperature, dissolved oxygen, and concentrations of salts in surface water bodies can be affected by the natural environment, local human activities such as surface and ground water withdrawals, land use, and energy extraction, and variability and long-term trends in atmospheric conditions including temperature and precipitation. Here, we quantify the relationship between 121 indicators of mean and extreme temperature and precipitation and 24 water quality parameters in 57 Texas reservoirs using observational data records covering the period 1960 to 2010. We find that water temperature, dissolved oxygen, pH, specific conductance, chloride, sulfate, and phosphorus all show consistent correlations with atmospheric predictors, including high and low temperature extremes, dry days, heavy precipitation events, and mean temperature and precipitation over time scales ranging from one week to two years. Based on this analysis and published future projections for this region, we expect climate change to increase water temperatures, decrease dissolved oxygen levels, decrease pH, increase specific conductance, and increase levels of sulfate, chloride in Texas reservoirs. Over decadal time scales, this may affect aquatic ecosystems in the reservoirs, including altering the risk of conditions conducive to algae occurrence, as well as affecting the quality of water available for human consumption and recreation.
Laske, Sarah M.; Rosenberger, Amanda E.; Wipfli, Mark S.; Zimmerman, Christian E.
2018-01-01
Generalist feeding strategies are favoured in stressful or variable environments where flexibility in ecological traits is beneficial. Species that feed across multiple habitat types and trophic levels may impart stability on food webs through the use of readily available, alternative energy pools. In lakes, generalist fish species may take advantage of spatially and temporally variable prey by consuming both benthic and pelagic prey to meet their energy demands. Using stomach content and stable isotope analyses, we examined the feeding habits of fish species in Alaska's Arctic Coastal Plain (ACP) lakes to determine the prevalence of generalist feeding strategies as a mechanism for persistence in extreme environments (e.g. low productivity, extreme cold and short growing season). Generalist and flexible feeding strategies were evident in five common fish species. Fish fed on benthic and pelagic (or nektonic) prey and across trophic levels. Three species were clearly omnivorous, feeding on fish and their shared invertebrate prey. Dietary differences based on stomach content analysis often exceeded 70%, and overlap in dietary niches based on shared isotopic space varied from zero to 40%. Metrics of community‐wide trophic structure varied with the number and identity of species involved and on the dietary overlap and niche size of individual fishes. Accumulation of energy from shared carbon sources by Arctic fishes creates redundancy in food webs, increasing likely resistance to perturbations or stochastic events. Therefore, the generalist and omnivorous feeding strategies employed by ACP fish may maintain energy flow and food web stability in extreme environments.
Both the moderately halophilic bacterium, Halomonas elongata, and the extremely halophilic archaea, Halobacterium salinarum, can be found in hypersaline environments (e.g., salterns). On complex media, H. elongata grows over a salt range of 0.05-5.2 M, whereas, H. salinarum multi...
Long-Life, Lightweight, Multi-Roller Traction Drives for Planetary Vehicle Surface Exploration
NASA Technical Reports Server (NTRS)
Klein, Richard C.; Fusaro, Robert L.; Dimofte, Florin
2012-01-01
NASA s initiative for Lunar and Martian exploration will require long lived, robust drive systems for manned vehicles that must operate in hostile environments. The operation of these mechanical drives will pose a problem because of the existing extreme operating conditions. Some of these extreme conditions include operating at a very high or very cold temperature, operating over a wide range of temperatures, operating in very dusty environments, operating in a very high radiation environment, and operating in possibly corrosive environments. Current drive systems use gears with various configurations of teeth. These gears must be lubricated with oil (or grease) and must have some sort of a lubricant resupply system. For drive systems, oil poses problems such as evaporation, becoming too viscous and eventually freezing at cold temperatures, being too thin to lubricate at high temperatures, being degraded by the radiation environment, being contaminated by the regolith (soil), and if vaporized (and not sealed), it will contaminate the regolith. Thus, it may not be advisable or even possible to use oil because of these limitations. An oil-less, compact traction vehicle drive is a drive designed for use in hostile environments like those that will be encountered on planetary surfaces. Initially, traction roller tests in vacuum were conducted to obtain traction and endurance data needed for designing the drives. From that data, a traction drive was designed that would fit into a prototype lunar rover vehicle, and this design data was used to construct several traction drives. These drives were then tested in air to determine their performance characteristics, and if any final corrections to the designs were necessary. A limitation with current speed reducer systems such as planetary gears and harmonic drives is the high-contact stresses that occur at tooth engagement and in the harmonic drive wave generator interface. These high stresses induce high wear of solid lubricant coatings, thus necessitating the use of liquid lubricants for long life.
Gaoua, Nadia; de Oliveira, Rita F; Hunter, Steve
2017-01-01
Different professional domains require high levels of physical performance alongside fast and accurate decision-making. Construction workers, police officers, firefighters, elite sports men and women, the military and emergency medical professionals are often exposed to hostile environments with limited options for behavioral coping strategies. In this (mini) review we use football refereeing as an example to discuss the combined effect of intense physical activity and extreme temperatures on decision-making and suggest an explicative model. In professional football competitions can be played in temperatures ranging from -5°C in Norway to 30°C in Spain for example. Despite these conditions, the referee's responsibility is to consistently apply the laws fairly and uniformly, and to ensure the rules are followed without waning or adversely influencing the competitiveness of the play. However, strenuous exercise in extreme environments imposes increased physiological and psychological stress that can affect decision-making. Therefore, the physical exertion required to follow the game and the thermal strain from the extreme temperatures may hinder the ability of referees to make fast and accurate decisions. Here, we review literature on the physical and cognitive requirements of football refereeing and how extreme temperatures may affect referees' decisions. Research suggests that both hot and cold environments have a negative impact on decision-making but data specific to decision-making is still lacking. A theoretical model of decision-making under the constraint of intense physical activity and thermal stress is suggested. Future naturalistic studies are needed to validate this model and provide clear recommendations for mitigating strategies.
Gaoua, Nadia; de Oliveira, Rita F.; Hunter, Steve
2017-01-01
Different professional domains require high levels of physical performance alongside fast and accurate decision-making. Construction workers, police officers, firefighters, elite sports men and women, the military and emergency medical professionals are often exposed to hostile environments with limited options for behavioral coping strategies. In this (mini) review we use football refereeing as an example to discuss the combined effect of intense physical activity and extreme temperatures on decision-making and suggest an explicative model. In professional football competitions can be played in temperatures ranging from -5°C in Norway to 30°C in Spain for example. Despite these conditions, the referee’s responsibility is to consistently apply the laws fairly and uniformly, and to ensure the rules are followed without waning or adversely influencing the competitiveness of the play. However, strenuous exercise in extreme environments imposes increased physiological and psychological stress that can affect decision-making. Therefore, the physical exertion required to follow the game and the thermal strain from the extreme temperatures may hinder the ability of referees to make fast and accurate decisions. Here, we review literature on the physical and cognitive requirements of football refereeing and how extreme temperatures may affect referees’ decisions. Research suggests that both hot and cold environments have a negative impact on decision-making but data specific to decision-making is still lacking. A theoretical model of decision-making under the constraint of intense physical activity and thermal stress is suggested. Future naturalistic studies are needed to validate this model and provide clear recommendations for mitigating strategies. PMID:28912742
Simulating the effect of climate extremes on groundwater flow through a lakebed
Virdi, Makhan L.; Lee, Terrie M.; Swancar, Amy; Niswonger, Richard G.
2012-01-01
Groundwater exchanges with lakes resulting from cyclical wet and dry climate extremes maintain lake levels in the environment in ways that are not well understood, in part because they remain difficult to simulate. To better understand the atypical groundwater interactions with lakes caused by climatic extremes, an original conceptual approach is introduced using MODFLOW-2005 and a kinematic-wave approximation to variably saturated flow that allows lake size and position in the basin to change while accurately representing the daily lake volume and three-dimensional variably saturated groundwater flow responses in the basin. Daily groundwater interactions are simulated for a calibrated lake basin in Florida over a decade that included historic wet and dry departures from the average rainfall. The divergent climate extremes subjected nearly 70% of the maximum lakebed area and 75% of the maximum shoreline perimeter to both groundwater inflow and lake leakage. About half of the lakebed area subject to flow reversals also went dry. A flow-through pattern present for 73% of the decade caused net leakage from the lake 80% of the time. Runoff from the saturated lake margin offset the groundwater deficit only about half of that time. A centripetal flow pattern present for 6% of the decade was important for maintaining the lake stage and generated 30% of all net groundwater inflow. Pumping effects superimposed on dry climate extremes induced the least frequent but most cautionary flow pattern with leakage from over 90% of the actual lakebed area.
NASA Astrophysics Data System (ADS)
Collow, A.; Bosilovich, M. G.; Koster, R. D.
2016-12-01
Over the past two decades a statistically significant increase in the frequency of summertime extreme precipitation events has been observed over the northeastern United States - the largest such increase in the US in terms of area and magnitude. In an effort to characterize synoptic scale patterns and changes to the atmospheric circulation associated with extreme precipitation events in this region, atmospheric fields from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) are composited on days that exceed the 90th percentile of precipitation from the CPC-Unified daily gauge-based precipitation observations. Changes over time in composites of sea level pressure, 500 hPa height, and the vertical profile of equivalent potential temperature indicate that the observed increase in extreme precipitation events is associated with extratropical cyclones, including cut off low pressure and frontal systems. Analysis of the Eady maximum growth rate, an indicator for storm tracks, shows that storms tracks in recent years have shifted southward. In addition, mean summertime transient meridional winds have decreased over time, slowing baroclinic systems and causing stationary systems to become more frequent, in agreement with previous studies examining blocking due to high pressure systems. The Atlantic Ocean provides a significant supply of moisture that converges over the region when a cyclonic circulation is situated to the south, and the statistically significant increase in Eady maximum growth rate over time there provides an increasingly improved thermodynamic environment for extreme precipitation events.
Dynamic pressure sensor calibration techniques offering expanded bandwidth with increased resolution
NASA Astrophysics Data System (ADS)
Wisniewiski, David
2015-03-01
Advancements in the aerospace, defense and energy markets are being made possible by increasingly more sophisticated systems and sub-systems which rely upon critical information to be conveyed from the physical environment being monitored through ever more specialized, extreme environment sensing components. One sensing parameter of particular interest is dynamic pressure measurement. Crossing the boundary of all three markets (i.e. aerospace, defense and energy) is dynamic pressure sensing which is used in research and development of gas turbine technology, and subsequently embedded into a control loop used for long-term monitoring. Applications include quantifying the effects of aircraft boundary layer ingestion into the engine inlet to provide a reliable and robust design. Another application includes optimization of combustor dynamics by "listening" to the acoustic signature so that fuel-to-air mixture can be adjusted in real-time to provide cost operating efficiencies and reduced NOx emissions. With the vast majority of pressure sensors supplied today being calibrated either statically or "quasi" statically, the dynamic response characterization of the frequency dependent sensitivity (i.e. transfer function) of the pressure sensor is noticeably absent. The shock tube has been shown to be an efficient vehicle to provide frequency response of pressure sensors from extremely high frequencies down to 500 Hz. Recent development activity has lowered this starting frequency; thereby augmenting the calibration bandwidth with increased frequency resolution so that as the pressure sensor is used in an actual test application, more understanding of the physical measurement can be ascertained by the end-user.
Applying systems biology methods to the study of human physiology in extreme environments
2013-01-01
Systems biology is defined in this review as ‘an iterative process of computational model building and experimental model revision with the aim of understanding or simulating complex biological systems’. We propose that, in practice, systems biology rests on three pillars: computation, the omics disciplines and repeated experimental perturbation of the system of interest. The number of ethical and physiologically relevant perturbations that can be used in experiments on healthy humans is extremely limited and principally comprises exercise, nutrition, infusions (e.g. Intralipid), some drugs and altered environment. Thus, we argue that systems biology and environmental physiology are natural symbionts for those interested in a system-level understanding of human biology. However, despite excellent progress in high-altitude genetics and several proteomics studies, systems biology research into human adaptation to extreme environments is in its infancy. A brief description and overview of systems biology in its current guise is given, followed by a mini review of computational methods used for modelling biological systems. Special attention is given to high-altitude research, metabolic network reconstruction and constraint-based modelling. PMID:23849719
Microorganisms in desert rocks: the edge of life on Earth.
Wierzchos, Jacek; de los Ríos, Asunción; Ascaso, Carmen
2012-12-01
This article reviews current knowledge on microbial communities inhabiting endolithic habitats in the arid and hyper-arid regions of our planet. In these extremely dry environments, the most common survival strategy is to colonize the interiors of rocks. This habitat provides thermal buffering, physical stability, and protection against incident UV radiation, excessive photosynthetically active radiation, and freeze-thaw events. Above all, through water retention in the rocks' network of pores and fissures, moisture is made available. Some authors have argued that dry environments pose the most extreme set of conditions faced by microorganisms. Microbial cells need to withstand the biochemical stresses created by the lack of water, along with temperature fluctuations and/or high salinity. In this review, we also address the variety of ways in which microorganisms deal with the lack of moisture in hyper-arid environments and point out the diversity of microorganisms that are able to cope with only the scarcest presence of water. Finally, we discuss the important clues to the history of life on Earth, and perhaps other places in our solar system, that have emerged from the study of extreme microbial ecosystems.
A New Time-varying Concept of Risk in a Changing Climate.
Sarhadi, Ali; Ausín, María Concepción; Wiper, Michael P
2016-10-20
In a changing climate arising from anthropogenic global warming, the nature of extreme climatic events is changing over time. Existing analytical stationary-based risk methods, however, assume multi-dimensional extreme climate phenomena will not significantly vary over time. To strengthen the reliability of infrastructure designs and the management of water systems in the changing environment, multidimensional stationary risk studies should be replaced with a new adaptive perspective. The results of a comparison indicate that current multi-dimensional stationary risk frameworks are no longer applicable to projecting the changing behaviour of multi-dimensional extreme climate processes. Using static stationary-based multivariate risk methods may lead to undesirable consequences in designing water system infrastructures. The static stationary concept should be replaced with a flexible multi-dimensional time-varying risk framework. The present study introduces a new multi-dimensional time-varying risk concept to be incorporated in updating infrastructure design strategies under changing environments arising from human-induced climate change. The proposed generalized time-varying risk concept can be applied for all stochastic multi-dimensional systems that are under the influence of changing environments.
Investigation of Loop Heat Pipe Survival and Restart After Extreme Cold Environment Exposure
NASA Technical Reports Server (NTRS)
Golliher, Eric; Ku, Jentung; Licari, Anthony; Sanzi, James
2010-01-01
NASA plans human exploration near the South Pole of the Moon, and other locations where the environment is extremely cold. This paper reports on the heat transfer performance of a loop heat pipe (LHP) exposed to extreme cold under the simulated reduced gravitational environment of the Moon. A common method of spacecraft thermal control is to use a LHP with ammonia working fluid. Typically, a small amount of heat is provided either by electrical heaters or by environmental design, such that the LHP condenser temperature never drops below the freezing point of ammonia. The concern is that a liquid-filled, frozen condenser would not restart, or that a thawing condenser would damage the tubing due to the expansion of ammonia upon thawing. This paper reports the results of an experimental investigation of a novel approach to avoid these problems. The LHP compensation chamber (CC) is conditioned such that all the ammonia liquid is removed from the condenser and the LHP is nonoperating. The condenser temperature is then reduced to below that of the ammonia freezing point. The LHP is then successfully restarted.
The ecology and diversity of microbial eukaryotes in geothermal springs.
Oliverio, Angela M; Power, Jean F; Washburne, Alex; Cary, S Craig; Stott, Matthew B; Fierer, Noah
2018-04-16
Decades of research into the Bacteria and Archaea living in geothermal spring ecosystems have yielded great insight into the diversity of life and organismal adaptations to extreme environmental conditions. Surprisingly, while microbial eukaryotes (protists) are also ubiquitous in many environments, their diversity across geothermal springs has mostly been ignored. We used high-throughput sequencing to illuminate the diversity and structure of microbial eukaryotic communities found in 160 geothermal springs with broad ranges in temperature and pH across the Taupō Volcanic Zone in New Zealand. Protistan communities were moderately predictable in composition and varied most strongly across gradients in pH and temperature. Moreover, this variation mirrored patterns observed for bacterial and archaeal communities across the same spring samples, highlighting that there are similar ecological constraints across the tree of life. While extreme pH values were associated with declining protist diversity, high temperature springs harbored substantial amounts of protist diversity. Although protists are often overlooked in geothermal springs and other extreme environments, our results indicate that such environments can host distinct and diverse protistan communities.
Current thinking about acute compartment syndrome of the lower extremity
Shadgan, Babak; Menon, Matthew; Sanders, David; Berry, Gregg; Martin, Claude; Duffy, Paul; Stephen, David; O’Brien, Peter J.
2010-01-01
Acute compartment syndrome of the lower extremity is a clinical condition that, although uncommon, is seen fairly regularly in modern orthopedic practice. The pathophysiology of the disorder has been extensively described and is well known to physicians who care for patients with musculoskeletal injuries. The diagnosis, however, is often difficult to make. In this article, we review the clinical risk factors of acute compartment syndrome of the lower extremity, identify the current concepts of diagnosis and discuss appropriate treatment plans. We also describe the Canadian medicolegal environment in regard to compartment syndrome of the lower extremity. PMID:20858378
Investigating extreme event loading on coastal bridges using wireless sensor technology
NASA Astrophysics Data System (ADS)
Gelineau, Douglas A.; Davis, Justin R.; Rice, Jennifer A.
2017-04-01
Coastal infrastructure, such as bridges, are susceptible to many forms of coastal hazards: particularly hurricane surge and wave loading. These two forms of loading can cause catastrophic damage to aging highway infrastructure. It is estimated that storm damage costs the United States about $50 Billion per year. In light of this, it is crucial that we understand the damaging forces placed on infrastructure during storm events so that we can develop safer and more resilient coastal structures. This paper presents the ongoing research to enable the efficient collection of extreme event loads acting on both the substructure and superstructure of low clearance, simple span, reinforced concrete bridges. Bridges of this type were commonly constructed during the 1950's and 60's and are particularly susceptible to deck unseating caused by hurricane surge and wave loading. The sensing technology used to capture this data must be ruggedized to survive in an extremely challenging environment, be designed to allow for redundancy in the event of sensors or other network components being lost in the storm, and be relatively low cost to allow for more bridges to be instrumented per storm event. The prototype system described in this paper includes wireless technology, rapid data transmission, and, for the sensors, self-contained power. While this specific application focuses on hurricane hazards, the framework can be extended to include other natural hazards.
Evaluation of Probable Maximum Precipitation and Flood under Climate Change in the 21st Century
NASA Astrophysics Data System (ADS)
Gangrade, S.; Kao, S. C.; Rastogi, D.; Ashfaq, M.; Naz, B. S.; Kabela, E.; Anantharaj, V. G.; Singh, N.; Preston, B. L.; Mei, R.
2016-12-01
Critical infrastructures are potentially vulnerable to extreme hydro-climatic events. Under a warming environment, the magnitude and frequency of extreme precipitation and flood are likely to increase enhancing the needs to more accurately quantify the risks due to climate change. In this study, we utilized an integrated modeling framework that includes the Weather Research Forecasting (WRF) model and a high resolution distributed hydrology soil vegetation model (DHSVM) to simulate probable maximum precipitation (PMP) and flood (PMF) events over Alabama-Coosa-Tallapoosa River Basin. A total of 120 storms were selected to simulate moisture maximized PMP under different meteorological forcings, including historical storms driven by Climate Forecast System Reanalysis (CFSR) and baseline (1981-2010), near term future (2021-2050) and long term future (2071-2100) storms driven by Community Climate System Model version 4 (CCSM4) under Representative Concentrations Pathway 8.5 emission scenario. We also analyzed the sensitivity of PMF to various antecedent hydrologic conditions such as initial soil moisture conditions and tested different compulsive approaches. Overall, a statistical significant increase is projected for future PMP and PMF, mainly attributed to the increase of background air temperature. The ensemble of simulated PMP and PMF along with their sensitivity allows us to better quantify the potential risks associated with hydro-climatic extreme events on critical energy-water infrastructures such as major hydropower dams and nuclear power plants.
ARL Collaborative Research Alliance Materials in Extreme Dynamic Environments (MEDE)
2010-11-19
Program Internal to the CRA Staff Rotation Lectures, Workshops, and Research Reviews Education Opportunities for Government Personnel Student ... Engagement with ARL Research Environment Industry Partnership + Collaboration Other Collaboration Opportunities High Performance Computing DoD
Material Concerns: Evaluating Sulfur Concrete for use in the Lunar Environment
NASA Technical Reports Server (NTRS)
Grugel, Richard N.; Toutanji, Houssam
2006-01-01
On Earth sulfur "concrete" is an established construction material that has good mechanical properties, generally better than Portland cement, and can be used in corrosive environments. Troilite (FeS) has been found on the moon and raises the question of using extracted sulfur as a lunar construction material, an attractive alternative to conventional concrete as it does not require water. Troilite reduction to elemental sulfur and using it to make concrete in a lunar setting has been previously discussed. However, little has been experimentally done to evaluate its performance in the extreme lunar environment. This study subjected sets of sulfur concrete samples, prepared using JSC-1 lunar simulant, to I ) extended periods of high vacuum and 2) extreme temperature cycles. Here an overview of sulfur concrete and experimentally assessed properties, put in context of the lunar environment, is presented and discussed.
Librado, Pablo; Der Sarkissian, Clio; Ermini, Luca; Schubert, Mikkel; Jónsson, Hákon; Albrechtsen, Anders; Fumagalli, Matteo; Yang, Melinda A; Gamba, Cristina; Seguin-Orlando, Andaine; Mortensen, Cecilie D; Petersen, Bent; Hoover, Cindi A; Lorente-Galdos, Belen; Nedoluzhko, Artem; Boulygina, Eugenia; Tsygankova, Svetlana; Neuditschko, Markus; Jagannathan, Vidhya; Thèves, Catherine; Alfarhan, Ahmed H; Alquraishi, Saleh A; Al-Rasheid, Khaled A S; Sicheritz-Ponten, Thomas; Popov, Ruslan; Grigoriev, Semyon; Alekseev, Anatoly N; Rubin, Edward M; McCue, Molly; Rieder, Stefan; Leeb, Tosso; Tikhonov, Alexei; Crubézy, Eric; Slatkin, Montgomery; Marques-Bonet, Tomas; Nielsen, Rasmus; Willerslev, Eske; Kantanen, Juha; Prokhortchouk, Egor; Orlando, Ludovic
2015-12-15
Yakutia, Sakha Republic, in the Siberian Far East, represents one of the coldest places on Earth, with winter record temperatures dropping below -70 °C. Nevertheless, Yakutian horses survive all year round in the open air due to striking phenotypic adaptations, including compact body conformations, extremely hairy winter coats, and acute seasonal differences in metabolic activities. The evolutionary origins of Yakutian horses and the genetic basis of their adaptations remain, however, contentious. Here, we present the complete genomes of nine present-day Yakutian horses and two ancient specimens dating from the early 19th century and ∼5,200 y ago. By comparing these genomes with the genomes of two Late Pleistocene, 27 domesticated, and three wild Przewalski's horses, we find that contemporary Yakutian horses do not descend from the native horses that populated the region until the mid-Holocene, but were most likely introduced following the migration of the Yakut people a few centuries ago. Thus, they represent one of the fastest cases of adaptation to the extreme temperatures of the Arctic. We find cis-regulatory mutations to have contributed more than nonsynonymous changes to their adaptation, likely due to the comparatively limited standing variation within gene bodies at the time the population was founded. Genes involved in hair development, body size, and metabolic and hormone signaling pathways represent an essential part of the Yakutian horse adaptive genetic toolkit. Finally, we find evidence for convergent evolution with native human populations and woolly mammoths, suggesting that only a few evolutionary strategies are compatible with survival in extremely cold environments.
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2007-01-01
The NASA Glenn Research Center s Avionics, Power and Communications Branch of the Engineering and Systems Division initiated the Hybrid Power Management (HPM) Program for the GRC Technology Transfer and Partnership Office. HPM is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The advanced power devices include ultracapacitors and fuel cells. HPM has extremely wide potential. Applications include power generation, transportation systems, biotechnology systems, and space power systems. HPM has the potential to significantly alleviate global energy concerns, improve the environment, and stimulate the economy. One of the unique power devices being utilized by HPM for energy storage is the ultracapacitor. An ultracapacitor is an electrochemical energy storage device, which has extremely high volumetric capacitance energy due to high surface area electrodes, and very small electrode separation. Ultracapacitors are a reliable, long life, maintenance free, energy storage system. This flexible operating system can be applied to all power systems to significantly improve system efficiency, reliability, and performance. There are many existing and conceptual applications of HPM.
Three Essays on the Role of Information and Communication Technologies in Organizations
ERIC Educational Resources Information Center
Ada, Serkan
2011-01-01
Information and communication technologies (ICT) have an essential role in today's organizations and ever-changing dynamic environments. ICT has substantial tangible and intangible impact on organizations not only in usual environments, but also in extreme environments. This dissertation is composed of three essays on the impact of ICT in…
Controls on the distribution of productivity and organic resources in Antarctic Dry Valley soils.
Hopkins, D W; Sparrow, A D; Novis, P M; Gregorich, E G; Elberling, B; Greenfield, L G
2006-11-07
The Antarctic Dry Valleys are regarded as one of the harshest terrestrial habitats on Earth because of the extremely cold and dry conditions. Despite the extreme environment and scarcity of conspicuous primary producers, the soils contain organic carbon and heterotrophic micro-organisms and invertebrates. Potential sources of organic compounds to sustain soil organisms include in situ primary production by micro-organisms and mosses, spatial subsidies from lacustrine and marine-derived detritus, and temporal subsidies ('legacies') from ancient lake deposits. The contributions from these sources at different sites are likely to be influenced by local environmental conditions, especially soil moisture content, position in the landscape in relation to lake level oscillations and legacies from previous geomorphic processes. Here we review the abiotic factors that influence biological activity in Dry Valley soils and present a conceptual model that summarizes mechanisms leading to organic resources therein.
Earth's magnetosphere and outer radiation belt under sub-Alfvénic solar wind
Lugaz, Noé; Farrugia, Charles J.; Huang, Chia-Lin; Winslow, Reka M.; Spence, Harlan E.; Schwadron, Nathan A.
2016-01-01
The interaction between Earth's magnetic field and the solar wind results in the formation of a collisionless bow shock 60,000–100,000 km upstream of our planet, as long as the solar wind fast magnetosonic Mach (hereafter Mach) number exceeds unity. Here, we present one of those extremely rare instances, when the solar wind Mach number reached steady values <1 for several hours on 17 January 2013. Simultaneous measurements by more than ten spacecraft in the near-Earth environment reveal the evanescence of the bow shock, the sunward motion of the magnetopause and the extremely rapid and intense loss of electrons in the outer radiation belt. This study allows us to directly observe the state of the inner magnetosphere, including the radiation belts during a type of solar wind-magnetosphere coupling which is unusual for planets in our solar system but may be common for close-in extrasolar planets. PMID:27694887
Earth's magnetosphere and outer radiation belt under sub-Alfvénic solar wind.
Lugaz, Noé; Farrugia, Charles J; Huang, Chia-Lin; Winslow, Reka M; Spence, Harlan E; Schwadron, Nathan A
2016-10-03
The interaction between Earth's magnetic field and the solar wind results in the formation of a collisionless bow shock 60,000-100,000 km upstream of our planet, as long as the solar wind fast magnetosonic Mach (hereafter Mach) number exceeds unity. Here, we present one of those extremely rare instances, when the solar wind Mach number reached steady values <1 for several hours on 17 January 2013. Simultaneous measurements by more than ten spacecraft in the near-Earth environment reveal the evanescence of the bow shock, the sunward motion of the magnetopause and the extremely rapid and intense loss of electrons in the outer radiation belt. This study allows us to directly observe the state of the inner magnetosphere, including the radiation belts during a type of solar wind-magnetosphere coupling which is unusual for planets in our solar system but may be common for close-in extrasolar planets.
Design of thermocouple probes for measurement of rocket exhaust plume temperatures
NASA Astrophysics Data System (ADS)
Warren, R. C.
1994-06-01
This paper summarizes a literature survey on high temperature measurement and describes the design of probes used in plume measurements. There were no cases reported of measurements in extreme environments such as exist in solid rocket exhausts, but there were a number of thermocouple designs which had been used under less extreme conditions and which could be further developed. Tungsten-rhenium(W-Rh) thermocouples had the combined properties of strength at high temperatures, high thermoelectric emf, and resistance to chemical attack. A shielded probe was required, both to protect the thermocouple junction, and to minimise radiative heat losses. After some experimentation, a twin shielded design made from molybdenum gave acceptable results. Corrections for thermal conduction losses were made based on a method obtained from the literature. Radiation losses were minimized with this probe design, and corrections for these losses were too complex and unreliable to be included.
Adaptations to Climate-Mediated Selective Pressures in Humans
Hancock, Angela M.; Witonsky, David B.; Alkorta-Aranburu, Gorka; Beall, Cynthia M.; Gebremedhin, Amha; Sukernik, Rem; Utermann, Gerd; Pritchard, Jonathan K.; Coop, Graham; Di Rienzo, Anna
2011-01-01
Humans inhabit a remarkably diverse range of environments, and adaptation through natural selection has likely played a central role in the capacity to survive and thrive in extreme climates. Unlike numerous studies that used only population genetic data to search for evidence of selection, here we scan the human genome for selection signals by identifying the SNPs with the strongest correlations between allele frequencies and climate across 61 worldwide populations. We find a striking enrichment of genic and nonsynonymous SNPs relative to non-genic SNPs among those that are strongly correlated with these climate variables. Among the most extreme signals, several overlap with those from GWAS, including SNPs associated with pigmentation and autoimmune diseases. Further, we find an enrichment of strong signals in gene sets related to UV radiation, infection and immunity, and cancer. Our results imply that adaptations to climate shaped the spatial distribution of variation in humans. PMID:21533023
SWAG: Survey of Water and Ammonia in the Galactic Center
NASA Astrophysics Data System (ADS)
Ott, Jürgen; Meier, David S.; Krieger, Nico; Rickert, Matthew
2017-01-01
SWAG (``Survey of Water and Ammonia in the Galactic Center'') is a multi-line interferometric survey toward the Center of the Milky Way conducted with the Australia Telescope Compact Array. The survey region spans the entire ~400 pc Central Molecular Zone and comprises ~42 spectral lines at pc spatial and sub-km/s spectral resolution. In addition, we deeply map continuum intensity, spectral index, and polarization at the frequencies where synchrotron, free-free, and thermal dust sources emit. The observed spectral lines include many transitions of ammonia, which we use to construct maps of molecular gas temperature, opacity and gas formation temperature (see poster by Nico Krieger et al., this volume). Water masers pinpoint the sites of active star formation and other lines are good tracers for density, radiation field, shocks, and ionization. This extremely rich survey forms a perfect basis to construct maps of the physical parameters of the gas in this extreme environment.
Membrane bioreactors for treating waste streams.
Howell, J A; Arnot, T C; Liu, W
2003-03-01
Membrane bioreactors (MBRs) have a number of advantages for treating wastewater containing large quantities of BOD. This paper reviews the inherent advantages of an MBR, which include high potential biomass loadings, lower sludge yields, and retention of specialized organisms that may not settle well in clarifiers. A major problem in effluent treatment occurs when mixed inorganic and organic wastes occur with high concentrations of pollutants. Inorganics that might cause extremes of pH and/or salinity will inhibit microbial growth and only specialized organisms can survive under these conditions. Refractory organics are only biodegraded with difficulty by specialized organisms, which usually do not resist the extreme inorganic environments. The use of membrane bioreactors to help separate the micro-organisms from the inorganic compounds, yet permit the organics to permeate, has been developed in two different designs that are outlined in this paper. The use of membrane contactors in a multimembrane stripping system to treat acidic chlorinated wastes is proposed and discussed.
The efficiency of convective energy transport in the sun
NASA Technical Reports Server (NTRS)
Schatten, Kenneth H.
1988-01-01
Mixing length theory (MLT) utilizes adiabatic expansion (as well as radiative transport) to diminish the energy content of rising convective elements. Thus in MLT, the rising elements lose their energy to the environment most efficiently and consequently transport heat with the least efficiency. On the other hand Malkus proposed that convection would maximize the efficiency of energy transport. A new stellar envelope code is developed to first examine this other extreme, wherein rising turbulent elements transport heat with the greatest possible efficiency. This other extreme model differs from MLT by providing a small reduction in the upper convection zone temperatures but greatly diminished turbulent velocities below the top few hundred kilometers. Using the findings of deep atmospheric models with the Navier-Stokes equation allows the calculation of an intermediate solar envelope model. Consideration is given to solar observations, including recent helioseismology, to examine the position of the solar envelope compared with the envelope models.
Team Composition Issues for Future Space Exploration: A Review and Directions for Future Research.
Bell, Suzanne T; Brown, Shanique G; Abben, Daniel R; Outland, Neal B
2015-06-01
Future space exploration, such as a mission to Mars, will require space crews to live and work in extreme environments unlike those of previous space missions. Extreme conditions such as prolonged confinement, isolation, and expected communication time delays will require that crews have a higher level of interpersonal compatibility and be able to work autonomously, adapting to unforeseen challenges in order to ensure mission success. Team composition, or the configuration of member attributes, is an important consideration for maximizing crewmember well-being and team performance. We conducted an extensive search to find articles about team composition in long-distance space exploration (LDSE)-analogue environments, including a search of databases, specific relevant journals, and by contacting authors who publish in the area. We review the team composition research conducted in analogue environments in terms of two paths through which team composition is likely to be related to LDSE mission success, namely by 1) affecting social integration, and 2) the team processes and emergent states related to team task completion. Suggestions for future research are summarized as: 1) the need to identify ways to foster unit-level social integration within diverse crews; 2) the missed opportunity to use team composition variables as a way to improve team processes, emergent states, and task completion; and 3) the importance of disentangling the effect of specific team composition variables to determine the traits (e.g., personality, values) that are associated with particular risks (e.g., subgrouping) to performance.
Shock, Everett L; Holland, Melanie E
2007-12-01
A framework is proposed for a quantitative approach to studying habitability. Considerations of environmental supply and organismal demand of energy lead to the conclusions that power units are most appropriate and that the units for habitability become watts per organism. Extreme and plush environments are revealed to be on a habitability continuum, and extreme environments can be quantified as those where power supply only barely exceeds demand. Strategies for laboratory and field experiments are outlined that would quantify power supplies, power demands, and habitability. An example involving a comparison of various metabolisms pursued by halophiles is shown to be well on the way to a quantitative habitability analysis.
1985-05-01
Environ. Biophys. 20:53-65. 1983. Electric field effects on bacteria and yeast cells . Radiat. Environ. Biophys. 22 :149-162. Husing, J. 0., F. Strauss, and...Jr., Ph.D. 141 A Review of Cell Effects Induced by Exposure of Extremely Low 155 Frequency Electromagnetic Fields - Eugene M. Goodman, Ph.D. and Ben...and E. M. Goodman. 1983. Cell surface effects of 60 Hz electromagnetic fields. Radiat. Res. 94:217-220. artucci, G. I., P. C. Gailey, and R. A. Tell
Electric motor-transformer aggregate in hermetic objects of transport vehicles
NASA Astrophysics Data System (ADS)
Zabora, Igor
2017-10-01
The construction and features of operation for new electrical unit - electric motor-transformer aggregate (DTA) are considered. Induction motors are intended for operation in hermetic plants with extreme conditions surrounding gas, steam-to-gas and liquid environment at a high temperature (to several hundred of degrees). Main objective of spent researches is the substantiation of possibility reliable and effective electric power transform with electric machine means directly in hermetic objects with extreme conditions environment by means of new DTA. The principle and job analysis of new disk induction motors of block-module type are observed.
Communication path for extreme environments
NASA Technical Reports Server (NTRS)
Jorgensen, Charles C. (Inventor); Betts, Bradley J. (Inventor)
2010-01-01
Methods and systems for using one or more radio frequency identification devices (RFIDs), or other suitable signal transmitters and/or receivers, to provide a sensor information communication path, to provide location and/or spatial orientation information for an emergency service worker (ESW), to provide an ESW escape route, to indicate a direction from an ESW to an ES appliance, to provide updated information on a region or structure that presents an extreme environment (fire, hazardous fluid leak, underwater, nuclear, etc.) in which an ESW works, and to provide accumulated thermal load or thermal breakdown information on one or more locations in the region.
Exploring microbial diversity in volcanic environments: a review of methods in DNA extraction.
Herrera, Aude; Cockell, Charles S
2007-07-01
The last decade has been marked by a large number of studies focused on understanding the distribution of microorganisms in volcanic environments. These studies are motivated by the desire to elucidate how the geochemically extreme conditions of such environments can influence microbial diversity both on the surface and in the subsurface of the Earth. The exploration of microbial community diversity has generally not relied on culture-dependent methods, but has been carried out using environmental DNA extraction. Because of the large diversity of chemically and physically complex samples, extracting DNA from volcanic environments is technically challenging. In view of the emerging literature, and our own experience in the optimisation of methods for DNA extraction from volcanic materials, it is timely to provide a methodological comparison. This review highlights and discusses new insights and methods published on DNA extraction methods from volcanic samples, considering the different volcanic environments. A description of a recent method for DNA extraction from basalt and obsidian glass rock samples from Iceland is included. Finally, we discuss these approaches in the wider context of modern work to understand the microbial diversity of volcanic environments.
Star-forming Environments throughout the M101 Group
NASA Astrophysics Data System (ADS)
Watkins, Aaron E.; Mihos, J. Christopher; Harding, Paul
2017-12-01
We present a multiwavelength study of star formation within the nearby M101 Group, including new deep Hα imaging of M101 and its two companions. We perform a statistical analysis of the Hα-to-FUV flux ratios in H II regions located in three different environments: M101's inner disk, M101's outer disk, and M101's lower-mass companion galaxy NGC 5474. We find that, once bulk radial trends in extinction are taken into account, both the median and scatter in F Hα /F FUV in H II regions are invariant across all of these environments. Also, using Starburst99 models, we are able to qualitatively reproduce the distributions of F Hα /F FUV throughout these different environments using a standard Kroupa initial mass function (IMF); hence, we find no need to invoke truncations in the upper-mass end of the IMF to explain the young star-forming regions in the M101 Group even at extremely low surface density. This implies that star formation in low-density environments differs from star formation in high-density environments only by intensity and not by cloud-to-cloud physics.
Day, Kimberly L; Van Lieshout, Ryan J; Vaillancourt, Tracy; Saigal, Saroj; Boyle, Michael H; Schmidt, Louis A
2017-09-01
Exposure to early adversity is known to have deleterious effects on brain-behaviour relations across the lifespan and across a range of domains. Here, we tested a cumulative risk hypothesis of adult social functioning and health outcomes in the fourth decade of life, using the oldest known longitudinally followed cohort of survivors of extremely low birthweight (ELBW; <1,000 g). We investigated the additional impact of peer victimization in youth on social outcomes at age 29-36 years in ELBW survivors and matched normal birthweight (NBW; >2,500 g) participants. In the combined sample, peer victimization was associated with lower likelihood of having children and household income, poorer family functioning and self-esteem, more loneliness and chronic health conditions, less social support, and increased likelihood for contact with police. Moderation analyses indicated that among ELBW survivors, compared to their NBW counterparts, victimization was more strongly associated with being convicted of a crime and with having chronic health conditions. These findings highlight the negative long-term impact of peer victimization on all children and that some outcomes may be differentially affected by prenatal and early post-natal environments. Statement of contribution What is already known on this subject Exposure to early adversity has deleterious effects on brain-behaviour relations across the lifespan. Extremely premature children have higher rates of exposure to adversities, including peer victimization. Peer victimization is associated with adverse outcomes in adulthood in those born at term. What does this study add? Victimization negatively impacts the social outcomes of those born extremely premature and at term into adulthood. Associations appear to be affected by individual differences in prenatal and early post-natal environments. Intervention is crucial when peer victimization occurs in children at risk, as well as those typically developing. © 2016 The British Psychological Society.
Phenotypic and Genetic Overlap between Autistic Traits at the Extremes of the General Population
ERIC Educational Resources Information Center
Ronald, Angelica; Happe, Francesca; Price, Thomas S.; Baron-Cohen, Simon; Plomin, Robert
2006-01-01
Objective: To investigate children selected from a community sample for showing extreme autistic-like traits and to assess the degree to which these individual traits--social impairments (SIs), communication impairments (CIs), and restricted repetitive behaviors and interests (RRBIs)--are caused by genes and environments, whether all of them are…
Astrobiology: Life in Extreme Environments
ERIC Educational Resources Information Center
Kaur, Preeti
2011-01-01
Astrobiology is the study of the origin, evolution and distribution of life in the universe. It seeks to answer two important scientific questions: how did we get here and are we alone in the universe? Scientists begin by studying life on Earth and its limits. The discovery of extremophiles on Earth capable of surviving extremes encourages the…
High-temperature Y267 EPDM elastomer: field and laboratory experiences, August 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirasuna, A.R.; Friese, G.J.; Stephens, C.A.
1982-03-01
Experiences which indicate the superiority of Y267 EPDM elastomer for high-temperature brines and other environments uses are summarized. Its good processing qualities, extremely good thermochemical stability, extremely good mechanical properties, its low-cost constituents, and its good performance in hydrocarbons are described in some case histories. (MCW)
Reliability of Powertrain Components Exposed to Extreme Tribological Environments
2010-08-17
Tribological Environments, Fenske et al. UNCLASSIFIED: Dist A. Approved for public release 2010 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND...TRIBOLOGICAL ENVIRONMENTS G. R. Fenske , O. O. Ajayi, R. A. Erck, C. Lorenzo-Martin, and Ashley Masoner Energy Systems Division Argonne National...Tribological Environments, Fenske et al. UNCLASSIFIED: Dist A. Approved for public release presented below summarize a series of tests that was performed
Extreme Material Physical Properties and Measurements above 100 tesla
NASA Astrophysics Data System (ADS)
Mielke, Charles
2011-03-01
The National High Magnetic Field Laboratory (NHMFL) Pulsed Field Facility (PFF) at Los Alamos National Laboratory (LANL) offers extreme environments of ultra high magnetic fields above 100 tesla by use of the Single Turn method as well as fields approaching 100 tesla with more complex methods. The challenge of metrology in the extreme magnetic field generating devices is complicated by the millions of amperes of current and tens of thousands of volts that are required to deliver the pulsed power needed for field generation. Methods of detecting physical properties of materials are essential parts of the science that seeks to understand and eventually control the fundamental functionality of materials in extreme environments. De-coupling the signal of the sample from the electro-magnetic interference associated with the magnet system is required to make these state-of-the-art magnetic fields useful to scientists studying materials in high magnetic fields. The cutting edge methods that are being used as well as methods in development will be presented with recent results in Graphene and High-Tc superconductors along with the methods and challenges. National Science Foundation DMR-Award 0654118.
Successful Space Flight of High-Speed InGaAs Photodiode Onboard the International Space Station
NASA Technical Reports Server (NTRS)
Joshi, Abhay; Prasad, Narasimha; Datta, Shubbashish
2017-01-01
Photonic systems are required for several space applications, including satellite communication links and lidar sensors. Although such systems are ubiquitous in terrestrial applications, deployment in space requires the constituent components to withstand extreme environmental conditions, including wide operating temperature range, mechanical shock and vibration, and radiation. These conditions are significantly more stringent than alternative standards, namely Bellcore GR-468 and MIL-STD 883, which may be satisfied by typical, commercially available, photonic components. Furthermore, it is very difficult to simultaneously reproduce several aspects of space environment, including exposure to galactic cosmic rays (GCR), in a laboratory. Therefore, it is necessary to operate key photonic components in space to achieve a technology readiness level of 7 and beyond. Accordingly, the International Space Station (ISS) provides an invaluable test bed for qualifying such components for space missions. We present a fiber-pigtailed photodiode module, having a -3 dB bandwidth of 16.8 GHz, that survived 18 months on the ISS as part of the Materials International Space Station Experiment (MISSE) 7 mission. This module was launched by NASA Langley Research Center on November 16, 2009 on the Space Shuttle Atlantis (STS-129), as part of their lidar transceiver components. While orbiting on the ISS in a passive experiment container, the photodiode module was exposed to extreme temperature cycling from -157 degrees Celsius to +121 degrees Celsius 16 times a day, proton radiation from the inner Van Allen belt at the South Atlantic Anomaly, and galactic cosmic rays. The module returned to Earth on the Space Shuttle Endeavor (STS-134) on June 1, 2011 for further characterization. The post flight test of the photodiode module, shown in Fig. 1a, demonstrates no change in the module's performance, thus proving its survivability during launch and in space environment.
Martian Magmatic-Driven Hydrothermal Sites: Potential Sources of Energy, Water, and Life
NASA Technical Reports Server (NTRS)
Anderson, R. C.; Dohm, J. M.; Baker, V. R.; Ferris, J. C.; Hare, T. M.; Tanaka, K. L.; Klemaszewski, J. E.; Skinner, J. A.; Scott, D. H.
2000-01-01
Magmatic-driven processes and impact events dominate the geologic record of Mars. Such recorded geologic activity coupled with significant evidence of past and present-day water/ice, above and below the martian surface, indicate that hydrothermal environments certainly existed in the past and may exist today. The identification of such environments, especially long-lived magmatic-driven hydrothermal environments, provides NASA with significant target sites for future sample return missions, since they (1) could favor the development and sustenance of life, (2) may comprise a large variety of exotic mineral assemblages, and (3) could potentially contain water/ice reservoirs for future Mars-related human activities. If life developed on Mars, the fossil record would presumably be at its greatest concentration and diversity in environments where long-term energy sources and water coexisted such as at sites where long-lived, magmatic-driven hydrothermal activity occurred. These assertions are supported by terrestrial analogs. Small, single-celled creatures (prokaryotes) are vitally important in the evolution of the Earth; these prokaryotes are environmentally tough and tolerant of environmental extremes of pH, temperature, salinity, and anoxic conditions found around hydrothermal vents. In addition, there is a great ability for bacteria to survive long periods of geologic time in extreme conditions, including high temperature hydrogen sulfide and sulfur erupted from Mount St. Helens volcano. Our team of investigators is conducting a geological investigation using multiple mission-derived datasets (e.g., existing geologic map data, MOC imagery, MOLA, TES image data, geophysical data, etc.) to identify prime target sites of hydrothermal activity for future hydrological, mineralogical, and biological investigations. The identification of these sites will enhance the probability of success for future missions to Mars.
A Systematic Approach for Engagement Analysis Under Multitasking Environments
NASA Technical Reports Server (NTRS)
Zhang, Guangfan; Leddo, John; Xu, Roger; Richey, Carl; Schnell, Tom; McKenzie, Frederick; Li, Jiang
2011-01-01
An overload condition can lead to high stress for an operator and further cause substantial drops in performance. On the other extreme, in automated systems, an operator may become underloaded; in which case, it is difficult for the operator to maintain sustained attention. When an unexpected event occurs, either internal or external to the automated system, a disengaged operation may neglect, misunderstand, or respond slowly/inappropriately to the situation. In this paper, we discuss a systematic approach monitor for extremes of cognitive workload and engagement in multitasking environments. Inferences of cognitive workload ar engagement are based on subjective evaluations, objective performance measures, physiological signals, and task analysis results. The systematic approach developed In this paper aggregates these types of information collected under the multitasking environment and can provide a real-time assessment or engagement.
Vision Aspects of Space Flight
NASA Technical Reports Server (NTRS)
Manuel, Keith; Billica, Roger (Technical Monitor)
2000-01-01
Vision, being one of our most important senses, is critically important in the unique working environment of space flight. Critical evaluation of the astronauts visual system begins with pre-selection examinations resulting in an average of 65% of all medical disqualification's caused by ocular findings. With an average age of 42, approximately 60% of the astronaut corps requires vision correction. Further demands of the unique training and working environment of microgravity, variable lighting from very poor to extreme brightness of sunlight and exposure to extremes of electromagnetic energy results in unique eyewear and contact lens applications. This presentation will describe some of those unique eyewear and contact lens applications used in space flight and training environments. Additionally, ocular findings from 26 shuttle and 5 MIR mission post-flight examinations will be presented.
Fajardo-Cavazos, Patricia; Nicholson, Wayne
2006-01-01
As part of an ongoing effort to catalog spore-forming bacterial populations in environments conducive to interplanetary transfer by natural impacts or by human spaceflight activities, spores of Bacillus spp. were isolated and characterized from the interior of near-subsurface granite rock collected from the Santa Catalina Mountains, AZ. Granite was found to contain ∼500 cultivable Bacillus spores and ∼104 total cultivable bacteria per gram. Many of the Bacillus isolates produced a previously unreported diffusible blue fluorescent compound. Two strains of eight tested exhibited increased spore UV resistance relative to a standard Bacillus subtilis UV biodosimetry strain. Fifty-six isolates were identified by repetitive extragenic palindromic PCR (rep-PCR) and 16S rRNA gene analysis as most closely related to B. megaterium (15 isolates), B. simplex (23 isolates), B. drentensis (6 isolates), B. niacini (7 isolates), and, likely, a new species related to B. barbaricus (5 isolates). Granite isolates were very closely related to a limited number of Bacillus spp. previously found to inhabit (i) globally distributed endolithic sites such as biodeteriorated murals, stone tombs, underground caverns, and rock concretions and (ii) extreme environments such as Antarctic soils, deep sea floor sediments, and spacecraft assembly facilities. Thus, it appears that the occurrence of Bacillus spp. in endolithic or extreme environments is not accidental but that these environments create unique niches excluding most Bacillus spp. but to which a limited number of Bacillus spp. are specifically adapted. PMID:16597992
2013-01-01
Background Amur ide (Leuciscus waleckii) is an economically and ecologically important cyprinid species in Northern Asia. The Dali Nor population living in the soda lake Dali Nor can adapt the extremely high alkalinity, providing us a valuable material to understand the adaptation mechanism against extreme environmental stress in teleost. Results In this study, we generated high-throughput RNA-Seq data from three tissues gill, liver and kidney of L. waleckii living in the soda lake Dali Nor and the fresh water lake Ganggeng Nor, then performed parallel comparisons of three tissues. Our results showed that out of assembled 64,603 transcript contigs, 28,391 contigs had been assigned with a known function, corresponding to 20,371 unique protein accessions. We found 477, 2,761 and 3,376 differentially expressed genes (DEGs) in the gill, kidney, and liver, respectively, of Dali Nor population compared to Ganggeng Nor population with FDR ≤ 0.01and fold-change ≥ 2. Further analysis revealed that well-known functional categories of genes and signaling pathway, which are associated with stress response and extreme environment adaptation, have been significantly enriched, including the functional categories of “response to stimulus”, “transferase activity”, “transporter activity” and “oxidoreductase activity”, and signaling pathways of “mTOR signaling”, “EIF2 signaling”, “superpathway of cholesterol biosynthesis”. We also identified significantly DEGs encoding important modulators on stress adaptation and tolerance, including carbonic anhydrases, heat shock proteins, superoxide dismutase, glutathione S-transferases, aminopeptidase N, and aminotransferases. Conclusions Overall, this study demonstrated that transcriptome changes in L. waleckii played a role in adaptation to complicated environmental stress in the highly alkalized Dali Nor lake. The results set a foundation for further analyses on alkaline-responsive candidate genes, which help us understand teleost adaptation under extreme environmental stress and ultimately benefit future breeding for alkaline-tolerant fish strains. PMID:24094069
Behavior Prediction Tools Strengthen Nanoelectronics
NASA Technical Reports Server (NTRS)
2013-01-01
Several years ago, NASA started making plans to send robots to explore the deep, dark craters on the Moon. As part of these plans, NASA needed modeling tools to help engineer unique electronics to withstand extremely cold temperatures. According to Jonathan Pellish, a flight systems test engineer at Goddard Space Flight Center, "An instrument sitting in a shadowed crater on one of the Moon s poles would hover around 43 K", that is, 43 kelvin, equivalent to -382 F. Such frigid temperatures are one of the main factors that make the extreme space environments encountered on the Moon and elsewhere so extreme. Radiation is another main concern. "Radiation is always present in the space environment," says Pellish. "Small to moderate solar energetic particle events happen regularly and extreme events happen less than a handful of times throughout the 7 active years of the 11-year solar cycle." Radiation can corrupt data, propagate to other systems, require component power cycling, and cause a host of other harmful effects. In order to explore places like the Moon, Jupiter, Saturn, Venus, and Mars, NASA must use electronic communication devices like transmitters and receivers and data collection devices like infrared cameras that can resist the effects of extreme temperature and radiation; otherwise, the electronics would not be reliable for the duration of the mission.
An adaptation to life in acid through a novel mevalonate pathway
Vinokur, Jeffrey M.; Cummins, Matthew C.; Korman, Tyler P.; ...
2016-12-22
Here, extreme acidophiles are capable of growth at pH values near zero. Sustaining life in acidic environments requires extensive adaptations of membranes, proton pumps, and DNA repair mechanisms. Here we describe an adaptation of a core biochemical pathway, the mevalonate pathway, in extreme acidophiles. Two previously known mevalonate pathways involve ATP dependent decarboxylation of either mevalonate 5-phosphate or mevalonate 5-pyrophosphate, in which a single enzyme carries out two essential steps: (1) phosphorylation of the mevalonate moiety at the 3-OH position and (2) subsequent decarboxylation. We now demonstrate that in extreme acidophiles, decarboxylation is carried out by two separate steps: previouslymore » identified enzymes generate mevalonate 3,5-bisphosphate and a new decarboxylase we describe here, mevalonate 3,5-bisphosphate decarboxylase, produces isopentenyl phosphate. Why use two enzymes in acidophiles when one enzyme provides both functionalities in all other organisms examined to date? We find that at low pH, the dual function enzyme, mevalonate 5-phosphate decarboxylase is unable to carry out the first phosphorylation step, yet retains its ability to perform decarboxylation. We therefore propose that extreme acidophiles had to replace the dual-purpose enzyme with two specialized enzymes to efficiently produce isoprenoids in extremely acidic environments.« less
An adaptation to life in acid through a novel mevalonate pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinokur, Jeffrey M.; Cummins, Matthew C.; Korman, Tyler P.
Here, extreme acidophiles are capable of growth at pH values near zero. Sustaining life in acidic environments requires extensive adaptations of membranes, proton pumps, and DNA repair mechanisms. Here we describe an adaptation of a core biochemical pathway, the mevalonate pathway, in extreme acidophiles. Two previously known mevalonate pathways involve ATP dependent decarboxylation of either mevalonate 5-phosphate or mevalonate 5-pyrophosphate, in which a single enzyme carries out two essential steps: (1) phosphorylation of the mevalonate moiety at the 3-OH position and (2) subsequent decarboxylation. We now demonstrate that in extreme acidophiles, decarboxylation is carried out by two separate steps: previouslymore » identified enzymes generate mevalonate 3,5-bisphosphate and a new decarboxylase we describe here, mevalonate 3,5-bisphosphate decarboxylase, produces isopentenyl phosphate. Why use two enzymes in acidophiles when one enzyme provides both functionalities in all other organisms examined to date? We find that at low pH, the dual function enzyme, mevalonate 5-phosphate decarboxylase is unable to carry out the first phosphorylation step, yet retains its ability to perform decarboxylation. We therefore propose that extreme acidophiles had to replace the dual-purpose enzyme with two specialized enzymes to efficiently produce isoprenoids in extremely acidic environments.« less
Radiation coloration resistant glass
Tomozawa, M.; Watson, E.B.; Acocella, J.
1986-11-04
A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10[sup 7] rad, the coloration resistant glass does not lose transparency. 3 figs.
Radiation coloration resistant glass
Tomozawa, Minoru; Watson, E. Bruce; Acocella, John
1986-01-01
A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10.sup.7 rad, the coloration resistant glass does not lose transparency.
Are opthalmic hydrophobic coatings useful for astronomical optics?
NASA Astrophysics Data System (ADS)
Schwab, Christian; Phillips, Andrew C.
2010-07-01
Astronomical optics are often exposed to moisture and dust in observatory environments, which frequently compromises their high-performance coatings. Suitable protective layers to resist dust and moisture accumulation would be extremely advantageous, but have received scant attention thus far. Hydrophobic and scratch-resistant coatings, developed primarily for opthalmic use, exhibit several attractive properties for astronomical optics. We examine the properties of one such coating and its applicability to astronomical mirrors and lenses. This includes efficiency of dust removal, abrasion resistance, moisture resistance, ease of stripping, and transmission across a wide wavelength range.
Suzuki, Atsushi C; Kagoshima, Hiroshi; Chilton, Glen; Grothman, Gary T; Johansson, Carl; Tsujimoto, Megumu
2017-02-01
Extreme environments sometimes support surprisingly high meiofaunal diversity. We sampled runoff from the acidic hot springs of Unzen, Japan. This is the type locality of Thermozodium esakii Rahm, 1937, the only tardigrade in the class Mesotardigrada, which remains contentious in the absence of corroboration or supporting specimens. Our sampling revealed at least three species of arthropods, four rotifers, and five nematodes living in the hot (ca. 40°C) and acidic (ca. pH 2.5) water, but no tardigrades.
2006-04-03
KENNEDY SPACE CENTER, FLA. -- Astronaut Nicole Stott, Dr. Tim Broderick of the University of Cincinnati, and astronaut Dave Williams are preparing for their 17-day mission on the NASA Extreme Environment Mission Operations (NEEMO) project. The mission will take place onboard the National Oceanic and Atmospheric Administration (NOAA) Aquarius Underwater Laboratory situated three miles off Key Largo in the Florida Keys National Marine Sanctuary, anchored 62 feet below the surface. Williams is leading the undersea mission, which also includes astronaut Ron Garan. The astronauts are testing space medicine concepts and moon-walking techniques.
Research at a European Planetary Simulation Facility
NASA Astrophysics Data System (ADS)
Merrison, J.; Iversen, J. J.; Alois, S.; Rasmussen, K. R.
2015-10-01
This unique environmental simulation facility is capable of re-creating extreme terrestrial, Martian and other planetary environments. It is supported by EU activities including Europlanet RI and a volcanology network VERTIGO. It is also used as a test facility by ESA for the forthcoming ExoMars 2018 mission. Specifically it is capable of recreating the key physical parameters such as temperature, pressure (gas composition), wind flow and importantly the suspension/transport of dust or sand particulates. This facility is available both to the scientific and Industrial community. The latest research and networking activities will be presented.
Lakshmi Planum, Venus - Characteristics and models of origin
NASA Technical Reports Server (NTRS)
Roberts, Kari M.; Head, James W.
1990-01-01
The distinctive and unique Venusian geological structure, Lakshmi Planum, is an expansive relatively smooth flat plateau containing two large shield volcanos and abundant volcanic plains in the midst of a region of extreme relief. The characteristics which distinguish Lakshmi from other volcanic regions known on the planet, such as Beta Regio, are identified. These include its high altitude and plateaulike nature; the presence of two very large low shield structures with distinctive central paterae and long radiating flows; and its compressional tectonic environment. The detailed nature and significance of the volcanic deposits on Lakshmi are determined; the erruption styles and conditions are interpreted; and the link between the observed volcanism and tectonic environment of the region is discussed. Models for the formation of Lakshmi Planum are presented and evaluated.
Lakshmi Planum, Venus - Characteristics and models of origin
NASA Astrophysics Data System (ADS)
Roberts, Kari M.; Head, James W.
1990-12-01
The distinctive and unique Venusian geological structure, Lakshmi Planum, is an expansive relatively smooth flat plateau containing two large shield volcanos and abundant volcanic plains in the midst of a region of extreme relief. The characteristics which distinguish Lakshmi from other volcanic regions known on the planet, such as Beta Regio, are identified. These include its high altitude and plateaulike nature; the presence of two very large low shield structures with distinctive central paterae and long radiating flows; and its compressional tectonic environment. The detailed nature and significance of the volcanic deposits on Lakshmi are determined; the erruption styles and conditions are interpreted; and the link between the observed volcanism and tectonic environment of the region is discussed. Models for the formation of Lakshmi Planum are presented and evaluated.
Conditions for extreme sensitivity of protein diffusion in membranes to cell environments
Tserkovnyak, Yaroslav; Nelson, David R.
2006-01-01
We study protein diffusion in multicomponent lipid membranes close to a rigid substrate separated by a layer of viscous fluid. The large-distance, long-time asymptotics for Brownian motion are calculated by using a nonlinear stochastic Navier–Stokes equation including the effect of friction with the substrate. The advective nonlinearity, neglected in previous treatments, gives only a small correction to the renormalized viscosity and diffusion coefficient at room temperature. We find, however, that in realistic multicomponent lipid mixtures, close to a critical point for phase separation, protein diffusion acquires a strong power-law dependence on temperature and the distance to the substrate H, making it much more sensitive to cell environment, unlike the logarithmic dependence on H and very small thermal correction away from the critical point. PMID:17008402
NASA Technical Reports Server (NTRS)
Hagedorn, Norman H. (Inventor)
1993-01-01
An alkali metal, such as lithium, is the anodic reactant; carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant; and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is, therefore, especially useful in extraterrestrial environments.
Crew collaboration in space: a naturalistic decision-making perspective
NASA Technical Reports Server (NTRS)
Orasanu, Judith
2005-01-01
Successful long-duration space missions will depend on the ability of crewmembers to respond promptly and effectively to unanticipated problems that arise under highly stressful conditions. Naturalistic decision making (NDM) exploits the knowledge and experience of decision makers in meaningful work domains, especially complex sociotechnical systems, including aviation and space. Decision making in these ambiguous, dynamic, high-risk environments is a complex task that involves defining the nature of the problem and crafting a response to achieve one's goals. Goal conflicts, time pressures, and uncertain outcomes may further complicate the process. This paper reviews theory and research pertaining to the NDM model and traces some of the implications for space crews and other groups that perform meaningful work in extreme environments. It concludes with specific recommendations for preparing exploration crews to use NDM effectively.
NASA Astrophysics Data System (ADS)
SUN, N.; Yearsley, J. R.; Lettenmaier, D. P.
2013-12-01
Recent research shows that precipitation extremes in many of the largest U.S. urban areas have increased over the last 60 years. These changes have important implications for stormwater runoff and water quality, which in urban areas are dominated by the most extreme precipitation events. We assess the potential implications of changes in extreme precipitation and changing land cover in urban and urbanizing watersheds at the regional scale using a combination of hydrology and water quality models. Specifically, we describe the integration of a spatially distributed hydrological model - the Distributed Hydrology Soil Vegetation Model (DHSVM), the urban water quality model in EPA's Storm Water Management Model (SWMM), the semi-Lagrangian stream temperature model RBM10, and dynamical and statistical downscaling methods applied to global climate predictions. Key output water quality parameters include total suspended solids (TSS), toal nitrogen, total phosphorous, fecal coliform bacteria and stream temperature. We have evaluated the performance of the modeling system in the highly urbanized Mercer Creek watershed in the rapidly growing Bellevue urban area in WA, USA. The results suggest that the model is able to (1) produce reasonable streamflow predictions at fine temporal and spatial scales; (2) provide spatially distributed water temperature predictions that mostly agree with observations throughout a complex stream network, and characterize impacts of climate, landscape, near-stream vegetation change on stream temperature at local and regional scales; and (3) capture plausibly the response of water quality constituents to varying magnitude of precipitation events in urban environments. Next we will extend the scope of the study from the Mercer Creek watershed to include the entire Puget Sound Basin, WA, USA.
Zavos, Helena M S; Freeman, Daniel; Haworth, Claire M A; McGuire, Philip; Plomin, Robert; Cardno, Alastair G; Ronald, Angelica
2014-09-01
The onset of psychosis is usually preceded by psychotic experiences (PE). Little is known about the etiology of PE and whether the degree of genetic and environmental influences varies across different levels of severity. A recognized challenge is to identify individuals at high risk of developing psychotic disorders prior to disease onset. To investigate the degree of genetic and environmental influences on specific PE, assessed dimensionally, in adolescents in the community and in those who have many, frequent experiences (defined using quantitative cutoffs). We also assessed the degree of overlap in etiological influences between specific PE. Structural equation model-fitting, including univariate and bivariate twin models, liability threshold models, DeFries-Fulker extremes analysis, and the Cherny method, was used to analyze a representative community sample of 5059 adolescent twin pairs (mean [SD] age, 16.31 [0.68] years) from England and Wales. Psychotic experiences assessed as quantitative traits (self-rated paranoia, hallucinations, cognitive disorganization, grandiosity, and anhedonia, as well as parent-rated negative symptoms). Genetic influences were apparent for all PE (15%-59%), with modest shared environment for hallucinations and negative symptoms (17%-24%) and significant nonshared environment (49%-64%) for the self-rated scales and 17% for parent-rated negative symptoms. Three empirical approaches converged to suggest that the etiology in extreme-scoring groups (most extreme scoring: 5%, 10%, and 15%) did not differ significantly from that of the whole distribution. There was no linear change in heritability across the distribution of PE, with the exception of a modest increase in heritability for increasing severity of parent-rated negative symptoms. Of the PE that showed covariation, this appeared to be due to shared genetic influences (bivariate heritabilities, 0.54-0.71). These findings are consistent with the concept of a psychosis continuum, suggesting that the same genetic and environmental factors influence both extreme, frequent PE and milder, less frequent manifestations in adolescents. Individual PE in adolescence, assessed quantitatively, have lower heritability estimates and higher estimates of nonshared environment than those for the liability to schizophrenia. Heritability varies by type of PE, being highest for paranoia and parent-rated negative symptoms and lowest for hallucinations.
Compact genome of the Antarctic midge is likely an adaptation to an extreme environment.
Kelley, Joanna L; Peyton, Justin T; Fiston-Lavier, Anna-Sophie; Teets, Nicholas M; Yee, Muh-Ching; Johnston, J Spencer; Bustamante, Carlos D; Lee, Richard E; Denlinger, David L
2014-08-12
The midge, Belgica antarctica, is the only insect endemic to Antarctica, and thus it offers a powerful model for probing responses to extreme temperatures, freeze tolerance, dehydration, osmotic stress, ultraviolet radiation and other forms of environmental stress. Here we present the first genome assembly of an extremophile, the first dipteran in the family Chironomidae, and the first Antarctic eukaryote to be sequenced. At 99 megabases, B. antarctica has the smallest insect genome sequenced thus far. Although it has a similar number of genes as other Diptera, the midge genome has very low repeat density and a reduction in intron length. Environmental extremes appear to constrain genome architecture, not gene content. The few transposable elements present are mainly ancient, inactive retroelements. An abundance of genes associated with development, regulation of metabolism and responses to external stimuli may reflect adaptations for surviving in this harsh environment.
Compact genome of the Antarctic midge is likely an adaptation to an extreme environment
Kelley, Joanna L.; Peyton, Justin T.; Fiston-Lavier, Anna-Sophie; Teets, Nicholas M.; Yee, Muh-Ching; Johnston, J. Spencer; Bustamante, Carlos D.; Lee, Richard E.; Denlinger, David L.
2014-01-01
The midge, Belgica antarctica, is the only insect endemic to Antarctica, and thus it offers a powerful model for probing responses to extreme temperatures, freeze tolerance, dehydration, osmotic stress, ultraviolet radiation and other forms of environmental stress. Here we present the first genome assembly of an extremophile, the first dipteran in the family Chironomidae, and the first Antarctic eukaryote to be sequenced. At 99 megabases, B. antarctica has the smallest insect genome sequenced thus far. Although it has a similar number of genes as other Diptera, the midge genome has very low repeat density and a reduction in intron length. Environmental extremes appear to constrain genome architecture, not gene content. The few transposable elements present are mainly ancient, inactive retroelements. An abundance of genes associated with development, regulation of metabolism and responses to external stimuli may reflect adaptations for surviving in this harsh environment. PMID:25118180
Forest-fire model as a supercritical dynamic model in financial systems
NASA Astrophysics Data System (ADS)
Lee, Deokjae; Kim, Jae-Young; Lee, Jeho; Kahng, B.
2015-02-01
Recently large-scale cascading failures in complex systems have garnered substantial attention. Such extreme events have been treated as an integral part of self-organized criticality (SOC). Recent empirical work has suggested that some extreme events systematically deviate from the SOC paradigm, requiring a different theoretical framework. We shed additional theoretical light on this possibility by studying financial crisis. We build our model of financial crisis on the well-known forest fire model in scale-free networks. Our analysis shows a nontrivial scaling feature indicating supercritical behavior, which is independent of system size. Extreme events in the supercritical state result from bursting of a fat bubble, seeds of which are sown by a protracted period of a benign financial environment with few shocks. Our findings suggest that policymakers can control the magnitude of financial meltdowns by keeping the economy operating within reasonable duration of a benign environment.
An Overview of 2014 SBIR Phase I and Phase II Materials Structures for Extreme Environments
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.
2015-01-01
NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights nine of the innovative SBIR 2014 Phase I and Phase II projects that emphasize one of NASA Glenn Research Center's six core competencies-Materials and Structures for Extreme Environments. The technologies cover a wide spectrum of applications such as high temperature environmental barrier coating systems, deployable space structures, solid oxide fuel cells, and self-lubricating hard coatings for extreme temperatures. Each featured technology describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.
NASA Technical Reports Server (NTRS)
Ramesham, Rajeshuni
2012-01-01
This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surface-mount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Keywords: Extreme temperatures, High density CCGA qualification, CCGA reliability, solder joint failures, optical inspection, and x-ray inspection.
NASA Astrophysics Data System (ADS)
Feshangsaz, Niloofar; Van Loon, ing.. Jack J. W. A.; Nazmi, Kamran; Semsarha, Farid
2016-07-01
Studying halophiles from different environments of Earth provide new insights into our search for life in the universe. Haloarchaea show some unique characteristics and physiological adaptations like acidic proteins against harsh environments such as natural brine with salt concentration approaching saturation (5 M) and regions with low active water. These properties make haloarchaea interesting candidate for astrobiological studies. Halovarius luteus gen. nov., sp. nov. a novel extremely halophilic archaeon from Urmia salt lake, in Iran has been chosen to explore its resistance against a series of extreme conditions. The aim of this study is to assess the resistance of strain DA50T under the effects of simulated space conditions like simulated microgravity, hypergravity, and desiccation. In this paper we will discuss the results of these studies where we specifically focus on changes in carotenoid pigments production and whole cell proteome. This is the first report of very novel Iranian archaea in response to extreme space conditions. The pigments were extracted by acetone and methanol. Pigments were analyzed by scanning the absorbance spectrum in the UV-VIS spectrophotometer. And they were separated by TLC. Whole protein from cell lysate supernatant was extracted after lysis with Bacterial Protein Extraction Reagent and fractionated by RP-HPLC using C18 column. Proteome analyzed by electrophoresis (SDS-PAGE), and MALDI-TOF. Carotenoid pigments are formed under different extreme conditions such as dry environment and gravitational changes. Also the protein composition exhibits alterations after exposure to the same conditions. Our conclusion is that pigments and proteins formation depend on the growth circumstances. Halophiles use this as an adaptation to survive under different environmental conditions.
Microbial ecology of extreme environments: Antarctic yeasts and growth in substrate-limited habitats
NASA Technical Reports Server (NTRS)
Vishniac, H. S.
1985-01-01
The high, dry valleys of the Ross Desert of Antarctic, characterized by extremely low temperatures, aridity and a depauperate biota, are used as an analog of the postulated extreme climates of other planetary bodies of the Solar System to test the hypothesis that if life could be supported by Ross, it might be possible where similar conditions prevail. The previously considered sterility of the Ross Desert soil ecosystem has yielded up an indigenous yeast, Cryptoccus vishniacci, which is able to resist the extremes of cold, wet and dry freezing, and long arid periods, while making minimal nutritional demands on the soil.
Phospholipid and Respiratory Quinone Analyses From Extreme Environments
NASA Astrophysics Data System (ADS)
Pfiffner, S. M.
2008-12-01
Extreme environments on Earth have been chosen as surrogate sites to test methods and strategies for the deployment of space craft in the search for extraterrestrial life. Surrogate sites for many of the NASA astrobiology institutes include the South African gold mines, Canadian subpermafrost, Atacama Desert, and acid rock drainage. Soils, sediments, rock cores, fracture waters, biofilms, and service and drill waters represent the types of samples collected from these sites. These samples were analyzed by gas chromatography mass spectrometry for phospholipid fatty acid methyl esters and by high performance liquid chromatography atmospheric pressure chemical ionization tandem mass spectrometry for respiratory quinones. Phospholipid analyses provided estimates of biomass, community composition, and compositional changes related to nutritional limitations or exposure to toxic conditions. Similar to phospholipid analyses, respiratory quinone analyses afforded identification of certain types of microorganisms in the community based on respiration and offered clues to in situ redox conditions. Depending on the number of samples analyzed, selected multivariate statistical methods were applied to relate membrane lipid results with site biogeochemical parameters. Successful detection of life signatures and refinement of methodologies at surrogate sites on Earth will be critical for the recognition of extraterrestrial life. At this time, membrane lipid analyses provide useful information not easily obtained by other molecular techniques.
Localized heating/bonding techniques in MEMS packaging
NASA Astrophysics Data System (ADS)
Mabesa, J. R., Jr.; Scott, A. J.; Wu, X.; Auner, G. W.
2005-05-01
Packaging is used to protect and enable intelligent sensor systems utilized in manned/unmanned ground vehicle systems/subsystems. Because Micro electro mechanical systems (MEMS) are used often in these sensor or actuation products, it must interact with the surrounding environment, which may be in direct conflict with the desire to isolate the electronics for improved reliability/durability performance. For some very simple devices, performance requirements may allow a high degree of isolation from the environment (e.g., stints and accelerometers). Other more complex devices (i.e. chemical and biological analysis systems, particularly in vivo systems) present extremely complex packaging requirements. Power and communications to MEMS device arrays are also extremely problematic. The following describes the research being performed at the U.S. Army Research, Development, and Engineering Command (RDECOM) Tank and Automotive Research, Development, and Engineering Center (TARDEC), in collaboration with Wayne State University, in Detroit, MI. The focus of the packaging research is limited to six main categories: a) provision for feed-through for electrical, optical, thermal, and fluidic interfaces; b) environmental management including atmosphere, hermiticity, and temperature; c) control of stress and mechanical durability; d) management of thermal properties to minimize absorption and/or emission; e) durability and structural integrity; and f) management of RF/magnetic/electrical and optical interference and/or radiation properties and exposure.
Pollen morphology of Rhizophora L. in Peninsular Malaysia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohd-Arrabe', A. B.; Noraini, Talip Noraini
Rhizophora L. are common mangrove genus in Peninsular Malaysia, it contains 3 species and 1 hybrid (R. apiculata Blume, R. mucronata Lam., R. stylosa Griff., R. x lamarckii Montrouz). This genus has some unique adaptation towards extreme environment. Rhizophora has looping aerial stilt-root and uniformly viviparous. The aim of this study is to investigate the variation in the pollen morphology of Rhizophora that can be related to their habitat. Methods include in this study is pollen observation under light and acetolysis method under scanning electron microscope. Pollen type of Rhizophora species studied except hybrid species is classified tricolporate, shape spheroidalmore » based on ratio of length polar axis/ length of equatorial axis (1.03 - 1.09). The exine ornamentation is perforate-reticulate for R. apiculata and R. mucronata, while R. stylosa is perforate. For the only hybrid in Peninsular Malaysia, R. x lamarckii (R. apiculata x R. stylosa) differs from others, tricolpate with the absence of porate, shape is subprolate and exine ornamentation is reticulate and striate in equatorial region. Pollenkitt is present due to the salty and extreme environment. This may enhance the volume of pollenkitt present surrounding the pollen grains in Rhizophora for protection and adaptation purposes. Based on these findings, it is evident that pollen morphology is somehow related to its natural habitat.« less
NASA Astrophysics Data System (ADS)
Schumacher, R. S.; Peters, J. M.
2015-12-01
Mesoscale convective systems (MCSs) are responsible for a large fraction of warm-season extreme rainfall events over the continental United States, as well as other midlatitude regions globally. The rainfall production in these MCSs is determined by numerous factors, including the large-scale forcing for ascent, the organization of the convection, cloud microphysical processes, and the surrounding thermodynamic and kinematic environment. Furthermore, heavy-rain-producing MCSs are most common at night, which means that well-studied mechanisms for MCS maintenance and organization such as cold pools (gravity currents) are not always at work. In this study, we use numerical model simulations and recent field observations to investigate the sensitivity of low-level MCS structures, and their influences on rainfall, to the details of the thermodynamic environment. In particular, small alterations to the initial conditions in idealized and semi-idealized simulations result in comparatively large precipitation changes, both in terms of the intensity and the spatial distribution. The uncertainties in the thermodynamic enviroments in the model simulations will be compared with high-resolution observations from the Plains Elevated Convection At Night (PECAN) field experiment in 2015. The results have implications for the paradigms of "surface-based" versus "elevated" convection, as well as for the predictability of warm-season convective rainfall.
Pollen morphology of Rhizophora L. in Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Mohd-Arrabe', A. B.; Noraini, Talip Noraini
2013-11-01
Rhizophora L. are common mangrove genus in Peninsular Malaysia, it contains 3 species and 1 hybrid (R. apiculata Blume, R. mucronata Lam., R. stylosa Griff., R. x lamarckii Montrouz). This genus has some unique adaptation towards extreme environment. Rhizophora has looping aerial stilt-root and uniformly viviparous. The aim of this study is to investigate the variation in the pollen morphology of Rhizophora that can be related to their habitat. Methods include in this study is pollen observation under light and acetolysis method under scanning electron microscope. Pollen type of Rhizophora species studied except hybrid species is classified tricolporate, shape spheroidal based on ratio of length polar axis/ length of equatorial axis (1.03 - 1.09). The exine ornamentation is perforate-reticulate for R. apiculata and R. mucronata, while R. stylosa is perforate. For the only hybrid in Peninsular Malaysia, R. x lamarckii (R. apiculata x R. stylosa) differs from others, tricolpate with the absence of porate, shape is subprolate and exine ornamentation is reticulate and striate in equatorial region. Pollenkitt is present due to the salty and extreme environment. This may enhance the volume of pollenkitt present surrounding the pollen grains in Rhizophora for protection and adaptation purposes. Based on these findings, it is evident that pollen morphology is somehow related to its natural habitat.
Slippery self-lubricating polymer surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aizenberg, Joanna; Aizenberg, Michael; Cui, Jiaxi
The present disclosure describes a strategy to create self-healing, slippery self-lubricating polymers. Lubricating liquids with affinities to polymers can be utilized to get absorbed within the polymer and form a lubricant layer (of the lubricating liquid) on the polymer. The lubricant layer can repel a wide range of materials, including simple and complex fluids (water, hydrocarbons, crude oil and bodily fluids), restore liquid-repellency after physical damage, and resist ice, microorganisms and insects adhesion. Some exemplary applications where self-lubricating polymers will be useful include energy-efficient, friction-reduction fluid handling and transportation, medical devices, anti-icing, optical sensing, and as self-cleaning, and anti-fouling materialsmore » operating in extreme environments.« less
Adaptation to metals in widespread and endemic plants.
Shaw, A J
1994-01-01
Bryophytes, including the mosses, liverworts, and hornworts, occur in a variety of habitats with high concentrations of metals and have other characteristics that are advantageous for studies of metal tolerance. Mosses may evolve genetically specialized, metal-tolerant races less frequently than flowering plants. Some species of mosses appear to have inherently high levels of metal tolerance even in individuals that have not been subjected to natural selection in contaminated environments. Scopelophila cataractae, one of the so-called copper mosses, not only tolerates extremely high concentrations of metals in its substrates, but requires these substrates for optimum growth. This species should be included in mechanistic studies of tolerance at the cellular and molecular levels. PMID:7713025
Playing by the rules? Phenotypic adaptation to temperate environments in an American marsupial
Harrigan, Ryan J.; Wayne, Robert K.
2018-01-01
Phenotypic variation along environmental gradients can provide evidence suggesting local adaptation has shaped observed morphological disparities. These differences, in traits such as body and extremity size, as well as skin and coat pigmentation, may affect the overall fitness of individuals in their environments. The Virginia opossum (Didelphis virginiana) is a marsupial that shows phenotypic variation across its range, one that has recently expanded into temperate environments. It is unknown, however, whether the variation observed in the species fits adaptive ecogeographic patterns, or if phenotypic change is associated with any environmental factors. Using phenotypic measurements of over 300 museum specimens of Virginia opossum, collected throughout its distribution range, we applied regression analysis to determine if phenotypes change along a latitudinal gradient. Then, using predictors from remote-sensing databases and a random forest algorithm, we tested environmental models to find the most important variables driving the phenotypic variation. We found that despite the recent expansion into temperate environments, the phenotypic variation in the Virginia opossum follows a latitudinal gradient fitting three adaptive ecogeographic patterns codified under Bergmann’s, Allen’s and Gloger’s rules. Temperature seasonality was an important predictor of body size variation, with larger opossums occurring at high latitudes with more seasonal environments. Annual mean temperature predicted important variation in extremity size, with smaller extremities found in northern populations. Finally, we found that precipitation and temperature seasonality as well as low temperatures were strong environmental predictors of skin and coat pigmentation variation; darker opossums are distributed at low latitudes in warmer environments with higher precipitation seasonality. These results indicate that the adaptive mechanisms underlying the variation in body size, extremity size and pigmentation are related to the resource seasonality, heat conservation, and pathogen-resistance hypotheses, respectively. Our findings suggest that marsupials may be highly susceptible to environmental changes, and in the case of the Virginia opossum, the drastic phenotypic evolution in northern populations may have arisen rapidly, facilitating the colonization of seasonal and colder habitats of temperate North America. PMID:29607255
Flat-panel display solutions for ground-environment military displays (Invited Paper)
NASA Astrophysics Data System (ADS)
Thomas, J., II; Roach, R.
2005-05-01
Displays for military vehicles have very distinct operational and cost requirements that differ from other military applications. These requirements demand that display suppliers to Army and Marine ground-environments provide low cost equipment that is capable of operation across environmental extremes. Inevitably, COTS components form the foundation of these "affordable" display solutions. This paper will outline the major display requirements and review the options that satisfy conflicting and difficult operational demands, using newly developed equipment as an example. Recently, a new supplier was selected for the Drivers Vision Enhancer (DVE) equipment, including the Display Control Module (DCM). The paper will outline the DVE and describe development of a new DCM solution. The DVE programme, with several thousand units presently in service and operational in conflicts such as "Operation Iraqi Freedom", represents a critical balance between cost and performance. We shall describe design considerations that include selection of COTS sources, the need to minimise display modification; video interfaces, power interfaces, operator interfaces and new provisions to optimise displayed video content.
NASA Technical Reports Server (NTRS)
Ontiveros, Cordelia
1988-01-01
Various vacuum jacketed cryogenic supply lines at the Shuttle launch site use convoluted flexible expansion joints. The atmosphere at the launch site has a very high salt content, and during a launch, fuel combustion products include hydrochloric acid. This extremely corrosive environment has caused pitting corrosion failure in the flex hoses, which were made of 304L stainless steel. A search was done to find a more corrosion resistant replacement material. This study focused on 19 metal alloys. Tests which were performed include electrochemical corrosion testing, accelerated corrosion testing in a salt fog chamber, long term exposure at the beach corrosion testing site, and pitting corrosion tests in ferric chloride solution. Based on the results of these tests, the most corrosion resistant alloys were found to be (in order) Hastelloy C-22, Inconel 625, Hastelloy C-276, Hastelloy C-4, and Inco Alloy G-3. Of these top five alloys, the Hastelloy C-22 stands out as being the best of those tested for this application.
NASA Technical Reports Server (NTRS)
Macdowell, Louis G., III; Ontiveros, Cordelia
1988-01-01
Various vacuum jacketed cryogenic supply lines at the Shuttle launch site use convoluted flexible expansion joints. The atmosphere at the launch site has a very high salt content, and during a launch fuel combustion products include hydrochloric acid. This extremely corrosive environment has caused pitting corrosion failure in the flex hoses, which were made out of 304L stainless steel. A search was done to find a more corrosion resistant replacement material. Nineteen metal alloys were tested. Tests which were performed include electrochemical corrosion testing, accelerated corrosion testing in a salt fog chamber, long term exposure at the beach corrosion testing site, and pitting corrosion tests in ferric chloride solution. Based on the results, the most corrosion resistant alloys were found to be, in order, Hastelloy C-22, Inconel 625, Hastelloy C-276, Hastelloy C-4, and Inco Alloy G-3. Of these top five alloys, the Hastelloy C-22 stands out as being the best of the alloys tested.
Status and path to a final EUVL reticle-handling solution
NASA Astrophysics Data System (ADS)
He, Long; Orvek, Kevin; Seidel, Phil; Wurm, Stefan; Underwood, Jon; Betancourt, Ernie
2007-03-01
In extreme ultraviolet lithography (EUVL), the lack of a suitable material to build conventional pellicles calls for industry standardization of new techniques for protection and handling throughout the reticle's lifetime. This includes reticle shipping, robotic handling, in-fab transport, storage, and uses in atmospheric environments for metrology and vacuum environments for EUV exposure. In this paper, we review the status of the industry-wide progress in developing EUVL reticle-handling solutions. We show the industry's leading reticle carrier approaches for particle-free protection, such as improvements in conventional single carrier designs and new EUVL-specific carrier concepts, including variations on a removable pellicle. Our test indicates dual pod approach of the removable pellicle led to nearly particle-free use during a simulated life cycle, at ~50nm inspection sensitivity. We will provide an assessment of the remaining technical challenges facing EUVL reticle-handling technology. Finally, we will review the progress of the SEMI EUVL Reticle-handling Task Force in its efforts to standardize a final EUV reticle protection and handling solution.
Impacts of Climate Change On The Occurrence of Extreme Events: The Mice Project
NASA Astrophysics Data System (ADS)
Palutikof, J. P.; Mice Team
It is widely accepted that climate change due to global warming will have substan- tial impacts on the natural environment, and on human activities. Furthermore, it is increasingly recognized that changes in the severity and frequency of extreme events, such as windstorm and flood, are likely to be more important than changes in the average climate. The EU-funded project MICE (Modelling the Impacts of Climate Extremes) commenced in January 2002. It seeks to identify the likely changes in the occurrence of extremes of rainfall, temperature and windstorm due to global warm- ing, using information from climate models as a basis, and to study the impacts of these changes in selected European environments. The objectives are: a) to evaluate, by comparison with gridded and station observations, the ability of climate models to successfully reproduce the occurrence of extremes at the required spatial and temporal scales. b) to analyse model output with respect to future changes in the occurrence of extremes. Statistical analyses will determine changes in (i) the return periods of ex- tremes, (ii) the joint probability of extremes (combinations of damaging events such as windstorm followed by heavy rain), (iii) the sequential behaviour of extremes (whether events are well-separated or clustered) and (iv) the spatial patterns of extreme event occurrence across Europe. The range of uncertainty in model predictions will be ex- plored by analysing changes in model experiments with different spatial resolutions and forcing scenarios. c) to determine the impacts of the predicted changes in extremes occurrence on selected activity sectors: agriculture (Mediterranean drought), commer- cial forestry and natural forest ecosystems (windstorm and flood in northern Europe, fire in the Mediterranean), energy use (temperature extremes), tourism (heat stress and Mediterranean beach holidays, changes in the snow pack and winter sports ) and civil protection/insurance (windstorm and flood). Impacts will be evaluated through a combination of techniques ranging from quantitative analyses through to expert judge- ment. Throughout the project, a continuing dialogue with stakeholders and end-users will be maintained.
Lee, Su-Hyun; Kim, Yu-Mi; Lee, Byoung-Hee
2015-07-01
[Purpose] This study investigated the therapeutic effects of virtual reality-based bilateral upper-extremity training on brain activity in patients with stroke. [Subjects and Methods] Eighteen chronic stroke patients were divided into two groups: the virtual reality-based bilateral upper-extremity training group (n = 10) and the bilateral upper-limb training group (n = 8). The virtual reality-based bilateral upper-extremity training group performed bilateral upper-extremity exercises in a virtual reality environment, while the bilateral upper-limb training group performed only bilateral upper-extremity exercise. All training was conducted 30 minutes per day, three times per week for six weeks, followed by brain activity evaluation. [Results] Electroencephalography showed significant increases in concentration in the frontopolar 2 and frontal 4 areas, and significant increases in brain activity in the frontopolar 1 and frontal 3 areas in the virtual reality-based bilateral upper-extremity training group. [Conclusion] Virtual reality-based bilateral upper-extremity training can improve the brain activity of stroke patients. Thus, virtual reality-based bilateral upper-extremity training is feasible and beneficial for improving brain activation in stroke patients.
NASA Astrophysics Data System (ADS)
Colvin, Jeff; Larsen, Jon
2013-11-01
Acknowledgements; 1. Extreme environments: what, where, how; 2. Properties of dense and classical plasmas; 3. Laser energy absorption in matter; 4. Hydrodynamic motion; 5. Shocks; 6. Equation of state; 7. Ionization; 8. Thermal energy transport; 9. Radiation energy transport; 10. Magnetohydrodynamics; 11. Considerations for constructing radiation-hydrodynamics computer codes; 12. Numerical simulations; Appendix: units and constants, glossary of symbols; References; Bibliography; Index.
ERIC Educational Resources Information Center
Blair, Mark R.; Watson, Marcus R.; Walshe, R. Calen; Maj, Fillip
2009-01-01
Humans have an extremely flexible ability to categorize regularities in their environment, in part because of attentional systems that allow them to focus on important perceptual information. In formal theories of categorization, attention is typically modeled with weights that selectively bias the processing of stimulus features. These theories…
Sarmah, Swapnalee; Marrs, James A
2016-12-16
Environmental pollution is a serious problem of the modern world that possesses a major threat to public health. Exposure to environmental pollutants during embryonic development is particularly risky. Although many pollutants have been verified as potential toxicants, there are new chemicals in the environment that need assessment. Heart development is an extremely sensitive process, which can be affected by environmentally toxic molecule exposure during embryonic development. Congenital heart defects are the most common life-threatening global health problems, and the etiology is mostly unknown. The zebrafish has emerged as an invaluable model to examine substance toxicity on vertebrate development, particularly on cardiac development. The zebrafish offers numerous advantages for toxicology research not found in other model systems. Many laboratories have used the zebrafish to study the effects of widespread chemicals in the environment on heart development, including pesticides, nanoparticles, and various organic pollutants. Here, we review the uses of the zebrafish in examining effects of exposure to external molecules during embryonic development in causing cardiac defects, including chemicals ubiquitous in the environment and illicit drugs. Known or potential mechanisms of toxicity and how zebrafish research can be used to provide mechanistic understanding of cardiac defects are discussed.
Environmental Conditions for Space Flight Hardware: A Survey
NASA Technical Reports Server (NTRS)
Plante, Jeannette; Lee, Brandon
2005-01-01
Interest in generalization of the physical environment experienced by NASA hardware from the natural Earth environment (on the launch pad), man-made environment on Earth (storage acceptance an d qualification testing), the launch environment, and the space environment, is ed to find commonality among our hardware in an effort to reduce cost and complexity. NASA is entering a period of increase in its number of planetary missions and it is important to understand how our qualification requirements will evolve with and track these new environments. Environmental conditions are described for NASA projects in several ways for the different periods of the mission life cycle. At the beginning, the mission manager defines survivability requirements based on the mission length, orbit, launch date, launch vehicle, and other factors . such as the use of reactor engines. Margins are then applied to these values (temperature extremes, vibration extremes, radiation tolerances, etc,) and a new set of conditions is generalized for design requirements. Mission assurance documents will then assign an additional margin for reliability, and a third set of values is provided for during testing. A fourth set of environmental condition values may evolve intermittently from heritage hardware that has been tested to a level beyond the actual mission requirement. These various sets of environment figures can make it quite confusing and difficult to capture common hardware environmental requirements. Environmental requirement information can be found in a wide variety of places. The most obvious is with the individual projects. We can easily get answers to questions about temperature extremes being used and radiation tolerance goals, but it is more difficult to map the answers to the process that created these requirements: for design, for qualification, and for actual environment with no margin applied. Not everyone assigned to a NASA project may have that kind of insight, as many have only the environmental requirement numbers needed to do their jobs but do not necessarily have a programmatic-level understanding of how all of the environmental requirements fit together.
NASA Technical Reports Server (NTRS)
Zhou, Yaping; Lau, William K M.; Liu, Chuntao
2013-01-01
This study adopts a "precipitation object" approach by using 14 years of Tropical Rainfall Measuring Mission (TRMM) Precipitation Feature (PF) and National Centers for Environmental Prediction (NCEP) reanalysis data to study rainfall structure and environmental factors associated with extreme heavy rain events. Characteristics of instantaneous extreme volumetric PFs are examined and compared to those of intermediate and small systems. It is found that instantaneous PFs exhibit a much wider scale range compared to the daily gridded precipitation accumulation range. The top 1% of the rainiest PFs contribute over 55% of total rainfall and have 2 orders of rain volume magnitude greater than those of the median PFs. We find a threshold near the top 10% beyond which the PFs grow exponentially into larger, deeper, and colder rain systems. NCEP reanalyses show that midlevel relative humidity and total precipitable water increase steadily with increasingly larger PFs, along with a rapid increase of 500 hPa upward vertical velocity beyond the top 10%. This provides the necessary moisture convergence to amplify and sustain the extreme events. The rapid increase in vertical motion is associated with the release of convective available potential energy (CAPE) in mature systems, as is evident in the increase in CAPE of PFs up to 10% and the subsequent dropoff. The study illustrates distinct stages in the development of an extreme rainfall event including: (1) a systematic buildup in large-scale temperature and moisture, (2) a rapid change in rain structure, (3) explosive growth of the PF size, and (4) a release of CAPE before the demise of the event.
Simulating the effect of climate extremes on groundwater flow through a lakebed.
Virdi, Makhan L; Lee, Terrie M; Swancar, Amy; Niswonger, Richard G
2013-03-01
Groundwater exchanges with lakes resulting from cyclical wet and dry climate extremes maintain lake levels in the environment in ways that are not well understood, in part because they remain difficult to simulate. To better understand the atypical groundwater interactions with lakes caused by climatic extremes, an original conceptual approach is introduced using MODFLOW-2005 and a kinematic-wave approximation to variably saturated flow that allows lake size and position in the basin to change while accurately representing the daily lake volume and three-dimensional variably saturated groundwater flow responses in the basin. Daily groundwater interactions are simulated for a calibrated lake basin in Florida over a decade that included historic wet and dry departures from the average rainfall. The divergent climate extremes subjected nearly 70% of the maximum lakebed area and 75% of the maximum shoreline perimeter to both groundwater inflow and lake leakage. About half of the lakebed area subject to flow reversals also went dry. A flow-through pattern present for 73% of the decade caused net leakage from the lake 80% of the time. Runoff from the saturated lake margin offset the groundwater deficit only about half of that time. A centripetal flow pattern present for 6% of the decade was important for maintaining the lake stage and generated 30% of all net groundwater inflow. Pumping effects superimposed on dry climate extremes induced the least frequent but most cautionary flow pattern with leakage from over 90% of the actual lakebed area. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.
NASA Technical Reports Server (NTRS)
Bachman, Katharine Ridgeway OBrien; Otto, Christian; Leveton, Lauren
2012-01-01
Long-duration space flight presents several challenges to the behavioral health of crew members. The environment that they are likely to experience will be isolated, confined, and extreme (ICE) and, as such, crew members will experience extreme sensory deprivation and social isolation. The current paper briefly notes the behavioral, cognitive, and affective consequences of psychological stress induced by ICE environments and proposes nine countermeasures aimed at mitigating the negative effects of sensory deprivation and social isolation. Implementation of countermeasures aims to maintain successful crew performance and psychological well-being in a long-duration space flight mission.
Remotely Powered Reconfigurable Receiver for Extreme Environment Sensing Platforms
NASA Technical Reports Server (NTRS)
Sheldon, Douglas J.
2012-01-01
Wireless sensors connected in a local network offer revolutionary exploration capabilities, but the current solutions do not work in extreme environments of low temperatures (200K) and low to moderate radiation levels (<50 krad). These sensors (temperature, radiation, infrared, etc.) would need to operate outside the spacecraft/ lander and be totally independent of power from the spacecraft/lander. Flash memory field-programmable gate arrays (FPGAs) are being used as the main signal processing and protocol generation platform in a new receiver. Flash-based FPGAs have been shown to have at least 100 reduced standby power and 10 reduction operating power when compared to normal SRAM-based FPGA technology.
Numerical simulation of crystal fractionation in shergottite meteorites
NASA Astrophysics Data System (ADS)
Grimm, R. E.; McSween, H. Y., Jr.
Cumulus clinopyroxenes in the Shergotty and Zagami meteorites suggest crystal fractionation occurred, possibly by gravitative settling. Numerical models of this process in a nonconvecting environment argue that the small phenocrysts can segregate only under extreme conditions of cooling time or gravitational field strength. Since textures indicate that cooling time was not excessive, a large (planetary) g is required by these models, in agreement with other suggestions that the shergottite parent body may be Mars. Other calculations indicate that it is extremely difficult to produce the observed textures in a convecting environment, unless crystal setting occurred in a quiescent zone at the bottom of the magma chamber.
Fiberoptic sensors for rocket engine applications
NASA Technical Reports Server (NTRS)
Ballard, R. O.
1992-01-01
A research effort was completed to summarize and evaluate the current level of technology in fiberoptic sensors for possible applications in integrated control and health monitoring (ICHM) systems in liquid propellant engines. The environment within a rocket engine is particuarly severe with very high temperatures and pressures present combined with extremely rapid fluid and gas flows, and high-velocity and high-intensity acoustc waves. Application of fiberoptic technology to rocket engine health monitoring is a logical evolutionary step in ICHM development and presents a significant challenge. In this extremely harsh environment, the additional flexibility of fiberoptic techniques to augment conventional sensor technologies offer abundant future potential.
Numerical simulation of crystal fractionation in shergottite meteorites
NASA Technical Reports Server (NTRS)
Grimm, R. E.; Mcsween, H. Y., Jr.
1982-01-01
Cumulus clinopyroxenes in the Shergotty and Zagami meteorites suggest crystal fractionation occurred, possibly by gravitative settling. Numerical models of this process in a nonconvecting environment argue that the small phenocrysts can segregate only under extreme conditions of cooling time or gravitational field strength. Since textures indicate that cooling time was not excessive, a large (planetary) g is required by these models, in agreement with other suggestions that the shergottite parent body may be Mars. Other calculations indicate that it is extremely difficult to produce the observed textures in a convecting environment, unless crystal setting occurred in a quiescent zone at the bottom of the magma chamber.
On the response of halophilic archaea to space conditions.
Leuko, Stefan; Rettberg, Petra; Pontifex, Ashleigh L; Burns, Brendan P
2014-02-21
Microorganisms are ubiquitous and can be found in almost every habitat and ecological niche on Earth. They thrive and survive in a broad spectrum of environments and adapt to rapidly changing external conditions. It is of great interest to investigate how microbes adapt to different extreme environments and with modern human space travel, we added a new extreme environment: outer space. Within the last 50 years, technology has provided tools for transporting microbial life beyond Earth's protective shield in order to study in situ responses to selected conditions of space. This review will focus on halophilic archaea, as, due to their ability to survive in extremes, they are often considered a model group of organisms to study responses to the harsh conditions associated with space. We discuss ground-based simulations, as well as space experiments, utilizing archaea, examining responses and/or resistance to the effects of microgravity and UV in particular. Several halophilic archaea (e.g., Halorubrum chaoviator) have been exposed to simulated and actual space conditions and their survival has been determined as well as the protective effects of halite shown. Finally, the intriguing potential of archaea to survive on other planets or embedded in a meteorite is postulated.
A walk on the tundra: Host-parasite interactions in an extreme environment.
Kutz, Susan J; Hoberg, Eric P; Molnár, Péter K; Dobson, Andy; Verocai, Guilherme G
2014-08-01
Climate change is occurring very rapidly in the Arctic, and the processes that have taken millions of years to evolve in this very extreme environment are now changing on timescales as short as decades. These changes are dramatic, subtle and non-linear. In this article, we discuss the evolving insights into host-parasite interactions for wild ungulate species, specifically, muskoxen and caribou, in the North American Arctic. These interactions occur in an environment that is characterized by extremes in temperature, high seasonality, and low host species abundance and diversity. We believe that lessons learned in this system can guide wildlife management and conservation throughout the Arctic, and can also be generalized to more broadly understand host-parasite interactions elsewhere. We specifically examine the impacts of climate change on host-parasite interactions and focus on: (I) the direct temperature effects on parasites; (II) the importance of considering the intricacies of host and parasite ecology for anticipating climate change impacts; and (III) the effect of shifting ecological barriers and corridors. Insights gained from studying the history and ecology of host-parasite systems in the Arctic will be central to understanding the role that climate change is playing in these more complex systems.
A walk on the tundra: Host–parasite interactions in an extreme environment
Kutz, Susan J.; Hoberg, Eric P.; Molnár, Péter K.; Dobson, Andy; Verocai, Guilherme G.
2014-01-01
Climate change is occurring very rapidly in the Arctic, and the processes that have taken millions of years to evolve in this very extreme environment are now changing on timescales as short as decades. These changes are dramatic, subtle and non-linear. In this article, we discuss the evolving insights into host–parasite interactions for wild ungulate species, specifically, muskoxen and caribou, in the North American Arctic. These interactions occur in an environment that is characterized by extremes in temperature, high seasonality, and low host species abundance and diversity. We believe that lessons learned in this system can guide wildlife management and conservation throughout the Arctic, and can also be generalized to more broadly understand host–parasite interactions elsewhere. We specifically examine the impacts of climate change on host–parasite interactions and focus on: (I) the direct temperature effects on parasites; (II) the importance of considering the intricacies of host and parasite ecology for anticipating climate change impacts; and (III) the effect of shifting ecological barriers and corridors. Insights gained from studying the history and ecology of host–parasite systems in the Arctic will be central to understanding the role that climate change is playing in these more complex systems. PMID:25180164
Mean-field potential approach for thermodynamic properties of lanthanide: Europium as a prototype
NASA Astrophysics Data System (ADS)
Kumar, Priyank; Bhatt, N. K.; Vyas, P. R.; Gohel, V. B.
2018-03-01
In the present paper, a simple conjunction scheme [mean-field potential (MFP) + local pseudopotential] is used to study the thermodynamic properties of divalent lanthanide europium (Eu) at extreme environment. Present study has been carried out due to the fact that divalent nature of Eu arises because of stable half-filled 4f-shell at ambient condition, which has great influence on the thermodynamic properties at extreme environment. Due to such electronic structure, it is different from remaining lanthanides having incomplete 4f-shell. The presently computed results of thermodynamic properties of Eu are in good agreement with the experimental results. Looking to such success, it seems that the concept of MFP approach is successful to account contribution due to nuclear motion to the total Helmholtz free energy at finite temperatures and pressure-induced inter-band transfer of electrons for condensed state of matter. The local pseudopotential is used to evaluate cold energy and hence MFP accounts the s-p-d-f hybridization properly. Looking to the reliability and transferability along with its computational and conceptual simplicity, we would like to extend the present scheme for the study of thermodynamic properties of remaining lanthanides and actinides at extreme environment.
NASA Astrophysics Data System (ADS)
Sun, C.; Zheng, S.; Wei, C. C.; Wu, Y.; Shao, L.; Yang, Y.; Hartwig, K. T.; Maloy, S. A.; Zinkle, S. J.; Allen, T. R.; Wang, H.; Zhang, X.
2015-01-01
Nuclear energy provides more than 10% of electrical power internationally, and the increasing engagement of nuclear energy is essential to meet the rapid worldwide increase in energy demand. A paramount challenge in the development of advanced nuclear reactors is the discovery of advanced structural materials that can endure extreme environments, such as severe neutron irradiation damage at high temperatures. It has been known for decades that high dose radiation can introduce significant void swelling accompanied by precipitation in austenitic stainless steel (SS). Here we report, however, that through nanoengineering, ultra-fine grained (UFG) 304L SS with an average grain size of ~100 nm, can withstand Fe ion irradiation at 500°C to 80 displacements-per-atom (dpa) with moderate grain coarsening. Compared to coarse grained (CG) counterparts, swelling resistance of UFG SS is improved by nearly an order of magnitude and swelling rate is reduced by a factor of 5. M23C6 precipitates, abundant in irradiated CG SS, are largely absent in UFG SS. This study provides a nanoengineering approach to design and discover radiation tolerant metallic materials for applications in extreme radiation environments.
Ionic Strength Is a Barrier to the Habitability of Mars.
Fox-Powell, Mark G; Hallsworth, John E; Cousins, Claire R; Cockell, Charles S
2016-06-01
The thermodynamic availability of water (water activity) strictly limits microbial propagation on Earth, particularly in hypersaline environments. A considerable body of evidence indicates the existence of hypersaline surface waters throughout the history of Mars; therefore it is assumed that, as on Earth, water activity is a major limiting factor for martian habitability. However, the differing geological histories of Earth and Mars have driven variations in their respective aqueous geochemistry, with as-yet-unknown implications for habitability. Using a microbial community enrichment approach, we investigated microbial habitability for a suite of simulated martian brines. While the habitability of some martian brines was consistent with predictions made from water activity, others were uninhabitable even when the water activity was biologically permissive. We demonstrate experimentally that high ionic strength, driven to extremes on Mars by the ubiquitous occurrence of multivalent ions, renders these environments uninhabitable despite the presence of biologically available water. These findings show how the respective geological histories of Earth and Mars, which have produced differences in the planets' dominant water chemistries, have resulted in different physicochemical extremes which define the boundary space for microbial habitability. Habitability-Mars-Salts-Water activity-Life in extreme environments. Astrobiology 16, 427-442.
Sun, C.; Zheng, S.; Wei, C. C.; ...
2015-01-15
Nuclear energy provides more than 10% of electrical power internationally, and the increasing engagement of nuclear energy is essential to meet the rapid worldwide increase in energy demand. A paramount challenge in the development of advanced nuclear reactors is the discovery of advanced structural materials that can endure extreme environments, such as severe neutron irradiation damage at high temperatures. It has been known for decades that high dose radiation can introduce significant void swelling accompanied by precipitation in austenitic stainless steel (SS). Here we report, however, that through nanoengineering, ultra-fine grained (UFG) 304L SS with an average grain size ofmore » ~100 nm, can withstand Fe ion irradiation at 500°C to 80 displacements-per-atom (dpa) with moderate grain coarsening. Compared to coarse grained (CG) counterparts, swelling resistance of UFG SS is improved by nearly an order of magnitude and swelling rate is reduced by a factor of 5. M₂₃C₆ precipitates, abundant in irradiated CG SS, are largely absent in UFG SS. This study provides a nanoengineering approach to design and discover radiation tolerant metallic materials for applications in extreme radiation environments.« less
On the Response of Halophilic Archaea to Space Conditions
Leuko, Stefan; Rettberg, Petra; Pontifex, Ashleigh L.; Burns, Brendan P.
2014-01-01
Microorganisms are ubiquitous and can be found in almost every habitat and ecological niche on Earth. They thrive and survive in a broad spectrum of environments and adapt to rapidly changing external conditions. It is of great interest to investigate how microbes adapt to different extreme environments and with modern human space travel, we added a new extreme environment: outer space. Within the last 50 years, technology has provided tools for transporting microbial life beyond Earth’s protective shield in order to study in situ responses to selected conditions of space. This review will focus on halophilic archaea, as, due to their ability to survive in extremes, they are often considered a model group of organisms to study responses to the harsh conditions associated with space. We discuss ground-based simulations, as well as space experiments, utilizing archaea, examining responses and/or resistance to the effects of microgravity and UV in particular. Several halophilic archaea (e.g., Halorubrum chaoviator) have been exposed to simulated and actual space conditions and their survival has been determined as well as the protective effects of halite shown. Finally, the intriguing potential of archaea to survive on other planets or embedded in a meteorite is postulated. PMID:25370029
Sun, C; Zheng, S; Wei, C C; Wu, Y; Shao, L; Yang, Y; Hartwig, K T; Maloy, S A; Zinkle, S J; Allen, T R; Wang, H; Zhang, X
2015-01-15
Nuclear energy provides more than 10% of electrical power internationally, and the increasing engagement of nuclear energy is essential to meet the rapid worldwide increase in energy demand. A paramount challenge in the development of advanced nuclear reactors is the discovery of advanced structural materials that can endure extreme environments, such as severe neutron irradiation damage at high temperatures. It has been known for decades that high dose radiation can introduce significant void swelling accompanied by precipitation in austenitic stainless steel (SS). Here we report, however, that through nanoengineering, ultra-fine grained (UFG) 304 L SS with an average grain size of ~100 nm, can withstand Fe ion irradiation at 500 °C to 80 displacements-per-atom (dpa) with moderate grain coarsening. Compared to coarse grained (CG) counterparts, swelling resistance of UFG SS is improved by nearly an order of magnitude and swelling rate is reduced by a factor of 5. M(23)C(6) precipitates, abundant in irradiated CG SS, are largely absent in UFG SS. This study provides a nanoengineering approach to design and discover radiation tolerant metallic materials for applications in extreme radiation environments.
Sun, C.; Zheng, S.; Wei, C. C.; Wu, Y.; Shao, L.; Yang, Y.; Hartwig, K. T.; Maloy, S. A.; Zinkle, S. J.; Allen, T. R.; Wang, H.; Zhang, X.
2015-01-01
Nuclear energy provides more than 10% of electrical power internationally, and the increasing engagement of nuclear energy is essential to meet the rapid worldwide increase in energy demand. A paramount challenge in the development of advanced nuclear reactors is the discovery of advanced structural materials that can endure extreme environments, such as severe neutron irradiation damage at high temperatures. It has been known for decades that high dose radiation can introduce significant void swelling accompanied by precipitation in austenitic stainless steel (SS). Here we report, however, that through nanoengineering, ultra-fine grained (UFG) 304L SS with an average grain size of ~100 nm, can withstand Fe ion irradiation at 500°C to 80 displacements-per-atom (dpa) with moderate grain coarsening. Compared to coarse grained (CG) counterparts, swelling resistance of UFG SS is improved by nearly an order of magnitude and swelling rate is reduced by a factor of 5. M23C6 precipitates, abundant in irradiated CG SS, are largely absent in UFG SS. This study provides a nanoengineering approach to design and discover radiation tolerant metallic materials for applications in extreme radiation environments. PMID:25588326
NASA Astrophysics Data System (ADS)
Yao, Jun
2010-05-01
Geo-microbes and their function were widespread ever since life appeared on the earth. Geo-microbiological process has left a rich and colorful material record in the geological body of earth, the most critical record of which is all sorts of organic hieroglyph and various forms of organic matter derived from bio-organisms, and oil field is the most ideal geological location to preserve these organic matters. It have already produced or might produce petroleum and natural gas sedimentary rocks under natural conditions, also known as olefiant (gas) rock or the parent rock, which is the product of the interaction between the life-system and earth environmental system in the specific geological conditions and integrate the whole microbial ecosystem in the geological time. The microbial community under extreme geological environment of Dagang Oilfield is relatively simple, therefore it is quite easy to investigate the special relationship between geo-microbes and biogeochemistry. We have mastered a large number of information related with the geological condition and biological species of Dagang Oilfield; what's more we also have isolated a number of archimycetes strains with different extremophiles capacity from the core samples collected in the Dagang oil field. At present, we are to proceed with the cooperative research at Environment School of Yale University and Institute of the Earth's biosphere using these strains. In the future, we will work together to carry out geological surveys in the field using international first-class equipment and methods and study the geological environment of Dagang Oilfield utilizing isotope techniques and mineral phase analysis method. Meanwhile we are going to undertake the on-line monitoring of the overall microbial activity of these collected geological samples, the specific metabolic activity of these extreme strains of microorganisms and the biomarkers produced during their metabolic processes under laboratory conditions. According to these research work listed above, we can reveal the mechanism of interaction between the special geological environment of Dagang Oilfield and the extreme geo-microbes, so as to clarify the effects of oil field environment on the extreme geo-microbes and especially the adverse effect of these geo-microbes to the geological environment, which may provide a practical foundation of theoretical basis for the reasons why the Dagang Oilfield can produce oil. Acknowledgement This work was supported in part by grants from National Outstanding Youth Research Foundation of China (40925010), International Joint Key Project from National Natural Science Foundation of China (40920134003), National Natural Science Foundation of China (40873060), and International Joint Key Project from Chinese Ministry of Science and Technology (2009DFA92830), and the 111 Project (08030).
Utility functions and resource management in an oversubscribed heterogeneous computing environment
Khemka, Bhavesh; Friese, Ryan; Briceno, Luis Diego; ...
2014-09-26
We model an oversubscribed heterogeneous computing system where tasks arrive dynamically and a scheduler maps the tasks to machines for execution. The environment and workloads are based on those being investigated by the Extreme Scale Systems Center at Oak Ridge National Laboratory. Utility functions that are designed based on specifications from the system owner and users are used to create a metric for the performance of resource allocation heuristics. Each task has a time-varying utility (importance) that the enterprise will earn based on when the task successfully completes execution. We design multiple heuristics, which include a technique to drop lowmore » utility-earning tasks, to maximize the total utility that can be earned by completing tasks. The heuristics are evaluated using simulation experiments with two levels of oversubscription. The results show the benefit of having fast heuristics that account for the importance of a task and the heterogeneity of the environment when making allocation decisions in an oversubscribed environment. Furthermore, the ability to drop low utility-earning tasks allow the heuristics to tolerate the high oversubscription as well as earn significant utility.« less
Jeong, Seol Young; Jo, Hyeong Gon; Kang, Soon Ju
2015-01-01
Indoor location-based services (iLBS) are extremely dynamic and changeable, and include numerous resources and mobile devices. In particular, the network infrastructure requires support for high scalability in the indoor environment, and various resource lookups are requested concurrently and frequently from several locations based on the dynamic network environment. A traditional map-based centralized approach for iLBSs has several disadvantages: it requires global knowledge to maintain a complete geographic indoor map; the central server is a single point of failure; it can also cause low scalability and traffic congestion; and it is hard to adapt to a change of service area in real time. This paper proposes a self-organizing and fully distributed platform for iLBSs. The proposed self-organizing distributed platform provides a dynamic reconfiguration of locality accuracy and service coverage by expanding and contracting dynamically. In order to verify the suggested platform, scalability performance according to the number of inserted or deleted nodes composing the dynamic infrastructure was evaluated through a simulation similar to the real environment. PMID:26016908
Imaging of neuro-cognitive performance in extreme Environments—A (p)review
NASA Astrophysics Data System (ADS)
Schneider, Stefan; Bubeev, Juri A.; Choukèr, Alexander; Morukov, Boris; Johannes, Bernd; Strüder, Heiko K.
2012-12-01
Living in extreme environments is accompanied by a number of stressors, which can be classified either as physiological stressors (e.g. microgravity, missing sunlight) or psychological stressors (e.g. confinement). From earth bound studies a negative impact of stress on mental health and cognitive performance is well known and both factors might impair mission success and mission safety during longer inhabitation of space. Accordingly there is the need to identify adequate countermeasures. Nevertheless causal research of neuro-cognitive impairments in space remains speculative due to missing possibilities of brain imaging. Furthermore the reliability of current psychological tests used to assess and monitor cognitive performance in extreme environments seems to be vulnerable due to a lack of compliance. With on-going plans of international space agencies to send people to moon and/or mars, this manuscript aims to summarize and review research attempts of the past two decades and to identify methodological shortcomings. Finally, following the guideline that research has no legacy for its own but must serve the self-concept and well-being of man, this manuscript presents a number of recommendations to enhance future neuro-cognitive research in extreme environments. A deeper insight into neuro-cognitive coherence is not only desirable to understand the effects of stress on mental health, which seems to be a major issue for our current society, and to develop adequate countermeasures but will also help to maintain and improve mission success and mission safety in manned space flight.
Future Changes in Autumn Flood Type and Frequency in Pacific Northwest North America
NASA Astrophysics Data System (ADS)
Menounos, B.; Cannon, A. J.; Radic, V.; Moore, R. D.; Dery, S. J.; Jackson, P. L.; Anslow, F. S.
2013-12-01
During the 20th and early 21st century, autumn storms in the Pacific Northwest of North America - PNWNA (coastal British Columbia and Washington) caused widespread flooding and landslides. Understanding how these intense storms are likely to change in the future is important given their potential to harm people and cause widespread damage, but assessing these changes using climate models is difficult. Parameterization of precipitation in general circulation and regional climate models (GCM, RCM) is prone to error, especially in the mountainous terrain of the PNWNA. High computational demands of RCMs also limits their use in assessing changes in flood type and frequency for a suite of GCM and emission scenarios. We instead focus our efforts on understanding atmospheric circulation patterns responsible for historical autumn flooding (15 August - 31 December) and examine how these synoptic conditions are likely to change under future emission scenarios. Our analysis includes identification of extreme events (runoff and precipitation) in streamflow and precipitation records from coastal Washington and British Columbia for the period 1948-2010. Our methods to link the instrumental record of extreme autumn events to atmospheric conditions (500 and 850 hPa geopotential height and integrated vapor transport obtained from NCEP and CFSR reanalysis) include: (1) compositing of streamflow and precipitation events (environment-to-circulation); (2) self organizing map synoptic classification (circulation-to-environment); and (3) regression tree synoptic classification (hybrid of environment-to-circulation and circulation-to-environment). We then evaluate changes in flood-generating synoptic types in the CMIP5 ensemble over the period 2010-2100. Our analysis indicates that, as expected, most floods are associated with atmospheric river events that are commonly associated with upper level, quasi stationary low- and high-pressure systems respectively located in the Gulf of Alaska and east of the PNWNA. Based on our initial analysis of the CMIP5 data, we note an increase in autumn flood-producing synoptic weather types for the PNWNA. We discuss the implications of increased autumn flooding to communities and infrastructure.
Helicopter winchmens' experiences with pain management in challenging environments.
van der Velde, J; Linehan, L; Cusack, S
2013-02-01
We conducted a survey of Irish Coast Guard Search and Rescue Helicopter winchmen to establish if their pain management scope of practice was adequate for their working environment. We surveyed 17 SAR personnel. 88% of winchmen have experienced scenarios where they were unable to reduce pain scores below 6/10. In seeking solutions within current Irish Prehospital Clinical Practice Guidelines, repeated descriptions of operations in extreme weather and sea conditions were given which were entirely incompatible with the dexterity required to break a glass ampoule and draw up solution, let alone site an intravenous (IV) line or administer a drug via intramuscular (IM) injection. Irish Coast Guard Search and Rescue Helicopter winchmen encounter polytrauma patients in extreme pain in uniquely challenging environments. Novel solutions to pain management within this tightly governed system are urgently required.
NASA Technical Reports Server (NTRS)
Zemcov, Michael; Cardona, Pedro; Parkus, James; Patru, Dorin; Yost, Valerie
2017-01-01
Power generation in extreme environments, such as the outer solar system, the night side of planets, or other low-illumination environments, currently presents a technology gap that challenges NASA's ambitious scientific goals. We are developing a radioisotope power cell (RPC) that utilizes commercially available tritium light sources and standard 1.85 eV InGaP2 photovoltaic cells to convert beta particle energy to electric energy. In the test program described here, we perform environmental tests on commercially available borosilicate glass vials internally coated with a ZnS luminescent phosphor that are designed to contain gaseous tritium in our proposed power source. Such testing is necessary to ensure that the glass containing the radioactive tritium is capable of withstanding the extreme environments of launch and space for extended periods of time.
NASA Astrophysics Data System (ADS)
Sánchez-García, L.; Carrizo, D.; Fernández-Remolar, D.; Parro, V.
2017-09-01
The characterization of extreme environments with analogies to Mars is important for understanding if/how life may have thrived in the Red Planet. Río Tinto in SW Spain is an extreme environment with constant acidic waters (mean pH of 2.3) and high concentration of heavy metals, which are direct consequence of the active metabolism of chemolithotrophic microorganisms thriving in the rich polymetallic sulfides present in the massive Iberian Pyritic Belt. Abundant minerals rich in ferric iron and sulfates, which result from the pyrite metabolism (e.g. jarosite, goethite, hematites, etc.) are of special interest for their potential for organics preservation [1]. Here, we investigate the occurrence and preservation of biological signatures in diagenetically stabilized ironstone deposits in Río Tinto, by using geolipidic markers.
More tornadoes in the most extreme U.S. tornado outbreaks
NASA Astrophysics Data System (ADS)
Tippett, Michael K.; Lepore, Chiara; Cohen, Joel E.
2016-12-01
Tornadoes and severe thunderstorms kill people and damage property every year. Estimated U.S. insured losses due to severe thunderstorms in the first half of 2016 were $8.5 billion (US). The largest U.S. effects of tornadoes result from tornado outbreaks, which are sequences of tornadoes that occur in close succession. Here, using extreme value analysis, we find that the frequency of U.S. outbreaks with many tornadoes is increasing and that it is increasing faster for more extreme outbreaks. We model this behavior by extreme value distributions with parameters that are linear functions of time or of some indicators of multidecadal climatic variability. Extreme meteorological environments associated with severe thunderstorms show consistent upward trends, but the trends do not resemble those currently expected to result from global warming.
NASA Astrophysics Data System (ADS)
Kettle, Anthony
2016-04-01
Important issues for energy meteorology are to assess meteorological conditions for normal operating conditions and extreme events for the ultimate limit state of engineering structures. For the offshore environment in northwest Europe, energy meteorology encompasses weather conditions relevant for petroleum production infrastructure and also the new field of offshore wind energy production. Autumn and winter storms are an important issue for offshore operations in the North Sea. The weather in this region is considered as challenging for extreme meteorological events as the Gulf of Mexico with its attendant hurricane risk. The rise of the Internet and proliferation of digital recording devices has placed a much greater amount of information in the public domain than was available to national meteorological agencies even 20 years ago. This contribution looks at reports of meteorology and infrastructure damage from a storm in the autumn of 2006 to trace the spatial and temporal record of meteorological events. Media reports give key information to assess the events of the storm. The storm passed over northern Europe between Oct.31-Nov. 2, 2006, and press reports from the time indicate that its most important feature was a high surge that inundated coastal areas. Sections of the Dutch and German North Sea coast were affected, and there was record flooding in Denmark and East Germany in the southern Baltic Sea. Extreme wind gusts were also reported that were strong enough to damage roofs and trees, and there was even tornado recorded near the Dutch-German border. Offshore, there were a series of damage reports from ship and platforms that were linked with sea state, and reports of rogue waves were explicitly mentioned. Many regional government authorities published summaries of geophysical information related to the storm, and these form part of a regular series of online winter storm reports that started as a public service about 15 years ago. Depending on the issuing authority, these reports include wind speed and atmospheric pressure for a number of stations. However, there is also important ancillary information that includes satellite images, weather radar pictures, sea state recordings, tide gauge records, and coastal surveys. When collated together, the literature survey gives good view of events related to the autumn storm. The key information from media reports is backed up by quantitative numbers from the scientific literature. For energy meteorology in the offshore environment, there is an outline of extreme wave events that may be important to help define the ultimate limit state of engineering structures and the return periods of extreme waves. While this contribution focusses on events from an old storm in the autumn of 2006, more severe regional storms have occurred since then, and the scientific literature indicates that these may be linked with climate warming. Literature surveys may help to fully define extreme meteorological conditions offshore and benefit different branches of the energy industry in Europe.
Trillium Horizon, A Small Portable Observatory Grade Seismometer For Direct Bury And Vault Use
NASA Astrophysics Data System (ADS)
Moores, A.; Parker, T.; Bainbridge, G.
2017-12-01
As of August 2017 almost 5 years of data have been collected from broadband seismic sensors designed for direct burial applications. These first posthole instruments have been deployed in a wide range of extremely challenging environments such as dynamic ice and snow environments, extreme wet and dry conditions in soils of high clay content, and steep creeping terrain. In all use cases the direct burial approach has consistently provided high quality data when compared to shallow vault installations. In this presentation we extract and analyze operational performance data, including tilt information from mass position time series recorded at direct burial installations and at temporary shallow vault deployments. This data shows that while higher tilt tolerance is required for data quality outcome certainty in some installations, the majority of installations can be addressed by a smaller instrument with a narrower tilt range hence reducing size and cost. The lessons learned from this real world field data have guided the development of a new smaller, less expensive instrument, Trillium Horizon.Based on this analysis and and user feedback from many direct burial deployments, the Trillium Horizon seismometer has been developed as a simple versatile instrument to span the majority of deployment scenarios and specific use cases including shallow direct bury deployments, traditional piers, and problematic wet vault installs. With its small size, robust waterproof case and connector, +/-1.5° tilt range, dual-purpose cable, and accessories for both posthole and vault installation, Trillium Horizon is optimized for usability as well as performance.