Science.gov

Sample records for extreme response estimation

  1. Extreme Quantile Estimation in Binary Response Models

    DTIC Science & Technology

    1990-03-01

    The Spearman - Karber method and Wetherill’s w estimate only the x , while the Stochastic Approximation 4 Method of Robbins and Monro [1951] estimates...9 2 SEQUENTIAL PROCEDURES FOR EXTREME QUANTILES .................... 10 2.1 Current Methods ...using x50 is that the asymptotic variance of x1 achieves a minimum at p =.5 for the common methods used. Moreover, several Monte Carlo studies involving

  2. An Alternative Estimator for the Maximum Likelihood Estimator for the Two Extreme Response Patterns.

    ERIC Educational Resources Information Center

    Samejima, Fumiko

    In the methods and approaches developed for estimating the operating characteristics of the discrete item responses, the maximum likelihood estimate of the examinee based upon the "Old Test" has an important role. When Old Test does not provide a sufficient amount of test information for the upper and lower part of the ability interval,…

  3. Moment-Based Probability Modeling and Extreme Response Estimation, The FITS Routine Version 1.2

    SciTech Connect

    MANUEL,LANCE; KASHEF,TINA; WINTERSTEIN,STEVEN R.

    1999-11-01

    This report documents the use of the FITS routine, which provides automated fits of various analytical, commonly used probability models from input data. It is intended to complement the previously distributed FITTING routine documented in RMS Report 14 (Winterstein et al., 1994), which implements relatively complex four-moment distribution models whose parameters are fit with numerical optimization routines. Although these four-moment fits can be quite useful and faithful to the observed data, their complexity can make them difficult to automate within standard fitting algorithms. In contrast, FITS provides more robust (lower moment) fits of simpler, more conventional distribution forms. For each database of interest, the routine estimates the distribution of annual maximum response based on the data values and the duration, T, over which they were recorded. To focus on the upper tails of interest, the user can also supply an arbitrary lower-bound threshold, {chi}{sub low}, above which a shifted distribution model--exponential or Weibull--is fit.

  4. Grassland responses to precipitation extremes

    USDA-ARS?s Scientific Manuscript database

    Grassland ecosystems are naturally subjected to periods of prolonged drought and sequences of wet years. Climate change is expected to enhance the magnitude and frequency of extreme events at the intraannual and multiyear scales. Are grassland responses to extreme precipitation simply a response to ...

  5. Ionosphere Response to Extreme Space Weather

    NASA Astrophysics Data System (ADS)

    Viereck, R. A.

    2016-12-01

    In this presentation, we will evaluate the ionosphere response to extreme space weather events. There are many external factors that modify and drive the ionosphere. The ionosphere is highly coupled to the thermosphere which also responds to extreme space weather conditions. For some types of space weather, such as extreme solar x-ray flares, or solar energetic proton events, the response of the ionosphere D-Region can be predicted based on the empirical relationships determined from moderate flares and proton events. Predicting how the ionosphere will respond to an extreme geomagnetic storm is more challenging. First, estimating the extremes of the IMF and solar wind will introduce some level of uncertainty. The magnetosphere response to extreme solar wind condistions will also introduce unknowns and uncertainties. The conditions of the thermosphere under extreme conditions will strongly drive the ionospheric response as will the level of solar EUV irradiance. Even the variability of the lower atmosphere will influence how the ionosphere responds. We will try to establish the current state of knowledge and then suggest the next steps towards improvements in quantifying the ionospheric response to extreme space weather conditions.

  6. Extremes of Population Estimated from Kepler Observations

    NASA Astrophysics Data System (ADS)

    Traub, Wesley A.

    2015-12-01

    The extremes of exoplanet population (0.5 to 16 Earth radii, 0.5 to 512 days period) are estimated from Kepler observations by comparing the observed numbers of planets at each radius and period against a simulation that accounts for the probability of transit and the estimated instrument sensitivity. By assuming that the population can be modeled as a function of period times a function of radius, and further assuming that these functions are broken power laws, sufficient leverage is gained such that the well-measured short-period extreme of the planet distribution can effectively be used as a template for the less-well sampled long-period extreme. The resulting population distribution over this full range of radius and period provides a challenge to models of the origin and evolution of planetary systems.

  7. Estimating the Response and Uncertainty Limits of Physical Processes in the South San Francisco Bay for Extreme Water Elevation Frequency Analysis

    NASA Astrophysics Data System (ADS)

    Andes, L.; Wu, F.; Lo, J.; MacWilliams, M.; Lu, C.; Dean, R.; Hanes, D. M.

    2013-12-01

    Coastal flooding in the far south San Francisco Bay (SSFB) can be a function of astronomical tide, residual tide (i.e. water elevation deviation from computed astronomical tide that is associated with many possible physical processes), in-bay wind speed and direction and fluvial discharge. These physical processes and coastal levee failure were considered as input parameters into a Monte Carlo Simulation (MCS) to estimate extreme water elevation frequency in the SSFB. Limited data is available in the SSFB to estimate the contribution of these physical processes to extreme water elevation statistics. Over 100 years of measured water surface elevation (WSE) data is available at the San Francisco (SF) tide station. A sensitivity analysis of storm event sampling criteria was conducted to select significant events at the SF tide station for data transfer to the project site and statistical analysis. The coincidently sampled astronomical and residual tides at the San Francisco tide station were analyzed and used to develop the storm event databases. Sampling methods employed were compared with annual maximum and partial duration approaches. Additional statistical testing was performed to justify the assumption of coincident sampling. The selected database was found to be most representative of the full range of the combinations of astronomical and residual tides that contribute to extreme water elevation statistics at the project site. A look-up table of astronomical and residual tide, wind speed and direction, and levee failure in the form of WSE responses at the project site from the hydrodynamic simulations was established for the interpolation in the MCS. The hydrodynamic model simulations indicated that the astronomical tides in the SSFB amplify inversely as a function of tidal range at the SF tide station. The residual tide varies minimally as it propagates into the SSFB. In-Bay wind set-up from a significant event was found to contribute on the order of one foot

  8. Consistency of extreme flood estimation approaches

    NASA Astrophysics Data System (ADS)

    Felder, Guido; Paquet, Emmanuel; Penot, David; Zischg, Andreas; Weingartner, Rolf

    2017-04-01

    Estimations of low-probability flood events are frequently used for the planning of infrastructure as well as for determining the dimensions of flood protection measures. There are several well-established methodical procedures to estimate low-probability floods. However, a global assessment of the consistency of these methods is difficult to achieve, the "true value" of an extreme flood being not observable. Anyway, a detailed comparison performed on a given case study brings useful information about the statistical and hydrological processes involved in different methods. In this study, the following three different approaches for estimating low-probability floods are compared: a purely statistical approach (ordinary extreme value statistics), a statistical approach based on stochastic rainfall-runoff simulation (SCHADEX method), and a deterministic approach (physically based PMF estimation). These methods are tested for two different Swiss catchments. The results and some intermediate variables are used for assessing potential strengths and weaknesses of each method, as well as for evaluating the consistency of these methods.

  9. Generalized IRT Models for Extreme Response Style

    ERIC Educational Resources Information Center

    Jin, Kuan-Yu; Wang, Wen-Chung

    2014-01-01

    Extreme response style (ERS) is a systematic tendency for a person to endorse extreme options (e.g., strongly disagree, strongly agree) on Likert-type or rating-scale items. In this study, we develop a new class of item response theory (IRT) models to account for ERS so that the target latent trait is free from the response style and the tendency…

  10. Generalized IRT Models for Extreme Response Style

    ERIC Educational Resources Information Center

    Jin, Kuan-Yu; Wang, Wen-Chung

    2014-01-01

    Extreme response style (ERS) is a systematic tendency for a person to endorse extreme options (e.g., strongly disagree, strongly agree) on Likert-type or rating-scale items. In this study, we develop a new class of item response theory (IRT) models to account for ERS so that the target latent trait is free from the response style and the tendency…

  11. A Test-Length Correction to the Estimation of Extreme Proficiency Levels

    ERIC Educational Resources Information Center

    Magis, David; Beland, Sebastien; Raiche, Gilles

    2011-01-01

    In this study, the estimation of extremely large or extremely small proficiency levels, given the item parameters of a logistic item response model, is investigated. On one hand, the estimation of proficiency levels by maximum likelihood (ML), despite being asymptotically unbiased, may yield infinite estimates. On the other hand, with an…

  12. A Test-Length Correction to the Estimation of Extreme Proficiency Levels

    ERIC Educational Resources Information Center

    Magis, David; Beland, Sebastien; Raiche, Gilles

    2011-01-01

    In this study, the estimation of extremely large or extremely small proficiency levels, given the item parameters of a logistic item response model, is investigated. On one hand, the estimation of proficiency levels by maximum likelihood (ML), despite being asymptotically unbiased, may yield infinite estimates. On the other hand, with an…

  13. Estimates of peak flood discharge for 21 sites in the Front Range in Colorado in response to extreme rainfall in September 2013

    USGS Publications Warehouse

    Moody, John A.

    2016-03-21

    Extreme rainfall in September 2013 caused destructive floods in part of the Front Range in Boulder County, Colorado. Erosion from these floods cut roads and isolated mountain communities for several weeks, and large volumes of eroded sediment were deposited downstream, which caused further damage of property and infrastructures. Estimates of peak discharge for these floods and the associated rainfall characteristics will aid land and emergency managers in the future. Several methods (an ensemble) were used to estimate peak discharge at 21 measurement sites, and the ensemble average and standard deviation provided a final estimate of peak discharge and its uncertainty. Because of the substantial erosion and deposition of sediment, an additional estimate of peak discharge was made based on the flow resistance caused by sediment transport effects.Although the synoptic-scale rainfall was extreme (annual exceedance probability greater than 1,000 years, about 450 millimeters in 7 days) for these mountains, the resulting peak discharges were not. Ensemble average peak discharges per unit drainage area (unit peak discharge, [Qu]) for the floods were 1–2 orders of magnitude less than those for the maximum worldwide floods with similar drainage areas and had a wide range of values (0.21–16.2 cubic meters per second per square kilometer [m3 s-1 km-2]). One possible explanation for these differences was that the band of high-accumulation, high-intensity rainfall was narrow (about 50 kilometers wide), oriented nearly perpendicular to the predominant drainage pattern of the mountains, and therefore entire drainage areas were not subjected to the same range of extreme rainfall. A linear relation (coefficient of determination [R2]=0.69) between Qu and the rainfall intensity (ITc, computed for a time interval equal to the time-of-concentration for the drainage area upstream from each site), had the form: Qu=0.26(ITc-8.6), where the coefficient 0.26 can be considered to be an

  14. Materials Response under extreme conditions

    SciTech Connect

    Remington, B A; Lorenz, K T; Pollaine, S; McNaney, J M

    2005-10-06

    Solid state experiments at extreme pressures, 10-100 GPa (0.1-1 Mbar) and strain rates (10{sup 6}-10{sup 8} s{sup -1}) are being developed on high-energy laser facilities. The goal is an experimental capability to test constitutive models for high-pressure, solid-state strength for a variety of materials. Relevant constitutive models are discussed, and our progress in developing a quasi-isentropic, ramped-pressure, shockless drive is given. Designs to test the constitutive models with experiments measuring perturbation growth due to the Rayleigh-Taylor instability in solid-state samples are presented.

  15. Multiscale Measurement of Extreme Response Style

    ERIC Educational Resources Information Center

    Bolt, Daniel M.; Newton, Joseph R.

    2011-01-01

    This article extends a methodological approach considered by Bolt and Johnson for the measurement and control of extreme response style (ERS) to the analysis of rating data from multiple scales. Specifically, it is shown how the simultaneous analysis of item responses across scales allows for more accurate identification of ERS, and more effective…

  16. Estimating the cost of extremely large telescopes

    NASA Astrophysics Data System (ADS)

    Stepp, Larry M.; Daggert, Larry G.; Gillett, Paul E.

    2003-01-01

    For future giant telescopes, control of construction and operation costs will be the key factor in their success. The best way to accomplish this cost control, while maximizing the performance of the telescope, will be through design-to-cost methods that use value engineering techniques to develop the most cost-effective design in terms of performance per dollar. This will require quantifiable measures of performance and cost, including: (1) a way of quantifying science value with scientific merit functions; (2) a way of predicting telescope performance in the presence of real-world disturbances by means of integrated modeling; and (3) a way of predicting the cost of multiple design configurations. Design-to-cost methods should be applied as early as possible in the project, since the majority of the life-cycle costs for the observatory will be locked in by choices made during the conceptual design phase. However, there is a dilemma: how can costs be accurately estimated for systems that have not yet been designed? This paper discusses cost estimating methods and describes their application to estimating the cost of ELTs, showing that the best method to use during the conceptual design phase is parametric cost estimating. Examples of parametric estimating techniques are described, based on experience gained from instrument development programs at NOAO. We then describe efforts underway to collect historical cost information and develop cost estimating relationships in preparation for the conceptual design phase of the Giant Segmented Mirror Telescope.

  17. New Insights into the Estimation of Extreme Geomagnetic Storm Occurrences

    NASA Astrophysics Data System (ADS)

    Ruffenach, Alexis; Winter, Hugo; Lavraud, Benoit; Bernardara, Pietro

    2017-04-01

    Space weather events such as intense geomagnetic storms are major disturbances of the near-Earth environment that may lead to serious impacts on our modern society. As such, it is of great importance to estimate their probability, and in particular that of extreme events. One approach largely used in statistical sciences for extreme events probability estimates is Extreme Value Analysis (EVA). Using this rigorous statistical framework, estimations of the occurrence of extreme geomagnetic storms are performed here based on the most relevant global parameters related to geomagnetic storms, such as ground parameters (e.g. geomagnetic Dst and aa indexes), and space parameters related to the characteristics of Coronal Mass Ejections (CME) (velocity, southward magnetic field component, electric field). Using our fitted model, we estimate the annual probability of a Carrington-type event (Dst = -850nT) to be on the order of 10-3, with a lower limit of the uncertainties on the return period of ˜500 years. Our estimate is significantly higher than that of most past studies, which typically had a return period of a few 100 years at maximum. Thus precautions are required when extrapolating intense values. Currently, the complexity of the processes and the length of available data inevitably leads to significant uncertainties in return period estimates for the occurrence of extreme geomagnetic storms. However, our application of extreme value models for extrapolating into the tail of the distribution provides a mathematically justified framework for the estimation of extreme return periods, thereby enabling the determination of more accurate estimates and reduced associated uncertainties.

  18. A new method for estimating extreme rainfall probabilities

    SciTech Connect

    Harper, G.A.; O'Hara, T.F. ); Morris, D.I. )

    1994-02-01

    As part of an EPRI-funded research program, the Yankee Atomic Electric Company developed a new method for estimating probabilities of extreme rainfall. It can be used, along with other techniques, to improve the estimation of probable maximum precipitation values for specific basins or regions.

  19. Classification of beach response to extreme storms

    NASA Astrophysics Data System (ADS)

    Burvingt, Olivier; Masselink, Gerd; Russell, Paul; Scott, Tim

    2017-10-01

    Extreme storms are responsible for rapid changes to coastlines worldwide. During the 2013/14 winter, the west coast of Europe experienced a sequence of large, storm-induced wave events, representing the most energetic period of waves in the last 60 years. The southwest coast of England underwent significant geomorphological change during that period, but exhibited a range of spatially variable and complex morphological responses, despite being subjected to the same storm sequence. Here, we use the 2013/14 storm response along the southwest coast of England as a natural field laboratory and explain this variability in storm response through the introduction and evaluation of a new classification of how sandy and gravel beaches respond to extreme storms. Cluster analysis was conducted using an unique data set of pre- and post-storm airborne Light Detection and Ranging (LiDAR) data from 157 beach sites based on the net volumetric change (dQnet) and a novel parameter, the longshore variation index (LVI) which quantifies the alongshore morphological variability in beach response. Four main beach response types were identified: (1) fully exposed beaches that experienced large and alongshore uniform sediment losses (dQnet ≈ 100 m3·m- 1); (2) semi-exposed beaches that experienced medium alongshore uniform sediment losses (dQnet ≈ 50 m3·m- 1); (3) sheltered short beaches that experienced limited net sediment change and alongshore variability in beach response; and (4) sheltered long beaches that experienced considerable alongshore variability in beach response and large gross sediment change, but limited net sediment change. The key factors in determining the type of beach response are: exposure to the storm waves, angle of storm wave approach and the degree to which the beach is embayed. These factors are universally applicable on many exposed coastlines worldwide, so the response classification presented here is expected to be widely applicable.

  20. Methodology for estimating extreme winds for probabilistic risk assessments

    SciTech Connect

    Ramsdell, J.V.; Elliott, D.L.; Holladay, C.G.; Hubbe, J.M.

    1986-10-01

    The US Nuclear Reguulatory Commission (NRC) assesses the risks associated with nuclear faciliies using techniques that fall under a generic name of Probabilistic Risk Assessment. In these assessments, potential accident sequences are traced from initiating event to final outcome. At each step of the sequence, a probability of occurrence is assigned to each available alternative. Ultimately, the probability of occurrence of each possible outcome is determined from the probabilities assigned to the initiating events and the alternative paths. Extreme winds are considered in these sequences. As a result, it is necessary to estimate extreme wind probabilities as low as 10/sup -7/yr/sup -1/. When the NRC staff is called on to provide extreme wind estimates, the staff is likely to be subjected to external time and funding constraints. These constraints dictate that the estimates be based on readily available wind data. In general, readily available data will be limited to the data provided by the facility applicant or licensee and the data archived at the National Climatic Data Center in Asheville, North Carolina. This report describes readily available data that can be used in estimating extreme wind probabilities, procedures of screening the data to eliminate erroneous values and for adjusting data to compensate for differences in data collection methods, and statistical methods for making extreme wind estimates. Supporting technical details are presented in several appendices. Estimation of extreme wind probabilities at a given location involves many subjective decisions. The procedures described do not eliminate all of the subjectivity, but they do increase the reproducibility of the analysis. They provide consistent methods for determining probabilities given a set of subjective decisions. By following these procedures, subjective decisions can be identified and documented.

  1. Estimating the extreme low-temperature event using nonparametric methods

    NASA Astrophysics Data System (ADS)

    D'Silva, Anisha

    This thesis presents a new method of estimating the one-in-N low temperature threshold using a non-parametric statistical method called kernel density estimation applied to daily average wind-adjusted temperatures. We apply our One-in-N Algorithm to local gas distribution companies (LDCs), as they have to forecast the daily natural gas needs of their consumers. In winter, demand for natural gas is high. Extreme low temperature events are not directly related to an LDCs gas demand forecasting, but knowledge of extreme low temperatures is important to ensure that an LDC has enough capacity to meet customer demands when extreme low temperatures are experienced. We present a detailed explanation of our One-in-N Algorithm and compare it to the methods using the generalized extreme value distribution, the normal distribution, and the variance-weighted composite distribution. We show that our One-in-N Algorithm estimates the one-in- N low temperature threshold more accurately than the methods using the generalized extreme value distribution, the normal distribution, and the variance-weighted composite distribution according to root mean square error (RMSE) measure at a 5% level of significance. The One-in- N Algorithm is tested by counting the number of times the daily average wind-adjusted temperature is less than or equal to the one-in- N low temperature threshold.

  2. Estimating missing daily temperature extremes in Jaffna, Sri Lanka

    NASA Astrophysics Data System (ADS)

    Thevakaran, A.; Sonnadara, D. U. J.

    2017-02-01

    The accuracy of reconstructing missing daily temperature extremes in the Jaffna climatological station, situated in the northern part of the dry zone of Sri Lanka, is presented. The adopted method utilizes standard departures of daily maximum and minimum temperature values at four neighbouring stations, Mannar, Anuradhapura, Puttalam and Trincomalee to estimate the standard departures of daily maximum and minimum temperatures at the target station, Jaffna. The daily maximum and minimum temperatures from 1966 to 1980 (15 years) were used to test the validity of the method. The accuracy of the estimation is higher for daily maximum temperature compared to daily minimum temperature. About 95% of the estimated daily maximum temperatures are within ±1.5 °C of the observed values. For daily minimum temperature, the percentage is about 92. By calculating the standard deviation of the difference in estimated and observed values, we have shown that the error in estimating the daily maximum and minimum temperatures is ±0.7 and ±0.9 °C, respectively. To obtain the best accuracy when estimating the missing daily temperature extremes, it is important to include Mannar which is the nearest station to the target station, Jaffna. We conclude from the analysis that the method can be applied successfully to reconstruct the missing daily temperature extremes in Jaffna where no data is available due to frequent disruptions caused by civil unrests and hostilities in the region during the period, 1984 to 2000.

  3. Estimation of fatigue and extreme load distributions from limited data with application to wind energy systems.

    SciTech Connect

    Fitzwater, LeRoy M.

    2004-01-01

    An estimate of the distribution of fatigue ranges or extreme loads for wind turbines may be obtained by separating the problem into two uncoupled parts, (1) a turbine specific portion, independent of the site and (2) a site-specific description of environmental variables. We consider contextually appropriate probability models to describe the turbine specific response for extreme loads or fatigue. The site-specific portion is described by a joint probability distribution of a vector of environmental variables, which characterize the wind process at the hub-height of the wind turbine. Several approaches are considered for combining the two portions to obtain an estimate of the extreme load, e.g., 50-year loads or fatigue damage. We assess the efficacy of these models to obtain accurate estimates, including various levels of epistemic uncertainty, of the turbine response.

  4. Forecasting coastal morphologic response to extreme storms

    NASA Astrophysics Data System (ADS)

    Plant, N. G.; Stockdon, H. F.; Sallenger, A. H.; Thompson, D. M.; Reniers, A. J.; McCall, R.

    2008-12-01

    The U.S. Geological Survey's Extreme Storm Research Group has developed a program to measure and forecast coastal topographic and bathymetric change associated with major hurricanes and other extreme storm events. The measurements provide a baseline data set that documents the rapid changes associated with storms. These data are being applied to quantify changes in shoreline position, dune elevation, and other types of morphologic response such as breaching; to construct empirical predictive models that relate hurricane wave and surge levels to morphologic changes; and to evaluate a variety of detailed process models. These process models typically couple wind, wave, water-level, water-velocity, and sediment- transport processes in order to predict patterns of erosion and deposition. These tools enable forecasts of coastal change on timescales that range from days (i.e., immediately before hurricane landfall) to decades (i.e., integrated over many events). Here, we present examples of our prediction results. In particular, we will present an assessment of the accuracy of some of these models and point out the model sensitivity to uncertainty in the model inputs. We conclude that morphologic forecasts can benefit from an integrated approach that utilizes knowledge from a variety of observations and numerical models.

  5. The Estimation of Probability of Extreme Events for Small Samples

    NASA Astrophysics Data System (ADS)

    Pisarenko, V. F.; Rodkin, M. V.

    2017-02-01

    The most general approach to the study of rare extreme events is based on the extreme value theory. The fundamental General Extreme Value Distribution lies in the basis of this theory serving as the limit distribution for normalized maxima. It depends on three parameters. Usually the method of maximum likelihood (ML) is used for the estimation that possesses well-known optimal asymptotic properties. However, this method works efficiently only when sample size is large enough ( 200-500), whereas in many applications the sample size does not exceed 50-100. For such sizes, the advantage of the ML method in efficiency is not guaranteed. We have found that for this situation the method of statistical moments (SM) works more efficiently over other methods. The details of the estimation for small samples are studied. The SM is applied to the study of extreme earthquakes in three large virtual seismic zones, representing the regime of seismicity in subduction zones, intracontinental regime of seismicity, and the regime in mid-ocean ridge zones. The 68%-confidence domains for pairs of parameter (ξ, σ) and (σ, μ) are derived.

  6. A Simulation Study on Methods of Correcting for the Effects of Extreme Response Style

    ERIC Educational Resources Information Center

    Wetzel, Eunike; Böhnke, Jan R.; Rose, Norman

    2016-01-01

    The impact of response styles such as extreme response style (ERS) on trait estimation has long been a matter of concern to researchers and practitioners. This simulation study investigated three methods that have been proposed for the correction of trait estimates for ERS effects: (a) mixed Rasch models, (b) multidimensional item response models,…

  7. An Extreme Learning Machine Approach to Density Estimation Problems.

    PubMed

    Cervellera, Cristiano; Maccio, Danilo

    2017-01-17

    In this paper, we discuss how the extreme learning machine (ELM) framework can be effectively employed in the unsupervised context of multivariate density estimation. In particular, two algorithms are introduced, one for the estimation of the cumulative distribution function underlying the observed data, and one for the estimation of the probability density function. The algorithms rely on the concept of $F$-discrepancy, which is closely related to the Kolmogorov-Smirnov criterion for goodness of fit. Both methods retain the key feature of the ELM of providing the solution through random assignment of the hidden feature map and a very light computational burden. A theoretical analysis is provided, discussing convergence under proper hypotheses on the chosen activation functions. Simulation tests show how ELMs can be successfully employed in the density estimation framework, as a possible alternative to other standard methods.

  8. Response Strength in Extreme Multiple Schedules

    PubMed Central

    McLean, Anthony P; Grace, Randolph C; Nevin, John A

    2012-01-01

    Four pigeons were trained in a series of two-component multiple schedules. Reinforcers were scheduled with random-interval schedules. The ratio of arranged reinforcer rates in the two components was varied over 4 log units, a much wider range than previously studied. When performance appeared stable, prefeeding tests were conducted to assess resistance to change. Contrary to the generalized matching law, logarithms of response ratios in the two components were not a linear function of log reinforcer ratios, implying a failure of parameter invariance. Over a 2 log unit range, the function appeared linear and indicated undermatching, but in conditions with more extreme reinforcer ratios, approximate matching was observed. A model suggested by McLean (1991), originally for local contrast, predicts these changes in sensitivity to reinforcer ratios somewhat better than models by Herrnstein (1970) and by Williams and Wixted (1986). Prefeeding tests of resistance to change were conducted at each reinforcer ratio, and relative resistance to change was also a nonlinear function of log reinforcer ratios, again contrary to conclusions from previous work. Instead, the function suggests that resistance to change in a component may be determined partly by the rate of reinforcement and partly by the ratio of reinforcers to responses. PMID:22287804

  9. Areal rainfall construction and estimation of extreme quantiles.

    NASA Astrophysics Data System (ADS)

    Penot, David; Paquet, Emmanuel; Lang, Michel

    2014-05-01

    Areal rainfall estimation and extrapolation to extremes is a key issue for catchment flood study. It is a tricky problem which deals with spatial interpolation (to build an estimate at the catchment's scale based on few rain gauges only), and probabilistic extrapolation (for extreme values estimation). In this study, several methods to build an areal rainfall estimation are compared. The first method is the commonly used Thiessen polygons. A second way to build an areal rainfall relies on the SPAZM method [Gottardi, 2012], in which daily rain fields are reconstructed at a 1km2 resolution, with an interpolation scheme integrating the altitude of the pixel and the weather type of the day. These two methods are compared to the stochastic rain field simulator SAMPO [Leblois et Creutin, 2013], which is an adaptation of the turning band method allowing to generate over 50 years of realistic rain fields. Several questions are tackled in this study: In a Thiessen estimation, how many rain gauges should be selected ? Which weighting scheme should be used ? SPAZM is an interpolator designed to produce unbiased mean annual precipitation (MAP) at a catchment's scale. So if a Thiessen areal rainfall is scaled to fit the MAP given by SPAZM, how does it affect its extreme rainfall estimation ? If a virtual rain gauges network is extracted from the rain fields generated by SAMPO, how do behave the Thiessen and SPAZM areal rainfall estimations based on these point values ? At the end, some abatement functions are obtained, showing the influence of the catchment's area and the options chosen to build the areal rainfall estimations. References: F. Gottardi, C. Obled, J. Gailhard, and E. Paquet, Statistical reanalysis of precipitation fields based on ground network data and weather patterns : Application over french mountains. Journal of Hydrology, 432-433:154 - 167, 2012. ISSN 0022-1694. E. Leblois and J-D. Creutin, Space-time simulation of intermittent rainfall with prescribed

  10. A modified estimation distribution algorithm based on extreme elitism.

    PubMed

    Gao, Shujun; de Silva, Clarence W

    2016-12-01

    An existing estimation distribution algorithm (EDA) with univariate marginal Gaussian model was improved by designing and incorporating an extreme elitism selection method. This selection method highlighted the effect of a few top best solutions in the evolution and advanced EDA to form a primary evolution direction and obtain a fast convergence rate. Simultaneously, this selection can also keep the population diversity to make EDA avoid premature convergence. Then the modified EDA was tested by means of benchmark low-dimensional and high-dimensional optimization problems to illustrate the gains in using this extreme elitism selection. Besides, no-free-lunch theorem was implemented in the analysis of the effect of this new selection on EDAs.

  11. Evaluation of extreme precipitation estimates from TRMM in Angola

    NASA Astrophysics Data System (ADS)

    Pombo, Sandra; de Oliveira, Rodrigo Proença

    2015-04-01

    In situ ground observation measurement of precipitation is difficult in vast and sparsely populated areas, with poor road networks. This paper examines the use of remote sensors installed in satellites and evaluates the accuracy of TRMM 3B42 annual maximum daily precipitation estimates in Angola, in West Africa, a region where ground monitoring networks are generally. TRMM 3B42 estimates of annual maximum daily precipitation are compared to ground observation data from 159 locations. As a direct comparison between the two datasets for a common specific period and sites is not possible, a statistical approach was adopted to test the hypothesis that the TRMM 3B42 estimates and the ground monitoring records exhibit similar statistical characteristics. The study shows that the annual maximum daily precipitation estimates obtained from TRMM 3B42 slightly underestimate the quantiles obtained from the in situ observations. The use of remote sensing products to estimate extreme precipitation values for engineering design purposes is however promising. A maximum daily precipitation map for a return period of 20 years was computed and in the future, as the length of the remote sensing data series increases, it may be possible to estimate annual maximum daily precipitation estimates exclusively from these datasets for larger return periods. The paper also presents maps of the PdT/PDT ratios, where PdT is the annual maximum precipitation for a duration d and a return period of T years, and PDT is the annual maximum daily precipitation for a return period of T years. In conjunction with these maps it is possible to estimate the maximum precipitation for durations between 3 h and 5 days.

  12. Estimating temporal changes in extreme rainfall in Sicily Region (Italy)

    NASA Astrophysics Data System (ADS)

    Bonaccorso, Brunella; Aronica, Giuseppe

    2016-04-01

    An intensification of extreme rainfall events have characterized several areas of peninsular and insular Italy since the early 2000s, suggesting an upward ongoing trend likely driven by climate change. In the present study temporal changes in 1-, 3-, 6-, 12- and 24-hour annual maxima rainfall series from more than 200 sites in Sicily region (Italy) are examined. A regional study is performed in order to reduce the uncertainty in change detection related to the limited length of the available records of extreme rainfall series. More specifically, annual maxima series are treated according to a regional flood index - type approach to frequency analysis, by assuming stationarity on a decadal time scale. First a cluster analysis using at-site characteristics is used to determine homogeneous rainfall regions. Then, potential changes in regional L-moment ratios are analyzed using a 10-year moving window. Furthermore, the shapes of regional growth curves, derived by splitting the records into separate decades, are compared. In addition, a jackknife procedure is used to assess uncertainty in the fitted growth curves and to identify significant trends in quantile estimates. Results reveal that, despite L-moment ratios show a general decreasing trend and that growth curves corresponding to the last decade (2000-2009) are usually less steep than the ones of the previous periods, rainfall quantile estimates have increased during the 2000s due to a large increase in regional average median, mainly in Western Sicily.

  13. Estimating extreme river discharges in Europe through a Bayesian network

    NASA Astrophysics Data System (ADS)

    Paprotny, Dominik; Morales-Nápoles, Oswaldo

    2017-06-01

    Large-scale hydrological modelling of flood hazards requires adequate extreme discharge data. In practise, models based on physics are applied alongside those utilizing only statistical analysis. The former require enormous computational power, while the latter are mostly limited in accuracy and spatial coverage. In this paper we introduce an alternate, statistical approach based on Bayesian networks (BNs), a graphical model for dependent random variables. We use a non-parametric BN to describe the joint distribution of extreme discharges in European rivers and variables representing the geographical characteristics of their catchments. Annual maxima of daily discharges from more than 1800 river gauges (stations with catchment areas ranging from 1.4 to 807 000 km2) were collected, together with information on terrain, land use and local climate. The (conditional) correlations between the variables are modelled through copulas, with the dependency structure defined in the network. The results show that using this method, mean annual maxima and return periods of discharges could be estimated with an accuracy similar to existing studies using physical models for Europe and better than a comparable global statistical model. Performance of the model varies slightly between regions of Europe, but is consistent between different time periods, and remains the same in a split-sample validation. Though discharge prediction under climate change is not the main scope of this paper, the BN was applied to a large domain covering all sizes of rivers in the continent both for present and future climate, as an example. Results show substantial variation in the influence of climate change on river discharges. The model can be used to provide quick estimates of extreme discharges at any location for the purpose of obtaining input information for hydraulic modelling.

  14. Response of spent LWR fuel to extreme environments

    SciTech Connect

    Sandoval, R.P.; Burian, R.J.; Kok, K.D.; DiSalvo, R.; Balmert, M.E.; Freeman-Kelly, R.; Fentiman, A.W.

    1986-01-01

    The research reported in this paper addresses the radiological source term which could arise when irradiated fuel in transport from a commercial light water reactor is exposed to the extreme environments postulated for some transportation accidents, specifically those involving a fire. The release of spent fuel radionuclides to the environment requires a breach of both the cask and the fuel rod cladding. Past research has given significant emphasis to evaluating the response of the shipping cask to mechanical and/or thermal loads from hypothetical accidents. Less consideration has been given to evaluating the response of the fuel rods to these environments. In this paper, the response of the fuel rods to an extreme thermal event was experimentally evaluated and the quantity of solid fuel material that could be released from the fuel rods to the cask cavity was estimated. Briefly, the objectives of this study were as follows: (1) Identify those conditions within a transportation cask which might produce fuel-rod cladding failure, emphasizing conditions associated with fires, and (2) Determine by experiment and analysis the nature of the source term so produced. The release of radionuclides from coolant or deposits on the outer surfaces of the fuel assembly was not addressed in this study. 6 figs., 2 figs.

  15. Research progress of extreme climate and its vegetation response

    NASA Astrophysics Data System (ADS)

    Cui, Xiaolin; Wei, Xiaoqing; Wang, Tao

    2017-08-01

    The IPCC’s fifth assessment report indicates that climate warming is unquestionable, the frequency and intensity of extreme weather events may increase, and extreme weather events can destroy the growth conditions of vegetation that is otherwise in a stable condition. Therefore, it is essential to research the formation of extreme weather events and its ecological response, both in terms scientific development and the needs of societal development. This paper mainly examines these issues from the following aspects: (1) the definition of extreme climate events and the methods of studying the associated response of vegetation; (2) the research progress on extreme climate events and their vegetation response; and (3) the future direction of research on extreme climate and its vegetation response.

  16. Combining Empirical and Stochastic Models for Extreme Floods Estimation

    NASA Astrophysics Data System (ADS)

    Zemzami, M.; Benaabidate, L.

    2013-12-01

    Hydrological models can be defined as physical, mathematical or empirical. The latter class uses mathematical equations independent of the physical processes involved in the hydrological system. The linear regression and Gradex (Gradient of Extreme values) are classic examples of empirical models. However, conventional empirical models are still used as a tool for hydrological analysis by probabilistic approaches. In many regions in the world, watersheds are not gauged. This is true even in developed countries where the gauging network has continued to decline as a result of the lack of human and financial resources. Indeed, the obvious lack of data in these watersheds makes it impossible to apply some basic empirical models for daily forecast. So we had to find a combination of rainfall-runoff models in which it would be possible to create our own data and use them to estimate the flow. The estimated design floods would be a good choice to illustrate the difficulties facing the hydrologist for the construction of a standard empirical model in basins where hydrological information is rare. The construction of the climate-hydrological model, which is based on frequency analysis, was established to estimate the design flood in the Anseghmir catchments, Morocco. The choice of using this complex model returns to its ability to be applied in watersheds where hydrological information is not sufficient. It was found that this method is a powerful tool for estimating the design flood of the watershed and also other hydrological elements (runoff, volumes of water...).The hydrographic characteristics and climatic parameters were used to estimate the runoff, water volumes and design flood for different return periods.

  17. Mood responses to athletic performance in extreme environments.

    PubMed

    Lane, Andrew M; Terry, Peter C; Stevens, Matthew J; Barney, Sam; Dinsdale, Sarah L

    2004-10-01

    Competition at elite level can require athletes to perform optimally in extreme environmental conditions. This review focuses on mood responses in such conditions and proposes practical guidelines for those working with athletes. Different environments are considered, including altitude and extreme heat and cold. Performing in extreme heat, cold or at altitude can produce a stress response characterized by increased negative mood and relatively poor performance. Positive adaptations to extreme conditions can be accelerated, but the rate of adaptation appears to be highly individualized. Monitoring mood responses to training under normal conditions provides a basis for identifying the psychological effects of extreme conditions. It is suggested that practitioners carefully monitor the interplay between vigour, fatigue and depressed mood. Reductions in vigour and increases in fatigue are normal responses to hard training, but other aspects of mood disturbance, especially symptoms of depressed mood--however small--may be indicative of a maladaptive response, and practitioners should consider intervening when such symptoms first appear.

  18. Vegetation responses to extreme hydrological events: sequence matters.

    PubMed

    Miao, Shili; Zou, Chris B; Breshears, David D

    2009-01-01

    Extreme hydrological events such as flood and drought drive vegetation dynamics and are projected to increase in frequency in association with climate change, which could result in sequences of extreme events. However, experimental studies of vegetation responses to climate have largely focused on responses to a trend in climate or to a single extreme event but have largely overlooked the potential for complex responses to specific sequences of extreme events. Here we document, on the basis of an experiment with seedlings of three types of subtropical wetland tree species, that mortality can be amplified and growth can even be stimulated, depending on event sequence. Our findings indicate that the impacts of multiple extreme events cannot be modeled by simply summing the projected effects of individual extreme events but, rather, that models should take into account event sequences.

  19. Climate change, climatic variation and extreme biological responses

    PubMed Central

    Brereton, Tom; Chapman, Jason W.; Dytham, Calvin; Fox, Richard; Pearce-Higgins, James W.; Roy, David B.; Hill, Jane K.; Thomas, Chris D.

    2017-01-01

    Extreme climatic events could be major drivers of biodiversity change, but it is unclear whether extreme biological changes are (i) individualistic (species- or group-specific), (ii) commonly associated with unusual climatic events and/or (iii) important determinants of long-term population trends. Using population time series for 238 widespread species (207 Lepidoptera and 31 birds) in England since 1968, we found that population ‘crashes’ (outliers in terms of species' year-to-year population changes) were 46% more frequent than population ‘explosions’. (i) Every year, at least three species experienced extreme changes in population size, and in 41 of the 44 years considered, some species experienced population crashes while others simultaneously experienced population explosions. This suggests that, even within the same broad taxonomic groups, species are exhibiting individualistic dynamics, most probably driven by their responses to different, short-term events associated with climatic variability. (ii) Six out of 44 years showed a significant excess of species experiencing extreme population changes (5 years for Lepidoptera, 1 for birds). These ‘consensus years’ were associated with climatically extreme years, consistent with a link between extreme population responses and climatic variability, although not all climatically extreme years generated excess numbers of extreme population responses. (iii) Links between extreme population changes and long-term population trends were absent in Lepidoptera and modest (but significant) in birds. We conclude that extreme biological responses are individualistic, in the sense that the extreme population changes of most species are taking place in different years, and that long-term trends of widespread species have not, to date, been dominated by these extreme changes. This article is part of the themed issue ‘Behavioural, ecological and evolutionary responses to extreme climatic events’. PMID:28483874

  20. Hematocrit estimation using online sequential extreme learning machine.

    PubMed

    Huynh, Hieu Trung; Won, Yonggwan; Kim, Jinsul

    2015-01-01

    Hematocrit is a blood test that is defined as the volume percentage of red blood cells in the whole blood. It is one of the important indicators for clinical decision making and the most effective factor in glucose measurement using handheld devices. In this paper, a method for hematocrit estimation that is based upon the transduced current curve and the neural network is presented. The salient points of this method are that (1) the neural network is trained by the online sequential extreme learning machine (OS-ELM) in which the devices can be still trained with new samples during the using process and (2) the extended features are used to reduce the number of current points which can save the battery power of devices and speed up the measurement process.

  1. Estimating the Spatial Distribution of Population without Power during Extreme Weather Events

    SciTech Connect

    Omitaomu, Olufemi A; Fernandez, Steven J; Bhaduri, Budhendra L

    2010-01-01

    One challenge in emergency preparedness and response during extreme weather events such as hurricanes and ice storms is estimating how many people may be without power and how long they could be without power. In this presentation, we will discuss a method for estimating the spatial distribution of people without power during extreme weather events. The method is based on a directional nearest-neighbor approach in which grid cells representing substation locations acquire other grid cells representing customers/population demand with respect to the capacity of each substation. We also present a method for estimating restoration time in case of an outage. The application of these methods during the 2008 hurricane season will also be discussed.

  2. Estimation of extreme marine hydrodynamic variables in western Laizhou Bay

    NASA Astrophysics Data System (ADS)

    Dai, Yanchen; Qiao, Lulu; Xu, Jishang; Zhou, Chunyan; Ding, Dong; Bi, Wei

    2015-06-01

    Laizhou Bay and its adjacent waters are of great importance to China's marine oil and gas development. It is therefore crucial to estimate return-period values of marine environmental variables in this region to ensure the safety and success of maritime engineering and maritime exploration. In this study, we used numerical simulations to estimate extreme wave height, sea current velocity and sea-level height in western Laizhou Bay. The results show that the sea-level rise starts at the mouth of the bay, increases toward west/southwest, and reaches its maximum in the deepest basin of the bay. The 100-year return-period values of sea level rise can reach 3.4-4.0 m in the western bay. The elevation of the western part of the Qingdong Oil Field would remain above the sea surface during extreme low sea level, while the rest of the oil field would be 1.6-2.4 m below the sea surface. The return-period value of wave height is strongly affected by water depth; in fact, its spatial distribution is similar to the isobath's. The 100-year return-period values of effective wave height can be 6 m or higher in the central bay and be more than 1 m in the shallow water near shore. The 100-year return-period values of current velocity is about 1.2-1.8 m s-1 in the Qingdong Oil Field. These results provide scientific basis for ensuring construction safety and reducing construction cost.

  3. Estimating changes in temperature extremes from millennial-scale climate simulations using generalized extreme value (GEV) distributions

    NASA Astrophysics Data System (ADS)

    Huang, Whitney K.; Stein, Michael L.; McInerney, David J.; Sun, Shanshan; Moyer, Elisabeth J.

    2016-07-01

    Changes in extreme weather may produce some of the largest societal impacts of anthropogenic climate change. However, it is intrinsically difficult to estimate changes in extreme events from the short observational record. In this work we use millennial runs from the Community Climate System Model version 3 (CCSM3) in equilibrated pre-industrial and possible future (700 and 1400 ppm CO2) conditions to examine both how extremes change in this model and how well these changes can be estimated as a function of run length. We estimate changes to distributions of future temperature extremes (annual minima and annual maxima) in the contiguous United States by fitting generalized extreme value (GEV) distributions. Using 1000-year pre-industrial and future time series, we show that warm extremes largely change in accordance with mean shifts in the distribution of summertime temperatures. Cold extremes warm more than mean shifts in the distribution of wintertime temperatures, but changes in GEV location parameters are generally well explained by the combination of mean shifts and reduced wintertime temperature variability. For cold extremes at inland locations, return levels at long recurrence intervals show additional effects related to changes in the spread and shape of GEV distributions. We then examine uncertainties that result from using shorter model runs. In theory, the GEV distribution can allow prediction of infrequent events using time series shorter than the recurrence interval of those events. To investigate how well this approach works in practice, we estimate 20-, 50-, and 100-year extreme events using segments of varying lengths. We find that even using GEV distributions, time series of comparable or shorter length than the return period of interest can lead to very poor estimates. These results suggest caution when attempting to use short observational time series or model runs to infer infrequent extremes.

  4. Crop insurance evaluation in response to extreme events

    NASA Astrophysics Data System (ADS)

    Moriondo, Marco; Ferrise, Roberto; Bindi, Marco

    2013-04-01

    Crop yield insurance has been indicated as a tool to manage the uncertainties of crop yields (Sherrick et al., 2004) but the changes in crop yield variability as expected in the near future should be carefully considered for a better quantitative assessment of farmer's revenue risk and insurance values in a climatic change regime (Moriondo et al., 2011). Under this point of view, mechanistic crop growth models coupled to the output of General/Regional Circulation Models (GCMs, RCMs) offer a valuable tool to evaluate crop responses to climatic change and this approach has been extensively used to describe crop yield distribution in response to climatic change considering changes in both mean climate and variability. In this work, we studied the effect of a warmer climate on crop yield distribution of durum wheat (Triticum turgidum L. subsp durum) in order to assess the economic significance of climatic change in a risk decision context. Specifically, the outputs of 6 RCMs (Tmin, Tmax, Rainfall, Global Radiation) (van der Linden and Mitchell 2009) have been statistically downscaled by a stochastic weather generator over eight sites across the Mediterranean basin and used to feed the crop growth model Sirius Quality. Three time slices were considered i) the present period PP (average of the period 1975-1990, [CO2]=350 ppm), 2020 (average of the period 2010-2030, SRES scenario A1b, [CO2]=415 ppm) and 2040 (average of the period 2030-2050, SRES scenario A1b, [CO2]=480 ppm). The effect of extreme climate events (i.e. heat stress at anthesis stage) was also considered. The outputs of these simulations were used to estimate the expected payout per hectare from insurance triggered when yields fall below a specific threshold defined as "the insured yield". For each site, the threshold was calculated as a fraction (70%) of the median of yield distribution under PP that represents the percentage of median yield above which indemnity payments are triggered. The results

  5. Scaling multiconjugate adaptive optics performance estimates to extremely large telescopes

    NASA Astrophysics Data System (ADS)

    Ellerbroek, Brent L.; Rigaut, Francois J.

    2000-07-01

    Multi-conjugate adaptive optics (MCAO) is a key technology for extremely large, ground-based telescopes (ELT's) because it enables near-uniform atmospheric turbulence compensation over fields-of-view considerably larger than can be corrected with more conventional AO systems. Quantitative performance evaluation using detailed analytical or simulation models is difficult, however, due to the very large number of deformable mirror (DM) actuators, wave front sensors (WFS) subapertures, and guide stars which might comprise an MCAO system for an ELT. This paper employs more restricted minimal variance estimation methods to evaluate the fundamental performance limits imposed by anisoplanatism alone upon MCAO performance for a range of sample cases. Each case is defined by a atmospheric turbulence profile, telescope aperture diameter, field-of-view, guide star constellation, and set of DM conjugate ranges. For a Kolmogorov turbulence spectrum with an infinite outer scale, MCAO performance for a whole range of aperture diameters and proportional fields-of-view can be computed at once using a scaling law analogous to the (D/dO)5/3 formula for the cone effect. For 30 meter telescopes, useful levels of performance are possible across a 1.0 - 2.0 arc minute square field-of-view using 5 laser guide stars (LGS's) and 3 DM's, and somewhat larger fields can be corrected using 9 guide stars and 4 mirrors. 3 or more tip/tilt natural guide stars (NGS's) are necessary to detect modes of tilt anisoplanatism which cannot be detected using LGS's, however. LGS MCAO performance is a quite weak function of aperture diameter for a fixed field-of-view, and it is tempting to scale these results to larger apertures. NGS MCAO performance is moderately superior to LGS MCAO if the NGS constellation is within the compensated field-of-view, but degrades rapidly as the guide stars move away from the field. The penalty relaxes slowly with increasing aperture diameter, but how to extrapolate this trend

  6. Public Health System Response to Extreme Weather Events.

    PubMed

    Hunter, Mark D; Hunter, Jennifer C; Yang, Jane E; Crawley, Adam W; Aragón, Tomás J

    2016-01-01

    Extreme weather events, unpredictable and often far-reaching, constitute a persistent challenge for public health preparedness. The goal of this research is to inform public health systems improvement through examination of extreme weather events, comparing across cases to identify recurring patterns in event and response characteristics. Structured telephone-based interviews were conducted with representatives from health departments to assess characteristics of recent extreme weather events and agencies' responses. Response activities were assessed using the Centers for Disease Control and Prevention Public Health Emergency Preparedness Capabilities framework. Challenges that are typical of this response environment are reported. Forty-five local health departments in 20 US states. Respondents described public health system responses to 45 events involving tornadoes, flooding, wildfires, winter weather, hurricanes, and other storms. Events of similar scale were infrequent for a majority (62%) of the communities involved; disruption to critical infrastructure was universal. Public Health Emergency Preparedness Capabilities considered most essential involved environmental health investigations, mass care and sheltering, surveillance and epidemiology, information sharing, and public information and warning. Unanticipated response activities or operational constraints were common. We characterize extreme weather events as a "quadruple threat" because (1) direct threats to population health are accompanied by damage to public health protective and community infrastructure, (2) event characteristics often impose novel and pervasive burdens on communities, (3) responses rely on critical infrastructures whose failure both creates new burdens and diminishes response capacity, and (4) their infrequency and scale further compromise response capacity. Given the challenges associated with extreme weather events, we suggest opportunities for organizational learning and

  7. (When and where) Do extreme climate events trigger extreme ecosystem responses? - Development and initial results of a holistic analysis framework

    NASA Astrophysics Data System (ADS)

    Hauber, Eva K.; Donner, Reik V.

    2015-04-01

    In the context of ongoing climate change, extremes are likely to increase in magnitude and frequency. One of the most important consequences of these changes is that the associated ecological risks and impacts are potentially rising as well. In order to better anticipate and understand these impacts, it therefore becomes more and more crucial to understand the general connection between climate extremes and the response and functionality of ecosystems. Among other region of the world, Europe presents an excellent test case for studies concerning the interaction between climate and biosphere, since it lies in the transition region between cold polar and warm tropical air masses and thus covers a great variety of different climatic zones and associated terrestrial ecosystems. The large temperature differences across the continent make this region particularly interesting for investigating the effects of climate change on biosphere-climate interactions. However, previously used methods for defining an extreme event typically disregard the necessity of taking seasonality as well as seasonal variance appropriately into account. Furthermore, most studies have focused on the impacts of individual extreme events instead of considering a whole inventory of extremes with their respective spatio-temporal extents. In order to overcome the aforementioned research gaps, this work introduces a new approach to studying climate-biosphere interactions associated with extreme events, which comprises three consecutive steps: (1) Since Europe exhibits climatic conditions characterized by marked seasonality, a novel method is developed to define extreme events taking into account the seasonality in all quantiles of the probability distribution of the respective variable of interest. This is achieved by considering kernel density estimates individually for each observation date during the year, including the properly weighted information from adjacent dates. By this procedure, we obtain

  8. Streamflow response to increasing precipitation extremes altered by forest management

    NASA Astrophysics Data System (ADS)

    Kelly, Charlene N.; McGuire, Kevin J.; Miniat, Chelcy Ford; Vose, James M.

    2016-04-01

    Increases in extreme precipitation events of floods and droughts are expected to occur worldwide. The increase in extreme events will result in changes in streamflow that are expected to affect water availability for human consumption and aquatic ecosystem function. We present an analysis that may greatly improve current streamflow models by quantifying the impact of the interaction between forest management and precipitation. We use daily long-term data from paired watersheds that have undergone forest harvest or species conversion. We find that interactive effects of climate change, represented by changes in observed precipitation trends, and forest management regime, significantly alter expected streamflow most often during extreme events, ranging from a decrease of 59% to an increase of 40% in streamflow, depending upon management. Our results suggest that vegetation might be managed to compensate for hydrologic responses due to climate change to help mitigate effects of extreme changes in precipitation.

  9. Response of Simple, Model Systems to Extreme Conditions

    SciTech Connect

    Ewing, Rodney C.; Lang, Maik

    2015-07-30

    The focus of the research was on the application of high-pressure/high-temperature techniques, together with intense energetic ion beams, to the study of the behavior of simple oxide systems (e.g., SiO2, GeO2, CeO2, TiO2, HfO2, SnO2, ZnO and ZrO2) under extreme conditions. These simple stoichiometries provide unique model systems for the analysis of structural responses to pressure up to and above 1 Mbar, temperatures of up to several thousands of kelvin, and the extreme energy density generated by energetic heavy ions (tens of keV/atom). The investigations included systematic studies of radiation- and pressure-induced amorphization of high P-T polymorphs. By studying the response of simple stoichiometries that have multiple structural “outcomes”, we have established the basic knowledge required for the prediction of the response of more complex structures to extreme conditions. We especially focused on the amorphous state and characterized the different non-crystalline structure-types that result from the interplay of radiation and pressure. For such experiments, we made use of recent technological developments, such as the perforated diamond-anvil cell and in situ investigation using synchrotron x-ray sources. We have been particularly interested in using extreme pressures to alter the electronic structure of a solid prior to irradiation. We expected that the effects of modified band structure would be evident in the track structure and morphology, information which is much needed to describe theoretically the fundamental physics of track-formation. Finally, we investigated the behavior of different simple-oxide, composite nanomaterials (e.g., uncoated nanoparticles vs. core/shell systems) under coupled, extreme conditions. This provided insight into surface and boundary effects on phase stability under extreme conditions.

  10. Estimating the frequency of extreme rainfall using weather radar and stochastic storm transposition

    NASA Astrophysics Data System (ADS)

    Wright, Daniel B.; Smith, James A.; Villarini, Gabriele; Baeck, Mary Lynn

    2013-04-01

    Spatial and temporal variability in extreme rainfall, and its interactions with land cover and the drainage network, is an important driver of flood response. "Design storms," which are commonly used for flood risk assessment, however, are assumed to be uniform in space and either uniform or highly idealized in time. The impacts of these and other commonly-made assumptions are rarely considered, and their impacts on flood risk estimates are poorly understood. This study presents an alternate framework for rainfall frequency analysis that couples stochastic storm transposition (SST) with "storm catalogs" developed from a ten-year high-resolution (15-min, 1-km2) radar rainfall dataset for the region surrounding Charlotte, North Carolina, USA. The SST procedure involves spatial and temporal resampling from these storm catalogs to reconstruct the regional climatology of extreme rainfall. SST-based intensity-duration-frequency (IDF) estimates are driven by the spatial and temporal rainfall variability from weather radar observations, are tailored specifically to the chosen watershed, and do not require simplifying assumptions of storm structure. We are able to use the SST procedure to reproduce IDF estimates from conventional methods for four urban watersheds in Charlotte. We demonstrate that extreme rainfall can vary substantially in time and in space, with potentially important flood risk implications that cannot be assessed using conventional techniques. SST coupled with high-resolution radar rainfall fields represents a useful alternative to conventional design storms for flood risk assessment, the full advantages of which can be realized when the concept is extended to flood frequency analysis using a distributed hydrologic model.

  11. Mangrove species' responses to winter air temperature extremes in China

    USGS Publications Warehouse

    Chen, Luzhen; Wang, Wenqing; Li, Qingshun Q.; Zhang, Yihui; Yang, Shengchang; Osland, Michael J.; Huang, Jinliang; Peng, Congjiao

    2017-01-01

    The global distribution and diversity of mangrove forests is greatly influenced by the frequency and intensity of winter air temperature extremes. However, our understanding of how different mangrove species respond to winter temperature extremes has been lacking because extreme freezing and chilling events are, by definition, relatively uncommon and also difficult to replicate experimentally. In this study, we investigated species-specific variation in mangrove responses to winter temperature extremes in China. In 10 sites that span a latitudinal gradient, we quantified species-specific damage and recovery following a chilling event, for mangrove species within and outside of their natural range (i.e., native and non-native species, respectively). To characterize plant stress, we measured tree defoliation and chlorophyll fluorescence approximately one month following the chilling event. To quantify recovery, we measured chlorophyll fluorescence approximately nine months after the chilling event. Our results show high variation in the geographic- and species-specific responses of mangroves to winter temperature extremes. While many species were sensitive to the chilling temperatures (e.g., Bruguiera sexangula and species in the Sonneratia and Rhizophora genera), the temperatures during this event were not cold enough to affect certain species (e.g., Kandelia obovata, Aegiceras corniculatum, Avicennia marina, and Bruguiera gymnorrhiza). As expected, non-native species were less tolerant of winter temperature extremes than native species. Interestingly, tidal inundation modulated the effects of chilling. In comparison with other temperature-controlled mangrove range limits across the world, the mangrove range limit in China is unique due to the combination of the following three factors: (1) Mangrove species diversity is comparatively high; (2) winter air temperature extremes, rather than means, are particularly intense and play an important ecological

  12. Seasonal Climate Extremes : Mechanism, Predictability and Responses to Global Warming

    NASA Astrophysics Data System (ADS)

    Shongwe, M. E.

    2010-01-01

    Climate extremes are rarely occurring natural phenomena in the climate system. They often pose one of the greatest environmental threats to human and natural systems. Statistical methods are commonly used to investigate characteristics of climate extremes. The fitted statistical properties are often interpolated or extrapolated to give an indication of the likelihood of a certain event within a given period or interval. Under changing climatic conditions, the statistical properties of climate extremes are also changing. It is an important scientific goal to predict how the properties of extreme events change. To achieve this goal, observational and model studies aimed at revealing important features are a necessary prerequisite. Notable progress has been made in understanding mechanisms that influence climate variability and extremes in many parts of the globe including Europe. However, some of the recently observed unprecedented extremes cannot be fully explained from the already identified forcing factors. A better understanding of why these extreme events occur and their sensitivity to certain reinforcing and/or competing factors is useful. Understanding their basic form as well as their temporal variability is also vital and can contribute to global scientific efforts directed at advancing climate prediction capabilities, particularly making skilful forecasts and realistic projections of extremes. In this thesis temperature and precipitation extremes in Europe and Africa, respectively, are investigated. Emphasis is placed on the mechanisms underlying the occurrence of the extremes, their predictability and their likely response to global warming. The focus is on some selected seasons when extremes typically occur. An atmospheric energy budget analysis for the record-breaking European Autumn 2006 event has been carried out with the goal to identify the sources of energy for the extreme event. Net radiational heating is compared to surface turbulent fluxes of

  13. An importance sampling algorithm for estimating extremes of perpetuity sequences

    NASA Astrophysics Data System (ADS)

    Collamore, Jeffrey F.

    2012-09-01

    In a wide class of problems in insurance and financial mathematics, it is of interest to study the extremal events of a perpetuity sequence. This paper addresses the problem of numerically evaluating these rare event probabilities. Specifically, an importance sampling algorithm is described which is efficient in the sense that it exhibits bounded relative error, and which is optimal in an appropriate asymptotic sense. The main idea of the algorithm is to use a "dual" change of measure, which is employed to an associated Markov chain over a randomly-stopped time interval. The algorithm also makes use of the so-called forward sequences generated to the given stochastic recursion, together with elements of Markov chain theory.

  14. Estimation, modeling, and simulation of patterned growth in extreme environments.

    PubMed

    Strader, B; Schubert, K E; Quintana, M; Gomez, E; Curnutt, J; Boston, P

    2011-01-01

    In the search for life on Mars and other extraterrestrial bodies or in our attempts to identify biological traces in the most ancient rock record of Earth, one of the biggest problems facing us is how to recognize life or the remains of ancient life in a context very different from our planet's modern biological examples. Specific chemistries or biological properties may well be inapplicable to extraterrestrial conditions or ancient Earth environments. Thus, we need to develop an arsenal of techniques that are of broader applicability. The notion of patterning created in some fashion by biological processes and properties may provide such a generalized property of biological systems no matter what the incidentals of chemistry or environmental conditions. One approach to recognizing these kinds of patterns is to look at apparently organized arrangements created and left by life in extreme environments here on Earth, especially at various spatial scales, different geologies, and biogeochemical circumstances.

  15. Mapping of Estimations and Prediction Intervals Using Extreme Learning Machines

    NASA Astrophysics Data System (ADS)

    Leuenberger, Michael; Kanevski, Mikhail

    2015-04-01

    Due to the large amount and complexity of data available nowadays in environmental sciences, we face the need to apply more robust methodology allowing analyses and understanding of the phenomena under study. One particular but very important aspect of this understanding is the reliability of generated prediction models. From the data collection to the prediction map, several sources of error can occur and affect the final result. Theses sources are mainly identified as uncertainty in data (data noise), and uncertainty in the model. Their combination leads to the so-called prediction interval. Quantifying these two categories of uncertainty allows a finer understanding of phenomena under study and a better assessment of the prediction accuracy. The present research deals with a methodology combining a machine learning algorithm (ELM - Extreme Learning Machine) with a bootstrap-based procedure. Developed by G.-B. Huang et al. (2006), ELM is an artificial neural network following the structure of a multilayer perceptron (MLP) with one single hidden layer. Compared to classical MLP, ELM has the ability to learn faster without loss of accuracy, and need only one hyper-parameter to be fitted (that is the number of nodes in the hidden layer). The key steps of the proposed method are as following: sample from the original data a variety of subsets using bootstrapping; from these subsets, train and validate ELM models; and compute residuals. Then, the same procedure is performed a second time with only the squared training residuals. Finally, taking into account the two modeling levels allows developing the mean prediction map, the model uncertainty variance, and the data noise variance. The proposed approach is illustrated using geospatial data. References Efron B., and Tibshirani R. 1986, Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical accuracy, Statistical Science, vol. 1: 54-75. Huang G.-B., Zhu Q.-Y., and Siew C.-K. 2006

  16. Quantal Response: Estimation and Inference

    DTIC Science & Technology

    2014-09-01

    1/2 also, and so m is the stimulus level at which the probability of response equals 1/2, that is, m = X(1/2). In ballistic work where x is...Laboratory (US); 1983 Mar. Report No.: ARBRL-TR-02481. 4. DiDonato AR, Jarnagin MP Jr. Use of the maximum likelihood method under quantal responses for...

  17. Fuel Estimation Using Dynamic Response

    DTIC Science & Technology

    2007-03-01

    estimates from the bookkeeping method [17]. Another method used on the ASTRIUM -SAS communication satellites is the “Thermal Propellant Gaug- ing...Applied on ASTRIUM -SAS Telecom- munication Satellite.” 3rd International Conference on Spacecraft Propulsion. 131–138. Cannes, France: European Space

  18. Extreme responses of non-linear dynamic systems using constrained simulations

    SciTech Connect

    Harland, L.A.; Vugts, J.H.; Jonathan, P.; Taylor, P.H.

    1996-12-31

    The dynamic behavior of structures in the offshore environment is complex, especially in extreme storm conditions. The most accurate methods for estimating structural behavior are based on extensive random time domain simulations of the ocean surface to obtain statistics of the extreme response in (typically) a 3 hour period of a severe storm. However, random time domain simulation is time-consuming and expensive for both the computer and the engineer. In this work the authors use a method to determine the distribution of the extreme structural response in a robust, faster and cheaper way than with full random simulations. This method, which is based on constrained random simulations, has been successfully developed using a grossly simplified model of a jack-up. The aim of this study is now to include more realistic modelling parameters in order to demonstrate that the method can be successfully applied to real problems and that accurate results can be obtained with relatively little effort.

  19. Responses of greenhouse gas fluxes to climate extremes in a semiarid grassland

    NASA Astrophysics Data System (ADS)

    Li, Linfeng; Fan, Wenyu; Kang, Xiaoming; Wang, Yanfen; Cui, Xiaoyong; Xu, Chengyuan; Griffin, Kevin L.; Hao, Yanbin

    2016-10-01

    Climate extremes are expected to increase in frequency and intensity as a consequence of anthropogenic climate change attributed to the rise of atmospheric concentrations of greenhouse gases (GHGs). However, studies on the impacts of climate extremes on terrestrial ecosystems are limited. Here, we experimentally imposed extreme drought and a heat wave (∼60-year recurrence) to investigate their effects on GHGs fluxes of a semiarid grassland in China. We estimated a 16% and 38% percent reduction in net ecosystem CO2 uptake caused by the heat wave and drought respectively, but via different mechanisms. Drought reduced gross ecosystem productively (GEP) and to a lower extent ecosystem respiration (ER). By contrast, the simulated heat wave suppressed only GEP while ER remained stable. The climate extremes also created a legacy effect on GEP and NEE lasting until the end of the growing season, whereas ER recovered immediately. Although CH4 and N2O fluxes were unaffected by the heat wave, drought promoted CH4 uptake and suppressed N2O emission during the treatment period. The effect of drought on GHGs fluxes generally overwhelmed that of the heat wave treatment, and there were no interactive effects of these two types of climate extremes. Our results showed that responses of ecosystem GHGs exchange to climate extremes are strongly regulated by soil moisture status. In conclusion, future amplification of climate extremes could decrease the sink for GHGs, especially CO2, in this semiarid grasslands.

  20. Bias and Variance Approximations for Estimators of Extreme Quantiles

    DTIC Science & Technology

    1988-11-01

    meaningful comparison must Lake the bias as well as the variance term into account, as otherwise it would be possible to achieve very high accuracy by taking...likelihood. So far no indication has been given of the accuracy of the proposed approximations to the bias. A theoretical way to assess this is as follows...METHOD N ESTIMATED y BIAS IN qI BIAS IN q2 DIST. CRUDE BC EXACT APPROX EXACT APPROX EXACT Normal GEV 100 -.127 -.095 -.101 - .17 - .16 .40 .26 Normal GPD

  1. Extreme startle and photomyoclonic response in severe hypocalcaemia.

    PubMed

    Moccia, Marcello; Erro, Roberto; Nicolella, Elvira; Striano, Pasquale; Striano, Salvatore

    2014-03-01

    We report the case of 62-year-old woman referred to our department because of a clinical suspicion of tonic-clonic seizures. Clinical examination revealed an exaggerated startle reflex, EEG showed a photomyoclonic response, and blood tests indicated severe hypocalcaemia. Additional clinical data, treatment strategies, and long-term follow-up visits were reported. The present report discusses the difficulties in distinguishing between epileptic and non-epileptic startles, and shows, for the first time, exaggerated startle reflex and extreme photomyoclonic response due to severe hypocalcaemia.

  2. Extreme response style as a cultural response to climato-economic deprivation.

    PubMed

    He, Jia; Van de Vliert, Evert; Van de Vijver, Fons J R

    2016-06-03

    We investigated the effects of climato-economic harshness on extreme response style. Climato-economic theorising postulates that a more threatening climate in poorer countries, in contrast to countries with a more comforting climate and richer countries with a more challenging climate, triggers intolerance of ambiguity and uncertainty avoidance inherent to conservatism, in-group favouritism and autocracy. Scores of extreme response style at country level, a proxy of this cluster of cultural characteristics, were extracted from students' responses in the Programme for International Student Assessment to test the hypothesis. In a series of hierarchical regression analysis across 64 countries, cold demands, heat demands and GDP per capita showed a highly significant interaction effect on extreme response style, predicting in total 30.7% of the variance. Extreme response style was highest in poorer countries with higher climatic demands, and lowest in richer countries with lower climate demands. Implications are discussed. © 2016 International Union of Psychological Science.

  3. The sandwich estimator approach counting for inter-site dependence of extreme river flow in Sabah

    NASA Astrophysics Data System (ADS)

    Kahal Musakkal, N. F.; Gabda, D.

    2017-09-01

    Regional estimation method is often used for estimating parameters of a distribution when data are available at many sites in a region to capture inter-site dependence. In this paper, we fit generalized extreme value distribution independently to model data of river flows at each sites in Sabah to avoid extreme value complex modeling. Since our approach violated the condition of spatial analysis, we consider the adjusted standard error to correct the wrong assumption of our marginal approach. As a result, we have an appropriate corrected variance of the generalized extreme value parameters.

  4. Radiation exposure estimates from extremely energetic solar proton events

    NASA Astrophysics Data System (ADS)

    Atwell, William; Tylka, Allan J.; Dietrich, William F.; Badavi, Francis

    Historically, in order to assess absorbed dose and dose equivalent exposures in solar particle events (SPEs), the radiation physics community has often used an exponential fit in rigidity (Malitson and Webber, 1963) to extrapolate the proton spectra from available measurements at 10-100 MeV to higher energies. Similarly, King [1974] used an exponential in energy to describe the August 1972 SPEs. These exponential forms may be adequate for lightly shielded systems. But for "storm shelters", with shielding thicknesses greater that 10 g/cm2 aluminumequivalent, the assumption about the spectral form beyond 100 MeV is a potentially critical systematic uncertainty in estimates of the radiation exposure. For the most important SPEs in the historical record, ground-based neutron monitor (NM) data can serve to define the spectral shape by providing proton fluence measurements beyond 500 MeV. Tylka and Dietrich (this conference, Session D23) have derived proton spectra from NM data for 38 of the largest of these so-called Ground Level Enhanced (GLE) SPEs that have been observed since 1956. Their analyses also combine these NM measurements with lower-energy data from satellites and other sources. In this paper we use these new results to take a fresh look at the radiation exposure estimates from several interesting GLEs, including the August 1972 events. Using the NASA Langley Research Center HZETRN 2005 high energy particle transport/dose code, depth-dose results are presented and compared using both (a) exponential spectra, as determined solely from data below 100 MeV and (b) the complete spectrum, including the high energies derived from NM measurements. Since SPEs represent the single most important source of acute radiation exposure to humans and space systems in deep space, these results can serve as guidance for mission planning and crew health protection. This work has been supported in part by the Office of Naval Research and by NASA DPR NNG06EC55I.

  5. Contrasting responses of mean and extreme snowfall to climate change.

    PubMed

    O'Gorman, Paul A

    2014-08-28

    Snowfall is an important element of the climate system, and one that is expected to change in a warming climate. Both mean snowfall and the intensity distribution of snowfall are important, with heavy snowfall events having particularly large economic and human impacts. Simulations with climate models indicate that annual mean snowfall declines with warming in most regions but increases in regions with very low surface temperatures. The response of heavy snowfall events to a changing climate, however, is unclear. Here I show that in simulations with climate models under a scenario of high emissions of greenhouse gases, by the late twenty-first century there are smaller fractional changes in the intensities of daily snowfall extremes than in mean snowfall over many Northern Hemisphere land regions. For example, for monthly climatological temperatures just below freezing and surface elevations below 1,000 metres, the 99.99th percentile of daily snowfall decreases by 8% in the multimodel median, compared to a 65% reduction in mean snowfall. Both mean and extreme snowfall must decrease for a sufficiently large warming, but the climatological temperature above which snowfall extremes decrease with warming in the simulations is as high as -9 °C, compared to -14 °C for mean snowfall. These results are supported by a physically based theory that is consistent with the observed rain-snow transition. According to the theory, snowfall extremes occur near an optimal temperature that is insensitive to climate warming, and this results in smaller fractional changes for higher percentiles of daily snowfall. The simulated changes in snowfall that I find would influence surface snow and its hazards; these changes also suggest that it may be difficult to detect a regional climate-change signal in snowfall extremes.

  6. Estimating the Extreme Behaviors of Students Performance Using Quantile Regression--Evidences from Taiwan

    ERIC Educational Resources Information Center

    Chen, Sheng-Tung; Kuo, Hsiao-I.; Chen, Chi-Chung

    2012-01-01

    The two-stage least squares approach together with quantile regression analysis is adopted here to estimate the educational production function. Such a methodology is able to capture the extreme behaviors of the two tails of students' performance and the estimation outcomes have important policy implications. Our empirical study is applied to the…

  7. Estimating the Extreme Behaviors of Students Performance Using Quantile Regression--Evidences from Taiwan

    ERIC Educational Resources Information Center

    Chen, Sheng-Tung; Kuo, Hsiao-I.; Chen, Chi-Chung

    2012-01-01

    The two-stage least squares approach together with quantile regression analysis is adopted here to estimate the educational production function. Such a methodology is able to capture the extreme behaviors of the two tails of students' performance and the estimation outcomes have important policy implications. Our empirical study is applied to the…

  8. Estimating extreme losses for the Florida Public Hurricane Model—part II

    NASA Astrophysics Data System (ADS)

    Gulati, Sneh; George, Florence; Hamid, Shahid

    2017-01-01

    Rising global temperatures are leading to an increase in the number of extreme events and losses (http://www.epa.gov/climatechange/science/indicators/). Accurate estimation of these extreme losses with the intention of protecting themselves against them is critical to insurance companies. In a previous paper, Gulati et al. (2014) discussed probable maximum loss (PML) estimation for the Florida Public Hurricane Loss Model (FPHLM) using parametric and nonparametric methods. In this paper, we investigate the use of semi-parametric methods to do the same. Detailed analysis of the data shows that the annual losses from FPHLM do not tend to be very heavy tailed, and therefore, neither the popular Hill's method nor the moment's estimator work well. However, Pickand's estimator with threshold around the 84th percentile provides a good fit for the extreme quantiles for the losses.

  9. Response spectrum method for extreme wave loading with higher order components of drag force

    NASA Astrophysics Data System (ADS)

    Reza, Tabeshpour Mohammad; Mani, Fatemi Dezfouli; Mohammad Ali, Dastan Diznab; Saied, Mohajernasab; Saied, Seif Mohammad

    2017-01-01

    Response spectra of fixed offshore structures impacted by extreme waves are investigated based on the higher order components of the nonlinear drag force. In this way, steel jacket platforms are simplified as a mass attached to a light cantilever cylinder and their corresponding deformation response spectra are estimated by utilizing a generalized single degree of freedom system. Based on the wave data recorded in the Persian Gulf region, extreme wave loading conditions corresponding to different return periods are exerted on the offshore structures. Accordingly, the effect of the higher order components of the drag force is considered and compared to the linearized state for different sea surface levels. When the fundamental period of the offshore structure is about one third of the main period of wave loading, the results indicate the linearized drag term is not capable of achieving a reliable deformation response spectrum.

  10. Response spectrum method for extreme wave loading with higher order components of drag force

    NASA Astrophysics Data System (ADS)

    Reza, Tabeshpour Mohammad; Mani, Fatemi Dezfouli; Ali, Dastan Diznab Mohammad; Saied, Mohajernasab; Saied, Seif Mohammad

    2017-03-01

    Response spectra of fixed offshore structures impacted by extreme waves are investigated based on the higher order components of the nonlinear drag force. In this way, steel jacket platforms are simplified as a mass attached to a light cantilever cylinder and their corresponding deformation response spectra are estimated by utilizing a generalized single degree of freedom system. Based on the wave data recorded in the Persian Gulf region, extreme wave loading conditions corresponding to different return periods are exerted on the offshore structures. Accordingly, the effect of the higher order components of the drag force is considered and compared to the linearized state for different sea surface levels. When the fundamental period of the offshore structure is about one third of the main period of wave loading, the results indicate the linearized drag term is not capable of achieving a reliable deformation response spectrum.

  11. Inflammatory responses to influenza vaccination at the extremes of age.

    PubMed

    McDonald, Jacqueline U; Zhong, Ziyun; Groves, Helen T; Tregoning, John S

    2017-08-01

    Age affects the immune response to vaccination, with individuals at the extremes of age responding poorly. The initial inflammatory response to antigenic materials shapes the subsequent adaptive response and so understanding is required about the effect of age on the profile of acute inflammatory mediators. In this study we measured the local and systemic inflammatory response after influenza vaccination or infection in neonatal, young adult and aged mice. Mice were immunized intramuscularly with inactivated influenza vaccine with and without the adjuvant MF59 and then challenged with H1N1 influenza. Age was the major factor affecting the inflammatory profile after vaccination: neonatal mice had more interleukin-1α (IL-1α), C-reactive protein (CRP) and granulocyte-macrophage colony-stimulating factor (GMCSF), young adults more tumour necrosis factor-α (TNF), and elderly mice more interleukin-1 receptor antagonist (IL-1RA), IL-2RA and interferon-γ-induced protein 10 (IP10). Notably the addition of MF59 induced IL-5, granulocyte colony-stimulating factor (G-CSF), Keratinocyte Chemotractant (KC) and monocyte chemoattractant protein 1 (MCP1) in all ages of animals and levels of these cytokines correlated with antibody responses. Age also had an impact on the efficacy of vaccination: neonatal and young adult mice were protected against challenge, but aged mice were not. There were striking differences in the localization of the cytokine response depending on the route of exposure: vaccination led to a high serum response whereas intranasal infection led to a low serum response but a high lung response. In conclusion, we demonstrate that age affects the inflammatory response to both influenza vaccination and infection. These age-induced differences need to be considered when developing vaccination strategies for different age groups. © 2017 John Wiley & Sons Ltd.

  12. Response Styles in Rating Scales: Simultaneous Modeling of Content-Related Effects and the Tendency to Middle or Extreme Categories

    ERIC Educational Resources Information Center

    Tutz, Gerhard; Berger, Moritz

    2016-01-01

    Heterogeneity in response styles can affect the conclusions drawn from rating scale data. In particular, biased estimates can be expected if one ignores a tendency to middle categories or to extreme categories. An adjacent categories model is proposed that simultaneously models the content-related effects and the heterogeneity in response styles.…

  13. Response Styles in Rating Scales: Simultaneous Modeling of Content-Related Effects and the Tendency to Middle or Extreme Categories

    ERIC Educational Resources Information Center

    Tutz, Gerhard; Berger, Moritz

    2016-01-01

    Heterogeneity in response styles can affect the conclusions drawn from rating scale data. In particular, biased estimates can be expected if one ignores a tendency to middle categories or to extreme categories. An adjacent categories model is proposed that simultaneously models the content-related effects and the heterogeneity in response styles.…

  14. Oral creatine supplementation and upper extremity anaerobic response in females.

    PubMed

    Hamilton, K L; Meyers, M C; Skelly, W A; Marley, R J

    2000-09-01

    The purpose of this study was to investigate the influence of creatine monohydrate (CrH2O) on upper extremity anaerobic response in strength-trained females involved in overhand sports. Two movements were utilized in this evaluation: elbow flexion (EF) and shoulder internal rotation (IR). Subjects were pair-matched and assigned to receive placebo (n = 13) or 25 g CrH2O (n = 11) for 7 days. Pre- and post-treatment measurements included peak concentric and eccentric isokinetic torque, isotonic 1RM, and fatigue (FAT) during EF; isotonic 1RM, FAT, and peak velocity during IR; and body weight. MANOVAs revealed significant interaction between treatment and trial for EF (p <.05) but not for IR or weight. Univariate analysis indicated a significantly greater change in EFFAT following CrH2O than following placebo. Thus, CrH2O did not influence peak EF or IR strength, IR work to fatigue, or IR velocity, but was associated with greater work capacity during fatiguing EF. These data suggest that CrH2O may enhance upper extremity work capacity, but this enhancement may not extend to the muscles primarily responsible for overhand sports performance.

  15. Top-side ionosphere response to extreme solar events

    NASA Astrophysics Data System (ADS)

    Dmitriev, A. V.; Yeh, H.-C.; Chao, J.-K.; Veselovsky, I. S.; Su, S.-Y.; Fu, C. C.

    2006-07-01

    Strong X-flares and solar energetic particle (SEP) fluxes are considered as sources of topside ionospheric disturbances observed by the ROCSAT-1/IPEI instrument during the Bastille Day event on 14 July 2000 and the Halloween event on 28 October-4 November 2003. It was found that within a prestorm period in the dayside ionosphere at altitudes of ~600 km the ion density increased up to ~80% in response to flare-associated enhancements of the solar X-ray emission. Ionospheric response to the SEP events was revealed both at sunlit and nightside hemispheres, where the ion density increased up to ~40% and 100%, respectively. We did not find any prominent response of the ion temperature to the X-ray and SEP enhancements. The largest X-ray and SEP impacts were found for the X17 solar flare on 28 October 2003, which was characterized by the most intense fluxes of solar EUV (Tsurutani et al., 2005) and relativistic solar particles (Veselovsky et al., 2004). Solar events on 14 July 2000 and 29 October 2003 demonstrate weaker impacts with respect to their X-ray and SEP intensities. The weakest ionospheric response is observed for the limb X28 solar flare on 4 November 2003. The topside ionosphere response to the extreme solar events is interpreted in terms of the short-duration impact of the solar electromagnetic radiation and the long-lasting impact of the SEP.

  16. Nonparametric functional data estimation applied to ozone data: prediction and extreme value analysis.

    PubMed

    Quintela-del-Río, Alejandro; Francisco-Fernández, Mario

    2011-02-01

    The study of extreme values and prediction of ozone data is an important topic of research when dealing with environmental problems. Classical extreme value theory is usually used in air-pollution studies. It consists in fitting a parametric generalised extreme value (GEV) distribution to a data set of extreme values, and using the estimated distribution to compute return levels and other quantities of interest. Here, we propose to estimate these values using nonparametric functional data methods. Functional data analysis is a relatively new statistical methodology that generally deals with data consisting of curves or multi-dimensional variables. In this paper, we use this technique, jointly with nonparametric curve estimation, to provide alternatives to the usual parametric statistical tools. The nonparametric estimators are applied to real samples of maximum ozone values obtained from several monitoring stations belonging to the Automatic Urban and Rural Network (AURN) in the UK. The results show that nonparametric estimators work satisfactorily, outperforming the behaviour of classical parametric estimators. Functional data analysis is also used to predict stratospheric ozone concentrations. We show an application, using the data set of mean monthly ozone concentrations in Arosa, Switzerland, and the results are compared with those obtained by classical time series (ARIMA) analysis.

  17. Estimating the exceedance probability of extreme rainfalls up to the probable maximum precipitation

    NASA Astrophysics Data System (ADS)

    Nathan, Rory; Jordan, Phillip; Scorah, Matthew; Lang, Simon; Kuczera, George; Schaefer, Melvin; Weinmann, Erwin

    2016-12-01

    If risk-based criteria are used in the design of high hazard structures (such as dam spillways and nuclear power stations), then it is necessary to estimate the annual exceedance probability (AEP) of extreme rainfalls up to and including the Probable Maximum Precipitation (PMP). This paper describes the development and application of two largely independent methods to estimate the frequencies of such extreme rainfalls. One method is based on stochastic storm transposition (SST), which combines the ;arrival; and ;transposition; probabilities of an extreme storm using the total probability theorem. The second method, based on ;stochastic storm regression; (SSR), combines frequency curves of point rainfalls with regression estimates of local and transposed areal rainfalls; rainfall maxima are generated by stochastically sampling the independent variates, where the required exceedance probabilities are obtained using the total probability theorem. The methods are applied to two large catchments (with areas of 3550 km2 and 15,280 km2) located in inland southern Australia. Both methods were found to provide similar estimates of the frequency of extreme areal rainfalls for the two study catchments. The best estimates of the AEP of the PMP for the smaller and larger of the catchments were found to be 10-7 and 10-6, respectively, but the uncertainty of these estimates spans one to two orders of magnitude. Additionally, the SST method was applied to a range of locations within a meteorologically homogenous region to investigate the nature of the relationship between the AEP of PMP and catchment area.

  18. Mixture Random-Effect IRT Models for Controlling Extreme Response Style on Rating Scales

    PubMed Central

    Huang, Hung-Yu

    2016-01-01

    Respondents are often requested to provide a response to Likert-type or rating-scale items during the assessment of attitude, interest, and personality to measure a variety of latent traits. Extreme response style (ERS), which is defined as a consistent and systematic tendency of a person to locate on a limited number of available rating-scale options, may distort the test validity. Several latent trait models have been proposed to address ERS, but all these models have limitations. Mixture random-effect item response theory (IRT) models for ERS are developed in this study to simultaneously identify the mixtures of latent classes from different ERS levels and detect the possible differential functioning items that result from different latent mixtures. The model parameters can be recovered fairly well in a series of simulations that use Bayesian estimation with the WinBUGS program. In addition, the model parameters in the developed models can be used to identify items that are likely to elicit ERS. The results show that a long test and large sample can improve the parameter estimation process; the precision of the parameter estimates increases with the number of response options, and the model parameter estimation outperforms the person parameter estimation. Ignoring the mixtures and ERS results in substantial rank-order changes in the target latent trait and a reduced classification accuracy of the response styles. An empirical survey of emotional intelligence in college students is presented to demonstrate the applications and implications of the new models. PMID:27853444

  19. Application of regional frequency analysis to the estimation of extreme storm surges

    NASA Astrophysics Data System (ADS)

    Bernardara, Pietro; Andreewsky, Marc; Benoit, Michel

    2011-02-01

    Traditionally, extreme value theory is applied to single-site series of surge observations in order to estimate the probability of occurrence of extreme events at that particular site. However, single-site analyses give uncertain estimation of extreme quantiles, mainly because of the limited duration of observation periods. In order to reduce this uncertainty, regional frequency analysis (RFA) approaches suggest collecting information not only from a single-site series but also from all (statistically) similar available series of observation. The use of RFA is widely increasing in geosciences, but few applications have been attempted yet for surge estimation. The aim of this study is to examine the applicability of RFA to extreme storm surges. The surge data observed at 18 French harbors, located on the Atlantic coast from the Spanish to Belgian borders, were collected. The series span a period of 30 years, on average, with the longest series going back to the 19th century. Stationary and independent samples of extreme surges (peaks over a given threshold) are extracted and their (statistical) homogeneity has been tested via heterogeneity and discordancy measures based on L moments. Homogeneous regions have been identified and, in order to merge information on frequency of occurrence of surges from all the sites, a surge index pooling method is defined. Finally, a regional frequency distribution has been estimated. The hypothesis and the applicability of RFA application are discussed, with some ideas for future developments in the research direction.

  20. Quantifying the US Crop Yield in Response to Extreme Climatic Events from 1948 to 2013

    NASA Astrophysics Data System (ADS)

    Jin, Z.; Zhuang, Q.

    2014-12-01

    The increasingly frequent and severe extreme climatic events (ECEs) under climate changes will negatively affect crop productivity and threat the global food security. Reliable forecast of crop yields response to those ECEs is a prerequisite for developing strategies on agricultural risk management. However, the progress of quantifying such responses with ecosystem models has been slow. In this study, we first review existing algorithms of yields response to ECEs among major crops (i.e., Corn, Wheat and Soybean) for the United States from a set of process-based crop models. These algorithms are aggregated into four categories of ECEs: drought, heavy precipitation, extreme heat, and frost. Species-specific ECEs thresholds as tipping point of crop yield response curve are examined. Four constraint scalar functions derived for each category of ECEs are then added to an agricultural ecosystem model, CLM-AG, respectively. The revised model is driven by NCEP/NCAR reanalysis data from 1948 to 2013 to estimate the US major crop yields, and then evaluated with county-level yield statistics from the National Agricultural Statistics Service (NASS). We also include MODIS NPP product as a reference for the period 2001-2013. Our study will help to identify gaps in capturing yield response to ECEs with contemporary crop models, and provide a guide on developing the new generation of crop models to account for the effects of more future extreme climate events.

  1. Flood Frequency Estimates and Documented and Potential Extreme Peak Discharges in Oklahoma

    USGS Publications Warehouse

    Tortorelli, Robert L.; McCabe, Lan P.

    2001-01-01

    Knowledge of the magnitude and frequency of floods is required for the safe and economical design of highway bridges, culverts, dams, levees, and other structures on or near streams; and for flood plain management programs. Flood frequency estimates for gaged streamflow sites were updated, documented extreme peak discharges for gaged and miscellaneous measurement sites were tabulated, and potential extreme peak discharges for Oklahoma streamflow sites were estimated. Potential extreme peak discharges, derived from the relation between documented extreme peak discharges and contributing drainage areas, can provide valuable information concerning the maximum peak discharge that could be expected at a stream site. Potential extreme peak discharge is useful in conjunction with flood frequency analysis to give the best evaluation of flood risk at a site. Peak discharge and flood frequency for selected recurrence intervals from 2 to 500 years were estimated for 352 gaged streamflow sites. Data through 1999 water year were used from streamflow-gaging stations with at least 8 years of record within Oklahoma or about 25 kilometers into the bordering states of Arkansas, Kansas, Missouri, New Mexico, and Texas. These sites were in unregulated basins, and basins affected by regulation, urbanization, and irrigation. Documented extreme peak discharges and associated data were compiled for 514 sites in and near Oklahoma, 352 with streamflow-gaging stations and 162 at miscellaneous measurements sites or streamflow-gaging stations with short record, with a total of 671 measurements.The sites are fairly well distributed statewide, however many streams, large and small, have never been monitored. Potential extreme peak-discharge curves were developed for streamflow sites in hydrologic regions of the state based on documented extreme peak discharges and the contributing drainage areas. Two hydrologic regions, east and west, were defined using 98 degrees 15 minutes longitude as the

  2. On the response of European phenology to Extreme Climate Events

    NASA Astrophysics Data System (ADS)

    Guido, C.; Gobron, N.

    2012-12-01

    Extreme Climate Events are expected to alter carbon cycle processes, with implications for ecosystems and feedback to regional and global climate. Hence, understanding the interactions between Extreme Climate Events and vegetation dynamics is essential for improved climate prediction. In this work, the authors analyze carbon cycle dynamics over the European domain using Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) derived from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data (1997-2002) and MERIS (2003-2011) at ~1 km resolution. As part of this analysis, six phenological metrics were defined from FAPAR measurement to characterize the ecosystem response to climate and anthropogenic forcing at the land surface. Based on phenological metrics analysis, the inter-annual vegetation variations, their dependence on drought and heat waves, and the presence of long-term trends were detected. In addition, the authors have assessed Rain Use Efficiency (RUE), represented by the ratio of annual sum FAPAR and annual rainfall, and the correlation between FAPAR, precipitation and temperature anomalies over the same time period. Climate anomalies largely explain the recent anomalies of FAPAR- and consequently of carbon cycle. Hence, well-defined large scale patterns of RUE and phenological metrics are discernible: the large scale drought that struck Europe in year 2003 has a distinct signature, as well as the continuous positive anomaly during summer 2002 (due to intense rainfall) is well-depicted.

  3. Input estimation from measured structural response

    SciTech Connect

    Harvey, Dustin; Cross, Elizabeth; Silva, Ramon A; Farrar, Charles R; Bement, Matt

    2009-01-01

    This report will focus on the estimation of unmeasured dynamic inputs to a structure given a numerical model of the structure and measured response acquired at discrete locations. While the estimation of inputs has not received as much attention historically as state estimation, there are many applications where an improved understanding of the immeasurable input to a structure is vital (e.g. validating temporally varying and spatially-varying load models for large structures such as buildings and ships). In this paper, the introduction contains a brief summary of previous input estimation studies. Next, an adjoint-based optimization method is used to estimate dynamic inputs to two experimental structures. The technique is evaluated in simulation and with experimental data both on a cantilever beam and on a three-story frame structure. The performance and limitations of the adjoint-based input estimation technique are discussed.

  4. Bacterial survival responses to extreme desiccation and high humidity

    NASA Astrophysics Data System (ADS)

    Yang, Yinjie; Yokobori, Shinichi; Yamagishi, Akihiko

    The presence of water is thought to be essential for life and strongly considered in life searching operation on extraterrestrial planets. In this study we show different survival responses of bacterial species to water availability and temperatures (25, 4 and - 70 o C). At these temperatures, E.coli lost viability much faster under extreme desiccation than under high humidity. Deinococcus radiodurans exhibited much higher survival rate under desiccation than under high humidity at 25 o C, while its survivals under desiccation and high humidity increased to the same level at 4 and - 70 o C. Bacillus pumilus spores generally survived well under all tested conditions. Water is favorable for the survival of most microorganisms but not a "safeguard" for all microorganisms. Microbial survival at low temperatures may not be affected by water availability. Water absence should not preclude us from seeking life on other planets.

  5. Estimating uncertainty in multivariate responses to selection.

    PubMed

    Stinchcombe, John R; Simonsen, Anna K; Blows, Mark W

    2014-04-01

    Predicting the responses to natural selection is one of the key goals of evolutionary biology. Two of the challenges in fulfilling this goal have been the realization that many estimates of natural selection might be highly biased by environmentally induced covariances between traits and fitness, and that many estimated responses to selection do not incorporate or report uncertainty in the estimates. Here we describe the application of a framework that blends the merits of the Robertson-Price Identity approach and the multivariate breeder's equation to address these challenges. The approach allows genetic covariance matrices, selection differentials, selection gradients, and responses to selection to be estimated without environmentally induced bias, direct and indirect selection and responses to selection to be distinguished, and if implemented in a Bayesian-MCMC framework, statistically robust estimates of uncertainty on all of these parameters to be made. We illustrate our approach with a worked example of previously published data. More generally, we suggest that applying both the Robertson-Price Identity and the multivariate breeder's equation will facilitate hypothesis testing about natural selection, genetic constraints, and evolutionary responses.

  6. Estimating Single-Trial Responses in EEG

    NASA Technical Reports Server (NTRS)

    Shah, A. S.; Knuth, K. H.; Truccolo, W. A.; Mehta, A. D.; Fu, K. G.; Johnston, T. A.; Ding, M.; Bressler, S. L.; Schroeder, C. E.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Accurate characterization of single-trial field potential responses is critical from a number of perspectives. For example, it allows differentiation of an evoked response from ongoing EEG. We previously developed the multiple component Event Related Potential (mcERP) algorithm to improve resolution of the single-trial evoked response. The mcERP model states that multiple components, each specified by a stereotypic waveform varying in latency and amplitude from trial to trial, comprise the evoked response. Application of the mcERP algorithm to simulated data with three independent, synthetic components has shown that the model is capable of separating these components and estimating their variability. Application of the model to single trial, visual evoked potentials recorded simultaneously from all V1 laminae in an awake, fixating macaque yielded local and far-field components. Certain local components estimated by the model were distributed in both granular and supragranular laminae. This suggests a linear coupling between the responses of thalamo-recipient neuronal ensembles and subsequent responses of supragranular neuronal ensembles, as predicted by the feedforward anatomy of V1. Our results indicate that the mcERP algorithm provides a valid estimation of single-trial responses. This will enable analyses that depend on trial-to-trial variations and those that require separation of the evoked response from background EEG rhythms

  7. Estimating Single-Trial Responses in EEG

    NASA Technical Reports Server (NTRS)

    Shah, A. S.; Knuth, K. H.; Truccolo, W. A.; Mehta, A. D.; Fu, K. G.; Johnston, T. A.; Ding, M.; Bressler, S. L.; Schroeder, C. E.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Accurate characterization of single-trial field potential responses is critical from a number of perspectives. For example, it allows differentiation of an evoked response from ongoing EEG. We previously developed the multiple component Event Related Potential (mcERP) algorithm to improve resolution of the single-trial evoked response. The mcERP model states that multiple components, each specified by a stereotypic waveform varying in latency and amplitude from trial to trial, comprise the evoked response. Application of the mcERP algorithm to simulated data with three independent, synthetic components has shown that the model is capable of separating these components and estimating their variability. Application of the model to single trial, visual evoked potentials recorded simultaneously from all V1 laminae in an awake, fixating macaque yielded local and far-field components. Certain local components estimated by the model were distributed in both granular and supragranular laminae. This suggests a linear coupling between the responses of thalamo-recipient neuronal ensembles and subsequent responses of supragranular neuronal ensembles, as predicted by the feedforward anatomy of V1. Our results indicate that the mcERP algorithm provides a valid estimation of single-trial responses. This will enable analyses that depend on trial-to-trial variations and those that require separation of the evoked response from background EEG rhythms

  8. Extreme value theory (EVT) application on estimating the distribution of maxima

    NASA Astrophysics Data System (ADS)

    Ramadhani, F. A.; Nurrohmah, S.; Novita, M.

    2017-07-01

    Extreme Value Theory (EVT) has emerged as one of the most important statistical theories for the applied sciences. EVT provides a firm theoretical foundation for building a statistical model describing extreme events. The feature that distinguish extreme value analysis than other statistical analysis is the ability to quantify the behavior of unusually large values even when those values are scarce. One of the key results from EVT is the ability to estimate the distribution of maximum value, that usually called as maxima, using the asymptotic argument. In order to build such models, the Fisher-Tippett theorem which specifies the form of the limit distribution for transformed maxima will be greatly used. Furthermore, it can be shown that there are only three families of possible limit laws for distribution of maxima, which are the Gumbel, Frechet, and Weibull distributions. These three distributions can be expressed in a single distribution function called the generalized extreme value (GEV) distribution.

  9. How reliable are the estimates of climate variability in extreme precipitation?

    NASA Astrophysics Data System (ADS)

    Zolina, O.; Simmer, C.; Gulev, S.

    2009-09-01

    Existing estimates of climate variability and trends in precipitation extremes are highly uncertain when quantified from daily and higher resolution rain gauge observations. The major sources of uncertainties are associated with the conceptual definition of extreme precipitation, inhomogeneity of different data types and inaccuracy of statistical methods applied for estimation of precipitation extremes. We assess the impact of these uncertainties on climate variability in extreme precipitation over European continent using different collections of European rain gauge data. We try to discriminate the role of changing precipitation totals and varying characteristics of frequency distributions in forming observed changes in precipitation extremes. These two factors have strong seasonal dependence over Europe with winter growth up to 5% per decade being associated with change in precipitation distribution and summer decrease of 3% per decade primarily implied by changes in total. Changes in extreme precipitation in Western Europe are primarily dominated by frequency distribution characteristics while in the Eastern Europe they are closely linked to the changes in totals. Considering limitations of precipitation metrics based on raw data, we argue for the revision of extreme precipitation indices whose applicability is conditioned by the finite number of wet days and propose a set of new indices based on the newly derived distribution of fractional contribution (DFC) of daily precipitation to the total. The extended indices are more stable compared to the routine ones. In winter new set of indices clearly reveals an increasing occurrence of extreme precipitation in Western European Russia (up to 4% per decade) while during summer a downward tendency in the fractional contribution of very wet days is found in Central Western Europe. Newly established indices also allow to better associate European extreme precipitation with the North Atlantic Oscillation and associated

  10. Extreme flood response to short-duration convective rainfall in South-West Germany

    NASA Astrophysics Data System (ADS)

    Ruiz-Villanueva, V.; Borga, M.; Zoccatelli, D.; Marchi, L.; Gaume, E.; Ehret, U.

    2012-05-01

    The 2 June 2008 flood-producing storm on the Starzel river basin in South-West Germany is examined as a prototype for organized convective systems that dominate the upper tail of the precipitation frequency distribution and are likely responsible for the flash flood peaks in Central Europe. The availability of high-resolution rainfall estimates from radar observations and a rain gauge network, together with indirect peak discharge estimates from a detailed post-event survey, provided the opportunity to study in detail the hydrometeorological and hydrological mechanisms associated with this extreme storm and the ensuing flood. Radar-derived rainfall, streamgauge data and indirect estimates of peak discharges are used along with a distributed hydrologic model to reconstruct hydrographs at multiple locations. Observations and model results are combined to examine two main questions, (i) assessment of the distribution of the runoff ratio for the 2008 flash flood and how it compares with other less severe floods; and (ii) analysis of how the spatial and temporal distribution of the extreme rainfall, and more specifically storm motion, controls the flood response. It is shown that small runoff ratios (less than 20%) characterized the runoff response and that these values are in the range of other, less extreme, flood events. The influence of storm structure, evolution and motion on the modeled flood hydrograph is examined by using the "spatial moments of catchment rainfall". It is shown that downbasin storm motion (in the range of 0.7-0.9 m s-1) had a noticeable impact on flood response by increasing the modeled flood peak by 13%.

  11. Return periods of extreme water levels estimated for some vulnerable areas of Buenos Aires

    NASA Astrophysics Data System (ADS)

    D'Onofrio, Enrique E.; Fiore, Monica M. E.; Romero, Silvia I.

    1999-10-01

    In Argentina, particularly in the province of Buenos Aires, densely populated areas are affected by swell inundations. This paper estimates the return periods of extreme levels, including those fixed by the Dirección Nacional de Planeamiento y Protección Civil (DNPPC) as evacuation warnings. The analysis combines the probability density functions (pdf) of tides and surges, provided their independence. The tidal pdf is generated from an hourly prediction for 19 yr. The surge pdf is obtained applying the generalized extreme value (GEV) distribution to a set of extreme surges generated by removing tides from a series of 89 yr of annual maxima. This set is chosen in order to make best use of the historical information since hourly water levels are not available for a long enough period. It is shown that in this case, the probability distribution which best fits to the surge data is that of Gumbel Type I. For an evacuation warning level of 3.30 m the estimated return period is 5 yr. The last 89 yr maximum (4.44 m) has a recurrence of approximately 265 yr. Estimated return periods are compared with those computed by the classical annual maxima method for the same period. The extreme levels and return periods estimated herein strongly justify the undertaking of actions in order to mitigate the serious consequences caused by floods in these low-lying areas.

  12. The Graded Response Differential Discrimination Model Accounting for Extreme Response Style.

    PubMed

    Lubbe, Dirk; Schuster, Christof

    2017-08-28

    Extreme response style or, more generally, individual differences in response spacing have been shown to be an influential bias when analyzing questionnaire data. Recently a promising model adjusting for this bias - the differential discrimination model - has been proposed. An advantage to other related approaches is that the model can be fitted using standard structural equation modeling software. However, the model is designed for analyzing continuous item responses, whereas graded response formats are certainly more prominent in behavioral sciences. To resolve this limitation, the present article extends the differential discrimination model to analyzing graded responses. Empirical examples as well as a small simulation study are presented.

  13. Remote Sensing of Surficial Process Responses to Extreme Meteorological Events

    NASA Technical Reports Server (NTRS)

    Brakenridge, G. Robert

    1997-01-01

    . Karen Prestegaard at the University of Maryland (geomorphological responses to the extreme 1993 flood along the Raccoon drainage in central Iowa), and with Mr Tim Scrom of the Albany National Weather Service River Forecast Center (initial planning for the use of Radarsat and ERS-2 for flood warning). The work thus initiated with this proposal is continuing.

  14. Placing Bounds on Extreme Temperature Response of Maize to Improve Crop Model Intercomparison

    NASA Astrophysics Data System (ADS)

    Anderson, C.; Babcock, B.; Peng, Y.; Gassman, P. W.; Campbell, T.

    2015-12-01

    We propose the development of community-based estimates for bounds on maize sensitivity to extreme temperature. We use model-based, observation-driven soil moisture climatology in a high maize production region in the United States to develop bounds on high temperature sensitivity through its dependence on available water. For the portion of the region with relatively long growing season, yield reduction per degree-C is 10% for high water availability and 32.5% for low water availability. Where the growing season is shorter, yield reduction per degree-C is 6% for high water availability and 27% for low water availability. High temperature sensitivity is indeterminate where extreme temperature yield effect does not yet exceed excessive water yield effect. We suggest new soil moisture climatology from reanalysis datasets could be used to develop community-based estimates of high temperature sensitivity that would significantly improve the accuracy of maize temperature sensitivity bounds, their regional variability, and their importance relative to other weather yield shocks. A community-based estimate would substantially improve evaluation of crop system simulation models and provide baseline information for evaluation of adaptation options. For instance, since process models are needed for evaluation of crop system adaptation response under climate projections, a community-developed estimate would provide a clear target for process model evaluation. Furthermore, the range of extreme temperature sensitivity from empirical models would provide a lower bound on variability that could be achieved from process models. If the process models achieved this bound, it would mean the uncertainty among their simulations would be primarily from observational limitations than differences in model response. While we demonstrate the potential in the context of maize, the concept could be implemented within any crop production system.

  15. Estimating return periods for daily precipitation extreme events over the Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Santos, Eliane Barbosa; Lucio, Paulo Sérgio; Santos e Silva, Cláudio Moisés

    2016-11-01

    This paper aims to model the occurrence of daily precipitation extreme events and to estimate the return period of these events through the extreme value theory (generalized extreme value distribution (GEV) and the generalized Pareto distribution (GPD)). The GEV and GPD were applied in precipitation series of homogeneous regions of the Brazilian Amazon. The GEV and GPD goodness of fit were evaluated by quantile-quantile (Q-Q) plot and by the application of the Kolmogorov-Smirnov (KS) test, which compares the cumulated empirical distributions with the theoretical ones. The Q-Q plot suggests that the probability distributions of the studied series are appropriated, and these results were confirmed by the KS test, which demonstrates that the tested distributions have a good fit in all sub-regions of Amazon, thus adequate to study the daily precipitation extreme event. For all return levels studied, more intense precipitation extremes is expected to occur within the South sub-regions and the coastal area of the Brazilian Amazon. The results possibly will have some practical application in local extreme weather forecast.

  16. Increased Stream Temperature in Response to Extreme Precipitation Events

    NASA Astrophysics Data System (ADS)

    Wilson, C. E.; Gooseff, M. N.

    2016-12-01

    Aquatic ecosystem temperature regulation is essential to the survival of riverine fish species restricted to limited water temperature ranges. Dissolved oxygen levels, similarly necessary to fish health, are decreased by rising temperatures, as warmer waters can hold less oxygen than colder waters. Climate change projections forecast increased precipitation intensities, a trend that has already been observed in the past decade. Though extreme events are becoming more common, the stream temperature response to high-intensity rainfall is not yet completely understood. Precipitation and stream temperature records from gages in the Upper Midwestern United States were analyzed to determine whether there exists a positive relationship between high-intensity rainfall and stream temperature response. This region was chosen for its already observed trends in increasing precipitation intensity, and rural gages were used in order to minimize the effect of impervious surfaces on runoff amounts and temperature. Days with recorded precipitation were divided by an intensity threshold and classified as either high-intensity or low-intensity days. While the effects of rain events on temperature are variable, increases in stream temperature in response to high-intensity rainfall were observed. For some basins, daily maximum rates of stream temperature increase were, on average, greater for higher intensity events. Similarly, the average daily stream temperature range was higher in streams on days of high-intensity precipitation, compared to days of low-intensity events. Understanding the effect of increasing precipitation intensity in conjunction with rising air temperatures will provide insight into the future of aquatic ecosystems and their adaptation to climate change.

  17. Response of the Arctic Freshwater Budget to Extreme NAO Forcing

    NASA Astrophysics Data System (ADS)

    Condron, A.; Winsor, P.

    2007-12-01

    Freshwater release from the Arctic to the deepwater convective regions of the Labrador and Nordic Seas is understood to play an important role in steering decadal global climate variability. An observed freshening of the North Atlantic since the mid-1960s appears to be related to changes in the export of freshwater from the Arctic, and the persistence of a high North Atlantic Oscillation (NAO) during this period. However, the specific response of the Arctic freshwater budget to the NAO is unclear. To investigate this response we use a high resolution (1/3 degree) regional version of the ocean-only MITgcm forced for 12 years with daily NCEP reanalysis data from 1992-2001. At this resolution the model resolves the major Arctic transport pathways, including the Bering Strait and Canadian Archipelago. We ran the model twice, keeping all reanalysis fields the same in both cases, but repeat the wind field of two contrasting NAO years in each run for the extreme negative and positive NAO phases of 1969 and 1989, respectively. Our results highlight a clear response in the Arctic freshwater budget to NAO forcing. Repeat NAO negative wind forcing results in virtually all freshwater being retained in the Arctic. In contrast, repeat NAO positive forcing increases the freshwater export out of the Arctic, primarily via the Fram Strait (54%) and Canadian Archipelago (29%), and results in a total loss in freshwater storage of 14000 km3. We find that the freshwater export via these two pathways increases by virtually the same amount (approx 700 km3 per yr) between the two forcing scenarios, highlighting the important role that the Canadian Archipelago plays in redistributing the freshwater of the Arctic.

  18. Development of a censored modelling approach for stochastic estimation of rainfall extremes at fine temporal scales

    NASA Astrophysics Data System (ADS)

    Cross, David; Onof, Christian; Bernardara, Pietro

    2016-04-01

    With the COP21 drawing to a close in December 2015, storms Desmond, Eva and Frank which swept across the UK and Ireland causing widespread flooding and devastation have acted as a timely reminder of the need for reliable estimation of rainfall extremes in a changing climate. The frequency and intensity of rainfall extremes are predicted to increase in the UK under anthropogenic climate change, and it is notable that the UK's 24 hour rainfall record of 316mm set in Seathwaite, Cumbria in 2009 was broken on the 5 December 2015 with 341mm by storm Desmond at Honister Pass also in Cumbria. Immediate analysis of the latter by the Centre for Ecology and Hydrology (UK) on the 8 December 2015 estimated that this is approximately equivalent to a 1300 year return period event (Centre for Ecology & Hydrology, 2015). Rainfall extremes are typically estimated using extreme value analysis and intensity duration frequency curves. This study investigates the potential for using stochastic rainfall simulation with mechanistic rectangular pulse models for estimation of extreme rainfall. These models have been used since the late 1980s to generate synthetic rainfall time-series at point locations for scenario analysis in hydrological studies and climate impact assessment at the catchment scale. Routinely they are calibrated to the full historical hyetograph and used for continuous simulation. However, their extremal performance is variable with a tendency to underestimate short duration (hourly and sub-hourly) rainfall extremes which are often associated with heavy convective rainfall in temporal climates such as the UK. Focussing on hourly and sub-hourly rainfall, a censored modelling approach is proposed in which rainfall below a low threshold is set to zero prior to model calibration. It is hypothesised that synthetic rainfall time-series are poor at estimating extremes because the majority of the training data are not representative of the climatic conditions which give rise to

  19. Placing bounds on extreme temperature response of maize

    NASA Astrophysics Data System (ADS)

    Anderson, Christopher J.; Babcock, Bruce A.; Peng, Yixing; Gassman, Philip W.; Campbell, Todd D.

    2015-12-01

    Plant water availability is a key factor that determines maize yield response to excess heat. Lack of available data has limited researchers’ ability to estimate this relationship at regional and global scales. Using a new soil moisture data set developed by running a crop growth simulator over historical data we demonstrate how current estimates of maize yield sensitivity to high temperature are misleading. We develop an empirical model relating observed yields to climate variables and soil moisture in a high maize production region in the United States to develop bounds on yield sensitivity to high temperatures. For the portion of the region with a relatively long growing season, yield reduction per °C is 10% for high water availability and 32.5% for low water availability. Where the growing season is shorter, yield reduction per °C is 6% for high water availability and 27% for low water availability. These results indicate the importance of using both water availability and temperature to model crop yield response to explain future climate change on crop yields.

  20. The Relationship between Spatial and Temporal Magnitude Estimation of Scientific Concepts at Extreme Scales

    NASA Astrophysics Data System (ADS)

    Price, Aaron; Lee, H.

    2010-01-01

    Many astronomical objects, processes, and events exist and occur at extreme scales of spatial and temporal magnitudes. Our research draws upon the psychological literature, replete with evidence of linguistic and metaphorical links between the spatial and temporal domains, to compare how students estimate spatial and temporal magnitudes associated with objects and processes typically taught in science class.. We administered spatial and temporal scale estimation tests, with many astronomical items, to 417 students enrolled in 12 undergraduate science courses. Results show that while the temporal test was more difficult, students’ overall performance patterns between the two tests were mostly similar. However, asymmetrical correlations between the two tests indicate that students think of the extreme ranges of spatial and temporal scales in different ways, which is likely influenced by their classroom experience. When making incorrect estimations, students tended to underestimate the difference between the everyday scale and the extreme scales on both tests. This suggests the use of a common logarithmic mental number line for both spatial and temporal magnitude estimation. However, there are differences between the two tests in the errors student make in the everyday range. Among the implications discussed is the use of spatio-temporal reference frames, instead of smooth bootstrapping, to help students maneuver between scales of magnitude and the use of logarithmic transformations between reference frames. Implications for astronomy range from learning about spectra to large scale galaxy structure.

  1. Sampling properties of the maximum entropy estimators for the extreme-value type-1 distribution

    NASA Astrophysics Data System (ADS)

    Phien, Huynh Ngoc

    1986-10-01

    The extreme-value type-1 (EV1) distribution can be viewed as the distribution that satisfies two specified expected values. These expected values give rise to a method of parameter estimation referred to as the method of maximum entropy (MME). The main purpose of this note is to provide a scheme to estimate the variances and covariance of the MME estimators. As a by-product of the simulation runs used, some useful sampling properties of the MME estimators are obtained. These clearly show that the MME is a good method for fitting the EV1 distribution, and the approximations obtained analytically for the variance of estimates of the T-year event are of sufficient accuracy.

  2. Financial market response to extreme events indicating climatic change

    NASA Astrophysics Data System (ADS)

    Anttila-Hughes, J. K.

    2016-05-01

    A variety of recent extreme climatic events are considered to be strong evidence that the climate is warming, but these incremental advances in certainty often seem ignored by non-scientists. I identify two unusual types of events that are considered to be evidence of climate change, announcements by NASA that the global annual average temperature has set a new record, and the sudden collapse of major polar ice shelves, and then conduct an event study to test whether news of these events changes investors' valuation of energy companies, a subset of firms whose future performance is closely tied to climate change. I find evidence that both classes of events have influenced energy stock prices since the 1990s, with record temperature announcements on average associated with negative returns and ice shelf collapses associated with positive returns. I identify a variety of plausible mechanisms that may be driving these differential responses, discuss implications for energy markets' views on long-term regulatory risk, and conclude that investors not only pay attention to scientifically significant climate events, but discriminate between signals carrying different information about the nature of climatic change.

  3. Response and Recovery of Streams From an Extreme Flood

    NASA Astrophysics Data System (ADS)

    Kantack, K. M.; Renshaw, C. E.; Magilligan, F. J.; Dethier, E.

    2015-12-01

    In temperate regions, channels are expected to recover from intense floods in a matter of months to years, but quantitative empirical support for this idea remains limited. Moreover, existing literature fails to address the spatial variability of the recovery process. Using an emerging technology, we investigate the immediate response to and progressive recovery of channels in the Northeastern United States from an extreme flood. We seek to determine what factors, including the nature and extent of the immediate response of the channel to the flood and post-flood availability of sediment, contribute to the spatial variability of the rate of recovery. Taking advantage of the 2011 flooding from Tropical Storm Irene, for which pre- and post-flood aerial lidar exist, along with a third set of terrestrial lidar collected in 2015, we assess channel response and recovery with multi-temporal lidar comparison. This method, with kilometers of continuous data, allows for analysis beyond traditional cross-section and reach-scale studies. Results indicate that landscape-scale factors, such as valley morphology and gradients in unit stream power, are controls on channel response to the flood, producing spatially variable impacts. Along a 16.4-km section (drainage area = 82 km2) of the Deerfield River in Vermont, over 148,000 m3 or erosion occurred during the flood. The spatial variation of impacts was correlated (R2= 0.476) with the ratio of channel width to valley width. We expect the recovery process will similarly exhibit spatial variation in rate and magnitude, possibly being governed by gradients in unit stream power and sediment availability. We test the idea that channel widening during the flood reduces post-flood unit stream power, creating a pathway for deposition and recovery to pre-flood width. Flood-widened reaches downstream of point-sources of sediment, such as landslides, will recover more quickly than those without consistent sediment supply. Results of this

  4. Combination of radar and daily precipitation data to estimate meaningful sub-daily point precipitation extremes

    NASA Astrophysics Data System (ADS)

    Bárdossy, András; Pegram, Geoffrey

    2017-01-01

    The use of radar measurements for the space time estimation of precipitation has for many decades been a central topic in hydro-meteorology. In this paper we are interested specifically in daily and sub-daily extreme values of precipitation at gauged or ungauged locations which are important for design. The purpose of the paper is to develop a methodology to combine daily precipitation observations and radar measurements to estimate sub-daily extremes at point locations. Radar data corrected using precipitation-reflectivity relationships lead to biased estimations of extremes. Different possibilities of correcting systematic errors using the daily observations are investigated. Observed gauged daily amounts are interpolated to unsampled points and subsequently disaggregated using the sub-daily values obtained by the radar. Different corrections based on the spatial variability and the subdaily entropy of scaled rainfall distributions are used to provide unbiased corrections of short duration extremes. Additionally a statistical procedure not based on a matching day by day correction is tested. In this last procedure as we are only interested in rare extremes, low to medium values of rainfall depth were neglected leaving a small number of L days of ranked daily maxima in each set per year, whose sum typically comprises about 50% of each annual rainfall total. The sum of these L day maxima is first iterpolated using a Kriging procedure. Subsequently this sum is disaggregated to daily values using a nearest neighbour procedure. The daily sums are then disaggregated by using the relative values of the biggest L radar based days. Of course, the timings of radar and gauge maxima can be different, so the method presented here uses radar for disaggregating daily gauge totals down to 15 min intervals in order to extract the maxima of sub-hourly through to daily rainfall. The methodologies were tested in South Africa, where an S-band radar operated relatively continuously at

  5. Estimating the impact of extreme climatic events on riverine sediment transport: new tools and methods

    NASA Astrophysics Data System (ADS)

    Lajeunesse, E.; Delacourt, C.; Allemand, P.; Limare, A.; Dessert, C.; Ammann, J.; Grandjean, P.

    2010-12-01

    A series of recent works have underlined that the flux of material exported outside of a watershed is dramatically increased during extreme climatic events, such as storms, tropical cyclones and hurricanes [Dadson et al., 2003 and 2004; Hilton et al., 2008]. Indeed the exceptionally high rainfall rates reached during these events trigger runoff and landsliding which destabilize slopes and accumulate a significant amount of sediments in flooded rivers. This observation raises the question of the control that extreme climatic events might exert on the denudation rate and the morphology of watersheds. Addressing this questions requires to measure sediment transport in flooded rivers. However most conventional sediment monitoring technics rely on manned operated measurements which cannot be performed during extreme climatic events. Monitoring riverine sediment transport during extreme climatic events remains therefore a challenging issue because of the lack of instruments and methodologies adapted to such extreme conditions. In this paper, we present a new methodology aimed at estimating the impact of extreme events on sediment transport in rivers. Our approach relies on the development of two instruments. The first one is an in-situ optical instrument, based on a LISST-25X sensor, capable of measuring both the water level and the concentration of suspended matter in rivers with a time step going from one measurement every hour at low flow to one measurement every 2 minutes during a flood. The second instrument is a remote controlled drone helicopter used to acquire high resolution stereophotogrammetric images of river beds used to compute DEMs and to estimate how flash floods impact the granulometry and the morphology of the river. These two instruments were developed and tested during a 1.5 years field survey performed from june 2007 to january 2009 on the Capesterre river located on Basse-Terre island (Guadeloupe archipelago, Lesser Antilles Arc).

  6. Agricultural Irrigation Demand Response Estimation Tool

    SciTech Connect

    Olsen, Daniel

    2014-02-01

    This program is used to model the energy demand of agricultural irrigation pumps, used to maintain soil moisture levels in irrigated fields. This modeling is accomplished using historical data from evapotranspirationmeasuring weather stations (from the California Irrigation Management Information System) as well as irrigation system characteristics for the field(s) to be modeled. The modelled energy demand is used to estimate the achievable demand response (DR) potential of the field(s), for use in assessing the value of the DR for the utility company. The program can accept input data with varying degrees of rigor, and estimate the uncertainty of the output accordingly.

  7. Streamflow response to increasing precipitation extremes altered by forest management

    Treesearch

    Charlene N. Kelly; Kevin J. McGuire; Chelcy Ford Miniat; James M. Vose

    2016-01-01

    Increases in extreme precipitation events of floods and droughts are expected to occur worldwide. The increase in extreme events will result in changes in streamflow that are expected to affect water availability for human consumption and aquatic ecosystem function. We present an analysis that may greatly improve current streamflow models by quantifying the...

  8. The end of trend-estimation for extreme floods under climate change?

    NASA Astrophysics Data System (ADS)

    Schulz, Karsten; Bernhardt, Matthias

    2016-04-01

    An increased risk of flood events is one of the major threats under future climate change conditions. Therefore, many recent studies have investigated trends in flood extreme occurences using historic long-term river discharge data as well as simulations from combined global/regional climate and hydrological models. Severe floods are relatively rare events and the robust estimation of their probability of occurrence requires long time series of data (6). Following a method outlined by the IPCC research community, trends in extreme floods are calculated based on the difference of discharge values exceeding e.g. a 100-year level (Q100) between two 30-year windows, which represents prevailing conditions in a reference and a future time period, respectively. Following this approach, we analysed multiple, synthetically derived 2,000-year trend-free, yearly maximum runoff data generated using three different extreme value distributions (EDV). The parameters were estimated from long term runoff data of four large European watersheds (Danube, Elbe, Rhine, Thames). Both, Q100-values estimated from 30-year moving windows, as well as the subsequently derived trends showed enormous variations with time: for example, estimating the Extreme Value (Gumbel) - distribution for the Danube data, trends of Q100 in the synthetic time-series range from -4,480 to 4,028 m³/s per 100 years (Q100 =10,071m³/s, for reference). Similar results were found when applying other extreme value distributions (Weibull, and log-Normal) to all of the watersheds considered. This variability or "background noise" of estimating trends in flood extremes makes it almost impossible to significantly distinguish any real trend in observed as well as modelled data when such an approach is applied. These uncertainties, even though known in principle are hardly addressed and discussed by the climate change impact community. Any decision making and flood risk management, including the dimensioning of flood

  9. Observations and estimates of wave-driven water level extremes at the Marshall Islands

    NASA Astrophysics Data System (ADS)

    Merrifield, M. A.; Becker, J. M.; Ford, M.; Yao, Y.

    2014-10-01

    Wave-driven extreme water levels are examined for coastlines protected by fringing reefs using field observations obtained in the Republic of the Marshall Islands. The 2% exceedence water level near the shoreline due to waves is estimated empirically for the study sites from breaking wave height at the outer reef and by combining separate contributions from setup, sea and swell, and infragravity waves, which are estimated based on breaking wave height and water level over the reef flat. Although each component exhibits a tidal dependence, they sum to yield a 2% exceedence level that does not. A hindcast based on the breaking wave height parameterization is used to assess factors leading to flooding at Roi-Namur caused by an energetic swell event during December 2008. Extreme water levels similar to December 2008 are projected to increase significantly with rising sea level as more wave and tide events combine to exceed inundation threshold levels.

  10. Uncertainty estimation of satellite rainfall products associated with spatiotemporal representation of extreme events

    NASA Astrophysics Data System (ADS)

    Laverde-Barajas, Miguel; Corzo Perez, Gerald; Solomatine, Dimitri

    2017-04-01

    Estimating the uncertainty of extreme events in rainfall products and analysing its propagation through the hydrological and hydrodynamic models in a flood study can contribute to a better assessment of flood risk. Characteristics of rainfall events such as magnitude, duration and spatial extension can be associated with the level of flood damages. This study estimates the uncertainty associated to Near-Real-Time (NRT) rainfall satellite products to capture spatiotemporal extreme events. We compare four NRT rainfall satellite products (CMORPH, PERSIANNGCCS, TRMM-RT and the Hydro-Estimator) against the Multi-Source Weighted Ensemble Precipitation MSWEP product in a subtropical catchment in southeastern Brazil during monsoon seasons from 2007 to 2014. The process of defining spatiotemporal events from these products follow three main steps: (1) calculation of a threshold for each cell time series using quantiles, (2) application of the threshold as a filter to transform values above and below the threshold in each cell of the rainfall product into a binary image, (3) clustering cell values using the connected component labeling algorithm to find spatial extension of events. By using the 90th quantile threshold as the extreme condition, four states of the rainfall events define types of extremes: (1) local and short duration events, (2) local and long duration events, (3) extensive and short duration events and (4) extended and long duration events. The uncertainty of each product to estimate events uses the probability of having events close to the reference model. The results show that events in the region are of the "extended with short durations" type, and most of the products result with the similar results. CMORPH had the lowest probability of event differences with our referenced rainfall product. The method allows for characterising spatiotemporal events obtained from NRT products. Further study will characterise regions of these events in a river basin, and

  11. Challenges estimating the return period of extreme floods for reinsurance applications

    NASA Astrophysics Data System (ADS)

    Raven, Emma; Busby, Kathryn; Liu, Ye

    2013-04-01

    Mapping and modelling extreme natural events is fundamental within the insurance and reinsurance industry for assessing risk. For example, insurers might use a 1 in 100-year flood hazard map to set the annual premium of a property, whilst a reinsurer might assess the national scale loss associated with the 1 in 200-year return period for capital and regulatory requirements. Using examples from a range of international flood projects, we focus on exploring how to define what the n-year flood looks like for predictive uses in re/insurance applications, whilst considering challenges posed by short historical flow records and the spatial and temporal complexities of flood. First, we shall explore the use of extreme value theory (EVT) statistics for extrapolating data beyond the range of observations in a marginal analysis. In particular, we discuss how to estimate the return period of historical flood events and explore the impact that a range of statistical decisions have on these estimates. Decisions include: (1) selecting which distribution type to apply (e.g. generalised Pareto distribution (GPD) vs. generalised extreme value distribution (GEV)); (2) if former, the choice of the threshold above which the GPD is fitted to the data; and (3) the necessity to perform a cluster analysis to group flow peaks to temporally represent individual flood events. Second, we summarise a specialised multivariate extreme value model, which combines the marginal analysis above with dependence modelling to generate industry standard event sets containing thousands of simulated, equi-probable floods across a region/country. These events represent the typical range of anticipated flooding across a region and can be used to estimate the largest or most widespread events that are expected to occur. Finally, we summarise how a reinsurance catastrophe model combines the event set with detailed flood hazard maps to estimate the financial cost of floods; both the full event set and also

  12. Estimation of extreme precipitation; Return period values and PMP for Norway

    NASA Astrophysics Data System (ADS)

    Engen-Skaugen, Torill; Alfnes, Eli; Førland, Eirik J.

    2010-05-01

    Estimates of extreme values of precipitation represented as return period values and Probable Maximum Precipitation (PMP) are frequently used in flood evaluation as well as dimensioning of hydro power dams. The estimates are also of interest for infrastructure constructions (e.g. urban runoff). The estimates establish a reference to how rare a heavy rainfall event at a location is. This study presents present-day and future return period values and PMP estimates for several catchments in Norway. Daily precipitation values are extracted from grids covering the Norwegian mainland, spatial resolution 1 x 1 km2, for the time period 1957 - 2009. The grids are interpolated from observations at all available rain gage stations operated by the Norwegian Meteorolgoical Institute in Norway. The maps can be seen at http://senorge.no (Mohr, 2009; Jansson et al., 2007). The rain gauge network in the high mountain region is sparse, leading to reduced quality in these regions. A rough correction of daily gauge precipitation for undercatch because of wind exposure is performed before interpolation. Six climate projections downscaled with different Regional Climate Models (RCMs) are adjusted to be representative locally for the Norwegian mainland (Engen-Skaugen, 2007). Daily precipitation projections are established for the same grid extent as for observations. Time series of daily precipitation are then extracted from these grids representing the same catchments as the historic data. The estimates of extreme precipitation are based on daily precipitation values (Førland, 1992; Alfnes, 2007). Instead of producing area estimates based on site values adjusted by an Area Reduction Factor (ARF), area estimates in the present study is based on time series of daily precipitation representing the actual catchments extracted from the high resolution grids. Alfnes (2007) found that the five-year return value estimates (M5) for these two methods were similar, with exceptions for catchments

  13. Progressive and biphasic cardiac responses during extreme mountain ultramarathon.

    PubMed

    Maufrais, Claire; Millet, Grégoire P; Schuster, Iris; Rupp, Thomas; Nottin, Stéphane

    2016-05-15

    Investigations on the cardiac function consequences of mountain ultramarathon (MUM) >100 h are lacking. The present study assessed the progressive cardiac responses during the world's most challenging MUM (Tor des Géants; Italy; 330 km; 24,000 m of cumulative elevation gain). Resting echocardiographic evaluation of morphology, function, and mechanics of left and right ventricle (LV and RV) including speckle tracking echocardiography was conducted in 15 male participants (46 ± 13 yr) before (pre), during (mid; 148 km), and after (post) the race. Runners completed the race in 126 ± 15 h. From pre to post, the increase in stroke volume (SV) (103 ± 19 vs. 110 ± 23 vs. 116 ± 21 ml; P < 0.001 at pre, mid, and post) was concomitant to the increase in LV early filling (peak E; 72.9 ± 15.7 vs. 74.6 ± 13.1 vs. 82.1 ± 11.5 cm/s; P < 0.05). Left and right atrial end-diastolic areas, RV end-diastolic area, and LV end-diastolic volume were 12-19% higher at post compared with pre (P < 0.05). Resting heart rate and LV systolic strain rates demonstrated a biphasic adaptation with an increase from pre to mid (55 ± 8 vs. 72 ± 11 beats/min, P < 0.001) and a return to baseline values from mid to post (59 ± 8 beats/min). Significant correlations were found between pre-to-post percent changes in peak E and LV end-diastolic volume (r = 0.63, P < 0.05) or RV (r = 0.82, P < 0.001) or atrial end-diastolic areas (r = 0.83, P < 0.001). An extreme MUM induced a biphasic pattern of heart rate in parallel with specific cardiac responses characterized by a progressive increase in diastolic filling, biventricular volumes, and SV. The underlying mechanisms and their clinical implications remain challenging for the future.

  14. Extreme Response in Tension and Compression of Tantalum

    NASA Astrophysics Data System (ADS)

    Remington, Tane Perry

    This research on a model bcc metal, tantalum, has three components: the study of tensile failure; defects generated under a nanoindenter; and dislocation velocities in an extreme regime generated by pulsed lasers. The processes of dynamic failure by spalling were established in nano, poly, and mono crystalline tantalum in recovery experiments following laser compression and release. The process of spall was characterized by different techniques: optical microscopy, scanning electron microscopy, microcomputerized tomography and electron backscatter diffraction. Additionally, the pull back signal was measured by VISAR and the pressure decay was compared with HYADES simulations. There are clear differences in the microscopic fracture mechanisms, dictated by the grain sizes. In the nano and poly crystals, spalling occurred by ductile fracture favoring grain boundaries. In the monocrystals, grain boundaries are absent, and the process was of ductile failure by void initiation, growth and coalescence. The spall strength of single crystalline tantalum was higher than the poly and nano crystals. It was experimentally confirmed that spall strength in tantalum increases with strain rate. In order to generate dislocations close to the surface, single crystalline tantalum with orientations (100), (110) and (111) was nanoindented with a Berkovich tip. Atomic force microscopy showed pile-ups of dislocations around the perimeter of the nanoindentations. Sections of nanoindentations were focused ion beam cut into transmission electron microscope foils. The mechanisms of deformation under a nanoindentation in tantalum were identified and quantified. Molecular dynamics simulations were conducted and the simulated plastic deformation proceeds by the formation of nanotwins, which rapidly evolve into shear dislocation loops. Dislocation densities under the indenter were estimated experimentally (~1.2 x 1015 m-2), by MD (~7 x1015 m-2) and through an analytical calculation (2.6--19 x10

  15. On the possibilities of watershed parameterization for extreme flow estimation in ungauged basins

    NASA Astrophysics Data System (ADS)

    Kohnová, S.; Karabová, B.; Hlavčová, K.

    2015-06-01

    The estimation of design discharges and water levels of extreme floods is one of the most important parts of the design process for a large number of engineering projects and studies. Design flood estimates require a consideration of the hydrological, meteorological and physiographical situation, the legal requirements, and the available estimation techniques and methods. In the last decades changes in floods have been observed (Hall et al., 2014) which makes design flood estimation particularly challenging. Methods of design flood estimation can be applied either locally or regionally. A significant problem may arise in small catchments that are poorly gauged or when no recorded data exist. To obtain the design values in such cases, many countries have adopted procedures that fit the local conditions and requirements. One of these methods is the Soil Conservation Service - Curve number (SCS-CN) method which is often used in design flood estimation for ungauged sites, including those in Slovakia. Since the method was derived on the basis of the specific characteristics of selected river basins in the United States, it may lead to significant uncertainties in other countries with different hydrological conditions. The aim of this study was to test the SCN-CN method and derive regional runoff curve numbers based on rainfall and discharge measurements for selected region in Slovakia. The results show that the classical CN method gives too high estimates of event runoff depths and is not valid in the study area. To avoid the overestimation of runoff caused by extreme rainfall events, the use of the empirically derived regional runoff curves was tested and finally proposed for practical application in engineering hydrology.

  16. Estimates of return levels for extreme events from temperature series subject to trend and changing variability

    SciTech Connect

    Withers, C.S.

    1996-12-31

    Many climate series are subject not only to a changing trend but also to changing variability. This is the case with Auckland temperatures for example. Climate models sometimes include changing trend but have generally neglected to incorporate changing variability. However, the author has shown that statistical models which allow both factors show an unexpected effect on the behavior of extremes: the effect of changing variability dominates the effect of changing trend. Moreover, extremes (and hence 100-year return levels) can behave in a number of different ways depending on: which of the three extreme types that the model`s noise is associated with; the manner in which variability is changing; and the manner in which trend in changing. The model allows for both an arbitrary trend function and an arbitrary scale function. It then follows that there exist standardizing coefficients such that the standardized maximum can be approximated by one of the extreme value distributions. Moreover the same holds when these standardizing coefficients are estimated. This allows the return levels to be approximated. (The concept of a return level is easily extended to the case when a trend is present.)

  17. Estimating Exceedance Probabilities of Envelope Curves of Hydrological Extremes: a Collection of R-Tools

    NASA Astrophysics Data System (ADS)

    Castellarin, A.; Guse, B.; Pugliese, A.

    2013-12-01

    Envelope curves of flood flows are classical hydrological tools that graphically summarize the current bound on our experience of extreme floods in a region. Probabilistic Regional Envelope Curves (PRECs) have been recently introduced in the literature, as well as an empirical estimator of the return period, RP, associated with the curves. PRECs can be used to estimate the RP-year flood (design-flood) for any basin in a given region as a function of the catchment area alone. We present a collection of R-functions that can be used for (1) constructing the empirical envelope curve of flood flows for a given hydrological region and (2) estimating the curve's RP on the basis of a mathematical representation of the cross-correlation structure of observed flood sequences. The R-functions, which we tested on synthetic regional datasets of annual sequences characterized by different degrees of cross-correlation generated through Monte Carlo resampling, provide the user with straightforward means for predicting the exceedance probability, 1/RP, associated with a regional envelope curve, and therefore the RP-year flood in any ungauged basin in the study region for large and very large RP values (e.g. hundreds of years). Furthermore, the R-tools can be easily coupled with other regional flood frequency analysis procedures to effectively improve the accuracy of flood quantile estimates at high RP values, or extended to rainfall extremes for predicting extreme point-rainfall depths associated with a given duration and recurrence interval in any ungauged site within a region.

  18. Selected human physiological responses during extreme heat: the Badwater Ultramarathon.

    PubMed

    Brown, Jacqueline S; Connolly, Declan A

    2015-06-01

    The purpose of this article was to examine various physiological responses during an ultramarathon held in extreme heat. Our investigation was conducted at The Badwater Ultramarathon, a nonstop 217-km run across Death Valley, CA, USA. This study recruited 4 male athletes, average age of 43 (±SD) (±7.35), (range) 39-54 years. All 4 subjects successfully completed the race with a mean finish time of 36:20:23 hours (±SD) (±3:08:38) (range) 34:05:25-40:51:46 hours, and a mean running speed of 6.03 km·h(-1) (±SD) (±0.05), (range) 5.3-6.4 km·h(-1). The anthropometric variables measured were (mean, ±SD) mass 79.33 kg (±6.43), height 1.80 m (±0.09), body surface area 1.93 m2 (±0.16), body mass index 24.38 kg·m(-2) (±1.25), fat mass 13.88% (±2.29), and body water 62.08% (±1.56). Selected physiological variables measured were core body temperature, skin temperature, heart rate, breathing rate, and blood pressure. Rate of perceived intensity, rate of thermal sensation, and environmental factors were also monitored. Our study found (mean and ±SD) core body temperature 37.49° C (±0.88); skin temperature 31.13° C (±3.06); heart rate 106.79 b·min(-1) (±5.11); breathing rate 36.55 b·min(-1) (±0.60); blood pressure 128/86 mm Hg (±9.24/4.62); rate of perceived intensity 5.49 (±1.26); rate of thermal sensation 4.69 (±0.37); daytime high temperature of 46.6° C, and a mean temperature of 28.35° C. Our fastest finisher demonstrated a lower overall core body temperature (36.91° C) when compared with the group mean (37.49° C). In contrast to previous findings, our data show that the fastest finisher demonstrates a lower overall core body temperature. We conclude that it may be possible that a time threshold exists whereby success in longer duration events requires an ability to maintain a lower core body temperature vs. tolerating a higher core body temperature.

  19. Estimation of resist sensitivity for extreme ultraviolet lithography using an electron beam

    SciTech Connect

    Oyama, Tomoko Gowa; Oshima, Akihiro; Tagawa, Seiichi

    2016-08-15

    It is a challenge to obtain sufficient extreme ultraviolet (EUV) exposure time for fundamental research on developing a new class of high sensitivity resists for extreme ultraviolet lithography (EUVL) because there are few EUV exposure tools that are very expensive. In this paper, we introduce an easy method for predicting EUV resist sensitivity by using conventional electron beam (EB) sources. If the chemical reactions induced by two ionizing sources (EB and EUV) are the same, the required absorbed energies corresponding to each required exposure dose (sensitivity) for the EB and EUV would be almost equivalent. Based on this theory, we calculated the resist sensitivities for the EUV/soft X-ray region. The estimated sensitivities were found to be comparable to the experimentally obtained sensitivities. It was concluded that EB is a very useful exposure tool that accelerates the development of new resists and sensitivity enhancement processes for 13.5 nm EUVL and 6.x nm beyond-EUVL (BEUVL).

  20. Combining Radar and Daily Precipitation Data to Estimate Meaningful Sub-daily Precipitation Extremes

    NASA Astrophysics Data System (ADS)

    Pegram, G. G. S.; Bardossy, A.

    2016-12-01

    Short duration extreme rainfalls are important for design. The purpose of this presentation is not to improve the day by day estimation of precipitation, but to obtain reasonable statistics for the subdaily extremes at gauge locations. We are interested specifically in daily and sub-daily extreme values of precipitation at gauge locations. We do not employ the common procedure of using time series of control station to determine the missing data values in a target. We are interested in individual rare events, not sequences. The idea is to use radar to disaggregate daily totals to sub-daily amounts. In South Arica, an S-band radar operated relatively continuously at Bethlehem from 1998 to 2003, whose scan at 1.5 km above ground [CAPPI] overlapped a dense (10 km spacing) set of 45 pluviometers recording in the same 6-year period. Using this valuable set of data, we are only interested in rare extremes, therefore small to medium values of rainfall depth were neglected, leaving 12 days of ranked daily maxima in each set per year, whose sum typically comprised about 50% of each annual rainfall total. The method presented here uses radar for disaggregating daily gauge totals in subdaily intervals down to 15 minutes in order to extract the maxima of sub-hourly through to daily rainfall at each of 37 selected radar pixels [1 km square in plan] which contained one of the 45 pluviometers not masked out by the radar foot-print. The pluviometer data were aggregated to daily totals, to act as if they were daily read gauges; their only other task was to help in the cross-validation exercise. The extrema were obtained as quantiles by ordering the 12 daily maxima of each interval per year. The unusual and novel goal was not to obtain the reproduction of the precipitation matching in space and time, but to obtain frequency distributions of the gauge and radar extremes, by matching their ranks, which we found to be stable and meaningful in cross-validation tests. We provide and

  1. Combination of radar and daily precipitation data to estimate meaningful sub-daily point precipitation extremes

    NASA Astrophysics Data System (ADS)

    Pegram, Geoff; Bardossy, Andras; Sinclair, Scott

    2017-04-01

    The use of radar measurements for the space time estimation of precipitation has for many decades been a central topic in hydro-meteorology. In this presentation we are interested specifically in daily and sub-daily extreme values of precipitation at gauged or ungauged locations which are important for design. The purpose of the presentation is to develop a methodology to combine daily precipitation observations and radar measurements to estimate sub-daily extremes at point locations. Radar data corrected using precipitation-reflectivity relationships lead to biased estimations of extremes. Different possibilities of correcting systematic errors using the daily observations are investigated. Observed gauged daily amounts are interpolated to un-sampled points and subsequently disaggregated using the sub-daily values obtained by the radar. Different corrections based on the spatial variability and the sub-daily entropy of scaled rainfall distributions are used to provide unbiased corrections of short duration extremes. In addition, a statistical procedure not based on a matching day by day correction is tested. In this last procedure, as we are only interested in rare extremes, low to medium values of rainfall depth were neglected leaving 12 days of ranked daily maxima in each set per year, whose sum typically comprises about 50% of each annual rainfall total. The sum of these 12 day maxima is first interpolated using a Kriging procedure. Subsequently this sum is disaggregated to daily values using a nearest neighbour procedure. The daily sums are then disaggregated by using the relative values of the biggest 12 radar based days in each year. Of course, the timings of radar and gauge maxima can be different, so the new method presented here uses radar for disaggregating daily gauge totals down to 15 min intervals in order to extract the maxima of sub-hourly through to daily rainfall. The methodologies were tested in South Africa, where an S-band radar operated

  2. Estimation of extreme daily precipitation: comparison between regional and geostatistical approaches.

    NASA Astrophysics Data System (ADS)

    Hellies, Matteo; Deidda, Roberto; Langousis, Andreas

    2016-04-01

    We study the extreme rainfall regime of the Island of Sardinia in Italy, based on annual maxima of daily precipitation. The statistical analysis is conducted using 229 daily rainfall records with at least 50 complete years of observations, collected at different sites by the Hydrological Survey of the Sardinia Region. Preliminary analysis, and the L-skewness and L-kurtosis diagrams, show that the Generalized Extreme Value (GEV) distribution model performs best in describing daily rainfall extremes. The GEV distribution parameters are estimated using the method of Probability Weighted Moments (PWM). To obtain extreme rainfall estimates at ungauged sites, while minimizing uncertainties due to sampling variability, a regional and a geostatistical approach are compared. The regional approach merges information from different gauged sites, within homogeneous regions, to obtain GEV parameter estimates at ungauged locations. The geostatistical approach infers the parameters of the GEV distribution model at locations where measurements are available, and then spatially interpolates them over the study region. In both approaches we use local rainfall means as index-rainfall. In the regional approach we define homogeneous regions by applying a hierarchical cluster analysis based on Ward's method, with L-moment ratios (i.e. L-CV and L-Skewness) as metrics. The analysis results in four contiguous regions, which satisfy the Hosking and Wallis (1997) homogeneity tests. The latter have been conducted using a Monte-Carlo approach based on a 4-parameter Kappa distribution model, fitted to each station cluster. Note that the 4-parameter Kappa model includes the GEV distribution as a sub-case, when the fourth parameter h is set to 0. In the geostatistical approach we apply kriging for uncertain data (KUD), which accounts for the error variance in local parameter estimation and, therefore, may serve as a useful tool for spatial interpolation of metrics affected by high uncertainty. In

  3. Flood risk assessment in France: comparison of extreme flood estimation methods (EXTRAFLO project, Task 7)

    NASA Astrophysics Data System (ADS)

    Garavaglia, F.; Paquet, E.; Lang, M.; Renard, B.; Arnaud, P.; Aubert, Y.; Carre, J.

    2013-12-01

    In flood risk assessment the methods can be divided in two families: deterministic methods and probabilistic methods. In the French hydrologic community the probabilistic methods are historically preferred to the deterministic ones. Presently a French research project named EXTRAFLO (RiskNat Program of the French National Research Agency, https://extraflo.cemagref.fr) deals with the design values for extreme rainfall and floods. The object of this project is to carry out a comparison of the main methods used in France for estimating extreme values of rainfall and floods, to obtain a better grasp of their respective fields of application. In this framework we present the results of Task 7 of EXTRAFLO project. Focusing on French watersheds, we compare the main extreme flood estimation methods used in French background: (i) standard flood frequency analysis (Gumbel and GEV distribution), (ii) regional flood frequency analysis (regional Gumbel and GEV distribution), (iii) local and regional flood frequency analysis improved by historical information (Naulet et al., 2005), (iv) simplify probabilistic method based on rainfall information (i.e. Gradex method (CFGB, 1994), Agregee method (Margoum, 1992) and Speed method (Cayla, 1995)), (v) flood frequency analysis by continuous simulation approach and based on rainfall information (i.e. Schadex method (Paquet et al., 2013, Garavaglia et al., 2010), Shyreg method (Lavabre et al., 2003)) and (vi) multifractal approach. The main result of this comparative study is that probabilistic methods based on additional information (i.e. regional, historical and rainfall information) provide better estimations than the standard flood frequency analysis. Another interesting result is that, the differences between the various extreme flood quantile estimations of compared methods increase with return period, staying relatively moderate up to 100-years return levels. Results and discussions are here illustrated throughout with the example

  4. Calibration period dependence of extreme flood estimations (with a model-based flood frequency method)

    NASA Astrophysics Data System (ADS)

    Brigode, P.; Bernardara, P.; Paquet, E.; Gailhard, J.; Garavaglia, F.; Ribstein, P.; Micovic, Z.

    2013-12-01

    Extreme floods estimation methods are developed since many years within the hydrological and statistical communities. More recently, approaches based on the statistical analysis of flood streamflow samples simulated by rainfall-runoff models which are forced by simulated rainfall spread in the scientific literature. These approaches, called stochastic simulation methods, are typically composed by a probabilistic rainfall model and a rainfall-runoff model. Each of these two models are calibrated over observed hydrometeorological series such as daily precipitation series for the probabilistic rainfall models or such as daily streamflow, precipitation and temperature series for the rainfall-runoff models. Since extreme flood observations are by definition particularly rare, the validation of the proposed extreme flood estimations is one of the main critical issues, whatever the method - statistical or physically-based - used. Moreover, the observed hydrometeorological series used for the calibration of the stochastic simulation methods may be subject to significant variability over time, due to global climate oscillations such as El Niño Southern Oscillations for example. If the estimation of total involved uncertainty is a difficult task, investigating to what extent the proposed extreme flood values are dependent on the calibration period is an interesting first step. The general aim of this study is to propose a methodology for performing a sensitivity analysis of extreme flood estimations to the variability of observed series used for the model calibrations in a stochastic simulation framework. The methodology proposed is based on the nonparametric bootstrap concept and consists to perform a set of block-bootstrap experiments, thus generating different sets of observed series sub-samples. The generated observed series sub-samples are then used for the calibration of the different models considered within the stochastic simulation method. The main originality of

  5. Estimation of the impact of climate change-induced extreme precipitation events on floods

    NASA Astrophysics Data System (ADS)

    Hlavčová, Kamila; Lapin, Milan; Valent, Peter; Szolgay, Ján; Kohnová, Silvia; Rončák, Peter

    2015-09-01

    In order to estimate possible changes in the flood regime in the mountainous regions of Slovakia, a simple physically-based concept for climate change-induced changes in extreme 5-day precipitation totals is proposed in the paper. It utilizes regionally downscaled scenarios of the long-term monthly means of the air temperature, specific air humidity and precipitation projected for Central Slovakia by two regional (RCM) and two global circulation models (GCM). A simplified physically-based model for the calculation of short-term precipitation totals over the course of changing air temperatures, which is used to drive a conceptual rainfall-runoff model, was proposed. In the paper a case study of this approach in the upper Hron river basin in Central Slovakia is presented. From the 1981-2010 period, 20 events of the basin's most extreme average of 5-day precipitation totals were selected. Only events with continual precipitation during 5 days were considered. These 5-day precipitation totals were modified according to the RCM and GCM-based scenarios for the future time horizons of 2025, 2050 and 2075. For modelling runoff under changed 5-day precipitation totals, a conceptual rainfall-runoff model developed at the Slovak University of Technology was used. Changes in extreme mean daily discharges due to climate change were compared with the original flood events and discussed.

  6. Contact lenses in extreme cold environments: response of rabbit corneas.

    PubMed

    Socks, J F

    1982-04-01

    Contact lenses are worn by many individuals in military and civilian populations. Anecdotal reports have described contact lenses "sticking" and "freezing" to the eye during extreme cold conditions. However, some articles indicate the advantages of wearing contact lenses in cold environments. Military operations frequently taken place in cold regions; therefore, we need to known whether contact lenses can be worn safely in extreme cold. Rabbits were fitted with hard (polymethyl methacrylate) contact lenses and exposed to -28.9 degrees C temperatures with winds up to 78 mph (125 km/hr) for 3-hr periods. The wind-chill factor in these conditions exceeded -67.8 degrees C. No effects of the cold or contact lenses were seen in 85% of the eyes. A few of the eyes, both with contact lenses and without, showed mild superficial fluorescein staining of the cornea which cleared within a few ours after exposure. Histologic examination of the corneas revealed no abnormalities attributable to the cold. Inasmuch as this study showed that rabbits wearing contact lenses in extreme cold suffered no acute deleterious effects to the eyes, the research can be expanded to include human subjects.

  7. Asian monsoon extremes and humanity's response over the past millennium

    NASA Astrophysics Data System (ADS)

    Buckley, B. M.; Lieberman, V. B.; Zottoli, B.

    2012-12-01

    The first decade of the 21st century has seen significant development in the production of paleo proxies for the Asian monsoon, exemplified by the Monsoon Asian Drought Atlas that was comprised of more than 300 tree ring chronologies. Noteworthy among them is the Vietnamese cypress tree-ring record which reveals that the two worst droughts of the past 7 centuries, each more than a decade in length, coincided with the demise of the Khmer civilization at Angkor in the early 15th century CE. The 18th century was nearly as tumultuous a period across Southeast Asia, where several polities fell against a backdrop of epic decadal-scale droughts. At this time all of the region's charter states saw rapid realignment in the face of drought, famine, disease and a raft of related and unrelated social issues. Several other droughts, some more extreme but of lesser duration, punctuate the past millennium, but appear to have had little societal impact. Historical documentation is being used not only to provide corroborative evidence of tree-ring reconstructed climate extremes, but to attempt to understand the dynamics of the coupled human-natural systems involved, and to define what kinds of thresholds need to be reached before societies respond. This paleo perspective can assist our analyses of the role of climate extremes in the collapse or disruption of regional societies, a subject of increasing concern given the uncertainties surrounding projections for future climate across the highly populated areas of Asia.

  8. Estimating Reduced Consumption for Dynamic Demand Response

    SciTech Connect

    Chelmis, Charalampos; Aman, Saima; Saeed, Muhammad Rizwan; Frincu, Marc; Prasanna, Viktor K.

    2015-01-30

    Growing demand is straining our existing electricity generation facilities and requires active participation of the utility and the consumers to achieve energy sustainability. One of the most effective and widely used ways to achieve this goal in the smart grid is demand response (DR), whereby consumers reduce their electricity consumption in response to a request sent from the utility whenever it anticipates a peak in demand. To successfully plan and implement demand response, the utility requires reliable estimate of reduced consumption during DR. This also helps in optimal selection of consumers and curtailment strategies during DR. While much work has been done on predicting normal consumption, reduced consumption prediction is an open problem that is under-studied. In this paper, we introduce and formalize the problem of reduced consumption prediction, and discuss the challenges associated with it. We also describe computational methods that use historical DR data as well as pre-DR conditions to make such predictions. Our experiments are conducted in the real-world setting of a university campus microgrid, and our preliminary results set the foundation for more detailed modeling.

  9. Using damage data to estimate the risk from summer convective precipitation extremes

    NASA Astrophysics Data System (ADS)

    Schroeer, Katharina; Tye, Mari

    2017-04-01

    model to test whether the relationship between extreme rainfall events and damages is robust enough to estimate a potential underrepresentation of high intensity rainfall events in ungauged areas. Risk-relevant factors of socio-economic vulnerability, land cover, streamflow data, and weather type information are included to improve and sharpen the analysis. Within this study, we first aim to identify which rainfall events are most damaging and which factors affect the damages - seen as a proxy for the vulnerability - related to summer convective rainfall extremes in different catchment types. Secondly, we aim to detect potentially unreported damaging rainfall events and estimate the likelihood of such cases. We anticipate this damage perspective on summertime extreme convective precipitation to be beneficial for risk assessment, uncertainty management, and decision making with respect to weather and climate extremes on the regional-to-local level.

  10. Quantifying thermal extremes and biological variation to predict evolutionary responses to changing climate.

    PubMed

    Kingsolver, Joel G; Buckley, Lauren B

    2017-06-19

    Central ideas from thermal biology, including thermal performance curves and tolerances, have been widely used to evaluate how changes in environmental means and variances generate changes in fitness, selection and microevolution in response to climate change. We summarize the opportunities and challenges for extending this approach to understanding the consequences of extreme climatic events. Using statistical tools from extreme value theory, we show how distributions of thermal extremes vary with latitude, time scale and climate change. Second, we review how performance curves and tolerances have been used to predict the fitness and evolutionary responses to climate change and climate gradients. Performance curves and tolerances change with prior thermal history and with time scale, complicating their use for predicting responses to thermal extremes. Third, we describe several recent case studies showing how infrequent extreme events can have outsized effects on the evolution of performance curves and heat tolerance. A key issue is whether thermal extremes affect reproduction or survival, and how these combine to determine overall fitness. We argue that a greater focus on tails-in the distribution of environmental extremes, and in the upper ends of performance curves-is needed to understand the consequences of extreme events.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).

  11. Value-at-risk estimation with wavelet-based extreme value theory: Evidence from emerging markets

    NASA Astrophysics Data System (ADS)

    Cifter, Atilla

    2011-06-01

    This paper introduces wavelet-based extreme value theory (EVT) for univariate value-at-risk estimation. Wavelets and EVT are combined for volatility forecasting to estimate a hybrid model. In the first stage, wavelets are used as a threshold in generalized Pareto distribution, and in the second stage, EVT is applied with a wavelet-based threshold. This new model is applied to two major emerging stock markets: the Istanbul Stock Exchange (ISE) and the Budapest Stock Exchange (BUX). The relative performance of wavelet-based EVT is benchmarked against the Riskmetrics-EWMA, ARMA-GARCH, generalized Pareto distribution, and conditional generalized Pareto distribution models. The empirical results show that the wavelet-based extreme value theory increases predictive performance of financial forecasting according to number of violations and tail-loss tests. The superior forecasting performance of the wavelet-based EVT model is also consistent with Basel II requirements, and this new model can be used by financial institutions as well.

  12. Estimating the Effect of Climate Change on Crop Yields and Farmland Values: The Importance of Extreme Temperatures

    EPA Pesticide Factsheets

    This is a presentation titled Estimating the Effect of Climate Change on Crop Yields and Farmland Values: The Importance of Extreme Temperatures that was given for the National Center for Environmental Economics

  13. The Individual Consistency of Acquiescence and Extreme Response Style in Self-Report Questionnaires

    ERIC Educational Resources Information Center

    Weijters, Bert; Geuens, Maggie; Schillewaert, Niels

    2010-01-01

    The severity of bias in respondents' self-reports due to acquiescence response style (ARS) and extreme response style (ERS) depends strongly on how consistent these response styles are over the course of a questionnaire. In the literature, different alternative hypotheses on response style (in)consistency circulate. Therefore, nine alternative…

  14. Replica and extreme-value analysis of the Jarzynski free-energy estimator

    NASA Astrophysics Data System (ADS)

    Palassini, Matteo; Ritort, Felix

    2008-03-01

    We analyze the Jarzynski estimator of free-energy differences from nonequilibrium work measurements. By a simple mapping onto Derrida's Random Energy Model, we obtain a scaling limit for the expectation of the bias of the estimator. We then derive analytical approximations in three different regimes of the scaling parameter x = log(N)/W, where N is the number of measurements and W the mean dissipated work. Our approach is valid for a generic distribution of the dissipated work, and is based on a replica symmetry breaking scheme for x >> 1, the asymptotic theory of extreme value statistics for x << 1, and a direct approach for x near one. The combination of the three analytic approximations describes well Monte Carlo data for the expectation value of the estimator, for a wide range of values of N, from N=1 to large N, and for different work distributions. Based on these results, we introduce improved free-energy estimators and discuss the application to the analysis of experimental data.

  15. Application of extreme learning machine for estimation of wind speed distribution

    NASA Astrophysics Data System (ADS)

    Shamshirband, Shahaboddin; Mohammadi, Kasra; Tong, Chong Wen; Petković, Dalibor; Porcu, Emilio; Mostafaeipour, Ali; Ch, Sudheer; Sedaghat, Ahmad

    2016-03-01

    The knowledge of the probabilistic wind speed distribution is of particular significance in reliable evaluation of the wind energy potential and effective adoption of site specific wind turbines. Among all proposed probability density functions, the two-parameter Weibull function has been extensively endorsed and utilized to model wind speeds and express wind speed distribution in various locations. In this research work, extreme learning machine (ELM) is employed to compute the shape ( k) and scale ( c) factors of Weibull distribution function. The developed ELM model is trained and tested based upon two widely successful methods used to estimate k and c parameters. The efficiency and accuracy of ELM is compared against support vector machine, artificial neural network and genetic programming for estimating the same Weibull parameters. The survey results reveal that applying ELM approach is eventuated in attaining further precision for estimation of both Weibull parameters compared to other methods evaluated. Mean absolute percentage error, mean absolute bias error and root mean square error for k are 8.4600 %, 0.1783 and 0.2371, while for c are 0.2143 %, 0.0118 and 0.0192 m/s, respectively. In conclusion, it is conclusively found that application of ELM is particularly promising as an alternative method to estimate Weibull k and c factors.

  16. Sensitivity of extreme flood quantile estimation to rainfall-runoff modeling

    NASA Astrophysics Data System (ADS)

    Mathevet, T.; Garavaglia, F.; Paquet, E.; Garçon, R.

    2012-04-01

    EDF (Électricité de France) design floods of dam spillways are now computed using a probabilistic method named SCHADEX (Climatic-hydrological simulation of extreme foods (Paquet et al., 2006, Garavaglia et al., 2009, 2010). This method aims at estimating extreme flood quantiles by the combination of a weather pattern based rainfall probabilistic model and a conceptual rainfall-runoff model. Extreme floods quantiles are estimated through a runoff generation process that combines a stochastic generation of rainfall events and a semi-continuous rainfall-runoff simulation. The aim of this paper is to investigate the sensitivity of extreme flood quantile estimation to the rainfall-runoff model (structure, parameters) used in the simulation framework. To explore this topic we have used two rainfall-runoff models (i.e. MORDOR model (Garçon et al., 1996) and GR4J model (Andreassian et al., 2006)) with four different objective functions (based on Nash-Sutcliffe and Kling-Gupta efficiencies) and a classical split-sample scheme. This testing strategy has been applied to calibrate models on a set of 30 French watersheds at different time-steps (mainly daily and 4 to 12 hours). When calibrated, models were used within the SCHADEX method and flood quantiles were evaluated at different return levels in interpolation and extrapolation (10, 100, 1000 years return-period). The main result of this comparative study is that extreme flood quantile estimations are more sensitive to (i) the objective function used and (ii) the time series length and period used for model calibration then (iii) the rainfall-runoff structure. Within this comparative study, the mean variability on a 1000 years return-period is up to 20%. Another interesting result is that, for a same objective function and time series period, the influence of the rainfall-runoff model is relatively moderated in extrapolation domain because the two rainfall-runoff models converged towards their asymptotic behaviours, but

  17. Effects of Arm Ergometry Exercise on the Reaction, Movement and Response Times of the Lower Extremities.

    ERIC Educational Resources Information Center

    Israel, Richard G.

    A study determined the effects of fatigue produced in the upper extremities on the reaction time, movement time, and response time of the lower extremities in 30 male subjects, 19-25 years old. Each subject participated in a 10 trial practice session one day prior to the experiment and immediately preceding the pre-test. The pre-test consisted of…

  18. Aggradation in response to extreme flooding and watershed management

    NASA Astrophysics Data System (ADS)

    Engel, F. L.; Curran, J. C.

    2006-12-01

    In 1998, the San Marcos River, located along the Balcones Escarpment in Central Texas, experienced the largest flood in its recorded history. The San Marcos is a heavily managed watershed containing flood control dams, reaches of channelized flow, and a man made lake. This study examines changes to the fluvial system as a result of the combination of an extreme flow event and watershed management practices. The flood caused mass wasting and channel bed aggradation. Since the flood, watershed management practices and flood retention structures have reduced the ability of the flows to transport sediment through the channel. Results indicate that since flood control measures were implemented, only two flood events could have produced any significant transport of material in the study reach. The lasting effect has been an increase in the width to depth ratio in the downstream portion of the river and the creation of a large sediment bar in the upstream channel reach.

  19. Regularized joint inverse estimation of extreme rainfall amounts in ungauged coastal basins of El Salvador

    USGS Publications Warehouse

    Friedel, M.J.

    2008-01-01

    A regularized joint inverse procedure is presented and used to estimate the magnitude of extreme rainfall events in ungauged coastal river basins of El Salvador: Paz, Jiboa, Grande de San Miguel, and Goascoran. Since streamflow measurements reflect temporal and spatial rainfall information, peak-flow discharge is hypothesized to represent a similarity measure suitable for regionalization. To test this hypothesis, peak-flow discharge values determined from streamflow recurrence information (10-year, 25-year, and 100-year) collected outside the study basins are used to develop regional (country-wide) regression equations. Peak-flow discharge derived from these equations together with preferred spatial parameter relations as soft prior information are used to constrain the simultaneous calibration of 20 tributary basin models. The nonlinear range of uncertainty in estimated parameter values (1 curve number and 3 recurrent rainfall amounts for each model) is determined using an inverse calibration-constrained Monte Carlo approach. Cumulative probability distributions for rainfall amounts indicate differences among basins for a given return period and an increase in magnitude and range among basins with increasing return interval. Comparison of the estimated median rainfall amounts for all return periods were reasonable but larger (3.2-26%) than rainfall estimates computed using the frequency-duration (traditional) approach and individual rain gauge data. The observed 25-year recurrence rainfall amount at La Hachadura in the Paz River basin during Hurricane Mitch (1998) is similar in value to, but outside and slightly less than, the estimated rainfall confidence limits. The similarity in joint inverse and traditionally computed rainfall events, however, suggests that the rainfall observation may likely be due to under-catch and not model bias. ?? Springer Science+Business Media B.V. 2007.

  20. A comparison of acromion marker cluster calibration methods for estimating scapular kinematics during upper extremity ergometry.

    PubMed

    Richardson, R Tyler; Nicholson, Kristen F; Rapp, Elizabeth A; Johnston, Therese E; Richards, James G

    2016-05-03

    Accurate measurement of joint kinematics is required to understand the musculoskeletal effects of a therapeutic intervention such as upper extremity (UE) ergometry. Traditional surface-based motion capture is effective for quantifying humerothoracic motion, but scapular kinematics are challenging to obtain. Methods for estimating scapular kinematics include the widely-reported acromion marker cluster (AMC) which utilizes a static calibration between the scapula and the AMC to estimate the orientation of the scapula during motion. Previous literature demonstrates that including additional calibration positions throughout the motion improves AMC accuracy for single plane motions; however this approach has not been assessed for the non-planar shoulder complex motion occurring during UE ergometry. The purpose of this study was to evaluate the accuracy of single, dual, and multiple AMC calibration methods during UE ergometry. The orientations of the UE segments of 13 healthy subjects were recorded with motion capture. Scapular landmarks were palpated at eight evenly-spaced static positions around the 360° cycle. The single AMC method utilized one static calibration position to estimate scapular kinematics for the entire cycle, while the dual and multiple AMC methods used two and four static calibration positions, respectively. Scapulothoracic angles estimated by the three AMC methods were compared with scapulothoracic angles determined by palpation. The multiple AMC method produced the smallest RMS errors and was not significantly different from palpation about any axis. We recommend the multiple AMC method as a practical and accurate way to estimate scapular kinematics during UE ergometry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Estimating Precipitation from Space: new directions in variational downscaling and data fusion with emphasis on extremes

    NASA Astrophysics Data System (ADS)

    Foufoula, E.; Ebtehaj, M.

    2013-05-01

    Downscaling, data fusion, and data assimilation of non-Gaussian fields are problems of fundamental importance in the atmospheric, hydrometeorologic, and oceanic sciences. The increasing availability of satellite data, e.g. precipitation from TRMM and the forthcoming GPM mission as well as soil moisture from SMAP, at multiple resolutions and accuracies has fueled renewed interest in these problems towards the development of estimation frameworks that can handle large data sets in computationally efficient ways while optimally reproducing desired properties of the underlying fields. In this paper, we present a new and unifying formalism for statistical estimation (downscaling and data fusion) of multi-sensor, multi-scale precipitation measurements. The formalism is constructed to explicitly allow the preservation of some key geometrical and statistical properties of precipitation, such as extreme gradients (indicative of the presence of rainbands and multi-cellular spatial patterns) and non-Gaussian statistics. While we restrict our presentation and examples in the spatial domain, extension to time, and/or space-time can be obtained. The proposed framework draws upon: (1) recent observations that precipitation fields exhibit "sparsity" in a gradient or wavelet domain and a probability distribution well approximated by a Generalized Gaussian, and (2) new theoretical developments in the signal processing and optimization communities for non-linear, non-smooth data recovery from noisy, blurred and downsampled signals via regularized estimation.

  2. Use of heat to estimate streambed fluxes during extreme hydrologic events

    USGS Publications Warehouse

    Barlow, J.R.B.; Coupe, R.H.

    2009-01-01

    Using heat as a tracer, quantitative estimates of streambed fluxes and the critical stage for flow reversal were calculated for high-flow events that occurred on the Bogue Phalia (a tributary of the Mississippi River) following the 2005 Hurricanes Katrina and Rita. In June 2005, piezometers were installed in the Bogue Phalia upstream from the stream gage near Leland, Mississippi, to monitor temperature. Even with the hurricanes, precipitation in the Bogue Phalia Basin for the months of June to October 2005 was below normal, and consequently, streamflow was below the long-term average. Temperature profiles from the piezometers indicate that the Bogue Phalia was a gaining stream during most of this time, but relatively static streambed temperatures suggested long-term data was warranted for heat-based estimates of flux. However, the hurricanes caused a pair of sharp rises in stream stage over short periods of time, increasing the potential for rapid heat-based modeling and for identification of the critical stage for flow reversal into the streambed. Heat-based modeling fits of simulated-to-measured sediment temperatures show that once a critical stage was surpassed, flow direction reversed into the streambed. Results of this study demonstrate the ability to constrain estimates of streambed water flux and the critical stage of flow reversal, with little available groundwater head data, by using heat as a tracer during extreme stage events. copyright. Published in 2009 by the American Geophysical Union.

  3. Using Annual Data to Estimate the Public Health Impact of Extreme Temperatures.

    PubMed

    Goggins, William B; Yang, Chunyuh; Hokama, Tomiko; Law, Lewis S K; Chan, Emily Y Y

    2015-07-01

    Short-term associations between both hot and cold ambient temperatures and higher mortality have been found worldwide. Few studies have examined these associations on longer time scales. Age-standardized mortality rates (ASMRs) were calculated for 1976-2012 for Hong Kong SAR, People's Republic of China, defining "annual" time periods in 2 ways: from May through April of the following year and from November through October. Annual frequency and severity of extreme temperatures were summarized by using a degree-days approach with extreme heat expressed as annual degree-days >29.3°C and cold as annual degree-days <27.5°C. For example, a day with a mean temperature of 25.0°C contributes 2.5 cold degree-days to the annual total. Generalized additive models were used to estimate the association between annual hot and cold degree-days and the ASMR, with adjustment for long-term trends. Increases of 10 hot or 200 cold degree-days in an annual period, the approximate interquartile ranges for these variables, were significantly (all P's ≤ 0.011) associated with 1.9% or 3.1% increases, respectively, in the annual ASMR for the May-April analyses and with 2.2% or 2.8% increases, respectively, in the November-October analyses. Associations were stronger for noncancer and elderly mortality. Mortality increases associated with extreme temperature are not simply due to short-term forward displacement of deaths that would have occurred anyway within a few weeks. © The Author 2015. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Extreme water level and wave estimation for nearshore of Ningde City

    NASA Astrophysics Data System (ADS)

    Jin, Y. D.; Wang, E. K.; Xu, G. Q.

    2017-08-01

    The high and low design water levels are calculated by observation tidal data in sea areas of Ningde offshore wind power project from September 2010 to August 2011, with the value 318 cm and -246 cm, respectively. The extreme high and low levels are also calculated using synchronous difference ratio method based on station data from 1973 to 2005 at Sansha station. The value is 431 cm and -378 cm respectively. The design wave elements are estimated using the wave data from Beishuang Station and Pingtan station. On this basis, the SWAN wave model is applied to calculating the design wave elements in the engineering sea areas. The results show that the southern sea area is mainly affected by the wave effect on ESE, and the northern is mainly affected by the E waves. This paper is helpful and useful for design and construction of offshore and coastal engineering.

  5. Estimating return periods of extreme values from relatively short time series of winds

    NASA Astrophysics Data System (ADS)

    Jonasson, Kristjan; Agustsson, Halfdan; Rognvaldsson, Olafur; Arfeuille, Gilles

    2013-04-01

    An important factor for determining the prospect of individual wind farm sites is the frequency of extreme winds at hub height. Here, extreme winds are defined as the value of the highest 10 minutes averaged wind speed with a 50 year return period, i.e. annual exceeding probability of 2% (Rodrigo, 2010). A frequently applied method to estimate winds in the lowest few hundred meters above ground is to extrapolate observed 10-meter winds logarithmically to higher altitudes. Recent study by Drechsel et al. (2012) showed however that this methodology is not as accurate as interpolating simulated results from the global ECMWF numerical weather prediction (NWP) model to the desired height. Observations of persistent low level jets near Colima in SW-Mexico also show that the logarithmic approach can give highly inaccurate results for some regions (Arfeuille et al., 2012). To address these shortcomings of limited, and/or poorly representative, observations and extrapolations of winds one can use NWP models to dynamically scale down relatively coarse resolution atmospheric analysis. In the case of limited computing resources one has typically to make a compromise between spatial resolution and the duration of the simulated period, both of which can limit the quality of the wind farm siting. A common method to estimate maximum winds is to fit an extreme value distribution (e.g. Gumbel, gev or Pareto) to the maximum values of each year of available data, or the tail of these values. If data are only available for a short period, e.g. 10 or 15 years, then this will give a rather inaccurate estimate. It is possible to deal with this problem by utilizing monthly or weekly maxima, but this introduces new problems: seasonal variation, autocorrelation of neighboring values, and increased discrepancy between data and fitted distribution. We introduce a new method to estimate return periods of extreme values of winds at hub height from relatively short time series of winds, simulated

  6. A Green Planet versus a Desert World: Estimating the Effect of Vegetation Extremes on the Atmosphere.

    NASA Astrophysics Data System (ADS)

    Fraedrich, Klaus; Kleidon, Axel; Lunkeit, Frank

    1999-10-01

    The effect of vegetation extremes on the general circulation is estimated by two atmospheric GCM simulations using global desert and forest boundary conditions over land. The difference between the climates of a `green planet' and a `desert world' is dominated by the changes of the hydrological cycle, which is intensified substantially. Enhanced evapotranspiration over land reduces the near-surface temperatures; enhanced precipitation leads to a warmer mid- and upper troposphere extending from the subtropics (induced by ITCZ, monsoon, and Hadley cell dynamics) to the midlatitudes (over the cyclogenesis area of Northern Hemisphere storm tracks). These regional changes of the surface water and energy balances, and of the atmospheric circulation, have potential impact on the ocean and the atmospheric greenhouse.

  7. Estimates for production of radioisotopes of medical interest at Extreme Light Infrastructure - Nuclear Physics facility

    NASA Astrophysics Data System (ADS)

    Luo, Wen; Bobeica, Mariana; Gheorghe, Ioana; Filipescu, Dan M.; Niculae, Dana; Balabanski, Dimiter L.

    2016-01-01

    We report Monte Carlo simulations of the production of radioisotopes of medical interest through photoneutron reactions using the high-brilliance γ-beam of the Extreme Light Infrastructure - Nuclear Physics (ELI-NP) facility. The specific activity for three benchmark radioisotopes, 99Mo/99Tc, 225Ra/225Ac and 186Re, was obtained as a function of target geometry, irradiation time and γ-beam energy. Optimized conditions for the generation of these radioisotopes of medical interest with the ELI-NP γ-beams were discussed. We estimated that a saturation specific activity of the order of 1-2 mCi/g can be achieved for thin targets with about one gram of mass considering a γ-beam flux of 10^{11} photons/s. Based on these results, we suggest that the ELI-NP facility can provide a unique possibility for the production of radioisotopes in sufficient quantities for nuclear medicine research.

  8. Extreme thermal noxious stimuli induce pain responses in zebrafish larvae.

    PubMed

    Malafoglia, Valentina; Colasanti, Marco; Raffaeli, William; Balciunas, Darius; Giordano, Antonio; Bellipanni, Gianfranco

    2014-03-01

    Exposing tissues to extreme high or low temperature leads to burns. Burned animals sustain several types of damage, from the disruption of the tissue to degeneration of axons projecting through muscle and skin. Such damage causes pain due to both inflammation and axonal degeneration (neuropathic-like pain). Thus, the approach to cure and alleviate the symptoms of burns must be twofold: rebuilding the tissue that has been destroyed and alleviating the pain derived from the burns. While tissue regeneration techniques have been developed, less is known on the treatment of the induced pain. Thus, appropriate animal models are necessary for the development of the best treatment for pain induced in burned tissues. We have developed a methodology in the zebrafish aimed to produce a new animal model for the study of pain induced by burns. Here, we show that two events linked to the onset of burn-induced inflammation and neuropathic-like pain in mammals, degeneration of axons innervating the affected tissues and over-expression of specific genes in sensory tissues, are conserved from zebrafish to mammals.

  9. Multi-catchment rainfall-runoff simulation for extreme flood estimation

    NASA Astrophysics Data System (ADS)

    Paquet, Emmanuel

    2017-04-01

    The SCHADEX method (Paquet et al., 2013) is a reference method in France for the estimation of extreme flood for dam design. The method is based on a semi-continuous rainfall-runoff simulation process: hundreds of different rainy events, randomly drawn up to extreme values, are simulated independently in the hydrological conditions of each day when a rainy event has been actually observed. This allows generating an exhaustive set of crossings between precipitation and soil saturation hazards, and to build a complete distribution of flood discharges up to extreme quantiles. The hydrological model used within SCHADEX, the MORDOR model (Garçon, 1996), is a lumped model, which implies that hydrological processes, e.g. rainfall and soil saturation, are supposed to be homogeneous throughout the catchment. Snow processes are nevertheless represented in relation with altitude. This hypothesis of homogeneity is questionable especially as the size of the catchment increases, or in areas of highly contrasted climatology (like mountainous areas). Conversely, modeling the catchment with a fully distributed approach would cause different problems, in particular distributing the rainfall-runoff model parameters trough space, and within the SCHADEX stochastic framework, generating extreme rain fields with credible spatio-temporal features. An intermediate solution is presented here. It provides a better representation of the hydro-climatic diversity of the studied catchment (especially regarding flood processes) while keeping the SCHADEX simulation framework. It consists in dividing the catchment in several, more homogeneous sub-catchments. Rainfall-runoff models are parameterized individually for each of them, using local discharge data if available. A first SCHADEX simulation is done at the global scale, which allows assigning a probability to each simulated event, mainly based on the global areal rainfall drawn for the event (see Paquet el al., 2013 for details). Then the

  10. A general model for estimating lower extremity inertial properties of individuals with transtibial amputation.

    PubMed

    Ferris, Abbie E; Smith, Jeremy D; Heise, Gary D; Hinrichs, Richard N; Martin, Philip E

    2017-03-21

    Lower extremity joint moment magnitudes during swing are dependent on the inertial properties of the prosthesis and residual limb of individuals with transtibial amputation (TTA). Often, intact limb inertial properties (INTACT) are used for prosthetic limb values in an inverse dynamics model even though these values overestimate the amputated limb's inertial properties. The purpose of this study was to use subject-specific (SPECIFIC) measures of prosthesis inertial properties to generate a general model (GENERAL) for estimating TTA prosthesis inertial properties. Subject-specific mass, center of mass, and moment of inertia were determined for the shank and foot segments of the prosthesis (n=11) using an oscillation technique and reaction board. The GENERAL model was derived from the means of the SPECIFIC model. Mass and segment lengths are required GENERAL model inputs. Comparisons of segment inertial properties and joint moments during walking were made using three inertial models (unique sample; n=9): (1) SPECIFIC, (2) GENERAL, and (3) INTACT. Prosthetic shank inertial properties were significantly smaller with the SPECIFIC and GENERAL model than the INTACT model, but the SPECIFIC and GENERAL model did not statistically differ. Peak knee and hip joint moments during swing were significantly smaller for the SPECIFIC and GENERAL model compared with the INTACT model and were not significantly different between SPECIFIC and GENERAL models. When subject-specific measures are unavailable, using the GENERAL model produces a better estimate of prosthetic side inertial properties resulting in more accurate joint moment measurements for individuals with TTA than the INTACT model.

  11. Individual estimation of exposures to extremely low frequency magnetic fields in jobs commonly held by women.

    PubMed

    Deadman, J E; Infante-Rivard, C

    2002-02-15

    Exposures to extremely low frequency (ELF) magnetic fields have not been documented extensively in occupations besides the work environments of electric or telephone utilities. A 1980-1993 study of childhood acute lymphoblastic leukemia (ALL) in Québec, Canada, gathered detailed information about the occupations of 491 mothers of ALL cases and mothers of a similar number of healthy controls. This information was combined with published data on the intensities of ELF magnetic fields associated with sources or work environments to estimate ELF magnetic field exposures for a wide range of jobs commonly held by women. Estimated exposures for 61 job categories ranged from 0.03 to 0.68 microT; the 25th, 50th, and 75th percentiles were 0.135, 0.17, and 0.23 microT, respectively. By job category, the most highly exposed jobs (>0.23 microT) included bakery worker, cashier, cook and kitchen worker, electronics worker, residential and industrial sewing machine operator, and textile machine operator. By work environment, the most highly exposed job categories were electronics worker in an assembly plant (0.70 microT) and sewing machine operators in a textile factory (0.68 microT) and shoe factory (0.66 microT). These results provide new information on expected levels of exposure in a wide range of jobs commonly held by women.

  12. A Multiple Criteria Decision Modelling approach to selection of estimation techniques for fitting extreme floods

    NASA Astrophysics Data System (ADS)

    Duckstein, L.; Bobée, B.; Ashkar, F.

    1991-09-01

    The problem of fitting a probability distribution, here log-Pearson Type III distribution, to extreme floods is considered from the point of view of two numerical and three non-numerical criteria. The six techniques of fitting considered include classical techniques (maximum likelihood, moments of logarithms of flows) and new methods such as mixed moments and the generalized method of moments developed by two of the co-authors. The latter method consists of fitting the distribution using moments of different order, in particular the SAM method (Sundry Averages Method) uses the moments of order 0 (geometric mean), 1 (arithmetic mean), -1 (harmonic mean) and leads to a smaller variance of the parameters. The criteria used to select the method of parameter estimation are: - the two statistical criteria of mean square error and bias; - the two computational criteria of program availability and ease of use; - the user-related criterion of acceptability. These criteria are transformed into value functions or fuzzy set membership functions and then three Multiple Criteria Decision Modelling (MCDM) techniques, namely, composite programming, ELECTRE, and MCQA, are applied to rank the estimation techniques.

  13. Investigation of Atmospheric Modelling Framework for Better Reconstruction on Historical Extreme Precipitation Event in PMP Estimation

    NASA Astrophysics Data System (ADS)

    Chen, X.; Hossain, F.; Leung, L. R.

    2015-12-01

    During May 1-2, 2010, a record-breaking storm hit Nashville, and caused huge humanity and societal loss. It raises the importance of forecasting/reconstructing these types of extreme weather systems once again, in the meanwhile providing an excellent case for such atmospheric modelling studies. However, earlier studies suggest that successful reconstruction of this event depends on and is sensitive to a number of model options, making it difficult to establish a better model framework with more confidence. In this study we employed the Weather Research and Forecast (WRF) model to investigate how this extreme precipitation event is sensitive to the model configuration, and identified options that would produce better results. We tested several combinations of modelling grid sizes together with initial/boundary conditions (IC/BC). At different grid sizes, we conducted a set of tests on various combinations of microphysics (Morrison, new Thompson and WSM5) and cumulus process (Kain-Fristch, Grell-Devenyi and Grell-Freitas) parameterization schemes. The model results were intensively evaluated under bias analysis as well as other metrics (probability of detection, bias, false alerts, HSS, ETS). The evaluation suggests that in general, simulation results benefit from finer model grids (5km). At 5km level, NCEP2 or NAM IC/BCs are more representative for the 2010 Nashville storm. There are no universally good parameterization schemes, but the WSM5 microphysics scheme, Kain-Fristch and Grell-Freitas cumulus schemes are recommended over other tested schemes. These better schemes would help to make better estimation of PMP in the region.

  14. Spall Response of Tantalum at Extreme Strain-Rates

    NASA Astrophysics Data System (ADS)

    Hahn, Eric; Germann, Tim; Meyers, Marc

    Strain-rate and microstructure play a significant role in the ultimate mechanical response of materials. Using non-equilibrium molecular dynamics simulations, we characterize the ductile tensile failure of single and nanocrystalline tantalum over multiple orders of magnitude of strain-rate. This comparison is extended to over nine orders of magnitude including experimental results from resent laser shock campaigns. Spall strength primarily follows a power law dependence with strain-rate over this extensive range. In all cases, voids nucleate heterogeneously at pre-existing defects. Predictions based on traditional theory suggest that, as strain-rate increases, tensile strength should increase. Alternatively, as grain size decreases, tensile strength may decrease due to an increased propensity to fail at a growing volume fraction of grain boundaries. Strain-rate and grain size dictate void nucleation sites by changing the type and density of available defects: vacancies, dislocations, twins, and grain boundaries.

  15. Combining continuous and event based fully distributed hydrologic models for extreme flood estimation

    NASA Astrophysics Data System (ADS)

    Gabriel-Martin, Ivan; Sordo-Ward, Alvaro; Garrote, Luis

    2017-04-01

    This study presents a methodology to estimate flood frequency curves for high return periods through stochastic rainfall simulation and rainfall-runoff modeling. The estimation of the flood frequency curve through simulation can be addressed through continuous or event-based hydrological modeling. Event-based models require shorter simulation times, which offer the possibility of obtaining longer synthetic series. However, initial soil moisture conditions are crucial when modeling the basin response to a storm event. This issue can be solved by using continuous models, but they need more data and computational effort than event-based models. This study develops a methodology to overcome the problem of initial conditions when determining flood frequency curves for high return periods combining continuous and event based-models. We used an hourly time-step distributed continuous hydrologic model (the TIN-based Real-time Integrated Basin Simulator (tRIBS)) to simulate the basin response through a set of 100 years obtained using a stochastic weather generator (calibrated with 30 years of available observed data). We analyzed the relevant storm events occurred during the continuous time series, characterizing the probability distribution of the initial soil moisture conditions. Within a Monte Carlo environment, we generated an arbitrary long set of rainfall events coupled with a set of synthetic initial conditions. Finally, by using a fully distributed event-based model we estimated the corresponding hydrologic response, deriving the flood frequency curve. The methodology was applied to Peacheater Creek, a small basin located in Oklahoma (United States). The procedure described combines the advantages of continuous modeling in the assessment of basin initial conditions to those associated to event-based modeling (for instance, computational efficiency) in the estimation of flood frequency curves for high return periods.

  16. Slow and fast responses of mean and extreme precipitation to different forcing in CMIP5 simulations

    NASA Astrophysics Data System (ADS)

    Sillmann, Jana; Stjern, Camilla Weum; Myhre, Gunnar; Forster, Piers M.

    2017-06-01

    We are investigating the fast and slow responses of changes in mean and extreme precipitation to different climate forcing mechanisms, such as greenhouse gas and solar forcing, to understand whether rapid adjustments are important for extreme precipitation. To disentangle the effect of rapid adjustment to a given forcing on the overall change in extreme precipitation, we use a linear regression method that has been previously applied to mean precipitation. Equilibrium experiments with preindustrial CO2 concentrations and reduced solar constant were compared with a four times CO2 concentration experiment for 10 state-of-the-art climate models. We find that the two forcing mechanisms, greenhouse gases and solar, impose clearly different rapid adjustment signals in the mean precipitation, while such difference is difficult to discern for extreme precipitation due to large internal variability. In contrast to mean precipitation, changes in extreme precipitation scale with surface temperature trends and do not seem to depend on the forcing mechanism.

  17. Extremism reduces conflict arousal and increases values affirmation in response to meaning violations.

    PubMed

    Sleegers, Willem W A; Proulx, Travis; van Beest, Ilja

    2015-05-01

    In the social psychological threat-compensation literature, there is an apparent contradiction whereby relatively extreme beliefs both decrease markers of physiological arousal following meaning violations, and increase the values affirmation behaviors understood as a palliative responses to this arousal. We hypothesize that this is due to the differential impact of measuring extremism on behavioral inhibition and approach systems following meaning violations, whereby extremism both reduces markers of conflict arousal (BIS) and increases values affirmation (BAS) unrelated to this initial arousal. Using pupil dilation as a proxy for immediate conflict arousal, we found that the same meaning violation (anomalous playing cards) evoked greater pupil dilation, and that this pupillary reaction was diminished in participants who earlier reported extreme beliefs. We also found that reporting extreme beliefs was associated with greater affirmation of an unrelated meaning framework, where this affirmation was unrelated to physiological markers of conflict arousal. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Diabetic Driving Studies-Part 1: Brake Response Time in Diabetic Drivers With Lower Extremity Neuropathy.

    PubMed

    Meyr, Andrew J; Spiess, Kerianne E

    Although the effect of lower extremity pathology and surgical intervention on automobile driving function has been a topic of contemporary interest, we are unaware of any analysis of the effect of lower extremity diabetic sensorimotor neuropathy on driving performance. The objective of the present case-control investigation was to assess the mean brake response time in diabetic drivers with lower extremity neuropathy compared with that of a control group and a brake response safety threshold. The driving performances of participants were evaluated using a computerized driving simulator with specific measurement of the mean brake response time and frequency of abnormally delayed brake responses. We analyzed a control group of 25 active drivers with neither diabetes nor lower extremity neuropathy and an experimental group of 25 active drivers with type 2 diabetes and lower extremity neuropathy. The experimental group demonstrated a 37.89% slower mean brake response time (0.757 ± 0.180 versus 0.549 ± 0.076 second; p < .001), with abnormally delayed responses occurring at a greater frequency (57.5% versus 3.5%; p < .001). Independent of a comparative statistical analysis, the observed mean brake response time in the experimental group was slower than the reported safety brake response threshold of 0.70 second. The results of the present investigation provide original data with respect to abnormally delayed brake responses in diabetic patients with lower extremity neuropathy and might raise the potential for impaired driving function in this population. Copyright © 2017 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Effects of appraisal and coping on the neuroendocrine response to extreme stress.

    PubMed

    Olff, Miranda; Langeland, Willie; Gersons, Berthold P R

    2005-05-01

    Although many people are exposed to extreme stress, only some of them develop psychobiological disturbances that can lead to posttraumatic stress disorder (PTSD) or other posttrauma psychopathology. This paper examines the effects of different types of appraisal and coping to find clues to how individuals differ in their neuroendocrine responses to extreme stress. It proposes a conceptual model for components of the adult response to stressors. Threat appraisal and defensive coping may play crucial roles in determining the neuroendocrine response to trauma with potential mental health consequences, particularly PTSD.

  20. Asymmetric responses of primary productivity to precipitation extremes: a synthesis of grassland precipitation manipulation experiments.

    PubMed

    Wilcox, Kevin R; Shi, Zheng; Gherardi, Laureano A; Lemoine, Nathan P; Koerner, Sally E; Hoover, David L; Bork, Edward; Byrne, Kerry M; Cahill, James; Collins, Scott L; Evans, Sarah; Katarina Gilgen, Anna; Holub, Petr; Jiang, Lifen; Knapp, Alan K; LeCain, Daniel; Liang, Junyi; Garcia-Palacios, Pablo; Peñuelas, Josep; Pockman, William T; Smith, Melinda D; Sun, Shanghua; White, Shannon R; Yahdjian, Laura; Zhu, Kai; Luo, Yiqi

    2017-04-02

    Climatic changes are altering Earth's hydrological cycle, resulting in altered precipitation amounts, increased inter-annual variability of precipitation, and more frequent extreme precipitation events. These trends will likely continue into the future, having substantial impacts on net primary productivity (NPP) and associated ecosystem services such as food production and carbon sequestration. Frequently, experimental manipulations of precipitation have linked altered precipitation regimes to changes in NPP. Yet, findings have been diverse and substantial uncertainty still surrounds generalities describing patterns of ecosystem sensitivity to altered precipitation. Additionally, we do not know whether previously observed correlations between NPP and precipitation remain accurate when precipitation changes become extreme. We synthesized results from 83 case studies of experimental precipitation manipulations in grasslands worldwide. We used meta-analytical techniques to search for generalities and asymmetries of aboveground NPP (ANPP) and belowground NPP (BNPP) responses to both the direction and magnitude of precipitation change. Sensitivity (i.e., productivity response standardized by the amount of precipitation change) of BNPP was similar under precipitation additions and reductions, but ANPP was more sensitive to precipitation additions than reductions; this was especially evident in drier ecosystems. Additionally, overall relationships between the magnitude of productivity responses versus the magnitude of precipitation change were saturating in form. The saturating form of this relationship was likely driven by ANPP responses to very extreme precipitation increases, although there were limited studies imposing extreme precipitation change and there was considerable variation among experiments. This highlights the importance of incorporating gradients of manipulations, ranging from extreme drought to extreme precipitation increases into future climate change

  1. Estimation of genetic diversity in viral populations from next generation sequencing data with extremely deep coverage.

    PubMed

    Zukurov, Jean P; do Nascimento-Brito, Sieberth; Volpini, Angela C; Oliveira, Guilherme C; Janini, Luiz Mario R; Antoneli, Fernando

    2016-01-01

    In this paper we propose a method and discuss its computational implementation as an integrated tool for the analysis of viral genetic diversity on data generated by high-throughput sequencing. The main motivation for this work is to better understand the genetic diversity of viruses with high rates of nucleotide substitution, as HIV-1 and Influenza. Most methods for viral diversity estimation proposed so far are intended to take benefit of the longer reads produced by some next-generation sequencing platforms in order to estimate a population of haplotypes which represent the diversity of the original population. The method proposed here is custom-made to take advantage of the very low error rate and extremely deep coverage per site, which are the main features of some neglected technologies that have not received much attention due to the short length of its reads, which precludes haplotype estimation. This approach allowed us to avoid some hard problems related to haplotype reconstruction (need of long reads, preliminary error filtering and assembly). We propose to measure genetic diversity of a viral population through a family of multinomial probability distributions indexed by the sites of the virus genome, each one representing the distribution of nucleic bases per site. Moreover, the implementation of the method focuses on two main optimization strategies: a read mapping/alignment procedure that aims at the recovery of the maximum possible number of short-reads; the inference of the multinomial parameters in a Bayesian framework with smoothed Dirichlet estimation. The Bayesian approach provides conditional probability distributions for the multinomial parameters allowing one to take into account the prior information of the control experiment and providing a natural way to separate signal from noise, since it automatically furnishes Bayesian confidence intervals and thus avoids the drawbacks of preliminary error filtering. The methods described in this

  2. Flooding level time series reconstruction and estimation of changes on extreme return levels

    NASA Astrophysics Data System (ADS)

    Menendez, M.; Perez, J.; Izaguirre, C.; Mendez, F. J.; Losada, I.

    2012-12-01

    level can be considered as random phenomena. Therefore, we assume that there is not a deterministic limit reached during the worst flood event, but each level has a probability of being exceeded. A time-dependent extreme value model based on Pareto and Poisson probability distributions has been developed for magnitude and frequency respectively and long-term trends and their statistical significance on the parameters of the distribution were analyzed. Results show significant positive trends regarding the 50-yr return levels and a spatial distribution of the estimated trends in magnitude and frequency along the Spanish coast.

  3. Extreme rainfall events can alter inter-annual biomass responses to water and N enrichment

    NASA Astrophysics Data System (ADS)

    Kong, D. L.; Lü, X. T.; Jiang, L. L.; Wu, H. F.; Miao, Y.; Kardol, P.

    2013-12-01

    Water availability has profound effects on plant growth and productivity in temperate and semiarid grasslands. However, it remains unclear how variation of inter-annual precipitation by extreme rainfall events will alter the aboveground and belowground responses of plants, and how these responses may be contingent on N availability. In this study, we examined the interactive effects of inter-annual precipitation variation and N addition on aboveground and live fine root biomass of a semiarid grassland in northern China for two consecutive years (2007 and 2008). Inter-annual variation in precipitation resulting mainly from the occurrence of extreme rainfall events in 2008 significantly affected above- and belowground plant biomass responses to water addition. In addition, variation of inter-annual precipitation by this extreme rainfall event suppressed plant responses to nitrogen addition and reduced the interaction effects between water and nitrogen addition. These effects of inter-annual precipitation fluctuation could be attributed to the negative influence of the extreme rainfall event on soil N and water availability, ultimately reducing plant rainfall use efficiency and nitrogen use efficiency. In conclusion, our results suggest ecosystem responses to water and N enrichment could be altered by inter-annual variation of precipitation regime caused by the naturally occurring extreme rainfall events.

  4. Changing precipitation extremes in a warming climate: A basis for design flood estimation

    NASA Astrophysics Data System (ADS)

    Wasko, Conrad; Sharma, Ashish

    2016-04-01

    The potential for increasing intensity of future rainfall events has significant implications for flooding and the design of infrastructure. However the questions of how precipitation will change in the future, how important these changes are to flooding, and how engineers incorporate these changes into hydrologic design remain as open questions. In the absence of reliable point based estimates of how precipitation will change, many studies investigate the historical relationship between rainfall intensity and temperature as a proxy for what may happen in a warmer climate. Much of the research to date has focussed on changing precipitation intensity, however, temporal and spatial patterns of precipitation are just as important. Here we link higher temperatures to changes in temporal and spatial patterns of extreme precipitation events. We show, using observed high quality precipitation records from Australia covering all major climatic zones, that storms are intensifying in both time and space resulting in a greater potential for flooding especially in urban locales around the world. Given that precipitation and antecedent conditions are changing, and, the impacts to flooding are significant, methods of incorporating these changes in catchment modelling are required. Continuous simulation offers a natural flexibility to incorporate the many correlated changes in precipitation that may occur in a future climate. An argument for such a framework using existing continuous simulation alternatives is articulated in concluding this presentation.

  5. Risk-Cost Estimation of On-Site Wastewater Treatment System Failures Using Extreme Value Analysis.

    PubMed

    Kohler, Laura E; Silverstein, JoAnn; Rajagopalan, Balaji

    2017-05-01

      Owner resistance to increasing regulation of on-site wastewater treatment systems (OWTS), including obligatory inspections and upgrades, moratoriums and cease-and-desist orders in communities around the U.S. demonstrate the challenges associated with managing risks of inadequate performance of owner-operated wastewater treatment systems. As a result, determining appropriate and enforceable performance measures in an industry with little history of these requirements is challenging. To better support such measures, we develop a statistical method to predict lifetime failure risks, expressed as costs, in order to identify operational factors associated with costly repairs and replacement. A binomial logistic regression is used to fit data from public records of reported OWTS failures, in Boulder County, Colorado, which has 14 300 OWTS to determine the probability that an OWTS will be in a low- or high-risk category for lifetime repair and replacement costs. High-performing or low risk OWTS with repairs and replacements below the threshold of $9000 over a 40-year life are associated with more frequent inspections and upgrades following home additions. OWTS with a high risk of exceeding the repair cost threshold of $18 000 are further analyzed in a variation of extreme value analysis (EVA), Points Over Threshold (POT) where the distribution of risk-cost exceedance values are represented by a generalized Pareto distribution. The resulting threshold cost exceedance estimates for OWTS in the high-risk category over a 40-year expected life ranged from $18 000 to $44 000.

  6. Risk-based damage potential and loss estimation of extreme flooding scenarios in the Austrian Federal Province of Tyrol

    NASA Astrophysics Data System (ADS)

    Huttenlau, M.; Stötter, J.; Stiefelmeyer, H.

    2010-12-01

    Within the last decades serious flooding events occurred in many parts of Europe and especially in 2005 the Austrian Federal Province of Tyrol was serious affected. These events in general and particularly the 2005 event have sensitised decision makers and the public. Beside discussions pertaining to protection goals and lessons learnt, the issue concerning potential consequences of extreme and severe flooding events has been raised. Additionally to the general interest of the public, decision makers of the insurance industry, public authorities, and responsible politicians are especially confronted with the question of possible consequences of extreme events. Answers thereof are necessary for the implementation of preventive appropriate risk management strategies. Thereby, property and liability losses reflect a large proportion of the direct tangible losses. These are of great interest for the insurance sector and can be understood as main indicators to interpret the severity of potential events. The natural scientific-technical risk analysis concept provides a predefined and structured framework to analyse the quantities of affected elements at risk, their corresponding damage potentials, and the potential losses. Generally, this risk concept framework follows the process steps hazard analysis, exposition analysis, and consequence analysis. Additionally to the conventional hazard analysis, the potential amount of endangered elements and their corresponding damage potentials were analysed and, thereupon, concrete losses were estimated. These took the specific vulnerability of the various individual elements at risk into consideration. The present flood risk analysis estimates firstly the general exposures of the risk indicators in the study area and secondly analyses the specific exposures and consequences of five extreme event scenarios. In order to precisely identify, localize, and characterize the relevant risk indicators of buildings, dwellings and inventory

  7. Estimating the characteristics of extreme rainfall events using a suitable precipitation product in the Garhwal Himalaya in India

    NASA Astrophysics Data System (ADS)

    Ziegler, Alan D.; Bhardwaj, Alok; Wasson, Robert J.; Chow, Winston

    2017-04-01

    High intensity rainfall events during monsoon season causes huge damage to local people and economy in the Indian Himalaya. It is however, difficult to accurately estimate the magnitude and spatio-temporal variability of extreme rainfall because of the sparse and limited network of ground stations located within complex terrain of the Indian Himalaya, as well as the difficulty of maintaining the stations over time. Thus, secondary rainfall sources are important to hydrological and hazard studies, if they reproduce the dynamics of extreme rainfall satisfactorily. In this work, we evaluate four secondary products in the Garhwal Himalaya in India to estimate extreme rainfall, with a particular focus on the Mandakini Catchment, the site of devastating flood in 2013. The analysis included two satellite products: the TRMM and the PERSIANN, as well as two gridded products: the APHRODITE product and the IMD product. In comparing the four products against data collected at four ground stations, we determined that the IMD and TRMM products were superior to the others in detecting daily maximum monsoon rainfall. Additionally, the IMD product could document the daily extreme rainfall distribution during the June 2013 flood in the Mandakini Catchment and adjoining places better than the TRMM product. Based on these results, we selected the IMD gridded dataset with daily rainfall data from 1901 to 2013 to document the occurrence of extreme monsoon rainfall events in the Mandakini Catchment in the last century. We define extreme monsoon rainfall threshold as the 99th percentile of time series of rainfall values, and rainfall depth greater than 99th percentile is considered as extreme rainfall. The results show that extreme monsoon rainfall events occurred for 22 years out of 113 years of available data. The extreme events have increased since 2010 in the Mandakini Catchment including 4 events in 2010, 1 event in 2011, 2 events in 2012 and 3 events in 2013. Before 2010, two

  8. Comparison of different statistical methods for estimation of extreme sea levels with wave set-up contribution

    NASA Astrophysics Data System (ADS)

    Kergadallan, Xavier; Bernardara, Pietro; Benoit, Michel; Andreewsky, Marc; Weiss, Jérôme

    2013-04-01

    Estimating the probability of occurrence of extreme sea levels is a central issue for the protection of the coast. Return periods of sea level with wave set-up contribution are estimated here in one site : Cherbourg in France in the English Channel. The methodology follows two steps : the first one is computation of joint probability of simultaneous wave height and still sea level, the second one is interpretation of that joint probabilities to assess a sea level for a given return period. Two different approaches were evaluated to compute joint probability of simultaneous wave height and still sea level : the first one is multivariate extreme values distributions of logistic type in which all components of the variables become large simultaneously, the second one is conditional approach for multivariate extreme values in which only one component of the variables have to be large. Two different methods were applied to estimate sea level with wave set-up contribution for a given return period : Monte-Carlo simulation in which estimation is more accurate but needs higher calculation time and classical ocean engineering design contours of type inverse-FORM in which the method is simpler and allows more complex estimation of wave setup part (wave propagation to the coast for example). We compare results from the two different approaches with the two different methods. To be able to use both Monte-Carlo simulation and design contours methods, wave setup is estimated with an simple empirical formula. We show advantages of the conditional approach compared to the multivariate extreme values approach when extreme sea-level occurs when either surge or wave height is large. We discuss the validity of the ocean engineering design contours method which is an alternative when computation of sea levels is too complex to use Monte-Carlo simulation method.

  9. Modeling the Effects of Urban Design on Emergency Medical Response Calls during Extreme Heat Events in Toronto, Canada

    PubMed Central

    Graham, Drew A.; Vanos, Jennifer K.; Kenny, Natasha A.; Brown, Robert D.

    2017-01-01

    Urban residents are at risk of health-related illness during extreme heat events but the dangers are not equal in all parts of a city. Previous studies have found a relationship between physical characteristics of neighborhoods and the number of emergency medical response (EMR) calls. We used a human energy budget model to test the effects of landscape modifications that are designed to cool the environment on the expected number of EMR calls in two neighborhoods in Toronto, Canada during extreme heat events. The cooling design strategies reduced the energy overload on people by approximately 20–30 W m−2, resulting in an estimated 40–50% reduction in heat-related ambulance calls. These findings advance current understanding of the relationship between the urban landscape and human health and suggest straightforward design strategies to positively influence urban heat-health. PMID:28708081

  10. Flat field response of the microchannel plate detectors used on the Extreme Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Vallerga, J. V.; Gibson, J. L.; Siegmund, O. H. W.; Vedder, P. W.

    1989-01-01

    The results of the extreme ultraviolet (EUV) flat field calibrations of two of the flight detectors to be flown on the Extreme Ultraviolet Explorer Satellite (EUVE) are presented. Images of about 40 million detected events binned 512 by 512 are sufficient to show microchannel plate fixed pattern noise such as hexagonal microchannel multifiber bundle interfaces, 'dead' spots, edge distortion, and differential nonlinearity. Differences due to photocathode material and dependencies on EUV wavelength are also described. Over large spatial scales, the detector response is flat to better than 10 percent of the mean response, but, at spatial scales less than 1 mm, the variations from the mean can be as large as 20 percent.

  11. Flat field response of the microchannel plate detectors used on the Extreme Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Vallerga, J. V.; Gibson, J. L.; Siegmund, O. H. W.; Vedder, P. W.

    1989-01-01

    The results of the extreme ultraviolet (EUV) flat field calibrations of two of the flight detectors to be flown on the Extreme Ultraviolet Explorer Satellite (EUVE) are presented. Images of about 40 million detected events binned 512 by 512 are sufficient to show microchannel plate fixed pattern noise such as hexagonal microchannel multifiber bundle interfaces, 'dead' spots, edge distortion, and differential nonlinearity. Differences due to photocathode material and dependencies on EUV wavelength are also described. Over large spatial scales, the detector response is flat to better than 10 percent of the mean response, but, at spatial scales less than 1 mm, the variations from the mean can be as large as 20 percent.

  12. Multidimensional Item Response Theory Parameter Estimation with Nonsimple Structure Items

    ERIC Educational Resources Information Center

    Finch, Holmes

    2011-01-01

    Estimation of multidimensional item response theory (MIRT) model parameters can be carried out using the normal ogive with unweighted least squares estimation with the normal-ogive harmonic analysis robust method (NOHARM) software. Previous simulation research has demonstrated that this approach does yield accurate and efficient estimates of item…

  13. Consistency of Response Patterns in Different Estimation Tasks

    ERIC Educational Resources Information Center

    Wong, Terry Tin-Yau; Ho, Connie Suk-Han; Tang, Joey

    2016-01-01

    The current study aimed at addressing two issues concerning children's estimation performance: (1) to investigate whether the log-to-linear framework or the proportional judgment framework provided a better explanation of children's estimation patterns, and (2) to examine the consistency of response patterns in different estimation tasks. A sample…

  14. Multidimensional Item Response Theory Parameter Estimation with Nonsimple Structure Items

    ERIC Educational Resources Information Center

    Finch, Holmes

    2011-01-01

    Estimation of multidimensional item response theory (MIRT) model parameters can be carried out using the normal ogive with unweighted least squares estimation with the normal-ogive harmonic analysis robust method (NOHARM) software. Previous simulation research has demonstrated that this approach does yield accurate and efficient estimates of item…

  15. Maximum Likelihood and Bayesian Parameter Estimation in Item Response Theory.

    ERIC Educational Resources Information Center

    Lord, Frederic M.

    There are currently three main approaches to parameter estimation in item response theory (IRT): (1) joint maximum likelihood, exemplified by LOGIST, yielding maximum likelihood estimates; (2) marginal maximum likelihood, exemplified by BILOG, yielding maximum likelihood estimates of item parameters (ability parameters can be estimated…

  16. Nonparametric Item Response Curve Estimation with Correction for Measurement Error

    ERIC Educational Resources Information Center

    Guo, Hongwen; Sinharay, Sandip

    2011-01-01

    Nonparametric or kernel regression estimation of item response curves (IRCs) is often used in item analysis in testing programs. These estimates are biased when the observed scores are used as the regressor because the observed scores are contaminated by measurement error. Accuracy of this estimation is a concern theoretically and operationally.…

  17. Consistency of Response Patterns in Different Estimation Tasks

    ERIC Educational Resources Information Center

    Wong, Terry Tin-Yau; Ho, Connie Suk-Han; Tang, Joey

    2016-01-01

    The current study aimed at addressing two issues concerning children's estimation performance: (1) to investigate whether the log-to-linear framework or the proportional judgment framework provided a better explanation of children's estimation patterns, and (2) to examine the consistency of response patterns in different estimation tasks. A sample…

  18. An Alternative Estimator for the Maximum Likelihood Estimator for the Two Extreme Response Patterns.

    DTIC Science & Technology

    1981-06-29

    Maier U.S. Army Research Institute U.S. Army Reasearch Institute 5001 Eisenhower Avenue 5001 Eisenhower Avenue Alexandria, VA 22333 I Alexandria, VA...INC. Behavioural Sciences Division UNIVERSITY PLAZA, SUITE 10 Defence & Civil Institute of 1160 SO. STATE ST. Environmental Medicine OREM, UT 84057

  19. Profile reconstruction in extreme ultraviolet (EUV) scatterometry: modeling and uncertainty estimates

    NASA Astrophysics Data System (ADS)

    Gross, H.; Rathsfeld, A.; Scholze, F.; Bär, M.

    2009-10-01

    Scatterometry as a non-imaging indirect optical method in wafer metrology is also relevant to lithography masks designed for extreme ultraviolet lithography, where light with wavelengths in the range of 13 nm is applied. The solution of the inverse problem, i.e. the determination of periodic surface structures regarding critical dimensions (CD) and other profile properties from light diffraction patterns, is incomplete without knowledge of the uncertainties associated with the reconstructed parameters. The numerical simulation of the diffraction process for periodic 2D structures can be realized by the finite element solution of the two-dimensional Helmholtz equation. The inverse problem can be formulated as a nonlinear operator equation in Euclidean space. The operator maps the sought mask parameters to the efficiencies of diffracted plane wave modes. We employ a Gauß-Newton type iterative method to solve this operator equation and end up minimizing the deviation of the measured efficiency or phase shift values from the calculated ones. We apply our reconstruction algorithm for the measurement of a typical EUV mask composed of TaN absorber lines of about 80 nm height, a period in the range of 420 nm-840 nm, and with an underlying MoSi-multilayer stack of 300 nm thickness. Clearly, the uncertainties of the reconstructed geometric parameters essentially depend on the uncertainties of the input data and can be estimated by various methods. We apply a Monte Carlo procedure and an approximative covariance method to evaluate the reconstruction algorithm. Finally, we analyze the influence of uncertainties in the widths of the multilayer stack by the Monte Carlo method.

  20. Modeling short duration extreme precipitation patterns using copula and generalized maximum pseudo-likelihood estimation with censoring

    NASA Astrophysics Data System (ADS)

    Bargaoui, Zoubeida Kebaili; Bardossy, Andràs

    2015-10-01

    The paper aims to develop researches on the spatial variability of heavy rainfall events estimation using spatial copula analysis. To demonstrate the methodology, short time resolution rainfall time series from Stuttgart region are analyzed. They are constituted by rainfall observations on continuous 30 min time scale recorded over a network composed by 17 raingages for the period July 1989-July 2004. The analysis is performed aggregating the observations from 30 min up to 24 h. Two parametric bivariate extreme copula models, the Husler-Reiss model and the Gumbel model are investigated. Both involve a single parameter to be estimated. Thus, model fitting is operated for every pair of stations for a giving time resolution. A rainfall threshold value representing a fixed rainfall quantile is adopted for model inference. Generalized maximum pseudo-likelihood estimation is adopted with censoring by analogy with methods of univariate estimation combining historical and paleoflood information with systematic data. Only pairs of observations greater than the threshold are assumed as systematic data. Using the estimated copula parameter, a synthetic copula field is randomly generated and helps evaluating model adequacy which is achieved using Kolmogorov Smirnov distance test. In order to assess dependence or independence in the upper tail, the extremal coefficient which characterises the tail of the joint bivariate distribution is adopted. Hence, the extremal coefficient is reported as a function of the interdistance between stations. If it is less than 1.7, stations are interpreted as dependent in the extremes. The analysis of the fitted extremal coefficients with respect to stations inter distance highlights two regimes with different dependence structures: a short spatial extent regime linked to short duration intervals (from 30 min to 6 h) with an extent of about 8 km and a large spatial extent regime related to longer rainfall intervals (from 12 h to 24 h) with an

  1. Emergency Response to and Preparedness for Extreme Weather Events and Environmental Changes in China.

    PubMed

    Wang, Li; Liao, Yongfeng; Yang, Linsheng; Li, Hairong; Ye, Bixiong; Wang, Wuyi

    2016-03-01

    China has achieved impressive rapid economic growth over the past 30 years but accompanied by significant extreme weather events and environmental changes caused by global change and overfast urbanization. Using the absolute hazards index (AHI), we assessed the spatial distribution patterns and related health effects of 4 major extreme natural disasters, including drought, floods (landslides, mudslides), hails, and typhoons from 2000 to 2011 at the provincial level in China. The results showed that (1) central and south China were the most affected by the 4 natural disasters, and north China suffered less; (2) the provinces with higher AHI suffered most from total death, missing people, collapse, and emergently relocated population; (3) the present health emergency response system to disasters in China mainly lacks a multidisciplinary approach. In the concluding section of this article, suggestions on preparedness and rapid response to extreme health events from environmental changes are proposed.

  2. Estimating Groundwater Flow Parameters Using Response Surface Methodology

    DTIC Science & Technology

    1994-04-01

    Best Available Copy AD-A280 630 DTI ELECT’ JUN2 4 ESTIMATING GROUNDWATER FLOW PARAMETERS USING RESPONSE SURFACE METHODOLOGY THESIS Leo C. Adams...GROUNDWATER FLOW PARAMETERS USING RESPONSE SURFACE METHODOLOGY THESIS Presented to the Faculty of the Graduate School of Engineering of the Air Force Institute...Estimating Groundwater Flow Parameters Using Response Surface Methodology Committee Name/Department Signature dvisor. I Col Paul F. Auclair, Ph.D. j . j

  3. Statistical estimation of extreme ocean waves over the eastern Canadian shelf from 30-year numerical wave simulation

    NASA Astrophysics Data System (ADS)

    Guo, Lanli; Sheng, Jinyu

    2015-11-01

    Reliable estimation of extreme ocean surface gravity waves is important for many scientific and practical issues. In this study, WAVEWATCHIII is used to simulate wave conditions over the eastern Canadian shelf (ECS) for the 30-year period, 1979-2008. The wave model is forced by the 6-hourly winds and ice cover taken from the Climate Forecast System Reanalysis (CFSR). A parametric vortex is inserted into the CFSR winds to better represent surface winds associated with tropical storms or hurricanes. The model performance in simulating the bulk significant wave height is assessed by comparing model results with wave observations at 12 buoy stations over the ECS. The peaks-over-threshold method is used to estimate the extreme significant wave heights from 30-year wave simulations. The estimated extreme waves with the 50-year return period over the ECS feature large wave heights of more than 12 m in the offshore deep waters and about 8-12 m over the open shelf waters of the ECS. By comparison, the 50-year extreme waves are moderate and 7 m or less in the Gulf of St. Lawrence and inner Gulf of Maine.

  4. Cardiovascular Responses to Psychosocial Stress Reflect Motivation State in Adults Born at Extremely Low Birth Weight.

    PubMed

    Mathewson, Karen J; Pyhälä, Riikka; Hovi, Petteri; Räikkönen, Katri; Van Lieshout, Ryan J; Boyle, Michael H; Saigal, Saroj; Morrison, Katherine M; Kajantie, Eero; Schmidt, Louis A

    2015-01-01

    Background. Adults born extremely preterm appear to have more difficulty managing the stresses of early adulthood than their term-born peers. Objective. To examine the effects of being born at extremely low birth weight (ELBW; birth weight < 1000 g) versus at full term on cardiovascular responses to stress. Method. Cardiovascular responses were elicited during administration of a widely used laboratory stressor, the Trier Social Stress Test (TSST). Results. Term-born adults exhibited a larger decrease in total peripheral resistance and larger increase in cardiac output for TSST performance, reflecting greater resilience, than did ELBW adults. Furthermore, in ELBW participants but not controls, cardiovascular responses were correlated with anxiety, suggesting that their responses reflected feelings of stress. Conclusions. Skills-training and practice with relevant stressors may be necessary to increase the personal resources of ELBW participants for managing stress as they transition to adulthood.

  5. Cardiovascular Responses to Psychosocial Stress Reflect Motivation State in Adults Born at Extremely Low Birth Weight

    PubMed Central

    Pyhälä, Riikka; Hovi, Petteri; Räikkönen, Katri; Van Lieshout, Ryan J.; Boyle, Michael H.; Saigal, Saroj; Morrison, Katherine M.; Kajantie, Eero; Schmidt, Louis A.

    2015-01-01

    Background. Adults born extremely preterm appear to have more difficulty managing the stresses of early adulthood than their term-born peers. Objective. To examine the effects of being born at extremely low birth weight (ELBW; birth weight < 1000 g) versus at full term on cardiovascular responses to stress. Method. Cardiovascular responses were elicited during administration of a widely used laboratory stressor, the Trier Social Stress Test (TSST). Results. Term-born adults exhibited a larger decrease in total peripheral resistance and larger increase in cardiac output for TSST performance, reflecting greater resilience, than did ELBW adults. Furthermore, in ELBW participants but not controls, cardiovascular responses were correlated with anxiety, suggesting that their responses reflected feelings of stress. Conclusions. Skills-training and practice with relevant stressors may be necessary to increase the personal resources of ELBW participants for managing stress as they transition to adulthood. PMID:27335948

  6. AN OVERVIEW OF TOOL FOR RESPONSE ACTION COST ESTIMATING (TRACE)

    SciTech Connect

    FERRIES SR; KLINK KL; OSTAPKOWICZ B

    2012-01-30

    Tools and techniques that provide improved performance and reduced costs are important to government programs, particularly in current times. An opportunity for improvement was identified for preparation of cost estimates used to support the evaluation of response action alternatives. As a result, CH2M HILL Plateau Remediation Company has developed Tool for Response Action Cost Estimating (TRACE). TRACE is a multi-page Microsoft Excel{reg_sign} workbook developed to introduce efficiencies into the timely and consistent production of cost estimates for response action alternatives. This tool combines costs derived from extensive site-specific runs of commercially available remediation cost models with site-specific and estimator-researched and derived costs, providing the best estimating sources available. TRACE also provides for common quantity and key parameter links across multiple alternatives, maximizing ease of updating estimates and performing sensitivity analyses, and ensuring consistency.

  7. Dose-response curve estimation: a semiparametric mixture approach.

    PubMed

    Yuan, Ying; Yin, Guosheng

    2011-12-01

    In the estimation of a dose-response curve, parametric models are straightforward and efficient but subject to model misspecifications; nonparametric methods are robust but less efficient. As a compromise, we propose a semiparametric approach that combines the advantages of parametric and nonparametric curve estimates. In a mixture form, our estimator takes a weighted average of the parametric and nonparametric curve estimates, in which a higher weight is assigned to the estimate with a better model fit. When the parametric model assumption holds, the semiparametric curve estimate converges to the parametric estimate and thus achieves high efficiency; when the parametric model is misspecified, the semiparametric estimate converges to the nonparametric estimate and remains consistent. We also consider an adaptive weighting scheme to allow the weight to vary according to the local fit of the models. We conduct extensive simulation studies to investigate the performance of the proposed methods and illustrate them with two real examples.

  8. Detection of photosynthetic responses of cool-temperate forests following extreme climate events using Bayesian inversion

    NASA Astrophysics Data System (ADS)

    Toda, M.; Knohl, A.; Herbst, M.; Keenan, T. F.; Yokozawa, M.

    2016-12-01

    The increase in extreme climate events associated with ongoing global warming may create severe damage to terrestrial ecosystems, changing plant structure and the eco-physiological functions that regulate ecosystem carbon exchange. However, most damage is usually due to moderate, rather than catastrophic, disturbances. The nature of plant functional responses to such disturbances, and the resulting effects on the terrestrial carbon cycle, remain poorly understood. To unravel the scientific question, tower-based eddy covariance data in the cool-temperate forests were used to constrain plant eco-physiological parameters in a persimoneous ecosystem model that may have affected carbon dynamics following extreme climate events using the statistic Bayesian inversion approach. In the present study, we raised two types of extreme events relevant for cool-temperate regions, i.e. a typhoon with mechanistic foliage destraction and a heat wave with severe drought. With appropriate evaluation of parameter and predictive uncertainties, the inversion analysis shows annual trajectory of activated photosynthetic responses following climate extremes compared the pre-disturbance state in each forest. We address that forests with moderate disturbance show substantial and rapid photosynthetic recovery, enhanced productivity, and, thus, ecosystem carbon exchange, although the effect of extreme climatic events varies depending on the stand successional phase and the type, intensity, timing and legacy of the disturbance.

  9. Photosynthesis in extreme environments: responses to different light regimes in the Antarctic alga Koliella antarctica.

    PubMed

    La Rocca, Nicoletta; Sciuto, Katia; Meneghesso, Andrea; Moro, Isabella; Rascio, Nicoletta; Morosinotto, Tomas

    2015-04-01

    Antarctic algae play a fundamental role in polar ecosystem thanks to their ability to grow in an extreme environment characterized by low temperatures and variable illumination. Here, for prolonged periods, irradiation is extremely low and algae must be able to harvest light as efficiently as possible. On the other side, at low temperatures even dim irradiances can saturate photosynthesis and drive to the formation of reactive oxygen species. Colonization of this extreme environment necessarily required the optimization of photosynthesis regulation mechanisms by algal organisms. In order to investigate these adaptations we analyzed the time course of physiological and morphological responses to different irradiances in Koliella antarctica, a green microalga isolated from Ross Sea (Antarctica). Koliella antarctica not only modulates cell morphology and composition of its photosynthetic apparatus on a long-term acclimation, but also shows the ability of a very fast response to light fluctuations. Koliella antarctica controls the activity of two xanthophyll cycles. The first, involving lutein epoxide and lutein, may be important for the growth under very low irradiances. The second, involving conversion of violaxanthin to antheraxanthin and zeaxanthin, is relevant to induce a fast and particularly strong non-photochemical quenching, when the alga is exposed to higher light intensities. Globally K. antarctica thus shows the ability to activate a palette of responses of the photosynthetic apparatus optimized for survival in its natural extreme environment.

  10. Plant phenological responses to extreme events - A long term perspective from the Chihuahuan Desert

    NASA Astrophysics Data System (ADS)

    Browning, D. M.; Peters, D. P.; Anderson, J.; Yao, J.

    2011-12-01

    Arid and semi-arid regions of the southwestern USA are especially sensitive to changes in temperature as well as drought frequency and intensity. Timing of periodic life cycle events (i.e., phenology) is an integrated and salient indicator of plant responses to climate change. We examine an 18-year dataset of monthly observations of plant phenology for two species of perennial grasses and a deciduous shrub (honey mesquite) distributed across three upland grassland sites and three mesquite-dominated sites on the Jornada Basin USDA-LTER in southern New Mexico, USA. Precipitation is highly variable between years and across space. Long-term phenology data collection spanned a multi-year drought (1994-2003) followed by a sequence of years with average to very high rainfall (2004 - 2008). Our objective was to compare and contrast responses to extreme dry and wet cycles in the timing and duration of first leaf and fruit production for two grasses (Bouteloua eriopoda [black grama], Sporobolus flexuosus [mesa dropseed]) with one co-existing shrub that has displaced grasses in this system (Prosopis glandulosa [honey mesquite]). Monthly field observations yield estimates of phenological status and abundance for 18 growing seasons from 1993 to 2010. All three species most commonly initiated new growth prior to onset of the monsoon rains (March or April). Timing of first growth for mesquite was less variable (standard deviation = 0.47) than for black grama (SD = 1.42) and mesa dropseed (SD = 1.22) grasses. Initial growth for grasses was delayed to September in 2006 following twelve months of deficit values for PDSI. The appearance of first fruit for grasses occurred consistently in August or September, although the number of plants producing fruit was highly variable from year to year. The largest numbers of fruit-bearing grasses were observed in late fall 2008 in response to heavy monsoon rains in 2006 and 2008. Mesquite demonstrated remarkable synchrony in the production of

  11. Urbanization, Extreme Events, and Health: The Case for Systems Approaches in Mitigation, Management, and Response.

    PubMed

    Siri, José Gabriel; Newell, Barry; Proust, Katrina; Capon, Anthony

    2016-03-01

    Extreme events, both natural and anthropogenic, increasingly affect cities in terms of economic losses and impacts on health and well-being. Most people now live in cities, and Asian cities, in particular, are experiencing growth on unprecedented scales. Meanwhile, the economic and health consequences of climate-related events are worsening, a trend projected to continue. Urbanization, climate change and other geophysical and social forces interact with urban systems in ways that give rise to complex and in many cases synergistic relationships. Such effects may be mediated by location, scale, density, or connectivity, and also involve feedbacks and cascading outcomes. In this context, traditional, siloed, reductionist approaches to understanding and dealing with extreme events are unlikely to be adequate. Systems approaches to mitigation, management and response for extreme events offer a more effective way forward. Well-managed urban systems can decrease risk and increase resilience in the face of such events. © 2015 APJPH.

  12. Sexual dimorphism in epigenomic responses of stem cells to extreme fetal growth.

    PubMed

    Delahaye, Fabien; Wijetunga, N Ari; Heo, Hye J; Tozour, Jessica N; Zhao, Yong Mei; Greally, John M; Einstein, Francine H

    2014-10-10

    Extreme fetal growth is associated with increased susceptibility to a range of adult diseases through an unknown mechanism of cellular memory. We tested whether heritable epigenetic processes in long-lived CD34(+) haematopoietic stem/progenitor cells showed evidence for re-programming associated with the extremes of fetal growth. Here we show that both fetal growth restriction and over-growth are associated with global shifts towards DNA hypermethylation, targeting cis-regulatory elements in proximity to genes involved in glucose homeostasis and stem cell function. We find a sexually dimorphic response; intrauterine growth restriction is associated with substantially greater epigenetic dysregulation in males, whereas large for gestational age growth predominantly affects females. The findings are consistent with extreme fetal growth interacting with variable fetal susceptibility to influence cellular ageing and metabolic characteristics through epigenetic mechanisms, potentially generating biomarkers that could identify infants at higher risk for chronic disease later in life.

  13. Prediction of Ship Response Statistics in Extreme Seas Using Model Tests Data and Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Guo, Bingjie; Bitner-Gregersen, Elzbieta Maria; Sun, Hui; Block Helmers, Jens

    2013-04-01

    Earlier investigations have indicated that proper prediction of nonlinear loads and responses due to nonlinear waves is important for ship safety in extreme seas. However, the nonlinear loads and responses in extreme seas have not been sufficiently investigated yet, particularly when rogue waves are considered. A question remains whether the existing linear codes can predict nonlinear loads and responses with a satisfactory accuracy and how large the deviations from linear predictions are. To indicate it response statistics have been studied based on the model tests carried out with a LNG tanker in the towing tank of the Technical University of Berlin (TUB), and compared with the statistics derived from numerical simulations using the DNV code WASIM. It is a potential code for wave-ship interaction based on 3D Panel method, which can perform both linear and nonlinear simulation. The numerical simulations with WASIM and the model tests in extreme and rogue waves have been performed. The analysis of ship motions (heave and pitch) and bending moments, in both regular and irregular waves, is performed. The results from the linear and nonlinear simulations are compared with experimental data to indicate the impact of wave non-linearity on loads and response calculations when the code based on the Rankine Panel Method is used. The study shows that nonlinearities may have significant effect on extreme motions and bending moment generated by strongly nonlinear waves. The effect of water depth on ship responses is also demonstrated using numerical simulations. Uncertainties related to the results are discussed, giving particular attention to sampling variability.

  14. Observed and simulated hydrologic response for a first-order catchment during extreme rainfall 3 years after wildfire disturbance

    USGS Publications Warehouse

    Ebel, Brian A.; Rengers, Francis; Tucker, Gregory E.

    2016-01-01

    Hydrologic response to extreme rainfall in disturbed landscapes is poorly understood because of the paucity of measurements. A unique opportunity presented itself when extreme rainfall in September 2013 fell on a headwater catchment (i.e., <1 ha) in Colorado, USA that had previously been burned by a wildfire in 2010. We compared measurements of soil-hydraulic properties, soil saturation from subsurface sensors, and estimated peak runoff during the extreme rainfall with numerical simulations of runoff generation and subsurface hydrologic response during this event. The simulations were used to explore differences in runoff generation between the wildfire-affected headwater catchment, a simulated unburned case, and for uniform versus spatially variable parameterizations of soil-hydraulic properties that affect infiltration and runoff generation in burned landscapes. Despite 3 years of elapsed time since the 2010 wildfire, observations and simulations pointed to substantial surface runoff generation in the wildfire-affected headwater catchment by the infiltration-excess mechanism while no surface runoff was generated in the unburned case. The surface runoff generation was the result of incomplete recovery of soil-hydraulic properties in the burned area, suggesting recovery takes longer than 3 years. Moreover, spatially variable soil-hydraulic property parameterizations produced longer duration but lower peak-flow infiltration-excess runoff, compared to uniform parameterization, which may have important hillslope sediment export and geomorphologic implications during long duration, extreme rainfall. The majority of the simulated surface runoff in the spatially variable cases came from connected near-channel contributing areas, which was a substantially smaller contributing area than the uniform simulations.

  15. Observed and simulated hydrologic response for a first-order catchment during extreme rainfall 3 years after wildfire disturbance

    NASA Astrophysics Data System (ADS)

    Ebel, Brian A.; Rengers, Francis K.; Tucker, Gregory E.

    2016-12-01

    Hydrologic response to extreme rainfall in disturbed landscapes is poorly understood because of the paucity of measurements. A unique opportunity presented itself when extreme rainfall in September 2013 fell on a headwater catchment (i.e., <1 ha) in Colorado, USA that had previously been burned by a wildfire in 2010. We compared measurements of soil-hydraulic properties, soil saturation from subsurface sensors, and estimated peak runoff during the extreme rainfall with numerical simulations of runoff generation and subsurface hydrologic response during this event. The simulations were used to explore differences in runoff generation between the wildfire-affected headwater catchment, a simulated unburned case, and for uniform versus spatially variable parameterizations of soil-hydraulic properties that affect infiltration and runoff generation in burned landscapes. Despite 3 years of elapsed time since the 2010 wildfire, observations and simulations pointed to substantial surface runoff generation in the wildfire-affected headwater catchment by the infiltration-excess mechanism while no surface runoff was generated in the unburned case. The surface runoff generation was the result of incomplete recovery of soil-hydraulic properties in the burned area, suggesting recovery takes longer than 3 years. Moreover, spatially variable soil-hydraulic property parameterizations produced longer duration but lower peak-flow infiltration-excess runoff, compared to uniform parameterization, which may have important hillslope sediment export and geomorphologic implications during long duration, extreme rainfall. The majority of the simulated surface runoff in the spatially variable cases came from connected near-channel contributing areas, which was a substantially smaller contributing area than the uniform simulations.

  16. Estimating extremes in climate change simulations using the peaks-over-threshold method with a non-stationary threshold

    NASA Astrophysics Data System (ADS)

    Kyselý, Jan; Picek, Jan; Beranová, Romana

    2010-05-01

    The paper presents a methodology for estimating high quantiles of distributions of daily temperature in a non-stationary context, based on peaks-over-threshold analysis with a time-dependent threshold expressed in terms of regression quantiles. The extreme value models are applied to estimate 20-yr return values of maximum daily temperature over Europe in transient global climate model (GCM) simulations for the 21st century. A comparison of scenarios of changes in the 20-yr return temperatures based on the non-stationary peaks-over-threshold models with conventional stationary models is performed. It is demonstrated that the application of the stationary extreme value models in temperature data from GCM scenarios yields results that may be to a large extent biased, while the non-stationary models lead to spatial patterns that are robust and enable one to detect areas where the projected warming in the tail of the distribution of daily temperatures is largest. The method also allows splitting the projected warming of extremely high quantiles into two parts that reflect change in the location and scale of the distribution of extremes, respectively. Spatial patterns of the two components differ significantly in the examined climate change projections over Europe.

  17. Response of Mercury to Forest Management Activities and Extreme Weather Events

    NASA Astrophysics Data System (ADS)

    Allan, C. J.; Bishop, K.; Bringmark, L.; Garcia, E.; Hellsten, S.; Hogbom, L.; Johansson, K.; Lomander, A.; Meili, M.; Munthe, J.; Nilsson, M.; Povari, P.; Skylberg, U.; Sorenson, R.; Zetterberg, T.; Mackereth, R.

    2009-05-01

    Mercury (Hg) levels are alarmingly high in fish from lakes across Fenno-Scandia and northern North America. Few studies exist as to how one of the primary agents of land use change in northern forests, forest harvesting influences this problem. The studies that do exist all indicate increased transport of Hg in harvested forests and increases in bioaccumulation in downstream aquatic ecosystems. The reported Hg runoff response in these studies is extremely variable and persistent. Recent studies in northern Sweden and Canada indicate that increased runoff Hg fluxes are largely tied to the increase in water yield in harvested catchments while earlier harvest studies in Sweden and Finland also documented significant increases in THg and MeHg runoff concentration along with increased water yield driven transport fluxes. Subsequent data collection from these earlier forest harvest studies have continued to document elevated leaching of MeHg from these catchments well after the initial catchment disturbance. From these studies we estimate that 9-23% of the Hg now in the fish of forested, high-latitude landscapes in Fenno-Scandia can be attributed to forest harvesting operations. In conjunction with the impacts of forestry driven land use change, recent studies in the boreal forest have also documented significant increases in Hg fluxes following the occurrence of drought and large storms. We discuss the potential impacts of an increasing variable climate and the recommendation for the large scale restoration of wetlands and reduced forest drainage in Scandinavia on the Hg/MeHg loadings to aquatic ecosystems in northern forests.

  18. The Use of Multi-Sensor Quantitative Precipitation Estimates for Deriving Extreme Precipitation Frequencies with Application in Louisiana

    NASA Astrophysics Data System (ADS)

    El-Dardiry, Hisham Abd El-Kareem

    The Radar-based Quantitative Precipitation Estimates (QPE) is one of the NEXRAD products that are available in a high temporal and spatial resolution compared with gauges. Radar-based QPEs have been widely used in many hydrological and meteorological applications; however, a few studies have focused on using radar QPE products in deriving of Precipitation Frequency Estimates (PFE). Accurate and regionally specific information on PFE is critically needed for various water resources engineering planning and design purposes. This study focused first on examining the data quality of two main radar products, the near real-time Stage IV QPE product, and the post real-time RFC/MPE product. Assessment of the Stage IV product showed some alarming data artifacts that contaminate the identification of rainfall maxima. Based on the inter-comparison analysis of the two products, Stage IV and RFC/MPE, the latter was selected for the frequency analysis carried out throughout the study. The precipitation frequency analysis approach used in this study is based on fitting Generalized Extreme Value (GEV) distribution as a statistical model for the hydrologic extreme rainfall data that based on Annual Maximum Series (AMS) extracted from 11 years (2002-2012) over a domain covering Louisiana. The parameters of the GEV model are estimated using method of linear moments (L-moments). Two different approaches are suggested for estimating the precipitation frequencies; Pixel-Based approach, in which PFEs are estimated at each individual pixel and Region-Based approach in which a synthetic sample is generated at each pixel by using observations from surrounding pixels. The region-based technique outperforms the pixel based estimation when compared with results obtained by NOAA Atlas 14; however, the availability of only short record of observations and the underestimation of radar QPE for some extremes causes considerable reduction in precipitation frequencies in pixel-based and region

  19. TEMPERATURE AND DENSITY ESTIMATES OF EXTREME-ULTRAVIOLET FLARE RIBBONS DERIVED FROM TRACE DIFFRACTION PATTERNS

    SciTech Connect

    Krucker, Saem; Raftery, Claire L.; Hudson, Hugh S.

    2011-06-10

    We report on Transition Region And Coronal Explorer 171 A observations of the GOES X20 class flare on 2001 April 2 that shows EUV flare ribbons with intense diffraction patterns. Between the 11th to 14th order, the diffraction patterns of the compact flare ribbon are dispersed into two sources. The two sources are identified as emission from the Fe IX line at 171.1 A and the combined emission from Fe X lines at 174.5, 175.3, and 177.2 A. The prominent emission of the Fe IX line indicates that the EUV-emitting ribbon has a strong temperature component near the lower end of the 171 A temperature response ({approx}0.6-1.5 MK). Fitting the observation with an isothermal model, the derived temperature is around 0.65 MK. However, the low sensitivity of the 171 A filter to high-temperature plasma does not provide estimates of the emission measure for temperatures above {approx}1.5 MK. Using the derived temperature of 0.65 MK, the observed 171 A flux gives a density of the EUV ribbon of 3 x 10{sup 11} cm{sup -3}. This density is much lower than the density of the hard X-ray producing region ({approx}10{sup 13} to 10{sup 14} cm{sup -3}) suggesting that the EUV sources, though closely related spatially, lie at higher altitudes.

  20. Temperature and Density Estimates of Extreme-ultraviolet Flare Ribbons Derived from TRACE Diffraction Patterns

    NASA Astrophysics Data System (ADS)

    Krucker, Säm; Raftery, Claire L.; Hudson, Hugh S.

    2011-06-01

    We report on Transition Region And Coronal Explorer 171 Å observations of the GOES X20 class flare on 2001 April 2 that shows EUV flare ribbons with intense diffraction patterns. Between the 11th to 14th order, the diffraction patterns of the compact flare ribbon are dispersed into two sources. The two sources are identified as emission from the Fe IX line at 171.1 Å and the combined emission from Fe X lines at 174.5, 175.3, and 177.2 Å. The prominent emission of the Fe IX line indicates that the EUV-emitting ribbon has a strong temperature component near the lower end of the 171 Å temperature response (~0.6-1.5 MK). Fitting the observation with an isothermal model, the derived temperature is around 0.65 MK. However, the low sensitivity of the 171 Å filter to high-temperature plasma does not provide estimates of the emission measure for temperatures above ~1.5 MK. Using the derived temperature of 0.65 MK, the observed 171 Å flux gives a density of the EUV ribbon of 3 × 1011 cm-3. This density is much lower than the density of the hard X-ray producing region (~1013 to 1014 cm-3) suggesting that the EUV sources, though closely related spatially, lie at higher altitudes.

  1. Application of the Most Likely Extreme Response Method for Wave Energy Converters

    SciTech Connect

    Quon, Eliot; Platt, Andrew; Yu, Yi-Hsiang; Lawson, Michael

    2016-06-24

    Extreme loads are often a key cost driver for wave energy converters (WECs). As an alternative to exhaustive Monte Carlo or long-term simulations, the most likely extreme response (MLER) method allows mid- and high-fidelity simulations to be used more efficiently in evaluating WEC response to events at the edges of the design envelope, and is therefore applicable to system design analysis. The study discussed in this paper applies the MLER method to investigate the maximum heave, pitch, and surge force of a point absorber WEC. Most likely extreme waves were obtained from a set of wave statistics data based on spectral analysis and the response amplitude operators (RAOs) of the floating body; the RAOs were computed from a simple radiation-and-diffraction-theory-based numerical model. A weakly nonlinear numerical method and a computational fluid dynamics (CFD) method were then applied to compute the short-term response to the MLER wave. Effects of nonlinear wave and floating body interaction on the WEC under the anticipated 100-year waves were examined by comparing the results from the linearly superimposed RAOs, the weakly nonlinear model, and CFD simulations. Overall, the MLER method was successfully applied. In particular, when coupled to a high-fidelity CFD analysis, the nonlinear fluid dynamics can be readily captured.

  2. Application of the Most Likely Extreme Response Method for Wave Energy Converters: Preprint

    SciTech Connect

    Quon, Eliot; Platt, Andrew; Yu, Yi-Hsiang; Lawson, Michael

    2016-07-01

    Extreme loads are often a key cost driver for wave energy converters (WECs). As an alternative to exhaustive Monte Carlo or long-term simulations, the most likely extreme response (MLER) method allows mid- and high-fidelity simulations to be used more efficiently in evaluating WEC response to events at the edges of the design envelope, and is therefore applicable to system design analysis. The study discussed in this paper applies the MLER method to investigate the maximum heave, pitch, and surge force of a point absorber WEC. Most likely extreme waves were obtained from a set of wave statistics data based on spectral analysis and the response amplitude operators (RAOs) of the floating body; the RAOs were computed from a simple radiation-and-diffraction-theory-based numerical model. A weakly nonlinear numerical method and a computational fluid dynamics (CFD) method were then applied to compute the short-term response to the MLER wave. Effects of nonlinear wave and floating body interaction on the WEC under the anticipated 100-year waves were examined by comparing the results from the linearly superimposed RAOs, the weakly nonlinear model, and CFD simulations. Overall, the MLER method was successfully applied. In particular, when coupled to a high-fidelity CFD analysis, the nonlinear fluid dynamics can be readily captured.

  3. APPLICANTS' STRATEGIC USE OF EXTREME OR MIDPOINT RESPONSES WHEN FAKING PERSONALITY TESTS.

    PubMed

    König, Cornelius J; Mura, Manuela; Schmidt, Johanna

    2015-10-01

    Faking, the intentional distortion of answers to personality tests, is likely a complex process. In particular, participants in previous research have mentioned that they used different kind of strategies to appear more hirable, including systematically more extreme or more midpoint responses. However, quantitative evidence is still lacking. An experiment was conducted in which 327 students (173 women, 153 men, 1 not indicated; M age = 22.1 yr., SD = 2.8) were randomly assigned to two groups. Hypothetical job advertisements primed the participants into believing that the hiring company preferred a person with either a "strong" (Strong Character group) or a "well-balanced" character (Well-balanced Character group). The participants filled out 40 items that were chosen from four established questionnaires as neither socially desirable nor undesirable. The responses to these items were used to calculate two extreme response measures and one midpoint response measure. The Strong Character group used extreme scores more often than the Well-balanced Character group (and the midpoint scores less often), independently of mean differences. This suggests that fakers use more sophisticated strategies than is often assumed.

  4. Antarctic Climate Change: Extreme Events Disrupt Plastic Phenotypic Response in Adélie Penguins

    PubMed Central

    Lescroël, Amélie; Ballard, Grant; Grémillet, David; Authier, Matthieu; Ainley, David G.

    2014-01-01

    In the context of predicted alteration of sea ice cover and increased frequency of extreme events, it is especially timely to investigate plasticity within Antarctic species responding to a key environmental aspect of their ecology: sea ice variability. Using 13 years of longitudinal data, we investigated the effect of sea ice concentration (SIC) on the foraging efficiency of Adélie penguins (Pygoscelis adeliae) breeding in the Ross Sea. A ‘natural experiment’ brought by the exceptional presence of giant icebergs during 5 consecutive years provided unprecedented habitat variation for testing the effects of extreme events on the relationship between SIC and foraging efficiency in this sea-ice dependent species. Significant levels of phenotypic plasticity were evident in response to changes in SIC in normal environmental conditions. Maximum foraging efficiency occurred at relatively low SIC, peaking at 6.1% and decreasing with higher SIC. The ‘natural experiment’ uncoupled efficiency levels from SIC variations. Our study suggests that lower summer SIC than currently observed would benefit the foraging performance of Adélie penguins in their southernmost breeding area. Importantly, it also provides evidence that extreme climatic events can disrupt response plasticity in a wild seabird population. This questions the predictive power of relationships built on past observations, when not only the average climatic conditions are changing but the frequency of extreme climatic anomalies is also on the rise. PMID:24489657

  5. Antarctic climate change: extreme events disrupt plastic phenotypic response in Adélie penguins.

    PubMed

    Lescroël, Amélie; Ballard, Grant; Grémillet, David; Authier, Matthieu; Ainley, David G

    2014-01-01

    In the context of predicted alteration of sea ice cover and increased frequency of extreme events, it is especially timely to investigate plasticity within Antarctic species responding to a key environmental aspect of their ecology: sea ice variability. Using 13 years of longitudinal data, we investigated the effect of sea ice concentration (SIC) on the foraging efficiency of Adélie penguins (Pygoscelis adeliae) breeding in the Ross Sea. A 'natural experiment' brought by the exceptional presence of giant icebergs during 5 consecutive years provided unprecedented habitat variation for testing the effects of extreme events on the relationship between SIC and foraging efficiency in this sea-ice dependent species. Significant levels of phenotypic plasticity were evident in response to changes in SIC in normal environmental conditions. Maximum foraging efficiency occurred at relatively low SIC, peaking at 6.1% and decreasing with higher SIC. The 'natural experiment' uncoupled efficiency levels from SIC variations. Our study suggests that lower summer SIC than currently observed would benefit the foraging performance of Adélie penguins in their southernmost breeding area. Importantly, it also provides evidence that extreme climatic events can disrupt response plasticity in a wild seabird population. This questions the predictive power of relationships built on past observations, when not only the average climatic conditions are changing but the frequency of extreme climatic anomalies is also on the rise.

  6. Maximum likelihood estimation of the parameters and quantiles of the general extreme-value distribution from censored samples

    NASA Astrophysics Data System (ADS)

    Phien, Huynh Ngoc; Fang, Tsu-Shang Emma

    1989-01-01

    The General Extreme Value (GEV) distribution has become increasingly popular, as has the use of historic information, in flood frequency analysis during recent years. Both call for a systematic investigation of the properties of the maximum likelihood (ML) estimators obtained from censored samples. In this study, such an investigation was made for the type-1 censoring believed to be more frequently encountered in practical situations. All the mathematical equations needed for obtaining the ML estimators of the parameters and the quantiles (represented by the T- year event) were derived and Monte Carlo experiments were carried out to determine their sampling properties. It was found that censoring may reduce the bias of the parameter estimators but does not necessarily increase the variances. It was also found that the variances-covariances of the parameter estimators, and hence the variance of the T- year event, are better approximated by using the observed rather than the Fisher information matrix.

  7. Evaluation of Piloted Inputs for Onboard Frequency Response Estimation

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Martos, Borja

    2013-01-01

    Frequency response estimation results are presented using piloted inputs and a real-time estimation method recently developed for multisine inputs. A nonlinear simulation of the F-16 and a Piper Saratoga research aircraft were subjected to different piloted test inputs while the short period stabilator/elevator to pitch rate frequency response was estimated. Results show that the method can produce accurate results using wide-band piloted inputs instead of multisines. A new metric is introduced for evaluating which data points to include in the analysis and recommendations are provided for applying this method with piloted inputs.

  8. Response of shoal grass, Halodule wrightii, to extreme winter conditions in the Lower Laguna Madre, Texas

    USGS Publications Warehouse

    Hicks, D.W.; Onuf, C.P.; Tunnell, J.W.

    1998-01-01

    Effects of a severe freeze on the shoal grass, Halodule wrightii, were documented through analysis of temporal and spatial trends in below-ground biomass. The coincidence of the second lowest temperature (-10.6??C) in 107 years of record, 56 consecutive hours below freezing, high winds and extremely low water levels exposed the Laguna Madre, TX, to the most severe cold stress in over a century. H. wrightii tolerated this extreme freeze event. Annual pre- and post-freeze surveys indicated that below-ground biomass estimated from volume was Unaffected by the freeze event. Nor was there any post-freeze change in biomass among intertidal sites directly exposed to freezing air temperatures relative to subtidal sites which remained submerged during the freezing period.

  9. Ergonomic stressors and upper extremity disorders in vehicle manufacturing: cross sectional exposure-response trends

    PubMed Central

    Punnett, L.

    1998-01-01

    OBJECTIVE: To evaluate the association between upper extremity soft tissue disorders and exposure to preventable ergonomic stressors in vehicle manufacturing operations. METHODS: A cross sectional study was conducted in one vehicle stamping plant and one engine assembly plant. A standardised physical examination of the upper extremities was performed on all subjects. An interviewer administered questionnaire obtained data on demographics, work history, musculoskeletal symptoms, non-occupational covariates, and psycho-physical (relative intensity) ratings of ergonomic stressors. The primary exposure score was computed by summing the responses to the psychophysical exposure items. Multivariate regression analysis was used to model the prevalence of disorders of the shoulders or upper arms, wrists or hands, and all upper extremity regions (each defined both by symptoms and by physical examination plus symptoms) as a function of exposure quartile. RESULTS: A total of 1315 workers (85% of the target population) was examined. The prevalence of symptom disorders was 22% for the wrists or hands and 15% for the shoulders or upper arms; cases defined on the basis of a physical examination were about 80% as frequent. Disorders of the upper extremities, shoulders, and wrists or hands all increased markedly with exposure score, after adjustment for plant, acute injury, sex, body mass index, systemic disease, and seniority. CONCLUSIONS: Musculoskeletal disorders of the upper extremities were strongly associated with exposure to combined ergonomic stressors. The exposure- response trend was very similar for symptom cases and for physical examination cases. It is important to evaluate all dimensions of ergonomic exposure in epidemiological studies, as exposures often occur in combination in actual workplaces.   PMID:9764102

  10. A plant’s perspective of extremes: Terrestrial plant responses to changing climatic variability

    PubMed Central

    Reyer, C.; Leuzinger, S.; Rammig, A.; Wolf, A.; Bartholomeus, R. P.; Bonfante, A.; de Lorenzi, F.; Dury, M.; Gloning, P.; Abou Jaoudé, R.; Klein, T.; Kuster, T. M.; Martins, M.; Niedrist, G.; Riccardi, M.; Wohlfahrt, G.; de Angelis, P.; de Dato, G.; François, L.; Menzel, A.; Pereira, M.

    2013-01-01

    We review observational, experimental and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied but potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heatwaves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational and /or modeling studies have the potential to overcome important caveats of the respective individual approaches. PMID:23504722

  11. Extreme flood estimation by the SCHADEX method in a snow-driven catchment: application to Atnasjø (Norway)

    NASA Astrophysics Data System (ADS)

    Paquet, Emmanuel; Lawrence, Deborah

    2013-04-01

    The SCHADEX method for extreme flood estimation was developed by Paquet et al. (2006, 2013), and since 2008, it is the reference method used by Electricité de France (EDF) for dam spillway design. SCHADEX is a so-called "semi-continuous" stochastic simulation method in that flood events are simulated on an event basis and are superimposed on a continuous simulation of the catchment saturation hazard usingrainfall-runoff modelling. The MORDOR hydrological model (Garçon, 1999) has thus far been used for the rainfall-runoff modelling. MORDOR is a conceptual, lumped, reservoir model with daily areal rainfall and air temperature as the driving input data. The principal hydrological processes represented are evapotranspiration, direct and indirect runoff, ground water, snow accumulation and melt, and routing. The model has been intensively used at EDF for more than 15 years, in particular for inflow forecasts for French mountainous catchments. SCHADEX has now also been applied to the Atnasjø catchment (463 km²), a well-documented inland catchment in south-central Norway, dominated by snowmelt flooding during spring/early summer. To support this application, a weather pattern classification based on extreme rainfall was first established for Norway (Fleig, 2012). This classification scheme was then used to build a Multi-Exponential Weather Pattern distribution (MEWP), as introduced by Garavaglia et al. (2010) for extreme rainfall estimation. The MORDOR model was then calibrated relative to daily discharge data for Atnasjø. Finally, a SCHADEX simulation was run to build a daily discharge distribution with a sufficient number of simulations for assessing the extreme quantiles. Detailed results are used to illustrate how SCHADEX handles the complex and interacting hydrological processes driving flood generation in this snow driven catchment. Seasonal and monthly distributions, as well as statistics for several thousand simulated events reaching a 1000 years return level

  12. Estimation of SST extremes in the Arabian Sea and their link to the cyclogenesis

    NASA Astrophysics Data System (ADS)

    Zahid, Maida; Gilleland, Eric; Lucarini, Valerio

    2017-04-01

    Understanding the behavior of sea surface temperature (SST) extremes in the ocean is important for many aspects of the marine climate system. Even the changes of a few degrees in SST can influence large-scale weather phenomena, such as tropical cyclones or El Nino. The robust warming over Arabian Sea is evident in the recent decades, hence increasing the risk of frequent cyclonic activity in the pre-monsoon (May-June) and post-monsoon (Oct-Dec) periods. Here, we use SST data of the Hadley Center UK Met office, and the annual frequency of the tropical depressions, cyclonic storms, and severe cyclonic storms of the Indian Meteorological Department from 1871 to 2015. Firstly, we have investigated the SST extremes in the Arabian Sea during pre and post monsoon by applying block maxima method, in the stationary and non-stationary climate. The results show that the return levels of SST extremes in the pre-monsoon are slightly higher than the post-monsoon for shorter (2, 5, 10, 20) and longer return periods (50, 100, 200). Secondly, we use Poisson regression model to do the probabilistic prediction of tropical depressions, cyclonic storms and severe cyclonic storms using SST as a predictor. We have observed that the SST and cyclogenesis are positively correlated, and the probability of the severe cyclonic storm is higher during the pre-monsoon period in the Arabian Sea.

  13. Extremely slow photocurrent response from hemoprotein films in planar diode geometry

    NASA Astrophysics Data System (ADS)

    Nam, Sungho; Kim, Hwajeong; Degenaar, Patrick; Ha, Chang-Sik; Kim, Youngkyoo

    2012-11-01

    The photocurrent response in solid-state films of two different hemoproteins, horseradish peroxidase and cytochrome c, was studied by employing a geometry of planar diode device. The highest occupied molecular orbital energy of the two solid-state hemoproteins was measured using photoelectron yield spectroscopy. Results showed that the photocurrent response of hemoprotein films under white light illumination was found extremely slow (ca. 160-480 s) owing to the charge blocking by insulating surrounding parts of which size resulted in largely different photocurrent time scale between the two hemoprotein films.

  14. [Effect of Bergenia crassifolia extract on specific immune response parameters under extremal conditions].

    PubMed

    Churin, A A; Masnaia, N V; Sherstoboev, E Yu; Suslov, N I

    2005-01-01

    The influence of a dry extract from Bergenia crassifolia (Fritsch) on the specific immune response parameters was studied under extremal conditions of model immunodepressive states induced by immobilization stress or cyclophosphamide injections. The drug produced normalizing effect on the content of antibody-forming cells in the spleen of experimental mice under the conditions of humoral response stimulation by antigen and in both immunodepression models. The bergenia extract decreases expression of inflammatory processes under delayed hypersensitivity reaction conditions, by preventing the accumulation of T-lymphocytes in the inflammation focus and reducing the ability of cells to produce anti-inflammatory cytokines.

  15. Comparative Metagenomic Analysis Reveals Mechanisms for Stress Response in Hypoliths from Extreme Hyperarid Deserts.

    PubMed

    Le, Phuong Thi; Makhalanyane, Thulani P; Guerrero, Leandro D; Vikram, Surendra; Van de Peer, Yves; Cowan, Don A

    2016-09-11

    Understanding microbial adaptation to environmental stressors is crucial for interpreting broader ecological patterns. In the most extreme hot and cold deserts, cryptic niche communities are thought to play key roles in ecosystem processes and represent excellent model systems for investigating microbial responses to environmental stressors. However, relatively little is known about the genetic diversity underlying such functional processes in climatically extreme desert systems. This study presents the first comparative metagenome analysis of cyanobacteria-dominated hypolithic communities in hot (Namib Desert, Namibia) and cold (Miers Valley, Antarctica) hyperarid deserts. The most abundant phyla in both hypolith metagenomes were Actinobacteria, Proteobacteria, Cyanobacteria and Bacteroidetes with Cyanobacteria dominating in Antarctic hypoliths. However, no significant differences between the two metagenomes were identified. The Antarctic hypolithic metagenome displayed a high number of sequences assigned to sigma factors, replication, recombination and repair, translation, ribosomal structure, and biogenesis. In contrast, the Namib Desert metagenome showed a high abundance of sequences assigned to carbohydrate transport and metabolism. Metagenome data analysis also revealed significant divergence in the genetic determinants of amino acid and nucleotide metabolism between these two metagenomes and those of soil from other polar deserts, hot deserts, and non-desert soils. Our results suggest extensive niche differentiation in hypolithic microbial communities from these two extreme environments and a high genetic capacity for survival under environmental extremes. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Decoupling of microbial carbon, nitrogen, and phosphorus cycling in response to extreme temperature events

    PubMed Central

    Mooshammer, Maria; Hofhansl, Florian; Frank, Alexander H.; Wanek, Wolfgang; Hämmerle, Ieda; Leitner, Sonja; Schnecker, Jörg; Wild, Birgit; Watzka, Margarete; Keiblinger, Katharina M.; Zechmeister-Boltenstern, Sophie; Richter, Andreas

    2017-01-01

    Predicted changes in the intensity and frequency of climate extremes urge a better mechanistic understanding of the stress response of microbially mediated carbon (C) and nutrient cycling processes. We analyzed the resistance and resilience of microbial C, nitrogen (N), and phosphorus (P) cycling processes and microbial community composition in decomposing plant litter to transient, but severe, temperature disturbances, namely, freeze-thaw and heat. Disturbances led temporarily to a more rapid cycling of C and N but caused a down-regulation of P cycling. In contrast to the fast recovery of the initially stimulated C and N processes, we found a slow recovery of P mineralization rates, which was not accompanied by significant changes in community composition. The functional and structural responses to the two distinct temperature disturbances were markedly similar, suggesting that direct negative physical effects and costs associated with the stress response were comparable. Moreover, the stress response of extracellular enzyme activities, but not that of intracellular microbial processes (for example, respiration or N mineralization), was dependent on the nutrient content of the resource through its effect on microbial physiology and community composition. Our laboratory study provides novel insights into the mechanisms of microbial functional stress responses that can serve as a basis for field studies and, in particular, illustrates the need for a closer integration of microbial C-N-P interactions into climate extremes research. PMID:28508070

  17. Using participatory agent-based models to measure flood managers' decision thresholds in extreme event response

    NASA Astrophysics Data System (ADS)

    Metzger, A.; Douglass, E.; Gray, S. G.

    2016-12-01

    Extreme flooding impacts to coastal cities are not only a function of storm characteristics, but are heavily influenced by decision-making and preparedness in event-level response. While recent advances in climate and hydrological modeling make it possible to predict the influence of climate change on storm and flooding patterns, flood managers still face a great deal of uncertainty related to adapting organizational responses and decision thresholds to these changing conditions. Some decision thresholds related to mitigation of extreme flood impacts are well-understood and defined by organizational protocol, but others are difficult to quantify due to reliance on contextual expert knowledge, experience, and complexity of information necessary to make certain decisions. Our research attempts to address this issue by demonstrating participatory modeling methods designed to help flood managers (1) better understand and parameterize local decision thresholds in extreme flood management situations, (2) collectively learn about scaling management decision thresholds to future local flooding scenarios and (3) identify effective strategies for adaptating flood mitigation actions and organizational response to climate change-intensified flooding. Our agent-based system dynamic models rely on expert knowledge from local flood managers and sophisticated, climate change-informed hydrological models to simulate current and future flood scenarios. Local flood managers from interact with these models by receiving dynamic information and making management decisions as a flood scenario progresses, allowing parametrization of decision thresholds under different scenarios. Flooding impacts are calculated in each iteration as a means of discussing effectiveness of responses and prioritizing response alternatives. We discuss the findings of this participatory modeling and educational process from a case study of Boston, MA, and discuss transferability of these methods to other types

  18. Using participatory agent-based models to measure flood managers' decision thresholds in extreme event response

    NASA Astrophysics Data System (ADS)

    Metzger, A.; Douglass, E.; Gray, S. G.

    2016-02-01

    Extreme flooding impacts to coastal cities are not only a function of storm characteristics, but are heavily influenced by decision-making and preparedness in event-level response. While recent advances in climate and hydrological modeling make it possible to predict the influence of climate change on storm and flooding patterns, flood managers still face a great deal of uncertainty related to adapting organizational responses and decision thresholds to these changing conditions. Some decision thresholds related to mitigation of extreme flood impacts are well-understood and defined by organizational protocol, but others are difficult to quantify due to reliance on contextual expert knowledge, experience, and complexity of information necessary to make certain decisions. Our research attempts to address this issue by demonstrating participatory modeling methods designed to help flood managers (1) better understand and parameterize local decision thresholds in extreme flood management situations, (2) collectively learn about scaling management decision thresholds to future local flooding scenarios and (3) identify effective strategies for adaptating flood mitigation actions and organizational response to climate change-intensified flooding. Our agent-based system dynamic models rely on expert knowledge from local flood managers and sophisticated, climate change-informed hydrological models to simulate current and future flood scenarios. Local flood managers from interact with these models by receiving dynamic information and making management decisions as a flood scenario progresses, allowing parametrization of decision thresholds under different scenarios. Flooding impacts are calculated in each iteration as a means of discussing effectiveness of responses and prioritizing response alternatives. We discuss the findings of this participatory modeling and educational process from a case study of Boston, MA, and discuss transferability of these methods to other types

  19. A random sampling approach for robust estimation of tissue-to-plasma ratio from extremely sparse data.

    PubMed

    Chu, Hui-May; Ette, Ene I

    2005-09-02

    his study was performed to develop a new nonparametric approach for the estimation of robust tissue-to-plasma ratio from extremely sparsely sampled paired data (ie, one sample each from plasma and tissue per subject). Tissue-to-plasma ratio was estimated from paired/unpaired experimental data using independent time points approach, area under the curve (AUC) values calculated with the naïve data averaging approach, and AUC values calculated using sampling based approaches (eg, the pseudoprofile-based bootstrap [PpbB] approach and the random sampling approach [our proposed approach]). The random sampling approach involves the use of a 2-phase algorithm. The convergence of the sampling/resampling approaches was investigated, as well as the robustness of the estimates produced by different approaches. To evaluate the latter, new data sets were generated by introducing outlier(s) into the real data set. One to 2 concentration values were inflated by 10% to 40% from their original values to produce the outliers. Tissue-to-plasma ratios computed using the independent time points approach varied between 0 and 50 across time points. The ratio obtained from AUC values acquired using the naive data averaging approach was not associated with any measure of uncertainty or variability. Calculating the ratio without regard to pairing yielded poorer estimates. The random sampling and pseudoprofile-based bootstrap approaches yielded tissue-to-plasma ratios with uncertainty and variability. However, the random sampling approach, because of the 2-phase nature of its algorithm, yielded more robust estimates and required fewer replications. Therefore, a 2-phase random sampling approach is proposed for the robust estimation of tissue-to-plasma ratio from extremely sparsely sampled data.

  20. Channel response to extreme floods: Insights on controlling factors from six mountain rivers in northern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Surian, Nicola; Righini, Margherita; Lucía, Ana; Nardi, Laura; Amponsah, William; Benvenuti, Marco; Borga, Marco; Cavalli, Marco; Comiti, Francesco; Marchi, Lorenzo; Rinaldi, Massimo; Viero, Alessia

    2016-11-01

    This work addresses the geomorphic response of mountain rivers to extreme floods, exploring the relationships between morphological changes and controlling factors. The research was conducted on six tributaries of the Magra River (northern Apennines, Italy) whose catchments were affected by an extreme flood (estimated recurrence interval > 100 years in most of the basins) on 25 October 2011. An integrated approach was deployed to study this flood, including (i) analysis of channel width changes by comparing aerial photographs taken before and after the flood, (ii) estimate of peak discharges in ungauged streams, (iii) detailed mapping of landslides and analysis of their connectivity with the channel network. Channel widening occurred in 35 reaches out of 39. In reaches with channel slope < 4% (here defined as nonsteep reaches), average and maximum ratios of post-flood and pre-flood channel width were 5.2 and 19.7 (i.e., channel widened from 4 to 82 m), respectively. In steep reaches (slope ≥ 4%), widening was slightly less intense (i.e., average width ratio = 3.4, maximum width ratio = 9.6). The relationships between the degree of channel widening and seven controlling factors were explored at subreach scale by using multiple regression models. In the steep subreaches characterized by higher confinement, the degree of channel widening (i.e., width ratio) showed relatively strong relationships with cross-sectional stream power, unit stream power (calculated based on pre-flood channel width), and lateral confinement, with coefficients of multiple determination (R2) ranging between 0.43 and 0.67. The models for the nonsteep subreaches provided a lower explanation of widening variability, with R2 ranging from 0.30 to 0.38; in these reaches a significant although weak relation was found between the degree of channel widening and the hillslope area supplying sediment to the channels. Results indicate that hydraulic variables alone are not sufficient to satisfactorily

  1. Role of Soils in Hydrologic Response to Climate Extremes and Land Use Change

    NASA Astrophysics Data System (ADS)

    Scanlon, B. R.; Zhang, Z.; Save, H.; Reedy, R. C.; Faunt, C. C.

    2015-12-01

    Increasing demand for water in response to growing global population underscores the need to better understand linkages and feedbacks between land surface processes and water resources to manage water resources more sustainably. Here we examine the role of soils on hydrologic response to climate extremes and land use change using field scale and remote sensing data at point to basin scales in the U.S. High Plains and California Central Valley. In the U.S. High Plains, soil-textural variations make the difference between sustainable water resources related to coarse-grained soils in the northern High Plains and groundwater mining associated with fine-grained soils in much of the central and southern High Plains. Field data show dynamic response of water resources to droughts and land use change in the northern High Plains with limited response in much of the central and southern High Plains. Soil profiles provide a key to the past by archiving system response to environmental changes in subsurface soil physics and environmental tracer data. Areas with coarse-grained soils are vulnerable to reduced recharge during droughts and increased recharge with land use change from perennial to annual vegetation whereas fine-grained soils are generally insensitive to these stresses. GRACE satellite monitoring of total water storage variations in response to recent droughts is consistent with these spatial variations in soils across the High Plains and hydrologic response to droughts.In the California Central Valley, coarse grained soils in alluvial basins result in dynamic hydrologic responses to climate extremes. GRACE satellite data show marked depletion in total water storage in response to recent droughts reflecting groundwater and surface reservoir storage declines consistent with regional groundwater modeling and monitoring data. The coarse alluvial soils typical of much of the region facilitate managed aquifer recharge in depleted aquifers to complement surface reservoir

  2. Estimating present day extreme water level exceedance probabilities around the coastline of Australia: tropical cyclone-induced storm surges

    NASA Astrophysics Data System (ADS)

    Haigh, Ivan D.; MacPherson, Leigh R.; Mason, Matthew S.; Wijeratne, E. M. S.; Pattiaratchi, Charitha B.; Crompton, Ryan P.; George, Steve

    2014-01-01

    The incidence of major storm surges in the last decade have dramatically emphasized the immense destructive capabilities of extreme water level events, particularly when driven by severe tropical cyclones. Given this risk, it is vitally important that the exceedance probabilities of extreme water levels are accurately evaluated to inform risk-based flood and erosion management, engineering and for future land-use planning and to ensure the risk of catastrophic structural failures due to under-design or expensive wastes due to over-design are minimised. Australia has a long history of coastal flooding from tropical cyclones. Using a novel integration of two modeling techniques, this paper provides the first estimates of present day extreme water level exceedance probabilities around the whole coastline of Australia, and the first estimates that combine the influence of astronomical tides, storm surges generated by both extra-tropical and tropical cyclones, and seasonal and inter-annual variations in mean sea level. Initially, an analysis of tide gauge records has been used to assess the characteristics of tropical cyclone-induced surges around Australia. However, given the dearth (temporal and spatial) of information around much of the coastline, and therefore the inability of these gauge records to adequately describe the regional climatology, an observationally based stochastic tropical cyclone model has been developed to synthetically extend the tropical cyclone record to 10,000 years. Wind and pressure fields derived for these synthetically generated events have then been used to drive a hydrodynamic model of the Australian continental shelf region with annual maximum water levels extracted to estimate exceedance probabilities around the coastline. To validate this methodology, selected historic storm surge events have been simulated and resultant storm surges compared with gauge records. Tropical cyclone induced exceedance probabilities have been combined with

  3. Fine-scale processes regulate the response of extreme events to global climate change

    PubMed Central

    Diffenbaugh, Noah S.; Pal, Jeremy S.; Trapp, Robert J.; Giorgi, Filippo

    2005-01-01

    We find that extreme temperature and precipitation events are likely to respond substantially to anthropogenically enhanced greenhouse forcing and that fine-scale climate system modifiers are likely to play a critical role in the net response. At present, such events impact a wide variety of natural and human systems, and future changes in their frequency and/or magnitude could have dramatic ecological, economic, and sociological consequences. Our results indicate that fine-scale snow albedo effects influence the response of both hot and cold events and that peak increases in extreme hot events are amplified by surface moisture feedbacks. Likewise, we find that extreme precipitation is enhanced on the lee side of rain shadows and over coastal areas dominated by convective precipitation. We project substantial, spatially heterogeneous increases in both hot and wet events over the contiguous United States by the end of the next century, suggesting that consideration of fine-scale processes is critical for accurate assessment of local- and regional-scale vulnerability to climate change. PMID:16236722

  4. The Stability of Extreme Response Style and Acquiescence Over 8 Years.

    PubMed

    Wetzel, Eunike; Lüdtke, Oliver; Zettler, Ingo; Böhnke, Jan R

    2016-06-01

    This study investigated the stability of extreme response style (ERS) and acquiescence response style (ARS) over a period of 8 years. ERS and ARS were measured with item sets drawn randomly from a large pool of items used in an ongoing German panel study. Latent-trait-state-occasion and latent-state models were applied to test the relationship between time-specific (state) response style behaviors and time-invariant trait components of response styles. The results show that across different random item samples, on average between 49% and 59% of the variance in the state response style factors was explained by the trait response style factors. This indicates that the systematic differences respondents show in their preferences for certain response categories are remarkably stable over a period of 8 years. The stability of ERS and ARS implies that it is important to consider response styles in the analysis of self-report data from polytomous rating scales, especially in longitudinal studies aimed at investigating stability in substantive traits. Furthermore, the stability of response styles raises the question in how far they might be considered trait-like latent variables themselves that could be of substantive interest. © The Author(s) 2015.

  5. Estimation of mean response via effective balancing score

    PubMed Central

    Hu, Zonghui; Follmann, Dean A.; Wang, Naisyin

    2015-01-01

    Summary We introduce effective balancing scores for estimation of the mean response under a missing at random mechanism. Unlike conventional balancing scores, the effective balancing scores are constructed via dimension reduction free of model specification. Three types of effective balancing scores are introduced: those that carry the covariate information about the missingness, the response, or both. They lead to consistent estimation with little or no loss in efficiency. Compared to existing estimators, the effective balancing score based estimator relieves the burden of model specification and is the most robust. It is a near-automatic procedure which is most appealing when high dimensional covariates are involved. We investigate both the asymptotic and the numerical properties, and demonstrate the proposed method in a study on Human Immunodeficiency Virus disease. PMID:25797955

  6. Estimation of mean response via effective balancing score.

    PubMed

    Hu, Zonghui; Follmann, Dean A; Wang, Naisyin

    2014-09-01

    We introduce effective balancing scores for estimation of the mean response under a missing at random mechanism. Unlike conventional balancing scores, the effective balancing scores are constructed via dimension reduction free of model specification. Three types of effective balancing scores are introduced: those that carry the covariate information about the missingness, the response, or both. They lead to consistent estimation with little or no loss in efficiency. Compared to existing estimators, the effective balancing score based estimator relieves the burden of model specification and is the most robust. It is a near-automatic procedure which is most appealing when high dimensional covariates are involved. We investigate both the asymptotic and the numerical properties, and demonstrate the proposed method in a study on Human Immunodeficiency Virus disease.

  7. Extreme Sea Conditions in Shallow Water: Estimation based on in-situ measurements

    NASA Astrophysics Data System (ADS)

    Le Crom, Izan; Saulnier, Jean-Baptiste

    2013-04-01

    The design of marine renewable energy devices and components is based, among others, on the assessment of the environmental extreme conditions (winds, currents, waves, and water level) that must be combined together in order to evaluate the maximal loads on a floating/fixed structure, and on the anchoring system over a determined return period. Measuring devices are generally deployed at sea over relatively short durations (a few months to a few years), typically when describing water free surface elevation, and extrapolation methods based on hindcast data (and therefore on wave simulation models) have to be used. How to combine, in a realistic way, the action of the different loads (winds and waves for instance) and which correlation of return periods should be used are highly topical issues. However, the assessment of the extreme condition itself remains a not-fully-solved, crucial, and sensitive task. Above all in shallow water, extreme wave height, Hmax, is the most significant contribution in the dimensioning process of EMR devices. As a case study, existing methodologies for deep water have been applied to SEMREV, the French marine energy test site. The interest of this study, especially at this location, goes beyond the simple application to SEMREV's WEC and floating wind turbines deployment as it could also be extended to the Banc de Guérande offshore wind farm that are planned close by. More generally to pipes and communication cables as it is a redundant problematic. The paper will first present the existing measurements (wave and wind on site), the prediction chain that has been developed via wave models, the extrapolation methods applied to hindcast data, and will try to formulate recommendations for improving this assessment in shallow water.

  8. Mass balance method for estimating transcapillary protein transport in an extremity

    SciTech Connect

    Friedman, J.J.; Hing, C.T.

    1985-03-01

    A clinical procedure for applying the mass balance method to estimate transcapillary protein transport was compared with the experimental procedure of direct tissue monitoring of the rate of /sup 125/I- albumin accumulation in the dog hindlimb under conditions of venous pressure (Pv) elevation, norepinephrine infusion, and hemorrhagic hypotension. Over a wide range of venous protein flux (0.2 to 4.6 mg/min x 100 gm), the two estimates correlated well. The correlation coefficients were 0.987, 0.962, and 0.993 for Pv elevation in the control state, during norepinephrine infusion, and following hemorrhage, respectively. Since the clinical format requires only estimates of tissue blood flow, the change in tissue volume, and the change in protein concentration easily obtained with strain gauge plethysmography and venous blood sampling, it represents a relatively innocuous procedure for estimating protein transport which should be suitable for clinical application.

  9. Application of artificial neural network with extreme learning machine for economic growth estimation

    NASA Astrophysics Data System (ADS)

    Milačić, Ljubiša; Jović, Srđan; Vujović, Tanja; Miljković, Jovica

    2017-01-01

    The purpose of this research is to develop and apply the artificial neural network (ANN) with extreme learning machine (ELM) to forecast gross domestic product (GDP) growth rate. The economic growth forecasting was analyzed based on agriculture, manufacturing, industry and services value added in GDP. The results were compared with ANN with back propagation (BP) learning approach since BP could be considered as conventional learning methodology. The reliability of the computational models was accessed based on simulation results and using several statistical indicators. Based on results, it was shown that ANN with ELM learning methodology can be applied effectively in applications of GDP forecasting.

  10. A spring-summer dichotomy in temperate ecosystem productivity extremes in response to changing climate drivers

    NASA Astrophysics Data System (ADS)

    Sippel, S.; Otto, F. E. L.; Rammig, A.; Reichstein, M.; Mahecha, M. D.

    2016-12-01

    Climate is a major driver of variability and extremes in the functioning of terrestrial ecosystems. A changing climate might thus induce substantial changes in ecosystem carbon and water cycling, often implying previously unseen extreme conditions. However, these ecosystem impacts occur typically through various complex pathways and are thus often not straightforward to quantify, predict or attribute to specific drivers. Here, we demonstrate based on a very large ensemble of process-oriented model simulations, combined with data-driven evidence, that extremes in ecosystem carbon cycling in six eco-physiologically distinct European regions show consistent, but seasonally contrasting trends. In particular, positive and negative carbon cycle anomalies in spring show a consistent trend towards increased gross and net spring carbon uptake. In contrast, negative summer anomalies in gross primary productivity (GPP) and net ecosystem productivity (NEP) show close-to-neutral or negative trends across all six regions (while positive anomalies show partly increasing trends). We show that these contrasting trends imply a partial compensation of drought and heat-induced GPP/NEP reductions in summer by increased carbon uptake in spring. Both empirical evidence and factorial model runs indicate that this apparent `spring-summer dichotomy' is predominantly driven by contrasting responses of European ecosystems to warming. Our findings rely on a very large ensemble of bias-corrected regional climate simulations over Europe. These simulations are used to derive, for each region, an unprecedentedly large ensemble (n=12000 members) of i) process-oriented biosphere model (LPJmL) simulations, and ii) a data-driven proxy of vegetation productivity (the `Fraction of Absorbed Photosynthetic Active Radiation, FPAR'). To disentangle individual climatic drivers of change in the process-oriented and data-driven ensemble, we introduce a simple statistical attribution framework. In conclusion

  11. On the mechanical modeling of the extreme softening/stiffening response of axially loaded tensegrity prisms

    NASA Astrophysics Data System (ADS)

    Fraternali, Fernando; Carpentieri, Gerardo; Amendola, Ada

    2015-01-01

    We study the geometrically nonlinear behavior of uniformly compressed tensegrity prisms through fully elastic and rigid-elastic models. The given models predict a variety of mechanical behaviors in the regime of large displacements, including an extreme stiffening-type response, already known in the literature, and a newly discovered, extreme softening behavior. The latter may lead to a snap buckling event producing an axial collapse of the structure. The switching from one mechanical regime to another depends on the aspect ratio of the structure, the magnitude of the applied prestress, and the material properties of the constituent elements. We discuss potential mechanical and acoustic applications of such behaviors, which are related to the design and manufacture of tensegrity lattices and innovative metamaterials.

  12. Dynamic response analysis of a heavy commercial vehicle subjected to extreme road operating conditions

    NASA Astrophysics Data System (ADS)

    Chinnaraj, K.; Mangalaramanan, S. P.; Lakshmana Rao, C.

    2009-08-01

    Wheel excitations measured on a heavy commercial vehicle by driving it through extreme road operating conditions, are considered as inputs to perform dynamic response analysis in a simulated laboratory and computational environment. From initial modal analysis results using finite elements, critical vehicle frame rail locations are identified for dynamic laboratory strain measurements on a six poster road load simulator that employs dynamic wheel excitations as input. Dynamic stresses calculated from measured strain values are then compared with computationally obtained stress results on each of these locations. This study also points out all geometric locations and vibration modes that may affect the design behavior of the frame members under extreme road operating conditions. The results obtained from this work can be considered for further fatigue life prediction and design optimization of chassis frame rail assembly.

  13. Academic environment and dynamics in response to extreme events: Theory and Practice (Katrina Lessons)

    NASA Astrophysics Data System (ADS)

    Sidorovskaia, Natalia

    2008-03-01

    The possibility of a catastrophic event requires the department as a unit and the university as an organization to devise a comprehensive emergency response plan to minimize the impact and shorten the recovery stage. Does the academic organizational structure and environment possess key features for the possibility of successful response to extreme events? The post Hurricane Katrina experience of Louisiana universities offers data to address this theoretical question. It also emphasizes that the mitigation plan should include two aspects: preparing/protecting a university for/during a catastrophic event and assisting other academic institutions experiencing an extreme event. Short-term and longer-term statistics and other data pertain to the interaction of the University of Louisiana at Lafayette (as an assistance unit) with the universities in New Orleans (units in distress), including the dynamics of student population, faculty influx, course adjustments, and response and recovery actions are presented. An attempt is made to categorize the losses and to assess the recovery quality and time. Faculty and institutional administration interviews are summarized to assist in developing future proactive response plans. UL Lafayette and UNO research capabilities and intellectual resources for developing complex models simulating the multi-variable effects of catastrophic events and providing adaptability in the decision-making process are investigated.

  14. Methodology for Estimating Ingestion Dose for Emergency Response at SRS

    SciTech Connect

    Simpkins, A.A.

    2003-07-21

    At the Savannah River Site (SRS), emergency response computer models are used to estimate dose following releases of radioactive materials to the environment. Downwind air and ground concentrations and their associated doses from inhalation and ground shine pathways are estimated. The emergency response model (PUFF-PLUME) uses real-time data to track either instantaneous (puff) or continuous (plume) releases. A site-specific ingestion dose model was developed for use with PUFF-PLUME that includes the following ingestion dose pathways pertinent to the surrounding SRS area: milk, beef, water, and fish. The model is simplistic and can be used with existing code output.

  15. Study on quantile estimates of extreme precipitation and their spatiotemporal consistency adjustment over the Huaihe River basin

    NASA Astrophysics Data System (ADS)

    Shao, Yuehong; Wu, Junmei; Li, Min

    2017-01-01

    The quantile estimates and spatiotemporal consistency of extreme precipitation are studied by regional linear frequency analysis for Huaihe River basin in China. Firstly, the study area can be categorized into six homogeneous regions by using cluster analysis, heterogeneity measure, and discordancy measure. In the next step, we determine the optimum distribution for each homogeneous region by using two criteria of Monte Carlo simulations and the root-mean-square error (RMSE) of the sample L-moments. A diagram of L-moments ratio is used to further judge and validate the optimum distribution. The generalized extreme value (GEV), generalized normal (GNO), and generalized logistic (GLO) for 24-h duration are determined to be the more appropriate distribution based on the two criteria, L-moments ratio plot, and the tail thickness of curve in adjacent regions. A summary assessment can provide the more reasonable distribution, which avoids arbitrary results from single test. An important practical element of this study that was missing from previous works is the quantile spatiotemporal consistency analysis, which helps identify non-monotonicity among quantiles at different durations and reduces the gradient of estimates in the adjacent regions. Abnormality and spatial discontinuation can be removed by distributing the surplus of the ratio and twice different interpolation. A complete set of spatiotemporal consistent quantile estimates for various duration (24 h, 3 days, 5 days, and 7 days) and return periods (from 2 to 1000 years) can be obtained by using the abovementioned method in the study area, which are in the agreement with the observed precipitation extremes. It will provide important basis for hydrometeorological research, which is of significant scientific and practical merit.

  16. Estimation of the phase response curve from Parkinsonian tremor

    PubMed Central

    Saifee, Tabish A.; Edwards, Mark J.; Kassavetis, Panagiotis

    2015-01-01

    Phase response curves (PRCs), characterizing the response of an oscillator to weak external perturbation, have been estimated from a broad range of biological oscillators, including single neurons in vivo. PRC estimates, in turn, provide an intuitive insight into how oscillatory systems become entrained and how they can be desynchronized. Here, we explore the application of PRC theory to the case of Parkinsonian tremor. Initial attempts to establish a causal effect of subthreshold transcranial magnetic stimulation applied to primary motor cortex on the filtered tremor phase were unsuccessful. We explored the possible explanations of this and demonstrate that assumptions made when estimating the PRC in a traditional setting, such as a single neuron, are not arbitrary when applied to the case of tremor PRC estimation. We go on to extract the PRC of Parkinsonian tremor using an iterative method that requires varying the definition of the tremor cycle and estimating the PRC at multiple peristimulus time samples. Justification for this method is supported by estimates of PRC from simulated single neuron data. We provide an approach to estimating confidence limits for tremor PRC and discuss the interpretational caveats introduced by tremor harmonics and the intrinsic variability of the tremor's period. PMID:26561596

  17. Amplification of extreme precipitation response to climate change over Lake Victoria

    NASA Astrophysics Data System (ADS)

    Thiery, Wim; Davin, Edouard; Seneviratne, Sonia; Bedka, Kristopher; van Lipzig, Nicole

    2015-04-01

    Casualties among fishermen operating on Lake Victoria are estimated to amount up to several thousand per year, leading to the dubious distinction of "world's most lethal lake". Most of the casualties are caused by severe thunderstorms occurring at night, when surface winds converge over the lake and trigger deep convection of air masses moistened by the lake. With the climate change induced raise in troposphere temperatures, the frequency and intensity of these extremes are likely to increase. However, up to now only very little is known about the processes underlying this nighttime convection, and how it will be affected by climate change. We examine the impact of climate change on hazardous thunderstorms over Lake Victoria by conducting a set of regional climate model simulations which resolve individual lakes and explicitly compute lake temperatures. The regional climate model COSMO-CLM² is used to dynamically downscale a CORDEX-Africa projection (COSMO-CLM/MPI-ESM-LR) under RCP8.5 to 7 km grid spacing for the periods 1981-2010 and 2071-2100. Based on these high resolution simulations, we project that the increase in extreme precipitation is amplified over Lake Victoria compared to surrounding land area, consistent with projections from the (courser-scale) CORDEX-Africa ensemble. Moreover, the strongest extremes are found to follow the Clausius-Clapeyron scaling over the lake surface only. Finally, we investigate controls on the occurrence of this extreme precipitation in the present-day climate using satellite observations and a dynamical reanalysis downscaling, and detect a strong relationship with antecedent daytime land thunderstorms. Besides supplying moisture, these storms also modify mesoscale circulation in favor of strong over-lake convection the following night. Extending this analysis will make it possible to attribute the projected lake amplification effect to changes in the controlling factors.

  18. Estimation of Two-Parameter Logistic Item Response Curves.

    DTIC Science & Technology

    1983-12-01

    the one- parameter logistic ( Rasch ) model by Rigdon and Tsutakawa (1983). Here we will consider one of these estimators, namely MLF, where the...response model for n dichotomously scored items. Psychometrika, 1970, 35, 179-197. 4. Dempster, A.P. Laird, N.M. & Rubin, D.B. Maximum likelihood...reverse aide it neceesary and Identify by block number) Item responses, logistic model , EM algorithm, maximum likelihood 20. ABSTRACT (Continue an

  19. Evidence for Two Extremes of Ciliary Motor Response in a Single Swimming Microorganism

    PubMed Central

    Jung, Ilyong; Powers, Thomas R.; Valles, James M.

    2014-01-01

    Because arrays of motile cilia drive fluids for a range of processes, the versatile mechano-chemical mechanism coordinating them has been under scrutiny. The protist Paramecium presents opportunities to compare how groups of cilia perform two distinct functions, swimming propulsion and nutrient uptake. We present how the body cilia responsible for propulsion and the oral-groove cilia responsible for nutrient uptake respond to changes in their mechanical environment accomplished by varying the fluid viscosity over a factor of 7. Analysis with a phenomenological model of trajectories of swimmers made neutrally buoyant with magnetic forces combined with high-speed imaging of ciliary beating reveal that the body cilia exert a nearly constant propulsive force primarily by reducing their beat frequency as viscosity increases. By contrast, the oral-groove cilia beat at a nearly constant frequency. The existence of two extremes of motor response in a unicellular organism prompts unique investigations of factors controlling ciliary beating. PMID:24411242

  20. Thermal reactionomes reveal divergent responses to thermal extremes in warm and cool-climate ant species.

    PubMed

    Stanton-Geddes, John; Nguyen, Andrew; Chick, Lacy; Vincent, James; Vangala, Mahesh; Dunn, Robert R; Ellison, Aaron M; Sanders, Nathan J; Gotelli, Nicholas J; Cahan, Sara Helms

    2016-03-02

    The distributions of species and their responses to climate change are in part determined by their thermal tolerances. However, little is known about how thermal tolerance evolves. To test whether evolutionary extension of thermal limits is accomplished through enhanced cellular stress response (enhanced response), constitutively elevated expression of protective genes (genetic assimilation) or a shift from damage resistance to passive mechanisms of thermal stability (tolerance), we conducted an analysis of the reactionome: the reaction norm for all genes in an organism's transcriptome measured across an experimental gradient. We characterized thermal reactionomes of two common ant species in the eastern U.S, the northern cool-climate Aphaenogaster picea and the southern warm-climate Aphaenogaster carolinensis, across 12 temperatures that spanned their entire thermal breadth. We found that at least 2 % of all genes changed expression with temperature. The majority of upregulation was specific to exposure to low temperatures. The cool-adapted A. picea induced expression of more genes in response to extreme temperatures than did A. carolinensis, consistent with the enhanced response hypothesis. In contrast, under high temperatures the warm-adapted A. carolinensis downregulated many of the genes upregulated in A. picea, and required more extreme temperatures to induce down-regulation in gene expression, consistent with the tolerance hypothesis. We found no evidence for a trade-off between constitutive and inducible gene expression as predicted by the genetic assimilation hypothesis. These results suggest that increases in upper thermal limits may require an evolutionary shift in response mechanism away from damage repair toward tolerance and prevention.

  1. Adrenocortical stress responses influence an invasive vertebrate's fitness in an extreme environment

    PubMed Central

    Jessop, Tim S.; Letnic, Mike; Webb, Jonathan K.; Dempster, Tim

    2013-01-01

    Continued range expansion into physiologically challenging environments requires invasive species to maintain adaptive phenotypic performance. The adrenocortical stress response, governed in part by glucocorticoid hormones, influences physiological and behavioural responses of vertebrates to environmental stressors. However, any adaptive role of this response in invasive populations that are expanding into extreme environments is currently unclear. We experimentally manipulated the adrenocortical stress response of invasive cane toads (Rhinella marina) to investigate its effect on phenotypic performance and fitness at the species' range front in the Tanami Desert, Australia. Here, toads are vulnerable to overheating and dehydration during the annual hot–dry season and display elevated plasma corticosterone levels indicative of severe environmental stress. By comparing unmanipulated control toads with toads whose adrenocortical stress response was manipulated to increase acute physiological stress responsiveness, we found that control toads had significantly reduced daily evaporative water loss and higher survival relative to the experimental animals. The adrenocortical stress response hence appears essential in facilitating complex phenotypic performance and setting fitness trajectories of individuals from invasive species during range expansion. PMID:23945686

  2. Altered breathing mechanics and ventilatory response during exercise in children born extremely preterm

    PubMed Central

    DeHaan, K; Fuhr, D; Hariharan, S; Kamstra, B; Hendson, L; Adatia, I; Majaesic, C; Lovering, A T; Thompson, R B; Nicholas, D; Thebaud, B; Stickland, M K

    2016-01-01

    Background Extreme preterm birth confers risk of long-term impairments in lung function and exercise capacity. There are limited data on the factors contributing to exercise limitation following extreme preterm birth. This study examined respiratory mechanics and ventilatory response during exercise in a large cohort of children born extremely preterm (EP). Methods This cohort study included children 8–12 years of age who were born EP (≤28 weeks gestation) between 1997 and 2004 and treated in a large regionalised neonatal intensive care unit in western Canada. EP children were divided into no/mild bronchopulmonary dysplasia (BPD) (ie, supplementary oxygen or ventilation ceased before 36 weeks gestational age; n=53) and moderate/severe BPD (ie, continued supplementary oxygen or ventilation at 36 weeks gestational age; n=50). Age-matched control children (n=65) were born at full term. All children attempted lung function and cardiopulmonary exercise testing measurements. Results Compared with control children, EP children had lower airway flows and diffusion capacity but preserved total lung capacity. Children with moderate/severe BPD had evidence of gas trapping relative to other groups. The mean difference in exercise capacity (as measured by oxygen uptake (VO2)% predicted) in children with moderate/severe BPD was −18±5% and −14±5.0% below children with no/mild BPD and control children, respectively. Children with moderate/severe BPD demonstrated a potentiated ventilatory response and greater prevalence of expiratory flow limitation during exercise compared with other groups. Resting lung function did not correlate with exercise capacity. Conclusions Expiratory flow limitation and an exaggerated ventilatory response contribute to respiratory limitation to exercise in children born EP with moderate/severe BPD. PMID:27259338

  3. Boron stress response and accumulation potential of the extremely tolerant species Puccinellia frigida.

    PubMed

    Rámila, Consuelo D P; Contreras, Samuel A; Di Domenico, Camila; Molina-Montenegro, Marco A; Vega, Andrea; Handford, Michael; Bonilla, Carlos A; Pizarro, Gonzalo E

    2016-11-05

    Phytoremediation is a promising technology to tackle boron toxicity, which restricts agricultural activities in many arid and semi-arid areas. Puccinellia frigida is a perennial grass that was reported to hyperaccumulate boron in extremely boron-contaminated sites. To further investigate its potential for phytoremediation, we determined its response to boron stress under controlled conditions (hydroponic culture). Also, as a first step towards understanding the mechanisms underlying its extreme tolerance, we evaluated the presence and expression of genes related with boron tolerance. We found that P. frigida grew normally even at highly toxic boron concentrations in the medium (500mg/L), and within its tissues (>5000mg/kg DW). We postulate that the strategies conferring this extreme tolerance involve both restricting boron accumulation and an internal tolerance mechanism; this is consistent with the identification of putative genes involved in both mechanisms, including the expression of a possible boron efflux transporter. We also found that P. frigida hyperaccumulated boron over a wide range of boron concentrations. We propose that P. frigida could be used for boron phytoremediation strategies in places with different soil characteristics and boron concentrations. Further studies should pave the way for the development of clean and low-cost solutions to boron toxicity problems. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Workstyle: development of a measure of response to work in those with upper extremity pain.

    PubMed

    Feuerstein, Michael; Nicholas, Rena A; Huang, Grant D; Haufler, Amy J; Pransky, Glenn; Robertson, Michele

    2005-06-01

    Workstyle or the behavioral, cognitive, and physiological response that can occur in some individuals to increases in work demands has been proposed to help explain the link between ergonomic and psychosocial factors in the exacerbation of work-related upper extremity symptoms. Currently, there is no measure of this construct, hindering research on its potential link to work related upper extremity problems in the workplace. The present study describes the development and psychometric properties of a measure of workstyle. Questionnaire items reflecting dimensions of workstyle as per the original conceptualization were generated primarily through focus groups with office workers and separate groups held with occupational physicians, physical therapists, occupational health psychologists, and experts in ergonomics, behavioral science, and human factors. Items created through this process were then administered to 282 symptomatic and asymptomatic office workers. Measures of job stress, ergonomic risk, upper extremity symptoms, and functional limitations were also obtained. The workstyle questionnaire was divided into two broad dimensions: Characteristic responses to work and Response to increased work demands. The scale development process as indicated by factor analysis yielded subscales that are theoretically consistent with the workstyle construct. These subscales include: working through pain, social reactivity at work, limited workplace support, deadlines/pressure, self imposed work pace/workload, breaks, mood, pain/tension, autonomic response, and numbness tingling. The internal consistency of these subscales varied from 0.61 to 0.91, n = 282 while the test-retest (3 weeks) reliability for the various subscales ranged from r = 0.68 to 0.89, n = 143. A total workstyle score was computed that excluded the pain/tension and numbness/tingling subscales to avoid circular reasoning in terms of the measure's relationship to outcomes of pain and functional limitations

  5. Magnetotelluric Response Function Estimation Based on Hilbert-Huang Transform

    NASA Astrophysics Data System (ADS)

    Cai, Jian-hua

    2013-11-01

    Magnetotelluric (MT) data series are non-stationary random signals that do not meet the basic requirements of conventional methods based on the Fourier transform. To minimize the estimation bias errors brought about by the non-stationary characteristics of MT data, a new method, based on the Hilbert-Huang transform (HHT), is proposed for the first time for estimating the MT response functions from a time series of electromagnetic field variations. With the HHT method, the amplitude of data series are expressed as a function of frequency and time and then response functions are estimated statistically from the time-frequency spectrum. Mathematical model and calculation processes are introduced and some simulated data are analyzed to verify the correctness of the method. Finally, the measured MT data is facilitated by applying the HHT to assess the ability of HHT method to quantify meaningful geologic information.

  6. Geomorphically Effective Energy Expenditure for Quantifying Channel Responses to Extreme Floods

    NASA Astrophysics Data System (ADS)

    Amponsah, William; Righini, Margherita; Wohl, Ellen E.; Borga, Marco; Marchi, Lorenzo; Rathburn, Sara L.; Surian, Nicola; Zoccatelli, Davide

    2016-04-01

    Flash floods are characterized by strong spatio-temporal rainfall variability and therefore show variations in energy expenditure and associated geomorphic impacts that depend on geological controls on channel geometry and sediment characteristics, as well as on variations in flood intensity. Geomorphic modification is expected to occur in river channels when driving forces (i.e., hydraulic and abrasive forces of water and sediment acting on the channel) exceed threshold of resisting forces (i.e., the ability of channel boundaries to remain unchanged by the passage of water and sediments). However, these forces that determine the capacity of floods to modify existing channel configuration are extremely difficult to quantify. Geomorphic impacts or hazards usually take the form of erosional and depositional modification of the pre-flood channel and valley geometry. A central question in hydrogeomorphology relates to why flash floods of similar magnitudes and intensities sometimes produce dissimilar geomorphic results? In fact, some less magnitude floods in terms of discharge per unit of drainage area have been found to produce major geomorphic damage than some high magnitude events. Furthermore, the use of peak instantaneous flow parameters such as discharge, velocity, shear stress and stream power to quantify geomorphic changes have often been non-deterministic and/or inconclusive. Investigations are therefore needed on how factors such as channel geometry, substrate, riparian vegetation, sediment supply, and flood magnitude and duration can interact and influence geomorphic effectiveness of high magnitude floods. The main objective of this study is to assess the coupled influence of flood-flow duration and total energy expenditure on geomorphic response to extreme flash floods, which is aimed at developing an index that combines flow duration, stream power per unit area and threshold for major channel erosion to be evaluated as a predictor of geomorphic adjustment

  7. Use of Generalized Extreme Value Covariates to Improve Estimation of Trends and Return Frequencies for Lake Levels

    NASA Astrophysics Data System (ADS)

    Paynter, S.; Nachabe, M.

    2008-12-01

    One of the most important tools in water management is the accurate forecast of both long-term and short- term extreme values for both flood and drought conditions. Traditional methods of trend detection, such as ordinary least squares (OLS) or the Mann-Kendall test, are not aptly suited for hydrologic systems while traditional methods of predicting extreme flood and drought frequencies, such as distribution fitting without parameter covariates, may be highly inaccurate in lake-type systems, especially in the short-term. In the case of lakes, traditional frequency return estimates assume extremes are independent of trend or starting lake stages. However, due to the significant autocorrelation of lake levels, the initial stage can have a significant influence on the severity of a given event. The aim of this research was to accurately identify the direction and magnitude of trends in flood and drought stages and provide more accurate predictions of both long-term and short-term flood and drought stage return frequencies utilizing the generalized extreme value distribution with time and starting stage covariates. All of the lakes researched evidenced either no trend or very small trends unlikely to significantly alter prediction of future flood or drought return levels. However, for all of the lakes significant improvement in the prediction of extremes was obtained with the inclusion of starting lake stage as a covariate. Traditional methods of predicting flood or drought stages significantly overpredict stages when starting lake stages are low and underpredict stages when starting stages are high. The difference between these predictions can be nearly two meters, a significant amount in urbanized watersheds in areas of the world with flat topography. Differences of near two meters can mean significant alterations in evacuation or other water management decisions. In addition to improving prediction of extreme events, utilizing GEV with time or starting stage

  8. Estimation of Extreme Sea Levels for the Russian Coasts of the Kuril Islands and the Sea of Okhotsk

    NASA Astrophysics Data System (ADS)

    Shevchenko, Georgy; Ivelskaya, Tatiana

    2015-12-01

    Extreme sea levels arising from the combination of tides, storm surges, seasonal oscillations and tsunamis were estimated by the joint probability method for the coast of the Sea of Okhotsk and the Pacific coast of the Kuril Islands. The sea-level observations at 10 coastal tide gauges were examined. The tidal heights at most stations are about 1.5-2 m, and only at Magadan are they much larger (about 5 m). Storm surges have the largest heights for the central Kuril Islands (Matua and Iturup islands), while at the North and South Kuril Islands the surge heights are the smallest. The recurrence of tsunami heights of various probabilities was estimated for each station. The influence of tides and storm surges on the tsunami risk assessment for the Pacific coast of the Kurile Islands was found to be relatively small. For the coast of the Sea of Okhotsk, the contribution of tides and surges is the primary influence, especially for return periods less than 100 years. For longer return periods, tsunamis play the major role in forming the extreme levels (similar to the Russian coast of the Sea of Japan, e.g., R abinovich et al. 1992).

  9. Bayesian and maximum likelihood estimation of hierarchical response time models

    PubMed Central

    Farrell, Simon; Ludwig, Casimir

    2008-01-01

    Hierarchical (or multilevel) statistical models have become increasingly popular in psychology in the last few years. We consider the application of multilevel modeling to the ex-Gaussian, a popular model of response times. Single-level estimation is compared with hierarchical estimation of parameters of the ex-Gaussian distribution. Additionally, for each approach maximum likelihood (ML) estimation is compared with Bayesian estimation. A set of simulations and analyses of parameter recovery show that although all methods perform adequately well, hierarchical methods are better able to recover the parameters of the ex-Gaussian by reducing the variability in recovered parameters. At each level, little overall difference was observed between the ML and Bayesian methods. PMID:19001592

  10. Most robust estimate of the Transient Climate Response yet?

    NASA Astrophysics Data System (ADS)

    Haustein, Karsten; Venema, Victor; Schurer, Andrew

    2017-04-01

    Estimates of the Transient Climate Response often lack a coherent hemispheric or otherwise spatio-temporal representation. In the light of recent work that highlights the importance of inhomogeneous forcing considerations (Shindell et al 2014; Marvel et al 2015) and tas/tos-related inaccuracies (Richardson et al. 2016), here we present results from a well-tested two-box response model that takes these effects carefully into account. All external forcing data are updated based on latest emission estimates as well as recent TSI and volcanic AOD estimates. So are observed GMST data which include data for the entire year of 2016. Hence we also provide one of the first TCR estimates taking the latest El Nino into account. We demonstrate that short-term climate variability is not going to change the TCR estimate beyond very minor fluctuations. The method is therefore shown to be robust within surprisingly small uncertainty estimates. Using PMIP3 and an extended ensemble of HadCM3 simulations (Euro500; Schurer et al. 2014) GCM simulations for the pre-industrial period, we test the fast and slow response time constants that are tailored for observational data (Ripdal 2012). We also test the hemispheric response as well as the response over land and ocean separately. The TCR/ECS ratio is taken from a selected sub-set of CMIP5 simulations. The selection criteria is the best spatiotemporal match over 4 different time periods between 1860 and 2010. We will argue that this procedure should also be standard procedure to estimate ECS from observations, rather than relying on OHC estimates only. Finally, the demonstrate that PMIP3-type simulations that are initialised at least a century before 1850 (as is the standard initialisation for CMIP5-type simulations) are to be preferred. Remaining long-term radiative imbalance due to strong volcanic eruptions (e.g. Gleckler et al. 2006) tend to make CMIP5-type simulations slightly more sensitive to forcing, which leads to detectable

  11. Differing Response of Extreme Precipitation to Changing Boundary Conditions in Simulations with Parametrized and Explicit Convection

    NASA Astrophysics Data System (ADS)

    Meredith, Edmund; Maraun, Douglas; Semenov, Vladimir; Park, Wonsun

    2015-04-01

    Recent studies have shown that the representation of extreme precipitation in climate models is much more sensitive to model resolution than that of mean precipitation. With global and regional circulation models simulating both present and future climates at ever-increasing resolution, it is only a matter of time before convection resolving climate projections become the norm. In the meantime, regional climate models provide an efficient and inexpensive tool to assess what, if any, impact explicitly resolved convection may have on the representation of precipitation extremes in warmer climates with enhanced boundary forcings. To compare the response of precipitation extremes in models with parametrized and explicitly resolved convection to changing boundary forcings, we select the July 2012 precipitation extreme near the Black Sea town of Krymsk as a recent showcase example. The event was related to a slow moving low pressure system crossing the eastern Black Sea, advecting warm and moist air towards the coast. Two waves of convection resulted in precipitation totals that dwarfed all previous events in the instrumental record, dating back to the 1930s, and over 170 deaths. We carry out ensemble sensitivity experiments with a triply nested configuration of the WRF regional model, for a domain covering the eastern Black Sea. The event is simulated at 15 km, 3 km and 600 m resolution. The model's ability to reproduce the event with observed forcings is first verified, before a series of additional ensembles with altered boundary forcings, in our case sea surface temperature (SST), is created. These ensembles consist of subtracting (adding) the 1982 - 2012 trend in Black Sea SST from (to) the observed 2012 SST field in 20% increments, giving a total of 11 ensembles whose SST differ from the observed field by between -100% and +100% of the warming trend. Aggregating all data to the 15 km grid, we compare the responses of hourly precipitation maxima to incrementally

  12. Vegetation response to extreme climate events on the Mongolian plateau from 2000-2010

    NASA Astrophysics Data System (ADS)

    John, R.; Chen, J.; Ouyang, Z.; Batkishig, O.; Samanta, A.; Ganguly, S.; Yuan, W.; Xiao, J.

    2012-12-01

    Extreme climatic events on the Mongolian Plateau have lead to severe summer droughts as well as extreme winters in the last decade. We ask the question: What are the vegetation responses to these extremes over time and space and time compared to decadal means on the plateau and are there any significant differences between the biomes? We focused on the effects of drought in the plateau through the mapping of anomalies in MODIS -derived vegetation indices (EVI, EVI2), Land surface temperature (LST), and functional variables (GPP, ET) during the last decade (2000-2010). Frequency distributions of standardized anomalies of EVI during 2000-2010 showed that the number of the positively skewed years were more common in the desert biome as compared to grasslands and forests. Positively skewed drought years (severe droughts in 2000-2001, 2005, 2009) were characterized by the majority of negative anomalies with peak values between -1.5 and -0.5 and were statistically different (p<0.001) from relatively wet years (2003, 2004, 2007). Conversely, frequency distributions of dry years were not statistically different (p< 0.001) from relatively wet years in the grassland biome. Temperature and precipitation inter-annual (1961-2010) linear trends interpolated from 67 climate stations correlated well the MODIS-derived standardized anomalies. In addition, comparisons between biome response in the form of EVI, ET, GPP anomalies and temperature/precipitation linear trends were analyzed using cross correlation functions. Finally, we made efforts in explaining these anomalies with changes in albedo and increasing land use intensity at aimag/prefecture administration level in Mongolia and in Inner Mongolia.

  13. Influence of Turbulence, Orientation, and Site Configuration on the Response of Buildings to Extreme Wind

    PubMed Central

    2014-01-01

    Atmospheric turbulence results from the vertical movement of air, together with flow disturbances around surface obstacles which make low- and moderate-level winds extremely irregular. Recent advancements in wind engineering have led to the construction of new facilities for testing residential homes at relatively high Reynolds numbers. However, the generation of a fully developed turbulence in these facilities is challenging. The author proposed techniques for the testing of residential buildings and architectural features in flows that lack fully developed turbulence. While these methods are effective for small structures, the extension of the approach for large and flexible structures is not possible yet. The purpose of this study is to investigate the role of turbulence in the response of tall buildings to extreme winds. In addition, the paper presents a detailed analysis to investigate the influence of upstream terrain conditions, wind direction angle (orientation), and the interference effect from the surrounding on the response of high-rise buildings. The methodology presented can be followed to help decision makers to choose among innovative solutions like aerodynamic mitigation, structural member size adjustment, and/or damping enhancement, with an objective to improve the resiliency and the serviceability of buildings. PMID:24701140

  14. Influence of turbulence, orientation, and site configuration on the response of buildings to extreme wind.

    PubMed

    Aly, Aly Mousaad

    2014-01-01

    Atmospheric turbulence results from the vertical movement of air, together with flow disturbances around surface obstacles which make low- and moderate-level winds extremely irregular. Recent advancements in wind engineering have led to the construction of new facilities for testing residential homes at relatively high Reynolds numbers. However, the generation of a fully developed turbulence in these facilities is challenging. The author proposed techniques for the testing of residential buildings and architectural features in flows that lack fully developed turbulence. While these methods are effective for small structures, the extension of the approach for large and flexible structures is not possible yet. The purpose of this study is to investigate the role of turbulence in the response of tall buildings to extreme winds. In addition, the paper presents a detailed analysis to investigate the influence of upstream terrain conditions, wind direction angle (orientation), and the interference effect from the surrounding on the response of high-rise buildings. The methodology presented can be followed to help decision makers to choose among innovative solutions like aerodynamic mitigation, structural member size adjustment, and/or damping enhancement, with an objective to improve the resiliency and the serviceability of buildings.

  15. The Anatomy of the Observed Shoreline Response to Extreme Wave Events: Ipan, Guam

    NASA Astrophysics Data System (ADS)

    Becker, J. M.; Merrifield, M. A.; Reyns, J.; O'Grady, J.; Hoeke, R. K.; Mcinnes, K. L.

    2016-12-01

    Wave-driven inundation of reef-fringed coastlines is of growing societal concern as sea level is predicted to rise, and the potential for more energetic storms increases. To assess coastal hazards due to storm generated waves, observations from an ongoing field campaign at Ipan, Guam of wave-driven water levels from a series of energetic typhoons during the recent El Nino event are presented. Incident conditions that produce the observed extreme shoreline water levels are assessed, and the behavior of the shoreline response to prior history is determined using analytical and numerical models. The largest observed shoreline response occurred during typhoon Dolphin and is shown to be due in part to the sustained, large breaking wave setup that provided a significant contribution to the shoreline water level.

  16. Estimation of Sub-daily Extreme Precipitation to Assess Climate Change Impact on Floods of Han River Basin in South Korea

    NASA Astrophysics Data System (ADS)

    Nam, W.; Shin, J.; Um, M.; Kim, W.; Heo, J.

    2011-12-01

    Sub-daily extreme precipitation for a specified duration and return period is used in the estimation of floods for design purposes. Recent researches show that climate change has impact on the precipitation process at different temporal and spatial scales. The present paper is focused on climate change impact on floods of Han River basin in South Korea. Climate change simulation outputs from 5 GCMs under the A2 scenario were used to estimate daily extreme precipitations. Sub-daily extreme precipitations were estimated using the scale-invariance concept. In order to assess sub-daily extreme precipitations from climate change simulation outputs, precipitation time series were generated based on NSRPM (Neyman-Scott Rectangular Pulse Model) and modified using the ratio of precipitation over projection periods to historical one. Sub-daily extreme precipitations were then estimated from those series. Finally, peak flows were estimated for principal sites of Han River basin using HEC-1 model. It was found that floods in the future displayed increasing or decreasing trends for estimation methods of sub-daily extreme precipitation and different periods.

  17. Combining regional climate and national human development scenarios to estimate future vulnerability to extreme climate and weather events

    NASA Astrophysics Data System (ADS)

    Patt, A.; Nussbaumer, P.

    2009-04-01

    , frequency of disasters in a country, urbanization, and the level of human development (capturing income, life expectancy, and education)—and the numbers of people killed or in need of assistance at the country level. We replicate results from past studies in showing that human development, perhaps surprisingly, shows a strong non-linear relationship with risk (with countries of intermediate levels of development showing the highest risk levels), although we extend these results through the controlling for other variables. Second, we downscale a suite of GCMs using national meteorological data, in order to generate ranges of estimates for changes in the frequency of each of the climate hazards. Supplementing this, we consider a climate scenario that sees a linear extrapolation of current trends in hazard frequency. Third, we construct scenarios for each of the socio-economic vulnerability drivers, consistent with IPCC SRES A2 and B1 scenarios for population and income changes, and UN estimates for other demographic changes. Pulling the three pieces of analysis together, we are able to construct risk scenarios until 2060. Our results are interesting in several respects. They show socio-economic development fully compensating for climate change in the impact on risk levels, within the range of estimated changes suggested by the suite of climate models. Recognizing the limits of models to predicting changed frequency of extreme events, there is also reason to believe that the current trend in increased hazard frequency may continue; for this latter scenario, risk levels rise substantially. Finally, given the observed non-linear relationship between development and risk, we observe in the B1 scenario risk levels at their highest level between 2030 and 2040, and then declining thereafter, as Mozambique passes the point of medium development. In the A2 scenario, by contrast, risk levels rise through mid-century, as development proceeds more slowly.

  18. Estimation of normalized point-source sensitivity of segment surface specifications for extremely large telescopes.

    PubMed

    Seo, Byoung-Joon; Nissly, Carl; Troy, Mitchell; Angeli, George; Bernier, Robert; Stepp, Larry; Williams, Eric

    2013-06-20

    We present a method which estimates the normalized point-source sensitivity (PSSN) of a segmented telescope when only information from a single segment surface is known. The estimation principle is based on a statistical approach with an assumption that all segment surfaces have the same power spectral density (PSD) as the given segment surface. As presented in this paper, the PSSN based on this statistical approach represents a worst-case scenario among statistical random realizations of telescopes when all segment surfaces have the same PSD. Therefore, this method, which we call the vendor table, is expected to be useful for individual segment specification such as the segment polishing specification. The specification based on the vendor table can be directly related to a science metric such as PSSN and provides the mirror vendors significant flexibility by specifying a single overall PSSN value for them to meet. We build a vendor table for the Thirty Meter Telescope (TMT) and test it using multiple mirror samples from various mirror vendors to prove its practical utility. Accordingly, TMT has a plan to adopt this vendor table for its M1 segment final mirror polishing requirement.

  19. Remote estimation of grassland gross primary production during extreme meteorological seasons

    NASA Astrophysics Data System (ADS)

    Rossini, Micol; Migliavacca, Mirco; Galvagno, Marta; Meroni, Michele; Cogliati, Sergio; Cremonese, Edoardo; Fava, Francesco; Gitelson, Anatoly; Julitta, Tommaso; Morra di Cella, Umberto; Siniscalco, Consolata; Colombo, Roberto

    2014-06-01

    Different models driven by remotely sensed vegetation indexes (VIs) and incident photosynthetically active radiation (PAR) were developed to estimate gross primary production (GPP) in a subalpine grassland equipped with an eddy covariance flux tower. Hyperspectral reflectance was collected using an automatic system designed for high temporal frequency acquisitions for three consecutive years, including one (2011) characterized by a strong reduction of the carbon sequestration rate during the vegetative season. Models based on remotely sensed and meteorological data were used to estimate GPP, and a cross-validation approach was used to compare the predictive capabilities of different model formulations. Vegetation indexes designed to be more sensitive to chlorophyll content explained most of the variability in GPP in the ecosystem investigated, characterized by a strong seasonal dynamic. Model performances improved when including also PARpotential defined as the maximal value of incident PAR under clear sky conditions in model formulations. Best performing models are based entirely on remotely sensed data. This finding could contribute to the development of methods for quantifying the temporal variation of GPP also on a broader scale using current and future satellite sensors.

  20. Effects of sample size on estimation of rainfall extremes at high temperatures

    NASA Astrophysics Data System (ADS)

    Boessenkool, Berry; Bürger, Gerd; Heistermann, Maik

    2017-09-01

    High precipitation quantiles tend to rise with temperature, following the so-called Clausius-Clapeyron (CC) scaling. It is often reported that the CC-scaling relation breaks down and even reverts for very high temperatures. In our study, we investigate this reversal using observational climate data from 142 stations across Germany. One of the suggested meteorological explanations for the breakdown is limited moisture supply. Here we argue that, instead, it could simply originate from undersampling. As rainfall frequency generally decreases with higher temperatures, rainfall intensities as dictated by CC scaling are less likely to be recorded than for moderate temperatures. Empirical quantiles are conventionally estimated from order statistics via various forms of plotting position formulas. They have in common that their largest representable return period is given by the sample size. In small samples, high quantiles are underestimated accordingly. The small-sample effect is weaker, or disappears completely, when using parametric quantile estimates from a generalized Pareto distribution (GPD) fitted with L moments. For those, we obtain quantiles of rainfall intensities that continue to rise with temperature.

  1. A Bayesian Semiparametric Model for Radiation Dose-Response Estimation.

    PubMed

    Furukawa, Kyoji; Misumi, Munechika; Cologne, John B; Cullings, Harry M

    2016-06-01

    In evaluating the risk of exposure to health hazards, characterizing the dose-response relationship and estimating acceptable exposure levels are the primary goals. In analyses of health risks associated with exposure to ionizing radiation, while there is a clear agreement that moderate to high radiation doses cause harmful effects in humans, little has been known about the possible biological effects at low doses, for example, below 0.1 Gy, which is the dose range relevant to most radiation exposures of concern today. A conventional approach to radiation dose-response estimation based on simple parametric forms, such as the linear nonthreshold model, can be misleading in evaluating the risk and, in particular, its uncertainty at low doses. As an alternative approach, we consider a Bayesian semiparametric model that has a connected piece-wise-linear dose-response function with prior distributions having an autoregressive structure among the random slope coefficients defined over closely spaced dose categories. With a simulation study and application to analysis of cancer incidence data among Japanese atomic bomb survivors, we show that this approach can produce smooth and flexible dose-response estimation while reasonably handling the risk uncertainty at low doses and elsewhere. With relatively few assumptions and modeling options to be made by the analyst, the method can be particularly useful in assessing risks associated with low-dose radiation exposures.

  2. PART I: Theoretical Site Response Estimation for Microzoning Purposes

    NASA Astrophysics Data System (ADS)

    Triantafyllidis, P.; Suhadolc, P.; Hatzidimitriou, P. M.; Anastasiadis, A.; Theodulidis, N.

    We estimate the theoretical site response along seven cross sections located in the city of Thessaloniki (Greece). For this purpose the 2-D structural models used are based on the known geometry and the dynamic soil properties derived from borehole measurements and other geophysical techniques. Several double-couple sources have been employed to generate the seismic wavefield, and a hybrid method that combines the modal summation with finite differences, has been deployed to produce synthetic accelerograms to a maximum frequency of 6 Hz for all components of motion. The ratios between the response spectra of signals derived for the 2-D local model and the corresponding spectra of signals derived for the 1-D bedrock reference model at the same site, allow us to estimate the site response due to lateral heterogeneities. We interpret the results in terms of both geological and geometrical features of the models and of the characteristics of the wave propagation. The cases discussed confirm that the geometry and depth of the rock basement, along with the impedance contrast, are responsible for ground amplification phenomena such as edge effects and generation and entrapment of local surface waves. Our analysis also confirms that the peak ground acceleration is not well correlated with damage and that a substantially better estimator for possible damage is the spectral amplification.

  3. Future change of extreme temperature climate indices over East Asia with uncertainties estimation in the CMIP5

    NASA Astrophysics Data System (ADS)

    Seo, Ye-Won; Kim, Hojin; Yun, Kyung-Sook; Lee, June-Yi; Ha, Kyung-Ja; Moon, Ja-Yeon

    2014-11-01

    How well the climate models simulate extreme temperature over East Asia and how the extreme indices would change under anthropogenic global warming are investigated. The indices studied include hot days (HD), tropical nights (TN), growing degree days (GDD), and cooling degree days (CDD) in summer and heating degree days (HDD) and frost days (FD) in winter. The representative concentration pathway 4.5 (RCP 4.5) experiments for the period of 2075-2099 are compared with historical simulations for the period of 1979-2005 from 15 coupled models that are participated in phase 5 of the Coupled Model Intercomparison Project (CMIP5). To optimally estimate future change and its uncertainty, groups of best models are selected based on Taylor diagrams, relative entropy, and probability density function (PDF) methods previously suggested. Overall, the best models' multi-model ensemble based on Taylor diagrams has the lowest errors in reproducing temperature extremes in the present climate among three methods. Selected best models in three methods tend to project considerably different changes in the extreme indices from each other, indicating that the selection of reliable models are of critical importance to reduce uncertainties. Three groups of best models show significant increase of summerbased indices but decrease of the winter-based indices. Over East Asia, the most significant increase is seen in the HD (336 ± 23.4% of current climate) and the most significant decrease is appeared in the HDD (82 ± 4.2%). It is suggested that the larger future change in the HD is found over in the Southeastern China region, probably due to a higher local maximum temperature in the present climate. All of the indices show the largest uncertainty over Southeastern China, particularly in the TN (~3.9 times as large as uncertainty over East Asia) and in the HD (~2.4). It is further noted that the TN reveals the largest uncertainty over three East Asian countries (~1.7 and 1.4 over Korea and

  4. Estimation of the high-spatial-resolution variability in extreme wind speeds for forestry applications

    NASA Astrophysics Data System (ADS)

    Venäläinen, Ari; Laapas, Mikko; Pirinen, Pentti; Horttanainen, Matti; Hyvönen, Reijo; Lehtonen, Ilari; Junila, Päivi; Hou, Meiting; Peltola, Heli M.

    2017-07-01

    The bioeconomy has an increasing role to play in climate change mitigation and the sustainable development of national economies. In Finland, a forested country, over 50 % of the current bioeconomy relies on the sustainable management and utilization of forest resources. Wind storms are a major risk that forests are exposed to and high-spatial-resolution analysis of the most vulnerable locations can produce risk assessment of forest management planning. In this paper, we examine the feasibility of the wind multiplier approach for downscaling of maximum wind speed, using 20 m spatial resolution CORINE land-use dataset and high-resolution digital elevation data. A coarse spatial resolution estimate of the 10-year return level of maximum wind speed was obtained from the ERA-Interim reanalyzed data. Using a geospatial re-mapping technique the data were downscaled to 26 meteorological station locations to represent very diverse environments. Applying a comparison, we find that the downscaled 10-year return levels represent 66 % of the observed variation among the stations examined. In addition, the spatial variation in wind-multiplier-downscaled 10-year return level wind was compared with the WAsP model-simulated wind. The heterogeneous test area was situated in northern Finland, and it was found that the major features of the spatial variation were similar, but in some locations, there were relatively large differences. The results indicate that the wind multiplier method offers a pragmatic and computationally feasible tool for identifying at a high spatial resolution those locations with the highest forest wind damage risks. It can also be used to provide the necessary wind climate information for wind damage risk model calculations, thus making it possible to estimate the probability of predicted threshold wind speeds for wind damage and consequently the probability (and amount) of wind damage for certain forest stand configurations.

  5. Estimating statistics of European wet and dry spells and associated precipitation extremes - interannual variability and trends

    NASA Astrophysics Data System (ADS)

    Zolina, O.; Simmer, C.; Belyaev, K.; Gulev, S.; Koltermann, K. P.

    2013-12-01

    Probability distributions of the durations of wet and dry spells were modeled by applying truncated geometric distribution. It has been also extended to the fractional truncated geometric distribution which allows for the discrimination between the roles of a changing number of wet days and of a regrouping of wet and dry days in forming synoptic structure of precipitation. Analyses were performed using 2 collections of daily rain gauge data namely ECA (about 1000 stations) and regional German DWD network (more than 6000 stations) for the period from 1950 to 2009. Wet spells exhibit a statistically significant lengthening over northern Europe and central European Russia, which is especially pronounced in winter when the mean duration of wet periods increased by 15%-20%. In summer wet spells become shorter over Scandinavia and northern Russia. The duration of dry spells decreases over Scandinavia and southern Europe in both winter and summer. Climate tendencies in extreme wet and dry spell durations may not necessarily follow those in mean characteristics. The changing numbers of wet days cannot explain the long-term variability in the duration of wet and dry periods. The observed changes are mainly due to the regrouping of wet and dry days. The tendencies in duration of wet and dry spells have been analyzed for a number of European areas. Over the Netherlands both wet and dry periods are extended in length during the cold and the warm season. A simultaneous shortening of wet and dry periods is found in southern Scandinavia in summer. Over France and central southern Europe during both winter and summer and over the Scandinavian Atlantic coast in summer, opposite tendencies in the duration of wet and dry spells were identified. Growing durations of wet spells are associated with more intense precipitation events while precipitation during shorter wet spells become weaker. Both analyses of relatively coarse resolution ECA data and high resolution DWD station network

  6. Temperature and Precipitation Extremes in the United States: Quantifying the Responses to Aerosols and Greenhouse Gases

    NASA Astrophysics Data System (ADS)

    Mascioli, N. R.; Fiore, A. M.; Previdi, M. J.; Correa, G. J. P.

    2014-12-01

    Climate model outputs usually have much coarser spatial resolution than is needed by impacts models. Although higher resolution can be achieved using regional climate models for dynamical downscaling, further downscaling is often required. The final resolution gap is often closed with a combination of spatial interpolation and bias correction, which constitutes a form of statistical downscaling. We use this technique to downscale regional climate model data and evaluate its skill in reproducing extreme events. We downscale output from the North American Regional Climate Change Assessment Program (NARCCAP) dataset from its native 50-km spatial resolution to the 4-km resolution of University of Idaho's METDATA gridded surface meterological dataset, which derives from the PRISM and NLDAS-2 observational datasets. We operate on the major variables used in impacts analysis at a daily timescale: daily minimum and maximum temperature, precipitation, humidity, pressure, solar radiation, and winds. To interpolate the data, we use the patch recovery method from the Earth System Modeling Framework (ESMF) regridding package. We then bias correct the data using Kernel Density Distribution Mapping (KDDM), which has been shown to exhibit superior overall performance across multiple metrics. Finally, we evaluate the skill of this technique in reproducing extreme events by comparing raw and downscaled output with meterological station data in different bioclimatic regions according to the the skill scores defined by Perkins et al in 2013 for evaluation of AR4 climate models. We also investigate techniques for improving bias correction of values in the tails of the distributions. These techniques include binned kernel density estimation, logspline kernel density estimation, and transfer functions constructed by fitting the tails with a generalized pareto distribution.

  7. Characterization, parameter estimation, and aircraft response statistics of atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Mark, W. D.

    1981-01-01

    A nonGaussian three component model of atmospheric turbulence is postulated that accounts for readily observable features of turbulence velocity records, their autocorrelation functions, and their spectra. Methods for computing probability density functions and mean exceedance rates of a generic aircraft response variable are developed using nonGaussian turbulence characterizations readily extracted from velocity recordings. A maximum likelihood method is developed for optimal estimation of the integral scale and intensity of records possessing von Karman transverse of longitudinal spectra. Formulas for the variances of such parameter estimates are developed. The maximum likelihood and least-square approaches are combined to yield a method for estimating the autocorrelation function parameters of a two component model for turbulence.

  8. Age Modulates Physiological Responses during Fan Use under Extreme Heat and Humidity.

    PubMed

    Gagnon, Daniel; Romero, Steven A; Cramer, Matthew N; Kouda, Ken; Poh, Paula Ys; Ngo, Hai; Jay, Ollie; Crandall, Craig G

    2017-06-12

    We examined the effect of electric fan use on cardiovascular and thermoregulatory responses of nine young (26 ± 3 years) and nine aged (68 ± 4 years) adults exposed to extreme heat and humidity. While resting at a temperature of 42°C, relative humidity increased from 30 to 70% in 2% increments every 5 minutes. On randomized days, the protocol was repeated without or with fan use. Heart rate (HR), core (Tcore) and mean skin (Tsk) temperatures were measured continuously. Whole-body sweat loss (WBSL) was measured from changes in nude body weight. Other measures of cardiovascular (cardiac output), thermoregulatory (local cutaneous and forearm vascular conductance, local sweat rate), and perceptual (thermal and thirst sensations) responses were also examined. When averaged over the entire protocol, fan use resulted in a small reduction of HR (-2 beats/min, 95% CI: -8 to 3), and slightly greater Tcore (+0.05°C, 95% CI: -0.13 to 0.23) and Tsk (+0.03°C, 95% CI: -0.36 to 0.42) in young adults. In contrast, fan use resulted in greater HR (+5 beats/min, 95% CI: 0 to 10), Tcore (+0.20°C, 95% CI: 0.00 to 0.41) and Tsk (+0.47°C, 95% CI: 0.18 to 0.76) in aged adults. A greater WBSL during fan use was observed in young (+0.2 kg, 95% CI: -0.2 to 0.6) but not aged (0.0 kg, 95% CI: -0.2 to 0.2) adults. Greater local sweat rate and cutaneous vascular conductance were observed with fan use in aged adults. Other measures of cardiovascular, thermoregulatory and perceptual responses were unaffected by fan use in both groups. During extreme heat and humidity, fan use elevates physiological strain in aged, but not young, adults.

  9. Behavioural, ecological and evolutionary responses to extreme climatic events: challenges and directions

    PubMed Central

    2017-01-01

    More extreme climatic events (ECEs) are among the most prominent consequences of climate change. Despite a long-standing recognition of the importance of ECEs by paleo-ecologists and macro-evolutionary biologists, ECEs have only recently received a strong interest in the wider ecological and evolutionary community. However, as with many rapidly expanding fields, it lacks structure and cohesiveness, which strongly limits scientific progress. Furthermore, due to the descriptive and anecdotal nature of many ECE studies it is still unclear what the most relevant questions and long-term consequences are of ECEs. To improve synthesis, we first discuss ways to define ECEs that facilitate comparison among studies. We then argue that biologists should adhere to more rigorous attribution and mechanistic methods to assess ECE impacts. Subsequently, we discuss conceptual and methodological links with climatology and disturbance-, tipping point- and paleo-ecology. These research fields have close linkages with ECE research, but differ in the identity and/or the relative severity of environmental factors. By summarizing the contributions to this theme issue we draw parallels between behavioural, ecological and evolutionary ECE studies, and suggest that an overarching challenge is that most empirical and theoretical evidence points towards responses being highly idiosyncratic, and thus predictability being low. Finally, we suggest a roadmap based on the proposition that an increased focus on the mechanisms behind the biological response function will be crucial for increased understanding and predictability of the impacts of ECE. This article is part of the themed issue ‘Behavioural, ecological and evolutionary responses to extreme climatic events’. PMID:28483865

  10. Different atmospheric moisture divergence responses to extreme and moderate El Niños

    NASA Astrophysics Data System (ADS)

    Xu, Guangzhi; Osborn, Timothy J.; Matthews, Adrian J.; Joshi, Manoj M.

    2016-07-01

    On seasonal and inter-annual time scales, vertically integrated moisture divergence provides a useful measure of the tropical atmospheric hydrological cycle. It reflects the combined dynamical and thermodynamical effects, and is not subject to the limitations that afflict observations of evaporation minus precipitation. An empirical orthogonal function (EOF) analysis of the tropical Pacific moisture divergence fields calculated from the ERA-Interim reanalysis reveals the dominant effects of the El Niño-Southern Oscillation (ENSO) on inter-annual time scales. Two EOFs are necessary to capture the ENSO signature, and regression relationships between their Principal Components and indices of equatorial Pacific sea surface temperature (SST) demonstrate that the transition from strong La Niña through to extreme El Niño events is not a linear one. The largest deviation from linearity is for the strongest El Niños, and we interpret that this arises at least partly because the EOF analysis cannot easily separate different patterns of responses that are not orthogonal to each other. To overcome the orthogonality constraints, a self-organizing map (SOM) analysis of the same moisture divergence fields was performed. The SOM analysis captures the range of responses to ENSO, including the distinction between the moderate and strong El Niños identified by the EOF analysis. The work demonstrates the potential for the application of SOM to large scale climatic analysis, by virtue of its easier interpretation, relaxation of orthogonality constraints and its versatility for serving as an alternative classification method. Both the EOF and SOM analyses suggest a classification of "moderate" and "extreme" El Niños by their differences in the magnitudes of the hydrological cycle responses, spatial patterns and evolutionary paths. Classification from the moisture divergence point of view shows consistency with results based on other physical variables such as SST.

  11. Equal Area Logistic Estimation for Item Response Theory

    NASA Astrophysics Data System (ADS)

    Lo, Shih-Ching; Wang, Kuo-Chang; Chang, Hsin-Li

    2009-08-01

    Item response theory (IRT) models use logistic functions exclusively as item response functions (IRFs). Applications of IRT models require obtaining the set of values for logistic function parameters that best fit an empirical data set. However, success in obtaining such set of values does not guarantee that the constructs they represent actually exist, for the adequacy of a model is not sustained by the possibility of estimating parameters. In this study, an equal area based two-parameter logistic model estimation algorithm is proposed. Two theorems are given to prove that the results of the algorithm are equivalent to the results of fitting data by logistic model. Numerical results are presented to show the stability and accuracy of the algorithm.

  12. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance.

    PubMed

    Wang, Wangxia; Vinocur, Basia; Altman, Arie

    2003-11-01

    Abiotic stresses, such as drought, salinity, extreme temperatures, chemical toxicity and oxidative stress are serious threats to agriculture and the natural status of the environment. Increased salinization of arable land is expected to have devastating global effects, resulting in 30% land loss within the next 25 years, and up to 50% by the year 2050. Therefore, breeding for drought and salinity stress tolerance in crop plants (for food supply) and in forest trees (a central component of the global ecosystem) should be given high research priority in plant biotechnology programs. Molecular control mechanisms for abiotic stress tolerance are based on the activation and regulation of specific stress-related genes. These genes are involved in the whole sequence of stress responses, such as signaling, transcriptional control, protection of membranes and proteins, and free-radical and toxic-compound scavenging. Recently, research into the molecular mechanisms of stress responses has started to bear fruit and, in parallel, genetic modification of stress tolerance has also shown promising results that may ultimately apply to agriculturally and ecologically important plants. The present review summarizes the recent advances in elucidating stress-response mechanisms and their biotechnological applications. Emphasis is placed on transgenic plants that have been engineered based on different stress-response mechanisms. The review examines the following aspects: regulatory controls, metabolite engineering, ion transport, antioxidants and detoxification, late embryogenesis abundant (LEA) and heat-shock proteins.

  13. Transcriptional responses of the black-chinned tilapia Sarotherodon melanotheron to salinity extremes.

    PubMed

    Tine, Mbaye; de Lorgeril, Julien; D'Cotta, Hélèna; Pepey, Elodie; Bonhomme, François; Baroiller, Jean François; Durand, Jean-Dominique

    2008-06-01

    Sarotherodon melanotheron is one of the most euryhaline teleosts able to withstand variations in environmental salinity ranging from freshwater (FW) to 130‰ hyper-saline waters (HSW). Although significant progress has been made in exploring the cellular and molecular changes that accompany salinity adaptation in teleosts, little is known about the effects of long-term acclimation to HSW. We sought to identify in this tilapia species the genes whose transcription is induced by long-term acclimation either to HSW or FW. Two subtractive cDNA libraries were made from gills of fish acclimated for 45 days to either condition, with 320 partial cDNA sequences encoding proteins potentially involved in the response to the two salinity extremes. The ESTs comparisons with genomic databases allowed putative functions to be attributed to 197 of these genes. The suppression subtractive hybridisation (SSH) results were validated by Real-time PCR for 13 candidate genes having presumably a role in osmoregulation, supplemented by Na(+), K(+)-ATPase α-subunit and carbonic anhydrase, two genes known to be implicated in this function. In fish acclimated to both salinity extremes, the functional category of cellular process was the predominant one, which may indicate high cellular turnover rates in FW and HSW-adapted fish. The acclimation to FW and HSW also appeared to trigger the expression of genes involved in transport activity, biological regulation and metabolic processes, at a higher level in fish acclimated to HSW, suggesting higher metabolic activity in this situation. These results are a first step towards the identification of key molecular processes involved in the fish acclimation to extreme salinities.

  14. Vegetation response to extreme climate events on the Mongolian Plateau from 2000 to 2010

    NASA Astrophysics Data System (ADS)

    John, Ranjeet; Chen, Jiquan; Ou-Yang, Zu-Tao; Xiao, Jingfeng; Becker, Richard; Samanta, Arindam; Ganguly, Sangram; Yuan, Wenping; Batkhishig, Ochirbat

    2013-09-01

    Climate change has led to more frequent extreme winters (aka, dzud) and summer droughts on the Mongolian Plateau during the last decade. Among these events, the 2000-2002 combined summer drought-dzud and 2010 dzud were the most severe on vegetation. We examined the vegetation response to these extremes through the past decade across the Mongolian Plateau as compared to decadal means. We first assessed the severity and extent of drought using the Tropical Rainfall Measuring Mission (TRMM) precipitation data and the Palmer drought severity index (PDSI). We then examined the effects of drought by mapping anomalies in vegetation indices (EVI, EVI2) and land surface temperature derived from MODIS and AVHRR for the period of 2000-2010. We found that the standardized anomalies of vegetation indices exhibited positively skewed frequency distributions in dry years, which were more common for the desert biome than for grasslands. For the desert biome, the dry years (2000-2001, 2005 and 2009) were characterized by negative anomalies with peak values between -1.5 and -0.5 and were statistically different (P < 0.001) from relatively wet years (2003, 2004 and 2007). Conversely, the frequency distributions of the dry years were not statistically different (p < 0.001) from those of the relatively wet years for the grassland biome, showing that they were less responsive to drought and more resilient than the desert biome. We found that the desert biome is more vulnerable to drought than the grassland biome. Spatially averaged EVI was strongly correlated with the proportion of land area affected by drought (PDSI <- 1) in Inner Mongolia (IM) and Outer Mongolia (OM), showing that droughts substantially reduced vegetation activity. The correlation was stronger for the desert biome (R2 = 65 and 60, p < 0.05) than for the IM grassland biome (R2 = 53, p < 0.05). Our results showed significant differences in the responses to extreme climatic events (summer drought and dzud) between the

  15. Aircraft Fault Detection Using Real-Time Frequency Response Estimation

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.

    2016-01-01

    A real-time method for estimating time-varying aircraft frequency responses from input and output measurements was demonstrated. The Bat-4 subscale airplane was used with NASA Langley Research Center's AirSTAR unmanned aerial flight test facility to conduct flight tests and collect data for dynamic modeling. Orthogonal phase-optimized multisine inputs, summed with pilot stick and pedal inputs, were used to excite the responses. The aircraft was tested in its normal configuration and with emulated failures, which included a stuck left ruddervator and an increased command path latency. No prior knowledge of a dynamic model was used or available for the estimation. The longitudinal short period dynamics were investigated in this work. Time-varying frequency responses and stability margins were tracked well using a 20 second sliding window of data, as compared to a post-flight analysis using output error parameter estimation and a low-order equivalent system model. This method could be used in a real-time fault detection system, or for other applications of dynamic modeling such as real-time verification of stability margins during envelope expansion tests.

  16. Temporal Treatment of a Thermal Response for Defect Depth Estimation

    NASA Technical Reports Server (NTRS)

    Plotnikov, Y. A.; Winfree, W. P.

    2004-01-01

    Transient thermography, which employs pulse surface heating of an inspected component followed by acquisition of the thermal decay stage, is gaining wider acceptance as a result of its remoteness and rapidness. Flaws in the component s material may induce a thermal contrast in surface thermograms. An important issue in transient thermography is estimating the depth of a subsurface flaw from the thermal response. This improves the quantitative ability of the thermal evaluation: from one scan it is possible to locate regions of anomalies in thickness (caused by corrosion) and estimate the implications of the flaw on the integrity of the structure. Our research focuses on thick composite aircraft components. A long square heating pulse and several minutes observation period are required to receive an adequate thermal response from such a component. Application of various time-related informative parameters of the thermal response for depth estimation is discussed. A three-dimensional finite difference model of heat propagation in solids in Cartesian coordinates is used to simulate the thermographic process. Typical physical properties of polymer graphite composites are assumed for the model.

  17. Maximum likelihood estimation for cytogenetic dose-response curves

    SciTech Connect

    Frome, E.L.; DuFrain, R.J.

    1986-03-01

    In vitro dose-response curves are used to describe the relation between chromosome aberrations and radiation dose for human lymphocytes. The lymphocytes are exposed to low-LET radiation, and the resulting dicentric chromosome aberrations follow the Poisson distribution. The expected yield depends on both the magnitude and the temporal distribution of the dose. A general dose-response model that describes this relation has been presented by Kellerer and Rossi (1972, Current Topics on Radiation Research Quarterly 8, 85-158; 1978, Radiation Research 75, 471-488) using the theory of dual radiation action. Two special cases of practical interest are split-dose and continuous exposure experiments, and the resulting dose-time-response models are intrinsically nonlinear in the parameters. A general-purpose maximum likelihood estimation procedure is described, and estimation for the nonlinear models is illustrated with numerical examples from both experimental designs. Poisson regression analysis is used for estimation, hypothesis testing, and regression diagnostics. Results are discussed in the context of exposure assessment procedures for both acute and chronic human radiation exposure.

  18. Estimating least-developed countries' vulnerability to climate-related extreme events over the next 50 years.

    PubMed

    Patt, Anthony G; Tadross, Mark; Nussbaumer, Patrick; Asante, Kwabena; Metzger, Marc; Rafael, Jose; Goujon, Anne; Brundrit, Geoff

    2010-01-26

    When will least developed countries be most vulnerable to climate change, given the influence of projected socio-economic development? The question is important, not least because current levels of international assistance to support adaptation lag more than an order of magnitude below what analysts estimate to be needed, and scaling up support could take many years. In this paper, we examine this question using an empirically derived model of human losses to climate-related extreme events, as an indicator of vulnerability and the need for adaptation assistance. We develop a set of 50-year scenarios for these losses in one country, Mozambique, using high-resolution climate projections, and then extend the results to a sample of 23 least-developed countries. Our approach takes into account both potential changes in countries' exposure to climatic extreme events, and socio-economic development trends that influence countries' own adaptive capacities. Our results suggest that the effects of socio-economic development trends may begin to offset rising climate exposure in the second quarter of the century, and that it is in the period between now and then that vulnerability will rise most quickly. This implies an urgency to the need for international assistance to finance adaptation.

  19. Estimating least-developed countries’ vulnerability to climate-related extreme events over the next 50 years

    PubMed Central

    Patt, Anthony G.; Tadross, Mark; Nussbaumer, Patrick; Asante, Kwabena; Metzger, Marc; Rafael, Jose; Goujon, Anne; Brundrit, Geoff

    2010-01-01

    When will least developed countries be most vulnerable to climate change, given the influence of projected socio-economic development? The question is important, not least because current levels of international assistance to support adaptation lag more than an order of magnitude below what analysts estimate to be needed, and scaling up support could take many years. In this paper, we examine this question using an empirically derived model of human losses to climate-related extreme events, as an indicator of vulnerability and the need for adaptation assistance. We develop a set of 50-year scenarios for these losses in one country, Mozambique, using high-resolution climate projections, and then extend the results to a sample of 23 least-developed countries. Our approach takes into account both potential changes in countries’ exposure to climatic extreme events, and socio-economic development trends that influence countries’ own adaptive capacities. Our results suggest that the effects of socio-economic development trends may begin to offset rising climate exposure in the second quarter of the century, and that it is in the period between now and then that vulnerability will rise most quickly. This implies an urgency to the need for international assistance to finance adaptation. PMID:20080585

  20. Response of ice caves to weather extremes in the southeastern Alps, Europe

    NASA Astrophysics Data System (ADS)

    Colucci, R. R.; Fontana, D.; Forte, E.; Potleca, M.; Guglielmin, M.

    2016-05-01

    High altitude karstic environments often preserve permanent ice deposits within caves, representing the lesser-known portion of the cryosphere. Despite being not so widespread and easily reachable as mountain glaciers and ice caps, ice caves preserve much information about past environmental changes and climatic evolution. We selected 1111 ice caves from the existing cave inventory, predominantly but not exclusively located in the periglacial domain where permafrost is not dominant (i.e., with mean annual air temperature < 3 °C but not in a permafrost environment). The influence of climate and topography on ice cave distribution is also investigated. In order to assess the thickness and the inner structure of the deposits, we selected two exemplary ice caves in the Canin massif (Julian Alps) performing several multifrequency GPR surveys. A strong influence of global and local climate change in the evolution of the ice deposits has been particularly highlighted in the dynamic ice cave type, especially in regard to the role of weather extremes. The natural response of ice caves to a warming climate could lead to a fast reduction of such ice masses. The increased occurrence of weather extremes, especially warmer and more intense precipitation caused by higher mean 0 °C-isotherms, could in fact be crucial in the future mass balance evolution of such permanent ice deposits.

  1. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations

    PubMed Central

    Kim, Dae-Hyeong; Song, Jizhou; Choi, Won Mook; Kim, Hoon-Sik; Kim, Rak-Hwan; Liu, Zhuangjian; Huang, Yonggang Y.; Hwang, Keh-Chih; Zhang, Yong-wei; Rogers, John A.

    2008-01-01

    Electronic systems that offer elastic mechanical responses to high-strain deformations are of growing interest because of their ability to enable new biomedical devices and other applications whose requirements are impossible to satisfy with conventional wafer-based technologies or even with those that offer simple bendability. This article introduces materials and mechanical design strategies for classes of electronic circuits that offer extremely high stretchability, enabling them to accommodate even demanding configurations such as corkscrew twists with tight pitch (e.g., 90° in ≈1 cm) and linear stretching to “rubber-band” levels of strain (e.g., up to ≈140%). The use of single crystalline silicon nanomaterials for the semiconductor provides performance in stretchable complementary metal-oxide-semiconductor (CMOS) integrated circuits approaching that of conventional devices with comparable feature sizes formed on silicon wafers. Comprehensive theoretical studies of the mechanics reveal the way in which the structural designs enable these extreme mechanical properties without fracturing the intrinsically brittle active materials or even inducing significant changes in their electrical properties. The results, as demonstrated through electrical measurements of arrays of transistors, CMOS inverters, ring oscillators, and differential amplifiers, suggest a valuable route to high-performance stretchable electronics. PMID:19015528

  2. Efficient semiparametric mean-association estimation for longitudinal binary responses.

    PubMed

    Chen, Ziqi; Shi, Ning-Zhong; Gao, Wei; Tang, Man-Lai

    2012-06-15

    Semiparametric methods for longitudinal data with association within subjects have recently received considerable attention. However, existing methods for semiparametric longitudinal binary regression modeling (i) mainly concern mean structures with association parameters treated as nuisance; (ii) generally require a correct specification of the covariance structure for misspecified covariance structure may lead to inefficient mean parameter estimates; and (iii) usually run into computation and estimation problems when the time points are irregularly and possibly subject specific. In this article, we propose a semiparametric logistic regression model, which simultaneously takes into account both the mean and response-association structures (via conditional log-odds ratio) for multivariate longitudinal binary outcomes. Our main interest lies in efficient estimation of both the marginal and association parameters. The estimators of the parameters are obtained via the profile kernel approach. We evaluate the proposed methodology through simulation studies and apply it to a real dataset. Both theoretical and empirical results demonstrate that the proposed method yields highly efficient estimators and performs satisfactorily.

  3. Determinants of catecholamine and cortisol responses to lower extremity revascularization. The PIRAT Study Group.

    PubMed

    Breslow, M J; Parker, S D; Frank, S M; Norris, E J; Yates, H; Raff, H; Rock, P; Christopherson, R; Rosenfeld, B A; Beattie, C

    1993-12-01

    Surgical trauma elicits diffuse changes in hormonal secretion and autonomic nervous system activity. Despite studies demonstrating modulation of the stress response by different anesthetic/analgesic regimens, little is known regarding the determinants of catecholamine and cortisol responses to surgery. Plasma catecholamines and cortisol secretion data were obtained from 60 patients undergoing lower extremity revascularization. Patients were randomized to receive either general anesthesia combined with patient-controlled intravenous morphine (GA) or epidural anesthesia combined with epidural fentanyl analgesia (RA). All aspects of intra- and postoperative clinical care were defined by written protocol. Plasma catecholamines were measured before induction, intraoperatively, and for the first 18 h postoperatively (by HPLC). Urine cortisol was measured intra- and postoperatively using RIA. Data were evaluated using univariate and multivariate analyses to evaluate demographic and perioperative variables as determinants of stress hormone secretion. Plasma catecholamines increased during skin closure in the GA group, and remained higher relative to the RA group in the postoperative period. Multivariate analysis indicated that age and anesthetic regimen predicted increases in catecholamines during skin closure (P < 0.005), although duration of surgery, blood loss, and body temperature were not correlated. Early postoperative norepinephrine concentrations were correlated with pain score and duration of surgery (P < 0.004), but not with anesthetic management, blood loss, or body temperature. All postoperative norepinephrine levels were highly correlated (r = 0.7) with norepinephrine levels during skin closure. Cortisol excretion was higher postoperatively than intraoperatively. No patient or perioperative variable predicted cortisol excretion, and cortisol excretion was not correlated with catecholamine levels at any time. These data indicate that patient factors, such as

  4. Estimated operator exposure for hand holding portable X-ray units during imaging of the equine distal extremity.

    PubMed

    Tyson, Reid; Smiley, Douglas C; Pleasant, Robert S; Daniel, Gregory B

    2011-01-01

    Hand holding of portable X-ray units is common in large animal ambulatory veterinary practice. Portable X-ray equipment manuals, veterinary teaching institutions, and state regulations discourage, or prohibit, hand holding of portable X-ray units. Our goal was to quantify surface radiation leakage of a typical portable X-ray unit and to measure operator exposure at simulated hand and collar positions during imaging of the equine distal extremity. Each exposure for the study was performed at 80 kVp and 7.5 mAs and repeated 10 times. Measurement of tube radiation leakage was performed along each surface of the portable X-ray unit. To determine the operator exposure more accurately, an equine cadaver limb was used to generate scatter radiation for the following views: lateral carpus, lateral foot, palmaroproximal-palmarodistal, and dorsal 60° proximal-palmarodistal obliques of the navicular region. A Pancake Ion Chamber was placed at the handle and at simulated collar position to record estimated occupational exposure. To estimate the effect of lead shielding, exposure measurements were performed within the primary beam and behind a 0.5 mm lead equivalent apron and within an >0.5 mm lead equivalent glove. The average hand and collar dose was 0.471 and 0.327 mR/exposure, respectively. The lead apron and glove attenuated the primary beam 96.9 and 99.2%, respectively. This reduced average hand and collar exposures to 0.0038 and 0.0101 mR/exposure, respectively. Theoretical occupational limits are reached for the collar (whole body) before the hand (extremity).

  5. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events

    PubMed Central

    Cavanaugh, Kyle C.; Kellner, James R.; Forde, Alexander J.; Gruner, Daniel S.; Parker, John D.; Rodriguez, Wilfrid; Feller, Ilka C.

    2014-01-01

    Regional warming associated with climate change is linked with altered range and abundance of species and ecosystems worldwide. However, the ecological impacts of changes in the frequency of extreme events have not been as well documented, especially for coastal and marine environments. We used 28 y of satellite imagery to demonstrate that the area of mangrove forests has doubled at the northern end of their historic range on the east coast of Florida. This expansion is associated with a reduction in the frequency of “extreme” cold events (days colder than −4 °C), but uncorrelated with changes in mean annual temperature, mean annual precipitation, and land use. Our analyses provide evidence for a threshold response, with declining frequency of severe cold winter events allowing for poleward expansion of mangroves. Future warming may result in increases in mangrove cover beyond current latitudinal limits of mangrove forests, thereby altering the structure and function of these important coastal ecosystems. PMID:24379379

  6. Method of estimating pulse response using an impedance spectrum

    DOEpatents

    Morrison, John L; Morrison, William H; Christophersen, Jon P; Motloch, Chester G

    2014-10-21

    Electrochemical Impedance Spectrum data are used to predict pulse performance of an energy storage device. The impedance spectrum may be obtained in-situ. A simulation waveform includes a pulse wave with a period greater than or equal to the lowest frequency used in the impedance measurement. Fourier series coefficients of the pulse train can be obtained. The number of harmonic constituents in the Fourier series are selected so as to appropriately resolve the response, but the maximum frequency should be less than or equal to the highest frequency used in the impedance measurement. Using a current pulse as an example, the Fourier coefficients of the pulse are multiplied by the impedance spectrum at corresponding frequencies to obtain Fourier coefficients of the voltage response to the desired pulse. The Fourier coefficients of the response are then summed and reassembled to obtain the overall time domain estimate of the voltage using the Fourier series analysis.

  7. Gross motor ability predicts response to upper extremity rehabilitation in chronic stroke.

    PubMed

    George, Sarah Hulbert; Rafiei, Mohammad Hossein; Borstad, Alexandra; Adeli, Hojjat; Gauthier, Lynne V

    2017-08-30

    The majority of rehabilitation research focuses on the comparative effectiveness of different interventions in groups of patients, while much less is currently known regarding individual factors that predict response to rehabilitation. In a recent article, the authors presented a prognostic model to identify the sensorimotor characteristics predictive of the extent of motor recovery after Constraint-Induced Movement (CI) therapy amongst individuals with chronic mild-to-moderate motor deficit using the enhanced probabilistic neural network (EPNN). This follow-up paper examines which participant characteristics are robust predictors of rehabilitation response irrespective of the training modality. To accomplish this, EPNN was first applied to predict treatment response amongst individuals who received a virtual-reality gaming intervention (utilizing the same enrollment criteria as the prior study). The combinations of predictors that yield high predictive validity for both therapies, using their respective datasets, were then identified. High predictive classification accuracy was achieved for both the gaming (94.7%) and combined datasets (94.5%). Though CI therapy employed primarily fine-motor training tasks and the gaming intervention emphasized gross-motor practice, larger improvements in gross motor function were observed within both datasets. Poorer gross motor ability at pre-treatment predicted better rehabilitation response in both the gaming and combined datasets. The conclusion of this research is that for individuals with chronic mild-to-moderate upper extremity hemiparesis, residual deficits in gross motor function are highly responsive to motor restorative interventions, irrespective of the modality of training. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Estimation of the Magnetotelluric Response Function: The Path from Robust Estimation to a Stable Maximum Likelihood Estimator

    NASA Astrophysics Data System (ADS)

    Chave, Alan D.

    2017-08-01

    The robust statistical model of a Gaussian core contaminated by outlying data in use since the 1980s, and which underlies modern estimation of the magnetotelluric (MT) response function, is re-examined from first principles. The residuals from robust estimators applied to MT data are shown to be systematically long-tailed compared to a distribution based on the Gaussian and hence inconsistent with the robust model. Instead, MT data are pervasively described by the stable distribution family for which the Gaussian is an end member, but whose remaining distributions have algebraic rather than exponential tails. The validity of the stable model is rigorously demonstrated using a permutation test. A maximum likelihood estimator (MLE), including the use of a remote reference, that exploits the stable nature of MT data is formulated, and its two-stage implementation, in which stable parameters are first fit to the residuals, and then the MT responses are solved for, with iteration between them, is described. The MLE is inherently robust, but differs from a conventional robust estimator because it is based on a statistical model derived from the data rather than being ad hoc. Finally, the covariance matrices obtained from MT data are pervasively improper as a result of weak non-stationarity, and the Cramér-Rao lower bound for the improper covariance matrix is derived, resulting in reliable second-order statistics for MT responses. The stable MLE was applied to an exemplar broadband data set from northwest Namibia. The stable MLE is shown to be consistent with the statistical model underlying linear regression and hence is unconditionally unbiased, in contrast to the robust model. The MLE is compared to conventional robust remote reference and two-stage estimators, establishing that the standard errors of the former are systematically smaller than for either of the latter, and that the standardized differences between them exhibit excursions that are both too frequent and

  9. Long-term trajectories of lower extremity function in older adults: estimating gender differences while accounting for potential mortality bias.

    PubMed

    Botoseneanu, Anda; Allore, Heather G; Gahbauer, Evelyne A; Gill, Thomas M

    2013-07-01

    Gender-specific trajectories of lower extremity function (LEF) and the potential for bias in LEF estimation due to differences in survival have been understudied. We evaluated longitudinal data from 690 initially nondisabled adults age 70 or older from the Precipitating Events Project. LEF was assessed every 18 months for 12 years using a modified Short Physical Performance Battery (mSPPB). Hierarchical linear models with adjustments for length-of-survival estimated the intraindividual trajectory of LEF and differences in trajectory intercept and slope between men and women. LEF declined following a nonlinear trajectory. In the full sample, and among participants with high (mSPPB 10-12) and intermediate (mSPPB 7-9) baseline LEF, the rate-of-decline in mSPPB was slower in women than in men, with no gender differences in baseline mSPPB scores. Among participants with low baseline LEF (mSPPB ≤6), men had a higher starting mSPPB score, whereas women experienced a deceleration in the rate-of-decline over time. In all groups, participants who survived longer had higher starting mSPPB scores and slower rates-of-decline compared with those who died sooner. Over the course of 12 years, older women preserve LEF better than men. Nonadjustment for differences in survival results in overestimating the level and underestimating the rate-of-decline in LEF over time.

  10. Relevance of the correlation between precipitation and the 0 °C isothermal altitude for extreme flood estimation

    NASA Astrophysics Data System (ADS)

    Zeimetz, Fraenz; Schaefli, Bettina; Artigue, Guillaume; García Hernández, Javier; Schleiss, Anton J.

    2017-08-01

    Extreme floods are commonly estimated with the help of design storms and hydrological models. In this paper, we propose a new method to take into account the relationship between precipitation intensity (P) and air temperature (T) to account for potential snow accumulation and melt processes during the elaboration of design storms. The proposed method is based on a detailed analysis of this P-T relationship in the Swiss Alps. The region, no upper precipitation intensity limit is detectable for increasing temperature. However, a relationship between the highest measured temperature before a precipitation event and the duration of the subsequent event could be identified. An explanation for this relationship is proposed here based on the temperature gradient measured before the precipitation events. The relevance of these results is discussed for an example of Probable Maximum Precipitation-Probable Maximum Flood (PMP-PMF) estimation for the high mountainous Mattmark dam catchment in the Swiss Alps. The proposed method to associate a critical air temperature to a PMP is easily transposable to similar alpine settings where meteorological soundings as well as ground temperature and precipitation measurements are available. In the future, the analyses presented here might be further refined by distinguishing between precipitation event types (frontal versus orographic).

  11. Parameter estimation of multiple item response profile model.

    PubMed

    Cho, Sun-Joo; Partchev, Ivailo; De Boeck, Paul

    2012-11-01

    Multiple item response profile (MIRP) models are models with crossed fixed and random effects. At least one between-person factor is crossed with at least one within-person factor, and the persons nested within the levels of the between-person factor are crossed with the items within levels of the within-person factor. Maximum likelihood estimation (MLE) of models for binary data with crossed random effects is challenging. This is because the marginal likelihood does not have a closed form, so that MLE requires numerical or Monte Carlo integration. In addition, the multidimensional structure of MIRPs makes the estimation complex. In this paper, three different estimation methods to meet these challenges are described: the Laplace approximation to the integrand; hierarchical Bayesian analysis, a simulation-based method; and an alternating imputation posterior with adaptive quadrature as the approximation to the integral. In addition, this paper discusses the advantages and disadvantages of these three estimation methods for MIRPs. The three algorithms are compared in a real data application and a simulation study was also done to compare their behaviour. ©2011 The British Psychological Society.

  12. Preventive antioxidant responses to extreme oxygen level fluctuation in a subterranean crustacean.

    PubMed

    Lawniczak, M; Romestaing, C; Roussel, D; Maazouzi, C; Renault, D; Hervant, F

    2013-06-01

    The principal aim of this work was to explore the responses of the groundwater crustacean Niphargus rhenorhodanensis to oxidative stress caused by short- and long-term drastic variations in oxygen level. To this end, we investigated thiobarbituric acid reactive substances (TBARS) levels and anti-oxidative enzyme (SOD and GPx) activities during 24 h anoxia and post-anoxia recovery, and during 10 days of severe hypoxia and post-hypoxia recovery. We observed a decrease in TBARS amounts during recovery from severe hypoxia. Parallel to these results, we observed an overactivation of SOD activity after a 24 h anoxic stress. GPx activity measured at the end of anoxia or severe hypoxia and in the early hours of post-stress recovery also showed an overactivation compared to the control group. We can hypothesize that this overproduction of GPx corresponded to an anticipatory mechanism coping with the overproduction of reactive oxygen species (ROS) during the recovery phase in subterranean animals. This response could be considered as a major asset for life in alternately normoxic and hypoxic conditions, and therefore in extreme biotopes such as groundwaters.

  13. Ultramarathon is an outstanding model for the study of adaptive responses to extreme load and stress.

    PubMed

    Millet, Grégoire P; Millet, Guillaume Y

    2012-07-19

    Ultramarathons comprise any sporting event involving running longer than the traditional marathon length of 42.195 km (26.2 miles). Studies on ultramarathon participants can investigate the acute consequences of ultra-endurance exercise on inflammation and cardiovascular or renal consequences, as well as endocrine/energetic aspects, and examine the tissue recovery process over several days of extreme physical load. In a study published in BMC Medicine, Schütz et al. followed 44 ultramarathon runners over 4,487 km from South Italy to North Cape, Norway (the Trans Europe Foot Race 2009) and recorded daily sets of data from magnetic resonance imaging, psychometric, body composition and biological measurements. The findings will allow us to better understand the timecourse of degeneration/regeneration of some lower leg tissues such as knee joint cartilage, to differentiate running-induced from age-induced pathologies (for example, retropatelar arthritis) and finally to assess the interindividual susceptibility to injuries. Moreover, it will also provide new information about the complex interplay between cerebral adaptations/alterations and hormonal influences resulting from endurance exercise and provide data on the dose-response relationship between exercise and brain structure/function. Overall, this study represents a unique attempt to investigate the limits of the adaptive response of human bodies.Please see related article: http://www.biomedcentral.com/1741-7015/10/78.

  14. Introduction of a Novel Loss Data Normalization Method for Improved Estimation of Extreme Losses from Natural Catastrophes

    NASA Astrophysics Data System (ADS)

    Eichner, J. F.; Steuer, M.; Loew, P.

    2016-12-01

    Past natural catastrophes offer valuable information for present-day risk assessment. To make use of historic loss data one has to find a setting that enables comparison (over place and time) of historic events happening under today's conditions. By means of loss data normalization the influence of socio-economic development, as the fundamental driver in this context, can be eliminated and the data gives way to the deduction of risk-relevant information and allows the study of other driving factors such as influences from climate variability and climate change or changes of vulnerability. Munich Re's NatCatSERVICE database includes for each historic loss event the geographic coordinates of all locations and regions that were affected in a relevant way. These locations form the basis for what is known as the loss footprint of an event. Here we introduce a state of the art and robust method for global loss data normalization. The presented peril-specific loss footprint normalization method adjusts direct economic loss data to the influence of economic growth within each loss footprint (by using gross cell product data as proxy for local economic growth) and makes loss data comparable over time. To achieve a comparative setting for supra-regional economic differences, we categorize the normalized loss values (together with information on fatalities) based on the World Bank income groups into five catastrophe classes, from minor to catastrophic. The data treated in such way allows (a) for studying the influence of improved reporting of small scale loss events over time and (b) for application of standard (stationary) extreme value statistics (here: peaks over threshold method) to compile estimates for extreme and extrapolated loss magnitudes such as a "100 year event" on global scale. Examples of such results will be shown.

  15. The estimation of scaling exponents for extreme flows in Europe and their dependence on river network structure

    NASA Astrophysics Data System (ADS)

    Zanardo, Stefano; Tsaknias, Dimosthenis; Tillmans, Stephan; Nicotina, Ludovico; Assteerawatt, Anongnart; Azemar, Frederic; Hilberts, Arno

    2014-05-01

    The spatial scaling of geophysical fluxes has been often observed in a variety of studies and disciplines. This process characteristic, usually referred to as 'scale invariance', arises from the non-linear interaction of different components of a geophysical system. An outstanding and very popular example of scale invariance in hydrology is represented by the observed power law relationship between discharge and drainage area. A number of studies have focused on the scaling of flow quantiles and, more recently, of extreme flow events with drainage area, reporting the existence of scale invariance in many cases of interest. The importance of these findings lies in the potential improvement and simplification of hydrological predictions, provided that the scaling exponent, α, is correctly estimated. For this reason, several studies have focused on relating α to physical basin characteristics, such as river network structure or climate, in order to provide a predictive framework for its value. However, as we show in this study, the estimation of α bears an intrinsic uncertainty due to the commonly used estimation method as well as the often limited data availability. In order to explore the physical basis of the scaling exponent it is therefore paramount to quantify the effect of the estimation uncertainty, and possibly separate it from the natural variability of α. In this study we use an extensive set of numerical simulations to assess the variability of α under controlled conditions. We then compute a set of event-based α's for 62 European river basins on the basis of data available for approximately 700 stations. We find that for a number of basins, the variability due to estimation uncertainty is significantly smaller than the one obtained from data, suggesting an actual, physical basis of the scaling exponent. Finally, for these basins we test the hypothesis that the river network structure is the first order control on the value of α. To this end we

  16. Estimating present day extreme water level exceedance probabilities around the coastline of Australia: tides, extra-tropical storm surges and mean sea level

    NASA Astrophysics Data System (ADS)

    Haigh, Ivan D.; Wijeratne, E. M. S.; MacPherson, Leigh R.; Pattiaratchi, Charitha B.; Mason, Matthew S.; Crompton, Ryan P.; George, Steve

    2014-01-01

    The occurrence of extreme water levels along low-lying, highly populated and/or developed coastlines can lead to considerable loss of life and billions of dollars of damage to coastal infrastructure. Therefore it is vitally important that the exceedance probabilities of extreme water levels are accurately evaluated to inform risk-based flood management, engineering and future land-use planning. This ensures the risk of catastrophic structural failures due to under-design or expensive wastes due to over-design are minimised. This paper estimates for the first time present day extreme water level exceedence probabilities around the whole coastline of Australia. A high-resolution depth averaged hydrodynamic model has been configured for the Australian continental shelf region and has been forced with tidal levels from a global tidal model and meteorological fields from a global reanalysis to generate a 61-year hindcast of water levels. Output from this model has been successfully validated against measurements from 30 tide gauge sites. At each numeric coastal grid point, extreme value distributions have been fitted to the derived time series of annual maxima and the several largest water levels each year to estimate exceedence probabilities. This provides a reliable estimate of water level probabilities around southern Australia; a region mainly impacted by extra-tropical cyclones. However, as the meteorological forcing used only weakly includes the effects of tropical cyclones, extreme water level probabilities are underestimated around the western, northern and north-eastern Australian coastline. In a companion paper we build on the work presented here and more accurately include tropical cyclone-induced surges in the estimation of extreme water level. The multi-decadal hindcast generated here has been used primarily to estimate extreme water level exceedance probabilities but could be used more widely in the future for a variety of other research and practical

  17. Local mapping of detector response for reliable quantum state estimation.

    PubMed

    Cooper, Merlin; Karpiński, Michał; Smith, Brian J

    2014-07-14

    Improved measurement techniques are central to technological development and foundational scientific exploration. Quantum physics relies on detectors sensitive to non-classical features of systems, enabling precise tests of physical laws and quantum-enhanced technologies including precision measurement and secure communications. Accurate detector response calibration for quantum-scale inputs is key to future research and development in these cognate areas. To address this requirement, quantum detector tomography has been recently introduced. However, this technique becomes increasingly challenging as the complexity of the detector response and input space grow in a number of measurement outcomes and required probe states, leading to further demands on experiments and data analysis. Here we present an experimental implementation of a versatile, alternative characterization technique to address many-outcome quantum detectors that limits the input calibration region and does not involve numerical post processing. To demonstrate the applicability of this approach, the calibrated detector is subsequently used to estimate non-classical photon number states.

  18. Extreme Numbers & Estimation Skills

    ERIC Educational Resources Information Center

    Vinogradova, Natalya

    2013-01-01

    A critical aspect of mathematics study is developing both understanding of quantities and fluency in manipulating them. These abilities are essential for students who intend to enter technical or scientific professions. All students, however, should be exposed to methods of quantitative reasoning in order to function effectively in today's…

  19. Hydrogeomorphic response to extreme rainfall in headwater systems: Flash floods and debris flows

    NASA Astrophysics Data System (ADS)

    Borga, Marco; Stoffel, Markus; Marchi, Lorenzo; Marra, Francesco; Jakob, Matthias

    2014-10-01

    Flash floods and debris flows develop at space and time scales that conventional observation systems for rainfall, streamflow and sediment discharge are not able to monitor. Consequently, the atmospheric, hydrological and geomorphic controls on these hydrogeomorphic processes are poorly understood, leading to highly uncertain warning and risk management. On the other hand, remote sensing of precipitation and numerical weather predictions have become the basis of several flood forecasting systems, enabling increasingly accurate detection of hazardous events. The objective of this paper is to provide a review on current European and international research on early warning systems for flash floods and debris flows. We expand upon these themes by identifying: (a) the state of the art; (b) knowledge gaps; and (c) suggested research directions to advance warning capabilities for extreme hydrogeomorphic processes. We also suggest three areas in which advancements in science will have immediate and important practical consequence, namely development of rainfall estimation and nowcasting schemes suited to the specific space-time scales, consolidating physical, engineering and social datasets of flash floods and debris-flows, integration of methods for multiple hydrogeomorphic hazard warning.

  20. Estimating Hemodynamic Responses to the Wingate Test Using Thoracic Impedance.

    PubMed

    Astorino, Todd A; Bovee, Curtis; DeBoe, Ashley

    2015-12-01

    Techniques including direct Fick and Doppler echocardiography are frequently used to assess hemodynamic responses to exercise. Thoracic impedance has been shown to be a noninvasive alternative to these methods for assessing these responses during graded exercise to exhaustion, yet its feasibility during supramaximal bouts of exercise is relatively unknown. We used thoracic impedance to estimate stroke volume (SV) and cardiac output (CO) during the Wingate test (WAnT) and compared these values to those from graded exercise testing (GXT). Active men (n = 9) and women (n = 7) (mean age = 24.8 ± 5.9 yr) completed two Wingate tests and two graded exercise tests on a cycle ergometer. During exercise, heart rate (HR), SV, and CO were continuously estimated using thoracic impedance. Repeated measures analysis of variance was used to identify potential differences in hemodynamic responses across protocols. Maximal SV (138.6 ± 37.4 mL vs. 135.6 ± 26.9 mL) and CO (24.5 ± 6.1 L·min(-1) vs. 23.7 ± 5.1 L·min(-1)) were similar (p > 0.05) between repeated Wingate tests. Mean maximal HR was higher (p < 0.01) for GXT (185 ± 7 b·min(-1)) versus WAnT (177 ± 11 b·min(-1)), and mean SV was higher in response to WAnT (137.1 ± 32.1 mL) versus GXT (123.0 ± 32.0 mL), leading to similar maximal cardiac output between WAnT and GXT (23.9 ± 5.6 L·min(-1) vs. 22.5 ± 6.0 L·min(-1)). Our data show no difference in hemodynamic responses in response to repeated administrations of the Wingate test. In addition, the Wingate test elicits similar cardiac output compared to progressive cycling to VO2max. Key pointsMeasurement of cardiac output (CO), the rate of oxygen transport delivered by the heart to skeletal muscle, is not widely-employed in Exercise Physiology due to the level of difficulty and invasiveness characteristic of most techniques used to measure this variable.Nevertheless, thoracic impedance has been shown to provide a noninvasive and simpler approach to continuously

  1. Estimating Hemodynamic Responses to the Wingate Test Using Thoracic Impedance

    PubMed Central

    Astorino, Todd A.; Bovee, Curtis; DeBoe, Ashley

    2015-01-01

    Techniques including direct Fick and Doppler echocardiography are frequently used to assess hemodynamic responses to exercise. Thoracic impedance has been shown to be a noninvasive alternative to these methods for assessing these responses during graded exercise to exhaustion, yet its feasibility during supramaximal bouts of exercise is relatively unknown. We used thoracic impedance to estimate stroke volume (SV) and cardiac output (CO) during the Wingate test (WAnT) and compared these values to those from graded exercise testing (GXT). Active men (n = 9) and women (n = 7) (mean age = 24.8 ± 5.9 yr) completed two Wingate tests and two graded exercise tests on a cycle ergometer. During exercise, heart rate (HR), SV, and CO were continuously estimated using thoracic impedance. Repeated measures analysis of variance was used to identify potential differences in hemodynamic responses across protocols. Results: Maximal SV (138.6 ± 37.4 mL vs. 135.6 ± 26.9 mL) and CO (24.5 ± 6.1 L·min-1 vs. 23.7 ± 5.1 L·min-1) were similar (p > 0.05) between repeated Wingate tests. Mean maximal HR was higher (p < 0.01) for GXT (185 ± 7 b·min-1) versus WAnT (177 ± 11 b·min-1), and mean SV was higher in response to WAnT (137.1 ± 32.1 mL) versus GXT (123.0 ± 32.0 mL), leading to similar maximal cardiac output between WAnT and GXT (23.9 ± 5.6 L·min-1 vs. 22.5 ± 6.0 L·min-1). Our data show no difference in hemodynamic responses in response to repeated administrations of the Wingate test. In addition, the Wingate test elicits similar cardiac output compared to progressive cycling to VO2max. Key points Measurement of cardiac output (CO), the rate of oxygen transport delivered by the heart to skeletal muscle, is not widely-employed in Exercise Physiology due to the level of difficulty and invasiveness characteristic of most techniques used to measure this variable. Nevertheless, thoracic impedance has been shown to provide a noninvasive and simpler approach to continuously

  2. Limited information estimation of the diffusion-based item response theory model for responses and response times.

    PubMed

    Ranger, Jochen; Kuhn, Jörg-Tobias; Szardenings, Carsten

    2016-05-01

    Psychological tests are usually analysed with item response models. Recently, some alternative measurement models have been proposed that were derived from cognitive process models developed in experimental psychology. These models consider the responses but also the response times of the test takers. Two such models are the Q-diffusion model and the D-diffusion model. Both models can be calibrated with the diffIRT package of the R statistical environment via marginal maximum likelihood (MML) estimation. In this manuscript, an alternative approach to model calibration is proposed. The approach is based on weighted least squares estimation and parallels the standard estimation approach in structural equation modelling. Estimates are determined by minimizing the discrepancy between the observed and the implied covariance matrix. The estimator is simple to implement, consistent, and asymptotically normally distributed. Least squares estimation also provides a test of model fit by comparing the observed and implied covariance matrix. The estimator and the test of model fit are evaluated in a simulation study. Although parameter recovery is good, the estimator is less efficient than the MML estimator.

  3. Hormonal and Neuromuscular Responses to Mechanical Vibration Applied to Upper Extremity Muscles

    PubMed Central

    Di Giminiani, Riccardo; Fabiani, Leila; Baldini, Giuliano; Cardelli, Giovanni; Giovannelli, Aldo; Tihanyi, Jozsef

    2014-01-01

    Objective To investigate the acute residual hormonal and neuromuscular responses exhibited following a single session of mechanical vibration applied to the upper extremities among different acceleration loads. Methods Thirty male students were randomly assigned to a high vibration group (HVG), a low vibration group (LVG), or a control group (CG). A randomized double-blind, controlled-parallel study design was employed. The measurements and interventions were performed at the Laboratory of Biomechanics of the University of L'Aquila. The HVG and LVG participants were exposed to a series of 20 trials ×10 s of synchronous whole-body vibration (WBV) with a 10-s pause between each trial and a 4-min pause after the first 10 trials. The CG participants assumed an isometric push-up position without WBV. The outcome measures were growth hormone (GH), testosterone, maximal voluntary isometric contraction during bench-press, maximal voluntary isometric contraction during handgrip, and electromyography root-mean-square (EMGrms) muscle activity (pectoralis major [PM], triceps brachii [TB], anterior deltoid [DE], and flexor carpi radialis [FCR]). Results The GH increased significantly over time only in the HVG (P = 0.003). Additionally, the testosterone levels changed significantly over time in the LVG (P = 0.011) and the HVG (P = 0.001). MVC during bench press decreased significantly in the LVG (P = 0.001) and the HVG (P = 0.002). In the HVG, the EMGrms decreased significantly in the TB (P = 0.006) muscle. In the LVG, the EMGrms decreased significantly in the DE (P = 0.009) and FCR (P = 0.006) muscles. Conclusion Synchronous WBV acutely increased GH and testosterone serum concentrations and decreased the MVC and their respective maximal EMGrms activities, which indicated a possible central fatigue effect. Interestingly, only the GH response was dependent on the acceleration with respect to the subjects' responsiveness. PMID:25368995

  4. Maximum likelihood estimation for cytogenetic dose-response curves

    SciTech Connect

    Frome, E.L; DuFrain, R.J.

    1983-10-01

    In vitro dose-response curves are used to describe the relation between the yield of dicentric chromosome aberrations and radiation dose for human lymphocytes. The dicentric yields follow the Poisson distribution, and the expected yield depends on both the magnitude and the temporal distribution of the dose for low LET radiation. A general dose-response model that describes this relation has been obtained by Kellerer and Rossi using the theory of dual radiation action. The yield of elementary lesions is kappa(..gamma..d + g(t, tau)d/sup 2/), where t is the time and d is dose. The coefficient of the d/sup 2/ term is determined by the recovery function and the temporal mode of irradiation. Two special cases of practical interest are split-dose and continuous exposure experiments, and the resulting models are intrinsically nonlinear in the parameters. A general purpose maximum likelihood estimation procedure is described and illustrated with numerical examples from both experimental designs. Poisson regression analysis is used for estimation, hypothesis testing, and regression diagnostics. Results are discussed in the context of exposure assessment procedures for both acute and chronic human radiation exposure.

  5. Investigating extreme flood response to Holocene palaeoclimate in the Chinese monsoonal zone: A palaeoflood case study from the Hanjiang River

    NASA Astrophysics Data System (ADS)

    Guo, Yongqiang; Huang, Chun Chang; Pang, Jiangli; Zha, Xiaochun; Zhou, Yali; Wang, Longsheng; Zhang, Yuzhu; Hu, Guiming

    2015-06-01

    Palaeoflood events recorded by slackwater deposits (SWDs) were investigated extensively by sedimentological criteria of palaeohydrology along the upper Hanjiang River valley. Modern flood SWDs were collected for comparison with palaeoflood SWD in the same reaches. Three typical palaeoflood SWDs were observed within Holocene loess-soil blanket on the first river terrace land. The grain size distributions of palaeoflood SWDs are similar to modern flood SWDs, whereas they are different from eolian loess and soil. Palaeoflood SWD lies in three major pedo-stratigraphic boundaries (TS/L0, L0/S0, and S0/Lt) in the Holocene loess-soil profiles. The chronology of three palaeoflood episodes was established by OSL dating and pedo-stratigraphic correlation with the well-dated Holocene loess-soil profiles in the upper Hanjiang River basin. Holocene palaeoflood events were dated to 9500-8500, 3200-2800, and 1800-1700 a B.P., respectively. Palaeoflood discharges were estimated by the palaeoflood model (i.e., slope-area method and step-backwater method). The highest discharges are 51,680-53,950 m3 s- 1 at the 11,500-time scale in the Xunyang reach of the upper Hanjiang River valley. Holocene extraordinary hydroclimatic events in the Hanjiang River often result from abnormal atmospheric circulations from Southwest monsoons in the Chinese monsoonal zone. These results provide a regional expression of extreme flood response to Holocene palaeoclimate to understand the effects of global climatic variations on the river system dynamics.

  6. Response of conservation measures from small cultivated watersheds, concerning runoff and erosion, under the impact of extreme rainfall events

    NASA Astrophysics Data System (ADS)

    Popa, N.

    2008-11-01

    The study has been made in a representative small watershed with gently to hilly slopes from Tutova Rolling Hills, Romania. The system of conservation measures is represented by stripcroping, bufferstrips, bench terraces, a grassed waterway and a drainage network. The monitoring of hydrological response of agricultural units has been made in two cross sections corresponding to each of the land use type by means of two concrete triangular weirs. The most important soil losses were caused by three extreme rainfall events from August 2004, May 2005 and September 2007. At the date of the first rainfall event, the soil was generally very well protected against erosion by the vegetative cover, excepting parcels that were just ploughed after the mash crop. In that case, it was estimated that the value of soil losses ranged between 20.0 and 24.5 t/ha while for the other crops like corn and soybean, soil losses they were 1.0-1.5 t/ha and 0.5-0.8 t/ha respectively. Damages caused by the rainfall from September 2007 were much more important because at that time about 30% from the entire surface was just prepared for rape seeding. Maximum value of erosion was 95 t/ha on a parcel with 16% slope and 50m length along the slope.

  7. A comprehensive classification of anomalous circulation patterns responsible for persistent precipitation extremes in South China

    NASA Astrophysics Data System (ADS)

    Wu, Hui; Zhai, Panmao; Chen, Yang

    2016-06-01

    Based on observational precipitation at 63 stations in South China and NCEP-NCAR reanalysis data during 1951-2010, a cluster analysis is performed to classify large-scale circulation patterns responsible for persistent precipitation extremes (PPEs) that are independent of the influence of tropical cyclones (TCs). Conceptual schematics depicting configurations among planetary-scale systems at different levels are established for each type. The PPEs free from TCs account for 38.6% of total events, and they tend to occur during April-August and October, with the highest frequency observed in June. Corresponding circulation patterns during June-August can be mainly categorized into two types, i.e., summer-I type and summer-II type. In summer-I type, the South Asian high takes the form of a zonal-belt type. The axis of upstream westerly jets is northwest-oriented. At the middle level, the westerly jets at midlatitudes extend zonally. Along the southern edge of the westerly jet, synoptic eddies steer cold air to penetrate southward; the Bay of Bengal (BOB) trough is located to the north; a shallow trough resides over coastal areas of western South China; and an intensified western Pacific subtropical high (WPSH) extends westward. The anomalous moisture is mainly contributed by horizontal advection via southwesterlies around 20 °N and southeasterlies from the southern flange of the WPSH. Moisture convergence maximizes in coastal regions of eastern South China, which is the very place recording extreme precipitation. In summer-II type, the South Asian high behaves as a western-center type. The BOB trough is much deeper, accompanied by a cyclone to its north; and a lower-level trough appears in northwestern parts of South China. Different to summer-I type, moisture transport via southwesterlies is mostly responsible for the anomalous moisture in this type. The moisture convergence zones cover Guangdong, Guangxi, and Hainan, matching well with the areas of flooding. It is

  8. Estimating ground-level neutron-flux enhancements in the extreme cosmic-ray events of the next 100, 1000 and 10 000 years

    NASA Astrophysics Data System (ADS)

    Mason, Paolo

    2015-12-01

    Estimates are proposed of the enhancement in neutron flux which may be experienced at ground level in cosmic-ray events of extreme magnitude over the next century, millennium and ten millennia. The estimates are based on a points-over-threshold analysis of hourly neutron counts measured over the last decades by nine neutron-monitor stations located in Europe, North America and Antarctica. The present results are in good agreement with recent studies of extreme solar events based on the direct observation of flares and the abundance of cosmogenic nuclides in terrestrial and lunar archives.

  9. Ambulance call-outs and response times in Birmingham and the impact of extreme weather and climate change.

    PubMed

    Thornes, John Edward; Fisher, Paul Anthony; Rayment-Bishop, Tracy; Smith, Christopher

    2014-03-01

    Although there has been some research on the impact of extreme weather on the number of ambulance call-out incidents, especially heat waves, there has been very little research on the impact of cold weather on ambulance call-outs and response times. In the UK, there is a target response rate of 75% of life threatening incidents (Category A) that must be responded to within 8 min. This paper compares daily air temperature data with ambulance call-out data for Birmingham over a 5-year period (2007-2011). A significant relationship between extreme weather and increased ambulance call-out and response times can clearly be shown. Both hot and cold weather have a negative impact on response times. During the heat wave of August 2003, the number of ambulance call-outs increased by up to a third. In December 2010 (the coldest December for more than 100 years), the response rate fell below 50% for 3 days in a row (18 December-20 December 2010) with a mean response time of 15 min. For every reduction of air temperature by 1°C there was a reduction of 1.3% in performance. Improved weather forecasting and the take up of adaptation measures, such as the use of winter tyres, are suggested for consideration as management tools to improve ambulance response resilience during extreme weather. Also it is suggested that ambulance response times could be used as part of the syndromic surveillance system at the Health Protection Agency.

  10. Response Identification in the Extremely Low Frequency Region of an Electret Condenser Microphone

    PubMed Central

    Jeng, Yih-Nen; Yang, Tzung-Ming; Lee, Shang-Yin

    2011-01-01

    This study shows that a small electret condenser microphone connected to a notebook or a personal computer (PC) has a prominent response in the extremely low frequency region in a specific environment. It confines most acoustic waves within a tiny air cell as follows. The air cell is constructed by drilling a small hole in a digital versatile disk (DVD) plate. A small speaker and an electret condenser microphone are attached to the two sides of the hole. Thus, the acoustic energy emitted by the speaker and reaching the microphone is strong enough to actuate the diaphragm of the latter. The experiments showed that, once small air leakages are allowed on the margin of the speaker, the microphone captured the signal in the range of 0.5 to 20 Hz. Moreover, by removing the plastic cover of the microphone and attaching the microphone head to the vibration surface, the low frequency signal can be effectively captured too. Two examples are included to show the convenience of applying the microphone to pick up the low frequency vibration information of practical systems. PMID:22346594

  11. The Fire-Walker’s High: Affect and Physiological Responses in an Extreme Collective Ritual

    PubMed Central

    Fischer, Ronald; Xygalatas, Dimitris; Mitkidis, Panagiotis; Reddish, Paul; Tok, Penny; Konvalinka, Ivana; Bulbulia, Joseph

    2014-01-01

    How do people feel during extreme collective rituals? Despite longstanding speculation, few studies have attempted to quantify ritual experiences. Using a novel pre/post design, we quantified physiological fluctuations (heart rates) and self-reported affective states from a collective fire-walking ritual in a Mauritian Hindu community. Specifically, we compared changes in levels of happiness, fatigue, and heart rate reactivity among high-ordeal participants (fire-walkers), low-ordeal participants (non-fire-walking participants with familial bonds to fire-walkers) and spectators (unrelated/unknown to the fire-walkers). We observed that fire-walkers experienced the highest increase in heart rate and reported greater happiness post-ritual compared to low-ordeal participants and spectators. Low-ordeal participants reported increased fatigue after the ritual compared to both fire-walkers and spectators, suggesting empathetic identification effects. Thus, witnessing the ritualistic suffering of loved ones may be more exhausting than experiencing suffering oneself. The findings demonstrate that the level of ritual involvement is important for shaping affective responses to collective rituals. Enduring a ritual ordeal is associated with greater happiness, whereas observing a loved-one endure a ritual ordeal is associated with greater fatigue post-ritual. PMID:24586315

  12. Response identification in the extremely low frequency region of an electret condenser microphone.

    PubMed

    Jeng, Yih-Nen; Yang, Tzung-Ming; Lee, Shang-Yin

    2011-01-01

    This study shows that a small electret condenser microphone connected to a notebook or a personal computer (PC) has a prominent response in the extremely low frequency region in a specific environment. It confines most acoustic waves within a tiny air cell as follows. The air cell is constructed by drilling a small hole in a digital versatile disk (DVD) plate. A small speaker and an electret condenser microphone are attached to the two sides of the hole. Thus, the acoustic energy emitted by the speaker and reaching the microphone is strong enough to actuate the diaphragm of the latter. The experiments showed that, once small air leakages are allowed on the margin of the speaker, the microphone captured the signal in the range of 0.5 to 20 Hz. Moreover, by removing the plastic cover of the microphone and attaching the microphone head to the vibration surface, the low frequency signal can be effectively captured too. Two examples are included to show the convenience of applying the microphone to pick up the low frequency vibration information of practical systems.

  13. Short-term cropland responses to temperature extreme events during late winter

    NASA Astrophysics Data System (ADS)

    De Simon, G.; Alberti, G.; Delle Vedove, G.; Peressotti, A.; Zaldei, A.; Miglietta, F.

    2013-08-01

    In recent years, several studies have focused on terrestrial ecosystem response to extreme events. Most of this research has been conducted in natural ecosystems, but few have considered agroecosystems. In this study, we investigated the impact of a manipulated warmer or cooler late winter/early spring on the carbon budget and final harvest of a soybean crop (Glycine max (L.) Merr.). Soil temperature was altered by manipulating soil albedo by covering the soil surface with a layer of inert silica gravel. We tested three treatments - cooling (Co), warming (W), mix (M) - and control (C). An automated system continuously measured soil heterotrophic respiration (Rh), soil temperature profiles, and soil water content across the entire year in each plot. Phenological phases were periodically assessed and final harvest was measured in each plot. Results showed that treatments had only a transient effect on daily Rh rates, which did not result in a total annual carbon budget significantly different from control, even though cooling showed a significant reduction in final harvest. We also observed anticipation in emergence in both W and M treatments and a delay in emergence for Co. Moreover, plant density and growth increased in W and M and decreased in Co. In conclusion, from the results of our experiment we can assert that an increase in the frequency of both heat and cold waves is unlikely to have large effects on the overall annual carbon balance of irrigated croplands.

  14. Short-term cropland responses to temperature extreme events during late winter

    NASA Astrophysics Data System (ADS)

    De Simon, G.; Alberti, G.; Delle Vedove, G.; Peressotti, A.; Zaldei, A.; Miglietta, F.

    2013-04-01

    In recent years, several studies have focused on terrestrial ecosystem response to extreme events. Most of this research has been conducted in natural ecosystems, but few have considered agro-ecosystems. In this study, we investigated the impact of a manipulated warmer or cooler late winter-early spring on the carbon budget and final harvest of a soybean crop (Glycine max (L.) Merr.). Soil temperature was altered by manipulating soil albedo by covering the soil surface with a layer of inert silica gravel. We tested three treatments: cooling (Co), warming (W), mix (M) and control (C). An automated system continuously measured soil heterotrophic respiration (Rh), soil temperature profiles, and soil water content across the entire year in each plot. Phenological phases were periodically assessed and final harvest was measured in each plot. Results showed that treatments had only a transient effect on daily Rh rates which did not result in a total annual carbon budget significantly different from control, even though cooling showed a significant reduction in final harvest. We also observed anticipation in seed germination in both W and M treatments and a delay in germination for Co. Moreover, plant density and growth increased in W and M and decreased in Co.

  15. Multi-trophic level response to extreme metal contamination from gold mining in a subarctic lake

    PubMed Central

    Korosi, Jennifer B.; Hargan, Kathryn E.; Williams, Trisha; Eickmeyer, David C.; Kimpe, Linda E.; Palmer, Michael J.; Smol, John P.; Blais, Jules M.

    2016-01-01

    Giant Mine, located in the city of Yellowknife (Northwest Territories, Canada), is a dramatic example of subarctic legacy contamination from mining activities, with remediation costs projected to exceed $1 billion. Operational between 1948 and 2004, gold extraction at Giant Mine released large quantities of arsenic and metals from the roasting of arsenopyrite ore. We examined the long-term ecological effects of roaster emissions on Pocket Lake, a small lake at the edge of the Giant Mine lease boundary, using a spectrum of palaeoenvironmental approaches. A dated sedimentary profile tracked striking increases (approx. 1700%) in arsenic concentrations coeval with the initiation of Giant Mine operations. Large increases in mercury, antimony and lead also occurred. Synchronous changes in biological indicator assemblages from multiple aquatic trophic levels, in both benthic and pelagic habitats, indicate dramatic ecological responses to extreme metal(loid) contamination. At the peak of contamination, all Cladocera, a keystone group of primary consumers, as well as all planktonic diatoms, were functionally lost from the sediment record. No biological recovery has been inferred, despite the fact that the bulk of metal(loid) emissions occurred more than 50 years ago, and the cessation of all ore-roasting activities in Yellowknife in 1999. PMID:27534958

  16. Visualizing the local optical response to extreme-ultraviolet radiation with a resolution of λ/380

    NASA Astrophysics Data System (ADS)

    Tamasaku, Kenji; Sawada, Kei; Nishibori, Eiji; Ishikawa, Tetsuya

    2011-09-01

    Scientists have continually tried to improve the spatial resolution of imaging ever since the invention of the optical microscope in around 1610 by Galileo. Recently, a spatial resolution near λ/10 was achieved in a near-field scheme by using surface plasmon polaritons. However, further improvement in this direction is hindered by the size of metallic nanostructures. Here we show that atom-scale resolution is achievable in the extreme-ultraviolet region by using X-ray parametric down-conversion, which detaches the achievable resolution from the wavelength of the probe light. We visualize three-dimensionally the local optical response of diamond at wavelengths between 103 and 206Å with a resolution as fine as 0.54Å. This corresponds to a resolution from λ/190 to λ/380, an order of magnitude better than ever achieved. Although the present study focuses on the relatively high-energy optical regions, our method could be extended into the visible region using advanced X-ray sources, and would open a new window into the optical properties of solids.

  17. Three responses of wetland conditions to climatic extremes in the Prairie Pothole Region

    USGS Publications Warehouse

    Cressey, Ryann L.; Austin, Jane; Stafford, Joshua D.

    2016-01-01

    Wetlands in central North Dakota were revisited after 50 years to assess changes following extreme drought and a prolonged wet period. We compared data collected during 1961–1966 to current (2013–2014) wetland conditions. We revisited 80 wetlands in 2013 and 2014 across three study areas and measured wetland area, ponded-water depth, and specific conductance. Wetlands at the three study areas responded to prolonged wet conditions in one of three ways. Wetlands at Crystal Springs became larger, and had deeper ponds of lower specific conductance in 2013–14 compared to the 1960s. Wetlands at Cottonwood were larger with deeper ponds of slightly higher specific conductance in 2013–2014. Wetlands at Mt. Moriah had only subtle changes in size, pond depth, and specific conductance between periods. Prolonged wet conditions led to merging of most wetlands (defined as the outer edge of wet-meadow vegetation) at Crystal Springs and a few wetlands at Cottonwood. Low topographic relief at Crystal Springs and Cottonwood contributed to storage of excess water in wetlands with associated responses to prolonged wet conditions. In contrast, higher topographic relief and natural outlets into two intermittent streams at Mt. Moriah resulted in wetlands being less impacted by prolonged wet conditions.

  18. The fire-walker's high: affect and physiological responses in an extreme collective ritual.

    PubMed

    Fischer, Ronald; Xygalatas, Dimitris; Mitkidis, Panagiotis; Reddish, Paul; Tok, Penny; Konvalinka, Ivana; Bulbulia, Joseph

    2014-01-01

    How do people feel during extreme collective rituals? Despite longstanding speculation, few studies have attempted to quantify ritual experiences. Using a novel pre/post design, we quantified physiological fluctuations (heart rates) and self-reported affective states from a collective fire-walking ritual in a Mauritian Hindu community. Specifically, we compared changes in levels of happiness, fatigue, and heart rate reactivity among high-ordeal participants (fire-walkers), low-ordeal participants (non-fire-walking participants with familial bonds to fire-walkers) and spectators (unrelated/unknown to the fire-walkers). We observed that fire-walkers experienced the highest increase in heart rate and reported greater happiness post-ritual compared to low-ordeal participants and spectators. Low-ordeal participants reported increased fatigue after the ritual compared to both fire-walkers and spectators, suggesting empathetic identification effects. Thus, witnessing the ritualistic suffering of loved ones may be more exhausting than experiencing suffering oneself. The findings demonstrate that the level of ritual involvement is important for shaping affective responses to collective rituals. Enduring a ritual ordeal is associated with greater happiness, whereas observing a loved-one endure a ritual ordeal is associated with greater fatigue post-ritual.

  19. Controls on coastal dune morphology, shoreline erosion and barrier island response to extreme storms

    USGS Publications Warehouse

    Houser, C.; Hapke, C.; Hamilton, S.

    2008-01-01

    The response of a barrier island to an extreme storm depends in part on the surge elevation relative to the height and extent of the foredunes which can exhibit considerable variability alongshore. While it is recognized that alongshore variations in dune height and width direct barrier island response to storm surge, the underlying causes of the alongshore variation remain poorly understood. This study examines the alongshore variation in dune morphology along a 11??km stretch of Santa Rosa Island in northwest Florida and relates the variation in morphology to the response of the island during Hurricane Ivan and historic and storm-related rates of shoreline erosion. The morphology of the foredune and backbarrier dunes was characterized before and after Hurricane Ivan using Empirical Orthogonal Function (EOF) analysis and related through Canonical Correlation Analysis (CCA). The height and extent of the foredune, and the presence and relative location of the backbarrier dunes, varied alongshore at discrete length scales (of ~ 750, 1450 and 4550??m) that are statistically significant at the 95% confidence level. Cospectral analysis suggests that the variation in dune morphology is correlated with transverse ridges on the inner-shelf, the backbarrier cuspate headlands, and the historical and storm-related trends in shoreline change. Sections of the coast with little to no dune development before Hurricane Ivan were observed in the narrowest portions of the island (between headlands), west of the transverse ridges. Overwash penetration tended to be larger in these areas and island breaching was common, leaving the surface close to the watertable and covered by a lag of shell and gravel. In contrast, large foredunes and the backbarrier dunes were observed at the widest sections of the island (the cuspate headlands) and at crest of the transverse ridges. Due to the large dunes and the presence of the backbarrier dunes, these areas experienced less overwash penetration

  20. The Mediterranean benthic herbivores show diverse responses to extreme storm disturbances.

    PubMed

    Pagès, Jordi F; Gera, Alessandro; Romero, Javier; Farina, Simone; Garcia-Rubies, Antoni; Hereu, Bernat; Alcoverro, Teresa

    2013-01-01

    Catastrophic storms have been observed to be one of the major elements in shaping the standing structure of marine benthic ecosystems. Yet, little is known about the effect of catastrophic storms on ecosystem processes. Specifically, herbivory is the main control mechanism of macrophyte communities in the Mediterranean, with two main key herbivores: the sea urchin Paracentrotus lividus and the fish Sarpa salpa. Consequently, the effects of extreme storm events on these two herbivores (at the population level and on their behaviour) may be critical for the functioning of the ecosystem. With the aim of filling this gap, we took advantage of two parallel studies that were conducted before, during and after an unexpected catastrophic storm event. Specifically, fish and sea urchin abundance were assessed before and after the storm in monitored fixed areas (one site for sea urchin assessment and 3 sites for fish visual transects). Additionally, we investigated the behavioural response to the disturbance of S. salpa fishes that had been tagged with acoustic transmitters. Given their low mobility, sea urchins were severely affected by the storm (ca. 50% losses) with higher losses in those patches with a higher density of sea urchins. This may be due to a limited availability of refuges within each patch. In contrast, fish abundance was not affected, as fish were able to move to protected areas (i.e. deeper) as a result of the high mobility of this species. Our results highlight that catastrophic storms differentially affect the two dominant macroherbivores of rocky macroalgal and seagrass systems due to differences in mobility and escaping strategies. This study emphasises that under catastrophic disturbances, the presence of different responses among the key herbivores of the system may be critical for the maintenance of the herbivory function.

  1. The Mediterranean Benthic Herbivores Show Diverse Responses to Extreme Storm Disturbances

    PubMed Central

    Pagès, Jordi F.; Gera, Alessandro; Romero, Javier; Farina, Simone; Garcia-Rubies, Antoni; Hereu, Bernat; Alcoverro, Teresa

    2013-01-01

    Catastrophic storms have been observed to be one of the major elements in shaping the standing structure of marine benthic ecosystems. Yet, little is known about the effect of catastrophic storms on ecosystem processes. Specifically, herbivory is the main control mechanism of macrophyte communities in the Mediterranean, with two main key herbivores: the sea urchin Paracentrotus lividus and the fish Sarpa salpa. Consequently, the effects of extreme storm events on these two herbivores (at the population level and on their behaviour) may be critical for the functioning of the ecosystem. With the aim of filling this gap, we took advantage of two parallel studies that were conducted before, during and after an unexpected catastrophic storm event. Specifically, fish and sea urchin abundance were assessed before and after the storm in monitored fixed areas (one site for sea urchin assessment and 3 sites for fish visual transects). Additionally, we investigated the behavioural response to the disturbance of S. salpa fishes that had been tagged with acoustic transmitters. Given their low mobility, sea urchins were severely affected by the storm (ca. 50% losses) with higher losses in those patches with a higher density of sea urchins. This may be due to a limited availability of refuges within each patch. In contrast, fish abundance was not affected, as fish were able to move to protected areas (i.e. deeper) as a result of the high mobility of this species. Our results highlight that catastrophic storms differentially affect the two dominant macroherbivores of rocky macroalgal and seagrass systems due to differences in mobility and escaping strategies. This study emphasises that under catastrophic disturbances, the presence of different responses among the key herbivores of the system may be critical for the maintenance of the herbivory function. PMID:23667512

  2. Oscillation Responses to an Extreme Weather Event from a Deep Moored Observing System

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Dimarco, S. F.; Stoessel, M. M.; Zhang, X.; Ingle, S.

    2011-12-01

    In June 2007 tropical Cyclone Gonu passed directly over an ocean observing system consisting of four, deep autonomous mooring stations along the 3000 m isobath in the northern Arabian Sea. Gonu was the largest cyclone known to have occurred in the Arabian Sea or to strike the Arabian Peninsula. The mooring system was designed by Lighthouse R & D Enterprises, Inc. and installed in cooperation with the Oman Ministry of Agriculture and Fisheries Wealth. The instruments on the moorings continuously recorded water velocities, temperature, conductivity, pressure, dissolved oxygen and turbidity at multiple depths and at hourly intervals during the storm. Near-inertial oscillations at all moorings from thermocline to seafloor are coincident with the arrival of Gonu. Sub-inertial oscillations with periods of 2-10 days are recorded at the post-storm relaxation stage of Gonu, primarily in the thermocline. These oscillations consist of warm, saline water masses, likely originating from the Persian Gulf. Prominent 12.7-day sub-inertial waves, measured at a station ~300 km offshore, are bottom-intensified and have characteristics of baroclinic, topographically-trapped waves. Theoretical results from a topographically-trapped wave model are in a good agreement with the observed 12.7-day waves. The wavelength of the 12.7-day waves is about 590 km calculated from the dispersion relationship. Further analysis suggests that a resonant standing wave is responsible for trapping the 12.7-day wave energy inside the Sea of Oman basin. The observational results reported here are the first measurements of deepwater responses to a tropical cyclone in the Sea of Oman/Arabian Sea. Our study demonstrates the utility of sustained monitoring for studying the impact of extreme weather events on the ocean.

  3. Deciphering landscape complexity to predict (non)linear responses to extreme climatic events

    USDA-ARS?s Scientific Manuscript database

    Extreme events are increasing in frequency and magnitude for many landscapes globally. Ecologically, most of the focus on extreme climatic events has been on effects of either short-term pulses (floods, freezes) or long-term drought. Multi-year increases in precipitation are also occurring with litt...

  4. Soliciting Feedback from Resource Managers to Inform Response to Extreme Event Impact

    NASA Astrophysics Data System (ADS)

    Bedsworth, L. W.

    2014-12-01

    To date, extreme events have been defined by scientists through a top-down approach, relying on observations for current extremes and climate model projections based on future scenarios for their expected changes. These abstract definitions of extreme events are based on a corresponding characterization of what is "normal" and perhaps the choice of a threshold (e.g., a percentile of a historical distribution for a given climate variable), beyond which would represent an extreme event. However, there are not necessarily direct connections between these definitions and what is considered "extreme" in terms of impacts that challenge resource management. Several researchers have suggested that extreme event definitions would also be informed by input from on-the-ground resource managers who are familiar with the systems being impacted, the climate conditions that pose risks to those systems, and their resilience and adaptive capacity. This research will present preliminary survey work designed to solicit input from air and water quality managers in terms of what is considered an extreme event, how these events have been weathered in the past, and planned for in the future. The survey is based on literature review, interviews with air and water quality managers in California, and outreach to the scientific community. This work is the first step of a multistage research effort to link input from resource managers with scientific information to better inform air and water quality management and impacts of extreme events under a changing climate.

  5. Physiological Responses to Firefighting in Extreme Temperatures Do Not Compare to Firefighting in Temperate Conditions

    PubMed Central

    Windisch, Stephanie; Seiberl, Wolfgang; Hahn, Daniel; Schwirtz, Ansgar

    2017-01-01

    Purpose: The aim of this study was to examine physiological responses to two different simulated firefighting exercises: a firefighting exercise with flashovers, smoke, poor visibility and extreme temperatures (300°) in a burning container and a standard firefighting exercise in temperate conditions. Furthermore, a second purpose of the study was to find out if the contribution of strength and endurance capacities to firefighting performance changes when the demands of the firefighting exercise change. Methods: Sixteen professional firefighters performed a maximum treadmill test, strength testing, a standard simulated firefighting exercise (SFE) without heat and flashovers and a firefighting exercise with a simulation of the flashover phenomenon in a burning container (FOT). The treadmill testing was used to determine peak oxygen uptake (VO2peak), ventilatory threshold (VT1) and respiratory compensation point (RCP). Three intensity zones were identified according to heart rate (HR) values corresponding to VT1 and RCP: zone 1–HR below VT1, zone 2-HR between VT1 and RCP, zone 3–HR above RCP. Firefighting performance was determined by a simple time-strain-air depletion model (TSA) taking the sum of z-transformed parameters of time to finish the exercise, strain in terms of mean heart rate, and air depletion from the breathing apparatus. Correlations were then established between TSA based firefighting performance parameters and fitness variables representing strength and endurance. Results: HR was significantly lower during SFE (79.9 ± 6.9%HRmax) compared to FOT (85.4 ± 5.2%HRmax). During SFE subjects spent 24.6 ± 30.2% of time in zone 1, 65.8 ± 28.1% in zone 2 and 9.7 ± 16.6% in zone 3. During FOT subjects spent 16.3 ± 12.8% in zone 1, 50.4 ± 13.2% in zone 2 and 33.3 ± 16.6% in zone 3. Out of all correlations, relative VO2peak showed the highest relation to mean HR during SFE (−0.593) as well as FOT (−0.693). Conclusions: Endurance in terms of VO2

  6. Physiological Responses to Firefighting in Extreme Temperatures Do Not Compare to Firefighting in Temperate Conditions.

    PubMed

    Windisch, Stephanie; Seiberl, Wolfgang; Hahn, Daniel; Schwirtz, Ansgar

    2017-01-01

    Purpose: The aim of this study was to examine physiological responses to two different simulated firefighting exercises: a firefighting exercise with flashovers, smoke, poor visibility and extreme temperatures (300°) in a burning container and a standard firefighting exercise in temperate conditions. Furthermore, a second purpose of the study was to find out if the contribution of strength and endurance capacities to firefighting performance changes when the demands of the firefighting exercise change. Methods: Sixteen professional firefighters performed a maximum treadmill test, strength testing, a standard simulated firefighting exercise (SFE) without heat and flashovers and a firefighting exercise with a simulation of the flashover phenomenon in a burning container (FOT). The treadmill testing was used to determine peak oxygen uptake (VO2peak), ventilatory threshold (VT1) and respiratory compensation point (RCP). Three intensity zones were identified according to heart rate (HR) values corresponding to VT1 and RCP: zone 1-HR below VT1, zone 2-HR between VT1 and RCP, zone 3-HR above RCP. Firefighting performance was determined by a simple time-strain-air depletion model (TSA) taking the sum of z-transformed parameters of time to finish the exercise, strain in terms of mean heart rate, and air depletion from the breathing apparatus. Correlations were then established between TSA based firefighting performance parameters and fitness variables representing strength and endurance. Results: HR was significantly lower during SFE (79.9 ± 6.9%HRmax) compared to FOT (85.4 ± 5.2%HRmax). During SFE subjects spent 24.6 ± 30.2% of time in zone 1, 65.8 ± 28.1% in zone 2 and 9.7 ± 16.6% in zone 3. During FOT subjects spent 16.3 ± 12.8% in zone 1, 50.4 ± 13.2% in zone 2 and 33.3 ± 16.6% in zone 3. Out of all correlations, relative VO2peak showed the highest relation to mean HR during SFE (-0.593) as well as FOT (-0.693). Conclusions: Endurance in terms of VO2peak is an

  7. Estimation of road profile variability from measured vehicle responses

    NASA Astrophysics Data System (ADS)

    Fauriat, W.; Mattrand, C.; Gayton, N.; Beakou, A.; Cembrzynski, T.

    2016-05-01

    When assessing the statistical variability of fatigue loads acting throughout the life of a vehicle, the question of the variability of road roughness naturally arises, as both quantities are strongly related. For car manufacturers, gathering information on the environment in which vehicles evolve is a long and costly but necessary process to adapt their products to durability requirements. In the present paper, a data processing algorithm is proposed in order to estimate the road profiles covered by a given vehicle, from the dynamic responses measured on this vehicle. The algorithm based on Kalman filtering theory aims at solving a so-called inverse problem, in a stochastic framework. It is validated using experimental data obtained from simulations and real measurements. The proposed method is subsequently applied to extract valuable statistical information on road roughness from an existing load characterisation campaign carried out by Renault within one of its markets.

  8. Extreme Response Style in Recurrent and Chronically Depressed Patients: Change with Antidepressant Administration and Stability during Continuation Treatment

    ERIC Educational Resources Information Center

    Peterson, Timothy J.; Feldman, Greg; Harley, Rebecca; Fresco, David M.; Graves, Lesley; Holmes, Avram; Bogdan, Ryan; Papakostas, George I.; Bohn, Laurie; Lury, R. Alana; Fava, Maurizio; Segal, Zindel V.

    2007-01-01

    The authors examined extreme response style in recurrently and chronically depressed patients, assessing its role in therapeutic outcome. During the acute phase, outpatients with major depressive disorder (N = 384) were treated with fluoxetine for 8 weeks. Remitted patients (n = 132) entered a continuation phase during which their fluoxetine dose…

  9. Response of vegetation NDVI to climatic extremes in the arid region of Central Asia: a case study in Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Yao, Junqiang; Chen, Yaning; Zhao, Yong; Mao, Weiyi; Xu, Xinbing; Liu, Yang; Yang, Qing

    2017-02-01

    Observed data showed the climatic transition from warm-dry to warm-wet in Xinjiang during the past 30 years and will probably affect vegetation dynamics. Here, we analyze the interannual change of vegetation index based on the satellite-derived normalized difference vegetation index (NDVI) with temperature and precipitation extreme over the Xinjiang, using the 8-km NDVI third-generation (NDVI3g) from the Global Inventory Modelling and Mapping Studies (GIMMS) from 1982 to 2010. Few previous studies analyzed the link between climate extremes and vegetation response. From the satellite-based results, annual NDVI significantly increased in the first two decades (1981-1998) and then decreased after 1998. We show that the NDVI decrease over the past decade may conjointly be triggered by the increases of temperature and precipitation extremes. The correlation analyses demonstrated that the trends of NDVI was close to the trend of extreme precipitation; that is, consecutive dry days (CDD) and torrential rainfall days (R24) positively correlated with NDVI during 1998-2010. For the temperature extreme, while the decreases of NDVI correlate positively with warmer mean minimum temperature (Tnav), it correlates negatively with the number of warmest night days (Rwn). The results suggest that the climatic extremes have possible negative effects on the ecosystem.

  10. Using remotely sensed temperature to estimate climate response functions

    NASA Astrophysics Data System (ADS)

    Heft-Neal, Sam; Lobell, David B.; Burke, Marshall

    2017-01-01

    Temperature data are commonly used to estimate the sensitivity of many societally relevant outcomes, including crop yields, mortality, and economic output, to ongoing climate changes. In many tropical regions, however, temperature measures are often very sparse and unreliable, limiting our ability to understand climate change impacts. Here we evaluate satellite measures of near-surface temperature (Ts) as an alternative to traditional air temperatures (Ta) from weather stations, and in particular their ability to replace Ta in econometric estimation of climate response functions. We show that for maize yields in Africa and the United States, and for economic output in the United States, regressions that use Ts produce very similar results to those using Ta, despite the fact that daily correlation between the two temperature measures is often low. Moreover, for regions such as Africa with poor station coverage, we find that models with Ts outperform models with Ta, as measured by both R 2 values and out-of-sample prediction error. The results indicate that Ts can be used to study climate impacts in areas with limited station data, and should enable faster progress in assessing risks and adaptation needs in these regions.

  11. Trends in persistent seasonal-scale atmospheric circulation patterns responsible for precipitation and temperature extremes in California

    NASA Astrophysics Data System (ADS)

    Swain, D. L.; Horton, D. E.; Singh, D.; Diffenbaugh, N. S.

    2015-12-01

    Long-lived anomalous atmospheric circulation patterns are often associated with surface weather extremes. This is particularly true from a hydroclimatic perspective in regions that have well-defined "wet seasons," where atmospheric anomalies that persist on a seasonal scale can lead to drought or (conversely) increase the risk of flood. Recent evidence suggests that both natural variability and global warming may be responsible for spatially and temporally heterogeneous changes in Northern Hemisphere atmospheric conditions over the past several decades. In this investigation, we assess observed trends in cool-season (Oct-May) circulation patterns over the northeastern Pacific Ocean which have historically been associated with precipitation and temperature extremes in California. We find that the occurrence of certain extreme seasonal-scale atmospheric configurations has changed substantially over the 1948-2015 period, and also that there has been a trend towards amplification of the cool-season mean state in this region. Notably, patterns similar to the persistent anticyclone associated with the extremely warm and dry conditions experienced during the ongoing 2012-2015 California drought occur more frequently in the second half of the observed record. This finding highlights the importance of examining changes in extreme and/or persistent atmospheric circulation configurations, which may exhibit different responses to natural and anthropogenic forcings than the mean state.

  12. Optimal design for nonlinear estimation of the hemodynamic response function.

    PubMed

    Maus, Bärbel; van Breukelen, Gerard J P; Goebel, Rainer; Berger, Martijn P F

    2012-06-01

    Subject-specific hemodynamic response functions (HRFs) have been recommended to capture variation in the form of the hemodynamic response between subjects (Aguirre et al., [ 1998]: Neuroimage 8:360-369). The purpose of this article is to find optimal designs for estimation of subject-specific parameters for the double gamma HRF. As the double gamma function is a nonlinear function of its parameters, optimal design theory for nonlinear models is employed in this article. The double gamma function is linearized by a Taylor approximation and the maximin criterion is used to handle dependency of the D-optimal design on the expansion point of the Taylor approximation. A realistic range of double gamma HRF parameters is used for the expansion point of the Taylor approximation. Furthermore, a genetic algorithm (GA) (Kao et al., [ 2009]: Neuroimage 44:849-856) is applied to find locally optimal designs for the different expansion points and the maximin design chosen from the locally optimal designs is compared to maximin designs obtained by m-sequences, blocked designs, designs with constant interstimulus interval (ISI) and random event-related designs. The maximin design obtained by the GA is most efficient. Random event-related designs chosen from several generated designs and m-sequences have a high efficiency, while blocked designs and designs with a constant ISI have a low efficiency compared to the maximin GA design.

  13. Local mapping of detector response for reliable quantum state estimation

    PubMed Central

    Cooper, Merlin; Karpiński, Michał; Smith, Brian J.

    2014-01-01

    Improved measurement techniques are central to technological development and foundational scientific exploration. Quantum physics relies on detectors sensitive to non-classical features of systems, enabling precise tests of physical laws and quantum-enhanced technologies including precision measurement and secure communications. Accurate detector response calibration for quantum-scale inputs is key to future research and development in these cognate areas. To address this requirement, quantum detector tomography has been recently introduced. However, this technique becomes increasingly challenging as the complexity of the detector response and input space grow in a number of measurement outcomes and required probe states, leading to further demands on experiments and data analysis. Here we present an experimental implementation of a versatile, alternative characterization technique to address many-outcome quantum detectors that limits the input calibration region and does not involve numerical post processing. To demonstrate the applicability of this approach, the calibrated detector is subsequently used to estimate non-classical photon number states. PMID:25019300

  14. Lysosomal responses to heat-shock of seasonal temperature extremes in Cd-exposed mussels.

    PubMed

    Múgica, M; Izagirre, U; Marigómez, I

    2015-07-01

    The present study was aimed at determining the effect of temperature extremes on lysosomal biomarkers in mussels exposed to a model toxic pollutant (Cd) at different seasons. For this purpose, temperature was elevated 10°C (from 12°C to 22°C in winter and from 18°C to 28°C in summer) for a period of 6h (heat-shock) in control and Cd-exposed mussels, and then returned back to initial one. Lysosomal membrane stability and lysosomal structural changes in digestive gland were investigated. In winter, heat-shock reduced the labilisation period (LP) of the lysosomal membrane, especially in Cd-exposed mussels, and provoked transient lysosomal enlargement. LP values recovered after the heat-shock cessation but lysosomal enlargement prevailed in both experimental groups. In summer, heat-shock induced remarkable reduction in LP and lysosomal enlargement (more markedly in Cd-exposed mussels), which recovered within 3 days. Besides, whilst heat-shock effects on LP were practically identical for Cd-exposed mussels in winter and summer, the effects were longer-lasting in summer than in winter for control mussels. Thus, lysosomal responsiveness after heat-shock was higher in summer than in winter but recovery was faster as well, and therefore the consequences of the heat shock seem to be more decisive in winter. In contrast, inter-season differences were attenuated in the presence of Cd. Consequently, mussels seem to be better prepared in summer than in winter to stand short periods of abrupt temperature change; this is, however, compromised when mussels are exposed to pollutants such as Cd.

  15. Neuronal cellular responses to extremely low frequency electromagnetic field exposure: implications regarding oxidative stress and neurodegeneration.

    PubMed

    Reale, Marcella; Kamal, Mohammad A; Patruno, Antonia; Costantini, Erica; D'Angelo, Chiara; Pesce, Miko; Greig, Nigel H

    2014-01-01

    Neurodegenerative diseases comprise both hereditary and sporadic conditions characterized by an identifying progressive nervous system dysfunction and distinctive neuopathophysiology. The majority are of non-familial etiology and hence environmental factors and lifestyle play key roles in their pathogenesis. The extensive use of and ever increasing worldwide demand for electricity has stimulated societal and scientific interest on the environmental exposure to low frequency electromagnetic fields (EMFs) on human health. Epidemiological studies suggest a positive association between 50/60-Hz power transmission fields and leukemia or lymphoma development. Consequent to the association between EMFs and induction of oxidative stress, concerns relating to development of neurodegenerative diseases, such as Alzheimer disease (AD), have been voiced as the brain consumes the greatest fraction of oxygen and is particularly vulnerable to oxidative stress. Exposure to extremely low frequency (ELF)-EMFs are reported to alter animal behavior and modulate biological variables, including gene expression, regulation of cell survival, promotion of cellular differentiation, and changes in cerebral blood flow in aged AD transgenic mice. Alterations in inflammatory responses have also been reported, but how these actions impact human health remains unknown. We hence evaluated the effects of an electromagnetic wave (magnetic field intensity 1 mT; frequency, 50-Hz) on a well-characterized immortalized neuronal cell model, human SH-SY5Y cells. ELF-EMF exposure elevated the expession of NOS and O2(-), which were countered by compensatory changes in antioxidant catylase (CAT) activity and enzymatic kinetic parameters related to CYP-450 and CAT activity. Actions of ELF-EMFs on cytokine gene expression were additionally evaluated and found rapidly modified. Confronted with co-exposure to H2O2-induced oxidative stress, ELF-EMF proved not as well counteracted and resulted in a decline in CAT

  16. Extreme EEJ and Topside Ionospheric Response to the 22-23 June 2015 Geomagnetic Storm

    NASA Astrophysics Data System (ADS)

    Astafyeva, E.; Zakharenkova, I.; Alken, P.; Coisson, P.

    2016-12-01

    In this work, we study the ionospheric and thermospheric response to the intense geomagnetic storm of 22-23 June 2015. With the minimum SYM-H excursion of -207 nT, this storm is so far the 2nd strongest geomagnetic storm in the current 24th solar cycle. The storm started with the arrival of a coronal mass ejection at 18:37UT on 22 June 2015. The interplanetary magnetic field (IMF) Bz component changed polarity several times during this storm. Consequently, the interplanetary electric field Ey component repeated this oscillatory behavior, and varied from -15 to +20 mV/m, which is comparable with storm-time levels. Data from multiple ground-based and space-borne instruments showed that both positive and negative ionospheric storms occurred during this storm at middle and low latitudes on both day and night sides. To study the drivers of the observed ionospheric effects, we further analyze variations of thermospheric parameters (neutral mass density and thermospheric O/N2 ratio), as well as the equatorial electrojet (EEJ) data as retrieved from magnetic measurements onboard Swarm satellites. One of the most interesting features of the June 2015 storm is observation of extremely high EEJ values (both eastward and westward), that correlate with variations of the IEF Ey. We find that the storm-time penetration electric fields were, most likely, the main driver of the observed ionospheric effects at the initial phase of the storm, and at the beginning of the main phase. At the end of the main phase, the thermospheric composition changes seemed to contribute as well.

  17. Effects of Mycorrhizae on Carbon Cycling in Response to Extreme Drought

    NASA Astrophysics Data System (ADS)

    Ficken, C. D.; Warren, J.

    2016-12-01

    Plant-mycorrhizal symbioses are being increasingly accepted as drivers of ecosystem-level biogeochemical patterns and play an important role plant resource acquisition. Although some evidence suggests that mycorrhizal association increases plant drought-tolerance, direct comparisons of drought-resilience between mycorrhizal groups (i.e. arbuscular and ectomycorrhizal) are lacking. Indeed, soil CO2 pulses following dry-wet cycles are detectable at the ecosystem scale, but it remains unclear whether these pulses are driven by the activity of mycorrhizae or free-living microbes. These knowledge gaps hinder our ability to predict CO2 fluxes in the face of increased precipitation variability and have broad implications for understanding plant performance during, and recovery following, drought. We predicted that arbuscular mycorrhizae (AM) would be more resilient to drought than ectomycorrhizae (ECM) because narrower AM hyphae may access water from smaller soil pores and because AM produce a glycoprotein that increases soil aggregation. To compare the functioning of AM and ECM throughout drought, we examined soil respiration dynamics between AM- and ECM-dominated mesocosms throughout moderate and extreme drought. Mesocosms were partitioned with mesh dividers into chambers (roots+hyphae+microbes; hyphae+microbes; microbes only) to compare the relative functioning of biotic pools throughout drought. We found that respiration responses to drought differed substantially between AM and ECM-dominated systems. Under dry conditions, respiration from both root- and hyphal-exclusion chambers did not differ between AM and ECM mesocosms. In contrast, under wet conditions, respiration was significantly greater from AM than ECM mesocosms. Following rewetting, the respiration pulse in AM systems was largely due to to free-living microbes (+330% C flux above dry conditions), whereas in ECM systems there was a proportionally greater increase from mycorrhizal chambers (+130%). This

  18. Application of the Extreme Value Distribution to Estimate the Uncertainty of Peak Sound Pressure Levels at the Workplace.

    PubMed

    Lenzuni, Paolo

    2015-07-01

    The purpose of this article is to develop a method for the statistical inference of the maximum peak sound pressure level and of the associated uncertainty. Both quantities are requested by the EU directive 2003/10/EC for a complete and solid assessment of the noise exposure at the workplace. Based on the characteristics of the sound pressure waveform, it is hypothesized that the distribution of the measured peak sound pressure levels follows the extreme value distribution. The maximum peak level is estimated as the largest member of a finite population following this probability distribution. The associated uncertainty is also discussed, taking into account not only the contribution due to the incomplete sampling but also the contribution due to the finite precision of the instrumentation. The largest of the set of measured peak levels underestimates the maximum peak sound pressure level. The underestimate can be as large as 4 dB if the number of measurements is limited to 3-4, which is common practice in occupational noise assessment. The extended uncertainty is also quite large (~2.5 dB), with a weak dependence on the sampling details. Following the procedure outlined in this article, a reliable comparison between the peak sound pressure levels measured in a workplace and the EU directive action limits is possible. Non-compliance can occur even when the largest of the set of measured peak levels is several dB below such limits. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  19. Forest tree responses to extreme drought and some biotic events: Towards a selection according to hazard tolerance?

    NASA Astrophysics Data System (ADS)

    Bréda, Nathalie; Badeau, Vincent

    2008-09-01

    The aim of this paper is to illustrate how some extreme events could affect forest ecosystems. Forest tree response can be analysed using dendroecological methods, as tree-ring widths are strongly controlled by climatic or biotic events. Years with such events induce similar tree responses and are called pointer years. They can result from extreme climatic events like frost, a heat wave, spring water logging, drought or insect damage… Forest tree species showed contrasting responses to climatic hazards, depending on their sensitivity to water shortage or temperature hardening, as illustrated from our dendrochronological database. For foresters, a drought or a pest disease is an extreme event if visible and durable symptoms are induced (leaf discolouration, leaf loss, perennial organs mortality, tree dieback and mortality). These symptoms here are shown, lagging one or several years behind a climatic or biotic event, from forest decline cases in progress since the 2003 drought or attributed to previous severe droughts or defoliations in France. Tree growth or vitality recovery is illustrated, and the functional interpretation of the long lasting memory of trees is discussed. A coupled approach linking dendrochronology and ecophysiology helps in discussing vulnerability of forest stands, and suggests management advices in order to mitigate extreme drought and cope with selective mortality.

  20. The effect of ethnicity on the vascular responses to cold exposure of the extremities.

    PubMed

    Maley, Matthew J; Eglin, Clare M; House, James R; Tipton, Michael J

    2014-11-01

    Cold injuries are more prevalent in individuals of African descent (AFD). Therefore, we investigated the effect of extremity cooling on skin blood flow (SkBF) and temperature (T sk) between ethnic groups. Thirty males [10 Caucasian (CAU), 10 Asian (ASN), 10 AFD] undertook three tests in 30 °C air whilst digit T sk and SkBF were measured: (i) vasomotor threshold (VT) test--arm immersed in 35 °C water progressively cooled to 10 °C and rewarmed to 35 °C to identify vasoconstriction and vasodilatation; (ii) cold-induced vasodilatation (CIVD) test--hand immersed in 8 °C water for 30 min followed by spontaneous warming; (iii) cold sensitivity (CS) test--foot immersed in 15 °C water for 2 min followed by spontaneous warming. Cold sensory thresholds of the forearm and finger were also assessed. In the VT test, vasoconstriction and vasodilatation occurred at a warmer finger T sk in AFD during cooling [21.2 (4.4) vs. 17.0 (3.1) °C, P = 0.034] and warming [22.0 (7.9) vs. 12.1 (4.1) °C, P = 0.002] compared with CAU. In the CIVD test, average SkBF during immersion was greater in CAU [42 (24) %] than ASN [25 (8) %, P = 0.036] and AFD [24 (13) %, P = 0.023]. Following immersion, SkBF was higher and rewarming faster in CAU [3.2 (0.4) °C min(-1)] compared with AFD [2.5 (0.7) °C min(-1), P = 0.037], but neither group differed from ASN [3.0 (0.6) °C min(-1)]. Responses to the CS test and cold sensory thresholds were similar between groups. AFD experienced a more intense protracted finger vasoconstriction than CAU during hand immersion, whilst ASN experienced an intermediate response. This greater sensitivity to cold may explain why AFD are more susceptible to cold injuries.

  1. Estimating Derived Response Levels at the Savannah River Site for Use with Emergency Response Models

    SciTech Connect

    Simpkins, A.A.

    2002-12-06

    Emergency response computer models at the Savannah River Site (SRS) are coupled with real-time meteorological data to estimate dose to individuals downwind of accidental radioactive releases. Currently, these models estimate doses for inhalation and shine pathways, but do not consider dose due to ingestion of contaminated food products. The Food and Drug Administration (FDA) has developed derived intervention levels (DIL) which refer to the radionuclide-specific concentration in food present throughout the relevant period of time, with no intervention, that could lead to an individual receiving a radiation dose equal to the protective action guide. In the event of an emergency, concentrations in various food types are compared with these levels to make interdictions decisions. Prior to monitoring results being available, concentrations in the environmental media (i.e. soil), called derived response levels (DRLs), can be estimated from the DILs and directly compared with computer output to provide preliminary guidance as to whether intervention is necessary. Site-specific derived response levels (DRLs) are developed for ingestion pathways pertinent to SRS: milk, meat, fish, grain, produce, and beverage. This provides decision-makers with an additional tool for use immediately following an accident prior to the acquisition of food monitoring data.

  2. Response of snow-dependent hydrologic extremes to continued global warming.

    PubMed

    Diffenbaugh, Noah S; Scherer, Martin; Ashfaq, Moetasim

    2013-04-01

    Snow accumulation is critical for water availability in the northern hemisphere (1,2), raising concern that global warming could have important impacts on natural and human systems in snow-dependent regions (1,3). Although regional hydrologic changes have been observed (e.g., (1,3-5)), the time of emergence of extreme changes in snow accumulation and melt remains a key unknown for assessing climate change impacts (3,6,7). We find that the CMIP5 global climate model ensemble exhibits an imminent shift towards low snow years in the northern hemisphere, with areas of western North America, northeastern Europe, and the Greater Himalaya showing the strongest emergence during the near-term decades and at 2°C global warming. The occurrence of extremely low snow years becomes widespread by the late-21(st) century, as do the occurrence of extremely high early-season snowmelt and runoff (implying increasing flood risk), and extremely low late-season snowmelt and runoff (implying increasing water stress). Our results suggest that many snow-dependent regions of the northern hemisphere are likely to experience increasing stress from low snow years within the next three decades, and from extreme changes in snow-dominated water resources if global warming exceeds 2°C above the pre-industrial baseline.

  3. Response of snow-dependent hydrologic extremes to continued global warming

    PubMed Central

    Diffenbaugh, Noah S.; Scherer, Martin; Ashfaq, Moetasim

    2013-01-01

    Snow accumulation is critical for water availability in the northern hemisphere 1,2, raising concern that global warming could have important impacts on natural and human systems in snow-dependent regions 1,3. Although regional hydrologic changes have been observed (e.g., 1,3–5), the time of emergence of extreme changes in snow accumulation and melt remains a key unknown for assessing climate change impacts 3,6,7. We find that the CMIP5 global climate model ensemble exhibits an imminent shift towards low snow years in the northern hemisphere, with areas of western North America, northeastern Europe, and the Greater Himalaya showing the strongest emergence during the near-term decades and at 2°C global warming. The occurrence of extremely low snow years becomes widespread by the late-21st century, as do the occurrence of extremely high early-season snowmelt and runoff (implying increasing flood risk), and extremely low late-season snowmelt and runoff (implying increasing water stress). Our results suggest that many snow-dependent regions of the northern hemisphere are likely to experience increasing stress from low snow years within the next three decades, and from extreme changes in snow-dominated water resources if global warming exceeds 2°C above the pre-industrial baseline. PMID:24015153

  4. Response of snow-dependent hydrologic extremes to continued global warming

    SciTech Connect

    Diffenbaugh, Noah; Scherer, Martin; Ashfaq, Moetasim

    2012-01-01

    Snow accumulation is critical for water availability in the Northern Hemisphere1,2, raising concern that global warming could have important impacts on natural and human systems in snow-dependent regions1,3. Although regional hydrologic changes have been observed (for example, refs 1,3 5), the time of emergence of extreme changes in snow accumulation and melt remains a key unknown for assessing climate- change impacts3,6,7. We find that the CMIP5 global climate model ensemble exhibits an imminent shift towards low snow years in the Northern Hemisphere, with areas of western North America, northeastern Europe and the Greater Himalaya showing the strongest emergence during the near- termdecadesandat2 Cglobalwarming.Theoccurrenceof extremely low snow years becomes widespread by the late twenty-first century, as do the occurrences of extremely high early-season snowmelt and runoff (implying increasing flood risk), and extremely low late-season snowmelt and runoff (implying increasing water stress). Our results suggest that many snow-dependent regions of the Northern Hemisphere are likely to experience increasing stress from low snow years within the next three decades, and from extreme changes in snow-dominated water resources if global warming exceeds 2 C above the pre-industrial baseline.

  5. Materials response under extreme conditions: a path to materials science above 1000 GPa

    NASA Astrophysics Data System (ADS)

    Remington, Bruce

    2005-07-01

    Solid state experiments at extreme pressures (10-100 GPa) and strain rates (1.e6 -- 1.e8 1/s) are being developed on high-energy laser facilities. [1] A quasi-isentropic, ramped-pressure (shockless) drive is being developed on the Omega laser. [2] Constitutive models for solid-state strength under these conditions are tested with experiments measuring perturbation growth due to the Rayleigh-Taylor instability in solid-state samples. [3] Lattice compression, phase, and temperature are deduced from extended x-ray absorption fine structure (EXAFS) measurements, from which the shock-induced alpha-omega phase transition in Ti is inferred to occur on sub-nanosec time scales. [4] Time resolved lattice response and phase can be inferred from dynamic x-ray diffraction measurements, where the elastic-plastic (1D-3D) lattice relaxation in shocked Cu is shown to occur promptly (sub-nsec). [5] Large-scale MD simulations have elucidated the microscopic dynamics that underlie the 3D lattice relaxation. [6] Deformation mechanisms, such as the slip-twinning transition in shocked single-crystal Cu, are identified by examining the residual microstructure in recovered samples. [7] Designs will be shown for reaching much higher pressures, (greater than 1000 GPa), in the solid state on the NIF laser. [8] *This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48. [1] B.A. Remington et al., Met. Mat. Trans. 35A, 2587 (2004). [2] J. Edwards et al., PRL 92, 075002 (2004). [3] K.T. Lorenz et al., PoP, in press (May, 2005). [4] B. Yaakobi et al., PRL 92, 095504 (2004). [5] A. Loveridge-Smith et al., PRL 86, 2349 (2001). [6] E.M. Bringa et al., Nature, submitted (March, 2005). [7] M.S. Schneider et al., Met. Mat. Trans. 35A, 2633 (2004). [8] B.A. Remington et al., in press, ApSS 298 (July, 2005).

  6. Neuronal Cellular Responses to Extremely Low Frequency Electromagnetic Field Exposure: Implications Regarding Oxidative Stress and Neurodegeneration

    PubMed Central

    Reale, Marcella; Kamal, Mohammad A.; Patruno, Antonia; Costantini, Erica; D'Angelo, Chiara; Pesce, Miko; Greig, Nigel H.

    2014-01-01

    Neurodegenerative diseases comprise both hereditary and sporadic conditions characterized by an identifying progressive nervous system dysfunction and distinctive neuopathophysiology. The majority are of non-familial etiology and hence environmental factors and lifestyle play key roles in their pathogenesis. The extensive use of and ever increasing worldwide demand for electricity has stimulated societal and scientific interest on the environmental exposure to low frequency electromagnetic fields (EMFs) on human health. Epidemiological studies suggest a positive association between 50/60-Hz power transmission fields and leukemia or lymphoma development. Consequent to the association between EMFs and induction of oxidative stress, concerns relating to development of neurodegenerative diseases, such as Alzheimer disease (AD), have been voiced as the brain consumes the greatest fraction of oxygen and is particularly vulnerable to oxidative stress. Exposure to extremely low frequency (ELF)-EMFs are reported to alter animal behavior and modulate biological variables, including gene expression, regulation of cell survival, promotion of cellular differentiation, and changes in cerebral blood flow in aged AD transgenic mice. Alterations in inflammatory responses have also been reported, but how these actions impact human health remains unknown. We hence evaluated the effects of an electromagnetic wave (magnetic field intensity 1mT; frequency, 50-Hz) on a well-characterized immortalized neuronal cell model, human SH-SY5Y cells. ELF-EMF exposure elevated the expession of NOS and O2−, which were countered by compensatory changes in antioxidant catylase (CAT) activity and enzymatic kinetic parameters related to CYP-450 and CAT activity. Actions of ELF-EMFs on cytokine gene expression were additionally evaluated and found rapidly modified. Confronted with co-exposure to H2O2-induced oxidative stress, ELF-EMF proved not as well counteracted and resulted in a decline in CAT

  7. Efficient Nonparametric Approaches for Estimating the Operating Characteristics of Discrete Item Responses.

    ERIC Educational Resources Information Center

    Samejima, Fumiko

    1998-01-01

    Introduces and discusses the rationale and procedures of two nonparametric approaches to estimating the operating characteristic of a discrete item response, or the conditional probability, given the latent trait, that the examinee's response be that specific response. (SLD)

  8. Assessing item fit for unidimensional item response theory models using residuals from estimated item response functions.

    PubMed

    Haberman, Shelby J; Sinharay, Sandip; Chon, Kyong Hee

    2013-07-01

    Residual analysis (e.g. Hambleton & Swaminathan, Item response theory: principles and applications, Kluwer Academic, Boston, 1985; Hambleton, Swaminathan, & Rogers, Fundamentals of item response theory, Sage, Newbury Park, 1991) is a popular method to assess fit of item response theory (IRT) models. We suggest a form of residual analysis that may be applied to assess item fit for unidimensional IRT models. The residual analysis consists of a comparison of the maximum-likelihood estimate of the item characteristic curve with an alternative ratio estimate of the item characteristic curve. The large sample distribution of the residual is proved to be standardized normal when the IRT model fits the data. We compare the performance of our suggested residual to the standardized residual of Hambleton et al. (Fundamentals of item response theory, Sage, Newbury Park, 1991) in a detailed simulation study. We then calculate our suggested residuals using data from an operational test. The residuals appear to be useful in assessing the item fit for unidimensional IRT models.

  9. The response of the soil microbial food web to extreme rainfall under different plant systems

    NASA Astrophysics Data System (ADS)

    Sun, Feng; Pan, Kaiwen; Tariq, Akash; Zhang, Lin; Sun, Xiaoming; Li, Zilong; Wang, Sizhong; Xiong, Qinli; Song, Dagang; Olatunji, Olusanya Abiodun

    2016-11-01

    An agroforestry experiment was conducted that involved four planting systems: monoculture of the focal species Zanthoxylum bungeanum and mixed cultures of Z. bungeanum and Capsicum annuum, Z. bungeanum and Medicago sativa and Z. bungeanum and Glycine max. Soil microbial food web (microorganisms and nematodes) was investigated under manipulated extreme rainfall in the four planting systems to assess whether presence of neighbor species alleviated the magnitude of extreme rainfall on nutrient uptake of the focal species by increasing the stability of soil food web. Our results indicate that in the focal species and G. max mixed culture, leaf nitrogen contents of the focal species were higher than in the monoculture and in the other mixed cultures under extreme rainfall. This result was mainly due to the significant increase under extreme rainfall of G. max species root biomass, resulting in enhanced microbial resistance and subsequent net nitrogen mineralization rate and leaf nitrogen uptake for the focal species. Differences in functional traits of neighbors had additive effects and led to a marked divergence of soil food-web resistance and nutrient uptake of the focal species. Climate change can indirectly alleviate focal species via its influence on their neighbors.

  10. The response of the soil microbial food web to extreme rainfall under different plant systems

    PubMed Central

    Sun, Feng; Pan, Kaiwen; Tariq, Akash; Zhang, Lin; Sun, Xiaoming; Li, Zilong; Wang, Sizhong; Xiong, Qinli; Song, Dagang; Olatunji, Olusanya Abiodun

    2016-01-01

    An agroforestry experiment was conducted that involved four planting systems: monoculture of the focal species Zanthoxylum bungeanum and mixed cultures of Z. bungeanum and Capsicum annuum, Z. bungeanum and Medicago sativa and Z. bungeanum and Glycine max. Soil microbial food web (microorganisms and nematodes) was investigated under manipulated extreme rainfall in the four planting systems to assess whether presence of neighbor species alleviated the magnitude of extreme rainfall on nutrient uptake of the focal species by increasing the stability of soil food web. Our results indicate that in the focal species and G. max mixed culture, leaf nitrogen contents of the focal species were higher than in the monoculture and in the other mixed cultures under extreme rainfall. This result was mainly due to the significant increase under extreme rainfall of G. max species root biomass, resulting in enhanced microbial resistance and subsequent net nitrogen mineralization rate and leaf nitrogen uptake for the focal species. Differences in functional traits of neighbors had additive effects and led to a marked divergence of soil food-web resistance and nutrient uptake of the focal species. Climate change can indirectly alleviate focal species via its influence on their neighbors. PMID:27874081

  11. Preventing Violent Extremism and "Not in My Name": Theatrical Representation, Artistic Responsibility and Shared Vulnerability

    ERIC Educational Resources Information Center

    Bartlett, Alice

    2011-01-01

    This paper draws on my own recent experience of local artistic engagement with the British government's counter-terrorism strategy, Prevent(ing Violent Extremism). "Not in My Name" uses verbatim theatre techniques to negotiate dialogue within and across communities around a controversial agenda, and has received national acclaim for its…

  12. Preventing Violent Extremism and "Not in My Name": Theatrical Representation, Artistic Responsibility and Shared Vulnerability

    ERIC Educational Resources Information Center

    Bartlett, Alice

    2011-01-01

    This paper draws on my own recent experience of local artistic engagement with the British government's counter-terrorism strategy, Prevent(ing Violent Extremism). "Not in My Name" uses verbatim theatre techniques to negotiate dialogue within and across communities around a controversial agenda, and has received national acclaim for its…

  13. Functional response models to estimate feeding rates of wading birds

    USGS Publications Warehouse

    Collazo, J.A.; Gilliam, J.F.; Miranda-Castro, L.

    2010-01-01

    Forager (predator) abundance may mediate feeding rates in wading birds. Yet, when modeled, feeding rates are typically derived from the purely prey-dependent Holling Type II (HoII) functional response model. Estimates of feeding rates are necessary to evaluate wading bird foraging strategies and their role in food webs; thus, models that incorporate predator dependence warrant consideration. Here, data collected in a mangrove swamp in Puerto Rico in 1994 were reanalyzed, reporting feeding rates for mixed-species flocks after comparing fits of the HoII model, as used in the original work, to the Beddington-DeAngelis (BD) and Crowley-Martin (CM) predator-dependent models. Model CM received most support (AIC c wi = 0.44), but models BD and HoII were plausible alternatives (AIC c ??? 2). Results suggested that feeding rates were constrained by predator abundance. Reductions in rates were attributed to interference, which was consistent with the independently observed increase in aggression as flock size increased (P < 0.05). Substantial discrepancies between the CM and HoII models were possible depending on flock sizes used to model feeding rates. However, inferences derived from the HoII model, as used in the original work, were sound. While Holling's Type II and other purely prey-dependent models have fostered advances in wading bird foraging ecology, evaluating models that incorporate predator dependence could lead to a more adequate description of data and processes of interest. The mechanistic bases used to derive models used here lead to biologically interpretable results and advance understanding of wading bird foraging ecology.

  14. Global crop yield response to extreme heat stress under multiple climate change futures

    NASA Astrophysics Data System (ADS)

    Deryng, Delphine; Conway, Declan; Ramankutty, Navin; Price, Jeff; Warren, Rachel

    2014-03-01

    Extreme heat stress during the crop reproductive period can be critical for crop productivity. Projected changes in the frequency and severity of extreme climatic events are expected to negatively impact crop yields and global food production. This study applies the global crop model PEGASUS to quantify, for the first time at the global scale, impacts of extreme heat stress on maize, spring wheat and soybean yields resulting from 72 climate change scenarios for the 21st century. Our results project maize to face progressively worse impacts under a range of RCPs but spring wheat and soybean to improve globally through to the 2080s due to CO2 fertilization effects, even though parts of the tropic and sub-tropic regions could face substantial yield declines. We find extreme heat stress at anthesis (HSA) by the 2080s (relative to the 1980s) under RCP 8.5, taking into account CO2 fertilization effects, could double global losses of maize yield (ΔY = -12.8 ± 6.7% versus - 7.0 ± 5.3% without HSA), reduce projected gains in spring wheat yield by half (ΔY = 34.3 ± 13.5% versus 72.0 ± 10.9% without HSA) and in soybean yield by a quarter (ΔY = 15.3 ± 26.5% versus 20.4 ± 22.1% without HSA). The range reflects uncertainty due to differences between climate model scenarios; soybean exhibits both positive and negative impacts, maize is generally negative and spring wheat generally positive. Furthermore, when assuming CO2 fertilization effects to be negligible, we observe drastic climate mitigation policy as in RCP 2.6 could avoid more than 80% of the global average yield losses otherwise expected by the 2080s under RCP 8.5. We show large disparities in climate impacts across regions and find extreme heat stress adversely affects major producing regions and lower income countries.

  15. Global crop yield response to extreme heat stress under multiple climate change futures

    NASA Astrophysics Data System (ADS)

    Deryng, D.; Conway, D.; Ramankutty, N.; Price, J.; Warren, R.

    2014-12-01

    Extreme heat stress during the crop reproductive period can be critical for crop productivity. Projected changes in the frequency and severity of extreme climatic events are expected to negatively impact crop yields and global food production. This study applies the global crop model PEGASUS to quantify, for the first time at the global scale, impacts of extreme heat stress on maize, spring wheat and soybean yields resulting from 72 climate change scenarios for the 21st century. Our results project maize to face progressively worse impacts under a range of RCPs but spring wheat and soybean to improve globally through to the 2080s due to CO2 fertilization effects, even though parts of the tropic and sub-tropic regions could face substantial yield declines. We find extreme heat stress at anthesis (HSA) by the 2080s (relative to the 1980s) under RCP 8.5, taking into account CO2 fertilization effects, could double global losses of maize yield (dY = -12.8 ± 6.7% versus -7.0 ± 5.3% without HSA), reduce projected gains in spring wheat yield by half (dY = 34.3 ± 13.5% versus 72.0 ± 10.9% without HSA) and in soybean yield by a quarter (dY = 15.3 ± 26.5% versus 20.4 ± 22.1% without HSA). The range reflects uncertainty due to differences between climate model scenarios; soybean exhibits both positive and negative impacts, maize is generally negative and spring wheat generally positive. Furthermore, when assuming CO2 fertilization effects to be negligible, we observe drastic climate mitigation policy as in RCP 2.6 could avoid more than 80% of the global average yield losses otherwise expected by the 2080s under RCP 8.5. We show large disparities in climate impacts across regions and find extreme heat stress adversely affects major producing regions and lower income countries.

  16. An integrated approach for identifying homogeneous regions of extreme rainfall events and estimating IDF curves in Southern Ontario, Canada: Incorporating radar observations

    NASA Astrophysics Data System (ADS)

    Paixao, Edson; Mirza, M. Monirul Qader; Shephard, Mark W.; Auld, Heather; Klaassen, Joan; Smith, Graham

    2015-09-01

    Reliable extreme rainfall information is required for many applications including infrastructure design, management of water resources, and planning for weather-related emergencies in urban and rural areas. In this study, in situ TBRG sub-daily rainfall rate observations have been supplemented with weather radar information to better capture the spatial and temporal variability of heavy rainfall events regionally. Comparison of extreme rainfall events show that the absolute differences between the rain gauge and radar generally increase with increasing rainfall. Better agreement between the two observations is found when comparing the collocated radar and TBRG annual maximum values. The median difference is <18% for the annual maximum rainfall values ⩽50 mm. The median of difference of IDF estimates obtained through the Gumbel distribution for 10-year return period values computed from TBRG and radar are also found to be 4%. The overall results of this analysis demonstrates the potential value of incorporating remotely sensed radar with traditional point source TBRG network observations to provide additional insight on extreme rainfall events regionally, especially in terms of identifying homogeneous regions of extreme rainfall. The radar observations are particularly useful in areas where there is insufficient TBRG station density to statistically capture the extreme rainfall events.

  17. Plant characteristic estimation using sonar, multispectral reflectance, and electromagnetic response

    NASA Astrophysics Data System (ADS)

    Jones, Carol L.

    Scope and method of study. The goal of this study was to design, test and validate three methods of remotely estimating plant physical and physiological characteristics. A free-space parallel plate electrostatic sensing system operating at medium radio frequency range was used to estimate water content and plant dry biomass. An ultrasound distance sensing system and a multispectral imaging system was used to directly estimate plant height and top view surface area and indirectly estimate plant biomass. NDVI was calculated from the multispectral imaging system data. Combining NDVI with the plant height and top view surface area estimates, a correlation was observed between plant biomass, chlorophyll content and chlorophyll concentration. Findings and conclusions. Plant water content and dry biomass of greenhouse grown spinach were estimated using a free-space electrostatic sensing system (r2 = 0.95). Ultrasonic sensor-based height estimates and top view surface area multispectral image data provided plant biomass estimates in corn and spinach (r 2 = 0.85 and 0.88). Estimates for snap beans were not as convincing (r2 = 0.52). Combining biomass estimates from the height and surface area data obtained by the ultrasonic distance sensor and the multispectral imaging system with NDVI670 calculated from reflectance data from the imaging system provided strong correlations with chlorophyll content in spinach (r 2 = 0.91). This was an improvement from the chlorophyll content estimates using only NDVI670. Correlations with chlorophyll concentration were weak. The strongest correlation was found using the reflectance ratio, NIR/Green (r2 = 0.30).

  18. Inherent insulin sensitivity is a major determinant of multimeric adiponectin responsiveness to short-term weight loss in extreme obesity.

    PubMed

    Mai, Stefania; Walker, Gillian E; Brunani, Amelia; Guzzaloni, Gabriele; Grossi, Glenda; Oldani, Alberto; Aimaretti, Gianluca; Scacchi, Massimo; Marzullo, Paolo

    2014-07-24

    High molecular weight (HMW-A) adiponectin levels mirror alterations in glucose homeostasis better than medium (MMW-A) and low molecular weight (LMW-A) components. In 25 patients with wide-range extreme obesity (BMI 40-77 kg/m(2)), we aimed to explore if improvements of multimeric adiponectin following 4-wk weight loss reflect baseline OGTT-derived insulin sensitivity (ISIOGTT) and disposition index (DIOGTT). Compared to 40 lean controls, adiponectin oligomers were lower in extreme obesity (p < 0.001) and, within this group, HMW-A levels were higher in insulin-sensitive (p < 0.05) than -resistant patients. In obese patients, short-term weight loss did not change total adiponectin levels and insulin resistance, while the distribution pattern of adiponectin oligomers changed due to significant increment of HMW-A (p < 0.01) and reduction of MMW-A (p < 0.05). By multivariate analysis, final HMW-A levels were significantly related to baseline ISIOGTT and final body weight (adjusted R(2) = 0.41). Our data suggest that HMW adiponectin may reflect baseline insulin sensitivity appropriately in the context of extreme obesity. Especially, we documented that HMW-A is promptly responsive to short-term weight loss prior to changes in insulin resistance, by a magnitude that is proportioned to whole body insulin sensitivity. This may suggest an insulin sensitivity-dependent control operated by HMW-A on metabolic dynamics of patients with extreme obesity.

  19. Upper extremity muscle tone and response of tidal volume during manually assisted breathing for patients requiring prolonged mechanical ventilation

    PubMed Central

    Morino, Akira; Shida, Masahiro; Tanaka, Masashi; Sato, Kimihiro; Seko, Toshiaki; Ito, Shunsuke; Ogawa, Shunichi; Yokoi, Yuka; Takahashi, Naoaki

    2015-01-01

    [Purpose] The aim of the present study was to examine, in patients requiring prolonged mechanical ventilation, if the response of tidal volume during manually assisted breathing is dependent upon both upper extremity muscle tone and the pressure intensity of manually assisted breathing. [Subjects] We recruited 13 patients on prolonged mechanical ventilation, and assessed their upper extremity muscle tone using the modified Ashworth scale (MAS). The subjects were assigned to either the low MAS group (MAS≤2, n=7) or the high MAS group (MAS≥3, n=6). [Methods] The manually assisted breathing technique was applied at a pressure of 2 kgf and 4 kgf. A split-plot ANOVA was performed to compare the tidal volume of each pressure during manually assisted breathing between the low and the high MAS groups. [Results] Statistical analysis showed there were main effects of the upper extremity muscle tone and the pressure intensity of the manually assisted breathing technique. There was no interaction between these factors. [Conclusion] Our findings reveal that the tidal volume during the manually assisted breathing technique for patients with prolonged mechanical ventilation depends upon the patient’s upper extremity muscle tone and the pressure intensity. PMID:26357431

  20. Acclimation responses to temperature vary with vertical stratification: implications for vulnerability of soil-dwelling species to extreme temperature events.

    PubMed

    van Dooremalen, Coby; Berg, Matty P; Ellers, Jacintha

    2013-03-01

    The occurrence of summer heat waves is predicted to increase in amplitude and frequency in the near future, but the consequences of such extreme events are largely unknown, especially for belowground organisms. Soil organisms usually exhibit strong vertical stratification, resulting in more frequent exposure to extreme temperatures for surface-dwelling species than for soil-dwelling species. Therefore soil-dwelling species are expected to have poor acclimation responses to cope with temperature changes. We used five species of surface-dwelling and four species of soil-dwelling Collembola that habituate different depths in the soil. We tested for differences in tolerance to extreme temperatures after acclimation to warm and cold conditions. We also tested for differences in acclimation of the underlying physiology by looking at changes in membrane lipid composition. Chill coma recovery time, heat knockdown time and fatty acid profiles were determined after 1 week of acclimation to either 5 or 20 °C. Our results showed that surface-dwelling Collembola better maintained increased heat tolerance across acclimation temperatures, but no such response was found for cold tolerance. Concordantly, four of the five surface-dwelling Collembola showed up to fourfold changes in relative abundance of fatty acids after 1 week of acclimation, whereas none of the soil-dwelling species showed a significant adjustment in fatty acid composition. Strong physiological responses to temperature fluctuations may have become redundant in soil-dwelling species due to the relative thermal stability of their subterranean habitat. Based on the results of the four species studied, we expect that unless soil-dwelling species can temporarily retreat to avoid extreme temperatures, the predicted increase in heat waves under climatic change renders these soil-dwelling species more vulnerable to extinction than species with better physiological capabilities. Being able to act under a larger thermal

  1. Extreme ecological response of a seabird community to unprecedented sea ice cover.

    PubMed

    Barbraud, Christophe; Delord, Karine; Weimerskirch, Henri

    2015-05-01

    Climate change has been predicted to reduce Antarctic sea ice but, instead, sea ice surrounding Antarctica has expanded over the past 30 years, albeit with contrasted regional changes. Here we report a recent extreme event in sea ice conditions in East Antarctica and investigate its consequences on a seabird community. In early 2014, the Dumont d'Urville Sea experienced the highest magnitude sea ice cover (76.8%) event on record (1982-2013: range 11.3-65.3%; mean±95% confidence interval: 27.7% (23.1-32.2%)). Catastrophic effects were detected in the breeding output of all sympatric seabird species, with a total failure for two species. These results provide a new view crucial to predictive models of species abundance and distribution as to how extreme sea ice events might impact an entire community of top predators in polar marine ecosystems in a context of expanding sea ice in eastern Antarctica.

  2. Lower Extremity Ulcers in Systemic Sclerosis: Features and Response to Therapy

    PubMed Central

    Shanmugam, Victoria K.; Price, Patricia; Attinger, Christopher E.; Steen, Virginia D.

    2010-01-01

    Nondigital lower extremity ulcers are a difficult to treat complication of scleroderma, and a significant cause of morbidity. The purpose of this study was to evaluate the prevalence of nondigital lower extremity ulcers in scleroderma and describe the associations with autoantibodies and genetic prothrombotic states. A cohort of 249 consecutive scleroderma patients seen in the Georgetown University Hosptial Division of Rheumatology was evaluated, 10 of whom had active ulcers, giving a prevalence of 4.0%. Patients with diffuse scleroderma had shorter disease duration at the time of ulcer development (mean 4.05 years ± 0.05) compared to those with limited disease (mean 22.83 years ± 5.612, P value .0078). Ulcers were bilateral in 70%. In the 10 patients with ulcers, antiphospholipid antibodies were positive in 50%, and genetic prothrombotic screen was positive in 70% which is higher than expected based on prevalence reports from the general scleroderma population. Of patients with biopsy specimens available (n = 5), fibrin occlusive vasculopathy was seen in 100%, and all of these patients had either positive antiphospholipid antibody screen, or positive genetic prothrombotic profile. We recommend screening scleroderma patients with lower extremity ulcers for the presence of anti-phospholipid antibodies and genetic prothrombotic states. PMID:20827313

  3. Extreme precipitation response to climate perturbations in an atmospheric mesoscale model

    NASA Astrophysics Data System (ADS)

    Attema, Jisk J.; Loriaux, Jessica M.; Lenderink, Geert

    2014-01-01

    Observations of extreme (sub-)hourly precipitation at mid-latitudes show a large dependency on the dew point temperature often close to 14% per degree—2 times the dependency of the specific humidity on dew point temperature which is given by the Clausius-Clapeyron (CC) relation. By simulating a selection of 11 cases over the Netherlands characterized by intense showers, we investigate this behavior in the non-hydrostatic weather prediction model Harmonie at a resolution of 2.5 km. These experiments are repeated using perturbations of the atmospheric profiles of temperature and humidity: (i) using an idealized approach with a 2° warmer (colder) atmosphere assuming constant relative humidity, and (ii) using changes in temperature and humidity derived from a long climate change simulation at 2° global warming. All perturbations have a difference in the local dew point temperature compared to the reference of approximately 2°. Differences are considerable between the cases, with dependencies ranging from almost zero to an increase of 18% per degree rise of the dew point temperature. On average however, we find an increase of extreme precipitation intensity of 11% per degree for the idealized perturbation, and 9% per degree for the climate change perturbation. For the most extreme events these dependencies appear to approach a rate of 11-14% per degree, in closer agreement with the observed relation.

  4. Bayesian Estimation of Multi-Unidimensional Graded Response IRT Models

    ERIC Educational Resources Information Center

    Kuo, Tzu-Chun

    2015-01-01

    Item response theory (IRT) has gained an increasing popularity in large-scale educational and psychological testing situations because of its theoretical advantages over classical test theory. Unidimensional graded response models (GRMs) are useful when polytomous response items are designed to measure a unified latent trait. They are limited in…

  5. Bayesian Estimation of Multi-Unidimensional Graded Response IRT Models

    ERIC Educational Resources Information Center

    Kuo, Tzu-Chun

    2015-01-01

    Item response theory (IRT) has gained an increasing popularity in large-scale educational and psychological testing situations because of its theoretical advantages over classical test theory. Unidimensional graded response models (GRMs) are useful when polytomous response items are designed to measure a unified latent trait. They are limited in…

  6. Using Climate Variability to Predict Annual Precipitation and Estimate the Persistence of Climate Extremes for Major Urban Areas and Regions within the United States

    NASA Astrophysics Data System (ADS)

    Giovannettone, J. P.

    2015-12-01

    Relationships between climate variability and precipitation in several urban areas throughout the United States are developed using various global climate indices. Precipitation data for over 1200 stations are obtained from the United States Historical Climatology Network maintained by the National Climate Data Center, NOAA. All data are averaged over an extended period (up to five years) and correlated to several climate indices averaged over a period of equal length using lag times also up to five years. The period length and lag time are optimized in order to produce the highest correlation. The index that best correlates with precipitation for each urban area analyzed in the current study is identified and used to create regions within the United States that are predominantly affected by a particular index; strong correlations (r2 values > 0.70) were found in all regions. The final result is a map of the United States that displays the spatial distribution of each region. These results, which include the specific relationships developed for each region and urban area, will not only allow a greater understanding of the major mechanisms that are responsible for rainfall variability throughout the United States, but will also result in improved predictability of precipitation over multiple time scales, including seasonal and annual. In addition, the ability to predict total rainfall for periods greater than one year will allow an estimate of the persistence of trends and extreme events, such as periods of drought or above-average rainfall, to be made in advance; how far these projections can be made in advance depends on the lag times used to create each site-specific and regional correlation. An example related to the California Drought is given.

  7. Pattern recognition techniques in estimation of rainfall extreme events spatiotemporal characteristic: case study of a subtropical catchment in south-eastern Brazil

    NASA Astrophysics Data System (ADS)

    Laverde-Barajas, Miguel; Corzo Perez, Gerald; Solomatine, Dimitri

    2017-04-01

    Characteristics of rainfall events such as magnitude, duration and spatial extension determine the level of damage associated with natural hazards. This research uses pattern recognition techniques to estimate spatiotemporal characteristics of rainfall extreme events. A two-step approach is applied: First, the analysis in time is carried out where statistical information (mainly quantiles) is obtained for each cell. Second, a spatial 3D cluster analysis method is used to identify connected components of extreme rainfall events. This approach is applied to Near-Real-Time (NRT) satellite-derived rainfall products using connected component labelling cluster algorithm in three-dimensions. By using the 90th quantile threshold to denote an extreme condition, four types of rainfall events are defined: (1) local and short magnitude events, (2) long temporal duration events, (3) large spatially extension events and (4) spatially extended and long temporal duration events. Here a skill score evaluation of NRT satellite derived rainfall products is performed to assist the detection of these different type of extreme events. In this research, four NRT satellite products (CMORPH, PERSIANN-GCCS, TRMM-RT and the Hydro-Estimator) are compared against the recently released Multi-Source Weighted Ensemble Precipitation MSWEP (our reference model) in a subtropical catchment in southeastern Brazil during monsoon seasons from 2007 to 2014. The presented methodology allows for clustering and visual representation of spatial intensity, location and extension, as well as for classifying the dominant type of events in the region. Results show that CMORPH showed the best performance (close to the reference) for identifying different types of spatiotemporal extreme events in the study area. Further research is aimed at linking this approach to hydrological flood modelling.

  8. Response Surface Model (RSM)-based Benefit Per Ton Estimates

    EPA Pesticide Factsheets

    The tables below are updated versions of the tables appearing in The influence of location, source, and emission type in estimates of the human health benefits of reducing a ton of air pollution (Fann, Fulcher and Hubbell 2009).

  9. Nonsteroidal anti-inflammatory drugs may affect cytokine response and benefit healing of combat-related extremity wounds.

    PubMed

    Lisboa, Felipe A; Bradley, Matthew J; Hueman, Matthew T; Schobel, Seth A; Gaucher, Beverly J; Styrmisdottir, Edda L; Potter, Benjamin K; Forsberg, Jonathan A; Elster, Eric A

    2017-04-01

    After adequate operative debridement and antimicrobial therapies, combat-related extremity wounds that either heal or fail are both associated with a distinct inflammatory response. Short-term use of nonsteroidal anti-inflammatory drugs in postoperative pain management may affect this response and, by consequence, the healing potential of these wounds. We investigated whether patients treated with nonsteroidal anti-inflammatory drugs had a distinct inflammatory response; different rates of critical colonization, defined as >10(5) colony forming units on quantitative bacteriology; and healing potential. We retrospectively reviewed the records of 73 patients with combat-related extremity wounds. Patients were separated into 2 groups: those who received nonsteroidal anti-inflammatory drugs during the debridement period (nonsteroidal anti-inflammatory drugs group, N = 17) and those who did not (control group; N = 56). Serum and wound tissue samples collected during each operative debridement were measured for 32 known cytokines and tested for quantitative bacteriology, respectively. We compared cytokine concentrations between groups and then designed a logistic regression model to identify variables associated with successful wound healing, while controlling for known confounders. Despite similar demographics and wound characteristics, the nonsteroidal anti-inflammatory drugs group had significant lesser concentrations of inflammatory cytokines, interleukin-2, interleukin-6, interleukin-8, and monocyte chemoattractant protein-1. On multivariate analysis, nonsteroidal anti-inflammatory drug treatment emerged as a predictor of successful wound healing after controlling for known confounders such as wound size, tobacco use, Acute Physiology and Chronic Health Evaluation II score, and critical colonization. Treatment with nonsteroidal anti-inflammatory drugs for postoperative pain management after major combat-related extremity trauma is associated with lesser

  10. Modelling Tradeoffs Evolution in Multipurpose Water Systems Operation in Response to Extreme Events

    NASA Astrophysics Data System (ADS)

    Mason, E.; Gazzotti, P.; Amigoni, F.; Giuliani, M.; Castelletti, A.

    2015-12-01

    Multipurpose water resource systems are usually operated on a tradeoff of the operating objectives, which - under steady state climatic and socio-economic boundary conditions - is supposed to ensure a fair and/or efficient balance among the conflicting interests. Extreme variability in the system's drivers might affect operators' risk aversion and force a change in the tradeoff. Properly accounting for these shifts is key to any rigorous retrospective assessment of operators' behavior and the associated system's performance. In this study, we explore how the selection of different optimal tradeoffs among the operating objectives is linked to the variations of the boundary conditions, such as, for example, drifting rainfall season or remarkable changes in crop and energy prices. We argue that tradeoff selection is driven by recent, extreme variations in system performance: underperforming on one of the operating objective target value should push the tradeoff toward the disadvantaged objective. To test this assumption, we developed a rational procedure to simulate the operators' tradeoff selection process. We map the selection onto a multi lateral negotiation process, where different multiple, virtual agents optimize different operating objectives. The agents periodically negotiate a compromise on the operating policy. The agent's rigidity in each negotiation round is determined by the recent system performances according to the specific objective it represents. The negotiation follows a set-based egocentric monotonic concession protocol: at each negotiation step an agent incrementally adds some options to the set of its acceptable compromises and (possibly) accepts lower and lower satisfying policies until an agreement is achieved. We apply this reiterated negotiation framework on the regulated Lake Como, Italy, simulating the lake dam operation and its recurrent updates over the last 50 years. The operation aims to balance shoreline flood prevention and irrigation

  11. Estimation of optimum density and temperature for maximum efficiency of tin ions in Z discharge extreme ultraviolet sources

    SciTech Connect

    Masnavi, Majid; Nakajima, Mitsuo; Hotta, Eiki; Horioka, Kazuhiko; Niimi, Gohta; Sasaki, Akira

    2007-02-01

    Extreme ultraviolet (EUV) discharge-based lamps for EUV lithography need to generate extremely high power in the narrow spectrum band of 13.5{+-}0.135 nm. A simplified collisional-radiative model and radiative transfer solution for an isotropic medium were utilized to investigate the wavelength-integrated light outputs in tin (Sn) plasma. Detailed calculations using the Hebrew University-Lawrence Livermore atomic code were employed for determination of necessary atomic data of the Sn{sup 4+} to Sn{sup 13+} charge states. The result of model is compared with experimental spectra from a Sn-based discharge-produced plasma. The analysis reveals that considerably larger efficiency compared to the so-called efficiency of a black-body radiator is formed for the electron density {approx_equal}10{sup 18} cm{sup -3}. For higher electron density, the spectral efficiency of Sn plasma reduces due to the saturation of resonance transitions.

  12. Marked effects of extreme levels of lipoprotein(a) on estimation of low-density lipoprotein cholesterol.

    PubMed

    Saeedi, Ramesh; Li, Min; Allard, Matt; Frohlich, Jiri

    2014-08-01

    Low-density lipoprotein cholesterol (LDL-C) is usually calculated using the Friedewald equation. However, this calculation method does not account for the cholesterol associated with lipoprotein(a) [Lp(a)]. Using the Dahlen equation, Li et al. have shown a strong positive correlation between serum Lp(a) levels and overestimation of LDL-C levels. To determine how the extreme levels of Lp(a) influence the LDL-C calculation. We performed a retrospective chart review of the lipid profile and Lp(a) of 223 patients (men and women). LDL-C was calculated using the Friedewald equation. Lp(a) concentrations were measured by an ELISA. Other serum lipids were measured enzymatically by standard methodology. Corrected LDL-C was calculated using the Dahlen equation. We found that this overestimation is very significant in individuals with extreme levels of Lp(a) (mean overestimation of 40% at Lp(a) >1200mg/L). Calculated LDL-C is markedly overestimated in patients with extreme levels of Lp(a). Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  13. Transcriptomes of the Extremely Thermoacidophilic Archaeon Metallosphaera sedula Exposed to Metal "Shock" Reveal Generic and Specific Metal Responses.

    PubMed

    Wheaton, Garrett H; Mukherjee, Arpan; Kelly, Robert M

    2016-08-01

    The extremely thermoacidophilic archaeon Metallosphaera sedula mobilizes metals by novel membrane-associated oxidase clusters and, consequently, requires metal resistance strategies. This issue was examined by "shocking" M. sedula with representative metals (Co(2+), Cu(2+), Ni(2+), UO2 (2+), Zn(2+)) at inhibitory and subinhibitory levels. Collectively, one-quarter of the genome (554 open reading frames [ORFs]) responded to inhibitory levels, and two-thirds (354) of the ORFs were responsive to a single metal. Cu(2+) (259 ORFs, 106 Cu(2+)-specific ORFs) and Zn(2+) (262 ORFs, 131 Zn(2+)-specific ORFs) triggered the largest responses, followed by UO2 (2+) (187 ORFs, 91 UO2 (2+)-specific ORFs), Ni(2+) (93 ORFs, 25 Ni(2+)-specific ORFs), and Co(2+) (61 ORFs, 1 Co(2+)-specific ORF). While one-third of the metal-responsive ORFs are annotated as encoding hypothetical proteins, metal challenge also impacted ORFs responsible for identifiable processes related to the cell cycle, DNA repair, and oxidative stress. Surprisingly, there were only 30 ORFs that responded to at least four metals, and 10 of these responded to all five metals. This core transcriptome indicated induction of Fe-S cluster assembly (Msed_1656-Msed_1657), tungsten/molybdenum transport (Msed_1780-Msed_1781), and decreased central metabolism. Not surprisingly, a metal-translocating P-type ATPase (Msed_0490) associated with a copper resistance system (Cop) was upregulated in response to Cu(2+) (6-fold) but also in response to UO2 (2+) (4-fold) and Zn(2+) (9-fold). Cu(2+) challenge uniquely induced assimilatory sulfur metabolism for cysteine biosynthesis, suggesting a role for this amino acid in Cu(2+) resistance or issues in sulfur metabolism. The results indicate that M. sedula employs a range of physiological and biochemical responses to metal challenge, many of which are specific to a single metal and involve proteins with yet unassigned or definitive functions. The mechanisms by which extremely

  14. Transcriptomes of the Extremely Thermoacidophilic Archaeon Metallosphaera sedula Exposed to Metal “Shock” Reveal Generic and Specific Metal Responses

    PubMed Central

    Wheaton, Garrett H.; Mukherjee, Arpan

    2016-01-01

    ABSTRACT The extremely thermoacidophilic archaeon Metallosphaera sedula mobilizes metals by novel membrane-associated oxidase clusters and, consequently, requires metal resistance strategies. This issue was examined by “shocking” M. sedula with representative metals (Co2+, Cu2+, Ni2+, UO22+, Zn2+) at inhibitory and subinhibitory levels. Collectively, one-quarter of the genome (554 open reading frames [ORFs]) responded to inhibitory levels, and two-thirds (354) of the ORFs were responsive to a single metal. Cu2+ (259 ORFs, 106 Cu2+-specific ORFs) and Zn2+ (262 ORFs, 131 Zn2+-specific ORFs) triggered the largest responses, followed by UO22+ (187 ORFs, 91 UO22+-specific ORFs), Ni2+ (93 ORFs, 25 Ni2+-specific ORFs), and Co2+ (61 ORFs, 1 Co2+-specific ORF). While one-third of the metal-responsive ORFs are annotated as encoding hypothetical proteins, metal challenge also impacted ORFs responsible for identifiable processes related to the cell cycle, DNA repair, and oxidative stress. Surprisingly, there were only 30 ORFs that responded to at least four metals, and 10 of these responded to all five metals. This core transcriptome indicated induction of Fe-S cluster assembly (Msed_1656-Msed_1657), tungsten/molybdenum transport (Msed_1780-Msed_1781), and decreased central metabolism. Not surprisingly, a metal-translocating P-type ATPase (Msed_0490) associated with a copper resistance system (Cop) was upregulated in response to Cu2+ (6-fold) but also in response to UO22+ (4-fold) and Zn2+ (9-fold). Cu2+ challenge uniquely induced assimilatory sulfur metabolism for cysteine biosynthesis, suggesting a role for this amino acid in Cu2+ resistance or issues in sulfur metabolism. The results indicate that M. sedula employs a range of physiological and biochemical responses to metal challenge, many of which are specific to a single metal and involve proteins with yet unassigned or definitive functions. IMPORTANCE The mechanisms by which extremely thermoacidophilic archaea resist

  15. Development of an artificial neural network based multi-model ensemble to estimate the northeast monsoon rainfall over south peninsular India: an application of extreme learning machine

    NASA Astrophysics Data System (ADS)

    Acharya, Nachiketa; Shrivastava, Nitin Anand; Panigrahi, B. K.; Mohanty, U. C.

    2014-09-01

    The south peninsular part of India gets maximum amount of rainfall during the northeast monsoon (NEM) season [October to November (OND)] which is the primary source of water for the agricultural activities in this region. A nonlinear method viz., Extreme learning machine (ELM) has been employed on general circulation model (GCM) products to make the multi-model ensemble (MME) based estimation of NEM rainfall (NEMR). The ELM is basically is an improved learning algorithm for the single feed-forward neural network (SLFN) architecture. The 27 year (1982-2008) lead-1 (using initial conditions of September for forecasting the mean rainfall of OND) hindcast runs (1982-2008) from seven GCM has been used to make MME. The improvement of the proposed method with respect to other regular MME (simple arithmetic mean of GCMs (EM) and singular value decomposition based multiple linear regressions based MME) has been assessed through several skill metrics like Spread distribution, multiplicative bias, prediction errors, the yield of prediction, Pearson's and Kendal's correlation coefficient and Wilmort's index of agreement. The efficiency of ELM estimated rainfall is established by all the stated skill scores. The performance of ELM in extreme NEMR years, out of which 4 years are characterized by deficit rainfall and 5 years are identified as excess, is also examined. It is found that the ELM could expeditiously capture these extremes reasonably well as compared to the other MME approaches.

  16. Extreme ecological response of a seabird community to unprecedented sea ice cover

    PubMed Central

    Barbraud, Christophe; Delord, Karine; Weimerskirch, Henri

    2015-01-01

    Climate change has been predicted to reduce Antarctic sea ice but, instead, sea ice surrounding Antarctica has expanded over the past 30 years, albeit with contrasted regional changes. Here we report a recent extreme event in sea ice conditions in East Antarctica and investigate its consequences on a seabird community. In early 2014, the Dumont d'Urville Sea experienced the highest magnitude sea ice cover (76.8%) event on record (1982–2013: range 11.3–65.3%; mean±95% confidence interval: 27.7% (23.1–32.2%)). Catastrophic effects were detected in the breeding output of all sympatric seabird species, with a total failure for two species. These results provide a new view crucial to predictive models of species abundance and distribution as to how extreme sea ice events might impact an entire community of top predators in polar marine ecosystems in a context of expanding sea ice in eastern Antarctica. PMID:26064653

  17. Ecological Responses to Extreme Flooding Events: A Case Study with a Reintroduced Bird

    PubMed Central

    Soriano-Redondo, Andrea; Bearhop, Stuart; Cleasby, Ian R.; Lock, Leigh; Votier, Stephen C.; Hilton, Geoff M.

    2016-01-01

    In recent years numerous studies have documented the effects of a changing climate on the world’s biodiversity. Although extreme weather events are predicted to increase in frequency and intensity and are challenging to organisms, there are few quantitative observations on the survival, behaviour and energy expenditure of animals during such events. We provide the first data on activity and energy expenditure of birds, Eurasian cranes Grus grus, during the winter of 2013–14, which saw the most severe floods in SW England in over 200 years. We fitted 23 cranes with telemetry devices and used remote sensing data to model flood dynamics during three consecutive winters (2012–2015). Our results show that during the acute phase of the 2013–14 floods, potential feeding areas decreased dramatically and cranes restricted their activity to a small partially unflooded area. They also increased energy expenditure (+15%) as they increased their foraging activity and reduced resting time. Survival did not decline in 2013–14, indicating that even though extreme climatic events strongly affected time-energy budgets, behavioural plasticity alleviated any potential impact on fitness. However under climate change scenarios such challenges may not be sustainable over longer periods and potentially could increase species vulnerability. PMID:27345214

  18. Ecological Responses to Extreme Flooding Events: A Case Study with a Reintroduced Bird.

    PubMed

    Soriano-Redondo, Andrea; Bearhop, Stuart; Cleasby, Ian R; Lock, Leigh; Votier, Stephen C; Hilton, Geoff M

    2016-06-27

    In recent years numerous studies have documented the effects of a changing climate on the world's biodiversity. Although extreme weather events are predicted to increase in frequency and intensity and are challenging to organisms, there are few quantitative observations on the survival, behaviour and energy expenditure of animals during such events. We provide the first data on activity and energy expenditure of birds, Eurasian cranes Grus grus, during the winter of 2013-14, which saw the most severe floods in SW England in over 200 years. We fitted 23 cranes with telemetry devices and used remote sensing data to model flood dynamics during three consecutive winters (2012-2015). Our results show that during the acute phase of the 2013-14 floods, potential feeding areas decreased dramatically and cranes restricted their activity to a small partially unflooded area. They also increased energy expenditure (+15%) as they increased their foraging activity and reduced resting time. Survival did not decline in 2013-14, indicating that even though extreme climatic events strongly affected time-energy budgets, behavioural plasticity alleviated any potential impact on fitness. However under climate change scenarios such challenges may not be sustainable over longer periods and potentially could increase species vulnerability.

  19. ESTIMATION OF RESPONSE-SPECTRAL VALUES AS FUNCTIONS OF MAGNITUDE, DISTANCE, AND SITE CONDITIONS.

    USGS Publications Warehouse

    Joyner, W.B.; Boore, D.M.; ,

    1983-01-01

    Horizontal pseudo-velocity response was analyzed for twelve shallow earthquakes in western North America. Estimation of response-spectral values was related to magnitude, distance and site conditions. Errors in the methods are analyzed.

  20. ZnO quantum dot-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity

    NASA Astrophysics Data System (ADS)

    Lu, Yanghua; Wu, Zhiqian; Xu, Wenli; Lin, Shisheng

    2016-12-01

    A ZnO quantum dot photo-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity of more than 1915 A W-1 and detectivity of more than 1.02 × 1013 Jones (Jones = cm Hz1/2 W-1) has been demonstrated. The interfaced h-BN layer increases the barrier height at the graphene/GaN heterojunction, which decreases the dark current and improves the on/off current ratio of the device. The photo-doping effect increases the barrier height and carrier concentration at the graphene/h-BN/GaN heterojunction, thus the responsivity is improved from 1473 A W-1 to 1915 A W-1 and the detectivity is improved from 5.8 × 1012 to 1.0 × 1013 Jones. Moreover, all of the responsivity and detectivity values are the highest values among all the graphene-based ultraviolet photodetectors.

  1. Estimating the Nominal Response Model under Nonnormal Conditions

    ERIC Educational Resources Information Center

    Preston, Kathleen Suzanne Johnson; Reise, Steven Paul

    2014-01-01

    The nominal response model (NRM), a much understudied polytomous item response theory (IRT) model, provides researchers the unique opportunity to evaluate within-item category distinctions. Polytomous IRT models, such as the NRM, are frequently applied to psychological assessments representing constructs that are unlikely to be normally…

  2. An Item Response Model for the Estimation of Demographic Effects.

    ERIC Educational Resources Information Center

    Reiser, Mark

    1983-01-01

    In studies involving matrix sampling on items, it is often the case that there are too few responses per individual to use latent trait item response models. A model is formulated wherein individual level variability appears as independent error within the cells of a cross classification of demographic variables. (JKS)

  3. Estimating the Nominal Response Model under Nonnormal Conditions

    ERIC Educational Resources Information Center

    Preston, Kathleen Suzanne Johnson; Reise, Steven Paul

    2014-01-01

    The nominal response model (NRM), a much understudied polytomous item response theory (IRT) model, provides researchers the unique opportunity to evaluate within-item category distinctions. Polytomous IRT models, such as the NRM, are frequently applied to psychological assessments representing constructs that are unlikely to be normally…

  4. Tolerance and responsive gene expression of Sogatella furcifera under extreme temperature stresses are altered by its vectored plant virus

    PubMed Central

    Xu, Donglin; Zhong, Ting; Feng, Wendi; Zhou, Guohui

    2016-01-01

    Southern rice black-streaked dwarf virus (SRBSDV), a newly emerged fijivirus causing great loss to rice production in eastern and southeastern Asian countries in recent years, is efficiently transmitted by a rice pest, white-backed planthopper (WBPH, Sogatella furcifera) in a persistent, circulative propagative manner and can be considered as an insect virus. In this study, SRBSDV infection in WBPH was found to increase the vector’s death rate under extreme cold stress but improve its survival rate under extreme heat stress. Digital gene expression profiling based on RNA-Seq revealed different gene regulation patterns in WBPH under viral and/or temperature stress. Under cold stress, the virus infection upregulated 1540 genes and downregulated 131 genes in the insect, most of which were related to membrane properties and biological processes of actin and cytoskeleton; whereas under heat stress, it upregulated 363 genes and downregulated 548 genes, most of which were associated to metabolism and intracellular organelles. Several types of stress-responsive genes involving intestinal mucin, cuticle protein, ubiquitin protease, immune response, RNA interference and heat shock response, were largely upregulated under cold stress, but largely downregulated under heat stress, by SRBSDV infection. Our results suggest two distinct mechanisms of virus-altered vector insect tolerance to temperature stress. PMID:27531640

  5. Word Frequency Estimates Revisited--A Response to Alderson (2007)

    ERIC Educational Resources Information Center

    McGee, Iain

    2008-01-01

    Alderson's (2007) paper investigated whether subjective frequency counts for words might be a reliable substitute for corpus data. Alderson is critical of previous research which has found high correlations between corpus data and subjective estimates, and he argues that his own research, "has failed to show that frequency judgements can…

  6. Osmoregulation in an avian nectarivore, the whitebellied sunbird Nectarinia talatala: response to extremes of diet concentration.

    PubMed

    Fleming, P A; Nicolson, S W

    2003-06-01

    Water intake of nectarivores is intrinsically linked to nectar concentration. Osmoregulation in whitebellied sunbirds Nectarinia talatala (body mass 9.3+/-0.1 g, mean +/- S.D., N=7), was examined by feeding them sucrose solutions, equivalent to extreme diet concentrations (0.07-2.5 mol l(-1) sucrose; 2-65% w/w), with and without supplementary drinking water. Total water gain was 33-515% of body mass daily. Cloacal fluid (CF) volume increased with diet dilution from 0.4% to 309% of body mass while increases in evaporative water loss (obtained by difference) were also recorded. Osmolality of CF demonstrated the largest scope yet recorded for a bird and was significantly correlated with water flux: mean values were 6-460 mosm kg(-1) H(2)O (minimum 3, maximum 1900 mosm kg(-1)). When supplementary water was provided, its consumption by birds fed concentrated diets (2.5 mol l(-1) sucrose) led to a dramatic reduction in CF osmolality, from 461+/-253 to 80+/-119 mosm kg(-1) fluid. Sunbirds maintained energy balance on sucrose diets varying tenfold in concentration, from 0.25 to 2.5 mol l(-1); however, on extremely dilute diets (0.07 and 0.1 mol l(-1) sucrose, lower than natural nectar concentrations) their inability to maintain energy balance was probably due to excess preformed water. Total osmotic excretion and concentrations of Na(+) and K(+) increased with high water fluxes, and are a possible physiological constraint for nectarivorous birds on artificial dilute diets devoid of electrolytes. Even low electrolyte levels in nectars may be adequate to replace these losses, but other physiological limitations to the intake of dilute nectars are increased energetic costs of solute recovery, increased heat loss and interference with digestive processes. Sunbirds therefore deal with sugar solutions spanning the range of nectar concentrations by shutting down water excretion on concentrated diets, or, on dilute diets, by producing extremely dilute CF with some of the lowest

  7. Characterising the Geomorphic Response of a Tropical Mega-River to an Extreme, Cyclone Induced, Flood Event.

    NASA Astrophysics Data System (ADS)

    Hackney, C. R.; Leyland, J.; Darby, S. E.; Parsons, D. R.; Aalto, R. E.; Nicholas, A. P.; Best, J.

    2014-12-01

    Extreme events have the ability to induce extensive geomorphic change in fluvial systems as a result of elevated discharge levels, increased sediment transport capacity and associated changes in sheer stresses along channel boundaries. Understanding how rapid rises in water levels change flow structures and channel boundary roughness is key to understanding the relative significance of large events in terms of driving local and system wide geomorphic change. However, capturing the fluvial process dynamics in operation during such events is technically and logistically difficult, especially in the world's largest rivers. During September 2013, on the peak of the monsoon, a series of tropical cyclones induced a large flood event within the Mekong basin. At the peak of the flood wave, discharge measured ~60000 m3/s; the 11th largest flood on record. Pre and post event high resolution topographic surveys of parts of the bed and bank were captured using a combination of contiguous multibeam echo sounding (MBES) and terrestrial laser scanning (TLS) during the event. Simultaneously detailed measurements of cross sectional and near bank flow structure were acquired using an acoustic Doppler current profiler (aDcp). Together, these unique datasets can be used to characterise and assess the geomorphic impact of a cyclone induced extreme flood event on the Mekong. We show how flow structures in the near bank region evolve with stage during the extreme event and how the associated geomorphic response is modulated by the distinctive process dynamics of a mega-river.

  8. Estimation of in-situ bioremediation system cost using a hybrid Extreme Learning Machine (ELM)-particle swarm optimization approach

    NASA Astrophysics Data System (ADS)

    Yadav, Basant; Ch, Sudheer; Mathur, Shashi; Adamowski, Jan

    2016-12-01

    In-situ bioremediation is the most common groundwater remediation procedure used for treating organically contaminated sites. A simulation-optimization approach, which incorporates a simulation model for groundwaterflow and transport processes within an optimization program, could help engineers in designing a remediation system that best satisfies management objectives as well as regulatory constraints. In-situ bioremediation is a highly complex, non-linear process and the modelling of such a complex system requires significant computational exertion. Soft computing techniques have a flexible mathematical structure which can generalize complex nonlinear processes. In in-situ bioremediation management, a physically-based model is used for the simulation and the simulated data is utilized by the optimization model to optimize the remediation cost. The recalling of simulator to satisfy the constraints is an extremely tedious and time consuming process and thus there is need for a simulator which can reduce the computational burden. This study presents a simulation-optimization approach to achieve an accurate and cost effective in-situ bioremediation system design for groundwater contaminated with BTEX (Benzene, Toluene, Ethylbenzene, and Xylenes) compounds. In this study, the Extreme Learning Machine (ELM) is used as a proxy simulator to replace BIOPLUME III for the simulation. The selection of ELM is done by a comparative analysis with Artificial Neural Network (ANN) and Support Vector Machine (SVM) as they were successfully used in previous studies of in-situ bioremediation system design. Further, a single-objective optimization problem is solved by a coupled Extreme Learning Machine (ELM)-Particle Swarm Optimization (PSO) technique to achieve the minimum cost for the in-situ bioremediation system design. The results indicate that ELM is a faster and more accurate proxy simulator than ANN and SVM. The total cost obtained by the ELM-PSO approach is held to a minimum

  9. Estimation of extreme sea levels along the Bangladesh coast due to storm surge and sea level rise using EEMD and EVA

    NASA Astrophysics Data System (ADS)

    Lee, Han Soo

    2013-09-01

    Extreme sea levels due to storm surge and future sea level rise (SLR) in the year 2050 are estimated using ensemble empirical mode decomposition (EEMD) and extreme value analysis (EVA) based on long-term sea level records from Hiron Point (HP) on the coast of western Bangladesh. EEMD is an adaptive method that can detrend the nonlinear trend and separate the tidal motions from the original sea level records to reconstruct storm surge levels at HP. The reconstructed storm surge levels are then applied to EVA to obtain the extreme storm surges in the target return periods at a 95% confidence interval (CI). The 30, 50, and 100 year return levels at HP obtained by EVA are 1.59, 1.66, and 1.75 m. The SLR trend obtained from EEMD is 4.46 mm/yr over April 1990 to March 2009, which is larger than the recent altimetry-based global rate of 3.3 ± 0.4 mm/yr over the period from 1993 to 2007. The resulting SLR in 2050 is estimated as 0.34 m. Therefore, the extreme sea level in 2050 due to SLR and the storm surge at a 100 year return level would be 2.09 m (95% CI from 1.91 to 2.48 m). The SLR depends not only on changes in the mass and volume of sea water but also on other factors, such as local subsidence, river discharge, sediment and the effects of vegetation. The residual nonlinear trend of SLR obtained from EEMD can be regarded as an adaptive sea level after considering those factors and their nonlinearity.

  10. Estimation of springing response for 550 000 DWT ore carrier

    NASA Astrophysics Data System (ADS)

    Adenya, Christiaan Adika; Ren, Huilong; Li, Hui; Wang, Di

    2016-09-01

    The desire to benefit from economy of scale is one of the major driving forces behind the continuous growth in ship sizes. However, models of new large ships need to be thoroughly investigated to determine the carrier's response in waves. In this work, experimental and numerical assessments of the motion and load response of a 550,000 DWT ore carrier are performed using prototype ships with softer stiffness, and towing tank tests are conducted using a segmented model with two schemes of softer stiffness. Numerical analyses are performed employing both rigid body and linear hydroelasticity theories using an in-house program and a comparison is then made between experimental and numerical results to establish the influence of stiffness on the ore carrier's springing response. Results show that softer stiffness models can be used when studying the springing response of ships in waves.

  11. ESTIMATION OF AQUATIC SPECIES SENSITIVITY AND POPULATION-LEVEL RESPONSES

    EPA Science Inventory

    Determining species sensitivity and population-level responses of aquatic organisms to contaminants are critical components of criteria development and ecological risk assessment. To address data gaps in species sensitivity, the U.S. EPA developed the Interspecies Correlation Est...

  12. ESTIMATION OF AQUATIC SPECIES SENSITIVITY AND POPULATION-LEVEL RESPONSES

    EPA Science Inventory

    Determining species sensitivity and population-level responses of aquatic organisms to contaminants are critical components of criteria development and ecological risk assessment. To address data gaps in species sensitivity, the U.S. EPA developed the Interspecies Correlation Est...

  13. Extreme longevity in freshwater mussels revisited: sources of bias in age estimates derived from mark-recapture experiments

    Treesearch

    Wendell R. Haag

    2009-01-01

    There may be bias associated with mark–recapture experiments used to estimate age and growth of freshwater mussels. Using subsets of a mark–recapture dataset for Quadrula pustulosa, I examined how age and growth parameter estimates are affected by (i) the range and skew of the data and (ii) growth reduction due to handling. I compared predictions...

  14. Riparian responses to extreme climate and land-use change scenarios.

    PubMed

    Fernandes, Maria Rosário; Segurado, Pedro; Jauch, Eduardo; Ferreira, Maria Teresa

    2016-11-01

    Climate change will induce alterations in the hydrological and landscape patterns with effects on riparian ecotones. In this study we assess the combined effect of an extreme climate and land-use change scenario on riparian woody structure and how this will translate into a future risk of riparian functionality loss. The study was conducted in the Tâmega catchment of the Douro basin. Boosted Regression Trees (BRTs) were used to model two riparian landscape indicators related with the degree of connectivity (Mean Width) and complexity (Area Weighted Mean Patch Fractal Dimension). Riparian data were extracted by planimetric analysis of high spatial-resolution Word Imagery Layer (ESRI). Hydrological, climatic and land-use variables were obtained from available datasets and generated with process-based modeling using current climate data (2008-2014), while also considering the high-end RCP8.5 climate-change and "Icarus" socio-economic scenarios for the 2046-2065 time slice. Our results show that hydrological and land-use changes strongly influence future projections of riparian connectivity and complexity, albeit to diverse degrees and with differing effects. A harsh reduction in average flows may impair riparian zones while an increase in extreme rain events may benefit connectivity by promoting hydrologic dynamics with the surrounding floodplains. The expected increase in broad-leaved woodlands and mixed forests may enhance the riparian galleries by reducing the agricultural pressure on the area in the vicinity of the river. According to our results, 63% of river segments in the Tâmega basin exhibited a moderate risk of functionality loss, 16% a high risk, and 21% no risk. Weaknesses and strengths of the method are highlighted and results are discussed based on a resilience perspective with regard to riparian ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Response of Soil Respiration to Repeated Extreme Events in a Temperate Beech Forest in Austria

    NASA Astrophysics Data System (ADS)

    Leitner, S.; Kobler, J.; Holtermann, C.; Zechmeister-Boltenstern, S.; Saronjic, N.; Zimmermann, M.

    2015-12-01

    Climate change research predicts an increase in weather extremes like severe droughts and heavy rainfalls in central Europe. Since soil moisture is one of the most important drivers of soil respiration, a change in precipitation regime is likely to influence ecosystem C cycling. During drying of soils, soil microbial activity decreases and dead microbial cells, osmolytes, and semi-decomposed organic matter accumulate. When dry soils are rewetted, this easily-decomposable C leads to a pulse in soil respiration, a phenomenon known as "Birch-effect". In terms of annual soil CO2emissions, it is not clear whether these post-wetting respiration pulses outweigh or even overcompensate preceding drought-induced reductions in soil respiration. To investigate the impact of repeated drought and heavy rainfall events, a two-year precipitation manipulation experiment was conducted in an Austrian beech forest. Experimental plots were covered with transparent roofs to exclude rainfall, and an irrigation system was used to simulate heavy rainfall events. Control plots received natural precipitation. Soil respiration was monitored 3-hourly with an automatic static chamber system connected to an infrared CO2 analyzer. Soil temperature (Tsoil) and volumetric water content (VWC) were recorded with a datalogger. Various statistical models were tested to describe the relationship between soil respiration, Tsoiland VWC. Our results showed that repeated extreme events strongly reduced variation in soil respiration. Droughts significantly reduced soil respiration, and reductions depended on the length of the drought period. Post-wetting respiration pulses did not outweigh drought-induced reductions. Temperature sensitivity of soil respiration was best described with a Lloyd & Taylor model. Furthermore, in stressed plots VWC became limiting for soil respiration. Overall, our data corroborate the importance of the precipitation regime for soil respiration.

  16. Extreme and Local 3rd Harmonic Response of Niobium (Nb) Superconductor

    NASA Astrophysics Data System (ADS)

    Oripov, Bakhrom; Tai, Tamin; Anlage, Steven

    Superconducting Radio Frequency (SRF) cavities are being widely used in new generation particle accelerators. These SRF cavities are based on bulk Nb. Based on the needs of the SRF community to identify defects on Nb surfaces, a novel near-field magnetic microwave microscope was successfully built using a magnetic writer from a conventional magnetic recording hard-disk drive1. This magnetic writer can create an RF magnetic field, localized and strong enough to drive Nb into the vortex state. This probe enables us to locate defects through scanning and mapping of the local electrodynamic response in the multi-GHz frequency range. Recent measurements have shown that 3rd harmonic nonlinear response is far more sensitive to variations in input power and temperature then linear response, thus we mainly study the 3rd harmonic response. Moreover, the superconductor is usually the only source for nonlinear response in our setup, thus there is less chance of having noise or background signal. Understanding the mechanism responsible for this non-linear response is important for improving the performance of SRF cavities. Besides Nb we also study various other superconductors such as MgB2 and the cuprate Bi-Sr-Ca-Cu-O (BSCCO) for potential applications in SRF cavities. This work is funded by US Department of Energy through Grant # DE-SC0012036T and CNAM.

  17. Reliable estimations of extreme low flows by integrating very low flows in the model performance evaluation with a multi-metric framework

    NASA Astrophysics Data System (ADS)

    Pfannerstill, Matthias; Guse, Björn; Fohrer, Nicola

    2014-05-01

    Hydrological models are helpful tools to predict hydrological extremes and to understand the main governing processes for flood and drought events. For reliable predictions of extremes in future simulation such as climate change estimations, a precise representation of high and low flows in hydrological models is required. As a consequence, the hydrological models have to be calibrated accurately to provide reasonable model results for the different phases of the hydrograph simultaneously. For this challenge, the different phases of the hydrograph have to be considered in multi-metric frameworks with appropriate performance metrics. Low flows need to be reproduced together with high flows without neglecting the other phases of the hydrograph. In our study, we highlight the relevance of model evaluation for very low and low flows with separate performance metrics to achieve a satisfying model performance for the low flow prediction together with the overall discharge reproduction. Therefore, we present a multi-metric evaluation framework to identify calibration runs with a precise representation of the hydrograph. In order to consider a fairly balanced evaluation between high and low flow phases, we divided the flow duration curve into segments of high, medium and low flow phases, and additionally into extreme high and extreme low flow phases. The model performance was evaluated stepwise for these segments separately with the root mean square error (RMSE) together with further application of the Nash-Sutcliffe efficiency and the percent bias for the whole discharge. Our results show that this evaluation method leads to an improved selection of model runs with enhanced overall model performance by the refined segmentation of FDC. By combining performance metrics for high flow conditions with low flow conditions, this study demonstrates the challenge of calibrating a model with a satisfactory performance in high and low phases simultaneously. Consequently, we conclude

  18. Bayesian Estimation of Panel Data Fractional Response Models with Endogeneity: An Application to Standardized Test Rates

    ERIC Educational Resources Information Center

    Kessler, Lawrence M.

    2013-01-01

    In this paper I propose Bayesian estimation of a nonlinear panel data model with a fractional dependent variable (bounded between 0 and 1). Specifically, I estimate a panel data fractional probit model which takes into account the bounded nature of the fractional response variable. I outline estimation under the assumption of strict exogeneity as…

  19. Two Approaches to Estimation of Classification Accuracy Rate under Item Response Theory

    ERIC Educational Resources Information Center

    Lathrop, Quinn N.; Cheng, Ying

    2013-01-01

    Within the framework of item response theory (IRT), there are two recent lines of work on the estimation of classification accuracy (CA) rate. One approach estimates CA when decisions are made based on total sum scores, the other based on latent trait estimates. The former is referred to as the Lee approach, and the latter, the Rudner approach,…

  20. NEUROTOXIC EFFECTS OF ENVIRONMENTAL AGENTS: DATA GAPS THAT CHALLENGE DOSE-RESPONSE ESTIMATION

    EPA Science Inventory

    Neurotoxic effects of environmental agents: Data gaps that challenge dose-response estimation
    S Gutter*, P Mendola+, SG Selevan**, D Rice** (*UNC Chapel Hill; +US EPA, NHEERL; **US EPA, NCEA)

    Dose-response estimation is a critical feature of risk assessment. It can be...

  1. An Analysis of Variance Approach for the Estimation of Response Time Distributions in Tests

    ERIC Educational Resources Information Center

    Attali, Yigal

    2010-01-01

    Generalizability theory and analysis of variance methods are employed, together with the concept of objective time pressure, to estimate response time distributions and the degree of time pressure in timed tests. By estimating response time variance components due to person, item, and their interaction, and fixed effects due to item types and…

  2. An Analysis of Variance Approach for the Estimation of Response Time Distributions in Tests

    ERIC Educational Resources Information Center

    Attali, Yigal

    2010-01-01

    Generalizability theory and analysis of variance methods are employed, together with the concept of objective time pressure, to estimate response time distributions and the degree of time pressure in timed tests. By estimating response time variance components due to person, item, and their interaction, and fixed effects due to item types and…

  3. NEUROTOXIC EFFECTS OF ENVIRONMENTAL AGENTS: DATA GAPS THAT CHALLENGE DOSE-RESPONSE ESTIMATION

    EPA Science Inventory

    Neurotoxic effects of environmental agents: Data gaps that challenge dose-response estimation
    S Gutter*, P Mendola+, SG Selevan**, D Rice** (*UNC Chapel Hill; +US EPA, NHEERL; **US EPA, NCEA)

    Dose-response estimation is a critical feature of risk assessment. It can be...

  4. Bayesian Estimation of Graded Response Multilevel Models Using Gibbs Sampling: Formulation and Illustration

    ERIC Educational Resources Information Center

    Natesan, Prathiba; Limbers, Christine; Varni, James W.

    2010-01-01

    The present study presents the formulation of graded response models in the multilevel framework (as nonlinear mixed models) and demonstrates their use in estimating item parameters and investigating the group-level effects for specific covariates using Bayesian estimation. The graded response multilevel model (GRMM) combines the formulation of…

  5. Simultaneous Multiple Response Regression and Inverse Covariance Matrix Estimation via Penalized Gaussian Maximum Likelihood.

    PubMed

    Lee, Wonyul; Liu, Yufeng

    2012-10-01

    Multivariate regression is a common statistical tool for practical problems. Many multivariate regression techniques are designed for univariate response cases. For problems with multiple response variables available, one common approach is to apply the univariate response regression technique separately on each response variable. Although it is simple and popular, the univariate response approach ignores the joint information among response variables. In this paper, we propose three new methods for utilizing joint information among response variables. All methods are in a penalized likelihood framework with weighted L(1) regularization. The proposed methods provide sparse estimators of conditional inverse co-variance matrix of response vector given explanatory variables as well as sparse estimators of regression parameters. Our first approach is to estimate the regression coefficients with plug-in estimated inverse covariance matrices, and our second approach is to estimate the inverse covariance matrix with plug-in estimated regression parameters. Our third approach is to estimate both simultaneously. Asymptotic properties of these methods are explored. Our numerical examples demonstrate that the proposed methods perform competitively in terms of prediction, variable selection, as well as inverse covariance matrix estimation.

  6. Hormonal and metabolic responses to upper temperature extremes in divergent life-history ecotypes of a garter snake.

    PubMed

    Gangloff, Eric J; Holden, Kaitlyn G; Telemeco, Rory S; Baumgard, Lance H; Bronikowski, Anne M

    2016-09-15

    Extreme temperatures constrain organismal physiology and impose both acute and chronic effects. Additionally, temperature-induced hormone-mediated stress response pathways and energetic trade-offs are important drivers of life-history variation. This study employs an integrative approach to quantify acute physiological responses to high temperatures in divergent life-history ecotypes of the western terrestrial garter snake (Thamnophis elegans). Using wild-caught animals, we measured oxygen consumption rate and physiological markers of hormonal stress response, energy availability and anaerobic respiration in blood plasma across five ecologically relevant temperatures (24, 28, 32, 35 and 38°C; 3 h exposure). Corticosterone, insulin and glucose concentrations all increased with temperature, but with different thermal response curves, suggesting that high temperatures differently affect energy-regulation pathways. Additionally, oxygen consumption rate increased without plateau and lactate concentration did not increase with temperature, challenging the recent hypothesis that oxygen limitation sets upper thermal tolerance limits. Finally, animals had similar physiological thermal responses to high-temperature exposure regardless of genetic background, suggesting that local adaptation has not resulted in fixed differences between ecotypes. Together, these results identify some of the mechanisms by which higher temperatures alter hormonal-mediated energy balance in reptiles and potential limits to the flexibility of this response. © 2016. Published by The Company of Biologists Ltd.

  7. Estimating Frequency-Of-Occurrence Of Extreme Water Levels In Kotzebue Sound And Norton Sound From A Storm Surge Model For 51 Years Between 1954 And 2004

    NASA Astrophysics Data System (ADS)

    Kim, S.; Chapman, R. S.; Mark, D. J.

    2009-12-01

    Extreme water levels have been affecting the coastal communities along the Kotzebue Sound and the Norton Sound in western Alaska. A 2-dimensional hydrodynamic model, ADCIRC, was applied to study extra-tropical event-induced coastal surges for the western Alaska including Bering Sea and Chukchi Sea. The model was forced with reanalyzed regional meteorological fields, including surface pressure, surface wind, and ice cover with resolution of 0.25 degrees in space and 3 hours in time. The relationships between tide gage data and extracted local meteorological data at Nome in Norton Sound for about 10 years including disruptions between 1992 and 2004 and Red Dog Dock in Kotzebue Sound for about 3 years between 2001 and 2004 provided guidelines for event selection. The event selection criteria were applied to the 20 year continuous meteorological data between 1985 and 2004. The similar meteorological data but only available for the identified storm wave conditions for 31 years between 1954 and 1984 were also used for model simulation but later sorted out to retain only coastal surge events. Subsequent to model calibration and validation, a total 52 storm events were simulated during the 51 year period between 1954 and 2004. Concurrent events at both Kotzebue Sound and Norton Sound with slight phase shifts were observed throughout the simulation. Frequency-of-occurrences of extreme water levels were estimated using extreme value statistics, empirical simulation techniques, and rank-and-fit method, respectively. The estimates show spatial variation mostly influenced by shoreline geometry—peaks at the foci of embayment in both Kotzebue Sound and Norton Sound. The return period estimates were consistent among different methods.

  8. Responses of Soil CO2 Emissions to Extreme Precipitation Regimes: a Simulation on Loess Soil in Semi-arid Regions

    NASA Astrophysics Data System (ADS)

    Wang, R.; Zhao, M.; Hu, Y.; Guo, S.

    2016-12-01

    Responses of soil CO2 emission to natural precipitation play an essential role in regulating regional C cycling. With more erratic precipitation regimes, mostly likely of more frequent heavy rainstorms, projected into the future, extreme precipitation would potentially affect local soil moisture, plant growth, microbial communities, and further soil CO2 emissions. However, responses of soil CO2 emissions to extreme precipitation have not yet been systematically investigated. Such performances could be of particular importance for rainfed arable soil in semi-arid regions where soil microbial respiration stress is highly sensitive to temporal distribution of natural precipitation.In this study, a simulated experiment was conducted on bare loess soil from the semi-arid Chinese Loess Plateau. Three precipitation regimes with total precipitation amounts of 150 mm, 300 mm and 600 mm were carried out to simulate the extremely dry, business as usual, and extremely wet summer. The three regimes were individually materialized by wetting soils in a series of sub-events (10 mm or 150 mm). Co2 emissions from surface soil were continuously measured in-situ for one month. The results show that: 1) Evident CO2 emission pulses were observed immediately after applying sub-events, and cumulative CO2 emissions from events of total amount of 600 mm were greater than that from 150 mm. 3) In particular, for the same total amount of 600 mm, wetting regimes by applying four times of 150 mm sub-events resulted in 20% less CO2 emissions than by applying 60 times of 10 mm sub-events. This is mostly because its harsh 150 mm storms introduced more over-wet soil microbial respiration stress days (moisture > 28%). As opposed, for the same total amount of 150 mm, CO2 emissions from wetting regimes by applying 15 times of 10 mm sub-events were 22% lower than by wetting at once with 150 mm water, probably because its deficiency of soil moisture resulted in more over-dry soil microbial respiration

  9. Estimating Non-Normal Latent Trait Distributions within Item Response Theory Using True and Estimated Item Parameters

    ERIC Educational Resources Information Center

    Sass, D. A.; Schmitt, T. A.; Walker, C. M.

    2008-01-01

    Item response theory (IRT) procedures have been used extensively to study normal latent trait distributions and have been shown to perform well; however, less is known concerning the performance of IRT with non-normal latent trait distributions. This study investigated the degree of latent trait estimation error under normal and non-normal…

  10. The Response of Different Audiences to Place-based Communication about the Role of Climate Change in Extreme Weather Events

    NASA Astrophysics Data System (ADS)

    Halperin, A.; Walton, P.

    2015-12-01

    As the science of extreme event attribution grows, there is an increasing need to understand how the public responds to this type of climate change communication. Extreme event attribution has the unprecedented potential to locate the effects of climate change in the here and now, but there is little information about how different facets of the public might respond to these local framings of climate change. Drawing on theories of place attachment and psychological distance, this paper explores how people with different beliefs and values shift their willingness to mitigate and adapt to climate change in response to local or global communication of climate change impacts. Results will be presented from a recent survey of over 600 Californians who were each presented with one of three experimental conditions: 1) a local framing of the role of climate change in the California drought 2) a global framing of climate change and droughts worldwide, or 3) a control condition of no text. Participants were categorized into groups based on their prior beliefs about climate change according to the Six Americas classification scheme (Leiserowitz et al., 2011). The results from the survey in conjunction with qualitative results from follow-up interviews shed insight into the importance of place in communicating climate change for people in each of the Six Americas. Additional results examine the role of gender and political affiliation in mediating responses to climate change communication. Despite research that advocates unequivocally for local framing of climate change, this study offers a more nuanced perspective of under which circumstances extreme event attribution might be an effective tool for changing behaviors. These results could be useful for scientists who wish to gain a better understanding of how their event attribution research is perceived or for educators who want to target their message to audiences where it could have the most impact.

  11. Estimation of Response Functions Based on Variational Bayes Algorithm in Dynamic Images Sequences

    PubMed Central

    2016-01-01

    We proposed a nonparametric Bayesian model based on variational Bayes algorithm to estimate the response functions in dynamic medical imaging. In dynamic renal scintigraphy, the impulse response or retention functions are rather complicated and finding a suitable parametric form is problematic. In this paper, we estimated the response functions using nonparametric Bayesian priors. These priors were designed to favor desirable properties of the functions, such as sparsity or smoothness. These assumptions were used within hierarchical priors of the variational Bayes algorithm. We performed our algorithm on the real online dataset of dynamic renal scintigraphy. The results demonstrated that this algorithm improved the estimation of response functions with nonparametric priors. PMID:27631007

  12. A new mean estimator using auxiliary variables for randomized response models

    NASA Astrophysics Data System (ADS)

    Ozgul, Nilgun; Cingi, Hulya

    2013-10-01

    Randomized response models are commonly used in surveys dealing with sensitive questions such as abortion, alcoholism, sexual orientation, drug taking, annual income, tax evasion to ensure interviewee anonymity and reduce nonrespondents rates and biased responses. Starting from the pioneering work of Warner [7], many versions of RRM have been developed that can deal with quantitative responses. In this study, new mean estimator is suggested for RRM including quantitative responses. The mean square error is derived and a simulation study is performed to show the efficiency of the proposed estimator to other existing estimators in RRM.

  13. Extreme oceanographic forcing and coastal response due to the 2015-2016 El Niño

    NASA Astrophysics Data System (ADS)

    Barnard, Patrick L.; Hoover, Daniel; Hubbard, David M.; Snyder, Alex; Ludka, Bonnie C.; Allan, Jonathan; Kaminsky, George M.; Ruggiero, Peter; Gallien, Timu W.; Gabel, Laura; McCandless, Diana; Weiner, Heather M.; Cohn, Nicholas; Anderson, Dylan L.; Serafin, Katherine A.

    2017-02-01

    The El Niño-Southern Oscillation is the dominant mode of interannual climate variability across the Pacific Ocean basin, with influence on the global climate. The two end members of the cycle, El Niño and La Niña, force anomalous oceanographic conditions and coastal response along the Pacific margin, exposing many heavily populated regions to increased coastal flooding and erosion hazards. However, a quantitative record of coastal impacts is spatially limited and temporally restricted to only the most recent events. Here we report on the oceanographic forcing and coastal response of the 2015-2016 El Niño, one of the strongest of the last 145 years. We show that winter wave energy equalled or exceeded measured historical maxima across the US West Coast, corresponding to anomalously large beach erosion across the region. Shorelines in many areas retreated beyond previously measured landward extremes, particularly along the sediment-starved California coast.

  14. Extreme oceanographic forcing and coastal response due to the 2015–2016 El Niño

    USGS Publications Warehouse

    Barnard, Patrick; Hoover, Daniel J.; Hubbard, David M.; Snyder, Alexander; Ludka, Bonnie C.; Allan, Jonathan; Kaminsky, George M.; Ruggiero,; Gallien, Timu W.; Gabel, Laura; McCandless, Diana; Weiner, Heather M.; Cohn, Nicholas; Anderson, Dylan L.; Serafin, Katherine A.

    2017-01-01

    The El Niño-Southern Oscillation is the dominant mode of interannual climate variability across the Pacific Ocean basin, with influence on the global climate. The two end members of the cycle, El Niño and La Niña, force anomalous oceanographic conditions and coastal response along the Pacific margin, exposing many heavily populated regions to increased coastal flooding and erosion hazards. However, a quantitative record of coastal impacts is spatially limited and temporally restricted to only the most recent events. Here we report on the oceanographic forcing and coastal response of the 2015–2016 El Niño, one of the strongest of the last 145 years. We show that winter wave energy equalled or exceeded measured historical maxima across the US West Coast, corresponding to anomalously large beach erosion across the region. Shorelines in many areas retreated beyond previously measured landward extremes, particularly along the sediment-starved California coast.

  15. Extreme oceanographic forcing and coastal response due to the 2015-2016 El Niño.

    PubMed

    Barnard, Patrick L; Hoover, Daniel; Hubbard, David M; Snyder, Alex; Ludka, Bonnie C; Allan, Jonathan; Kaminsky, George M; Ruggiero, Peter; Gallien, Timu W; Gabel, Laura; McCandless, Diana; Weiner, Heather M; Cohn, Nicholas; Anderson, Dylan L; Serafin, Katherine A

    2017-02-14

    The El Niño-Southern Oscillation is the dominant mode of interannual climate variability across the Pacific Ocean basin, with influence on the global climate. The two end members of the cycle, El Niño and La Niña, force anomalous oceanographic conditions and coastal response along the Pacific margin, exposing many heavily populated regions to increased coastal flooding and erosion hazards. However, a quantitative record of coastal impacts is spatially limited and temporally restricted to only the most recent events. Here we report on the oceanographic forcing and coastal response of the 2015-2016 El Niño, one of the strongest of the last 145 years. We show that winter wave energy equalled or exceeded measured historical maxima across the US West Coast, corresponding to anomalously large beach erosion across the region. Shorelines in many areas retreated beyond previously measured landward extremes, particularly along the sediment-starved California coast.

  16. Extreme oceanographic forcing and coastal response due to the 2015–2016 El Niño

    PubMed Central

    Barnard, Patrick L.; Hoover, Daniel; Hubbard, David M.; Snyder, Alex; Ludka, Bonnie C.; Allan, Jonathan; Kaminsky, George M.; Ruggiero, Peter; Gallien, Timu W.; Gabel, Laura; McCandless, Diana; Weiner, Heather M.; Cohn, Nicholas; Anderson, Dylan L.; Serafin, Katherine A.

    2017-01-01

    The El Niño-Southern Oscillation is the dominant mode of interannual climate variability across the Pacific Ocean basin, with influence on the global climate. The two end members of the cycle, El Niño and La Niña, force anomalous oceanographic conditions and coastal response along the Pacific margin, exposing many heavily populated regions to increased coastal flooding and erosion hazards. However, a quantitative record of coastal impacts is spatially limited and temporally restricted to only the most recent events. Here we report on the oceanographic forcing and coastal response of the 2015–2016 El Niño, one of the strongest of the last 145 years. We show that winter wave energy equalled or exceeded measured historical maxima across the US West Coast, corresponding to anomalously large beach erosion across the region. Shorelines in many areas retreated beyond previously measured landward extremes, particularly along the sediment-starved California coast. PMID:28195580

  17. Models Of Lower Extremity Damage In Mice: Time Course of Organ Damage & Immune Response

    PubMed Central

    Menzel, Christoph L; Pfeifer, Roman; Darwiche, Sophie S; Kobbe, Philipp; Gill, Roop; Shapiro, Richard A; Loughran, Patricia; Vodovotz, Yoram; Scott, Melanie J; Zenati, Mazen S; Billiar, Timothy R; Pape, Hans-Christoph

    2011-01-01

    Background Posttraumatic inflammatory changes have been identified as major causes of altered organ function and failure. Both hemorrhage and soft tissue damage induce these inflammatory changes. Exposure to heterologous bone in animal models has recently been shown to mimic this inflammatory response in a stable and reproducible fashion. This follow-up study tests the hypothesis that inflammatory responses are comparable between a novel trauma model (“pseudofracture”, PFx) and a bilateral femur fracture (BFF) model. Materials and Methods In C57BL/6 mice, markers for remote organ dysfunction and inflammatory responses were compared in 4 groups (control/sham/BFF/PFx) at the time points 2, 4, and 6 hours. Results Hepatocellular damage in BFF and PFx was highly comparable in extent and evolution, as shown by similar levels of NFκB activation and plasma ALT. Pulmonary inflammatory responses were also comparably elevated in both trauma models as early as 2h after trauma as measured by myeloperoxidase activity (MPO). Muscle damage was provoked in both BFF and PFx mice over the time course, although BFF induced significantly higher AST and CK levels. IL-6 levels were also similar with early and sustained increases over time in both trauma models. Conclusions Both BFF and PFx create similar reproducible inflammatory and remote organ responses. PFx will be a useful model to study longer term inflammatory effects that cannot be studied using BFF. PMID:21276982

  18. Productivity responses of a widespread marine piscivore, Gadus morhua, to oceanic thermal extremes and trends.

    PubMed

    Mantzouni, Irene; MacKenzie, Brian R

    2010-06-22

    Climate change will have major consequences for population dynamics and life histories of marine biota as it progresses in the twenty-first century. These impacts will differ in magnitude and direction for populations within individual marine species whose geographical ranges span large gradients in latitude and temperature. Here we use meta-analytical methods to investigate how recruitment (i.e. the number of new fish produced by spawners in a given year which subsequently grow and survive to become vulnerable to fishing gear) has reacted to temperature fluctuations, and in particular to extremes of temperature, in cod populations throughout the north Atlantic. Temperature has geographically explicit effects on cod recruitment. Impacts differ depending on whether populations are located in the upper (negative effects) or in the lower (positive effects) thermal range. The probabilities of successful year-classes in populations living in warm areas is on average 34 per cent higher in cold compared with warm seasons, whereas opposite patterns exist for populations living in cold areas. These results have implications for cod dynamics, distributions and phenologies under the influence of ocean warming, particularly related to not only changes in the mean temperature, but also its variability (e.g. frequency of exceptionally cold or warm seasons).

  19. Response of Bacillus subtilis spores to dehydration and UV irradiation at extremely low temperatures.

    PubMed

    Dose, K; Klein, A

    1996-02-01

    Spores of Bacillus subtilis have been exposed to the conditions of extreme dehydration (argon/silica gel; simulated space vacuum) for up to 12 weeks at 298 K and 80 K in the dark. The inactivation has been correlated with the production of DNA-double strand-breaks. The temperature-dependence of the rate constants for inactivation or production of DNA-double strand-breaks is surprisingly low. Controls kept in the frozen state at 250 K for the same period of time showed no sign of deterioration. In another series of experiments the spores have been UV irradiated (253.7 nm) at 298 K, 200 K and 80 K after exposure to dehydrating conditions for 3 days. Fluence-effect relationships for inactivation, production of DNA-double strand-breaks and DNA-protein cross-links are presented. The corresponding F37-values for inactivation and production of DNA lesions are significantly increased only at 80 K (factor of 4 to 5). The data indicate that the low temperatures that prevail in the outer parts of the Solar System or at the nightside of Mars or the Moon are not sufficiently low to crucially inhibit inactivation by dehydration. Our data place further constraints on the panspermia hypothesis.

  20. Proteomic response of Schizosaccharomyces pombe to static and oscillating extremely low-frequency electromagnetic fields.

    PubMed

    Sinclair, John; Weeks, Mark; Butt, Amna; Worthington, Jessica L; Akpan, Akunna; Jones, Nic; Waterfield, Mike; Allanand, Donald; Timms, John F

    2006-09-01

    There is considerable public concern regarding the health effects of exposure to low-frequency electromagnetic fields. In addition, the association between exposure and disease incidence or the possible biological effects of exposure are unclear. Using 2D-DIGE and MS in a blind study, we have investigated the effects of static and oscillating extremely low-frequency electromagnetic fields (ELF EMFs) on the proteomes of wild type Schizosaccharomyces pombe and a Sty1p deletion mutant which displays increased sensitivity to a variety of cellular stresses. Whilst this study identifies a number of protein isoforms that display significant differential expression across experimental conditions, there was no correlation between their patterns of expression and the ELF EMF exposure regimen. We conclude that there are no significant effects of either static or oscillating EMF on the yeast proteome at the sensitivity afforded by 2D-DIGE. We hypothesise that the proteins identified must be sensitive to subtle changes in culture and/or handling conditions, and that the identification of these proteins in other proteomic studies should be treated with some caution when the results of such studies are interpreted in a biological context.

  1. How extreme are extremes?

    NASA Astrophysics Data System (ADS)

    Cucchi, Marco; Petitta, Marcello; Calmanti, Sandro

    2016-04-01

    High temperatures have an impact on the energy balance of any living organism and on the operational capabilities of critical infrastructures. Heat-wave indicators have been mainly developed with the aim of capturing the potential impacts on specific sectors (agriculture, health, wildfires, transport, power generation and distribution). However, the ability to capture the occurrence of extreme temperature events is an essential property of a multi-hazard extreme climate indicator. Aim of this study is to develop a standardized heat-wave indicator, that can be combined with other indices in order to describe multiple hazards in a single indicator. The proposed approach can be used in order to have a quantified indicator of the strenght of a certain extreme. As a matter of fact, extremes are usually distributed in exponential or exponential-exponential functions and it is difficult to quickly asses how strong was an extreme events considering only its magnitude. The proposed approach simplify the quantitative and qualitative communication of extreme magnitude

  2. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting.

    PubMed

    Barnard, Romain L; Osborne, Catherine A; Firestone, Mary K

    2013-11-01

    The microbial response to summer desiccation reflects adaptation strategies, setting the stage for a large rainfall-induced soil CO2 pulse upon rewetting, an important component of the ecosystem carbon budget. In three California annual grasslands, the present (DNA-based) and potentially active (RNA-based) soil bacterial and fungal communities were tracked over a summer season and in response to controlled rewetting of intact soil cores. Phylogenetic marker genes for bacterial (16S) and fungal (28S) RNA and DNA were sequenced, and the abundances of these genes and transcripts were measured. Although bacterial community composition differed among sites, all sites shared a similar response pattern of the present and potentially active bacterial community to dry-down and wet-up. In contrast, the fungal community was not detectably different among sites, and was largely unaffected by dry-down, showing marked resistance to dessication. The potentially active bacterial community changed significantly as summer dry-down progressed, then returned to pre-dry-down composition within several hours of rewetting, displaying spectacular resilience. Upon rewetting, transcript copies of bacterial rpoB genes increased consistently, reflecting rapid activity resumption. Acidobacteria and Actinobacteria were the most abundant phyla present and potentially active, and showed the largest changes in relative abundance. The relative increase (Actinobacteria) and decrease (Acidobacteria) with dry-down, and the reverse responses to rewetting reflected a differential response, which was conserved at the phylum level and consistent across sites. These contrasting desiccation-related bacterial life-strategies suggest that predicted changes in precipitation patterns may affect soil nutrient and carbon cycling by differentially impacting activity patterns of microbial communities.

  3. On the consideration of scaling properties of extreme rainfall in Madrid (Spain) for developing a generalized intensity-duration-frequency equation and assessing probable maximum precipitation estimates

    NASA Astrophysics Data System (ADS)

    Casas-Castillo, M. Carmen; Rodríguez-Solà, Raúl; Navarro, Xavier; Russo, Beniamino; Lastra, Antonio; González, Paula; Redaño, Angel

    2016-11-01

    The fractal behavior of extreme rainfall intensities registered between 1940 and 2012 by the Retiro Observatory of Madrid (Spain) has been examined, and a simple scaling regime ranging from 25 min to 3 days of duration has been identified. Thus, an intensity-duration-frequency (IDF) master equation of the location has been constructed in terms of the simple scaling formulation. The scaling behavior of probable maximum precipitation (PMP) for durations between 5 min and 24 h has also been verified. For the statistical estimation of the PMP, an envelope curve of the frequency factor (k m ) based on a total of 10,194 station-years of annual maximum rainfall from 258 stations in Spain has been developed. This curve could be useful to estimate suitable values of PMP at any point of the Iberian Peninsula from basic statistical parameters (mean and standard deviation) of its rainfall series.

  4. Present limits to heat-adaptability in corals and population-level responses to climate extremes.

    PubMed

    Riegl, Bernhard M; Purkis, Sam J; Al-Cibahy, Ashraf S; Abdel-Moati, Mohammed A; Hoegh-Guldberg, Ove

    2011-01-01

    Climate change scenarios suggest an increase in tropical ocean temperature by 1-3°C by 2099, potentially killing many coral reefs. But Arabian/Persian Gulf corals already exist in this future thermal environment predicted for most tropical reefs and survived severe bleaching in 2010, one of the hottest years on record. Exposure to 33-35°C was on average twice as long as in non-bleaching years. Gulf corals bleached after exposure to temperatures above 34°C for a total of 8 weeks of which 3 weeks were above 35°C. This is more heat than any other corals can survive, providing an insight into the present limits of holobiont adaptation. We show that average temperatures as well as heat-waves in the Gulf have been increasing, that coral population levels will fluctuate strongly, and reef-building capability will be compromised. This, in combination with ocean acidification and significant local threats posed by rampant coastal development puts even these most heat-adapted corals at risk. WWF considers the Gulf ecoregion as "critically endangered". We argue here that Gulf corals should be considered for assisted migration to the tropical Indo-Pacific. This would have the double benefit of avoiding local extinction of the world's most heat-adapted holobionts while at the same time introducing their genetic information to populations naïve to such extremes, potentially assisting their survival. Thus, the heat-adaptation acquired by Gulf corals over 6 k, could benefit tropical Indo-Pacific corals who have <100 y until they will experience a similarly harsh climate. Population models suggest that the heat-adapted corals could become dominant on tropical reefs within ∼20 years.

  5. Present Limits to Heat-Adaptability in Corals and Population-Level Responses to Climate Extremes

    PubMed Central

    Riegl, Bernhard M.; Purkis, Sam J.; Al-Cibahy, Ashraf S.; Abdel-Moati, Mohammed A.; Hoegh-Guldberg, Ove

    2011-01-01

    Climate change scenarios suggest an increase in tropical ocean temperature by 1–3°C by 2099, potentially killing many coral reefs. But Arabian/Persian Gulf corals already exist in this future thermal environment predicted for most tropical reefs and survived severe bleaching in 2010, one of the hottest years on record. Exposure to 33–35°C was on average twice as long as in non-bleaching years. Gulf corals bleached after exposure to temperatures above 34°C for a total of 8 weeks of which 3 weeks were above 35°C. This is more heat than any other corals can survive, providing an insight into the present limits of holobiont adaptation. We show that average temperatures as well as heat-waves in the Gulf have been increasing, that coral population levels will fluctuate strongly, and reef-building capability will be compromised. This, in combination with ocean acidification and significant local threats posed by rampant coastal development puts even these most heat-adapted corals at risk. WWF considers the Gulf ecoregion as “critically endangered”. We argue here that Gulf corals should be considered for assisted migration to the tropical Indo-Pacific. This would have the double benefit of avoiding local extinction of the world's most heat-adapted holobionts while at the same time introducing their genetic information to populations naïve to such extremes, potentially assisting their survival. Thus, the heat-adaptation acquired by Gulf corals over 6 k, could benefit tropical Indo-Pacific corals who have <100 y until they will experience a similarly harsh climate. Population models suggest that the heat-adapted corals could become dominant on tropical reefs within ∼20 years. PMID:21949755

  6. A simple optical model to estimate diffuse attenuation coefficient of photosynthetically active radiation in an extremely turbid lake from surface reflectance.

    PubMed

    Zhang, Yunlin; Liu, Xiaohan; Yin, Yan; Wang, Mingzhu; Qin, Boqiang

    2012-08-27

    Accurate estimation of the diffuse attenuation coefficient is critical for our understanding and modelling of key physical, chemical, and biological processes in water bodies. For extremely turbid, shallow, Lake Taihu in China, we synchronously monitored the diffuse attenuation coefficient of photosynthetically active radiation (Kd(PAR)) and the remote sensing reflectance at 134 sites. Kd(PAR)) varied greatly among different sites from 1.62 to 14.68 m(-1) with a mean value of 5.62 ± 2.99 m(-1). A simple optical model from near-infrared remote sensing reflectance of MODIS channels 2 (859 nm) and 15 (748 nm) was calibrated, and validated, to estimate Kd(PAR). With the simple optical model, the root mean square error and mean relative error were 0.95 m(-1) and 17.0% respectively at 748 nm, and 0.98 m(-1) and 17.6% at 859 nm, based on an independent validation data set. Our results showed a good precision of estimation for Kd(PAR) using the new simple optical model, contrasting with the poor estimations derived from existing empirical and semi-analytical models developed in clear, open ocean waters or slightly turbid coastal waters. Although at 748 nm the model had slightly higher precision than at 859 nm, the spatial resolution at 859 nm was four times that at 748 nm. Therefore, we propose a new model based on the MODIS-derived normalized water-leaving radiances at a wavelength of 859 nm, for accurate retrieval of Kd(PAR) in extremely turbid, shallow lakes with Kd(PAR) larger than 1.5 m(-1).

  7. Doubly robust estimates for binary longitudinal data analysis with missing response and missing covariates.

    PubMed

    Chen, Baojiang; Zhou, Xiao-Hua

    2011-09-01

    Longitudinal studies often feature incomplete response and covariate data. Likelihood-based methods such as the expectation-maximization algorithm give consistent estimators for model parameters when data are missing at random (MAR) provided that the response model and the missing covariate model are correctly specified; however, we do not need to specify the missing data mechanism. An alternative method is the weighted estimating equation, which gives consistent estimators if the missing data and response models are correctly specified; however, we do not need to specify the distribution of the covariates that have missing values. In this article, we develop a doubly robust estimation method for longitudinal data with missing response and missing covariate when data are MAR. This method is appealing in that it can provide consistent estimators if either the missing data model or the missing covariate model is correctly specified. Simulation studies demonstrate that this method performs well in a variety of situations.

  8. An approach to quantifying 3D responses of cells to extreme strain

    PubMed Central

    Li, Yuhui; Huang, Guoyou; Li, Moxiao; Wang, Lin; Elson, Elliot L.; Jian Lu, Tian; Genin, Guy M.; Xu, Feng

    2016-01-01

    The tissues of hollow organs can routinely stretch up to 2.5 times their length. Although significant pathology can arise if relatively large stretches are sustained, the responses of cells are not known at these levels of sustained strain. A key challenge is presenting cells with a realistic and well-defined three-dimensional (3D) culture environment that can sustain such strains. Here, we describe an in vitro system called microscale, magnetically-actuated synthetic tissues (micro-MASTs) to quantify these responses for cells within a 3D hydrogel matrix. Cellular strain-threshold and saturation behaviors were observed in hydrogel matrix, including strain-dependent proliferation, spreading, polarization, and differentiation, and matrix adhesion retained at strains sufficient for apoptosis. More broadly, the system shows promise for defining and controlling the effects of mechanical environment upon a broad range of cells. PMID:26887698

  9. How historical information can improve estimation and prediction of extreme coastal water levels: application to the Xynthia event at La Rochelle (France)

    NASA Astrophysics Data System (ADS)

    Bulteau, T.; Idier, D.; Lambert, J.; Garcin, M.

    2015-06-01

    The knowledge of extreme coastal water levels is useful for coastal flooding studies or the design of coastal defences. While deriving such extremes with standard analyses using tide-gauge measurements, one often needs to deal with limited effective duration of observation which can result in large statistical uncertainties. This is even truer when one faces the issue of outliers, those particularly extreme values distant from the others which increase the uncertainty on the results. In this study, we investigate how historical information, even partial, of past events reported in archives can reduce statistical uncertainties and relativise such outlying observations. A Bayesian Markov chain Monte Carlo method is developed to tackle this issue. We apply this method to the site of La Rochelle (France), where the storm Xynthia in 2010 generated a water level considered so far as an outlier. Based on 30 years of tide-gauge measurements and 8 historical events, the analysis shows that (1) integrating historical information in the analysis greatly reduces statistical uncertainties on return levels (2) Xynthia's water level no longer appears as an outlier, (3) we could have reasonably predicted the annual exceedance probability of that level beforehand (predictive probability for 2010 based on data until the end of 2009 of the same order of magnitude as the standard estimative probability using data until the end of 2010). Such results illustrate the usefulness of historical information in extreme value analyses of coastal water levels, as well as the relevance of the proposed method to integrate heterogeneous data in such analyses.

  10. Mechanical response tissue analyzer for estimating bone strength

    NASA Technical Reports Server (NTRS)

    Arnaud, Sara B.; Steele, Charles; Mauriello, Anthony

    1991-01-01

    One of the major concerns for extended space flight is weakness of the long bones of the legs, composed primarily of cortical bone, that functions to provide mechanical support. The strength of cortical bone is due to its complex structure, described simplistically as cylinders of parallel osteons composed of layers of mineralized collagen. The reduced mechanical stresses during space flight or immobilization of bone on Earth reduces the mineral content, and changes the components of its matrix and structure so that its strength is reduced. Currently, the established clinical measures of bone strength are indirect. The measures are based on determinations of mineral density by means of radiography, photon absorptiometry, and quantitative computer tomography. While the mineral content of bone is essential to its strength, there is growing awareness of the limitations of the measurement as the sole predictor of fracture risk in metabolic bone diseases, especially limitations of the measurement as the sole predictor of fracture risk in metabolic bone diseases, especially osteoporosis. Other experimental methods in clinical trials that more directly evaluate the physical properties of bone, and do not require exposure to radiation, include ultrasound, acoustic emission, and low-frequency mechanical vibration. The last method can be considered a direct measure of the functional capacity of a long bone since it quantifies the mechanical response to a stimulus delivered directly to the bone. A low frequency vibration induces a response (impedance) curve with a minimum at the resonant frequency, that a few investigators use for the evaluation of the bone. An alternative approach, the method under consideration, is to use the response curve as the basis for determination of the bone bending stiffness EI (E is the intrinsic material property and I is the cross-sectional moment of inertia) and mass, fundamental mechanical properties of bone.

  11. Breeding on the extreme edge: modulation of the adrenocortical response to acute stress in two High Arctic passerines.

    PubMed

    Walker, Brian G; Meddle, Simone L; Romero, L Michael; Landys, Meta M; Reneerkens, Jeroen; Wingfield, John C

    2015-04-01

    Arctic weather in spring is unpredictable and can also be extreme, so Arctic-breeding birds must be flexible in their breeding to deal with such variability. Unpredictability in weather conditions will only intensify with climate change and this in turn could affect reproductive capability of migratory birds. Adjustments to coping strategies are therefore crucial, so here we examined the plasticity of the adrenocorticotropic stress response in two Arctic songbird species-the snow bunting (Plectrophenax nivalis) and Lapland longspur (Calcarius lapponicus)-breeding in northwest Greenland. Across the breeding season, the stress response was strongest at arrival and least robust during molt in male snow buntings. Snow bunting females had higher baseline but similar stress-induced corticosterone levels compared to males. Modification of the stress response was not due to adrenal insensitivity, but likely regulated at the anterior pituitary gland. Compared to independent nestlings and adult snow buntings, parental-dependent chicks had a more robust stress response. For Lapland longspurs, baseline corticosterone was highest at arrival in both male and females, and arriving males displayed a higher stress response compared to arriving females. Comparison of male corticosterone profiles collected at arrival in Greenland (76°N) and Alaska (67-71°N;) reveal that both species have higher stress responses at the more northern location. Flexibility in the stress response may be typical for birds nesting at the leading edges of their range and this ability will become more relevant as global climate change results in major shifts of breeding habitat and phenology for migratory birds.

  12. Physiological analysis of the stringent response elicited in an extreme thermophilic bacterium, Thermus thermophilus.

    PubMed

    Kasai, Koji; Nishizawa, Tomoyasu; Takahashi, Kosaku; Hosaka, Takeshi; Aoki, Hiroyuki; Ochi, Kozo

    2006-10-01

    Guanosine tetraphosphate (ppGpp) is a key mediator of stringent control, an adaptive response of bacteria to amino acid starvation, and has thus been termed a bacterial alarmone. Previous X-ray crystallographic analysis has provided a structural basis for the transcriptional regulation of RNA polymerase activity by ppGpp in the thermophilic bacterium Thermus thermophilus. Here we investigated the physiological basis of the stringent response by comparing the changes in intracellular ppGpp levels and the rate of RNA synthesis in stringent (rel(+); wild type) and relaxed (relA and relC; mutant) strains of T. thermophilus. We found that in wild-type T. thermophilus, as in other bacteria, serine hydroxamate, an amino acid analogue that inhibits tRNA(Ser) aminoacylation, elicited a stringent response characterized in part by intracellular accumulation of ppGpp and that this response was completely blocked in a relA-null mutant and partially blocked in a relC mutant harboring a mutation in the ribosomal protein L11. Subsequent in vitro assays using ribosomes isolated from wild-type and relA and relC mutant strains confirmed that (p)ppGpp is synthesized by ribosomes and that mutation of RelA or L11 blocks that activity. This conclusion was further confirmed in vitro by demonstrating that thiostrepton or tetracycline inhibits (p)ppGpp synthesis. In an in vitro system, (p)ppGpp acted by inhibiting RNA polymerase-catalyzed 23S/5S rRNA gene transcription but at a concentration much higher than that of the observed intracellular ppGpp pool size. On the other hand, changes in the rRNA gene promoter activity tightly correlated with changes in the GTP but not ATP concentration. Also, (p)ppGpp exerted a potent inhibitory effect on IMP dehydrogenase activity. The present data thus complement the earlier structural analysis by providing physiological evidence that T. thermophilus does produce ppGpp in response to amino acid starvation in a ribosome-dependent (i.e., Rel

  13. Different Oxidative Stress Response in Keratinocytes and Fibroblasts of Reconstructed Skin Exposed to Non Extreme Daily-Ultraviolet Radiation

    PubMed Central

    Marionnet, Claire; Pierrard, Cécile; Lejeune, François; Sok, Juliette; Thomas, Marie; Bernerd, Françoise

    2010-01-01

    Experiments characterizing the biological effects of sun exposure have usually involved solar simulators. However, they addressed the worst case scenario i.e. zenithal sun, rarely found in common outdoor activities. A non-extreme ultraviolet radiation (UV) spectrum referred as “daily UV radiation” (DUVR) with a higher UVA (320–400 nm) to UVB (280–320 nm) irradiance ratio has therefore been defined. In this study, the biological impact of an acute exposure to low physiological doses of DUVR (corresponding to 10 and 20% of the dose received per day in Paris mid-April) on a 3 dimensional reconstructed skin model, was analysed. In such conditions, epidermal and dermal morphological alterations could only be detected after the highest dose of DUVR. We then focused on oxidative stress response induced by DUVR, by analyzing the modulation of mRNA level of 24 markers in parallel in fibroblasts and keratinocytes. DUVR significantly modulated mRNA levels of these markers in both cell types. A cell type differential response was noticed: it was faster in fibroblasts, with a majority of inductions and high levels of modulation in contrast to keratinocyte response. Our results thus revealed a higher sensitivity in response to oxidative stress of dermal fibroblasts although located deeper in the skin, giving new insights into the skin biological events occurring in everyday UV exposure. PMID:20706594

  14. Different oxidative stress response in keratinocytes and fibroblasts of reconstructed skin exposed to non extreme daily-ultraviolet radiation.

    PubMed

    Marionnet, Claire; Pierrard, Cécile; Lejeune, François; Sok, Juliette; Thomas, Marie; Bernerd, Françoise

    2010-08-10

    Experiments characterizing the biological effects of sun exposure have usually involved solar simulators. However, they addressed the worst case scenario i.e. zenithal sun, rarely found in common outdoor activities. A non-extreme ultraviolet radiation (UV) spectrum referred as "daily UV radiation" (DUVR) with a higher UVA (320-400 nm) to UVB (280-320 nm) irradiance ratio has therefore been defined. In this study, the biological impact of an acute exposure to low physiological doses of DUVR (corresponding to 10 and 20% of the dose received per day in Paris mid-April) on a 3 dimensional reconstructed skin model, was analysed. In such conditions, epidermal and dermal morphological alterations could only be detected after the highest dose of DUVR. We then focused on oxidative stress response induced by DUVR, by analyzing the modulation of mRNA level of 24 markers in parallel in fibroblasts and keratinocytes. DUVR significantly modulated mRNA levels of these markers in both cell types. A cell type differential response was noticed: it was faster in fibroblasts, with a majority of inductions and high levels of modulation in contrast to keratinocyte response. Our results thus revealed a higher sensitivity in response to oxidative stress of dermal fibroblasts although located deeper in the skin, giving new insights into the skin biological events occurring in everyday UV exposure.

  15. Rapid Responsiveness to Practice Predicts Longer-Term Retention of Upper Extremity Motor Skill in Non-Demented Older Adults

    PubMed Central

    Schaefer, Sydney Y.; Duff, Kevin

    2015-01-01

    Skill acquisition is a form of motor learning that may provide key insights into the aging brain. Although previous work suggests that older adults learn novel motor tasks slower and to a lesser extent than younger adults, we have recently demonstrated no significant effect of chronological age on the rates and amounts of skill acquisition, nor on its long-term retention, in adults over the age of 65. To better understand predictors of skill acquisition in non-demented older adults, we now explore the relationship between early improvements in motor performance due to practice (i.e., rapid responsiveness) and longer-term retention of an upper extremity motor skill, and whether the extent of rapid responsiveness was associated with global cognitive status. Results showed significant improvements in motor performance within the first five (of 150) trials, and that this “rapid responsiveness” was predictive of skill retention 1 month later. Notably, the extent of rapid responsiveness was not dependent on global cognitive status, as measured by the Montreal Cognitive Assessment (MoCA). Thus, rapid responsiveness appears to be an important variable in longer-term neurorehabilitative efforts with older adults, regardless of their cognitive status. PMID:26635601

  16. Signal inference with unknown response: Calibration-uncertainty renormalized estimator

    NASA Astrophysics Data System (ADS)

    Dorn, Sebastian; Enßlin, Torsten A.; Greiner, Maksim; Selig, Marco; Boehm, Vanessa

    2015-01-01

    The calibration of a measurement device is crucial for every scientific experiment, where a signal has to be inferred from data. We present CURE, the calibration-uncertainty renormalized estimator, to reconstruct a signal and simultaneously the instrument's calibration from the same data without knowing the exact calibration, but its covariance structure. The idea of the CURE method, developed in the framework of information field theory, is to start with an assumed calibration to successively include more and more portions of calibration uncertainty into the signal inference equations and to absorb the resulting corrections into renormalized signal (and calibration) solutions. Thereby, the signal inference and calibration problem turns into a problem of solving a single system of ordinary differential equations and can be identified with common resummation techniques used in field theories. We verify the CURE method by applying it to a simplistic toy example and compare it against existent self-calibration schemes, Wiener filter solutions, and Markov chain Monte Carlo sampling. We conclude that the method is able to keep up in accuracy with the best self-calibration methods and serves as a noniterative alternative to them.

  17. Signal inference with unknown response: calibration-uncertainty renormalized estimator.

    PubMed

    Dorn, Sebastian; Enßlin, Torsten A; Greiner, Maksim; Selig, Marco; Boehm, Vanessa

    2015-01-01

    The calibration of a measurement device is crucial for every scientific experiment, where a signal has to be inferred from data. We present CURE, the calibration-uncertainty renormalized estimator, to reconstruct a signal and simultaneously the instrument's calibration from the same data without knowing the exact calibration, but its covariance structure. The idea of the CURE method, developed in the framework of information field theory, is to start with an assumed calibration to successively include more and more portions of calibration uncertainty into the signal inference equations and to absorb the resulting corrections into renormalized signal (and calibration) solutions. Thereby, the signal inference and calibration problem turns into a problem of solving a single system of ordinary differential equations and can be identified with common resummation techniques used in field theories. We verify the CURE method by applying it to a simplistic toy example and compare it against existent self-calibration schemes, Wiener filter solutions, and Markov chain Monte Carlo sampling. We conclude that the method is able to keep up in accuracy with the best self-calibration methods and serves as a noniterative alternative to them.

  18. Plant responses to climatic extremes: within-species variation equals among-species variation.

    PubMed

    Malyshev, Andrey V; Arfin Khan, Mohammed A S; Beierkuhnlein, Carl; Steinbauer, Manuel J; Henry, Hugh A L; Jentsch, Anke; Dengler, Jürgen; Willner, Evelin; Kreyling, Juergen

    2016-01-01

    Within-species and among-species differences in growth responses to a changing climate have been well documented, yet the relative magnitude of within-species vs. among-species variation has remained largely unexplored. This missing comparison impedes our ability to make general predictions of biodiversity change and to project future species distributions using models. We present a direct comparison of among- versus within-species variation in response to three of the main stresses anticipated with climate change: drought, warming, and frost. Two earlier experiments had experimentally induced (i) summer drought and (ii) spring frost for four common European grass species and their ecotypes from across Europe. To supplement existing data, a third experiment was carried out, to compare variation among species from different functional groups to within-species variation. Here, we simulated (iii) winter warming plus frost for four grasses, two nonleguminous, and two leguminous forbs, in addition to eleven European ecotypes of the widespread grass Arrhenatherum elatius. For each experiment, we measured: (i) C/N ratio and biomass, (ii) chlorophyll content and biomass, and (iii) plant greenness, root (15) N uptake, and live and dead tissue mass. Using coefficients of variation (CVs) for each experiment and response parameter, a total of 156 within- vs. among-species comparisons were conducted, comparing within-species variation in each of four species with among-species variation for each seed origin (five countries). Of the six significant differences, within-species CVs were higher than among-species CVs in four cases. Partitioning of variance within each treatment in two of the three experiments showed that within-species variability (ecotypes) could explain an additional 9% of response variation after accounting for the among-species variation. Our observation that within-species variation was generally as high as among-species variation emphasizes the importance of

  19. Synthesis of Concepts in Disturbance Hydrology and the Importance for Hydrologic Response to Extreme Hydroclimatic Events in the Critical Zone

    NASA Astrophysics Data System (ADS)

    Ebel, B. A.; Mirus, B. B.

    2014-12-01

    The watersheds we rely on for water resources, ecosystem services, and protection from hydrologically driven natural hazards are increasingly impacted by landscape disturbance. Abrupt alterations of hydrologic processes resulting from wildfires, urban development, resource extraction, deforestation, hurricanes, tsunamis, and landslides change the storage or buffering capacity as well as the hydrologic functional connectivity in watersheds. We highlight some of the critical issues and major challenges to predicting disturbance impacts on water resources and natural hazards and outline some of the opportunities for improved mechanistic understanding of how disturbances propagate through landscape hydrological processes. In particular, we emphasize synthesis of conceptual commonalities and opportunities from other disciplines, primarily ecologic sciences, which are well versed in the study of disturbed landscapes. Cross scale interactions and complex adaptive systems theory are examples of useful concepts for synthesis across different disturbance effects. We also highlight the importance of improved understanding of disturbance hydrology for predicting the effects of extreme hydroclimatic events on the hydrologic response of the Critical Zone. An example from the Front Range of the Rocky Mountains, USA of a watershed with multiple disturbances subjected to a low frequency extreme rainfall event is presented to show the diversity of runoff generation mechanisms and the implications for watershed scale impacts.

  20. A preliminary estimate of the EUVE cumulative distribution of exposure time on the unit sphere. [Extreme Ultra-Violet Explorer

    NASA Technical Reports Server (NTRS)

    Tang, C. C. H.

    1984-01-01

    A preliminary study of an all-sky coverage of the EUVE mission is given. Algorithms are provided to compute the exposure of the celestial sphere under the spinning telescopes, taking into account that during part of the exposure time the telescopes are blocked by the earth. The algorithms are used to give an estimate of exposure time at different ecliptic latitudes as a function of the angle of field of view of the telescope. Sample coverage patterns are also given for a 6-month mission.

  1. A preliminary estimate of the EUVE cumulative distribution of exposure time on the unit sphere. [Extreme Ultra-Violet Explorer

    NASA Technical Reports Server (NTRS)

    Tang, C. C. H.

    1984-01-01

    A preliminary study of an all-sky coverage of the EUVE mission is given. Algorithms are provided to compute the exposure of the celestial sphere under the spinning telescopes, taking into account that during part of the exposure time the telescopes are blocked by the earth. The algorithms are used to give an estimate of exposure time at different ecliptic latitudes as a function of the angle of field of view of the telescope. Sample coverage patterns are also given for a 6-month mission.

  2. [Response and Control Factors of Groundwater to Extreme Weather, Jiguan Cave, Henan Province, China].

    PubMed

    Liu, Xiao; Yang, Yan; Peng, Tao; Zhao, Jing-yao; Ren, Xiao-feng; Zhang, Yin-huan; Nie Xu-dong; Li, Jian-cang; Ling, Xin-you; Zhang, Zhi-qin

    2015-05-01

    Geochemical dynamics of cave water were monitored to unveil its variation and controlling factors from October 2009 to December 2013 in Jiguan Cave,west of Henan province,southeastern coast of the loess plateau. The results showed that: (1) the hydrochemical types of the cave water are HCO(3-)-Ca(2+)-Mg2+ and HCO(3-)-Mg(2+)-Ca2+. HCO(3-) are over 80% of the anions, Ca2+ and Mg2+ are the dominate cations, and ground river keeping in erosion and pool water drips in deposition all the year. (2) Dripping water and pool water in Ji guan cave can respond perfectly to the change of external climate environment, which geochemistry indexes possess the extraordinary seasonal effects. (3) The concentration changes of the Ca2+, Mg2+ , SO4(2-) responded sensitively to annual precipitation change. Ca2+, Mg2+, SO4(2-) rise in waterlogging year and fall in drought year. Because HCO(3-) controlled by CO2 concentration. HCO(3-) concentration showed a unconspicuous response to the change of external climate environment. (4) The concentration changes of Ca2+, Mg2+, SO4(2-) have no obvious seasonal variation and showed a unconspicuous response to the change of external climate environment.

  3. Psychophysical estimates of cochlear phase response: masking by harmonic complexes.

    PubMed

    Lentz, J J; Leek, M R

    2001-12-01

    Harmonic complexes with identical component frequencies and amplitudes but different phase spectra may be differentially effective as maskers. Such harmonic waveforms, constructed with positive or negative Schroeder phases, have similar envelopes and identical long-term power spectra, but the positive Schroeder-phase waveform is typically a less effective masker than the negative Schroeder-phase waveform. These masking differences have been attributed to an interaction between the masker phase spectrum and the phase characteristic of the basilar membrane. To explore this relationship, the gradient of stimulus phase change across masker bandwidth was varied by systematically altering the Schroeder-phase algorithm. Observers detected a signal tone added in-phase to a single component of a masker whose frequencies ranged from 200 to 5000 Hz, with a fundamental frequency of 100 Hz. For signal frequencies of 1000-4000 Hz, differences in masking across the harmonic complexes could be as large as 5-10 dB for phase gradients changing by only 10%. The phase gradient that resulted in a minimum amount of masking varied with signal frequency, with low frequencies masked least effectively by stimuli with rapidly changing component phases and high frequencies masked by stimuli with more shallow phase gradients. A gammachirp filter was implemented to model these results, predicting the qualitative changes in curvature of the phase-byfrequency function estimated from the empirical data: In some cases, small modifications to the gammachirp filter produced better quantitative predictions of curvature changes across frequency, but this filter, as implemented here, was unable to accurately represent all the data.

  4. Human impact parameterization in global hydrological models improves estimates of monthly discharges and hydrological extremes: a multi-model validation study

    NASA Astrophysics Data System (ADS)

    Veldkamp, Ted; Ward, Philip; de Moel, Hans; Aerts, Jeroen; Muller Schmied, Hannes; Portmann, Felix; Zhao, Fang; Gerten, Dieter; Masaki, Yoshimitsu; Pokhrel, Yadu; Satoh, Yusuke; Gosling, Simon; Zaherpour, Jamal; Wada, Yoshihide

    2017-04-01

    Human impacts on freshwater resources and hydrological features form the core of present-day water related hazards, like flooding, droughts, water scarcity, and water quality issues. Driven by the societal and scientific needs to correctly model such water related hazards a fair amount of resources has been invested over the past decades to represent human activities and their interactions with the hydrological cycle in global hydrological models (GHMs). Use of these GHMs - including the human dimension - is widespread, especially in water resources research. Evaluation or comparative assessments of the ability of such GHMs to represent real-world hydrological conditions are, unfortunately, however often limited to (near-)natural river basins. Such studies are, therefore, not able to test the model representation of human activities and its associated impact on estimates of freshwater resources or assessments of hydrological extremes. Studies that did perform a validation exercise - including the human dimension and looking into managed catchments - either focused only on one hydrological model, and/or incorporated only a few data points (i.e. river basins) for validation. To date, a comprehensive comparative analysis that evaluates whether and where incorporating the human dimension actually improves the performance of different GHMs with respect to their representation of real-world hydrological conditions and extremes is missing. The absence of such study limits the potential benchmarking of GHMs and their outcomes in hydrological hazard and risk assessments significantly, potentially hampering incorporation of GHMs and their modelling results in actual policy making and decision support with respect to water resources management. To address this issue, we evaluate in this study the performance of five state-of-the-art GHMs that include anthropogenic activities in their modelling scheme, with respect to their representation of monthly discharges and hydrological

  5. Hemodynamic and neurohormonal responses to extreme orthostatic stress in physically fit young adults

    NASA Astrophysics Data System (ADS)

    Grasser, E. K.; Goswami, N.; Rössler, A.; Vrecko, K.; Hinghofer-Szalkay, H.

    2009-04-01

    Blood pressure stability may be jeopardized in astronauts experiencing orthostatic stress. There is disagreement about cardiovascular and endocrine stress responses that emerge when a critical (presyncopal) state is reached. We studied hemodynamic and neurohormonal changes as induced by an orthostatic stress paradigm (head-up tilt combined with lower body negative pressure) that leads to a syncopal endpoint. From supine control to presyncope, heart rate increased by 78% and thoracic impedance by 12%. There was a 49% fall in stroke volume index, 19% in mean arterial blood pressure, 14% in total peripheral resistance index and 11% in plasma volume. Plasma norepinephrine rose by 107, epinephrine by 491, plasma renin activity by 167, and cortisol by 25%. Hemodynamic and hormonal changes of clearly different magnitude emerge in presyncope as compared to supine rest. Additional studies are warranted to reveal the exact time course of orthostatic changes up to syncopal levels.

  6. Muscle damage and immune responses to prolonged exercise in environmental extreme conditions.

    PubMed

    Hassan, Emad S

    2016-10-01

    This study aimed to investigate the effect of prolonged exercise with and without a thermal clamp on leukocyte cell, stress hormones, cytokine and muscle damage responses. Fifteen healthy male volunteers (means±SD: age 22±3 yr; mass 75.8±3.2 kg; maximal oxygen uptake 55±7 mL/min/kg) randomly completed four chamber trials of 1 hour each, in different environment and separated by 7 days. Trials were: 1) exercise induced heating (EX-heating [EX-H]: temperature/humidity, 38° C/50%); 2) exercise with a thermal clamp (EX-cooling [EX-C]: temperature/humidity, 18° C/50%); 3) passive heating (PA-H: temperature/ humidity, 38° C/50%); 4) passive cooling (PA-C: temperature/ humidity, 18° C/50%). EX-H and EX-C were composed of 1h treadmill runs at 80% individual anaerobic threshold (IAT). Blood samples were collected at pre-post, and 1h postenvironments exposure. Compared to EX-H, exercise-induced increases in core temperature, heart rate, cortisol, human growth hormone (hGH)), Interleukin-6 (IL-6), leukocyte counts and creatine kinase (CK) and Myoglobin (Mb) were significantly (P<0.01) more pronounced than in EX-C. These results suggest that the additional impact of elevated ambient temperatures on stress responses to endurance exercise in trained subjects seems to affect primarily the hormonal systems and resulting changes in leukocyte number, creatine kinase, Myoglobin and interleukine-6.

  7. Phylogenetically Driven Sequencing of Extremely Halophilic Archaea Reveals Strategies for Static and Dynamic Osmo-response

    PubMed Central

    Tritt, Andrew; Larsen, David; Krusor, Megan; Yao, Andrew I.; Wu, Dongying; Madern, Dominique; Eisen, Jonathan A.; Darling, Aaron E.; Facciotti, Marc T.

    2014-01-01

    Organisms across the tree of life use a variety of mechanisms to respond to stress-inducing fluctuations in osmotic conditions. Cellular response mechanisms and phenotypes associated with osmoadaptation also play important roles in bacterial virulence, human health, agricultural production and many other biological systems. To improve understanding of osmoadaptive strategies, we have generated 59 high-quality draft genomes for the haloarchaea (a euryarchaeal clade whose members thrive in hypersaline environments and routinely experience drastic changes in environmental salinity) and analyzed these new genomes in combination with those from 21 previously sequenced haloarchaeal isolates. We propose a generalized model for haloarchaeal management of cytoplasmic osmolarity in response to osmotic shifts, where potassium accumulation and sodium expulsion during osmotic upshock are accomplished via secondary transport using the proton gradient as an energy source, and potassium loss during downshock is via a combination of secondary transport and non-specific ion loss through mechanosensitive channels. We also propose new mechanisms for magnesium and chloride accumulation. We describe the expansion and differentiation of haloarchaeal general transcription factor families, including two novel expansions of the TATA-binding protein family, and discuss their potential for enabling rapid adaptation to environmental fluxes. We challenge a recent high-profile proposal regarding the evolutionary origins of the haloarchaea by showing that inclusion of additional genomes significantly reduces support for a proposed large-scale horizontal gene transfer into the ancestral haloarchaeon from the bacterial domain. The combination of broad (17 genera) and deep (≥5 species in four genera) sampling of a phenotypically unified clade has enabled us to uncover both highly conserved and specialized features of osmoadaptation. Finally, we demonstrate the broad utility of such datasets, for

  8. Strain response of thermal barrier coatings captured under extreme engine environments through synchrotron X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Knipe, Kevin; Manero, Albert; Siddiqui, Sanna F.; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M.; Bartsch, Marion; Raghavan, Seetha

    2014-07-01

    The mechanical behaviour of thermal barrier coatings in operation holds the key to understanding durability of jet engine turbine blades. Here we report the results from experiments that monitor strains in the layers of a coating subjected to thermal gradients and mechanical loads representing extreme engine environments. Hollow cylindrical specimens, with electron beam physical vapour deposited coatings, were tested with internal cooling and external heating under various controlled conditions. High-energy synchrotron X-ray measurements captured the in situ strain response through the depth of each layer, revealing the link between these conditions and the evolution of local strains. Results of this study demonstrate that variations in these conditions create corresponding trends in depth-resolved strains with the largest effects displayed at or near the interface with the bond coat. With larger temperature drops across the coating, significant strain gradients are seen, which can contribute to failure modes occurring within the layer adjacent to the interface.

  9. Response of Jupiter's inner magnetosphere to the solar wind derived from extreme ultraviolet monitoring of the Io plasma torus

    NASA Astrophysics Data System (ADS)

    Murakami, Go; Yoshioka, Kazuo; Yamazaki, Atsushi; Tsuchiya, Fuminori; Kimura, Tomoki; Tao, Chihiro; Kita, Hajime; Kagitani, Masato; Sakanoi, Takeshi; Uemizu, Kazunori; Kasaba, Yasumasa; Yoshikawa, Ichiro; Fujimoto, Masaki

    2016-12-01

    Because Jupiter's magnetosphere is huge and is rotationally dominated, solar wind influence on its inner part has been thought to be negligible. Meanwhile, dawn-dusk asymmetric features of this region have been reported. Presence of dawn-to-dusk electric field is one of the leading explanations of the asymmetry; however, the physical process of generating such an intense electric field still remains unclear. Here we present long and continuous monitoring of the extreme ultraviolet emissions from the Io plasma torus in Jupiter's inner magnetosphere made by the Hisaki satellite between December 2013 and March 2014. We found five occasions where the dusk/dawn brightness ratio was enhanced above 2.5 in response to rapid increase of the solar wind dynamic pressure. The enhancement is achieved as the dusk region brightens and the dawn region dims. The observation indicates that dawn-to-dusk electric field in the inner magnetosphere is enhanced under compressed conditions.

  10. Strain response of thermal barrier coatings captured under extreme engine environments through synchrotron X-ray diffraction.

    PubMed

    Knipe, Kevin; Manero, Albert; Siddiqui, Sanna F; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M; Bartsch, Marion; Raghavan, Seetha

    2014-07-31

    The mechanical behaviour of thermal barrier coatings in operation holds the key to understanding durability of jet engine turbine blades. Here we report the results from experiments that monitor strains in the layers of a coating subjected to thermal gradients and mechanical loads representing extreme engine environments. Hollow cylindrical specimens, with electron beam physical vapour deposited coatings, were tested with internal cooling and external heating under various controlled conditions. High-energy synchrotron X-ray measurements captured the in situ strain response through the depth of each layer, revealing the link between these conditions and the evolution of local strains. Results of this study demonstrate that variations in these conditions create corresponding trends in depth-resolved strains with the largest effects displayed at or near the interface with the bond coat. With larger temperature drops across the coating, significant strain gradients are seen, which can contribute to failure modes occurring within the layer adjacent to the interface.

  11. Tumor response estimation in radar-based microwave breast cancer detection.

    PubMed

    Kurrant, Douglas J; Fear, Elise C; Westwick, David T

    2008-12-01

    Radar-based microwave imaging techniques have been proposed for early stage breast cancer detection. A considerable challenge for the successful implementation of these techniques is the reduction of clutter, or components of the signal originating from objects other than the tumor. In particular, the reduction of clutter from the late-time scattered fields is required in order to detect small (subcentimeter diameter) tumors. In this paper, a method to estimate the tumor response contained in the late-time scattered fields is presented. The method uses a parametric function to model the tumor response. A maximum a posteriori estimation approach is used to evaluate the optimal values for the estimates of the parameters. A pattern classification technique is then used to validate the estimation. The ability of the algorithm to estimate a tumor response is demonstrated by using both experimental and simulated data obtained with a tissue sensing adaptive radar system.

  12. ZnO quantum dot-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity.

    PubMed

    Lu, Yanghua; Wu, Zhiqian; Xu, Wenli; Lin, Shisheng

    2016-12-02

    A ZnO quantum dot  photo-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity of more than 1915 A W(-1) and detectivity of more than 1.02 × 10(13) Jones (Jones = cm Hz(1/2) W(-1)) has been demonstrated. The interfaced h-BN layer increases the barrier height at the graphene/GaN heterojunction, which decreases the dark current and improves the on/off current ratio of the device. The photo-doping effect increases the barrier height and carrier concentration at the graphene/h-BN/GaN heterojunction, thus the responsivity is improved from 1473 A W(-1) to 1915 A W(-1) and the detectivity is improved from 5.8 × 10(12) to 1.0 × 10(13) Jones. Moreover, all of the responsivity and detectivity values are the highest values among all the graphene-based ultraviolet photodetectors.

  13. Structural and functional responses of extremity veins to long-term gravitational loading or unloading—lessons from animal systems

    NASA Astrophysics Data System (ADS)

    Monos, Emil; Raffai, Gábor; Dörnyei, Gabriella; Nádasy, György L.; Fehér, Erzsébet

    2007-02-01

    Long, transparent tubular tilt-cages were developed to maintain experimental rats either in 45∘ head-up (orthostasis model), or in 45∘ head-down body position (antiorthostasis model) for several weeks. In order to study the functional and structural changes in extremity blood vessels, also novel pressure angiograph systems, as well as special quantitative electron microscopic methods were applied. It was found that several adaptive mechanisms are activated in the lower limb superficial veins and microvessels of muscles when an organism is exposed to long-term (1-2 weeks) orthostatic-type gravitational load including a reversible amplification of the pressure-dependent myogenic response, tuning of the myogenic tone by Ca++- and voltage-sensitive K+ channels in humans, augmentation of the intramural sympathetic innervation involving an increased nerve terminal density and synaptic vesicle count with functional remodeling, reorganization of vascular network properties (microvascular rarefaction in muscles, decreased branching angles in superficial veins), and responses of an endothelin and platelet-derived growth factor (PDGF) containing vesicle system in the endothelium. On the other hand, when applying long-term head-down tilting, the effects are dichotomous, e.g. it suppresses significantly the pressure-induced myogenic response, however does not diminish the adventitial sympathetic innervation density.

  14. Aerospace Materials for Extreme Environments

    DTIC Science & Technology

    2013-03-07

    AFOSR/RTD Air Force Research Laboratory AEROSPACE MATERIALS FOR EXTREME ENVIRONMENTS Date: 7 March 2013 Report Documentation Page Form...ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for...to Washington Headquarters Services, Directorate for Information Operations and Reports , 1215 Jefferson Davis Highway, Suite 1204, Arlington VA

  15. Extreme Hypoxic Conditions Induce Selective Molecular Responses and Metabolic Reset in Detached Apple Fruit

    PubMed Central

    Cukrov, Dubravka; Zermiani, Monica; Brizzolara, Stefano; Cestaro, Alessandro; Licausi, Francesco; Luchinat, Claudio; Santucci, Claudio; Tenori, Leonardo; Van Veen, Hans; Zuccolo, Andrea; Ruperti, Benedetto; Tonutti, Pietro

    2016-01-01

    The ripening physiology of detached fruit is altered by low oxygen conditions with profound effects on quality parameters. To study hypoxia-related processes and regulatory mechanisms, apple (Malus domestica, cv Granny Smith) fruit, harvested at commercial ripening, were kept at 1°C under normoxic (control) and hypoxic (0.4 and 0.8 kPa oxygen) conditions for up to 60 days. NMR analyses of cortex tissue identified eight metabolites showing significantly different accumulations between samples, with ethanol and alanine displaying the most pronounced difference between hypoxic and normoxic treatments. A rapid up-regulation of alcohol dehydrogenase and pyruvate-related metabolism (lactate dehydrogenase, pyruvate decarboxylase, alanine aminotransferase) gene expression was detected under both hypoxic conditions with a more pronounced effect induced by the lowest (0.4 kPa) oxygen concentration. Both hypoxic conditions negatively affected ACC synthase and ACC oxidase transcript accumulation. Analysis of RNA-seq data of samples collected after 24 days of hypoxic treatment identified more than 1000 genes differentially expressed when comparing 0.4 vs. 0.8 kPa oxygen concentration samples. Genes involved in cell-wall, minor and major CHO, amino acid and secondary metabolisms, fermentation and glycolysis as well as genes involved in transport, defense responses, and oxidation-reduction appeared to be selectively affected by treatments. The lowest oxygen concentration induced a higher expression of transcription factors belonging to AUX/IAA, WRKY, HB, Zinc-finger families, while MADS box family genes were more expressed when apples were kept under 0.8 kPa oxygen. Out of the eight group VII ERF members present in apple genome, two genes showed a rapid up-regulation under hypoxia, and western blot analysis showed that apple MdRAP2.12 proteins were differentially accumulated in normoxic and hypoxic samples, with the highest level reached under 0.4 kPa oxygen. These data suggest

  16. Extreme Hypoxic Conditions Induce Selective Molecular Responses and Metabolic Reset in Detached Apple Fruit.

    PubMed

    Cukrov, Dubravka; Zermiani, Monica; Brizzolara, Stefano; Cestaro, Alessandro; Licausi, Francesco; Luchinat, Claudio; Santucci, Claudio; Tenori, Leonardo; Van Veen, Hans; Zuccolo, Andrea; Ruperti, Benedetto; Tonutti, Pietro

    2016-01-01

    The ripening physiology of detached fruit is altered by low oxygen conditions with profound effects on quality parameters. To study hypoxia-related processes and regulatory mechanisms, apple (Malus domestica, cv Granny Smith) fruit, harvested at commercial ripening, were kept at 1°C under normoxic (control) and hypoxic (0.4 and 0.8 kPa oxygen) conditions for up to 60 days. NMR analyses of cortex tissue identified eight metabolites showing significantly different accumulations between samples, with ethanol and alanine displaying the most pronounced difference between hypoxic and normoxic treatments. A rapid up-regulation of alcohol dehydrogenase and pyruvate-related metabolism (lactate dehydrogenase, pyruvate decarboxylase, alanine aminotransferase) gene expression was detected under both hypoxic conditions with a more pronounced effect induced by the lowest (0.4 kPa) oxygen concentration. Both hypoxic conditions negatively affected ACC synthase and ACC oxidase transcript accumulation. Analysis of RNA-seq data of samples collected after 24 days of hypoxic treatment identified more than 1000 genes differentially expressed when comparing 0.4 vs. 0.8 kPa oxygen concentration samples. Genes involved in cell-wall, minor and major CHO, amino acid and secondary metabolisms, fermentation and glycolysis as well as genes involved in transport, defense responses, and oxidation-reduction appeared to be selectively affected by treatments. The lowest oxygen concentration induced a higher expression of transcription factors belonging to AUX/IAA, WRKY, HB, Zinc-finger families, while MADS box family genes were more expressed when apples were kept under 0.8 kPa oxygen. Out of the eight group VII ERF members present in apple genome, two genes showed a rapid up-regulation under hypoxia, and western blot analysis showed that apple MdRAP2.12 proteins were differentially accumulated in normoxic and hypoxic samples, with the highest level reached under 0.4 kPa oxygen. These data suggest

  17. Ecological Response to Extreme Flow Events in Streams and Rivers: Implications of Climate Change for Aquatic Biodiversity

    NASA Astrophysics Data System (ADS)

    Hawkins, C. P.; Vander Laan, J. J.; Dhungel, S.; Tarboton, D. G.

    2014-12-01

    We used the USEPA's 2008-2009 National Rivers and Streams Assessment (NRSA) data to assess the potential sensitivity of stream biodiversity to both spatial variation in measures of extreme flow and likely changes in extreme flows associated with projected climate change. The NRSA data consisted of macroinvertebrate samples collected at 1313 reference-quality sites. We characterized the hydrologic regimes at each of these sites by developing Random Forest empirical models from long-term (≥ 20 years) daily flow records obtained from 601 gaged USGS stations. These models described spatial variation in 16 flow variables as a function of climate and watershed attributes. Three of the models characterized aspects of extreme flow: the mean number of zero-flow events per year (ZeroDays), the mean number of high-flow events per year (HighDays = number of events per year that exceed the 95th percentile of mean annual flow), and the coefficient of variation of daily flows (CV). We used these models to predict the flow attributes expected at each of the 1313 sites with ecological data. We then built additional Random Forest models that related among-site differences in stream macroinvertebrate taxonomic composition, assemblage richness, and the likelihood of observing individual taxa to the 16 measures of flow regime and other environmental predictors. At the national level, ZeroDays was an important predictor of macroinvertebrate biodiversity: richness declined as ZeroDays increased. A similar pattern was observed when analyses were restricted to lowland and plains streams. For eastern highland streams, HighDays was a better predictor of stream biodiversity than aspects of low flow: richness declined as HighDays increased. For western streams, CV was a better predictor of biodiversity than either ZeroDays or HighDays: biodiversity decreased as CV increased. Empirical models that linked flow attributes to climate change projections imply that flow regime response to climate

  18. Professional ethics in extreme circumstances: responsibilities of attending physicians and healthcare providers in hunger strikes.

    PubMed

    Irmak, Nurbay

    2015-08-01

    Hunger strikes potentially present a serious challenge for attending physicians. Though rare, in certain cases, a conflict can occur between the obligations of beneficence and autonomy. On the one hand, physicians have a duty to preserve life, which entails intervening in a hunger strike before the hunger striker loses his life. On the other hand, physicians' duty to respect autonomy implies that attending physicians have to respect hunger strikers' decisions to refuse nutrition. International medical guidelines state that physicians should follow the strikers' unpressured advance directives. When physicians encounter an unconscious striker, in the absence of reliable advance directives, the guidelines advise physicians to make a decision on the basis of the patient's values, previously expressed wishes, and best interests. I argue that if there are no advance directives and the striker has already lost his competence, the physician has the responsibility to resuscitate the striker. Once the striker regains his decision-making capacity, he should be asked about his decision. If he is determined to continue fasting and refuses treatment, the physician has a moral obligation to respect this decisions and follow his advance directives.

  19. Extreme Postinjection Flare in Response to Intra-Articular Triamcinolone Acetonide (Kenalog).

    PubMed

    Young, Porter; Homlar, Kelly C

    2016-01-01

    As intra-articular corticosteroid injections (CSIs) are a common treatment for osteoarthritis, physicians must well understand their potential side effects. Postinjection flares are an acute side effect of intra-articular CSIs, with symptoms ranging from mild joint effusion to disabling pain. The present case involved a severe postinjection flare that occurred after the patient, a 56-year-old woman with moderate osteoarthritis in the left knee, received 2 mL of 1% lidocaine and 2 mL (40 mg) of triamcinolone acetonide (Kenalog). Two hours after injection, she experienced swelling and intense pain in the knee and was unable to ambulate. The knee was aspirated with a return of 25 mL of "butterscotch"-colored fluid. This case is novel in that its acuity of onset, severity of symptoms, and synovial fluid analysis mimicked septic arthritis, which was ultimately ruled out with negative cultures and confirmation of triamcinolone acetonide crystals in the synovial aspirate, viewed by polarized light microscopy. Thus, the patient's reaction represents an acute crystal-induced inflammatory response. Although reactions to an intra-articular CSI of this severity are rare, it is important for treating physicians to inform patients of this potential side effect.

  20. Functional MRI determination of a dose-response relationship to lower extremity neuromuscular electrical stimulation in healthy subjects.

    PubMed

    Smith, Gerald V; Alon, Gad; Roys, Steven R; Gullapalli, Rao P

    2003-05-01

    Although empirical evidence supports the use of neuromuscular electrical stimulation (NMES) to treat physical impairments associated with stroke, the mechanisms underlying the efficacy of this modality are poorly understood. Recent studies have employed functional imaging to investigations of brain responses to median nerve stimulation. These studies suggest a dose-response relationship may exist between selected stimulation parameters and hemodynamic responses in sensorimotor regions. However, substantial gaps exist in this literature. The present study was designed to address these deficiencies. Ten healthy subjects participated. In phase one, four stimulus intensity levels were established: (1). sensory threshold [Th], (2). (MM-Th)x0.333+Th [low-intermediate level, LI],