Science.gov

Sample records for extreme relativistic region

  1. Anomalous magnetohydrodynamics in the extreme relativistic domain

    NASA Astrophysics Data System (ADS)

    Giovannini, Massimo

    2016-10-01

    The evolution equations of anomalous magnetohydrodynamics are derived in the extreme relativistic regime and contrasted with the treatment of hydromagnetic nonlinearities pioneered by Lichnerowicz in the absence of anomalous currents. In particular we explore the situation where the conventional vector currents are complemented by the axial-vector currents arising either from the pseudo-Nambu-Goldstone bosons of a spontaneously broken symmetry or because of finite fermionic density effects. After expanding the generally covariant equations in inverse powers of the conductivity, the relativistic analog of the magnetic diffusivity equation is derived in the presence of vortical and magnetic currents. While the anomalous contributions are generally suppressed by the diffusivity, they are shown to disappear in the perfectly conducting limit. When the flow is irrotational, boost invariant and with vanishing four-acceleration, the corresponding evolution equations are explicitly integrated so that the various physical regimes can be directly verified.

  2. Nuclei at extreme conditions. A relativistic study

    SciTech Connect

    Afanasjev, Anatoli

    2014-11-14

    The major goals of the current project were further development of covariant density functional theory (CDFT), better understanding of its features, its application to different nuclear structure and nuclear astrophysics phenomena and training of graduate and undergraduate students. The investigations have proceeded in a number of directions which are discussed in detail in the part “Accomplishments” of this report. We have studied the role of isovector and isoscalar proton-neutron pairings in rotating nuclei; based on available experimental data it was concluded that there are no evidences for the existence of isoscalar proton-neutron pairing. Generalized theoretical approach has been developed for pycnonuclear reaction rates in the crust of neutron stars and interior of white dwarfs. Using this approach, extensive database for considerable number of pycnonuclear reactions involving stable and neutron-rich light nuclei has been created; it can be used in future for the study of various nuclear burning phenomena in different environments. Time-odd mean fields and their manifestations in terminating states, non-rotating and rotating nuclei have been studied in the framework of covariant density functional theory. Contrary to non-relativistic density functional theories these fields, which are important for a proper description of nuclear systems with broken time-reversal symmetry, are uniquely defined in the CDFT framework. Hyperdeformed nuclear shapes (with semi-axis ratio 2.5:1 and larger) have been studied in the Z = 40-58 part of nuclear chart. We strongly believe that such shapes could be studied experimentally in the future with full scale GRETA detector.

  3. Extremely relativistic fluids in strong-field gravity

    NASA Astrophysics Data System (ADS)

    Neilsen, David Wayne

    This dissertation is primarily concerned with the numerical solution of Einstein-fluid systems, focusing on extremely relativistic fluids at the threshold of black hole formation in critical gravitational collapse. A new computer code is presented for studying critical phenomena in spherical symmetry. The perfect fluid obeys the ultrarelativistic state equation P = (Γ - 1)ρ, where Γ is a constant, 1 < Γ <= 2. The code, using Roe's linearized Riemann solver, is capable of simulating the extremely relativistic flows-Lorentz factors greater than one thousand-encountered in critical collapse. The high performance is achieved through a novel definition of the fluid variables, and care in calculating the fluid variables. The study of perfect fluid critical collapse is restricted to the ultrarelativistic (``kinetic- energy-dominated'', ``scale-free'') limit where black hole formation is anticipated to turn on at infinitesimal black hole mass (Type II behavior). The critical solutions are found by solving the system of ODEs which result from a self-similar ansatz, and by solving the full Einstein-fluid PDEs in spherical symmetry. These latter PDE solutions extend the pioneering work of Evans and Coleman (Γ = 4/3) and verify that the continuously self-similar solutions previously found by Maison and Hara et al. for 1.05<=G<~1.89 are (locally) unique critical solutions. In addition, strong evidence is given that globally regular critical solutions do exist for 1.89<~G<=2, that the sonic point for Gdn⋍1.8896244 is a degenerate node, and that the sonic points for Γ > Γ dn are nodal points, rather than focal points as previously reported. Mass- scaling exponents for all of the critical solutions are calculated by evolving near-critical initial data, with results which confirm and extend previous calculations based on linear perturbation theory. The final chapters describe a new two-dimensional perfect fluid code which uses higher order Godunov methods. The fluid is

  4. Extreme enhancements and depletions of relativistic electrons in Earth's radiation belts

    NASA Astrophysics Data System (ADS)

    Turner, D. L.; Claudepierre, S. G.; O'Brien, T. P., III; Fennell, J. F.; Blake, J. B.; Baker, D. N.; Jaynes, A. N.; Morley, S.; Geoffrey, R.

    2015-12-01

    Earth's electron radiation belts consist of toroidal zones in near-Earth space characterized by intense levels of relativistic electrons with distinct energy-dependent boundaries. It has been known for decades that the outer electron radiation belt is highly variable, with electron intensities varying by orders of magnitude on timescales ranging from minutes to years. Now, we are gaining much insight into the nature of this extreme variability thanks to the unprecedented number of observatories capable of measuring radiation belt electrons, the most recent of which is NASA's Van Allen Probes mission. In this presentation, we analyze and review several of the most extreme events observed in Earth's outer radiation belt. We begin with very sudden and strong enhancements of the outer radiation belt that can result in several orders of magnitude enhancements of electron intensities up to several MeV that sometimes occur in less than one day. We compare and contrast two of the most extreme cases of sudden and strong enhancements from the Van Allen Probes era, 08-09 October 2012 and 17-18 March 2015, and review evidence of the dominant acceleration mechanism in each event. Sudden enhancements of the radiation belts can also occur from injections by interplanetary shocks impacting the magnetosphere, such as occurred on 24 March 1991. We compare shock characteristics from previous injection events to those from the Van Allen Probes era to investigate why none of the interplanetary shocks since September 2012 have caused MeV electron injections into the slot region and inner radiation belt, which has surprisingly been devoid of measurable quantities of >~1 MeV electrons throughout the Van Allen Probes era. Our last topic concerns loss processes. We discuss drastic loss events, known as "flux dropouts", and present evidence that these loss events can eliminate the vast majority of relativistic electrons in the outer radiation belt on time scales of only a few hours. We

  5. Relativistic electron mirrors from nanoscale foils for coherent frequency upshift to the extreme ultraviolet.

    PubMed

    Kiefer, D; Yeung, M; Dzelzainis, T; Foster, P S; Rykovanov, S G; Lewis, C Ls; Marjoribanks, R S; Ruhl, H; Habs, D; Schreiber, J; Zepf, M; Dromey, B

    2013-01-01

    Reflecting light from a mirror moving close to the speed of light has been envisioned as a route towards producing bright X-ray pulses since Einstein's seminal work on special relativity. For an ideal relativistic mirror, the peak power of the reflected radiation can substantially exceed that of the incident radiation due to the increase in photon energy and accompanying temporal compression. Here we demonstrate for the first time that dense relativistic electron mirrors can be created from the interaction of a high-intensity laser pulse with a freestanding, nanometre-scale thin foil. The mirror structures are shown to shift the frequency of a counter-propagating laser pulse coherently from the infrared to the extreme ultraviolet with an efficiency >10(4) times higher than in the case of incoherent scattering. Our results elucidate the reflection process of laser-generated electron mirrors and give clear guidance for future developments of a relativistic mirror structure. PMID:23612304

  6. Relativistic electron mirrors from nanoscale foils for coherent frequency upshift to the extreme ultraviolet.

    PubMed

    Kiefer, D; Yeung, M; Dzelzainis, T; Foster, P S; Rykovanov, S G; Lewis, C Ls; Marjoribanks, R S; Ruhl, H; Habs, D; Schreiber, J; Zepf, M; Dromey, B

    2013-01-01

    Reflecting light from a mirror moving close to the speed of light has been envisioned as a route towards producing bright X-ray pulses since Einstein's seminal work on special relativity. For an ideal relativistic mirror, the peak power of the reflected radiation can substantially exceed that of the incident radiation due to the increase in photon energy and accompanying temporal compression. Here we demonstrate for the first time that dense relativistic electron mirrors can be created from the interaction of a high-intensity laser pulse with a freestanding, nanometre-scale thin foil. The mirror structures are shown to shift the frequency of a counter-propagating laser pulse coherently from the infrared to the extreme ultraviolet with an efficiency >10(4) times higher than in the case of incoherent scattering. Our results elucidate the reflection process of laser-generated electron mirrors and give clear guidance for future developments of a relativistic mirror structure.

  7. Extreme flux enhancement and persistent loss of relativistic electrons at geosynchronous orbit

    NASA Astrophysics Data System (ADS)

    Kataoka, Ryuho; Miyoshi, Yoshizumi

    The balance between source and loss processes is essential to understand the radiation belt particles, and extreme space weather events may provide the important hint. We report average profiles of the solar wind and outer radiation belt during the extreme flux enhancement of relativistic electrons at geosynchronous orbit (GEO). It is found that seven of top ten extreme events at GEO during solar cycle 23 are associated with the magnetosphere inflation during the storm recovery phase as caused by the large-scale solar wind structure of very low dynamic pressure (¡1.0 nPa) during rapid speed decrease from very high (∼650 km/s) to typical (400-500 km/s) in a few days. For the seven events, the solar wind parameters, geomagnetic activity indices, and relativistic electron flux and geomagnetic field at GEO are superposed at the local noon period of GOES satellites to investigate the physical cause. The average profiles support the "double inflation" mechanism that the rarefaction of the solar wind and subsequent magnetosphere inflation are one of the best conditions to produce the extreme flux enhancement at GEO because of the excellent magnetic confinement of relativistic electrons by reducing the drift loss of trapped electrons at dayside magnetopause. On the other hand, relativistic electrons at GEO were persistently quiet in 2009 for almost the whole year. The solar wind speed, which has been known as a primary parameter controlling the outer belt electrons, was very slow in 2009 as expected, but still at a comparably low level as of 1997 when we did not observe such a persistently quiet condition. Here we show that the extremely weak interplanetary magnetic field of the very slow solar wind plays an essential role to diminish the source processes themselves such as magnetic storms and substorms, and in turn to suppress the relativistic electron flux at GEO over the time scale of a year, as an inevitable consequence of extremely weak open magnetic field of the

  8. Bright subcycle extreme ultraviolet bursts from a single dense relativistic electron sheet.

    PubMed

    Ma, W J; Bin, J H; Wang, H Y; Yeung, M; Kreuzer, C; Streeter, M; Foster, P S; Cousens, S; Kiefer, D; Dromey, B; Yan, X Q; Meyer-ter-Vehn, J; Zepf, M; Schreiber, J

    2014-12-01

    Double-foil targets separated by a low density plasma and irradiated by a petawatt-class laser are shown to be a copious source of coherent broadband radiation. Simulations show that a dense sheet of relativistic electrons is formed during the interaction of the laser with the tenuous plasma between the two foils. The coherent motion of the electron sheet as it transits the second foil results in strong broadband emission in the extreme ultraviolet, consistent with our experimental observations.

  9. Bright subcycle extreme ultraviolet bursts from a single dense relativistic electron sheet.

    PubMed

    Ma, W J; Bin, J H; Wang, H Y; Yeung, M; Kreuzer, C; Streeter, M; Foster, P S; Cousens, S; Kiefer, D; Dromey, B; Yan, X Q; Meyer-ter-Vehn, J; Zepf, M; Schreiber, J

    2014-12-01

    Double-foil targets separated by a low density plasma and irradiated by a petawatt-class laser are shown to be a copious source of coherent broadband radiation. Simulations show that a dense sheet of relativistic electrons is formed during the interaction of the laser with the tenuous plasma between the two foils. The coherent motion of the electron sheet as it transits the second foil results in strong broadband emission in the extreme ultraviolet, consistent with our experimental observations. PMID:25526132

  10. Megaparsec relativistic jets launched from an accreting supermassive black hole in an extreme spiral galaxy

    SciTech Connect

    Bagchi, Joydeep; Vivek, M.; Srianand, Raghunathan; Gopal-Krishna; Vikram, Vinu; Hota, Ananda; Biju, K. G.; Sirothia, S. K.; Jacob, Joe

    2014-06-20

    The radio galaxy phenomenon is directly connected to mass-accreting, spinning supermassive black holes found in the active galactic nuclei. It is still unclear how the collimated jets of relativistic plasma on hundreds to thousands of kiloparsec scales form and why they are nearly always launched from the nuclei of bulge-dominated elliptical galaxies and not flat spirals. Here we present the discovery of the giant radio source J2345–0449 (z = 0.0755), a clear and extremely rare counterexample where relativistic jets are ejected from a luminous and massive spiral galaxy on a scale of ∼1.6 Mpc, the largest known so far. Extreme physical properties observed for this bulgeless spiral host, such as its high optical and infrared luminosity, large dynamical mass, rapid disk rotation, and episodic jet activity, are possibly the results of its unusual formation history, which has also assembled, via gas accretion from a disk, its central black hole of mass >2 × 10{sup 8} M {sub ☉}. The very high mid-IR luminosity of the galaxy suggests that it is actively forming stars and still building a massive disk. We argue that the launch of these powerful jets is facilitated by an advection-dominated, magnetized accretion flow at a low Eddington rate onto this unusually massive (for a bulgeless disk galaxy) and possibly fast spinning central black hole. Therefore, J2345–0449 is an extremely rare, unusual galactic system whose properties challenge the standard paradigms for black hole growth and the formation of relativistic jets in disk galaxies. Thus, it provides fundamental insight into accretion disk-relativistic jet coupling processes.

  11. Towards Extreme Field Physics: Relativistic Optics and Particle Acceleration in the Transparent-Overdense Regime

    NASA Astrophysics Data System (ADS)

    Hegelich, B. Manuel

    2011-10-01

    A steady increase of on-target laser intensity with also increasing pulse contrast is leading to light-matter interactions of extreme laser fields with matter in new physics regimes which in turn enable a host of applications. A first example is the realization of interactions in the transperent-overdense regime (TOR), which is reached by interacting a highly relativistic (a0 >10), ultra high contrast laser pulse [1] with a solid density target, turning it transparent to the laser by the relativistic mass increase of the electrons. Thus, the interactions becomes volumetric, increasing the energy coupling from laser to plasma, facilitating a range of effects, including relativistic optics and pulse shaping, mono-energetic electron acceleration [3], highly efficient ion acceleration in the break-out afterburner regime [4], and the generation of relativistic and forward directed surface harmonics. Experiments at the LANL 130TW Trident laser facility successfully reached the TOR, and show relativistic pulse shaping beyond the Fourier limit, the acceleration of mono-energetic ~40 MeV electron bunches from solid targets, forward directed coherent relativistic high harmonic generation >1 keV Break-Out Afterburner (BOA) ion acceleration of Carbon to >1 GeV and Protons to >100 MeV. Carbon ions were accelerated with a conversion efficiency of >10% for ions >20 MeV and monoenergetic carbon ions with an energy spread of <20%, have been accelerated at up to ~500 MeV, demonstrating 3 out of 4 for key requirements for ion fast ignition. The shown results now approach or exceed the limits set by many applications from ICF diagnostics over ion fast ignition to medical physics. Furthermore, TOR targets traverse a wide range of HEDP parameter space during the interaction ranging from WDM conditions (e.g. brown dwarfs) to energy densities of ~1011 J/cm3 at peak, then dropping back to the underdense but extremely hot parameter range of gamma-ray bursts. Whereas today this regime can

  12. Regional frequency analysis of extreme groundwater levels.

    PubMed

    Fürst, Josef; Bichler, Andrea; Konecny, Franz

    2015-01-01

    Flood risk is generally perceived as being a consequence of surface water inundation. However, large damage is also caused by high groundwater levels. In surface hydrology, statistical frequency analysis is a standard tool to estimate discharge with a given return period or exceedance probability. First, a suitable probability distribution is fit to a series of annual maximum peaks. Second, this distribution is used to determine the discharge corresponding to the desired return period. Where only short series of recorded data are available, the estimates can often be improved by regional frequency analysis (RFA). Unfortunately, there is little information in the literature on analogous approaches for the estimation of extreme groundwater levels. In this contribution, the applicability of l-moments-based RFA for the estimation of extreme groundwater levels is investigated. The main issues specific to groundwater levels are (1) appropriate transformation of the data, (2) criteria for identification of statistically homogeneous regions, (3) consideration of correlation between sites, and (4) choice of distribution function. This study is based on data from more than 1100 observation sites in four shallow Austrian Aquifers with a record length of 10 to 50 years. Results show that homogeneous regions for l-moments-based RFA can be identified covering about one half of the total area of the aquifers. The confidence intervals for the 30- and 100-year return levels can be significantly reduced by RFA. Out of the four investigated distribution functions, none is to be preferred generally.

  13. Extreme relativistic electron fluxes at geosynchronous orbit: Analysis of GOES E > 2 MeV electrons

    NASA Astrophysics Data System (ADS)

    Meredith, Nigel P.; Horne, Richard B.; Isles, John D.; Rodriguez, Juan V.

    2015-03-01

    Relativistic electrons (E > 1 MeV) cause internal charging on satellites and are an important space weather hazard. A key requirement in space weather research concerns extreme events and knowledge of the largest flux expected to be encountered over the lifetime of a satellite mission. This is interesting both from scientific and practical points of view since satellite operators, engineers, and the insurance industry need this information to better evaluate the effects of extreme events on their spacecraft. Here we conduct an extreme value analysis of daily averaged E > 2 MeV electron fluxes from the Geostationary Operational Environmental Satellites (GOES) during the 19.5 year period from 1 January 1995 to 30 June 2014. We find that the daily averaged flux measured at GOES West is typically a factor of about 2.5 higher than that measured at GOES East, and we conduct independent analyses for these two locations. The 1 in 10, 1 in 50, and 1 in 100 year daily averaged E > 2 MeV electron fluxes at GOES West are 1.84 ×105, 5.00 ×105, and 7.68 ×105 cm-2 s-1 sr-1, respectively. The corresponding fluxes at GOES East are 6.53 ×104, 1.98 ×105, and 3.25 ×105 cm-2 s-1 sr-1, respectively. The largest fluxes seen during the 19.5 year period on 29 July 2004 were particularly extreme and were seen by satellites at GOES West and GOES East. The extreme value analysis suggests that this event was a 1 in 50 year event.

  14. The Effects of Resonant Relaxation and Relativistic Precession on the Rate of Extreme Mass Ratio Inspirals

    NASA Astrophysics Data System (ADS)

    Gill, Michael; Miller, M.; Richardson, D.; Trenti, M.

    2010-01-01

    Extreme Mass Ratio Inspirals (EMRIs), during which a stellar-mass compact object in close orbit around a supermassive black hole gradually loses energy and angular momentum through the emission of gravitational radiation, are likely to be key sources of long-wavelength gravitational waves. Because the expected wavelengths fall in the band to which the Laser Interferometer Space Antenna will be most sensitive, these events should be detectable and thus provide a probe of the strong-field limit of gravity. Despite many years of study of EMRIs, there exist key uncertainties in relevant processes such as resonant relaxation. We present preliminary simulations of the center of a typical galaxy using a tree N-body code, and discuss the implications of our results for resonant relaxation in relativistic gravity. This work was funded in part by NASA grant NNX08AH29G.

  15. Regional Extreme Monthly Precipitation Simulated by NARCCAP RCMs

    SciTech Connect

    Gutowski, William; Arritt, R.; Kawazoe, Sho; Flory, Dave; Takle, Eugene S.; Biner, S.; Caya, Daniel; Jones, Richard; Laprise, Rene; Leung, Lai-Yung R.; Mearns, L. O.; Moufouma-Okia, Wilfran; Nunes, A.; Qian, Yun; Roads, John O.; Sloan, Lisa; Snyder, Mark A.

    2010-12-15

    We analyze the ability of the NARCCAP ensemble of regional climate models to simulate extreme monthly precipitation and its supporting circulation for regions of North America, comparing 18 years of simulations driven by the NCEP-DOE reanalysis with observations. Analysis focuses the wettest 10% of months during the cold half of the year (October-March), when we assume that resolved synoptic circulation governs precipitation. For a coastal California region, the models replicate well the monthly frequency of extremes, the amount of extreme precipitation and the 500 hPa circulation anomaly associated with the extremes. For an Upper Mississippi River Basin region, the models agree with observations in both monthly frequency and magnitude, though not as closely as for coastal California. In addition, simulated circulation anomalies for extreme months are similar to those in observations. Model success appears to result in part from the substantial seasonal variation of extremes, which the models capture well.

  16. Extreme Variables in Star Forming Regions

    NASA Astrophysics Data System (ADS)

    Contreras Peña, Carlos Eduardo

    2015-01-01

    The notion that low- to intermediate-mass young stellar objects (YSOs) gain mass at a constant rate during the early stages of their evolution appears to be challenged by observations of YSOs suffering sudden increases of the rate at which they gain mass from their circumstellar discs. Also, this idea that stars spend most of their lifetime with a low accretion rate and gain most of their final mass during short-lived episodes of high accretion bursts, helps to solve some long-standing problems in stellar evolution. The original classification of eruptive variables divides them in two separate subclasses known as FU Orionis stars (FUors) and EX Lupi stars (EXors). In this classical view FUors are at an early evolutionary stage and are still gaining mass from their parent envelopes, whilst EXors are thought to be older objects only surrounded by an accretion disc. The problem with this classical view is that it excludes younger protostars which have higher accretion rates but are too deeply embedded in circumstellar matter to be observed at optical wavelengths. Optically invisible protostars have been observed to display large variability in the near-infrared. These and some recent discoveries of new eruptive variables, show characteristics that can be attributed to both of the optically-defined subclasses of eruptive variables. The new objects have been proposed to be part of a new class of eruptive variables. However, a more accepted scenario is that in fact the original classes only represent two extremes of the same phenomena. In this sense eruptive variability could be explained as arising from one physical mechanism, i.e. unsteady accretion, where a variation in the parameters of such mechanism can cause the different characteristics observed in the members of this class. With the aim of studying the incidence of episodic accretion among young stellar objects, and to characterize the nature of these eruptive variables we searched for high amplitude variability

  17. The Innermost Regions of Relativistic Jets: Wrapping Up the Enigma

    NASA Astrophysics Data System (ADS)

    Marscher, Alan P.

    2013-12-01

    What are relativistic jets like within a million Schwarzschild radii of the accreting black hole that powers them? A meeting in Granada, Spain in June 2013, organized by José L. Gómez and his conspirators brought together observers and theorists to survey the current state of observational data and efforts to interpret them. This conference summary reviews the results, insights, arguments, conflicts, and agreements that occurred during five sunny days spent in a windowless room in a hotel at the bottom of the hill that holds the heart of the beautiful city.

  18. The NuSTAR spectrum of Mrk 335: extreme relativistic effects within two gravitational radii of the event horizon?

    NASA Astrophysics Data System (ADS)

    Parker, M. L.; Wilkins, D. R.; Fabian, A. C.; Grupe, D.; Dauser, T.; Matt, G.; Harrison, F. A.; Brenneman, L.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Gallo, L. C.; Hailey, C. J.; Kara, E.; Komossa, S.; Marinucci, A.; Miller, J. M.; Risaliti, G.; Stern, D.; Walton, D. J.; Zhang, W. W.

    2014-09-01

    We present 3-50 keV NuSTAR observations of the active galactic nuclei Mrk 335 in a very low flux state. The spectrum is dominated by very strong features at the energies of the iron line at 5-7 keV and Compton hump from 10-30 keV. The source is variable during the observation, with the variability concentrated at low energies, which suggesting either a relativistic reflection or a variable absorption scenario. In this work, we focus on the reflection interpretation, making use of new relativistic reflection models that self consistently calculate the reflection fraction, relativistic blurring and angle-dependent reflection spectrum for different coronal heights to model the spectra. We find that the spectra can be well fitted with relativistic reflection, and that the lowest flux state spectrum is described by reflection alone, suggesting the effects of extreme light-bending occurring within ˜2 gravitational radii (RG) of the event horizon. The reflection fraction decreases sharply with increasing flux, consistent with a point source moving up to above 10 RG as the source brightens. We constrain the spin parameter to greater than 0.9 at the 3σ confidence level. By adding a spin-dependent upper limit on the reflection fraction to our models, we demonstrate that this can be a powerful way of constraining the spin parameter, particularly in reflection dominated states. We also calculate a detailed emissivity profile for the iron line, and find that it closely matches theoretical predictions for a compact source within a few RG of the black hole.

  19. Can quantile mapping improve precipitation extremes from regional climate models?

    NASA Astrophysics Data System (ADS)

    Tani, Satyanarayana; Gobiet, Andreas

    2015-04-01

    The ability of quantile mapping to accurately bias correct regard to precipitation extremes is investigated in this study. We developed new methods by extending standard quantile mapping (QMα) to improve the quality of bias corrected extreme precipitation events as simulated by regional climate model (RCM) output. The new QM version (QMβ) was developed by combining parametric and nonparametric bias correction methods. The new nonparametric method is tested with and without a controlling shape parameter (Qmβ1 and Qmβ0, respectively). Bias corrections are applied on hindcast simulations for a small ensemble of RCMs at six different locations over Europe. We examined the quality of the extremes through split sample and cross validation approaches of these three bias correction methods. This split-sample approach mimics the application to future climate scenarios. A cross validation framework with particular focus on new extremes was developed. Error characteristics, q-q plots and Mean Absolute Error (MAEx) skill scores are used for evaluation. We demonstrate the unstable behaviour of correction function at higher quantiles with QMα, whereas the correction functions with for QMβ0 and QMβ1 are smoother, with QMβ1 providing the most reasonable correction values. The result from q-q plots demonstrates that, all bias correction methods are capable of producing new extremes but QMβ1 reproduces new extremes with low biases in all seasons compared to QMα, QMβ0. Our results clearly demonstrate the inherent limitations of empirical bias correction methods employed for extremes, particularly new extremes, and our findings reveals that the new bias correction method (Qmß1) produces more reliable climate scenarios for new extremes. These findings present a methodology that can better capture future extreme precipitation events, which is necessary to improve regional climate change impact studies.

  20. Regional frequency analysis of extreme precipitation for Sicily (Italy)

    NASA Astrophysics Data System (ADS)

    Forestieri, Angelo; Blenkinsop, Stephen; Fowler, Hayley; Lo Conti, Francesco; Noto, Leonardo

    2016-04-01

    The analysis of extreme precipitation has always been included among most relevant hydrological applications because of the several important activities linked to the availability of tools for the estimation of extreme rainfall quantiles. These activities include the design of hydraulic civil structures and the evaluation and management of hydraulic and hydrological risk. In this study a frequency analysis of annual maxima precipitation measurements has been carried out for the area of Sicily (Italy). A typical hierarchical regional approach has been adopted for the parameter estimation procedure based on the L-moments method. The identification of homogeneous regions within the procedure has been pursued with a data driven procedure constituted by a principal component analysis of an ensemble of selected auxiliary variables, and a K-means cluster analysis algorithm. Auxiliary variables comprise meteo-climatic information and a representation of the average seasonal distribution of intense events. Results have been evaluated by means of a Monte Carlo experiment based on the comparison between at-site and regional fitted frequency distributions. Moreover, results have been compared with previous analyses performed for the same area. The study provides an updated tool for the modelling of extreme precipitation for the area of Sicily (Italy), with different features respect to previous tools both in terms of definition of homogeneous zones and in terms of parameters of the frequency distribution. Meteo-climatic information and the seasonality of extreme events retrieved from the dataset has been proficuously exploited in the analysis.

  1. Estimating temporal changes in extreme rainfall in Sicily Region (Italy)

    NASA Astrophysics Data System (ADS)

    Bonaccorso, Brunella; Aronica, Giuseppe

    2016-04-01

    An intensification of extreme rainfall events have characterized several areas of peninsular and insular Italy since the early 2000s, suggesting an upward ongoing trend likely driven by climate change. In the present study temporal changes in 1-, 3-, 6-, 12- and 24-hour annual maxima rainfall series from more than 200 sites in Sicily region (Italy) are examined. A regional study is performed in order to reduce the uncertainty in change detection related to the limited length of the available records of extreme rainfall series. More specifically, annual maxima series are treated according to a regional flood index - type approach to frequency analysis, by assuming stationarity on a decadal time scale. First a cluster analysis using at-site characteristics is used to determine homogeneous rainfall regions. Then, potential changes in regional L-moment ratios are analyzed using a 10-year moving window. Furthermore, the shapes of regional growth curves, derived by splitting the records into separate decades, are compared. In addition, a jackknife procedure is used to assess uncertainty in the fitted growth curves and to identify significant trends in quantile estimates. Results reveal that, despite L-moment ratios show a general decreasing trend and that growth curves corresponding to the last decade (2000-2009) are usually less steep than the ones of the previous periods, rainfall quantile estimates have increased during the 2000s due to a large increase in regional average median, mainly in Western Sicily.

  2. Extreme rainfall in West Africa: A regional modeling

    NASA Astrophysics Data System (ADS)

    Panthou, G.; Vischel, T.; Lebel, T.; Blanchet, J.; Quantin, G.; Ali, A.

    2012-08-01

    In a world of increasing exposure of populations to natural hazards, the mapping of extreme rainfall remains a key subject of study. Such maps are required for both flood risk management and civil engineering structure design, the challenge being to take into account the local information provided by point rainfall series as well as the necessity of some regional coherency. Two approaches based on the extreme value theory are compared here, with an application to extreme rainfall mapping in West Africa. The first approach is a local fit and interpolation (LFI) consisting of a spatial interpolation of the generalized extreme value (GEV) distribution parameters estimated independently at each station. The second approach is a spatial maximum likelihood estimation (SMLE); it directly estimates the GEV distribution over the entire region by a single maximum likelihood fit using jointly all measurements combined with spatial covariates. Five LFI and three SMLE methods are considered, using the information provided by 126 daily rainfall series covering the period 1950-1990. The methods are first evaluated in calibration. Then the predictive skills and the robustness are assessed through a cross validation and an independent network validation process. The SMLE approach, especially when using the mean annual rainfall as covariate, appears to perform better for most of the scores computed. Using the Niamey 104 year time series, it is also shown that the SMLE approach has the capacity to deal more efficiently with the effect of local outliers by using the spatial information provided by nearby stations.

  3. Regional Frequency and Uncertainty Analysis of Extreme Precipitation in Bangladesh

    NASA Astrophysics Data System (ADS)

    Mortuza, M. R.; Demissie, Y.; Li, H. Y.

    2014-12-01

    Increased frequency of extreme precipitations, especially those with multiday durations, are responsible for recent urban floods and associated significant losses of lives and infrastructures in Bangladesh. Reliable and routinely updated estimation of the frequency of occurrence of such extreme precipitation events are thus important for developing up-to-date hydraulic structures and stormwater drainage system that can effectively minimize future risk from similar events. In this study, we have updated the intensity-duration-frequency (IDF) curves for Bangladesh using daily precipitation data from 1961 to 2010 and quantified associated uncertainties. Regional frequency analysis based on L-moments is applied on 1-day, 2-day and 5-day annual maximum precipitation series due to its advantages over at-site estimation. The regional frequency approach pools the information from climatologically similar sites to make reliable estimates of quantiles given that the pooling group is homogeneous and of reasonable size. We have used Region of influence (ROI) approach along with homogeneity measure based on L-moments to identify the homogenous pooling groups for each site. Five 3-parameter distributions (i.e., Generalized Logistic, Generalized Extreme value, Generalized Normal, Pearson Type Three, and Generalized Pareto) are used for a thorough selection of appropriate models that fit the sample data. Uncertainties related to the selection of the distributions and historical data are quantified using the Bayesian Model Averaging and Balanced Bootstrap approaches respectively. The results from this study can be used to update the current design and management of hydraulic structures as well as in exploring spatio-temporal variations of extreme precipitation and associated risk.

  4. Detecting overlapping instances in microscopy images using extremal region trees.

    PubMed

    Arteta, Carlos; Lempitsky, Victor; Noble, J Alison; Zisserman, Andrew

    2016-01-01

    In many microscopy applications the images may contain both regions of low and high cell densities corresponding to different tissues or colonies at different stages of growth. This poses a challenge to most previously developed automated cell detection and counting methods, which are designed to handle either the low-density scenario (through cell detection) or the high-density scenario (through density estimation or texture analysis). The objective of this work is to detect all the instances of an object of interest in microscopy images. The instances may be partially overlapping and clustered. To this end we introduce a tree-structured discrete graphical model that is used to select and label a set of non-overlapping regions in the image by a global optimization of a classification score. Each region is labeled with the number of instances it contains - for example regions can be selected that contain two or three object instances, by defining separate classes for tuples of objects in the detection process. We show that this formulation can be learned within the structured output SVM framework and that the inference in such a model can be accomplished using dynamic programming on a tree structured region graph. Furthermore, the learning only requires weak annotations - a dot on each instance. The candidate regions for the selection are obtained as extremal region of a surface computed from the microscopy image, and we show that the performance of the model can be improved by considering a proxy problem for learning the surface that allows better selection of the extremal regions. Furthermore, we consider a number of variations for the loss function used in the structured output learning. The model is applied and evaluated over six quite disparate data sets of images covering: fluorescence microscopy, weak-fluorescence molecular images, phase contrast microscopy and histopathology images, and is shown to exceed the state of the art in performance. PMID:25980675

  5. Influence of multiple scattering of relativistic electrons on the linewidth of Parametric X-ray Radiation produced in the extremely Bragg geometry in the absence of photoabsorption

    NASA Astrophysics Data System (ADS)

    Tabrizi, Mehdi

    2016-10-01

    The multiple scattering effect on the linewidth of backward Parametric X-ray Radiation (PXR) produced in the extremely Bragg geometry by low energy relativistic electrons traversing a single crystal is discussed. It is shown that there are conditions when the influence of photoabsorption on the linewidth can be neglected, and only the multiple scattering process of relativistic electrons in crystals leads to the PXR lines broadening. Based on obtained theoretical and numerical results for the linewidth broadening caused by multiple scattering of 30 and 50 MeV relativistic electrons in a Si crystal of various thicknesses, an experiment could be performed to help in revealing the scattering effect on the PXR lines in the absence of photoabsorption. This leads to more accurate understanding of the influence of scattering process on the linewidth of backward PXR and helps to better construct a table-top narrow bandwidth X-ray source for both scientific and industrial applications.

  6. Global extreme events and their regional economic impact: 1996 update

    SciTech Connect

    Shen, S.

    1996-12-31

    The meaning of global warming and its relevance to everyday life is explained. Simple thermodynamics is used to predict an oscillatory nature of the change in climate due to global warming. The regional economic impacts of global extreme events are what mankind needs to focus on in government and private sector policy and planning. The economic impact of global warming has been tracked by the Extreme Event Index (EEI) established by the Global Warming International Center (GWIC). This review will update the overall trend and the components of the EEI from 1960 to 1996. The regional components of the global EEI have provided an excellent gauge for measuring the statistical vulnerability of any geographical locality in climate related economic disasters. The author further explains why we no longer fully understand the nature and magnitudes of common phenomena such as storms and wind speeds because of these extreme events, precipitation and temperature oscillations, atmospheric thermal unrest, as well as the further stratification of clouds, and changes in the absorptive properties of clouds. Hurricane strength winds are increasingly common even in continental areas. The author links the increase in duration of the El Nino to global warming, and further predicts a high public health risk as a result of the earth`s transition to another equilibrium state in its young history.

  7. Relating Regional Arctic Sea Ice and climate extremes over Europe

    NASA Astrophysics Data System (ADS)

    Ionita-Scholz, Monica; Grosfeld, Klaus; Lohmann, Gerrit; Scholz, Patrick

    2016-04-01

    The potential increase of temperature extremes under climate change is a major threat to society, as temperature extremes have a deep impact on environment, hydrology, agriculture, society and economy. Hence, the analysis of the mechanisms underlying their occurrence, including their relationships with the large-scale atmospheric circulation and sea ice concentration, is of major importance. At the same time, the decline in Arctic sea ice cover during the last 30 years has been widely documented and it is clear that this change is having profound impacts at regional as well as planetary scale. As such, this study aims to investigate the relation between the autumn regional sea ice concentration variability and cold winters in Europe, as identified by the numbers of cold nights (TN10p), cold days (TX10p), ice days (ID) and consecutive frost days (CFD). We analyze the relationship between Arctic sea ice variation in autumn (September-October-November) averaged over eight different Arctic regions (Barents/Kara Seas, Beaufort Sea, Chukchi/Bering Seas, Central Arctic, Greenland Sea, Labrador Sea/Baffin Bay, Laptev/East Siberian Seas and Northern Hemisphere) and variations in atmospheric circulation and climate extreme indices in the following winter season over Europe using composite map analysis. Based on the composite map analysis it is shown that the response of the winter extreme temperatures over Europe is highly correlated/connected to changes in Arctic sea ice variability. However, this signal is not symmetrical for the case of high and low sea ice years. Moreover, the response of temperatures extreme over Europe to sea ice variability over the different Arctic regions differs substantially. The regions which have the strongest impact on the extreme winter temperature over Europe are: Barents/Kara Seas, Beaufort Sea, Central Arctic and the Northern Hemisphere. For the years of high sea ice concentration in the Barents/Kara Seas there is a reduction in the number

  8. Characteristics of Extreme Daily Precipitation Events over the Arctic Region

    NASA Astrophysics Data System (ADS)

    Mc Shane, C.

    2015-12-01

    Most climate models project that precipitation will increase over the Arctic during the 21st century. This is viewed as a response to both increased atmospheric vapor flux convergence and loss of the sea ice cover which provides for local moisture sources. While observational evidence for increased precipitation is growing, it is difficult to draw firm conclusions, especially given the sparse observational network, and strong impacts of low-frequency atmospheric variability. Here, we use station records from the National Climatic Data Center, The Norwegian Meteorological Institute and other national sources to examine the spatial characteristics of extreme daily precipitation events across the Arctic (the area poleward of 65 degrees N) and recent trends. The focus is on the period 1979-2014. Extreme events at each of the 145 stations selected for analysis are defined as those within the top 1% of their statistical distribution. The spatial distribution of the size of the 1% event broadly follows the spatial pattern of annual precipitation. For stations in Iceland, Svalbard and coastal Norway influenced by Atlantic moisture sources, the 1% event size ranges from 14 to 25 mm; recent work shows that these high-latitude events are often linked to atmospheric rivers. This contrasts sharply with polar desert sites in the Canadian Arctic Archipelago and many locations along the Siberian coast, that, being removed from significant moisture sources, have values from 3-10 mm. When the Arctic region is assessed as a whole, the frequency of extreme events shows a slight positive trend over the study period. However, regional analyses, based on similarities between the size of the top 1% precipitation event, reveals areas of positive and negative trends that vary between region, season and month.

  9. Projections of African drought extremes in CORDEX regional climate simulations

    NASA Astrophysics Data System (ADS)

    Gbobaniyi, Emiola; Nikulin, Grigory; Jones, Colin; Kjellström, Erik

    2013-04-01

    We investigate trends in drought extremes for different climate regions of the African continent over a combined historical and future period 1951-2100. Eight CMIP5 coupled atmospheric global climate models (CanESM2, CNRM-CM5, HadGEM2-ES, NorESM1-M, EC-EARTH, MIROC5, GFDL-ESM2M and MPI-ESM-LR) under two forcing scenarios, the relative concentration pathways (RCP) 4.5 and 8.5, with spatial resolution varying from about 1° to 3° are downscaled to 0.44° resolution by the Rossby Centre (SMHI) regional climate model RCA4. We use data from the ensuing ensembles of CORDEX-Africa regional climate simulations to explore three drought indices namely: standardized precipitation index (SPI), moisture index (MI) and difference in precipitation and evaporation (P-E). Meteorological and agricultural drought conditions are assessed in our analyses and a climate change signal is obtained for the SPI by calculating gamma functions for future SPI with respect to a baseline present climate. Results for the RCP4.5 and RCP8.5 scenarios are inter-compared to assess uncertainties in the future projections. We show that there is a pronounced sensitivity to the choice of forcing GCM which indicates that assessments of future drought conditions in Africa would benefit from large model ensembles. We also note that the results are sensitive to the choice of drought index. We discuss both spatial and temporal variability of drought extremes for different climate zones of Africa and the importance of the ensemble mean. Our study highlights the usefulness of CORDEX simulations in identifying possible future impacts of climate at local and regional scales.

  10. Regional intensity of vascular care and lower extremity amputation rates

    PubMed Central

    Goodney, Philip P.; Holman, Kerianne; Henke, Peter K.; Travis, Lori L.; Dimick, Justin B.; Stukel, Therese A.; Fisher, Elliott. S.; Birkmeyer, John D.

    2013-01-01

    Objective To examine the relationship between the intensity of vascular care and population-based rate of major lower extremity amputation (above-or below-knee) from vascular disease. Background Because patient-level differences do not fully explain the variation in amputation rate across the United States, we hypothesized that variation in intensity of vascular care may also affect regional rates of amputation. Methods Intensity of vascular care was defined as the proportion of Medicare patients who underwent any vascular procedure in the year prior to amputation, calculated at the regional level (2003–2006), using the 306 hospital referral regions in the Dartmouth Atlas of Healthcare. We examined relationship between intensity of vascular care and major amputation rate, at the regional level, between 2007–2009. Results Amputation rates varied widely by region, from 1 to 27 per 10,000 Medicare patients. Compared to regions in the lowest quintile of amputation rate, patients in the highest quintile were commonly African American (50% versus 13%) and diabetic (38% versus 31%). Intensity of vascular care also varied across regions: fewer than 35% of patients underwent revascularization in the lowest quintile of intensity, while nearly 60% of patients underwent revascularization in the highest quintile. Overall, there was an inverse correlation between intensity of vascular care and amputation rate ranging from R= −0.36 for outpatient diagnostic and therapeutic procedures, to R= −0.87 for inpatient surgical revascularizations. In analyses adjusting for patient characteristics and socioeconomic status, patients in high vascular care regions were significantly less likely to undergo amputation without an antecedent attempt at revascularization (OR 0.37, 95% CI 0.34–0.37, p<0.001). Conclusions The intensity of vascular care provided to patients at risk for amputation varies, and regions with the most intensive vascular care have the lowest amputation rate

  11. Transitions between refrigeration regions in extremely short quantum cycles.

    PubMed

    Feldmann, Tova; Kosloff, Ronnie

    2016-05-01

    The relation between the geometry of refrigeration cycles and their performance is explored. The model studied is based on a coupled spin system. Small cycle times, termed sudden refrigerators, develop coherence and inner friction. We explore the interplay between coherence and energy of the working medium employing a family of sudden cycles with decreasing cycle times. At the point of maximum coherence the cycle changes geometry. This region of cycle times is characterized by a dissipative resonance where heat is dissipated both to the hot and cold baths. We rationalize the change of geometry of the cycle as a result of a half-integer quantization which maximizes coherence. From this point on, increasing or decreasing the cycle time, eventually leads to refrigeration cycles. The transition point between refrigerators and short circuit cycles is characterized by a transition from finite to singular dynamical temperature. Extremely short cycle times reach a universal limit where all cycles types are equivalent. PMID:27300872

  12. Transitions between refrigeration regions in extremely short quantum cycles

    NASA Astrophysics Data System (ADS)

    Feldmann, Tova; Kosloff, Ronnie

    2016-05-01

    The relation between the geometry of refrigeration cycles and their performance is explored. The model studied is based on a coupled spin system. Small cycle times, termed sudden refrigerators, develop coherence and inner friction. We explore the interplay between coherence and energy of the working medium employing a family of sudden cycles with decreasing cycle times. At the point of maximum coherence the cycle changes geometry. This region of cycle times is characterized by a dissipative resonance where heat is dissipated both to the hot and cold baths. We rationalize the change of geometry of the cycle as a result of a half-integer quantization which maximizes coherence. From this point on, increasing or decreasing the cycle time, eventually leads to refrigeration cycles. The transition point between refrigerators and short circuit cycles is characterized by a transition from finite to singular dynamical temperature. Extremely short cycle times reach a universal limit where all cycles types are equivalent.

  13. Extreme events evaluation over African cities with regional climate simulations

    NASA Astrophysics Data System (ADS)

    Bucchignani, Edoardo; Mercogliano, Paola; Simonis, Ingo; Engelbrecht, Francois

    2013-04-01

    The warming of the climate system in recent decades is evident from observations and is mainly related to the increase of anthropogenic greenhouse gas concentrations (IPCC, 2012). Given the expected climate change conditions on the African continent, as underlined in different publications, and their associated socio-economic impacts, an evaluation of the specific effects on some strategic African cities on the medium and long-term is of crucial importance with regard to the development of adaptation strategies. Assessments usually focus on averages climate properties rather than on variability or extremes, but often these last ones have more impacts on the society than averages values. Global Coupled Models (GCM) are generally used to simulate future climate scenarios as they guarantee physical consistency between variables; however, due to the coarse spatial resolution, their output cannot be used for impact studies on local scales, which makes necessary the generation of higher resolution climate change data. Regional Climate Models (RCM) describe better the phenomena forced by orography or by coastal lines, or that are related to convection. Therefore they can provide more detailed information on climate extremes that are hard to study and even harder to predict because they are, by definition, rare and obey different statistical laws. The normal bias of the RCM to represent the local climatology is reduced using adequate statistical techniques based on the comparison of the simulated results with long observational time series. In the framework of the EU-FP7 CLUVA (Climate Change and Urban Vulnerability in Africa) project, regional projections of climate change at high resolution (about 8 km), have been performed for selected areas surrounding five African cities. At CMCC, the regional climate model COSMO-CLM has been employed: it is a non-hydrostatic model. For each domain, two simulations have been performed, considering the RCP4.5 and RCP8.5 emission

  14. Regional Annual Extreme Precipitation Modeling: Choose Your Parents Wisely.

    NASA Astrophysics Data System (ADS)

    Fennessey, N. M.

    2001-05-01

    A great deal of research has been invested in developing a better understanding of the characteristics of and descriptive models of annual extreme precipitation. Some advocate the analysis of the annual maximum series (AMS) others advocate the analysis of partial duration series (PDS). The former is easy to generate, the latter provides more information, which is advantageous for better estimation. Both schools of thought seem to agree that the generalized extreme value (GEV) distribution is a good choice for the annual extreme precipitation event. Recently published work suggests that the generalized Pareto distribution (GPA) is a good choice for generating a PDS because of its analytical link with the GEV. There are, however, two well-recognized disadvantages to using the GPA for this purpose. The analyst must specify both a sampling threshold/lower-bound and a minimum time between peaks to create an acceptable PDS. Using L-moment diagrams and regional frequency analysis, a paper presented at the 1998 Spring AGU meeting suggests that daily precipitation observed in the northeast U.S. is much better described by a two parameter gamma distribution than the three parameter GPA. The 116 NOAA observatories used have periods-of-record which range from 15 to 60 complete years of no missing daily data. The observed AMS in this region is well described by a GEV. In the present work, using the L-moment estimators developed from these daily observations, serially independent gamma distributed, three parameter Pearson Type III (PE3) distributed and three parameter GPA distributed quantiles are generated for a daily period-of-record equal to that of each parent NOAA observatory. No efforts are made to specify a GPA lower bound, but many synthetic days of rainfall have negative values. The maximum value within each 365-day simulation year is retained to create three synthetic AMS, each with a different parent. L-moment diagrams of the observed, gamma day, PE3 day and GPA day

  15. Extreme deformations and clusterization at high spin in the A ~ 40 mass region

    NASA Astrophysics Data System (ADS)

    Ray, Debisree; Afanasjev, Anatoli

    2015-10-01

    Recent revival of the interest to the study of superdeformation and clusterization in light nuclei has motivated us to undertake the study of extreme deformations in the A ~ 32 - 50 N ~ Z nuclei. Unfortunately, at spin zero the predicted structures with extreme deformation are located at high excitation energies which prevents their experimental observation. On the other hand, the rotation brings such structures closer to the yrast line and, in principle, makes their observation possible with future generation of facilities such as GRETA. Thus, the systematic study of the extremely deformed structures and clusterization has been performed in the framework of cranked relativistic mean field theory. The major features of such structures, the spins at which they become yrast and the possiblities of their experimental observation will be discussed in this presentation. This work has been supported by the U.S. Department of Energy under the Grant DE-FG02-07ER41459.

  16. Relativistic electron flux dropouts in the outer radiation belt associated with corotating interaction regions

    NASA Astrophysics Data System (ADS)

    Yuan, C.-J.; Zong, Q.-G.; Wan, W.-X.; Zhang, H.; Du, A.-M.

    2015-09-01

    Understanding how the relativistic electron fluxes drop out in the outer radiation belt under different conditions is of great importance. To investigate which mechanisms may affect the dropouts under different solar wind conditions, 1.5-6.0 MeV electron flux dropout events associated with 223 corotating interaction regions (CIRs) from 1994 to 2003 are studied using the observations of Solar, Anomalous, Magnetospheric Particle Explorer satellite. According to the superposed epoch analysis, it is found that high solar wind dynamic pressure with the peak median value of about 7 nPa is corresponding to the dropout of the median of the radiation belt content (RBC) index to 20% of the level before stream interface arrival, whereas low dynamic pressure with the peak median value of about 3 nPa is related to the dropout of the median of RBC index to 40% of the level before stream interface arrival. Furthermore, the influences of Russell-McPherron effect with respect to interplanetary magnetic field orientation on dropouts are considered. It is pointed out that under positive Russell-McPherron effect (+RM effect) condition, the median of RBC index can drop to 23% of the level before stream interface arrival, while for negative Russell-McPherron effect (-RM effect) events, the median of RBC index only drops to 37% of the level before stream interface arrival. From the evolution of phase space density profiles, the effect of +RM on dropouts can be through nonadiabatic loss.

  17. On the design of experiments for the study of extreme field limits in the ultra-relativistic interaction of electromagnetic waves with plasmas

    NASA Astrophysics Data System (ADS)

    Bulanov, Sergei V.; Esirkepov, Timur Z.; Hayashi, Yukio; Kando, Masaki; Kiriyama, Hiromitsu; Koga, James K.; Kondo, Kiminori; Kotaki, Hideyuki; Pirozhkov, Alexander S.; Bulanov, Stepan S.; Zhidkov, Alexei G.; Chen, Pisin; Neely, David; Kato, Yoshiaki; Narozhny, Nikolay B.; Korn, Georg

    2011-06-01

    The critical electric field of quantum electrodynamics, called also the Schwinger field, is so strong that it produces electron-positron pairs from vacuum, converting the energy of light into matter. Since the dawn of quantum electrodynamics, there has been a dream on how to reach it on Earth. With the rise of laser technology this field has become feasible through the construction of extremely high power lasers or/and with the sophisticated use of nonlinear processes in relativistic plasmas. This is one of the most attractive motivations for extremely high power laser development, i.e. producing matter from vacuum by pure light in fundamental process of quantum electrodynamics in the nonperturbative regime. Recently it has been realized that a laser with intensity well below the Schwinger limit can create an avalanche of electron-positron pairs similar to a discharge before attaining the Schwinger field. It has also been realized that the Schwinger limit can be reached using an appropriate configuration of laser beams. In experiments on the collision of laser light and high intensity electromagnetic pulses generated by relativistic flying mirrors, with electron bunches produced by a conventional accelerator and with laser wake field accelerated electrons the studying of extreme field limits in the nonlinear interaction of electromagnetic waves is proposed. The regimes of dominant radiation reaction, which completely changes the electromagnetic wave-matter interaction, will be revealed. This will result in a new powerful source of high brightness gamma-rays. A possibility of the demonstration of the electronpositron pair creation in vacuum via multi-photon processes can be realized. This will allow modeling under terrestrial laboratory conditions neutron star magnetospheres, cosmological gamma ray bursts and the Leptonic Era of the Universe.

  18. Hyperdeformation in the cranked relativistic mean field theory: The Z=40-58 region of the nuclear chart

    SciTech Connect

    Afanasjev, A. V.; Abusara, H.

    2008-07-15

    The systematic investigation of hyperdeformation (HD) at high spin in the Z=40-58 region of the nuclear chart was performed in the framework of the cranked relativistic mean-field theory. The properties of the moments of inertia of the HD bands, the role of the single-particle and necking degrees of freedom at HD, the spins at which the HD bands become yrast, the possibility to observe discrete HD bands, and so on are discussed in detail.

  19. A Bayesian Hierarchical Approach to Regional Frequency Analysis of Extremes

    NASA Astrophysics Data System (ADS)

    Renard, B.

    2010-12-01

    Rainfall and runoff frequency analysis is a major issue for the hydrological community. The distribution of hydrological extremes varies in space and possibly in time. Describing and understanding this spatiotemporal variability are primary challenges to improve hazard quantification and risk assessment. This presentation proposes a general approach based on a Bayesian hierarchical model, following previous work by Cooley et al. [2007], Micevski [2007], Aryal et al. [2009] or Lima and Lall [2009; 2010]. Such a hierarchical model is made up of two levels: (1) a data level modeling the distribution of observations, and (2) a process level describing the fluctuation of the distribution parameters in space and possibly in time. At the first level of the model, at-site data (e.g., annual maxima series) are modeled with a chosen distribution (e.g., a GEV distribution). Since data from several sites are considered, the joint distribution of a vector of (spatial) observations needs to be derived. This is challenging because data are in general not spatially independent, especially for nearby sites. An elliptical copula is therefore used to formally account for spatial dependence between at-site data. This choice might be questionable in the context of extreme value distributions. However, it is motivated by its applicability in spatial highly dimensional problems, where the joint pdf of a vector of n observations is required to derive the likelihood function (with n possibly amounting to hundreds of sites). At the second level of the model, parameters of the chosen at-site distribution are then modeled by a Gaussian spatial process, whose mean may depend on covariates (e.g. elevation, distance to sea, weather pattern, time). In particular, this spatial process allows estimating parameters at ungauged sites, and deriving the predictive distribution of rainfall/runoff at every pixel/catchment of the studied domain. An application to extreme rainfall series from the French

  20. Does Nudging Squelch the Extremes in Regional Climate Modeling?

    EPA Science Inventory

    An important question in regional climate downscaling is whether to constrain (nudge) the interior of the limited-area domain toward the larger-scale driving fields. Prior research has demonstrated that interior nudging can increase the skill of regional climate predictions origin...

  1. Seasonal and regional variations in extreme precipitation event frequency using CMIP5

    NASA Astrophysics Data System (ADS)

    Janssen, E.; Sriver, R. L.; Wuebbles, D. J.; Kunkel, K. E.

    2016-05-01

    Understanding how the frequency and intensity of extreme precipitation events are changing is important for regional risk assessments and adaptation planning. Here we use observational data and an ensemble of climate change model experiments (from the Coupled Model Intercomparison Project Phase 5 (CMIP5)) to examine past and potential future seasonal changes in extreme precipitation event frequency over the United States. Using the extreme precipitation index as a metric for extreme precipitation change, we find key differences between models and observations. In particular, the CMIP5 models tend to overestimate the number of spring events and underestimate the number of summer events. This seasonal shift in the models is amplified in projections. These results provide a basis for evaluating climate model skill in simulating observed seasonality and changes in regional extreme precipitation. Additionally, we highlight key sources of variability and uncertainty that can potentially inform regional impact analyses and adaptation planning.

  2. The Climatology of Climate Extremes in the World's Major Growing Regions

    NASA Astrophysics Data System (ADS)

    Troy, T.; Zhu, X.

    2015-12-01

    A stable food supply is increasingly important as global populations grow and climate variability and extremes affect crop yields. It is therefore critical to quantify the occurrence of extremes in major growing regions globally to understand the vulnerability of the global food supply to climate. First, we grid the GHCN historical climate data and evaluate the effect of gridding on estimation of agriculturally relevant climate extremes, such as heat waves, consecutive dry days, and precipitation intensity. We find that the differences between gridded indices and the raw station indices are small, mostly less than 10%. We then evaluate the climatology of climate extremes and the probability of concurrent extremes, both within one growing region and across multiple regions globally. We find that the correlation of two precipitation or temperature related indices are quite strong, such that the probability of another extreme occurring increases given the occurrence of one extreme. These results provide estimations of the global food supply's vulnerability to climate variability and extremes, which is critical for planning in the coming decades with projections of more frequent and more intense climate extremes.

  3. Formation of Continuous and Episodic Relativistic Outflows in Regions of Stability and Instability in Advection-Dominated Accretion Flows

    NASA Astrophysics Data System (ADS)

    Le, Truong V.; Wood, Kent S.; Wolff, Michael Thomas; Becker, Peter A.; Putney, Joy; Edge, Elizabeth

    2016-01-01

    Previously, we have demonstrated that particle acceleration in the vicinity of a shock in an advection-dominated accretion disk can extract enough energy to power a relativistic jet from a supermassive black hole at the center of a radio-loud active galaxy. However, to maintain a steady jet, a stable shock location is required. By employing the Chevalier & Imamura linearization method and the Nakayama instability boundary conditions, we have also shown that there is a region of the energy and angular momentum parameter space in which disk/shocks with outflows can be either stable or unstable. In a region of instability, the velocity profiles that exhibit pre-shock deceleration and pre-shock acceleration are always unstable to the zeroth mode with zero frequency of oscillation. However, in a region of stability, the zeroth mode, the fundamental, and the overtones are all stable for both pre-shock deceleration as well as pre-shock acceleration. Building on this new insight, in this paper, we explore new parameter values in the regions of stability and instability to explain the production of the observed continuous and episodic relativistic outflows (jets) in M87 and Sgr A*, respectively.

  4. Comment on "Electrostatic compressive and rarefactive shocks and solitons in relativistic plasmas occurring in polar regions of pulsar"

    NASA Astrophysics Data System (ADS)

    Hafez, M. G.; Talukder, M. R.; Hossain Ali, M.

    2016-05-01

    The aim of this comment is to show the solution of the KdVB equation used by Shah et al. (Astrophys. Space Sci. 335:529-537, 2011, doi: 10.1007/s10509-011-0766-y) is not correct. So, the numerical results that are predicted in this manuscript should not be helpful for further investigations in a plasma laboratory. For this reason, we have employed the Bernoulli's equation method to obtain the correct form of analytical solution to this equation, which is appropriate for the study of electrostatic compressive and rarefactive shocks and solitons in relativistic plasmas occurring in polar regions of pulsar.

  5. Controls on Extreme Droughts and Adaptation Strategies in Semiarid Regions

    NASA Astrophysics Data System (ADS)

    Scanlon, B. R.; Cook, C.; Fernando, D. N.; LeBlanc, M.

    2012-12-01

    Increasing vulnerability to droughts with reduced per capita water storage, particularly in semiarid regions, underscores the need for predictive understanding of drought controls and development of adaptation strategies for water resources management. In this study we evaluate causes of major droughts in southwest and southcentral US (California and Texas) and southeast Australia (Murray Darling Basin). Impacts of climate cycles (ENSO, PDO, AMO, NAO, IOD) and atmospheric circulation on drought initiation and persistence are examined. Effects of drought on surface water reservoir storage, groundwater storage, irrigation, and crop production are compared. Adaptation strategies being evaluated include water transfers among sectors, particularly from irrigated agriculture to other groups, increasing storage using managed aquifer recharge, water reuse, and development of new water sources (e.g. seawater desalination). It is critical to develop a broad portfolio of water sources to increase resilience to future droughts.

  6. Allowable CO2 emissions based on projected changes in regional extremes and related impacts

    NASA Astrophysics Data System (ADS)

    Seneviratne, Sonia I.; Donat, Markus; Pitman, Andy; Knutti, Reto; Wilby, Robert

    2016-04-01

    Global temperature targets, such as the widely accepted 2°C and 1.5° limits, may fail to communicate the urgency of reducing CO2 emissions. Translation of CO2 emissions into regional- and impact-related climate targets could be more powerful because they resonate better with national interests. We illustrate this approach using regional changes in extreme temperatures and precipitation. These scale robustly with global temperature across scenarios, and thus with cumulative CO2 emissions. This is particularly relevant for changes in regional extreme temperatures on land, which are much greater than changes in the associated global mean. Linking cumulative CO2 emission targets to regional consequences, such as changing climate extremes, would be of particular benefit for political decision making, both in the context of climate negotiations and adaptation.

  7. Regional-Scale High-Latitude Extreme Geoelectric Fields Pertaining to Geomagnetically Induced Currents

    NASA Technical Reports Server (NTRS)

    Pulkkinen, Antti; Bernabeu, Emanuel; Eichner, Jan; Viljanen, Ari; Ngwira, Chigomezyo

    2015-01-01

    Motivated by the needs of the high-voltage power transmission industry, we use data from the high-latitude IMAGE magnetometer array to study characteristics of extreme geoelectric fields at regional scales. We use 10-s resolution data for years 1993-2013, and the fields are characterized using average horizontal geoelectric field amplitudes taken over station groups that span about 500-km distance. We show that geoelectric field structures associated with localized extremes at single stations can be greatly different from structures associated with regionally uniform geoelectric fields, which are well represented by spatial averages over single stations. Visual extrapolation and rigorous extreme value analysis of spatially averaged fields indicate that the expected range for 1-in-100-year extreme events are 3-8 V/km and 3.4-7.1 V/km, respectively. The Quebec reference ground model is used in the calculations.

  8. Climate Change, Extreme Weather Events, and Human Health Implications in the Asia Pacific Region.

    PubMed

    Hashim, Jamal Hisham; Hashim, Zailina

    2016-03-01

    The Asia Pacific region is regarded as the most disaster-prone area of the world. Since 2000, 1.2 billion people have been exposed to hydrometeorological hazards alone through 1215 disaster events. The impacts of climate change on meteorological phenomena and environmental consequences are well documented. However, the impacts on health are more elusive. Nevertheless, climate change is believed to alter weather patterns on the regional scale, giving rise to extreme weather events. The impacts from extreme weather events are definitely more acute and traumatic in nature, leading to deaths and injuries, as well as debilitating and fatal communicable diseases. Extreme weather events include heat waves, cold waves, floods, droughts, hurricanes, tropical cyclones, heavy rain, and snowfalls. Globally, within the 20-year period from 1993 to 2012, more than 530 000 people died as a direct result of almost 15 000 extreme weather events, with losses of more than US$2.5 trillion in purchasing power parity.

  9. An update around the evidence base for the lower extremity ultrasound regional block technique

    PubMed Central

    Fanelli, Andrea; Ghisi, Daniela; Melotti, Rita Maria

    2016-01-01

    Ultrasound guidance currently represents the gold standard for regional anesthesia. In particular for lower extremity blocks, despite the heterogeneity and the lack of large randomized controlled trials, current literature shows a modest improvement in block onset and quality compared with other localization techniques. This review aims to present the most recent findings on the application of ultrasound guidance for each single lower extremity approach. PMID:26918177

  10. Assessing Regional Scale Variability in Extreme Value Statistics Under Altered Climate Scenarios

    SciTech Connect

    Brunsell, Nathaniel; Mechem, David; Ma, Chunsheng

    2015-02-20

    Recent studies have suggested that low-frequency modes of climate variability can significantly influence regional climate. The climatology associated with extreme events has been shown to be particularly sensitive. This has profound implications for droughts, heat waves, and food production. We propose to examine regional climate simulations conducted over the continental United States by applying a recently developed technique which combines wavelet multi–resolution analysis with information theory metrics. This research is motivated by two fundamental questions concerning the spatial and temporal structure of extreme events. These questions are 1) what temporal scales of the extreme value distributions are most sensitive to alteration by low-frequency climate forcings and 2) what is the nature of the spatial structure of variation in these timescales? The primary objective is to assess to what extent information theory metrics can be useful in characterizing the nature of extreme weather phenomena. Specifically, we hypothesize that (1) changes in the nature of extreme events will impact the temporal probability density functions and that information theory metrics will be sensitive these changes and (2) via a wavelet multi–resolution analysis, we will be able to characterize the relative contribution of different timescales on the stochastic nature of extreme events. In order to address these hypotheses, we propose a unique combination of an established regional climate modeling approach and advanced statistical techniques to assess the effects of low-frequency modes on climate extremes over North America. The behavior of climate extremes in RCM simulations for the 20th century will be compared with statistics calculated from the United States Historical Climatology Network (USHCN) and simulations from the North American Regional Climate Change Assessment Program (NARCCAP). This effort will serve to establish the baseline behavior of climate extremes, the

  11. Precipitation extremes in the Mediterranean region and associated upper-level synoptic-scale flow structures

    NASA Astrophysics Data System (ADS)

    Toreti, Andrea; Giannakaki, Paraskevi; Martius, Olivia

    2016-09-01

    A non-stationary analysis of daily precipitation extremes over the Mediterranean region and the associated upper-level atmospheric dynamics is presented for autumn, winter and spring. An Extreme Value Theory approach is applied to identify homogeneous areas in terms of precipitation extremes and to characterise the spatio-temporal behaviour of precipitation extremes. Results reveal a high spatial variability of extremes in the region as a whole, while the eastern Mediterranean shows a lower variability compared to the western part. The temporal variability of the estimated 5-year return levels also varies significantly across the basin especially in autumn. The synoptic-scale flow structures associated with these extreme events are then investigated. Significant upper-level flow anomalies in the form of troughs and cut-offs are found for all regions/seasons. Moreover, in many areas the associated low-level flow is directed against the local topography pointing to the relevant role of orographic lifting. Finally, significant precursor signals, 2-3 days before the events, are identified for most of the areas.

  12. Impacts of the Future Changes in Extreme Events on the Regional Crop Yield in Turkey

    NASA Astrophysics Data System (ADS)

    An, Nazan; Turp, M. Tufan; Ozturk, Tugba; Kurnaz, M. Levent

    2016-04-01

    The changes in extreme events caused by climate change have the greatest impact on agricultural sector specifically crop yield. Therefore, it requires a clear understanding of how extreme events affect the crop yield and how it causes high economic losses. In this research, we cover the relationship between extreme events and the crop yield in Turkey for the period of 2020 - 2045 with respect to 1980 - 2005. We focus on the role of those extreme event causing natural disasters on the regional crop yield. This research comprises 2 parts. In the first part, the projection is performed according to the business as usual scenario of IPCC, RCP8.5, via the RegCM4.4 in order to obtain extreme event indices required for the crop assessment. In the second part, the crop yield and the extreme event indices are combined by applying the econometric analysis in order to see the relationship between natural disasters and crop yield. The risks for crop yield caused by the extreme events are estimated and interpreted. This study aims to assess the effect of frequency of expected extreme events on the crop yield at the cropland of Turkey. This research has been supported by Boǧaziçi University Research Fund Grant Number 10421.

  13. Amplitude and frequency of temperature extremes over the North Atlantic region

    NASA Astrophysics Data System (ADS)

    Nogaj, M.; Yiou, P.; Parey, S.; Malek, F.; Naveau, P.

    2006-05-01

    Recent studies on extreme events have focused on the potential change of their intensity during the 20th century, but their frequency evolution has often been overlooked although its socio-economic impact is equally important. This paper focuses on extreme events of high and low temperatures and their amplitude and frequency changes over the last 60 years in the North Atlantic (NA) region. We analyze the temporal evolution of the amplitude and frequency of extreme events through the parameters of an extreme value distribution applied to NCEP reanalysis for the winter and summer seasons. We examine the relation of the statistics of extremes with greenhouse gas forcing and an atmospheric circulation index and obtain a spatial distribution of the trends of those extreme parameters. We find that the frequency of warm extremes increases over most of the NA while their magnitude does not vary as systematically. Apart from the Labrador Sea and parts of Scandinavia, the features of winter cold extremes exhibit decreasing or no trends.

  14. More extreme precipitation in the world’s dry and wet regions

    NASA Astrophysics Data System (ADS)

    Donat, Markus G.; Lowry, Andrew L.; Alexander, Lisa V.; O’Gorman, Paul A.; Maher, Nicola

    2016-05-01

    Intensification of the hydrological cycle is expected to accompany a warming climate. It has been suggested that changes in the spatial distribution of precipitation will amplify differences between dry and wet regions, but this has been disputed for changes over land. Furthermore, precipitation changes may differ not only between regions but also between different aspects of precipitation, such as totals and extremes. Here we investigate changes in these two aspects in the world’s dry and wet regions using observations and global climate models. Despite uncertainties in total precipitation changes, extreme daily precipitation averaged over both dry and wet regimes shows robust increases in both observations and climate models over the past six decades. Climate projections for the rest of the century show continued intensification of daily precipitation extremes. Increases in total and extreme precipitation in dry regions are linearly related to the model-specific global temperature change, so that the spread in projected global warming partly explains the spread in precipitation intensification in these regions by the late twenty-first century. This intensification has implications for the risk of flooding as the climate warms, particularly for the world’s dry regions.

  15. Evaluation of multiple regional climate models for summer climate extremes over East Asia

    NASA Astrophysics Data System (ADS)

    Park, Changyong; Min, Seung-Ki; Lee, Donghyun; Cha, Dong-Hyun; Suh, Myoung-Seok; Kang, Hyun-Suk; Hong, Song-You; Lee, Dong-Kyou; Baek, Hee-Jeong; Boo, Kyung-On; Kwon, Won-Tae

    2016-04-01

    In this study, five regional climate models (RCMs) participating in the CORDEX-East Asia project (HadGEM3-RA, RegCM4, SNU-MM5, SNU-WRF, and YSU-RSM) are evaluated in terms of their performances in simulating the climatology of summer extremes in East Asia. Seasonal maxima of daily mean temperature and precipitation are analyzed using the generalized extreme value method. RCMs show systematic bias patterns in both seasonal means and extremes. A cold bias is located along the coast, whereas a warm bias occurs in northern China. Overall, wet bias occurs in East Asia, but with a substantial dry bias centered in South Korea. This dry bias appears to be related to the colder ocean surface around South Korea, positioning the monsoonal front further south compared to observations. Taylor diagram analyses reveal that the models simulate temperature means more accurately compared to extremes because of the higher spatial correlation, whereas precipitation extremes are simulated better than their means because of the higher spatial variability. The latter implies that extreme rainfall events can be captured more accurately by RCMs compared to the driving GCM despite poorer simulation of mean rainfall. Inter-RCM analysis indicates a close relationship between the means and extremes in terms of model skills, but it does not show a clear relationship between temperature and precipitation. Sub-regional analysis largely supports the mean-extreme skill relationship. Analyses of frequency and intensity distributions of daily data for three selected sub-regions suggest that overall shifts of temperature distribution and biases in moderate-heavy precipitations contribute importantly to the seasonal mean biases.

  16. Evaluating regional climate models for simulating sub-daily rainfall extremes

    NASA Astrophysics Data System (ADS)

    Cortés-Hernández, Virginia Edith; Zheng, Feifei; Evans, Jason; Lambert, Martin; Sharma, Ashish; Westra, Seth

    2016-09-01

    Sub-daily rainfall extremes are of significant societal interest, with implications for flash flooding and the design of urban stormwater systems. It is increasingly recognised that extreme subdaily rainfall will intensify as a result of global temperature increases, with regional climate models (RCMs) representing one of the principal lines of evidence on the likely magnitude and spatiotemporal characteristics of these changes. To evaluate the ability of RCMs to simulate subdaily extremes, it is common to compare the simulated statistical characteristics of the extreme rainfall events with those from observational records. While such analyses are important, they provide insufficient insight into whether the RCM reproduces the correct underlying physical processes; in other words, whether the model "gets the right answers for the right reasons". This paper develops a range of metrics to assess the performance of RCMs in capturing the physical mechanisms that produce extreme rainfall. These metrics include the diurnal and seasonal cycles, relationship between rainfall intensity and temperature, temporal scaling, and the spatial structure of extreme rainfall events. We evaluate a high resolution RCM—the Weather Research Forecasting model—over the Greater Sydney region, using three alternative parametrization schemes. The model shows consistency with the observations for most of the proposed metrics. Where differences exist, these are dependent on both the rainfall duration and model parameterization strategy. The use of physically meaningful performance metrics not only enhances the confidence in model simulations, but also provides better diagnostic power to assist with future model improvement.

  17. Amplified mid-latitude planetary waves favour particular regional weather extremes

    NASA Astrophysics Data System (ADS)

    Screen, James A.; Simmonds, Ian

    2014-08-01

    There has been an ostensibly large number of extreme weather events in the Northern Hemisphere mid-latitudes during the past decade. An open question that is critically important for scientists and policy makers is whether any such increase in weather extremes is natural or anthropogenic in origin. One mechanism proposed to explain the increased frequency of extreme weather events is the amplification of mid-latitude atmospheric planetary waves. Disproportionately large warming in the northern polar regions compared with mid-latitudes--and associated weakening of the north-south temperature gradient--may favour larger amplitude planetary waves, although observational evidence for this remains inconclusive. A better understanding of the role of planetary waves in causing mid-latitude weather extremes is essential for assessing the potential environmental and socio-economic impacts of future planetary wave changes. Here we show that months of extreme weather over mid-latitudes are commonly accompanied by significantly amplified quasi-stationary mid-tropospheric planetary waves. Conversely, months of near-average weather over mid-latitudes are often accompanied by significantly attenuated waves. Depending on geographical region, certain types of extreme weather (for example, hot, cold, wet, dry) are more strongly related to wave amplitude changes than others. The findings suggest that amplification of quasi-stationary waves preferentially increases the probabilities of heat waves in western North America and central Asia, cold outbreaks in eastern North America, droughts in central North America, Europe and central Asia, and wet spells in western Asia.

  18. Projected changes of extreme precipitation over Contiguous United States with Nested regional climate model (NRCM)

    NASA Astrophysics Data System (ADS)

    Wang, J.

    2013-12-01

    Extreme weather events have already significantly influenced North America. During 2005-2011, the extreme events have increased by 250 %, from four or fewer events occurring in 2005, while 14 events occurring in 2011 (www.ncdc.noaa.gov/billions/). In addition, extreme rainfall amounts, frequency, and intensity were all expected to increase under greenhouse warming scenarios (Wehner 2005; Kharin et al. 2007; Tebaldi et al. 2006). Global models are powerful tools to investigate the climate and climate change on large scales. However, such models do not represent local terrain and mesoscale weather systems well owing to their coarse horizontal resolution (150-300 km). To capture the fine-scale features of extreme weather events, regional climate models (RCMs) with a more realistic representation of the complex terrain and heterogeneous land surfaces are needed (Mass et al. 2002). This study uses the Nested Regional Climate model (NRCM) to perform regional scale climate simulations on a 12-km × 12-km high resolution scale over North America (including Alaska; with 600 × 515 grid cells at longitude and latitude), known as CORDEX_North America, instead of small regions as studied previously (eg., Dominguez et al. 2012; Gao et al. 2012). The performance and the biases of the NRCM extreme precipitation calculations (2000-2010) have been evaluated with PRISM precipitation (Daly et al. 1997) by Wang and Kotamarthi (2013): the NRCM replicated very well the monthly amount of extreme precipitation with less than 3% overestimation over East CONUS, and the frequency of extremes over West CONUS and upper Mississippi River Basin. The Representative Concentration Pathway (RCP) 8.5 and RCP 4.5 from the new Community Earth System Model version 1.0 (CESM v1.0) are dynamically downscaled to predict the extreme rainfall events at the end-of-century (2085-2095) and to explore the uncertainties of future extreme precipitation induced by different scenarios over distinct regions. We have

  19. Individual and coupled influences of AMO and ENSO on regional precipitation characteristics and extremes

    NASA Astrophysics Data System (ADS)

    Goly, Aneesh; Teegavarapu, Ramesh S. V.

    2014-06-01

    Understanding the influences of Atlantic multidecadal oscillation (AMO) and El Niño southern oscillation (ENSO) on regional precipitation extremes and characteristics in the state of Florida is the focus of this study. Exhaustive evaluations of individual and combined influences of these oscillations using, descriptive indices-based assessment of statistically significant changes in rainfall characteristics, identification of spatially varying influences of oscillations on dry and wet spell transition states, antecedent precipitation prior to extreme events, intraevent temporal distribution of precipitation and changes in temporal occurrences of extremes including dry/wet cycles are carried out. Rain gage and gridded precipitation data analysis using parametric hypothesis tests confirm statistically significant changes in the precipitation characteristics from one phase to another of each oscillation and also in coupled phases. Spatially nonuniform and uniform influences of AMO and ENSO, respectively, on precipitation are evident. AMO influences vary in peninsular and continental parts of Florida and the warm (cool) phase of AMO contributes to increased precipitation extremes during wet (dry) season. The influence of ENSO is confined to dry season with El Niño (La Niña) contributing to increase (decrease) in extremes and total precipitation. Wetter antecedent conditions preceding daily extremes are dominant in AMO warm phase compared to the cool and are likely to impact design floods in the region. AMO influence on dry season precipitation extremes is noted for ENSO neutral years. The two oscillations in different phases modulate each other with seasonal and spatially varying impacts and implications on flood control and water supply in the region.

  20. An evaluation of precipitation extremes over the Euro-Mediterranean region simulated by CORDEX RCMs

    NASA Astrophysics Data System (ADS)

    Toreti, Andrea; Jogesh Babu, G.

    2015-04-01

    The achievement of a better understanding and characterisation of precipitation extremes is very important due to the high impacts of these events on human and natural systems. Here, we analyse daily precipitation excesses simulated over the Euro-Mediterranean region in autumn (September-November), winter (December-February) and spring (March-April) by four regional climate models (ERA-Interim driven) from the EURO-CORDEX initiative in the period 1989-2009. The applied approach is mainly based on tools from the Extreme Value Theory and on a novel procedure to assess the reliability of the estimations. Results show that the four models agree on the main spatial pattern of precipitation extremes (expressed in terms of 5-year return levels), although remarkable inter-model spatial differences are evident in all the three seasons. Finally, only one model shows a lack of reliability over the southern part of the domain and mainly in autumn and spring.

  1. Air quality extremes and trends over the United States: Effects of regional climate

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Song, Y.; Loadholt, J.; Zhang, H.; Park, T.; Deng, Y.; Zhang, Y.

    2014-12-01

    We apply a suite of analysis methods, including statistical distribution and correlation, empirical orthogonal function (EOF), linear inverse modeling (LIM), and historical modeling using regional air quality and global chemistry-climate models, to analyze surface ozone (since 1980) and PM2.5 (since 2000) measurements from EPA observation networks. The overarching goal is to understand how regional climate and weather systems affect air quality trends and extreme events. Previous studies documented high or geographically specific ozone episodes and identified contributions from anticyclone, transport, or sub-decadal to decadal time scale patterns pertinent to the events. Here, an ensemble analysis of all events from single day to multi-day episodes in the past three decades places all episodes into a continuum of time and geospatial coordinates. Inter-annual patterns linked to source concentrations and seasonal transport are evident, but anomalies such as unseasonable and persistent anticyclones to winter events over snow cover can also be identified. Overlapping events between ozone and temperature extremes are identified. They tend to occur in eastern and western coast regions with significant local variability. The occurrence frequency of overlapping events decreased from 1980s to 2000s. PM2.5 extreme showed more sensitivity to extreme temperature than drought index. When being divided by two periods (2000-2004 and 2005-2009), the second period had more extreme PM events at lower temperature in winter time. An EOF analysis was conducted to examine how regional and hemispheric climate variability affects the ozone extreme events. A question explored here is how well EOF analysis that links ozone concentrations to climate variables explains the temporal and geospatial variability of extreme ozone events (days and episodes >= 75 ppbv). The seasonal change in controlling weather systems plays a key role in how regional climate affects air quality. We also show the

  2. Modulation of extremes in the Atlantic region by modes of climate variability/change: A mechanistic coupled regional model study

    SciTech Connect

    Saravanan, Ramalingam

    2015-01-09

    During the course of this project, we have accomplished the following: 1) Explored the parameter space of component models to minimize regional model bias 2) Assessed the impact of air-sea interaction on hurricanes, focusing in particular on the role of the oceanic barrier layer 3) Contributed to the activities of the U.S. CLIVAR Hurricane Working Group 4) Assessed the impact of lateral and lower boundary conditions on extreme flooding events in the U.S. Midwest in regional model simulations 5) Analyzed the concurrent impact of El Niño-Southern Oscillation and Atlantic Meridional Mode on Atlantic Hurricane activity using observations and regional model simulations

  3. [Personal experience with isolated regional hyperthermic perfusion of cytostatic agents in tumors of the extremities].

    PubMed

    Bríza, J; Lichtenberg, J; Tersíp, K; Tosovský, J

    1989-02-01

    The paper demonstrates on brief case-histories of a small group of patients some possibilities how to use isolated regional perfusion of cytostatics combined with hyperthermia as an adjuvant therapeutic method in case of melanoblastomas and liposarcomas of the extremities.

  4. Projected changes in climate extremes over Qatar and the Arabian Gulf region

    NASA Astrophysics Data System (ADS)

    Kundeti, K.; Kanikicharla, K. K.; Al sulaiti, M.; Khulaifi, M.; Alboinin, N.; Kito, A.

    2015-12-01

    The climate of the State of Qatar and the adjacent region is dominated by subtropical dry, hot desert climate with low annual rainfall, very high temperatures in summer and a big difference between maximum and minimum temperatures, especially in the inland areas. The coastal areas are influenced by the Arabian Gulf, and have lower maximum, but higher minimum temperatures and a higher moisture percentage in the air. The global warming can have profound impact on the mean climate as well as extreme weather events over the Arabian Peninsula that may affect both natural and human systems significantly. Therefore, it is important to assess the future changes in the seasonal/annual mean of temperature and precipitation and also the extremes in temperature and wind events for a country like Qatar. This study assesses the performance of the Coupled Model Inter comparison Project Phase 5 (CMIP5) simulations in present and develops future climate scenarios. The changes in climate extremes are assessed for three future periods 2016-2035, 2046-2065 and 2080-2099 with respect to 1986-2005 (base line) under two RCPs (Representative Concentrate Pathways) - RCP4.5 and RCP8.5. We analyzed the projected changes in temperature and precipitation extremes using several indices including those that capture heat stress. The observations show an increase in warm extremes over many parts in this region that are generally well captured by the models. The results indicate a significant change in frequency and intensity of both temperature and precipitation extremes over many parts of this region which may have serious implications on human health, water resources and the onshore/offshore infrastructure in this region. Data from a high-resolution (20km) AGCM simulation from Meteorological Research Institute of Japan Meteorological Agency for the present (1979-2003) and a future time slice (2075-2099) corresponding to RCP8.5 have also been utilized to assess the impact of climate change on

  5. Wave-mixing with high-order harmonics in extreme ultraviolet region

    SciTech Connect

    Dao, Lap Van; Dinh, Khuong Ba; Le, Hoang Vu; Gaffney, Naylyn; Hannaford, Peter

    2015-01-12

    We report studies of the wave-mixing process in the extreme ultraviolet region with two near-infrared driving and controlling pulses with incommensurate frequencies (at 1400 nm and 800 nm). A non-collinear scheme for the two beams is used in order to spatially separate and to characterise the properties of the high-order wave-mixing field. We show that the extreme ultraviolet frequency mixing can be treated by perturbative, very high-order nonlinear optics; the modification of the wave-packet of the free electron needs to be considered in this process.

  6. Formation of Overheated Regions and Truncated Disks around Black Holes: Three-dimensional General Relativistic Radiation-magnetohydrodynamics Simulations

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroyuki R.; Ohsuga, Ken; Kawashima, Tomohisa; Sekiguchi, Yuichiro

    2016-07-01

    Using three-dimensional general relativistic radiation-magnetohydrodynamics simulations of accretion flows around stellar mass black holes, we report that the relatively cold disk (≳ {10}7 {{K}}) is truncated near the black hole. Hot and less dense regions, of which the gas temperature is ≳ {10}9 {{K}} and more than 10 times higher than the radiation temperature (overheated regions), appear within the truncation radius. The overheated regions also appear above as well as below the disk, sandwiching the cold disk, leading to the effective Compton upscattering. The truncation radius is ˜ 30{r}{{g}} for \\dot{M}˜ {L}{{Edd}}/{c}2, where {r}{{g}},\\dot{M},{L}{Edd},c are the gravitational radius, mass accretion rate, Eddington luminosity, and light speed, respectively. Our results are consistent with observations of a very high state, whereby the truncated disk is thought to be embedded in the hot rarefied regions. The truncation radius shifts inward to ˜ 10{r}{{g}} with increasing mass accretion rate \\dot{M}˜ 100{L}{{Edd}}/{c}2, which is very close to an innermost stable circular orbit. This model corresponds to the slim disk state observed in ultraluminous X-ray sources. Although the overheated regions shrink if the Compton cooling effectively reduces the gas temperature, the sandwich structure does not disappear at the range of \\dot{M}≲ 100{L}{{Edd}}/{c}2. Our simulations also reveal that the gas temperature in the overheated regions depends on black hole spin, which would be due to efficient energy transport from black hole to disks through the Poynting flux, resulting in gas heating.

  7. Trends in temperature extremes over nine integrated agricultural regions in China, 1961-2011

    NASA Astrophysics Data System (ADS)

    Wu, Xushu; Wang, Zhaoli; Zhou, Xiaowen; Lai, Chengguang; Chen, Xiaohong

    2016-06-01

    By characterizing the patterns of temperature extremes over nine integrated agricultural regions (IARs) in China from 1961 to 2011, this study performed trend analyses on 16 extreme temperature indices using a high-resolution (0.5° × 0.5°) daily gridded dataset and the Mann-Kendall method. The results show that annually, at both daytime and nighttime, cold extremes significantly decreased but warm extremes significantly increased across all IARs. Overall, nighttimes tended to warm faster than daytimes. Diurnal temperature ranges (DTR) diminished, apart from the mid-northern Southwest China Region and the mid-Loess Plateau Region. Seasonally, DTR widely diminished across all IARs during the four seasons except for spring. Higher minimum daily minimum temperature (TNn) and maximum daily maximum temperature (TXx), in both summer and winter, were recorded for most IARs except for the Huang-Huai-Hai Region; in autumn, all IARs generally encountered higher TNn and TXx. In all seasons, warming was observed at daytime and nighttime but, again, nighttimes warmed faster than daytimes. The results also indicate a more rapid warming trend in Northern and Western China than in Southern and Eastern China, with accelerated warming at high elevations. The increases in TNn and TXx might cause a reduction in agriculture yield in spring over Northern China, while such negative impact might occur in Southern China during summer. In autumn and winter, however, the negative impact possibly occurred in most of the IARs. Moreover, increased TXx in the Pearl River Delta and Yangtze River Delta is possibly related to rapid local urbanization. Climatically, the general increase in temperature extremes across Chinese IARs may be induced by strengthened Northern Hemisphere Subtropical High or weakened Northern Hemisphere Polar Vortex.

  8. Evaluation of Multiple Regional Climate Models for Summer Extremes of Temperature and Precipitation over East Asia

    NASA Astrophysics Data System (ADS)

    Park, Changyong; Min, Seung-Ki

    2014-05-01

    The regional climate models (RCMs) have been widely used to generate more detailed information in space and time of climate patterns produced by the global climate models (GCMs). Recently the international collaborative effort has been set up as the CORDEX (Coordinated Regional Climate Downscaling Experiment) project which covers several regional domains including East Asia. In this study, five RCMs (HadGEM3-RA, RegCM4, SNU-MM5, SNU-WRF, and YSU-RSM) participating in the CORDEX-East Asia project are evaluated in terms of their skills at simulating climatology of summer extremes. We examine bias and RMSE and conduct a Taylor diagram analysis using seasonal maxima of daily mean temperature and daily precipitation amount over the East Asia land area from 'historical' experiments of individual RCMs and their multi-model ensemble means (MME). The APHRODITE (Asian Precipitation-Highly-Resolved Observational Data Integration Toward Evaluation) datasets on 0.5° x 0.5° grids are used as observations. Results show similar systematic bias patterns between seasonal means and extremes. A cold bias is found along the coast while a warm bias occurs in the northern China. Overall wet bias appears in East Asia but there is a substantial dry bias in South Korea. This dry bias appears related to be a cold SST (sea surface temperature) around South Korea, positioning the monsoonal front (Changma) further south than observations. Taylor diagram analyses show that temperature has better skill in means than in extremes because of higher spatial correlation whereas precipitation exhibits better skill in extremes than in means due to better spatial variability. The latter implies that extreme rainfall events may be better captured although seasonal mean precipitation tends to be overestimated by RCMs. The model performances between mean and extreme are found to be closely related, but not clearly between temperature and precipitation. Temperatures are always better simulated than

  9. Estimation of extreme daily precipitation: comparison between regional and geostatistical approaches.

    NASA Astrophysics Data System (ADS)

    Hellies, Matteo; Deidda, Roberto; Langousis, Andreas

    2016-04-01

    We study the extreme rainfall regime of the Island of Sardinia in Italy, based on annual maxima of daily precipitation. The statistical analysis is conducted using 229 daily rainfall records with at least 50 complete years of observations, collected at different sites by the Hydrological Survey of the Sardinia Region. Preliminary analysis, and the L-skewness and L-kurtosis diagrams, show that the Generalized Extreme Value (GEV) distribution model performs best in describing daily rainfall extremes. The GEV distribution parameters are estimated using the method of Probability Weighted Moments (PWM). To obtain extreme rainfall estimates at ungauged sites, while minimizing uncertainties due to sampling variability, a regional and a geostatistical approach are compared. The regional approach merges information from different gauged sites, within homogeneous regions, to obtain GEV parameter estimates at ungauged locations. The geostatistical approach infers the parameters of the GEV distribution model at locations where measurements are available, and then spatially interpolates them over the study region. In both approaches we use local rainfall means as index-rainfall. In the regional approach we define homogeneous regions by applying a hierarchical cluster analysis based on Ward's method, with L-moment ratios (i.e. L-CV and L-Skewness) as metrics. The analysis results in four contiguous regions, which satisfy the Hosking and Wallis (1997) homogeneity tests. The latter have been conducted using a Monte-Carlo approach based on a 4-parameter Kappa distribution model, fitted to each station cluster. Note that the 4-parameter Kappa model includes the GEV distribution as a sub-case, when the fourth parameter h is set to 0. In the geostatistical approach we apply kriging for uncertain data (KUD), which accounts for the error variance in local parameter estimation and, therefore, may serve as a useful tool for spatial interpolation of metrics affected by high uncertainty. In

  10. Attributing extreme precipitation in the Black Sea region to sea surface warming

    NASA Astrophysics Data System (ADS)

    Meredith, Edmund; Semenov, Vladimir; Maraun, Douglas; Park, Wonsun; Chernokulsky, Alexander

    2016-04-01

    Higher sea surface temperatures (SSTs) warm and moisten the overlying atmosphere, increasing the low-level atmospheric instability, the moisture available to precipitating systems and, hence, the potential for intense convective systems. Both the Mediterranean and Black Sea regions have seen a steady increase in summertime SSTs since the early 1980s, by over 2 K in places. This raises the question of how this SST increase has affected convective precipitation extremes in the region, and through which mechanisms any effects are manifested. In particular, the Black Sea town of Krymsk suffered an unprecedented precipitation extreme in July 2012, which may have been influenced by Black Sea warming, causing over 170 deaths. To address this question, we adopt two distinct modelling approaches to event attribution and compare their relative merits. In the first, we use the traditional probabilistic event attribution approach involving global climate model ensembles representative of the present and a counterfactual past climate where regional SSTs have not increased. In the second, we use the conditional event attribution approach, taking the 2012 Krymsk precipitation extreme as a showcase example. Under the second approach, we carry out ensemble sensitivity experiments of the Krymsk event at convection-permitting resolution with the WRF regional model, and test the sensitivity of the event to a range of SST forcings. Both experiments show the crucial role of recent Black Sea warming in amplifying the 2012 Krymsk precipitation extreme. In the conditional event attribution approach, though, the explicit simulation of convective processes provides detailed insight into the physical mechanisms behind the extremeness of the event, revealing the dominant role of dynamical (i.e. static stability and vertical motions) over thermodynamical (i.e. increased atmospheric moisture) changes. Additionally, the wide range of SST states tested in the regional setup, which would be

  11. Bias-corrected regional climate projections of extreme rainfall in south-east Australia

    NASA Astrophysics Data System (ADS)

    Evans, Jason P.; Argueso, D.; Olson, R.; Di Luca, A.

    2016-09-01

    This study presents future changes in extreme precipitation as projected within the New South Wales and Australian Capital Territory Regional Climate Modelling (NARCliM) project's regional climate ensemble for south-east Australia. Model performance, independence and projected future changes were considered when designing the ensemble. We applied a quantile mapping bias correction to the climate model outputs based on theoretical distribution functions, and the implications of this for the projected precipitation extremes is investigated. Precipitation extremes are quantified using several indices from the Expert Team on Climate Change Detection and Indices set of indices. The bias correction was successful in removing most of the magnitude bias in extreme precipitation but does not correct biases in the length of maximum wet and dry spells. The bias correction also had a relatively small effect on the projected future changes. Across a range of metrics, robust increases in the magnitude of precipitation extreme indices are found. While these increases are often in-line with a continuation of the trends present over the last century, they are not found to be statistically significant within the ensemble as a whole. The length of the maximum consecutive wet spell is projected to remain at present-day levels, while the length of the maximum dry spell is projected to increase into the future. The combination of longer dry spells and increases in extreme precipitation magnitude indicate an important change in the character of the precipitation time series. This could have considerable hydrological implications since changes in the sequencing of events can be just as important as changes in event magnitude for hydrological impacts.

  12. Extreme Precipitation and Beach Closures in the Great Lakes Region: Evaluating Risk among the Elderly

    PubMed Central

    Bush, Kathleen F.; Fossani, Cheryl L.; Li, Shi; Mukherjee, Bhramar; Gronlund, Carina J.; O’Neill, Marie S.

    2014-01-01

    As a result of climate change, extreme precipitation events are expected to increase in frequency and intensity. Runoff from these extreme events poses threats to water quality and human health. We investigated the impact of extreme precipitation and beach closings on the risk of gastrointestinal illness (GI)-related hospital admissions among individuals 65 and older in 12 Great Lakes cities from 2000 to 2006. Poisson regression models were fit in each city, controlling for temperature and long-term time trends. City-specific estimates were combined to form an overall regional risk estimate. Approximately 40,000 GI-related hospital admissions and over 100 beach closure days were recorded from May through September during the study period. Extreme precipitation (≥90th percentile) occurring the previous day (lag 1) is significantly associated with beach closures in 8 of the 12 cities (p < 0.05). However, no association was observed between beach closures and GI-related hospital admissions. These results support previous work linking extreme precipitation to compromised recreational water quality. PMID:24534768

  13. Climate Change, Extreme Weather Events, and Human Health Implications in the Asia Pacific Region.

    PubMed

    Hashim, Jamal Hisham; Hashim, Zailina

    2016-03-01

    The Asia Pacific region is regarded as the most disaster-prone area of the world. Since 2000, 1.2 billion people have been exposed to hydrometeorological hazards alone through 1215 disaster events. The impacts of climate change on meteorological phenomena and environmental consequences are well documented. However, the impacts on health are more elusive. Nevertheless, climate change is believed to alter weather patterns on the regional scale, giving rise to extreme weather events. The impacts from extreme weather events are definitely more acute and traumatic in nature, leading to deaths and injuries, as well as debilitating and fatal communicable diseases. Extreme weather events include heat waves, cold waves, floods, droughts, hurricanes, tropical cyclones, heavy rain, and snowfalls. Globally, within the 20-year period from 1993 to 2012, more than 530 000 people died as a direct result of almost 15 000 extreme weather events, with losses of more than US$2.5 trillion in purchasing power parity. PMID:26377857

  14. Exploring regional stakeholder needs and requirements in terms of Extreme Weather Event Attribution

    NASA Astrophysics Data System (ADS)

    Schwab, M.; Meinke, I.; Vanderlinden, J. P.; Touili, N.; Von Storch, H.

    2015-12-01

    Extreme event attribution has increasingly received attention in the scientific community. It may also serve decision-making at the regional level where much of the climate change impact mitigation takes place. Nevertheless, there is, to date, little known about the requirements of regional actors in terms of extreme event attribution. We have therefore analysed these at the example of regional decision-makers for climate change-related activities and/or concerned with storm surge risks at the German Baltic Sea and heat wave risks in the Greater Paris area. In order to explore if stakeholders find scientific knowledge from extreme event attribution useful and how this information might be relevant to their decision-making, we consulted a diverse set of actors engaged in the assessment, mitigation and communication of storm surge, heat wave, and climate change-related risks. Extreme event attribution knowledge was perceived to be most useful to public and political awareness-raising, but was of little or no relevance for the consulted stakeholders themselves. It was not acknowledged that it would support adaptation planning as sometimes argued in the literature. The consulted coastal protection, health, and urban adaptation planners rather needed reliable statements about possible future changes in extreme events than causal statements about past events. To enhance salience, a suitable product of event attribution should be linked to regional problems, vulnerabilities, and impacts of climate change. Given that the tolerance of uncertainty is rather low, most of the stakeholders also claimed that a suitable product of event attribution is to be received from a trusted "honest broker" and published rather later, but with smaller uncertainties than vice versa. Institutional mechanisms, like regional climate services, which enable and foster communication, translation and mediation across the boundaries between knowledge and action can help fulfill such requirements

  15. Precipitation variability, extremes and uncertainties over southeastern Brazil projected by the Eta regional model

    NASA Astrophysics Data System (ADS)

    Cavalcanti, Iracema; Silveira, Virginia; Chan, Chou; Marengo, Jose Antonio

    2014-05-01

    Southeastern Brazil is an area affected by extreme precipitation, mainly in the austral summer, associated with frontal systems or the South Atlantic Convergence Zone (SACZ). Flooding and landslides have occurred in the region with serious impact on society and economy. The region has many vulnerable areas, therefore, projections of precipitation and extremes in the future for the region are important to provide information that can be used in adaptations and management decisions. Results of regional models in South America have been analyzed to assess the future climate changes with higher resolution than global models. In this study the Regional Eta model is used with resolution of 40 and 20 Km to analyze the projections of precipitation changes and extremes over Brazil and mainly over the southeastern region. Simulations and projections obtained from four integrations of the Regional Eta model are analyzed to investigate the model behavior during the period of 1961-1990 and the projections in the near (2011 to 2040) and more distant future (2041 to 2100). Results from four integrations with resolution of 40 km with different lateral boundary conditions from the HadCM3 Global Model and one integration with resolution of 20 km are used to give a confidence interval and the related uncertainty. The first analysis was to verify changes in the main mode of precipitation variability in the future projections, compared to the base period. There is a change in the main centers of extremes variability over South America, which was comparable to changes projected in CMIP5 models. The second analysis was related to changes in the position and intensity of the SACZ. Specific locations in southeastern Brazil were analyzed regarding indices of extremes, such as SDII (mean precipitation of rainy days), SDII_10 (mean precipitation of rainy days >=10 mm/day), R10mm (number of days with precipitation >= 10 mm/day), CDD (maximum number of consecutive dry days), CWD (maximum number

  16. Complex active regions as the main source of extreme and large solar proton events

    NASA Astrophysics Data System (ADS)

    Ishkov, V. N.

    2013-12-01

    A study of solar proton sources indicated that solar flare events responsible for ≥2000 pfu proton fluxes mostly occur in complex active regions (CARs), i.e., in transition structures between active regions and activity complexes. Different classes of similar structures and their relation to solar proton events (SPEs) and evolution, depending on the origination conditions, are considered. Arguments in favor of the fact that sunspot groups with extreme dimensions are CARs are presented. An analysis of the flare activity in a CAR resulted in the detection of "physical" boundaries, which separate magnetic structures of the same polarity and are responsible for the independent development of each structure.

  17. Cyclones and extreme windstorm events over Europe under climate change: Global and regional climate model diagnostics

    NASA Astrophysics Data System (ADS)

    Leckebusch, G. C.; Ulbrich, U.

    2003-04-01

    More than any changes of the climate system mean state conditions, the development of extreme events may influence social, economic and legal aspects of our society. This linkage results from the impact of extreme climate events (natural hazards) on environmental systems which again are directly linked to human activities. Prominent examples from the recent past are the record breaking rainfall amounts of August 2002 in central Europe which produced widespread floodings or the wind storm Lothar of December 1999. Within the MICE (Modelling the Impact of Climate Extremes) project framework an assessment of the impact of changes in extremes will be done. The investigation is carried out for several different impact categories as agriculture, energy use and property damage. Focus is laid on the diagnostics of GCM and RCM simulations under different climate change scenarios. In this study we concentrate on extreme windstorms and their relationship to cyclone activity in the global HADCM3 as well as in the regional HADRM3 model under two climate change scenarios (SRESA2a, B2a). In order to identify cyclones we used an objective algorithm from Murry and Simmonds which was widely tested under several different conditions. A slight increase in the occurrence of systems is identified above northern parts of central Europe for both scenarios. For more severe systems (core pressure < 990 hPa) we find an increase for western Europe. Strong wind events can be defined via different percentile values of the windspeed (e.g. above the 95 percentile). By this means the relationship between strong wind events and cyclones is also investigated. For several regions (e.g. Germany, France, Spain) a shift to more deep cyclones connected with an increasing number of strong wind events is found.

  18. Scaling of precipitation extremes with temperature in the French Mediterranean region: What explains the hook shape?

    NASA Astrophysics Data System (ADS)

    Drobinski, P.; Alonzo, B.; Bastin, S.; Silva, N. Da; Muller, C.

    2016-04-01

    Expected changes to future extreme precipitation remain a key uncertainty associated with anthropogenic climate change. Extreme precipitation has been proposed to scale with the precipitable water content in the atmosphere. Assuming constant relative humidity, this implies an increase of precipitation extremes at a rate of about 7% °C-1 globally as indicated by the Clausius-Clapeyron relationship. Increases faster and slower than Clausius-Clapeyron have also been reported. In this work, we examine the scaling between precipitation extremes and temperature in the present climate using simulations and measurements from surface weather stations collected in the frame of the HyMeX and MED-CORDEX programs in Southern France. Of particular interest are departures from the Clausius-Clapeyron thermodynamic expectation, their spatial and temporal distribution, and their origin. Looking at the scaling of precipitation extreme with temperature, two regimes emerge which form a hook shape: one at low temperatures (cooler than around 15°C) with rates of increase close to the Clausius-Clapeyron rate and one at high temperatures (warmer than about 15°C) with sub-Clausius-Clapeyron rates and most often negative rates. On average, the region of focus does not seem to exhibit super Clausius-Clapeyron behavior except at some stations, in contrast to earlier studies. Many factors can contribute to departure from Clausius-Clapeyron scaling: time and spatial averaging, choice of scaling temperature (surface versus condensation level), and precipitation efficiency and vertical velocity in updrafts that are not necessarily constant with temperature. But most importantly, the dynamical contribution of orography to precipitation in the fall over this area during the so-called "Cevenoles" events, explains the hook shape of the scaling of precipitation extremes.

  19. Polarization signatures of relativistic magnetohydrodynamic shocks in the blazar emission region. I. Force-free helical magnetic fields

    DOE PAGES

    Zhang, Haocheng; Deng, Wei; Li, Hui; Bottcher, Markus

    2016-01-20

    The optical radiation and polarization signatures in blazars are known to be highly variable during flaring activities. It is frequently argued that shocks are the main driver of the flaring events. However, the spectral variability modelings generally lack detailed considerations of the self-consistent magnetic field evolution modeling; thus, so far the associated optical polarization signatures are poorly understood. We present the first simultaneous modeling of the optical radiation and polarization signatures based on 3D magnetohydrodynamic simulations of relativistic shocks in the blazar emission environment, with the simplest physical assumptions. By comparing the results with observations, we find that shocks inmore » a weakly magnetized environment will largely lead to significant changes in the optical polarization signatures, which are seldom seen in observations. Hence an emission region with relatively strong magnetization is preferred. In such an environment, slow shocks may produce minor flares with either erratic polarization fluctuations or considerable polarization variations, depending on the parameters; fast shocks can produce major flares with smooth polarization angle rotations. In addition, the magnetic fields in both cases are observed to actively revert to the original topology after the shocks. In addition, all these features are consistent with observations. Future observations of the radiation and polarization signatures will further constrain the flaring mechanism and the blazar emission environment.« less

  20. Trends of temperature and precipitation extremes in the Loess Plateau Region of China, 1961-2010

    NASA Astrophysics Data System (ADS)

    Wang, Qi-xiang; Wang, Meng-ben; Fan, Xiao-hui; Zhang, Feng; Zhu, Shi-zhong; Zhao, Tian-liang

    2016-05-01

    The spatial and temporal trends of 11 (7) temperature (precipitation) extreme indices are examined for the Loess Plateau Region (LPR) and its southeast and northwest sub-regions based on daily observations at 214 meteorological stations. Results show widespread significant warming trends for all the temperature extremes except for the diurnal temperature range (DTR) and the lowest daily maximum temperature in each year (TXn) during 1961-2010. When regionally averaged, a significant warming trend is detected for all the indices except for DTR and TXn in the past 50 years. Compared with the entire LPR, a significant warming trend is detected for all the indices except for DTR and TXn over the southeast sub-region of LPR; while it is observed for all the indices over the northwest. The trends for these indices are generally stronger in the northwest than in the southeast in the past 50 years. In contrast, for precipitation indices, only a small percentage of areas show significant drying or wetting trends and, when regionally averaged, none of them displays significant trends during the past 50 years. On the sub-regional scale, however, a larger percentage of areas show significant drying trends for precipitation indices generally over the southeast relative to the entire LPR, and noticeably, the sub-regional average heavy precipitation (R10mm) and wet day precipitation (PRCPTOT) display significant decreasing trends during the past 50 years; whereas only a slightly larger percentage of areas show significant wetting trends for these indices over the northwest compared with the entire LPR, and when sub-regionally averaged, none of the indices have significant trends during the past 50 years.

  1. Amplified subtropical stationary waves in boreal summer and their implications for regional water extremes

    NASA Astrophysics Data System (ADS)

    Yuan, J.; Li, W.; Deng, Y.

    2015-12-01

    The linkage between climate change and increased frequency/magnitude of weather extremes remains an open question in the scientific field. Here we investigate such a dynamical linkage by focusing on an amplification trend of the northern subtropical stationary waves found in recent decades. Specifically, we show that in multiple modern reanalysis products, a robust positive trend exists in a wave amplitude index defined through summer-mean tropospheric stream function field. Pronounced changes in the subtropical atmospheric circulation accompany this wave amplification, including intensified South Asian monsoon and strengthened subtropical highs over the North Pacific and North Atlantic oceans. Through modifying characteristics of large-scale moisture transport, these circulation changes are in turn coupled with changes in regional precipitation amount and the occurrence of water extremes including both droughts and heavy rainfall events. Given this connection, the amplified stationary waves have likely contributed to the elevated occurrence probabilities of droughts in the central United States, Mexico, Japan and northern China as well as those of heavy rainfall events in South Asia, southeastern China and eastern United States. Since the amplifying stationary waves are a robust feature in models' projection of future climate, our results suggest an increased risk of water extremes over the above-mentioned regions in the near future.

  2. Amplified subtropical stationary waves in boreal summer and their implications for regional water extremes

    NASA Astrophysics Data System (ADS)

    Yuan, Jiacan; Li, Wenhong; Deng, Yi

    2015-10-01

    The linkage between climate change and increased frequency/magnitude of weather extremes remains an open question in the scientific field. Here we investigate such a dynamical linkage by focusing on an amplification trend of the northern subtropical stationary waves found in recent decades. Specifically, we show that in multiple modern reanalysis products, a robust positive trend exists in a wave amplitude index defined through the summer-mean tropospheric stream function field. Pronounced changes in the subtropical atmospheric circulation accompany this wave amplification, including an intensified South Asian monsoon and strengthened subtropical highs over the North Pacific and North Atlantic oceans. Through modifying the characteristics of large-scale moisture transport, these circulation changes are coupled to changes in the regional precipitation amount and the occurrence of water extremes including both droughts and heavy rainfall events. Given this connection, amplified stationary waves have likely contributed to the elevated occurrence probabilities of droughts in the central United States, Mexico, Japan, and northern China, as well as those of heavy rainfall events in South Asia, southeastern China, and the eastern United States. These results suggest that as climate warming continues, the amplification of subtropical stationary waves will increase the risk of water extremes over the above-mentioned regions.

  3. Climate change and probabilistic scenario of streamflow extremes in a cryospheric alpine region

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Gao, Cheng

    2015-04-01

    Future projections of streamflow extremes are of paramount significance in assessing the climate impacts on social and natural systems, particularly for the Himalayan alpine region in the Tibetan Plateau known as the Asian Water Tower. This study strives to quantify the uncertainties from different sources in simulating future extreme flows and seeks to construct reliable scenarios of future extreme flows for the headwater catchment of the Yellow River Basin in the 21st century. The results can be formulated as follows: (1) The revised snow model based on a daily active temperature method is superior to the commonly used degree-day method in simulating snowmelt processes. (2) In general, hydrological models contribute more uncertainties than the downscaling methods in high flow and low flow over the cryospheric alpine regions characterized by the snow-rainfall induced runoff processes under most scenarios. Meanwhile, impacts to uncertainty vary with time. (3) The ultimate probability of high-flow exhibits a downward trend in future by using an unconditional method, whereas positive changes in probability of low-flow are projected. The method in the work includes a variety of influence from different contributing factors (e.g. downscaling models, hydrological models, model parameters, and their simulation skills) on streamflow projection, therefore can offer more information (i.e. different percentiles of flow and uncertainty ranges) for future water resources planning compared with the purely deterministic approaches. Hence, the results are beneficial to boost our current methodologies of climate impact research in the Himalayan alpine zone.

  4. Climate change and probabilistic scenario of streamflow extremes in an alpine region

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Wang, Xiaoyan; Yu, Zhongbo; Krysanova, Valentina; Chen, Xi; Schwartz, Franklin W.; Sudicky, Edward A.

    2014-07-01

    Future projections of streamflow extremes are of paramount significance in assessing the climate impacts on social and natural systems, particularly for the Himalayan alpine region in the Tibetan Plateau known as the Asian water tower. This study strives to quantify the uncertainties from different sources in simulating future extreme flows and seeks to construct reliable scenarios of future extreme flows for the headwater catchment of the Yellow River Basin in the 21st century. The results can be formulated as follows: (1) The revised snow model based on a daily active temperature method is superior to the commonly used degree-day method in simulating snowmelt processes. (2) In general, hydrological models contribute more uncertainties than the downscaling methods in high flow and low flow over the cryospheric alpine regions characterized by the snow-rainfall-induced runoff processes under most scenarios. Meanwhile, impacts to uncertainty vary with time. (3) The ultimate probability of high flow exhibits a downward trend in future by using an unconditional method, whereas positive changes in the probability of low flow are projected. The method in the work includes a variety of influence from different contributing factors (e.g., downscaling models, hydrological models, model parameters, and their simulation skills) on streamflow projection, therefore can offer more information (i.e., different percentiles of flow and uncertainty ranges) for future water resource planning compared with the purely deterministic approaches. Hence, the results are beneficial to boost our current methodologies of climate impact research in the Himalayan alpine zone.

  5. Identification of extreme precipitation threat across midlatitude regions based on short-wave circulations

    NASA Astrophysics Data System (ADS)

    Wang, Shih-Yu; Davies, Robert E.; Gillies, Robert R.

    2013-10-01

    most severe thunderstorms, producing extreme precipitation, occur over subtropical and midlatitude regions. Atmospheric conditions conducive to organized, intense thunderstorms commonly involve the coupling of a low-level jet (LLJ) with a synoptic short wave. The midlatitude synoptic activity is frequently modulated by the circumglobal teleconnection (CGT), in which meridional gradients of the jet stream act as a guide for short Rossby waves. Previous research has linked extreme precipitation events with either the CGT or the LLJ but has not linked the two circulation features together. In this study, a circulation-based index was developed by combining (a) the degree of the CGT and LLJ coupling, (b) the extent to which this CGT-LLJ coupling connects to regional precipitation and (c) the spatial correspondence with the CGT (short wave) trending pattern over the recent 32 years (1979-2010). Four modern-era global reanalyses, in conjunction with four gridded precipitation data sets, were utilized to minimize spurious trends. The results are suggestive of a link between the CGT/LLJ trends and several recent extreme precipitation events, including those leading to the 2008 Midwest flood in U.S., the 2011 tornado outbreaks in southeastern U.S., the 2010 Queensland flood in northeastern Australia, and to the opposite side the 2012 central U.S. drought. Moreover, an analysis of three Coupled Model Intercomparison Project Phase 5 models from the historical experiments points to the role of greenhouse gases in forming the CGT trends during the warm season.

  6. Detailed investigations on radiative opacity and emissivity of tin plasmas in the extreme-ultraviolet region.

    PubMed

    Zeng, Jiaolong; Gao, Cheng; Yuan, Jianmin

    2010-08-01

    Radiative opacity and emissivity of tin plasmas at average ionization degree of about 10 was investigated in detail by using a fully relativistic detailed level accounting approach, in which main physical effects on the opacity were carefully taken into account. Among these physical effects, configuration interaction, in particular core-valence electron correlations, plays an important role on the determination of accurate atomic data required in the calculation of opacity. It results in a strong narrowing of lines from all transition arrays and strong absorption is located in a narrow wavelength region of 12.5-14 nm for Sn plasmas. Using a complete accurate atomic data, we investigated the opacity of Sn plasmas at a variety of physical condition. Among the respective ions of Xe6+-Xe15+ , Xe10+ has the largest absorption cross section at 13.5 nm, while the favorable physical condition for maximal absorption at 13.5 nm do not mean that Xe10+ has the largest fraction. Comparison with other theoretical results showed that a complete set of consistent accurate atomic data, which lacks very much, is essential to predict accurate opacity. Our atomic model is useful and can be applied to interpret opacity experiments. Further benchmark experiments are urgently needed to clarify the physical effects on the opacity of Sn plasmas.

  7. A Relativistic Model for the Electromagnetic Structure of Baryons from the 3rd Resonance Region

    NASA Astrophysics Data System (ADS)

    Ramalho, G.

    2016-09-01

    We present some predictions for the γ ^*N → N^* transition amplitudes, where N is the nucleon, and N^* is a nucleon excitation from the third resonance region. First we estimate the transition amplitudes associated with the second radial excitation of the nucleon, interpreted as the N(1710) state, using the covariant spectator quark model. After that, we combine some results from the covariant spectator quark model with the framework of the single quark transition model, to make predictions for the γ ^*N → N^* transition amplitudes, where N^* is a member of the SU(6)-multiplet [70,1^-] . The results for the γ ^*N → N(1520) and γ ^*N → N(1535) transition amplitudes are used as input to the calculation of the amplitudes A_{1/2} , A_{3/2} , associated with the γ ^*N → N(1650) , γ ^*N → N(1700) , γ ^*N → Δ (1620) , and γ ^*N → Δ (1700) transitions. Our estimates are compared with the available data. In order to facilitate the comparison with future experimental data at high Q^2 , we derived also simple parametrizations for the amplitudes, compatible with the expected falloff at high Q^2.

  8. Improving plot- and regional-scale crop models for simulating impacts of climate variability and extremes

    NASA Astrophysics Data System (ADS)

    Tao, F.; Rötter, R.

    2013-12-01

    Many studies on global climate report that climate variability is increasing with more frequent and intense extreme events1. There are quite large uncertainties from both the plot- and regional-scale models in simulating impacts of climate variability and extremes on crop development, growth and productivity2,3. One key to reducing the uncertainties is better exploitation of experimental data to eliminate crop model deficiencies and develop better algorithms that more adequately capture the impacts of extreme events, such as high temperature and drought, on crop performance4,5. In the present study, in a first step, the inter-annual variability in wheat yield and climate from 1971 to 2012 in Finland was investigated. Using statistical approaches the impacts of climate variability and extremes on wheat growth and productivity were quantified. In a second step, a plot-scale model, WOFOST6, and a regional-scale crop model, MCWLA7, were calibrated and validated, and applied to simulate wheat growth and yield variability from 1971-2012. Next, the estimated impacts of high temperature stress, cold damage, and drought stress on crop growth and productivity based on the statistical approaches, and on crop simulation models WOFOST and MCWLA were compared. Then, the impact mechanisms of climate extremes on crop growth and productivity in the WOFOST model and MCWLA model were identified, and subsequently, the various algorithm and impact functions were fitted against the long-term crop trial data. Finally, the impact mechanisms, algorithms and functions in WOFOST model and MCWLA model were improved to better simulate the impacts of climate variability and extremes, particularly high temperature stress, cold damage and drought stress for location-specific and large area climate impact assessments. Our studies provide a good example of how to improve, in parallel, the plot- and regional-scale models for simulating impacts of climate variability and extremes, as needed for

  9. Regional frequency analysis of extreme rainfalls using partial L moments method

    NASA Astrophysics Data System (ADS)

    Zakaria, Zahrahtul Amani; Shabri, Ani

    2013-07-01

    An approach based on regional frequency analysis using L moments and LH moments are revisited in this study. Subsequently, an alternative regional frequency analysis using the partial L moments (PL moments) method is employed, and a new relationship for homogeneity analysis is developed. The results were then compared with those obtained using the method of L moments and LH moments of order two. The Selangor catchment, consisting of 37 sites and located on the west coast of Peninsular Malaysia, is chosen as a case study. PL moments for the generalized extreme value (GEV), generalized logistic (GLO), and generalized Pareto distributions were derived and used to develop the regional frequency analysis procedure. PL moment ratio diagram and Z test were employed in determining the best-fit distribution. Comparison between the three approaches showed that GLO and GEV distributions were identified as the suitable distributions for representing the statistical properties of extreme rainfall in Selangor. Monte Carlo simulation used for performance evaluation shows that the method of PL moments would outperform L and LH moments methods for estimation of large return period events.

  10. Attributing regional effects of the 2014 Jordanian extreme drought to external climate drivers

    NASA Astrophysics Data System (ADS)

    Bergaoui, Karim; Mitchell, Dann; Zaaboul, Rashyd; Otto, Friederike; McDonnell, Rachael; Dadson, Simon; Allen, Myles

    2015-04-01

    Throughout 2014, the regions of Jordan, Israel, Lebanon and Syria have experienced a persistent draught with clear impacts on the local populations. In this study we perform an extreme event attribution analysis of how such a draught has changed under climate change, with a specific focus on the flow rate of the Upper Jordan river and the water level of Lake Tiberious (AKA the Sea of Galilee). Both of which hold major societal, political and religious importance. To perform the analysis we make use of distributed computing power to run thousands of modelled years of 2014 with slightly different initial conditions. We use an atmosphere only model (HadAM3p) with a nested 50 km regional model covering Africa and the Middle East. The 50 km model atmospheric variables will be used directly to force offline our 1 km LIS surface model. Two separate experiments and simulations are performed, 1. for all known climate forcings that are present in 2014, and 2. for a naturalised 2014 scenario where we assume humans never impacted the climate. We perform sensitivity analyses on the observed precipitation over the regions of interest, and determine that the TRMM data is in good agreement with station data obtained from the Jordanian Ministry of Water. Using a combination of the TRMM and model data we are able to make clear statements on the attribution of a 2014-like extreme draught event to human causal factors.

  11. Intensification of the regional scale variability of extreme precipitation derived from RCM simulations and observations

    NASA Astrophysics Data System (ADS)

    Feldmann, H.; Schädler, G.; Panitz, H.-J.

    2012-04-01

    Future climate change patterns are usually derived from ensembles of coarse global climate model simulations (GCMs), for instance within the Coupled Model Intercomparison Project (CMIP) or from regional climate projections at resolutions of some tens of km, for instance for Europe from the ENSEMBLES or PRUDENCE projects. For regions with complex topography like Central Europe the horizontal resolution of these climate projections is still too coarse to resolve the typical topographical length scales, and therefore the impact of the large scale changes with the regional geography cannot be captured adequately. For this task high resolution ensemble simulations with regional climate models (RCMs) are needed. The generation of an ensemble of such high resolution simulations requires great computational efforts. With the RCM COSMO-CLM several simulations with resolutions down to 7 km have been performed, using different driving GCMs and GCM realisations. This ensemble approach is needed to estimate the robustness of the change signals and to account for the uncertainties introduced by differences in the large scale forcing due to the variability of the climate change signals caused by the different GCMs or the natural variability. The focus of the study is on the changes of extreme precipitation for the near future until the middle of the 21st century. An increase of the temporal and spatial variability is found for the precipitation extremes, especially for summer. The change patterns seem to be statistically robust. Based on long-term observation climatologies for the second half of the 20th century, similar structures where found with areas of decrease and increase only a few tens of kilometres apart from each other. The combination of the findings from the RCM projections and observations suggests a continuation of the trends from the recent past into the near future. Possible causes for the horizontally heterogeneous change patterns are related to weather pattern

  12. Multi-Scale Statistical Properties of Rainfall for Extreme Hydrometeorological Events in Mountainous Regions

    NASA Astrophysics Data System (ADS)

    Nykanen, D. K.

    2006-12-01

    Hydrometeorological events that produce heavy rainfall and catastrophic flooding in mountainous regions present a great challenge for forecasters. Accurate predictions of flooding resulting from this type of storm require high resolution rainfall data. In a forecast mode, output from Numerical Weather Prediction (NWP) models must be used to drive the hydrologic models. Although much progress has been made in the past decade, the output from NWP models remains at a coarser resolution than what is needed for hydrologic predictions. Bridging the scale gap between precipitation forecasts from NWP models and the resolution needs of hydrologic models for streamflow prediction requires alternative methods such as statistical downscaling of the rainfall fields. This study quantifies the multi-scale statistical properties of rainfall for extreme hydrometeorological events in mountainous regions across scales of 1~20 km. The Buffalo Creek flood of 1996, Fort Collins flood of 1997, and several other extreme hydrometerological events in the Appalachian region and Front Range of the Rocky Mountains are included in the analysis. The following questions will be investigated: (1) does spatial scaling exist as a common feature in convective rainfall events in mountainous regions?, (2) at what spatial scales do meteorological and topographic controls manifest themselves in the space-time variability of the rainfall fields?, and (3) how does meteorological forcings and geographic location impact trends in topographic influences on the multi-scale statistical properties of rainfall? Focus is placed on linking changes in the multi-scale statistical properties with orographic influences on the rainfall and developing predictive relationships between multi-scale parameters and meteorological and topographic forcings. Differences in geographic region and predominant orographic controls (e.g., windward versus leeward forcing) on trends in multi-scale properties of rainfall is investigated

  13. Multi-model analysis of precipitation-related climatological extremes for the Carpathian Region

    NASA Astrophysics Data System (ADS)

    Kis, Anna; Pongracz, Rita; Bartholy, Judit

    2015-04-01

    As a consequence of global climate change, both frequency and intensity of climatological and meteorological extremes are likely to change. These will certainly further induce various effects on hydrological extremes. Although more frequent hot weather in summer and overall warmer climatic conditions compared to the past decades are quite straightforward direct consequences of global warming, the effects on precipitation might be less clear because the higher spatial and temporal variabilities might hide robust changing signals. Nevertheless, precipitation is one of the most important meteorological variables since it considerably affects natural ecosystems and cultivated vegetation as well, as most of human activities. Extreme precipitation events - both excessive, intense rainfalls and severe droughts - may result in severe environmental, agricultural, and economical disasters. For instance, excessive precipitation may induce floods, flash-floods, landslides, traffic accidents. On the other hand, the lack of precipitation for extended period and coincidental intense heat wave often lead to severe drought events, which certainly affect agricultural production negatively, and hence, food safety might also be threatened. In order to avoid or at least reduce the effects of these precipitation-related hazards, national and local communities need to develop regional adaptation strategies, and then, act according to them. For this purpose, climatological projections are needed as a scientific basis. Coarse resolution results of global climate model (GCM) simulations must be downscaled to regional and local scales, hence better serving decision-makers' and end-users' needs. Dynamical downscaling technique applies regional climate model (RCM) to provide fine resolution climatological estimations for the future. Thus, in this study 11 completed RCM simulations with 25 km horizontal resolution are used from the ENSEMBLES database taking into account SRES A1B scenario for

  14. High-altitude cusp: The tremendous large and extremely dynamic region in geospace

    NASA Astrophysics Data System (ADS)

    Chen, J.; Fritz, T. A.

    2003-04-01

    High-altitude dayside cusps (both northern and southern) are the tremendous large and extremely dynamic regions in geospace. They have a size of as large as 6 Re and are always there day after day. Turbulent diamagnetic cavities have been observed there. Associated with these cavities are charged particles with energies from 20 keV up to 10 MeV. The intensities of the cusp energetic ions are observed to increase by as large as four orders of the magnitude when compared to regions adjacent to the cusp which includes the magnetosheath. Their seed populations is a mixture of ionospheric and solar wind particles. Some of the diamagnetic cavities were independent of the IMF directions, suggesting that the cusp diamagnetic cavities are different from the magnetospheric sash predicted by MHD simulations. Turbulent electrical field with an amplitude of about 10 mV/m also presents in the cusp, and a cusp resonant acceleration mechanism is suggested.

  15. Extremely Low Ionospheric Peak Altitudes in the Polar-Hole Region

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Grebowsky, Joseph M.

    1999-01-01

    Vertical electron-density (N (sub e)) profiles, deduced from newly-available ISIS-II digital ionospheric topside-sounder data, are used to investigate the "polar-hole" region within the winter, nighttime polar cap ionosphere during solar minimum. The hole region is located around 0200 MLT near the poleward side of the auroral oval. Earlier investigations had revealed very low N (sub e) values in this region (down to 200/cu cm near 300 km). In the present study, such low N, values (approx. 100/cu cm) were only found near the ISIS (International Satellite for Ionospheric Study)-II altitude of 1400 km. The peak ionospheric concentration below the spacecraft remained fairly constant (approx. 10 (exp 5)/cu cm across the hole region but the altitude of the peak dropped dramatically. This peak dropped, surprisingly, to the vicinity of 100 km. These observations suggest that the earlier satellite in situ measurements, interpreted as deep holes in the ionospheric F-region concentration, could have been made during conditions of an extreme decrease in the altitude of the ionospheric N (sub e) peak. The observations, in combination with other data, indicate that the absence of an F-layer peak may be a frequent occurrence at high latitudes.

  16. Robust Estimation of Precipitation Extremes from Short-Period Regional Climate Downscales

    NASA Astrophysics Data System (ADS)

    Apling, D.; Darmenova, K.; Higgins, G. J.

    2011-12-01

    The US Southwest is likely to experience significant changes in precipitation patterns in coming decades as a result of regional climate change. One serious issue is to better understand extreme precipitation events, which affect infrastructure planning, and human life and safety management. Extreme precipitation events are characterized by the maximum expectation of accumulated precipitation over a short time period, which has a long-period return over some number of years; e.g., the 100-year return of daily precipitation. These measures are statistics drawn from Extreme Value Theory, and can be challenging to accurately and reliably estimate for short data sets. Regional Climate Models (RCM) are often run for shorter decadal periods, both to economize on computational expense, and to characterize specific decadal time bands. In each case, one needs robust statistical estimation algorithms to accurately and reliably retrieve the precipitation recurrence statistics. To produce these important decision-aiding products, we added several processes to an otherwise conventional Peaks Over Threshold technique operating on the combined grid-scale and cumuliform precipitation outputs from our 12 kilometer Weather Research and Forecasting (WRF) downscale of the National Centers for Environmental Prediction (NCEP) reanalysis fields for the ten year period of 2000-2009 over the Southwest US. These processes included interleaved sub-year intermediate aggregations, correlated sample corrections, distributional tail feature extraction, and trimmed set tail fitting with jackknife error estimation. The process resulted in estimated 100-year return 24-hour accumulated precipitation expectations with accompanying error bounds, which compare well to established historical precipitation statistics.

  17. The mass and spin of the extreme Narrow Line Seyfert 1 Galaxy 1H 0707-495 and its implications for the trigger for relativistic jets

    NASA Astrophysics Data System (ADS)

    Done, Chris; Jin, Chichuan

    2016-08-01

    Relativistic reflection models of the X-ray spectrum of the `complex' Narrow Line Seyfert 1 (NLS1) 1H 0707-495 require a high-spin, moderate-inclination, low-mass black hole. With these parameters fixed, the observed optical/UV emission directly determines the mass accretion rate through the outer disc and hence predicts the bolometric luminosity. This is 140-260 times the Eddington limit. Such a disc should power a strong wind, and winds are generically expected to be clumpy. Changing inclination angle with respect to a clumpy wind structure gives a possible explanation for the otherwise puzzling difference between `complex' NLS1 such as 1H 0707-495 and `simple' ones like PG 1244+026. Lines of sight which intercept the wind show deep absorption features at iron from the hot phase of the wind, together with stochastic dips and complex absorption when the clumps occult the X-ray source (complex NLS1), whereas both these features are absent for more face-on inclination (simple NLS1). This geometry is quite different from the clean view of a flat disc which is assumed for the spin measurements in relativistic reflection models, so it is possible that even 1H 0707-495 has low spin. If so, this re-opens the simplest and hence very attractive possibility that high black hole spin is a necessary and sufficient condition to trigger highly relativistic (bulk Lorentz factor ˜10-15) jets.

  18. Simulation of Extreme Surface Winds by Regional Climate Models in the NARCCAP Archive

    NASA Astrophysics Data System (ADS)

    Hatteberg, R.; Takle, E. S.

    2011-12-01

    Surface winds play a significant role in many natural processes as well as providing a very important ecological service for many human activities. Surface winds ventilate pollutants and heat from our cities, contribute to pollination for our crops, and regulate the fluxes of heat, moisture, and carbon dioxide from the earth's surface. Many environmental models such as biogeochemical models, crop models, lake models, pollutant transport models, etc., use surface winds as a key variable. Studies of the impacts of climate change and climate variability on a wide range of natural systems and coupled human-natural systems frequently need information on how surface wind speeds will change as greenhouse gas concentrations in the earth's atmosphere change. We have studied the characteristics of extreme winds - both high winds and low winds - created by regional climate models (RCMs) in the NARCCAP archives. We evaluated the capabilities of five RCMs forced by NCEP reanalysis data as well as global climate model (GCM) data for contemporary and future scenario climates to capture the observed statistical distribution of surface winds, both high-wind events and low-wind conditions. Our domain is limited to the Midwest (37°N to 49°N, -82°W to -101°W) with the Great Lakes masked out, which eliminates orographic effects that may contribute to regional circulations. The majority of this study focuses on the warm seasonal in order to examine derechos on the extreme high end and air pollution and plant processes on the low wind speed end. To examine extreme high winds we focus on derechos, which are long-lasting convectively driven extreme wind events that frequently leave a swath of damage extending across multiple states. These events are unusual in that, despite their relatively small spatial scale, they can persist for hours or even days, drawing energy from well-organized larger mesoscale or synoptic scale processes. We examine the ability of NARCCAP RCMs to reproduce

  19. Extreme Poynting Flux Depostion in the Polar Cap and Polar Cap Boundary Regions During Northward IMF

    NASA Astrophysics Data System (ADS)

    Knipp, D.; Kilcommons, L. M.; Cook, M. R.; Larson, T.; Redmon, R. J.

    2015-12-01

    We investigate several intervals of prolonged northward Interplanetary Magnetic Field (IMF) and describe the correlation between strong Poynting flux and the transverse components of the IMF. We primarily focus on Summer events in each hemisphere when the polar regions are sunlit. During northward IMF the magnetic reconnection regions can form tailward of the magnetic cusp. Using data from the Defense Meteorological Satellite Program (DMSP) F13, F15 and F16 spacecraft we looked for and found areas of strong Poynting flux over the magnetic polar cap regions. Values ranging from 20 mW/m^2 to 140 mW/m^2 were measured in narrow channels, showing that there can be significant energy transport to small concentrated regions at very high latitudes. An example of an event from 2001 is shown in the attached image. We also show where these events occur with respect to the dynamic polar cap boundary and discuss the implications of this extreme Poynting flux for other aspects of polar thermodynamics and electrodynamics.

  20. Analysis of Extreme Events in Regional Climate Model Simulations for the Pacific Northwest using weatherathome

    NASA Astrophysics Data System (ADS)

    Mera, R. J.; Mote, P.; Weber, J.

    2011-12-01

    One of the most prominent impacts of climate change over the Pacific Northwest is the potential for an elevated number of extreme precipitation events over the region. Planning for natural hazards such as increasing number of floods related to high-precipitation events have, in general, focused on avoiding development in floodplains and conditioning development to withstand inundation with a minimum of losses. Nationwide, the Federal Emergency Management Agency (FEMA) estimates that about one quarter of its payments cover damage that has occurred outside mapped floodplains. It is clear that traditional flood-based planning will not be sufficient to predict and avoid future losses resulting from climate-related hazards such as high-precipitation events. In order to address this problem, the present study employs regional climate model output for future climate change scenarios to aid with the development of a map-based inventory of future hazard risks that can contribute to the development of a "planning-scale" decision support system for the Oregon Department of Land Conservation and Development (DLCD). Climate model output is derived from the climateprediction.net (CPDN) weatherathome project, an innovative climate science experiment that utilizes volunteer computers from users worldwide to produce hundreds of thousands superensembles of regional climate simulations of the Western United States climate from 1950 to 2050. The spatial and temporal distribution of extreme weather events are analyzed for the Pacific Northwest to diagnose the model's capabilities as an input for map products such as impacts on hydrology. Special attention is given to intensity and frequency of Atmospheric River events in historical and future climate contexts.

  1. ACTIVE REGION MOSS: DOPPLER SHIFTS FROM HINODE/EXTREME-ULTRAVIOLET IMAGING SPECTROMETER OBSERVATIONS

    SciTech Connect

    Tripathi, Durgesh; Mason, Helen E.; Klimchuk, James A.

    2012-07-01

    Studying the Doppler shifts and the temperature dependence of Doppler shifts in moss regions can help us understand the heating processes in the core of the active regions. In this paper, we have used an active region observation recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) on board Hinode on 2007 December 12 to measure the Doppler shifts in the moss regions. We have distinguished the moss regions from the rest of the active region by defining a low-density cutoff as derived by Tripathi et al. in 2010. We have carried out a very careful analysis of the EIS wavelength calibration based on the method described by Young et al. in 2012. For spectral lines having maximum sensitivity between log T = 5.85 and log T = 6.25 K, we find that the velocity distribution peaks at around 0 km s{sup -1} with an estimated error of 4-5 km s{sup -1}. The width of the distribution decreases with temperature. The mean of the distribution shows a blueshift which increases with increasing temperature and the distribution also shows asymmetries toward blueshift. Comparing these results with observables predicted from different coronal heating models, we find that these results are consistent with both steady and impulsive heating scenarios. However, the fact that there are a significant number of pixels showing velocity amplitudes that exceed the uncertainty of 5 km s{sup -1} is suggestive of impulsive heating. Clearly, further observational constraints are needed to distinguish between these two heating scenarios.

  2. Using scaling fluctuation analysis to quantify anthropogenic changes in regional and global precipitation, including extremes

    NASA Astrophysics Data System (ADS)

    de Lima, Isabel; Lovejoy, Shaun

    2016-04-01

    . In terms of global forcing, it is equal to 5.07±1.92 W/m2/CO2 doubling which is slightly larger than the canonical 3.7 W/m2 value for the radiative forcing due to a CO2 doubling. This comparison confirms the GCM predictions that the anthropic increase in precipitation is radiation controlled. Applying our approach regionally (at 5°x5° spatial resolution), we quantify the anthropogenic effects regionally and make multidecadal projections of precipitation rates. As regions get wetter or dryer, the corresponding extremes get accentuated, so that the extremes of wetness or dryness will increase as quantified by the anthropogenic estimates of their changes.

  3. Analysis and Modelling of Extreme Wind Speed Distributions in Complex Mountainous Regions

    NASA Astrophysics Data System (ADS)

    Laib, Mohamed; Kanevski, Mikhail

    2016-04-01

    Modelling of wind speed distributions in complex mountainous regions is an important and challenging problem which interests many scientists from several fields. In the present research, high frequency (10 min) Swiss wind speed monitoring data (IDAWEB service, Meteosuisse) are analysed and modelled with different parametric distributions (Weibull, GEV, Gamma, etc.) using maximum likelihood method. In total, 111 stations placed in different geomorphological units and at different altitude (from 203 to 3580 meters) are studied. Then, this information is used for training machine learning algorithms (Extreme Learning Machines, Support vector machine) to predict the distribution at new places, potentially useful for aeolian energy generation. An important part of the research deals with the construction and application of a high dimensional input feature space, generated from digital elevation model. A comprehensive study was carried out using feature selection approach to get the best model for the prediction. The main results are presented as spatial patterns of distributions' parameters.

  4. Measurement of partial pressures in extremely high vacuum region using a modified residual gas analyzer

    NASA Astrophysics Data System (ADS)

    Watanabe, Shu; Oyama, Hitoshi; Kato, Shigeki; Aono, Masakazu

    1999-03-01

    The measurement of partial pressures using a residual gas analyzer (RGA) in an extremely high vacuum (XHV) region has several problems, including the influence of electron stimulated desorption ions and the outgassing rate from the ion source of the RGA. In order to measure partial pressures in the XHV, a commercial RGA was modified as follows: an electrostatic analyzer was used to only measure gas phase ions; a low work function material, thoria, was used as a filament of the ion source to lower temperature of the filament and Cu wires connected the filament and releasing the heat around the ion source to atmosphere. After these modifications, the RGA could measure only gas phase ions and, at the same time the outgassing rate from the RGA was reduced. Partial pressures and total pressure in the XHV could be measured by the RGA.

  5. Relativistic Bursian diode equilibria

    SciTech Connect

    Ender, A. Y.; Kuznetsov, V. I.; Schamel, H.

    2011-03-15

    A comprehensive study of steady-states of a planar vacuum diode driven by a cold relativistic electron beam is presented. The emitter electric field as a characteristic function for their existence is evaluated in dependence of the diode length, the applied potential V, and the relativistic beam factor at injection {gamma}{sub 0}. It is used to classify the different branches of possible solutions, which encompass electron flows that are (i) transmitted through the diode completely, (ii) partially reflected from a virtual cathode (VC) either within the diode region or at the collector side, and (iii) reflected totally. As a byproduct, the V and {gamma}{sub 0} dependences of both bifurcation points of the minimum potential and of the transmitted current are obtained and the ultrarelativistic limit, {gamma}{sub 0}>>1, is performed. In this highly relativistic regime, the density of electrons appears to be constant across the diode region except for a small area around the VC.

  6. The solar extreme ultra-violet corona: Resolved loops and the unresolved active region corona

    NASA Astrophysics Data System (ADS)

    Cirtain, Jonathan Wesley

    In this work, physical characteristics of the solar corona as observed in the Extreme Ultra-Violet (EUV) regime are investigated. The focus will be the regions of intense EUV radiation generally found near the locations of sunspots. These regions are commonly called active regions. Multiple space- based observing platforms have been deployed in the last decade; it is possible to use several of these observatories in combination to develop a more complete picture of the solar corona. Joint Observing Program 146 was created to collect spectroscopic intensities using the Coronal Diagnostic Spectrometer on Solar and Heliospheric Observatory and EUV images using NASA's Transition Region and Coronal Explorer. The emission line intensities are analyzed to develop an understanding of the temperature and density of the active region coronal plasma. However, the performance of the CDS instrument in the spatial and temporal domains is limited and to compensate for these limitations, data collected by the TRACE instrument provide a high spatial and temporal resolution set of observations. One of the most exciting unsolved problems in solar astrophysics is to understand why the corona maintains a temperature roughly two orders of magnitude higher than the underlying material. A detailed investigation of the coronal emission has provided constraints on models of the heating mechanism, since the temperature, density and evolution of emission rates for multiple ionic species are indicative of the mechanism(s) working to heat the corona. The corona appears to consist of multiple unresolved structures as well as resolved active region structures, called coronal loops. The purpose of the present work is to determine the characteristics of the unresolved background corona. Using the characterizations of the coronal unresolved background, results for loops after background subtraction are also presented. This work demonstrates the magnitude of the unresolved coronal emission with

  7. Impact of climate change on hydrological extremes in Dobrogea region, Romania

    NASA Astrophysics Data System (ADS)

    Buta, Constantin; Maftei, Carmen

    2015-04-01

    Over time, Dobrogea territory has faced with fluctuations more or less severe in terms of basic parameters such as temperature, precipitations and annual discharges of rivers. It is highlighted the trend of aridity in the area, because of the fact that Dobrogea receives small amounts of water, ranging between 200-450 mm/year, with annual average temperatures lying around and above the average of 11°C. This fact is also proceeding from the many studies realized by other researchers. For this area there are also characteristic torrents (form of rainfall during the summer), the storms and floods accompanying these torrents of water on the narrow valleys, often intermittent, sometimes causing significant damage and even fatalities. Torrential rainfalls and flash floods are sometimes very strong and produce catastrophic damages, as happened at Constanta (in 2001), at Tulcea (in 13.07.2004 and in 29.08.2004), at Tuzla, Pantelimon, Agigea and others. At the opposite pole of the sporadic excess rainfall is drought, which is the largest meteorological phenomenon (both in time and in space) and the most obvious in Dobrogea climate. Drought represents the main argument of semi aridity of this region and the most visible image component which is observed by the inhabitants of this environment. Correlation and study of hydro-meteorological extremes is performed using indices that take into account meteorological and hydrological parameters such as precipitations, temperature, discharges of rivers etc. Hydro-meteorological indices used for this study are: Angot rainfall index; Peguy Climograms; de Martonne drought index; Thornthwaite index Moduli coefficients and Deciles. According to the studied indices, for the accomplishment of this present paper, we can say that Dobrogea is among the driest regions in the country. History of drought in Romania includes many dry years, of which are mentioned: 1894, 1888, 1904, 1918, 1934, 1945, but the droughts years with greater durations

  8. Simulated trends of extreme climate indices for the Carpathian basin using outputs of different regional climate models

    NASA Astrophysics Data System (ADS)

    Pongracz, R.; Bartholy, J.; Szabo, P.; Pieczka, I.; Torma, C. S.

    2009-04-01

    Regional climatological effects of global warming may be recognized not only in shifts of mean temperature and precipitation, but in the frequency or intensity changes of different climate extremes. Several climate extreme indices are analyzed and compared for the Carpathian basin (located in Central/Eastern Europe) following the guidelines suggested by the joint WMO-CCl/CLIVAR Working Group on climate change detection. Our statistical trend analysis includes the evaluation of several extreme temperature and precipitation indices, e.g., the numbers of severe cold days, winter days, frost days, cold days, warm days, summer days, hot days, extremely hot days, cold nights, warm nights, the intra-annual extreme temperature range, the heat wave duration, the growing season length, the number of wet days (using several threshold values defining extremes), the maximum number of consecutive dry days, the highest 1-day precipitation amount, the greatest 5-day rainfall total, the annual fraction due to extreme precipitation events, etc. In order to evaluate the future trends (2071-2100) in the Carpathian basin, daily values of meteorological variables are obtained from the outputs of various regional climate model (RCM) experiments accomplished in the frame of the completed EU-project PRUDENCE (Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and Effects). Horizontal resolution of the applied RCMs is 50 km. Both scenarios A2 and B2 are used to compare past and future trends of the extreme climate indices for the Carpathian basin. Furthermore, fine-resolution climate experiments of two additional RCMs adapted and run at the Department of Meteorology, Eotvos Lorand University are used to extend the trend analysis of climate extremes for the Carpathian basin. (1) Model PRECIS (run at 25 km horizontal resolution) was developed at the UK Met Office, Hadley Centre, and it uses the boundary conditions from the HadCM3 GCM. (2) Model Reg

  9. Transmission filter for the extreme ultraviolet spectral region composed of a thin Saran (C2H2Cl2) foil

    NASA Astrophysics Data System (ADS)

    Seely, John F.; Shirey, L.; Kingman, A.

    1989-05-01

    Saran foils of 4000-A thickness have been fabricated and used as transmission filters in the extreme ultraviolet spectral region. The transmittances of the Saran foils were determined for the 20-620-A wavelength region. The foils transmitted radiation with wavelengths between the L absorption edge of chlorine at 61.4 and about 120 A.

  10. Scintigraphic Evaluation of the Stump Region After Extremity Amputation and the Effect of Scintigraphy on Treatment

    PubMed Central

    Sadic, Murat; Atilgan, Hasan Ikbal; Baskin, Aylin; Cinar, Alev; Koca, Gokhan; Demirel, Koray; Comak, Aylin; Ozyurt, Sinem; Yildirim, Sule; Korkmaz, Meliha

    2016-01-01

    Background We evaluated the stump region with scintigraphy and compared the correlation of treatment modalities and scintigraphic results. Methods Sixty-eight cases with extremity amputation were included in the study. Amputation applied cases underwent four-phase Tc-99m hydroxymethylene diphosphonate scintigraphy. Groups were performed according to the scanning time after amputation and amputation regions. After scintigraphic evaluation, results were recorded into five groups: osteomyelitis, soft-tissue infection, reactive changes secondary to surgery, chronic osteomyelitis, and normal. Post-surgical treatment modalities of the patients were determined and compared with scintigraphic results. Results In the scintigraphic evaluation of stump regions of the 68 amputated cases, 34 patients had acute osteomyelitis, one had chronic osteomyelitis, 16 had soft-tissue infection, and eight had changes secondary to the surgery. Nine of 68 cases had normal scintigraphic features. In the scintigraphic evaluation, 43 patients took antibiotic treatment and 16 had surgery. There was a strong correlation between scintigraphic results and treatment approach (P < 0.0001, r = 0.803) by means of preferred therapy and effectiveness of the therapy according to the scintigraphic results. Scintigraphy need increases with age after amputation and a negative correlation between patient age and scintigraphic need was found (P < 0.02, r = -0.339). There was no pathology in the follow-up in the cases that were scintigraphically normal. Conclusion Bone scintigraphy is a cost-effective, non-invasive, and efficient method that directs treatment in the evaluation of the stump region after amputation. PMID:26858796

  11. Performance evaluation of TMPA version 7 estimates for precipitation and its extremes in Circum-Bohai-Sea region, China

    NASA Astrophysics Data System (ADS)

    Jiang, Dejuan; Zhang, Hua; Li, Ruize

    2016-09-01

    Precipitation and its extremes are of significance for drought and flood warning and monitoring. This study evaluates the capability of Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42 V7 to detect rainfall events, especially extreme precipitation events, using gauge observations for the period 1998-2012 over Circum-Bohai-Sea region, a mid-altitude and semi-humid monsoon area. The results show that 3B42 V7 performs better at monthly and annual scales than at a daily scale. Spatially or seasonally, the rainfall pattern is more effectively captured by 3B42 V7 for the wet region or season than for the dry region or season. 3B42 V7 displays a positive relative bias in most areas, and the largest is situated in high latitude region, while negative relative bias is found at coastal regions. 3B42 V7 tends to overestimate at low and middle rainfall intensity (RI) ranges (RI <50 mm/day) but underestimate at high RI range (RI ≥50 mm/day). Overall, the total rainfall amount (PRETOT) and extreme precipitation amount (EPRETOT, above 95th percentile of daily rainfall) are slightly overestimated by 3B42 V7, while EPRETOT exhibits a lower correlation with observations than PRETOT does. The relative root mean square error (RMSE) are higher than 50 % relative to rain gauges for eight extreme precipitation indices except the maximum number of consecutive dry days (CDD), demonstrating that extreme precipitation estimates of 3B42 V7 are generally unreliable. The improvement of 3B42 V7 in capturing extreme precipitation events is anticipated through extensive efforts for its wide range of climate and hydrological applications. Overall, this study provides an evaluation of the quality of TMPA 3B42 V7 in estimating precipitation and its extremes in a mid-altitude and semi-humid monsoon region.

  12. Bacterial Diversity within the Extreme Arid Atacama Desert Soils of the Yungay Region, Chile

    NASA Astrophysics Data System (ADS)

    Connon, S. A.; Lester, E. D.; Shafaat, H. S.; Obenhuber, D. C.; Ponce, A.

    2006-12-01

    Surface and subsurface soil samples analyzed for this study were collected from the hyper-arid Yungay region of the Atacama Desert, Chile. This is the first report of microbial diversity from DNA extracted directly from these extremely desiccated soils. Our data shows that 94% of the 16S rRNA genes cloned from these soils belong to the Actinobacteria phylum. A 24-hour time course series showed a diurnal water activity (aw) cycle that peaked at 0.52 in the early predawn hours, and ranged from 0.08 0.01 during the day. All measured water activity values were below the level required for microbial growth or enzyme activity. Total organic carbon (TOC) levels in this region were just above the limits of detection and ranged from 220 660 μg/g of soil. Phospholipid fatty acid (PLFA) levels indicated cellular biomass ranging from 2 ×105 to 7 ×106 cell equivalents per gram of soil. The culturable counts were low with most samples showing no growth on standard plates of R2A medium; the highest single count was 47 colony forming units (CFU) per gram.

  13. Climate extremes and the carbon cycle - a review using an integrated approach with regional examples for forests & native ecosystems -

    NASA Astrophysics Data System (ADS)

    Frank, D.; Reichstein, M.; Bahn, M.; Beer, C.; Ciais, P.; Mahecha, M.; Seneviratne, S. I.; Smith, P.; van Oijen, M.; Walz, A.

    2012-04-01

    The terrestrial carbon cycle provides an important biogeochemical feedback to climate and is itself particularly susceptible to extreme climate events. Climate extremes can override any (positive) effects of mean climate change as shown in European and recent US-American heat waves and dry spells. They can impact the structure, composition, and functioning of terrestrial ecosystems and have the potential to cause rapid carbon losses from accumulated stocks. We review how climate extremes like severe droughts, heat waves, extreme precipitation or storms can cause direct impacts on the CO2 fluxes [e.g. due to extreme temperature and/ or drought events] as well as lagged impacts on the carbon cycle [e.g. via an increased fire risk, or disease outbreaks and pest invasions]. The relative impact of the different climate extremes varies according to climate region and vegetation type. We present lagged effects on plant growth (and mortality) in the year(s) following an extreme event and their impacts on the carbon sequestration of forests and natural ecosystems. Comprehensive regional or even continental quantification with regard to extreme events is missing, and especially compound extreme events, the role of lagged effects and aspects of the return frequency are not studied enough. In a case study of a Mediterranean ecosystem we illustrate that the response of the net carbon balance at ecosystem level to regional climate change is hard to predict as interacting and partly compensating processes are affected and several processes which have the ability to substantially alter the carbon balance are not or not sufficiently represented in state-of-the-art biogeochemical models.

  14. Generating extreme weather event sets from very large ensembles of regional climate models

    NASA Astrophysics Data System (ADS)

    Massey, Neil; Guillod, Benoit; Otto, Friederike; Allen, Myles; Jones, Richard; Hall, Jim

    2015-04-01

    Generating extreme weather event sets from very large ensembles of regional climate models Neil Massey, Benoit P. Guillod, Friederike E. L. Otto, Myles R. Allen, Richard Jones, Jim W. Hall Environmental Change Institute, University of Oxford, Oxford, UK Extreme events can have large impacts on societies and are therefore being increasingly studied. In particular, climate change is expected to impact the frequency and intensity of these events. However, a major limitation when investigating extreme weather events is that, by definition, only few events are present in observations. A way to overcome this issue it to use large ensembles of model simulations. Using the volunteer distributed computing (VDC) infrastructure of weather@home [1], we run a very large number (10'000s) of RCM simulations over the European domain at a resolution of 25km, with an improved land-surface scheme, nested within a free-running GCM. Using VDC allows many thousands of climate model runs to be computed. Using observations for the GCM boundary forcings we can run historical "hindcast" simulations over the past 100 to 150 years. This allows us, due to the chaotic variability of the atmosphere, to ascertain how likely an extreme event was, given the boundary forcings, and to derive synthetic event sets. The events in these sets did not actually occur in the observed record but could have occurred given the boundary forcings, with an associated probability. The event sets contain time-series of fields of meteorological variables that allow impact modellers to assess the loss the event would incur. Projections of events into the future are achieved by modelling projections of the sea-surface temperature (SST) and sea-ice boundary forcings, by combining the variability of the SST in the observed record with a range of warming signals derived from the varying responses of SSTs in the CMIP5 ensemble to elevated greenhouse gas (GHG) emissions in three RCP scenarios. Simulating the future with a

  15. Seasonal and Regional Variations of U.S. Trends in Extreme Precipitation Frequency

    NASA Astrophysics Data System (ADS)

    Kunkel, K. E.; Krisotovich, D.; Smith, R.; Ensor, L.; Easterling, D.

    2008-12-01

    Numerous studies have documented increases in U.S. heavy precipitation during the latter part of the 20th Century. Recent studies have also revealed that event frequencies were quite high early in the 20th Century, nearly as high as in the 1980s and 1990s. This suggests that natural variability may be quite large and perhaps the recent increases in the U.S. have a large natural component. The meteorological reasons behind the observed major decadal-scale variations in heavy precipitation have not been investigated. Have there been secular changes in the frequency, intensity, and other characteristics of the meteorological phenomena producing heavy precipitation? Can we attribute these changes to hemispheric or global trends in circulation, SSTs, etc.? Are the recent increases primarily a result of increases in atmospheric water vapor concentrations? Heavy precipitation events occur in a variety of meteorological situations/types that are seasonally and regionally variable. The seasonal and regional differences in trends can provide important insights into possible causes of decadal-scale variations in the frequency and intensity of extreme events. An investigation of such variations has revealed that in those cases where regional monthly trends are statistically significant, the trends are overwhelmingly upward. The great majority of these statistically significant upward monthly trends occur in the warm season (May-October), with the most widespread increases occurring in August. The central part of the U.S. from the Gulf Coast northward into the Great Lakes in particular has experienced statistically significant increases in many warm season months. The timing and locations of the observed increases suggest that a variety of phenomena could be contributing, including tropical cyclones, mesoscale convective systems, extratropical cyclones, and increased water vapor transport from the Gulf of Mexico/western Atlantic. More detailed investigation is required to

  16. Empirical evidence of direct impact of extreme temperatures on wheat yield in major wheat growing region of India.

    NASA Astrophysics Data System (ADS)

    Murari, K. K.; Mahato, S.; Jayaraman, T.

    2014-12-01

    Exposure to extreme temperatures during the grain filling stage of winter wheat may lead to reduction in the yield. Over the last decade, there has been an increasing trend of exposure to extreme temperature conditions, particularly during crop growing season. The Indo Gangetic plain (IGP) is a particular concern since an optimal temperature for wheat production already exists in the region. This is also a major concern for global wheat production since the region accounts for about 15% of the global wheat production. Previous studies conducted in this region have found a strong impact of extreme temperatures causing an early occurrence of senescence, defined as the last developmental stage of the plant. The early occurrence of senescence period induces shortening of growing season length, which is a critical grain filling stage. However, the direct effect of extreme temperatures on the yield data has not yet been looked at, which reflects the impact of extreme temperature at different growth stages including anthesis (flowering) and the grain-filling stage. Here in this study, we explore the relationship of extreme heat conditions on the yield using fixed-effect panel data model for the districts in the IGP region. The first result indicates approximately 16% reduction in wheat yield with 1˚C rise in mean growing season temperature. There is a significant negative trend between the yield and the fourth quartile of extreme temperature (>34˚C) days. Furthermore, we establish a scope of existence of a nonlinear relationship between temperature and yield, which needs to be further examined.

  17. WEAK LINE QUASARS AT HIGH REDSHIFT: EXTREMELY HIGH ACCRETION RATES OR ANEMIC BROAD-LINE REGIONS?

    SciTech Connect

    Shemmer, Ohad; Trakhtenbrot, Benny; Netzer, Hagai; Anderson, Scott F.; Brandt, W. N.; Schneider, Donald P.; Diamond-Stanic, Aleksandar M.; Fan Xiaohui; Lira, Paulina; Plotkin, Richard M.; Richards, Gordon T.; Strauss, Michael A.

    2010-10-20

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z = 3.55 and SDSS J123743.08+630144.9 at z = 3.49. In both sources, we detect an unusually weak broad H{beta} line and place tight upper limits on the strengths of their [O III] lines. Virial, H{beta}-based black hole mass determinations indicate normalized accretion rates of L/L {sub Edd}=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of {Gamma} = 1.91{sup +0.24} {sub -0.22}, which supports the virial L/L {sub Edd} determination in this source. Our results suggest that the weakness of the broad emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad emission line region properties.

  18. Weak Line Quasars at High Redshift: Extremely High Accretion Rates or Anemic Broad-line Regions?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad; Trakhtenbrot, Benny; Anderson, Scott F.; Brandt, W. N.; Diamond-Stanic, Aleksandar M.; Fan, Xiaohui; Lira, Paulina; Netzer, Hagai; Plotkin, Richard M.; Richards, Gordon T.; Schneider, Donald P.; Strauss, Michael A.

    2010-10-01

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z = 3.55 and SDSS J123743.08+630144.9 at z = 3.49. In both sources, we detect an unusually weak broad Hβ line and place tight upper limits on the strengths of their [O III] lines. Virial, Hβ-based black hole mass determinations indicate normalized accretion rates of L/L Edd=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of Γ = 1.91+0.24 -0.22, which supports the virial L/L Edd determination in this source. Our results suggest that the weakness of the broad emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad emission line region properties.

  19. Regional differences in peripheral circulation between upper and lower extremity in patients with cirrhosis.

    PubMed

    Okumura, H; Aramaki, T; Katsuta, Y; Terada, H; Satomura, K; Akaike, M; Sekiyama, T

    1990-09-01

    In 42 patients with compensated cirrhosis and 31 control subjects, blood flow (BF) and vascular resistance (VR) were measured at the forearm and calf, using a pneumoplethysmograph. In some of the subjects deep-body temperature (DBT) was also measured by the zero heat flow method. In cirrhosis, BF and DBT were significantly higher and VR was significantly lower in the forearm than in the calf. Corresponding differences were not observed in control subjects. When these indices of the forearm were compared between cirrhosis and controls, BF and DBT were significantly higher and VR was significantly lower in cirrhosis than in controls. In cirrhotics in whom the gradient between forearm BF and calf BF was 1 ml.dl-1.min-1 or more (forearm greater than calf), the vascular response of the forearm to cold stimulation was reduced, whereas in the remaining patients and in controls the forearm BF and VR responded significantly. These results suggest that there is a regional difference in peripheral circulation in cirrhotics, partly with participation of impaired sympathetic nervous activity, which may account for the selective distribution observed in the clinical manifestations of vascular spider, palmar erythema, and warm hand, inclined toward the upper extremities or the upper part of the body.

  20. HOMOLOGOUS EXTREME ULTRAVIOLET WAVES IN THE EMERGING FLUX REGION OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY

    SciTech Connect

    Zheng Ruisheng; Jiang Yunchun; Yang Jiayan; Bi Yi; Hong Junchao; Yang, B.; Yang Dan

    2012-03-01

    Taking advantage of the high temporal and spatial resolution of the Solar Dynamics Observatory (SDO) observations, we present four homologous extreme ultraviolet (EUV) waves within 3 hr on 2010 November 11. All EUV waves emanated from the same emerging flux region (EFR), propagated in the same direction, and were accompanied by surges, weak flares, and faint coronal mass ejections (CMEs). The waves had the basically same appearance in all EUV wavebands of the Atmospheric Imaging Assembly on SDO. The waves propagated at constant velocities in the range of 280-500 km s{sup -1}, with little angular dependence, which indicated that the homologous waves could be likely interpreted as fast-mode waves. The waves are supposed to likely involve more than one driving mechanism, and it was most probable that the waves were driven by the surges, due to their close timing and location relations. We also propose that the homologous waves were intimately associated with the continuous emergence and cancellation of magnetic flux in the EFR, which could supply sufficient energy and trigger the onsets of the waves.

  1. Regional Nodal Involvement and Patterns of Spread Along In-Transit Pathways in Children With Rhabdomyosarcoma of the Extremity: A Report From the Children's Oncology Group;Rhabdomyosarcoma; Regional failure; In-transit nodes; Radiotherapy; Extremity

    SciTech Connect

    La, Trang H.; Wolden, Suzanne L.; Rodeberg, David A.; Hawkins, Douglas S.; Anderson, James R.; Donaldson, Sarah S.

    2011-07-15

    Purpose: To evaluate the incidence and prognostic factors for regional failure, with attention to the in-transit pathways of spread, in children with nonmetastatic rhabdomyosarcoma of the extremity. Methods and Materials: The Intergroup rhabdomyosarcoma studies III, IV-Pilot, and IV enrolled 226 children with rhabdomyosarcoma of the extremity. Failure at the in-transit (epitrochlear/brachial and popliteal) and proximal (axillary/infraclavicular and inguinal/femoral) lymph nodes was evaluated. The median follow-up for the surviving patients was 10.4 years. Results: Of the 226 children, 55 (24%) had clinical or pathologic evidence of either in-transit and/or proximal lymph node involvement at diagnosis. The actuarial 5-year risk of regional failure was 12%. The prognostic factors for poor regional control were female gender and lymph node involvement at diagnosis. In the 116 patients with a distal extremity primary tumor, 5% had in-transit lymph node involvement at diagnosis. The estimated 5-year incidences of in-transit and proximal nodal failure was 12% and 8%, respectively. The in-transit failure rate was 0% for patients who underwent radiotherapy and/or underwent lymph node sampling of the in-transit nodal site but was 15% for those who did not (p = .07). However, the 5-year event-free survival rate did not differ between these two groups (64% vs. 55%, respectively, p = .47). Conclusion: The high incidence of regional involvement necessitates aggressive identification and treatment of regional lymph nodes in patients with rhabdomyosarcoma of the extremity. In patients with distal extremity tumors, in-transit failures were as common as failures in more proximal regional sites. Patients who underwent complete lymph node staging with appropriate radiotherapy to the in-transit nodal site, if indicated, were at a slightly lower risk of in-transit failure.

  2. The impact of ENSO and the NAO on extreme winter precipitation in North America in observations and regional climate models

    NASA Astrophysics Data System (ADS)

    Whan, Kirien; Zwiers, Francis

    2016-05-01

    The relationship between winter precipitation in North America and indices of the North Atlantic Oscillation (NAO) and El Niño-Southern Oscillation (ENSO) is evaluated using non-stationary generalized extreme value distributions with the indices as covariates. Both covariates have a statistically significant influence on precipitation that is well simulated by two regional climate models (RCMs), CanRCM4 and CRCM5. The observed influence of the NAO on extreme precipitation is largest in eastern North America, with the likelihood of a negative phase extreme rainfall event decreased in the north and increased in the south under the positive phase of the NAO. This pattern is generally well simulated by the RCMs although there are some differences in the extent of influence, particularly south of the Great Lakes. A La Niña-magnitude extreme event is more likely to occur under El Niño conditions in California and the southern United States, and less likely in most of Canada and a region south of the Great Lakes. This broad pattern is also simulated well by the RCMs but they do not capture the increased likelihood in California. In some places the extreme precipitation response in the RCMs to external forcing from a covariate is of the opposite sign, despite use of the same lateral boundary conditions and dynamical core. This demonstrates the importance of model physics for teleconnections to extreme precipitation.

  3. Relativistic diffusion

    NASA Astrophysics Data System (ADS)

    Haba, Z.

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  4. Relativistic diffusion.

    PubMed

    Haba, Z

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  5. Assessment of extreme quantitative precipitation forecasts and development of regional extreme event thresholds using data from HMT-2006 and COOP observers

    USGS Publications Warehouse

    Ralph, F.M.; Sukovich, E.; Reynolds, D.; Dettinger, M.; Weagle, S.; Clark, W.; Neiman, P.J.

    2010-01-01

    Extreme precipitation events, and the quantitative precipitation forecasts (QPFs) associated with them, are examined. The study uses data from the Hydrometeorology Testbed (HMT), which conducted its first field study in California during the 2005/06 cool season. National Weather Service River Forecast Center (NWS RFC) gridded QPFs for 24-h periods at 24-h (day 1), 48-h (day 2), and 72-h (day 3) forecast lead times plus 24-h quantitative precipitation estimates (QPEs) fromsites in California (CA) and Oregon-Washington (OR-WA) are used. During the 172-day period studied, some sites received more than 254 cm (100 in.) of precipitation. The winter season produced many extreme precipitation events, including 90 instances when a site received more than 7.6 cm (3.0 in.) of precipitation in 24 h (i.e., an "event") and 17 events that exceeded 12.7 cm (24 h)-1 [5.0 in. (24 h)-1]. For the 90 extreme events f.7.6 cm (24 h)-1 [3.0 in. (24 h)-1]g, almost 90% of all the 270 QPFs (days 1-3) were biased low, increasingly so with greater lead time. Of the 17 observed events exceeding 12.7 cm (24 h)-1 [5.0 in. (24 h)-1], only 1 of those events was predicted to be that extreme. Almost all of the extreme events correlated with the presence of atmospheric river conditions. Total seasonal QPF biases for all events fi.e., $0.025 cm (24 h)-1 [0.01 in. (24 h)-1]g were sensitive to local geography and were generally biased low in the California-Nevada River Forecast Center (CNRFC) region and high in the Northwest River Forecast Center(NWRFC) domain. The low bias in CA QPFs improved with shorter forecast lead time and worsened for extreme events. Differences were also noted between the CNRFC and NWRFC in terms of QPF and the frequency of extreme events. A key finding from this study is that there were more precipitation events .7.6 cm (24 h)-1 [3.0 in. (24 h)21] in CA than in OR-WA. Examination of 422 Cooperative Observer Program (COOP) sites in the NWRFC domain and 400 in the CNRFC domain

  6. Projection of extreme precipitation in the context of climate change in Huang-Huai-Hai region, China

    NASA Astrophysics Data System (ADS)

    Yin, Jun; Yan, Denghua; Yang, Zhiyong; Yuan, Zhe; Yuan, Yong; Zhang, Cheng

    2016-03-01

    Based on the national precipitation dataset (0.5∘×0.5∘) 1961-2011, published by the National Meteorological Information Center of China and the five Global Climate Models provided by ISI-MIP, annual maximum precipitation for 1 day, 3 days and 7 days could be calculated. Extreme precipitation was fitted via Generalized Extreme Value (GEV) distribution to explore the changes of extreme precipitation with the return period of 20 years and 50 years during 1961-2000 and 2001-2050. Based on this, extreme precipitation projection in Huang-Huai-Hai region was done. The results showed that the five Global Climate Models could simulate the statistical features of extreme precipitation quite well, in which IPSL-CM5A-LR has the highest precision. Simulation of IPSL-CM5A-LR indicates that precipitation with the return period of 20 years and 50 years in the middle reaches of the Yellow River, middle and lower reaches of Huaihe River and plain area of the southern Haihe River will increase considerably in the future. Extreme precipitation in some of the places will even increase by more than 30%, which means that these places will face larger flood risk and their capacity to respond to flood disasters should be improved.

  7. Some problems in relativistic thermodynamics

    SciTech Connect

    Veitsman, E. V.

    2007-11-15

    The relativistic equations of state for ideal and real gases, as well as for various interface regions, have been derived. These dependences help to eliminate some controversies in the relativistic thermodynamics based on the special theory of relativity. It is shown, in particular, that the temperature of system whose velocity tends to the velocity of light in vacuum varies in accordance with the Ott law T = T{sub 0}/{radical}1 - v{sup 2}/c{sup 2}. Relativistic dependences for heat and mass transfer, for Ohm's law, and for a viscous flow of a liquid have also been derived.

  8. Evaluation of large-scale meteorological patterns associated with temperature extremes in the NARCCAP regional climate model simulations

    NASA Astrophysics Data System (ADS)

    Loikith, Paul C.; Waliser, Duane E.; Lee, Huikyo; Neelin, J. David; Lintner, Benjamin R.; McGinnis, Seth; Mearns, Linda O.; Kim, Jinwon

    2015-12-01

    Large-scale meteorological patterns (LSMPs) associated with temperature extremes are evaluated in a suite of regional climate model (RCM) simulations contributing to the North American Regional Climate Change Assessment Program. LSMPs are characterized through composites of surface air temperature, sea level pressure, and 500 hPa geopotential height anomalies concurrent with extreme temperature days. Six of the seventeen RCM simulations are driven by boundary conditions from reanalysis while the other eleven are driven by one of four global climate models (GCMs). Four illustrative case studies are analyzed in detail. Model fidelity in LSMP spatial representation is high for cold winter extremes near Chicago. Winter warm extremes are captured by most RCMs in northern California, with some notable exceptions. Model fidelity is lower for cool summer days near Houston and extreme summer heat events in the Ohio Valley. Physical interpretation of these patterns and identification of well-simulated cases, such as for Chicago, boosts confidence in the ability of these models to simulate days in the tails of the temperature distribution. Results appear consistent with the expectation that the ability of an RCM to reproduce a realistically shaped frequency distribution for temperature, especially at the tails, is related to its fidelity in simulating LMSPs. Each ensemble member is ranked for its ability to reproduce LSMPs associated with observed warm and cold extremes, identifying systematically high performing RCMs and the GCMs that provide superior boundary forcing. The methodology developed here provides a framework for identifying regions where further process-based evaluation would improve the understanding of simulation error and help guide future model improvement and downscaling efforts.

  9. Storms or cold fronts: what is really responsible for the extreme waves regime in the Colombian Caribbean coastal region?

    NASA Astrophysics Data System (ADS)

    Otero, L. J.; Ortiz-Royero, J. C.; Ruiz-Merchan, J. K.; Higgins, A. E.; Henriquez, S. A.

    2016-02-01

    The aim of this study is to determine the contribution and importance of cold fronts and storms to extreme waves in different areas of the Colombian Caribbean in an attempt to determine the extent of the threat posed by the flood processes to which these coastal populations are exposed. Furthermore, the study wishes to establish the actions to which coastal engineering constructions should be subject. In the calculation of maritime constructions, the most important parameter is the height of the wave. For this reason, it is necessary to establish the design wave height to which a coastal engineering structure should be resistant. This wave height varies according to the return period considered. The significant height values for the areas focused on in the study were calculated in accordance with Gumbel's extreme value methodology. The methodology was evaluated using data from the reanalysis of the spectral National Oceanic and Atmospheric Administration (NOAA) WAVEWATCH III® (WW3) model for 15 points along the 1600 km of the Colombian Caribbean coastline (continental and insular) between the years 1979 and 2009. The results demonstrated that the extreme waves caused by tropical cyclones and those caused by cold fronts have different effects along the Colombian Caribbean coast. Storms and hurricanes are of greater importance in the Guajira Peninsula (Alta Guajira). In the central area (consisting of Baja Guajira, and the cities of Santa Marta, Barranquilla, and Cartagena), the strong impact of cold fronts on extreme waves is evident. However, in the southern region of the Colombian Caribbean coast (ranging from the Gulf of Morrosquillo to the Gulf of Urabá), the extreme values of wave heights are lower than in the previously mentioned regions, despite being dominated mainly by the passage of cold fronts. Extreme waves in the San Andrés and Providencia insular region present a different dynamic from

  10. Regional and Household Adaptation Strategies to Climate Extremes: the Case Study of the Beava River Basin, the Czech Republic

    NASA Astrophysics Data System (ADS)

    Duží, Barbora; Stojanov, Robert; Vikhrov, Dmytro

    2013-04-01

    We investigate regional and household adaptation strategies in the region affected by climate extremes, focusing on floods occurrence during past 15 years period. The main research question is: What is the overall state of adaptation measurements to climate extremes on the Bečva river basin? Target area is located along upper and middle part of the Bečva river basin in the east of the Czech Republic. The main theoretical concepts draw from differentiations between coping/adaptation strategies to climate extremes and theory of focusing event as a starter of changes in attention and agenda of problem solution. We apply mixed empirical research and case study approach. First we use qualitative research to serve as an initial entrance to the issue, to find out the perception of adaptation progress and preparedness to climate extremes on regional level. We conducted deep interviews (N=20) with relevant stakeholders. We proceed with quantitative research through the conducting face-to face questionnaires with household residents (N=305) in no, low and no risk area in relation to flood occurrence. We designed set of questions to find out relation among experiences with flood, the level of damages and applied emergency and adaptation measurements.

  11. Validation of EURO-CORDEX regional climate models in reproducing the variability of precipitation extremes in Romania

    NASA Astrophysics Data System (ADS)

    Dumitrescu, Alexandru; Busuioc, Aristita

    2016-04-01

    EURO-CORDEX is the European branch of the international CORDEX initiative that aims to provide improved regional climate change projections for Europe. The main objective of this paper is to document the performance of the individual models in reproducing the variability of precipitation extremes in Romania. Here three EURO-CORDEX regional climate models (RCMs) ensemble (scenario RCP4.5) are analysed and inter-compared: DMI-HIRHAM5, KNMI-RACMO2.2 and MPI-REMO. Compared to previous studies, when the RCM validation regarding the Romanian climate has mainly been made on mean state and at station scale, a more quantitative approach of precipitation extremes is proposed. In this respect, to have a more reliable comparison with observation, a high resolution daily precipitation gridded data set was used as observational reference (CLIMHYDEX project). The comparison between the RCM outputs and observed grid point values has been made by calculating three extremes precipitation indices, recommended by the Expert Team on Climate Change Detection Indices (ETCCDI), for the 1976-2005 period: R10MM, annual count of days when precipitation ≥10mm; RX5DAY, annual maximum 5-day precipitation and R95P%, precipitation fraction of annual total precipitation due to daily precipitation > 95th percentile. The RCMs capability to reproduce the mean state for these variables, as well as the main modes of their spatial variability (given by the first three EOF patterns), are analysed. The investigation confirms the ability of RCMs to simulate the main features of the precipitation extreme variability over Romania, but some deficiencies in reproducing of their regional characteristics were found (for example, overestimation of the mea state, especially over the extra Carpathian regions). This work has been realised within the research project "Changes in climate extremes and associated impact in hydrological events in Romania" (CLIMHYDEX), code PN II-ID-2011-2-0073, financed by the Romanian

  12. Relativistic geodesy

    NASA Astrophysics Data System (ADS)

    Flury, J.

    2016-06-01

    Quantum metrology enables new applications in geodesy, including relativistic geodesy. The recent progress in optical atomic clocks and in long-distance frequency transfer by optical fiber together pave the way for using measurements of the gravitational frequency redshift for geodesy. The remote comparison of frequencies generated by calibrated clocks will allow for a purely relativistic determination of differences in gravitational potential and height between stations on Earth surface (chronometric leveling). The long-term perspective is to tie potential and height differences to atomic standards in order to overcome the weaknesses and inhomogeneity of height systems determined by classical spirit leveling. Complementarily, gravity measurements with atom interferometric setups, and satellite gravimetry with space borne laser interferometers allow for new sensitivities in the measurement of the Earth's gravity field.

  13. Relativistic klystrons

    SciTech Connect

    Allen, M.A.; Azuma, O.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Hoag, H.A.; Koontz, R.F.

    1989-03-01

    Experimental work is underway by a SLAC-LLNL-LBL collaboration to investigate the feasibility of using relativistic klystrons as a power source for future high gradient accelerators. Two different relativistic klystron configurations have been built and tested to date: a high grain multicavity klystron at 11.4 GHz and a low gain two cavity subharmonic buncher driven at 5.7 GHz. In both configurations power is extracted at 11.4 GHz. In order to understand the basic physics issues involved in extracting RF from a high power beam, we have used both a single resonant cavity and a multi-cell traveling wave structure for energy extraction. We have learned how to overcome our previously reported problem of high power RF pulse shortening, and have achieved peak RF power levels of 170 MW with the RF pulse of the same duration as the beam current pulse. 6 refs., 3 figs., 3 tabs.

  14. Relativistic tidal disruption events

    NASA Astrophysics Data System (ADS)

    Levan, A.

    2012-12-01

    In March 2011 Swift detected an extremely luminous and long-lived outburst from the nucleus of an otherwise quiescent, low luminosity (LMC-like) galaxy. Named Swift J1644+57, its combination of high-energy luminosity (1048 ergs s-1 at peak), rapid X-ray variability (factors of >100 on timescales of 100 seconds) and luminous, rising radio emission suggested that we were witnessing the birth of a moderately relativistic jet (Γ ˜ 2 - 5), created when a star is tidally disrupted by the supermassive black hole in the centre of the galaxy. A second event, Swift J2058+0516, detected two months later, with broadly similar properties lends further weight to this interpretation. Taken together this suggests that a fraction of tidal disruption events do indeed create relativistic outflows, demonstrates their detectability, and also implies that low mass galaxies can host massive black holes. Here, I briefly outline the observational properties of these relativistic tidal flares observed last year, and their evolution over the first year since their discovery.

  15. Regional impacts of global change: seasonal trends in extreme rainfall, run-off and temperature in two contrasting regions of Morocco

    NASA Astrophysics Data System (ADS)

    Khomsi, Kenza; Mahe, Gil; Tramblay, Yves; Sinan, Mohamed; Snoussi, Maria

    2016-05-01

    In Morocco, socio-economic activities are highly vulnerable to extreme weather events. This study investigates trends in mean and extreme rainfall, run-off and temperature, as well as their relationship with large-scale atmospheric circulation. It focuses on two Moroccan watersheds: the subhumid climate region of Bouregreg in the north and the semi-arid region of Tensift in the south, using data from 1977 to 2003. The study is based on a set of daily temperature, precipitation and run-off time series retrieved from weather stations in the two regions. Results do not show a homogeneous behaviour in the two catchments; the influence of the large-scale atmospheric circulation is different and a clear spatial dependence of the trend analysis linked to the distance from the coast and the mountains can be observed. Overall, temperature trends are mostly positive in the studied area, while weak statistically significant trends can be identified in seasonal rainfall, extreme rainfall events, average run-off and extreme run-off events.

  16. Resilience of coral calcification to extreme temperature variations in the Kimberley region, northwest Australia

    NASA Astrophysics Data System (ADS)

    Dandan, S. S.; Falter, J. L.; Lowe, R. J.; McCulloch, M. T.

    2015-12-01

    We report seasonal changes in coral calcification within the highly dynamic intertidal and subtidal zones of Cygnet Bay (16.5°S, 123.0°E) in the Kimberley region of northwest Australia, where the tidal range can reach nearly 8 m and the temperature of nearshore waters ranges seasonally by ~9 °C from a minimum monthly mean of ~22 °C to a maximum of over 31 °C. Corals growing within the more isolated intertidal sites experienced maximum temperatures of up to ~35 °C during spring low tides in addition to being routinely subjected to high levels of irradiance (>1500 µmol m-2 s-1) under near stagnant conditions. Mixed model analysis revealed a significant effect of tidal exposure on the growth of Acropora aspera, Dipsastraea favus, and Trachyphyllia geoffroyi ( p ≤ 0.04), as well as a significant effect of season on A. aspera and T. geoffroyi ( p ≤ 0.01, no effect on D. favus); however, the growth of both D. favus and T. geoffroyi appeared to be better suited to the warm summer conditions of the intertidal compared to A. aspera. Through an additional comparative study, we found that Acropora from Cygnet Bay calcified at a rate 69 % faster than a species from the same genus living in a backreef environment of a more typical tropical reef located 1200 km southwest of Cygnet Bay (0.59 ± 0.02 vs. 0.34 ± 0.02 g cm-2 yr-1 for A. muricata from Coral Bay, Ningaloo Reef; p < 0.001, df = 28.9). The opposite behaviour was found for D. favus from the same environments, with colonies from Cygnet Bay calcifying at rates that were 33 % slower than the same species from Ningaloo Reef (0.29 ± 0.02 vs. 0.44 ± 0.03 g cm-2 yr-1, p < 0.001, df = 37.9). Our findings suggest that adaption and/or acclimatization of coral to the more thermally extreme environments at Cygnet Bay is strongly taxon dependent.

  17. Relativistic Astrophysics

    NASA Astrophysics Data System (ADS)

    Jones, Bernard J. T.; Markovic, Dragoljub

    1997-06-01

    Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.

  18. [Theoretical analysis and experimental measurement for secondary electron yield of microchannel plate in extreme ultraviolet region].

    PubMed

    Li, Min; Ni, Qi-liang; Dong, Ning-ning; Chen, Bo

    2010-08-01

    Photon counting detectors based on microchannel plate have widespread applications in astronomy. The present paper deeply studies secondary electron of microchannel plate in extreme ultraviolet. A theoretical model describing extreme ultraviolet-excited secondary electron yield is presented, and the factor affecting on the secondary electron yields of both electrode and lead glass which consist of microchannel plate is analyzed according to theoretical formula derived from the model. The result shows that the higher secondary electron yield is obtained under appropriate condition that the thickness of material is more than 20 nm and the grazing incidence angle is larger than the critical angle. Except for several wavelengths, the secondary electron yields of both electrode and lead glass decrease along with the increase in the wavelength And also the quantum efficiency of microchannel plate is measured using quantum efficiency test set-up with laser-produced plasmas source as an extreme ultraviolet radiation source, and the result of experiment agrees with theoretical analysis.

  19. Phenomenological Relativistic Energy Density Functionals

    SciTech Connect

    Lalazissis, G. A.; Kartzikos, S.; Niksic, T.; Paar, N.; Vretenar, D.; Ring, P.

    2009-08-26

    The framework of relativistic nuclear energy density functionals is applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of beta-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure is explored using the fully consistent quasiparticle random-phase approximation based on the relativistic Hartree-Bogoliubov model. Recent applications of energy density functionals with explicit density dependence of the meson-nucleon couplings are presented.

  20. Assessment of climate change impact on hydrological extremes in two source regions of the Nile River Basin

    NASA Astrophysics Data System (ADS)

    Taye, M. T.; Ntegeka, V.; Ogiramoi, N. P.; Willems, P.

    2011-01-01

    The potential impact of climate change was investigated on the hydrological extremes of Nyando River and Lake Tana catchments, which are located in two source regions of the Nile River basin. Climate change scenarios were developed for rainfall and potential evapotranspiration (ETo), considering 17 General Circulation Model (GCM) simulations to better understand the range of possible future change. They were constructed by transferring the extracted climate change signals to the observed series using a frequency perturbation downscaling approach, which accounts for the changes in rainfall extremes. Projected changes under two future SRES emission scenarios A1B and B1 for the 2050s were considered. Two conceptual hydrological models were calibrated and used for the impact assessment. Their difference in simulating the flows under future climate scenarios was also investigated. The results reveal increasing mean runoff and extreme peak flows for Nyando catchment for the 2050s while unclear trend is observed for Lake Tana catchment for mean volumes and high/low flows. The hydrological models for Lake Tana catchment, however, performed better in simulating the hydrological regimes than for Nyando, which obviously also induces a difference in the reliability of the extreme future projections for both catchments. The unclear impact result for Lake Tana catchment implies that the GCM uncertainty is more important for explaining the unclear trend than the hydrological models uncertainty. Nevertheless, to have a better understanding of future impact, hydrological models need to be verified for their credibility of simulating extreme flows.

  1. Hydrologic Extremes in a changing climate: how much information can regional climate models provide?

    SciTech Connect

    Lettenmaier, Dennis P.

    2012-08-14

    We proposed to identify a set of about 10 urban areas across the western U.S., and hourly precipitation data within each of these areas, which were extracted from the NCDC TD 3240. We also proposed to analyze the annual maximum series of precipitation extremes simulated for NARCCAP (using Reanalysis boundary forcing) for the grid cells close to station data, and to compare the distributions of annual maximum precipitation for accumulation intervals ranging from one to 28 hours. Recognizing that there may inevitably be differences between the station data and RCM grid cell values, we proposed to examine the scale dependence in the distributions of extremes.

  2. Extreme regimes of atmospheric circulation and their role in the formation of temperature and precipitation fields in the Arctic region

    NASA Astrophysics Data System (ADS)

    Irina, Kulikova; Ekaterina, Kruglova; Dmitry, Kiktev; Vladimir, Tischenco; Valentina, Khan

    2016-04-01

    In the present study, the extreme regimes of atmospheric circulation in the Northern Hemisphere as well as their role in the formation of monthly and seasonal anomalies of temperature and precipitation fields over Arctic region were examined using NCEP / NCAR-2 reanalysis data. To identify extreme modes, climate indexes were quantitatively assessed. The mapping of monthly and seasonal temperature and precipitation fields for the different phases of indices using composite analysis was developed. It is allowed to identify allocated geographic areas in which the influence of modes of circulation for temperature and precipitation fields in Arctic is statistically significant. Quantitative estimations of contingency of atmospheric circulation modes in the Northern Hemisphere were analyzed. Special attention has been paid to the extreme episodes of the climate circulation indices, associated with formation of significant anomalies of air temperature and precipitation. The results of numerical experiments to reproduce the extreme events on monthly and seasonal time scale on the basis of the global semi-Lagrangian model SL-AV, developed in collaboration of Institute of Numerical Mathematics and Hydrometeorological Centre of Russia, have been discussed. For this study the support has been provided by Grant of Russian Science Foundation (№14-37-00053).

  3. Bidirectional iterative parcellation of diffusion weighted imaging data: Separating cortical regions connected by the arcuate fasciculus and extreme capsule

    PubMed Central

    Patterson, Dianne K.; Van Petten, Cyma; Beeson, Pélagie M.; Rapcsak, Steven Z.; Plante, Elena

    2014-01-01

    This paper introduces a Bidirectional Iterative Parcellation (BIP) procedure designed to identify the location and size of connected cortical regions (parcellations) at both ends of a white matter tract in diffusion weighted images. The procedure applies the FSL option “probabilistic tracking with classification targets” in a bidirectional and iterative manner. To assess the utility of BIP, we applied the procedure to the problem of parcellating a limited set of well-established gray matter seed regions associated with the dorsal (arcuate fasciculus/superior longitudinal fasciculus) and ventral (extreme capsule fiber system) white matter tracts in the language networks of 97 participants. These left hemisphere seed regions and the two white matter tracts, along with their right hemisphere homologues, provided an excellent test case for BIP because the resulting parcellations overlap and their connectivity via the arcuate fasciculi and extreme capsule fiber systems are well studied. The procedure yielded both confirmatory and novel findings. Specifically, BIP confirmed that each tract connects within the seed regions in unique, but expected ways. Novel findings included increasingly left-lateralized parcellations associated with the arcuate fasciculus/superior longitudinal fasciculus as a function of age and education. These results demonstrate that BIP is an easily implemented technique that successfully confirmed cortical connectivity patterns predicted in the literature, and has the potential to provide new insights regarding the architecture of the brain. PMID:25173414

  4. Duskside relativistic electron precipitation

    NASA Astrophysics Data System (ADS)

    Lorentzen, Kirsten Ruth

    1999-10-01

    On August 20, 1996, a balloon-borne X-ray pinhole camera and a high resolution germanium X-ray spectrometer observed an intense X-ray event near Kiruna, Sweden, at 1835 MLT, on an L-shell of 5.8. This X-ray event consisted of seven bursts spaced 100-200 seconds apart, with smaller 10-20 second variations observed within individual bursts. The energy spectra of these bursts show the presence of X-rays with energies greater than 1 MeV, which are best accounted for by atmospheric bremsstrahlung from mono-energetic 1.7 MeV precipitating electrons. The X-ray imager observed no significant motion or small-scale spatial structure in the event, implying that the bursts were temporal in nature. Ultra- violet images from the Polar satellite and energetic particle data from the Los Alamos geosynchronous satellites show a small magnetospheric substorm onset about 24 minutes before the start of the relativistic precipitation event. Since the balloon was south of the auroral oval and there was no associated increase in relativistic electron flux at geosynchronous altitude, the event must be the result of some mechanism selectively precipitating ambient relativistic electrons from the radiation belts. The balloon X-ray observations are analyzed in a magnetospheric context, in order to determine which of several mechanisms for selective precipitation of relativistic electrons can account for the event. Resonance with electromagnetic ion cyclotron mode waves on the equator is the most likely candidate. The drift of substorm-injected warm protons is calculated using input from the geosynchronous satellites. Wave growth in the model is driven by temperature anisotropies in the warm proton population. A numerical solution of the wave dispersion relation shows that electromagnetic ion cyclotron waves can be excited in high-density duskside regions such as the plasmasphere or detached plasma regions. These waves can selectively precipitate relativistic electrons of energy 1.7 MeV in

  5. Relativistic oscillator strengths of the rubidium isoelectronic sequence in the vicinity of the d orbital collapse region

    NASA Astrophysics Data System (ADS)

    Migdalek, J.

    2016-09-01

    The influence of valence–core electron local and nonlocal exchange and valence–core electron correlation (core polarization) on oscillator strengths is studied along the Rb isoelectronic sequence in the vicinity of the d orbital collapse region using model potential and Dirac–Fock methods.

  6. A radar-based regional extreme rainfall analysis to derive the thresholds for a novel automatic alert system in Switzerland

    NASA Astrophysics Data System (ADS)

    Panziera, Luca; Gabella, Marco; Zanini, Stefano; Hering, Alessandro; Germann, Urs; Berne, Alexis

    2016-06-01

    This paper presents a regional extreme rainfall analysis based on 10 years of radar data for the 159 regions adopted for official natural hazard warnings in Switzerland. Moreover, a nowcasting tool aimed at issuing heavy precipitation regional alerts is introduced. The two topics are closely related, since the extreme rainfall analysis provides the thresholds used by the nowcasting system for the alerts. Warm and cold seasons' monthly maxima of several statistical quantities describing regional rainfall are fitted to a generalized extreme value distribution in order to derive the precipitation amounts corresponding to sub-annual return periods for durations of 1, 3, 6, 12, 24 and 48 h. It is shown that regional return levels exhibit a large spatial variability in Switzerland, and that their spatial distribution strongly depends on the duration of the aggregation period: for accumulations of 3 h and shorter, the largest return levels are found over the northerly alpine slopes, whereas for longer durations the southern Alps exhibit the largest values. The inner alpine chain shows the lowest values, in agreement with previous rainfall climatologies. The nowcasting system presented here is aimed to issue heavy rainfall alerts for a large variety of end users, who are interested in different precipitation characteristics and regions, such as, for example, small urban areas, remote alpine catchments or administrative districts. The alerts are issued not only if the rainfall measured in the immediate past or forecast in the near future exceeds some predefined thresholds but also as soon as the sum of past and forecast precipitation is larger than threshold values. This precipitation total, in fact, has primary importance in applications for which antecedent rainfall is as important as predicted one, such as urban floods early warning systems. The rainfall fields, the statistical quantity representing regional rainfall and the frequency of alerts issued in case of

  7. Laboratory calibration of density-dependent lines in the extreme ultraviolet spectral region

    SciTech Connect

    Lepson, J. K.; Beiersdorfer, P.; Gu, M. F.; Desai, P.; Bitter, M.; Roquemore, L.; Reinke, M. L.

    2012-05-25

    We have been making spectral measurements in the extreme ultraviolet (EUV) from different laboratory sources in order to investigate the electron density dependence of various astrophysically important emission lines and to test the atomic models underlying the diagnostic line ratios. The measurement are being performed at the Livermore EBIT-I electron beam ion trap, the National Spherical Torus Experiment (NSTX) at Princeton, and the Alcator C-Mod tokamak at the Massachusetts Institute of Technology, which together span an electron density of four orders of magnitude and which allow us to test the various models at high and low density limits. Here we present measurements of Fe XXII and Ar XIV, which include new data from an ultra high resolution ({lambda}/{Delta}{lambda} >4000) spectrometer at the EBIT-I facility. We found good agreement between the measurements and modeling calculations for Fe XXII, but poorer agreement for Ar XIV.

  8. Dynamics of temperature and precipitation extremes and their spatial variation in the arid region of northwest China

    NASA Astrophysics Data System (ADS)

    Deng, Haijun; Chen, Yaning; Shi, Xun; Li, Weihong; Wang, Huaijun; Zhang, Shuhua; Fang, Gonghuan

    2014-03-01

    Climate extremes have more direct and significant impact than average state on social and ecological systems. Using data from 68 meteorological stations in the arid region of northwest China (ARNC) for the past 50 years (1961-2010), we conducted Mann-Kendal nonparametric trend analysis on the time series of temperature and precipitation extremes in different regions of the ARNC. The analysis found that in the past 50 years, 1) overall for the ARNC, three temperature indices, including the annual mean temperature (Tav), annual average daily minimum temperature (Tnav), and annual average daily maximum temperature (Txav) all had increasing trends; 2) overall for the ARNC, three precipitation indices, including the annual mean precipitation (Pav), number of days for daily precipitation ≥ 10 mm (Pn10mm) and annual maximum number of consecutive wet days (Pxcwd) also all had increasing trends; 3) regionally, Tnav and Pn10mm in north Xinjiang considerably increased; in both north and south Xinjiang, annual maximum number of consecutive dry days (Pxcdd) considerably decreased, whereas Pxcwd considerably increased; and the main pattern of Hexi Corridor is that Txav considerably increased; 4) it appears that the increase of Tav in the ARNC in the past 50 years is related to the increase of Tnav and Txav; and 5) the increase of precipitation in north and south Xinjiang is a result of the joint effect of the increases of Pn10mm and Pxcwd. Generally, in ARNC, during the past 50 years the dynamics of climate extremes are closely related to the dynamics of climate average state, and are major contributors to the overall climate change.

  9. Relativistic fluid dynamics. Proceedings.

    NASA Astrophysics Data System (ADS)

    Anile, A. M.; Choquet-Bruhat, Y.

    Contents: 1. Covariant theory of conductivity in ideal fluid or solid media (B. Carter). 2. Hamiltonian techniques for relativistic fluid dynamics and stability theory (D. D. Holm). 3. Covariant fluid mechanics and thermodynamics: an introduction (W. Israel). 4. Relativistic plasmas (H. Weitzner). 5. An improved relativistic warm plasma model (A. M. Anile, S. Pennisi). 6. Relativistic extended thermodynamics II (I. Müller). 7. Relativistic extended thermodynamics: general assumptions and mathematical procedure (T. Ruggeri). 8. Relativistic hydrodynamics and heavy ion reactions (D. Strottman). 9. Some problems in relativistic hydrodynamics (C. G. van Weert).

  10. Influence of Large-scale Climate Modes on Atmospheric Rivers That Drive Regional Precipitation Extremes

    NASA Astrophysics Data System (ADS)

    Guan, B.; Molotch, N. P.; Waliser, D. E.; Fetzer, E. J.; Neiman, P. J.

    2014-12-01

    Atmospheric rivers (ARs) are narrow channels of enhanced meridional water vapor transport between the tropics and extratropics that drive precipitation extremes in the west coast areas of North America and other continents. The influence of large-scale climate modes on ARs is analyzed in terms of modulation on AR frequency and AR-related snow water equivalent (SWE) anomalies, with a focus on understanding the causes of the anomalously snowy winter season of 2010/2011 in California's Sierra Nevada. Mean SWE on 1 April 2011 was ~70% above normal averaged over 100 snow sensors. AR occurrence was anomalously high during the season, with 20 AR dates from November to March and 14 dates in the month of December 2010, compared to the mean occurrence of 9 dates per season. Most of the season's ARs occurred during negative phases of the Arctic Oscillation (AO) and the Pacific-North American (PNA) teleconnection pattern. Analysis of all winter ARs in California during water years 1998-2011 indicates more ARs occur during the negative phase of AO and PNA, with the increase between positive and negative phases being ~90% for AO, and ~50% for PNA. The circulation pattern associated with concurrent negative phases of AO and PNA, characterized by cyclonic anomalies centered northwest of California, provides a favorable dynamical condition for ARs. The analysis suggests that the massive Sierra Nevada snowpack during the 2010/2011 winter season is primarily related to anomalously high frequency of ARs favored by the joint phasing of -AO and -PNA, and that a secondary contribution is from increased snow accumulation during these ARs favored by colder air temperatures associated with -AO, -PNA and La Niña. The results have implications for subseasonal-to-seasonal predictability of AR activities and related weather and water extremes.

  11. Impacts on cropping systems of present and future extreme events assessed with various regional climate models in the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Ruiz-Ramos, M.; Gallardo, C.; Sánchez, E.; Mínguez, M. I.

    2009-04-01

    Climate variability and extreme events in particular, are expected to increase with climate change. Several types of extreme processes, such as freezing, heat or cold waves, droughts or heavy precipitation situations are of special relevance for agricultural impacts. Not only the frequency and intensity of these events but also their timing compared to the crop development will determine their impact. Mediterranean agriculture has been reported to present important climate change impacts with related high uncertainty. In this work, crop simulation models of maize and wheat were applied in several agricultural locations of the Iberian Peninsula using climate data from a group of regional climate models (RCMs) participating in the European Project PRUDENCE. The objective was to analyze the effect of extreme events in agriculture in future climate (A2 IPCC SRES scenario for 2070-2100) in relation to current conditions (1960-1990). The use of several RCMs allows for one uncertainty evaluation associated to these processes. The analysis enabled identifying periods with maximum and minimum probability of risk related to crop development, and will help to design adaptation strategies in cropping systems to match minimum risk periods.

  12. Signature of Nonstationarity in Precipitation Extremes over Urbanizing Regions in India Identified through a Multivariate Frequency Analyses

    NASA Astrophysics Data System (ADS)

    Singh, Jitendra; Hari, Vittal; Sharma, Tarul; Karmakar, Subhankar; Ghosh, Subimal

    2016-04-01

    The statistical assumption of stationarity in hydrologic extreme time/event series has been relied heavily in frequency analysis. However, due to the analytically perceivable impacts of climate change, urbanization and concomitant land use pattern, assumption of stationarity in hydrologic time series will draw erroneous results, which in turn may affect the policy and decision-making. Past studies provided sufficient evidences on changes in the characteristics of Indian monsoon precipitation extremes and further it has been attributed to climate change and urbanization, which shows need of nonstationary analysis on the Indian monsoon extremes. Therefore, a comprehensive multivariate nonstationary frequency analysis has been conducted for the entire India to identify the precipitation characteristics (intensity, duration and depth) responsible for significant nonstationarity in the Indian monsoon. We use 1o resolution of precipitation data for a period of 1901-2004, in a Generalized Additive Model for Location, Scale and Shape (GAMLSS) framework. A cluster of GAMLSS models has been developed by considering nonstationarity in different combinations of distribution parameters through different regression techniques, and the best-fit model is further applied for bivariate analysis. A population density data has been utilized to identify the urban, urbanizing and rural regions. The results showed significant differences in the stationary and nonstationary bivariate return periods for the urbanizing grids, when compared to urbanized and rural grids. A comprehensive multivariate analysis has also been conducted to identify the precipitation characteristics particularly responsible for imprinting signature of nonstationarity.

  13. Spatio-temporal characteristics of the extreme precipitation by L-moment-based index-flood method in the Yangtze River Delta region, China

    NASA Astrophysics Data System (ADS)

    Yin, Yixing; Chen, Haishan; Xu, Chong-Yu; Xu, Wucheng; Chen, Changchun; Sun, Shanlei

    2016-05-01

    The regionalization methods, which "trade space for time" by pooling information from different locations in the frequency analysis, are efficient tools to enhance the reliability of extreme quantile estimates. This paper aims at improving the understanding of the regional frequency of extreme precipitation by using regionalization methods, and providing scientific background and practical assistance in formulating the regional development strategies for water resources management in one of the most developed and flood-prone regions in China, the Yangtze River Delta (YRD) region. To achieve the main goals, L-moment-based index-flood (LMIF) method, one of the most popular regionalization methods, is used in the regional frequency analysis of extreme precipitation with special attention paid to inter-site dependence and its influence on the accuracy of quantile estimates, which has not been considered by most of the studies using LMIF method. Extensive data screening of stationarity, serial dependence, and inter-site dependence was carried out first. The entire YRD region was then categorized into four homogeneous regions through cluster analysis and homogenous analysis. Based on goodness-of-fit statistic and L-moment ratio diagrams, generalized extreme-value (GEV) and generalized normal (GNO) distributions were identified as the best fitted distributions for most of the sub-regions, and estimated quantiles for each region were obtained. Monte Carlo simulation was used to evaluate the accuracy of the quantile estimates taking inter-site dependence into consideration. The results showed that the root-mean-square errors (RMSEs) were bigger and the 90 % error bounds were wider with inter-site dependence than those without inter-site dependence for both the regional growth curve and quantile curve. The spatial patterns of extreme precipitation with a return period of 100 years were finally obtained which indicated that there are two regions with highest precipitation

  14. Climate change effects on extreme flows of water supply area in Istanbul: utility of regional climate models and downscaling method.

    PubMed

    Kara, Fatih; Yucel, Ismail

    2015-09-01

    This study investigates the climate change impact on the changes of mean and extreme flows under current and future climate conditions in the Omerli Basin of Istanbul, Turkey. The 15 regional climate model output from the EU-ENSEMBLES project and a downscaling method based on local implications from geophysical variables were used for the comparative analyses. Automated calibration algorithm is used to optimize the parameters of Hydrologiska Byråns Vattenbalansavdel-ning (HBV) model for the study catchment using observed daily temperature and precipitation. The calibrated HBV model was implemented to simulate daily flows using precipitation and temperature data from climate models with and without downscaling method for reference (1960-1990) and scenario (2071-2100) periods. Flood indices were derived from daily flows, and their changes throughout the four seasons and year were evaluated by comparing their values derived from simulations corresponding to the current and future climate. All climate models strongly underestimate precipitation while downscaling improves their underestimation feature particularly for extreme events. Depending on precipitation input from climate models with and without downscaling the HBV also significantly underestimates daily mean and extreme flows through all seasons. However, this underestimation feature is importantly improved for all seasons especially for spring and winter through the use of downscaled inputs. Changes in extreme flows from reference to future increased for the winter and spring and decreased for the fall and summer seasons. These changes were more significant with downscaling inputs. With respect to current time, higher flow magnitudes for given return periods will be experienced in the future and hence, in the planning of the Omerli reservoir, the effective storage and water use should be sustained.

  15. Neuropathic pain with features of complex regional syndrome in the upper extremity after herpes zoster.

    PubMed

    Giménez-Milà, Marc; Busquets, Carme; Ojeda, Antonio; Faulí, Adela; Moreno, Luis Alfonso; Videla, Sebastian

    2014-02-01

    We report a case of a 73-year-old female who developed unbearable neuropathic pain after a herpes zoster episode. The pain persisted and could not be controlled despite multimodal analgesia. In addition to postherpetic neuralgia, myelitis and complex regional pain syndrome were diagnosed during the evolution of neuropathic pain. This complex neuropathic pain was resolved after sympathetic ganglion block.

  16. Climatology of Extreme Winds in the Chukchi/Beaufort Seas/Alaska Region Using the North American Regional Reanalysis

    NASA Astrophysics Data System (ADS)

    Stegall, S. T.; Zhang, J.

    2009-12-01

    The high-resolution (32km, 3-hourly) North American Regional Reanalysis (NARR) surface winds were used to examine the detailed structures of the distribution and evolution of the surface wind across the Chukchi/Beaufort Seas/Alaska region. First the NARR surface winds were verified against the station observations over the study area and the comparisons indicate that NARR essentially captures the distribution of the observed winds in summer. However, an obvious bias exists in winter, when the easterly component of the bimodal pattern is overestimated, while the westerly component is underestimated, particularly in January. Then we used the NARR surface wind data to examine the wind field climatological features, interannual variability and long-term change over the study area by analyzing the monthly maximums, 99th, 95th, 90th, and 50th percentile wind speeds (m/s) for each month of the year from 1979-2006. Decadal differences (i.e. the difference from 2000-2006 and 1990-1999 and 1990-1999 and 1980-1989) were also investigated to understand the long-term change in the area's surface winds. The results indicated that the maximum wind speeds in the Chukchi/Beaufort Seas have lower values from January through May. Then there is a progression northward of the higher wind speeds beginning in the Bering Strait in June and continuing into the Chukchi/Beaufort Seas during July-October; in November and December the maximum winds in the area start to decrease with a southward migration into the Chukchi Sea and eventually back through the Bering Strait into the Bering Sea, which is coincident with the sea ice retreat and advance in the area. The yearly variance of the wind speeds follow a similar northward and southward migration while the highest variance happened in October. The decadal differences mainly show a large increase in the maximum winds speeds in September and October in the Chukchi Sea.

  17. Recent Advances in Regional Climate System Modeling and ClimateChange Analyses of Extreme Heat

    SciTech Connect

    Miller, Norman L.

    2004-09-24

    During the period May 2003 to May 2004, there were two CEC/PIER funded primary research activities by the Atmosphere and Ocean Sciences Group/Earth Science Division at LBNL. These activities are the implementation and testing of the National Center for Atmospheric Research Community Land Model (CLM) into MM5, and the analysis of extreme heat days under a new set of climate simulations. The new version of MM5,MM5-CLM, has been tested for a 90 day snowmelt period in the northwestern U.S. Results show that this new code upgrade, as compared to the MM5-NOAH, has improved snowmelt, temperature, and precipitation when compared to observations. These are due in part to a subgrid scheme,advanced snow processes, and advanced vegetation. The climate change analysis is the upper and lower IPCC Special Report on Emission Scenarios, representing fossil fuel intensive and energy conserving future emission scenarios, and medium and low sensitivity Global Climate Models. Results indicate that California cities will see increases in the number of heat wave and temperature threshold days from two to six times.These results may be viewed as potential outcomes based on today's decisions on emissions.

  18. Three responses of wetland conditions to climatic extremes in the Prairie Pothole Region

    USGS Publications Warehouse

    Cressey, Ryann L.; Austin, Jane; Stafford, Joshua D.

    2016-01-01

    Wetlands in central North Dakota were revisited after 50 years to assess changes following extreme drought and a prolonged wet period. We compared data collected during 1961–1966 to current (2013–2014) wetland conditions. We revisited 80 wetlands in 2013 and 2014 across three study areas and measured wetland area, ponded-water depth, and specific conductance. Wetlands at the three study areas responded to prolonged wet conditions in one of three ways. Wetlands at Crystal Springs became larger, and had deeper ponds of lower specific conductance in 2013–14 compared to the 1960s. Wetlands at Cottonwood were larger with deeper ponds of slightly higher specific conductance in 2013–2014. Wetlands at Mt. Moriah had only subtle changes in size, pond depth, and specific conductance between periods. Prolonged wet conditions led to merging of most wetlands (defined as the outer edge of wet-meadow vegetation) at Crystal Springs and a few wetlands at Cottonwood. Low topographic relief at Crystal Springs and Cottonwood contributed to storage of excess water in wetlands with associated responses to prolonged wet conditions. In contrast, higher topographic relief and natural outlets into two intermittent streams at Mt. Moriah resulted in wetlands being less impacted by prolonged wet conditions.

  19. DIFFRACTION, REFRACTION, AND REFLECTION OF AN EXTREME-ULTRAVIOLET WAVE OBSERVED DURING ITS INTERACTIONS WITH REMOTE ACTIVE REGIONS

    SciTech Connect

    Shen Yuandeng; Liu Yu; Zhao Ruijuan; Tian Zhanjun; Su Jiangtao; Li Hui; Ichimoto, Kiyoshi; Shibata, Kazunari

    2013-08-20

    We present observations of the diffraction, refraction, and reflection of a global extreme-ultraviolet (EUV) wave propagating in the solar corona. These intriguing phenomena are observed when the wave interacts with two remote active regions, and together they exhibit properties of an EUV wave. When the wave approached AR11465, it became weaker and finally disappeared in the active region, but a few minutes later a new wavefront appeared behind the active region, and it was not concentric with the incoming wave. In addition, a reflected wave was also simultaneously observed on the wave incoming side. When the wave approached AR11459, it transmitted through the active region directly and without reflection. The formation of the new wavefront and the transmission could be explained with diffraction and refraction effects, respectively. We propose that the different behaviors observed during the interactions may be caused by different speed gradients at the boundaries of the two active regions. We find that the EUV wave formed ahead of a group of expanding loops a few minutes after the start of the loops' expansion, which represents the initiation of the associated coronal mass ejection (CME). Based on these results, we conclude that the EUV wave should be a nonlinear magnetosonic wave or shock driven by the associated CME, which propagated faster than the ambient fast mode speed and gradually slowed down to an ordinary linear wave. Our observations support the hybrid model that includes both fast wave and slow non-wave components.

  20. Embedded star formation in the extended narrow line region of Centaurus A: Extreme mixing observed by MUSE

    NASA Astrophysics Data System (ADS)

    Santoro, F.; Oonk, J. B. R.; Morganti, R.; Oosterloo, T. A.; Tadhunter, C.

    2016-05-01

    We present a detailed study of the complex ionization structure in a small (~250 pc) extended narrow line region (ENLR) cloud near Centaurus A using the Multi Unit Spectroscopic Explorer. This cloud is located in the so-called outer filament of ionized gas (about 15 kpc from the nucleus) where jet-induced star formation has been suggested to occur by different studies. We find that, despite the small size, a mixture of ionization mechanisms is operating, resulting in considerable complexity in the spatial ionization structure. The area includes two H ii regions where star formation is occurring and another location where star formation must have ceased very recently. Interestingly, the extreme Balmer decrement of one of the star forming regions (Hα/Hβobs ~ 6) indicates that it is still heavily embedded in its natal cocoon of gas and dust. At all three locations a continuum counterpart is found with spectra matching those of O/B stars local to Centaurus A. The H ii regions are embedded in a larger gas complex which is photoionized by the radiation of the central active galactic nucleus (AGN), but the O/B stars affect the spatial ionization pattern in the ENLR cloud very locally. In particular, in the surroundings of the youngest star forming region, we can isolate a tight mixing sequence in the diagnostic diagram going from gas with ionization due to a pure stellar continuum to gas only photoionized by the AGN. These results emphasize the complexity and the mixture of processes occurring in star forming regions under the influence of an AGN radiation. This is relevant for our understanding of AGN-induced star formation suggested to occur in a number of objects, including this region of Centaurus A. They also illustrate that these young stars influence the gas over only a limited region.

  1. Snow-atmosphere coupling and extremes over North America in the Canadian Regional Climate Model (CRCM5)

    NASA Astrophysics Data System (ADS)

    Diro, G. T.; Sushama, L.; Huziy, O.

    2015-12-01

    Given the importance of land in the climate system, we investigate the influence of land surface, in particular the variation in snow characteristics, on climate variability and extremes over North America using the fifth generation of Canadian Regional Climate Model (CRCM5). To this end, we carried out two CRCM5 simulations driven by ERA-Interim reanalysis, where snow is either prescribed (uncoupled) or evolves interactively (coupled) during the model integration. Results indicate a systematic influence of snow on the inter-annual variability of air and surface temperature throughout the winter and spring seasons. In the coupled simulations, where the snow depth and snow cover were allowed to evolve freely, the inter-annual variability of surface and near surface air temperatures were found to be larger. Comparison with the uncoupled simulation suggests that snow depth/cover variability accounts for about 70% of the total surface temperature variability over the northern Great Plains and Canadian Prairies for the winter and spring seasons. The snow-atmosphere coupling is stronger in spring than in winter, since in spring season both the albedo and the latent heat flux contribute to the variability in temperature. Snow is also found to modulate extreme temperature events such as the number of cold days over Prairies during weak La-Nina episodes. These results suggest that initializing forecast models with realistic snow condition could potentially help to improve seasonal/sub-seasonal prediction skill over these snow-atmosphere coupling hotspot regions.

  2. Extreme rainfall in South East France: added value of a convection-permitting regional climate model

    NASA Astrophysics Data System (ADS)

    Alias, Antoinette; Déqué, Michel; Somot, Samuel

    2016-04-01

    EURO-CORDEX simulations are based on 12 km numerical model. They represent with some accuracy, compared to global coupled models used in CMIP, the surface elevation in mountainous regions. As a consequence, the geographical distribution of precipitation is better at regional scale, and the frequency of high precipitation is more realistic. However these models do not explicitly resolve the convective phenomena which are responsible for the heavy accumulated rainfall. Arome model is derived from Aladin model (used in EURO-CORDEX) but uses non-hydrostatic equations, 2.5 km horizontal resolution, and a dedicated set of physical parameterizations. Its domain covers South-East France, a region which undergoes severe rainfall events in autumn. We present ERA-interim driven simulations with Aladin (12 km) driving Arome (2.5 km). The analysis is focussed on daily and hourly precipitation in extended autumn (ASOND) in the central part of the domain. We compare Aladin (i.e. EURO-CORDEX) and Arome simulations in their ability to simulate observed data.

  3. Extreme HOT regions are CpG-dense promoters in C. elegans and humans

    PubMed Central

    Chen, Ron A.-J.; Stempor, Przemyslaw; Down, Thomas A.; Zeiser, Eva; Feuer, Sky K.; Ahringer, Julie

    2014-01-01

    Most vertebrate promoters lie in unmethylated CpG-dense islands, whereas methylation of the more sparsely distributed CpGs in the remainder of the genome is thought to contribute to transcriptional repression. Nonmethylated CG dinucleotides are recognized by CXXC finger protein 1 (CXXC1, also known as CFP1), which recruits SETD1A (also known as Set1) methyltransferase for trimethylation of histone H3 lysine 4, an active promoter mark. Genomic regions enriched for CpGs are thought to be either absent or irrelevant in invertebrates that lack DNA methylation, such as C. elegans; however, a CXXC1 ortholog (CFP-1) is present. Here we demonstrate that C. elegans CFP-1 targets promoters with high CpG density, and these promoters are marked by high levels of H3K4me3. Furthermore, as for mammalian promoters, high CpG content is associated with nucleosome depletion irrespective of transcriptional activity. We further show that highly occupied target (HOT) regions identified by the binding of a large number of transcription factors are CpG-rich promoters in C. elegans and human genomes, suggesting that the unusually high factor association at HOT regions may be a consequence of CpG-linked chromatin accessibility. Our results indicate that nonmethylated CpG-dense sequence is a conserved genomic signal that promotes an open chromatin state, targeting by a CXXC1 ortholog, and H3K4me3 modification in both C. elegans and human genomes. PMID:24653213

  4. Extreme HOT regions are CpG-dense promoters in C. elegans and humans.

    PubMed

    Chen, Ron A-J; Stempor, Przemyslaw; Down, Thomas A; Zeiser, Eva; Feuer, Sky K; Ahringer, Julie

    2014-07-01

    Most vertebrate promoters lie in unmethylated CpG-dense islands, whereas methylation of the more sparsely distributed CpGs in the remainder of the genome is thought to contribute to transcriptional repression. Nonmethylated CG dinucleotides are recognized by CXXC finger protein 1 (CXXC1, also known as CFP1), which recruits SETD1A (also known as Set1) methyltransferase for trimethylation of histone H3 lysine 4, an active promoter mark. Genomic regions enriched for CpGs are thought to be either absent or irrelevant in invertebrates that lack DNA methylation, such as C. elegans; however, a CXXC1 ortholog (CFP-1) is present. Here we demonstrate that C. elegans CFP-1 targets promoters with high CpG density, and these promoters are marked by high levels of H3K4me3. Furthermore, as for mammalian promoters, high CpG content is associated with nucleosome depletion irrespective of transcriptional activity. We further show that highly occupied target (HOT) regions identified by the binding of a large number of transcription factors are CpG-rich promoters in C. elegans and human genomes, suggesting that the unusually high factor association at HOT regions may be a consequence of CpG-linked chromatin accessibility. Our results indicate that nonmethylated CpG-dense sequence is a conserved genomic signal that promotes an open chromatin state, targeting by a CXXC1 ortholog, and H3K4me3 modification in both C. elegans and human genomes. PMID:24653213

  5. Asparagine 326 in the extremely C-terminal region of XRCC4 is essential for the cell survival after irradiation

    SciTech Connect

    Wanotayan, Rujira; Fukuchi, Mikoto; Imamichi, Shoji; Sharma, Mukesh Kumar; Matsumoto, Yoshihisa

    2015-02-20

    XRCC4 is one of the crucial proteins in the repair of DNA double-strand break (DSB) through non-homologous end-joining (NHEJ). As XRCC4 consists of 336 amino acids, N-terminal 200 amino acids include domains for dimerization and for association with DNA ligase IV and XLF and shown to be essential for XRCC4 function in DSB repair and V(D)J recombination. On the other hand, the role of the remaining C-terminal region of XRCC4 is not well understood. In the present study, we noticed that a stretch of ∼20 amino acids located at the extreme C-terminus of XRCC4 is highly conserved among vertebrate species. To explore its possible importance, series of mutants in this region were constructed and assessed for the functionality in terms of ability to rescue radiosensitivity of M10 cells lacking XRCC4. Among 13 mutants, M10 transfectant with N326L mutant (M10-XRCC4{sup N326L}) showed elevated radiosensitivity. N326L protein showed defective nuclear localization. N326L sequence matched the consensus sequence of nuclear export signal. Leptomycin B treatment accumulated XRCC4{sup N326L} in the nucleus but only partially rescued radiosensitivity of M10-XRCC4{sup N326L}. These results collectively indicated that the functional defects of XRCC4{sup N326L} might be partially, but not solely, due to its exclusion from nucleus by synthetic nuclear export signal. Further mutation of XRCC4 Asn326 to other amino acids, i.e., alanine, aspartic acid or glutamine did not affect the nuclear localization but still exhibited radiosensitivity. The present results indicated the importance of the extremely C-terminal region of XRCC4 and, especially, Asn326 therein. - Highlights: • Extremely C-terminal region of XRCC4 is highly conserved among vertebrate species. • XRCC4 C-terminal point mutants, R325F and N326L, are functionally deficient in terms of survival after irradiation. • N326L localizes to the cytoplasm because of synthetic nuclear export signal. • Leptomycin B restores the

  6. Variations in the sensitivity of US maize yield to extreme temperatures by region and growth phase

    NASA Astrophysics Data System (ADS)

    Butler, Ethan E.; Huybers, Peter

    2015-03-01

    Maize yield is sensitive to high temperatures, and most large scale analyses have used a single, fixed sensitivity to represent this vulnerability over the course of a growing season. Field scale studies, in contrast, highlight how temperature sensitivity varies over the course of development. Here we couple United States Department of Agriculture yield and development data from 1981-2012 with weather station data to resolve temperature sensitivity according to both region and growth interval. On average, temperature sensitivity peaks during silking and grain filling, but there are major regional variations. In Northern states grain filling phases are shorter when temperatures are higher, whereas Southern states show little yield sensitivity and have longer grain filling phases during hotter seasons. This pattern of grain filling sensitivity and duration accords with the whole-season temperature sensitivity in US maize identified in recent studies. Further exploration of grain filling duration and its response to high temperatures may be useful in determining the degree to which maize agriculture can be adapted to a hotter climate.

  7. Asparagine 326 in the extremely C-terminal region of XRCC4 is essential for the cell survival after irradiation.

    PubMed

    Wanotayan, Rujira; Fukuchi, Mikoto; Imamichi, Shoji; Sharma, Mukesh Kumar; Matsumoto, Yoshihisa

    2015-02-20

    XRCC4 is one of the crucial proteins in the repair of DNA double-strand break (DSB) through non-homologous end-joining (NHEJ). As XRCC4 consists of 336 amino acids, N-terminal 200 amino acids include domains for dimerization and for association with DNA ligase IV and XLF and shown to be essential for XRCC4 function in DSB repair and V(D)J recombination. On the other hand, the role of the remaining C-terminal region of XRCC4 is not well understood. In the present study, we noticed that a stretch of ∼20 amino acids located at the extreme C-terminus of XRCC4 is highly conserved among vertebrate species. To explore its possible importance, series of mutants in this region were constructed and assessed for the functionality in terms of ability to rescue radiosensitivity of M10 cells lacking XRCC4. Among 13 mutants, M10 transfectant with N326L mutant (M10-XRCC4(N326L)) showed elevated radiosensitivity. N326L protein showed defective nuclear localization. N326L sequence matched the consensus sequence of nuclear export signal. Leptomycin B treatment accumulated XRCC4(N326L) in the nucleus but only partially rescued radiosensitivity of M10-XRCC4(N326L). These results collectively indicated that the functional defects of XRCC4(N326L) might be partially, but not solely, due to its exclusion from nucleus by synthetic nuclear export signal. Further mutation of XRCC4 Asn326 to other amino acids, i.e., alanine, aspartic acid or glutamine did not affect the nuclear localization but still exhibited radiosensitivity. The present results indicated the importance of the extremely C-terminal region of XRCC4 and, especially, Asn326 therein.

  8. Risk prediction of Critical Infrastructures against extreme natural hazards: local and regional scale analysis

    NASA Astrophysics Data System (ADS)

    Rosato, Vittorio; Hounjet, Micheline; Burzel, Andreas; Di Pietro, Antonio; Tofani, Alberto; Pollino, Maurizio; Giovinazzi, Sonia

    2016-04-01

    Natural hazard events can induce severe impacts on the built environment; they can hit wide and densely populated areas, where there is a large number of (inter)dependent technological systems whose damages could cause the failure or malfunctioning of further different services, spreading the impacts on wider geographical areas. The EU project CIPRNet (Critical Infrastructures Preparedness and Resilience Research Network) is realizing an unprecedented Decision Support System (DSS) which enables to operationally perform risk prediction on Critical Infrastructures (CI) by predicting the occurrence of natural events (from long term weather to short nowcast predictions, correlating intrinsic vulnerabilities of CI elements with the different events' manifestation strengths, and analysing the resulting Damage Scenario. The Damage Scenario is then transformed into an Impact Scenario, where punctual CI element damages are transformed into micro (local area) or meso (regional) scale Services Outages. At the smaller scale, the DSS simulates detailed city models (where CI dependencies are explicitly accounted for) that are of important input for crisis management organizations whereas, at the regional scale by using approximate System-of-Systems model describing systemic interactions, the focus is on raising awareness. The DSS has allowed to develop a novel simulation framework for predicting earthquakes shake maps originating from a given seismic event, considering the shock wave propagation in inhomogeneous media and the subsequent produced damages by estimating building vulnerabilities on the basis of a phenomenological model [1, 2]. Moreover, in presence of areas containing river basins, when abundant precipitations are expected, the DSS solves the hydrodynamic 1D/2D models of the river basins for predicting the flux runoff and the corresponding flood dynamics. This calculation allows the estimation of the Damage Scenario and triggers the evaluation of the Impact Scenario

  9. The infrared emission of G333.6-0.2 - An extremely nonspherical H II region

    NASA Technical Reports Server (NTRS)

    Hyland, A. R.; Mcgregor, P. J.; Robinson, G.; Thomas, J. A.; Becklin, E. E.; Gatley, I.; Werner, M. W.

    1980-01-01

    The southern H II region G333.6-0.2, which has a total luminosity of 3.3 million solar luminosities (for an assumed distance of 4 kpc) was mapped at 2.2, 10, 30, 50, and 100 microns. At all wavelengths, the surface brightness of the infrared radiation is unusually high and the structure of the source is compact and symmetrical. The present observations, along with previous data, suggest that G333.6-0.2 is excited by a single luminous object or a very compact cluster, which has formed on the front surface of a dense molecular cloud as seen from the earth. It is shown that the spectral and spatial characteristics of the infrared radiation can be understood in terms of this blister model.

  10. Extremely Bright Submillimeter Galaxies beyond the Lupus-I Star-forming Region

    NASA Astrophysics Data System (ADS)

    Tamura, Y.; Kawabe, R.; Shimajiri, Y.; Tsukagoshi, T.; Nakajima, Y.; Oasa, Y.; Wilner, D. J.; Chandler, C. J.; Saigo, K.; Tomida, K.; Yun, M. S.; Taniguchi, A.; Kohno, K.; Hatsukade, B.; Aretxaga, I.; Austermann, J. E.; Dickman, R.; Ezawa, H.; Goss, W. M.; Hayashi, M.; Hughes, D. H.; Hiramatsu, M.; Inutsuka, S.; Ogasawara, R.; Ohashi, N.; Oshima, T.; Scott, K. S.; Wilson, G. W.

    2015-08-01

    We report detections of two candidate distant submillimeter galaxies (SMGs), MM J154506.4-344318 and MM J154132.7-350320, which are discovered in the AzTEC/ASTE 1.1 mm survey toward the Lupus-I star-forming region. The two objects have 1.1 mm flux densities of 43.9 and 27.1 mJy, and have Herschel/SPIRE counterparts as well. The Submillimeter Array counterpart to the former SMG is identified at 890 μm and 1.3 mm. Photometric redshift estimates using all available data from the mid-infrared to the radio suggest that the redshifts of the two SMGs are {z}{photo}≃ 4-5 and 3, respectively. Near-infrared objects are found very close to the SMGs and they are consistent with low-z ellipticals, suggesting that the high apparent luminosities can be attributed to gravitational magnification. The cumulative number counts at {S}1.1{mm}≥slant 25 mJy, combined with the other two 1.1 mm brightest sources, are {0.70}-0.34+0.56 deg-2, which is consistent with a model prediction that accounts for flux magnification due to strong gravitational lensing. Unexpectedly, a z\\gt 3 SMG and a Galactic dense starless core (e.g., a first hydrostatic core) could be similar in the mid-infrared to millimeter spectral energy distributions and spatial structures at least at ≳ 1\\prime\\prime . This indicates that it is necessary to distinguish the two possibilities by means of broadband photometry from the optical to centimeter and spectroscopy to determine the redshift, when a compact object is identified toward Galactic star-forming regions.

  11. Spatio-temporal analysis of the extreme precipitation by the L-moment-based index-flood method in the Yangtze River Delta region, China

    NASA Astrophysics Data System (ADS)

    Yin, Yixing; Chen, Haishan; Xu, Chongyu; Xu, Wucheng; Chen, Changchun

    2014-05-01

    The regionalization methods which 'trade space for time' by including several at-site data records in the frequency analysis are an efficient tool to improve the reliability of extreme quantile estimates. With the main aims of improving the understanding of the regional frequency of extreme precipitation and providing scientific and practical background and assistance in formulating the regional development strategies for water resources management in one of the most developed and flood-prone regions in China, the Yangtze River Delta (YRD) region, in this paper, L-moment-based index-flood (LMIF) method, one of the popular regionalization methods, is used in the regional frequency analysis of extreme precipitation; attention was paid to inter-site dependence and its influence on the accuracy of quantile estimates, which hasn't been considered for most of the studies using LMIF method. Extensive data screening of stationarity, serial dependence and inter-site dependence was carried out first. The entire YRD region was then categorized into four homogeneous regions through cluster analysis and homogenous analysis. Based on goodness-of-fit statistic and L-moment ratio diagrams, Generalized extreme-value (GEV) and Generalized Normal (GNO) distributions were identified as the best-fit distributions for most of the sub regions. Estimated quantiles for each region were further obtained. Monte-Carlo simulation was used to evaluate the accuracy of the quantile estimates taking inter-site dependence into consideration. The results showed that the root mean square errors (RMSEs) were bigger and the 90% error bounds were wider with inter-site dependence than those with no inter-site dependence for both the regional growth curve and quantile curve. The spatial patterns of extreme precipitation with return period of 100 years were obtained which indicated that there are two regions with the highest precipitation extremes (southeastern coastal area of Zhejiang Province and the

  12. Revisiting Cholera-Climate Teleconnections in the Native Homeland: ENSO and other Extremes through the Regional Hydroclimatic Drivers

    NASA Astrophysics Data System (ADS)

    Akanda, A. S.; Jutla, A.; Huq, A.; Colwell, R. R.

    2014-12-01

    Cholera is a global disease, with significantly large outbreaks occurring since the 1990s, notably in Sub-Saharan Africa and South Asia and recently in Haiti, in the Caribbean. Critical knowledge gaps remain in the understanding of the annual recurrence in endemic areas and the nature of epidemic outbreaks, especially those that follow extreme hydroclimatic events. Teleconnections with large-scale climate phenomena affecting regional scale hydroclimatic drivers of cholera dynamics remain largely unexplained. For centuries, the Bengal delta region has been strongly influenced by the asymmetric availability of water in the rivers Ganges and the Brahmaputra. As these two major rivers are known to have strong contrasting affects on local cholera dynamics in the region, we argue that the role of El Nino-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), or other phenomena needs to be interpreted in the context of the seasonal role of individual rivers and subsequent impact on local environmental processes, not as a teleconnection having a remote and unified effect. We present a modified hypothesis that the influences of large-scale climate phenomena such as ENSO and IOD on Bengal cholera can be explicitly identified and incorporated through regional scale hydroclimatic drivers. Here, we provide an analytical review of the literature addressing cholera and climate linkages and present hypotheses, based on recent evidence, and quantification on the role of regional scale hydroclimatic drivers of cholera. We argue that the seasonal changes in precipitation and temperature, and resulting river discharge in the GBM basin region during ENSO and IOD events have a dominant combined effect on the endemic persistence and the epidemic vulnerability to cholera outbreaks in spring and fall seasons, respectively, that is stronger than the effect of localized hydrological and socio-economic sensitivities in Bangladesh. In addition, systematic identification of underlying seasonal

  13. Hydrometeorological extremes reconstructed from documentary evidence for the Jihlava region in the 17th-19th centuries

    NASA Astrophysics Data System (ADS)

    Dolak, Lukas; Brazdil, Rudolf; Chroma, Katerina; Valasek, Hubert; Belinova, Monika; Reznickova, Ladislava

    2016-04-01

    Different documentary evidence (taxation records, chronicles, insurance reports etc.) is used for reconstruction of hydrometeorological extremes (HMEs) in the Jihlava region (central part of the recent Czech Republic) in the 17th-19th centuries. The aim of the study is description of the system of tax alleviation in Moravia, presentation of utilization of early fire and hail damage insurance claims and application of the new methodological approaches for the analysis of HMEs impacts. During the period studied more than 400 HMEs were analysed for the 16 estates (past basic economic units). Late frost on 16 May 1662 on the Nove Mesto na Morave estate, which destroyed whole cereals and caused damage in the forests, is the first recorded extreme event. Downpours causing flash floods and hailstorms are the most frequently recorded natural disasters. Moreover, floods, droughts, windstorms, blizzards, late frosts and lightning strikes starting fires caused enormous damage as well. The impacts of HMEs are classified into three categories: impacts on agricultural production, material property and the socio-economic impacts. Natural disasters became the reasons of losses of human lives, property, supplies and farming equipment. HMEs caused damage to fields and meadows, depletion of livestock and triggered the secondary consequences as lack of seeds and finance, high prices, indebtedness, poverty and deterioration in field fertility. The results are discussed with respect to uncertainties associated with documentary evidences and their spatiotemporal distribution. Archival records, preserved in the Moravian Land Archives in Brno and other district archives, create a unique source of data contributing to the better understanding of extreme events and their impacts.

  14. Risk-based consequences of extreme natural hazard processes in mountain regions - Multi-hazard analysis in Tyrol (Austria)

    NASA Astrophysics Data System (ADS)

    Huttenlau, Matthias; Stötter, Johann

    2010-05-01

    weighting within the risk concept, this has sufficient implications on the results of risk analyses. Thus, an equal and scale appropriated balance of those risk components is a fundamental key factor for effective natural hazard risk analyses. The results of such analyses inform especially decision makers in the insurance industry, the administration, and politicians on potential consequences and are the basis for appropriate risk management strategies. Thereby, results (i) on an annual or probabilistic risk comprehension have to be distinguished from (ii) scenario-based analyses. The first analyses are based on statistics of periodically or episodically occurring events whereas the latter approach is especially applied for extreme, non-linear, stochastic events. Focusing on the needs especially of insurance companies, the first approaches are appropriate for premium pricing and reinsurance strategies with an annual perspective, whereas the latter is focusing on events with extreme loss burdens under worst-case criteria to guarantee accordant reinsurance coverage. Moreover, the demand of adequate loss model approaches and methods is strengthened by the risk-based requirements of the upcoming capital requirement directive Solvency II. The present study estimates the potential elements at risk, their corresponding damage potentials and the Probable Maximum Losses (PMLs) of extreme natural hazards events in Tyrol (Austria) and considers adequatly the scale dependency and balanced application of the introduced risk components. Beside the introduced analysis an additionally portfolio analysis of a regional insurance company was executed. The geocoded insurance contracts of this portfolio analysis were the basis to estimate spatial, socio-economical and functional differentiated mean insurance values for the different risk categories of (i) buildings, (ii) contents or inventory, (iii) vehicles, and (iv) persons in the study area. The estimated mean insurance values were

  15. Extreme infrared variables from UKIDSS - I. A concentration in star-forming regions

    NASA Astrophysics Data System (ADS)

    Contreras Peña, C.; Lucas, P. W.; Froebrich, D.; Kumar, M. S. N.; Goldstein, J.; Drew, J. E.; Adamson, A.; Davis, C. J.; Barentsen, G.; Wright, N. J.

    2014-04-01

    We present initial results of the first panoramic search for high-amplitude near-infrared variability in the Galactic plane. We analyse the widely separated two-epoch K-band photometry in the fifth and seventh data releases of the UKIDSS Galactic plane survey. We find 45 stars with ΔK > 1 mag, including two previously known OH/IR stars and a Nova. Even though the mid-plane is not yet included in the data set, we find the majority (66 per cent) of our sample to be within known star-forming regions (SFRs), with two large concentrations in the Serpens OB2 association (11 stars) and the Cygnus-X complex (12 stars). Sources in SFRs show spectral energy distributions that support classification as young stellar objects (YSOs). This indicates that YSOs dominate the Galactic population of high-amplitude infrared variable stars at low luminosities and therefore likely dominate the total high-amplitude population. Spectroscopic follow up of the DR5 sample shows at least four stars with clear characteristics of eruptive pre-main-sequence variables, two of which are deeply embedded. Our results support the recent concept of eruptive variability comprising a continuum of outburst events with different time-scales and luminosities, but triggered by a similar physical mechanism involving unsteady accretion. Also, we find what appears to be one of the most variable classical Be stars.

  16. Chromospheric and photospheric evolution of an extremely active solar region in solar cycle 19

    NASA Technical Reports Server (NTRS)

    Mckenna-Lawlor, S. M. P.

    1981-01-01

    a comprehensive investigation was made of phenomena attending the disk passage, July 7 to 21, 1959, of active solar center HAO-59Q. At the photospheric level that comprised an aggregate of groups of sunspots of which one group, Mt. Wilson 14284, showed all the attributes deemed typical of solar regions associated with the production of major flares. A special characteristic of 59Q was its capability to eject dark material. Part of this material remained trapped in the strong magnetic fields above group 14284 where it formed a system of interrelated arches, the legs of which passed through components of the bright chromospheric network of the plage and were rooted in various underlying umbrae. Two apparently diffeent kinds of flare were identified in 59Q; namely, prominence flares (which comprised brightenings within part of the suspended dark prominence) and plage flares (which comprised brightenings within part of the chromospheric network). Prominence flares were of three varieties described as 'impact', 'stationary' and 'moving' prominence flares. Plage flares were accompanied in 3 percent of cases by Type III bursts. These latter radio events indicate the associated passage through the corona of energetic electrons in the approximate energy range 10 to 100 keV. At least 87.5 percent, and probably all, impulsive brightenings in 59Q began directly above minor spots, many of which satellites to major umbrae. Stationary and moving prominence flares were individually triggered at sites beneath which magnetic changes occurred within intervals which included each flare's flash phase.

  17. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region

    SciTech Connect

    Hirano, Y. E-mail: hirano.yoichi@phys.cst.nihon-u.ac.jp; Kiyama, S.; Koguchi, H.; Fujiwara, Y.; Sakakita, H.

    2015-11-15

    A high current density (≈3 mA/cm{sup 2}) hydrogen ion beam source operating in an extremely low-energy region (E{sub ib} ≈ 150–200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E{sub ib} is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.

  18. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region.

    PubMed

    Hirano, Y; Kiyama, S; Fujiwara, Y; Koguchi, H; Sakakita, H

    2015-11-01

    A high current density (≈3 mA/cm(2)) hydrogen ion beam source operating in an extremely low-energy region (E(ib) ≈ 150-200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E(ib) is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.

  19. Extreme values of selected event thermal phenomena in the Lublin Region in the years 1982-2006

    NASA Astrophysics Data System (ADS)

    Kaszewski, Bogusław M.; Siwek, Krzysztof W.; Gluza, Andrzej F.

    2012-01-01

    This paper presents the frequency of occurrence and distribution of extreme values of selected thermal phenomena in the Lublin Region in the years 1982-2006. There used data coming from 9 stations of the Institute of Meteorology and Water Management, and from the Meteorological Observatory of Maria Curie-Skłodowska University (UMCS), located in the centre of the city of Lublin. The stations have a uniform observation sequence for the 25 years studied. The extreme thermal phenomena were analysed: very hot days - Tmax ≥ 35°C, "tropical nights" - Tmin ≥ 20°C, very cold days - Tmin ≤ - 30°C, days with frost in May - Tmin 200 cm a.g.l. ≤ - 2.0°C, days with frost (Tmin 200 cm a.g.l. ≤ 0.0°C) in summer months (VI-VIII), significant day-to-day changes of more than 10°C of mean daily air temperature.

  20. Regional modeling sensitivity experiments for interpreting the UK Winter 2013-2014 extreme rain

    NASA Astrophysics Data System (ADS)

    Omrani, H.; Vautard, R.; Schaller, N.; Allen, M. R.

    2015-12-01

    During the winter 2013/2014, the UK saw heavy rainfalls associated with a succession of storms reaching Southern England causing widespread flooding, power cuts and major disruptions to transport. The January precipitation set a record for several rain gauge stations in Southern England. The aim of this study is to evaluate the contribution of the anthropogenic climate change, represented by a modification of the sea surface temperature (SST) on the January precipitation. For that, we conducted a sensitivity experiment by running a set of 108 four-months simulations using WRF model with 9 different physics and 12 different SST fields; 9 for the factual world and 99 for the counter-factual world. A spectral nudging technique was used here to ensure a same atmospheric circulation patterns for all the simulations. Therefore, only the thermodynamic effect is considered here. The analysis is focused on January precipitation over the southern England. Results show for 0,5°C SST difference over the Northern Atlantic, the precipitation in the factual simulations is between 0,4 and 8% higher than the precipitation in the counter-factual simulations depending on the physic. A validation test shows that this value is closer to 8% for the "best physic" simulation. It also show a strong spatial variability where in some region the precipitation is higher in the counter-factual world compared the factual world. Finally, a backward trajectories were calculated to evaluate the sensitivity of the moisture sources and air mass trajectories to the SST in the factual and the counter-factual world.

  1. To the Extremes! A Teacher Research Experience Program in the Polar Regions

    NASA Astrophysics Data System (ADS)

    Warburton, J.; Bartholow, S.

    2014-12-01

    PolarTREC-Teachers and Researchers Exploring and Collaborating, a teacher professional development program, began with the International Polar Year in 2004 and continues today in the United States. In 2007, the National Science Foundation designated PolarTREC as potentially transformative, meaning that the "research results often do not fit within established models or theories and may initially be unexpected or difficult to interpret; their transformative nature and utility might not be recognized until years later." PolarTREC brings U.S. K-12 educators and polar researchers together through an innovative teacher research experience model. Teachers spend three to six weeks in remote arctic and Antarctic field camps. Since 2007, over 100 teachers have been placed in field experiences throughout the Arctic and Antarctic and with half of them participating in field experiences in Antarctica. During their experience, teachers become research team members filling a variety of roles on the team. They also fulfil a unique role of public outreach officer, conducting live presentations about their field site and research as well as journaling, answering questions, and posting photos. Evaluation data collected over the past eight years on program participants shows that PolarTREC has clearly achieved it goals and strongly suggests programs that link teachers and researchers can have the potential to transform the nature of science education. By giving teachers the content knowledge, pedagogical tools, confidence, understanding of science in the broader society, and experiences with scientific inquiry, participating teachers are using authentic scientific research in their classrooms. Not surprisingly this has also led to increases in student interest and knowledge about the Polar Regions. In this presentation, we will highlight the best practices of teacher research experiences as well as discuss why it is vital to have teachers and researchers work together to communicate

  2. Relativistic electron beam generator

    DOEpatents

    Mooney, L.J.; Hyatt, H.M.

    1975-11-11

    A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.

  3. Response of the low-latitude D region ionosphere to extreme space weather event of 14-16 December 2006

    NASA Astrophysics Data System (ADS)

    Kumar, Sushil; Kumar, Abhikesh; Menk, Frederick; Maurya, Ajeet K.; Singh, Rajesh; Veenadhari, B.

    2015-01-01

    response of the D region low-latitude ionosphere has been examined for extreme space weather event of 14-16 December 2006 associated with a X1.5 solar flare and an intense geomagnetic storm (Dst = -146 nT) using VLF signals from Northwest Cape, Australia (NWC) (19.8 kHz) and Lualualei, Hawaii (callsign NPM) (21.4 kHz) transmitters monitored at Suva (Geographic Coordinates, 18.10°S, 178.40°E), Fiji. Modeling of flare associated amplitude and phase enhancements of NWC (3.6 dB, 223°) and NPM (5 dB, 153°) using Long-Wave Propagation Capability code shows reduction in the D region reflection height (H') by 11.1 km and 9.4 km, and enhancement in ionization gradients described by increases in the exponential sharpness factor (β) by 0.122 and 0.126 km-1, for the NWC and NPM paths, respectively. During the storm the daytime signal strengths of the NWC and NPM signals were reduced by 3.2 dB on 15 and 16 December (for about 46 h) and recovered by 17 December. Modeling for the NWC path shows that storm time values of H' and β were reduced by 1.2 km and 0.06 km-1, respectively. Morlet wavelet analysis of signal amplitudes shows no clearly strong signatures of gravity wave propagation to low latitudes during the main and recovery phases. The reduction in VLF signal strength is due to increased signal attenuation and absorption by the Earth-ionosphere waveguide due to storm-induced D region ionization changes and hence changes in D region parameters. The long duration of the storm effect results from the slow diffusion of changed composition/ionization at D region altitudes compared with higher altitudes in the ionosphere.

  4. Extreme solar energetic particle events

    NASA Astrophysics Data System (ADS)

    Vainio, Rami; Afanasiev, Alexandr; Battarbee, Markus

    2016-04-01

    Properties of extreme solar energetic particle (SEP) events, here defined as those leading to ground level enhancements (GLEs) of cosmic rays, are reviewed. We review recent efforts on modeling SEP acceleration to relativistic energies and present simulation results on particle acceleration at shocks driven by fast coronal mass ejections (CMEs) in different types of coronal magnetic structures and turbulent downstream compression regions. Based on these modeling results, we discuss the possible role of solar and CME parameters in the lack of GLEs during the present sunspot cycle. This work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA). The Academy of Finland is thanked for financial support.

  5. Relativistic blast waves in two dimensions. I - The adiabatic case

    NASA Technical Reports Server (NTRS)

    Shapiro, P. R.

    1979-01-01

    Approximate solutions are presented for the dynamical evolution of strong adiabatic relativistic blast waves which result from a point explosion in an ambient gas in which the density varies both with distance from the explosion center and with polar angle in axisymmetry. Solutions are analytical or quasi-analytical for the extreme relativistic case and numerical for the arbitrarily relativistic case. Some general properties of nonplanar relativistic shocks are also discussed, including the incoherence of spherical ultrarelativistic blast-wave fronts on angular scales greater than the reciprocal of the shock Lorentz factor, as well as the conditions for producing blast-wave acceleration.

  6. Risk-based consequences of extreme natural hazard processes in mountain regions - Multi-hazard analysis in Tyrol (Austria)

    NASA Astrophysics Data System (ADS)

    Huttenlau, Matthias; Stötter, Johann

    2010-05-01

    weighting within the risk concept, this has sufficient implications on the results of risk analyses. Thus, an equal and scale appropriated balance of those risk components is a fundamental key factor for effective natural hazard risk analyses. The results of such analyses inform especially decision makers in the insurance industry, the administration, and politicians on potential consequences and are the basis for appropriate risk management strategies. Thereby, results (i) on an annual or probabilistic risk comprehension have to be distinguished from (ii) scenario-based analyses. The first analyses are based on statistics of periodically or episodically occurring events whereas the latter approach is especially applied for extreme, non-linear, stochastic events. Focusing on the needs especially of insurance companies, the first approaches are appropriate for premium pricing and reinsurance strategies with an annual perspective, whereas the latter is focusing on events with extreme loss burdens under worst-case criteria to guarantee accordant reinsurance coverage. Moreover, the demand of adequate loss model approaches and methods is strengthened by the risk-based requirements of the upcoming capital requirement directive Solvency II. The present study estimates the potential elements at risk, their corresponding damage potentials and the Probable Maximum Losses (PMLs) of extreme natural hazards events in Tyrol (Austria) and considers adequatly the scale dependency and balanced application of the introduced risk components. Beside the introduced analysis an additionally portfolio analysis of a regional insurance company was executed. The geocoded insurance contracts of this portfolio analysis were the basis to estimate spatial, socio-economical and functional differentiated mean insurance values for the different risk categories of (i) buildings, (ii) contents or inventory, (iii) vehicles, and (iv) persons in the study area. The estimated mean insurance values were

  7. Analysis of Extreme Heat in Historical and Projected Climate Simulations for Regional Climate Planning Purposes in the U.S.

    NASA Astrophysics Data System (ADS)

    Geil, K.; Zeng, X.; McMahan, B.; Ferguson, D. B.

    2015-12-01

    The U.S. National Climate Assessment (NCA) states that global climate models predict more extreme temperatures and more frequent, intense, and longer heat waves on a regional basis as global temperatures rise throughout the 21st century, but a thorough test of whether these models can simulate observed heat metrics and trends over the historical period was not included in the assessment. Understanding the capabilities of climate models over the historical period is crucial to assessing our confidence in their predictive ability at regional scales. Our work fills this research gap by evaluating the performance of Coupled Model Intercomparison Phase 5 (CMIP5) models as compared to observational data using multiple heat metrics. Our metrics are targeted for the southwest United States, but our regional analysis covers the entire continental U.S. and Alaska using 7 of the regions delineated by the NCA. The heat metrics include heat wave and cold wave frequency, intensity, and duration, overnight low temperatures, onset and length of the hot season, and human heat stress. For the best performing models, we compute the same heat metrics for the RCP scenarios. In addition to presenting the results of our CMIP5 historical and RCP analyses, we also describe how our results may be applied to the benefit of our community in Southern Arizona as a case study. Our research will be used by NOAA's Climate Assessment for the Southwest (CLIMAS) and by an interdisciplinary collaborative team of researchers from the University of Arizona working with an electric utility to integrate climate information into their strategic planning.

  8. Homogeneous regions in Italy: an analysis of the mean and extreme climate characteristics and their impact on agriculture.

    NASA Astrophysics Data System (ADS)

    Baldi, M.; Coccimiglio, P.

    2009-09-01

    Adverse environmental conditions, lasting for several days in a row, can cause stress over ecosystems, humans and animals with a negative impact on crop yield, human health, and on animal production and reproduction, to name few aspects, and therefore leading to severe economic losses. Namely, in the last decades, the enhanced frequency and intensity of summer heat waves in Italy have increased the importance of assessing the damages they cause. Another example is the occurrence of late spring frost causing damages not only to subsistence crops, but moreover for the so-called cash-crops. An example is the kiwifruit production in Italy specifically grown to fulfil the global demand, more than the national market, being the Italian production out of phase with the other major producers, such as New Zealand and South America. Using a Principal Component Analysis (PCA) applied to daily maximum and minimum temperature and precipitation and then a hierarchical cluster analysis, based on Ward's method, on a set of 100 stations covering the period 1971-2006, we divided the 100 sites into 8 homogeneous classes. For each cluster the climate characteristics have been analyzed, in order to have a description of the mean climate of the cluster. In addition, we analyzed the occurrence of the extreme events in each cluster, their duration and intensity, and their trend over the last decades. Focusing on the kiwifruit production regions in Italy a first attempt is presented to compare actual/suitable production regions in Italy and similar regions in New Zealand from the point of view of their respective climate trends and variability. Long term trends in agroclimatic indices and results of comparison analysis will be discussed for regions in the two Countries. The study has been partly supported by the Short term mobility programme of the Italian National Research Council, under the sponsorship of the CNR-Agrofood Department.

  9. Relativistic Iron Line Fits

    NASA Astrophysics Data System (ADS)

    Fink, M.; Dauser, T.; Beuchert, T.; Jeffreson, S.; Tawabutr, J.; Wilms, J.; García, J.; Walton, D. J.

    2016-08-01

    The 6.4 keV Iron reflection line possesses strong diagnostic potential for AGN-systems. In the rare case of unobscured AGN, this line receives a contribution from the very center of the accretion flow close to the event horizon that is subject to strong relativistic effects. The shape of this line distortion can be used infer important parameters of the central accretion region, especially the black hole spin parameter a* and the accretion disk inclination i. We analyze several (nine?) bare AGN spectra from the sample of Walton et al. 2012 using high resolution spectra from the XMM and NuStar archives. The relativistic reflection is modeled using the RELXILL code (Dauser 20XX). The newest iteration of the RELXILL model also supports a lamp post geometry for the irradiation of the accretion disk. By combining these detailed models with the wide spectral range of NuStar and XMM/NuStar joint observations we can put tight constraints on the aforementioned parameters and we can constrain the height of the source h in a possible lamp post geometry.

  10. Global Oceanic Rainfall Extremes of Intense Tropical Cyclones' Inner Regions from the TRMM Multisatellite Precipitation Analysis (TMPA) Data

    NASA Astrophysics Data System (ADS)

    Chang, Y.; Bentley, M. L.

    2011-12-01

    This study delves into the hourly-mean maximum rainfall rate between intense TCs' center and the 150-km radius. Rainfall extremes of intense TCs' (≥ 100 knots on the Saffir-Simpson Scale) eyewall regions and inner rainband regions over the global oceanic basins are investigated using thirteen years (1998-2010) of the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) dataset. Over 300 storms are observed for the six basins, including Atlantic (ATC), east-central Pacific (ECP), northwest Pacific (NWP), north Indian Ocean (NIO), south Indian Ocean (SIO), and South Pacific (SHP). The hourly-mean maximum rainfall rates in the ATC basin are similar in intra-categorical comparison. The hourly-mean maximum rainfall rates of category 5 systems are 2 mm h-1 and 4 mm h-1 higher than category 4 systems and category 3 systems, respectively. The highest hourly-mean maximum rainfall rate occurs in the right quadrant for category 4 systems and in the rear quadrant for category 5 systems.

  11. The role of the export of tropical moisture into midlatitudes for extreme precipitation events in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Krichak, Simon O.; Barkan, Joseph; Breitgand, Joseph S.; Gualdi, Silvio; Feldstein, Steven B.

    2015-08-01

    The aims of the study are twofold: firstly, to investigate the role of the export of humid tropical air in the formation of cool season heavy precipitating events (HPEs) in the Mediterranean region (MR); and secondly, to examine the possible linkage between the export of humid tropical air and the multiyear trend in extreme precipitation in the region. For this purpose, we analyze the spatial distributions of a number of key atmospheric variables with a reanalysis data for more than 50 intense HPEs for the MR. The results of this evaluation for both individual and composite events suggest that the HPEs are associated with atmospheric rivers (ARs). The MR HPEs are being characterized by the poleward export of humid air of tropical origin into the midlatitude MR from the Atlantic Ocean and Arabian Sea. These export events appear to be associated with the effects of hurricanes or intense cyclones in the North Atlantic. It was also found that the linear trend (for 1979-2013) of the frequency of humid days (days with precipitable water greater than 20 kg m-2) is consistent with recent changes in the character of precipitation over the MR and southern Europe.

  12. Temperature Extremes and Associated Large-Scale Meteorological Patterns in NARCCAP Regional Climate Models: Towards a framework for generalized model evaluation

    NASA Astrophysics Data System (ADS)

    Loikith, P.; Waliser, D. E.; Lee, H.; Kim, J.; Neelin, J. D.; McGinnis, S. A.; Lintner, B. R.; Mearns, L. O.

    2014-12-01

    Large-scale meteorological patterns associated with extreme temperatures are evaluated across a suite of regional climate model (RCM) simulations produced as a part of the North American Regional Climate Change Assessment Program (NARRCAP). Evaluation is performed on six hindcast simulations and eleven simulations driven by four global climate models (GCMs). In places removed from the influence of complex topography in the winter, such as the Midwest of the United States, extremes and associated patterns are generally simulated with high fidelity. In other cases, such as for much of the Gulf of Mexico Coast in summer, the RCMs have notable difficulty in reproducing temperature extremes and associated meteorological patterns. In some cases, the temperature extremes appear to be well reproduced, but for the wrong reasons, making this analysis particularly valuable for diagnosing and interpreting RCM skill in making future projections of temperature extremes. An RCM skill score is developed, based on pattern agreement at all grid cells, to identify the RCM-GCM combinations that may be best suited for making future projections of temperature extremes. Cases identified as having low RCM skill will be the subject of further investigations with a focus on understanding key processes that are contributing to model error and helping to guide future model development. It is anticipated that this work will be implemented as part of a framework for evaluating temperature extremes in RCMs, providing generalized performance metrics based on mechanistic and process-oriented diagnostics.

  13. Evaluation of impacts of extreme events projected by Regional Climate Models on cropping systems in the Iberian Peninsula by the end of XXI century

    NASA Astrophysics Data System (ADS)

    Ruiz-Ramos, Margarita; Gallardo, Clemente; Sánchez, Enrique; Inés Mínguez, M.

    2010-05-01

    Increasing of extreme events is expected under climate change. The impact of such increase will depend on the vulnerability of the evaluated system. For Mediterranean agricultural systems, extremes temperatures and water deficit are main hazards. The vulnerability of crops and cropping systems varies according to the extreme event considered and timing of crop development. Indexes for extreme events of temperature and water stress were defined and calculated from outputs of an ensemble comprising 10 Regional Climate Models, for control (1960-1990) and future climate (A2 IPCC SRES scenario for 2070-2100). Maize and wheat simulation models were run also using outputs from the same ensemble of RCMS, obtaining phenological dates describing crop development. Extreme indexes were then recalculated for vulnerable phenological periods, extending the work presented in Ruiz-Ramos et al. (2009). The work analysed the "effective" impact of extreme events related to specific crops and growing seasons, which is a valuable information to design optimum adaptation strategies. The use of an ensemble of climate allows us for analyzing the uncertainty related to differences among RCMs in the modelling chain from climate to impacts. References Ruiz-Ramos M, Gallardo C, Sánchez E and Mínguez MI, 2009. Impacts on cropping systems of present and future extreme events assessed with various regional climate models in the Iberian Peninsula. Geophysical Research Abstracts, Vol. 11, EGU2009-8555.

  14. Regional Aerosol Optical Properties and Radiative Impact of the Extreme Smoke Event in the European Arctic in Spring 2006

    NASA Technical Reports Server (NTRS)

    Lund Myhre, C.; Toledano, C.; Myhre, G.; Stebel, K.; Yttri, K.; Aaltonen, V.; Johnsrud, M.; Frioud, M.; Cachorro, V.; deFrutos, A.; Lihavainen, H.; Campbell, J.; Chaikovsky, A.; Shiobara, M.; Welton, E.; Torseth, K.

    2007-01-01

    In spring 2006 a special meteorological situation occurred in the European Arctic region giving record high levels of air pollution. The synoptic situation resulted in extensive transport of pollution predominantly from agricultural fires in Eastern Europe into the Arctic region and record high air-pollution levels were measured at the Zeppelin observatory at Ni-Alesun(78deg 54'N, 11deg 53'E) in the period from 25 April to 12 May. In the present study we investigate the optical properties of the aerosols from this extreme event and we estimate the radiative forcing of this episode. We examine the aerosol optical properties from the source region and into the European Arctic and explore the evolution of the episode and the changes in the optical properties. A number of sites in Eastern Europe, Northern Scandinavia and Svalbard are included in the study. In addition to AOD measurements, we explored lidar measurements from Minsk, ALOMAR (Arctic Lidar Observatory for Middle Atmosphere Research at Andenes) and Ny-Alesund. For the AERONET sites included (Minsk, Toravere, Hornsund) we have further studied the evolution of the aerosol size. Importantly, at Svalbard it is consistency between the AERONET measurements and calculations of single scattering albedo based on aerosol chemical composition. We have found strong agreement between the satellite dally MODIS AOD and the ground-based AOD observations. This agreement is crucial for the radiative forcing calculations. We calculate a strong negative radiative forcing for the most polluted days employing the analysed ground based data, MODIS AOD and a multi-stream model for radiative transfer of solar radiation.

  15. Regional mesoscale air-sea coupling impacts and extreme meteorological events role on the Mediterranean Sea water budget

    NASA Astrophysics Data System (ADS)

    Lebeaupin Brossier, Cindy; Bastin, Sophie; Béranger, Karine; Drobinski, Philippe

    2015-02-01

    The Mediterranean Sea water budget (MWB) is a key parameter, as it controls the Mediterranean Sea water loss and thus the Atlantic Water inflow and the Mediterranean general circulation. More accurately, the MWB controls the net flow through the Strait of Gibraltar, which implies both inflow and outflow. Generally considered at the basin scale and over long-term periods, the MWB is in fact characterized by a large variability in space and time, induced by the complex topography of the region, mesoscale processes and (short) intense events in the ocean and atmosphere compartments. In this study, we use an ocean-atmosphere coupled system at mesoscale able to represent such phenomena, to evaluate the MWB atmospheric components: Evaporation (E) and Precipitation (P). We compare two companion regional simulations: an uncoupled atmospheric run using the ERA-interim Sea Surface Temperature (SST) reanalysis and a coupled run using the MORCE system with the two-way coupling between the NEMO-MED12 eddy-resolving ocean model and the non-hydrostatic Weather Research and Forecasting atmospheric model. We first evaluate the SST validity against satellite data and evidence the coupled system ability in representing SST mesoscale structures, characteristics of the Mediterranean circulation and of small-scale ocean processes, despite a colder mean value and a lower amplitude of the annual cycle. Then, the comparison aims to examine the coupled processes effects (meaning the impacts of the interactive high-resolution and high-frequency SST) on E and P and on their variability. The comparison highlights that the SST is the controlling factor for E and P budgets, with reduction by 6 and 3 % in the coupled run compared to the uncoupled run, respectively. The modifications propagate until 750 km inland far from the Mediterranean coast, as towards the Atlantic Ocean and the Black Sea. This indicates that coupling plays a major role in distributing water at mesoscale. The coupling

  16. The relativistic equation of state in accretion and wind flows

    NASA Astrophysics Data System (ADS)

    Basu, Prasad; Mondal, Soumen

    2014-01-01

    In the present study we derive a 4-velocity distribution function for the relativistic ideal gas following the original approach of Maxwell-Boltzmann (MB). Using this distribution function, the relativistic equation of state (EOS): ρ-ρ0=(p, is expressed in the parametric form: ρ=ρ0f(λ), and p=ρ0g(λ), where λ is a parameter related to the kinetic energy, and hence, to the temperature of the gas. In the nonrelativistic limit, this distribution function perfectly reduces to original MB distribution and the EOS reduces to ρ-ρ0=3/2 p, whereas in the extreme ultra-relativistic limit, the EOS becomes ρ=3p correctly. Using these parametric equations the adiabatic index γ=cp/cv and the sound speed as are calculated as a function of λ. They also satisfy the inequalities: 4/3 ⩽γ⩽ 5/3 and as⩽ 1/√{3} perfectly. The computed distribution function, adiabatic index γ, and the sound speed as are compared with the results obtained from the canonical ensemble theory which nicely match with the standard results (Synge, 1957 and Chandrasekhar, 1939). The main advantage in using the EOS is that the probability distribution function can be factorized and therefore, may be helpful to solve complex dynamics of the astrophysical system. Interestingly, in one of the astrophysical application revels that shocks in accretion flows become unlikely and except for the region very nearby the compact object, the EOS remains non-relativistic (Mondal and Basu, 2011). We therefore, conclude that the new form of EOS will be helpful to verify many conventional ideas in many astrophysical problems.

  17. Precipitation extremes over Amazonia - atmospheric and oceanic associated features observed and simulated by HADGEM2-ES, CPTEC/INPE AGCM and Eta/CPTEC regional model

    NASA Astrophysics Data System (ADS)

    Cavalcanti, I. F.

    2013-05-01

    Extreme monthly cases of precipitation (positive and negative anomalies) over Amazonia are analyzed to show the atmospheric and oceanic related features and the ability of CPTEC AGCM and HADGEM2-ES in simulating them. Humidity flux variability over the Tropical Atlantic region is analyzed related to the precipitation variability over Amazonia. Besides the Pacific Ocean influence, the Amazonia precipitation is affected by the Tropical Atlantic Ocean, both by the SST and atmospheric flux humidity. Correlations between Atlantic SST and Amazonia precipitation show that there are specific months and areas that are affected by SST anomalies. The extreme cases are obtained from the Standardized Precipitation Index (SPI) applied to monthly data in four areas of Amazonia: northwest, northeast, west and east areas. The period of analysis is 1981 to 2010 to GPCP observed precipitation and CPTEC/INPE AGCM. As this AGCM is the base of the Brazilian Model of Earth System, its behavior on the mechanisms leading to extremes over Amazonia, compared to observations is discussed. Projections of extremes over the region are analyzed with results from CMIP5 HADGEM2-ES during 2073-2099 compared to 1979-2005. The regional Eta CPTEC model is also analyzed in two periods: 1960 to 1990 and 2040 to 2070, with boundary conditions of CMIP3 HADCM3 A1B scenario. The relevance of this analysis is to identify changes in frequency and intensity of extremes in the Amazon region in a higher resolution than the global models.

  18. Are extreme cold waves characteristics and snow-temperature feedback well represented in regional and global climate models (WRF and CMIP3/CMIP5)?

    NASA Astrophysics Data System (ADS)

    Quesada, Benjamin; Vautard, Robert; Yiou, Pascal

    2013-04-01

    Despite their economical and health impacts, only a few recent studies concern extreme cold events. However, recent decade was punctuated by cold waves in Europe as during winter 2009-2010, December 2010 and February 2012. Extreme cold days will probably narrow globally in frequency in a global warming future (e.g., 2046-2065) albeit still remain present in regions favored by cold waves such as Europe or United States. Thus, the present-day evaluation (i.e. 1961-2000 period) of climate variability modeled by GCM/RCM remains critical in order to model consistently extreme events characteristics in the future. In this study, an array of global (CMIP3/CMIP5) and regional (WRF) climate models run on Europe domains compared with observations (EOBS) and reanalysis data (ERA 40/ERA Interim) is used to analyze different aspects of extreme cold waves. For each model, skewness and several statistical indices of frequency, intensity, temporal and spatial persistence (coherent in terms of health and energy impacts), for cold spells are calculated in order to assess the capacity of climate models to simulate these extreme events. The purpose of this study is also to address the origins of biases obtained among the models. First, the impact of resolution is analyzed by comparing regional and global climate model output and studying a global climate model (IPSLCM5/CMIP5) on different horizontal scales. Second, a modeling study with regional climate model WRF forced by reanalysis is carried out in order to estimate, with sensitivity analyses, snow/temperature relationship in the development of extreme European cold waves cases. Finally, future projections (2045-2065 period; scenario A2 or RCP8.5) are carried out taking into account the above-mentioned capacity of climate models to represent the extreme cold waves characteristics on present-day period.

  19. Detecting changes in seasonal precipitation extremes using regional climate model projections: Implications for managing fluvial flood risk

    NASA Astrophysics Data System (ADS)

    Fowler, H. J.; Wilby, R. L.

    2010-03-01

    There is growing evidence of coherent, global patterns of change in annual precipitation and runoff with high latitudes experiencing increases consistent with climate model projections. This paper describes a methodology for estimating detection times for changes in seasonal precipitation extremes. The approach is illustrated using changes in UK precipitation projected by the European Union PRUDENCE climate model ensemble. We show that because of high variability from year to year and confounding factors, detection of anthropogenic climate change at regional scales is not generally expected for decades to come. Overall, the earliest detection times were found for 10 day winter precipitation totals with 10 year return period in SW England. In this case, formal detection could be possible within a decade from now if the climate model projections are realized. The outlook for changes in summer flash flood risk is highly uncertain. Our analysis further demonstrates that existing precautionary allowances for climate change used for flood management may not be sufficiently robust in NE England and east Scotland. These findings imply that for certain types of flood mechanism, adaptation decisions might have to be taken in advance of formally detected changes in flood risk. This reinforces the case for long-term environmental monitoring and reporting of climate change indices at "sentinel" locations.

  20. Weak-Line Quasars at High Redshift: Extremely High Accretion Rates or Anemic Broad-Line Regions?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad; Trakhtenbrot, B.; Anderson, S. F.; Brandt, W. N.; Diamond-Stanic, A. M.; Fan, X.; Lira, P.; Netzer, H.; Plotkin, R. M.; Richards, G. T.; Schneider, D. P.; Strauss, M. A.

    2011-01-01

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z=3.55 and SDSS J123743.08+630144.9 at z=3.49. In both sources we detect an unusually weak broad Hβ line and we place tight upper limits on the strengths of their [O III] lines. Virial, Hβ-based black-hole mass determinations indicate normalized accretion rates of L/LEdd=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of Γ=1.91+0.24-0.22which supports the virial L/LEdd determination in this source. Our results suggest that the weakness of the broad-emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad-emission line region properties.

  1. Chemical composition of Argentinean propolis collected in extreme regions and its relation with antimicrobial and antioxidant activities.

    PubMed

    Vera, Nancy; Solorzano, Eliana; Ordoñez, Roxana; Maldonado, Luis; Bedascarrasbure, Enrique; Isla, María I

    2011-06-01

    This paper reveals, for the first time, the functional properties of propolis from an extreme region of Argentine (El Rincón, Province of Catamarca, Argentina), as well as the isolation and identification of bioactive compounds. The antioxidant activity was determined by the ABTS method and beta-carotene bleaching. The antibacterial activity was determined on methicillin resistant Staphylococcus aureus (MRSA) by the microdilution method and bioautographic assays. Twelve compounds were isolated and identified by NMR spectroscopy. The main bioactive compounds were 2',4'-dihydroxy-3'-methoxychalcone (3), 2',4'-dihydroxychalcone (9), 2',4',4-trihydroxy-6'- methoxychalcone (8), 5-hydroxy-4',7-dimethoxyflavone (4), 4',5-dihydroxy-3,7,8-trimethoxyflavone (10) and 7-hydroxy- 5,8-dimethoxyflavone (11). All compounds were active against clinical isolates (MIC50 10 microg/mL) and displayed antioxidant activity (SC50 values of 20 microg/mL). The MIC and SC50 values of the isolated compounds were lower than those obtained with crude propolis extracts, chloroform sub-extracts and isolated fractions.

  2. Investigating the Influence of Anthropogenic Forcing on Observed Mean and Extreme Sea Level Pressure Trends over the Mediterranean Region

    DOE PAGES

    Barkhordarian, Armineh

    2012-01-01

    We investigate whether the observed mean sea level pressure (SLP) trends over the Mediterranean region in the period from 1975 to 2004 are significantly consistent with what 17 models projected as response of SLP to anthropogenic forcing (greenhouse gases and sulphate aerosols, GS). Obtained results indicate that the observed trends in mean SLP cannot be explained by natural (internal) variability. Externally forced changes are detectable in all seasons, except spring. The large-scale component (spatial mean) of the GS signal is detectable in all the 17 models in winter and in 12 of the 17 models in summer. However, the small-scalemore » component (spatial anomalies about the spatial mean) of GS signal is only detectable in winter within 11 of the 17 models. We also show that GS signal has a detectable influence on observed decreasing (increasing) tendency in the frequencies of extremely low (high) SLP days in winter and that these changes cannot be explained by internal climate variability. While the detection of GS forcing is robust in winter and summer, there are striking inconsistencies in autumn, where analysis points to the presence of an external forcing, which is not GS forcing.« less

  3. Effects of striatal nitric oxide production on regional cerebral blood flow and seizure development in rats exposed to extreme hyperoxia.

    PubMed

    Gasier, Heath G; Demchenko, Ivan T; Allen, Barry W; Piantadosi, Claude A

    2015-12-01

    The endogenous vasodilator and signaling molecule nitric oxide has been implicated in cerebral hyperemia, sympathoexcitation, and seizures induced by hyperbaric oxygen (HBO2) at or above 3 atmospheres absolute (ATA). It is unknown whether these events in the onset of central nervous system oxygen toxicity originate within specific brain structures and whether blood flow is diverted to the brain from peripheral organs with high basal flow, such as the kidney. To explore these questions, total and regional cerebral blood flow (CBF) were measured in brain structures of the central autonomic network in anesthetized rats in HBO2 at 6 ATA. Electroencephalogram (EEG) recordings, cardiovascular hemodynamics, and renal blood flow (RBF) were also monitored. As expected, mean arterial blood pressure and total and regional CBF increased preceding EEG spikes while RBF was unaltered. Of the brain structures examined, the earliest rise in CBF occurred in the striatum, suggesting increased neuronal activation. Continuous unilateral or bilateral striatal infusion of the nitric oxide synthase inhibitor N(ω)-nitro-L-arginine methyl ester attenuated CBF responses in that structure, but global EEG discharges persisted and did not differ from controls. Our novel findings indicate that: 1) cerebral hyperemia in extreme HBO2 in rats does not occur at the expense of renal perfusion, highlighting the remarkable autoregulatory capability of the kidney, and 2) in spite of a sentinel increase in striatal blood flow, additional brain structure(s) likely govern the pathogenesis of HBO2-induced seizures because EEG discharge latency was unchanged by local blockade of striatal nitric oxide production and concomitant hyperemia.

  4. An integrated approach for identifying homogeneous regions of extreme rainfall events and estimating IDF curves in Southern Ontario, Canada: Incorporating radar observations

    NASA Astrophysics Data System (ADS)

    Paixao, Edson; Mirza, M. Monirul Qader; Shephard, Mark W.; Auld, Heather; Klaassen, Joan; Smith, Graham

    2015-09-01

    Reliable extreme rainfall information is required for many applications including infrastructure design, management of water resources, and planning for weather-related emergencies in urban and rural areas. In this study, in situ TBRG sub-daily rainfall rate observations have been supplemented with weather radar information to better capture the spatial and temporal variability of heavy rainfall events regionally. Comparison of extreme rainfall events show that the absolute differences between the rain gauge and radar generally increase with increasing rainfall. Better agreement between the two observations is found when comparing the collocated radar and TBRG annual maximum values. The median difference is <18% for the annual maximum rainfall values ⩽50 mm. The median of difference of IDF estimates obtained through the Gumbel distribution for 10-year return period values computed from TBRG and radar are also found to be 4%. The overall results of this analysis demonstrates the potential value of incorporating remotely sensed radar with traditional point source TBRG network observations to provide additional insight on extreme rainfall events regionally, especially in terms of identifying homogeneous regions of extreme rainfall. The radar observations are particularly useful in areas where there is insufficient TBRG station density to statistically capture the extreme rainfall events.

  5. Relativistic Linear Restoring Force

    ERIC Educational Resources Information Center

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  6. Relativistic Guiding Center Equations

    SciTech Connect

    White, R. B.; Gobbin, M.

    2014-10-01

    In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.

  7. Transition state region in the A-Band photodissociation of allyl iodide--A femtosecond extreme ultraviolet transient absorption study.

    PubMed

    Bhattacherjee, Aditi; Attar, Andrew R; Leone, Stephen R

    2016-03-28

    Femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy based on a high-harmonic generation source is used to study the 266 nm induced A-band photodissociation dynamics of allyl iodide (CH2 =CHCH2I). The photolysis of the C-I bond at this wavelength produces iodine atoms both in the ground ((2)P3/2, I) and spin-orbit excited ((2)P1/2, I*) states, with the latter as the predominant channel. Using XUV absorption at the iodine N4/5 edge (45-60 eV), the experiments constitute a direct probe of not only the long-lived atomic iodine reaction products but also the fleeting transition state region of the repulsive nIσ(∗) C-I excited states. Specifically, three distinct features are identified in the XUV transient absorption spectrum at 45.3 eV, 47.4 eV, and 48.4 eV (denoted transients A, B, and C, respectively), which arise from the repulsive valence-excited nσ(∗) states and project onto the high-lying core-excited states of the dissociating molecule via excitation of 4d(I) core electrons. Transients A and B originate from 4d(I) → n(I) core-to-valence transitions, whereas transient C is best assigned to a 4d(I) →σ(∗)(C-I) transition. The measured differential absorbance of these new features along with the I/I* branching ratios known from the literature is used to suggest a more definitive assignment, albeit provisional, of the transients to specific dissociative states within the A-band manifold. The transients are found to peak around 55 fs-65 fs and decay completely by 145 fs-185 fs, demonstrating the ability of XUV spectroscopy to map the evolution of reactants into products in real time. The similarity in the energies of transients A and B with analogous features observed in methyl iodide [Attar et al. J. Phys. Chem. Lett. 6, 5072, (2015)] together with the new observation of transient C in the present work provides a more complete picture of the valence electronic structure in the transition state region. The results provide a benchmark

  8. Transition state region in the A-Band photodissociation of allyl iodide—A femtosecond extreme ultraviolet transient absorption study

    NASA Astrophysics Data System (ADS)

    Bhattacherjee, Aditi; Attar, Andrew R.; Leone, Stephen R.

    2016-03-01

    Femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy based on a high-harmonic generation source is used to study the 266 nm induced A-band photodissociation dynamics of allyl iodide (CH2 =CHCH2I). The photolysis of the C—I bond at this wavelength produces iodine atoms both in the ground (2P3/2, I) and spin-orbit excited (2P1/2, I*) states, with the latter as the predominant channel. Using XUV absorption at the iodine N4/5 edge (45-60 eV), the experiments constitute a direct probe of not only the long-lived atomic iodine reaction products but also the fleeting transition state region of the repulsive nIσ∗C—I excited states. Specifically, three distinct features are identified in the XUV transient absorption spectrum at 45.3 eV, 47.4 eV, and 48.4 eV (denoted transients A, B, and C, respectively), which arise from the repulsive valence-excited nσ∗ states and project onto the high-lying core-excited states of the dissociating molecule via excitation of 4d(I) core electrons. Transients A and B originate from 4d(I) → n(I) core-to-valence transitions, whereas transient C is best assigned to a 4d(I) →σ∗(C—I) transition. The measured differential absorbance of these new features along with the I/I* branching ratios known from the literature is used to suggest a more definitive assignment, albeit provisional, of the transients to specific dissociative states within the A-band manifold. The transients are found to peak around 55 fs-65 fs and decay completely by 145 fs-185 fs, demonstrating the ability of XUV spectroscopy to map the evolution of reactants into products in real time. The similarity in the energies of transients A and B with analogous features observed in methyl iodide [Attar et al. J. Phys. Chem. Lett. 6, 5072, (2015)] together with the new observation of transient C in the present work provides a more complete picture of the valence electronic structure in the transition state region. The results provide a benchmark for

  9. Response of precipitation extremes to global warming in an aqua-planet climate model: towards robust projection from regional to global scales

    NASA Astrophysics Data System (ADS)

    Li, F.; Collins, W.; Wehner, M. F.; Williamson, D.; Olson, J.

    2010-12-01

    Robust projection of precipitation extremes is essential for human society to prepare for future climate change. To understand the inconsistencies of the projections across the climate models, a series of idealized “aquaplanet” AGCM runs have been performed with CAM3 to investigate the effects of horizontal resolution on precipitation extreme projections under two simple global warming scenarios. The absence of orography helps diagnose the response of the physics responsible for extreme rainfall to change with resolution. Results show that a uniform increase of sea surface temperature (SST) and an increase of low-to-high latitude SST gradient both lead to increase of precipitation and precipitation extremes for most latitudes. The perturbed SSTs generally have stronger impacts on precipitation extremes compared with mean precipitation. Model horizontal-resolution strongly affects the global warming signals in the extreme precipitation in the low-mid latitudes, but not in high latitude regions. This study illustrates the need for resolution-invariant treatment of atmospheric processes.

  10. A Very-High-Specific-Impulse Relativistic Laser Thruster

    SciTech Connect

    Horisawa, Hideyuki; Kimura, Itsuro

    2008-04-28

    Characteristics of compact laser plasma accelerators utilizing high-power laser and thin-target interaction were reviewed as a potential candidate of future spacecraft thrusters capable of generating relativistic plasma beams for interstellar missions. Based on the special theory of relativity, motion of the relativistic plasma beam exhausted from the thruster was formulated. Relationships of thrust, specific impulse, input power and momentum coupling coefficient for the relativistic plasma thruster were derived. It was shown that under relativistic conditions, the thrust could be extremely large even with a small amount of propellant flow rate. Moreover, it was shown that for a given value of input power thrust tended to approach the value of the photon rocket under the relativistic conditions regardless of the propellant flow rate.

  11. Solution of relativistic quantum optics problems using clusters of graphical processing units

    SciTech Connect

    Gordon, D.F. Hafizi, B.; Helle, M.H.

    2014-06-15

    Numerical solution of relativistic quantum optics problems requires high performance computing due to the rapid oscillations in a relativistic wavefunction. Clusters of graphical processing units are used to accelerate the computation of a time dependent relativistic wavefunction in an arbitrary external potential. The stationary states in a Coulomb potential and uniform magnetic field are determined analytically and numerically, so that they can used as initial conditions in fully time dependent calculations. Relativistic energy levels in extreme magnetic fields are recovered as a means of validation. The relativistic ionization rate is computed for an ion illuminated by a laser field near the usual barrier suppression threshold, and the ionizing wavefunction is displayed.

  12. How extreme are extremes?

    NASA Astrophysics Data System (ADS)

    Cucchi, Marco; Petitta, Marcello; Calmanti, Sandro

    2016-04-01

    High temperatures have an impact on the energy balance of any living organism and on the operational capabilities of critical infrastructures. Heat-wave indicators have been mainly developed with the aim of capturing the potential impacts on specific sectors (agriculture, health, wildfires, transport, power generation and distribution). However, the ability to capture the occurrence of extreme temperature events is an essential property of a multi-hazard extreme climate indicator. Aim of this study is to develop a standardized heat-wave indicator, that can be combined with other indices in order to describe multiple hazards in a single indicator. The proposed approach can be used in order to have a quantified indicator of the strenght of a certain extreme. As a matter of fact, extremes are usually distributed in exponential or exponential-exponential functions and it is difficult to quickly asses how strong was an extreme events considering only its magnitude. The proposed approach simplify the quantitative and qualitative communication of extreme magnitude

  13. Studies of relativistic heavy ion collisions at the AGS (Experiment 814)

    SciTech Connect

    Cleland, W.E.

    1992-01-01

    During the past year, the Pittsburgh group has continued to work with the E814 collaboration in carrying out AGS Experiment 814. We present here a brief history of the experiment, followed by a detailed report of the analysis work being pursued at the University of Pittsburgh. As originally proposed, Experiment 814 is a study of both extreme peripheral collisions and the transition from peripheral to central collisions in relativistic heavy ion-nucleus interactions. We are studying relativistic heavy ion interactions with nuclei in two types of collisions: (a) extreme peripheral collisions of large impact parameter, and (b) central collisions with high transverse energy in the final state. The experiment emphasizes the measurement of overall event characteristics, in particular energy flow measurements and a precise measurement of the particle charge, momentum, and energy in the forward direction. This permits measurements of cross sections and rapidity densities as a function of the transverse energy for leading baryons emitted into regions of larger rapidity. Combining the energy flow measurements as a function of rapidity with the spectra of leading baryons provides information on the impact parameter dependence of the nuclear stopping of the projectile in relativistic heavy ion collisions. In 1988, the scope of Experiment 814 was enlarged to include a search for strange matter in central collisions, the first results of which have been published, and analysis on a longer run taken in 1990 is still under way.

  14. A Comparative Study on Extreme Precipitation of the Han River Basin using a Bivariate Goodness-of-fit Measure for Regional Frequency Analysis

    NASA Astrophysics Data System (ADS)

    Ahn, Hyunjun; Jung, Younghun; Joo, Kyungwon; Kim, Taereem; Heo, Jun-Haeng

    2016-04-01

    In statistical hydrology, frequency analysis has been widely used for design of water resource systems. The traditional at-site analysis is recommended when the sample size is bigger than twice target return period (2T). However, in reality, the sample size of subject site is usually smaller than the target return periods such as 100- and 200-year ones. To overcome such a weakness, regional frequency analysis has been suggested and performed since 1960. To estimate robust precipitation quantiles in regional frequency analysis, it is important to select an appropriate probability distribution for a given region. Typically, goodness-of-fit measure developed by Hosking and Wallis based on the L-moment ratio diagram is used to select an appropriate probability distribution. Recently, several studies have been carried out on goodness-of-fit test for regional frequency analysis such as a bivariate goodness-of-fit measure to choose more appropriate probability distribution. In this study, regional frequency analysis is conducted for 1-hour maximum rainfall data (1961~2015) of the Han River basin in Korea. In this application, appropriate probability distributions are selected using the traditional goodness-of-fit and a bivariate goodness-of-fit measures, and then extreme precipitation quantiles from both methods are compared to suggest better method. Keywords: regional frequency analysis; goodness-of-fit measure; a bivariate goodness-of-fit measure; extreme precipitation events

  15. Large scale and sub-regional connections in the lead up to summer heat wave and extreme rainfall events in eastern Australia

    NASA Astrophysics Data System (ADS)

    Boschat, Ghyslaine; Pezza, Alexandre; Simmonds, Ian; Perkins, Sarah; Cowan, Tim; Purich, Ariaan

    2015-04-01

    Australia has been exposed to a vast array of extreme weather regimes over the past few years, and the frequency and intensity of these events are expected to increase as a result of anthropogenic climate change. However, the predictability of extreme droughts, heat waves (HWs), bushfires and floods, is still hampered by our inability to fully understand how these weather systems interact with each other and with the climate system. This study brings new insight into the regional and large scale dynamics of some extreme events in Australia, by describing and comparing the climate signature of summer HWs and extreme rainfall events which have occurred in the states of Victoria and Queensland respectively, during 1979-2013. Our analyses highlight the importance of mid-latitude dynamics operating during HWs, in contrast with more tropical interactions at play during extreme rainfall events. A `common' blocking high pressure system is observed over the Tasman Sea during the two types of extreme events, and may explain why some southeastern HWs (only about 25 %) occur in close succession with floods in Queensland. However, our results suggest that there is no dynamical link between these two types of events, since the HW-related anticyclone evolves as part of a baroclinic wave train, whereas in the case of rainfall events, this structure emerges as an equivalent barotropic response to tropical convection. Sub-regional surface temperatures and air-sea fluxes also suggest that distinct processes may be operating in the lead up to these two events. Indeed, HWs tend to occur when the wave train propagates from the south Indian to the Pacific Ocean, inducing a quasi-stationary blocking high system over the Tasman Sea. This anticyclonic anomaly can then advect hot dry air towards the southern Victorian coast, where it produces HW conditions. On the other hand, extreme rainfall events mostly occur when the background conditions correspond to a La Niña state. The convection

  16. Relativistic Gravity Research

    NASA Astrophysics Data System (ADS)

    Ehlers, Jürgen; Schäfer, Gerhard

    17 readable articles give a thorough and self-contained overview of recent developments in relativistic gravity research. The subjects covered are: gravitational lensing, the general relativistic n-body problem, observable effects in the solar system, gravitational waves and their interferometric detection, very-long-baseline interferometry, international atomic time, lunar laserranging measurements, measurement of the gravitomagnetic field of the Earth, fermion and boson stars and black holes with hair, rapidly rotating neutron stars, matter wave interferometry, and the laboratory test of Newton's law of gravity. Any scientist interested in experimentally or observatio- nally oriented relativistic gravity will read the book with profit. In addition, it is perfectly suited as a complementary text for courses on general relativity and relativistic astrophysics.

  17. Relativistic spherical plasma waves

    NASA Astrophysics Data System (ADS)

    Bulanov, S. S.; Maksimchuk, A.; Schroeder, C. B.; Zhidkov, A. G.; Esarey, E.; Leemans, W. P.

    2012-02-01

    Tightly focused laser pulses that diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we study theoretically and numerically relativistic spherical wake waves and their properties, including wave breaking.

  18. Weakly relativistic plasma expansion

    SciTech Connect

    Fermous, Rachid Djebli, Mourad

    2015-04-15

    Plasma expansion is an important physical process that takes place in laser interactions with solid targets. Within a self-similar model for the hydrodynamical multi-fluid equations, we investigated the expansion of both dense and under-dense plasmas. The weakly relativistic electrons are produced by ultra-intense laser pulses, while ions are supposed to be in a non-relativistic regime. Numerical investigations have shown that relativistic effects are important for under-dense plasma and are characterized by a finite ion front velocity. Dense plasma expansion is found to be governed mainly by quantum contributions in the fluid equations that originate from the degenerate pressure in addition to the nonlinear contributions from exchange and correlation potentials. The quantum degeneracy parameter profile provides clues to set the limit between under-dense and dense relativistic plasma expansions at a given density and temperature.

  19. Identification of Extreme Events Under Climate Change Conditions Over Europe and The Northwest-atlantic Region: Spatial Patterns and Time Series Characteristics

    NASA Astrophysics Data System (ADS)

    Leckebusch, G.; Ulbrich, U.; Speth, P.

    In the context of climate change and the resulting possible impacts on socio-economic conditions for human activities it seems that due to a changed occurrence of extreme events more severe consequences have to be expected than from changes in the mean climate. These extreme events like floods, excessive heats and droughts or windstorms possess impacts on human social and economic life in different categories such as forestry, agriculture, energy use, tourism and the reinsurance business. Reinsurances are affected by nearly 70% of all insured damages over Europe in the case of wind- storms. Especially the December 1999 French windstorms caused damages about 10 billion. A new EU-founded project (MICE = Modelling the Impact of Climate Ex- tremes) will focus on these impacts caused by changed occurrences of extreme events over Europe. Based upon the output of general circulation models as well as regional climate models, investigations are carried out with regard to time series characteristics as well as the spatial patterns of extremes under climate changed conditions. After the definition of specific thresholds for climate extremes, in this talk we will focus on the results of the analysis for the different data sets (HadCM3 and CGCMII GCM's and RCM's, re-analyses, observations) with regard to windstorm events. At first the results of model outputs are validated against re-analyses and observations. Especially a comparison of the stormtrack (2.5 to 8 day bandpass filtered 500 hPa geopotential height), cyclone track, cyclone frequency and intensity is presented. Highly relevant to damages is the extreme wind near the ground level, so the 10 m wind speed will be investigated additionally. of special interest to possible impacts is the changed spatial occurrence of windspeed maxima under 2xCO2-induced climate change.

  20. Relativistic Quantum Scars

    SciTech Connect

    Huang, Liang; Lai Yingcheng; Ferry, David K.; Goodnick, Stephen M.; Akis, Richard

    2009-07-31

    The concentrations of wave functions about classical periodic orbits, or quantum scars, are a fundamental phenomenon in physics. An open question is whether scarring can occur in relativistic quantum systems. To address this question, we investigate confinements made of graphene whose classical dynamics are chaotic and find unequivocal evidence of relativistic quantum scars. The scarred states can lead to strong conductance fluctuations in the corresponding open quantum dots via the mechanism of resonant transmission.

  1. Exact Relativistic `Antigravity' Propulsion

    NASA Astrophysics Data System (ADS)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  2. The role of extreme orbits in the global organization of periodic regions in parameter space for one dimensional maps

    NASA Astrophysics Data System (ADS)

    da Costa, Diogo Ricardo; Hansen, Matheus; Guarise, Gustavo; Medrano-T, Rene O.; Leonel, Edson D.

    2016-04-01

    We show that extreme orbits, trajectories that connect local maximum and minimum values of one dimensional maps, play a major role in the parameter space of dissipative systems dictating the organization for the windows of periodicity, hence producing sets of shrimp-like structures. Here we solve three fundamental problems regarding the distribution of these sets and give: (i) their precise localization in the parameter space, even for sets of very high periods; (ii) their local and global distributions along cascades; and (iii) the association of these cascades to complicate sets of periodicity. The extreme orbits are proved to be a powerful indicator to investigate the organization of windows of periodicity in parameter planes. As applications of the theory, we obtain some results for the circle map and perturbed logistic map. The formalism presented here can be extended to many other different nonlinear and dissipative systems.

  3. Relativistic effects in chemistry

    SciTech Connect

    Yatsimirskii, K.B.

    1995-11-01

    Relativistic effects become apparent when the velocity of the electron is arbitrarily close to the speed of light (137 au) without actually attaining it (in heavy atoms of elements at the end of Mendeleev`s Periodic Table). At the orbital level, the relativistic effect is apparent in the radial contraction of penetrating s and p shells, expansion of nonpenetrating d and f shells, and the spin-orbit splitting of p-,d-, and f-shells. The appearance of a relativistic effect is indicated in the variation in the electronic configurations of the atoms in the Periodic Table, the appearance of new types of closed electron shells (6s{sub 1/2}{sup 2}, 6p{sub 1/2}{sup 2}, 7s{sub 1/2}{sup 2}, 5d{sub 3/2}{sup 4}), the stabilization of unstable oxidation states of heavy elements, the characteristic variation in the ionization enthalpies of heavy atoms, their electron affinity, hydration energies, redox potentials, and optical electronegativities. In the spectra of coordination compounds, a relativistic effect is observed when comparing the position of the charge transfer bands in analogous compounds, the parameters characterizing the ligand field strength (10Dq), the interatomic distances and angles in compounds of heavy elements. A relativistic effect is also apparent in the ability of heavy metals to form clusters and superclusters. Relativistic corrections also affect other properties of heavy metal compounds (force constants, dipole moments, biological activity, etc.).

  4. Relativistic viscoelastic fluid mechanics

    SciTech Connect

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-15

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  5. Relativistic viscoelastic fluid mechanics.

    PubMed

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  6. Global and Regional Variations in Mean Temperature and Warm Extremes in Large-Member Historical AGCM Simulation

    NASA Astrophysics Data System (ADS)

    Kamae, Y.; Shiogama, H.; Imada, Y.; Mori, M.; Arakawa, O.; Mizuta, R.; Yoshida, K.; Ishii, M.; Watanabe, M.; Kimoto, M.; Ueda, H.

    2015-12-01

    Frequency of heat extremes during the summer season has increased continuously since the late 20th century despite the global warming hiatus. In previous studies, anthropogenic influences, natural variation in sea surface temperature (SST), and internal atmospheric variabilities are suggested to be factors contributing to the increase in the frequency of warm extremes. Here 100-member ensemble historical simulations were performed (called "database for Probabilistic Description of Future climate"; d4PDF) to examine physical mechanisms responsible for the increasing hot summers and attribute to the anthropogenic influences or natural climate variability. 60km resolution MRI-AGCM ensemble simulations can reproduce historical variations in the mean temperature and warm extremes. Natural SST variability in the Pacific and Atlantic Oceans contribute to the decadal variation in the frequency of hot summers in the Northern Hemisphere middle latitude. For example, the surface temperature over western North America, including California, is largely influenced by anomalous atmospheric circulation pattern associated with Pacific SST variability. Future projections based on anomalous SST patterns derived from coupled climate model simulations will also be introduced.

  7. Spatiotemporal changes in extreme ground surface temperatures and the relationship with air temperatures in the Three-River Source Regions during 1980-2013

    NASA Astrophysics Data System (ADS)

    Luo, Dongliang; Jin, Huijun; Lü, Lanzhi; Zhou, Jian

    2016-02-01

    Climate changes are affecting plant growth, ecosystem evolution, hydrological processes, and water resources in the Three-River Source Regions (TRSR). Daily ground surface temperature (GST) and air temperature (Ta) recordings from 12 meteorological stations illustrated trends and characteristics of extreme GST and Ta in the TRSR during 1980-2013. We used the Mann-Kendall test and Sen's slope estimate to analyze 12 temperature extreme indices as recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI). The mean annual ground surface temperatures (MAGST) are 2.4-4.3 °C higher than the mean annual air temperatures (MAAT) in the TRSR. The increasing trends of the MAGST are all higher than those of the MAAT. The multi-year average maximum GST (28.1 °C) is much higher than that of the Ta (7.6 °C), while the minimum GST (-8.7 °C) is similar to that of the minimum Ta (-6.9 °C). The minimum temperature trends are more significant than those of the maximum temperature and are consistent with temperature trends in other regions of China. Different spatiotemporal patterns of GST extremes compared to those of Ta may result from greater warming of the ground surface. Consequently, the difference between the GST and Ta increased. These findings have implications for variations of surface energy balance, sensible heat flux, ecology, hydrology, and permafrost.

  8. Spatial structure in lines in the 3398-3526 A region at the extreme limb - Observation, identification and interpretation

    NASA Technical Reports Server (NTRS)

    Canfield, R. C.; Pasachoff, J. M.; Stencel, R. E.; Beckers, J. M.

    1978-01-01

    Spectrograms of high spatial and spectral resolution have been obtained of the extreme solar limb, using the vacuum tower telescope of Sacramento Peak Observatory. Emission lines in the range 3398-3526 A have been identified and classified according to intensity, spatial structure (intensity variation), and profile. Some lines show spatial intensity variation; others do not. It is shown that this effect is related to the abundance of the element responsible for the line and the mean lower-level excitation potential of interlocked lines. This effect is explained in terms of radiative interlocking with other lines, as well as the characteristic size of the volume contributing to the mean intensity.

  9. Query and Visualization of extremely large network datasets over the web using Quadtree based KML Regional Network Links

    SciTech Connect

    Dadi, Upendra; Liu, Cheng; Vatsavai, Raju

    2009-01-01

    Geographic data sets are often very large in size. Interactive visualization of such data at all scales is not easy because of the limited resolution of the monitors and inability of visualization applications to handle the volume of data. This is especially true for large vector datasets. The end user s experience is frequently unsatisfactory when exploring such data over the web using a naive application. Network bandwidth is another contributing factor to the low performance. In this paper, a Quadtree based technique to visualize extremely large spatial network datasets over the web is described. It involves using custom developed algorithms leveraging a PostGIS database as the data source and Google Earth as the visualization client. This methodology supports both point and range queries along with non-spatial queries. This methodology is demonstrated using a network dataset consisting of several million links. The methodology is based on using some of the powerful features of KML (Keyhole Markup Language). Keyhole Markup Language (KML) is an Open Geospatial Consortium (OGC) standard for displaying geospatial data on Earth browsers. One of the features of KML is the notion of Network Links. Using network links, a wide range of geospatial data sources such as geodatabases, static files and geospatial data services can be simultaneously accessed and visualized seamlessly. Using the network links combined with Level of Detail principle, view based rendering and intelligent server and client-side caching, scalability in visualizing extremely large spatial datasets can be achieved.

  10. Regional Risk Assessment for the analysis of the risks related to storm surge extreme events in the coastal area of the North Adriatic Sea.

    NASA Astrophysics Data System (ADS)

    Rizzi, Jonathan; Torresan, Silvia; Gallina, Valentina; Critto, Andrea; Marcomini, Antonio

    2013-04-01

    Europe's coast faces a variety of climate change threats from extreme high tides, storm surges and rising sea levels. In particular, it is very likely that mean sea level rise will contribute to upward trends in extreme coastal high water levels, thus posing higher risks to coastal locations currently experiencing coastal erosion and inundation processes. In 2007 the European Commission approved the Flood Directive (2007/60/EC), which has the main purpose to establish a framework for the assessment and management of flood risks for inland and coastal areas, thus reducing the adverse consequences for human health, the environment, cultural heritage and economic activities. Improvements in scientific understanding are thus needed to inform decision-making about the best strategies for mitigating and managing storm surge risks in coastal areas. The CLIMDAT project is aimed at improving the understanding of the risks related to extreme storm surge events in the coastal area of the North Adriatic Sea (Italy), considering potential climate change scenarios. The project implements a Regional Risk Assessment (RRA) methodology developed in the FP7 KULTURisk project for the assessment of physical/environmental impacts posed by flood hazards and employs the DEcision support SYstem for Coastal climate change impact assessment (DESYCO) for the application of the methodology to the case study area. The proposed RRA methodology is aimed at the identification and prioritization of targets and areas at risk from water-related natural hazards in the considered region at the meso-scale. To this aim, it integrates information about extreme storm surges with bio-geophysical and socio-economic information (e.g. vegetation cover, slope, soil type, population density) of the analyzed receptors (i.e. people, economic activities, cultural heritages, natural and semi-natural systems). Extreme storm surge hazard scenarios are defined using tide gauge time series coming from 28 tide gauge

  11. Polarisation dependence of the squash mode in the extreme low frequency vibrational region of single walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Shen, Y.; Quirke, N.; Zerulla, D.

    2015-05-01

    There is considerable interest in the vibrational modes of carbon nanotubes as they can be used to determine interaction potentials. In particular, theory predicts the appearance of so called squash modes (SMs, with E2g symmetry representation) at very low frequencies. These SMs are expected to be extremely sensitive to environmental changes and thus ideal as nanoscale probes. Here, we report clear experimental evidence for the existence of SMs of ordered, dry, single walled carbon nanotube (SWNT) arrays with peaks as close as 18 cm-1 to the laser excitation. Furthermore, we confirm the theoretical predictions regarding the angular and polarisation dependent variations of the SM's intensity with respect to the excitation. Additionally, using both SM and radial breathing mode data, we unambiguously assign the chirality and diameter of the SWNTs in our sample.

  12. SAMPEX Relativistic Microbursts Observation

    NASA Astrophysics Data System (ADS)

    Liang, X.; Comess, M.; Smith, D. M.; Selesnick, R. S.; Sample, J. G.; Millan, R. M.

    2012-12-01

    Relativistic (>1 MeV) electron microburst precipitation is thought to account for significant relativistic electron loss. We present the statistical and spectral analysis of relativistic microbursts observed by the Proton/Electron Telescope (PET) on board the Solar Anomalous Magnetospheric Particle Explorer(SAMPEX) satellite from 1992 to 2004. Spectrally we find that microbursts are well fit by an exponential energy distribution in the 0.5-4 MeV range with a spectral e-folding energy of E0 < 375 keV. We also discuss the comparison of morning microbursts with events at midnight, which were first identified as microbursts by O'Brien et al. (2004). Finally, we compare the loss-rates due to microbursts and non-microburst precipitation during storm times and averaged over all times.

  13. Relativistic Weierstrass random walks.

    PubMed

    Saa, Alberto; Venegeroles, Roberto

    2010-08-01

    The Weierstrass random walk is a paradigmatic Markov chain giving rise to a Lévy-type superdiffusive behavior. It is well known that special relativity prevents the arbitrarily high velocities necessary to establish a superdiffusive behavior in any process occurring in Minkowski spacetime, implying, in particular, that any relativistic Markov chain describing spacetime phenomena must be essentially Gaussian. Here, we introduce a simple relativistic extension of the Weierstrass random walk and show that there must exist a transition time t{c} delimiting two qualitative distinct dynamical regimes: the (nonrelativistic) superdiffusive Lévy flights, for trelativistic) Gaussian diffusion, for t>t{c} . Implications of this crossover between different diffusion regimes are discussed for some explicit examples. The study of such an explicit and simple Markov chain can shed some light on several results obtained in much more involved contexts. PMID:20866862

  14. Relativistic Weierstrass random walks.

    PubMed

    Saa, Alberto; Venegeroles, Roberto

    2010-08-01

    The Weierstrass random walk is a paradigmatic Markov chain giving rise to a Lévy-type superdiffusive behavior. It is well known that special relativity prevents the arbitrarily high velocities necessary to establish a superdiffusive behavior in any process occurring in Minkowski spacetime, implying, in particular, that any relativistic Markov chain describing spacetime phenomena must be essentially Gaussian. Here, we introduce a simple relativistic extension of the Weierstrass random walk and show that there must exist a transition time t{c} delimiting two qualitative distinct dynamical regimes: the (nonrelativistic) superdiffusive Lévy flights, for trelativistic) Gaussian diffusion, for t>t{c} . Implications of this crossover between different diffusion regimes are discussed for some explicit examples. The study of such an explicit and simple Markov chain can shed some light on several results obtained in much more involved contexts.

  15. Superoscillations underlying remote state preparation for relativistic fields

    NASA Astrophysics Data System (ADS)

    Ber, Ran; Kenneth, Oded; Reznik, Benni

    2015-05-01

    We present a physical (gedanken) implementation of a generalized remote state preparation of relativistic quantum field states for an arbitrary set of observers. The prepared states are created in regions that are outside the future light cone of the generating region. The mechanism, which is based on utilizing the vacuum state of a relativistic quantum field as a resource, sheds light on the well known Reeh-Schlieder theorem, indicating its strong connection with the mathematical phenomenon of superoscillations.

  16. Perspective: relativistic effects.

    PubMed

    Autschbach, Jochen

    2012-04-21

    This perspective article discusses some broadly-known and some less broadly-known consequences of Einstein's special relativity in quantum chemistry, and provides a brief outline of the theoretical methods currently in use, along with a discussion of recent developments and selected applications. The treatment of the electron correlation problem in relativistic quantum chemistry methods, and expanding the reach of the available relativistic methods to calculate all kinds of energy derivative properties, in particular spectroscopic and magnetic properties, requires on-going efforts. PMID:22519307

  17. Relativistic nuclear dynamics

    SciTech Connect

    Coester, F.

    1985-01-01

    A review is presented of three distinct approaches to the construction of relativistic dynamical models: (1) Relativistic canonical quantum mechanics. (The Hilbert space of states is independent of the interactions, which are introduced by modifying the energy operator.) (2) Hilbert spaces of manifestly covariant wave functions. (The interactions modify the metric of the Hilbert space.) (3) Covariant Green functions. In each of the three approaches the focus is on the formulation of the two-body dynamics, and problems in the construction of the corresponding many-body dynamics are discussed briefly. 21 refs.

  18. Perspective: relativistic effects.

    PubMed

    Autschbach, Jochen

    2012-04-21

    This perspective article discusses some broadly-known and some less broadly-known consequences of Einstein's special relativity in quantum chemistry, and provides a brief outline of the theoretical methods currently in use, along with a discussion of recent developments and selected applications. The treatment of the electron correlation problem in relativistic quantum chemistry methods, and expanding the reach of the available relativistic methods to calculate all kinds of energy derivative properties, in particular spectroscopic and magnetic properties, requires on-going efforts.

  19. Synchrotron emissivity from mildly relativistic particles

    NASA Technical Reports Server (NTRS)

    Petrosian, V.

    1981-01-01

    Approximate analytic expressions are presented for evaluation of the frequency and angular dependence of synchrotron emissivity from mildly relativistic particles with arbitrary energy spectrum and pitch angle distribution in a given magnetic field. Results agree with previous expressions for a nonrelativistic Maxwellian particle distribution, and when extrapolated to nonrelativistic and extreme relativistic regimes, they also agree with the previous expressions obtained under those limiting conditions. The results from the analytic expression are compared with results from detailed numerical evaluations. Excellent agreement is found not only at frequencies large compared to the gyro-frequency but also at lower frequencies, in fact, all the way down to the gyro-frequency, where the analytic approximations are expected to be less accurate.

  20. Does vitamin C prevent the occurrence of complex regional pain syndrome in patients with extremity trauma requiring surgery?

    PubMed

    Cabrolier, Jorge; Molina, Marcelo

    2015-07-29

    The complex regional pain syndrome is a neuroinflammatory pathology that affects the central and peripheral nervous system, characterized by disproportional pain in relation to the trauma experimented by the patient. It has been proposed that vitamin C could prevent the development of this syndrome in patients with limb trauma and surgery. Searching in Epistemonikos database, which is maintained by screening 30 databases, we identified two systematic reviews that indentified four primary studies, including one randomized controlled trial. We generated a summary of findings table following the GRADE approach. We concluded it is uncertain whether vitamin C prevents complex regional pain syndrome because the certainty of the evidence is very low.

  1. Preliminary Results of High Resolution Regional Climate Simulations in EC FP6 Project CECILIA: Impact of High Resolution on Reproducing Extremes

    NASA Astrophysics Data System (ADS)

    Halenka, T.; Belda, M.; Miksovsky, J.

    2007-12-01

    Project EC FP6 CECILIA - Central and Eastern Europe Climate Change Impact and Vulnerability Assessment is studying the impact of climate change in complex topography of the Central and Eastern Europe in high resolution. The impacts on agriculture, forestry, hydrology and air-quality are studied. Resolution of regional climate simulation is an important factor affecting the accuracy of dynamical downscaling of the global changes. Especially the extremes are strongly dependent on the terrain patterns as shape of orography or land use, which can contribute to extreme temperatures or precipitation appearance. Here the preliminary results of ERA40 reanalysis run at 10 km will be compared to previous results at 45 km from the experiment launched in connection to 2002 floods in Czech Republic, where we started to analyze whether RCMs are capable to reproduce extremes that can be quite important feature of changing climate. The experiments are compared in terms of mean temperature and extremes, other characteristics as the days with characteristic temperatures and heatwaves are analized as well. Some precipitation characteristics are compared, too. In the comparison to the real station data for Czech Republic it can be seen there is quite good agreement for 10 km simulation in temperature characteristics, there are still some problems with overestimation of small precipitation and underestimation of high precipitation by the model. The test of double nesting vs. direct forcing by reanalysis will be presented, on the selcted domain of quite big size the benefit of the double nesting can be seen against the results with direct driving of the model by ERA40 data.

  2. RELATIVISTIC ELECTRON LOSSES RELATED TO PROTON PRECIPITATION AND EMIC WAVES

    NASA Astrophysics Data System (ADS)

    Soraas, F.; Sandanger, M. I.; Aarsnes, K.; Oksavik, K.; Evans, D. S.

    2009-12-01

    Observations of loss of relativistic electrons to the atmosphere is presented and related to SW parameters. It is shown that the L-region of relativistic electron loss matched the anisotropic proton zone. In this zone the pitch angle distribution of the protons are unstable and can generate/amplify EMIC waves which in turn scatter the electrons into the atmosphere. In spatial limited regions, located close to the plasma pause, there can be enhanced losses of protons (sometime completely filling the loss cone). These regions of proton losses (spikes) are shown to give rise to EMIC waves leading to enhance scattering of the relativistic electrons. In the main phase of the storm the proton spikes are located in the midnight/evening sector, but in the storm recovery phase they are located at all MLTs. The anisotropic proton zone and proton spikes are observed in all storms, but not all storms contain an elevated flux of relativistic electrons.

  3. Modeling changes in extreme snowfall events in the Central Rocky Mountains Region with the Fully-Coupled WRF-Hydro Modeling System

    NASA Astrophysics Data System (ADS)

    gochis, David; rasmussen, Roy; Yu, Wei; Ikeda, Kyoko

    2014-05-01

    Modeling of extreme weather events often require very finely resolved treatment of atmospheric circulation structures in order to produce and localize large magnitudes of moisture fluxes that result in extreme precipitation. This is particularly true for cool season orographic precipitation processes where the representation of landform can significantly influence vertical velocity profiles and cloud moisture entrainment rates. In this work we report on recent progress in high resolution regional climate modeling of the Colorado Headwaters region using an updated version of the Weather Research and Forecasting (WRF) model and a hydrological extension package called WRF-Hydro. Previous work has shown that the WRF-Hydro modeling system forced by high resolution WRF model output can produce credible depictions of winter orographic precipitation and resultant monthly and annual river flows. Here we present results from a detailed study of an extreme springtime snowfall event that occurred along the Colorado Front Range in March of 2003. First an analysis of the simulated streamflows resulting from the melt out of that event are presented followed by an analysis of projected streamflows from the event where the atmospheric forcing in the WRF model is perturbed using the Psuedo-Global-Warming (PGW) perturbation methodology. Results from the impact of warming on total precipitation, snow-rain partitioning and surface hydrological fluxes (evapotranspiration and runoff) will be discussed in the context of how potential changes in temperature impact the amount of precipitation, the phase of precipitation (rain vs. snow) and the timing and amplitude of streamflow responses. It is shown that under the assumptions of the PGW method, intense precipitation rates increase during the event and, more importantly, that more precipitation falls as rain versus snow which significantly amplifies the runoff response from one where runoff is produced gradually to where runoff is more

  4. Chandra Discovers Relativistic Pinball Machine

    NASA Astrophysics Data System (ADS)

    2006-12-01

    across the shock front, like they're in a relativistic pinball machine," said team member Glenn Allen of the Massachusetts Institute of Technology (MIT), Cambridge. "The magnetic fields are like the bumpers, and the shock is like a flipper." In their analysis of the huge data set, the team was able to separate the X-rays coming from the accelerating electrons from those coming from the heated stellar debris. The data imply that some of these electrons are accelerated at a rate close to the maximum predicted by theory. Cosmic rays are composed of electrons, protons, and ions, of which only glow from electrons is detectable in X-rays. Protons and ions, which constitute the bulk of cosmic rays, are expected to behave similarly to the electrons. "It's exciting to see regions where the glow produced by cosmic rays actually outshines the 10-million-degree gas heated by the supernova's shock waves," said John Houck, also of MIT. "This helps us understand not only how cosmic rays are accelerated, but also how supernova remnants evolve." As the total energy of the cosmic rays behind the shock wave increases, the magnetic field behind the shock is modified, along with the character of the shock wave itself. Researching the conditions in the shocks helps astronomers trace the changes of the supernova remnant with time, and ultimately better understand the original supernova explosion. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center, Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  5. A Multimodality Imaging Approach for Serial Assessment of Regional Changes in Lower Extremity Arteriogenesis and Tissue Perfusion in a Porcine Model of Peripheral Arterial Disease

    PubMed Central

    Stacy, Mitchel R.; Yu, Da Yu; Maxfield, Mark W.; Jaba, Irina M.; Jozwik, Bartosz P.; Zhuang, Zhen W.; Lin, Ben A.; Hawley, Christi L.; Caracciolo, Christopher M.; Pal, Prasanta; Tirziu, Daniela; Sampath, Smita; Sinusas, Albert J.

    2014-01-01

    Background A standard quantitative imaging approach to evaluate peripheral arterial disease (PAD) does not exist. Quantitative tools for evaluating arteriogenesis in vivo are not readily available and the feasibility of monitoring serial regional changes in lower extremity perfusion has not been examined. Methods and Results Serial changes in lower extremity arteriogenesis and muscle perfusion were evaluated following femoral artery occlusion in a porcine model using SPECT/CT imaging with post-mortem validation of in vivo findings using gamma counting, post-mortem imaging, and histological analysis. Hybrid thallium-201 (201Tl) SPECT/CT imaging was performed in pigs (n=8) at baseline, immediately post-occlusion, and at 1 and 4 weeks post-occlusion. CT imaging was used to identify muscle regions of interest in the ischemic (I) and non-ischemic (NI) hindlimbs for quantification of regional changes in CT defined arteriogenesis and quantification of 201Tl perfusion. Four weeks post-occlusion, post-mortem tissue 201Tl activity was measured by gamma counting and immunohistochemistry was performed to assess capillary density. Relative 201Tl retention (I/NI) was reduced immediately post-occlusion in distal and proximal muscles and remained lower in calf and gluteus muscles 4 weeks later. Analysis of CT angiography revealed collateralization at 4 weeks within proximal muscles (p<0.05). SPECT perfusion correlated with tissue gamma counting at 4 weeks (p=0.01). Increased capillary density was seen within the ischemic calf at 4 weeks (p=0.004). Conclusions 201Tl SPECT/CT imaging permits serial, regional quantification of arteriogenesis and resting tissue perfusion following limb ischemia. This approach may be effective for detection of disease and monitoring therapy in PAD. PMID:24170237

  6. Relativistic impulse dynamics.

    PubMed

    Swanson, Stanley M

    2011-08-01

    Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.

  7. The Relativistic Rocket

    ERIC Educational Resources Information Center

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  8. Radiation from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Sol, H.; Medvedev, M.; Zhang, B.; Nordlund, A.; Frederiksen, J. T.; Fishman, G. J.; Preece, R.

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electron-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the presence of relativistic jets, instabilities such as the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability create collisionless shocks, which are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons in small-scale magnetic fields has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation, a case of diffusive synchrotron radiation, may be important to understand the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  9. Extreme variation in patterns of tandem repeats in mitochondrial control region of yellow-browed tits (Sylviparus modestus, Paridae)

    PubMed Central

    Wang, Xiaoyang; Liu, Nian; Zhang, Hongli; Yang, Xiao-Jun; Huang, Yuan; Lei, Fumin

    2015-01-01

    To investigate the evolutionary pattern and origins of tandem repeats in the mitochondrial control region of the yellow-browed tit (Sylviparus modestus), the control region and another four mitochondrial loci from fifteen individuals were analyzed. A 117-bp tandem repeat unit that repeated once, twice or three times in different individuals was found, and a rarely reported arrangement for this tandem repeats region that a 5′ imperfect copy at its downstream and a 3′ imperfect copy at its upstream was observed. The haplotype network, phylogenetic trees, and ancestral state reconstruction of the combined dataset of five loci suggested multiple origins of the same repeat number. The turnover model via slipped-strand mispairing was introduced to interpret the results, because mispairing occurred so frequently that multiple origins of certain repeat number were observed. Insertion via recombination should be a better explanation for the origin of this tandem repeat unit, considering characteristics of the combined sequence of the 3′ and 5′ imperfect copy, including identification of its homolog in other passerines and its predicted secondary structure. PMID:26288099

  10. Relativistic effects on plasma expansion

    SciTech Connect

    Benkhelifa, El-Amine; Djebli, Mourad

    2014-07-15

    The expansion of electron-ion plasma is studied through a fully relativistic multi-fluids plasma model which includes thermal pressure, ambipolar electrostatic potential, and internal energy conversion. Numerical investigation, based on quasi-neutral assumption, is performed for three different regimes: nonrelativistic, weakly relativistic, and relativistic. Ions' front in weakly relativistic regime exhibits spiky structure associated with a break-down of quasi-neutrality at the expanding front. In the relativistic regime, ion velocity is found to reach a saturation limit which occurs at earlier stages of the expansion. This limit is enhanced by higher electron velocity.

  11. Damage caused by hydrological extremes in a region of southern Italy: comparison between the period 2002-2012 and the past century

    NASA Astrophysics Data System (ADS)

    Petrucci, Olga; Pasqua, A. Aurora

    2013-04-01

    The concept of extreme hydrological event should be seen in a relative way, depending on the region for which it is defined, the parameters and the type of data utilized to assess it, and mainly taking into account the length of the period basing on which it is assessed. Measured data concerning rainfall and river flow, which allow statistical analysis of numerical values and assessment of events frequency, can be available for different periods, according to both the study area and the country; nevertheless, the length of the measurement series rarely exceeds 100 years. Thus, the extrapolation to the future of events trend, frequency, seasonality are based on a relatively short and recent period and even the "magnitude" and the classification of "extreme events" can be biased by the length of the observation period. Thus these characteristics may substantially change if their assessment is based on a wider temporal window. Especially in un-gauged basins and concerning severest events, historical data cannot provide systematically measured parameters but they can supply proxy data which allow enlarging the observation period, permitting a better weighing of both recent and old events. The present research is based on the use of a wide historical database concerning phenomena as floods, flash floods and landslides triggered by extreme meteorological events in Calabria (Southern Italy) since 19th century. This database is made of approximately 11,000 records and it includes data coming from different sources as newspapers, archives of national and regional agencies, scientific and technical reports, on-site surveys reports and information collected by interviewing both people involved and local administrators. The recent uploading of data concerning the effects caused in Calabria by these phenomena during the decade 2002-2012 allowed us to analyse a long and updated historical series of events. The aim is to compare -both in terms triggering rainfall and their

  12. Assessing crop-specific impacts of extremely wet (2007) and dry (2003) conditions in France on regional maize and wheat yields

    NASA Astrophysics Data System (ADS)

    van der Velde, Marijn

    2010-05-01

    Extreme weather conditions can strongly affect agricultural production. In France, crop yields were greatly influenced by drought and heat stress in 2003 and by extremely wet conditions in 2007. Both maize and wheat yield where historically low in 2003, in contrast to 2007 when wheat yields were lower and maize yields were higher than long-term averages. Even though maize yield loss was lower in regions with higher maize irrigation percentages; yield loss was still very considerable. Remotely sensed (AMSR-E) JJA soil moisture related significantly to reported regional crop yield for 2002-2007. The spatial correlation between JJA soil moisture and wheat yield anomalies was positive in dry 2003 and negative in wet 2007. Biweekly soil moisture correlated positively from the first half of June until the second half of July in 2003. In 2007, the relation was negative the first half of June until the second half of August. An analysis with a spatial version (10 by 10 km) of the EPIC crop growth model was used to infer causal relations between rainfall, soil moisture and rainfed wheat and rainfed and irrigated maize yield. The negative impacts of the 2003 heat wave and drought on wheat yield were captured by the model, while negative damages to yield due to excessive wetness in 2007 were not. Modelling suggests that regional drought mitigation increased with increasing maize irrigation percentages from 0 to 40%. At higher irrigation percentages the compensating effect of irrigation was small. The above average maize yields in 2007 were reproduced by the model, but the below average wheat yields were not. The model overestimation of wheat yield in 2007 may be due to a misrepresentation of the impact of wet conditions on plant physiological processes, or due to the incapacity of the model to represent determining factors such as lodging and unfavourable harvesting conditions. Strenghts and limitations of this regional assessment will be discussed. Extreme events affect

  13. Assessment of ENSEMBLES regional climate models for the representation of monthly wind characteristics in the Aegean Sea (Greece): Mean and extremes analysis

    NASA Astrophysics Data System (ADS)

    Anagnostopoulou, Christina; Tolika, Konstantia; Tegoulias, Ioannis; Velikou, Kondylia; Vagenas, Christos

    2013-04-01

    The main scope of the present study is the assessment of the ability of three of the most updated regional climate models, developed under the frame of the European research project ENSEMBLES (http://www.ensembles-eu.org/), to simulate the wind characteristics in the Aegean Sea in Greece. The examined models are KNMI-RACMO2, MPI-MREMO, and ICTP - RegCM3. They all have the same spatial resolution (25x25km) and for their future projections they are using the A1B SRES emission scenarios. Their simulated wind data (speed and direction) were compared with observational data from several stations over the domain of study for a time period of 25 years, from 1980 to 2004 on a monthly basis. The primer data were available every three or six hours from which we computed the mean daily wind speed and the prevailing daily wind direction. It should be mentioned, that the comparison was made for the grid point that was the closest to each station over land. Moreover, the extreme speed values were also calculated both for the observational and the simulated data, in order to assess the ability of the models in capturing the most intense wind conditions. The first results of the study showed that the prevailing winds during the winter and spring months have a north - northeastern or a south - south western direction in most parts of the Aegean sea. The models under examination seem to capture quite satisfactorily this pattern as well as the general characteristics of the winds in this area. During summer, winds in the Aegean Sea have mainly north direction and the models have quite good agreement both in simulating this direction and the wind speed. Concerning the extreme wind speed (percentiles) it was found that for the stations in the northern Aegean all the models overestimate the extreme wind indices. For the eastern parts of the Aegean the KNMI and the MPI model underestimate the extreme wind speeds while on the other hand the ICTP model overestimates them. Finally for the

  14. Projecting Policy-Relevant Metrics to Characterize Changing Ozone Extremes over the US: Variations by Region, Season and Scenario

    NASA Astrophysics Data System (ADS)

    Rieder, H. E.; Fiore, A. M.; Correa, G. J. P.; Clifton, O.; Horowitz, L. W.; Naik, V.

    2014-12-01

    Nitrogen oxide (NOx) emission controls have led to improved air quality (particularly in the Eastern US) over the past two decades, but concerns have been raised that climate warming may offset some of these gains in the coming decades. Here we address these concerns by analyzing the effect of projected future changes of emissions and climate, in isolation and combination, on US surface ozone (O3) during the 21st century in an ensemble of simulations (3 members per scenario) performed with the GFDL chemistry-climate model CM3. We analyze two Representative Concentration Pathway (RCP) scenarios: RCP4.5 and RCP8.5. Under both scenarios, NOx emissions decrease by ~80% over North America by 2100. In additional 3-member ensemble simulations, termed RCP4.5_WMGG and RCP8.5_WMGG, well-mixed greenhouse gases follow the respective RCP but O3 and aerosol precursor emissions are held at 2005 levels. These simulations enable us to isolate the role of well-mixed greenhouse gas induced climate change from that of emission reductions. Another set of simulations, following RCP8.5 but with methane (CH4) held fixed at 2005 levels, termed RCP8.5_2005CH4, allows us to quantify the background influence of CH4 on O3. For each season, we examine changes in the surface O3 distribution over the US during the 21st century, calculating policy relevant statistics: days above the current national ambient air quality standard (NAAQS) of 75 ppb and other proposed future levels, as well as the probabilistic 1-year return levels for maximum daily 8-hour average ozone (MDA8 O3), within each model grid cell. Specifically, we analyze: (i) regional and seasonal changes in the frequency and return level of high O3 pollution events during the 21st century, as well as (ii) differences among the RCPs by the middle and end of the 21st century. We find that the response of surface O3 to changes in emissions and climate varies strongly, seasonally and spatially, with certain regions more prone to a 'climate

  15. Surgery under extreme conditions in the aftermath of the 2010 Haiti earthquake: the importance of regional anesthesia.

    PubMed

    Missair, Andres; Gebhard, Ralf; Pierre, Edgar; Cooper, Lebron; Lubarsky, David; Frohock, Jeffery; Pretto, Ernesto A

    2010-01-01

    The 12 January 2010 earthquake that struck Port-au-Prince, Haiti caused >200,000 deaths, thousands of injuries requiring immediate surgical interventions, and 1.5 million internally displaced survivors. The earthquake destroyed or disabled most medical facilities in the city, seriously hampering the ability to deliver immediate life- and limb-saving surgical care. A Project Medishare/University of Miami Miller School of Medicine trauma team deployed to Haiti from Miami within 24 hours of the earthquake. The team began work at a pre-existing tent facility in the United Nations (UN) compound based at the airport, where they encountered 225 critically injured patients. However, non-sterile conditions, no means to administer oxygen, the lack of surgical equipment and supplies, and no anesthetics precluded the immediate delivery of general anesthesia. Despite these limitations, resuscitative care was administered, and during the first 72 hours following the event, some amputations were performed with local anesthesia. Because of these austere conditions, an anesthesiologist, experienced and equipped to administer regional block anesthesia, was dispatched three days later to perform anesthesia for limb amputations, debridements, and wound care using single shot block anesthesia until a better equipped tent facility was established. After four weeks, the relief effort evolved into a 250-bed, multi-specialty trauma/intensive care center staffed with >200 medical, nursing, and administrative staff. Within that timeframe, the facility and its staff completed 1,000 surgeries, including spine and pediatric neurological procedures, without major complications. This experience suggests that when local emergency medical resources are completely destroyed or seriously disabled, a surgical team staffed and equipped to provide regional nerve block anesthesia and acute pain management can be dispatched rapidly to serve as a bridge to more advanced field surgical and intensive care

  16. Surgery under extreme conditions in the aftermath of the 2010 Haiti earthquake: the importance of regional anesthesia.

    PubMed

    Missair, Andres; Gebhard, Ralf; Pierre, Edgar; Cooper, Lebron; Lubarsky, David; Frohock, Jeffery; Pretto, Ernesto A

    2010-01-01

    The 12 January 2010 earthquake that struck Port-au-Prince, Haiti caused >200,000 deaths, thousands of injuries requiring immediate surgical interventions, and 1.5 million internally displaced survivors. The earthquake destroyed or disabled most medical facilities in the city, seriously hampering the ability to deliver immediate life- and limb-saving surgical care. A Project Medishare/University of Miami Miller School of Medicine trauma team deployed to Haiti from Miami within 24 hours of the earthquake. The team began work at a pre-existing tent facility in the United Nations (UN) compound based at the airport, where they encountered 225 critically injured patients. However, non-sterile conditions, no means to administer oxygen, the lack of surgical equipment and supplies, and no anesthetics precluded the immediate delivery of general anesthesia. Despite these limitations, resuscitative care was administered, and during the first 72 hours following the event, some amputations were performed with local anesthesia. Because of these austere conditions, an anesthesiologist, experienced and equipped to administer regional block anesthesia, was dispatched three days later to perform anesthesia for limb amputations, debridements, and wound care using single shot block anesthesia until a better equipped tent facility was established. After four weeks, the relief effort evolved into a 250-bed, multi-specialty trauma/intensive care center staffed with >200 medical, nursing, and administrative staff. Within that timeframe, the facility and its staff completed 1,000 surgeries, including spine and pediatric neurological procedures, without major complications. This experience suggests that when local emergency medical resources are completely destroyed or seriously disabled, a surgical team staffed and equipped to provide regional nerve block anesthesia and acute pain management can be dispatched rapidly to serve as a bridge to more advanced field surgical and intensive care

  17. Remote, Real-time Investigations of Extreme Environments Using High Power and Bandwidth Cabled Observatories: The OOI Regional Scale Nodes

    NASA Astrophysics Data System (ADS)

    Kelley, D. S.; Delaney, J. R.

    2012-12-01

    Methane hydrate deposits and hydrothermal vents are two of the most extreme environments on Earth. Seismic events and flow of gases from the seafloor support and modulate novel microbial communities within these systems. Although studied intensely for several decades, significant questions remain about the flux of heat, volatiles and microbial material from the subsurface to the hydrosphere in these dynamic environments. Quantification of microbial communities, their structure and abundances, and metabolic activities is in an infant state. To better understand these systems, the National Science Foundation's Ocean Observatory Initiative has installed high power (8 kW), high bandwidth (10 Gb/s) nodes on the seafloor that provide access to active methane seeps at Southern Hydrate Ridge, and at the most magmatically robust volcano on the Juan de Fuca Ridge - Axial Seamount. The real-time interactive capabilities of the cabled observatory are critical to studying gas-hydrate systems because many of the key processes occur over short time scales. Events such as bubble plume formation, the creation of collapse zones, and increased seepage in response to earthquakes require adaptive response and sampling capabilities. To meet these challenges a suite of instruments will be connected to the cable in 2013. These sensors include full resolution sampling by upward-looking sonars, fluid and gas chemical characterization by mass spectrometers and osmo samplers, long-term duration collection of seep imagery from cameras, and in situ manipulation of chemical sensors coupled with flow meters. In concert, this instrument suite will provide quantification of transient and more stable chemical fluxes. Similarly, at Axial Seamount the high bandwidth and high power fiber optic cables will be used to communicate with and power a diverse array of sensors at the summit of the volcano. Real-time high definition video will provide unprecedented views of macrofaunal and microbial communities

  18. Scaling of Magnetic Reconnection in Relativistic Collisionless Pair Plasmas

    NASA Technical Reports Server (NTRS)

    Liu, Yi-Hsin; Guo, Fan; Daughton, William; Li, Hui; Hesse, Michael

    2015-01-01

    Using fully kinetic simulations, we study the scaling of the inflow speed of collisionless magnetic reconnection in electron-positron plasmas from the non-relativistic to ultra-relativistic limit. In the anti-parallel configuration, the inflow speed increases with the upstream magnetization parameter sigma and approaches the speed of light when sigma is greater than O(100), leading to an enhanced reconnection rate. In all regimes, the divergence of the pressure tensor is the dominant term responsible for breaking the frozen-in condition at the x-line. The observed scaling agrees well with a simple model that accounts for the Lorentz contraction of the plasma passing through the diffusion region. The results demonstrate that the aspect ratio of the diffusion region, modified by the compression factor of proper density, remains approximately 0.1 in both the non-relativistic and relativistic limits.

  19. Temperature and moisture conditions for life in the extreme arid region of the Atacama desert: four years of observations including the El Nino of 1997-1998

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.; Friedmann, E. Imre; Gomez-Silva, Benito; Caceres-Villanueva, Luis; Andersen, Dale T.; Landheim, Ragnhild

    2003-01-01

    The Atacama along the Pacific Coast of Chile and Peru is one of the driest and possibly oldest deserts in the world. It represents an extreme habitat for life on Earth and is an analog for life in dry conditions on Mars. We report on four years (September 1994-October 1998) of climate and moisture data from the extreme arid region of the Atacama. Our data are focused on understanding moisture sources and their role in creating suitable environments for photosynthetic microorganisms in the desert surface. The average air temperature was 16.5 degrees C and 16.6 degrees C in 1995 and 1996, respectively. The maximum air temperature recorded was 37.9 degrees C, and the minimum was -5.7 degrees C. Annual average sunlight was 336 and 335 W m(-2) in 1995 and 1996, respectively. Winds averaged a few meters per second, with strong fohn winds coming from the west exceeding 12 m s(-1). During our 4 years of observation there was only one significant rain event of 2.3 mm, which occurred near midnight local time. We suggest that this event was a rainout of a heavy fog. It is of interest that the strong El Nino of 1997-1998 brought heavy rainfall to the deserts of Peru, but did not bring significant rain to the central Atacama in Chile. Dew occurred at our station frequently following high nighttime relative humidity, but is not a significant source of moisture in the soil or under stones. Groundwater also does not contribute to surface moisture. Only the one rain event of 2.3 mm resulted in liquid water in the soil and beneath stones for a total of only 65-85 h over 4 years. The paucity of liquid water under stones is consistent with the apparent absence of hypolithic (under-stone) cyanobacteria, the only known primary producers in such extreme deserts.

  20. Projecting policy-relevant metrics to characterize changing ozone extremes over the US: Variations by region, season and scenario

    NASA Astrophysics Data System (ADS)

    Rieder, Harald E.; Fiore, Arlene M.; Correa, Gus; Clifton, Olivia; Horrowitz, Larry W.; Naik, Vaishali

    2015-04-01

    Nitrogen oxide (NOx) emission controls have led to improved air quality (particularly in the Eastern US) over the past two decades, but concerns have been raised that climate warming may offset some of these gains in the coming decades. Here we address these concerns by analyzing the effect of projected future changes of emissions and climate, in isolation and combination, on US surface ozone (O3) during the 21st century in an ensemble of simulations (3 members per scenario) performed with the GFDL chemistry-climate model CM3. We analyze two Representative Concentration Pathway (RCP) scenarios: RCP4.5 and RCP8.5. Under both scenarios, NOx emissions decrease by ~80% over North America by 2100. In additional 3-member ensemble simulations, termed RCP4.5_WMGG and RCP8.5_WMGG, well-mixed greenhouse gases follow the respective RCP but O3 and aerosol precursor emissions are held at 2005 levels. These simulations enable us to isolate the role of well-mixed greenhouse gas induced climate change from that of emission reductions. Another set of simulations, following RCP8.5 but with methane (CH4) held fixed at 2005 levels, termed RCP8.5_2005CH4, allows us to quantify the background influence of CH4 on O3. For each season, we examine changes in the surface O3 distribution over the US during the 21st century, calculating policy relevant statistics: days above the current national ambient air quality standard (NAAQS) of 75 ppb and other proposed future levels, as well as the probabilistic 1-year return levels for maximum daily 8-hour average ozone (MDA8 O3), within each model grid cell. Specifically, we analyze: (i) regional and seasonal changes in the frequency and return level of high O3 pollution events during the 21st century, as well as (ii) differences among the RCPs by the middle and end of the 21st century. We find that the response of surface O3 to changes in emissions and climate varies strongly, seasonally and spatially, with certain regions more prone to a 'climate

  1. Regional Projections of Extreme Apparent Temperature Days in Africa and the Related Potential Risk to Human Health

    PubMed Central

    Garland, Rebecca M.; Matooane, Mamopeli; Engelbrecht, Francois A.; Bopape, Mary-Jane M.; Landman, Willem A.; Naidoo, Mogesh; van der Merwe, Jacobus; Wright, Caradee Y.

    2015-01-01

    Regional climate modelling was used to produce high resolution climate projections for Africa, under a “business as usual scenario”, that were translated into potential health impacts utilizing a heat index that relates apparent temperature to health impacts. The continent is projected to see increases in the number of days when health may be adversely affected by increasing maximum apparent temperatures (AT) due to climate change. Additionally, climate projections indicate that the increases in AT results in a moving of days from the less severe to the more severe Symptom Bands. The analysis of the rate of increasing temperatures assisted in identifying areas, such as the East African highlands, where health may be at increasing risk due to both large increases in the absolute number of hot days, and due to the high rate of increase. The projections described here can be used by health stakeholders in Africa to assist in the development of appropriate public health interventions to mitigate the potential health impacts from climate change. PMID:26473895

  2. Ultra-thin metamaterial absorber with extremely bandwidth for solar cell and sensing applications in visible region

    NASA Astrophysics Data System (ADS)

    Tang, Jingyao; Xiao, Zhongyin; Xu, Kaikai

    2016-10-01

    In this paper, we proposed a broadband and ultra-thin metamaterial absorber in the visible region. The absorber is composed of three layers, and the most remarkable difference is that the split ring resonators (SRR) made of metal stannum are encrusted in the indium antimonide (InSb) plane on the top layer. Numerical results reveal that a broadband absorption spectrum above 90% can be realized from 353.9 THz to 613.2 THz due to the coupling effect between the material of stannum and InSb. The metamaterial absorber is ultra-thin, having the total thickness of 56 nm, i.e. less than λ/10 with respect to the center frequency of the absorption band more than 90%. In addition, the impedance matching theory, surface current distributions, E-field and H-field are investigated to explain the physical mechanism of the absorption. The sensing applications are discussed and the simulated results show that the proposed absorber operates well with a good efficiency. Moreover, the visible absorber has potential applications in the aspects of solar energy harvest, integrated photodetectors and so on.

  3. Regional Projections of Extreme Apparent Temperature Days in Africa and the Related Potential Risk to Human Health.

    PubMed

    Garland, Rebecca M; Matooane, Mamopeli; Engelbrecht, Francois A; Bopape, Mary-Jane M; Landman, Willem A; Naidoo, Mogesh; Merwe, Jacobus van der; Wright, Caradee Y

    2015-10-01

    Regional climate modelling was used to produce high resolution climate projections for Africa, under a "business as usual scenario", that were translated into potential health impacts utilizing a heat index that relates apparent temperature to health impacts. The continent is projected to see increases in the number of days when health may be adversely affected by increasing maximum apparent temperatures (AT) due to climate change. Additionally, climate projections indicate that the increases in AT results in a moving of days from the less severe to the more severe Symptom Bands. The analysis of the rate of increasing temperatures assisted in identifying areas, such as the East African highlands, where health may be at increasing risk due to both large increases in the absolute number of hot days, and due to the high rate of increase. The projections described here can be used by health stakeholders in Africa to assist in the development of appropriate public health interventions to mitigate the potential health impacts from climate change. PMID:26473895

  4. Relativistic model of disk-jet variability

    NASA Astrophysics Data System (ADS)

    Mohan, P.; Mangalam, A.

    2014-07-01

    We present a relativistic model of disk-jet variability in the optical/UV and X-ray wavelengths from AGN. The model treats the kinematics of a bulk inflow in orbital motion in a relativistic thin disk. A part of the advected plasma continues in a helical orbital motion onto a relativistic jet shaped by a magnetic surface with foot points near the innermost stable circular orbit. The model, cast in Kerr geometry includes Doppler and gravitational shifts, aberration, light bending and time delay effects on the outgoing radiation. Light curves are simulated for studying effects of the relativistic beaming and the quasi-periodic oscillation (QPO) phenomena with resulting typical timescales ranging between a few 1000 s and a few days. A power law power spectral density shape results with a typical slope of ˜ -2.5. Also, using a model for the quality factor of the QPO, we place constraints on black hole mass, spin and the size of the emission region.

  5. Comparative evaluation of the IPCC AR5 CMIP5 versus the AR4 CMIP3 model ensembles for regional precipitation and their extremes over South America

    NASA Astrophysics Data System (ADS)

    Tolen, J.; Kodra, E. A.; Ganguly, A. R.

    2011-12-01

    The assertion that higher-resolution experiments or more sophisticated process models within the IPCC AR5 CMIP5 suite of global climate model ensembles improves precipitation projections over the IPCC AR4 CMIP3 suite remains a hypothesis that needs to be rigorously tested. The questions are particularly important for local to regional assessments at scales relevant for the management of critical infrastructures and key resources, particularly for the attributes of sever precipitation events, for example, the intensity, frequency and duration of extreme precipitation. Our case study is South America, where precipitation and their extremes play a central role in sustaining natural, built and human systems. To test the hypothesis that CMIP5 improves over CMIP3 in this regard, spatial and temporal measures of prediction skill are constructed and computed by comparing climate model hindcasts with the NCEP-II reanalysis data, considered here as surrogate observations, for the entire globe and for South America. In addition, gridded precipitation observations over South America based on rain gage measurements are considered. The results suggest that the utility of the next-generation of global climate models over the current generation needs to be carefully evaluated on a case-by-case basis before communicating to resource managers and policy makers.

  6. From superdeformation to extreme deformation and clusterization in the N ≈Z nuclei of the A ≈40 mass region

    NASA Astrophysics Data System (ADS)

    Ray, D.; Afanasjev, A. V.

    2016-07-01

    A systematic search for extremely deformed structures in the N ≈Z nuclei of the A ≈40 mass region has been performed for the first time in the framework of covariant density functional theory. At spin zero such structures are located at high excitation energies, which prevents their experimental observation. The rotation acts as a tool to bring these exotic shapes to the yrast line or its vicinity so that their observation could become possible with future generation of γ -tracking (or similar) detectors such as GRETA and AGATA. The major physical observables of such structures (such as transition quadrupole moments, as well as kinematic and dynamic moments of inertia), the underlying single-particle structure and the spins at which they become yrast or near yrast, are defined. The search for the fingerprints of clusterization and molecular structures is performed and the configurations with such features are discussed. The best candidates for observation of extremely deformed structures are identified. For several nuclei in this study (such as 36Ar), the addition of several spin units above the currently measured maximum spin of 16 ℏ will inevitably trigger the transition to hyper- and megadeformed nuclear shapes.

  7. Relativistic Pseudospin Symmetry

    SciTech Connect

    Ginocchio, Joseph N.

    2011-05-06

    We show that the pseudospin symmetry that Akito Arima discovered many years ago (with collaborators) is a symmetry of the the Dirac Hamiltonian for which the sum of the scalar and vector potentials are a constant. In this paper we discuss some of the implications of this relativistic symmetry and the experimental data that support these predictions. In his original paper Akito also discussed pseudo-U(3) symmetry. We show that pseudo-U(3) symmetry is a symmetry of the Dirac Hamiltonian for which the sum of harmonic oscillator vector and scalar potentials are equal to a constant, and we give the generators of pseudo-U(3) symmetry. Going beyond the mean field we summarize new results on non relativistic shell model Hamiltonians that have pseudospin symmetry and pseudo-orbital angular momentum symmetry as a dynamical symmetries.

  8. Relativistic multiwave Cerenkov generators

    SciTech Connect

    Bugaev, S.P.; Cherepenin, V.A.; Kanavets, V.I.; Klimov, A.I.; Kopenkin, A.D.; Koshelev, V.I.; Popov, V.A.; Slepkov, A.I. )

    1990-06-01

    A review of research on relativistic multiwave Cherenkov generators (MWCG) is provided. Presented is the linear theory of these devices, allowing a detailed description of multiwave interaction of a relativistic electron beam with an electromagnetic field in an electro-dynamic superdimensional MWCG system. The results of theoretical research on the starting parameters of generation, power flows, and the structure of the radiated field in a MWCG of a 3-cm-wave band are reported. The experiments on obtaining and investigating high-power pulses of microwave radiation in a MWCG of 3-cm- and 8-mm-wavelength bands are described. In particular, the results of research on a MWCG with the power of 15 GW in a 3-cm-wavelength band and the power of 3 GW in a 8-mm-wavelength band are presented. The results of research of spatial and temporal coherence of such generator radiation are reported.

  9. Relativistic shell model calculations

    NASA Astrophysics Data System (ADS)

    Furnstahl, R. J.

    1986-06-01

    Shell model calculations are discussed in the context of a relativistic model of nuclear structure based on renormalizable quantum field theories of mesons and baryons (quantum hadrodynamics). The relativistic Hartree approximation to the full field theory, with parameters determined from bulk properties of nuclear matter, predicts a shell structure in finite nuclei. Particle-hole excitations in finite nuclei are described in an RPA calculation based on this QHD ground state. The particle-hole interaction is prescribed by the Hartree ground state, with no additional parameters. Meson retardation is neglected in deriving the RPA equations, but it is found to have negligible effects on low-lying states. The full Dirac matrix structure is maintained throughout the calculation; no nonrelativistic reductions are made. Despite sensitive cancellations in the ground state calculation, reasonable excitation spectra are obtained for light nuclei. The effects of including charged mesons, problems with heavy nuclei, and prospects for improved and extended calculations are discussed.

  10. Relativistic electrons in space.

    NASA Technical Reports Server (NTRS)

    Simnett, G. M.

    1972-01-01

    This paper reviews the current state of knowledge concerning relativistic electrons, above 0.3 MeV, in interplanetary space, as measured by detectors on board satellites operating beyond the influence of the magnetosphere. The electrons have a galactic component, which at the lower energies is subject both to solar modulation and to spasmodic 'quiet time' increases and a direct solar component correlated with flare activity. The recent measurements have established the form of the differential energy spectrum of solar flare electrons. Electrons have been detected from flares behind the visible solar disk. Relativistic electrons do not appear to leave the sun at the time of the flash phase of the flare, although there are several signatures of electron acceleration at this time. The delay is interpreted as taking place during the transport of the electrons through the lower corona.

  11. Relativistically strong electromagnetic radiation in a plasma

    NASA Astrophysics Data System (ADS)

    Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Kiriyama, H.; Kondo, K.

    2016-03-01

    Physical processes in a plasma under the action of relativistically strong electromagnetic waves generated by high-power lasers have been briefly reviewed. These processes are of interest in view of the development of new methods for acceleration of charged particles, creation of sources of bright hard electromagnetic radiation, and investigation of macroscopic quantum-electrodynamical processes. Attention is focused on nonlinear waves in a laser plasma for the creation of compact electron accelerators. The acceleration of plasma bunches by the radiation pressure of light is the most efficient regime of ion acceleration. Coherent hard electromagnetic radiation in the relativistic plasma is generated in the form of higher harmonics and/or electromagnetic pulses, which are compressed and intensified after reflection from relativistic mirrors created by nonlinear waves. In the limit of extremely strong electromagnetic waves, radiation friction, which accompanies the conversion of radiation from the optical range to the gamma range, fundamentally changes the behavior of the plasma. This process is accompanied by the production of electron-positron pairs, which is described within quantum electrodynamics theory.

  12. Dielectric cavity relativistic magnetron

    NASA Astrophysics Data System (ADS)

    Hashemi, S. M. A.

    2010-02-01

    An alteration in the structure of the A6 relativistic magnetron is proposed, which introduces an extra degree of freedom to its design and enhances many of its quality factors. This modification involves the partial filling of the cavities of the device with a low-loss dielectric material. The operation of a dielectric-filled A6 is simulated; the results indicate single-mode operation at the desired π mode and a substantially cleaner rf spectrum.

  13. On specular reflectivity measurements in high and low-contrast relativistic laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Kemp, G. E.; Link, A.; Ping, Y.; McLean, H. S.; Patel, P. K.; Freeman, R. R.; Schumacher, D. W.; Tiedje, H. F.; Tsui, Y. Y.; Ramis, R.; Fedosejevs, R.

    2015-01-01

    Using both experiment and 2D3V particle-in-cell (PIC) simulations, we describe the use of specular reflectivity measurements to study relativistic (Iλ2 > 1018 W/cm2ṡμm2) laser-plasma interactions for both high and low-contrast 527 nm laser pulses on initially solid density aluminum targets. In the context of hot-electron generation, studies typically rely on diagnostics which, more-often-than-not, represent indirect processes driven by fast electrons transiting through solid density materials. Specular reflectivity measurements, however, can provide a direct measure of the interaction that is highly sensitive to how the EM fields and plasma profiles, critical input parameters for modeling of hot-electron generation, evolve near the interaction region. While the fields of interest occur near the relativistic critical electron density, experimental reflectivity measurements are obtained centimeters away from the interaction region, well after diffraction has fully manifested itself. Using a combination of PIC simulations with experimentally inspired conditions and an analytic, non-paraxial, pulse propagation algorithm, we calculate reflected pulse properties, both near and far from the interaction region, and compare with specular reflectivity measurements. The experiment results and PIC simulations demonstrate that specular reflectivity measurements are an extremely sensitive qualitative, and partially quantitative, indicator of initial laser/target conditions, ionization effects, and other details of intense laser-matter interactions. The techniques described can provide strong constraints on many systems of importance in ultra-intense laser interactions with matter.

  14. Genetic basis of olfactory cognition: extremely high level of DNA sequence polymorphism in promoter regions of the human olfactory receptor genes revealed using the 1000 Genomes Project dataset

    PubMed Central

    Ignatieva, Elena V.; Levitsky, Victor G.; Yudin, Nikolay S.; Moshkin, Mikhail P.; Kolchanov, Nikolay A.

    2014-01-01

    The molecular mechanism of olfactory cognition is very complicated. Olfactory cognition is initiated by olfactory receptor proteins (odorant receptors), which are activated by olfactory stimuli (ligands). Olfactory receptors are the initial player in the signal transduction cascade producing a nerve impulse, which is transmitted to the brain. The sensitivity to a particular ligand depends on the expression level of multiple proteins involved in the process of olfactory cognition: olfactory receptor proteins, proteins that participate in signal transduction cascade, etc. The expression level of each gene is controlled by its regulatory regions, and especially, by the promoter [a region of DNA about 100–1000 base pairs long located upstream of the transcription start site (TSS)]. We analyzed single nucleotide polymorphisms using human whole-genome data from the 1000 Genomes Project and revealed an extremely high level of single nucleotide polymorphisms in promoter regions of olfactory receptor genes and HLA genes. We hypothesized that the high level of polymorphisms in olfactory receptor promoters was responsible for the diversity in regulatory mechanisms controlling the expression levels of olfactory receptor proteins. Such diversity of regulatory mechanisms may cause the great variability of olfactory cognition of numerous environmental olfactory stimuli perceived by human beings (air pollutants, human body odors, odors in culinary etc.). In turn, this variability may provide a wide range of emotional and behavioral reactions related to the vast variety of olfactory stimuli. PMID:24715883

  15. Using Climate Variability to Predict Annual Precipitation and Estimate the Persistence of Climate Extremes for Major Urban Areas and Regions within the United States

    NASA Astrophysics Data System (ADS)

    Giovannettone, J. P.

    2015-12-01

    Relationships between climate variability and precipitation in several urban areas throughout the United States are developed using various global climate indices. Precipitation data for over 1200 stations are obtained from the United States Historical Climatology Network maintained by the National Climate Data Center, NOAA. All data are averaged over an extended period (up to five years) and correlated to several climate indices averaged over a period of equal length using lag times also up to five years. The period length and lag time are optimized in order to produce the highest correlation. The index that best correlates with precipitation for each urban area analyzed in the current study is identified and used to create regions within the United States that are predominantly affected by a particular index; strong correlations (r2 values > 0.70) were found in all regions. The final result is a map of the United States that displays the spatial distribution of each region. These results, which include the specific relationships developed for each region and urban area, will not only allow a greater understanding of the major mechanisms that are responsible for rainfall variability throughout the United States, but will also result in improved predictability of precipitation over multiple time scales, including seasonal and annual. In addition, the ability to predict total rainfall for periods greater than one year will allow an estimate of the persistence of trends and extreme events, such as periods of drought or above-average rainfall, to be made in advance; how far these projections can be made in advance depends on the lag times used to create each site-specific and regional correlation. An example related to the California Drought is given.

  16. Climatological characteristics in the extreme hyper-arid region of Pampas de La Joya, Peru. Astrobiological approach in four years of observation: 2004-2008

    NASA Astrophysics Data System (ADS)

    Valdivia-Silva, Julio E.; Navarro-González, Rafael; Fletcher, Lauren; Pérez-Montaño, Saúl; Condori-Apaza, Reneé; Ortega-Gutiérrez, Fernando; McKay, Christopher

    2012-01-01

    This study reports the environmental conditions of temperature, moisture and radiation for four years (May 2004 to July 2008) in the area known as Pampas de La Joya in southern Peru, which recently has been considered as a new Mars analogue. The period of evaluation includes the El Niño Southern Oscillation (ENSO) during the months of September 2006 to March 2007, which, despite not having catastrophic effects like its predecessor on 1997-1998, showed an interesting increase in humidity. Our data describe the extreme conditions present in the region and their relationship with the presence of potential habitats that could allow for the survival of micro-organisms. The average environmental temperature was 18.9°C, with a maximum of 35.9°C and a minimum of -4.5°C. The annual average incident solar radiation was 508 W m-2, with high near 1060 W m-2 at noon during the driest period between September and March. The average relative humidity (RH) was 29.5, 20.1 and 20.4% for air, soil and rock, respectively. The RH had higher values at night due to fog during the months of June and August, and during the early morning between December and March. During the months of ENSO event there were four episodes of precipitation (1.1, 1.5, 2.0 and 0.9 mm), of which three increased soil and rock moisture on an average more than 45% and persisted for over 15 days after precipitation, while the atmospheric environment had no significant variations. Finally, quartz rocks and evaporite minerals colonized with micro-organisms were found as the only micro-habitats, in this region, capable of supporting life in this extreme environment.

  17. [Effect of shifting sand burial on evaporation reduction and salt restraint under saline water irrigation in extremely arid region].

    PubMed

    Zhang, Jian-Guo; Zhao, Ying; Xu, Xin-Wen; Lei, Jia-Qiang; Li, Sheng-Yu; Wang, Yong-Dong

    2014-05-01

    The Taklimakan Desert Highway Shelterbelt is drip-irrigated with high saline groundwater (2.58-29.70 g x L(-1)), and shifting sand burial and water-salt stress are most common and serious problems in this region. So it is of great importance to study the effect of shifting sand burial on soil moisture evaporation, salt accumulation and their distribution for water saving, salinity restraint, and suitable utilization of local land and water resources. In this study, Micro-Lysimeters (MLS) were used to investigate dynamics of soil moisture and salt under different thicknesses of sand burial (1, 2, 3, 4, and 5 cm), and field control experiments of drip-irrigation were also carried out to investigate soil moisture and salt distribution under different thicknesses of shifting sand burial (5, 10, 15, 20, 25, 30, 35, and 40 cm). The soil daily and cumulative evaporation decreased with the increase of sand burial thickness in MLS, cumulative evaporation decreased by 2.5%-13.7% compared with control. And evaporative inhibiting efficiency increased with sand burial thickness, evaporative inhibiting efficiency of 1-5 cm sand burial was 16.7%-79.0%. Final soil moisture content beneath the interface of sand burial increased with sand burial thickness, and it increased by 2.5%-13.7% than control. The topsoil EC of shifting sand in MLS decreased by 1.19-6.00 mS x cm(-1) with the increasing sand burial thickness, whereas soil salt content beneath the interface in MLS increased and amplitude of the topsoil salt content was higher than that of the subsoil. Under drip-irrigation with saline groundwater, average soil moisture beneath the interface of shifting sand burial increased by 0.4% -2.0% compare with control, and the highest value of EC was 7.77 mS x cm(-1) when the sand burial thickness was 10 cm. The trend of salt accumulation content at shifting sand surface increased firstly, and then decreased with the increasing sand burial thickness. Soil salt contents beneath the

  18. [Effect of shifting sand burial on evaporation reduction and salt restraint under saline water irrigation in extremely arid region].

    PubMed

    Zhang, Jian-Guo; Zhao, Ying; Xu, Xin-Wen; Lei, Jia-Qiang; Li, Sheng-Yu; Wang, Yong-Dong

    2014-05-01

    The Taklimakan Desert Highway Shelterbelt is drip-irrigated with high saline groundwater (2.58-29.70 g x L(-1)), and shifting sand burial and water-salt stress are most common and serious problems in this region. So it is of great importance to study the effect of shifting sand burial on soil moisture evaporation, salt accumulation and their distribution for water saving, salinity restraint, and suitable utilization of local land and water resources. In this study, Micro-Lysimeters (MLS) were used to investigate dynamics of soil moisture and salt under different thicknesses of sand burial (1, 2, 3, 4, and 5 cm), and field control experiments of drip-irrigation were also carried out to investigate soil moisture and salt distribution under different thicknesses of shifting sand burial (5, 10, 15, 20, 25, 30, 35, and 40 cm). The soil daily and cumulative evaporation decreased with the increase of sand burial thickness in MLS, cumulative evaporation decreased by 2.5%-13.7% compared with control. And evaporative inhibiting efficiency increased with sand burial thickness, evaporative inhibiting efficiency of 1-5 cm sand burial was 16.7%-79.0%. Final soil moisture content beneath the interface of sand burial increased with sand burial thickness, and it increased by 2.5%-13.7% than control. The topsoil EC of shifting sand in MLS decreased by 1.19-6.00 mS x cm(-1) with the increasing sand burial thickness, whereas soil salt content beneath the interface in MLS increased and amplitude of the topsoil salt content was higher than that of the subsoil. Under drip-irrigation with saline groundwater, average soil moisture beneath the interface of shifting sand burial increased by 0.4% -2.0% compare with control, and the highest value of EC was 7.77 mS x cm(-1) when the sand burial thickness was 10 cm. The trend of salt accumulation content at shifting sand surface increased firstly, and then decreased with the increasing sand burial thickness. Soil salt contents beneath the

  19. Point form relativistic quantum mechanics and relativistic SU(6)

    NASA Technical Reports Server (NTRS)

    Klink, W. H.

    1993-01-01

    The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.

  20. Relativistic Energy Density Functionals: Exotic modes of excitation

    SciTech Connect

    Vretenar, D.; Paar, N.; Marketin, T.

    2008-11-11

    The framework of relativistic energy density functionals has been applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of {beta}-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure have been investigated with the relativistic quasiparticle random-phase approximation. We present results for the evolution of low-lying dipole (pygmy) strength in neutron-rich nuclei, and charged-current neutrino-nucleus cross sections.

  1. Effects of Revegetation on Soil Organic Carbon Storage and Erosion-Induced Carbon Loss under Extreme Rainstorms in the Hill and Gully Region of the Loess Plateau

    PubMed Central

    Li, Yujin; Jiao, Juying; Wang, Zhijie; Cao, Binting; Wei, Yanhong; Hu, Shu

    2016-01-01

    Background: The Loess Plateau, an ecologically vulnerable region, has long been suffering from serious soil erosion. Revegetation has been implemented to control soil erosion and improve ecosystems in the Loess Plateau region through a series of ecological recovery programs. However, the increasing atmospheric CO2 as a result of human intervention is affecting the climate by global warming, resulting in the greater frequency and intensity of extreme weather events, such as storms that may weaken the effectiveness of revegetation and cause severe soil erosion. Most research to date has evaluated the effectiveness of revegetation on soil properties and soil erosion of different land use or vegetation types. Here, we study the effect of revegetation on soil organic carbon (SOC) storage and erosion-induced carbon loss related to different plant communities, particularly under extreme rainstorm events. Materials and methods: The erosion-pin method was used to quantify soil erosion, and soil samples were taken at soil depths of 0–5 cm, 5–10 cm and 10–20 cm to determine the SOC content for 13 typical hillside revegetation communities in the year of 2013, which had the highest rainfall with broad range, long duration and high intensity since 1945, in the Yanhe watershed. Results and discussion: The SOC concentrations of all plant communities increased with soil depth when compared with slope cropland, and significant increases (p < 0.05) were observed for most shrub and forest communities, particularly for natural ones. Taking the natural secondary forest community as reference (i.e., soil loss and SOC loss were both 1.0), the relative soil loss and SOC loss of the other 12 plant communities in 2013 ranged from 1.5 to 9.4 and 0.30 to 1.73, respectively. Natural shrub and forest communities showed greater resistance to rainstorm erosion than grassland communities. The natural grassland communities with lower SOC content produced lower SOC loss even with higher soil

  2. The Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Fischer, Wolfram

    The Relativistic Heavy Ion Collider (RHIC), shown in Fig. 1, was build to study the interactions of quarks and gluons at high energies [Harrison, Ludlam and Ozaki (2003)]. The theory of Quantum Chromodynamics (QCD) describes these interactions. One of the main goals for the RHIC experiments was the creation and study of the Quark-Gluon Plasma (QGP), which was expected to be formed after the collision of heavy ions at a temperature of approximately 2 trillion kelvin (or equivalently an energy of 150 MeV). The QGP is the substance which existed only a few microseconds after the Big Bang. The QGP was anticipated to be weakly interacting like a gas but turned out to be strongly interacting and more like a liquid. Among its unusual properties is its extremely low viscosity [Auerbach and Schlomo (2009)], which makes the QGP the substance closest to a perfect liquid known to date. The QGP is opaque to moderate energy quarks and gluons leading to a phenomenon called jet quenching, where of a jet and its recoil jet only one is observable and the other suppressed after traversing and interacting with the QGP [Jacak and Müller (2012)]...

  3. Crystallization and collapse in relativistically degenerate matter

    SciTech Connect

    Akbari-Moghanjoughi, M.

    2013-04-15

    In this paper, it is shown that a mass density limit exists beyond which the relativistically degenerate matter would crystallize. The mass density limit, found here, is quite analogous to the mass limit predicted by Chandrasekhar for a type of compact stars called white dwarfs (M{sub Ch} Asymptotically-Equal-To 1.43 Solar Mass). In this study, the old problem of white dwarf core collapse, which has been previously investigated by Chandrasekhar using hydrostatic stability criteria, is revisited in the framework of the quantum hydrodynamics model by inspection of the charge screening at atomic scales in the relativistic degeneracy plasma regime taking into account the relativistic Fermi-Dirac statistics and electron interaction features such as the quantum statistical pressure, Coulomb attraction, electron exchange-correlation, and quantum recoil effects. It is revealed that the existence of ion correlation and crystallization of matter in the relativistically degenerate plasma puts a critical mass density limit on white dwarf core region. It is shown that a white dwarf star with a core mass density beyond this critical limit can undergo the spontaneous core collapse (SCC). The SCC phenomenon, which is dominantly caused by the electron quantum recoil effect (interference and localization of the electron wave function), leads to a new exotic state of matter. In such exotic state, the relativistic electron degeneracy can lead the white dwarf crystallized core to undergo the nuclear fusion and an ultimate supernova by means of the volume reduction (due to the enhanced compressibility) and huge energy release (due to the increase in cohesive energy), under the stars huge inward gravitational pressure. Moreover, it is found that the SCC phenomenon is significantly affected by the core composition (it is more probable for heavier plasmas). The critical mass density found here is consistent with the values calculated for core density of typical white dwarf stars.

  4. Relativistic interactions and realistic applications

    SciTech Connect

    Hoch, T.; Madland, D.; Manakos, P.; Mannel, T.; Nikolaus, B.A.; Strottman, D. |

    1992-12-31

    A four-fermion-coupling Lagrangian (relativistic Skyrme-type) interaction has been proposed for relativistic nuclear structure calculations. This interaction, which has the merit of simplicity, is from the outset tailored as an effective interaction for relativistic Hartree-Fock calculations. Various extensions of such a model are discussed and compared with Walecka`s meson-nucleon mean field approach. We also present results of the calculation of nuclear ground state properties with an extended (density dependent) version of the four fermion interaction in a relativistic Hartree-Fock approximation.

  5. Projected sea level rise and changes in extreme storm surge and wave events during the 21st century in the region of Singapore

    NASA Astrophysics Data System (ADS)

    Cannaby, Heather; Palmer, Matthew D.; Howard, Tom; Bricheno, Lucy; Calvert, Daley; Krijnen, Justin; Wood, Richard; Tinker, Jonathan; Bunney, Chris; Harle, James; Saulter, Andrew; O'Neill, Clare; Bellingham, Clare; Lowe, Jason

    2016-05-01

    Singapore is an island state with considerable population, industries, commerce and transport located in coastal areas at elevations less than 2 m making it vulnerable to sea level rise. Mitigation against future inundation events requires a quantitative assessment of risk. To address this need, regional projections of changes in (i) long-term mean sea level and (ii) the frequency of extreme storm surge and wave events have been combined to explore potential changes to coastal flood risk over the 21st century. Local changes in time-mean sea level were evaluated using the process-based climate model data and methods presented in the United Nations Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5). Regional surge and wave solutions extending from 1980 to 2100 were generated using ˜ 12 km resolution surge (Nucleus for European Modelling of the Ocean - NEMO) and wave (WaveWatchIII) models. Ocean simulations were forced by output from a selection of four downscaled ( ˜ 12 km resolution) atmospheric models, forced at the lateral boundaries by global climate model simulations generated for the IPCC AR5. Long-term trends in skew surge and significant wave height were then assessed using a generalised extreme value model, fit to the largest modelled events each year. An additional atmospheric solution downscaled from the ERA-Interim global reanalysis was used to force historical ocean model simulations extending from 1980 to 2010, enabling a quantitative assessment of model skill. Simulated historical sea-surface height and significant wave height time series were compared to tide gauge data and satellite altimetry data, respectively. Central estimates of the long-term mean sea level rise at Singapore by 2100 were projected to be 0.52 m (0.74 m) under the Representative Concentration Pathway (RCP)4.5 (8.5) scenarios. Trends in surge and significant wave height 2-year return levels were found to be statistically insignificant and/or physically

  6. Projected sea level rise and changes in extreme storm surge and wave events during the 21st century in the region of Singapore

    NASA Astrophysics Data System (ADS)

    Cannaby, H.; Palmer, M. D.; Howard, T.; Bricheno, L.; Calvert, D.; Krijnen, J.; Wood, R.; Tinker, J.; Bunney, C.; Harle, J.; Saulter, A.; O'Neill, C.; Bellingham, C.; Lowe, J.

    2015-12-01

    Singapore is an island state with considerable population, industries, commerce and transport located in coastal areas at elevations less than 2 m making it vulnerable to sea-level rise. Mitigation against future inundation events requires a quantitative assessment of risk. To address this need, regional projections of changes in (i) long-term mean sea level and (ii) the frequency of extreme storm surge and wave events have been combined to explore potential changes to coastal flood risk over the 21st century. Local changes in time mean sea level were evaluated using the process-based climate model data and methods presented in the IPCC AR5. Regional surge and wave solutions extending from 1980 to 2100 were generated using ~ 12 km resolution surge (Nucleus for European Modelling of the Ocean - NEMO) and wave (WaveWatchIII) models. Ocean simulations were forced by output from a selection of four downscaled (~ 12 km resolution) atmospheric models, forced at the lateral boundaries by global climate model simulations generated for the IPCC AR5. Long-term trends in skew surge and significant wave height were then assessed using a generalised extreme value model, fit to the largest modelled events each year. An additional atmospheric solution downscaled from the ERA-Interim global reanalysis was used to force historical ocean model simulations extending from 1980-2010, enabling a quantitative assessment of model skill. Simulated historical sea surface height and significant wave height time series were compared to tide gauge data and satellite altimetry data respectively. Central estimates of the long-term mean sea level rise at Singapore by 2100 were projected to be 0.52 m (0.74 m) under the RCP 4.5 (8.5) scenarios respectively. Trends in surge and significant wave height 2 year return levels were found to be statistically insignificant and/or physically very small under the more severe RCP8.5 scenario. We conclude that changes to long-term mean sea level constitute the

  7. Relativistic hadrons and the origin of relativistic outflows in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Contopoulos, John; Kazanas, D.

    1995-01-01

    We examine the hydrodynamic origin of relativistic outflows in active galactic nuclei (AGN). Specifically, we propose that the presence of a population of relativistic hadrons in the AGN 'central engine' and the associated neutron production suffices to produce outflows which under rather general conditions could be relativistic. The main such condition is that the size of the neutron production region be larger than the neutron flight path tau(sub n) approximately 3 x 10(exp 13) cm. This condition guarantees that the mean energy per particle in the proton fluid, resulting from the decay of the neutrons outside their production region, be greater than the proton rest mass. The expansion of this fluid can then lead naturally to a relativistic outflow by conversion of its internal energy to directed motion. We follow the development of such flows by solving the mass, energy as well as the kinetic equation for the proton gas in steady state, taking into account the source terms due to compute accurately the adiabatic index of the expanding gas, and in conjunction with Bernoulli's equation the detailed evolution of the bulk Lorentz factor. We further examine the role of large-scale magnetic fields in confining these outflows to produce the jets observed at larger scales.

  8. The relativist stance.

    PubMed

    Rössler, O E; Matsuno, K

    1998-04-01

    The two mindsets of absolutism and relativism are juxtaposed, and the relational or relativist stance is vindicated. The only 'absolute' entity which undeniably exists, consciousness has the reality of a dream. The escape hatch from this prison is relational, as Descartes and Levinas found out: Unfalsified relational consistency implies exteriority. Exteriority implies infinite power which in turn makes compassion inevitable. Aside from ethics as a royal way to enlightenment, a new technology called 'deep technology' may be accessible. It changes the whole world in a demonstrable fashion by manipulation of the micro frame--that is, the observer-world interface.

  9. Relativistic quantum information

    NASA Astrophysics Data System (ADS)

    Mann, R. B.; Ralph, T. C.

    2012-11-01

    Over the past few years, a new field of high research intensity has emerged that blends together concepts from gravitational physics and quantum computing. Known as relativistic quantum information, or RQI, the field aims to understand the relationship between special and general relativity and quantum information. Since the original discoveries of Hawking radiation and the Unruh effect, it has been known that incorporating the concepts of quantum theory into relativistic settings can produce new and surprising effects. However it is only in recent years that it has become appreciated that the basic concepts involved in quantum information science undergo significant revision in relativistic settings, and that new phenomena arise when quantum entanglement is combined with relativity. A number of examples illustrate that point. Quantum teleportation fidelity is affected between observers in uniform relative acceleration. Entanglement is an observer-dependent property that is degraded from the perspective of accelerated observers moving in flat spacetime. Entanglement can also be extracted from the vacuum of relativistic quantum field theories, and used to distinguish peculiar motion from cosmological expansion. The new quantum information-theoretic framework of quantum channels in terms of completely positive maps and operator algebras now provides powerful tools for studying matters of causality and information flow in quantum field theory in curved spacetimes. This focus issue provides a sample of the state of the art in research in RQI. Some of the articles in this issue review the subject while others provide interesting new results that will stimulate further research. What makes the subject all the more exciting is that it is beginning to enter the stage at which actual experiments can be contemplated, and some of the articles appearing in this issue discuss some of these exciting new developments. The subject of RQI pulls together concepts and ideas from

  10. The relativist stance.

    PubMed

    Rössler, O E; Matsuno, K

    1998-04-01

    The two mindsets of absolutism and relativism are juxtaposed, and the relational or relativist stance is vindicated. The only 'absolute' entity which undeniably exists, consciousness has the reality of a dream. The escape hatch from this prison is relational, as Descartes and Levinas found out: Unfalsified relational consistency implies exteriority. Exteriority implies infinite power which in turn makes compassion inevitable. Aside from ethics as a royal way to enlightenment, a new technology called 'deep technology' may be accessible. It changes the whole world in a demonstrable fashion by manipulation of the micro frame--that is, the observer-world interface. PMID:9648695

  11. Modeling relativistic nuclear collisions.

    SciTech Connect

    Anderlik, C.; Magas, V.; Strottman, D.; Csernai, L. P.

    2001-01-01

    Modeling Ultra-Relativistic Heavy Ion Collisioiis at RHIC and LHC energies using a Multi Module Model is presented. The first Module is the Effective String Rope Model for the calculation of the initial stages of the reaction; the output of this module is used as the initial state for the subsequent one-fluid hydrodynainical calculation module. It is shown that such an initial state leads to the creation of the third flow component. The hydrodynamical evolution of the energy density distribution is presented for RHIC energies. The final module describing the Freeze Out; and Hadronization is also discussed.

  12. Relativistic particle acceleration in plerions

    NASA Technical Reports Server (NTRS)

    Arons, Jonathan; Tavani, Marco

    1994-01-01

    We discuss recent research on the structure and particle acceleration properties of relativistic shock waves in which the magnetic field is transverse to the flow direction in the upstream medium, and whose composition is either pure electrons and positrons or primarily electrons and positrons with an admixture of heavy ions. Particle-in-cell simulation techniques as well as analytic theory have been used to show that such shocks in pure pair plasmas are fully thermalized -- the downstream particle spectra are relativistic Maxwellians at the temperature expected from the jump conditions. On the other hand, shocks containing heavy ions which are a minority constituent by number but which carry most of the energy density in the upstream medium do put approximately 20% of the flow energy into a nonthermal population of pairs downstream, whose distribution in energy space is N(E) varies as E(exp -2), where N(E)dE is the number of particles with energy between E and E+dE. The mechanism of thermalization and particle acceleration is found to be synchrotron maser activity in the shock front, stimulated by the quasi-coherent gyration of the whole particle population as the plasma flowing into the shock reflects from the magnetic field in the shock front. The synchrotron maser modes radiated by the heavy ions are absorbed by the pairs at their (relativistic) cyclotron frequencies, allowing the maximum energy achievable by the pairs to be gamma(sub +/-)m(sub +/-)c squared = m(sub i)c squared gamma(sub 1)/Z(sub i), where gamma(sub 1) is the Lorentz factor of the upstream flow and Z(sub i) is the atomic number of the ions. The shock's spatial structure is shown to contain a series of 'overshoots' in the magnetic field, regions where the gyrating heavy ions compress the magnetic field to levels in excess of the eventual downstream value. This shock model is applied to an interpretation of the structure of the inner regions of the Crab Nebula, in particular to the 'wisps

  13. General Relativistic and Newtonian White Dwarfs

    NASA Astrophysics Data System (ADS)

    Boshkayev, K.; Rueda, J. A.; Ruffini, R.; Siutsou, I.

    2015-01-01

    The properties of uniformly rotating white dwarfs (RWDs) are analyzed within the framework of Newton's gravity and general relativity. In both cases Hartle's formalism is applied to construct the internal and external solutions to the field equations. The white dwarf (WD) matter is described by the Chandrasekhar equation of state. The region of stability of RWDs is constructed taking into account the mass-shedding limit, inverse β-decay instability, and the boundary established by the turning points of constant angular momentum J sequences which separates stable from secularly unstable configurations. We found the minimum rotation period ˜ 0.28 s in both cases and maximum rotating masses ˜ 1.534M⊙ and ˜ 1.516M⊙ for the Newtonian and general relativistic WDs, respectively. By using the turning point method we show that general relativistic WDs can indeed be axisymmetrically unstable whereas the Newtonian WDs are stable.

  14. Relativistic electrons and whistlers in Jupiter's magnetosphere

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.; Coroniti, F. V.

    1976-01-01

    The path-integrated gain of parallel propagating whistlers driven unstable by an anisotropic distribution of relativistic electrons in the stable trapping region of Jupiter's inner magnetosphere was computed. The requirement that a gain of 3 e-foldings of power balance the power lost by imperfect reflection along the flux tube sets a stably-trapped flux of electrons which is close to the non-relativistic result. Comparison with measurements shows that observed fluxes are near the stably-trapped limit, which suggests that whistler wave intensities may be high enough to cause significant diffusion of electrons accounting for the observed reduction of phase space densities. A crude estimate of the wave intensity necessary to diffuse electrons on a radial diffusion time scale yields a lower limit for the magnetic field fluctuation intensity.

  15. Relativistic Effects on Chemical Properties.

    ERIC Educational Resources Information Center

    McKelvey, Donald R.

    1983-01-01

    Discusses how anomalous chemical properties may be explained by considering relativistic effects. Traces development of the relativistic wave equation (Dirac equation) starting with the Borh treatment of the hydrogen atom and discusses major consequences of the Dirac equation. Suggests that these topics receive greater attention in the…

  16. A Simple Relativistic Bohr Atom

    ERIC Educational Resources Information Center

    Terzis, Andreas F.

    2008-01-01

    A simple concise relativistic modification of the standard Bohr model for hydrogen-like atoms with circular orbits is presented. As the derivation requires basic knowledge of classical and relativistic mechanics, it can be taught in standard courses in modern physics and introductory quantum mechanics. In addition, it can be shown in a class that…

  17. relline: Relativistic line profiles calculation

    NASA Astrophysics Data System (ADS)

    Dauser, Thomas

    2015-05-01

    relline calculates relativistic line profiles; it is compatible with the common X-ray data analysis software XSPEC (ascl:9910.005) and ISIS (ascl:1302.002). The two basic forms are an additive line model (RELLINE) and a convolution model to calculate relativistic smearing (RELCONV).

  18. Relativistic and nonrelativistic quarkonium models

    SciTech Connect

    Ono, S.

    1982-11-01

    We propose a quarkonium potential for the Klein-Gordon equation. The relativistic effects are small even for uu-bar and dd-bar systems because the introduction of a scalar constant potential in a Klein-Gordon equation allows a minimization of relativistic effects via cancellations in our model.

  19. Relativistic Continuum Shell Model

    NASA Astrophysics Data System (ADS)

    Grineviciute, Janina; Halderson, Dean

    2011-04-01

    The R-matrix formalism of Lane and Thomas has been extended to the relativistic case so that the many-coupled channels problem may be solved for systems in which binary breakup channels satisfy a relative Dirac equation. The formalism was previously applied to the relativistic impulse approximation RIA and now we applied it to Quantum Hadrodynamics QHD in the continuum Tamm-Dancoff approximation TDA with the classical meson fields replaced by one-meson exchange potentials. None of the published QHD parameters provide a decent fit to the 15 N + p elastic cross section. The deficiency is also evident in inability of the QHD parameters with the one meson exchange potentials to reproduce the QHD single particle energies. Results with alternate parameters sets are presented. A. M. Lane and R. G. Thomas, R-Matrix Theory of Nuclear Reactions, Reviews of Modern Physics, 30 (1958) 257

  20. Stationary relativistic jets

    NASA Astrophysics Data System (ADS)

    Komissarov, Serguei S.; Porth, Oliver; Lyutikov, Maxim

    2015-11-01

    In this paper we describe a simple numerical approach which allows to study the structure of steady-state axisymmetric relativistic jets using one-dimensional time-dependent simulations. It is based on the fact that for narrow jets with vz≈ c the steady-state equations of relativistic magnetohydrodynamics can be accurately approximated by the one-dimensional time-dependent equations after the substitution z=ct. Since only the time-dependent codes are now publicly available this is a valuable and efficient alternative to the development of a high-specialised code for the time-independent equations. The approach is also much cheaper and more robust compared to the relaxation method. We tested this technique against numerical and analytical solutions found in literature as well as solutions we obtained using the relaxation method and found it sufficiently accurate. In the process, we discovered the reason for the failure of the self-similar analytical model of the jet reconfinement in relatively flat atmospheres and elucidated the nature of radial oscillations of steady-state jets.

  1. A relativistic trolley paradox

    NASA Astrophysics Data System (ADS)

    Matvejev, Vadim N.; Matvejev, Oleg V.; Grøn, Ø.

    2016-06-01

    We present an apparent paradox within the special theory of relativity, involving a trolley with relativistic velocity and its rolling wheels. Two solutions are given, both making clear the physical reality of the Lorentz contraction, and that the distance on the rails between each time a specific point on the rim touches the rail is not equal to 2 π R , where R is the radius of the wheel, but 2 π R / √{ 1 - R 2 Ω 2 / c 2 } , where Ω is the angular velocity of the wheels. In one solution, the wheel radius is constant as the velocity of the trolley increases, and in the other the wheels contract in the radial direction. We also explain two surprising facts. First that the shape of a rolling wheel is elliptical in spite of the fact that the upper part of the wheel moves faster than the lower part, and thus is more Lorentz contracted, and second that a Lorentz contracted wheel with relativistic velocity rolls out a larger distance between two successive touches of a point of the wheel on the rails than the length of a circle with the same radius as the wheels.

  2. Relativistic harmonic oscillator revisited

    SciTech Connect

    Bars, Itzhak

    2009-02-15

    The familiar Fock space commonly used to describe the relativistic harmonic oscillator, for example, as part of string theory, is insufficient to describe all the states of the relativistic oscillator. We find that there are three different vacua leading to three disconnected Fock sectors, all constructed with the same creation-annihilation operators. These have different spacetime geometric properties as well as different algebraic symmetry properties or different quantum numbers. Two of these Fock spaces include negative norm ghosts (as in string theory), while the third one is completely free of ghosts. We discuss a gauge symmetry in a worldline theory approach that supplies appropriate constraints to remove all the ghosts from all Fock sectors of the single oscillator. The resulting ghost-free quantum spectrum in d+1 dimensions is then classified in unitary representations of the Lorentz group SO(d,1). Moreover, all states of the single oscillator put together make up a single infinite dimensional unitary representation of a hidden global symmetry SU(d,1), whose Casimir eigenvalues are computed. Possible applications of these new results in string theory and other areas of physics and mathematics are briefly mentioned.

  3. Studies of relativistic heavy ion collisions at the AGS (Experiment 814). Annual progress report, 1 May 1991--30 April 1992

    SciTech Connect

    Cleland, W.E.

    1992-04-01

    During the past year, the Pittsburgh group has continued to work with the E814 collaboration in carrying out AGS Experiment 814. We present here a brief history of the experiment, followed by a detailed report of the analysis work being pursued at the University of Pittsburgh. As originally proposed, Experiment 814 is a study of both extreme peripheral collisions and the transition from peripheral to central collisions in relativistic heavy ion-nucleus interactions. We are studying relativistic heavy ion interactions with nuclei in two types of collisions: (a) extreme peripheral collisions of large impact parameter, and (b) central collisions with high transverse energy in the final state. The experiment emphasizes the measurement of overall event characteristics, in particular energy flow measurements and a precise measurement of the particle charge, momentum, and energy in the forward direction. This permits measurements of cross sections and rapidity densities as a function of the transverse energy for leading baryons emitted into regions of larger rapidity. Combining the energy flow measurements as a function of rapidity with the spectra of leading baryons provides information on the impact parameter dependence of the nuclear stopping of the projectile in relativistic heavy ion collisions. In 1988, the scope of Experiment 814 was enlarged to include a search for strange matter in central collisions, the first results of which have been published, and analysis on a longer run taken in 1990 is still under way.

  4. Relativistic fluid formulation and theory of intense relativistic electron beams

    SciTech Connect

    Siambis, J.G.

    1984-01-01

    A new general relativistic fluid formulation has been obtained for intense relativistic electron beams (IREB) with arbitrarily high relativistic mass factor ..gamma... This theory is valid for confined IREB equilibria such as those found inside high energy accelerators as well as in the pinched and ion-focused regimes of beam propagation in plasma channels. The new relativistic fluid formulation is based on the covariant relativistic fluid formulation of Newcomb with the parameter lambda identical to 1, in order to allow for realistic confined equilibria. The resulting equilibrium constraints require that the beam has a slow rotational velocity around its direction of propagation and that the off-diagonal thermal stress element, associated with these two directions of motion, be nonzero. The effective betatron oscillation frequency of the fluid elements of the beam is modified by the radial gradient and anisotropies in the thermal stress elements of the beam fluid. The wave equation, for sausage, hose and filamentation excitations on the relativistic fluid beam, is found to be formally identical to that obtained from the Vlasov equation approach, hence phase-mixing damping is a generic and self-consistent correlate of the new relativistic fluid formulation.

  5. BROAD-LINE REGION PHYSICAL CONDITIONS IN EXTREME POPULATION A QUASARS: A METHOD TO ESTIMATE CENTRAL BLACK HOLE MASS AT HIGH REDSHIFT

    SciTech Connect

    Negrete, C. Alenka; Dultzin, Deborah; Marziani, Paola; Sulentic, Jack W. E-mail: deborah@astro.unam.mx E-mail: sulentic@iaa.es

    2012-09-20

    We describe a method for estimating physical conditions in the broad-line region (BLR) for a significant subsample of Seyfert 1 nuclei and quasars. Several diagnostic ratios based on intermediate (Al III {lambda}1860, Si III] {lambda}1892) and high (C IV {lambda}1549, Si IV {lambda}1397) ionization lines in the UV spectra of quasars are used to constrain density, ionization, and metallicity of the emitting gas. We apply the method to two extreme Population A quasars-the prototypical NLSy1 I Zw 1 and higher z source SDSS J120144.36+011611.6. Under assumptions of spherical symmetry and pure photoionization we infer BLR physical conditions: low ionization (ionization parameter <10{sup -2}), high density (10{sup 12}-10{sup 13} cm{sup -3}), and significant metal enrichment. Ionization parameter and density can be derived independently for each source with an uncertainty that is less than {+-}0.3 dex. We use the product of density and ionization parameter to estimate the BLR radius and derive an estimation of the virial black hole mass (M{sub BH}). Estimates of M{sub BH} based on the 'photoionization' analysis described in this paper are probably more accurate than those derived from the mass-luminosity correlations widely employed to compute black hole masses for high-redshift quasars.

  6. [Effects of nitrogen fertilization rate and planting density on cotton boll biomass and nitrogen accumulation in extremely early maturing cotton region of Northeast China].

    PubMed

    Wang, Zi-Sheng; Wu, Xiao-Dong; Gao, Xiang-Bin; Xu, Min; Shen, Dan; Jin, Lu-Lu; Zhou, Zhi-Guo

    2012-02-01

    Taking cotton cultivars Liaomian 19 and NuCoTN 33B as test materials, a field experiment was conducted to study the effects of nitrogen fertilization rate (0, 240 and 480 kg x hm(-2)) and planting density (75000, 97500 and 120000 plants x hm(-2)) on the boll biomass and nitrogen accumulation in the extremely early maturing cotton region of Northeast China. With the growth and development of cotton, the biomass and nitrogen accumulation of cotton boll, cotton seed, and cotton fiber varied in 'S' shape. Both nitrogen fertilization rate and planting density had significant effects on the dynamic characteristics of boll biomass and nitrogen accumulation, and on the fiber yield and quality. In treatment 240 kg x hm(-2) and 97500 plants x hm(-2), the biomass of single boll, cotton seed and cotton fiber was the maximum, the starting time and ending time of the rapid accumulation period of the biomass and nitrogen were earlier but the duration of the accumulation was shorter, the rapid accumulation speed of the biomass was the maximum, and the distribution indices of the biomass and nitrogen were the lowest in boll shell but the highest in cotton seed and cotton fiber.

  7. APEX CO (9-8) MAPPING OF AN EXTREMELY HIGH VELOCITY AND JET-LIKE OUTFLOW IN A HIGH-MASS STAR-FORMING REGION

    SciTech Connect

    Qiu Keping; Wyrowski, Friedrich; Menten, Karl M.; Guesten, Rolf; Leurini, Silvia; Leinz, Christian

    2011-12-10

    Atacama Pathfinder Experiment (APEX) mapping observations in CO (9-8) and (4-3) toward a high-mass star-forming region, NGC 6334 I, are presented. The CO (9-8) map has a 6.''4 resolution, revealing a {approx}0.5 pc, jet-like, and bipolar outflow. This is the first map of a molecular outflow in a THz line. The CO (9-8) and (4-3) lines arising from the outflow lobes both show extremely high velocity line wings, and their ratios indicate a gas temperature greater than 100 K and a density higher than 10{sup 4} cm{sup -3}. The spatial-velocity structure of the CO (9-8) data is typical of a bow-shock-driven flow, which is consistent with the association between the bipolar outflow and the infrared bow-shaped tips. In short, the observations unveil a highly excited and collimated component in a bipolar outflow that is powered by a high-mass protostar, and provide insights into the driving mechanism of the outflow. Meanwhile, the observations demonstrate that high-quality mapping observations can be performed with the new THz receiver on APEX.

  8. Changes in Seasonal and Extreme Hydrologic Conditions of the Georgia Basin/Puget Sound in an Ensemble Regional Climate Simulation for the Mid-Century

    SciTech Connect

    Leung, Lai R.; Qian, Yun

    2003-12-15

    This study examines an ensemble of climate change projections simulated by a global climate model (GCM) and downscaled with a region climate model (RCM) to 40 km spatial resolution for the western North America. One control and three ensemble future climate simulations were produced by the GCM following a business as usual scenario for greenhouse gases and aerosols emissions from 1995 to 2100. The RCM was used to downscale the GCM control simulation (1995-2015) and each ensemble future GCM climate (2040-2060) simulation. Analyses of the regional climate simulations for the Georgia Basin/Puget Sound showed a warming of 1.5-2oC and statistically insignificant changes in precipitation by the mid-century. Climate change has large impacts on snowpack (about 50% reduction) but relatively smaller impacts on the total runoff for the basin as a whole. However, climate change can strongly affect small watersheds such as those located in the transient snow zone, causing a higher likelihood of winter flooding as a higher percentage of precipitation falls in the form of rain rather than snow, and reduced streamflow in early summer. In addition, there are large changes in the monthly total runoff above the upper 1% threshold (or flood volume) from October through May, and the December flood volume of the future climate is 60% above the maximum monthly flood volume of the control climate. Uncertainty of the climate change projections, as characterized by the spread among the ensemble future climate simulations, is relatively small for the basin mean snowpack and runoff, but increases in smaller watersheds, especially in the transient snow zone, and associated with extreme events. This emphasizes the importance of characterizing uncertainty through ensemble simulations.

  9. New photon science and extreme field physics: volumetric interaction of ultra-intense laser pulses with over-dense targets

    SciTech Connect

    Hegelich, Bjorn M

    2010-11-24

    The constantly improving capabilities of ultra-high power lasers are enabling interactions of matter with ever extremer fields. As both the on target intensity and the laser contrast are increasing, new physics regimes are becoming accessible and new effects materialize, which in turn enable a host of applications. A first example is the realization of interactions in the transparent-overdense regime (TOR), which is reached by interacting a highly relativistic (a{sub 0} > 10), ultra high contrast laser pulse with a solid density, nanometer target. Here, a still overdense target is turned transparent to the laser by the relativistic mass increase of the electrons, increasing the skin depth beyond the target thickness and thus enabling volumetric interaction of the laser with the entire target instead of only a small interaction region at the critical density surface. This increases the energy coupling, enabling a range of effects, including relativistic optics and pulse shaping, mono-energetic electron acceleration, highly efficient ion acceleration in the break-out afterburner regime, the generation of relativistic and forward directed surface harmonics. In this talk we will show the theoretical framework for this regime, explored by multi-D, high resolution and high density PIC simulations as well as analytic theory and present measurements and experimental demonstrations of direct relativistic optics, relativistic HHG, electron acceleration, and BOA ion acceleration in the transparent overdense regime. These effects can in turn be used in a host of applications including laser pulse shaping, ICF diagnostics, coherent x-ray sources, and ion sources for fast ignition (IFI), homeland security applications and medical therapy. This host of applications already makes transparent-overdense regime one of general interest, a situation reinforced by the fact that the TOR target undergoes an extremely wide HEDP parameter space during interaction ranging from WDM conditions

  10. Relativistic effective interaction for nuclei, giant resonances, and neutron stars

    SciTech Connect

    Fattoyev, F. J.; Piekarewicz, J.; Horowitz, C. J.; Shen, G.

    2010-11-15

    Nuclear effective interactions are useful tools in astrophysical applications especially if one can guide the extrapolations to the extremes regions of isospin and density that are required to simulate dense, neutron-rich systems. Isospin extrapolations may be constrained in the laboratory by measuring the neutron skin thickness of a heavy nucleus, such as {sup 208}Pb. Similarly, future observations of massive neutron stars will constrain the extrapolations to the high-density domain. In this contribution we introduce a new relativistic effective interaction that is simultaneously constrained by the properties of finite nuclei, their collective excitations, and neutron-star properties. By adjusting two of the empirical parameters of the theory, one can efficiently tune the neutron skin thickness of {sup 208}Pb and the maximum neutron-star mass. We illustrate this procedure in response to the recent interpretation of x-ray observations by Steiner, Lattimer, and Brown that suggests that the FSUGold effective interaction predicts neutron-star radii that are too large and a maximum stellar mass that is too small. The new effective interaction is fitted to a neutron skin thickness in {sup 208}Pb of only R{sub n}-R{sub p}=0.16 fm and yields a moderately large maximum neutron-star mass of 1.94 M{sub {center_dot}}.

  11. Relativistic positioning systems: Numerical simulations

    NASA Astrophysics Data System (ADS)

    Puchades Colmenero, Neus

    The position of users located on the Earth's surface or near it may be found with the classic positioning systems (CPS). Certain information broadcast by satellites of global navigation systems, as GPS and GALILEO, may be used for positioning. The CPS are based on the Newtonian formalism, although relativistic post-Newtonian corrections are done when they are necessary. This thesis contributes to the development of a different positioning approach, which is fully relativistic from the beginning. In the relativistic positioning systems (RPS), the space-time position of any user (ship, spacecraft, and so on) can be calculated with the help of four satellites, which broadcast their proper times by means of codified electromagnetic signals. In this thesis, we have simulated satellite 4-tuples of the GPS and GALILEO constellations. If a user receives the signals from four satellites simultaneously, the emission proper times read -after decoding- are the user "emission coordinates". In order to find the user "positioning coordinates", in an appropriate almost inertial reference system, there are two possibilities: (a) the explicit relation between positioning and emission coordinates (broadcast by the satellites) is analytically found or (b) numerical codes are designed to calculate the positioning coordinates from the emission ones. Method (a) is only viable in simple ideal cases, whereas (b) allows us to consider realistic situations. In this thesis, we have designed numerical codes with the essential aim of studying two appropriate RPS, which may be generalized. Sometimes, there are two real users placed in different positions, which receive the same proper times from the same satellites; then, we say that there is bifurcation, and additional data are needed to choose the real user position. In this thesis, bifurcation is studied in detail. We have analyzed in depth two RPS models; in both, it is considered that the satellites move in the Schwarzschild's space

  12. Relativistic Quantum Cryptography

    NASA Astrophysics Data System (ADS)

    Jeffrey, Evan; Kwiat, Paul

    2006-03-01

    We present results from a relativistic quantum cryptography system which uses photon storage to avoid bit sifting, in principle doubling the useful key rate. Bob stores the photon he receives from Alice in an optical delay line until she sends him the classical basis information, allowing him to measure every photon in the correct basis. Accounting for loss in our 489-ns storage cavity, we achieve a 66% increase in the BB84 key rate. The same system could be used for even greater gains in either the six-state protocol or cryptography using a larger Hilbert space. We show that the security of this protocol is equivalent to standard BB84: assuming the quantum and classical signals are space-like separated, no eavesdropper bound by special relativity can access both simultaneously.

  13. Relativistic Runaway Electrons

    NASA Astrophysics Data System (ADS)

    Breizman, Boris

    2014-10-01

    This talk covers recent developments in the theory of runaway electrons in a tokamak with an emphasis on highly relativistic electrons produced via the avalanche mechanism. The rapidly growing population of runaway electrons can quickly replace a large part of the initial current carried by the bulk plasma electrons. The magnetic energy associated with this current is typically much greater than the particle kinetic energy. The current of a highly relativistic runaway beam is insensitive to the particle energy, which separates the description of the runaway current evolution from the description of the runaway energy spectrum. A strongly anisotropic distribution of fast electrons is generally prone to high-frequency kinetic instabilities that may cause beneficial enhancement of runaway energy losses. The relevant instabilities are in the frequency range of whistler waves and electron plasma waves. The instability thresholds reported in earlier work have been revised considerably to reflect strong dependence of collisional damping on the wave frequency and the role of plasma non-uniformity, including radial trapping of the excited waves in the plasma. The talk also includes a discussion of enhanced scattering of the runaways as well as the combined effect of enhanced scattering and synchrotron radiation. A noteworthy feature of the avalanche-produced runaway current is a self-sustained regime of marginal criticality: the inductive electric field has to be close to its critical value (representing avalanche threshold) at every location where the runaway current density is finite, and the current density should vanish at any point where the electric field drops below its critical value. This nonlinear Ohm's law enables complete description of the evolving current profile. Work supported by the U.S. Department of Energy Contract No. DEFG02-04ER54742 and by ITER contract ITER-CT-12-4300000273. The views and opinions expressed herein do not necessarily reflect those of

  14. Two types of regional daily precipitation extremes over fujian-jiangxi of China and their related anomalous circulation patterns during boreal summer

    NASA Astrophysics Data System (ADS)

    Li, M.; Guan, Z.

    2015-12-01

    Based on daily rainfall data from CMA, best track data of Tropical Cyclones (TC) from JMA, and the NCEP-NCAR reanalysis from NOAA, regional mean daily precipitation extreme (RDPE) events over Fujian-Jiangxi Region (FJR) of China and the associated circulation anomalies have been investigated. During summers of 1979-2011, totaling 105 RDPE events are identified; out of which 35 are TC-influenced (TCIn-RDPE) and 70 no-TC-related (TCFr-RDPE). Distinct differences between these two types of RDPEs are found in both their statistical features and the related circulation patterns, except they all occurred more frequently with stronger intensities in recent two decades other than in 1980s. TCFr-RDPEs usually occur in June while TCIn-RDPEs mainly do in July-August. When TCFr-RDPEs happen, a center of the departure cyclonic circulation is observed over FJR, with an anomalous anticyclonic circulation to the south of this region. The warm/moist airflows from the South-China-Sea (SCS) and western Pacific meet with colder air from the north to form a narrow convergent belt of water vapor over FJR. Simultaneously, positive diabatic forcing anomalies are observed over FJR whereas negatives over both its south and north sides, facilitating the formation and maintenance of the cyclonic circulation anomaly as well as the upward motion of the atmosphere over FJR. As TCIn-RDPEs occur, southeastern China is dominated by a TC-related stronger anomalous cyclonic circulation. An anomalous anticyclonic circulation in mid- and high-latitudes north of the FJR exist in mid and lower troposphere, which looks opposite as compared to that of TCFr-RDPE events. The abundant warm/wet air is carried into the FJR from both the Indian Ocean and SCS, leading to large amount of latent heat to release over FJR, inducing strong ascent of air there. Furthermore, large differences are also found in ways of Rossby wave energy propagation between these two type RDPE events. These results are helpful for us to

  15. Trying to Learn Lessons for Response to Extreme Events: Paradigm Shifts Affecting Civil Defense in the Trinational Region of Southwestern Amazonia

    NASA Astrophysics Data System (ADS)

    Santos, G. L. P.

    2015-12-01

    The last ten years have seen several extreme climate events in southwestern Amazonia with historic impacts. The City of Rio Branco, Capital of Acre, Brazil´s westernmost State, suffered its seventh consecutive annual flooding and its worst in March 2015. The city of Tarauacá, also in Acre, registered 12 flooding events between November 2014 and April 2015. The most recent flood of the trinational Acre River in 2015 set historic records for flood stage and number of displaced persons in Cobija, the Capital of Pando, Bolivia. From February to April 2014, floods of the Madeira River disrupted the one highway between Acre and southern Brazil. Puerto Maldonado, the capital in Madre de Dios Region of Peru had its worst flood in 50 years during 2014. In 2005 and 2010, prolonged droughts combined with ignition sources resulted in tens to hundreds of thousands of hectares of fire-damaged rainforests in the Madre de Dios, Acre and Pando (MAP) Region. The Civil Defenses in these three contiguous political units faced several abrupt paradigm shifts that affected their responses: 1) The drought of 2005 showed dramatically that regional rainforests do burn; 2) The recent flooding history, particularly in 2012 and 2015, demolished the cultural icon of a nine-year recurrence interval; 3) What happens outside your territory can be devastating. The Madeira River flood impeded an estimated 200 million dollars from circulating in Acre; 4) The past can be a terrible guide. For Cobija and Rio Branco, the 2015 flood was on the order of a meter higher than any other. Many home dwellers did not evacuate in time because they used past floods as a guide; 5) A collapse in communication - cell phones, land lines, and Internet - can get worse. In 2012, such a collapse occurred in two border towns for 5 days, yet in 2015 it lasted more than 11 days. Research is needed to address how institutions linked to Civil Defense can shift paradigms in time to be more effective.

  16. BOOK REVIEW: Relativistic Figures of Equilibrium

    NASA Astrophysics Data System (ADS)

    Mars, M.

    2009-08-01

    losing material, and the black hole transition, where rotating fluids are seen to approach black holes for suitable limits of their parameters. As the authors themselves mention, one of the emphasis of this book is placed 'on the rigorous treatment of simple models instead of trying to describe real objects with their many complex facets...'. After discussing constant density models both in Newtonian theory (the Maclaurin spheroids) and in the non-rotating relativistic case (the Schwarzschild interior model), the book concentrates on the so-called rigidly rotating disc of dust. Chapter two is mainly devoted to deriving this model and presenting its physical properties. The derivation is based in the so-called inverse scattering method of integrable systems and on a thorough knowledge of the theory of integration on Riemann surfaces. The details, which take up about one fifth of the whole length, are difficult to follow for any reader without a previous mastering of the techniques involved. For the expert, however, this part of the book is very useful because it brings together all the steps required for the complete determination of the solution. After the derivation of the disc of dust, the physical properties of the resulting one-parameter family of solutions are described, including its multipole moment structure, the existence of ergospheres, the Newtonian limit or the motion of test particles. Of particular interest is the transition from the disc of dust to the extreme black hole configuration corresponding to the limit when the parameter describing the fluid approaches its upper end. After this chapter devoted to exact models, the book looks at the problem from a completely different point of view, namely by using numerical methods. This tool has proven to be fundamental for a proper study of this physical problem. This book concentrates on the so-called pseudo-spectral methods and the use of multidomains adapted to the different regions of the spacetime with

  17. Investigating NARCCAP Precipitation Extremes via Bivariate Extreme Value Theory (Invited)

    NASA Astrophysics Data System (ADS)

    Weller, G. B.; Cooley, D. S.; Sain, S. R.; Bukovsky, M. S.; Mearns, L. O.

    2013-12-01

    We introduce methodology from statistical extreme value theory to examine the ability of reanalysis-drive regional climate models to simulate past daily precipitation extremes. Going beyond a comparison of summary statistics such as 20-year return values, we study whether the most extreme precipitation events produced by climate model simulations exhibit correspondence to the most extreme events seen in observational records. The extent of this correspondence is formulated via the statistical concept of tail dependence. We examine several case studies of extreme precipitation events simulated by the six models of the North American Regional Climate Change Assessment Program (NARCCAP) driven by NCEP reanalysis. It is found that the NARCCAP models generally reproduce daily winter precipitation extremes along the Pacific coast quite well; in contrast, simulation of past daily summer precipitation extremes in a central US region is poor. Some differences in the strength of extremal correspondence are seen in the central region between models which employ spectral nudging and those which do not. We demonstrate how these techniques may be used to draw a link between extreme precipitation events and large-scale atmospheric drivers, as well as to downscale extreme precipitation simulated by a future run of a regional climate model. Specifically, we examine potential future changes in the nature of extreme precipitation along the Pacific coast produced by the pineapple express (PE) phenomenon. A link between extreme precipitation events and a "PE Index" derived from North Pacific sea-surface pressure fields is found. This link is used to study PE-influenced extreme precipitation produced by a future-scenario climate model run.

  18. Science of Extreme Light Infrastructure

    NASA Astrophysics Data System (ADS)

    Tajima, Toshiki; Barish, Barry C.; Barty, C. P.; Bulanov, Sergei; Chen, Pisin; Feldhaus, Josef; Hajdu, Janos; Keitel, Christoph H.; Kieffer, Jean-Claude; Ko, Do-Kyeong; Leemans, Wim; Normand, Didier; Palumbo, Luigi; Rzazewski, Kazimierz; Sergeev, Alexander; Sheng, Zheng-Ming; Takasaki, Fumihiko; Teshima, Masahiro

    2010-04-01

    The infrastructure of Extreme Light Infrastructure (ELI) provides an unprecedented opportunity for a broad range of frontier science. Its highest ever intensity of lasers, as well as high fluence, high power, and/or ultrafast optical characteristics carve out new territories of discovery, ranging from attosecond science to photonuclear science, laser acceleration and associated beams, and high field science (Four Pillars of ELI). Its applications span from medicine, biology, engineering, energy, chemistry, physics, and fundamental understanding of the Universe. The relativistic optics that intense lasers have begun exploring may be extended into a new regime of ultra-relativistic regime, where even protons fly relativistically in the optical fields. ELI provides the highest intensity to date such that photon fields begin to feel even the texture of vacuum. This is a singular appeal of ELI with its relatively modest infrastructure (compared to the contemporary largest scientific infrastructures), yet provides an exceptional avenue along which the 21st Century science and society need to answer the toughest questions. The intensity frontier simultaneously brings in the energy horizon (TeV and PeV) as well as temporal frontier (attoseconds and zeptoseconds). It also turns over optics of atoms and molecules into that of nuclei with the ability to produce monoenergetic collimated γ-ray photons. As such, the ELI concept acutely demands an effort to encompass and integrate its Four Pillars.

  19. Quantum speed limit for a relativistic electron in a uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Villamizar, D. V.; Duzzioni, E. I.

    2015-10-01

    We analyze the influence of relativistic effects on the minimum evolution time between two orthogonal states of a quantum system. Defining the initial state as a homogeneous superposition between two Hamiltonian eigenstates of an electron in a uniform magnetic field, we obtain a relation between the minimum evolution time and the displacement of the mean radial position of the electron wave packet. The quantum speed limit time is calculated for an electron dynamics described by Dirac and Schrödinger-Pauli equations considering different parameters, such as the strength of magnetic field and the linear momentum of the electron in the axial direction. We highlight that when the electron undergoes a region with extremely strong magnetic field the relativistic and nonrelativistic dynamics differ substantially, so that the description given by the Schrödinger-Pauli equation enables the electron to travel faster than c , which is prohibited by Einstein's theory of relativity. This approach allows a connection between the abstract Hilbert space and the space-time coordinates, besides the identification of the most appropriate quantum dynamics used to describe the electron motion.

  20. WegenerNet climate station network region Feldbach/Austria: a view on local climate and extremes at 1 km-scale resolution

    NASA Astrophysics Data System (ADS)

    Kabas, Thomas; Kirchengast, Gottfried; Leuprecht, Armin; Stieb, Christoph; Bichler, Christoph

    2010-05-01

    The WegenerNet climate station network region Feldbach (WegenerNet) is a pioneering weather and climate observation experiment at very high resolution in Eastern Styria near the city of Feldbach, Austria. The network comprises 151 meteorological stations, which measure temperature, humidity, precipitation, and other parameters with high accuracy. Data is provided every 5 minutes in a tightly spaced grid (one station per ~2 km² ; ~1.4 km x 1.4 km grid within an ~20 km x 15 km area). The WegenerNet project so far spanned a pilot and a demonstration phase. The pilot phase, October 2005 - December 2007, covered the construction of the in situ station and the data base infrastructure. Since January 2007 regular measurements from the entire grid are provided as part of an automatic processing system including data transfer, quality control, preparation, and visualization. The demonstration phase, January 2008 - December 2009, introduced weather and climate data products on various temporal scales (from 5 minutes to annual) for single stations as well as interpolated regular grids. Gridded data sets are realized for the main parameters (temperature, humidity, precipitation) in UTM (1 km x 1 km) and latitude/longitude (0.01° x 0.01°) coordinates. Furthermore, the quality control system has been improved by an inter-station comparison scheme and maintenance procedures have been advanced. For application purposes, all data is available for visualization and download via the WegenerNet data portal (www.wegenernet.org). The presentation demonstrates the benefits of the highly resolved WegenerNet data to capture variations in local climate conditions. Also, selected small-scale extreme events are analyzed tracking their spatial and temporal development based on the standard WegenerNet visualization tools.

  1. Theoretical Modelling of the Diffuse Emission of (gamma)-rays From Extreme Regions of Star Formation: The Case of Arp 220

    SciTech Connect

    Torres, D F

    2004-07-09

    Our current understanding of ultraluminous infrared galaxies suggest that they are recent galaxy mergers in which much of the gas in the former spiral disks, particularly that located at distances less than 5 kpc from each of the pre-merger nuclei, has fallen into a common center, triggering a huge starburst phenomenon. This large nuclear concentration of molecular gas has been detected by many groups, and estimates of molecular mass and density have been made. Not surprisingly, these estimates were found to be orders of magnitude larger than the corresponding values found in our Galaxy. In this paper, a self-consistent model of the high energy emission of the super-starburst galaxy Arp 220 is presented. The model also provides an estimate of the radio emission from each of the components of the central region of the galaxy (western and eastern extreme starbursts, and molecular disk). The predicted radio spectrum is found as a result of the synchrotron and free-free emission, and absorption, of the primary and secondary steady population of electrons and positrons. The latter is output of charged pion decay and knock-on leptonic production, subject to a full set of losses in the interstellar medium. The resulting radio spectrum is in agreement with sub-arcsec radio observations, what allows to estimate the magnetic field. In addition, the FIR emission is modeled with dust emissivity, and the computed FIR photon density is used as a target for inverse Compton process as well as to give account of losses in the {gamma}-ray scape. Bremsstrahlung emission and neutral pion decay are also computed, and the {gamma}-ray spectrum is finally predicted. Future possible observations with GLAST, and the ground based Cherenkov telescopes are discussed.

  2. Automatic detection and analysis of cell motility in phase-contrast time-lapse images using a combination of maximally stable extremal regions and Kalman filter approaches.

    PubMed

    Kaakinen, M; Huttunen, S; Paavolainen, L; Marjomäki, V; Heikkilä, J; Eklund, L

    2014-01-01

    Phase-contrast illumination is simple and most commonly used microscopic method to observe nonstained living cells. Automatic cell segmentation and motion analysis provide tools to analyze single cell motility in large cell populations. However, the challenge is to find a sophisticated method that is sufficiently accurate to generate reliable results, robust to function under the wide range of illumination conditions encountered in phase-contrast microscopy, and also computationally light for efficient analysis of large number of cells and image frames. To develop better automatic tools for analysis of low magnification phase-contrast images in time-lapse cell migration movies, we investigated the performance of cell segmentation method that is based on the intrinsic properties of maximally stable extremal regions (MSER). MSER was found to be reliable and effective in a wide range of experimental conditions. When compared to the commonly used segmentation approaches, MSER required negligible preoptimization steps thus dramatically reducing the computation time. To analyze cell migration characteristics in time-lapse movies, the MSER-based automatic cell detection was accompanied by a Kalman filter multiobject tracker that efficiently tracked individual cells even in confluent cell populations. This allowed quantitative cell motion analysis resulting in accurate measurements of the migration magnitude and direction of individual cells, as well as characteristics of collective migration of cell groups. Our results demonstrate that MSER accompanied by temporal data association is a powerful tool for accurate and reliable analysis of the dynamic behaviour of cells in phase-contrast image sequences. These techniques tolerate varying and nonoptimal imaging conditions and due to their relatively light computational requirements they should help to resolve problems in computationally demanding and often time-consuming large-scale dynamical analysis of cultured cells.

  3. Relativistic spectra of bound fermions

    SciTech Connect

    Giachetti, Riccardo; Sorace, Emanuele

    2007-02-27

    A two fermion relativistic invariant wave equation is used for numerical calculations of the hyperfine shifts of the Positronium levels in a Breit interaction scheme. The results agree with known data up to the order {alpha}4.

  4. Simulating relativistic binaries with Whisky

    NASA Astrophysics Data System (ADS)

    Baiotti, L.

    We report about our first tests and results in simulating the last phase of the coalescence and the merger of binary relativistic stars. The simulations were performed using our code Whisky and mesh refinement through the Carpet driver.

  5. Relativistic Transformation of Solid Angle.

    ERIC Educational Resources Information Center

    McKinley, John M.

    1980-01-01

    Rederives the relativistic transformations of light intensity from compact sources (stars) to show where and how the transformation of a solid angle contributes. Discusses astrophysical and other applications of the transformations. (Author/CS)

  6. Conductivity of a relativistic plasma

    SciTech Connect

    Braams, B.J.; Karney, C.F.F.

    1989-03-01

    The collision operator for a relativistic plasma is reformulated in terms of an expansion in spherical harmonics. This formulation is used to calculate the electrical conductivity. 13 refs., 1 fig., 1 tab.

  7. Scattering in Relativistic Particle Mechanics.

    NASA Astrophysics Data System (ADS)

    de Bievre, Stephan

    The problem of direct interaction in relativistic particle mechanics has been extensively studied and a variety of models has been proposed avoiding the conclusions of the so-called no-interaction theorems. In this thesis we study scattering in the relativistic two-body problem. We use our results to analyse gauge invariance in Hamiltonian constraint models and the uniqueness of the symplectic structure in manifestly covariant relativistic particle mechanics. We first present a general geometric framework that underlies approaches to relativistic particle mechanics. This permits a model-independent and geometric definition of the notions of asymptotic completeness and of Moller and scattering operators. Subsequent analysis of these concepts divides into two parts. First, we study the kinematic properties of the scattering transformation, i.e. those properties that arise solely from the invariance of the theory under the Poincare group. We classify all canonical (symplectic) scattering transformations on the relativistic phase space for two free particles in terms of a single function of the two invariants of the theory. We show how this function is determined by the center of mass time delay and scattering angle and vice versa. The second part of our analysis of the relativistic two-body scattering problem is devoted to the dynamical properties of the scattering process. Hence, we turn to two approaches to relativistic particle mechanics: the Hamiltonian constraint models and the manifestly covariant formalism. Using general geometric arguments, we prove "gauge invariance" of the scattering transformation in the Todorov -Komar Hamiltonian constraint model. We conclude that the scattering cross sections of the Todorov-Komar models have the same angular dependence as their non-relativistic counterpart, irrespective of a choice of gauge. This limits the physical relevance of those models. We present a physically non -trivial Hamiltonian constraint model, starting from

  8. Charge exchange recombination spectroscopy measurements in the extreme ultraviolet region of central carbon concentrations during high power neutral beam heating in TFTR (Tokamak Fusion Test Reactor)

    SciTech Connect

    Stratton, B.C.; Fonck, R.J.; Ramsey, A.T.; Synakowski, E.J.; Grek, B.; Hill, K.W.; Johnson, D.W.; Mansfield, D.K.; Park, H.; Taylor, G.; Valanju, P.M. . Plasma Physics Lab.; Texas Univ., Austin, TX . Fusion Research Center)

    1989-09-01

    The carbon concentration in the central region of TFTR discharges with high power neutral beam heating has been measured by charge-extracted recombination spectroscopy (CXRS) of the C{sup +5} n = 3--4 transition in the extreme ultraviolet region. The carbon concentrations were deduced from absolute measurements of the line brightness using a calculation of the beam attenuation and the appropriate cascade-corrected line excitation rates. As a result of the high ion temperatures in most of the discharges, the contribution of beam halo neutrals to the line brightness was significant and therefore had to be included in the modeling of the data. Carbon concentrations have been measured in discharges with I{sub p} = 1.0-1.6 MA and beam power in the range of 2.6-30 MW, including a number of supershots. The results are in good agreement with carbon concentrations deduced from the visible bremsstrahlung Z{sub eff} and metallic impurity concentrations measured by x-ray pulse-height analysis, demonstrating the reliability of the atomic rates used in the beam attenuation and line excitation calculations. Carbon is the dominant impurity species in these discharges; the oxygen concentration measured via CXRS in a high beam power case was 0.0006 of n{sub e}, compard to 0.04 for carbon. Trends with I{sub p} and beam power in the carbon concentration and the inferred deuteron concentration are presented. The carbon concentration is independent of I{sub p} and decreases from 0.13 at 2.6 MW beam power to 0.04 at 30 MW, while the deuteron concentration increases from 0.25 to 0.75 over the same range of beam power. These changes are primarily the result of beam particle fueling, as the carbon density did not vary significantly with beam power. The time evolutions of the carbon and deuteron concentrations during two high power beam pulses, one which exhibited a carbon bloom and one which did not, are compared. 30 refs., 12 figs., 2 tabs.

  9. Baryon production and collective flow in relativistic heavy-ion collisions in the AGS, SPS, RHIC, and LHC energy regions ({radical}(s{sub NN}){<=}5 GeV to 5.5 TeV)

    SciTech Connect

    Feng Shengqin; Zhong Yang

    2011-03-15

    The features of net-baryon productions and collective flow in relativistic heavy-ion collisions at energies reached at the CERN Large Hadron Collider (LHC), BNL Relativistic Heavy Ion Collider (RHIC), CERN Super Proton Synchrotron (SPS), and BNL Alternating Gradient Synchrotron (AGS) with the model of nonuniform flow model (NUFM) are systematically studied in this paper. In particular we predict the feature of net-baryon productions and collective flow at LHC {radical}(s{sub NN})=5500 GeV based on the detailed study at RHIC {radical}(s{sub NN})=62.4 and 200 GeV. The dependencies of the features of baryon stopping and collective flow on the collision energies and centralities are investigated.

  10. Relativistic Random Phase Approximation At Finite Temperature

    SciTech Connect

    Niu, Y. F.; Paar, N.; Vretenar, D.; Meng, J.

    2009-08-26

    The fully self-consistent finite temperature relativistic random phase approximation (FTRRPA) has been established in the single-nucleon basis of the temperature dependent Dirac-Hartree model (FTDH) based on effective Lagrangian with density dependent meson-nucleon couplings. Illustrative calculations in the FTRRPA framework show the evolution of multipole responses of {sup 132}Sn with temperature. With increased temperature, in both monopole and dipole strength distributions additional transitions appear in the low energy region due to the new opened particle-particle and hole-hole transition channels.

  11. Workshop on Extreme Physics

    NASA Astrophysics Data System (ADS)

    Mundell, Carole; Sullivan, Mark

    2012-04-01

    abstract-type="normal">SummaryNever before has there been such a wealth of versatile ground- and space-based facilities with which to detect variable emission across the electromagnetic spectrum and beyond, to non-EM signals such as neutrinos and gravitational waves, to probe the most extreme phenomena in the Universe. The variable sky is already providing a wealth of new and surprising observations of phenomena such as GRBs, SNe and AGN that are pushing current theories beyond the state of the art. Multi-messenger follow-up will soon become de rigeur, and upcoming radio and optical all-sky transient surveys will revolutionise the study of the transient Universe. In addition to the technical and data challenges presented by such surveys, a major new challenge will be the interpretation of the wealth of available data and the identification of the underlying physics of new classes of variable (and potentially exotic) objects. Theoretical predictions will be vital for interpreting these future transient discoveries. The goal of this workshop was to bring together theorists and observers in order to identify unexplored synergies across three main research areas of extreme physics: gamma-ray bursts, supernovæ and, more generically, relativistic jets. It aimed to discuss key outstanding questions in these rapidly moving fields, such as the composition and acceleration of GRB and AGN jets, GRB progenitors and central engines, the origin of the wide range of observed variability time-scales in GRB prompt and after-glow light curves and related cosmological applications, the physics of the newly-discovered ultra-luminous SN-like optical transients-as well as to speculate on what we might hope to discover with future technology. The workshop absorbed two 90-minute sessions, selecting 3 main science topics (Relativistic Jets, GRBs and SNe) which it organised as structured discussions driven by a series of short but provocative questions. The final session featured a panel

  12. Practical Relativistic Bit Commitment.

    PubMed

    Lunghi, T; Kaniewski, J; Bussières, F; Houlmann, R; Tomamichel, M; Wehner, S; Zbinden, H

    2015-07-17

    Bit commitment is a fundamental cryptographic primitive in which Alice wishes to commit a secret bit to Bob. Perfectly secure bit commitment between two mistrustful parties is impossible through an asynchronous exchange of quantum information. Perfect security is, however, possible when Alice and Bob each split into several agents exchanging classical information at times and locations suitably chosen to satisfy specific relativistic constraints. In this Letter we first revisit a previously proposed scheme [C. Crépeau et al., Lect. Notes Comput. Sci. 7073, 407 (2011)] that realizes bit commitment using only classical communication. We prove that the protocol is secure against quantum adversaries for a duration limited by the light-speed communication time between the locations of the agents. We then propose a novel multiround scheme based on finite-field arithmetic that extends the commitment time beyond this limit, and we prove its security against classical attacks. Finally, we present an implementation of these protocols using dedicated hardware and we demonstrate a 2 ms-long bit commitment over a distance of 131 km. By positioning the agents on antipodal points on the surface of Earth, the commitment time could possibly be extended to 212 ms.

  13. Refining a relativistic, hydrodynamic solver: Admitting ultra-relativistic flows

    NASA Astrophysics Data System (ADS)

    Bernstein, J. P.; Hughes, P. A.

    2009-09-01

    We have undertaken the simulation of hydrodynamic flows with bulk Lorentz factors in the range 102-106. We discuss the application of an existing relativistic, hydrodynamic primitive variable recovery algorithm to a study of pulsar winds, and, in particular, the refinement made to admit such ultra-relativistic flows. We show that an iterative quartic root finder breaks down for Lorentz factors above 102 and employ an analytic root finder as a solution. We find that the former, which is known to be robust for Lorentz factors up to at least 50, offers a 24% speed advantage. We demonstrate the existence of a simple diagnostic allowing for a hybrid primitives recovery algorithm that includes an automatic, real-time toggle between the iterative and analytical methods. We further determine the accuracy of the iterative and hybrid algorithms for a comprehensive selection of input parameters and demonstrate the latter’s capability to elucidate the internal structure of ultra-relativistic plasmas. In particular, we discuss simulations showing that the interaction of a light, ultra-relativistic pulsar wind with a slow, dense ambient medium can give rise to asymmetry reminiscent of the Guitar nebula leading to the formation of a relativistic backflow harboring a series of internal shockwaves. The shockwaves provide thermalized energy that is available for the continued inflation of the PWN bubble. In turn, the bubble enhances the asymmetry, thereby providing positive feedback to the backflow.

  14. Shielding of relativistic protons.

    PubMed

    Bertucci, A; Durante, M; Gialanella, G; Grossi, G; Manti, L; Pugliese, M; Scampoli, P; Mancusi, D; Sihver, L; Rusek, A

    2007-06-01

    Protons are the most abundant element in the galactic cosmic radiation, and the energy spectrum peaks around 1 GeV. Shielding of relativistic protons is therefore a key problem in the radiation protection strategy of crewmembers involved in long-term missions in deep space. Hydrogen ions were accelerated up to 1 GeV at the NASA Space Radiation Laboratory, Brookhaven National Laboratory, New York. The proton beam was also shielded with thick (about 20 g/cm2) blocks of lucite (PMMA) or aluminium (Al). We found that the dose rate was increased 40-60% by the shielding and decreased as a function of the distance along the axis. Simulations using the General-Purpose Particle and Heavy-Ion Transport code System (PHITS) show that the dose increase is mostly caused by secondary protons emitted by the target. The modified radiation field after the shield has been characterized for its biological effectiveness by measuring chromosomal aberrations in human peripheral blood lymphocytes exposed just behind the shield block, or to the direct beam, in the dose range 0.5-3 Gy. Notwithstanding the increased dose per incident proton, the fraction of aberrant cells at the same dose in the sample position was not significantly modified by the shield. The PHITS code simulations show that, albeit secondary protons are slower than incident nuclei, the LET spectrum is still contained in the low-LET range (<10 keV/microm), which explains the approximately unitary value measured for the relative biological effectiveness. PMID:17256178

  15. Relativistic plasma expansion with Maxwell-Juettner distribution

    SciTech Connect

    Huang, Yongsheng; Wang, Naiyan; Tang, Xiuzhang; Shi, Yijin

    2013-11-15

    A self-similar analytical solution is proposed to describe the relativistic ion acceleration with the local Maxwell-Juettner relativistic distribution electrons. It is an alternative to the existing static model [M. Passoni and M. Lontano, Phys. Rev. Lett. 101, 115001 (2008)], which exploits a limited solution for the acceleration potential. With our model, the potential is finite naturally and has an upper limitation proportional to the square root of the electron temperature. The divergent potential in the non-relativistic case is the linear items of the Taylor expansion of that obtained relativistic one here. The energy distribution of ions and the dependence of the ion momentum on the acceleration time are obtained analytically. Maximum ion energy has an upper limitation decided by the finite potential difference. In the ultra-relativistic region, the ion energy at the ion front is proportional to t{sup 4/5} and the energy of the ions behind the ion front is proportional to t{sup 2/3} since the field there is shielded by the ions beyond them and the field at the ion front is the most intense.

  16. Relativistic reflection: Review and recent developments in modeling

    NASA Astrophysics Data System (ADS)

    Dauser, T.; García, J.; Wilms, J.

    2016-05-01

    Measuring relativistic reflection is an important tool to study the innermost regions of the an accreting black hole system. In the following we present a brief review on the different aspects contributing to the relativistic reflection. The combined approach is for the first time incorporated in the new ``relxill'' model. The advantages of this more self-consistent approach are briefly summarized. A special focus is put on the new definition of the intrinsic reflection fraction in the lamp post geometry, which allows to draw conclusions about the primary source of radiation in these system. Additionally the influence of the high energy cutoff of the primary source on the reflection spectrum is motivated, revealing the remarkable capabilities of constraining E_cut by measuring relativistic reflection spectra from NuSTAR, preferably with lower energy coverage.

  17. Relativistic breakdown in planetary atmospheres

    SciTech Connect

    Dwyer, J. R.

    2007-04-15

    In 2003, a new electrical breakdown mechanism involving the production of runaway avalanches by positive feedback from runaway positrons and energetic photons was introduced. This mechanism, which shall be referred to as 'relativistic feedback', allows runaway discharges in gases to become self-sustaining, dramatically increasing the flux of runaway electrons, the accompanying high-energy radiation, and resulting ionization. Using detailed Monte Carlo calculations, properties of relativistic feedback are investigated. It is found that once relativistic feedback fully commences, electrical breakdown will occur and the ambient electric field, extending over cubic kilometers, will be discharged in as little as 2x10{sup -5} s. Furthermore, it is found that the flux of energetic electrons and x rays generated by this mechanism can exceed the flux generated by the standard relativistic runaway electron model by a factor of 10{sup 13}, making relativistic feedback a good candidate for explaining terrestrial gamma-ray flashes and other high-energy phenomena observed in the Earth's atmosphere.

  18. The Southeast Asia Regional Climate Downscaling (SEACLID) / CORDEX Southeast Asia Project and The Results of Its Sensitivity Experiments of RegCM4 Cumulus and Ocean Fluxes Parameterization Schemes on Temperature and Extremes.

    NASA Astrophysics Data System (ADS)

    Tangang, Fredolin; Juneng, Liew; Cruz, Faye; Narisma, Gemma; Dado, Julie; Van, Tan-Phan; Ngo-Duc, Thanh; Trinh-Tuan, Long; Nguyen-Xuan, Thanh; Santisirisomboon, Jerasorn; Singhruck, Patama; Gunawan, Dodo; Aldrian, Edvin

    2015-04-01

    choice of the ocean scheme can also affect the model's temperature bias, but not as much as the cumulus parameterization. For extremes, 14 indices for both rainfall and temperature were estimated. To measure the degree of similarity of the 18 experiments in both phase and shape, a statistical omega index was used. Results showed relatively higher similarities among the experiments over the mainland Asia compared to those over the Maritime continents for both seasonal and inter-annual variabilities. The extreme rainfall indices had a lower omega than those of temperature. Observed daily rainfall and temperature data at 123 meteorological stations over the SEA region were also used to validate the simulated extreme rainfall and temperature indices. Results showed higher correlations between simulated extremes and the observed ones over the mainland Asia continent compared to those over the Maritime Continent, suggesting an inappropriate quality of the extreme indices simulated by RegCM4 over the later region. Our analysis also pointed out the regions within SEA at which simulated extreme indices were more sensitive to cumulus parameterizations and ocean fluxes treatment. These results thereby highlight the need to choose the appropriate configuration for RegCM4, particularly for the SEA region, before downscaling global climate projections.

  19. The Radiation Hydrodynamics of Relativistic Shear Flows

    NASA Astrophysics Data System (ADS)

    Coughlin, Eric R.; Begelman, Mitchell C.

    2016-07-01

    We present a method for analyzing the interaction between radiation and matter in regions of intense, relativistic shear that can arise in many astrophysical situations. We show that there is a simple velocity profile that should be manifested in regions of large shear that have “lost memory” of their boundary conditions, and we use this self-similar velocity profile to construct the surface of last scattering, or the τ ≃ 1 surface, as viewed from any comoving point within the flow. We demonstrate that a simple treatment of scattering from this τ ≃ 1 surface exactly conserves photon number, and we derive the rate at which the radiation field is heated due to the shear present in the flow. The components of the comoving radiation energy–momentum tensor are calculated, and we show that they have relatively simple, approximate forms that interpolate between the viscous (small shear) and streaming (large shear) limits. We put our expression for the energy–momentum tensor in a covariant form that does not depend on the explicit velocity profile within the fluid and, therefore, represents a natural means for analyzing general, radiation-dominated, relativistic shear flows.

  20. On specular reflectivity measurements in high and low-contrast relativistic laser-plasma interactions

    SciTech Connect

    Kemp, G. E.; Link, A.; Ping, Y.; McLean, H. S.; Patel, P. K.; Freeman, R. R.; Schumacher, D. W.; Tiedje, H. F.; Tsui, Y. Y.; Fedosejevs, R.; Ramis, R.

    2015-01-15

    Using both experiment and 2D3V particle-in-cell (PIC) simulations, we describe the use of specular reflectivity measurements to study relativistic (Iλ{sup 2 }> 10{sup 18 }W/cm{sup 2}⋅μm{sup 2}) laser-plasma interactions for both high and low-contrast 527 nm laser pulses on initially solid density aluminum targets. In the context of hot-electron generation, studies typically rely on diagnostics which, more-often-than-not, represent indirect processes driven by fast electrons transiting through solid density materials. Specular reflectivity measurements, however, can provide a direct measure of the interaction that is highly sensitive to how the EM fields and plasma profiles, critical input parameters for modeling of hot-electron generation, evolve near the interaction region. While the fields of interest occur near the relativistic critical electron density, experimental reflectivity measurements are obtained centimeters away from the interaction region, well after diffraction has fully manifested itself. Using a combination of PIC simulations with experimentally inspired conditions and an analytic, non-paraxial, pulse propagation algorithm, we calculate reflected pulse properties, both near and far from the interaction region, and compare with specular reflectivity measurements. The experiment results and PIC simulations demonstrate that specular reflectivity measurements are an extremely sensitive qualitative, and partially quantitative, indicator of initial laser/target conditions, ionization effects, and other details of intense laser-matter interactions. The techniques described can provide strong constraints on many systems of importance in ultra-intense laser interactions with matter.

  1. Extreme field limits in the interaction of laser light with ultrarelativistic electrons

    SciTech Connect

    Bulanov, S. V.; Esirkepov, T. Zh.; Hayashi, Y.; Kando, M.; Kiriyama, H.; Koga, J.; Kondo, K.; Kotaki, H.; Pirozhkov, A.; Bulanov, S. S.; Zhidkov, A.; Chen, P.; Neely, D.; Kato, Y.; Narozhny, N. B.; Korn, G.

    2012-07-11

    The critical electric field of quantum electrodynamics is so strong that it produces electron-positron pairs from vacuum, converting the energy of light into matter. This field has become feasible through the construction of extremely high power lasers or/and with the sophisticated use of nonlinear processes in relativistic plasmas. A feasibility of the experiments on the collision of laser light and high intensity electromagnetic pulses, generated by relativistic flying mirrors, with relativistic electrons for the studying of extreme field limits in the nonlinear interaction of electromagnetic waves is discussed.

  2. Extreme field limits in the interaction of laser light with ultrarelativistic electrons

    NASA Astrophysics Data System (ADS)

    Bulanov, S. V.; Esirkepov, T. Zh.; Hayashi, Y.; Kando, M.; Kiriyama, H.; Koga, J.; Kondo, K.; Kotaki, H.; Pirozhkov, A.; Bulanov, S. S.; Zhidkov, A.; Chen, P.; Neely, D.; Kato, Y.; Narozhny, N. B.; Korn, G.

    2012-07-01

    The critical electric field of quantum electrodynamics is so strong that it produces electron-positron pairs from vacuum, converting the energy of light into matter. This field has become feasible through the construction of extremely high power lasers or/and with the sophisticated use of nonlinear processes in relativistic plasmas. A feasibility of the experiments on the collision of laser light and high intensity electromagnetic pulses, generated by relativistic flying mirrors, with relativistic electrons for the studying of extreme field limits in the nonlinear interaction of electromagnetic waves is discussed.

  3. Polyanalytic relativistic second Bargmann transforms

    SciTech Connect

    Mouayn, Zouhaïr

    2015-05-15

    We construct coherent states through special superpositions of eigenstates of the relativistic isotonic oscillator. In each superposition, the coefficients are chosen to be L{sup 2}-eigenfunctions of a σ-weight Maass Laplacian on the Poincaré disk, which are associated with the eigenvalue 4m(σ−1−m), m∈Z{sub +}∩[0,(σ−1)/2]. For each nonzero m, the associated coherent states transform constitutes the m-true-polyanalytic extension of a relativistic version of the second Bargmann transform, whose integral kernel is expressed in terms of a special Appel-Kampé de Fériet’s hypergeometric function. The obtained results could be used to extend the known semi-classical analysis of quantum dynamics of the relativistic isotonic oscillator.

  4. Fluctuations in relativistic causal hydrodynamics

    NASA Astrophysics Data System (ADS)

    Kumar, Avdhesh; Bhatt, Jitesh R.; Mishra, Ananta P.

    2014-05-01

    Formalism to calculate the hydrodynamic fluctuations by applying the Onsager theory to the relativistic Navier-Stokes equation is already known. In this work, we calculate hydrodynamic fluctuations within the framework of the second order hydrodynamics of Müller, Israel and Stewart and its generalization to the third order. We have also calculated the fluctuations for several other causal hydrodynamical equations. We show that the form for the Onsager-coefficients and form of the correlation functions remain the same as those obtained by the relativistic Navier-Stokes equation and do not depend on any specific model of hydrodynamics. Further we numerically investigate evolution of the correlation function using the one dimensional boost-invariant (Bjorken) flow. We compare the correlation functions obtained using the causal hydrodynamics with the correlation function for the relativistic Navier-Stokes equation. We find that the qualitative behavior of the correlation functions remains the same for all the models of the causal hydrodynamics.

  5. Toward a relativistic gas dynamics

    SciTech Connect

    Solovev, L.S.

    1982-01-01

    Macroscopic gas dynamics on the basis of general-relativity equations is examined. An additional equation is derived which provides for completeness of the system of relativistic gasdynamic equations. Relativistic equations of two-fluid electromagnetic gas dynamics are obtained. The introduction of appropriate energy-momentum tensors makes it possible to allow for dissipative processes conditioned by viscosity, thermal conductivity, radiative thermal conductivity, ohmic resistance, and ion-electron temperature difference. The problem of generalizing the Friedmann cosmological model in the case of particle production and annihilation is considered. Also, considered are gas equilibrium in a spherically symmetric gravitational field and a two-fluid relativistic stream in an intrinsic electromagnetic field. 16 references.

  6. Developmental Coordination Disorder at 8 Years of Age in a Regional Cohort of Extremely-Low-Birthweight or Very Preterm Infants

    ERIC Educational Resources Information Center

    Davis, N. M.; Ford, G. W.; Anderson, P. J.; Doyle, L. W.

    2007-01-01

    The aims of this study were to determine the motor outcome of extremely-low-birthweight (ELBW; less than 1000g) or very preterm (less than 28wks) children compared with normal birthweight (NBW) children, to establish the perinatal associations of developmental coordination disorder (DCD) and its cognitive and behavioural consequences. Participants…

  7. Interplanetary Magnetic Field Guiding Relativistic Particles

    NASA Technical Reports Server (NTRS)

    Masson, S.; Demoulin, P.; Dasso, S.; Klein, K. L.

    2011-01-01

    The origin and the propagation of relativistic solar particles (0.5 to few Ge V) in the interplanetary medium remains a debated topic. These relativistic particles, detected at the Earth by neutron monitors have been previously accelerated close to the Sun and are guided by the interplanetary magnetic field (IMF) lines, connecting the acceleration site and the Earth. Usually, the nominal Parker spiral is considered for ensuring the magnetic connection to the Earth. However, in most GLEs the IMF is highly disturbed, and the active regions associated to the GLEs are not always located close to the solar footprint of the nominal Parker spiral. A possible explanation is that relativistic particles are propagating in transient magnetic structures, such as Interplanetary Coronal Mass Ejections (ICMEs). In order to check this interpretation, we studied in detail the interplanetary medium where the particles propagate for 10 GLEs of the last solar cycle. Using the magnetic field and the plasma parameter measurements (ACE/MAG and ACE/SWEPAM), we found widely different IMF configurations. In an independent approach we develop and apply an improved method of the velocity dispersion analysis to energetic protons measured by SoHO/ERNE. We determined the effective path length and the solar release time of protons from these data and also combined them with the neutron monitor data. We found that in most of the GLEs, protons propagate in transient magnetic structures. Moreover, the comparison between the interplanetary magnetic structure and the interplanetary length suggest that the timing of particle arrival at Earth is dominantly determined by the type of IMF in which high energetic particles are propagating. Finally we find that these energetic protons are not significantly scattered during their transport to Earth.

  8. Relativistic mean field model for entrainment in general relativistic superfluid neutron stars

    NASA Astrophysics Data System (ADS)

    Comer, G. L.; Joynt, R.

    2003-07-01

    General relativistic superfluid neutron stars have a significantly more intricate dynamics than their ordinary fluid counterparts. Superfluidity allows different superfluid (and superconducting) species of particles to have independent fluid flows, a consequence of which is that the fluid equations of motion contain as many fluid element velocities as superfluid species. Whenever the particles of one superfluid interact with those of another, the momentum of each superfluid will be a linear combination of both superfluid velocities. This leads to the so-called entrainment effect whereby the motion of one superfluid will induce a momentum in the other superfluid. We have constructed a fully relativistic model for entrainment between superfluid neutrons and superconducting protons using a relativistic σ-ω mean field model for the nucleons and their interactions. In this context there are two notions of “relativistic”: relativistic motion of the individual nucleons with respect to a local region of the star (i.e. a fluid element containing, say, an Avogadro’s number of particles), and the motion of fluid elements with respect to the rest of the star. While it is the case that the fluid elements will typically maintain average speeds at a fraction of that of light, the supranuclear densities in the core of a neutron star can make the nucleons themselves have quite high average speeds within each fluid element. The formalism is applied to the problem of slowly rotating superfluid neutron star configurations, a distinguishing characteristic being that the neutrons can rotate at a rate different from that of the protons.

  9. Relativistic Effects on the Observed AGN Luminosity Distribution

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Zhang, Shuang Nan; Zhang, Xiao Ling

    2007-02-01

    Recently, Zhang (2005 ApJ, 618, L79) has proposed a model to account for the well-established effect that the fraction of type-II AGNs is anti-correlated with the observed X-ray luminosity; the model consists of an X-ray emitting accretion disk coaligned to the dusty torus within the standard AGN unification model. In this paper the model is refined by including relativistic effects of the observed X-ray radiation from the vicinity of the supermassive black hole in an AGN. The relativistic corrections improve the combined fitting results of the observed luminosity distribution and the type-II AGN fraction, though the improvement is not significant. The type-II AGN fraction prefers non- or mildly spinning black hole cases, and rules out the extremely spinning case.

  10. Irreversible degradation of quantum coherence under relativistic motion

    NASA Astrophysics Data System (ADS)

    Wang, Jieci; Tian, Zehua; Jing, Jiliang; Fan, Heng

    2016-06-01

    We study the dynamics of quantum coherence under Unruh thermal noise and seek under which condition the coherence can be frozen in a relativistic setting. We find that the frozen condition is either (i) the initial state is prepared as an incoherence state or (ii) the detectors have no interaction with the external field. That is to say, the decoherence of the detectors' quantum state is irreversible under the influence of thermal noise induced by Unruh radiation. It is shown that quantum coherence approaches zero only in the limit of an infinite acceleration, while quantum entanglement could reduce to zero for a finite acceleration. It is also demonstrated that the robustness of quantum coherence is better than entanglement under the influence of the atom-field interaction for an extremely large acceleration. Therefore, quantum coherence is more robust than entanglement in an accelerating system and the coherence-type quantum resources are more accessible for relativistic quantum information processing tasks.

  11. Mimicking interacting relativistic theories with stationary pulses of light.

    PubMed

    Angelakis, Dimitris G; Huo, Ming-Xia; Chang, Darrick; Kwek, Leong Chuan; Korepin, Vladimir

    2013-03-01

    One of the most well known relativistic field theory models is the Thirring model. Its realization can demonstrate the famous prediction for the renormalization of mass due to interactions. However, experimental verification of the latter requires complex accelerator experiments whereas analytical solutions of the model can be extremely cumbersome to obtain. In this work, following Feynman's original proposal, we propose an alternative quantum system as a simulator of the Thirring model dynamics. Here, the relativistic particles are mimicked, counterintuitively, by polarized photons in a quantum nonlinear medium. We show that the entire set of regimes of the Thirring model--bosonic or fermionic, and massless or massive--can be faithfully reproduced using coherent light trapping techniques. The correlation functions of the model can be extracted by simple probing of the coherence functions of the output light using standard optical techniques.

  12. Relativistic Hydrodynamics for Heavy-Ion Collisions

    ERIC Educational Resources Information Center

    Ollitrault, Jean-Yves

    2008-01-01

    Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…

  13. Relativistic treatment of inertial spin effects

    NASA Astrophysics Data System (ADS)

    Ryder, Lewis

    1998-03-01

    A relativistic spin operator for Dirac particles is identified and it is shown that a coupling of spin to angular velocity arises in the relativistic case, just as Mashhoon had speculated, and Hehl and Ni had demonstrated, in the non-relativistic case.

  14. Modeling terrestrial gamma ray flashes produced by relativistic feedback discharges

    NASA Astrophysics Data System (ADS)

    Liu, Ningyu; Dwyer, Joseph R.

    2013-05-01

    This paper reports a modeling study of terrestrial gamma ray flashes (TGFs) produced by relativistic feedback discharges. Terrestrial gamma ray flashes are intense energetic radiation originating from the Earth's atmosphere that has been observed by spacecraft. They are produced by bremsstrahlung interactions of energetic electrons, known as runaway electrons, with air atoms. An efficient physical mechanism for producing large fluxes of the runaway electrons to make the TGFs is the relativistic feedback discharge, where seed runaway electrons are generated by positrons and X-rays, products of the discharge itself. Once the relativistic feedback discharge becomes self-sustaining, an exponentially increasing number of relativistic electron avalanches propagate through the same high-field region inside the thundercloud until the electric field is partially discharged by the ionization created by the discharge. The modeling results indicate that the durations of the TGF pulses produced by the relativistic feedback discharge vary from tens of microseconds to several milliseconds, encompassing all durations of the TGFs observed so far. In addition, when a sufficiently large potential difference is available in thunderclouds, a self-propagating discharge known as the relativistic feedback streamer can be formed, which propagates like a conventional positive streamer. For the relativistic feedback streamer, the positive feedback mechanism of runaway electron production by the positrons and X-rays plays a similar role as the photoionization for the conventional positive streamer. The simulation results of the relativistic feedback streamer show that a sequence of TGF pulses with varying durations can be produced by the streamer. The relativistic streamer may initially propagate with a pulsed manner and turn into a continuous propagation mode at a later stage. Milliseconds long TGF pulses can be produced by the feedback streamer during its continuous propagation. However

  15. Assessment and comparison of extreme sea levels and waves during the 2013/14 storm season in two UK coastal regions

    NASA Astrophysics Data System (ADS)

    Wadey, M. P.; Brown, J. M.; Haigh, I. D.; Dolphin, T.; Wisse, P.

    2015-10-01

    The extreme sea levels and waves experienced around the UK's coast during the 2013/14 winter caused extensive coastal flooding and damage. Coastal managers seek to place such extremes in relation to the anticipated standards of flood protection, and the long-term recovery of the natural system. In this context, return periods are often used as a form of guidance. This paper provides these levels for the winter storms, and discusses their application to the given data sets for two UK case study sites: Sefton, northwest England, and Suffolk, east England. Tide gauge records and wave buoy data were used to compare the 2013/14 storms with return periods from a national data set, and also joint probabilities of sea level and wave heights were generated, incorporating the recent events. The 2013/14 high waters and waves were extreme due to the number of events, as well as the extremity of the 5 December 2013 "Xaver" storm, which had a high return period at both case study sites. The national-scale impact of this event was due to its coincidence with spring high tide at multiple locations. Given that this event is such an outlier in the joint probability analyses of these observed data sets, and that the season saw several events in close succession, coastal defences appear to have provided a good level of protection. This type of assessment could in the future be recorded alongside defence performance and upgrade. Ideally other variables (e.g. river levels at estuarine locations) would also be included, and with appropriate offsetting for local trends (e.g. mean sea-level rise) so that the storm-driven component of coastal flood events can be determined. This could allow long-term comparison of storm severity, and an assessment of how sea-level rise influences return levels over time, which is important for consideration of coastal resilience in strategic management plans.

  16. Particle Acceleration in Relativistic Outflows

    NASA Technical Reports Server (NTRS)

    Bykov, Andrei; Gehrels, Neil; Krawczynski, Henric; Lemoine, Martin; Pelletier, Guy; Pohl, Martin

    2012-01-01

    In this review we confront the current theoretical understanding of particle acceleration at relativistic outflows with recent observational results on various source classes thought to involve such outflows, e.g. gamma-ray bursts, active galactic nuclei, and pulsar wind nebulae. We highlight the possible contributions of these sources to ultra-high-energy cosmic rays.

  17. Simplified Relativistic Force Transformation Equation.

    ERIC Educational Resources Information Center

    Stewart, Benjamin U.

    1979-01-01

    A simplified relativistic force transformation equation is derived and then used to obtain the equation for the electromagnetic forces on a charged particle, calculate the electromagnetic fields due to a point charge with constant velocity, transform electromagnetic fields in general, derive the Biot-Savart law, and relate it to Coulomb's law.…

  18. Relativistic redshifts in quasar broad lines

    SciTech Connect

    Tremaine, Scott; Shen, Yue; Liu, Xin; Loeb, Abraham E-mail: yshen@obs.carnegiescience.edu E-mail: aloeb@cfa.harvard.edu

    2014-10-10

    The broad emission lines commonly seen in quasar spectra have velocity widths of a few percent of the speed of light, so special- and general-relativistic effects have a significant influence on the line profile. We have determined the redshift of the broad Hβ line in the quasar rest frame (determined from the core component of the [O III] line) for over 20,000 quasars from the Sloan Digital Sky Survey Data Release 7 quasar catalog. The mean redshift as a function of line width is approximately consistent with the relativistic redshift that is expected if the line originates in a randomly oriented Keplerian disk that is obscured when the inclination of the disk to the line of sight exceeds ∼30°-45°, consistent with simple active galactic nucleus unification schemes. This result also implies that the net line-of-sight inflow/outflow velocities in the broad-line region are much less than the Keplerian velocity when averaged over a large sample of quasars with a given line width.

  19. Causal localizations in relativistic quantum mechanics

    SciTech Connect

    Castrigiano, Domenico P. L. Leiseifer, Andreas D.

    2015-07-15

    Causal localizations describe the position of quantum systems moving not faster than light. They are constructed for the systems with finite spinor dimension. At the center of interest are the massive relativistic systems. For every positive mass, there is the sequence of Dirac tensor-localizations, which provides a complete set of inequivalent irreducible causal localizations. They obey the principle of special relativity and are fully Poincaré covariant. The boosters are determined by the causal position operator and the other Poincaré generators. The localization with minimal spinor dimension is the Dirac localization. Thus, the Dirac equation is derived here as a mere consequence of the principle of causality. Moreover, the higher tensor-localizations, not known so far, follow from Dirac’s localization by a simple construction. The probability of localization for positive energy states results to be described by causal positive operator valued (PO-) localizations, which are the traces of the causal localizations on the subspaces of positive energy. These causal Poincaré covariant PO-localizations for every irreducible massive relativistic system were, all the more, not known before. They are shown to be separated. Hence, the positive energy systems can be localized within every open region by a suitable preparation as accurately as desired. Finally, the attempt is made to provide an interpretation of the PO-localization operators within the frame of conventional quantum mechanics attributing an important role to the negative energy states.

  20. Spinodal phase separation in relativistic nuclear collisions

    SciTech Connect

    Randrup, Joergen

    2010-09-15

    The spinodal amplification of density fluctuations is treated perturbatively within dissipative fluid dynamics for the purpose of elucidating the prospects for this mechanism to cause a phase separation to occur during a relativistic nuclear collision. The present study includes not only viscosity but also heat conduction (whose effect on the growth rates is of comparable magnitude but opposite), as well as a gradient term in the local pressure, and the corresponding dispersion relation for collective modes in bulk matter is derived from relativistic fluid dynamics. A suitable two-phase equation of state is obtained by interpolation between a hadronic gas and a quark-gluon plasma, while the transport coefficients are approximated by simple parametrizations that are suitable at any degree of net baryon density. We calculate the degree of spinodal amplification occurring along specific dynamical phase trajectories characteristic of nuclear collision at various energies. The results bring out the important fact that the prospects for spinodal phase separation to occur can be greatly enhanced by careful tuning of the collision energy to ensure that the thermodynamic conditions associated with the maximum compression lie inside the region of spinodal instability.

  1. Balloon Observations of Relativistic Electron Precipitation

    NASA Astrophysics Data System (ADS)

    Millan, R. M.; Woodger, L. A.

    2015-12-01

    Relativistic electron precipitation events lasting from minutes to hours have been observed by balloon-borne instrumentation since 1996. This collection of observations, including the recent BARREL observations, all occur in the noon to midnight sector. EMIC waves have been suggested as the precipitation mechanism for this type of event [Lorentzen et al., 2000 and Millan et al., 2002]. A recent study by Li et al., [2014] performed a case study which modeled the radiation belt relativistic electron pitch angle diffusion from EMIC waves which showed convincing agreement between the modeled results and the BARREL x-ray observations. A survey of the BARREL REP events suggests this type of precipitation is a very localized phenomena with most events only being observed by a single balloon at a time despite the extensive L-value and local time coverage of observations during the campaign. This result is consistent with the findings of Blum et al., [2013]. Furthermore, the balloon observations show local time energy dependence consistent with the SAMPEX observations reported by Comess et al, [2013]. In this work we address the following questions: based on the REP events observed by balloon-borne instrumentation, are these characteristics true for all identified REP events and does this support EMIC waves as the precipitation mechanism? Due to the localized region of precipitation, do these events represent a significant radiation belt loss process?

  2. Quantum Chromodynamics and Nuclear Physics at Extreme Energy Density

    SciTech Connect

    Mueller, B.; Bass, S.A.; Chandrasekharan, S.; Mehen, T.; Springer, R.P.

    2005-11-07

    The report describes research in theoretical quantum chromodynamics, including effective field theories of hadronic interactions, properties of strongly interacting matter at extreme energy density, phenomenology of relativistic heavy ion collisions, and algorithms and numerical simulations of lattice gauge theory and other many-body systems.

  3. Fast lattice Boltzmann solver for relativistic hydrodynamics.

    PubMed

    Mendoza, M; Boghosian, B M; Herrmann, H J; Succi, S

    2010-07-01

    A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows.

  4. Fast lattice Boltzmann solver for relativistic hydrodynamics.

    PubMed

    Mendoza, M; Boghosian, B M; Herrmann, H J; Succi, S

    2010-07-01

    A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows. PMID:20867451

  5. Relativistic formulation of the Voigt profile

    NASA Astrophysics Data System (ADS)

    Wcisło, P.; Amodio, P.; Ciuryło, R.; Gianfrani, L.

    2015-02-01

    The relativistic formulation of the Voigt profile is reported for the spontaneous emission from an atomic or molecular cloud, in coincidence with a given spectral line. We considered the simultaneous occurrence of homogeneous broadening and thermal broadening, this latter being determined by the relativistic Doppler effect. Our formula for the relativistic Voigt profile reproduces those characterizing the two available limit cases, namely, the relativistic Gaussian profile and the classical Voigt convolution. The relativistic deformation of the Voigt profile was carefully quantified at different temperatures, in the case of the molecular hydrogen spectrum.

  6. Simulations of Relativistic Extragalactic Jets

    NASA Astrophysics Data System (ADS)

    Hughes, P. A.; Duncan, G. C.

    1994-05-01

    We present results for 2-D, axisymmetric simulations of flows with Lorentz factors ~ 5 -- 10, typical of values inferred for superluminal BL Lacs and QSOs. The simulations were performed with a numerical hydrodynamic code that admits relativistic flow speed. We exploit the property that the relativistic Euler equations for mass, momentum and total energy densities in the laboratory frame have the same form as the nonrelativistic equations, to solve for laboratory frame variables using a conventional Godunov-type scheme with approximate Riemann solver: the HLLE method. The relativistic nature of the flow is incorporated by performing a Lorentz transformation at every step, at each cell center or cell boundary where pressure, sound speed or velocity are required. Determination of the velocity in this manner is a robust algebraic procedure within which we can ensure that vrelativistic flows exhibit a less pronounced pattern of incident and reflection shocks on axis. For flows which have propagated to a fixed number of jet radii, the Kelvin-Helmholtz instability at the contact surface is much less evident in the high Lorentz factor cases, supporting the contention that relativistic flows are less prone to such instability. We describe how the morphology of the cocoon and shocked ambient gas change with increasing Lorentz factor. This work was supported by NSF grant AST 9120224 and by the Ohio Supercomputer Center from a Cray Research Software Development Grant.

  7. Ultlra-intense laser-matter interactions at extreme parameters

    SciTech Connect

    Hegellich, Bjorn M

    2010-11-24

    The field of shortpulse lasers has seen rapid growth in the recent years with the three major boundaries of energy, pulse duration and repetition rate being pushed in ever extremer regions. At peak powers, already exceeding 10{sup 22} W/cm{sup 2}, in virtually every experiment in relativistic laser physics, the laser pulse interacts with a more or less extended and heated plasma, due to prepulses and ASE-like pedestals on ps - ns time scales. By developing a new technique for ultrahigh contrast, we were able to initiate the next paradigm shift in relativistic laser-matter interactions, allowing us to interact ultrarelativistic pulses volumetrically with overdense targets. This becomes possible by using target and laser parameters that will turn the target relativistically transparent during the few 10s-100s femtoseconds fo the interaction. Specifically, we interact an ultraintese, ultrahigh contrast pulse with solid density, free standing, nanometer diamond target. This paradigm change towards a volumetric overdense interaction in turn enables new particle acceleration mechanisms for both electrons and ions, as well as forward directed relativistic surface harmonics. We report here on first experiments done on those topics at the 200 TW Trident laser at Los Alamos as well as at the Ti:Sapphire system at MBI. We will compare the experimental data to massive large scale 3D simulations done on the prototype of LANL's new Petafiop supercomputer Roadrunner, which is leading the current top 500 list. Specifically, we developed a shortpulse OPA based pulse cleaning technique. Fielding it at the Trident 200 TW laser at Los Alamos, we were able to improve the pulse contrast by 6 orders of magnitude to better than 2 x 10{sup -12} at less than a ps. This enabled for the first time the interaction of a 100J, 200TW laser pulse with a truly solid target with virtually no expansion before the main pulse - target interaction, making possible the use of very thin targets, The

  8. Generations of non-relativistic and relativistic average M shell fluorescence yield (ϖM) (computer code AMSFYLD)

    NASA Astrophysics Data System (ADS)

    Kaur, Gurpreet; Mittal, Raj

    2014-11-01

    Average M shell fluorescence yield (ϖM) have been calculated from non-relativistic data of McGuire (Phys Rev A 1972;5:1043-47) in the region Z=60-90 and relativistic data of Chen, Crasemann and Mark (Phys Rev A 1980;21:449-53) and (Phys Rev A 1983;27:2989-94) in the region Z=70-90 on M sub-shell fluorescence yield (ωMi, i=1-5) and Coster-Kronig yield (fMij, i=1-4, j=2-5) procured from our earlier work (a computer software code MFCKYLD) using Scofield's data (Lawrence Livermore Laboratory Report UCRL 51326; 1973) on M sub-shell photo-ionization cross-sections. Subsequently, a computer software code AMSFYLD was developed to generate the yield values on computer terminal or in file for both non-relativistic and relativistic data just by entering the atomic number Z of the element through keyboard or file. The values were compared with available theoretical and experimental values in the literature. The agreement between the present data and the other supports the present values.

  9. Relativistic ionization fronts in gas jets

    NASA Astrophysics Data System (ADS)

    Lemos, Nuno; Dias, J. M.; Gallacher, J. G.; Issac, R. C.; Fonseca, R. A.; Lopes, N. C.; Silva, L. O.; Mendonça, J. T.; Jaroszynski, D. A.

    2006-10-01

    A high-power ultra-short laser pulse propagating through a gas jet, ionizes the gas by tunnelling ionization, creating a relativistic plasma-gas interface. The relativistic ionization front that is created can be used to frequency up-shift electromagnetic radiation either in co-propagation or in counter-propagation configurations. In the counter-propagation configuration, ionization fronts can act as relativistic mirrors for terahertz radiation, leading to relativistic double Doppler frequency up-shift to the visible range. In this work, we identified and explored, the parameters that optimize the key features of relativistic ionization fronts for terahertz radiation reflection. The relativistic ionization front generated by a high power laser (TOPS) propagating in a supersonic gas jet generated by a Laval nozzle has been fully characterized. We have also performed detailed two-dimensional relativistic particle-in-cell simulations with Osiris 2.0 to analyze the generation and propagation of the ionization fronts.

  10. Effects of D region ionization on radio wave propagation

    NASA Technical Reports Server (NTRS)

    Larsen, T. R.

    1979-01-01

    The effects of anomalous D region ionization upon radio wave propagation are described for the main types of disturbances: sudden ionospheric disturbances, relativistic electron events, magnetic storms, auroral disturbances, polar cap events, and stratospheric warmings. Examples of radio wave characteristics for such conditions are given for the frequencies between the extremely low (3-3000 Hz) and high (3-30 MHz) frequency domains. Statistics on the disturbance effects and radio wave data are given in order to contribute towards the evaluation of possibilities for predicting the radio effects.

  11. Assessment and comparison of extreme sea levels and waves during the 2013/2014 storm season in two UK coastal regions

    NASA Astrophysics Data System (ADS)

    Wadey, M. P.; Brown, J. M.; Haigh, I. D.; Dolphin, T.; Wisse, P.

    2015-04-01

    The extreme sea levels and waves experienced around the UK's coast during the 2013/2014 winter caused extensive coastal flooding and damage. In such circumstances, coastal managers seek to place such extremes in relation to the anticipated standards of flood protection, and the long-term recovery of the natural system. In this context, return periods are often used as a form of guidance. We therefore provide these levels for the winter storms, as well as discussing their application to the given data sets and case studies (two UK case study sites: Sefton, northwest England; and Suffolk, east England). We use tide gauge records and wave buoy data to compare the 2013/2014 storms with return periods from a national dataset, and also generate joint probabilities of sea level and waves, incorporating the recent events. The UK was hit at a national scale by the 2013/2014 storms, although the return periods differ with location. We also note that the 2013/2014 high water and waves were extreme due to the number of events, as well as the extremity of the 5 December 2013 "Xaver" storm, which had a very high return period at both case study sites. Our return period analysis shows that the national scale impact of this event is due to its coincidence with spring high tide at multiple locations as the tide and storm propagated across the continental shelf. Given that this event is such an outlier in the joint probability analyses of these observed data sets, and that the season saw several events in close succession, coastal defences appear to have provided a good level of protection. This type of assessment should be recorded alongside details of defence performance and upgrade, with other variables (e.g. river levels at estuarine locations) included and appropriate offsetting for linear trends (e.g. mean sea level rise) so that the storm-driven component of coastal flood events can be determined. Local offsetting of the mean trends in sea level allows long-term comparison of

  12. New model of iron spectra in the extreme ultraviolet and application to SERTS and EUV observations: A solar active region and capella

    NASA Technical Reports Server (NTRS)

    Brickhouse, N. S.; Raymond, J. C.; Smith, B. W.

    1995-01-01

    We report new predictions for the EUV spectral emission of FeIX-FeXXIV, based on data now available from the Solar EUV Rocket Telescope and Spectrograph (SERTS) and the Extreme Ultraviolet Explorer (EUVE) spectrometers. The iron spectral emission model is the first result of a larger effort to revise the Raymond & Smith model and to update the atomic rates. We present here predicted emissivities for selected densities and temperatures applicable to various astrophysical plasmas. Comparisons of our predicted spectra with two recent observations provide important tests of the atomic data. They also test to some extent some basic assumptions of coronal emission codes: optically thin spectral lines and ionization equilibrium.

  13. A relativistic calculation of the deuteron threshold electrodisintegration at backward angles

    SciTech Connect

    Schiavilla, Rocco

    2007-07-01

    The threshold electrodisintegration of the deuteron at backward angles is studied with a relativistic Hamiltonian, including a relativistic one-pion-exchange potential (OPEP) with off-shell terms as predicted by pseudovector coupling of pions to nucleons. The bound and scattering states are obtained in the center-of-mass frame, and then boosted from it to the Breit frame, where the evaluation of the relevant matrix elements of the electromagnetic current operator is carried out. The latter includes, in addition to one-body, also two-body terms due to pion exchange, as obtained, consistently with the OPEP, in pseudovector pion-nucleon coupling theory. The full Lorentz structure of these currents is retained. In order to estimate the magnitude of the relativistic effects we perform, for comparison, the calculation with a non-relativistic phase-equivalent Hamiltonian and the standard non-relativistic expressions for the one-body and two-body pion-exchange currents. Our results for the electrodisintegration cross section show that, in the calculations using one-body currents, relativistic corrections become significant (i.e., larger than 10%) only at high momentum transfer Q (Q2 ~ 40fm-2 and beyond). However, the inclusion of two-body currents makes the relativistic predictions considerably smaller than the corresponding non-relativistic results in the Q2 region (18-40) fm-2. The calculations based on the relativistic model also confirm the inadequacy, already established in a non-relativistic context, of the present electromagnetic current model to reproduce accurately the experimental data at intermediate values of momentum transfers.

  14. Relativistic framework for non-magnetic analysis and design

    NASA Astrophysics Data System (ADS)

    Laborde, Benjamin

    2005-04-01

    This paper describes a framework for relativistic analysis with effects identical to that of magnetism, but without using magnetism, and uses this framework to design a device which would be difficult or impossible under magnet analysis. With this framework it is possible to analyze electrical systems completely with relativistic electrodynamics, rather than magnetism and electrostatics, with no loss of accuracy, since the two systems are identical. The framework demonstrates the equivalence of magnetism and relativistic electric charge with a mathematical proof using the classical parallel wires experiment. The paper then proceeds to use this result to design an electric propulsion device through relativistic analysis, rather than magnetic analysis. The benefit of this approach is that it liberates us from the magnetic field, and ascribes the forces on a conducting wire to the current in another wire, some distance away, rather than to a magnetic field in the region of the first wire, as in classical analysis. With this new framework we are able to design devices previously unknown in the magnetic domain. The paper describes one such device, the Action Motor, for producing a one-way force, with potential applications in spacecraft propulsion.

  15. SYNCHROTRON RADIATION OF SELF-COLLIMATING RELATIVISTIC MAGNETOHYDRODYNAMIC JETS

    SciTech Connect

    Porth, Oliver; Fendt, Christian; Vaidya, Bhargav; Meliani, Zakaria E-mail: fendt@mpia.de

    2011-08-10

    The goal of this paper is to derive signatures of synchrotron radiation from state-of-the-art simulation models of collimating relativistic magnetohydrodynamic (MHD) jets featuring a large-scale helical magnetic field. We perform axisymmetric special relativistic MHD simulations of the jet acceleration region using the PLUTO code. The computational domain extends from the slow-magnetosonic launching surface of the disk up to 6000{sup 2} Schwarzschild radii allowing jets to reach highly relativistic Lorentz factors. The Poynting-dominated disk wind develops into a jet with Lorentz factors of {Gamma} {approx_equal} 8 and is collimated to 1{sup 0}. In addition to the disk jet, we evolve a thermally driven spine jet emanating from a hypothetical black hole corona. Solving the linearly polarized synchrotron radiation transport within the jet, we derive very long baseline interferometry radio and (sub-) millimeter diagnostics such as core shift, polarization structure, intensity maps, spectra, and Faraday rotation measure (RM) directly from the Stokes parameters. We also investigate depolarization and the detectability of a {lambda}{sup 2}-law RM depending on beam resolution and observing frequency. We find non-monotonic intrinsic RM profiles that could be detected at a resolution of 100 Schwarzschild radii. In our collimating jet geometry, the strict bimodality in the polarization direction (as predicted by Pariev et al.) can be circumvented. Due to relativistic aberration, asymmetries in the polarization vectors across the jet can hint at the spin direction of the central engine.

  16. Relativistic rocket: Dream and reality

    NASA Astrophysics Data System (ADS)

    Semyonov, Oleg G.

    2014-06-01

    The dream of interstellar flights persists since the first pioneers in astronautics and has never died. Many concepts of thruster capable to propel a rocket to the stars have been proposed and the most suitable among them are thought to be photon propulsion and propulsion by the products of proton-antiproton annihilation in magnetic nozzle. This article addresses both concepts allowing for cross-section of annihilation among other issues in order to show their vulnerability and to indicate the problems. The concept of relativistic matter propulsion is substantiated and discussed. The latter is argued to be the most straightforward way to build-up a relativistic rocket firstly because it is based on the existing technology of ion generators and accelerators and secondly because it can be stepped up in efflux power starting from interplanetary spacecrafts powered by nuclear reactors to interstellar starships powered by annihilation reactors. The problems imposed by thermodynamics and heat disposal are accentuated.

  17. Relativistic hydrodynamics on graphic cards

    NASA Astrophysics Data System (ADS)

    Gerhard, Jochen; Lindenstruth, Volker; Bleicher, Marcus

    2013-02-01

    We show how to accelerate relativistic hydrodynamics simulations using graphic cards (graphic processing units, GPUs). These improvements are of highest relevance e.g. to the field of high-energetic nucleus-nucleus collisions at RHIC and LHC where (ideal and dissipative) relativistic hydrodynamics is used to calculate the evolution of hot and dense QCD matter. The results reported here are based on the Sharp And Smooth Transport Algorithm (SHASTA), which is employed in many hydrodynamical models and hybrid simulation packages, e.g. the Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). We have redesigned the SHASTA using the OpenCL computing framework to work on accelerators like graphic processing units (GPUs) as well as on multi-core processors. With the redesign of the algorithm the hydrodynamic calculations have been accelerated by a factor 160 allowing for event-by-event calculations and better statistics in hybrid calculations.

  18. Pythagoras Theorem and Relativistic Kinematics

    NASA Astrophysics Data System (ADS)

    Mulaj, Zenun; Dhoqina, Polikron

    2010-01-01

    In two inertial frames that move in a particular direction, may be registered a light signal that propagates in an angle with this direction. Applying Pythagoras theorem and principles of STR in both systems, we can derive all relativistic kinematics relations like the relativity of simultaneity of events, of the time interval, of the length of objects, of the velocity of the material point, Lorentz transformations, Doppler effect and stellar aberration.

  19. Relativistic nuclear hydrodynamics and phase transition to the deconfinement state

    SciTech Connect

    Barz, H.W.; Kaempfer, B.; Lukacs, B.

    1987-11-01

    The possible formation of nuclear matter in the phase of a quark--gluon plasma in relativistic heavy-ion collisions is considered in the framework of a hydrodynamic approach. The main results are obtained in a single-fluid model of the formation of a baryon-enriched plasma and relate to nuclear collisions at energies up to 10 GeV/nucleon. At higher energies, a two-fluid model predicts the formation of a plasma in the fragmentation region, but the baryon density is much lower. In all the investigations, including scaling hydrodynamics in the baryon-depleted region of intermediate rapidities, allowance is made for a delayed phase transition to the deconfinement state. A generally covariant formulation of relativistic hydrodynamics is presented as a useful numerical method, together with some extensions of the methods of the standard theory (selection of comoving coordinates, allowance for sink terms, and two-fluid interaction).

  20. Representing Extremes in Agricultural Models

    NASA Technical Reports Server (NTRS)

    Ruane, Alex

    2015-01-01

    AgMIP and related projects are conducting several activities to understand and improve crop model response to extreme events. This involves crop model studies as well as the generation of climate datasets and scenarios more capable of capturing extremes. Models are typically less responsive to extreme events than we observe, and miss several forms of extreme events. Models also can capture interactive effects between climate change and climate extremes. Additional work is needed to understand response of markets and economic systems to food shocks. AgMIP is planning a Coordinated Global and Regional Assessment of Climate Change Impacts on Agricultural Production and Food Security with an aim to inform the IPCC Sixth Assessment Report.

  1. Relativistic opacities for astrophysical applications

    DOE PAGES

    Fontes, Christopher John; Fryer, Christopher Lee; Hungerford, Aimee L.; Hakel, Peter; Colgan, James Patrick; Kilcrease, David Parker; Sherrill, Manalo Edgar

    2015-06-29

    Here, we report on the use of the Los Alamos suite of relativistic atomic physics codes to generate radiative opacities for the modeling of astrophysically relevant plasmas under local thermodynamic equilibrium (LTE) conditions. The atomic structure calculations are carried out in fine-structure detail, including full configuration interaction. Three example applications are considered: iron opacities at conditions relevant to the base of the solar convection zone, nickel opacities for the modeling of stellar envelopes, and samarium opacities for the modeling of light curves produced by neutron star mergers. In the first two examples, comparisons are made between opacities that are generatedmore » with the fully and semi-relativistic capabilities in the Los Alamos suite of codes. As expected for these highly charged, iron-peak ions, the two methods produce reasonably similar results, providing confidence that the numerical methods have been correctly implemented. However, discrepancies greater than 10% are observed for nickel and investigated in detail. In the final application, the relativistic capability is used in a preliminary investigation of the complicated absorption spectrum associated with cold lanthanide elements.« less

  2. Relativistic Tennis Using Flying Mirror

    SciTech Connect

    Pirozhkov, A. S.; Kando, M.; Ma, J.; Fukuda, Y.; Chen, L.-M.; Daito, I.; Ogura, K.; Homma, T.; Hayashi, Y.; Kotaki, H.; Sagisaka, A.; Mori, M.; Koga, J. K.; Kawachi, T.; Daido, H.; Kimura, T.; Kato, Y.; Tajima, T.; Esirkepov, T. Zh.; Bulanov, S. V.

    2008-06-24

    Upon reflection from a relativistic mirror, the electromagnetic pulse frequency is upshifted and the duration is shortened by the factor proportional to the relativistic gamma-factor squared due to the double Doppler effect. We present the results of the proof-of-principle experiment for frequency upshifting of the laser pulse reflected from the relativistic 'flying mirror', which is a wake wave near the breaking threshold created by a strong driver pulse propagating in underdense plasma. Experimentally, the wake wave is created by a 2 TW, 76 fs Ti:S laser pulse from the JLITE-X laser system in helium plasma with the electron density of {approx_equal}4-6x10{sup 19} cm{sup -3}. The reflected signal is observed with a grazing-incidence spectrograph in 24 shots. The wavelength of the reflected radiation ranges from 7 to 14 nm, the corresponding frequency upshifting factors are {approx}55-115, and the gamma-factors are y = 4-6. The reflected signal contains at least 3x10{sup 7} photons/sr. This effect can be used to generate coherent high-frequency ultrashort pulses that inherit temporal shape and polarization from the original (low-frequency) ones. Apart from this, the reflected radiation contains important information about the wake wave itself, e.g. location, size, phase velocity, etc.

  3. Relativistic Tennis Using Flying Mirror

    NASA Astrophysics Data System (ADS)

    Pirozhkov, A. S.; Kando, M.; Esirkepov, T. Zh.; Ma, J.; Fukuda, Y.; Chen, L.-M.; Daito, I.; Ogura, K.; Homma, T.; Hayashi, Y.; Kotaki, H.; Sagisaka, A.; Mori, M.; Koga, J. K.; Kawachi, T.; Daido, H.; Bulanov, S. V.; Kimura, T.; Kato, Y.; Tajima, T.

    2008-06-01

    Upon reflection from a relativistic mirror, the electromagnetic pulse frequency is upshifted and the duration is shortened by the factor proportional to the relativistic gamma-factor squared due to the double Doppler effect. We present the results of the proof-of-principle experiment for frequency upshifting of the laser pulse reflected from the relativistic "flying mirror", which is a wake wave near the breaking threshold created by a strong driver pulse propagating in underdense plasma. Experimentally, the wake wave is created by a 2 TW, 76 fs Ti:S laser pulse from the JLITE-X laser system in helium plasma with the electron density of ≈4-6×1019 cm-3. The reflected signal is observed with a grazing-incidence spectrograph in 24 shots. The wavelength of the reflected radiation ranges from 7 to 14 nm, the corresponding frequency upshifting factors are ˜55-115, and the gamma-factors are y = 4-6. The reflected signal contains at least 3×107 photons/sr. This effect can be used to generate coherent high-frequency ultrashort pulses that inherit temporal shape and polarization from the original (low-frequency) ones. Apart from this, the reflected radiation contains important information about the wake wave itself, e.g. location, size, phase velocity, etc.

  4. Regional anesthesia for an upper extremity amputation for palliative care in a patient with end-stage osteosarcoma complicated by a large anterior mediastinal mass

    PubMed Central

    Hakim, Mumin; Burrier, Candice; Bhalla, Tarun; Raman, Vidya T; Martin, David P; Dairo, Olamide; Mayerson, Joel L; Tobias, Joseph D

    2015-01-01

    Tumor progression during end-of-life care can lead to significant pain, which at times may be refractory to routine analgesic techniques. Although regional anesthesia is commonly used for postoperative pain care, there is limited experience with its use during home hospice care. We present a 24-year-old male with end-stage metastatic osteosarcoma who required anesthetic care for a right-sided above-the-elbow amputation. The anesthetic management was complicated by the presence of a large mediastinal mass, limited pulmonary reserve, and severe chronic pain with a high preoperative opioid requirement. Intraoperative anesthesia and postoperative pain management were provided by regional anesthesia using an interscalene catheter. He was discharged home with the interscalene catheter in place with a continuous local anesthetic infusion that allowed weaning of his chronic opioid medications and the provision of effective pain control. The perioperative applications of regional anesthesia in palliative and home hospice care are discussed. PMID:26442759

  5. Boosted High-Harmonics Pulse from a Double-Sided Relativistic Mirror

    NASA Astrophysics Data System (ADS)

    Esirkepov, T. Zh.; Bulanov, S. V.; Kando, M.; Pirozhkov, A. S.; Zhidkov, A. G.

    2009-07-01

    An ultrabright high-power x- and γ-radiation source is proposed. A high-density thin plasma slab, accelerating in the radiation pressure dominant regime by an ultraintense electromagnetic wave, reflects a counterpropagating relativistically strong electromagnetic wave, producing extremely time-compressed and intensified radiation. The reflected light contains relativistic harmonics generated at the plasma slab, all upshifted with the same factor as the fundamental mode of the incident light. The theory of an arbitrarily moving thin plasma slab reflectivity is presented.

  6. Boosted high-harmonics pulse from a double-sided relativistic mirror.

    PubMed

    Esirkepov, T Zh; Bulanov, S V; Kando, M; Pirozhkov, A S; Zhidkov, A G

    2009-07-10

    An ultrabright high-power x- and gamma-radiation source is proposed. A high-density thin plasma slab, accelerating in the radiation pressure dominant regime by an ultraintense electromagnetic wave, reflects a counterpropagating relativistically strong electromagnetic wave, producing extremely time-compressed and intensified radiation. The reflected light contains relativistic harmonics generated at the plasma slab, all upshifted with the same factor as the fundamental mode of the incident light. The theory of an arbitrarily moving thin plasma slab reflectivity is presented.

  7. Precipitation of relativistic electrons of the Van Allen belts into the proton aurora

    SciTech Connect

    Jordanova, Vania K; Miyoshi, Y; Sakaguchi, K; Shiokawa, K; Evans, D S; Connors, M

    2008-01-01

    The Van Allen electron belts consist of two regions encircling the earth in which relativistic electrons are trapped in the earth's magnetic field. Populations of relativistic electrons in the Van Allen belts vary greatly with geomagnetic disturbance and they are a major source of damage to space vehicles. In order to know when and by how much these populations of relativistic electrons increase, it is important to elucidate not only the cause of acceleration of relativistic electrons but also the cause of their loss from the Van Allen belts. Here we show the first evidence that left-hand polarized electromagnetic ion cyclotron (EMIC) plasma waves can cause the loss of relativistic electrons into the atmosphere, on the basis of results of an excellent set of ground and satellite observations showing coincident precipitation of ions with energies of tens of keV and of relativistic electrons into an isolated proton aurora. The proton aurora was produced by precipitation of ions with energies of tens of keV due to EMIC waves near the plasma pause, which is a manifestation of wave-particle interactions. These observations clarify that ions with energies of tens of keV affect the evolution of relativistic electrons in the Van Allen belts via parasitic resonance with EMIC waves, an effect that was first theoretically predicted in the early 1970's.

  8. Relativistic nuclear many-body theory

    SciTech Connect

    Serot, B.D. ); Walecka, J.D. . Continuous Electron Beam Accelerator Facility)

    1991-09-11

    Nonrelativistic models of nuclear systems have provided important insight into nuclear physics. In future experiments, nuclear systems will be examined under extreme conditions of density and temperature, and their response will be probed at momentum and energy transfers larger than the nucleon mass. It is therefore essential to develop reliable models that go beyond the traditional nonrelativistic many-body framework. General properties of physics, such as quantum mechanics, Lorentz covariance, and microscopic causality, motivate the use of quantum field theories to describe the interacting, relativistic, nuclear many-body system. Renormalizable models based on hadronic degrees of freedom (quantum hadrodynamics) are presented, and the assumptions underlying this framework are discussed. Some applications and successes of quantum hadrodynamics are described, with an emphasis on the new features arising from relativity. Examples include the nuclear equation of state, the shell model, nucleon-nucleus scattering, and the inclusion of zero-point vacuum corrections. Current issues and problems are also considered, such as the construction of improved approximations, the full role of the quantum vacuum, and the relationship between quantum hadrodynamics and quantum chromodynamics. We also speculate on future developments. 103 refs., 18 figs.

  9. Penetrating nontorso trauma: the extremities

    PubMed Central

    Ball, Chad G.

    2015-01-01

    Summary Similar to penetrating torso trauma, nontorso injuries have undergone a fascinating oscillation between invasive and noninvasive approaches. This article discusses an organized approach to the evaluation and initial treatment of penetrating extremity injuries based on regional anatomy and clinical examination. The approach is reliable, efficient and minimizes both delays in diagnosis and missed injuries. Outpatient follow-up is particularly important for patients with extremity injuries who are discharged home from the emergency department. PMID:26022152

  10. Extremal surfaces and entanglement entropy

    NASA Astrophysics Data System (ADS)

    Pal, Shesansu Sekhar

    2014-05-01

    We have obtained the equation of the extremal hypersurface by considering the Jacobson-Myers functional and computed the entanglement entropy. In this context, we show that the higher derivative corrected extremal surfaces cannot penetrate the horizon. Also, we have studied the entanglement temperature and entanglement entropy for low excited states for such higher derivative theories when the entangling region is of the strip type.

  11. Relativistic high harmonics and (sub-)attosecond pulses: relativistic spikes and relativistic mirror

    NASA Astrophysics Data System (ADS)

    Pukhov, A.; Baeva, T.; An der Brügge, D.; Münster, S.

    2009-11-01

    Using particle-in-cell simulations, we study high harmonic generation from overdense plasmas in the relativistic regime. Different incidence angles as well as different laser polarizations are considered and scalings are recovered. It is shown that the theory of relativistic spikes and the BGP power-law spectra [Phys. Rev. E 74, 046404 (2006)] describes well the normal incidence and s-polarized obliquely incident laser pulses. In the case of p-polarized laser pulses, exceptions from the BGP theory can appear when the quasi-static vector potential build-up at the plasma boundary becomes equal to that of the laser. In this case, the spectrum flattens significantly and has a lower cutoff.

  12. Two-stream-like Instability in Dilute Hot Relativistic Beams and Astrophysical Relativistic Shocks

    NASA Astrophysics Data System (ADS)

    Nakar, Ehud; Bret, Antoine; Milosavljević, Miloš

    2011-09-01

    Relativistic collisionless shocks are believed to be efficient particle accelerators. Nonlinear outcome of the interaction of accelerated particles that run ahead of the shock, the so-called precursor, with the unperturbed plasma of the shock upstream, is thought to facilitate additional acceleration of these particles and to possibly modify the hydrodynamic structure of the shock. We explore here the linear growth of kinetic modes appearing in the precursor-upstream interaction in relativistic shocks propagating in non- and weakly magnetized plasmas: electrostatic two-stream parallel mode and electrostatic oblique modes. The physics of the parallel and oblique modes is similar, and thus, we refer to the entire spectrum of electrostatic modes as "two-stream-like." These modes are of particular interest because they are the fastest growing modes known in this type of system. Using a simplified distribution function for a dilute ultrarelativistic beam that is relativistically hot in its own rest frame, yet has momenta that are narrowly collimated in the frame of the cold upstream plasma into which it propagates, we identify the fastest growing mode in the full k-space and calculate its growth rate. We consider all types of plasma (pairs and ions-electrons) and beam (charged and charge-neutral). We find that unstable electrostatic modes are present in any type of plasma and for any shock parameters. We further find that two modes, one parallel (k bottom = 0) and the other one oblique (k_\\bot \\sim k_\\Vert), are competing for dominance and that either one may dominate the growth rate in different regions of the phase space. The dominant mode is determined mostly by the perpendicular spread of the accelerated particle momenta in the upstream frame, which reflects the shock Lorentz factor. The parallel mode becomes more dominant in shocks with lower Lorentz factors (i.e., with larger momentum spreads). We briefly discuss possible implications of our results for

  13. Relativistic Navigation: A Theoretical Foundation

    NASA Technical Reports Server (NTRS)

    Turyshev, Slava G.

    1996-01-01

    We present a theoretical foundation for relativistic astronomical measurements in curved space-time. In particular, we discuss a new iterative approach for describing the dynamics of an isolated astronomical N-body system in metric theories of gravity. To do this, we generalize the Fock-Chandrasekhar method of the weak-field and slow-motion approximation (WFSMA) and develop a theory of relativistic reference frames (RF's) for a gravitationally bounded many-extended-body problem. In any proper RF constructed in the immediate vicinity of an arbitrary body, the N-body solutions of the gravitational field equations are formally presented as a sum of the Riemann-flat inertial space-time, the gravitational field generated by the body itself, the unperturbed solutions for each body in the system transformed to the coordinates of this proper RF, and the gravitational interaction term. We develop the basic concept of a general WFSMA theory of the celestial RF's applicable to a wide class of metric theories of gravity and an arbitrary model of matter distribution. We apply the proposed method to general relativity. Celestial bodies are described using a perfect fluid model; as such, they possess any number of internal mass and current multipole moments that explicitly characterize their internal structures. The obtained relativistic corrections to the geodetic equations of motion arise because of a coupling of the bodies' multiple moments to the surrounding gravitational field. The resulting relativistic transformations between the different RF's extend the Poincare group to the motion of deformable self-gravitating bodies. Within the present accuracy of astronomical measurements we discuss the properties of the Fermi-normal-like proper RF that is defined in the immediate vicinity of the extended compact bodies. We further generalize the proposed approximation method and include two Eddington parameters (gamma, Beta). This generalized approach was used to derive the

  14. Modified Graded Motor Imagery for Complex Regional Pain Syndrome Type 1 of the Upper Extremity in the Acute Phase: A Patient Series

    ERIC Educational Resources Information Center

    Lagueux, Emilie; Charest, Joelle; Lefrancois-Caron, Eve; Mauger, Marie-Eve; Mercier, Emilie; Savard, Kim; Tousignant-Laflamme, Yannick

    2012-01-01

    Complex regional pain syndrome (CRPS) is a pathologic condition in which the painful experience is disproportionate in time and intensity in comparison with the inciting event. At present, the pathophysiology of CRPS is not well understood. Several studies have indicated that cortical reorganization plays a role in the persistence of the symptoms.…

  15. Loading relativistic Maxwell distributions in particle simulations

    SciTech Connect

    Zenitani, Seiji

    2015-04-15

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  16. Relativistic radiation transport in dispersive media

    SciTech Connect

    Kichenassamy, S.; Krikorian, R.A.

    1985-10-15

    A general-relativistic radiative transfer equation in an isotropic, weakly absorbing, nonmagnetized dispersive medium is derived using the kinetic-theoretical approach and the relativistic Hamiltonian theory of geometrical optics in those media. It yields the generally accepted classical equation in the special-relativistic approximation and in stationary conditions. The influence of the gravitational field and of space-time variations of the refractive index n on the radiation distribution is made explicit in the case of spherical symmetry.

  17. Mesoscopic Superposition States in Relativistic Landau Levels

    SciTech Connect

    Bermudez, A.; Martin-Delgado, M. A.; Solano, E.

    2007-09-21

    We show that a linear superposition of mesoscopic states in relativistic Landau levels can be built when an external magnetic field couples to a relativistic spin 1/2 charged particle. Under suitable initial conditions, the associated Dirac equation produces unitarily superpositions of coherent states involving the particle orbital quanta in a well-defined mesoscopic regime. We demonstrate that these mesoscopic superpositions have a purely relativistic origin and disappear in the nonrelativistic limit.

  18. On the theory of magnetic field generation by relativistically strong laser radiation

    SciTech Connect

    Berezhiani, V.I.; Shatashvili, N.L.; Mahajan, S.M. |

    1996-07-01

    The authors consider the interaction of subpicosecond relativistically strong short laser pulses with an underdense cold unmagnetized electron plasma. It is shown that the strong plasma inhomogeneity caused by laser pulses results in the generation of a low frequency (quasistatic) magnetic field. Since the electron density distribution is determined completely by the pump wave intensity, the generated magnetic field is negligibly small for nonrelativistic laser pulses but increases rapidly in the ultrarelativistic case. Due to the possibility of electron cavitation (complete expulsion of electrons from the central region) for narrow and intense beams, the increase in the generated magnetic field slows down as the beam intensity is increased. The structure of the magnetic field closely resembles that of the field produced by a solenoid; the field is maximum and uniform in the cavitation region, then it falls, changes polarity and vanishes. In extremely dense plasmas, highly intense laser pulses in the self-channeling regime can generate magnetic fields {approximately} 100 Mg and greater.

  19. Experimental status of the AGS Relativistic Heavy Ion Program

    SciTech Connect

    Sangster, T.C.

    1994-10-01

    The universal motivation for colliding large nuclei at relativistic energies is the expectation that a small volume of the primordial quark soup, generally referred to as the Quark-Gluon Plasma (QGP), can be created and studied. The QGP is formed via a phase transition caused by either the extreme baryon densities and/or the extreme temperatures achieved in the overlap zone of the two colliding nuclei. Experiments at the Brookhaven National Laboratory Alternating Gradient Synchrotron (AGS) using a beam of Si nuclei at 14.6 GeV per nucleon on various nuclear targets have been completed. These same experiments are now actively searching for signatures of QGP formation using a beam of Au nuclei at 11.7 GeV per nucleon. This paper briefly summarizes some of the key results from the Si beam program and the current status of the experimental Au beam program at the AGS.

  20. Dissipation in relativistic pair-plasma reconnection

    SciTech Connect

    Hesse, Michael; Zenitani, Seiji

    2007-11-15

    An investigation into the relativistic dissipation in magnetic reconnection is presented. The investigated system consists of an electron-positron plasma. A relativistic generalization of Ohm's law is derived. A set of numerical simulations is analyzed, composed of runs with and without guide magnetic field, and of runs with different species temperatures. The calculations indicate that the thermal inertia-based dissipation process survives in relativistic plasmas. For antiparallel reconnection, it is found that the pressure tensor divergence remains the sole contributor to the reconnection electric field, whereas relativistic guide field reconnection exhibits a similarly important role of the bulk inertia terms.

  1. Relativistic Bernstein waves in a degenerate plasma

    SciTech Connect

    Ali, Muddasir; Hussain, Azhar; Murtaza, G.

    2011-09-15

    Bernstein mode for a relativistic degenerate electron plasma is investigated. Using relativistic Vlasov-Maxwell equations, a general expression for the conductivity tensor is derived and then employing Fermi-Dirac distribution function a generalized dispersion relation for the Bernstein mode is obtained. Two limiting cases, i.e., non-relativistic and ultra-relativistic are discussed. The dispersion relations obtained are also graphically presented for some specific values of the parameters depicting how the propagation characteristics of Bernstein waves as well as the Upper Hybrid oscillations are modified with the increase in plasma number density.

  2. Dissipation in Relativistic Pair-Plasma Reconnection

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Zenitani, Seiji

    2007-01-01

    We present an investigation of the relativistic dissipation in magnetic reconnection. The investigated system consists of an electron-positron plasma. A relativistic generalization of Ohm's law is derived. We analyze a set of numerical simulations, composed of runs with and without guide magnetic field, and of runs with different species temperatures. The calculations indicate that the thermal inertia-based dissipation process survives in relativistic plasmas. For anti-parallel reconnection, it is found that the pressure tensor divergence remains the sole contributor to the reconnection electric field, whereas relativistic guide field reconnection exhibits a similarly important role of the bulk inertia terms.

  3. The domain structure of Helicobacter pylori DnaB helicase: the N-terminal domain can be dispensable for helicase activity whereas the extreme C-terminal region is essential for its function

    PubMed Central

    Nitharwal, Ram Gopal; Paul, Subhankar; Dar, Ashraf; Choudhury, Nirupam Roy; Soni, Rajesh K; Prusty, Dhaneswar; Sinha, Sukrat; Kashav, Tara; Mukhopadhyay, Gauranga; Chaudhuri, Tapan Kumar; Gourinath, Samudrala; Dhar, Suman Kumar

    2007-01-01

    Hexameric DnaB type replicative helicases are essential for DNA strand unwinding along with the direction of replication fork movement. These helicases in general contain an amino terminal domain and a carboxy terminal domain separated by a linker region. Due to the lack of crystal structure of a full-length DnaB like helicase, the domain structure and function of these types of helicases are not clear. We have reported recently that Helicobacter pylori DnaB helicase is a replicative helicase in vitro and it can bypass Escherichia coli DnaC activity in vivo. Using biochemical, biophysical and genetic complementation assays, here we show that though the N-terminal region of HpDnaB is required for conformational changes between C6 and C3 rotational symmetry, it is not essential for in vitro helicase activity and in vivo function of the protein. Instead, an extreme carboxy terminal region and an adjacent unique 34 amino acid insertion region were found to be essential for HpDnaB activity suggesting that these regions are important for proper folding and oligomerization of this protein. These results confer great potential in understanding the domain structures of DnaB type helicases and their related function. PMID:17430964

  4. The role of the traveling planetary wave ionospheric disturbances on the equatorial F region post-sunset height rise during the last extreme low solar activity and comparison with high solar activity

    NASA Astrophysics Data System (ADS)

    de Abreu, A. J.; Fagundes, P. R.; Bolzan, M. J. A.; de Jesus, R.; Pillat, V. G.; Abalde, J. R.; Lima, W. L. C.

    2014-06-01

    This investigation studies traveling planetary wave ionospheric disturbance (TPWID) type oscillations on the modulation of the F region post-sunset height rise during the electric field pre-reversal enhancement (PRE). The studied period, from January 2009 to April 2010, occurred during the extremely low solar activity, when the averaged F10.7 was 73 [W/m2 Hz]. In addition, the results are compared with those for a high solar activity period of 2003. We present ionospheric sounding observations carried out near equatorial region (Palmas 10.2°S, 48.2°W, dip latitude 5.5°S) and low latitude region (São José dos Campos 23.2°S, 45.9°W, dip latitude 17.6°S; located under the southern crest of the equatorial ionospheric anomaly) in the Brazilian sector. The studies found that the magnitude of the electric field during PRE time and consequently the day-to-day variations of the F region virtual height at equatorial region and low latitude are modulated by waves with periods of around 3-4, 5-6, 10-15, and 24-35 days. The observations show that during low solar activity, the TPWID oscillations are lower than during high solar activity, but with the same amplitude around 200 km. The TPWID long period oscillations of around 27 days present very distinct characteristics at the equatorial region and low latitude, indicating that these regions are not directly connected. Our study also shows that the response to the TPWID short period of around 3-4, 5-6, and 10-15 days at the equatorial region and low latitude present very clear coupling during January-February, 2009, possibly due to the sudden stratospheric warming and TPWID mechanisms.

  5. Relativistic and non-relativistic solitons in plasmas

    NASA Astrophysics Data System (ADS)

    Barman, Satyendra Nath

    This thesis entitled as "Relativistic and Non-relativistic Solitons in Plasmas" is the embodiment of a number of investigations related to the formation of ion-acoustic solitary waves in plasmas under various physical situations. The whole work of the thesis is devoted to the studies of solitary waves in cold and warm collisionless magnetized or unmagnetized plasmas with or without relativistic effect. To analyze the formation of solitary waves in all our models of plasmas, we have employed two established methods namely - reductive perturbation method to deduce the Korteweg-de Vries (KdV) equation, the solutions of which represent the important but near exact characteristic concepts of soliton-physics. Next, the pseudopotential method to deduce the energy integral with total nonlinearity in the coupling process for exact characteristic results of solitons has been incorporated. In Chapter 1, a brief description of plasma in nature and laboratory and its generation are outlined elegantly. The nonlinear differential equations to characterize solitary waves and the relevant but important methods of solutions have been mentioned in this chapter. The formation of solitary waves in unmagnetized and magnetized plasmas, and in relativistic plasmas has been described through mathematical entity. Applications of plasmas in different fields are also put forwarded briefly showing its importance. The study of plasmas as they naturally occur in the universe encompasses number of topics including sun's corona, solar wind, planetary magnetospheres, ionospheres, auroras, cosmic rays and radiation. The study of space weather to understand the universe, communications and the activities of weather satellites are some useful areas of space plasma physics. The surface cleaning, sterilization of food and medical appliances, killing of bacteria on various surfaces, destroying of viruses, fungi, spores and plasma coating in industrial instruments ( like computers) are some of the fields

  6. Generalized charge-screening in relativistic Thomas-Fermi model

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2014-10-01

    In this paper, we study the charge shielding within the relativistic Thomas-Fermi model for a wide range of electron number-densities and the atomic-number of screened ions. A generalized energy-density relation is obtained using the force-balance equation and taking into account the Chandrasekhar's relativistic electron degeneracy pressure. By numerically solving a second-order nonlinear differential equation, the Thomas-Fermi screening length is investigated, and the results are compared for three distinct regimes of the solid-density, warm-dense-matter, and white-dwarfs (WDs). It is revealed that our nonlinear screening theory is compatible with the exponentially decaying Thomas-Fermi-type shielding predicted by the linear response theory. Moreover, the variation of relative Thomas-Fermi screening length shows that extremely dense quantum electron fluids are relatively poor charge shielders. Calculation of the total number of screening electrons around a nucleus shows that there is a position of maximum number of screening localized electrons around the screened nucleus, which moves closer to the point-like nucleus by increase in the plasma number density but is unaffected due to increase in the atomic-number value. It is discovered that the total number of screening electrons, ( N s ∝ r T F 3 / r d 3 where rTF and rd are the Thomas-Fermi and interparticle distance, respectively) has a distinct limit for extremely dense plasmas such as WD-cores and neutron star crusts, which is unique for all given values of the atomic-number. This is equal to saying that in an ultrarelativistic degeneracy limit of electron-ion plasma, the screening length couples with the system dimensionality and the plasma becomes spherically self-similar. Current analysis can provide useful information on the effects of relativistic correction to the charge screening for a wide range of plasma density, such as the inertial-confined plasmas and compact stellar objects.

  7. Regional climate projections of mean and extreme climate for the southwest of Western Australia (1970-1999 compared to 2030-2059)

    NASA Astrophysics Data System (ADS)

    Andrys, Julia; Kala, Jatin; Lyons, Thomas J.

    2016-05-01

    Projections of future climate change (1970-1999 compared to 2030-2059) for southwest Western Australia (SWWA) are analysed for a regional climate model (RCM) ensemble using the Weather Research and Forecasting Model with boundary conditions from three CMIP3 general circulation models (GCMs); CCSM3, CSIROmk3.5 and ECHAM5. We show that the RCM adds value to the GCM and we suggest that this is through improved representation of regional scale topography and enhanced land-atmosphere interactions. Our results show that the mean daytime temperature increase is larger than the nighttime increase, attributed to reduced soil moisture and hence increased surface sensible heat flux in the model, and there is statistically significant evidence that the variance of minimum temperatures will increase. Changes in summer rainfall are uncertain, with some models showing rainfall increases and others projecting reductions. All models show very large fluctuations in summer rainfall intensity which has important implications because of the increased risk of flash flooding and erosion of arable land. There is model consensus indicating a decline in winter rainfall and the spatial distribution of this rainfall decline is influenced by regional scale topography in two of the three simulations. Winter rainfall reduction is consistent with the historical trend of declining rainfall in SWWA, which has been attributed in previous research to a reduction in the number of fronts passing over the region. The continuation of this trend is evident in all models by an increase in winter mean sea level pressure in SWWA, and a reduced number of winter front days. Winter rainfall does not show any marked variations in daily intensity.

  8. MID-INFRARED POLYCYCLIC AROMATIC HYDROCARBON AND H{sub 2} EMISSION AS A PROBE OF PHYSICAL CONDITIONS IN EXTREME PHOTODISSOCIATION REGIONS

    SciTech Connect

    Berne, O.; Goicoechea, J. R.; Fuente, A.; Pilleri, P.; Joblin, C.; Gonzalez-GarcIa, M.

    2009-11-20

    Mid-infrared (mid-IR) observations of polycyclic aromatic hydrocarbons (PAHs) and molecular hydrogen emission are a potentially powerful tool to derive physical properties of dense environments irradiated by intense UV fields. We present new, spatially resolved, Spitzer mid-IR spectroscopy of the high UV field and dense photodissociation region (PDR) around Monoceros R2, the closest ultracompact H II region, revealing the spatial structure of ionized gas, PAHs, and H{sub 2} emissions. Using a PDR model and PAH emission feature fitting algorithm, we build a comprehensive picture of the physical conditions prevailing in the region. We show that the combination of the measurement of PAH ionization fraction and of the ratio between the H{sub 2} 0-0 S(3) and S(2) line intensities, respectively, at 9.7 and 12.3 mum, allows us to derive the fundamental parameters driving the PDR: temperature, density, and UV radiation field when they fall in the ranges T = 250-1500 K, n {sub H} = 10{sup 4}-10{sup 6} cm{sup -3}, and G {sub 0} = 10{sup 3}-10{sup 5}, respectively. These mid-IR spectral tracers thus provide a tool to probe the similar but unresolved UV-illuminated surface of protoplanetary disks or the nuclei of starburst galaxies.

  9. On General Relativistic Uniformly Rotating White Dwarfs

    NASA Astrophysics Data System (ADS)

    Boshkayev, Kuantay; Rueda, Jorge A.; Ruffini, Remo; Siutsou, Ivan

    2013-01-01

    The properties of uniformly rotating white dwarfs (RWDs) are analyzed within the framework of general relativity. Hartle's formalism is applied to construct the internal and external solutions to the Einstein equations. The white dwarf (WD) matter is described by the relativistic Feynman-Metropolis-Teller equation of state which generalizes that of Salpeter by taking into account the finite size of the nuclei, and the Coulomb interactions as well as electroweak equilibrium in a self-consistent relativistic fashion. The mass M, radius R, angular momentum J, eccentricity epsilon, and quadrupole moment Q of RWDs are calculated as a function of the central density ρ c and rotation angular velocity Ω. We construct the region of stability of RWDs (J-M plane) taking into account the mass-shedding limit, inverse β-decay instability, and the boundary established by the turning points of constant J sequences which separates stable from secularly unstable configurations. We found the minimum rotation periods ~0.3, 0.5, 0.7, and 2.2 s and maximum masses ~1.500, 1.474, 1.467, 1.202 M ⊙ for 4He, 12C, 16O, and 56Fe WDs, respectively. By using the turning-point method, we found that RWDs can indeed be axisymmetrically unstable and we give the range of WD parameters where this occurs. We also construct constant rest-mass evolution tracks of RWDs at fixed chemical composition and show that, by losing angular momentum, sub-Chandrasekhar RWDs (mass smaller than maximum static one) can experience both spin-up and spin-down epochs depending on their initial mass and rotation period, while super-Chandrasekhar RWDs (mass larger than maximum static one) only spin up.

  10. ON GENERAL RELATIVISTIC UNIFORMLY ROTATING WHITE DWARFS

    SciTech Connect

    Boshkayev, Kuantay; Rueda, Jorge A.; Ruffini, Remo; Siutsou, Ivan E-mail: jorge.rueda@icra.it E-mail: siutsou@icranet.org

    2013-01-10

    The properties of uniformly rotating white dwarfs (RWDs) are analyzed within the framework of general relativity. Hartle's formalism is applied to construct the internal and external solutions to the Einstein equations. The white dwarf (WD) matter is described by the relativistic Feynman-Metropolis-Teller equation of state which generalizes that of Salpeter by taking into account the finite size of the nuclei, and the Coulomb interactions as well as electroweak equilibrium in a self-consistent relativistic fashion. The mass M, radius R, angular momentum J, eccentricity {epsilon}, and quadrupole moment Q of RWDs are calculated as a function of the central density {rho} {sub c} and rotation angular velocity {Omega}. We construct the region of stability of RWDs (J-M plane) taking into account the mass-shedding limit, inverse {beta}-decay instability, and the boundary established by the turning points of constant J sequences which separates stable from secularly unstable configurations. We found the minimum rotation periods {approx}0.3, 0.5, 0.7, and 2.2 s and maximum masses {approx}1.500, 1.474, 1.467, 1.202 M {sub Sun} for {sup 4}He, {sup 12}C, {sup 16}O, and {sup 56}Fe WDs, respectively. By using the turning-point method, we found that RWDs can indeed be axisymmetrically unstable and we give the range of WD parameters where this occurs. We also construct constant rest-mass evolution tracks of RWDs at fixed chemical composition and show that, by losing angular momentum, sub-Chandrasekhar RWDs (mass smaller than maximum static one) can experience both spin-up and spin-down epochs depending on their initial mass and rotation period, while super-Chandrasekhar RWDs (mass larger than maximum static one) only spin up.

  11. Relativistic Corrections to the Bohr Model of the Atom

    ERIC Educational Resources Information Center

    Kraft, David W.

    1974-01-01

    Presents a simple means for extending the Bohr model to include relativistic corrections using a derivation similar to that for the non-relativistic case, except that the relativistic expressions for mass and kinetic energy are employed. (Author/GS)

  12. Magnetogenesis through Relativistic Velocity Shear

    NASA Astrophysics Data System (ADS)

    Miller, Evan

    Magnetic fields at all scales are prevalent in our universe. However, current cosmological models predict that initially the universe was bereft of large-scale fields. Standard magnetohydrodynamics (MHD) does not permit magnetogenesis; in the MHD Faraday's law, the change in magnetic field B depends on B itself. Thus if B is initially zero, it will remain zero for all time. A more accurate physical model is needed to explain the origins of the galactic-scale magnetic fields observed today. In this thesis, I explore two velocity-driven mechanisms for magnetogenesis in 2-fluid plasma. The first is a novel kinematic 'battery' arising from convection of vorticity. A coupling between thermal and plasma oscillations, this non-relativistic mechanism can operate in flows that are incompressible, quasi-neutral and barotropic. The second mechanism results from inclusion of thermal effects in relativistic shear flow instabilities. In such flows, parallel perturbations are ubiquitously unstable at small scales, with growth rates of order with the plasma frequency over a defined range of parameter-space. Of these two processes, instabilities seem far more likely to account for galactic magnetic fields. Stable kinematic effects will, at best, be comparable to an ideal Biermann battery, which is suspected to be orders of magnitude too weak to produce the observed galactic fields. On the other hand, instabilities grow until saturation is reached, a topic that has yet to be explored in detail on cosmological scales. In addition to investigating these magnetogenesis sources, I derive a general dispersion relation for three dimensional, warm, two species plasma with discontinuous shear flow. The mathematics of relativistic plasma, sheared-flow instability and the Biermann battery are also discussed.

  13. Relativistic electromagnetic ion cyclotron instabilities.

    PubMed

    Chen, K R; Huang, R D; Wang, J C; Chen, Y Y

    2005-03-01

    The relativistic instabilities of electromagnetic ion cyclotron waves driven by MeV ions are analytically and numerically studied. As caused by wave magnetic field and in sharp contrast to the electrostatic case, interesting characteristics such as Alfve nic behavior and instability transition are discovered and illuminated in detail. The instabilities are reactive and are raised from the coupling of slow ions' first-order resonance and fast ions' second-order resonance, that is an essential extra mechanism due to relativistic effect. Because of the wave magnetic field, the nonresonant plasma dielectric is usually negative and large, that affects the instability conditions and scaling laws. A negative harmonic cyclotron frequency mismatch between the fast and slow ions is required for driving a cubic (and a coupled quadratic) instability; the cubic (square) root scaling of the peak growth rate makes the relativistic effect more important than classical mechanism, especially for low fast ion density and Lorentz factor being close to unity. For the cubic instability, there is a threshold (ceiling) on the slow ion temperature and density (the external magnetic field and the fast ion energy); the Alfve n velocity is required to be low. This Alfve nic behavior is interesting in physics and important for its applications. The case of fast protons in thermal deuterons is numerically studied and compared with the analytical results. When the slow ion temperature or density (the external magnetic field or the fast ion energy) is increased (reduced) to about twice (half) the threshold (ceiling), the same growth rate peak transits from the cubic instability to the coupled quadratic instability and a different cubic instability branch appears. The instability transition is an interesting new phenomenon for instability. PMID:15903591

  14. Relativistic radiative transfer and relativistic spherical shell flows

    NASA Astrophysics Data System (ADS)

    Fukue, Jun

    2016-06-01

    We examine a radiatively driven spherical flow from a central object, whose thickness is smaller than the radius of the central object, and a plane-parallel approximation can be used-a spherical shell flow. We first solve the relativistic radiative transfer equation iteratively, using a given velocity field, and obtain specific intensities as well as moment quantities. Using the obtained comoving flux, we then solve the relativistic hydrodynamical equation, and obtain a new velocity field. We repeat these double iteration processes until both the intensity and velocity profiles converge. We found that the flow speed v(τ) is roughly approximated as β ≡ v/c = βs(1 - τ/τb), where τ is the optical depth, τb the flow total optical depth, and c the speed of light. We further found that the flow terminal speed vs is roughly expressed as β _s ≡ v_s/c = (Γ hat{F}_0-1)τ_b/dot{m} , where Γ is the central luminosity normalized by the Eddington luminosity, hat{F}_0 the comoving flux normalized by the incident flux, and of the order of unity, and dot{m} the mass-loss rate normalized by the critical mass loss.

  15. Orphan γ-ray flares from relativistic blobs encountering luminous stars

    NASA Astrophysics Data System (ADS)

    Banasiński, P.; Bednarek, W.; Sitarek, J.

    2016-11-01

    We propose that {\\gamma} -rays in blazars can be produced during encounters of relativistic blobs of plasma with radiation field produced by luminous stars within (or close to) the jet. The blob is expected to contain relativistic electrons which comptonize stellar radiation to the GeV-TeV energies. Produced {\\gamma} -rays can initiate the Inverse Compton e+/- pair cascade in the stellar radiation. We propose that such a scenario can be responsible for the appearance of the so-called orphan {\\gamma} -ray flares. We show that the relativistic blob/luminous star collision model can explain the appearance of the extreme orphan {\\gamma} -ray flare observed in the GeV and sub-TeV energy range from the flat spectrum radio quasar PKS 1222+21.

  16. Thermodynamics of polarized relativistic matter

    NASA Astrophysics Data System (ADS)

    Kovtun, Pavel

    2016-07-01

    We give the free energy of equilibrium relativistic matter subject to external gravitational and electromagnetic fields, to one-derivative order in the gradients of the external fields. The free energy allows for a straightforward derivation of bound currents and bound momenta in equilibrium. At leading order, the energy-momentum tensor admits a simple expression in terms of the polarization tensor. Beyond the leading order, electric and magnetic polarization vectors are intrinsically ambiguous. The physical effects of polarization, such as the correlation between the magneto-vortically induced surface charge and the electro-vortically induced surface current, are not ambiguous.

  17. Relativistic atomic beam spectroscopy II

    SciTech Connect

    1989-12-31

    The negative ion of H is one of the simplest 3-body atomic systems. The techniques we have developed for experimental study of atoms moving near speed of light have been productive. This proposal request continuing support for experimental studies of the H{sup -} system, principally at the 800 MeV linear accelerator (LAMPF) at Los Alamos. Four experiments are currently planned: photodetachment of H{sup -} near threshold in electric field, interaction of relativistic H{sup -} ions with matter, high excitations and double charge escape in H{sup -}, and multiphoton detachment of electrons from H{sup -}.

  18. Relativistic mean-field theory

    NASA Astrophysics Data System (ADS)

    Meng, Jie; Ring, Peter; Zhao, Pengwei

    In this chapter, the covariant energy density functional is constructed with both the meson-exchange and the point-coupling pictures. Several widely used functionals with either nonlinear or density-dependent effective interactions are introduced. The applications of covariant density functional theory are demonstrated for infinite nuclear matter and finite nuclei with spherical symmetry, axially symmetric quadrupole deformation, and triaxial quadrupole shapes. Finally, a relativistic description of the nuclear landscape has been discussed, which is not only important for nuclear structure, but also important for nuclear astrophysics, where we are facing the problem of a reliable extrapolation to the very neutron-rich nuclei.

  19. Adaptive wavelets and relativistic magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Hirschmann, Eric; Neilsen, David; Anderson, Matthe; Debuhr, Jackson; Zhang, Bo

    2016-03-01

    We present a method for integrating the relativistic magnetohydrodynamics equations using iterated interpolating wavelets. Such provide an adaptive implementation for simulations in multidimensions. A measure of the local approximation error for the solution is provided by the wavelet coefficients. They place collocation points in locations naturally adapted to the flow while providing expected conservation. We present demanding 1D and 2D tests includingthe Kelvin-Helmholtz instability and the Rayleigh-Taylor instability. Finally, we consider an outgoing blast wave that models a GRB outflow.

  20. Relativistic quantum private database queries

    NASA Astrophysics Data System (ADS)

    Sun, Si-Jia; Yang, Yu-Guang; Zhang, Ming-Ou

    2015-04-01

    Recently, Jakobi et al. (Phys Rev A 83, 022301, 2011) suggested the first practical private database query protocol (J-protocol) based on the Scarani et al. (Phys Rev Lett 92, 057901, 2004) quantum key distribution protocol. Unfortunately, the J-protocol is just a cheat-sensitive private database query protocol. In this paper, we present an idealized relativistic quantum private database query protocol based on Minkowski causality and the properties of quantum information. Also, we prove that the protocol is secure in terms of the user security and the database security.

  1. Einstein Toolkit for Relativistic Astrophysics

    NASA Astrophysics Data System (ADS)

    Collaborative Effort

    2011-02-01

    The Einstein Toolkit is a collection of software components and tools for simulating and analyzing general relativistic astrophysical systems. Such systems include gravitational wave space-times, collisions of compact objects such as black holes or neutron stars, accretion onto compact objects, core collapse supernovae and Gamma-Ray Bursts. The Einstein Toolkit builds on numerous software efforts in the numerical relativity community including CactusEinstein, Whisky, and Carpet. The Einstein Toolkit currently uses the Cactus Framework as the underlying computational infrastructure that provides large-scale parallelization, general computational components, and a model for collaborative, portable code development.

  2. Relativistic kinematics and stationary motions

    NASA Astrophysics Data System (ADS)

    Russo, Jorge G.; Townsend, Paul K.

    2009-11-01

    The relativistic jerk, snap and all higher-order kinematical D-vectors are defined for the motion of a massive particle in a D-dimensional Minkowski spacetime. We illustrate the formalism with stationary motions, for which we provide a new, Lorentz covariant, classification. We generalize some cases to branes, explaining the relevance to uniform motion in a heat bath. We also consider some non-stationary motions, including motion with constant proper jerk, and free fall into a black hole as viewed from a GEMS perspective.

  3. Optical constants of off-stoichiometric aluminum oxide thin film in 6-20 nm soft-X-ray/extreme ultraviolet region

    NASA Astrophysics Data System (ADS)

    Sinha, Mangalika; Sharma, Saurabh; Singh, Amol; Modi, Mohammed H.

    2016-10-01

    In this study, the optical constants of a sputter-deposited aluminum oxide thin film are measured in the soft-X-ray wavelength region of 6-20 nm using an angle-dependent X-ray reflectivity technique at the Indus-1 synchrotron radiation source. The chemical composition of the aluminum oxide thin film is analyzed by an X-ray photoelectron spectroscopy technique. Grazing incidence X-ray reflectivity results indicate that the density of the film is lower (2.93 g·cm-3) than that of bulk alumina (3.97 g·cm-3). The experimentally obtained optical constants correlate with the film composition and density. It is found that the experimentally measured delta and beta values are 5-33% higher than the tabulated values except those near the Al L edge (17 nm) region, where the experimentally obtained beta values are 7-20% lower and the delta values are 50-120% higher. This large mismatch observed between the experimental values and Henke et al. data is attributed to the reduced film density and the presence of a mixed phase of AlO x and Al2O3, as evidenced by X-ray photoelectron spectroscopy.

  4. Relativistic jet feedback in high-redshift galaxies - I. Dynamics

    NASA Astrophysics Data System (ADS)

    Mukherjee, Dipanjan; Bicknell, Geoffrey V.; Sutherland, Ralph; Wagner, Alex

    2016-09-01

    We present the results of 3D relativistic hydrodynamic simulations of interaction of active galactic nucleus jets with a dense turbulent two-phase interstellar medium, which would be typical of high-redshift galaxies. We describe the effect of the jet on the evolution of the density of the turbulent interstellar medium (ISM). The jet-driven energy bubble affects the gas to distances up to several kiloparsecs from the injection region. The shocks resulting from such interactions create a multiphase ISM and radial outflows. One of the striking result of this work is that low-power jets (Pjet ≲ 1043 ergs-1), although less efficient in accelerating clouds, are trapped in the ISM for a longer time and hence affect the ISM over a larger volume. Jets of higher power drill through with relative ease. Although the relativistic jets launch strong outflows, there is little net mass ejection to very large distances, supporting a galactic fountain scenario for local feedback.

  5. Simulation of Relativistic Shocks and Associated Self-Consistent Radiation

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Niemiec, J.; Medvedev, M.; Zhang, B.; Hardee, P.; Mizuno, Y.; Nordlund, A.; Frederiksen, J.; Sol, H.; Pohl, M.; Hartmann, D. H.; Fishman, G. J.

    2010-01-01

    Recent PIC simulations of relativistic electron-positron (electron-ion) jets injected into a stationary medium show that particle acceleration occurs at shocked regions. Simulations show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields and particle acceleration. These magnetic fields contribute to the electron's transverse deflection behind the shock. The "jitter" radiation from deflected electrons in turbulent magnetic fields has different properties than synchrotron radiation, which is calculated in a uniform magnetic field. This jitter radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants. We will present detailed spectra for conditions relevant of various astrophysical sites of shock formation via the Weibel instability. In particular we will discuss the application to GRBs and SNRs.

  6. Kinetic approach to a relativistic Bose-Einstein condensate.

    PubMed

    Meistrenko, Alex; van Hees, Hendrik; Zhou, Kai; Greiner, Carsten

    2016-03-01

    We apply a Boltzmann approach to the kinetic regime of a relativistic Bose-Einstein condensate of scalar bosons by decomposing the one-particle distribution function in a condensate part and a nonzero momentum part of excited modes, leading to a coupled set of evolution equations which are then solved efficiently with an adaptive higher order Runge-Kutta scheme. We compare our results to the partonic cascade Monte Carlo simulation BAMPS for a critical but far from equilibrium case of massless bosons. Motivated by the color glass condensate initial conditions in QCD with a strongly overpopulated initial glasma state, we also discuss the time evolution starting from an overpopulated initial distribution function of massive scalar bosons. In this system a self-similar evolution of the particle cascade with a nonrelativistic turbulent scaling in the infrared sector is observed as well as a relativistic exponent for the direct energy cascade, confirming a weak wave turbulence in the ultraviolet region.

  7. Coherent radiation of relativistic electrons in wire metamaterial

    NASA Astrophysics Data System (ADS)

    Soboleva, V.; Naumenko, G.; Bleko, V.

    2016-07-01

    We present in this work the experimental investigation of the interaction of relativistic electron field with wire metamaterial. The measurements of the spectral-angular characteristics of coherent radiation were done in millimeter wavelength region in far-field zone at the relativistic electron beam with energy of 6 MeV. Used target represent the right triangular prism that consist of periodic placed copper wires. We showed that bunched electron beam passing near wire metamaterial prism generates coherent Cherenkov radiation. Spectral angular characteristics of radiation from the wire target were compared with the characteristics of Cherenkov radiation generated in similar experimental conditions in a dielectric target (Teflon prism) that has the same form and sizes.

  8. Relativistic thermal electron scale instabilities in sheared flow plasma

    NASA Astrophysics Data System (ADS)

    Miller, Evan D.; Rogers, Barrett N.

    2016-04-01

    > The linear dispersion relation obeyed by finite-temperature, non-magnetized, relativistic two-fluid plasmas is presented, in the special case of a discontinuous bulk velocity profile and parallel wave vectors. It is found that such flows become universally unstable at the collisionless electron skin-depth scale. Further analyses are performed in the limits of either free-streaming ions or ultra-hot plasmas. In these limits, the system is highly unstable in the parameter regimes associated with either the electron scale Kelvin-Helmholtz instability (ESKHI) or the relativistic electron scale sheared flow instability (RESI) recently highlighted by Gruzinov. Coupling between these modes provides further instability throughout the remaining parameter space, provided both shear flow and temperature are finite. An explicit parameter space bound on the highly unstable region is found.

  9. Relativistic astrophysics - The view from Texas in Baltimore /Review/

    NASA Technical Reports Server (NTRS)

    Trimble, V. L.; Maran, S. P.

    1981-01-01

    Recent observational and theoretical work presented at the Tenth Texas Symposium on Relativistic Astrophysics held in Baltimore, Maryland from December 15-19, 1980, is outlined. Areas covered include the theoretical foundations of relativistic astrophysics in general relativity, quantum gravitational theory and the association of grand unification with astronomical and cosmological issues, the cosmic microwave, X-ray, gamma-ray, UV, cosmic ray and gravitational wave backgrounds, the current expansion rate and average mass-energy density of the universe, and mechanisms of galaxy formation. Also discussed are the characteristics of active galaxies and clusters emitting in the gamma-ray and X-ray regions, and compact objects formed from supernova explosions, including pulsars, X-ray-emitting neutron stars, Sco X-1 and SS 433, gamma-ray sources, and X-ray and gamma-ray bursters.

  10. Evaluating Changes in Extreme Weather During the North American Monsoon in the Southwest U.S. Using High Resolution, Convective-Permitting Regional Atmospheric Modeling

    NASA Astrophysics Data System (ADS)

    Castro, C. L.; Chang, H. I.; Luong, T. M.; Lahmers, T.; Jares, M.; Mazon, J.; Carrillo, C. M.; Adams, D. K.

    2015-12-01

    The North American monsoon (NAM) is the principal driver of summer severe weather in the Southwest U.S. Monsoon convection typically initiates during daytime over the mountains and may organize into mesoscale convective systems (MCSs). Most monsoon-related severe weather occurs in association with organized convection, including microbursts, dust storms, flash flooding and lightning. A convective resolving grid spacing (on the kilometer scale) model is required to explicitly represent the physical characteristics of organized convection, for example the presence of leading convective lines and trailing stratiform precipitation regions. Our objective is to analyze how monsoon severe weather is changing in relation to anthropogenic climate change. We first consider a dynamically downscaled reanalysis during a historical period 1948-2010. Individual severe weather event days, identified by favorable thermodynamic conditions, are then simulated for short-term, numerical weather prediction-type simulations of 30h at a convective-permitting scale. Changes in modeled severe weather events indicate increases in precipitation intensity in association with long-term increases in atmospheric instability and moisture, particularly with organized convection downwind of mountain ranges. However, because the frequency of synoptic transients is decreasing during the monsoon, organized convection is less frequent and convective precipitation tends to be more phased locked to terrain. These types of modeled changes also similarly appear in observed CPC precipitation, when the severe weather event days are selected using historical radiosonde data. Next, we apply the identical model simulation and analysis procedures to several dynamically downscaled CMIP3 and CMIP5 models for the period 1950-2100, to assess how monsoon severe weather may change in the future with respect to occurrence and intensity and if these changes correspond with what is already occurring in the historical

  11. Magnetism and rotation in relativistic field theory

    NASA Astrophysics Data System (ADS)

    Mameda, Kazuya; Yamamoto, Arata

    2016-09-01

    We investigate the analogy between magnetism and rotation in relativistic theory. In nonrelativistic theory, the exact correspondence between magnetism and rotation is established in the presence of an external trapping potential. Based on this, we analyze relativistic rotation under external trapping potentials. A Landau-like quantization is obtained by considering an energy-dependent potential.

  12. Compton Effect with Non-Relativistic Kinematics

    ERIC Educational Resources Information Center

    Shivalingaswamy, T.; Kagali, B. A.

    2011-01-01

    In deducing the change of wavelength of x-rays scattered by atomic electrons, one normally makes use of relativistic kinematics for electrons. However, recoiling energies of the electrons are of the order of a few keV which is less than 0.2% of their rest energies. Hence the authors may ask whether relativistic formulae are really necessary. In…

  13. Einstein Never Approved of Relativistic Mass

    ERIC Educational Resources Information Center

    Hecht, Eugene

    2009-01-01

    During much of the 20th century it was widely believed that one of the significant insights of special relativity was "relativistic mass." Today there are two schools on that issue: the traditional view that embraces speed-dependent "relativistic mass," and the more modern position that rejects it, maintaining that there is only one mass and it's…

  14. Nonlinear, relativistic Langmuir waves in astrophysical magnetospheres

    NASA Technical Reports Server (NTRS)

    Chian, Abraham C.-L.

    1987-01-01

    Large amplitude, electrostatic plasma waves are relevant to physical processes occurring in the astrophysical magnetospheres wherein charged particles are accelerated to relativistic energies by strong waves emitted by pulsars, quasars, or radio galaxies. The nonlinear, relativistic theory of traveling Langmuir waves in a cold plasma is reviewed. The cases of streaming electron plasma, electronic plasma, and two-streams are discussed.

  15. Relativistic Definition of Spin Operators

    NASA Astrophysics Data System (ADS)

    Ryder, Lewis H.

    2002-12-01

    Some years ago Mashhoon [1] made the highly interesting suggestion that there existed a coupling of spin with rotations, just as there exists such a coupling with orbital angular momentum, as seen in the Sagnac effect, for example. Spin being essentially a quantum phenomenon, the obvious place to look for this was by studying the Dirac equation, and Hehl and Ni, in such an investigation [2], indeed found a coupling term of just the type Mashhoon had envisaged. Part of their procedure, however, was to take the nonrelativistic limit, and this was done by performing appropriate Foldy-Wouthuysen (FW) transformations. In the nonrelativistic limit, it is well-known that the spin operators for Dirac particles are in essence the Pauli matrices; but it is also well-known, and indeed was part of the motivation for Foldy and Wouthuysen's paper, that for fully-fledged Dirac particles the (4×4 generalisation of the) Pauli matrices do not yield satisfactory spin operators, since spin defined in this way would not be conserved. The question therefore presented itself: is there a relativistic spin operator for Dirac particles, such that in the relativistic, as well as the nonrelativistic, régime a Mashhoon spin-rotation coupling exists?...

  16. Single electron relativistic clock interferometer

    NASA Astrophysics Data System (ADS)

    Bushev, P. A.; Cole, J. H.; Sholokhov, D.; Kukharchyk, N.; Zych, M.

    2016-09-01

    Although time is one of the fundamental notions in physics, it does not have a unique description. In quantum theory time is a parameter ordering the succession of the probability amplitudes of a quantum system, while according to relativity theory each system experiences in general a different proper time, depending on the system's world line, due to time dilation. It is therefore of fundamental interest to test the notion of time in the regime where both quantum and relativistic effects play a role, for example, when different amplitudes of a single quantum clock experience different magnitudes of time dilation. Here we propose a realization of such an experiment with a single electron in a Penning trap. The clock can be implemented in the electronic spin precession and its time dilation then depends on the radial (cyclotron) state of the electron. We show that coherent manipulation and detection of the electron can be achieved already with present day technology. A single electron in a Penning trap is a technologically ready platform where the notion of time can be probed in a hitherto untested regime, where it requires a relativistic as well as quantum description.

  17. 24-Hour Relativistic Bit Commitment

    NASA Astrophysics Data System (ADS)

    Verbanis, Ephanielle; Martin, Anthony; Houlmann, Raphaël; Boso, Gianluca; Bussières, Félix; Zbinden, Hugo

    2016-09-01

    Bit commitment is a fundamental cryptographic primitive in which a party wishes to commit a secret bit to another party. Perfect security between mistrustful parties is unfortunately impossible to achieve through the asynchronous exchange of classical and quantum messages. Perfect security can nonetheless be achieved if each party splits into two agents exchanging classical information at times and locations satisfying strict relativistic constraints. A relativistic multiround protocol to achieve this was previously proposed and used to implement a 2-millisecond commitment time. Much longer durations were initially thought to be insecure, but recent theoretical progress showed that this is not so. In this Letter, we report on the implementation of a 24-hour bit commitment solely based on timed high-speed optical communication and fast data processing, with all agents located within the city of Geneva. This duration is more than 6 orders of magnitude longer than before, and we argue that it could be extended to one year and allow much more flexibility on the locations of the agents. Our implementation offers a practical and viable solution for use in applications such as digital signatures, secure voting and honesty-preserving auctions.

  18. Non-relativistic scale anomalies

    NASA Astrophysics Data System (ADS)

    Arav, Igal; Chapman, Shira; Oz, Yaron

    2016-06-01

    We extend the cohomological analysis in arXiv:1410.5831 of anisotropic Lifshitz scale anomalies. We consider non-relativistic theories with a dynamical critical exponent z = 2 with or without non-relativistic boosts and a particle number symmetry. We distinguish between cases depending on whether the time direction does or does not induce a foliation structure. We analyse both 1 + 1 and 2 + 1 spacetime dimensions. In 1 + 1 dimensions we find no scale anomalies with Galilean boost symmetries. The anomalies in 2 + 1 dimensions with Galilean boosts and a foliation structure are all B-type and are identical to the Lifshitz case in the purely spatial sector. With Galilean boosts and without a foliation structure we find also an A-type scale anomaly. There is an infinite ladder of B-type anomalies in the absence of a foliation structure with or without Galilean boosts. We discuss the relation between the existence of a foliation structure and the causality of the field theory.

  19. Relativistic Non-Thermal Bremsstrahlung Radiation

    NASA Astrophysics Data System (ADS)

    Zeković, Vladimir; Arbutina, Bojan; Dobardžić, Aleksandra; Pavlović, Marko Z.

    2013-11-01

    By applying a method of virtual quanta we derive formulae for relativistic non-thermal bremsstrahlung radiation from relativistic electrons as well as from protons and heavier particles with power-law momentum distribution N(p)dp = k p-qdp. We show that emission which originates from an electron scattering on an ion, represents the most significant component of relativistic non-thermal bremsstrahlung. Radiation from an ion scattering on electron, known as inverse bremsstrahlung, is shown to be negligible in overall non-thermal bremsstrahlung emission. These results arise from theory refinement, where we introduce the dependence of relativistic kinetic energy of an incident particle, upon the energy of scattered photon. In part, it is also a consequence of a different mass of particles and relativistic effects.

  20. Relativistic electron and ion dust charging currents

    SciTech Connect

    Tribeche, Mouloud; Boukhalfa, Soufiane

    2009-09-15

    A first theoretical attempt is made to present a relativistic generalization of the well-known orbit-limited motion theory. The appropriate relativistic (electron and ion) dust charging currents are derived. The nonlinear electrostatic potential is then expressed in terms of the variable dust charge and we take advantage of this new transcendental relation to investigate briefly the effects of relativistic charge carriers. As the relativistic character of the plasma increases, it becomes evident that certain negative values of the dust charge can never be achieved as increasingly larger values of the nonlinear potential are involved. The obtained formulas bring a possibility to build theories of nonlinear collective process in relativistic dusty plasmas.

  1. Temperature and moisture conditions for life in the extreme arid region of the Atacama desert: four years of observations including the El Niño of 1997-1998.

    PubMed

    McKay, Christopher P; Friedmann, E Imre; Gómez-Silva, Benito; Cáceres-Villanueva, Luis; Andersen, Dale T; Landheim, Ragnhild

    2003-01-01

    The Atacama along the Pacific Coast of Chile and Peru is one of the driest and possibly oldest deserts in the world. It represents an extreme habitat for life on Earth and is an analog for life in dry conditions on Mars. We report on four years (September 1994-October 1998) of climate and moisture data from the extreme arid region of the Atacama. Our data are focused on understanding moisture sources and their role in creating suitable environments for photosynthetic microorganisms in the desert surface. The average air temperature was 16.5 degrees C and 16.6 degrees C in 1995 and 1996, respectively. The maximum air temperature recorded was 37.9 degrees C, and the minimum was -5.7 degrees C. Annual average sunlight was 336 and 335 W m(-2) in 1995 and 1996, respectively. Winds averaged a few meters per second, with strong föhn winds coming from the west exceeding 12 m s(-1). During our 4 years of observation there was only one significant rain event of 2.3 mm, which occurred near midnight local time. We suggest that this event was a rainout of a heavy fog. It is of interest that the strong El Niño of 1997-1998 brought heavy rainfall to the deserts of Peru, but did not bring significant rain to the central Atacama in Chile. Dew occurred at our station frequently following high nighttime relative humidity, but is not a significant source of moisture in the soil or under stones. Groundwater also does not contribute to surface moisture. Only the one rain event of 2.3 mm resulted in liquid water in the soil and beneath stones for a total of only 65-85 h over 4 years. The paucity of liquid water under stones is consistent with the apparent absence of hypolithic (under-stone) cyanobacteria, the only known primary producers in such extreme deserts.

  2. Relativistic explicit correlation: Coalescence conditions and practical suggestions

    NASA Astrophysics Data System (ADS)

    Li, Zhendong; Shao, Sihong; Liu, Wenjian

    2012-04-01

    To set up the general framework for relativistic explicitly correlated wave function methods, the electron-electron coalescence conditions are derived for the wave functions of the Dirac-Coulomb (DC), Dirac-Coulomb-Gaunt (DCG), Dirac-Coulomb-Breit (DCB), modified Dirac-Coulomb (MDC), and zeroth-order regularly approximated (ZORA) Hamiltonians. The manipulations make full use of the internal symmetries of the reduced two-electron Hamiltonians such that the asymptotic behaviors of the wave functions emerge naturally. The results show that, at the coalescence point of two electrons, the wave functions of the DCG Hamiltonian are regular, while those of the DC and DCB Hamiltonians have weak singularities of the type r_{12}^{ν } with ν being negative and of O(α ^2). The behaviors of the MDC wave functions are related to the original ones in a simple manner, while the spin-free counterparts are somewhat different due to the complicated electron-electron interaction. The behaviors of the ZORA wave functions depend on the chosen potential in the kinetic energy operator. In the case of the nuclear attraction, the behaviors of the ZORA wave functions are very similar to those of the nonrelativistic ones, just with an additional correction of O(α ^2) to the nonrelativistic cusp condition. However, if the Coulomb interaction is also included, the ZORA wave functions become close to the large-large components of the DC wave functions. Note that such asymptotic expansions of the relativistic wave functions are only valid within an extremely small convergence radius Rc of O(α ^2). Beyond this radius, the behaviors of the relativistic wave functions are still dominated by the nonrelativistic limit, as can be seen in terms of direct perturbation theory (DPT) of relativity. However, as the two limits α → 0 and r12 → 0 do not commute, DPT is doomed to fail due to incorrect descriptions of the small-small component ΨSS of the DC wave function for r12 < Rc. Another deduction

  3. Constraining UV continuum slopes of active galactic nuclei with cloudy models of broad-line region extreme-ultraviolet emission lines

    SciTech Connect

    Moloney, Joshua; Michael Shull, J. E-mail: michael.shull@colorado.edu

    2014-10-01

    Understanding the composition and structure of the broad-line region (BLR) of active galactic nuclei (AGNs) is important for answering many outstanding questions in supermassive black hole evolution, galaxy evolution, and ionization of the intergalactic medium. We used single-epoch UV spectra from the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope to measure EUV emission-line fluxes from four individual AGNs with 0.49 ≤ z ≤ 0.64, two AGNs with 0.32 ≤ z ≤ 0.40, and a composite of 159 AGNs. With the CLOUDY photoionization code, we calculated emission-line fluxes from BLR clouds with a range of density, hydrogen ionizing flux, and incident continuum spectral indices. The photoionization grids were fit to the observations using single-component and locally optimally emitting cloud (LOC) models. The LOC models provide good fits to the measured fluxes, while the single-component models do not. The UV spectral indices preferred by our LOC models are consistent with those measured from COS spectra. EUV emission lines such as N IV λ765, O II λ833, and O III λ834 originate primarily from gas with electron temperatures between 37,000 K and 55,000 K. This gas is found in BLR clouds with high hydrogen densities (n {sub H} ≥ 10{sup 12} cm{sup –3}) and hydrogen ionizing photon fluxes (Φ{sub H} ≥ 10{sup 22} cm{sup –2} s{sup –1}).

  4. Characterizing Extreme Ionospheric Storms

    NASA Astrophysics Data System (ADS)

    Sparks, L.; Komjathy, A.; Altshuler, E.

    2011-12-01

    Ionospheric storms consist of disturbances of the upper atmosphere that generate regions of enhanced electron density typically lasting several hours. Depending upon the storm magnitude, gradients in electron density can sometimes become large and highly localized. The existence of such localized, dense irregularities is a major source of positioning error for users of the Global Positioning System (GPS). Consequently, satellite-based augmentation systems have been implemented to improve the accuracy and to ensure the integrity of user position estimates derived from GPS measurements. Large-scale irregularities generally do not pose a serious threat to estimate integrity as they can be readily detected by such systems. Of greater concern, however, are highly localized irregularities that interfere with the propagation of a signal detected by a user measurement but are poorly sampled by the receivers in the system network. The most challenging conditions have been found to arise following disturbances of large magnitude that occur only rarely over the course of a solar cycle. These extremely disturbed conditions exhibit behavior distinct from moderately disturbed conditions and, hence, have been designated "extreme storms". In this paper we examine and compare the behavior of the extreme ionospheric storms of solar cycle 23 (or, more precisely, extreme storms occurring between January 1, 2000, and December 31, 2008), as represented in maps of vertical total electron content. To identify these storms, we present a robust means of quantifying the regional magnitude of an ionospheric storm. Ionospheric storms are observed frequently to occur in conjunction with magnetic storms, i.e., periods of geophysical activity as measured by magnetometers. While various geomagnetic indices, such as the disturbance storm time (Dst) and the planetary Kp index, have long been used to rank the magnitudes of distinct magnetic storms, no comparable, generally recognized index exists for

  5. A new approach to geographic partitioning of probabilistic seismic hazard using seismic source distance with earthquake extreme and perceptibility statistics: an application to the southern Balkan region

    NASA Astrophysics Data System (ADS)

    Bayliss, T. J.

    2016-02-01

    The southeastern European cities of Sofia and Thessaloniki are explored as example site-specific scenarios by geographically zoning their individual localized seismic sources based on the highest probabilities of magnitude exceedance. This is with the aim of determining the major components contributing to each city's seismic hazard. Discrete contributions from the selected input earthquake catalogue are investigated to determine those areas that dominate each city's prevailing seismic hazard with respect to magnitude and source-to-site distance. This work is based on an earthquake catalogue developed and described in a previously published paper by the author and components of a magnitude probability density function. Binned magnitude and distance classes are defined using a joint magnitude-distance distribution. The prevailing seismicity to each city-as defined by a child data set extracted from the parent earthquake catalogue for each city considered-is divided into distinct constrained data bins of small discrete magnitude and source-to-site distance intervals. These are then used to describe seismic hazard in terms of uni-variate modal values; that is, M* and D* which are the modal magnitude and modal source-to-site distance in each city's local historical seismicity. This work highlights that Sofia's dominating seismic hazard-that is, the modal magnitudes possessing the highest probabilities of occurrence-is located in zones confined to two regions at 60-80 km and 170-180 km from this city, for magnitude intervals of 5.75-6.00 Mw and 6.00-6.25 Mw respectively. Similarly, Thessaloniki appears prone to highest levels of hazard over a wider epicentral distance interval, from 80 to 200 km in the moment magnitude range 6.00-6.25 Mw.

  6. EXTREMELY LARGE AND HOT MULTILAYER KEPLERIAN DISK AROUND THE O-TYPE PROTOSTAR W51N: THE PRECURSORS OF THE HCH II REGIONS?

    SciTech Connect

    Zapata, Luis A.; Tang, Ya-Wen; Leurini, Silvia

    2010-12-10

    We present sensitive high angular resolution (0.''57-0.''78) SO, SO{sub 2}, CO, C{sub 2}H{sub 5}OH, HC{sub 3}N, and HCOCH{sub 2}OH line observations at millimeter and submillimeter wavelengths of the young O-type protostar W51 North made with the Submillimeter Array. We report the presence of a large (about 8000 AU) and hot molecular circumstellar disk around this object, which connects the inner dusty disk with the molecular ring or toroid reported recently and confirms the existence of a single bipolar outflow emanating from this object. The molecular emission from the large disk is observed in layers with the transitions characterized by high excitation temperatures in their lower energy states (up to 1512 K) being concentrated closer to the central massive protostar. The molecular emission from those transitions with low or moderate excitation temperatures is found in the outermost parts of the disk and exhibits an inner cavity with an angular size of around 0.''7. We modeled all lines with a local thermodynamic equilibrium (LTE) synthetic spectrum. A detailed study of the kinematics of the molecular gas together with an LTE model of a circumstellar disk shows that the innermost parts of the disk are also Keplerian plus a contracting velocity. The emission of the HCOCH{sub 2}OH reveals the possible presence of a warm 'companion' located to the northeast of the disk, however its nature is unclear. The emission of the SO and SO{sub 2} is observed in the circumstellar disk as well as in the outflow. We suggest that the massive protostar W51 North appears to be in a phase before the presence of a hypercompact or an ultracompact H II (HC/UCH II) region and propose a possible sequence on the formation of the massive stars.

  7. THE EXTREME HOSTS OF EXTREME SUPERNOVAE

    SciTech Connect

    Neill, James D.; Quimby, Robert; Ofek, Eran; Wyder, Ted K.; Martin, D. Christopher; Barlow, Tom A.; Foster, Karl; Friedman, Peter G.; Morrissey, Patrick; Sullivan, Mark; Gal-Yam, Avishay; Howell, D. Andrew; Nugent, Peter; Seibert, Mark; Overzier, Roderik; Neff, Susan G.; Schiminovich, David; Bianchi, Luciana; Donas, Jose; Heckman, Timothy M.

    2011-01-20

    We use GALEX ultraviolet (UV) and optical integrated photometry of the hosts of 17 luminous supernovae (LSNe, having peak M{sub V} < -21) and compare them to a sample of 26, 000 galaxies from a cross-match between the SDSS DR4 spectral catalog and GALEX interim release 1.1. We place the LSN hosts on the galaxy NUV - r versus M{sub r} color-magnitude diagram (CMD) with the larger sample to illustrate how extreme they are. The LSN hosts appear to favor low-density regions of the galaxy CMD falling on the blue edge of the blue cloud toward the low-luminosity end. From the UV-optical photometry, we estimate the star formation history of the LSN hosts. The hosts have moderately low star formation rates (SFRs) and low stellar masses (M{sub *}) resulting in high specific star formation rates (sSFR). Compared with the larger sample, the LSN hosts occupy low-density regions of a diagram plotting sSFR versus M{sub *} in the area having higher sSFR and lower M{sub *}. This preference for low M{sub *}, high sSFR hosts implies that the LSNe are produced by an effect having to do with their local environment. The correlation of mass with metallicity suggests that perhaps wind-driven mass loss is the factor that prevents LSNe from arising in higher-mass, higher-metallicity hosts. The massive progenitors of the LSNe (>100 M{sub sun}), by appearing in low-SFR hosts, are potential tests for theories of the initial mass function that limit the maximum mass of a star based on the SFR.

  8. Simulations of Dynamic Relativistic Magnetospheres

    NASA Astrophysics Data System (ADS)

    Parfrey, Kyle Patrick

    Neutron stars and black holes are generally surrounded by magnetospheres of highly conducting plasma in which the magnetic flux density is so high that hydrodynamic forces are irrelevant. In this vanishing-inertia—or ultra-relativistic—limit, magnetohydrodynamics becomes force-free electrodynamics, a system of equations comprising only the magnetic and electric fields, and in which the plasma response is effected by a nonlinear current density term. In this dissertation I describe a new pseudospectral simulation code, designed for studying the dynamic magnetospheres of compact objects. A detailed description of the code and several numerical test problems are given. I first apply the code to the aligned rotator problem, in which a star with a dipole magnetic field is set rotating about its magnetic axis. The solution evolves to a steady state, which is nearly ideal and dissipationless everywhere except in a current sheet, or magnetic field discontinuity, at the equator, into which electromagnetic energy flows and is dissipated. Magnetars are believed to have twisted magnetospheres, due to internal magnetic evolution which deforms the crust, dragging the footpoints of external magnetic field lines. This twisting may be able to explain both magnetars' persistent hard X-ray emission and their energetic bursts and flares. Using the new code, I simulate the evolution of relativistic magnetospheres subjected to slow twisting through large angles. The field lines expand outward, forming a strong current layer; eventually the configuration loses equilibrium and a dynamic rearrangement occurs, involving large-scale rapid magnetic reconnection and dissipation of the free energy of the twisted magnetic field. When the star is rotating, the magnetospheric twisting leads to a large increase in the stellar spin-down rate, which may take place on the long twisting timescale or in brief explosive events, depending on where the twisting is applied and the history of the system

  9. Extreme Transients in the High Energy Universe

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa

    2013-01-01

    The High Energy Universe is rich in diverse populations of objects spanning the entire cosmological (time)scale, from our own present-day Milky Way to the re-ionization epoch. Several of these are associated with extreme conditions irreproducible in laboratories on Earth. Their study thus sheds light on the behavior of matter under extreme conditions, such as super-strong magnetic fields (in excess of 10^14 G), high gravitational potentials (e.g., Super Massive Black Holes), very energetic collimated explosions resulting in relativistic jet flows (e.g., Gamma Ray Bursts, exceeding 10^53 ergs). In the last thirty years, my work has been mostly focused on two apparently different but potentially linked populations of such transients: magnetars (highly magnetized neutron stars) and Gamma Ray Bursts (strongly beamed emission from relativistic jets), two populations that constitute unique astrophysical laboratories, while also giving us the tools to probe matter conditions in the Universe to redshifts beyond z=10, when the first stars and galaxies were assembled. I did not make this journey alone I have either led or participated in several international collaborations studying these phenomena in multi-wavelength observations; solitary perfection is not sufficient anymore in the world of High Energy Astrophysics. I will describe this journey, present crucial observational breakthroughs, discuss key results and muse on the future of this field.

  10. Nanoscale Phase Transitions under Extreme Conditions within an Ion Track

    SciTech Connect

    Zhang, Jiaming; Lang, Maik; Ewing, Rodney C.; Devanathan, R.; Weber, William; Toulemonde, M.

    2011-01-31

    The dynamics of track development due to the passage of relativistic heavy ions through solids is a long-standing issue relevant to nuclear materials, age dating of minerals, space exploration, and nanoscale fabrication of novel devices. We have integrated experimental and simulation approaches to investigate nanoscale phase transitions under the extreme conditions created within single tracks of relativistic ions in Gd{sub 2}O{sub 3}(TiO{sub 2}){sub x} and Gd{sub 2}Zr{sub 2–x} Ti{sub x} O{sub 7}. Track size and internal structure depend on energy density deposition, irradiation temperature, and material composition. Based on the inelastic thermal spike model, molecular dynamics simulations follow the time evolution of individual tracks and reveal the phase transition pathways to the concentric track structures observed experimentally. Individual ion tracks have nanoscale core-shell structures that provide a unique record of the phase transition pathways under extreme conditions.

  11. Diagnosing particle acceleration in relativistic jets

    NASA Astrophysics Data System (ADS)

    Böttcher, Markus; Baring, Matthew G.; Liang, Edison P.; Summerlin, Errol J.; Fu, Wen; Smith, Ian A.; Roustazadeh, Parisa

    2015-03-01

    The high-energy emission from blazars and other relativistic jet sources indicates that electrons are accelerated to ultra-relativistic (GeV - TeV) energies in these systems. This paper summarizes recent results from numerical studies of two fundamentally different particle acceleration mechanisms potentially at work in relativistic jets: Magnetic-field generation and relativistic particle acceleration in relativistic shear layers, which are likely to be present in relativistic jets, is studied via Particle-in-Cell (PIC) simulations. Diffusive shock acceleration at relativistic shocks is investigated using Monte-Carlo simulations. The resulting magnetic-field configurations and thermal + non-thermal particle distributions are then used to predict multi-wavelength radiative (synchrotron + Compton) signatures of both acceleration scenarios. In particular, we address how anisotropic shear-layer acceleration may be able to circumvent the well-known Lorentz-factor crisis, and how the self-consistent evaluation of thermal + non-thermal particle populations in diffusive shock acceleration simulations provides tests of the bulk Comptonization model for the Big Blue Bump observed in the SEDs of several blazars.

  12. Generalized Ohm's law for relativistic plasmas

    NASA Astrophysics Data System (ADS)

    Kandus, A.; Tsagas, C. G.

    2008-04-01

    We generalize the relativistic expression of Ohm's law by studying a multifluid system of charged species using the 1 + 3 covariant formulation of general relativistic electrodynamics. This is done by providing a fully relativistic, fully non-linear propagation equation for the spatial component of the electric 4-current. Our analysis proceeds along the lines of the non-relativistic studies and extends previous relativistic work on cold plasmas. Exploiting the compactness and transparency of the covariant formalism, we provide a direct comparison with the standard Newtonian versions of Ohm's law and identify the relativistic corrections in an unambiguous way. The generalized expression of Ohm's law is initially given relative to an arbitrary observer and for a multicomponent relativistic charged medium. Then, the law is written with respect to the Eckart frame and for a hot two-fluid plasma with zero total charge. Finally, we apply our analysis to a cold proton-electron plasma and recover the well-known magnetohydrodynamic expressions. In every step, we discuss the approximations made and identify familiar effects, like the Biermann battery and the Hall effect.

  13. Relativistic effects in Lyman-α forest

    NASA Astrophysics Data System (ADS)

    Iršič, Vid; Di Dio, Enea; Viel, Matteo

    2016-02-01

    We present the calculation of the Lyman-alpha (Lyman-α) transmitted flux fluctuations with full relativistic corrections to the first order. Even though several studies exist on relativistic effects in galaxy clustering, this is the first study to extend the formalism to a different tracer of underlying matter at unique redshift range (z=2-5). Furthermore, we show a comprehensive application of our calculations to the Quasar-Lyman-α cross-correlation function. Our results indicate that the signal of relativistic effects are sizeable at Baryonic Acoustic Oscillation (BAO) scale mainly due to the large differences in density bias factors of our tracers. We construct an observable, the anti-symmetric part of the cross-correlation function, that is dominated by the relativistic signal and offers a new way to measure the relativistic terms at relatively small scales. The analysis shows that relativistic effects are important when considering cross-correlations between tracers with very different biases, and should be included in the data analysis of the current and future surveys. Moreover, the idea presented in this paper is highly complementary to other techniques and observables trying to isolate the effect of the relativistic corrections and thus test the validity of the theory of gravity beyond the Newtonian regime.

  14. Playing relativistic billiards beyond graphene

    NASA Astrophysics Data System (ADS)

    Sadurní, E.; Seligman, T. H.; Mortessagne, F.

    2010-05-01

    The possibility of using hexagonal structures in general, and graphene in particular, to emulate the Dirac equation is the topic under consideration here. We show that Dirac oscillators with or without rest mass can be emulated by distorting a tight-binding model on a hexagonal structure. In the quest to make a toy model for such relativistic equations, we first show that a hexagonal lattice of attractive potential wells would be a good candidate. Firstly, we consider the corresponding one-dimensional (1D) model giving rise to a 1D Dirac oscillator and then construct explicitly the deformations needed in the 2D case. Finally, we discuss how such a model can be implemented as an electromagnetic billiard using arrays of dielectric resonators between two conducting plates that ensure evanescent modes outside the resonators for transversal electric modes, and we describe a feasible experimental setup.

  15. Invisibility cloaks in relativistic motion

    NASA Astrophysics Data System (ADS)

    Halimeh, Jad C.; Thompson, Robert T.; Wegener, Martin

    2016-01-01

    We consider an ideal invisibility cloak which is illuminated by monochromatic light and which moves in vacuum at constant relativistic velocity with respect to the common inertial frame of light source and observer. We show that, in general, the moving cloak becomes detectable by image distortions and by generating a broad frequency spectrum of the scattered light. However, for many special combinations of incident light frequency, wave vector of light, and cloak velocity, ideal cloaking remains possible. It becomes nonreciprocal though. This means that light rays emitted by the light source arrive at the observer as though they have traveled through vacuum, but they take completely different paths after being retroreflected at the observer position.

  16. Gamma-Ray Bursts: Relativistic shells or central engines?

    SciTech Connect

    Fenimore, E.E.; Summer, M.C.

    1997-08-01

    In many models of Gamma-Ray Bursts (GRBs) relativistic shells are responsible for the overall envelope of emission. The authors use kinematics and symmetry to calculate the time history and spectral evolution expected from a relativistic shell including effects from intrinsic variations in the shell`s intensity and spectra. They find that the decay phase of an envelope is produced by photons delayed by the shell`s curvature. These delayed photons are produced by regions that are off-axis such that the spectra evolve according to a universal function ({proportional_to} T{sup {minus}1}) regardless of intrinsic variations in the rest frame of the shell. They compare these predictions to the overall envelope of emission of GRBs. The observed spectra evolve faster ({approximately} T{sup {minus}3}). Intrinsic variations cannot make the spectra evolve that fast, which adds strength to the shell symmetry problem: models, in particular, the external shock model, that involve relativistic shells must either confine the material to narrow pencil beams, be very inefficient, or break the local spherical symmetry so that the shell acts like a parallel slab. In the case of the internal shock models involving winds (i.e., central engines), it will probably be easier to break the local spherical symmetry, but the none must postulate nearly continuous energy generation at 10{sup 51} erg s{sup {minus}1} lasting up to hundreds of seconds at the central site.

  17. Landau damping in relativistic plasmas

    NASA Astrophysics Data System (ADS)

    Young, Brent

    2016-02-01

    We examine the phenomenon of Landau damping in relativistic plasmas via a study of the relativistic Vlasov-Poisson (rVP) system on the torus for initial data sufficiently close to a spatially uniform steady state. We find that if the steady state is regular enough (essentially in a Gevrey class of degree in a specified range) and if the deviation of the initial data from this steady state is small enough in a certain norm, the evolution of the system is such that its spatial density approaches a uniform constant value quasi-exponentially fast (i.e., like exp ( - C |" separators=" t | ν ¯ ) for ν ¯ ∈ ( 0 , 1 ) ). We take as a priori assumptions that solutions launched by such initial data exist for all times (by no means guaranteed with rVP, but a reasonable assumption since we are close to a spatially uniform state) and that the various norms in question are continuous in time (which should be a consequence of an abstract version of the Cauchy-Kovalevskaya theorem). In addition, we must assume a kind of "reverse Poincaré inequality" on the Fourier transform of the solution. In spirit, this assumption amounts to the requirement that there exists 0 < ϰ < 1 so that the mass in the annulus ϰ ≤ |" separators=" v | < 1 for the solution launched by the initial data is uniformly small for all t. Typical velocity bounds for solutions to rVP launched by small initial data (at least on ℝ6) imply this bound. We note that none of our results require spherical symmetry (a crucial assumption for many current results on rVP).

  18. EFFECT OF INTERACTING RAREFACTION WAVES ON RELATIVISTICALLY HOT JETS

    SciTech Connect

    Matsumoto, Jin; Shibata, Kazunari; Masada, Youhei

    2012-06-01

    The effect of rarefaction acceleration on the propagation dynamics and structure of relativistically hot jets is studied through relativistic hydrodynamic simulations. We emphasize the nonlinear interaction of rarefaction waves excited at the interface between a cylindrical jet and the surrounding medium. From simplified one-dimensional (1D) models with radial jet structure, we find that a decrease in the relativistic pressure due to the interacting rarefaction waves in the central zone of the jet transiently yields a more powerful boost of the bulk jet than that expected from single rarefaction acceleration. This leads to a cyclic in situ energy conversion between thermal and bulk kinetic energies, which induces radial oscillating motion of the jet. The oscillation timescale is characterized by the initial pressure ratio of the jet to the ambient medium and follows a simple scaling relation, {tau}{sub oscillation}{proportional_to}(P{sub jet,0}/P{sub amb,0}){sup 1/2}. Extended two-dimensional simulations confirm that this radial oscillating motion in the 1D system manifests as modulation of the structure of the jet in a more realistic situation where a relativistically hot jet propagates through an ambient medium. We find that when the ambient medium has a power-law pressure distribution, the size of the reconfinement region along the propagation direction of the jet in the modulation structure {lambda} evolves according to a self-similar relation {lambda}{proportional_to}t{sup {alpha}/2}, where {alpha} is the power-law index of the pressure distribution.

  19. Relativistic Theory of Few Body Systems

    SciTech Connect

    Franz Gross

    2002-11-01

    Very significant advances have been made in the relativistic theory of few body systems since I visited Peter Sauer and his group in Hannover in 1983. This talk provides an opportunity to review the progress in this field since then. Different methods for the relativistic calculation of few nucleon systems are briefly described. As an example, seven relativistic calculations of the deuteron elastic structure functions, A, B, and T{sub 20}, are compared. The covariant SPECTATOR {copyright} theory, among the more successful and complete of these methods, is described in more detail.

  20. STREAM INSTABILITIES IN RELATIVISTICALLY HOT PLASMA

    SciTech Connect

    Shaisultanov, Rashid; Lyubarsky, Yuri; Eichler, David

    2012-01-10

    The growth rates for Weibel and Buneman instabilities of relativistic ion beams in a relativistically hot electron background are derived analytically for general propagation angles. The Weibel instability perpendicular to the streaming direction is found to be the fastest growing mode and probably the first to appear. Oblique, quasiperpendicular modes grow almost as fast as the growth rate varies only moderately with angle, and they may distort or corrugate the filaments after the perpendicular mode saturates. The growth rate of the purely longitudinal (Buneman) mode is significantly smaller, contrary to the non-relativistic case. The results are consistent with simulations, which display aligned magnetic filaments and their subsequent disruption.

  1. Relativistic klystron research for linear colliders

    SciTech Connect

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Higo, T.; Hoag, H.A.; Koontz, R.F.

    1988-09-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. We have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 9 figs., 1 tab.

  2. Strengthening Adaptation to Extreme Climate Events in Southwestern Amazonia: an Example from the Trinational Acre River Basin in the Madre de Dios/Peru - Acre/Brazil - Pando/Bolivia (MAP) Region.

    NASA Astrophysics Data System (ADS)

    Brown, I. F.

    2015-12-01

    Southwestern Amazonia, where Bolivia, Brazil and Peru meet, faces numerous challenges to the sustainable utilization of land and water resources as the region experiences rapid population and economic growth, expanding agriculture, transportation and energy sectors, along with frequent flooding and droughts. It is also predicted to be one of the most susceptible areas for climate change in the coming decade. The Acre River Basin, one of the few trinational basins in Amazonia, lies at the center of the Madre de Dios Region (Peru), Acre State (Brazil) and Pando Department (Bolivia) or MAP Region. It covers approximately 7,500 km2 and its inhabitants range from indigenous groups avoiding contact with industrial society to more than 60,000 dwellers of a binational urban center. The basin incorporates most the challenges facing the region and this paper discusses steps underway to address the basin's vulnerability to climate-related threats. A trinational group of professionals used GIS databases and local knowledge to classify these threats and possible societal responses. To prioritize threats and to propose responses, this group adapted a method proposed by the Queensland Climate Change Centre of Excellence of Australia to develop climate risk matrices for assessing impacts, adaptation, risk and vulnerability. The three priority climate variables were prolonged and more frequent droughts, more intense flooding, and more days with temperatures > 35oC. The final matrix proposed two areas of concentration - 1) Reduce the vulnerability of communities to hydro-meteorological extreme events and 2) Protect and restore ecosystems that maintain critical water-related resources with actions in public policy, capacity-building, and immediate activities. These results are being incorporated into the Amazon Project of the Global Environment Fund of the United Nations Environment Program, administered by the Amazon Cooperation Treaty Organization (ACTO).

  3. Relativistic quantum mechanics and relativistic entanglement in the rest-frame instant form of dynamics

    SciTech Connect

    Alba, David; Crater, Horace W.; Lusanna, Luca

    2011-06-15

    A new formulation of relativistic quantum mechanics is proposed in the framework of the rest-frame instant form of dynamics, where the world-lines of the particles are parametrized in terms of the Fokker-Pryce center of inertia and of Wigner-covariant relative 3-coordinates inside the instantaneous Wigner 3-spaces, and where there is a decoupled (non-covariant and non-local) canonical relativistic center of mass. This approach: (a) allows us to make a consistent quantization in every inertial frame; (b) leads to a description of both bound and scattering states; (c) offers new insights on the relativistic localization problem; (d) leads to a non-relativistic limit with a Hamilton-Jacobi treatment of the Newton center of mass; (e) clarifies non-local aspects (spatial non-separability) of relativistic entanglement connected with Lorentz signature and not present in its non-relativistic treatment.

  4. Expanding relativistic shells and gamma-ray burst temporal structure

    SciTech Connect

    Fenimore, E.E.; Madras, C.D.; Nayakshin, S.

    1996-12-01

    Many models of gamma-ray bursts (GRBs) involve a shell expanding at extreme relativistic speeds. The shell of material expands in a photon-quiet phase for a period {ital t}{sub 0} and then becomes gamma-ray active, perhaps due to inhomogeneities in the interstellar medium or the generation of shocks. Based on kinematics, we relate the envelope of the emission of the event to the characteristics of the photon-quiet and photon-active phases. We initially assume local spherical symmetry wherein, on average, the same conditions prevail over the shell`s surface within angles the order of {Gamma}{sup {minus}1}, where {Gamma} is the Lorentz factor for the bulk motion. The contribution of the curvature to the temporal structure is comparable to the contribution from the overall expansion. As a result, GRB time histories from a shell should have an envelope similar to {open_quotes}FRED{close_quotes} (fast rise, exponential decay) events in which the rise time is related to the duration of the photon-active phase and the fall time is related to the duration of the photon-quiet phase. This result depends only on local spherical symmetry and, since most GRBs do not have such envelopes, we introduce the {open_quotes}shell symmetry{close_quotes} problem: the observed time history envelopes of most GRBs do not agree with that expected for a relativistic expanding shell. Although FREDs have the signature of a relativistic shell, they may not be due to a single shell, as required by some cosmological models. Some FREDs have precursors in which the peaks are separated by more than the expansion time required to explain FRED shape. Such a burst is most likely explained by a central engine; that is, the separation of the multiple peaks occurs because the central site produced multiple releases of energy on timescales comparable to the duration of the event. (Abstract Truncated)

  5. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

    PubMed Central

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zong, Q.-G.; Zhou, X.-Z.; Zheng, Huinan; Wang, Yuming; Wang, Shui; Hao, Y.-X.; Gao, Zhonglei; He, Zhaoguo; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Blake, J. B.; Wygant, J. R.

    2015-01-01

    Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. Our results demonstrate that the ULF waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons. PMID:26690250

  6. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons.

    PubMed

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zong, Q-G; Zhou, X-Z; Zheng, Huinan; Wang, Yuming; Wang, Shui; Hao, Y-X; Gao, Zhonglei; He, Zhaoguo; Baker, D N; Spence, H E; Reeves, G D; Blake, J B; Wygant, J R

    2015-01-01

    Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. Our results demonstrate that the ULF waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons. PMID:26690250

  7. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

    SciTech Connect

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zong, Q. -G.; Zhou, X. -Z.; Zheng, Huinan; Wang, Yuming; Wang, Shui; Hao, Y. -X.; Gao, Zhonglei; He, Zhaoguo; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Blake, J. B.; Wygant, J. R.

    2015-12-22

    The Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. So, our results demonstrate that the ULF waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.

  8. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

    DOE PAGES

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zong, Q. -G.; Zhou, X. -Z.; Zheng, Huinan; Wang, Yuming; Wang, Shui; Hao, Y. -X.; Gao, Zhonglei; et al

    2015-12-22

    The Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. So, our results demonstrate that the ULFmore » waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.« less

  9. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons.

    PubMed

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zong, Q-G; Zhou, X-Z; Zheng, Huinan; Wang, Yuming; Wang, Shui; Hao, Y-X; Gao, Zhonglei; He, Zhaoguo; Baker, D N; Spence, H E; Reeves, G D; Blake, J B; Wygant, J R

    2015-01-01

    Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. Our results demonstrate that the ULF waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.

  10. Theory of symmetry for a rotational relativistic Birkhoff system

    NASA Astrophysics Data System (ADS)

    Luo, Shao-Kai; Chen, Xiang-Wei; Guo, Yong-Xin

    2002-05-01

    The theory of symmetry for a rotational relativistic Birkhoff system is studied. In terms of the invariance of the rotational relativistic Pfaff-Birkhoff-D'Alembert principle under infinitesimal transformations, the Noether symmetries and conserved quantities of a rotational relativistic Birkhoff system are given. In terms of the invariance of rotational relativistic Birkhoff equations under infinitesimal transformations, the Lie symmetries and conserved quantities of the rotational relativistic Birkhoff system are given.

  11. Relativistic radiative transfer in relativistic plane-parallel flows: Behavior of the Eddington factor

    NASA Astrophysics Data System (ADS)

    Fukue, Jun

    2014-07-01

    Relativistic radiative transfer in a relativistic plane-parallel flow which is accelerated from its base, like an accretion disk wind, is numerically examined under a fully special-relativistic treatment. We first derive relativistic formal solutions. We then iteratively solve the relativistic transfer equation for several cases such as radiative equilibrium or local thermodynamic equilibrium, and obtain specific intensities in the inertial and comoving frames, as well as moment quantities and the Eddington factor. Moment quantities are rather different in each case, but the behavior of the Eddington factor for the plane-parallel case is quite similar in all cases. The Eddington factor generally depends on the flow velocity v as well as the optical depth τ. In the case of relativistic plane-parallel flows, in an optically thin regime of τ ≲ 1, it is slightly larger than 1/3 at very slow speed, it becomes smaller than 1/3 at mildly relativistic speed, and it again increases up to unity in the highly relativistic case. At highly relativistic speed, on the other hand, it becomes larger than 1/3 even in an optically thick regime. We find the Eddington approximation is fairly good, except for τ ≲ 1 or v/c ≳ 0.9, although the moment formalism under the Eddington approximation has some defects at v/c=1/√{3}.

  12. Open/closed string duality and relativistic fluids

    NASA Astrophysics Data System (ADS)

    Niarchos, Vasilis

    2016-07-01

    We propose an open/closed string duality in general backgrounds extending previous ideas about open string completeness by Ashoke Sen. Our proposal sets up a general version of holography that works in gravity as a tomographic principle. We argue, in particular, that previous expectations of a supergravity/Dirac-Born-Infeld (DBI) correspondence are naturally embedded in this conjecture and can be tested in a well-defined manner. As an example, we consider the correspondence between open string field theories on extremal D-brane setups in flat space in the large-N , large 't Hooft limit, and asymptotically flat solutions in ten-dimensional type II supergravity. We focus on a convenient long-wavelength regime, where specific effects of higher-spin open string modes can be traced explicitly in the dual supergravity computation. For instance, in this regime we show how the full Abelian DBI action arises from supergravity as a straightforward reformulation of relativistic hydrodynamics. In the example of a (2 +1 )-dimensional open string theory this reformulation involves an Abelian Hodge duality. We also point out how different deformations of the DBI action, related to higher-derivative corrections and non-Abelian effects, can arise in this context as deformations in corresponding relativistic hydrodynamics.

  13. Bound-preserving discontinuous Galerkin methods for relativistic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Qin, Tong; Shu, Chi-Wang; Yang, Yang

    2016-06-01

    In this paper, we develop a discontinuous Galerkin (DG) method to solve the ideal special relativistic hydrodynamics (RHD) and design a bound-preserving (BP) limiter for this scheme by extending the idea in X. Zhang and C.-W. Shu, (2010) [56]. For RHD, the density and pressure are positive and the velocity is bounded by the speed of light. One difficulty in numerically solving the RHD in its conservative form is that the failure of preserving these physical bounds will result in ill-posedness of the problem and blowup of the code, especially in extreme relativistic cases. The standard way in dealing with this difficulty is to add extra numerical dissipation, while in doing so there is no guarantee of maintaining the high order of accuracy. Our BP limiter has the following features. It can theoretically guarantee to preserve the physical bounds for the numerical solution and maintain its designed high order accuracy. The limiter is local to the cell and hence is very easy to implement. Moreover, it renders L1-stability to the numerical scheme. Numerical experiments are performed to demonstrate the good performance of this bound-preserving DG scheme. Even though we only discuss the BP limiter for DG schemes, it can be applied to high order finite volume schemes, such as weighted essentially non-oscillatory (WENO) finite volume schemes as well.

  14. ULTRA-RELATIVISTIC NUCLEI: A NEW FRONTIER

    SciTech Connect

    MCLERRAN,L.

    1999-10-29

    The collisions of ultra-relativistic nuclei provide a window on the behavior of strong interactions at asymptotically high energies. They also will allow the authors to study the bulk properties of hadronic matter at very high densities.

  15. Relativistic perturbations for all the planets

    NASA Astrophysics Data System (ADS)

    Lestrade, J.-F.; Bretagnon, P.

    1982-01-01

    The relativistic perturbations in the osculating elements of all the planets, due to the theory of General Relativity, are presented where only the gravitational field of the sun is taken into account and the effects are calculated in the post-Newtonian approximation. The relativistic effects are calculated with the requirement that an accuracy of 5 x 10 to the -12th UA be kept over an interval of 1000 years, and are expressed in series form depending on the dynamical time in the isotropic coordinate and standard coordinate systems. The method uses equations derived from the equations of Gauss for the relativistic acceleration. A theory of the motion of Mercury is derived through the addition of the relativistic perturbations to the third-order Newtonian theory of Bretagnon (1981). It is noted that the computer programs used allow any values for the physical parameters Gamma and Beta of the Eddigton-Robertson metric.

  16. Relativistic Thomson Scatter from Factor Calculation

    2009-11-01

    The purpose of this program is calculate the fully relativistic Thomson scatter from factor in unmagnetized plasmas. Such calculations are compared to experimental diagnoses of plasmas at such facilities as the Jupiter laser facility here a LLNL.

  17. Pseudospectral approach to relativistic molecular theory.

    PubMed

    Nakajima, Takahito; Hirao, Kimihiko

    2004-08-22

    The efficient relativistic Dirac-Hartree-Fock (DHF) and Dirac-Kohn-Sham (DKS) methods are proposed by an application of the pseudospectral (PS) approach. The present PS-DHF/DKS method is a relativistic extension of the PS-HF/KS method of Friesner, though we aim at higher numerical accuracy by elimination of superfluous arbitrariness. The relativistic PS-DHF/DKS method is implemented into our REL4D programs. Several PS applications to molecular systems show that the relativistic PS-DHF/DKS approach is more efficient than the traditional approach without a loss of accuracy. The present PS-DKS method successfully assigns and predicts the photoelectron spectra of hexacarbonyl complexes of tungsten and seaborgium theoretically.

  18. Classical dynamics of the relativistic oscillator

    NASA Astrophysics Data System (ADS)

    Petrov, S. V.

    2016-11-01

    This paper aims at a comprehensive analysis of the dynamics of the classical relativistic oscillator. Numerical integration of its dynamical equations permits a thorough treatment of its motion. Both the one-dimensional and two-dimensional cases are considered.

  19. Relativistic quark-diquark model of baryons

    SciTech Connect

    Ferretti, J.; Vassallo, A.; Santopinto, E.

    2011-06-15

    A relativistic quark-diquark mass operator with direct and exchange interaction has been constructed in the framework of point form dynamics. The nonstrange baryon spectrum has been calculated and compared with experimental data.

  20. Quantum probability assignment limited by relativistic causality

    PubMed Central

    Han, Yeong Deok; Choi, Taeseung

    2016-01-01

    Quantum theory has nonlocal correlations, which bothered Einstein, but found to satisfy relativistic causality. Correlation for a shared quantum state manifests itself, in the standard quantum framework, by joint probability distributions that can be obtained by applying state reduction and probability assignment that is called Born rule. Quantum correlations, which show nonlocality when the shared state has an entanglement, can be changed if we apply different probability assignment rule. As a result, the amount of nonlocality in quantum correlation will be changed. The issue is whether the change of the rule of quantum probability assignment breaks relativistic causality. We have shown that Born rule on quantum measurement is derived by requiring relativistic causality condition. This shows how the relativistic causality limits the upper bound of quantum nonlocality through quantum probability assignment. PMID:26971717

  1. Quantum Deformations of Einstein's Relativistic Symmetries

    SciTech Connect

    Lukierski, Jerzy

    2006-11-03

    We shall outline two ways of introducing the modification of Einstein's relativistic symmetries of special relativity theory -- the Poincare symmetries. The most complete way of introducing the modifications is via the noncocommutative Hopf-algebraic structure describing quantum symmetries. Two types of quantum relativistic symmetries are described, one with constant commutator of quantum Minkowski space coordinates ({theta}{mu}{nu}-deformation) and second with Lie-algebraic structure of quantum space-time, introducing so-called {kappa}-deformation. The third fundamental constant of Nature - fundamental mass {kappa} or length {lambda} - appears naturally in proposed quantum relativistic symmetry scheme. The deformed Minkowski space is described as the representation space (Hopf-module) of deformed Poincare algebra. Some possible perspectives of quantum-deformed relativistic symmetries will be outlined.

  2. Relativistic projection and boost of solitons

    SciTech Connect

    Wilets, L.

    1991-01-01

    This report discusses the following topics on the relativistic projection and boost of solitons: The center of mass problem; momentum eigenstates; variation after projection; and the nucleon as a composite. (LSP).

  3. Relativistic projection and boost of solitons

    SciTech Connect

    Wilets, L.

    1991-12-31

    This report discusses the following topics on the relativistic projection and boost of solitons: The center of mass problem; momentum eigenstates; variation after projection; and the nucleon as a composite. (LSP).

  4. Coherent states for the relativistic harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Aldaya, Victor; Guerrero, J.

    1995-01-01

    Recently we have obtained, on the basis of a group approach to quantization, a Bargmann-Fock-like realization of the Relativistic Harmonic Oscillator as well as a generalized Bargmann transform relating fock wave functions and a set of relativistic Hermite polynomials. Nevertheless, the relativistic creation and annihilation operators satisfy typical relativistic commutation relations of the Lie product (vector-z, vector-z(sup dagger)) approximately equals Energy (an SL(2,R) algebra). Here we find higher-order polarization operators on the SL(2,R) group, providing canonical creation and annihilation operators satisfying the Lie product (vector-a, vector-a(sup dagger)) = identity vector 1, the eigenstates of which are 'true' coherent states.

  5. Relativistic diffusive motion in random electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Haba, Z.

    2011-08-01

    We show that the relativistic dynamics in a Gaussian random electromagnetic field can be approximated by the relativistic diffusion of Schay and Dudley. Lorentz invariant dynamics in the proper time leads to the diffusion in the proper time. The dynamics in the laboratory time gives the diffusive transport equation corresponding to the Jüttner equilibrium at the inverse temperature β-1 = mc2. The diffusion constant is expressed by the field strength correlation function (Kubo's formula).

  6. Relativistic particle beams for interstellar propulsion

    NASA Astrophysics Data System (ADS)

    Nordley, Gerald D.

    1993-04-01

    The concept of pellet-stream propulsion proposed by Singer (1980) is extended to particle beams and relativistic velocities. A simple relativistic mission study is presented, and it is shown how certain technological developments might enhance the concept. In particular, considerations discussed include beam drivers; beam cooling, steering, and focusing; beam driven mission mechanics; and the radiation problem. The energy issues are also briefly considered.

  7. Mass versus relativistic and rest masses

    NASA Astrophysics Data System (ADS)

    Okun, L. B.

    2009-05-01

    The concept of relativistic mass, which increases with velocity, is not compatible with the standard language of relativity theory and impedes the understanding and learning of the theory by beginners. The same difficulty occurs with the term rest mass. To get rid of relativistic mass and rest mass it is appropriate to replace the equation E =mc2 by the true Einstein's equation E0=mc2, where E0 is the rest energy and m is the mass.

  8. On Lorentz invariants in relativistic magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Yang, Shu-Di; Wang, Xiao-Gang

    2016-08-01

    Lorentz invariants whose nonrelativistic correspondences play important roles in magnetic reconnection are discussed in this paper. Particularly, the relativistic invariant of the magnetic reconnection rate is defined and investigated in a covariant two-fluid model. Certain Lorentz covariant representations for energy conversion and magnetic structures in reconnection processes are also investigated. Furthermore, relativistic measures for topological features of reconnection sites, particularly magnetic nulls and separatrices, are analyzed.

  9. Relativistic mean field description of exotic nuclei

    NASA Astrophysics Data System (ADS)

    Meng, Jie; Ring, Peter; Zhao, Pengwei; Zhou, Shan-Gui

    In this chapter, we will present relativistic mean field (RMF) models with pairing treated by the Bardeen-Cooper-Schrieffer (BCS) and the relativistic Hartree-Bogoliubov (RHB) approaches and applications for exotic nuclear phenomena including nuclear halos, the position of the proton drip line and proton radioactivity, the surface diffuseness and its relation to nuclear exotic phenomena, and the effects of pairing correlations on the nuclear size.

  10. Relativistic uranium beams - the Bevalac experience

    SciTech Connect

    Alonso, J.

    1983-03-01

    This paper will address areas where relativistic heavy ion accelerators differ from proton facilities. Salient areas are: (1) the specialized injectors for heavy ions; ion sources, structures for very low charge-to-mass ratio (q/A) ions, and stripper optimization; (2) special requirements for the synchrotron ring; ultrahigh vacuum, flexible controls and instrumentation. These areas are discussed in the context of the Bevalac, as well as our idea for a next-generation relativistic heavy ion accelerator.

  11. Relativistic klystron research at SLAC and LLNL

    SciTech Connect

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Higo, T.; Hoag, H.A.; Lavine, T.L.; Lee, T.G.; Loew, G.A.; Miller, R.H.; Morton, P.L.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Schwarz, H.D.; Takeuchi, Y.; Vlieks, A.E.; Wang, J.W.; Wilson, P.B.; Hopkins, D.B.; Sessler, A.M.; Barletta, W.A.; Birx, D.L.; Boyd, J.K.; Houck, T.; Westenskow, G.A.; Yu, S.S.

    1988-06-01

    We are developing relativistic klystrons as a power source for high gradient accelerator applications such as large linear electron-positron colliders and compact accelerators. We have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here briefly on our experiments so far. 5 refs., 1 fig., 1 tab.

  12. Relativistically modulational instability by strong Langmuir waves

    SciTech Connect

    Liu, X. L.; Liu, S. Q.; Li, X. Q.

    2012-09-15

    Based on the set of nonlinear coupling equations, which has considered the relativistic effects of electrons, modulational instability by strong Langmuir waves has been investigated in this paper. Both the characteristic scale and maximum growth rate of the Langmuir field will enhance with the increase in the electron relativistic effect. The numerical results indicate that longitudinal perturbations induce greater instability than transverse perturbations do, which will lead to collapse and formation of the pancake-like structure.

  13. Role of extreme events in vegetation dynamics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extreme climatic events challenge the capacity of vegetation models, including Dynamic Global Vegetation Models, to predict changes in plant species dynamics at local and regional spatial scales and over time periods relevant to ecologists and managers. Extreme climatic events are defined as large,...

  14. Device and method for relativistic electron beam heating of a high-density plasma to drive fast liners

    DOEpatents

    Thode, Lester E.

    1981-01-01

    A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner which is generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner.

  15. Small systems and regulator dependence in relativistic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Spaliński, Michał

    2016-10-01

    Consistent theories of hydrodynamics necessarily include nonhydrodynamic modes, which can be viewed as a regulator necessary to ensure causality. Under many circumstances the choice of regulator is not relevant, but this is not always the case. In particular, for sufficiently small systems (such as those arising in pA or pp collisions) such dependence may be inevitable. We address this issue in the context of the modern version of Müller-Israel-Stewart theory of relativistic hydrodynamics. In this case, by demanding that the nonhydrodynamic modes do not dominate, we find that regulator dependence becomes inevitable only for multiplicities d N /d Y of the order of a few. This conclusion supports earlier studies based on hydrodynamic simulations of small systems, at the same time providing a simple physical picture of how hydrodynamics can be reliable even in such seemingly extreme conditions.

  16. Relativistic Doppler effect: universal spectra and zeptosecond pulses.

    PubMed

    Gordienko, S; Pukhov, A; Shorokhov, O; Baeva, T

    2004-09-10

    We report on a numerical observation of the train of zeptosecond pulses produced by the reflection of a relativistically intense femtosecond laser pulse from the oscillating boundary of an overdense plasma because of the Doppler effect. These pulses promise to become unique experimental and technological tools since their length is of the order of the Bohr radius and the intensity is extremely high proportional, variant 10(19) W/cm(2). We present the physical mechanism, analytical theory, and direct particle-in-cell simulations. We show that the harmonic spectrum is universal: the intensity of nth harmonic scales as 1/n(p) for n<4gamma(2), where gamma is the largest gamma factor of the electron fluid boundary, and p=3 and p=5/2 for the broadband and quasimonochromatic laser pulses, respectively.

  17. The magnet system of the Relativistic Heavy Ion Collider (RHIC)

    SciTech Connect

    Greene, A.; Anerella, M.; Cozzolino, J.

    1995-07-01

    The Relativistic Heavy Ion Collider now under construction at Brookhaven National Laboratory (BNL) is a colliding ring accelerator to be completed in 1999. Through collisions of heavy ions it is hoped to observe the creation of matter at extremely high temperatures and densities, similar to what may have occurred in the original ``Big Bang.`` The collider rings will consist of 1740 superconducting magnet elements. Some of elements are being manufactured by industrial partners (Northrop Grumman and Everson Electric). Others are being constructed or assembled at BNL. A description is given of the magnet designs, the plan for manufacturing and test results. In the manufacturing of the magnets, emphasis has been placed on uniformity of their performance and on quality. Results so far indicate that this emphasis has been very successful.

  18. The magnet system of the Relativistic Heavy Ion Collider (RHIC)

    SciTech Connect

    Greene, A.; Anerella, M.; Cozzolino, J.

    1996-07-01

    The Relativistic Heavy Ion Collider now under construction at Brookhaven National Laboratory (BNL) is a colliding ring accelerator to be completed in 1999. Through collisions of heavy ions it is hoped to observe the creation of matter at extremely high temperatures and densities, similar to what may have occurred in the original ``Big Bang``. The collider rings will consist of 1,740 superconducting magnet elements. Some of these elements are being manufactured by industrial partners (Northrop Grumman and Everson Electric). Others are being constructed or assembled at BNL. A description is given of the magnet designs, the plan for manufacturing and test results. In the manufacturing of the magnets, emphasis has been placed on uniformity of their performance and on quality. Results so far indicate that this emphasis has been very successful.

  19. Relativistic confinement of neutral fermions with a trigonometric tangent potential

    NASA Astrophysics Data System (ADS)

    Castro, Luis B.; de Castro, Antonio S.

    2007-01-01

    The problem of neutral fermions subject to a pseudoscalar potential is investigated. Apart from the solutions for E = ±mc2, the problem is mapped into the Sturm-Liouville equation. The case of a singular trigonometric tangent potential (~tan γx) is exactly solved and the complete set of solutions is discussed in some detail. It is revealed that this intrinsically relativistic and true confining potential is able to localize fermions into a region of space arbitrarily small without the menace of particle-antiparticle production.

  20. Spacetime alternatives in the quantum mechanics of a relativistic particle

    SciTech Connect

    Whelan, J.T. Isaac Newton Institute for Mathematical Sciences, 20 Clarkson Road, Cambridge, CB3 0EH )

    1994-11-15

    Hartle's generalized quantum mechanics formalism is used to examine spacetime coarse grainings, i.e., sets of alternatives defined with respect to a region extended in time as well as space, in the quantum mechanics of a free relativistic particle. For a simple coarse graining and suitable initial conditions, tractable formulas are found for branch wave functions. Despite the nonlocality of the positive-definite version of the Klein-Gordon inner product, which means that nonoverlapping branches are not sufficient to imply decoherence, some initial conditions are found to give decoherence and allow the consistent assignment of probabilities.