Science.gov

Sample records for extreme ultraviolet euv

  1. Extreme Ultraviolet Explorer (EUVE): Emergency support

    NASA Technical Reports Server (NTRS)

    Zayas, H.; Barrowman, J.

    1991-01-01

    The Extreme Ultraviolet Explorer (EUVE) will conduct a survey of the entire celestial sphere in the extreme ultraviolet (UV) spectrum, 100 to 1000 angstrom units. This survey will be accomplished using four grazing incidence telescopes mounted on a spinning spacecraft whose spin axis is along the Sun line. Data is taken only when the spacecraft is in the Earth's shadow. The EUVE will be placed in a near circular orbit by a Delta expendable launch vehicle. The design orbit is circular at an altitude of 550 km by 28.5 degrees for a period of 96 minutes. The EUVE will be flown on a standardized Explorer Platform (EP) which will be reused for followup Explorer missions. Coverage will be provided by the Deep Space Network (DSN) for EUVE emergencies that would prevent communications via the normal channels of the Tracking and Data Relay Satellite System (TDRSS). Emergency support will be provided by the 26-meter subnet. Data is presented in tabular form for DSN support, frequency assignments, telemetry, and command.

  2. Microchannel plate EUV detectors for the Extreme Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Malina, R. F.; Coburn, K.; Werthimer, D.

    1984-01-01

    The design and operating characteristics of the prototype imaging microchannel plate (MCP) detector for the Extreme Ultraviolet Explorer (EUVE) Satellite are discussed. It is shown that this detector has achieved high position resolution performance (greater than 512 x 512 pixels) and has low (less than one percent) image distortion. In addition, the channel plate scheme used has tight pulse height distributions (less than 40 percent FWHM) for UV radiation and displays low (less than 0.2 cnt/sq cm-s) dark background counting rates. Work that has been done on EUV filters in relation to the envisaged filter and photocathode complement is also described.

  3. Calibration techniques for the NASA ICON Extreme Ultraviolet Spectrograph (EUV)

    NASA Astrophysics Data System (ADS)

    Ishikawa, Yuzo; Sirk, Martin; Wishnow, Ed; Korpela, Eric; Edelstein, Jerry; Curtis, James; Gibson, Steven R.; McCauley, Jeremy; McPhate, Jason; Smith, Christopher

    2016-09-01

    The Ionospheric Connection Explorer (ICON) is a NASA Heliophysics Explorer Mission designed to study the ionosphere. ICON will examine the Earth's upper atmosphere to better understand the relationship between Earth weather and space-weather drivers. ICON will accomplish its science objectives using a suite of 4 instruments, one of which is the Extreme Ultraviolet Spectrograph (EUV). EUV will measure daytime altitude intensity profile and spatial distribution of ionized oxygen emissions (O+ at 83.4 nm and 61.7 nm) on the limb in the thermosphere (100 to 500 km tangent altitude). EUV is a single-optic imaging spectrometer that observes in the extreme ultraviolet region of the spectrum. In this paper, we describe instrumental performance calibration measurement techniques and data analysis for EUV. Various measurements including Lyman-α scattering, instrumental and component efficiency, and field-of-view alignment verification were done in custom high-vacuum ultraviolet calibration facilities. Results from the measurements and analysis will be used to understand the instrument performance during the in-flight calibration and observations after launch.

  4. The Extreme Ultraviolet (EUV) Instrument for the MAVEN Mission

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip C.

    2012-01-01

    The Mars Atmosphere and Volatile Evolution Mission (MAVEN) will explore the variability in the planet's upper atmosphere and ionosphere that is dominated by interactions with the sun, specifically the high-energy photons in the soft X-ray and extreme ultraviolet wavelengths as well as interactions with the solar wind. Scientists will use MAVEN data to determine the current loss rate of volatile compounds from the Mars atmosphere, then extrapolate back in time in order to give historical estimations of state of the Mars atmosphere and climate, its ability to sustain liquid water, and the potential for the Martian habitability. The EUV instrument is critical in measuring the Space Weather driver of this atmospheric variability. It will directly observe a three EUV wavelength ranges and their variability due to solar flares (time scales of seconds to hours) as well as active region evolution (months), which will then act as proxies for a model to determine the entire 0.1-200 nm solar spectrum at all times during the MAVEN mission. These EUV measurements and models results will compliment the other instruments that will provide direct in-situ as well as remote sensing observations of the Martian atmospheric response to this solar driver. This presentation will be an introduction of this instrument and its science measurements and goals to the larger community, as well as a status report on its progress.

  5. Four-mirror extreme ultraviolet (EUV) lithography projection system

    DOEpatents

    Cohen, Simon J; Jeong, Hwan J; Shafer, David R

    2000-01-01

    The invention is directed to a four-mirror catoptric projection system for extreme ultraviolet (EUV) lithography to transfer a pattern from a reflective reticle to a wafer substrate. In order along the light path followed by light from the reticle to the wafer substrate, the system includes a dominantly hyperbolic convex mirror, a dominantly elliptical concave mirror, spherical convex mirror, and spherical concave mirror. The reticle and wafer substrate are positioned along the system's optical axis on opposite sides of the mirrors. The hyperbolic and elliptical mirrors are positioned on the same side of the system's optical axis as the reticle, and are relatively large in diameter as they are positioned on the high magnification side of the system. The hyperbolic and elliptical mirrors are relatively far off the optical axis and hence they have significant aspherical components in their curvatures. The convex spherical mirror is positioned on the optical axis, and has a substantially or perfectly spherical shape. The spherical concave mirror is positioned substantially on the opposite side of the optical axis from the hyperbolic and elliptical mirrors. Because it is positioned off-axis to a degree, the spherical concave mirror has some asphericity to counter aberrations. The spherical concave mirror forms a relatively large, uniform field on the wafer substrate. The mirrors can be tilted or decentered slightly to achieve further increase in the field size.

  6. Extreme ultraviolet (EUV) degradation of poly(olefin sulfone)s: Towards applications as EUV photoresists

    NASA Astrophysics Data System (ADS)

    Lawrie, Kirsten; Blakey, Idriss; Blinco, James; Gronheid, Roel; Jack, Kevin; Pollentier, Ivan; Leeson, Michael J.; Younkin, Todd R.; Whittaker, Andrew K.

    2011-02-01

    Poly(olefin sulfone)s, formed by the reaction of sulfur dioxide (SO 2) and an olefin, are known to be highly susceptible to degradation by radiation and thus have been identified as candidate materials for chain scission-based extreme ultraviolet lithography (EUVL) resist materials. In order to investigate this further, the synthesis and characterisation of two poly(olefin sulfone)s namely poly(1-pentene sulfone) (PPS) and poly(2-methyl-1-pentene sulfone) (PMPS), was achieved and the two materials were evaluated for possible chain scission EUVL resist applications. It was found that both materials possess high sensitivities to EUV photons; however; the rates of outgassing were extremely high. The only observed degradation products were found to be SO 2 and the respective olefin suggesting that depolymerisation takes place under irradiation in a vacuum environment. In addition to depolymerisation, a concurrent conversion of SO 2 moieties to a sulfide phase was observed using XPS.

  7. Serendipitous EUV sources detected during the first year of the Extreme Ultraviolet Explorer right angle program

    NASA Technical Reports Server (NTRS)

    Mcdonald, K.; Craig, N.; Sirk, M. M.; Drake, J. J.; Fruscione, A.; Vallerga, J. V.; Malina, R. F.

    1994-01-01

    We report the detection of 114 extreme ultraviolet (EUV; 58 - 740 A) sources, of which 99 are new serendipitous sources, based on observations made with the imaging telescopes on board the Extreme Ultraviolet Explorer (EUVE) during the Right Angle Program (RAP). These data were obtained using the survey scanners and the Deep Survey instrument during the first year of the spectroscopic guest observer phase of the mission, from January 1993 to January 1994. The data set consists of 162 discrete pointings whose exposure times are typically two orders of magnitude longer than the average exposure times during the EUVE all-sky survey. Based on these results, we can expect that EUVE will serendipitously detect approximately 100 new EUV sources per year, or about one new EUV source per 10 sq deg, during the guest observer phase of the EUVE mission. New EUVE sources of note include one B star and three extragalactic objects. The B star (HR 2875, EUVE J0729 - 38.7) is detected in both the Lexan/B (approximately 100 A) and Al/Ti/C (approximately 200 A) bandpasses, and the detection is shown not to be a result of UV leaks. We suggest that we are detecting EUV and/or soft x rays from a companion to the B star. Three sources, EUVE J2132+10.1, EUVE J2343-14.9, and EUVE J2359-30.6 are identified as the active galactic nuclei MKN 1513, MS2340.9-1511, and 1H2354-315, respectively.

  8. Serendipitous EUV sources detected during the first year of the Extreme Ultraviolet Explorer right angle program

    NASA Technical Reports Server (NTRS)

    Mcdonald, K.; Craig, N.; Sirk, M. M.; Drake, J. J.; Fruscione, A.; Vallerga, J. V.; Malina, R. F.

    1994-01-01

    We report the detection of 114 extreme ultraviolet (EUV; 58 - 740 A) sources, of which 99 are new serendipitous sources, based on observations made with the imaging telescopes on board the Extreme Ultraviolet Explorer (EUVE) during the Right Angle Program (RAP). These data were obtained using the survey scanners and the Deep Survey instrument during the first year of the spectroscopic guest observer phase of the mission, from January 1993 to January 1994. The data set consists of 162 discrete pointings whose exposure times are typically two orders of magnitude longer than the average exposure times during the EUVE all-sky survey. Based on these results, we can expect that EUVE will serendipitously detect approximately 100 new EUV sources per year, or about one new EUV source per 10 sq deg, during the guest observer phase of the EUVE mission. New EUVE sources of note include one B star and three extragalactic objects. The B star (HR 2875, EUVE J0729 - 38.7) is detected in both the Lexan/B (approximately 100 A) and Al/Ti/C (approximately 200 A) bandpasses, and the detection is shown not to be a result of UV leaks. We suggest that we are detecting EUV and/or soft x rays from a companion to the B star. Three sources, EUVE J2132+10.1, EUVE J2343-14.9, and EUVE J2359-30.6 are identified as the active galactic nuclei MKN 1513, MS2340.9-1511, and 1H2354-315, respectively.

  9. Serendipitous EUV sources detected during the first year of the Extreme Ultraviolet Explorer right angle program

    NASA Astrophysics Data System (ADS)

    McDonald, K.; Craig, N.; Sirk, M. M.; Drake, J. J.; Fruscione, A.; Vallerga, J. V.; Malina, R. F.

    1994-11-01

    We report the detection of 114 extreme ultraviolet (EUV; 58 - 740 A) sources, of which 99 are new serendipitous sources, based on observations made with the imaging telescopes on board the Extreme Ultraviolet Explorer (EUVE) during the Right Angle Program (RAP). These data were obtained using the survey scanners and the Deep Survey instrument during the first year of the spectroscopic guest observer phase of the mission, from January 1993 to January 1994. The data set consists of 162 discrete pointings whose exposure times are typically two orders of magnitude longer than the average exposure times during the EUVE all-sky survey. Based on these results, we can expect that EUVE will serendipitously detect approximately 100 new EUV sources per year, or about one new EUV source per 10 sq deg, during the guest observer phase of the EUVE mission. New EUVE sources of note include one B star and three extragalactic objects. The B star (HR 2875, EUVE J0729 - 38.7) is detected in both the Lexan/B (approximately 100 A) and Al/Ti/C (approximately 200 A) bandpasses, and the detection is shown not to be a result of UV leaks. We suggest that we are detecting EUV and/or soft x rays from a companion to the B star. Three sources, EUVE J2132+10.1, EUVE J2343-14.9, and EUVE J2359-30.6 are identified as the active galactic nuclei MKN 1513, MS2340.9-1511, and 1H2354-315, respectively.

  10. Extreme ultraviolet (EUV) surface modification of polytetrafluoroethylene (PTFE) for control of biocompatibility

    NASA Astrophysics Data System (ADS)

    Ahad, Inam Ul; Butruk, Beata; Ayele, Mesfin; Budner, Bogusław; Bartnik, Andrzej; Fiedorowicz, Henryk; Ciach, Tomasz; Brabazon, Dermot

    2015-12-01

    Extreme ultraviolet (EUV) surface modification of polytetrafluoroethylene (PTFE) was performed in order to enhance the degree of biocompatibility. Polymer samples were irradiated by different number of EUV shots using a laser-plasma based EUV source in the presence of nitrogen gas. The physical and chemical properties of EUV modified PTFE samples were studied using Atomic Force Microscopy, X-ray photoelectron spectroscopy and water contact angle (WCA) methods. Pronounced wall type micro and nano-structures appeared on the EUV treated polymer surfaces resulting in increased surface roughness and hydrophobicity. Stronger cell adhesion and good cell morphology were observed on EUV modified surfaces by in-vitro cell culture studies performed using L929 fibroblasts.

  11. Solar extreme ultraviolet (EUV) flare observations and findings from the Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE)

    NASA Astrophysics Data System (ADS)

    Woods, Thomas N.; Eparvier, Francis G.; Mason, James P.

    New solar soft X-ray (SXR) and extreme ultraviolet (EUV) irradiance observations from NASA Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE) provide full coverage from 0.1 to 106 nm and continuously at a cadence of 10 seconds for spectra at 0.1 nm resolution. These observations during flares can usually be decomposed into four distinct characteristics: impulsive phase, gradual phase, coronal dimming, and EUV late phase. Over 6000 flares have been observed during the SDO mission; some flares show all four phases, and some only show the gradual phase. The focus is on the newer results about the EUV late phase and coronal dimming and its relationship to coronal mass ejections (CMEs). These EVE flare measurements are based on observing the sun-as-a-star, so these results could exemplify stellar flares. Of particular interest is that new coronal dimming measurements of stars could be used to estimate mass and velocity of stellar CMEs.

  12. Imaging in Nanoscale Using Laser-Plasma Sources of Extreme Ultraviolet (EUV)

    NASA Astrophysics Data System (ADS)

    Wachulak, P. W.; Bartnik, A.; Baranowska-Korczyc, A.; Pánek, D.; Brůža, P.; Kostecki, J.; Węgrzyński, Ł.; Jarocki, R.; Szczurek, M.; Fronc, K.; Elbaum, D.; Fiedorowicz, H.

    New developments in nanoscience and nanotechnology require nanometer scale resolution imaging tools and techniques such as an extreme ultraviolet (EUV) and soft X-ray (SXR) microscopy, based on Fresnel zone plates. In this paper, we report on applications of a desk-top microscopy using a laser-plasma EUV source based on a gas-puff target for studies of morphology of thin silicon membranes coated with NaCl crystals and samples composed of ZnO nanofibers.

  13. Structural Characterization of a Mo/Ru/Si Extreme Ultraviolet (EUV) Reflector by Optical Modeling

    NASA Astrophysics Data System (ADS)

    Kang, In-Yong; Kim, Tae Geun; Lee, Seung Yoon; Ahn, Jinho; Chung, Yong-Chae

    2004-06-01

    The performance of a multilayer extreme ultraviolet (EUV) reflector has a direct bearing on process throughput and the cost of new technology. Using measured data from an experimentally manufactured reflector, we intend, in this work, to show that the reflectivity of the Bragg reflector can be characterized by using structural parameters such as the d-spacing, density, thicknesses of the interdiffusion layers and oxidation layer. This quantitative analysis of the reflectivity derived from the structural parameters can be utilized to optimize the optical properties of the existing Mo/Ru/Si system and to provide fundamental insights into the science involved in a Bragg EUV reflector.

  14. EUV SpectroPhotometer (ESP) in Extreme Ultraviolet Variability Experiment (EVE): Algorithms and Calibrations

    NASA Astrophysics Data System (ADS)

    Didkovsky, L.; Judge, D.; Wieman, S.; Woods, T.; Jones, A.

    2012-01-01

    The Extreme ultraviolet SpectroPhotometer (ESP) is one of five channels of the Extreme ultraviolet Variability Experiment (EVE) onboard the NASA Solar Dynamics Observatory (SDO). The ESP channel design is based on a highly stable diffraction transmission grating and is an advanced version of the Solar Extreme ultraviolet Monitor (SEM), which has been successfully observing solar irradiance onboard the Solar and Heliospheric Observatory (SOHO) since December 1995. ESP is designed to measure solar Extreme UltraViolet (EUV) irradiance in four first-order bands of the diffraction grating centered around 19 nm, 25 nm, 30 nm, and 36 nm, and in a soft X-ray band from 0.1 to 7.0 nm in the zeroth-order of the grating. Each band’s detector system converts the photo-current into a count rate (frequency). The count rates are integrated over 0.25-second increments and transmitted to the EVE Science and Operations Center for data processing. An algorithm for converting the measured count rates into solar irradiance and the ESP calibration parameters are described. The ESP pre-flight calibration was performed at the Synchrotron Ultraviolet Radiation Facility of the National Institute of Standards and Technology. Calibration parameters were used to calculate absolute solar irradiance from the sounding-rocket flight measurements on 14 April 2008. These irradiances for the ESP bands closely match the irradiance determined for two other EUV channels flown simultaneously: EVE’s Multiple EUV Grating Spectrograph (MEGS) and SOHO’s Charge, Element and Isotope Analysis System/ Solar EUV Monitor (CELIAS/SEM).

  15. Erosion resistant nozzles for laser plasma extreme ultraviolet (EUV) sources

    DOEpatents

    Kubiak, Glenn D.; Bernardez, II, Luis J.

    2000-01-04

    A gas nozzle having an increased resistance to erosion from energetic plasma particles generated by laser plasma sources. By reducing the area of the plasma-facing portion of the nozzle below a critical dimension and fabricating the nozzle from a material that has a high EUV transmission as well as a low sputtering coefficient such as Be, C, or Si, it has been shown that a significant reduction in reflectance loss of nearby optical components can be achieved even after exposing the nozzle to at least 10.sup.7 Xe plasma pulses.

  16. Surface phenomena related to mirror degradation in extreme ultraviolet (EUV) lithography

    NASA Astrophysics Data System (ADS)

    Madey, Theodore E.; Faradzhev, Nadir S.; Yakshinskiy, Boris V.; Edwards, N. V.

    2006-12-01

    One of the most promising methods for next generation device manufacturing is extreme ultraviolet (EUV) lithography, which uses 13.5 nm wavelength radiation generated from freestanding plasma-based sources. The short wavelength of the incident illumination allows for a considerable decrease in printed feature size, but also creates a range of technological challenges not present for traditional optical lithography. Contamination and oxidation form on multilayer reflecting optics surfaces that not only reduce system throughput because of the associated reduction in EUV reflectivity, but also introduce wavefront aberrations that compromise the ability to print uniform features. Capping layers of ruthenium, films ˜2 nm thick, are found to extend the lifetime of Mo/Si multilayer mirrors used in EUV lithography applications. However, reflectivities of even the Ru-coated mirrors degrade in time during exposure to EUV radiation. Ruthenium surfaces are chemically reactive and are very effective as heterogeneous catalysts. In the present paper we summarize the thermal and radiation-induced surface chemistry of bare Ru exposed to gases; the emphasis is on H 2O vapor, a dominant background gas in vacuum processing chambers. Our goal is to provide insights into the fundamental physical processes that affect the reflectivity of Ru-coated Mo/Si multilayer mirrors exposed to EUV radiation. Our ultimate goal is to identify and recommend practices or antidotes that may extend mirror lifetimes.

  17. Carbon contamination of extreme ultraviolet (EUV) mask and its effect on imaging

    SciTech Connect

    Fan, Yu-Jen; Yankulin, Leonid; Antohe, Alin; Garg, Rashi; Thomas, Petros; Mbanaso, Chimaobi; Wuest, Andreas; Goodwin, Frank; Huh, Sungmin; Naulleau, Patrick; Goldlberg, Kenneth; Mochi, Iacopo; Denbeaux, Gregory

    2009-02-02

    Carbon contamination of extreme ultraviolet (EUV) masks and its effect on imaging is a significant issue due to lowered throughput and potential effects on imaging performance. In this work, a series of carbon contamination experiments were performed on a patterned EUV mask. Contaminated features were then inspected with a reticle scanning electron microscope (SEM) and printed with the SEMA TECH Berkeley Microfield-Exposure tool (MET) [1]. In addition, the mask was analyzed using the SEMA TECH Berkeley Actinic-Inspection tool (AIT) [2] to determine the effect of carbon contamination on the absorbing features and printing performance. To understand the contamination topography, simulations were performed based on calculated aerial images and resist parameters. With the knowledge of the topography, simulations were then used to predict the effect of other thicknesses of the contamination layer, as well as the imaging performance on printed features.

  18. AlGaN-on-Si backside illuminated photodetectors for the extreme ultraviolet (EUV) range

    NASA Astrophysics Data System (ADS)

    Malinowski, P. E.; Duboz, J.-Y.; John, J.; Sturdevant, C.; Das, J.; Derluyn, J.; Germain, M.; de Moor, P.; Minoglou, K.; Semond, F.; Frayssinet, E.; Hochedez, J.-F.; Giordanengo, B.; van Hoof, C.; Mertens, R.

    2010-04-01

    We report on the fabrication and characterization of solar blind Metal-Semiconductor-Metal (MSM) based photodetectors for use in the extreme ultraviolet (EUV) wavelength range. The devices were fabricated in the AlGaN-on- Si material system, with Aluminum Gallium Nitride (AlGaN) epitaxial layers grown on Si(111) by means of Molecular Beam Epitaxy. The detectors' IV characteristics and photoresponse were measured between 200 and 400 nm. Spectral responsivity was calculated for comparison with the state-of-the-art ultraviolet photodetectors. It reaches the order of 0.1 A/W at the cut-off wavelength of 360 nm, for devices with Au fingers of 3 μm width and spacing of 3 μm. The rejection ratio of visible radiation (400 nm) was more than 3 orders of magnitude. In the additional post-processing step, the Si substrate was removed locally under the active area of the MSM photodetectors using SF6-based Reactive Ion Etching (RIE). In such scheme, the backside illumination is allowed and there is no shadowing of the active layer by the metal electrodes, which is advantageous for the EUV sensitivity. Completed devices were assembled and wire-bonded in customized TO-8 packages with an opening. The sensitivity at EUV was verified at the wavelengths of 30.4 and 58.4 nm using a He-based beamline. AlGaN photodetectors are a promising alternative for highly demanding applications such as space science or modern EUV lithography. The backside illumination approach is suited in particular for large, 2D focal plane arrays.

  19. Laser plasma sources of soft x-rays and extreme ultraviolet (EUV) for application in science and technology

    NASA Astrophysics Data System (ADS)

    Bartnik, Andrzej; Wachulak, Przemysław; Jarocki, Roman; Kostecki, Jerzy; Szczurek, Mirosław; Adjei, Daniel; Ahad, Inam Ul; Ayele, Mesfin G.; Fok, Tomasz; Szczurek, Anna; Torrisi, Alfio; Wegrzyński, Łukasz; Fiedorowicz, Henryk

    2015-05-01

    Laser plasma sources of soft x-rays and extreme ultraviolet (EUV) developed in our laboratory for application in various areas of technology and science are presented. The sources are based on a laser-irradiated gas puff target approach. The targets formed by pulsed injection of gas under high-pressure are irradiated with nanosecond laser pulses from Nd:YAG lasers. We use commercial lasers generating pulses with time duration from 1ns to 10ns and energies from 0.5J to 10J at 10Hz repetition rate. The gas puff targets are produced using a double valve system equipped with a special nozzle to form a double-stream gas puff target which secures high conversion efficiency without degradation of the nozzle. The use of a gas puff target instead of a solid target makes generation of laser plasmas emitting soft x-rays and EUV possible without target debris production. The sources are equipped with various optical systems, including grazing incidence axisymmetric ellipsoidal mirrors, a "lobster eye" type grazing incidence multi-foil mirror, and an ellipsoidal mirror with Mo/Si multilayer coating, to collect soft x-ray and EUV radiation and form the radiation beams. In this paper new applications of these sources in various fields, including soft x-ray and EUV imaging in nanoscale, EUV radiography and tomography, EUV materials processing and modification of polymer surfaces, EUV photoionization of gases, radiobiology and soft x-ray contact microscopy are reviewed.

  20. Extreme ultraviolet (EUV) and FUV calibration facility for special sensor ultraviolet limb imager (SSULI)

    NASA Astrophysics Data System (ADS)

    Boyer, Craig N.; Osterman, Steven N.; Thonnard, Stefan E.; McCoy, Robert P.; Williams, J. Z.; Parker, S. E.

    1994-09-01

    A facility for calibrating far ultraviolet and extreme ultraviolet instruments has recently been completed at the Naval Research Laboratory. Our vacuum calibration vessel is 2-m in length, 1.67-m in diameter, and can accommodate optical test benches up to 1.2-m wide by 1.5-m in length. A kinematically positioned frame with four axis precision pointing capability of 10 microns for linear translation and .01 degrees for rotation is presently used during vacuum optical calibration of SSULI. The chamber was fabricated from 304 stainless steel and polished internally to reduce surface outgassing. A dust-free environment is maintained at the rear of the vacuum chamber by enclosing the 2-m hinged vacuum access door in an 8 ft. by 8 ft. class 100 clean room. Every effort was made to obtain an oil-free environment within the vacuum vessel. Outgassing products are continually monitored with a 1 - 200 amu residual gas analyzer. An oil-free claw and vane pump evacuates the chamber to 10-2 torr through 4 in. diameter stainless steel roughing lines. High vacuum is achieved and maintained with a magnetically levitated 480 l/s turbo pump and a 3000 l/s He4 cryopump. Either of two vacuum monochrometers, a 1-m f/10.4 or a 0.2-m f/4.5 are coaxially aligned with the optical axis of the chamber and are used to select single UV atomic resonance lines from a windowless capillary or penning discharge UV light source. A calibrated channeltron detector is coaxially mounted with the SSULI detector during calibration. All vacuum valves, the cooling system for the cryopump compressor, and the roughing pump are controlled through optical fibers which are interfaced to a computer through a VME board. Optical fibers were chosen to ensure that complete electrical isolation is maintained between the computer and the vacuum system valves-solenoids and relays.

  1. Feasibility of using Extreme Ultraviolet Explorer (EUVE) reaction wheels to satisfy Space Infrared Telescope Facility (SIRTF) maneuver requirements

    NASA Technical Reports Server (NTRS)

    Lightsey, W. D.

    1990-01-01

    A digital computer simulation is used to determine if the extreme ultraviolet explorer (EUVE) reaction wheels can provide sufficient torque and momentum storage capability to meet the space infrared telescope facility (SIRTF) maneuver requirements. A brief description of the pointing control system (PCS) and the sensor and actuator dynamic models used in the simulation is presented. A model to represent a disturbance such as fluid sloshing is developed. Results developed with the simulation, and a discussion of these results are presented.

  2. Profile reconstruction in extreme ultraviolet (EUV) scatterometry: modeling and uncertainty estimates

    NASA Astrophysics Data System (ADS)

    Gross, H.; Rathsfeld, A.; Scholze, F.; Bär, M.

    2009-10-01

    Scatterometry as a non-imaging indirect optical method in wafer metrology is also relevant to lithography masks designed for extreme ultraviolet lithography, where light with wavelengths in the range of 13 nm is applied. The solution of the inverse problem, i.e. the determination of periodic surface structures regarding critical dimensions (CD) and other profile properties from light diffraction patterns, is incomplete without knowledge of the uncertainties associated with the reconstructed parameters. The numerical simulation of the diffraction process for periodic 2D structures can be realized by the finite element solution of the two-dimensional Helmholtz equation. The inverse problem can be formulated as a nonlinear operator equation in Euclidean space. The operator maps the sought mask parameters to the efficiencies of diffracted plane wave modes. We employ a Gauß-Newton type iterative method to solve this operator equation and end up minimizing the deviation of the measured efficiency or phase shift values from the calculated ones. We apply our reconstruction algorithm for the measurement of a typical EUV mask composed of TaN absorber lines of about 80 nm height, a period in the range of 420 nm-840 nm, and with an underlying MoSi-multilayer stack of 300 nm thickness. Clearly, the uncertainties of the reconstructed geometric parameters essentially depend on the uncertainties of the input data and can be estimated by various methods. We apply a Monte Carlo procedure and an approximative covariance method to evaluate the reconstruction algorithm. Finally, we analyze the influence of uncertainties in the widths of the multilayer stack by the Monte Carlo method.

  3. The first search for a gamma-ray burst quiescent counterpart in the extreme ultraviolet with EUVE

    NASA Technical Reports Server (NTRS)

    Hurley, K.; Li, P.; Laros, J.; Fishman, G.; Kouveliotou, C.; Meegan, C.

    1995-01-01

    The opening of the extreme ultraviolet window by the Extreme Ultraviolet Explorer (EUVE) satellite has provided the unique opportunity to perform the first search for a quiescent gamma-ray burst counterpart at these wavelengths. Such emission might be expected if some bursts are related to nearby hot neutron stars or neutron stars with accretion disks, among other objects. We report here on a 40 ks observation on the 1992 March 25 gamma-ray burst error box, determined by triangulation with the Third Interplanetary Network. No quiescent 40-190 A Extreme Ultraviolet (EUV) source was identified using the Deep Survey instrument, and a 3 sigma upper limit of 2.9 x 10(exp -14) erg/sq cm/s was obtained. Similarly, upper limits to the 140-380 and 280-760 A fluxes were obtained with the medium- and long-wavelength spectrometers; they are 1.1 x 10(exp -12) and 5.0 x 10(exp -13) erg/sq cm/s, respectively. We discuss the constraints which these limits impose on thermally radiating quiescent counterparts.

  4. Chemical Effect of Dry and Wet Cleaning of the Ru Protective Layer of the Extreme ultraviolet (EUV) Lithography Reflector

    SciTech Connect

    Belau, Leonid; Park, Jeong Y.; Liang, Ted; Seo, Hyungtak; Somorjai, Gabor A.

    2009-04-10

    The authors report the chemical influence of cleaning of the Ru capping layer on the extreme ultraviolet (EUV) reflector surface. The cleaning of EUV reflector to remove the contamination particles has two requirements: to prevent corrosion and etching of the reflector surface and to maintain the reflectivity functionality of the reflector after the corrosive cleaning processes. Two main approaches for EUV reflector cleaning, wet chemical treatments [sulfuric acid and hydrogen peroxide mixture (SPM), ozonated water, and ozonated hydrogen peroxide] and dry cleaning (oxygen plasma and UV/ozone treatment), were tested. The changes in surface morphology and roughness were characterized using scanning electron microscopy and atomic force microscopy, while the surface etching and change of oxidation states were probed with x-ray photoelectron spectroscopy. Significant surface oxidation of the Ru capping layer was observed after oxygen plasma and UV/ozone treatment, while the oxidation is unnoticeable after SPM treatment. Based on these surface studies, the authors found that SPM treatment exhibits the minimal corrosive interactions with Ru capping layer. They address the molecular mechanism of corrosive gas and liquid-phase chemical interaction with the surface of Ru capping layer on the EUV reflector.

  5. Influence of the electrode wear on the EUV generation of a discharge based extreme ultraviolet light source

    NASA Astrophysics Data System (ADS)

    Vieker, Jochen; Bergmann, Klaus

    2017-08-01

    Reliability and a long maintenance interval are major requirements for the industrial use of an extreme ultraviolet (EUV) source. In this paper we present results on the influence of the electrode erosion on the EUV generation and its lifetime limiting characteristics. The geometry of the electrodes and their influence on the gas pressure distribution within the electrode system have been found to be the key variables to characterize the regime of operation. This better understanding allows for an optimization of device parameters (e.g. gas flow or pulse energy) to counteract the erosion process, in order to increase the maintenance interval and EUV output. The EUV source under investigation is based on a hollow cathode triggered pinch plasma. A new trigger concept is introduced that enables free adjustment of the gas pressure during operation, thus enabling the operation with a high conversion efficiency of up to  >0.7 %/2πsr at 13.5 nm and 2% bandwidth. The efficiency for the peak brilliance is up to ~2.6 W kW-1 mm-2sr-1 while the maximum electrical input power of the system is 15 kW.

  6. Spectral investigations of photoionized plasmas induced in atomic and molecular gases using nanosecond extreme ultraviolet (EUV) pulses

    NASA Astrophysics Data System (ADS)

    Bartnik, A.; Fiedorowicz, H.; Wachulak, P.

    2014-07-01

    In this paper, results of spectral investigations of low temperature photoionized plasmas, created by irradiation of gases with intense pulses of extreme ultraviolet (EUV) radiation from a laser-produced plasma (LPP) source, are presented. The LPP source was based on a double-stream KrXe/He gas-puff target irradiated with 4 ns/0.8 J/10 Hz Nd:YAG laser pulses. The most intense emission from the source spanned a relatively narrow spectral region λ ≈ 10-12 nm; however, spectrally integrated intensity at longer wavelengths was also significant. The EUV beam was focused on a gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Irradiation of gases resulted in formation of photoionized plasmas emitting radiation in the EUV range. Radiation spectra, measured for plasmas produced in various gases, are dominated by emission lines, originating from single charged ions. Significant differences in spectral intensities and distributions between plasmas created in neon and molecular gases were observed.

  7. Extreme ultraviolet and soft X-ray imaging with compact, table top laser plasma EUV and SXR sources

    NASA Astrophysics Data System (ADS)

    Wachulak, P. W.; Bartnik, A.; Kostecki, J.; Wegrzynski, L.; Fok, T.; Jarocki, R.; Szczurek, M.; Fiedorowicz, H.

    2015-12-01

    We present a few examples of imaging experiments, which were possible using a compact laser-plasma extreme ultraviolet (EUV) and soft X-ray (SXR) source, based on a double stream gas puff target. This debris-free source was used in full-field EUV imaging to obtain magnified images of test samples, ZnO nanofibers and images of the membranes coated with salt crystals. The source was also employed for SXR microscopy in the "water-window" spectral range using grazing incidence Wolter type-I objective to image test samples and to perform the initial studies of biological objects. Gas puff target EUV source, spectrally tuned for 13.5 nm wavelength with multilayer mirror and thin film filters, was also used in variety of shadowgraphy experiments to study the density of newly developed modulated density gas puff targets. Finally, the source was also employed in EUV tomography experiments of low density objects with the goal to measure and optimize the density of the targets dedicated to high harmonic generation.

  8. Spectral investigations of photoionized plasmas induced in atomic and molecular gases using nanosecond extreme ultraviolet (EUV) pulses

    SciTech Connect

    Bartnik, A.; Fiedorowicz, H.; Wachulak, P.

    2014-07-15

    In this paper, results of spectral investigations of low temperature photoionized plasmas, created by irradiation of gases with intense pulses of extreme ultraviolet (EUV) radiation from a laser-produced plasma (LPP) source, are presented. The LPP source was based on a double-stream KrXe/He gas-puff target irradiated with 4 ns/0.8 J/10 Hz Nd:YAG laser pulses. The most intense emission from the source spanned a relatively narrow spectral region λ ≈ 10–12 nm; however, spectrally integrated intensity at longer wavelengths was also significant. The EUV beam was focused on a gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Irradiation of gases resulted in formation of photoionized plasmas emitting radiation in the EUV range. Radiation spectra, measured for plasmas produced in various gases, are dominated by emission lines, originating from single charged ions. Significant differences in spectral intensities and distributions between plasmas created in neon and molecular gases were observed.

  9. Radiation hardness of AlxGa1-xN photodetectors exposed to Extreme UltraViolet (EUV) light beam

    NASA Astrophysics Data System (ADS)

    Malinowski, Pawel E.; John, Joachim; Barkusky, Frank; Duboz, Jean Yves; Lorenz, Anne; Cheng, Kai; Derluyn, Joff; Germain, Marianne; De Moor, Piet; Minoglou, Kyriaki; Bayer, Armin; Mann, Klaus; Hochedez, Jean-Francois; Giordanengo, Boris; Borghs, Gustaaf; Mertens, Robert

    2009-05-01

    We report on the results of fabrication and optoelectrical characterization of Gallium Nitride (GaN) based Extreme UltraViolet (EUV) photodetectors. Our devices were Schottky photodiodes with a finger-shaped rectifying contact, allowing better penetration of light into the active region. GaN layers were epitaxially grown on Silicon (111) by Metal- Organic-Chemical Vapor Deposition (MOCVD). Spectral responsivity measurements in the Near UltraViolet (NUV) wavelength range (200-400 nm) were performed to verify the solar blindness of the photodetectors. After that the devices were exposed to the EUV focused beam of 13.5 nm wavelength using table-top EUV setup. Radiation hardness was tested up to a dose of 3.3Â.1019 photons/cm2. Stability of the quantum efficiency was compared to the one measured in the same way for a commercially available silicon based photodiode. Superior behavior of GaN devices was observed at the wavelength of 13.5 nm.

  10. Extreme Ultraviolet Variability Experiment (EVE) Multiple EUV Grating Spectrographs (MEGS): Radiometric Calibrations and Results

    NASA Technical Reports Server (NTRS)

    Hock, R. A.; Woods, T. N.; Crotser, D.; Eparvier, F. G.; Woodraska, D. L.; Chamberlin, P. C.; Woods, E. C.

    2010-01-01

    The NASA Solar Dynamics Observatory (SDO), scheduled for launch in early 2010, incorporates a suite of instruments including the Extreme Ultraviolet Variability Experiment (EVE). EVE has multiple instruments including the Multiple Extreme ultraviolet Grating Spectrographs (MEGS) A, B, and P instruments, the Solar Aspect Monitor (SAM), and the Extreme ultraviolet SpectroPhotometer (ESP). The radiometric calibration of EVE, necessary to convert the instrument counts to physical units, was performed at the National Institute of Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF III) located in Gaithersburg, Maryland. This paper presents the results and derived accuracy of this radiometric calibration for the MEGS A, B, P, and SAM instruments, while the calibration of the ESP instrument is addressed by Didkovsky et al. . In addition, solar measurements that were taken on 14 April 2008, during the NASA 36.240 sounding-rocket flight, are shown for the prototype EVE instruments.

  11. Study of alternative capping and absorber layers for extreme ultraviolet (EUV) masks for sub-16nm half-pitch nodes

    NASA Astrophysics Data System (ADS)

    Rastegar, Abbas; House, Matthew; Tian, Ruahi; Laursen, Thomas; Antohe, Alin; Kearney, Patrick

    2014-04-01

    Multiple challenges, including the availability of a reliable high power source, defect free mask, and proper resist material, have forced extreme ultraviolet (EUV) lithography to be considered for sub-10 nm half-pitch nodes. Therefore, techniques such as phase shift masks (PSMs) or high numerical aperture (NA) lithography might be considered. Such techniques require thin EUV absorber materials to be optimized to reduce EUV mask shadowing effects. Despite the challenges in dry etching of Ni and finding proper chemistries with a high etch selectivity to suitable capping materials, we decided to examine the chemical stability of Ni for existing mask cleaning chemistries. Ni, after Ag, has the highest absorption in EUV light at λ = 13.5 nm, which makes it a proper candidate—in pure form or in mixing with other elements—for thin absorber film. Depending on the composition of the final material, proper integration schemes will be developed. We studied Ni stability in commonly used mask cleaning processes based on ammonium hydroxide/ hydrogen peroxide (APM) and water mixtures. Ni films deposited with an ion beam deposition technique with a thickness of 35 nm are sufficient to totally absorb EUV light at λ = 13.5 nm. Multiple cleanings of these Ni films resulted in Ni oxidation— confirmed by time-of-flight secondary ion mass spectroscopy (TOF-SIMS) analysis as NiO with thickness about 1.5 nm. Furthermore, Ni oxidation processes are self-limiting and oxide layer thickness did not increase with a further cleaning. A three minute exposure to sulfuric acid/hydrogen peroxide mixture (SPM) can remove NiO and Ni totally. To protect Ni film from etching by SPM chemistry a 3 nm Si capping was used on top of Ni film. However, Si capping was removed by APM chemistry and could not protect Ni film against SPM chemistry. TiO2 may be a very good capping layer for EUV optics but it is not suitable for EUV mask blanks and will be removed by APM chemistries.

  12. High-space resolution imaging plate analysis of extreme ultraviolet (EUV) light from tin laser-produced plasmas.

    PubMed

    Musgrave, Christopher S A; Murakami, Takehiro; Ugomori, Teruyuki; Yoshida, Kensuke; Fujioka, Shinsuke; Nishimura, Hiroaki; Atarashi, Hironori; Iyoda, Tomokazu; Nagai, Keiji

    2017-03-01

    With the advent of high volume manufacturing capabilities by extreme ultraviolet lithography, constant improvements in light source design and cost-efficiency are required. Currently, light intensity and conversion efficiency (CE) measurments are obtained by charged couple devices, faraday cups etc, but also phoshpor imaging plates (IPs) (BaFBr:Eu). IPs are sensitive to light and high-energy species, which is ideal for studying extreme ultraviolet (EUV) light from laser produced plasmas (LPPs). In this work, we used IPs to observe a large angular distribution (10°-90°). We ablated a tin target by high-energy lasers (1064 nm Nd:YAG, 10(10) and 10(11) W/cm(2)) to generate the EUV light. The europium ions in the IP were trapped in a higher energy state from exposure to EUV light and high-energy species. The light intensity was angular dependent; therefore excitation of the IP depends on the angle, and so highly informative about the LPP. We obtained high-space resolution (345 μm, 0.2°) angular distribution and grazing spectrometer (5-20 nm grate) data simultaneously at different target to IP distances (103 mm and 200 mm). Two laser systems and IP types (BAS-TR and BAS-SR) were also compared. The cosine fitting values from the IP data were used to calculate the CE to be 1.6% (SD ± 0.2) at 13.5 nm 2% bandwidth. Finally, a practical assessment of IPs and a damage issue are disclosed.

  13. High-space resolution imaging plate analysis of extreme ultraviolet (EUV) light from tin laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Musgrave, Christopher S. A.; Murakami, Takehiro; Ugomori, Teruyuki; Yoshida, Kensuke; Fujioka, Shinsuke; Nishimura, Hiroaki; Atarashi, Hironori; Iyoda, Tomokazu; Nagai, Keiji

    2017-03-01

    With the advent of high volume manufacturing capabilities by extreme ultraviolet lithography, constant improvements in light source design and cost-efficiency are required. Currently, light intensity and conversion efficiency (CE) measurments are obtained by charged couple devices, faraday cups etc, but also phoshpor imaging plates (IPs) (BaFBr:Eu). IPs are sensitive to light and high-energy species, which is ideal for studying extreme ultraviolet (EUV) light from laser produced plasmas (LPPs). In this work, we used IPs to observe a large angular distribution (10°-90°). We ablated a tin target by high-energy lasers (1064 nm Nd:YAG, 1010 and 1011 W/cm2) to generate the EUV light. The europium ions in the IP were trapped in a higher energy state from exposure to EUV light and high-energy species. The light intensity was angular dependent; therefore excitation of the IP depends on the angle, and so highly informative about the LPP. We obtained high-space resolution (345 μm, 0.2°) angular distribution and grazing spectrometer (5-20 nm grate) data simultaneously at different target to IP distances (103 mm and 200 mm). Two laser systems and IP types (BAS-TR and BAS-SR) were also compared. The cosine fitting values from the IP data were used to calculate the CE to be 1.6% (SD ± 0.2) at 13.5 nm 2% bandwidth. Finally, a practical assessment of IPs and a damage issue are disclosed.

  14. Solar Extreme Ultraviolet (EUV) Flare Observations and Findings from the Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE)

    NASA Astrophysics Data System (ADS)

    Woods, Thomas N.; Mason, James; Eparvier, Francis; Jones, Andrew

    2015-08-01

    There have been more than six thousand flares observed by the Solar Dynamics Observatory (SDO) since it launched in February 2010. The SDO mission is ideal for studying flares with 24/7 operations from its geosynchronous orbit (GEO) and with some 7000 TeraBytes of data taken so far. These data include more than 100,000,000 images of coronal full-disk images from the Atmospheric Imaging Assembly (AIA) and Dopplergrams and magnetograms from the Helioseismic and Magnetic Imager (HMI) and over 15,000,000 spectra of the solar EUV irradiance from the EUV Variability Experiment (EVE). This presentation will focus primarily on the EVE flare observations and a couple key flare findings involving both AIA and EVE observations. One of these findings includes the discovery of the EUV late phase that occur in about 15% of flares. The EUV late phase is the brightening of warm coronal emissions in the EUV that starts much later after the main X-ray bright phase, lasts up to several hours, and can emit more total energy than the EUV radiation during the X-ray phase. The combination of EVE and AIA observations have revealed that the cause for the EUV late phase is a second set of post-flare coronal loops that form much higher than the primary post-flare loops near the source of the flare. This second set of loops is much longer and thus has a much slower cooling rate; consequently, the radiation from these loops appears much later after the main X-ray flare phase. Another key finding is that the EVE solar EUV irradiance observations in cool coronal emissions have dimming during and following eruptive flare events, which is often associated with coronal mass ejections (CMEs). Furthermore, the magnitude of the EVE coronal dimming is consistent with the amount of mass lost, as observed near the flaring region by AIA. This result could be important for space weather operations because EVE’s near-realtime data products of its on-disk (Earth-facing) flare observations may provide an

  15. SOLAR-B Mission Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS) Instrument Components

    NASA Technical Reports Server (NTRS)

    Doschek, George A.

    2001-01-01

    This Monthly Progress Report covers the reporting period through June 2001, Phase C/D, Detailed Design and Development Through Launch Plus Thirty Days, for selected components and subsystems of the Extreme ultraviolet Imaging Spectrometer (EIS) instrument, hereafter referred to as EIS Instrument Components. This document contains the program status through the reporting period and forecasts the status for the upcoming reporting period.

  16. SOLAR-B Mission Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS) Instrument Components

    NASA Technical Reports Server (NTRS)

    Doschek, George A.

    2001-01-01

    This Monthly Progress Report covers the reporting period July 2001 of the Detailed Design and Development through Launch plus Thirty Days, Phase C/D, for selected components and subsystems of the Extreme Ultraviolet Imaging Spectrometer (EIS) instrument, hereafter referred to as EIS Instrument Components. This document contains the program status through the reporting period and forecasts the status for the upcoming reporting period.

  17. Solar-B Mission Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS) Instrument Components

    NASA Technical Reports Server (NTRS)

    Doschek, George A.

    2002-01-01

    This Monthly Progress Report covers the reporting period August 2002 of the Detailed Design and Development through Launch plus Thirty Days, Phase C/D, for selected components and subsystems of the Extreme ultraviolet Imaging Spectrometer (EIS) instrument, hereafter referred to as EIS Instrument Components. This document contains the program status through the reporting period and forecasts the status for the upcoming reporting period.

  18. New model of iron spectra in the extreme ultraviolet and application to SERTS and EUV observations: A solar active region and capella

    NASA Technical Reports Server (NTRS)

    Brickhouse, N. S.; Raymond, J. C.; Smith, B. W.

    1995-01-01

    We report new predictions for the EUV spectral emission of FeIX-FeXXIV, based on data now available from the Solar EUV Rocket Telescope and Spectrograph (SERTS) and the Extreme Ultraviolet Explorer (EUVE) spectrometers. The iron spectral emission model is the first result of a larger effort to revise the Raymond & Smith model and to update the atomic rates. We present here predicted emissivities for selected densities and temperatures applicable to various astrophysical plasmas. Comparisons of our predicted spectra with two recent observations provide important tests of the atomic data. They also test to some extent some basic assumptions of coronal emission codes: optically thin spectral lines and ionization equilibrium.

  19. Extreme Ultraviolet Variability Experiment (EVE) Multiple EUV Grating Spectrographs (MEGS): Radiometric Calibrations and Results

    NASA Astrophysics Data System (ADS)

    Hock, R. A.; Chamberlin, P. C.; Woods, T. N.; Crotser, D.; Eparvier, F. G.; Woodraska, D. L.; Woods, E. C.

    2012-01-01

    The NASA Solar Dynamics Observatory (SDO), scheduled for launch in early 2010, incorporates a suite of instruments including the Extreme Ultraviolet Variability Experiment (EVE). EVE has multiple instruments including the Multiple Extreme ultraviolet Grating Spectrographs (MEGS) A, B, and P instruments, the Solar Aspect Monitor (SAM), and the Extreme ultraviolet SpectroPhotometer (ESP). The radiometric calibration of EVE, necessary to convert the instrument counts to physical units, was performed at the National Institute of Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF III) located in Gaithersburg, Maryland. This paper presents the results and derived accuracy of this radiometric calibration for the MEGS A, B, P, and SAM instruments, while the calibration of the ESP instrument is addressed by Didkovsky et al. ( Solar Phys., 2010, doi:10.1007/s11207-009-9485-8). In addition, solar measurements that were taken on 14 April 2008, during the NASA 36.240 sounding-rocket flight, are shown for the prototype EVE instruments.

  20. The Extreme Ultraviolet Spectrograph Sounding Rocket Payload: Recent Modifications for Planetary Observations in the EUV/FUV

    NASA Technical Reports Server (NTRS)

    Slater, David C.; Stern, S. Alan; Scherrer, John; Cash, Webster; Green, James C.; Wilkinson, Erik

    1995-01-01

    We report on the status of modifications to an existing extreme ultraviolet (EUV) telescope/spectrograph sounding rocket payload for planetary observations in the 800 - 1200 A wavelength band. The instrument is composed of an existing Wolter Type 2 grazing incidence telescope, a newly built 0.4-m normal incidence Rowland Circle spectrograph, and an open-structure resistive-anode microchannel plate detector. The modified payload has successfully completed three NASA sounding rocket flights within 1994-1995. Future flights are anticipated for additional studies of planetary and cometary atmospheres and interstellar absorption. A detailed description of the payload, along with the performance characteristics of the integrated instrument are presented. In addition, some preliminary flight results from the above three missions are also presented.

  1. The Effects of Oxygen Plasma on the Chemical Composition and Morphology of the Ru Capping Layer of the Extreme Ultraviolet (EUV) Mask Blanks

    SciTech Connect

    Belau, Leonid; Park, Jeong Y.; Liang, Ted; Somorjai, Gabor A.

    2008-06-07

    Contamination removal from extreme ultraviolet (EUV) mask surfaces is one of the most important aspects to improve reliability for the next generation of EUV lithography. We report chemical and morphological changes of the ruthenium (Ru) mask surface after oxygen plasma treatment using surface sensitive analytical methods: X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and transmission electron microscopy (TEM). Chemical analysis of the EUV masks shows an increase in the subsurface oxygen concentration, Ru oxidation and surface roughness. XPS spectra at various photoelectron takeoff angles suggest that the EUV mask surface was covered with chemisorbed oxygen after oxygen plasma treatment. It is proposed that the Kirkendall effect is the most plausible mechanism that explains the Ru surface oxidation. The etching rate of the Ru capping layer by oxygen plasma was estimated to be 1.5 {+-} 0.2 {angstrom}/min, based on TEM cross sectional analysis.

  2. Evaluation of novel processing approaches to improve extreme ultraviolet (EUV) photoresist pattern quality

    NASA Astrophysics Data System (ADS)

    Montgomery, Cecilia; Chun, Jun Sung; Fan, Yu-Jen; Jen, Shih-Hui; Neisser, Mark; Cummings, Kevin D.; Montgomery, Warren; Saito, Takashi; Huli, Lior; Hetzer, David; Matsumoto, Hiroie; Metz, Andrew; Rastogi, Vinayak

    2015-03-01

    Recently there has been a great deal of effort focused on increasing EUV scanner source power; which is correlated to increased wafer throughput of production systems. Another way of increasing throughput would be to increase the photospeed of the photoresist used. However increasing the photospeed without improving the overall lithographic performance, such as local critical dimension uniformity (L-CDU) and process window, does not deliver the overall improvements required for a high volume manufacturing (HVM). This paper continues a discussion started in prior publications [Ref 3,4,6], which focused on using readily available process tooling (currently in use for 193 nm double patterning applications) and the existing EUV photoresists to increase photospeed (lower dose requirement) for line and space applications. Techniques to improve L-CDU for contact hole applications will also be described.

  3. Extreme Ultraviolet Explorer Bright Source List

    NASA Technical Reports Server (NTRS)

    Malina, Roger F.; Marshall, Herman L.; Antia, Behram; Christian, Carol A.; Dobson, Carl A.; Finley, David S.; Fruscione, Antonella; Girouard, Forrest R.; Hawkins, Isabel; Jelinsky, Patrick

    1994-01-01

    Initial results from the analysis of the Extreme Ultraviolet Explorer (EUVE) all-sky survey (58-740 A) and deep survey (67-364 A) are presented through the EUVE Bright Source List (BSL). The BSL contains 356 confirmed extreme ultraviolet (EUV) point sources with supporting information, including positions, observed EUV count rates, and the identification of possible optical counterparts. One-hundred twenty-six sources have been detected longward of 200 A.

  4. Experience from the in-flight calibration of the Extreme Ultraviolet Explorer (EUVE) and Upper Atmosphere Research Satellite (UARS) fixed head star trackers (FHSTs)

    NASA Astrophysics Data System (ADS)

    Lee, Michael

    1995-05-01

    Since the original post-launch calibration of the FHSTs (Fixed Head Star Trackers) on EUVE (Extreme Ultraviolet Explorer) and UARS (Upper Atmosphere Research Satellite), the Flight Dynamics task has continued to analyze the FHST performance. The algorithm used for inflight alignment of spacecraft sensors is described and the equations for the errors in the relative alignment for the simple 2 star tracker case are shown. Simulated data and real data are used to compute the covariance of the relative alignment errors. Several methods for correcting the alignment are compared and results analyzed. The specific problems seen on orbit with UARS and EUVE are then discussed. UARS has experienced anomalous tracker performance on an FHST resulting in continuous variation in apparent tracker alignment. On EUVE, the FHST residuals from the attitude determination algorithm showed a dependence on the direction of roll during survey mode. This dependence is traced back to time tagging errors and the original post launch alignment is found to be in error due to the impact of the time tagging errors on the alignment algorithm. The methods used by the FDF (Flight Dynamics Facility) to correct for these problems is described.

  5. Experience from the in-flight calibration of the Extreme Ultraviolet Explorer (EUVE) and Upper Atmosphere Research Satellite (UARS) fixed head star trackers (FHSTs)

    NASA Technical Reports Server (NTRS)

    Lee, Michael

    1995-01-01

    Since the original post-launch calibration of the FHSTs (Fixed Head Star Trackers) on EUVE (Extreme Ultraviolet Explorer) and UARS (Upper Atmosphere Research Satellite), the Flight Dynamics task has continued to analyze the FHST performance. The algorithm used for inflight alignment of spacecraft sensors is described and the equations for the errors in the relative alignment for the simple 2 star tracker case are shown. Simulated data and real data are used to compute the covariance of the relative alignment errors. Several methods for correcting the alignment are compared and results analyzed. The specific problems seen on orbit with UARS and EUVE are then discussed. UARS has experienced anomalous tracker performance on an FHST resulting in continuous variation in apparent tracker alignment. On EUVE, the FHST residuals from the attitude determination algorithm showed a dependence on the direction of roll during survey mode. This dependence is traced back to time tagging errors and the original post launch alignment is found to be in error due to the impact of the time tagging errors on the alignment algorithm. The methods used by the FDF (Flight Dynamics Facility) to correct for these problems is described.

  6. Extreme ultraviolet (EUV) solar spectral irradiance (SSI) for ionospheric application - history and contemporary state-of-art

    NASA Astrophysics Data System (ADS)

    Schmidtke, G.; Jacobi, Ch.; Nikutowski, B.; Erhardt, Ch.

    2014-11-01

    After a historical survey of space related EUV measurements in Germany and the role of Karl Rawer in pursuing this work, we describe present developments in EUV spectroscopy and provide a brief outlook on future activities. The group of Karl Rawer has performed the first scientific space project in Western Europe on 19th October 1954. Then it was decided to include the field of solar EUV spectroscopy in ionospheric investigations. Starting in 1957 an intensified development of instrumentation was going on to explore solar EUV radiation, atmospheric airglow and auroral emissions until the institute had to stop space activities in the early nineteen-eighties. EUV spectroscopy was continued outside of the institute during eight years. This area of work was supported again by the institute developing the Auto-Calibrating Spectrometers (SolACES) for a mission on the International Space Station (ISS). After more than six years in space the instrument is still in operation. Meanwhile the work on the primary task also to validate EUV data available from other space missions has made good progress. The first results of validating those data and combine them into one set of EUV solar spectral irradiance are very promising. It will be recommended for using it by the science and application community. Moreover, a new low-cost type of an EUV spectrometer is presented for monitoring the solar EUV radiation. It shall be further developed for providing EUV-TEC data to be applied in ionospheric models replacing the Covington index F10.7. Applying these data for example in the GNSS signal evaluation a more accurate determination of GNSS receiver positions is expected for correcting the propagation delays of navigation signals traveling through the ionosphere from space to earth. - Latest results in the field of solar EUV spectroscopy are discussed, too.

  7. Protection of extreme ultraviolet lithography masks. II. Showerhead flow mitigation of nanoscale particulate contamination [Protection of EUV lithography masks II: Showerhead flow mitigation of nanoscale particulate contamination

    SciTech Connect

    Klebanoff, Leonard E.; Torczynski, John R.; Geller, Anthony S.; Gallis, Michael A.; Rader, Daniel J.; Chilese, Frank C.; Garcia, Rudy F.; Delgado, Gil

    2015-03-27

    An analysis is presented of a method to protect the reticle (mask) in an extreme ultraviolet (EUV) mask inspection tool using a showerhead plenum to provide a continuous flow of clean gas over the surface of a reticle. The reticle is suspended in an inverted fashion (face down) within a stage/holder that moves back and forth over the showerhead plenum as the reticle is inspected. It is essential that no particles of 10-nm diameter or larger be deposited on the reticle during inspection. Particles can originate from multiple sources in the system, and mask protection from each source is explicitly analyzed. The showerhead plate has an internal plenum with a solid conical wall isolating the aperture. The upper and lower surfaces of the plate are thin flat sheets of porous-metal material. These porous sheets form the top and bottom showerheads that supply the region between the showerhead plate and the reticle and the region between the conical aperture and the Optics Zone box with continuous flows of clean gas. The model studies show that the top showerhead provides robust reticle protection from particles of 10-nm diameter or larger originating from the Reticle Zone and from plenum surfaces contaminated by exposure to the Reticle Zone. Protection is achieved with negligible effect on EUV transmission. Furthermore, the bottom showerhead efficiently protects the reticle from nanoscale particles originating from the Optics Zone.

  8. Protection of extreme ultraviolet lithography masks. II. Showerhead flow mitigation of nanoscale particulate contamination [Protection of EUV lithography masks II: Showerhead flow mitigation of nanoscale particulate contamination

    DOE PAGES

    Klebanoff, Leonard E.; Torczynski, John R.; Geller, Anthony S.; ...

    2015-03-27

    An analysis is presented of a method to protect the reticle (mask) in an extreme ultraviolet (EUV) mask inspection tool using a showerhead plenum to provide a continuous flow of clean gas over the surface of a reticle. The reticle is suspended in an inverted fashion (face down) within a stage/holder that moves back and forth over the showerhead plenum as the reticle is inspected. It is essential that no particles of 10-nm diameter or larger be deposited on the reticle during inspection. Particles can originate from multiple sources in the system, and mask protection from each source is explicitlymore » analyzed. The showerhead plate has an internal plenum with a solid conical wall isolating the aperture. The upper and lower surfaces of the plate are thin flat sheets of porous-metal material. These porous sheets form the top and bottom showerheads that supply the region between the showerhead plate and the reticle and the region between the conical aperture and the Optics Zone box with continuous flows of clean gas. The model studies show that the top showerhead provides robust reticle protection from particles of 10-nm diameter or larger originating from the Reticle Zone and from plenum surfaces contaminated by exposure to the Reticle Zone. Protection is achieved with negligible effect on EUV transmission. Furthermore, the bottom showerhead efficiently protects the reticle from nanoscale particles originating from the Optics Zone.« less

  9. Up-down asymmetry measurement of tungsten distribution in large helical device using two extreme ultraviolet (EUV) spectrometers

    SciTech Connect

    Liu, Y. Zhang, H. M.; Morita, S.; Oishi, T.; Goto, M.; Huang, X. L.

    2016-11-15

    Two space-resolved extreme ultraviolet spectrometers working in wavelength ranges of 10-130 Å and 30-500 Å have been utilized to observe the full vertical profile of tungsten line emissions by simultaneously measuring upper- and lower-half plasmas of LHD, respectively. The radial profile of local emissivity is reconstructed from the measured vertical profile in the overlapped wavelength range of 30-130 Å and the up-down asymmetry is examined against the local emissivity profiles of WXXVIII in the unresolved transition array spectrum. The result shows a nearly symmetric profile, suggesting a good availability in the present diagnostic method for the impurity asymmetry study.

  10. Wolter-Schwarzschild optics for the extreme-ultraviolet - The Berkeley stellar spectrometer and the EUV Explorer

    NASA Technical Reports Server (NTRS)

    Malina, R. F.; Bowyer, S.; Finley, D.; Cash, W.

    1979-01-01

    The design, fabrication and performance of two Wolter-Schwarzschild grazing incidence optics are described. Both telescopes have been figured by single point diamond turning and have achieved better than 15-arcsec on-axis imaging. The telescope for the stellar spectrometer is an f/10 Type II system with an effective area of 225 sq cm at 250 A and 300 cm2 at 500 A. The primary has a maximum diameter of 38 cm and was fabricated in three elements. The copper-plated aluminum substrate was diamond turned; following nickel plating, the surface was polished and coated with evaporated gold. The performance during a sounding rocket flight is discussed. The prototype telescope for the Extreme Ultraviolet Explorer is an f/1.24 Type I system with an effective field of view of 5.0-deg diameter. The telescope has a maximum diameter of 40 cm and was fabricated as a single element. The aluminum substrate is to be diamond turned; the nickel plated surface will be polished and electroplated with gold. The design choice and defocusing optimization aimed at maximizing the field of view and number of image pixels is examined.

  11. Wolter-Schwarzschild optics for the extreme-ultraviolet - The Berkeley stellar spectrometer and the EUV Explorer

    NASA Technical Reports Server (NTRS)

    Malina, R. F.; Bowyer, S.; Finley, D.; Cash, W.

    1979-01-01

    The design, fabrication and performance of two Wolter-Schwarzschild grazing incidence optics are described. Both telescopes have been figured by single point diamond turning and have achieved better than 15-arcsec on-axis imaging. The telescope for the stellar spectrometer is an f/10 Type II system with an effective area of 225 sq cm at 250 A and 300 cm2 at 500 A. The primary has a maximum diameter of 38 cm and was fabricated in three elements. The copper-plated aluminum substrate was diamond turned; following nickel plating, the surface was polished and coated with evaporated gold. The performance during a sounding rocket flight is discussed. The prototype telescope for the Extreme Ultraviolet Explorer is an f/1.24 Type I system with an effective field of view of 5.0-deg diameter. The telescope has a maximum diameter of 40 cm and was fabricated as a single element. The aluminum substrate is to be diamond turned; the nickel plated surface will be polished and electroplated with gold. The design choice and defocusing optimization aimed at maximizing the field of view and number of image pixels is examined.

  12. Method for extreme ultraviolet lithography

    DOEpatents

    Felter, T. E.; Kubiak, G. D.

    2000-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods.

  13. Method for extreme ultraviolet lithography

    DOEpatents

    Felter, T. E.; Kubiak, Glenn D.

    1999-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods.

  14. A preliminary estimate of the EUVE cumulative distribution of exposure time on the unit sphere. [Extreme Ultra-Violet Explorer

    NASA Technical Reports Server (NTRS)

    Tang, C. C. H.

    1984-01-01

    A preliminary study of an all-sky coverage of the EUVE mission is given. Algorithms are provided to compute the exposure of the celestial sphere under the spinning telescopes, taking into account that during part of the exposure time the telescopes are blocked by the earth. The algorithms are used to give an estimate of exposure time at different ecliptic latitudes as a function of the angle of field of view of the telescope. Sample coverage patterns are also given for a 6-month mission.

  15. A preliminary estimate of the EUVE cumulative distribution of exposure time on the unit sphere. [Extreme Ultra-Violet Explorer

    NASA Technical Reports Server (NTRS)

    Tang, C. C. H.

    1984-01-01

    A preliminary study of an all-sky coverage of the EUVE mission is given. Algorithms are provided to compute the exposure of the celestial sphere under the spinning telescopes, taking into account that during part of the exposure time the telescopes are blocked by the earth. The algorithms are used to give an estimate of exposure time at different ecliptic latitudes as a function of the angle of field of view of the telescope. Sample coverage patterns are also given for a 6-month mission.

  16. Pathways to Earth-like atmospheres. Extreme ultraviolet (EUV)-powered escape of hydrogen-rich protoatmospheres.

    PubMed

    Lammer, Helmut; Kislyakova, K G; Odert, P; Leitzinger, M; Schwarz, R; Pilat-Lohinger, E; Kulikov, Yu N; Khodachenko, M L; Güdel, M; Hanslmeier, M

    2011-12-01

    We discuss the evolution of the atmosphere of early Earth and of terrestrial exoplanets which may be capable of sustaining liquid water oceans and continents where life may originate. The formation age of a terrestrial planet, its mass and size, as well as the lifetime in the EUV-saturated early phase of its host star play a significant role in its atmosphere evolution. We show that planets even in orbits within the habitable zone of their host stars might not lose nebular- or catastrophically outgassed initial protoatmospheres completely and could end up as water worlds with CO2 and hydrogen- or oxygen-rich upper atmospheres. If an atmosphere of a terrestrial planet evolves to an N2-rich atmosphere too early in its lifetime, the atmosphere may be lost. We show that the initial conditions set up by the formation of a terrestrial planet and by the evolution of the host star's EUV and plasma environment are very important factors owing to which a planet may evolve to a habitable world. Finally we present a method for studying the discussed atmosphere evolution hypotheses by future UV transit observations of terrestrial exoplanets.

  17. Pathways to Earth-Like Atmospheres. Extreme Ultraviolet (EUV)-Powered Escape of Hydrogen-Rich Protoatmospheres

    NASA Astrophysics Data System (ADS)

    Lammer, Helmut; Kislyakova, K. G.; Odert, P.; Leitzinger, M.; Schwarz, R.; Pilat-Lohinger, E.; Kulikov, Yu. N.; Khodachenko, M. L.; Güdel, M.; Hanslmeier, A.

    2011-12-01

    We discuss the evolution of the atmosphere of early Earth and of terrestrial exoplanets which may be capable of sustaining liquid water oceans and continents where life may originate. The formation age of a terrestrial planet, its mass and size, as well as the lifetime in the EUV-saturated early phase of its host star play a significant role in its atmosphere evolution. We show that planets even in orbits within the habitable zone of their host stars might not lose nebular- or catastrophically outgassed initial protoatmospheres completely and could end up as water worlds with CO2 and hydrogen- or oxygen-rich upper atmospheres. If an atmosphere of a terrestrial planet evolves to an N2-rich atmosphere too early in its lifetime, the atmosphere may be lost. We show that the initial conditions set up by the formation of a terrestrial planet and by the evolution of the host star's EUV and plasma environment are very important factors owing to which a planet may evolve to a habitable world. Finally we present a method for studying the discussed atmosphere evolution hypotheses by future UV transit observations of terrestrial exoplanets.

  18. Extremely Large EUV Late Phase of Solar Flares

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Wang, Yuming; Zhang, Jie; Cheng, Xin; Liu, Rui; Shen, Chenglong

    2015-04-01

    The second peak in the Fe XVI 33.5 nm line irradiance observed during solar flares by Extreme ultraviolet Variability Experiment (EVE) is known as Extreme UltraViolet (EUV) late phase. Our previous paper found that the main emissions in the late phase are originated from large-scale loop arcades that are closely connected to but different from the post flare loops (PFLs), and we also proposed that a long cooling process without additional heating could explain the late phase. In this paper, we define the extremely large late phase because it not only has a bigger peak in the warm 33.5 irradiance profile, but also releases more EUV radiative energy than the main phase. Through detailedly inspecting the EUV images from three point-of-view, it is found that, besides the later phase loop arcades, the more contribution of the extremely large late phase is from a hot structure that fails to erupt. This hot structure is identified as a flux rope, which is quickly energized by the flare reconnection and later on continuously produces the thermal energy during the gradual phase. Together with the late-phase loop arcades, the fail to erupt flux rope with the additional heating creates the extremely large EUV late phase.

  19. The Extreme Ultraviolet Problem of Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    Warren, John Kennedy

    Observations of EUV radiation of astrophysical sources provide direct information of the accretion energy balance and the nature of the accretion region on the white dwarf surface of cataclysmic variable stars (CV's). Unattainable until recently, these EUV observation have been made possible with new satellites such as the Extreme Ultraviolet Explorer (EUVE) and the Array of Low Energy X-ray Imaging Sensors (ALEXIS). I document the first detection of an EUV transient during the low state of a magnetic cataclysmic variable. The transient was probably caused by the intermittent accretion onto the white dwarf surface of dense filaments of matter, formed by an instability at the secondary star surface. Alternatively, the events may have been the EUV component of magnetic flares. I also document the first EUV pointed observation of an eclipsing magnetic cataclysmic variable, providing a first direct and unadulterated view of an EUV accretion spot on the white dwarf of a magnetic cataclysmic variable, and providing evidence for an EUV accretion region with vertical extent. Finally, I use the EUVE observations to place constraints on the accretion energy balance relationship in magnetic CV's, and discuss the implications of these and other EUV observations of magnetic CV's, using their newly-constrained energy balance relationships, to address accretion mechanisms and geometry.

  20. Extreme Ultraviolet Explorer Science Operation Center

    NASA Technical Reports Server (NTRS)

    Wong, G. S.; Kronberg, F. A.; Meriwether, H. D.; Wong, L. S.; Grassi, C. L.

    1993-01-01

    The EUVE Science Operations Center (ESOC) is a satellite payload operations center for the Extreme Ultraviolet Explorer project, located on the Berkeley campus of the University of California. The ESOC has the primary responsibility for commanding the EUVE telescopes and monitoring their telemetry. The ESOC is one of a very few university-based satellite operations facilities operating with NASA. This article describes the history, operation, and advantages of the ESOC as an on-campus operations center.

  1. Extreme Ultraviolet Explorer Science Operation Center

    NASA Technical Reports Server (NTRS)

    Wong, G. S.; Kronberg, F. A.; Meriwether, H. D.; Wong, L. S.; Grassi, C. L.

    1993-01-01

    The EUVE Science Operations Center (ESOC) is a satellite payload operations center for the Extreme Ultraviolet Explorer project, located on the Berkeley campus of the University of California. The ESOC has the primary responsibility for commanding the EUVE telescopes and monitoring their telemetry. The ESOC is one of a very few university-based satellite operations facilities operating with NASA. This article describes the history, operation, and advantages of the ESOC as an on-campus operations center.

  2. Discovery of a new white dwarf in a binary system (EUVE 0720-317) in the Extreme Ultraviolet Explorer survey and implications for the late stages of stellar evolution

    NASA Astrophysics Data System (ADS)

    Vennes, Stephane; Thorstensen, John R.

    1994-09-01

    A new precataclysmic binary is identified in the Extreme Ultraviolet Explorer (EUVE) all-sky survey. The bright source EUVE 0720-317 shows a hot hydrogen-rich white dwarf optical continuum with overlying narrow Balmer-line emission. Using high signal-to-noise ratio spectroscopy in the 4100-6700 A range, we identify a late-type companion and find a 1.3d periodic modulation in the emission-line velocities and strengths. This is the signature of Feige 24-type close binary systems. We determine the components' spectral types (DAO and dM0-2), orbital velocities (KDAO = 104 +/- 12 km/s, KdM = 96 +/- 7 km/s), and systemic velocity (gamma = 15 +/- 12 km/s). A first estimate of the white dwarf gravitational redshift, gammag = 45 +/- 20 km/s, and theoretical mass-radius relationships imply RDAO = 0.010-0.016 solar radius and MDAO = 0.55-0.90 solar mass. The orbital inclination is therefore i greater than or equal to 52 deg, consistent with the large amplitude variations found in H-alpha equivalent widths that imply i greater than or equal to 42 deg. We show that the discovery of new close WD + MS binary systems in extreme ultraviolet (EUV) sky surveys has important implications for theory of common-envelope evolution, in particular for the predicted close binary birthrate and orbital and stellar parameters.

  3. Extreme ultraviolet lithography machine

    DOEpatents

    Tichenor, Daniel A.; Kubiak, Glenn D.; Haney, Steven J.; Sweeney, Donald W.

    2000-01-01

    An extreme ultraviolet lithography (EUVL) machine or system for producing integrated circuit (IC) components, such as transistors, formed on a substrate. The EUVL machine utilizes a laser plasma point source directed via an optical arrangement onto a mask or reticle which is reflected by a multiple mirror system onto the substrate or target. The EUVL machine operates in the 10-14 nm wavelength soft x-ray photon. Basically the EUV machine includes an evacuated source chamber, an evacuated main or project chamber interconnected by a transport tube arrangement, wherein a laser beam is directed into a plasma generator which produces an illumination beam which is directed by optics from the source chamber through the connecting tube, into the projection chamber, and onto the reticle or mask, from which a patterned beam is reflected by optics in a projection optics (PO) box mounted in the main or projection chamber onto the substrate. In one embodiment of a EUVL machine, nine optical components are utilized, with four of the optical components located in the PO box. The main or projection chamber includes vibration isolators for the PO box and a vibration isolator mounting for the substrate, with the main or projection chamber being mounted on a support structure and being isolated.

  4. Extreme ultraviolet spectroscopy of Capella

    NASA Technical Reports Server (NTRS)

    Green, James C.; Wilkinson, Erik; Ayres, Thomas R.; Cash, Webster C.

    1992-01-01

    The X-ray active binary system Capella was observed with a moderate-resolution extreme ultraviolet spectrograph from 200 to 330 A. Two low-level emission features were detected. One most likely is geocoronal He II 304 A emission, while the other probably originates from the corona of Capella. The weak stellar emission at 304 A is in direct conflict with predictions of the intrinsic stellar He II flux based on standard scaling arguments but is consistent with the only previous observation of Capella in the EUV. The most plausible explanation for the lack of stellar 304 A emission is a warm wind from the active G0 III star.

  5. Research in extreme ultraviolet and far ultraviolet astronomy

    NASA Technical Reports Server (NTRS)

    Bowyer, C. S.

    1985-01-01

    The Far Ultraviolet imager (FUVI) was flown on the Aries class sounding rocket 24.015, producing outstanding results. The diffuse extreme ultraviolet (EUV) background spectrometer which is under construction is described. It will be launched on the Black Brant sounding rocket flight number 27.086. Ongoing design studies of a high resolution spectrometer are discussed. This instrument incorporates a one meter normal incidence mirror and will be suitable for an advanced Spartan mission.

  6. Energy deposition in ultrathin extreme ultraviolet resist films: extreme ultraviolet photons and keV electrons

    NASA Astrophysics Data System (ADS)

    Kyser, David F.; Eib, Nicholas K.; Ritchie, Nicholas W. M.

    2016-07-01

    The absorbed energy density (eV/cm3) deposited by extreme ultraviolet (EUV) photons and electron beam (EB) high-keV electrons is proposed as a metric for characterizing the sensitivity of EUV resist films. Simulations of energy deposition are used to calculate the energy density as a function of the incident aerial flux (EUV: mJ/cm2, EB: μC/cm2). Monte Carlo calculations for electron exposure are utilized, and a Lambert-Beer model for EUV absorption. The ratio of electron flux to photon flux which results in equivalent energy density is calculated for a typical organic chemically amplified resist film and a typical inorganic metal-oxide film. This ratio can be used to screen EUV resist materials with EB measurements and accelerate advances in EUV resist systems.

  7. EXTREMELY LARGE EUV LATE PHASE OF SOLAR FLARES

    SciTech Connect

    Liu, Kai; Wang, Yuming; Liu, Rui; Shen, Chenglong; Zhang, Jie; Cheng, Xin

    2015-03-20

    The second peak in the Fe xvi 33.5 nm line irradiance observed during solar flares by the Extreme-Ultraviolet Variability Experiment (EVE) is known as the EUV late phase. Our previous paper in 2013 by Liu et al. found that the main emissions in the late phase are originated from large-scale loop arcades that are closely connected to but different from the post-flare loops (PFLs), and we also proposed that a long cooling process without additional heating could explain the late phase. In this paper, we define the extremely large late phase because it not only has a bigger peak in the warm 33.5 irradiance profile, but also releases more EUV radiative energy than the main phase. Through detailed inspection of the EUV images from three points of view, it was discovered that aside from the later-phase loop arcades, the main contributor of the extremely large late phase is a hot structure that fails to erupt. This hot structure is identified as a flux rope, which is quickly energized by the flare reconnection and later on continuously produces the thermal energy during the gradual phase. Together with the late-phase loop arcades, the flux rope failing to erupt with the additional heating create the extremely large EUV late phase.

  8. Extremely Large EUV Late Phase of Solar Flares

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Wang, Yuming; Zhang, Jie; Cheng, Xin; Liu, Rui; Shen, Chenglong

    2015-03-01

    The second peak in the Fe xvi 33.5 nm line irradiance observed during solar flares by the Extreme-Ultraviolet Variability Experiment (EVE) is known as the EUV late phase. Our previous paper in 2013 by Liu et al. found that the main emissions in the late phase are originated from large-scale loop arcades that are closely connected to but different from the post-flare loops (PFLs), and we also proposed that a long cooling process without additional heating could explain the late phase. In this paper, we define the extremely large late phase because it not only has a bigger peak in the warm 33.5 irradiance profile, but also releases more EUV radiative energy than the main phase. Through detailed inspection of the EUV images from three points of view, it was discovered that aside from the later-phase loop arcades, the main contributor of the extremely large late phase is a hot structure that fails to erupt. This hot structure is identified as a flux rope, which is quickly energized by the flare reconnection and later on continuously produces the thermal energy during the gradual phase. Together with the late-phase loop arcades, the flux rope failing to erupt with the additional heating create the extremely large EUV late phase.

  9. The extreme ultraviolet explorer archive

    NASA Astrophysics Data System (ADS)

    Polomski, E.; Drake, J. J.; Dobson, C.; Christian, C.

    1993-09-01

    The Extreme Ultrviolet Explorer (EUVE) public archive was created to handle the storage, maintenance, and distribution of EUVE data and ancillary documentation, information, and software. Access to the archive became available to the public on July 17, 1992, only 40 days after the launch of the EUVE satellite. A brief overview of the archive's contents and the various methods of access will be described.

  10. The Stellar Extreme-Ultraviolet Radiation Field

    NASA Astrophysics Data System (ADS)

    Vallerga, John

    1998-04-01

    The local extreme ultraviolet (EUV) radiation field from stellar sources has been determined by combining the EUV spectra of 54 stars, taken with the spectrometers aboard the Extreme Ultraviolet Explorer satellite. The resultant spectrum over the range 70-730 Å is estimated to be 95% complete above 400 Å and 90% complete above 200 Å. The flux contributed by two B stars and three hot white dwarfs dominate the spectrum except at the shortest wavelengths, where an assortment of EUV source types contribute. The high electron densities measured toward nearby stars can be accounted for by photoionization from this radiation field, but the spectrum is too soft to explain the overionization of helium with respect to hydrogen recently measure in the Local Cloud.

  11. Photoresist composition for extreme ultraviolet lithography

    SciTech Connect

    Felter, T.E.; Kubiak, G.D.

    1999-11-23

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4--0.05 {mu}m using projection lithography and extreme ultraviolet (EUV) radiation is disclosed. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods. A photoresist composition for extreme ultraviolet radiation of boron carbide polymers, hydrochlorocarbons and mixtures thereof.

  12. Photoresist composition for extreme ultraviolet lithography

    DOEpatents

    Felter, T. E.; Kubiak, G. D.

    1999-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods. A photoresist composition for extreme ultraviolet radiation of boron carbide polymers, hydrochlorocarbons and mixtures thereof.

  13. The Diffuse Extreme Ultraviolet Background

    NASA Technical Reports Server (NTRS)

    Vallerga, John; Slavin, Jonathan

    1996-01-01

    Observations of the diffuse EUV background towards 138 different directions using the spectrometers aboard the Extreme Ultraviolet Explorer satellite (EUVE) have been combined into a spectrum from 150A to 730A and represent an effective exposure of 18 million seconds. There is no significant evidence of any non-local line flux in the resultant spectrum such as that from a hot coronal plasma. These results are inconsistent with the Wisconsin C and B broad-band surveys assuming the source is a logT = 5.8 - 6.1 hot plasma in ionization equilibrium with solar abundances, confirming the previous result of Jelinksy, Vallerga and Edelstein) (hereafter Paper 1) using an observation along the ecliptic with the same instrument. To make these results consistent with the previous broad-band surveys, the plasma responsible for the emission must either be depleted in Fe by a factor of approximately 6, be behind an absorbing slab of neutral H with a column of 2 x 10(exp 19)/sq cm, or not be in collisional ionization equilibrium (CIE). One such non-CIE model (Breitswerdt and Schmutzier) that explains the soft x-ray results is also inconsistent with this EUV data.

  14. Discovery of a new white dwarf in a binary system (EUVE 0720-317) in the Extreme Ultraviolet Explorer survey and implications for the late stages of stellar evolution

    NASA Technical Reports Server (NTRS)

    Vennes, Stephane; Thorstensen, John R.

    1994-01-01

    A new precataclysmic binary is identified in the Extreme Ultraviolet Explorer (EUVE) all-sky survey. The bright source EUVE 0720-317 shows a hot hydrogen-rich white dwarf optical continuum with overlying narrow Balmer-line emission. Using high signal-to-noise ratio spectroscopy in the 4100-6700 A range, we identify a late-type companion and find a 1.3d periodic modulation in the emission-line velocities and strengths. This is the signature of Feige 24-type close binary systems. We determine the components' spectral types (DAO and dM0-2), orbital velocities (K(sub DAO) = 104 +/- 12 km/s, K(sub dM) = 96 +/- 7 km/s), and systemic velocity (gamma = 15 +/- 12 km/s). A first estimate of the white dwarf gravitational redshift, gamma(sub g) = 45 +/- 20 km/s, and theoretical mass-radius relationships imply R(sub DAO) = 0.010-0.016 solar radius and M(sub DAO) = 0.55-0.90 solar mass. The orbital inclination is therefore i greater than or equal to 52 deg, consistent with the large amplitude variations found in H-alpha equivalent widths that imply i greater than or equal to 42 deg. We show that the discovery of new close WD + MS binary systems in extreme ultraviolet (EUV) sky surveys has important implications for theory of common-envelope evolution, in particular for the predicted close binary birthrate and orbital and stellar parameters.

  15. Discovery of a new white dwarf in a binary system (EUVE 0720-317) in the Extreme Ultraviolet Explorer survey and implications for the late stages of stellar evolution

    NASA Technical Reports Server (NTRS)

    Vennes, Stephane; Thorstensen, John R.

    1994-01-01

    A new precataclysmic binary is identified in the Extreme Ultraviolet Explorer (EUVE) all-sky survey. The bright source EUVE 0720-317 shows a hot hydrogen-rich white dwarf optical continuum with overlying narrow Balmer-line emission. Using high signal-to-noise ratio spectroscopy in the 4100-6700 A range, we identify a late-type companion and find a 1.3d periodic modulation in the emission-line velocities and strengths. This is the signature of Feige 24-type close binary systems. We determine the components' spectral types (DAO and dM0-2), orbital velocities (K(sub DAO) = 104 +/- 12 km/s, K(sub dM) = 96 +/- 7 km/s), and systemic velocity (gamma = 15 +/- 12 km/s). A first estimate of the white dwarf gravitational redshift, gamma(sub g) = 45 +/- 20 km/s, and theoretical mass-radius relationships imply R(sub DAO) = 0.010-0.016 solar radius and M(sub DAO) = 0.55-0.90 solar mass. The orbital inclination is therefore i greater than or equal to 52 deg, consistent with the large amplitude variations found in H-alpha equivalent widths that imply i greater than or equal to 42 deg. We show that the discovery of new close WD + MS binary systems in extreme ultraviolet (EUV) sky surveys has important implications for theory of common-envelope evolution, in particular for the predicted close binary birthrate and orbital and stellar parameters.

  16. Gradient-based inverse extreme ultraviolet lithography.

    PubMed

    Ma, Xu; Wang, Jie; Chen, Xuanbo; Li, Yanqiu; Arce, Gonzalo R

    2015-08-20

    Extreme ultraviolet (EUV) lithography is the most promising successor of current deep ultraviolet (DUV) lithography. The very short wavelength, reflective optics, and nontelecentric structure of EUV lithography systems bring in different imaging phenomena into the lithographic image synthesis problem. This paper develops a gradient-based inverse algorithm for EUV lithography systems to effectively improve the image fidelity by comprehensively compensating the optical proximity effect, flare, photoresist, and mask shadowing effects. A block-based method is applied to iteratively optimize the main features and subresolution assist features (SRAFs) of mask patterns, while simultaneously preserving the mask manufacturability. The mask shadowing effect may be compensated by a retargeting method based on a calibrated shadowing model. Illustrative simulations at 22 and 16 nm technology nodes are presented to validate the effectiveness of the proposed methods.

  17. Extreme ultraviolet spectral irradiance measurements since 1946

    NASA Astrophysics Data System (ADS)

    Schmidtke, G.

    2015-03-01

    In the physics of the upper atmosphere the solar extreme ultraviolet (EUV) radiation plays a dominant role controlling most of the thermospheric/ionospheric (T/I) processes. Since this part of the solar spectrum is absorbed in the thermosphere, platforms to measure the EUV fluxes became only available with the development of rockets reaching altitude levels exceeding 80 km. With the availability of V2 rockets used in space research, recording of EUV spectra started in 1946 using photographic films. The development of pointing devices to accurately orient the spectrographs toward the sun initiated intense activities in solar-terrestrial research. The application of photoelectric recording technology enabled the scientists placing EUV spectrometers aboard satellites observing qualitatively strong variability of the solar EUV irradiance on short-, medium-, and long-term scales. However, as more measurements were performed more radiometric EUV data diverged due to the inherent degradation of the EUV instruments with time. Also, continuous recording of the EUV energy input to the T/I system was not achieved. It is only at the end of the last century that there was progress made in solving the serious problem of degradation enabling to monitore solar EUV fluxes with sufficient radiometric accuracy. The data sets available allow composing the data available to the first set of EUV data covering a period of 11 years for the first time. Based on the sophisticated instrumentation verified in space, future EUV measurements of the solar spectral irradiance (SSI) are promising accuracy levels of about 5% and less. With added low-cost equipment, real-time measurements will allow providing data needed in ionospheric modeling, e.g., for correcting propagation delays of navigation signals from space to earth. Adding EUV airglow and auroral emission monitoring by airglow cameras, the impact of space weather on the terrestrial T/I system can be studied with a spectral terrestrial

  18. Absolute, Extreme-Ultraviolet, Solar Spectral Irradiance Monitor (AESSIM)

    NASA Technical Reports Server (NTRS)

    Huber, Martin C. E.; Smith, Peter L.; Parkinson, W. H.; Kuehne, M.; Kock, M.

    1988-01-01

    AESSIM, the Absolute, Extreme-Ultraviolet, Solar Spectral Irradiance Monitor, is designed to measure the absolute solar spectral irradiance at extreme-ultraviolet (EUV) wavelengths. The data are required for studies of the processes that occur in the earth's upper atmosphere and for predictions of atmospheric drag on space vehicles. AESSIM is comprised of sun-pointed spectrometers and newly-developed, secondary standards of spectral irradiance for the EUV. Use of the in-orbit standard sources will eliminate the uncertainties caused by changes in spectrometer efficiency that have plagued all previous measurements of the solar spectral EUV flux.

  19. Extreme ultraviolet photoionization of aldoses and ketoses

    NASA Astrophysics Data System (ADS)

    Shin, Joong-Won; Dong, Feng; Grisham, Michael E.; Rocca, Jorge J.; Bernstein, Elliot R.

    2011-04-01

    Gas phase monosaccharides (2-deoxyribose, ribose, arabinose, xylose, lyxose, glucose galactose, fructose, and tagatose), generated by laser desorption of solid sample pellets, are ionized with extreme ultraviolet photons (EUV, 46.9 nm, 26.44 eV). The resulting fragment ions are analyzed using a time of flight mass spectrometer. All aldoses yield identical fragment ions regardless of size, and ketoses, while also generating same ions as aldoses, yields additional features. Extensive fragmentation of the monosaccharides is the result the EUV photons ionizing various inner valence orbitals. The observed fragmentation patterns are not dependent upon hydrogen bonding structure or OH group orientation.

  20. Extreme Ultraviolet Explorer. Long look at the next window

    NASA Technical Reports Server (NTRS)

    Maran, Stephen P.

    1991-01-01

    The Extreme Ultraviolet Explorer (EUVE) will map the entire sky to determine the existence, direction, brightness, and temperature of thousands of objects that are sources of so-called extreme ultraviolet (EUV) radiation. The EUV spectral region is located between the x-ray and ultraviolet regions of the electromagnetic spectrum. From the sky survey by EUVE, astronomers will determine the nature of sources of EUV light in our galaxy, and infer the distribution of interstellar gas for hundreds of light years around the solar system. It is from this gas and the accompanying dust in space that new stars and solar systems are born and to which evolving and dying stars return much of their material in an endless cosmic cycle of birth, death, and rebirth. Besides surveying the sky, astronomers will make detailed studies of selected objects with EUVE to determine their physical properties and chemical compositions. Also, they will learn about the conditions that prevail and the processes at work in stars, planets, and other sources of EUV radiation, maybe even quasars. The EUVE mission and instruments are described. The objects that EUVE will likely find are described.

  1. The Second Extreme Ultraviolet Explorer Right Angle Program Catalog

    NASA Astrophysics Data System (ADS)

    Christian, D. J.; Craig, N.; Cahill, W.; Roberts, B.; Malina, R. F.

    1999-05-01

    We present the detection of 235 extreme ultraviolet sources, of which 169 are new detections, using the Extreme Ultraviolet Explorer's (EUVE) Right Angle Program (RAP) data. This catalog includes observations since the first EUVE RAP catalog (1994 January) and covers 17% of the sky. The EUVE RAP uses the all-sky survey telescopes (also known as ``scanners''), mounted at right angles to the Deep Survey and spectrometer instruments, to obtain photometric data in four wavelength bands centered at ~100 Å (Lexan/B), ~200 Å (Al/Ti/C), ~400 Å (Ti/Sb/Al), and ~550 Å (Sn/SiO). This allows the RAP to accumulate data serendipitously during pointed spectroscopic observations. The long exposure times possible with RAP observations provide much greater sensitivity than the all-sky survey. We present EUVE source count rates and probable source identifications from the available catalogs and literature. The source distribution is similar to previous extreme ultraviolet (EUV) catalogs with 2% early-type stars, 45% late-type stars, 8% white dwarfs, 6% extragalactic, 24% with no firm classification, and 15% with no optical identification. We also present 36 detections of early-type stars that are probably the result of non-EUV radiation. We have detected stellar flares from approximately 12 sources, including: EUVE J0008+208, M4 star G32-6 (EUVE J0016+198), a new source EUVE J0202+105, EUVE J0213+368, RS CVn V711 Tau (EUVE J0336+005), BY Draconis type variable V837 Tau (EUVE J0336+259), the new K5 binary EUVE J0725-004, EUVE J1147+050, EUVE J1148-374, EUVE J1334-083 (EQ Vir), EUVE J1438-432 (WT 486/487), EUVE J1808+297, and the M5.5e star G208-45 (EUVE J1953+444). We present sample light curves for the brighter sources.

  2. Extreme ultraviolet Talbot interference lithography.

    PubMed

    Li, Wei; Marconi, Mario C

    2015-10-05

    Periodic nanopatterns can be generated using lithography based on the Talbot effect or optical interference. However, these techniques have restrictions that limit their performance. High resolution Talbot lithography is limited by the very small depth of focus and the demanding requirements in the fabrication of the master mask. Interference lithography, with large DOF and high resolution, is limited to simple periodic patterns. This paper describes a hybrid extreme ultraviolet lithography approach that combines Talbot lithography and interference lithography to render an interference pattern with a lattice determined by a Talbot image. As a result, the method enables filling the arbitrary shaped cells produced by the Talbot image with interference patterns. Detailed modeling, system design and experimental results using a tabletop EUV laser are presented.

  3. Absolute sensitivity calibration of extreme ultraviolet photoresists

    SciTech Connect

    Jones, Juanita; Naulleau, Patrick P.; Gullikson, Eric M.; Aquila, Andrew; George, Simi; Niakoula, Dimitra

    2008-05-16

    One of the major challenges facing the commercialization of extreme ultraviolet (EUV) lithography remains simultaneously achieving resist sensitivity, line-edge roughness, and resolution requirement. Sensitivity is of particular concern owing to its direct impact on source power requirements. Most current EUV exposure tools have been calibrated against a resist standard with the actual calibration of the standard resist dating back to EUV exposures at Sandia National Laboratories in the mid 1990s. Here they report on an independent sensitivity calibration of two baseline resists from the SEMATECH Berkeley MET tool performed at the Advanced Light Source Calibrations and Standards beamline. The results show the baseline resists to be approximately 1.9 times faster than previously thought based on calibration against the long standing resist standard.

  4. Absolute sensitivity calibration of extreme ultraviolet photoresists.

    PubMed

    Naulleau, Patrick P; Gullikson, Eric M; Aquila, Andrew; George, Simi; Niakoula, Dimitra

    2008-07-21

    One of the major challenges facing the commercialization of extreme ultraviolet (EUV) lithography remains simultaneously achieving resist sensitivity, line-edge roughness, and resolution requirement. Sensitivity is of particular concern owing to its direct impact on source power requirements. Most current EUV exposure tools have been calibrated against a resist standard with the actual calibration of the standard resist dating back to EUV exposures at Sandia National Laboratories in the mid 1990s. Here we report on an independent sensitivity calibration of two baseline resists from the SEMATECH Berkeley MET tool performed at the Advanced Light Source Calibrations and Standards beamline. The results show the baseline resists to be approximately 1.9 times faster than previously thought based on calibration against the long standing resist standard.

  5. Plans for the extreme ultraviolet explorer data base

    NASA Technical Reports Server (NTRS)

    Marshall, Herman L.; Dobson, Carl A.; Malina, Roger F.; Bowyer, Stuart

    1988-01-01

    The paper presents an approach for storage and fast access to data that will be obtained by the Extreme Ultraviolet Explorer (EUVE), a satellite payload scheduled for launch in 1991. The EUVE telescopes will be operated remotely from the EUVE Science Operation Center (SOC) located at the University of California, Berkeley. The EUVE science payload consists of three scanning telescope carrying out an all-sky survey in the 80-800 A spectral region and a Deep Survey/Spectrometer telescope performing a deep survey in the 80-250 A spectral region. Guest Observers will remotely access the EUVE spectrometer database at the SOC. The EUVE database will consist of about 2 X 10 to the 10th bytes of information in a very compact form, very similar to the raw telemetry data. A history file will be built concurrently giving telescope parameters, command history, attitude summaries, engineering summaries, anomalous events, and ephemeris summaries.

  6. Extreme ultraviolet-induced photoionized plasmas

    NASA Astrophysics Data System (ADS)

    Bartnik, Andrzej; Wachulak, Przemyslaw; Fiedorowicz, Henryk; Fok, Tomasz; Jarocki, Roman; Szczurek, Miroslaw

    2014-05-01

    In this work photoionized plasmas were created by irradiation of He or Ne gases with a focused extreme ultraviolet (EUV) beam from one of two laser-plasma sources employing Nd:YAG laser systems. The first of them was a 10 Hz laser-plasma EUV source, based on a double-stream gas-puff target, irradiated with a 3 ns per 0.8 J laser pulse. EUV radiation in this case was focused using a gold-plated grazing incidence ellipsoidal collector. The second source was based on a 10 ns per 10 J per 10 Hz laser system. In this case EUV radiation was focused using a gold-plated grazing incidence multifoil collector. Gases were injected into the interaction region, perpendicularly to an optical axis of the irradiation system, using an auxiliary gas puff valve. Spectral measurements in the EUV range were performed. In all cases the most intense emission lines were assigned to singly charged ions. The other emission lines belong to atoms or doubly charged ions.

  7. Thin film filter lifetesting results in the extreme ultraviolet

    NASA Technical Reports Server (NTRS)

    Vedder, P. W.; Vallerga, J. V.; Gibson, J. L.; Stock, J.; Siegmund, O. H. W.

    1993-01-01

    We present the results of the thin film filter lifetesting program conducted as part of the NASA Extreme Ultraviolet Explorer (EUVE) satellite mission. This lifetesting program is designed to monitor changes in the transmission and mechanical properties of the EUVE filters over the lifetime of the mission (fabrication, assembly, launch and operation). Witness test filters were fabricated from thin film foils identical to those used in the flight filters. The witness filters have been examined and calibrated periodically over the past seven years. The filters have been examined for evidence of pinholing, mechanical degradation, and oxidation. Absolute transmissions of the flight and witness filters have been measured in the extreme ultraviolet (EUV) over six orders of magnitude at numerous wavelengths using the Berkeley EUV Calibration Facility.

  8. Thin film filter lifetesting results in the extreme ultraviolet

    NASA Technical Reports Server (NTRS)

    Vedder, P. W.; Vallerga, J. V.; Gibson, J. L.; Stock, J.; Siegmund, O. H. W.

    1993-01-01

    We present the results of the thin film filter lifetesting program conducted as part of the NASA Extreme Ultraviolet Explorer (EUVE) satellite mission. This lifetesting program is designed to monitor changes in the transmission and mechanical properties of the EUVE filters over the lifetime of the mission (fabrication, assembly, launch and operation). Witness test filters were fabricated from thin film foils identical to those used in the flight filters. The witness filters have been examined and calibrated periodically over the past seven years. The filters have been examined for evidence of pinholing, mechanical degradation, and oxidation. Absolute transmissions of the flight and witness filters have been measured in the extreme ultraviolet (EUV) over six orders of magnitude at numerous wavelengths using the Berkeley EUV Calibration Facility.

  9. Telescience - Concepts and contributions to the Extreme Ultraviolet Explorer mission

    NASA Technical Reports Server (NTRS)

    Marchant, Will; Dobson, Carl; Chakrabarti, Supriya; Malina, Roger F.

    1987-01-01

    It is shown how the contradictory goals of low-cost and fast data turnaround characterizing the Extreme Ultraviolet Explorer (EUVE) mission can be achieved via the early use of telescience style transparent tools and simulations. The use of transparent tools reduces the parallel development of capability while ensuring that valuable prelaunch experience is not lost in the operations phase. Efforts made to upgrade the 'EUVE electronics' simulator are described.

  10. 'EXTREME ULTRAVIOLET WAVES' ARE WAVES: FIRST QUADRATURE OBSERVATIONS OF AN EXTREME ULTRAVIOLET WAVE FROM STEREO

    SciTech Connect

    Patsourakos, Spiros; Vourlidas, Angelos E-mail: vourlidas@nrl.navy.mil

    2009-08-01

    The nature of coronal mass ejection (CME)-associated low corona propagating disturbances, 'extreme ultraviolet (EUV) waves', has been controversial since their discovery by EIT on SOHO. The low-cadence, single-viewpoint EUV images and the lack of simultaneous inner corona white-light observations have hindered the resolution of the debate on whether they are true waves or just projections of the expanding CME. The operation of the twin EUV imagers and inner corona coronagraphs aboard STEREO has improved the situation dramatically. During early 2009, the STEREO Ahead (STA) and Behind (STB) spacecrafts observed the Sun in quadrature having a {approx}90 deg. angular separation. An EUV wave and CME erupted from active region 11012, on February 13, when the region was exactly at the limb for STA and hence at disk center for STB. The STEREO observations capture the development of a CME and its accompanying EUV wave not only with high cadence but also in quadrature. The resulting unprecedented data set allowed us to separate the CME structures from the EUV wave signatures and to determine without doubt the true nature of the wave. It is a fast-mode MHD wave after all.

  11. Forecasting solar extreme and far ultraviolet irradiance

    NASA Astrophysics Data System (ADS)

    Henney, C. J.; Hock, R. A.; Schooley, A. K.; Toussaint, W. A.; White, S. M.; Arge, C. N.

    2015-03-01

    A new method is presented to forecast the solar irradiance of selected wavelength ranges within the extreme ultraviolet (EUV) and far ultraviolet (FUV) bands. The technique is similar to a method recently published by Henney et al. (2012) to predict solar 10.7 cm (2.8 GHz) radio flux, abbreviated F10.7, utilizing advanced predictions of the global solar magnetic field generated by a flux transport model. In this and the previous study, we find good correlation between the absolute value of the observed photospheric magnetic field and selected EUV/FUV spectral bands. By evolving solar magnetic maps forward 1 to 7 days with a flux transport model, estimations of the Earth side solar magnetic field distribution are generated and used to forecast irradiance. For example, Pearson correlation coefficient values of 0.99, 0.99, and 0.98 are found for 1 day, 3 day, and 7 day predictions, respectively, of the EUV band from 29 to 32 nm. In the FUV, for example, the 160 to 165 nm spectral band, correlation values of 0.98, 0.97, and 0.96 are found for 1 day, 3 day, and 7 day predictions, respectively. In the previous study, the observed F10.7 signal is found to correlate well with strong magnetic field (i.e., sunspot) regions. Here we find that solar EUV and FUV signals are significantly correlated with the weaker magnetic fields associated with plage regions, suggesting that solar magnetic indices may provide an improved indicator (relative to the widely used F10.7 signal) of EUV and FUV nonflaring irradiance variability as input to ionospheric and thermospheric models.

  12. Bidirectional reflectance distribution function of diffuse extreme ultraviolet scatterers and extreme ultraviolet baffle materials.

    PubMed

    Newell, M P; Keski-Kuha, R A

    1997-08-01

    Bidirectional reflectance distribution function (BRDF) measurements of a number of diffuse extreme ultraviolet (EUV) scatterers and EUV baffle materials have been performed with the Goddard EUV scatterometer. BRDF data are presented for white Spectralon SRS-99 at 121.6 nm; the data exhibit a non-Lambertian nature and a total hemispherical reflectance lower than 0.15. Data are also presented for an evaporated Cu black sample, a black Spectralon SRS-02 sample, and a Martin Optical Black sample at wavelengths of 58.4 and 121.6 nm and for angles of incidence of 15 degrees and 45 degrees. Overall Martin Optical Black exhibited the lowest BRDF characteristic, with a total hemispherical reflectance of the order of 0.01 and measured BRDF values as low as 2 x 10(-3) sr(-1).

  13. Generation of extreme ultraviolet vortex beams using computer generated holograms.

    PubMed

    Terhalle, Bernd; Langner, Andreas; Päivänranta, Birgit; Guzenko, Vitaliy A; David, Christian; Ekinci, Yasin

    2011-11-01

    We fabricate computer generated holograms for the generation of phase singularities at extreme ultraviolet (EUV) wavelengths using electron beam lithography and demonstrate their ability to generate optical vortices in the nonzero diffraction orders. To this end, we observe the characteristic intensity distribution of the vortex beam and verify the helical phase structure interferometrically. The presented method forms the basis for further studies on singular light fields in the EUV frequency range, i.e., in EUV interference lithography. Since the method is purely achromatic, it may also find applications in various fields of x ray optics.

  14. Extreme ultraviolet interferometry

    SciTech Connect

    Goldberg, Kenneth A.

    1997-12-01

    EUV lithography is a promising and viable candidate for circuit fabrication with 0.1-micron critical dimension and smaller. In order to achieve diffraction-limited performance, all-reflective multilayer-coated lithographic imaging systems operating near 13-nm wavelength and 0.1 NA have system wavefront tolerances of 0.27 nm, or 0.02 waves RMS. Owing to the highly-sensitive resonant reflective properties of multilayer mirrors and extraordinarily tight tolerances set forth for their fabrication, EUV optical systems require at-wavelength EUV interferometry for final alignment and qualification. This dissertation discusses the development and successful implementation of high-accuracy EUV interferometric techniques. Proof-of-principle experiments with a prototype EUV point-diffraction interferometer for the measurement of Fresnel zoneplate lenses first demonstrated sub-wavelength EUV interferometric capability. These experiments spurred the development of the superior phase-shifting point-diffraction interferometer (PS/PDI), which has been implemented for the testing of an all-reflective lithographic-quality EUV optical system. Both systems rely on pinhole diffraction to produce spherical reference wavefronts in a common-path geometry. Extensive experiments demonstrate EUV wavefront-measuring precision beyond 0.02 waves RMS. EUV imaging experiments provide verification of the high-accuracy of the point-diffraction principle, and demonstrate the utility of the measurements in successfully predicting imaging performance. Complementary to the experimental research, several areas of theoretical investigation related to the novel PS/PDI system are presented. First-principles electromagnetic field simulations of pinhole diffraction are conducted to ascertain the upper limits of measurement accuracy and to guide selection of the pinhole diameter. Investigations of the relative merits of different PS/PDI configurations accompany a general study of the most significant sources

  15. The Extreme Ultraviolet Variability of Quasars

    NASA Astrophysics Data System (ADS)

    Punsly, Brian; Marziani, Paola; Zhang, Shaohua; Muzahid, Sowgat; O'Dea, Christopher P.

    2016-10-01

    We study the extreme ultraviolet (EUV) variability (rest frame wavelengths 500-920 Å) of high-luminosity quasars using Hubble Space Telescope (HST) (low to intermediate redshift sample) and Sloan Digital sky Survey (SDSS) (high redshift sample) archives. The combined HST and SDSS data indicates a much more pronounced variability when the sampling time between observations in the quasar rest frame is \\gt 2× {10}7 {{s}} compared to \\lt 1.5× {10}7 s. Based on an excess variance analysis, for time intervals \\lt 2× {10}7 {{s}} in the quasar rest frame, 10% of the quasars (4/40) show evidence of EUV variability. Similarly, for time intervals \\gt 2× {10}7 {{s}} in the quasar rest frame, 55% of the quasars (21/38) show evidence of EUV variability. The propensity for variability does not show any statistically significant change between 2.5× {10}7 {{s}} and 3.16× {10}7 {{s}} (1 year). The temporal behavior is one of a threshold time interval for significant variability as opposed to a gradual increase on these timescales. A threshold timescale can indicate a characteristic spatial dimension of the EUV region. We explore this concept in the context of the slim disk models of accretion. We find that for rapidly spinning black holes, the radial infall time to the plunge region of the optically thin surface layer of the slim disk that is responsible for the preponderance of the EUV flux emission (primarily within 0-7 black hole radii from the inner edge of the disk) is consistent with the empirically determined variability timescale.

  16. Imaging performance improvement of coherent extreme-ultraviolet scatterometry microscope with high-harmonic-generation extreme-ultraviolet source

    NASA Astrophysics Data System (ADS)

    Mamezaki, Daiki; Harada, Tetsuo; Nagata, Yutaka; Watanabe, Takeo

    2017-06-01

    In extreme-ultraviolet (EUV) lithography, the development of a review apparatus for the EUV mask pattern at an exposure wavelength of 13.5 nm is required. The EUV mask is composed of an absorber pattern and a Mo/Si multilayer on a glass substrate. This mask pattern has a three-dimensional (3D) structure. The 3D structure would modulate the EUV reflection phase, which would cause focus and pattern shifts. Thus, the review of the EUV phase image is also important. We have developed a coherent EUV scatterometry microscope (CSM), which is a simple microscope without objective optics. The EUV phase and intensity images were reconstructed with diffraction images by ptychography. For a standalone mask review, the high-harmonic-generation (HHG) EUV source was employed. In this study, we updated the sample stage, pump-laser reduction system, and gas-pressure control system to reconstruct the image. As a result, an 88 nm line-and-space pattern and a cross-line pattern were reconstructed. In addition, a particle defect of 2 µm diameter was well reconstructed. This demonstrated the high capability of the standalone CSM, which can hence be used in factories, such as mask shops and semiconductor fabrication plants.

  17. Estimation of resist sensitivity for extreme ultraviolet lithography using an electron beam

    SciTech Connect

    Oyama, Tomoko Gowa; Oshima, Akihiro; Tagawa, Seiichi

    2016-08-15

    It is a challenge to obtain sufficient extreme ultraviolet (EUV) exposure time for fundamental research on developing a new class of high sensitivity resists for extreme ultraviolet lithography (EUVL) because there are few EUV exposure tools that are very expensive. In this paper, we introduce an easy method for predicting EUV resist sensitivity by using conventional electron beam (EB) sources. If the chemical reactions induced by two ionizing sources (EB and EUV) are the same, the required absorbed energies corresponding to each required exposure dose (sensitivity) for the EB and EUV would be almost equivalent. Based on this theory, we calculated the resist sensitivities for the EUV/soft X-ray region. The estimated sensitivities were found to be comparable to the experimentally obtained sensitivities. It was concluded that EB is a very useful exposure tool that accelerates the development of new resists and sensitivity enhancement processes for 13.5 nm EUVL and 6.x nm beyond-EUVL (BEUVL).

  18. The Third Extreme Ultraviolet Explorer Right Angle Program Catalog: The Last Years

    NASA Astrophysics Data System (ADS)

    Christian, Damian J.

    2002-12-01

    We present 63 new extreme-ultraviolet sources from observations taken during the Right Angle Program (RAP) of the Extreme Ultraviolet Explorer (EUVE). This paper concentrates on data taken in the last years of the RAP, 1999 and 2000, with a sky coverage of 7%. We present sample light curves for several sources, including flare detections from the previously uncataloged source EUVE J0613-23.9B, the active late-type star EUVE J0728-20.9 (V372 Pup), and the cataclysmic variable EUVE J0332-25.9 (VY For). This final RAP catalog, combined with the EUVE all-sky survey, Lampton et al. faint list, and previous RAP catalogs, brings the total number of EUVE sources to nearly 1200.

  19. Coherence techniques at extreme ultraviolet wavelengths

    SciTech Connect

    Chang, Chang

    2002-01-01

    The renaissance of Extreme Ultraviolet (EUV) and soft x-ray (SXR) optics in recent years is mainly driven by the desire of printing and observing ever smaller features, as in lithography and microscopy. This attribute is complemented by the unique opportunity for element specific identification presented by the large number of atomic resonances, essentially for all materials in this range of photon energies. Together, these have driven the need for new short-wavelength radiation sources (e.g. third generation synchrotron radiation facilities), and novel optical components, that in turn permit new research in areas that have not yet been fully explored. This dissertation is directed towards advancing this new field by contributing to the characterization of spatial coherence properties of undulator radiation and, for the first time, introducing Fourier optical elements to this short-wavelength spectral region. The first experiment in this dissertation uses the Thompson-Wolf two-pinhole method to characterize the spatial coherence properties of the undulator radiation at Beamline 12 of the Advanced Light Source. High spatial coherence EUV radiation is demonstrated with appropriate spatial filtering. The effects of small vertical source size and beamline apertures are observed. The difference in the measured horizontal and vertical coherence profile evokes further theoretical studies on coherence propagation of an EUV undulator beamline. A numerical simulation based on the Huygens-Fresnel principle is performed.

  20. Extreme ultraviolet patterning of tin-oxo cages

    NASA Astrophysics Data System (ADS)

    Haitjema, Jarich; Zhang, Yu; Vockenhuber, Michaela; Kazazis, Dimitrios; Ekinci, Yasin; Brouwer, Albert M.

    2017-03-01

    We report on the extreme ultraviolet (EUV) patterning performance of tin-oxo cages: molecular building blocks that are known to turn insoluble upon EUV exposure, thus having the properties of a negative tone photoresist. In this work, we focus on contrast curves of the materials using open-frame EUV exposures and their patterning capabilities using EUV interference lithography. It is shown that baking steps, such as post-exposure baking (PEB) can significantly affect both the sensitivity and contrast in the open-frame experiments as well as the patterning experiments. In addition, we show that the exchange of the anions of the cage can make a difference in terms of their physical properties. Our results demonstrate the significance of process optimization while evaluating the resist performance of novel molecular materials.

  1. Normal incidence multilayer mirrors for extreme ultraviolet astronomy

    NASA Technical Reports Server (NTRS)

    Stern, R. A.; Haisch, B. M.; Joki, E. G.; Catura, R. C.

    1984-01-01

    Sputtered multilayer coatings allow the use of normal incidence optics in the extreme ultraviolet (EUV) region below 500 A. Multilayer mirrors can be tailored to provide images at strong EUV lines in the sun and stars, in many cases making more efficient use of the telescope aperture than grazing incidence optics. Alternatively, the bandpass can be broadened at the expense of peak effective area, by varying the multilayer structure over the mirror surface. Such mirrors can also serve as optical elements in spectrographs for investigation of specific emission and absorption line complexes, and are self-filtering in that they reject nearby geocoronal and cosmic resonance line backgrounds. Current efforts at the Lockheed Palo Alto Research Laboratory in the design, fabrication, and testing of EUV multilayer mirrors are discussed. This program includes the design and fabrication of normal incidence EUV multilayer mirrors, and the deposition of multilayers on lacquer-coated substrates.

  2. The filters for the Extreme Ultraviolet Explorer - Calibration and lifetesting results

    NASA Technical Reports Server (NTRS)

    Vedder, P. W.; Vallerga, J. V.; Siegmund, O. H. W.; Gibson, J.; Hull, J.

    1989-01-01

    The results of the transmission calibrations of the seven sets of flight integration filters for the Extreme Ultraviolet Explorer (EUVE) satellite are presented. The Berkely EUV Calibration Facility was used to determine absolute transmissions over six orders of magnitue at 28 wavelengths. A lifetesting program designed to monitor changes in the transmission and mechanical properties of the EUVE filters over the lifetime of the mission is described.

  3. Kr photoionized plasma induced by intense extreme ultraviolet pulses

    SciTech Connect

    Bartnik, A. Wachulak, P.; Fiedorowicz, H.; Skrzeczanowski, W.

    2016-04-15

    Irradiation of any gas with an intense EUV (extreme ultraviolet) radiation beam can result in creation of photoionized plasmas. The parameters of such plasmas can be significantly different when compared with those of the laser produced plasmas (LPP) or discharge plasmas. In this work, the photoionized plasmas were created in a krypton gas irradiated using an LPP EUV source operating at a 10 Hz repetition rate. The Kr gas was injected into the vacuum chamber synchronously with the EUV radiation pulses. The EUV beam was focused onto a Kr gas stream using an axisymmetrical ellipsoidal collector. The resulting low temperature Kr plasmas emitted electromagnetic radiation in the wide spectral range. The emission spectra were measured either in the EUV or an optical range. The EUV spectrum was dominated by emission lines originating from Kr III and Kr IV ions, and the UV/VIS spectra were composed from Kr II and Kr I lines. The spectral lines recorded in EUV, UV, and VIS ranges were used for the construction of Boltzmann plots to be used for the estimation of the electron temperature. It was shown that for the lowest Kr III and Kr IV levels, the local thermodynamic equilibrium (LTE) conditions were not fulfilled. The electron temperature was thus estimated based on Kr II and Kr I species where the partial LTE conditions could be expected.

  4. Extreme ultraviolet narrow band emission from electron cyclotron resonance plasmas.

    PubMed

    Zhao, H Y; Zhao, H W; Sun, L T; Zhang, X Z; Wang, H; Ma, B H; Li, X X; Zhu, Y H; Sheng, L S; Zhang, G B; Tian, Y C

    2008-02-01

    Extreme ultraviolet lithography (EUVL) is considered as the most promising solution at and below dynamic random access memory 32 nm half pitch among the next generation lithography, and EUV light sources with high output power and sufficient lifetime are crucial for the realization of EUVL. However, there is no EUV light source completely meeting the requirements for the commercial application in lithography yet. Therefore, ECR plasma is proposed as a novel concept EUV light source. In order to investigate the feasibility of ECR plasma as a EUV light source, the narrow band EUV power around 13.5 nm emitted by two highly charged ECR ion sources -- LECR2M and SECRAL -- was measured with a calibrated EUV power measurement tool. Since the emission lines around 13.5 nm can be attributed to the 4d-5p transitions of Xe XI or the 4d-4f unresolved transition array of Sn VIII-XIII, xenon plasma was investigated. The dependence of the EUV throughput and the corresponding conversion efficiency on the parameters of the ion source, such as the rf power and the magnetic confinement configurations, were preliminarily studied.

  5. Flat field response of the microchannel plate detectors used on the Extreme Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Vallerga, J. V.; Gibson, J. L.; Siegmund, O. H. W.; Vedder, P. W.

    1989-01-01

    The results of the extreme ultraviolet (EUV) flat field calibrations of two of the flight detectors to be flown on the Extreme Ultraviolet Explorer Satellite (EUVE) are presented. Images of about 40 million detected events binned 512 by 512 are sufficient to show microchannel plate fixed pattern noise such as hexagonal microchannel multifiber bundle interfaces, 'dead' spots, edge distortion, and differential nonlinearity. Differences due to photocathode material and dependencies on EUV wavelength are also described. Over large spatial scales, the detector response is flat to better than 10 percent of the mean response, but, at spatial scales less than 1 mm, the variations from the mean can be as large as 20 percent.

  6. Flat field response of the microchannel plate detectors used on the Extreme Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Vallerga, J. V.; Gibson, J. L.; Siegmund, O. H. W.; Vedder, P. W.

    1989-01-01

    The results of the extreme ultraviolet (EUV) flat field calibrations of two of the flight detectors to be flown on the Extreme Ultraviolet Explorer Satellite (EUVE) are presented. Images of about 40 million detected events binned 512 by 512 are sufficient to show microchannel plate fixed pattern noise such as hexagonal microchannel multifiber bundle interfaces, 'dead' spots, edge distortion, and differential nonlinearity. Differences due to photocathode material and dependencies on EUV wavelength are also described. Over large spatial scales, the detector response is flat to better than 10 percent of the mean response, but, at spatial scales less than 1 mm, the variations from the mean can be as large as 20 percent.

  7. Mask-induced best-focus shifts in deep ultraviolet and extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Erdmann, Andreas; Evanschitzky, Peter; Neumann, Jens Timo; Gräupner, Paul

    2016-04-01

    The mask plays a significant role as an active optical element in lithography, for both deep ultraviolet (DUV) and extreme ultraviolet (EUV) lithography. Mask-induced and feature-dependent shifts of the best-focus position and other aberration-like effects were reported both for DUV immersion and for EUV lithography. We employ rigorous computation of light diffraction from lithographic masks in combination with aerial image simulation to study the root causes of these effects and their dependencies from mask and optical system parameters. Special emphasis is put on the comparison of transmission masks for DUV lithography and reflective masks for EUV lithography, respectively. Several strategies to compensate the mask-induced phase effects are discussed.

  8. Self-cleaning optic for extreme ultraviolet lithography

    DOEpatents

    Klebanoff, Leonard E.; Stulen, Richard H.

    2003-12-16

    A multilayer reflective optic or mirror for lithographic applications, and particularly extreme ultraviolet (EUV) lithography, having a surface or "capping" layer which in combination with incident radiation and gaseous molecular species such as O.sub.2, H.sub.2, H.sub.2 O provides for continuous cleaning of carbon deposits from the optic surface. The metal capping layer is required to be oxidation resistant and capable of transmitting at least 90% of incident EUV radiation. Materials for the capping layer include Ru, Rh, Pd, Ir, Pt and Au and combinations thereof.

  9. Characteristics of extreme ultraviolet emission from high-Z plasmas

    NASA Astrophysics Data System (ADS)

    Ohashi, H.; Higashiguchi, T.; Suzuki, Y.; Kawasaki, M.; Suzuki, C.; Tomita, K.; Nishikino, M.; Fujioka, S.; Endo, A.; Li, B.; Otsuka, T.; Dunne, P.; O'Sullivan, G.

    2016-03-01

    We demonstrate the extreme ultraviolet (EUV) and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6.x nm and the water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on high-Z plasma UTA source, coupled to multilayer mirror optics.

  10. In-line extreme ultraviolet polarizer with hybrid configuration.

    PubMed

    Yang, Minghong; Tong, Xinling; Sun, Yan; Jiang, Desheng; Zhou, Ciming; Zhang, Dongsheng

    2009-03-01

    A novel hybrid Au-multilayer-Au in-line extreme ultraviolet (EUV) optical polarizer is presented in this paper. Different from all-Mo/Si multilayer EUV polarizer, this polarizer is based on the concept that Au surfaces work as reflecting elements for in-line optics routine, while polarization effect is realized by polarizing multilayer. Simulation shows that the proposed polarizer with 80 degrees-70 degrees-80 degrees angle configuration has about 30% of transmission and 12 eV of bandwidth half maximum, which enables more throughput and broader bandwidth than the all-multilayer one.

  11. MoRu/Be multilayers for extreme ultraviolet applications

    DOEpatents

    Bajt, Sasa C.; Wall, Mark A.

    2001-01-01

    High reflectance, low intrinsic roughness and low stress multilayer systems for extreme ultraviolet (EUV) lithography comprise amorphous layers MoRu and crystalline Be layers. Reflectance greater than 70% has been demonstrated for MoRu/Be multilayers with 50 bilayer pairs. Optical throughput of MoRu/Be multilayers can be 30-40% higher than that of Mo/Be multilayer coatings. The throughput can be improved using a diffusion barrier to make sharper interfaces. A capping layer on the top surface of the multilayer improves the long-term reflectance and EUV radiation stability of the multilayer by forming a very thin native oxide that is water resistant.

  12. The Intrinsic Extreme Ultraviolet Fluxes of F5 V TO M5 V Stars

    NASA Astrophysics Data System (ADS)

    Linsky, Jeffrey L.; Fontenla, Juan; France, Kevin

    2014-01-01

    Extreme ultraviolet (EUV) radiations (10-117 nm) from host stars play important roles in the ionization, heating, and mass loss from exoplanet atmospheres. Together with the host star's Lyα and far-UV (117-170 nm) radiation, EUV radiation photodissociates important molecules, thereby changing the chemistry in exoplanet atmospheres. Since stellar EUV fluxes cannot now be measured and interstellar neutral hydrogen completely obscures stellar radiation between 40 and 91.2 nm, even for the nearest stars, we must estimate the unobservable EUV flux by indirect methods. New non-LTE semiempirical models of the solar chromosphere and corona and solar irradiance measurements show that the ratio of EUV flux in a variety of wavelength bands to the Lyα flux varies slowly with the Lyα flux and thus with the magnetic heating rate. This suggests and we confirm that solar EUV/Lyα flux ratios based on the models and observations are similar to the available 10-40 nm flux ratios observed with the Extreme Ultraviolet Explorer (EUVE) satellite and the 91.2-117 nm flux observed with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite for F5 V-M5 V stars. We provide formulae for predicting EUV flux ratios based on the EUVE and FUSE stellar data and on the solar models, which are essential input for modeling the atmospheres of exoplanets.

  13. The intrinsic extreme ultraviolet fluxes of F5 V to M5 V stars

    SciTech Connect

    Linsky, Jeffrey L.; Fontenla, Juan; France, Kevin E-mail: jfontenla@nwra.com

    2014-01-01

    Extreme ultraviolet (EUV) radiations (10-117 nm) from host stars play important roles in the ionization, heating, and mass loss from exoplanet atmospheres. Together with the host star's Lyα and far-UV (117-170 nm) radiation, EUV radiation photodissociates important molecules, thereby changing the chemistry in exoplanet atmospheres. Since stellar EUV fluxes cannot now be measured and interstellar neutral hydrogen completely obscures stellar radiation between 40 and 91.2 nm, even for the nearest stars, we must estimate the unobservable EUV flux by indirect methods. New non-LTE semiempirical models of the solar chromosphere and corona and solar irradiance measurements show that the ratio of EUV flux in a variety of wavelength bands to the Lyα flux varies slowly with the Lyα flux and thus with the magnetic heating rate. This suggests and we confirm that solar EUV/Lyα flux ratios based on the models and observations are similar to the available 10-40 nm flux ratios observed with the Extreme Ultraviolet Explorer (EUVE) satellite and the 91.2-117 nm flux observed with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite for F5 V-M5 V stars. We provide formulae for predicting EUV flux ratios based on the EUVE and FUSE stellar data and on the solar models, which are essential input for modeling the atmospheres of exoplanets.

  14. Characterization of extreme ultraviolet laser ablation mass spectrometry for actinide trace analysis and nanoscale isotopic imaging

    SciTech Connect

    Green, Tyler; Kuznetsov, Ilya; Willingham, David; Naes, Benjamin E.; Eiden, Gregory C.; Zhu, Zihua; Chao, W.; Rocca, Jorge J.; Menoni, Carmen S.; Duffin, Andrew M.

    2017-01-01

    The purpose of this research was to characterize Extreme Ultraviolet Time-of-Flight (EUV TOF) Laser Ablation Mass Spectrometry for high spatial resolution elemental and isotopic analysis. We compare EUV TOF results with Secondary Ionization Mass Spectrometry (SIMS) to orient the EUV TOF method within the overall field of analytical mass spectrometry. Using the well-characterized NIST 61x glasses, we show that the EUV ionization approach produces relatively few molecular ion interferences in comparison to TOF SIMS. We demonstrate that the ratio of element ion to element oxide ion is adjustable with EUV laser pulse energy and that the EUV TOF instrument has a sample utilization efficiency of 0.014%. The EUV TOF system also achieves a lateral resolution of 80 nm and we demonstrate this lateral resolution with isotopic imaging of closely spaced particles or uranium isotopic standard materials.

  15. NEW SOLAR EXTREME-ULTRAVIOLET IRRADIANCE OBSERVATIONS DURING FLARES

    SciTech Connect

    Woods, Thomas N.; Hock, Rachel; Eparvier, Frank; Jones, Andrew R.; Chamberlin, Phillip C.; Klimchuk, James A.; Didkovsky, Leonid; Judge, Darrell; Mariska, John; Warren, Harry; Schrijver, Carolus J.; Webb, David F.; Bailey, Scott; Tobiska, W. Kent

    2011-10-01

    New solar extreme-ultraviolet (EUV) irradiance observations from the NASA Solar Dynamics Observatory (SDO) EUV Variability Experiment provide full coverage in the EUV range from 0.1 to 106 nm and continuously at a cadence of 10 s for spectra at 0.1 nm resolution and even faster, 0.25 s, for six EUV bands. These observations can be decomposed into four distinct characteristics during flares. First, the emissions that dominate during the flare's impulsive phase are the transition region emissions, such as the He II 30.4 nm. Second, the hot coronal emissions above 5 MK dominate during the gradual phase and are highly correlated with the GOES X-ray. A third flare characteristic in the EUV is coronal dimming, seen best in the cool corona, such as the Fe IX 17.1 nm. As the post-flare loops reconnect and cool, many of the EUV coronal emissions peak a few minutes after the GOES X-ray peak. One interesting variation of the post-eruptive loop reconnection is that warm coronal emissions (e.g., Fe XVI 33.5 nm) sometimes exhibit a second large peak separated from the primary flare event by many minutes to hours, with EUV emission originating not from the original flare site and its immediate vicinity, but rather from a volume of higher loops. We refer to this second peak as the EUV late phase. The characterization of many flares during the SDO mission is provided, including quantification of the spectral irradiance from the EUV late phase that cannot be inferred from GOES X-ray diagnostics.

  16. Low extreme-ultraviolet luminosities impinging on protoplanetary disks

    SciTech Connect

    Pascucci, I.; Hendler, N. P.; Ricci, L.; Gorti, U.; Hollenbach, D.; Brooks, K. J.; Contreras, Y.

    2014-11-01

    The amount of high-energy stellar radiation reaching the surface of protoplanetary disks is essential to determine their chemistry and physical evolution. Here, we use millimetric and centimetric radio data to constrain the extreme-ultraviolet (EUV) luminosity impinging on 14 disks around young (∼2-10 Myr) sun-like stars. For each object we identify the long-wavelength emission in excess to the dust thermal emission, attribute that to free-free disk emission, and thereby compute an upper limit to the EUV reaching the disk. We find upper limits lower than 10{sup 42} photons s{sup –1} for all sources without jets and lower than 5 × 10{sup 40} photons s{sup –1} for the three older sources in our sample. These latter values are low for EUV-driven photoevaporation alone to clear out protoplanetary material in the timescale inferred by observations. In addition, our EUV upper limits are too low to reproduce the [Ne II] 12.81 μm luminosities from three disks with slow [Ne II]-detected winds. This indicates that the [Ne II] line in these sources primarily traces a mostly neutral wind where Ne is ionized by 1 keV X-ray photons, implying higher photoevaporative mass loss rates than those predicted by EUV-driven models alone. In summary, our results suggest that high-energy stellar photons other than EUV may dominate the dispersal of protoplanetary disks around sun-like stars.

  17. Multilayer coatings for optics in the extreme ultraviolet

    NASA Astrophysics Data System (ADS)

    Larruquert, Juan I.; Vidal-Dasilva, Manuela; García-Cortés, Sergio; Rodríguez-de Marcos, Luis; Fernández-Perea, Mónica; Aznárez, José A.; Méndez, José A.

    2011-02-01

    The strong absorption of materials in the extreme ultraviolet (EUV) above ~50 nm has precluded the development of efficient coatings. The development of novel coatings with improved EUV performance is presented. An extensive research was performed on the search and characterization of new materials with low absorption or high reflectance. Lanthanide series was found to be a source of materials with relatively low absorption in this range, where most materials in nature present a strong absorption. Other materials, such as SiO and B, have been found to have interesting properties for applications on EUV coatings. As a result, novel multilayers based on Yb, Al, and SiO have been developed with narrowband performance in the 50-92 nm range. In some cases, the difficulty of developing narrowband coatings in the EUV can be overcome by designing multilayers that address specific purposes, such as maximizing and/or minimizing the reflectance at two or more wavelengths or bands. In this direction, we are working towards the development of coatings that combine a relatively high reflectance in a desired EUV band with a low reflectance in another band, for applications in which the presence of the latter radiation may mask a weak EUV radiation source.

  18. Extreme ultraviolet spectroscopy of low pressure helium microwave driven discharges

    NASA Astrophysics Data System (ADS)

    Espinho, Susana; Felizardo, Edgar; Tatarova, Elena; Alves, Luis Lemos

    2016-09-01

    Surface wave driven discharges are reliable plasma sources that can produce high levels of vacuum and extreme ultraviolet radiation (VUV and EUV). The richness of the emission spectrum makes this type of discharge a possible alternative source in EUV/VUV radiation assisted applications. However, due to challenging experimental requirements, publications concerning EUV radiation emitted by microwave plasmas are scarce and a deeper understanding of the main mechanisms governing the emission of radiation in this spectral range is required. To this end, the EUV radiation emitted by helium microwave driven plasmas operating at 2.45 GHz has been studied for low pressure conditions. Spectral lines from excited helium atoms and ions were detected via emission spectroscopy in the EUV/VUV regions. Novel data concerning the spectral lines observed in the 23 - 33 nm wavelength range and their intensity behaviour with variation of the discharge operational conditions are presented. The intensity of all the spectral emissions strongly increases with the microwave power delivered to the plasma up to 400 W. Furthermore, the intensity of all the ion spectral emissions in the EUV range decreases by nearly one order of magnitude as the pressure was raised from 0.2 to 0.5 mbar. Work funded by FCT - Fundacao para a Ciencia e a Tecnologia, under Project UID/FIS/50010/2013 and grant SFRH/BD/52412/2013 (PD-F APPLAuSE).

  19. Extreme ultra-violet movie camera for imaging microsecond time scale magnetic reconnection

    SciTech Connect

    Chai, Kil-Byoung; Bellan, Paul M.

    2013-12-15

    An ultra-fast extreme ultra-violet (EUV) movie camera has been developed for imaging magnetic reconnection in the Caltech spheromak/astrophysical jet experiment. The camera consists of a broadband Mo:Si multilayer mirror, a fast decaying YAG:Ce scintillator, a visible light block, and a high-speed visible light CCD camera. The camera can capture EUV images as fast as 3.3 × 10{sup 6} frames per second with 0.5 cm spatial resolution. The spectral range is from 20 eV to 60 eV. EUV images reveal strong, transient, highly localized bursts of EUV radiation when magnetic reconnection occurs.

  20. Evolution of laser-produced Sn extreme ultraviolet source diameter for high-brightness source

    SciTech Connect

    Roy, Amitava E-mail: aroy@barc.gov.in; Arai, Goki; Hara, Hiroyuki; Higashiguchi, Takeshi; Ohashi, Hayato; Sunahara, Atsushi; Li, Bowen; Dunne, Padraig; O'Sullivan, Gerry; Miura, Taisuke; Mocek, Tomas; Endo, Akira

    2014-08-18

    We have investigated the effect of irradiation of solid Sn targets with laser pulses of sub-ns duration and sub-mJ energy on the diameter of the extreme ultraviolet (EUV) emitting region and source conversion efficiency. It was found that an in-band EUV source diameter as low as 18 μm was produced due to the short scale length of a plasma produced by a sub-ns laser. Most of the EUV emission occurs in a narrow region with a plasma density close to the critical density value. Such EUV sources are suitable for high brightness and high repetition rate metrology applications.

  1. Extreme ultra-violet movie camera for imaging microsecond time scale magnetic reconnection.

    PubMed

    Chai, Kil-Byoung; Bellan, Paul M

    2013-12-01

    An ultra-fast extreme ultra-violet (EUV) movie camera has been developed for imaging magnetic reconnection in the Caltech spheromak/astrophysical jet experiment. The camera consists of a broadband Mo:Si multilayer mirror, a fast decaying YAG:Ce scintillator, a visible light block, and a high-speed visible light CCD camera. The camera can capture EUV images as fast as 3.3 × 10(6) frames per second with 0.5 cm spatial resolution. The spectral range is from 20 eV to 60 eV. EUV images reveal strong, transient, highly localized bursts of EUV radiation when magnetic reconnection occurs.

  2. Extreme ultra-violet movie camera for imaging microsecond time scale magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Chai, Kil-Byoung; Bellan, Paul M.

    2013-12-01

    An ultra-fast extreme ultra-violet (EUV) movie camera has been developed for imaging magnetic reconnection in the Caltech spheromak/astrophysical jet experiment. The camera consists of a broadband Mo:Si multilayer mirror, a fast decaying YAG:Ce scintillator, a visible light block, and a high-speed visible light CCD camera. The camera can capture EUV images as fast as 3.3 × 106 frames per second with 0.5 cm spatial resolution. The spectral range is from 20 eV to 60 eV. EUV images reveal strong, transient, highly localized bursts of EUV radiation when magnetic reconnection occurs.

  3. The Extreme-ultraviolet Emission from Sun-grazing Comets

    NASA Technical Reports Server (NTRS)

    Bryans, Paul; Pesnell, William D.

    2012-01-01

    The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory has observed two Sun-grazing comets as they passed through the solar atmosphere. Both passages resulted in a measurable enhancement of extreme-ultraviolet (EUV) radiance in several of the AIA bandpasses.We explain this EUV emission by considering the evolution of the cometary atmosphere as it interacts with the ambient solar atmosphere. Molecules in the comet rapidly sublimate as it approaches the Sun. They are then photodissociated by the solar radiation field to create atomic species. Subsequent ionization of these atoms produces a higher abundance of ions than normally present in the corona and results in EUV emission in the wavelength ranges of the AIA telescope passbands.

  4. Broadband extreme ultraviolet probing of transient gratings in vanadium dioxide

    DOE PAGES

    Sistrunk, Emily; Grilj, Jakob; Jeong, Jaewoo; ...

    2015-02-11

    Nonlinear spectroscopy in the extreme ultraviolet (EUV) and soft x-ray spectral range offers the opportunity for element selective probing of ultrafast dynamics using core-valence transitions (Mukamel et al., Acc. Chem. Res. 42, 553 (2009)). The study demonstrate a step on this path showing core-valence sensitivity in transient grating spectroscopy with EUV probing. We study the optically induced insulator-to-metal transition (IMT) of a VO2 film with EUV diffraction from the optically excited sample. The VO2 exhibits a change in the 3p-3d resonance of V accompanied by an acoustic response. Due to the broadband probing we are able to separate the twomore » features.« less

  5. Extreme ultraviolet induced defects on few-layer graphene

    SciTech Connect

    Gao, A.; Zoethout, E.; Lee, C. J.; Rizo, P. J.; Scaccabarozzi, L.; Banine, V.; Bijkerk, F.

    2013-07-28

    We use Raman spectroscopy to show that exposing few-layer graphene to extreme ultraviolet (EUV, 13.5 nm) radiation, i.e., relatively low photon energy, results in an increasing density of defects. Furthermore, exposure to EUV radiation in a H{sub 2} background increases the graphene dosage sensitivity, due to reactions caused by the EUV induced hydrogen plasma. X-ray photoelectron spectroscopy results show that the sp{sup 2} bonded carbon fraction decreases while the sp{sup 3} bonded carbon and oxide fraction increases with exposure dose. Our experimental results confirm that even in reducing environment oxidation is still one of the main source of inducing defects.

  6. Broadband extreme ultraviolet probing of transient gratings in vanadium dioxide

    SciTech Connect

    Sistrunk, Emily; Grilj, Jakob; Jeong, Jaewoo; Samant, Mahesh G.; Gray, Alexander X.; Dürr, Hermann A.; Parkin, Stuart S. P.; Gühr, Markus

    2015-02-11

    Nonlinear spectroscopy in the extreme ultraviolet (EUV) and soft x-ray spectral range offers the opportunity for element selective probing of ultrafast dynamics using core-valence transitions (Mukamel et al., Acc. Chem. Res. 42, 553 (2009)). The study demonstrate a step on this path showing core-valence sensitivity in transient grating spectroscopy with EUV probing. We study the optically induced insulator-to-metal transition (IMT) of a VO2 film with EUV diffraction from the optically excited sample. The VO2 exhibits a change in the 3p-3d resonance of V accompanied by an acoustic response. Due to the broadband probing we are able to separate the two features.

  7. At-wavelength interferometry of extreme ultraviolet lithographic optics

    NASA Astrophysics Data System (ADS)

    Lee, Sang Hun; Naulleau, Patrick; Goldberg, Kenneth; Tejnil, Edita; Medecki, Hector; Bresloff, Cynthia; Chang, Chang; Attwood, David; Bokor, Jeffrey

    1998-11-01

    A phase-shifting point diffraction interferometer (PS/PDI) has recently been developed to evaluate optics for extreme ultraviolet (EUV) projection lithography systems. The interferometer has been implemented at the Advanced Light Source at Lawrence Berkeley National Laboratory and is currently being used to test experimental EUV Schwarzschild objectives. Recent PS/PDI measurements indicate these experimental objectives to have wavefront errors on the order of 0.1 waves (˜1 nm at a wavelength of 13.4 nm) rms. These at-wavelength measurements have also revealed the multilayer phase effects, demonstrating the sensitivity and importance of EUV characterization. The measurement precision of the PS/PDI has been experimentally determined to be better than 0.01 waves. Furthermore, a systematic-error-limited absolute measurement accuracy of 0.004 waves has been demonstrated.

  8. Multilayer reflective coatings for extreme-ultraviolet lithography

    SciTech Connect

    Montcalm, C., LLNL

    1998-03-10

    Multilayer mirror coatings which reflect extreme ultraviolet (EUV) radiation are a key enabling technology for EUV lithography. Mo/Si multilayers with reflectances of 67.5% at 13.4 nm are now routinely achieved and reflectances of 70 2% at 11.4 nm were obtained with MO/Be multilayers. High reflectance is achieved with careful control of substrate quality, layer thicknesses, multilayer materials, interface quality, and surface termination. Reflectance and film stress were found to be stable relative to the requirements for application to EUV lithography. The run-to-run reproducibility of the reflectance peak position was characterized to be better than 0.2%, providing the required wavelength matching among the seven multilayer-coated mirrors used in the present lithography system design. Uniformity of coating was improved to better than 0.5% across 150 mm diameter substrates. These improvements in EUV multilayer mirror technology will enable us to meet the stringent specifications for coating the large optical substrates for our next-generation EUV lithography system.

  9. Quality control of EUVE databases

    NASA Technical Reports Server (NTRS)

    John, L. M.; Drake, J.

    1992-01-01

    The publicly accessible databases for the Extreme Ultraviolet Explorer include: the EUVE Archive mailserver; the CEA ftp site; the EUVE Guest Observer Mailserver; and the Astronomical Data System node. The EUVE Performance Assurance team is responsible for verifying that these public EUVE databases are working properly, and that the public availability of EUVE data contained therein does not infringe any data rights which may have been assigned. In this poster, we describe the Quality Assurance (QA) procedures we have developed from the approach of QA as a service organization, thus reflecting the overall EUVE philosophy of Quality Assurance integrated into normal operating procedures, rather than imposed as an external, post facto, control mechanism.

  10. Extreme ultraviolet lithography: A few more pieces of the puzzle

    SciTech Connect

    Anderson, Christopher N.

    2009-05-20

    The work described in this dissertation has improved three essential components of extreme ultraviolet (EUV) lithography: exposure tools, photoresist, and metrology. Exposure tools. A field-averaging illumination stage is presented that enables nonuniform, high-coherence sources to be used in applications where highly uniform illumination is required. In an EUV implementation, it is shown that the illuminator achieves a 6.5% peak-to-valley intensity variation across the entire design field of view. In addition, a design for a stand-alone EUV printing tool capable of delivering 15 nm half-pitch sinusoidal fringes with available sources, gratings and nano-positioning stages is presented. It is shown that the proposed design delivers a near zero line-edge-rougness (LER) aerial image, something extremely attractive for the application of resist testing. Photoresist. Two new methods of quantifying the deprotection blur of EUV photoresists are described and experimentally demonstrated. The deprotection blur, LER, and sensitivity parameters of several EUV photoresists are quantified simultaneously as base weight percent, photoacid generator (PAG) weight percent, and post-exposure bake (PEB) temperature are varied. Two surprising results are found: (1) changing base weight percent does not significantly affect the deprotection blur of EUV photoresist, and (2) increasing PAG weight percent can simultaneously reduce LER and E-size in EUV photoresist. The latter result motivates the development of an EUV exposure statistics model that includes the effects of photon shot noise, the PAG spatial distribution, and the changing of the PAG distribution during the exposure. In addition, a shot noise + deprotection blur model is used to show that as deprotection blur becomes large relative to the size of the printed feature, LER reduction from improved counting statistics becomes dominated by an increase in LER due to reduced deprotection contrast. Metrology. Finally, this

  11. The extreme ultraviolet spectrum of the kinetically dominated quasar 3C 270.1

    NASA Astrophysics Data System (ADS)

    Punsly, Brian; Marziani, Paola

    2015-10-01

    Only a handful of quasars have been identified as kinetically dominated, their long-term time-averaged jet power, overline{Q}, exceeds the bolometric thermal emission, Lbol, associated with the accretion flow. This Letter presents the first extreme ultraviolet (EUV) spectrum of a kinetically dominated quasar, 3C 270.1. The EUV continuum flux density of 3C 270.1 is very steep, F_{ν } ˜ ν ^{-α _{EUV}}, αEUV = 2.98 ± 0.15. This value is consistent with the correlation of overline{Q}/L_{bol} and αEUV found in previous studies of the EUV continuum of quasars, the EUV deficit of radio loud quasars. Curiously, although ultraviolet broad absorption line (BAL) troughs in quasar spectra are anticorrelated with overline{Q}, 3C 270.1 has been considered a BAL quasar based on an SDSS spectrum. This claim is examined in terms of the EUV spectrum of O VI and the highest resolution C IV spectrum in the archival data and the SDSS spectrum. First, from [O III]4959,5007 (IR) observations and the UV spectral lines, it is concluded that the correct redshift for 3C 270.1 is 1.5266. It is then found that the standard measure of broad absorption, BALnicity = 0, for Mg II 2800, C IV 1549 and O VI 1032 in all epochs.

  12. Calibration of the thin film filters to be used on the Extreme Ultraviolet Explorer Satellite

    NASA Technical Reports Server (NTRS)

    Vallerga, John; Siegmund, O. H. W.; Everman, Elaine; Jelinsky, Patrick

    1986-01-01

    The methods of calibrating the filters used on the Extreme Ultraviolet Explorer (EUVE) astronomical satellite are described. EUVE will conduct the first all-sky survey in the entire EUV band. The measurement of the filters' transmission properties from the soft X-ray to the far UV using a grazing incidence monochromator is discussed. A particle ingress test to determine the ability of the filters to inhibit energetic particles in earth orbit from entering the detector and increasing the background is described. Problems encountered in calibrating these four filters are also presented.

  13. Multilayer mirror with enhanced spectral selectivity for the next generation extreme ultraviolet lithography

    SciTech Connect

    Medvedev, V. V. Kruijs, R. W. E. van de; Yakshin, A. E.; Novikova, N. N.; Krivtsun, V. M.; Louis, E.; Bijkerk, F.; Yakunin, A. M.

    2013-11-25

    We have demonstrated a hybrid extreme ultraviolet (EUV) multilayer mirror for 6.x nm radiation that provides selective suppression for infrared (IR) radiation. The mirror consists of an IR-transparent LaN∕B multilayer stack which is used as EUV-reflective coating and antireflective (AR) coating to suppress IR. The AR coating can be optimized to suppress CO{sub 2} laser radiation at the wavelength of 10.6 μm, which is of interest for application in next-generation EUV lithography systems.

  14. Exploring the temporally resolved electron density evolution in extreme ultra-violet induced plasmas

    NASA Astrophysics Data System (ADS)

    van der Horst, R. M.; Beckers, J.; Nijdam, S.; Kroesen, G. M. W.

    2014-07-01

    We measured the electron density in an extreme ultra-violet (EUV) induced plasma. This is achieved in a low-pressure argon plasma by using a method called microwave cavity resonance spectroscopy. The measured electron density just after the EUV pulse is 2.6 × 1016 m-3. This is in good agreement with a theoretical prediction from photo-ionization, which yields a density of 4.5 × 1016 m-3. After the EUV pulse the density slightly increases due to electron impact ionization. The plasma (i.e. electron density) decays in tens of microseconds.

  15. Extreme ultraviolet source at 6.7 nm based on a low-density plasma

    SciTech Connect

    Higashiguchi, Takeshi; Yugami, Noboru; Otsuka, Takamitsu; Jiang, Weihua; Endo, Akira; Li Bowen; Kilbane, Deirdre; Dunne, Padraig; O'Sullivan, Gerry

    2011-11-07

    We demonstrate an efficient extreme ultraviolet (EUV) source for operation at {lambda} = 6.7 nm by optimizing the optical thickness of gadolinium (Gd) plasmas. Using low initial density Gd targets and dual laser pulse irradiation, we observed a maximum EUV conversion efficiency (CE) of 0.54% for 0.6% bandwidth (BW) (1.8% for 2% BW), which is 1.6 times larger than the 0.33% (0.6% BW) CE produced from a solid density target. Enhancement of the EUV CE by use of a low-density plasma is attributed to the reduction of self-absorption effects.

  16. Reconstruction of Solar Extreme Ultraviolet Flux 1740 - 2015

    NASA Astrophysics Data System (ADS)

    Svalgaard, Leif

    2016-11-01

    Solar extreme ultraviolet (EUV) radiation creates the conducting E-layer of the ionosphere, mainly by photo-ionization of molecular oxygen. Solar heating of the ionosphere creates thermal winds, which by dynamo action induce an electric field driving an electric current having a magnetic effect observable on the ground, as was discovered by G. Graham in 1722. The current rises and falls with the Sun, and thus causes a readily observable diurnal variation of the geomagnetic field, allowing us to deduce the conductivity and thus the EUV flux as far back as reliable magnetic data reach. High-quality data go back to the "Magnetic Crusade" of the 1830s and less reliable, but still usable, data are available for portions of the 100 years before that. J.R. Wolf and, independently, J.-A. Gautier discovered the dependence of the diurnal variation on solar activity, and today we understand and can invert that relationship to construct a reliable record of the EUV flux from the geomagnetic record. We compare that to the F_{10.7} flux and the sunspot number, and we find that the reconstructed EUV flux reproduces the F_{10.7} flux with great accuracy. On the other hand, it appears that the Relative Sunspot Number as currently defined is beginning to no longer be a faithful representation of solar magnetic activity, at least as measured by the EUV and related indices. The reconstruction suggests that the EUV flux reaches the same low (but non-zero) value at every sunspot minimum (possibly including Grand Minima), representing an invariant "solar magnetic ground state".

  17. Phase imaging results of phase defect using micro-coherent extreme ultraviolet scatterometry microscope

    NASA Astrophysics Data System (ADS)

    Harada, Tetsuo; Hashimoto, Hiraku; Amano, Tsuyoshi; Kinoshita, Hiroo; Watanabe, Takeo

    2016-04-01

    To evaluate defects on extreme ultraviolet (EUV) masks at the blank state of manufacturing, we developed a micro-coherent EUV scatterometry microscope (micro-CSM). The illumination source is coherent EUV light with a 140 nm focus diameter on the defect using a Fresnel zone plate. This system directly observes the reflection and diffraction signals from a phase defect. The phase and the intensity image of the defect are reconstructed with the diffraction images using ptychography, which is an algorithm of the coherent diffraction imaging. We observed programmed phase defect on a blank EUV mask. Phase distributions of these programmed defects were well reconstructed quantitatively. The micro-CSM is a very powerful tool to review an EUV phase defect.

  18. A small-scale extreme ultraviolet wave observed by SDO

    NASA Astrophysics Data System (ADS)

    Zheng, R.; Jiang, Y.; Hong, J.; Yang, J.; Bi, Y.; Yang, L.; Yang, D.

    2012-06-01

    "Extreme Ultraviolet (EUV) waves" are large-scale wavelike transients often associated with coronal mass ejections (CMEs). In this Letter, we present a possible detection of a fast-mode EUV wave associated with a mini-CME observed by the Solar Dynamics Observatory. On 2010 December 1, a small-scale EUV wave erupted near the disk center associated with a mini-CME, which showed all the low corona manifestations of a typical CME. The CME was triggered by the eruption of a mini-filament, with a typical length of about 30''. Although the eruption was tiny, the wave had the appearance of an almost semicircular front and propagated at a uniform velocity of 220-250km s-1 with very little angular dependence. The CME lateral expansion was asymmetric with an inclination toward north, and the southern footprints of the CME loops hardly shifted. The lateral expansion resulted in deep long-duration dimmings, showing the CME extent. Our analysis confirms that the small-scale EUV wave is a true wave, interpreted as the fast-mode wave.

  19. X Ray, Far, and Extreme Ultraviolet Coatings for Space Applications

    NASA Technical Reports Server (NTRS)

    Zukic, M.; Torr, D. G.

    1993-01-01

    The idea of utilizing imaging mirrors as narrow band filters constitutes the basis of the design of extreme ultraviolet imagers operating at 58.4 nm and 83.4 nm. The net throughput of both imaging-filtering systems is better than 20 percent. The superiority of the EUV self-filtering camera/telescope becomes apparent when compared to previously theoretically designed 83.4-nm filtering-imaging systems, which yielded transmissions of less than a few percent and therefore less than 0.1 percent throughput when combined with at least two imaging mirrors. Utilizing the self-filtering approach, instruments with similar performances are possible for imaging at other EUV wavelengths, such as 30.4 nm. The self-filtering concept is extended to the X-ray region where its application can result in the new generation of X-ray telescopes, which could replace current designs based on large and heavy collimators.

  20. Changes of solar extreme ultraviolet spectrum in solar cycle 24

    NASA Astrophysics Data System (ADS)

    Huang, Jianping; Hao, Yongqiang; Zhang, Donghe; Xiao, Zuo

    2016-07-01

    Following the extreme solar minimum during 2008-2009, solar activity keeps low in solar cycle 24 (SC24) and is making SC24 the weakest one of recent cycles. In this paper, using observations from Earth-orbiting satellites, we compare the solar extreme ultraviolet (EUV) irradiance between SC23 and SC24 and investigate the solar cycle change of linear dependence of EUV on the P ((F10.7 + F10.7A)/2) and Mg II core-to-wing ratio indices. The Bremen composite Mg II index is strongly correlated with P over the two solar cycles, while this is not the case for the Laboratory for Atmospheric and Space Physics (LASP) composite Mg II index, so we focus on the different dependence of EUV on the P and LASP Mg II indices. As a result we find that three coronal emissions (Fe XV at 28.4 nm and 41.7 nm and Fe XVI at 33.5 nm) brighten in SC24 relative to P; i.e., the magnitude of irradiance is higher than in SC23 at the same level of P. But relative to the LASP Mg II index, these emissions show no appreciable solar cycle differences. By contrast, the H I Lyman α at 121.6 nm dims in SC24 relative to the LASP Mg II but shows identical dependence on P in the two solar cycles. This result seems to contradict a well-accepted fact that chromospheric and transition region emissions are better represented by the Mg II index and coronal lines by F10.7. For the different solar cycle variability of EUV in SC24, whether it is caused by source changes on the Sun is still unclear, but we suggest that it needs to be considered in proxy modeling of the EUV irradiance and aeronomic studies.

  1. Fast resist-activation dosimetry for extreme ultra-violet lithography.

    PubMed

    Heo, Jinseok; Xu, Man; Maas, Diederik

    2017-03-06

    Due to the rather broad band emission spectrum of the extremely hot plasma in its extreme ultra-violet (EUV) source, an EUV lithography scanner also projects out-of-band vacuum- and deep-UV (OoB V/DUV) light on the photoresist on a wafer. As this type of uncontrolled and undesirable light can activate resist chemistry, it will impair the critical dimension uniformity of the patterns, especially across the borders of the fields. Hence, OoB V/DUV quantification technology is required in the pre-production phase. For this reason, the systematic characterization of the EUV-source emission spectrum and the spatial profile of the light as projected on the wafer is indispensable to sustain stable integrated circuit production with EUV lithography. This paper introduces an in-band EUV and OoB V/DUV dosimetry method that is based on enhanced energy sensitivity by resist contrast (EESRC). This dosimetry method is applied in an EUV lithography tool to quantitatively analyze the spatial distribution the resist activation by in-band EUV and OoB V/DUV light, under several exposure conditions. This pragmatic approach can replace the current best-practice of measuring the full spectrum of an EUV light source.

  2. ORFEUS - Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometer

    NASA Astrophysics Data System (ADS)

    Rippel, H.; Kampf, D.; Graue, R.

    1991-06-01

    The Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometer (ORFEUS) to be flown with the ASTRO-SPAS satellite is described. The ORFEUS instrument complex consists of a 10-m on-axis telescope with a focal length of 2426 mm, an Echelle spectrometer for the FUV region, and a Rowland spectrometer for the EUV region. The main objectives of the ORFEUS are spectroscopic measurements of cosmic radiation sources in the temperature region between 10 exp 4 K and 10 exp 6 K. The paper includes configuration diagrams of the ORFEUS and the ASTRO SPAS.

  3. Characterization of a vacuum-arc discharge in tin vapor using time-resolved plasma imaging and extreme ultraviolet spectrometry.

    PubMed

    Kieft, E R; van der Mullen, J J A M; Kroesen, G M W; Banine, V; Koshelev, K N

    2005-02-01

    Discharge sources in tin vapor have recently been receiving increased attention as candidate extreme ultraviolet (EUV) light sources for application in semiconductor lithography, because of their favorable spectrum near 13.5 nm. In the ASML EUV laboratory, time-resolved pinhole imaging in the EUV and two-dimensional imaging in visible light have been applied for qualitative characterization of the evolution of a vacuum-arc tin vapor discharge. An EUV spectrometer has been used to find the dominant ionization stages of tin as a function of time during the plasma evolution of the discharge.

  4. Extreme ultraviolet reflectivity studies of gold on glass and metal substrates

    NASA Technical Reports Server (NTRS)

    Jelinsky, Sharon R.; Malina, Roger F.; Jelinsky, Patrick

    1988-01-01

    The paper reports measurements of the extreme ultraviolet reflectivity of gold from 44 to 920 A at grazing incidence. Gold was deposited using vacuum evaporation and electroplating on substrates of glass and polished nickel, respectively. Measurements are also presented of the extreme ultraviolet reflectivity of electroless nickel in the same wavelength region, where one of the polished nickel substrates was used as a sample. Derived optical constants for evaporated and electroplated gold and electroless nickel are presented. Additional studies of the effects of various contaminants on the EUV reflectivity are also reported. The variations of the optical constants are discussed in terms of density variations, surface roughness and contamination effects. These results ae reported as part of studies for the Extreme Ultraviolet Explorer satellite program to determine acceptance criteria for the EUV optics, contamination budgets and calibration plans.

  5. Extreme ultraviolet reflectivity studies of gold on glass and metal substrates

    NASA Technical Reports Server (NTRS)

    Jelinsky, Sharon R.; Malina, Roger F.; Jelinsky, Patrick

    1988-01-01

    The paper reports measurements of the extreme ultraviolet reflectivity of gold from 44 to 920 A at grazing incidence. Gold was deposited using vacuum evaporation and electroplating on substrates of glass and polished nickel, respectively. Measurements are also presented of the extreme ultraviolet reflectivity of electroless nickel in the same wavelength region, where one of the polished nickel substrates was used as a sample. Derived optical constants for evaporated and electroplated gold and electroless nickel are presented. Additional studies of the effects of various contaminants on the EUV reflectivity are also reported. The variations of the optical constants are discussed in terms of density variations, surface roughness and contamination effects. These results ae reported as part of studies for the Extreme Ultraviolet Explorer satellite program to determine acceptance criteria for the EUV optics, contamination budgets and calibration plans.

  6. Extreme ultraviolet spectroscopy of PKS 2155-304.

    PubMed

    Fruscione, A; Bowyer, S; Konigl, A; Kahn, S M

    1994-02-20

    We present the extreme ultraviolet (75-110 angstroms) spectrum of the BL Lac object PKS 2155-304, the first spectrum of an extragalactic source obtained with the Extreme Ultraviolet Explorer. The spectrum shows a generally smooth continuum, which can be modeled by a single power law plus interstellar absorption, and possibly an absorption feature at approximately 80 angstroms. The best fit to the data suggests that the EUV spectrum can be interpreted as a simple extrapolation of the X-ray continuum, with an energy index alpha approximately 1.6; however, shallower or steeper power laws with indices between -0.4 and 2.7 cannot be ruled out by the existing EUV data alone. The data provide strong constraints on the interstellar neutral H and He along the line of sight. Using a column density of 1.36 x 10(20) cm-2 for the Galactic neutral hydrogen along the PKS 2155-304 line of sight, the neutral helium column density is constrained to be 9%-10% of the hydrogen amount.

  7. Research in extreme ultraviolet and far ultraviolet astronomy

    NASA Technical Reports Server (NTRS)

    Labov, S. E.

    1985-01-01

    Instruments designed to explore different aspects of far and extreme ultraviolet cosmic radiation were studied. The far ultraviolet imager (FUVI) was flown on the Aries sounding rocket. Its unique large format 75mm detector mapped out the far ultraviolet background radiation with a resolution of only a few arc minutes. Analysis of this data indicates to what extent the FUVI background is extra galactic in origin. A power spectrum of the spatial fluctuations will have direct consequences for galactic evolution.

  8. EUVE observations of the Moon

    NASA Astrophysics Data System (ADS)

    Gladstone, G. R.; McDonald, J. S.; Boyd, W. T.

    1993-03-01

    During its all-sky survey, the Extreme Ultraviolet Explorer (EUVE) satellite observed the Moon several times at first and last quarters, and once near the Dec. 10, 1992 lunar eclipse. We present a preliminary reduction and analysis of this data, in the form of EUV images of the Moon and derived albedos.

  9. Extreme Ultraviolet Explorer Right Angle Program observations of cool stars

    NASA Astrophysics Data System (ADS)

    Christian, D. J.; Drake, J. J.; Mathioudakis, M.

    1998-01-01

    The Extreme Ultraviolet Explorer (EUVE) Right Angle Program (RAP) obtains photometric data in four bands centered at 100 (Lexan/B), 200 (Al/Ti/C), 400 (Ti/Sb/Al), and 550 (Sn/SiO) during pointed spectroscopic observations. RAP observations are up to 20 times more sensitive than those in the EUVE all-sky survey. We present RAP observations of two dozen late-type stars. We derive surface fluxes from the Lexan/B and Al/Ti/C count rates and cataloged ROSAT Position Sensitive Proportional Counter (PSPC) data. The EUVE surface fluxes are reasonably correlated with surface fluxes calculated from PSPC measurements. The time variability of the sources has been examined. Most of the sources show no significant variability at the 99 percent confidence level. Flares were detected from the K7 V star Melotte 25 VA 334, the K3 V star V834 Tau (HD 29697), and the K3 + K8 Hyades binary BD +22669. The BD +22669 count rate at the peak of the flare is a factor of 6 higher than the quiescent count rate, with a peak Lexan/B luminosity of 7.9 1029 ergs/s. The V834 Tau flare was detected in both Lexan/B and Al/Ti/C bands. The peak luminosity of the flare is 1.6 1029 and 8 1028 ergs/s for Lexan/B and Al/Ti/C, respectively.

  10. An imaging extreme ultraviolet spectrometer for astrophysical investigations in space

    NASA Technical Reports Server (NTRS)

    Huber, M. C. E.; Timothy, J. G.; Morgan, J. S.; Lemaitre, G.; Tondello, G.

    1986-01-01

    A high-efficiency, extreme ultraviolet (EUV) imaging spectrometer has been constructed and tested. The spectrometer employs a concave toroidal grating illuminated at normal incidence in a Rowland circle mounting and has only one reflecting surface. The toroidal grating has been fabricated by a new technique employing an elastically deformable submaster grating which is replicated in a spherical form and then mechanically distorted to produce the desired aspect ratio of the toroidal surface for stigmatic imaging over the selected wavelength range. The fixed toroidal grating used in the spectrometer is then replicated from this surface. Photographic tests and initial photoelectric tests with a two-dimensional, pulse-counting detector system have verified the image quality of the toroidal grating at wavelengths near 600 A. The basic designs of two instruments employing the spectrometer for astrophysical investigations in space are described, namely, a high-resolution EUV spectroheliometer for studies of the solar chromosphere, transition region, and corona; and an EUV spectroscopic telescope for studies of nonsolar objects.

  11. An operations and command systems for the extreme ultraviolet explorer

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Korsmeyer, David J.; Olson, Eric C.; Wong, Gary

    1994-01-01

    About 40% of the budget of a scientific spacecraft mission is usually consumed by Mission Operations & Data Analysis (MO&DA) with MO driving these costs. In the current practice, MO is separated from spacecraft design and comes in focus relatively late in the mission life cycle. As a result, spacecraft may be designed that are very difficult to operate. NASA centers have extensive MO expertise but often lessons learned in one mission are not exploited for other parallel or future missions. A significant reduction of MO costs is essential to ensure a continuing and growing access to space for the scientific community. We are addressing some of these issues with a highly automated payload operations and command system for an existing mission, the Extreme Ultraviolet Explorer (EUVE). EUVE is currently operated jointly by the Goddard Space Flight Center (GSFC), responsible for spacecraft operations, and the Center for Extreme Ultraviolet Astrophysics (CEA) of the University of California, Berkeley, which controls the telescopes and scientific instruments aboard the satellite. The new automated system is being developed by a team including personnel from the NASA Ames Research Center (ARC), the Jet Propulsion Laboratory (JPL) and the Center for EUV Astrophysics (CEA). An important goal of the project is to provide AI-based technology that can be easily operated by nonspecialists in AI. Another important goal is the reusability of the techniques for other missions. Models of the EUVE spacecraft need to be built both for planning/scheduling and for monitoring. In both cases, our modeling tools allow the assembly of a spacecraft model from separate sub-models of the various spacecraft subsystems. These sub-models are reusable; therefore, building mission operations systems for another small satellite mission will require choosing pre-existing modules, reparametrizing them with respect to the actual satellite telemetry information, and reassembling them in a new model. We

  12. Modeling and measuring the transport and scattering of energetic debris in an extreme ultraviolet plasma source

    NASA Astrophysics Data System (ADS)

    Sporre, John R.; Elg, Daniel T.; Kalathiparambil, Kishor K.; Ruzic, David N.

    2016-01-01

    A theoretical model for describing the propagation and scattering of energetic species in an extreme ultraviolet (EUV) light lithography source is presented. An EUV light emitting XTREME XTS 13-35 Z-pinch plasma source is modeled with a focus on the effect of chamber pressure and buffer gas mass on energetic ion and neutral debris transport. The interactions of the energetic debris species, which is generated by the EUV light emitting plasma, with the buffer gas and chamber walls are considered as scattering events in the model, and the trajectories of the individual atomic species involved are traced using a Monte Carlo algorithm. This study aims to establish the means by which debris is transported to the intermediate focus with the intent to verify the various mitigation techniques currently employed to increase EUV lithography efficiency. The modeling is compared with an experimental investigation.

  13. Colliding laser-produced plasmas as targets for laser-generated extreme ultraviolet sources

    SciTech Connect

    Cummins, T.; O'Gorman, C.; Dunne, P.; Sokell, E.; O'Sullivan, G.; Hayden, P.

    2014-07-28

    Colliding plasmas produced by neodymium-doped yttrium aluminium garnet (Nd:YAG) laser illumination of tin wedge targets form stagnation layers, the physical parameters of which can be controlled to optimise coupling with a carbon dioxide (CO{sub 2}) heating laser pulse and subsequent extreme ultraviolet (EUV) production. The conversion efficiency (CE) of total laser energy into EUV emission at 13.5 nm ± 1% was 3.6%. Neglecting both the energy required to form the stagnation layer and the EUV light produced before the CO{sub 2} laser pulse is incident results in a CE of 5.1% of the CO{sub 2} laser energy into EUV light.

  14. Design and performance of the telescope and detector covers on the Extreme Ultraviolet Explorer satellite

    NASA Technical Reports Server (NTRS)

    Tom, James L.

    1994-01-01

    Two cover mechanisms were designed and developed for the Extreme Ultraviolet Explorer (EUVE) science payload to keep the EUVE telescope mirrors and detectors sealed from the atmospheric environment until the spacecraft was placed into orbit. There were four telescope front covers and seven motorized detector covers on the EUVE science payload. The EUVE satellite was launched into orbit in June 1992 and all the covers operated successfully after launch. This success can be attributed to high design margins and extensive testing at each level of assembly. This paper described the design of the telescope front covers and the motorized detector covers. This paper also discusses some of the many design considerations and modifications made as performance and reliability problems became apparent from each phase of testing.

  15. Extreme Ultra-Violet Spectroscopy of the Lower Solar Atmosphere During Solar Flares (Invited Review)

    NASA Astrophysics Data System (ADS)

    Milligan, Ryan O.

    2015-12-01

    The extreme ultra-violet (EUV) portion of the solar spectrum contains a wealth of diagnostic tools for probing the lower solar atmosphere in response to an injection of energy, particularly during the impulsive phase of solar flares. These include temperature- and density-sensitive line ratios, Doppler-shifted emission lines, nonthermal broadening, abundance measurements, differential emission measure profiles, continuum temperatures and energetics, among others. In this article I review some of the recent advances that have been made using these techniques to infer physical properties of heated plasma at footpoint and ribbon locations during the initial stages of solar flares. I primarily focus on studies that have utilised spectroscopic EUV data from Hinode/EUV Imaging Spectrometer (EIS) and Solar Dynamics Observatory/EUV Variability Experiment (SDO/EVE), and I also provide some historical background and a summary of future spectroscopic instrumentation.

  16. Miniature Extreme Ultraviolet Solar Radiometers

    NASA Astrophysics Data System (ADS)

    McMullin, D. R.; Seely, J. F.; Bremer, J.; Jones, A. R.; Vest, R.; Sakdinawat, A.

    2015-12-01

    Free-standing zone plates for use in EUV solar radiometers have been fabricated using electron beam lithography and calibrated at the NIST SURF synchrotron facility. The radiometers that we are developing use zone plates (ZPs) to focus the total solar irradiance in narrow EUV spectral bands and measure it with negligible sensitivity to field angle and polarization, and with greater accuracy and greater long-term stability than radiometers that have alternative architectures. These radiometers are easy to accommodate on spacecraft due to their small size, low mass, low power requirements, low data rates, and modest pointing requirements. A proto-type instrument will be presented with performance characteristics and spacecraft resource requirements for hosting these new instruments. The compact size of the optical train make these zone plates attractive for small CubeSats. The robustness of the compact design makes these radiometers available for a large variety of applications.

  17. EDITORIAL: Extreme Ultraviolet Light Sources for Semiconductor Manufacturing

    NASA Astrophysics Data System (ADS)

    Attwood, David

    2004-12-01

    The International Technology Roadmap for Semiconductors (ITRS) [1] provides industry expectations for high volume computer chip fabrication a decade into the future. It provides expectations to anticipated performance and requisite specifications. While the roadmap provides a collective projection of what international industry expects to produce, it does not specify the technology that will be employed. Indeed, there are generally several competing technologies for each two or three year step forward—known as `nodes'. Recent successful technologies have been based on KrF (248 nm), and now ArF (193 nm) lasers, combined with ultraviolet transmissive refractive optics, in what are known as step and scan exposure tools. Less fortunate technologies in the recent past have included soft x-ray proximity printing and, it appears, 157 nm wavelength F2 lasers. In combination with higher numerical aperture liquid emersion optics, 193 nm is expected to be used for the manufacture of leading edge chip performance for the coming five years. Beyond that, starting in about 2009, the technology to be employed is less clear. The leading candidate for the 2009 node is extreme ultraviolet (EUV) lithography, however this requires that several remaining challenges, including sufficient EUV source power, be overcome in a timely manner. This technology is based on multilayer coated reflective optics [2] and an EUV emitting plasma. Following Moore's Law [3] it is expected, for example, that at the 2009 `32 nm node' (printable patterns of 32 nm half-pitch), isolated lines with 18 nm width will be formed in resist (using threshold effects), and that these will be further narrowed to 13 nm in transfer to metalized electronic gates. These narrow features are expected to provide computer chips of 19 GHz clock frequency, with of the order of 1.5 billion transistors per chip [1]. This issue of Journal of Physics D: Applied Physics contains a cluster of eight papers addressing the critical

  18. A filter free dual transmission grating spectrometer for the extreme-ultraviolet

    NASA Astrophysics Data System (ADS)

    Wieman, Seth R.; Didkovsky, Leonid V.; Judge, Darrell L.; Jones, Andrew R.; Harmon, Matthew

    2007-09-01

    We report the design and laboratory testing of a prototype dual-grating filter-free extreme ultraviolet (EUV) spectrometer that has potential as a highly stable instrument for measuring absolute solar irradiance in the X-ray through far ultraviolet spectral range. The instrument is based on the same freestanding transmission gratings and silicon photodiodes used on the successful Solar EUV Monitor (SEM) aboard SOHO and the EUV Spectrophotometer (ESP) part of the EVE instrument suite to be flown on SDO. Its two gratings, placed in series, along with a simple baffle structure provide excellent out of band "white" light rejection. Because the instrument does not use any thin film filters or reflective optics it is not susceptible to the degradation and instability associated with such optical elements. We present photometric efficiency data from laboratory tests with a Helium and Hydrogen discharge light source and measurements of "white" light rejection taken using the Mt Wilson Observatory 60' solar telescope.

  19. Extreme- and far-ultraviolet environment at shuttle altitudes

    SciTech Connect

    Chakrabarti, S.

    1987-01-01

    The astronomical data obtained by the Far Ultraviolet Space Telescope (FAUST) and the Very Wide Field Camera (VWFC) on board the Spacelab I mission have triggered questions on the natural and induced Extreme and Far Ultraviolet (EUV and FUV) environment of the space shuttle. Moreover, the recent discovery of approx. lk Rayleighs N/sub 2/ Lyman Birge Hopfield (LBH) nightglow emissions by the U.S. Air Force's S3-4 satellite, and subsequent confirmation by the Imaging Spectrometric Observatory (ISO) experiment on the Spacelab I mission have serious implications for the astronomical observations from the shuttle. Since both ISO and S3-4 experiments were conducted from shuttle altitudes, the implied EUV and FUV environment for astronomical observations can be severe. In order to address the question of the suitability of the shuttle as an astronomical platform, data from FAUST and other experiments were examined. It is concluded that the FAUST background is most likely due to the observation of tropical UV arcs, a natural airglow phenomenon. Strategies for future shuttle experiments to overcome this and other natural emissions are discussed.

  20. Toward defect-free fabrication of extreme ultraviolet photomasks

    NASA Astrophysics Data System (ADS)

    Qi, Zhengqing John; Rankin, Jed H.; Lawliss, Mark; Badger, Karen D.; Turley, Christina

    2016-04-01

    Defect-free fabrication of extreme ultraviolet (EUV) masks relies on the appropriate detection of native defects and subsequent strategies for their elimination. Commercial unavailability of actinic mask-blank inspection systems motivates the identification of an optical inspection methodology most suitable for finding relevant EUV blank defects. Studies showed that 193-nm wavelength inspection found the greatest number of printable defects as compared with rival higher-wavelength systems, establishing deep ultraviolet inspections as the blank defectivity baseline for subsequent mitigation strategies. Next, defect avoidance via pattern shifting was explored using representative 7-nm node metal/contact layer designs and 193-nm mask-blank inspection results. It was found that a significant percentage of native defects could be avoided only when the design was limited to active patterns (i.e., layouts without dummy fill). Total pattern-defect overlap remained ≤5 when metal layer blanks were chosen from the top 35% least defective substrates, while the majority of blanks remained suitable for contacts layers due to a lower active pattern density. Finally, nanomachining was used to address remaining native/multilayer defects. Native catastrophic defects were shown to recover 40% to 70% of target critical dimension after nanomachining, demonstrating the enormous potential for compensating multilayer defects.

  1. Multilayer coatings for the far and extreme ultraviolet

    NASA Astrophysics Data System (ADS)

    Larruquert, Juan I.; Vidal-Dasilva, Manuela; García-Cortés, Sergio; Rodríguez-de Marcos, Luis; Fernández-Perea, Mónica; Aznárez, José A.; Méndez, José A.

    2011-05-01

    We present the development of novel coatings for the far and extreme ultraviolet (FUV-EUV). In the EUV above ~50 nm, the strong absorption of materials has precluded the development of narrowband coatings. An extensive research has been performed on the search and characterization of new materials with low absorption; the lanthanide series has been found to be a source of materials with relatively low absorption in the range of interest. The discovery of a wealth of materials with relatively low EUV absorption is basic to develop efficient multilayers, particularly with narrowband properties. In this way, we have developed multilayers based on Yb, Al, and SiO with narrowband performance in the 50-92 nm range; these are first narrowband coatings peaked above 70 nm. Our recent research on multilayers based on Eu, Al, and SiO provide promising results, with an increase in the peak reflectance versus Yb/Al/SiO multilayers, along with a peak wavelength that can be extended up to ~100 nm. For applications where FUV-EUV narrowband coatings have not been able to be prepared, we can design multilayers that address specific purposes, such as maximizing the reflectance ratio at two wavelengths or bands. Our first goal in this direction is the development of coatings with high 102.6 nm/ 121.6 nm reflectance ratio. Calculations predict that a high reflectance at Lyman β with a good rejection at Lyman α can be obtained through multilayer coatings. We are at the beginning of experimental research for this goal.

  2. Polyarylenesulfonium Salt as a Novel and Versatile Nonchemically Amplified Negative Tone Photoresist for High-Resolution Extreme Ultraviolet Lithography Applications.

    PubMed

    Reddy, Pulikanti Guruprasad; Pal, Satyendra Prakash; Kumar, Pawan; Pradeep, Chullikkattil P; Ghosh, Subrata; Sharma, Satinder K; Gonsalves, Kenneth E

    2017-01-11

    The present report demonstrates the potential of a polyarylenesulfonium polymer, poly[methyl(4-(phenylthio)-phenyl)sulfoniumtrifluoromethanesulfonate] (PAS), as a versatile nonchemically amplified negative tone photoresist for next-generation lithography (NGL) applications starting from i-line (λ ∼ 365 nm) to extreme ultraviolet (EUV, λ ∼ 13.5 nm) lithography. PAS exhibited considerable contrast (γ), 0.08, toward EUV and patterned 20 nm features successfully.

  3. Extreme ultraviolet tomography using a compact laser-plasma source for 3D reconstruction of low density objects.

    PubMed

    Wachulak, Przemyslaw W; Węgrzyński, Łukasz; Zápražný, Zdenko; Bartnik, Andrzej; Fok, Tomasz; Jarocki, Roman; Kostecki, Jerzy; Szczurek, Miroslaw; Korytár, Dusan; Fiedorowicz, Henryk

    2014-02-01

    A tomographic method for three-dimensional reconstruction of low density objects is presented and discussed. The experiment was performed in the extreme ultraviolet (EUV) spectral region using a desktop system for enhanced optical contrast and employing a compact laser-plasma EUV source, based on a double stream gas puff target. The system allows for volume reconstruction of transient gaseous objects, in this case gas jets, providing additional information for further characterization and optimization. Experimental details and reconstruction results are shown.

  4. Large-scale Extreme-Ultraviolet Disturbances Associated with a Limb Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Dai, Y.; Auchère, F.; Vial, J.-C.; Tang, Y. H.; Zong, W. G.

    2010-01-01

    We present composite observations of a coronal mass ejection (CME) and the associated large-scale extreme-ultraviolet (EUV) disturbances on 2007 December 31 by the Extreme-ultraviolet Imager (EUVI) and COR1 coronagraph on board the recent Solar Terrestrial Relations Observatory mission. For this limb event, the EUV disturbances exhibit some typical characteristics of EUV Imaging Telescope waves: (1) in the 195 Å bandpass, diffuse brightenings are observed propagating oppositely away from the flare site with a velocity of ~260 km s-1, leaving dimmings behind; (2) when the brightenings encounter the boundary of a polar coronal hole, they stop there to form a stationary front. Multi-temperature analysis of the propagating EUV disturbances favors a heating process over a density enhancement in the disturbance region. Furthermore, the EUVI-COR1 composite display shows unambiguously that the propagation of the diffuse brightenings coincides with a large lateral expansion of the CME, which consequently results in a double-loop-structured CME leading edge. Based on these observational facts, we suggest that the wave-like EUV disturbances are a result of magnetic reconfiguration related to the CME liftoff rather than true waves in the corona. Reconnections between the expanding CME magnetic field lines and surrounding quiet-Sun magnetic loops account for the propagating diffuse brightenings; dimmings appear behind them as a consequence of volume expansion. X-ray and radio data provide us with complementary evidence.

  5. Overview of Key Results from SDO Extreme ultraviolet Variability Experiment (EVE)

    NASA Astrophysics Data System (ADS)

    Woods, Tom

    2016-10-01

    The SDO Extreme ultraviolet Variability Experiment (EVE) includes several channels to observe the solar extreme ultraviolet (EUV) spectral irradiance from 1 to 106 nm. These channels include the Multiple EUV Grating Spectrograph (MEGS) A, B, and P channels from the University of Colorado (CU) and the EUV SpectroPhometer (ESP) channels from the University of Southern California (USC). The solar EUV spectrum is rich in many different emission lines from the corona, transition region, and chromosphere. The EVE full-disk irradiance spectra are important for studying the solar impacts in Earth’s ionosphere and thermosphere and are useful for space weather operations. In addition, the EVE observations, with its high spectral resolution of 0.1 nm and in collaboration with AIA solar EUV images, have proven valuable for studying active region evolution and explosive energy release during flares and coronal eruptions. These SDO measurements have revealed interesting results such as understanding the flare variability over all wavelengths, discovering and classifying different flare phases, using coronal dimming measurements to predict CME properties of mass and velocity, and exploring the role of nano-flares in continual heating of active regions.

  6. Astronomy and the Extreme Ultraviolet Explorer satellite.

    PubMed

    Bowyer, S

    1994-01-07

    The extreme ultraviolet wave band (100 to 912 angstroms) was thought until recently to be useless to astronomy, primarily because the opacity of the interstellar medium would prevent observations at these wavelengths. However, the interstellar medium has been found to be markedly inhomogeneous in both density and ionization state and the sun is fortunately located in a region of low extreme ultraviolet opacity. The Extreme Ultraviolet Explorer, launched in June 1992, has surveyed the sky in this wave band and has detected a wide variety of astronomical sources at considerable distances, including some extragalactic objects. Studies in the extreme ultraviolet band have already begun to increase our understanding of the contents of the universe.

  7. Astronomy and the Extreme Ultraviolet Explorer satellite

    NASA Technical Reports Server (NTRS)

    Bowyer, S.

    1994-01-01

    The extreme ultraviolet wave band (100 to 912 angstroms) was thought until recently to be useless to astronomy, primarily because the opacity of the interstellar medium would prevent observations at these wavelengths. However, the interstellar medium has been found to be markedly inhomogeneous in both density and ionization state and the sun is fortunately located in a region of low extreme ultraviolet opacity. The Extreme Ultraviolet Explorer, launched in June 1992, has surveyed the sky in this wave band and has detected a wide variety of astronomical sources at considerable distances, including some extragalactic objects. Studies in the extreme ultraviolet band have already begun to increase our understanding of the contents of the universe.

  8. Universal EUV in-band intensity detector

    DOEpatents

    Berger, Kurt W.

    2004-08-24

    Extreme ultraviolet light is detected using a universal in-band detector for detecting extreme ultraviolet radiation that includes: (a) an EUV sensitive photodiode having a diode active area that generates a current responsive to EUV radiation; (b) one or more mirrors that reflects EUV radiation having a defined wavelength(s) to the diode active area; and (c) a mask defining a pinhole that is positioned above the diode active area, wherein EUV radiation passing through the pinhole is restricted substantially to illuminating the diode active area.

  9. Note: Enhancement of the extreme ultraviolet emission from a potassium plasma by dual laser irradiation

    SciTech Connect

    Higashiguchi, Takeshi Yamaguchi, Mami; Otsuka, Takamitsu; Nagata, Takeshi; Ohashi, Hayato; Li, Bowen; D’Arcy, Rebekah; Dunne, Padraig; O’Sullivan, Gerry

    2014-09-15

    Emission spectra from multiply charged potassium ions ranging from K{sup 3+} to K{sup 5+} have been obtained in the extreme ultraviolet (EUV) spectral region. A strong emission feature peaking around 38 nm, corresponding to a photon energy of 32.6 eV, is the dominant spectral feature at time-averaged electron temperatures in the range of 8−12 eV. The variation of this emission with laser intensity and the effects of pre-pulses on the relative conversion efficiency (CE) have been explored experimentally and indicate that an enhancement of about 30% in EUV CE is readily attainable.

  10. Passivating overcoat bilayer for multilayer reflective coatings for extreme ultraviolet lithography

    DOEpatents

    Montcalm, Claude; Stearns, Daniel G.; Vernon, Stephen P.

    1999-01-01

    A passivating overcoat bilayer is used for multilayer reflective coatings for extreme ultraviolet (EUV) or soft x-ray applications to prevent oxidation and corrosion of the multilayer coating, thereby improving the EUV optical performance. The overcoat bilayer comprises a layer of silicon or beryllium underneath at least one top layer of an elemental or a compound material that resists oxidation and corrosion. Materials for the top layer include carbon, palladium, carbides, borides, nitrides, and oxides. The thicknesses of the two layers that make up the overcoat bilayer are optimized to produce the highest reflectance at the wavelength range of operation. Protective overcoat systems comprising three or more layers are also possible.

  11. Invited Article: Progress in coherent lithography using table-top extreme ultraviolet lasers.

    PubMed

    Li, W; Urbanski, L; Marconi, M C

    2015-12-01

    Compact (table top) lasers emitting at wavelengths below 50 nm had expanded the spectrum of applications in the extreme ultraviolet (EUV). Among them, the high-flux, highly coherent laser sources enabled lithographic approaches with distinctive characteristics. In this review, we will describe the implementation of a compact EUV lithography system capable of printing features with sub-50 nm resolution using Talbot imaging. This compact system is capable of producing consistent defect-free samples in a reliable and effective manner. Examples of different patterns and structures fabricated with this method will be presented.

  12. Real-time observations of extreme-ultraviolet aerial images by fluorescence microimaging

    SciTech Connect

    La Fontaine, B. ); White, D.L. ); Wood, O.R. II ); MacDowell, A.A.; Tan, Z. ); Taylor, G.N. ); Tennant, D.M. ); Hulbert, S.L. )

    1994-11-01

    A new technique, fluorescence microimaging (FMI), using single-crystal phosphors was used to look directly at aerial images produced by an extreme-ultraviolet (EUV) camera operating at a wavelength of 139 A. The achieved spatial resolution was estimated to be [similar to]0.2 [mu]m. A comparison of this technique with the usual resist-exposure scanning electron microscopy inspection technique as a means of focusing a 20[times]EUV Schwarzschild camera was performed. FMI could in principle be improved to view fluorescent images with features as small as 0.07 [mu]m, in real time.

  13. Silicon photodiode with selective Zr/Si coating for extreme ultraviolet spectral range

    SciTech Connect

    Aruev, P N; Barysheva, Mariya M; Ber, B Ya; Zabrodskaya, N V; Zabrodskii, V V; Lopatin, A Ya; Pestov, Alexey E; Petrenko, M V; Polkovnikov, V N; Salashchenko, Nikolai N; Sukhanov, V L; Chkhalo, Nikolai I

    2012-10-31

    The procedure of manufacturing silicon photodiodes with an integrated Zr/Si filter for extreme ultraviolet (EUV) spectral range is developed. A setup for measuring the sensitivity profile of detectors with spatial resolution better than 100 {mu}m is fabricated. The optical properties of silicon photodiodes in the EUV and visible spectral ranges are investigated. Some characteristics of SPD-100UV diodes with Zr/Si coating and without it, as well as of AXUV-100 diodes, are compared. In all types of detectors a narrow region beyond the operating aperture is found to be sensitive to the visible light. (photodetectors)

  14. Design, fabrication and performance of two grazing incidence telescopes for celestial extreme ultraviolet astronomy

    NASA Technical Reports Server (NTRS)

    Lampton, M.; Cash, W.; Malina, R. F.; Bowyer, S.

    1977-01-01

    The design and performance of grazing incidence telescopes for celestial extreme ultraviolet (EUV) astronomy are described. The telescopes basically consist of a star tracker, collimator, grazing incidence mirror, vacuum box lid, vacuum housing, filters, a ranicon detector, an electronics box, and an aspect camera. For the survey mirror a Wolter-Schwarzschild type II configuration was selected. Diamond-turning was used for mirror fabrication, a technique which machines surfaces to the order of 10 microns over the required dimensions. The design of the EUV spectrometer is discussed with particular reference to the optics for a primarily spectroscopic application and the fabrication of the f/10 optics.

  15. The extreme ultraviolet spectrograph: A radial groove grating, sounding rocket-borne, astronomical instrument

    NASA Technical Reports Server (NTRS)

    Wilkinson, Erik; Green, James C.; Cash, Webster

    1993-01-01

    The design, calibration, and sounding rocket flight performance of a novel spectrograph suitable for moderate-resolution EUV spectroscopy are presented. The sounding rocket-borne instrument uses a radial groove grating to maintain a high system efficiency while controlling the aberrations induced when doing spectroscopy in a converging beam. The instrument has a resolution of approximately 2 A across the 200-330 A bandpass with an average effective area of 2 sq cm. The instrument, called the Extreme Ultraviolet Spectrograph, acquired the first EUV spectra in this wavelength region of the hot white dwarf G191-B2B and the late-type star Capella.

  16. Development of actual EUV mask observation method for micro coherent EUV scatterometry microscope

    NASA Astrophysics Data System (ADS)

    Harada, T.; Hashimoto, H.; Watanabe, T.

    2016-10-01

    To review phase and amplitude defect on extreme ultraviolet (EUV) mask with EUV intensity and phase contrast, we have developed the micro coherent EUV scatterometry microscope (micro-CSM). A coherent EUV beam was focused on a defect using a Fresnel zoneplate, where the illumination size was 140 nm diameter. Diffraction from the defect was captured by an EUV CCD camera directly. The diffraction signal was depended on the zoneplate focus, where the defect signal was efficiently detected at a best focus position. To review an actual EUV mask that has no focus-alignment pattern on surface, we developed a focusing method using a speckle signal.

  17. Spin-on-glass coatings for the generation of super-polishedsubstrates for extreme ultraviolet optics

    SciTech Connect

    Salmassi, Farhad; Naulleau, Patrick P.; Gullikson, Eric M.

    2005-01-01

    Substrates intended for use as extreme ultraviolet (EUV) optics have extremely stringent requirements in terms of finish. These requirements can dramatically increase the cost and fabrication time, especially when non-conventional shapes, such as toroids, are required. Here we present a spin-on-glass resist process capable of generating super-polished parts from inexpensive substrates. The method has been used to render diamond-turned substrates compatible for use as EUV optics. Toroidal diamond-turned optics with starting rms roughness in the 3.3 to 3.7 nm range have been smoothed to the 0.4 to 0.6 nm range. EUV reflectometry characterization of these optics has demonstrated reflectivities of approximately 63%.

  18. Graphene defect formation by extreme ultraviolet generated photoelectrons

    SciTech Connect

    Gao, A. Lee, C. J.; Bijkerk, F.

    2014-08-07

    We have studied the effect of photoelectrons on defect formation in graphene during extreme ultraviolet (EUV) irradiation. Assuming the major role of these low energy electrons, we have mimicked the process by using low energy primary electrons. Graphene is irradiated by an electron beam with energy lower than 80 eV. After e-beam irradiation, it is found that the D peak, I(D), appears in the Raman spectrum, indicating defect formation in graphene. The evolution of I(D)/I(G) follows the amorphization trajectory with increasing irradiation dose, indicating that graphene goes through a transformation from microcrystalline to nanocrystalline and then further to amorphous carbon. Further, irradiation of graphene with increased water partial pressure does not significantly change the Raman spectra, which suggests that, in the extremely low energy range, e-beam induced chemical reactions between residual water and graphene are not the dominant mechanism driving defect formation in graphene. Single layer graphene, partially suspended over holes was irradiated with EUV radiation. By comparing with the Raman results from e-beam irradiation, it is concluded that the photoelectrons, especially those from the valence band, contribute to defect formation in graphene during irradiation.

  19. Quality Control of EUVE Databases

    NASA Astrophysics Data System (ADS)

    John, Linda M.

    1993-01-01

    The publicly accessible databases for the Extreme Ultraviolet Explorer (EUVE) include: the EUVE Archive Mailserver, the Center for EUV Astrophysics ftp site, the EUVE Guest Observer Mailserver, and the Astronomical Data System node. The EUVE Performance Assurance team is responsible for verifying that these public databases are working properly and that the public availability of EUVE data contained therein does not infringe any data rights which may have been assigned. In this paper, we describe the quality assurance (QA) procedures we have developed from approaching QA as a service organization; this approach reflects the overall EUVE philosophy of QA integrated into normal operating procedures, rather than imposed as an external, post-facto, control mechanism.

  20. [Characteristics of extreme ultraviolet emission from tin plasma using CO2 laser for lithography].

    PubMed

    Wu, Tao; Wang, Xin-Bing; Wang, Shao-Yi; Lu, Pei-Xiang

    2012-07-01

    The extreme ultraviolet (EUV) emission characteristics from Sn plasma for lithography produced by a pulse discharge CO2 laser was investigated under different conditions. Extreme ultraviolet spectral measurements were made throughout the wavelength region of 6.5 nm to 16.8 nm using a grazing incidence flat-field spectrograph coupled with an X-ray charge-coupled device camera for detection of time-integrated spectra. The dependence of spectral properties of the EUV emission on pulse duration, incidence pulse energy, and buffer gas pressure was investigated. The results show that the peak of EUV spectra was located at 13.5 nm. The intensity of EUV emission increased with increasing laser energy ranging from 30 mJ to 600 mJ in a nonlinear manner with saturation effect. The critical energy of incident pulse laser for the generation of EUV emission is near 30 mJ in our experiment. The highest conversion efficiency of 1.2% in producing 13.5 nm EUV light with 0.27 nm bandwidth was achieved at pump energy of 425 mJ. The EUV spectra from a plate target produced by laser pulse with full width at half maximum range from 50 ns to 120 ns were recorded and negligible differences in their spectral features noticed even though higher spectral intensity was observed by shorter pulse duration. The 2% in-band EUV intensity with 52 ns pulse duration was 1.6 times higher than that with 120 ns pulse duration due to the increase in laser intensity. It was also found that the detected EUV spectral intensity rapidly decreased with increasing buffer air pressure, and the EUV emission could be totally absorbed at the pressure of 200 Pa, while weak EUV emission could be still detected at the buffer He gas pressure of 7 x 10(4) Pa. The experimental results showed that the absorption coefficient of 13.5 nm light at air buffer gas pressure of 100 Pa was 3.0 m(-1), while the absorption coefficient was 0.96 m(-1) at the same He buffer gas pressure.

  1. Extreme Ultraviolet Imaging Telescope (EIT)

    NASA Technical Reports Server (NTRS)

    Lemen, J. R.; Freeland, S. L.

    1997-01-01

    Efforts concentrated on development and implementation of the SolarSoft (SSW) data analysis system. From an EIT analysis perspective, this system was designed to facilitate efficient reuse and conversion of software developed for Yohkoh/SXT and to take advantage of a large existing body of software developed by the SDAC, Yohkoh, and SOHO instrument teams. Another strong motivation for this system was to provide an EIT analysis environment which permits coordinated analysis of EIT data in conjunction with data from important supporting instruments, including Yohkoh/SXT and the other SOHO coronal instruments; CDS, SUMER, and LASCO. In addition, the SSW system will support coordinated EIT/TRACE analysis (by design) when TRACE data is available; TRACE launch is currently planned for March 1998. Working with Jeff Newmark, the Chianti software package (K.P. Dere et al) and UV /EUV data base was fully integrated into the SSW system to facilitate EIT temperature and emission analysis.

  2. Extreme ultraviolet spectroscopy and photometry of VV Puppis during a high accretion state

    NASA Technical Reports Server (NTRS)

    Vennes, Stephane; Szkody, Paula; Sion, Edward M.; Long, Knox S.

    1995-01-01

    We determine the physical properties of the accretion region of the AM Her-type binary VV Puppis using extreme ultraviolet (EUV) medium-resolution spectroscopy and photometry obtained with the Extreme Ultraviolet Explorer (EUVE) observatory. The EUV continuum from VV Pup was detected in the wavelength range from 75 to 135 A and was simultaneously recorded with the Deep Survey/Spectrometer (DS/S) imaging telescope, allowing for the extraction of an accurate light curve. VV Pup appeared to have entered a high-accretion state just prior to the pointed EUVE observations. We use the EUV light curve to infer the diameter of the accretion region (d = 220 km) assuming a hemispherical geometry and a radius of 9000 km for the white dwarf. We perform a model atmosphere analysis and, based on the light curve properties and assuming a distance of 145 pc, we derive an effective temperature of the accretion region in the range 270,000 is less than T(sub eff) is less than 360,000 K and a neutral hydrogen column density in the local interstellar medium of n(sub H) = 1.9 - 3.7 x 10(exp 19)/sq cm. The total EUV/soft X-ray energy radiated by the accretion region is approximately 3.5 x 10(exp 32) ergs/s. Our results provide a first verification of past suggestions that deep heating of the white dwarf surface produces the soft X-ray flux from the polars. We present a possible detection of O VI absortion features, and we suggest that extensive EUVE observations targeting high-accretion events may result in oxygen and heavier element abundance determination in the accretion region.

  3. EUVE Outsourced Extended Mission

    NASA Astrophysics Data System (ADS)

    Malina, R. F.; Biroscak, D.; Herz, A.; Christian, D.; Kaier, K.; Kaplan, G. C.; Lilly, S.; Quinn, T.; Stroozas, B.; Tucker, T.

    1996-05-01

    NASA has accepted an unsolicited proposal by the Center for EUV Atrophysics (CEA) at the University of California at Berkeley to manage spacecraft operations for the Extreme Ultraviolet Explorer (EUVE) extended mission. The proposal can serve as a model for university, government, and industry collaborations to respond to NASA's stated strategic goal to outsource all routine operations of scientific satellites to academia and industry. CEA has taken a conservative, low-cost approach to outsourcing that continues observatory operations, maintains the science return, and preserves the EUVE science archive. The Outsourced Extended Mission reduces yearly EUVE program costs, which may allow for a further extension of the science mission. This poster discusses the outsourced EUVE mission, its operations concept, NASA institutional support, and the roles and responsibilities of the government, university, and industry.

  4. Nanolithography using Bessel Beams of Extreme Ultraviolet Wavelength

    PubMed Central

    Fan, Daniel; Wang, Li; Ekinci, Yasin

    2016-01-01

    Bessel beams are nondiffracting light beams with large depth-of-focus and self-healing properties, making them suitable as a serial beam writing tool over surfaces with arbitrary topography. This property breaks the inherent resolution vs. depth-of-focus tradeoff of photolithography. One approach for their formation is to use circularly symmetric diffraction gratings. Such a ring grating was designed and fabricated for the extreme ultraviolet (EUV) wavelength of 13.5 nm, a candidate wavelength for future industrial lithography. Exposure of the aerial images showed that a Bessel beam with an approximately 1 mm long z-invariant central core of 223 nm diameter had been achieved, in good agreement with theory. Arbitrary patterns were written using the Bessel spot, demonstrating possible future application of Bessel beams for serial beam writing. Lithographic marks of ~30 nm size were also observed using a high resolution Bessel beam. PMID:27501749

  5. Beryllium based multilayers for normal incidence extreme ultraviolet reflectivity

    SciTech Connect

    Skulina, K.M.; Alford, C.; Bionta, R.M.; Makowiecki, D.M.; Kortright, J.; Soufli, R.; Gullikson, E.; Underwood, J.

    1994-05-26

    The need for normal incidence mirrors maintaining reflectivity greater than 60% for an industrially competitive Extreme Ultraviolet Lithography (EUV) system has been well documented. The Molybdenum/Silicon system has emerged as the de-facto standard, where researchers are now routinely fabricating mirrors demonstrating 63% reflectivity near 130 Angstroms. However, multilayer mirrors using beryllium as the low atomic number (low-Z) spacer could potentially show similar or better reflectivity, and operate at wavelengths down to the beryllium K-edge at 111 Angstroms. Besides offering potentially greater reflectivity, the shorter wavelength light offers increased dissolution depth in photoresists, and offers potentially better resolution and depth of focus. We will report our latest results from beryllium based multilayers. The mirrors were fabricated at the Lawrence Livermore National Laboratory (LLNL) and tested at the Center for X-Ray Optics at Lawrence Berkeley Laboratory (CXRO/LBL).

  6. Nanolithography using Bessel Beams of Extreme Ultraviolet Wavelength.

    PubMed

    Fan, Daniel; Wang, Li; Ekinci, Yasin

    2016-08-09

    Bessel beams are nondiffracting light beams with large depth-of-focus and self-healing properties, making them suitable as a serial beam writing tool over surfaces with arbitrary topography. This property breaks the inherent resolution vs. depth-of-focus tradeoff of photolithography. One approach for their formation is to use circularly symmetric diffraction gratings. Such a ring grating was designed and fabricated for the extreme ultraviolet (EUV) wavelength of 13.5 nm, a candidate wavelength for future industrial lithography. Exposure of the aerial images showed that a Bessel beam with an approximately 1 mm long z-invariant central core of 223 nm diameter had been achieved, in good agreement with theory. Arbitrary patterns were written using the Bessel spot, demonstrating possible future application of Bessel beams for serial beam writing. Lithographic marks of ~30 nm size were also observed using a high resolution Bessel beam.

  7. Nanolithography using Bessel Beams of Extreme Ultraviolet Wavelength

    NASA Astrophysics Data System (ADS)

    Fan, Daniel; Wang, Li; Ekinci, Yasin

    2016-08-01

    Bessel beams are nondiffracting light beams with large depth-of-focus and self-healing properties, making them suitable as a serial beam writing tool over surfaces with arbitrary topography. This property breaks the inherent resolution vs. depth-of-focus tradeoff of photolithography. One approach for their formation is to use circularly symmetric diffraction gratings. Such a ring grating was designed and fabricated for the extreme ultraviolet (EUV) wavelength of 13.5 nm, a candidate wavelength for future industrial lithography. Exposure of the aerial images showed that a Bessel beam with an approximately 1 mm long z-invariant central core of 223 nm diameter had been achieved, in good agreement with theory. Arbitrary patterns were written using the Bessel spot, demonstrating possible future application of Bessel beams for serial beam writing. Lithographic marks of ~30 nm size were also observed using a high resolution Bessel beam.

  8. Characterization of material ablation driven by laser generated intense extreme ultraviolet light

    SciTech Connect

    Tanaka, Nozomi Masuda, Masaya; Deguchi, Ryo; Murakami, Masakatsu; Fujioka, Shinsuke; Yogo, Akifumi; Nishimura, Hiroaki; Sunahara, Atsushi

    2015-09-14

    We present a comparative study on the hydrodynamic behaviour of plasmas generated by material ablation by the irradiation of nanosecond extreme ultraviolet (EUV or XUV) or infrared laser pulses on solid samples. It was clarified that the difference in the photon energy deposition and following material heating mechanism between these two lights result in the difference in the plasma parameters and plasma expansion characteristics. Silicon plate was ablated by either focused intense EUV pulse (λ = 9–25 nm, 10 ns) or laser pulse (λ = 1064 nm, 10 ns), both with an intensity of ∼10{sup 9 }W/cm{sup 2}. Both the angular distributions and energy spectra of the expanding ions revealed that the photoionized plasma generated by the EUV light differs significantly from that produced by the laser. The laser-generated plasma undergoes spherical expansion, whereas the EUV-generated plasma undergoes planar expansion in a comparatively narrow angular range. It is presumed that the EUV radiation is transmitted through the expanding plasma and directly photoionizes the samples in the solid phase, consequently forming a high-density and high-pressure plasma. Due to a steep pressure gradient along the direction of the target normal, the EUV plasma expands straightforward resulting in the narrower angular distribution observed.

  9. Optical proximity correction for extreme ultra-violet mask with pellicle

    NASA Astrophysics Data System (ADS)

    Mo, Soo-Yeon; Kim, In-Seon; Oh, Hye-Keun

    2015-10-01

    Extreme ultraviolet (EUV) lithography is considered as one of the viable solutions for production of the next generation integrated devices. EUV mask defect control becomes more critical issue in order to sustain the quality of wafer fabrication process. Since pellicle is the essential component to prevent patterning deformations caused by particle defects on EUV mask[1-2], EUV OPC (optical proximity correction) that takes into account for pellicle effects on imaging quality is required for achieving better pattern fidelity and critical dimension control. In this study, image blurring effect induced by the EUV mask pellicle on mask pattern structures was investigated and it was found that the localized short-range OPC using commercial software performed as desired considering transmission intensity loss due to pellicle. For experiment, edge placement error differences of the same 2D logic patterns with 16 nm half pitch with and without pellicle were compared. Finally, a method was suggested how patterning throughput loss caused by the transmission loss can be compensated by EUV OPC, which may allow pellicle transmission even below 90%.

  10. Imaging characteristics of the Extreme Ultraviolet Explorer microchannel plate detectors

    NASA Technical Reports Server (NTRS)

    Vallerga, J. V.; Kaplan, G. C.; Siegmund, O. H. W.; Lampton, M.; Malina, R. F.

    1989-01-01

    The Extreme Ultraviolet Explorer (EUVE) satellite will conduct an all-sky survey over the wavelength range from 70 A to 760 A using four grazing-incidence telescopes and seven microchannel-plate (MCP) detectors. The imaging photon-counting MCP detectors have active areas of 19.6 cm2. Photon arrival position is determined using a wedge-and-strip anode and associated pulse-encoding electronics. The imaging characteristics of the EUVE flight detectors are presented including image distortion, flat-field response, and spatial differential nonlinearity. Also included is a detailed discussion of image distortions due to the detector mechanical assembly, the wedge-and-strip anode, and the electronics. Model predictions of these distortions are compared to preflight calibration images which show distortions less than 1.3 percent rms of the detector diameter of 50 mm before correction. The plans for correcting these residual detector image distortions to less than 0.1 percent rms are also presented.

  11. Imaging characteristics of the Extreme Ultraviolet Explorer microchannel plate detectors

    NASA Technical Reports Server (NTRS)

    Vallerga, J. V.; Kaplan, G. C.; Siegmund, O. H. W.; Lampton, M.; Malina, R. F.

    1989-01-01

    The Extreme Ultraviolet Explorer (EUVE) satellite will conduct an all-sky survey over the wavelength range from 70 A to 760 A using four grazing-incidence telescopes and seven microchannel-plate (MCP) detectors. The imaging photon-counting MCP detectors have active areas of 19.6 cm2. Photon arrival position is determined using a wedge-and-strip anode and associated pulse-encoding electronics. The imaging characteristics of the EUVE flight detectors are presented including image distortion, flat-field response, and spatial differential nonlinearity. Also included is a detailed discussion of image distortions due to the detector mechanical assembly, the wedge-and-strip anode, and the electronics. Model predictions of these distortions are compared to preflight calibration images which show distortions less than 1.3 percent rms of the detector diameter of 50 mm before correction. The plans for correcting these residual detector image distortions to less than 0.1 percent rms are also presented.

  12. Ablation of Submicrometer Holes Using an Extreme-Ultraviolet Laser

    NASA Astrophysics Data System (ADS)

    Rossall, Andrew K.; Aslanyan, Valentin; Tallents, Greg J.; Kuznetsov, Ilya; Rocca, Jorge J.; Menoni, Carmen S.

    2015-06-01

    Simulations and experiments are used to study extreme-ultraviolet (EUV) laser drilling of submicrometer holes. The ablation process is studied with a 2D Eulerian hydrodynamic code that includes bound-free absorption processes relevant to the interaction of EUV lasers with a solid material. Good agreement is observed between the simulated and measured ablated depths for on-target irradiances of up to 1×10 10 W cm-2 . An increase in the irradiance to 1×10 12 W cm-2 is predicted to ablate material to a depth of 3.8 μ m from a single pulse with a hole diameter 3 to 4 times larger than the focal spot size. The model allows for the simulation of the interaction of a laser pulse with the crater created by a previous shot. Multiple-pulse lower-fluence irradiation configurations under optimized focusing conditions, i.e., approaching the diffraction limit, are shown to be advantageous for applications requiring mesoscale [(100 nm )- (1 μ m ) ] features and a high level of control over the ablation profile.

  13. Infrared diffractive filtering for extreme ultraviolet multilayer Bragg reflectors.

    PubMed

    Medvedev, V V; van den Boogaard, A J R; van der Meer, R; Yakshin, A E; Louis, E; Krivtsun, V M; Bijkerk, F

    2013-07-15

    We report on the development of a hybrid mirror realized by integrating an EUV-reflecting multilayer coating with a lamellar grating substrate. This hybrid mirror acts as an efficient Bragg reflector for extreme ultraviolet (EUV) radiation at a given wavelength while simultaneously providing spectral-selective suppression of the specular reflectance for unwanted longer-wavelength radiation due to the grating phase-shift resonance. The test structures, designed to suppress infrared (IR) radiation, were fabricated by masked deposition of a Si grating substrate followed by coating of the grating with a Mo/Si multilayer. To give the proof of principle, we developed such a hybrid mirror for the specific case of reflecting 13.5 nm radiation while suppressing 10 μm light, resulting in 61% reflectance at the wavelength of 13.5 nm together with the 70 × suppression rate of the specular reflection at the wavelength of 10 μm, but the considered filtering principle can be used for a variety of applications that are based on utilization of broadband radiation sources.

  14. Contamination control approach for the Extreme Ultraviolet Explorer satellite instrumentation

    NASA Technical Reports Server (NTRS)

    Mrowka, Stan; Jelinsky, Sharon; Jelinsky, Patrick; Malina, Roger F.

    1987-01-01

    The Extreme Ultraviolet Explorer will perform an all-sky survey and spectroscopic observations over the wavelength range 80-900A. Hydrocarbon and particulate contamination will potentially affect the throughput and signal to noise ratio of the signal detected by the instruments. A witness sample program is here used to investigate and monitor the effects of specific contaminants on EUV reflectivity. Witness samples were intentionally contaminated with thin layers of pump oil. An oil layer 150 A thick was applied and found to evaporate over 8 hours. The EUV reflectivity and imaging properties were then measured and found to be acceptable for grazing angles between 5 and 30 deg. In a second test, layers 500 A thick were deposited and then allowed to evaporate in vacuum; once the oil had evaporated to at least 350 A, the final sample reflectivity was degraded less than 10 percent, but the image was degraded severely by scattering. An outline of the contamination control program is also presented.

  15. Xe capillary target for laser-plasma extreme ultraviolet source

    SciTech Connect

    Inoue, Takahiro; Okino, Hideyasu; Nica, Petru Edward; Amano, Sho; Miyamoto, Shuji; Mochizuki, Takayasu

    2007-10-15

    A cryogenic Xe jet system with an annular nozzle has been developed in order to continuously fast supply a Xe capillary target for generating a laser-plasma extreme ultraviolet (EUV) source. The cooling power of the system was evaluated to be 54 W, and the temperature stability was {+-}0.5 K at a cooling temperature of about 180 K. We investigated experimentally the influence of pressure loss inside an annular nozzle on target formation by shortening the nozzle length. Spraying caused by cavitation was mostly suppressed by mitigating the pressure loss, and a focused jet was formed. Around a liquid-solid boundary, a solid-Xe capillary target (100/70 {mu}m {phi}) was formed with a velocity of {<=}0.01 m/s. Laser-plasma EUV generation was tested by focusing a Nd:YAG laser beam on the target. The results suggested that an even thinner-walled capillary target is required to realize the inertial confinement effect.

  16. Extreme ultraviolet spectroscopy and atomic models of highly charged heavy ions in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Suzuki, C.; Murakami, I.; Koike, F.; Tamura, N.; Sakaue, H. A.; Morita, S.; Goto, M.; Kato, D.; Ohashi, H.; Higashiguchi, T.; Sudo, S.; O'Sullivan, G.

    2017-01-01

    We report recent results of extreme ultraviolet (EUV) spectroscopy of highly charged heavy ions in plasmas produced in the Large Helical Device (LHD). The LHD is an ideal source of experimental databases of EUV spectra because of high brightness and low opacity, combined with the availability of pellet injection systems and reliable diagnostic tools. The measured heavy elements include tungsten, tin, lanthanides and bismuth, which are motivated by ITER as well as a variety of plasma applications such as EUV lithography and biological microscopy. The observed spectral features drastically change between quasicontinuum and discrete depending on the plasma temperature, which leads to some new experimental identifications of spectral lines. We have developed collisional-radiative models for some of these ions based on the measurements. The atomic number dependence of the spectral feature is also discussed.

  17. Numerical evaluation of a 13.5-nm high-brightness microplasma extreme ultraviolet source

    SciTech Connect

    Hara, Hiroyuki Arai, Goki; Dinh, Thanh-Hung; Higashiguchi, Takeshi; Jiang, Weihua; Miura, Taisuke; Endo, Akira; Ejima, Takeo; Li, Bowen; Dunne, Padraig; O'Sullivan, Gerry; Sunahara, Atsushi

    2015-11-21

    The extreme ultraviolet (EUV) emission and its spatial distribution as well as plasma parameters in a microplasma high-brightness light source are characterized by the use of a two-dimensional radiation hydrodynamic simulation. The expected EUV source size, which is determined by the expansion of the microplasma due to hydrodynamic motion, was evaluated to be 16 μm (full width) and was almost reproduced by the experimental result which showed an emission source diameter of 18–20 μm at a laser pulse duration of 150 ps [full width at half-maximum]. The numerical simulation suggests that high brightness EUV sources should be produced by use of a dot target based microplasma with a source diameter of about 20 μm.

  18. Methods and apparatus for use with extreme ultraviolet light having contamination protection

    DOEpatents

    Chilese, Francis C.; Torczynski, John R.; Garcia, Rudy; Klebanoff, Leonard E.; Delgado, Gildardo R.; Rader, Daniel J.; Geller, Anthony S.; Gallis, Michail A.

    2016-07-12

    An apparatus for use with extreme ultraviolet (EUV) light comprising A) a duct having a first end opening, a second end opening and an intermediate opening intermediate the first end opening the second end opening, B) an optical component disposed to receive EUV light from the second end opening or to send light through the second end opening, and C) a source of low pressure gas at a first pressure to flow through the duct, the gas having a high transmission of EUV light, fluidly coupled to the intermediate opening. In addition to or rather than gas flow the apparatus may have A) a low pressure gas with a heat control unit thermally coupled to at least one of the duct and the optical component and/or B) a voltage device to generate voltage between a first portion and a second portion of the duet with a grounded insulative portion therebetween.

  19. Extreme Ultraviolet Fractional Orbital Angular Momentum Beams from High Harmonic Generation.

    PubMed

    Turpin, Alex; Rego, Laura; Picón, Antonio; San Román, Julio; Hernández-García, Carlos

    2017-03-10

    We investigate theoretically the generation of extreme-ultraviolet (EUV) beams carrying fractional orbital angular momentum. To this end, we drive high-order harmonic generation with infrared conical refraction (CR) beams. We show that the high-order harmonic beams emitted in the EUV/soft x-ray regime preserve the characteristic signatures of the driving beam, namely ringlike transverse intensity profile and CR-like polarization distribution. As a result, through orbital and spin angular momentum conservation, harmonic beams are emitted with fractional orbital angular momentum, and they can be synthesized into structured attosecond helical beams -or "structured attosecond light springs"- with rotating linear polarization along the azimuth. Our proposal overcomes the state of the art limitations for the generation of light beams far from the visible domain carrying non-integer orbital angular momentum and could be applied in fields such as diffraction imaging, EUV lithography, particle trapping, and super-resolution imaging.

  20. Aspherical surfaces design for extreme ultraviolet lithographic objective with correction of thermal aberration

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Li, Yanqiu

    2016-09-01

    At present, few projection objectives for extreme ultraviolet (EUV) lithography pay attention to correct thermal aberration in optical design phase, which would lead to poor image quality in a practical working environment. We present an aspherical modification method for helping the EUV lithographic objective additionally correct the thermal aberration. Based on the thermal aberration and deformation predicted by integrated optomechanical analysis, the aspherical surfaces in an objective are modified by an iterative algorithm. The modified aspherical surfaces could correct the thermal aberration and maintain the initial high image quality in a practical working environment. A six-mirror EUV lithographic objective with 0.33-numerical aperture is taken as an example to illustrate the presented method. The results show that the thermal aberration can be corrected effectively, and the image quality of the thermally deformed system is improved to the initial design level, which proves the availability of the method.

  1. Intense extreme ultraviolet emission from the B star Epsilon Canis Majoris

    NASA Technical Reports Server (NTRS)

    Vallerga, John V.; Vedder, Peter W.; Welsh, Barry Y.

    1993-01-01

    We report the discovery of the brightest nonsolar source of EUV emission: the B2 II star Epsilon Canis Majoris. This source has been detected by the Extreme Ultraviolet Explorer satellite's all-sky photometric survey. It is approximately 30 times brighter at 600 A than the predicted emission from the hot white dwarf star HZ 43, previously believed to be the brightest EUV source. We have fitted a simple B star photospheric model to the observed broadband EUV fluxes to explain this emission. Assuming a stellar temperature of 25,000 K and a gravity (log g) of 3.3, we derive an interstellar hydrogen column density of 1.05 +/- 0.05 x 10 exp 18/sq cm over the 187 pc to the star. This corresponds to a line-of-sight number density of hydrogen, of 0.002/cu cm, which is comparable to values found in the rarefied Local Bubble region which surrounds the sun.

  2. The ion microscope as a tool for quantitative measurements in the extreme ultraviolet

    PubMed Central

    Tsatrafyllis, N.; Bergues, B.; Schröder, H.; Veisz, L.; Skantzakis, E.; Gray, D.; Bodi, B.; Kuhn, S.; Tsakiris, G. D.; Charalambidis, D.; Tzallas, P.

    2016-01-01

    We demonstrate a tool for quantitative measurements in the extreme ultraviolet (EUV) spectral region measuring spatially resolved atomic ionization products at the focus of an EUV beam. The ionizing radiation is a comb of the 11th–15th harmonics of a Ti:Sapphire femtosecond laser beam produced in a Xenon gas jet. The spatial ion distribution at the focus of the harmonics is recorded using an ion microscope. Spatially resolved single- and two-photon ionization products of Argon and Helium are observed. From such ion distributions single- and two-photon generalized cross sections can be extracted by a self-calibrating method. The observation of spatially resolved two-EUV-photon ionization constitutes an initial step towards future single-shot temporal characterization of attosecond pulses. PMID:26868370

  3. Time exposure performance of Mo-Au Gibbsian segregating alloys for extreme ultraviolet collector optics.

    PubMed

    Qiu, Huatan; Srivastava, Shailendra N; Thompson, Keith C; Neumann, Martin J; Ruzic, David N

    2008-05-01

    Successful implementation of extreme ultraviolet (EUV) lithography depends on research and progress toward minimizing collector optics degradation from intense plasma erosion and debris deposition. Thus studying the surface degradation process and implementing innovative methods, which could enhance the surface chemistry causing the mirrors to suffer less damage, is crucial for this technology development. A Mo-Au Gibbsian segregation (GS) alloy is deposited on Si using a dc dual-magnetron cosputtering system and the damage is investigated as a result of time dependent exposure in an EUV source. A thin Au segregating layer is maintained through segregation during exposure, even though overall erosion in the Mo-Au sample is taking place in the bulk. The reflective material, Mo, underneath the segregating layer is protected by this sacrificial layer, which is lost due to preferential sputtering. In addition to theoretical work, experimental results are presented on the effectiveness of the GS alloys to be used as potential EUV collector optics material.

  4. Extreme ultraviolet proximity lithography for fast, flexible and parallel fabrication of infrared antennas.

    PubMed

    Kunkemöller, Georg; Mass, Tobias W W; Michel, Ann-Katrin U; Kim, Hyun-Su; Brose, Sascha; Danylyuk, Serhiy; Taubner, Thomas; Juschkin, Larissa

    2015-10-05

    We present a method for fabrication of large arrays of nano-antennas using extreme-ultraviolet (EUV) illumination. A discharge-produced plasma source generating EUV radiation around 10.88 nm wavelength is used for the illumination of a photoresist via a mask in a proximity printing setup. The method of metallic nanoantennas fabrication utilizes a bilayer photoresist and employs a lift-off process. The impact of Fresnel-diffraction of EUV light in the mask on a shape of the nanostructures has been investigated. It is shown how by the use of the same rectangular apertures in the transmission mask, antennas of various shapes can be fabricated. Using Fourier transform infrared spectroscopy, spectra of antennas reflectivity were measured and compared to FDTD simulations demonstrating good agreement.

  5. Extreme Ultraviolet Fractional Orbital Angular Momentum Beams from High Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Turpin, Alex; Rego, Laura; Picón, Antonio; San Román, Julio; Hernández-García, Carlos

    2017-03-01

    We investigate theoretically the generation of extreme-ultraviolet (EUV) beams carrying fractional orbital angular momentum. To this end, we drive high-order harmonic generation with infrared conical refraction (CR) beams. We show that the high-order harmonic beams emitted in the EUV/soft x-ray regime preserve the characteristic signatures of the driving beam, namely ringlike transverse intensity profile and CR-like polarization distribution. As a result, through orbital and spin angular momentum conservation, harmonic beams are emitted with fractional orbital angular momentum, and they can be synthesized into structured attosecond helical beams –or “structured attosecond light springs”– with rotating linear polarization along the azimuth. Our proposal overcomes the state of the art limitations for the generation of light beams far from the visible domain carrying non-integer orbital angular momentum and could be applied in fields such as diffraction imaging, EUV lithography, particle trapping, and super-resolution imaging.

  6. LONG-TERM (SOLAR CYCLE) VARIATION OF THE EXTREME ULTRAVIOLET RADIATION AND 10.7CENTIMETER FLUX FROM THE SUN.

    DTIC Science & Technology

    The proposal is made that the 10.7-cm flux from the sun , generally regarded as a good index of the solar extreme ultraviolet radiation (EUV), does...in some degree, since many features of the sun vary with the solar cycle. With regard to the radio waves represented by the flux and optical

  7. Absolute sensitivity calibration of vacuum and extreme ultraviolet spectrometer systems and Z{sub eff} measurement based on bremsstrahlung continuum in HL-2A tokamak

    SciTech Connect

    Zhou Hangyu; Cui Zhengying; Fu Bingzhong; Sun Ping; Gao Yadong; Xu Yuan; Lu Ping; Yang Qingwei; Duan Xuru; Morita, Shigeru; Goto, Motoshi; Dong Chunfeng

    2012-10-15

    A grazing-incidence flat-field extreme ultraviolet (EUV) spectrometer has been newly developed in HL-2A tokamak. Typical spectral lines are observed from intrinsic impurities of carbon, oxygen, iron, and extrinsic impurity of helium in the wavelength range of 20 A-500 A. Bremsstrahlung continuum is measured at different electron densities of HL-2A discharges to calibrate absolute sensitivity of the EUV spectrometer system and to measure effective ionic charge, Z{sub eff}. The sensitivity of a vacuum ultraviolet (VUV) spectrometer system is also absolutely calibrated in overlapped wavelength range of 300 A-500 A by comparing the intensity between VUV and EUV line emissions.

  8. Critical dimension variation caused by wrinkle in extreme ultra-violet pellicle for 3-nm node

    NASA Astrophysics Data System (ADS)

    Kim, Guk-Jin; Kim, In-Seon; Lee, Sung-Gyu; Yeung, Michael; Kim, Min-Su; Park, Jin-Goo; Oh, Hye-Keun

    2017-10-01

    Extreme ultraviolet (EUV) pellicles help in the protection of EUV masks from defects, contaminants, and particles during the exposure process. However, a single-stack EUV pellicle can be easily deformed during the exposure process; therefore, multi-stack pellicles have been proposed to minimize the deformation of an EUV pellicle. However, wrinkles can be formed in an EUV pellicle due to extremely thin thickness. In this study, we investigated the impact of these wrinkles on the transmission and critical dimension (CD) variation for the 5- and 3-nm nodes. The 5- and 3-nm nodes can be used by conventional and high numerical aperture (NA) systems, respectively. The variation in the transmission and the allowable local tilt angle of the wrinkle as a function of the wrinkle height and periodicity were calculated. A change in transmission of 2.2% resulted in a 0.2 nm variation in the CD for the anamorphic NA system (3-nm node), whereas a transmission variation of 1.6% caused a 0.2 nm CD variation in the isomorphic NA system (5-nm node).

  9. Far and extreme ultraviolet astronomy with ORFEUS

    NASA Technical Reports Server (NTRS)

    Kraemer, G.; Barnstedt, J.; Eberhard, N.; Grewing, M.; Gringel, W.; Haas, C.; Kaelble, A.; Kappelmann, N.; Petrik, J.; Appenzeller, I.

    1990-01-01

    ORFEUS (Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometer) is a 1 m normal incidence telescope for spectroscopic investigations of cosmic sources in the far and extreme ultraviolet spectral range. The instrument will be integrated into the freeflyer platform ASTRO-SPAS. ORFEUS-SPAS is scheduled with STS ENDEAVOUR in September 1992. We describe the telescope with its two spectrometer and their capabilities i.e., spectral range, resolution and overall sensitivity. The main classes of objects to be observed with the instrument are discussed and two examples of simulated spectra for the white dwarf HZ43 and an O9-star in LMC are shown.

  10. Defect-tolerant extreme ultraviolet nanoscale printing.

    PubMed

    Urbanski, L; Isoyan, A; Stein, A; Rocca, J J; Menoni, C S; Marconi, M C

    2012-09-01

    We present a defect-free lithography method for printing periodic features with nanoscale resolution using coherent extreme ultraviolet light. This technique is based on the self-imaging effect known as the Talbot effect, which is produced when coherent light is diffracted by a periodic mask. We present a numerical simulation and an experimental verification of the method with a compact extreme ultraviolet laser. Furthermore, we explore the extent of defect tolerance by testing masks with different defect layouts. The experimental results are in good agreement with theoretical calculations.

  11. Far and extreme ultraviolet astronomy with ORFEUS

    NASA Technical Reports Server (NTRS)

    Kraemer, G.; Barnstedt, J.; Eberhard, N.; Grewing, M.; Gringel, W.; Haas, C.; Kaelble, A.; Kappelmann, N.; Petrik, J.; Appenzeller, I.

    1990-01-01

    ORFEUS (Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometer) is a 1 m normal incidence telescope for spectroscopic investigations of cosmic sources in the far and extreme ultraviolet spectral range. The instrument will be integrated into the freeflyer platform ASTRO-SPAS. ORFEUS-SPAS is scheduled with STS ENDEAVOUR in September 1992. We describe the telescope with its two spectrometer and their capabilities i.e., spectral range, resolution and overall sensitivity. The main classes of objects to be observed with the instrument are discussed and two examples of simulated spectra for the white dwarf HZ43 and an O9-star in LMC are shown.

  12. Emission Lines of Fe XI - XIII in the Extreme Ultraviolet Region

    NASA Astrophysics Data System (ADS)

    Lepson, Jaan; Beiersdorfer, Peter; Liedahl, Duane; Desai, Priya; Brickhouse, Nancy; Dupree, Andrea; Kahn, Steven

    2009-05-01

    Iron is one of the most abundant heavy elements in extreme ultraviolet spectra of astrophysical and laboratory plasmas, and its various ions radiate profusely in the extreme ultraviolet (EUV) wavelength band. Iron emission in the EUV provides important d iagnostic tools for such properties as plasma temperature and density, and perhaps even magnetic field strength. Despite its importance to astrophysics and magnetic fusion, knowledge of the EUV spectrum of iron is incomplete. Identification of iron emis sion lines is hampered by the paucity of accurate laboratory measurements and the uncertainty of even the best atomic models. As part of a project to measure and compile emission line data in the EUV, we present here spectra and lines of Fe XI - XIII recorded on the Livermore EBIT-II electron beam ion trap in the 50 - 120 åregion. We measured line positions to 0.02 åand relative intensities with an accuracy of one part in twenty. Many new lines are identified and added to the available databa ses. Part of this work was performed under the auspices of the U S Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was supported by NASA's Astronomy and Physics Research and Analysis Program under Con t ract NNH07AF811.

  13. Extreme ultraviolet spectra of solar flares from the extreme ultraviolet spectroheliograph SPIRIT onboard the CORONAS-F satellite

    SciTech Connect

    Shestov, S.; Kuzin, S.; Reva, A.

    2014-01-01

    We present detailed extreme ultraviolet (EUV) spectra of four large solar flares: M5.6, X1.3, X3.4, and X17 classes in the spectral ranges 176-207 Å and 280-330 Å. These spectra were obtained by the slitless spectroheliograph SPIRIT onboard the CORONAS-F satellite. To our knowledge, these are the first detailed EUV spectra of large flares obtained with a spectral resolution of ∼0.1 Å. We performed a comprehensive analysis of the obtained spectra and provide identification of the observed spectral lines. The identification was performed based on the calculation of synthetic spectra (the CHIANTI database was used), with simultaneous calculations of the differential emission measure (DEM) and density of the emitting plasma. More than 50 intense lines are present in the spectra that correspond to a temperature range of T = 0.5-16 MK; most of the lines belong to Fe, Ni, Ca, Mg, and Si ions. In all the considered flares, intense hot lines from Ca XVII, Ca XVIII, Fe XX, Fe XXII, and Fe XXIV are observed. The calculated DEMs have a peak at T ∼ 10 MK. The densities were determined using Fe XI-Fe XIII lines and averaged 6.5 × 10{sup 9} cm{sup –3}. We also discuss the identification, accuracy, and major discrepancies of the spectral line intensity prediction.

  14. Spatial characterization of extreme ultraviolet plasmas generated by laser excitation of xenon gas targets

    NASA Astrophysics Data System (ADS)

    Kranzusch, Sebastian; Peth, Christian; Mann, Klaus

    2003-02-01

    At Laser-Laboratorium Göttingen laser-plasma sources were tested, which are going to be used for characterization of optical components and sensoric devices in the wavelength region from 11 to 13 nm. In all cases extreme ultraviolet (EUV) radiation is generated by focusing a Q-switched Nd:YAG laser into a pulsed gas puff target. By the use of xenon or oxygen as target gas, broadband as well as narrowband EUV radiation is obtained, respectively. Different types of valves and nozzles were tested in order to optimize the emitted radiation with respect to maximum EUV intensities, small source diameters, and positional stability. The investigation of these crucial source parameters was performed with specially designed EUV pinhole cameras, utilizing evaluation algorithms developed for standardized laser beam characterization. In addition, a rotatable pinhole camera was developed which allows both spatially and angular resolved monitoring of the soft x-ray emission characteristics. With the help of this camera a strong angular dependence of the EUV intensity was found. The data were compared with fluorescence measurements for visualization of the target gas jet. The experimental observations can be explained by reabsorption of the generated EUV radiation in the surrounding target gas, as supported by semiempirical model calculations based on the attenuation in the three-dimensional gas density according to Lambert-Beer's law. As a consequence of the presented investigations, an optimization of the EUV source with respect to intensity, plasma shape, and angular dependence is achieved, resulting in a spherical plasma of 200 μm diameter and a 50% increase of the EUV pulse energy.

  15. On the nature of the extreme-ultraviolet late phase of solar flares

    SciTech Connect

    Li, Y.; Ding, M. D.; Guo, Y.; Dai, Y.

    2014-10-01

    The extreme-ultraviolet (EUV) late phase of solar flares is a second peak of warm coronal emissions (e.g., Fe XVI) for many minutes to a few hours after the GOES soft X-ray peak. It was first observed by the EUV Variability Experiment on board the Solar Dynamics Observatory (SDO). The late-phase emission originates from a second set of longer loops (late-phase loops) that are higher than the main flaring loops. It is suggested to be caused by either additional heating or long-lasting cooling. In this paper, we study the role of long-lasting cooling and additional heating in producing the EUV late phase using the enthalpy based thermal evolution of loops model. We find that a long cooling process in late-phase loops can well explain the presence of the EUV late-phase emission, but we cannot exclude the possibility of additional heating in the decay phase. Moreover, we provide two preliminary methods based on the UV and EUV emissions from the Atmospheric Imaging Assembly on board SDO to determine whether or not additional heating plays a role in the late-phase emission. Using nonlinear force-free field modeling, we study the magnetic configuration of the EUV late phase. It is found that the late phase can be generated either in hot spine field lines associated with a magnetic null point or in large-scale magnetic loops of multipolar magnetic fields. In this paper, we also discuss why the EUV late phase is usually observed in warm coronal emissions and why the majority of flares do not exhibit an EUV late phase.

  16. Solar Extreme Ultraviolet and X-ray Irradiance Measurements for Thermosphere and Ionosphere Studies (Invited)

    NASA Astrophysics Data System (ADS)

    Woods, T. N.; Caspi, A.; Chamberlin, P. C.; Eparvier, F. G.; Jones, A. R.; Sojka, J. J.; Solomon, S. C.; Viereck, R. A.

    2013-12-01

    The solar extreme ultraviolet (EUV: 10-120 nm) and soft X-ray (SXR: 0.1-10 nm) radiation is critical energy input for Earth's upper atmosphere above 80 km as a driver for photochemistry, ionosphere creation, temperature structure, and dynamics. Understanding the solar EUV and X-ray variations and their influences on Earth's atmosphere are important for myriad of space weather applications. The solar EUV and SXR spectral irradiances are currently being measured by NASA's Thermosphere, Ionosphere, Mesosphere, Energetics, and Dynamics (TIMED) Solar EUV Experiment (SEE), NASA's Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE), and NOAA's GOES X-Ray Sensor (XRS) and EUV Sensor (EUVS). The solar irradiance varies on all time scales, ranging from seconds to hours from solar flare events, to days from 27-day solar rotation, and to years and longer from 11-year solar cycle. The amount of variation is strongly wavelength dependent with smaller ~50% solar cycle variations seen in the EUV for transition region emissions and larger factor of 10 and more variations seen in the SXR for coronal emissions. These solar irradiance observations are expected to be continued and to overlap with NASA's future Global-scale Observations of the Limb and Disk (GOLD) and Ionospheric Connection (ICON) missions that focus on the study of the thermosphere and ionosphere. These current measurements are only broad band in the SXR, but there are plans to have new spectral SXR measurements from CubeSat missions that may also overlap with the GOLD and ICON missions.

  17. Diffuse Extreme-Ultraviolet Emission from the Coma Cluster: Evidence for Rapidly Cooling Gases at Submegakelvin Temperatures

    PubMed

    Lieu; Mittaz; Bowyer; Breen; Lockman; Murphy; Hwang

    1996-11-22

    The central region of the Coma cluster of galaxies was observed in the energy band from 0.065 to 0.245 kiloelectron volts by the Deep Survey telescope aboard the Extreme Ultraviolet Explorer. A diffuse emission halo of angular diameter approximately 30 arc minutes was detected. The extreme-ultraviolet (EUV) emission level exceeds that expected from the x-ray temperature gas in Coma. This halo suggests the presence of two more phases in the emitting gas, one at a temperature of approximately 2 x 10(6) kelvin and the other at approximately 8 x 10(5) kelvin. The latter phase cools rapidly and, in steady state, would have produced cold matter with a mass of approximately 10(14) solar masses within the EUV halo. Although a similar EUV enhancement was discovered in the Virgo cluster, this detection in Coma applies to a noncooling flow system.

  18. Silicon Lightweight Mirrors (SLMS) for Ultraviolet and Extreme Ultraviolet Imaging Mirrors

    NASA Technical Reports Server (NTRS)

    Goodman, W. A.; Keys, Andrew S. (Technical Monitor)

    2002-01-01

    Subtopic 01-S1.06 requires mirrors with a diameter of 0.5-2.4 meters, areal density less than 20 kg/sq m, a figure specification of 0.02-0.005 waves root mean square (rms) at 633 nanometers, a surface roughness 0.5-1 nanometers rms, and a midfrequency error of 1.0-2.5 nanometers rms for use in the infrared (IR) to extreme ultra violet (EUV) waveband. Schafer's Phase II objective is to use Silicon Lightweight Mirrors (SLMS), a novel, all-silicon, foam-core, lightweight mirror technology, to build three imaging mirrors for the Next Generation Space Telescope Near Infrared Camera (NIRCam) Engineering Test Unit: M0 (a flat), M2 (a concave sphere) and M3R (an oblate spheroid). The surface figure error specification for the NIRCam imaging mirrors is 8 nanometers rms (0.013 waves rms at 633 nanometers), equivalent to that required for ultraviolet (UV) and EUV mirrors, and this figure must be maintained at the 35 K operational temperature of NGST. The surface roughness required is 30 A rms since NIRCam operates in the visible to infrared (VIS/IR) (0.65-5 microns). We will produce mounts for mirrors M2 and M3R using the complementary thermally matched C/SiC material demonstrated by Schafer under another NASA SBIR, NAS8-98137.

  19. Discharge produced plasma source for EUV lithography

    NASA Astrophysics Data System (ADS)

    Borisov, V.; Eltzov, A.; Ivanov, A.; Khristoforov, O.; Kirykhin, Yu.; Vinokhodov, A.; Vodchits, V.; Mishhenko, V.; Prokofiev, A.

    2007-04-01

    Extreme ultraviolet (EUV) radiation is seen as the most promising candidate for the next generation of lithography and semiconductor chip manufacturing for the 32 nm node and below. The paper describes experimental results obtained with discharge produced plasma (DPP) sources based on pinch effect in a Xe and Sn vapour as potential tool for the EUV lithography. Problems of DPP source development are discussed.

  20. EUV spectroscopy of 3 RSCVn binaries

    NASA Technical Reports Server (NTRS)

    Dupree, A. K.; Brickhouse, Nancy S.; Hanson, G. J.

    1995-01-01

    The extreme ultraviolet (EUV) spectroscopy of several binary stars containing cool components is used to define the high temperature plasma structure of these stars and their stellar atmospheres. Different line emission spectra are reported, along with a spectrum analysis of Capella, a nearby bright multiple star system, using data from the EUVE satellite.

  1. Development of ellipsoidal focusing mirror for soft x-ray and extreme ultraviolet light

    NASA Astrophysics Data System (ADS)

    Mimura, Hidekazu; Takei, Yoshinori; Saito, Takahiro; Kume, Takehiro; Motoyama, Hiroto; Egawa, Satoru; Takeo, Yoko; Higashi, Takahiro

    2015-08-01

    Mirrors are key devices for creating various systems in optics. Focusing X-ray and extreme ultraviolet (EUV) light requires mirror surfaces with an extremely high accuracy. The figure of an ellipsoidal mirror is obtained by rotating an elliptical profile, and using such a mirror, soft X-ray and EUV light can be focused to dimensions on the order of nanometers without chromatic aberration. Although the theoretical performance of ellipsoidal mirrors is extremely high, the fabrication of an ideal ellipsoidal mirror remains problematic. Based on this background, we have been working to develop a fabrication system for ellipsoidal mirrors. In this proceeding, we briefly introduce the fabrication process and the soft X-ray focusing performance of the ellipsoidal mirror fabricated using the proposed process.

  2. Multi-spectral solar telescope array IV; The soft x-ray and extreme ultraviolet filters

    SciTech Connect

    Lindblom, J.F.; O'Neal, R.H.; Walker, A.B.C. Jr. ); Powell, F.R. ); Barbee, T.W. Jr. ); Hoover, R.B. ); Powell, S.F. )

    1991-08-01

    The multilayer mirrors used in the normal-incidence optical systems of the Multi-Spectral Solar Telescope Array (MSSTA) are efficient reflectors for soft x-ray/extreme ultraviolet (EUV) radiation at wavelengths that satisfy the Bragg condition, thus allowing a narrow band of the soft x-ray/EUV spectrum to be isolated. However, these same mirrors are also excellent reflectors in the visible, ultraviolet, and far-ultraviolet (FUV) part of the spectrum, where normal incidence reflectivities can exceed 50%. Furthermore, the sun emits far more radiation in the ultraviolet and visible part of the spectrum than it does in the soft x-ray/EUV. For this reason, thin foil filters are employed to eliminate the unwanted longer wavelength solar emission. The MSSTA instrument uses various combinations of thin foil filters composed of aluminum carbon, tellurium, potassium bromide, beryllium, molybdenum, rhodium, and phthalocyanine to achieve the desired radiation rejection characteristics. In this paper, the authors discuss issues concerning the design, manufacture, and predicted performance of MSSTA filters.

  3. Three new extreme ultraviolet spectrometers on NSTX-U for impurity monitoring

    NASA Astrophysics Data System (ADS)

    Weller, M. E.; Beiersdorfer, P.; Soukhanovskii, V. A.; Magee, E. W.; Scotti, F.

    2016-11-01

    Three extreme ultraviolet (EUV) spectrometers have been mounted on the National Spherical Torus Experiment-Upgrade (NSTX-U). All three are flat-field grazing-incidence spectrometers and are dubbed X-ray and Extreme Ultraviolet Spectrometer (XEUS, 8-70 Å), Long-Wavelength Extreme Ultraviolet Spectrometer (LoWEUS, 190-440 Å), and Metal Monitor and Lithium Spectrometer Assembly (MonaLisa, 50-220 Å). XEUS and LoWEUS were previously implemented on NSTX to monitor impurities from low- to high-Z sources and to study impurity transport while MonaLisa is new and provides the system increased spectral coverage. The spectrometers will also be a critical diagnostic on the planned laser blow-off system for NSTX-U, which will be used for impurity edge and core ion transport studies, edge-transport code development, and benchmarking atomic physics codes.

  4. Three new extreme ultraviolet spectrometers on NSTX-U for impurity monitoring

    SciTech Connect

    Weller, M. E. Beiersdorfer, P.; Soukhanovskii, V. A.; Magee, E. W.; Scotti, F.

    2016-11-15

    Three extreme ultraviolet (EUV) spectrometers have been mounted on the National Spherical Torus Experiment–Upgrade (NSTX-U). All three are flat-field grazing-incidence spectrometers and are dubbed X-ray and Extreme Ultraviolet Spectrometer (XEUS, 8–70 Å), Long-Wavelength Extreme Ultraviolet Spectrometer (LoWEUS, 190–440 Å), and Metal Monitor and Lithium Spectrometer Assembly (MonaLisa, 50–220 Å). XEUS and LoWEUS were previously implemented on NSTX to monitor impurities from low- to high-Z sources and to study impurity transport while MonaLisa is new and provides the system increased spectral coverage. The spectrometers will also be a critical diagnostic on the planned laser blow-off system for NSTX-U, which will be used for impurity edge and core ion transport studies, edge-transport code development, and benchmarking atomic physics codes.

  5. Studies of extreme ultraviolet emission from laser produced plasmas, as sources for next generation lithography

    NASA Astrophysics Data System (ADS)

    Cummins, Thomas

    The work presented in this thesis is primarily concerned with the optimisation of extreme ultraviolet (EUV) photoemission around 13.5 nm, from laser produced tin (Sn) plasmas. EUV lithography has been identified as the leading next generation technology to take over from the current optical lithography systems, due to its potential of printing smaller feature sizes on integrated circuits. Many of the problems hindering the implementation of EUV lithography for high volume manufacturing have been overcome during the past 20 years of development. However, the lack of source power is a major concern for realising EUV lithography and remains a major roadblock that must be overcome. Therefore in order to optimise and improve the EUV emission from Sn laser plasma sources, many parameters contributing to the make-up of an EUV source are investigated. Chapter 3 presents the results of varying several different experimental parameters on the EUV emission from Sn laser plasmas. Several of the laser parameters including the energy, gas mixture, focusing lens position and angle of incidence are changed, while their effect on the EUV emission is studied. Double laser pulse experiments are also carried out by creating plasma targets for the main laser pulse to interact with. The resulting emission is compared to that of a single laser pulse on solid Sn. Chapter 4 investigates tailoring the CO2 laser pulse duration to improve the efficiency of an EUV source set-up. In doing so a new technique for shortening the time duration of the pulse is described. The direct effects of shortening the CO2 laser pulse duration on the EUV emission from Sn are then studied and shown to improve the efficiency of the source. In Chapter 5 a new plasma target type is studied and compared to the previous dual laser experiments. Laser produced colliding plasma jet targets form a new plasma layer, with densities that can be optimised for re-heating with the main CO2 laser pulse. Chapter 6 will present

  6. Experiences with thin film filter development for the Extreme Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Vallerga, J. V.; Vedder, P. W.; Siegmund, O. H. W.

    1993-01-01

    The design, development, and optimization of the thin film filters used on the Extreme Ultraviolet Explorer (EUVE) Satellite to define the EUV wavelength bandpasses of the individual instruments was a complicated task. The bandpasses had to be optimized for the astrophysical goals of the EUVE mission and constrained by the strong geocoronal EUV background emission. Materials with optical constants that met these requirements had to be found and tested. In many cases these materials were not compatible or were not strong enough to survive the intense vibrations of a rocket launch. Other effects, such as photoelectron 'halo' produced in the filters, were not discovered until flight qualification. The final set of flight filters included: lexan/boron, aluminum/carbon, titanium/antimony/aluminum, and tin/silicon monoxide. This paper discusses the lessons learned in the development of these filters, including the optimization process, material interactions and problems, calibration techniques, vibration susceptibility, thermal tests, and photoelectron emission. We feel the experiences gained over the last 10 years creating the filter sets for EUVE will be invaluable for future missions that use thin film filters.

  7. Diagnosis of energy transport in iron buried layer targets using an extreme ultraviolet laser

    NASA Astrophysics Data System (ADS)

    Shahzad, M.; Culfa, O.; Rossall, A. K.; Wilson, L. A.; Guilbaud, O.; Kazamias, S.; Delmas, O.; Demailly, J.; Maitrallain, A.; Pittman, M.; Baynard, E.; Farjardo, M.; Tallents, G. J.

    2015-02-01

    We demonstrate the use of extreme ultra-violet (EUV) laboratory lasers in probing energy transport in laser irradiated solid targets. EUV transmission through targets containing a thin layer of iron (50 nm) encased in plastic (CH) after irradiation by a short pulse (35 fs) laser focussed to irradiances 3 × 1016 Wcm-2 is measured. Heating of the iron layer gives rise to a rapid decrease in EUV opacity and an increase in the transmission of the 13.9 nm laser radiation as the iron ionizes to Fe5+ and above where the ion ionisation energy is greater than the EUV probe photon energy (89 eV). A one dimensional hydrodynamic fluid code HYADES has been used to simulate the temporal variation in EUV transmission (wavelength 13.9 nm) using IMP opacity values for the iron layer and the simulated transmissions are compared to measured transmission values. When a deliberate pre-pulse is used to preform an expanding plastic plasma, it is found that radiation is important in the heating of the iron layer while for pre-pulse free irradiation, radiation transport is not significant.

  8. Diagnosis of energy transport in iron buried layer targets using an extreme ultraviolet laser

    SciTech Connect

    Shahzad, M.; Culfa, O.; Rossall, A. K.; Tallents, G. J.; Wilson, L. A.; Guilbaud, O.; Kazamias, S.; Delmas, O.; Demailly, J.; Maitrallain, A.; Pittman, M.; Baynard, E.; Farjardo, M.

    2015-02-15

    We demonstrate the use of extreme ultra-violet (EUV) laboratory lasers in probing energy transport in laser irradiated solid targets. EUV transmission through targets containing a thin layer of iron (50 nm) encased in plastic (CH) after irradiation by a short pulse (35 fs) laser focussed to irradiances 3 × 10{sup 16} Wcm{sup −2} is measured. Heating of the iron layer gives rise to a rapid decrease in EUV opacity and an increase in the transmission of the 13.9 nm laser radiation as the iron ionizes to Fe{sup 5+} and above where the ion ionisation energy is greater than the EUV probe photon energy (89 eV). A one dimensional hydrodynamic fluid code HYADES has been used to simulate the temporal variation in EUV transmission (wavelength 13.9 nm) using IMP opacity values for the iron layer and the simulated transmissions are compared to measured transmission values. When a deliberate pre-pulse is used to preform an expanding plastic plasma, it is found that radiation is important in the heating of the iron layer while for pre-pulse free irradiation, radiation transport is not significant.

  9. Laser-assisted vacuum arc extreme ultraviolet source: a comparison of picosecond and nanosecond laser triggering

    NASA Astrophysics Data System (ADS)

    Beyene, Girum A.; Tobin, Isaac; Juschkin, Larissa; Hayden, Patrick; O'Sullivan, Gerry; Sokell, Emma; Zakharov, Vassily S.; Zakharov, Sergey V.; O'Reilly, Fergal

    2016-06-01

    Extreme ultraviolet (EUV) light generation by hybrid laser-assisted vacuum arc discharge plasmas, utilizing Sn-coated rotating-disc-electrodes, was investigated. The discharge was initiated by localized ablation of the liquid tin coating of the cathode disc by a laser pulse. The laser pulse, at 1064 nm, was generated by Nd:YAG lasers with variable energy from 1 to 100 mJ per pulse. The impact of shortening the laser pulse from 7 ns to 170 ps on the EUV generation has been investigated in detail. The use of ps pulses resulted in an increase in emission of EUV radiation. With a fixed discharge energy of ~4 J, the EUV conversion efficiency tends to plateau at ~2.4  ±  0.25% for the ps laser pulses, while for the ns pulses, it saturates at ~1.7  ±  0.3%. Under similar discharge and laser energy conditions, operating the EUV source with the ps-triggering resulted also in narrower spectral profiles of the emission in comparison to ns-triggering. The results indicate an advantage in using ps-triggering in laser-assisted discharges to produce brighter plasmas required for applications such as metrology.

  10. Scanning coherent diffractive imaging methods for actinic extreme ultraviolet mask metrology

    NASA Astrophysics Data System (ADS)

    Helfenstein, Patrick; Mohacsi, Istvan; Rajeev, Rajendran; Ekinci, Yasin

    2016-07-01

    For the successful implementation of extreme ultraviolet (EUV) lithography in the upcoming technology nodes, a major challenge to overcome is the stable and reliable detection and characterization of mask defects. We have recently presented a reflective mode EUV mask scanning lensless imaging tool (RESCAN) which was installed at the XIL-II beamline of the swiss light source and showed reconstructed aerial images of test patterns on EUV masks. RESCAN uses scanning coherent diffractive imaging (SCDI) methods to obtain actinic aerial images of EUV photomasks and was designed for 80 nm onmask resolution. Our SCDI algorithm reconstructs the measured sample by iteratively solving the phase problem using overdetermined diffraction data gathered by scanning across the specimen with a finite illumination. It provides the phase and amplitude aerial images of EUV photomasks with high resolution without the need to use high numerical aperture (NA) lenses. Contrary to scanning microscopy and full-field microscopy, where the resolution is limited by the spot size or NA of the lens, the achievable resolution with our method depends on the detector noise and NA of the detector. To increase the resolution of our tool, we upgraded RESCAN with a detector and algorithms. Here, we present the results obtained with the tool that is capable of up to 40-nm onmask resolution. We believe that the realization of our prototype marks a significant step toward overcoming the limitations imposed by methods relying on imaging optics and shows a viable solution for actinic mask metrology.

  11. Influence of electrode separation and gas curtain on extreme ultraviolet emission of a gas jet z-pinch source

    NASA Astrophysics Data System (ADS)

    Mohanty, S. R.; Sakamoto, T.; Kobayashi, Y.; Izuka, N.; Kishi, N.; Song, I.; Watanabe, M.; Kawamura, T.; Okino, A.; Horioka, K.; Hotta, E.

    2006-07-01

    Extreme ultraviolet (EUV) emission from a gas jet z-pinch source has been examined by employing a photodiode and pinhole camera. Visible images of the pinched plasma have been also recorded. A current pulse of 10kA is used to heat the gas jet, which emits radiation around 13.5nm. Experimental parameters such as electrode separation and gas flow rate are varied to optimize EUV emission. The maximum EUV energy is obtained for 12mm electrode separation and 20Torr xenon pressure and it is estimated to 10.95mJ/sr per 2% bandwidth per pulse. The presence of gas curtain improves EUV emission by 30%.

  12. A solar type II radio burst from coronal mass ejection-coronal ray interaction: Simultaneous radio and extreme ultraviolet imaging

    SciTech Connect

    Chen, Yao; Du, Guohui; Feng, Shiwei; Kong, Xiangliang; Wang, Bing; Feng, Li; Guo, Fan; Li, Gang

    2014-05-20

    Simultaneous radio and extreme ultraviolet (EUV)/white-light imaging data are examined for a solar type II radio burst occurring on 2010 March 18 to deduce its source location. Using a bow-shock model, we reconstruct the three-dimensional EUV wave front (presumably the type-II-emitting shock) based on the imaging data of the two Solar TErrestrial RElations Observatory spacecraft. It is then combined with the Nançay radio imaging data to infer the three-dimensional position of the type II source. It is found that the type II source coincides with the interface between the coronal mass ejection (CME) EUV wave front and a nearby coronal ray structure, providing evidence that the type II emission is physically related to the CME-ray interaction. This result, consistent with those of previous studies, is based on simultaneous radio and EUV imaging data for the first time.

  13. Effects of the dynamics of droplet-based laser-produced plasma on angular extreme ultraviolet emission profile

    SciTech Connect

    Giovannini, Andrea Z.; Abhari, Reza S.

    2014-05-12

    The emission distribution of extreme ultraviolet (EUV) radiation from droplet targets is dependent on the dynamics of the laser-produced plasma. The EUV emission is measured on a 2% bandwidth centered at 13.5 nm (in-band). The targets of the laser are small (sub-50 μm) tin droplets, and the in-band emission distribution is measured for different laser irradiances and droplet sizes at various angular positions. Larger droplets lead to a faster decay of EUV emission at larger angles with respect to the laser axis. A decrease in laser irradiance has the opposite effect. The measurements are used together with an analytical model to estimate plume dynamics. Additionally, the model is used to estimate EUV emission distribution for a desired droplet diameter and laser irradiance.

  14. Compact extreme ultraviolet reflectometer for the characterization of grazing incidence optics based on a gas discharge light source

    SciTech Connect

    Bergmann, Klaus; Rosier, Oliver; Metzmacher, Christof

    2005-04-01

    A grazing incidence reflectometer operating in the extreme ultraviolet (EUV) spectral range around 13.5 nm is presented which is making use of a compact xenon pinch plasma light source. The apparatus allows for measuring the absolute reflectivity of a sample for grazing incidence angle in the range from typically 5 deg. to 35 deg. by comparing the EUV diode signal for the reflected light and a reference diode with an accuracy of better than 2%. Design criteria for proper matching of diode apertures and distances with respect to the spatially extended plasma source are presented. The absolute accuracy has been checked by investigating a ruthenium sample with low roughness, which has a reflectivity in the EUV close to the theoretical limit. Comparison to measurements at the EUV-reflectometer of the Physikalisch Technische Bundesanstalt in Berlin at a synchrotron source confirm the absolute accuracy of better than 2% for the reflectivity for the angle interval of interest.

  15. The extreme ultraviolet spectra of low-redshift radio-loud quasars

    NASA Astrophysics Data System (ADS)

    Punsly, Brian; Reynolds, Cormac; Marziani, Paola; O'Dea, Christopher P.

    2016-07-01

    This paper reports on the extreme ultraviolet (EUV) spectrum of three low-redshift (z ˜ 0.6) radio-loud quasars, 3C 95, 3C 57 and PKS 0405-123. The spectra were obtained with the Cosmic Origins Spectrograph of the Hubble Space Telescope. The bolometric thermal emission, Lbol, associated with the accretion flow is a large fraction of the Eddington limit for all of these sources. We estimate the long-term time-averaged jet power, overline{Q}, for the three sources. overline{Q}/L_{bol}, is shown to lie along the correlation of overline{Q}/L_{bol}, and αEUV found in previous studies of the EUV continuum of intermediate and high-redshift quasars, where the EUV continuum flux density between 1100 and 700 Å is defined by F_{ν } ˜ ν ^{-α _{EUV}}. The high Eddington ratios of the three quasars extend the analysis into a wider parameter space. Selecting quasars with high Eddington ratios has accentuated the statistical significance of the partial correlation analysis of the data. Namely, the correlation of overline{Q}/L_{bol} and αEUV is fundamental, and the correlation of overline{Q} and αEUV is spurious at a very high statistical significance level (99.8 per cent). This supports the regulating role of ram pressure of the accretion flow in magnetically arrested accretion models of jet production. In the process of this study, we use multifrequency and multiresolution Very Large Array radio observations to determine that one of the bipolar jets in 3C 57 is likely frustrated by galactic gas that keeps the jet from propagating outside the host galaxy.

  16. EUV Resists: Illuminating the challenges

    SciTech Connect

    Naulleau, Patrick; Anderson, Christopher; George, Simi

    2011-06-01

    As extreme ultraviolet (EUV) lithography enters the commercialization phase with potential introduction at the 3x nm half-pitch node in 2013, the attention of advanced EUV resist research has turned to addressing patterning at 16-nm half pitch and below. Whereas line-edge roughness is the primary concern at 2x half pitch and larger, research at the 16-nm half pitch level is uncovering broader.

  17. EUVE Observations of SS Cygni

    NASA Astrophysics Data System (ADS)

    Mauche, C. W.; Raymond, J. C.; Mattei, J. A.

    1994-05-01

    Target-of-opportunity observations of the dwarf nova SS Cyg were made by the Extreme Ultraviolet Explorer (EUVE) satellite on 1993 August 17--23. The observations cover the rise and plateau phases of a rare symmetric outburst which began on August ~ 15.5 and which reached maximum at V ~ 8.3 on August ~ 20. During the observations, the EUV brightness of the source as measured by the EUVE Deep Survey instrument (40--190 Angstroms ) rose from ~ 0.02 counts s(-1) to ~ 5 counts s(-1) . The EUV light curve rose more steeply than the optical light curve, manifesting a delay of ~ 1 day on August 17, but only ~ 0.5 day on August 19. The EUV spectrum recorded during this interval extends from the short-wavelength cutoff of the EUVE spectrometer at ~ 70 Angstroms \\ down to ~ 130 Angstroms . The spectrum is extremely rich in emission and absorption features due to high-ionization species of Ne, Mg, Si, S, and Fe superposed on a weak `blue' continuum. We present the optical and EUV light curves and short-wavelength EUV spectrum of this outburst of SS Cyg. Simple models are used to constrain the physical conditions of the EUV-radiating plasma as well as the column density of neutral material to the source due to the ISM and possibly the wind of this dwarf nova.

  18. Validity of the thin mask approximation in extreme ultraviolet mask roughness simulations

    SciTech Connect

    Naulleau, Patrick; George, Simi

    2011-01-26

    In the case of extreme ultraviolet (EUV) lithography, modeling has shown that reflector phase roughness on the lithographic mask is a significant concern due to the image plan speckle it causes and the resulting line-edge roughness on imaged features. Modeling results have recently been used to determine the requirements for future production worthy masks yielding the extremely stringent specification of 50 pm rms roughness. Owing to the scale of the problem in terms of memory requirements, past modeling results have all been based on the thin mask approximation. EUV masks, however, are inherently three dimensional in nature and thus the question arises as to the validity of the thin mask approximation. Here we directly compare image plane speckle calculation results using the fast two dimensional thin mask model to rigorous finite-difference time-domain results and find the two methods to be comparable.

  19. Progress in coherent lithography using table-top extreme ultraviolet lasers

    NASA Astrophysics Data System (ADS)

    Li, Wei

    Nanotechnology has drawn a wide variety of attention as interesting phenomena occurs when the dimension of the structures is in the nanometer scale. The particular characteristics of nanoscale structures had enabled new applications in different fields in science and technology. Our capability to fabricate these nanostructures routinely for sure will impact the advancement of nanoscience. Apart from the high volume manufacturing in semiconductor industry, a small-scale but reliable nanofabrication tool can dramatically help the research in the field of nanotechnology. This dissertation describes alternative extreme ultraviolet (EUV) lithography techniques which combine table-top EUV laser and various cost-effective imaging strategies. For each technique, numerical simulations, system design, experiment result and its analysis will be presented. In chapter II, a brief review of the main characteristics of table-top EUV lasers will be addressed concentrating on its high power and large coherence radius that enable the lithography application described herein. The development of a Talbot EUV lithography system which is capable of printing 50nm half pitch nanopatterns will be illustrated in chapter III. A detailed discussion of its resolution limit will be presented followed by the development of X-Y-Z positioning stage, the fabrication protocol for diffractive EUV mask, and the pattern transfer using self- developed ion beam etching, and the dose control unit. In addition, this dissertation demonstrated the capability to fabricate functional periodic nanostructures using Talbot EUV lithography. After that, resolution enhancement techniques like multiple exposure, displacement Talbot EUV lithography, fractional Talbot EUV lithography, and Talbot lithography using 18.9nm amplified spontaneous emission laser will be demonstrated. Chapter IV will describe a hybrid EUV lithography which combines the Talbot imaging and interference lithography rendering a high resolution

  20. Extreme Ultraviolet Emission Lines of Iron Fe XI-XIII

    NASA Astrophysics Data System (ADS)

    Lepson, Jaan; Beiersdorfer, P.; Brown, G. V.; Liedahl, D. A.; Brickhouse, N. S.; Dupree, A. K.

    2013-04-01

    The extreme ultraviolet (EUV) spectral region (ca. 20--300 Å) is rich in emission lines from low- to mid-Z ions, particularly from the middle charge states of iron. Many of these emission lines are important diagnostics for astrophysical plasmas, providing information on properties such as elemental abundance, temperature, density, and even magnetic field strength. In recent years, strides have been made to understand the complexity of the atomic levels of the ions that emit the lines that contribute to the richness of the EUV region. Laboratory measurements have been made to verify and benchmark the lines. Here, we present laboratory measurements of Fe XI, Fe XII, and Fe XIII between 40-140 Å. The measurements were made at the Lawrence Livermore electron beam ion trap (EBIT) facility, which has been optimized for laboratory astrophysics, and which allows us to select specific charge states of iron to help line identification. We also present new calculations by the Hebrew University - Lawrence Livermore Atomic Code (HULLAC), which we also utilized for line identification. We found that HULLAC does a creditable job of reproducing the forest of lines we observed in the EBIT spectra, although line positions are in need of adjustment, and line intensities often differed from those observed. We identify or confirm a number of new lines for these charge states. This work was supported by the NASA Solar and Heliospheric Program under Contract NNH10AN31I and the DOE General Plasma Science program. Work was performed in part under the auspices of the Department of Energy by Lawrence Livermore National Laboratory under Contract DEAC52-07NA27344.

  1. Solar extreme ultraviolet sensor and advanced langmuir probe

    NASA Technical Reports Server (NTRS)

    Voronka, N. R.; Block, B. P.; Carignan, G. R.

    1992-01-01

    For more than two decades, the staff of the Space Physics Research Laboratory (SPRL) has collaborated with the Goddard Space Flight Center (GSFC) in the design and implementation of Langmuir probes (LP). This program of probe development under the direction of Larry Brace of GSFC has evolved methodically with innovations to: improve measurement precision, increase the speed of measurement, and reduce the weight, size, power consumption and data rate of the instrument. Under contract NAG5-419 these improvements were implemented and are what characterize the Advanced Langmuir Probe (ALP). Using data from the Langmuir Probe on the Pioneer Venus Orbiter, Brace and Walter Hoegy of GSFC demonstrated a novel method of monitoring the solar extreme ultraviolet (EUV) flux. This led to the idea of developing a sensor similar to a Langmuir probe specifically designed to measure solar EUV (SEUV) that uses a similar electronics package. Under this contract, a combined instrument package of the ALP and SEUV sensor was to be designed, constructed, and laboratory tested. Finally the instrument was to be flight tested as part of sounding rocket experiment to acquire the necessary data to validate this method for possible use in future earth and planetary aeronomy missions. The primary purpose of this contract was to develop the electronics hardware and software for this instrument, since the actual sensors were suppied by GSFC. Due to budget constraints, only a flight model was constructed. These electronics were tested and calibrated in the laboratory, and then the instrument was integrated into the rocket payload at Wallops Flight Facility where it underwent environmental testing. After instrument recalibration at SPRL, the payload was reintegrated and launched from the Poker Flat Research Range near Fairbanks Alaska. The payload was successfully recovered and after refurbishment underwent further testing and developing to improve its performance for future use.

  2. Four wave mixing experiments with extreme ultraviolet transient gratings

    PubMed Central

    Bencivenga, F.; Cucini, R.; Capotondi, F.; Battistoni, A.; Mincigrucci, R.; Giangrisostomi, E.; Gessini, A.; Manfredda, M.; Nikolov, I. P.; Pedersoli, E.; Principi, E.; Svetina, C.; Parisse, P.; Casolari, F.; Danailov, M. B.; Kiskinova, M.; Masciovecchio, C.

    2015-01-01

    Four wave mixing (FWM) processes, based on third-order non-linear light-matter interactions, can combine ultrafast time resolution with energy and wavevector selectivity, and enables to explore dynamics inaccessible by linear methods.1-7 The coherent and multi-wave nature of FWM approach has been crucial in the development of cutting edge technologies, such as silicon photonics,8 sub-wavelength imaging9 and quantum communications.10 All these technologies operate with optical wavelengths, which limit the spatial resolution and do not allow probing excitations with energy in the eV range. The extension to shorter wavelengths, that is the extreme ultraviolet (EUV) and soft-x-ray (SXR) range, will allow to improve the spatial resolution and to expand the excitation energy range, as well as to achieve elemental selectivity by exploiting core resonances.5-7,11-14 So far FWM applications at these wavelengths have been prevented by the absence of coherent sources of sufficient brightness and suitable experimental setups. Our results show how transient gratings, generated by the interference of coherent EUV pulses delivered by the FERMI free electron laser (FEL),15 can be used to stimulate FWM processes at sub-optical wavelengths. Furthermore, we have demonstrated the possibility to read the time evolution of the FWM signal, which embodies the dynamics of coherent excitations as molecular vibrations. This result opens the perspective for FWM with nanometer spatial resolution and elemental selectivity, which, for example, would enable the investigation of charge-transfer dynamics.5-7 The theoretical possibility to realize these applications have already stimulated dedicated and ongoing FEL developments;16-20 today our results show that FWM at sub-optical wavelengths is feasible and would be the spark to the further advancements of the present and new sources. PMID:25855456

  3. Extreme ultraviolet lithography mask etch study and overview

    NASA Astrophysics Data System (ADS)

    Wu, Banqiu; Kumar, Ajay; Chandrachood, Madhavi; Sabharwal, Amitabh

    2013-04-01

    An overview of extreme ultraviolet lithography (EUVL) mask etch is presented and a EUVL mask etch study was carried out. Today, EUVL implementation has three critical challenges that hinder its adoption: extreme ultraviolet (EUV) source power, resist resolution-line width roughness-sensitivity, and a qualified EUVL mask. The EUVL mask defect challenges result from defects generated during blank preparation, absorber and multilayer deposition processes, as well as patterning, etching and wet clean processes. Stringent control on several performance criteria including critical dimension (CD) uniformity, etch bias, micro-loading, profile control, defect control, and high etch selectivity requirement to capping layer is required during the resist pattern duplication on the underlying absorber layer. EUVL mask absorbers comprise of mainly tantalum-based materials rather than chrome- or MoSi-based materials used in standard optical masks. Compared to the conventional chrome-based absorbers and phase shift materials, tantalum-based absorbers need high ion energy to obtain moderate etch rates. However, high ion energy may lower resist selectivity, and could introduce defects. Current EUVL mask consists of an anti-reflective layer on top of the bulk absorber. Recent studies indicate that a native oxide layer would suffice as an anti-reflective coating layer during the electron beam inspection. The absorber thickness and the material properties are optimized based on optical density targets for the mask as well as electromagnetic field effects and optics requirements of the patterning tools. EUVL mask etch processes are modified according to the structure of the absorber, its material, and thickness. However, etch product volatility is the fundamental requirement. Overlapping lithographic exposure near chip border may require etching through the multilayer, resulting in challenges in profile control and etch selectivity. Optical proximity correction is applied to further

  4. Instrumentation development for the EUVE. [Extreme Ultraviolet Explorer Satellite

    NASA Technical Reports Server (NTRS)

    Finley, D.

    1980-01-01

    The prototype mirror was successfully replated with a thick layer of nickel and diamond turned again. Optimization of the sensitivity of the instruments was studied with emphasis on the filter material, and on the available telemetry. The JHU Preliminary Project Definition Document was critically analyzed. Further studies of the electron cloud distribution produced by a channel plate were performed, and a wedge and strip anode with 17 quartets per inch was shown to image with better than 0.5% linearity. Half the microchannel plates being used in the lifetest completed initial processing and are in the lifetest vacuum chamber.

  5. Detection of rotational modulation in the coronal extreme-ultraviolet emission from V711 Tauri?

    PubMed

    Drake, J J; Brown, A; Patterer, R J; Vedder, P W; Bowyer, S; Guinan, E F

    1994-01-20

    The RS CVn binary V711 Tauri was observed by the Extreme Ultraviolet Explorer satellite (EUVE) twice during the latter half of 1992, for periods lasting several days. Light curves for the waveband 60-180 angstroms derived from the all-sky survey scanning in August and from a pointed calibration observation made in October both exhibit a modulation of about 40%. The modulation in both data sets is very similar, with minimum flux occurring near orbital phase phi=0.5. Analysis using a two-temperature optically thin plasma emission model reveals that most of the detected extreme ultraviolet (EUV) flux emanates from hot (approximately 10(7) K) coronal plasma. The modulation is probably mostly due to either flare-like activity or to rotational occultation of a long-lived, compact, and especially bright coronal structure on the more active star of the system. The phased data support the latter hypothesis. This coronal structure is then likely to be associated with the persistent spot patterns seen on V711 Tau when using Doppler and photometric surface imaging techniques. Comparison with contemporaneous Stromgren b-band photometry indicates that the optical minimum light leads the EUV maximum light by 90 degrees in phase.

  6. Effect of stray light correction of extreme-ultraviolet solar images in tomography

    NASA Astrophysics Data System (ADS)

    Lloveras, D. G.; Vásquez, A. M.; Shearer, P.; Frazin, R. A.

    2017-10-01

    The Extreme UltraViolet Imager (EUVI) telescope on board the Solar TErrestrial RElations Observatory (STEREO) mission provides extreme-ultraviolet (EUV) coronal images of the full Sun. Using time series of EUV images, the differential emission measure tomography (DEMT) technique allows the determination of the three-dimensional (3D) distribution of the coronal electron density and temperature in the inner corona. EUV images are affected by stray light contamination which can be effectively removed if the point-spread function (PSF) of the instrument is well determined, as it is the case for EUVI. We show the results of a detailed analysis of the impact of EUVI stray light removal in DEMT results. To this end we analyze Carrington Rotation (CR)-2081 during the last solar minimum, characterized by a highly axisymmetric coronal structure. We find that stray light decontamination of EUVI images implies a systematic decrease of the derived electron density scale height and a systematic increase of the derived coronal base density, while its effect on the derived temperature is not systematic neither significant. We detail the results of the analysis in quantitative fashion.

  7. Detection of rotational modulation in the coronal extreme-ultraviolet emission from V711 Tauri?

    NASA Technical Reports Server (NTRS)

    Drake, Jeremy J.; Brown, Alex; Patterer, Robert J.; Vedder, Peter W.; Bowyer, Stuart; Guinan, Edward F.

    1994-01-01

    The RS CVn binary V711 Tauri was observed by the Extreme Ultraviolet Explorer satellite (EUVE) twice during the latter half of 1992, for periods lasting several days. Light curves for the waveband 60-180 A derived from the all-sky survey scanning in August and from a pointed calibration observation made in October both exhibit a modulation of about 40%. The modulation in both data sets is very similar, with minimum flux occurring near orbital phase phi = 0.5. Analysis using a two-temperature optically thin plasma emission model reveals that most of the detected extreme ultraviolet (EUV) flux emanates from hot (approximately 10(exp 7) K) coronal plasma. The modulation is probably mostly due to either flare-like activity or to rotational occultation of a long-lived, compact, and especially bright coronal structure on the more active star of the system. The phased data support the latter hypothesis. This coronal structure is then likely to be associated with the presistent spot patterns seen on V711 Tau when using Doppler and photometric surface imaging techniques. Comparison with contemporaneous Stroemgren b-band photometry indicates that the optical minimum light leads the EUV maximum light by 90 deg in phase.

  8. Lab-scale EUV nano-imaging employing a gas-puff-target source: image quality versus plasma radiation characteristics

    NASA Astrophysics Data System (ADS)

    Wachulak, Przemyslaw; Bartnik, Andrzej; Fiedorowicz, Henryk

    2012-01-01

    In this chapter we report a desk-top microscopy reaching 50nm spatial resolution in very compact setup using a gas-puff laser plasma EUV source. We present the study of source bandwidth influence on the extreme ultraviolet (EUV) microscope spatial resolution. EUV images of object obtained by illumination with variable bandwidth EUV radiation were compared in terms of knife-edge spatial resolution to study the wide bandwidth parasitic influence on spatial resolution in the EUV microscopy.

  9. Three-dimensional characterization of extreme ultraviolet mask blank defects by interference contrast photoemission electron microscopy.

    PubMed

    Lin, Jingquan; Weber, Nils; Escher, Matthias; Maul, Jochen; Han, Hak-Seung; Merkel, Michael; Wurm, Stefan; Schönhense, Gerd; Kleineberg, Ulf

    2008-09-29

    A photoemission electron microscope based on a new contrast mechanism "interference contrast" is applied to characterize extreme ultraviolet lithography mask blank defects. Inspection results show that positioning of interference destructive condition (node of standing wave field) on surface of multilayer in the local region of a phase defect is necessary to obtain best visibility of the defect on mask blank. A comparative experiment reveals superiority of the interference contrast photoemission electron microscope (Extreme UV illumination) over a topographic contrast one (UV illumination with Hg discharge lamp) in detecting extreme ultraviolet mask blank phase defects. A depth-resolved detection of a mask blank defect, either by measuring anti-node peak shift in the EUV-PEEM image under varying inspection wavelength condition or by counting interference fringes with a fixed illumination wavelength, is discussed.

  10. EUV Lithography: New Metrology Challenges

    SciTech Connect

    Wood, Obert

    2007-09-26

    Extreme ultraviolet lithography is one of the most promising printing techniques for high volume semiconductor manufacturing at the 22 nm half-pitch device node and beyond. Because its imaging wavelength is approximately twenty times shorter than those currently in use (13.5 nm versus 193-248 nm) and because EUV optics and masks must be provided with highly-precise reflective multilayer coatings, EUV lithography presents a number of new and difficult metrology challenges. In this paper, the current status of the metrology tools being used to characterize the figure and finish of EUV mirror surfaces, the defectivity and flatness of EUV mask blanks and the outgassing rates of EUV resist materials are discussed.

  11. Combined microscopies study of the C-contamination induced by extreme-ultraviolet radiation: A surface-dependent secondary-electron-based model

    SciTech Connect

    Prezioso, S.; Donarelli, M.; Bisti, F.; Palladino, L.; Santucci, S.; Ottaviano, L.; Spadoni, S.; Avaro, L.; Liscio, A.; Palermo, V.

    2012-05-14

    SiO{sub 2} and Al{sub 2}O{sub 3} surfaces exposed to periodically modulated extreme ultraviolet (EUV) light ({lambda} = 46.9 nm) have been investigated at the {mu}m scale by optical microscopy, scanning electron microscopy, scanning Auger microscopy, atomic force microscopy, and Kelvin probe force microscopy. The formation of a carbon contamination layer preserving the same periodical modulation of the EUV dose has been observed. The mechanisms of hydrocarbon molecules deposition have been studied with the help of correlation plots between the modulated Auger signal and the corresponding EUV dose. A surface-dependent secondary-electron-based model has been proposed.

  12. A chain of winking (oscillating) filaments triggered by an invisible extreme-ultraviolet wave

    SciTech Connect

    Shen, Yuandeng; Tian, Zhanjun; Zhao, Ruijuan; Ichimoto, Kiyoshi; Ishii, Takako T.; Shibata, Kazunari

    2014-05-10

    Winking (oscillating) filaments have been observed for many years. However, observations of successive winking filaments in one event have not yet been reported. In this paper, we present the observations of a chain of winking filaments and a subsequent jet that are observed right after the X2.1 flare in AR11283. The event also produced an extreme-ultraviolet (EUV) wave that has two components: an upward dome-like wave (850 km s{sup –1}) and a lateral surface wave (554 km s{sup –1}) that was very weak (or invisible) in imaging observations. By analyzing the temporal and spatial relationships between the oscillating filaments and the EUV waves, we propose that all the winking filaments and the jet were triggered by the weak (or invisible) lateral surface EUV wave. The oscillation of the filaments last for two or three cycles, and their periods, Doppler velocity amplitudes, and damping times are 11-22 minutes, 6-14 km s{sup –1}, and 25-60 minutes, respectively. We further estimate the radial component magnetic field and the maximum kinetic energy of the filaments, and they are 5-10 G and ∼10{sup 19} J, respectively. The estimated maximum kinetic energy is comparable to the minimum energy of ordinary EUV waves, suggesting that EUV waves can efficiently launch filament oscillations on their path. Based on our analysis results, we conclude that the EUV wave is a good agent for triggering and connecting successive but separated solar activities in the solar atmosphere, and it is also important for producing solar sympathetic eruptions.

  13. Overlying extreme-ultraviolet arcades preventing eruption of a filament observed by AIA/SDO

    SciTech Connect

    Chen, Huadong; Ma, Suli; Zhang, Jun

    2013-11-20

    Using the multi-wavelength data from the Atmospheric Imaging Assembly/Solar Dynamic Observatory (AIA/SDO) and the Sun Earth Connection Coronal and Heliospheric Investigation/Solar Terrestrial Relations Observatory (SECCHI/STEREO), we report a failed filament eruption in NOAA AR 11339 on 2011 November 3. The eruption was associated with an X1.9 flare, but without any coronal mass ejection (CME), coronal dimming, or extreme ultraviolet (EUV) waves. Some magnetic arcades above the filament were observed distinctly in EUV channels, especially in the AIA 94 Å and 131 Å wavebands, before and during the filament eruption process. Our results show that the overlying arcades expanded along with the ascent of the filament at first until they reached a projected height of about 49 Mm above the Sun's surface, where they stopped. The following filament material was observed to be confined by the stopped EUV arcades and not to escape from the Sun. After the flare, a new filament formed at the low corona where part of the former filament remained before its eruption. These results support that the overlying arcades play an important role in preventing the filament from successfully erupting outward. We also discuss in this paper the EUV emission of the overlying arcades during the flare. It is rare for a failed filament eruption to be associated with an X1.9 class flare, but not with a CME or EUV waves. Therefore, this study also provides valuable insight into the triggering mechanism of the initiation of CMEs and EUV waves.

  14. Experimental limits of the extreme ultraviolet background

    NASA Technical Reports Server (NTRS)

    Wulf-Mathies, C.; Grewing, M.; Kraemer, G.; Schulz-Luepertz, E.; Kimble, R.; Bixler, J.; Bowyer, S.

    1983-01-01

    Photometric observations of the diffuse extreme ultraviolet background with two photometers having bandpasses of 750-940 A and 1040-1080 A are reported. The payload, which was flown aboard an ARIES sounding rocket in June 1982, is described, including the electron detectors, filters, and calibration. The operation of the probe during the experiment, including its motions, are described. The primary experiment involved spectroscopic observation of the hot white dwarf HZ43. The photometer count rate is shown and the measurements of the diffuse background are compared with theoretical predictions. Despite the lower limits obtained using a narrowband detector, the measurements are not sensitive enough to draw any relevant astrophysical conclusions.

  15. Subresolution assist features in extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Civay, Deniz; Verduijn, Erik; Clifford, Chris; Mangat, Pawitter; Wallow, Tom

    2015-04-01

    Lithographic critical dimension (CD) printing variability can be easily captured with a CD uniformity measurement; however, minimizing the variability is a challenging task that requires manipulation of many variables. Contact hole variability has a direct impact on device performance, while via variability affects metal area scaling and design. Subresolution assist features (SRAFs) have been used in the past to improve lithographic printing variability. SRAFs enhance the image log slope of nearby features but are not intended to print themselves. The role of SRAFs in extreme ultraviolet is explored here.

  16. Extreme and far ultraviolet astronomy from Voyagers 1 and 2

    NASA Technical Reports Server (NTRS)

    Holberg, J. B.

    1990-01-01

    The instrumental characteristics, observational capabilities and scientific results of the Voyager 1 and 2 ultraviolet spectrometers are reviewed. These instruments provide current and ongoing access to low resolution spectra for a wide variety of astronomical sources in the 500 to 1700 A band. Observations of the brightest OB stars and hot subluminous stars as faint as V = 15 mag, are possible. In the EUV, at wavelengths shortward of 900 A, several new sources have been detected and a host of potential sources ruled out. In the far UV, particularly at wavelengths between 900 and 1200 A, Voyager is capable of observing a wide range of stellar and non-stellar sources. Such observations can often provide a valuable complement to IUE and other data sets at longer wavelengths. The Voyager spectrometers have proved remarkably stable photon counting instruments, capable of extremely long integration times. The long integration times, relatively large field of view, and location in the outer solar system also provide an ideal platform for observations of sources of faint diffuse emission, such as nebulae and the general sky background.

  17. Organometallic carboxylate resists for extreme ultraviolet with high sensitivity

    NASA Astrophysics Data System (ADS)

    Passarelli, James; Murphy, Michael; Re, Ryan Del; Sortland, Miriam; Hotalen, Jodi; Dousharm, Levi; Fallica, Roberto; Ekinci, Yasin; Neisser, Mark; Freedman, Daniel A.; Brainard, Robert L.

    2015-10-01

    We have developed organometallic carboxylate compounds [RnM)] capable of acting as negative-tone extreme ultraviolet (EUV) resists. The most sensitive of these resists contain antimony, three R-groups and two carboxylate groups, and carboxylate groups with polymerizable olefins (e.g., acrylate, methacrylate, or styrenecarboxylate). Evidence suggests that high sensitivity is achieved through the polymerization of olefins in the exposed region. We have performed a systematic sensitivity study of the molecules of the type RnM) where we have studied seven R groups, four main group metals (M), and three polymerizable carboxylate groups (O2CR‧). The sensitivity of these resists was evaluated using Emax or dose to maximum resist thickness after exposure and development. We found that the greatest predictor of sensitivity of the RnSb) resists is their level of polymerizable olefins. We mathematically define the polymerizable olefin loading (POL) as the ratio of the number of olefins versus the number of nonhydrogen atoms. Linear and log plots of Emax versus POL for a variety of molecules of the type R3Sb) lend insight into the behavior of these resists.

  18. Smoothing of Diamond-Turned Substrates for Extreme Ultraviolet Illuminators

    SciTech Connect

    Soufli, R; Spiller, E; Schmidt, M A; Robinson, J C; Baker, S L; Ratti, S; Johnson, M A; Gullikson, E M

    2003-11-13

    Condenser optics in extreme ultraviolet lithography (EUVL) systems are subjected to frequent replacement as they are positioned close to the illumination source, where increased heating and contamination occur. In the case of aspherical condenser elements made by optical figuring/finishing, their replacement can be very expensive (several hundred thousand dollars). One approach to this problem would be to manufacture inexpensive illuminator optics that meet all required specifications and could be replaced at no substantial cost. Diamond-turned metal substrates are a factor of 100 less expensive than conventional aspherical substrates but have insufficient finish, leading to unacceptably low EUV reflectance after multilayer coating. In this work it is shown that, by applying a smoothing film prior to multilayer coating, the high spatial frequency roughness of a diamond-turned metal substrate is reduced from 1.76 to 0.27 nm rms while the figure slope error is maintained at acceptable levels. Metrology tests performed at various stages of the fabrication of the element demonstrated that it satisfied all critical figure and finish specifications as illuminator. Initial experimental results on the stability and performance of the optic under a real EUVL plasma source environment show no accelerated degradation when compared to conventional substrates.

  19. Viability of pattern shift for defect-free extreme ultraviolet lithography photomasks

    NASA Astrophysics Data System (ADS)

    Qi, Zhengqing John; Rankin, Jed; Narita, Eisuke; Kagawa, Masayuki

    2016-04-01

    Several challenges hinder extreme ultraviolet lithography (EUVL) photomask fabrication and its readiness for high-volume manufacturing (HVM). The lack in availability of pristine defect-free blanks as well as the absence of a robust mask repair technique mandates defect mitigation through pattern shift for the production of defect-free photomasks. By using known defect locations on a blank, the mask design can be intentionally shifted to avoid patterning directly over a defect. The work presented here provides a comprehensive look at pattern shift implementation to intersect EUV HVM for the 7-nm technology node (N7). An empirical error budget to compensate for various measurement errors, based on the latest HVM inspection and write tool capabilities, is first established and then verified postpatterning. The validated error budget is applied to 20 representative EUV blanks and pattern shift is performed using fully functional N7 chip designs that were recently used to fabricate working silicon-germanium devices. Probability of defect-free masks are explored for various N7 photomask levels, including metal, contact, and gate cut layers. From these results, an assessment is made on the current viability of defect-free EUV masks and what is required to construct a complete defect-free EUV mask set.

  20. Extreme-ultraviolet polarimeter utilizing laser-generated high-order harmonics.

    PubMed

    Brimhall, Nicole; Turner, Matthew; Herrick, Nicholas; Allred, David D; Turley, R Steven; Ware, Michael; Peatross, Justin

    2008-10-01

    We describe an extreme-ultraviolet (EUV) polarimeter that employs laser-generated high-order harmonics as the light source. The polarimeter is designed to characterize materials and thin films for use with EUV light. Laser high harmonics are highly directional with easily rotatable linear polarization, not typically available with other EUV sources. The harmonics have good wavelength coverage, potentially spanning the entire EUV from a few to a hundred nanometers. Our instrument is configured to measure reflectances from 14 to 30 nm and has approximately 180 spectral resolution (lambda/Delta lambda). The reflection from a sample surface can be measured over a continuous range of incident angles (5 degrees-75 degrees). A secondary 14 cm gas cell attenuates the harmonics in a controlled way to keep signals within the linear dynamic range of the detector, comprised of a microchannel plate coupled to a phosphorous screen and charge coupled device camera. The harmonics are produced using approximately 10 mJ, approximately 35 fs, and approximately 800 nm laser pulses with a repetition rate of 10 Hz. Per-shot energy monitoring of the laser discriminates against fluctuations. The polarimeter reflectance data agree well with data obtained at the Advanced Light Source Synchrotron (Beamline 6.3.2).

  1. Study of Solar Energetic Particle Associations with Coronal Extreme-ultraviolet Waves

    NASA Astrophysics Data System (ADS)

    Park, Jinhye; Innes, D. E.; Bucik, R.; Moon, Y.-J.; Kahler, S. W.

    2015-07-01

    We study the relationship between large gradual solar energetic particle (SEP) events and associated extreme-ultraviolet (EUV) wave properties in 16 events that occurred between 2010 August and 2013 May and were observed by SDO, the Solar and Heliospheric Observatory (SOHO), and/or STEREO. We determine onset times, peak times, and peak fluxes of the SEP events in the SOHO/ERNE and STEREO/LET proton channels (6-10 MeV). The EUV wave arrival times and their speeds from the source sites to the spacecraft footpoints in the photosphere, which are magnetically connected to the spacecraft by Parker spiral and potential fields, are determined by spacetime plots from the full-Sun heliographic images created by combining STEREO-A and STEREO-B 195 Å and SDO 193 Å images. The SEP peak fluxes increase with the EUV wave speeds, and the SEP spectral indices become harder with the speeds. This shows that higher energetic particle fluxes are associated with faster EUV waves, which are considered as the lateral expansions of coronal-mass-ejection-driven shocks in the low corona.

  2. STUDY OF SOLAR ENERGETIC PARTICLE ASSOCIATIONS WITH CORONAL EXTREME-ULTRAVIOLET WAVES

    SciTech Connect

    Park, Jinhye; Moon, Y.-J.; Innes, D. E.; Bucik, R.; Kahler, S. W.

    2015-07-20

    We study the relationship between large gradual solar energetic particle (SEP) events and associated extreme-ultraviolet (EUV) wave properties in 16 events that occurred between 2010 August and 2013 May and were observed by SDO, the Solar and Heliospheric Observatory (SOHO), and/or STEREO. We determine onset times, peak times, and peak fluxes of the SEP events in the SOHO/ERNE and STEREO/LET proton channels (6–10 MeV). The EUV wave arrival times and their speeds from the source sites to the spacecraft footpoints in the photosphere, which are magnetically connected to the spacecraft by Parker spiral and potential fields, are determined by spacetime plots from the full-Sun heliographic images created by combining STEREO-A and STEREO-B 195 Å and SDO 193 Å images. The SEP peak fluxes increase with the EUV wave speeds, and the SEP spectral indices become harder with the speeds. This shows that higher energetic particle fluxes are associated with faster EUV waves, which are considered as the lateral expansions of coronal-mass-ejection-driven shocks in the low corona.

  3. Considerations for a free-electron laser-based extreme-ultraviolet lithography program

    NASA Astrophysics Data System (ADS)

    Hosler, Erik R.; Wood, Obert R.; Barletta, William A.; Mangat, Pawitter J. S.; Preil, Moshe E.

    2015-03-01

    Recent years have seen great strides in the development of extreme ultraviolet (EUV) laser-produced plasma sources. Field deployed EUV exposure tools are now capable of facilitating advanced technology node development. Nevertheless, as the required manufacturing exposure dose scales, EUV sources must follow suit and provide 500- 1000 W to maintain production throughputs. A free-electron laser (FEL) offers a cost effective, single-source alternative for powering an entire EUV lithography program. FEL integration into semiconductor fab architecture will require both unique facility considerations as well as a paradigm shift in lithography operations. Critical accelerator configurations relating to energy recovery, multi-turn acceleration, and operational mode are discussed from engineering/scientific, cost-minimization, and safety perspectives. Furthermore, the individual components of a FEL (electron injector, RF systems, undulator, etc.) are examined with respect to both design and cost, considering existing technology as well as prospective innovations. Finally, FEL development and deployment roadmaps are presented, focusing on manufacturer deployment for the 5 nm or 3 nm technology nodes.[1-3

  4. Technique for rapid at-wavelength inspection of extreme ultraviolet mask blanks

    SciTech Connect

    Spector, S. J.; White, D. L.; Tennant, D. M.; Ocola, L. E.; Novembre, A. E.; Peabody, M. L.; Wood, O. R. II

    1999-11-01

    We have developed two new methods for at-wavelength inspection of mask blanks for extreme-ultraviolet (EUV) lithography. In one method an EUV photoresist is applied directly to a mask blank which is then flood exposed with EUV light and partially developed. In the second method, the photoresist is applied to an EUV transparent membrane that is placed in close proximity to the mask and then exposed and developed. Both reflectivity defects and phase defects alter the exposure of the resist, resulting in mounds of resist at defect sites that can then be located by visual inspection. In the direct application method, a higher contrast resist was shown to increase the height of the mounds, thereby improving the sensitivity of the technique. In the membrane method, a holographic technique was used to reconstruct an image of the mask, revealing the presence of very small defects, approximately 0.2 {mu}m in size. The demonstrated clean transfer of phase and amplitude defects to resist features on a membrane will be important when flagging defects in an automatic inspection tool. (c) 1999 American Vacuum Society.

  5. Thermalization of electrons in decaying extreme ultraviolet photons induced low pressure argon plasma

    NASA Astrophysics Data System (ADS)

    Beckers, J.; van der Horst, R. M.; Osorio, E. A.; Kroesen, G. M. W.; Banine, V. Y.

    2016-06-01

    We monitored—in the pressure range: 0.5-15 Pa—the electron temperature in decaying plasmas induced in argon gas by pulsed irradiation with extreme ultraviolet (EUV) photons with wavelengths closely around 13.5 nm. For this purpose, temporal measurements of the space-averaged and electric field weighted electron density after pulsed EUV irradiation are combined with an ambipolar diffusion model of the plasma. Results demonstrate that electrons are thermalized to room temperature before the plasma has fully expanded to the chamber walls for pressures of 3 Pa and higher. At pressures below 3 Pa, the electron temperature was found to be up to 0.1 eV above room temperature which is explained by the fact that plasma expansion is too quick for the electrons to fully thermalize. The comparison between plasma expansion duration towards a surface, plasma decay at a surface and time needed for thermalization and cooling of electrons is essential for designers of EUV lithography tools and EUV sources since the temperature of electrons dictates many fundamental physical processes.

  6. At-wavelength characterization of the extreme ultraviolet Engineering Test Stand Set-2 optic

    SciTech Connect

    Naulleau, Patrick; Goldberg, Kenneth A.; Anderson, Erik H.; Batson, Phillip; Denham, Paul E.; Jackson, Keith H.; Gullikson, Eric M.; Rekawa, Senajith; Bokor, Jeffrey

    2001-06-10

    At-wavelength interferometric characterization of a new 4x-reduction lithographic-quality extreme ultraviolet (EUV) optical system is described. This state-of-the-art projection optic was fabricated for installation in the EUV lithography Engineering Test Stand (ETS) and is referred to as the ETS Set-2 optic. EUV characterization of the Set-2 optic is performed using the EUV phase-shifting point diffraction interferometer (PS/PDI) installed on an undulator beamline at Lawrence Berkeley National Laboratory's Advanced Light Source. This is the same interferometer previously used for the at-wavelength characterization and alignment of the ETS Set-1 optic. In addition to the PS/PDI-based full-field wavefront characterization, we also present wavefront measurements performed with lateral shearing interferometry, the chromatic dependence of the wavefront error, and the system-level pupil-dependent spectral-bandpass characteristics of the optic; the latter two properties are only measurable using at-wavelength interferometry.

  7. A desktop extreme ultraviolet microscope based on a compact laser-plasma light source

    NASA Astrophysics Data System (ADS)

    Wachulak, P. W.; Torrisi, A.; Bartnik, A.; Węgrzyński, Ł.; Fok, T.; Fiedorowicz, H.

    2017-01-01

    A compact, desktop size microscope, based on laser-plasma source and equipped with reflective condenser and diffractive Fresnel zone plate objective, operating in the extreme ultraviolet (EUV) region at the wavelength of 13.8 nm, was developed. The microscope is capable of capturing magnified images of objects with 95-nm full-pitch spatial resolution (48 nm 25-75% KE) and exposure time as low as a few seconds, combining reasonable acquisition conditions with stand-alone desktop footprint. Such EUV microscope can be regarded as a complementary imaging tool to already existing, well-established ones. Details about the microscope, characterization, resolution estimation and real sample images are presented and discussed.

  8. Note: Thermally stable thin-film filters for high-power extreme-ultraviolet applications.

    PubMed

    Tarrio, C; Berg, R F; Lucatorto, T B; Lairson, B; Lopez, H; Ayers, T

    2015-11-01

    We investigated several types of thin-film filters for high intensity work in the extreme-ultraviolet (EUV) spectral range. In our application, with a peak EUV intensity of 2.7 W cm(-2), Ni-mesh-backed Zr filters have a typical lifetime of 20 h, at which point they suffer from pinholes and a 50% loss of transmission. Initial trials with Si filters on Ni meshes resulted in rupture of the filters in less than an hour. A simple thermal calculation showed that the temperature rise in those filters to be about 634 K. A similar calculation indicated that using a finer mesh with thicker wires and made of Cu reduces the temperature increase to about 60 K. We have exposed a Si filter backed by such a mesh for more than 60 h with little loss of transmission and no leaks.

  9. Thermally stable thin-film filters for high-power extreme-ultraviolet applications

    PubMed Central

    Tarrio, C.; Berg, R. F.; Lucatorto, T. B.; Lairson, B.; Lopez, H.; Ayers, T.

    2016-01-01

    We investigated several types of thin-film filters for high intensity work in the extreme-ultraviolet (EUV) spectral range. In our application, with a peak EUV intensity of 2.7 W cm−2, Ni-mesh-backed Zr filters have a typical lifetime of 20 hours, at which point they suffer from pinholes and a 50 % loss of transmission. Initial trials with Si filters on Ni meshes resulted in rupture of the filters in less than an hour. A simple thermal calculation showed that the temperature rise in those filters to be about 634 K. A similar calculation indicated that using a finer mesh with thicker wires and made of Cu reduces the temperature increase to about 60 K. We have exposed a Si filter backed by such a mesh for more than 60 hours with little loss of transmission and no leaks. PMID:26628184

  10. Interplay of electron heating and saturable absorption in ultrafast extreme ultraviolet transmission of condensed matter

    NASA Astrophysics Data System (ADS)

    Di Cicco, Andrea; Hatada, Keisuke; Giangrisostomi, Erika; Gunnella, Roberto; Bencivenga, Filippo; Principi, Emiliano; Masciovecchio, Claudio; Filipponi, Adriano

    2014-12-01

    High intensity pulses obtained by modern extreme ultraviolet (EUV) and x-ray photon sources allows the observation of peculiar phenomena in condensed matter. Experiments performed at the Fermi@Elettra FEL-1 free-electron-laser source at 23.7, 33.5, and 37.5 eV on Al thin films, for an intermediate-fluence range up to about 20 J /cm2, show evidence for a nonmonotonic EUV transmission trend. A decreasing transmission up to about 5 -10 J /cm2 is followed by an increase at higher fluence, associated with saturable absorption effects. The present findings are interpreted within a simplified three-channel model, showing that an account of the interplay between ultrafast electron heating and saturation effects is required to explain the observed transmission trend.

  11. Enhancement of laser plasma extreme ultraviolet emission by shockwave-laser interaction

    SciTech Connect

    Bruijn, Rene de; Koshelev, Konstantin N.; Zakharov, Serguei V.; Novikov, Vladimir G.; Bijkerk, Fred

    2005-04-15

    A double laser pulse heating scheme has been applied to generate plasmas with enhanced emission in the extreme ultraviolet (EUV). The plasmas were produced by focusing two laser beams (prepulse and main pulse) with a small spatial separation between the foci on a xenon gas jet target. Prepulses with ps-duration were applied to obtain high shockwave densities, following indications of earlier published results obtained using ns prepulses. EUV intensities around 13.5 nm and in the range 5-20 nm were recorded, and a maximum increase in intensity exceeding 2 was measured at an optimal delay of 140 ns between prepulse and main pulse. The gain in intensity is explained by the interaction of the shockwave produced by the prepulse with the xenon in the beam waist of the main pulse. Extensive simulation was done using the radiative magnetohydrodynamic code Z{sup *}.

  12. Electron-Impact-Induced Emission Cross Sections of Neon in the Extreme Ultraviolet

    NASA Technical Reports Server (NTRS)

    Kanik, I.; Ajello, J. M.; James, G. K.

    1996-01-01

    We have measured the extreme ultraviolet (EUV) spectrum of neon produced by electron excitation. The measurements were obtained under optically thin conditions, and at a spectral resolution of 0.5 nm full width at half maximum (FWHM). The most prominent features of the EUV spectrum between 45-80 nm are the resonance lines of Ne I at 73.6 and 74.4 nm and a multiplet of Ne II at 46.14 nm (the average value for the line center of the two closely spaced ion lines at 46.07 and 46.22 nm). Absolute emission cross sections of these lines at 300 eV were measured and compared to other previous measurements.

  13. Improved emission uniformity from a liquid-jet laser-plasma extreme-ultraviolet source.

    PubMed

    Hansson, Björn A M; Mosesson, Sofia; Hertz, Hans M

    2004-10-10

    Many modern compact soft-x-ray and extreme-ultraviolet (EUV) imaging systems operate with small fields of view and therefore benefit from the use of small high-brightness sources. Such systems include water-window microscopes and EUV lithography tools. We show that the photon losses in such systems can be minimized while uniformity of object-plane illumination is maintained by controlled scanning of the source. The improved collection efficiency is demonstrated both theoretically and experimentally for a scanned laser-plasma source compared with static sources. A prospective aerial image microscope and a liquid-xenon-jet laser-plasma source are offered as examples of modern imaging tools that may benefit from such scanning of the source.

  14. Recording oscillations of sub-micron size cantilevers by extreme ultraviolet Fourier transform holography.

    PubMed

    Monserud, Nils C; Malm, Erik B; Wachulak, Przemyslaw W; Putkaradze, Vakhtang; Balakrishnan, Ganesh; Chao, Weilun; Anderson, Erik; Carlton, David; Marconi, Mario C

    2014-02-24

    We recorded the fast oscillation of sub-micron cantilevers using time-resolved extreme ultraviolet (EUV) Fourier transform holography. A tabletop capillary discharge EUV laser with a wavelength of 46.9 nm provided a large flux of coherent illumination that was split using a Fresnel zone plate to generate the object and the reference beams. The reference wave was produced by the first order focus while a central opening in the zone plate provided a direct illumination of the cantilevers. Single-shot holograms allowed for the composition of a movie featuring the fast oscillation. Three-dimensional displacements of the object were determined as well by numerical back-propagation, or "refocusing" of the electromagnetic fields during the reconstruction of a single hologram.

  15. Non-perturbative twist of attosecond extreme-ultraviolet vortex beams

    NASA Astrophysics Data System (ADS)

    Hernández García, Carlos; Rego, Laura; San Román, Julio; Picón, Antonio; Plaja, Luis

    2017-02-01

    Extreme-ultraviolet (EUV) attosecond vortices carrying orbital angular momentum (OAM) are produced through high-order harmonic generation (HHG) from the nonlinear conversion of infrared twisted beams. While previous works demonstrated a linear scaling law of the vortex OAM content with the harmonic order, an unexpectedly rich scenario for the OAM buildup appears when HHG is driven by a vortex combination. The non-perturbative nature of HHG increases the OAM content of the attosecond vortices when the driving field presents an azimuthally varying intensity profile. We theoretically explore the underlying mechanisms for this diversity and disentangle the perturbative and non-perturbative nature in the generation of EUV attosecond twisted through numerical simulations.

  16. Electron-Impact-Induced Emission Cross Sections of Neon in the Extreme Ultraviolet

    NASA Technical Reports Server (NTRS)

    Kanik, I.; Ajello, J. M.; James, G. K.

    1996-01-01

    We have measured the extreme ultraviolet (EUV) spectrum of neon produced by electron excitation. The measurements were obtained under optically thin conditions, and at a spectral resolution of 0.5 nm full width at half maximum (FWHM). The most prominent features of the EUV spectrum between 45-80 nm are the resonance lines of Ne I at 73.6 and 74.4 nm and a multiplet of Ne II at 46.14 nm (the average value for the line center of the two closely spaced ion lines at 46.07 and 46.22 nm). Absolute emission cross sections of these lines at 300 eV were measured and compared to other previous measurements.

  17. Minimization of the shadow patterns produced by periodic mesh grids in extreme ultraviolet telescopes.

    PubMed

    Auchère, Frédéric; Rizzi, Julien; Philippon, Anne; Rochus, Pierre

    2011-01-01

    Thin metallic films are used as passband filters in space telescopes operating in the extreme ultraviolet (EUV). Because of their thinness, typically 100 to 200 nm, they are very sensitive to static pressure differentials and to mechanic and acoustic vibrations. Therefore, they are difficult to manage in all phases of a space program, from manufacturing to vacuum testing to launch. A common solution to this problem is to reinforce them with fine mesh grids with pitches ranging from a few hundred micrometers to a few millimeters. Depending on their location in the optical path, the main effect of these periodic grids is either to diffract light or to cast penumbral shadows on the focal plane. In this paper, we analyze the formation of the shadow modulation patterns and derive design rules to minimize their amplitude. The minimization principle is illustrated by an application to a solar EUV telescope.

  18. Large-solid-angle illuminators for extreme ultraviolet lithography with laser plasmas

    SciTech Connect

    Kubiak, G.D.; Tichenor, D.A.; Sweatt, W.C.; Chow, W.W.

    1995-06-01

    Laser Plasma Sources (LPSS) of extreme ultraviolet radiation are an attractive alternative to synchrotron radiation sources for extreme ultraviolet lithography (EUVL) due to their modularity, brightness, and modest size and cost. To fully exploit the extreme ultraviolet power emitted by such sources, it is necessary to capture the largest possible fraction of the source emission half-sphere while simultaneously optimizing the illumination stationarity and uniformity on the object mask. In this LDRD project, laser plasma source illumination systems for EUVL have been designed and then theoretically and experimentally characterized. Ellipsoidal condensers have been found to be simple yet extremely efficient condensers for small-field EUVL imaging systems. The effects of aberrations in such condensers on extreme ultraviolet (EUV) imaging have been studied with physical optics modeling. Lastly, the design of an efficient large-solid-angle condenser has been completed. It collects 50% of the available laser plasma source power at 14 nm and delivers it properly to the object mask in a wide-arc-field camera.

  19. Extreme ultraviolet emission from laser-induced plasma relevance to neutral gas environment simulation in LEO

    NASA Astrophysics Data System (ADS)

    Tagawa, Masahito; Kimoto, Yugo; Yokota, Kumiko; Ohira, Junki; Watanabe, Daiki; Nishimura, Hiroaki

    The reaction mechanism of atomic oxygen (AO) in low Earth orbit (LEO) with spacecraft materials has been studied by ground-based experiments using laser-detonation hyperthermal beam source, which enables to accelerate the electrically neutral AO up to 8 km/s. However, the beam conditions in the laser-detonation sources could not fully duplicate the AO environment in space. The difference in beam condition including side products leads to the different material responses. The light emission from the laser-induced oxygen plasma may affect the erosion of ultraviolet (UV)-sensitive materials. However, the light emission could also be used as a diagnostic tool to understand the molecular processes in plasma. In this presentation, extreme ultraviolet (EUV) emission from the laser-induced plasma during AO test was evaluated by the flat field EUV spectrometer. Many emission lines between 25-40 nm originated from OII and OIII were observed from the laser-induced oxygen plasma. This result suggested multiple-charged O ions are generated in the laser-induced plasma. Promotion of oxygen dissociation effect by adding Ar in the target gas was explained by the energy transfer processes from Ar to O2 in the plasma. From the viewpoint of reducing the side products in the AO exposure tests, a method to reduce the EUV emission will also be investigated. These results could be used for establishing more accurate ground-based natural gas simulations on the space environmental effect of materials.

  20. Novel high sensitivity EUV photoresist for sub-7nm node

    NASA Astrophysics Data System (ADS)

    Nagai, Tomoki; Nakagawa, Hisashi; Naruoka, Takehiko; Tagawa, Seiichi; Oshima, Akihiro; Nagahara, Seiji; Shiraishi, Gosuke; Yoshihara, Kosuke; Terashita, Yuichi; Minekawa, Yukie; Buitrago, Elizabeth; Ekinci, Yasin; Yildirim, Oktay; Meeuwissen, Marieke; Hoefnagels, Rik; Rispens, Gijsbert; Verspaget, Coen; Maas, Raymond

    2016-03-01

    Extreme ultraviolet lithography (EUVL) has been recognized as the most promising candidate for the manufacture of semiconductor devices for the 7 nm node and beyond. A key point in the successful introduction of EUV lithography in high volume manufacture (HVM) is the effective EUV dose utilization while simultaneously realizing ultra-high resolution and low line edge roughness (LER). Here we show EUV resist sensitivity improvement with the use of a photosensitized chemically amplified resist PSCARTM system. The evaluation of this new chemically amplified resist (CAR) as performed using EUV interference lithography (EUV-IL) is described and the fundamentals are discussed.

  1. MAGNETIC RECONNECTION: FROM 'OPEN' EXTREME-ULTRAVIOLET LOOPS TO CLOSED POST-FLARE ONES OBSERVED BY SDO

    SciTech Connect

    Zhang, Jun; Yang, Shuhong; Li, Ting; Zhang, Yuzong; Li, Leping; Jiang, Chaowei E-mail: shuhongyang@nao.cas.cn E-mail: yuzong@nao.cas.cn E-mail: cwjiang@spaceweather.ac.cn

    2013-10-10

    We employ Solar Dynamics Observatory observations and select three well-observed events including two flares and one extreme-ultraviolet (EUV) brightening. During the three events, the EUV loops clearly changed. One event was related to a major solar flare that took place on 2012 July 12 in active region NOAA AR 11520. 'Open' EUV loops rooted in a facula of the AR deflected to the post-flare loops and then merged with them while the flare ribbon approached the facula. Meanwhile, 'open' EUV loops rooted in a pore disappeared from top to bottom as the flare ribbon swept over the pore. The loop evolution was similar in the low-temperature channels (e.g., 171 Å) and the high-temperature channels (e.g., 94 Å). The coronal magnetic fields extrapolated from the photospheric vector magnetograms also show that the fields apparently 'open' prior to the flare become closed after it. The other two events were associated with a B1.1 flare on 2010 May 24 and an EUV brightening on 2013 January 03, respectively. During both of these two events, some 'open' loops either disappeared or darkened before the formation of new closed loops. We suggest that the observations reproduce the picture predicted by the standard magnetic reconnection model: 'open' magnetic fields become closed due to reconnection, manifesting as a transformation from 'open' EUV loops to closed post-flare ones.

  2. Grazing incidence metal optics for the Berkeley Extreme Ultraviolet Explorer satellite - A progress report

    NASA Technical Reports Server (NTRS)

    Finley, D.; Malina, R. F.; Bowyer, S.

    1985-01-01

    The four flight Wolter-Schwarzschild mirrors currently under fabrication for the Extreme Ultraviolet Explorer (EUVE) satellite are described. The principal figuring operation of these grazing incidence metal mirrors (gold over nickel on an aluminum substrate) is carried out by diamond turning at the Lawrence Livermore National Laboratories. Turning has been accomplished and optical testing results analyzed for three of the mirrors. As-turned values of 1.7 arc sec full width at half maximum (FWHM) and half energy width (HEW) of 5 arc seconds in the visible have been achieved. These results illustrate the great potential of precision fabrication technology for the production of large grazing incidence optics.

  3. Surface evaluation of the grazing incidence mirrors for the Extreme Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Green, James; Finley, David S.; Bowyer, Stuart; Malina, Roger F.

    1987-01-01

    The EUV scattering from the Wolter-Schwarzschild type I short wavelength scanner mirror aboard the Extreme Ultraviolet Explorer is measured, and the results are used to evaluate the surface microroughness of the mirror. It is found that the most likely values for the mirror surface are sigma = 20 A, and rho = 40 microns. These results are consistent with previous estimates, but with a higher degree of certainty. The full-scale simulation presented here allows over 99 percent of the light distribution to be reasonably modeled.

  4. Grazing incidence metal optics for the Berkeley Extreme Ultraviolet Explorer satellite - A progress report

    NASA Technical Reports Server (NTRS)

    Finley, D.; Malina, R. F.; Bowyer, S.

    1985-01-01

    The four flight Wolter-Schwarzschild mirrors currently under fabrication for the Extreme Ultraviolet Explorer (EUVE) satellite are described. The principal figuring operation of these grazing incidence metal mirrors (gold over nickel on an aluminum substrate) is carried out by diamond turning at the Lawrence Livermore National Laboratories. Turning has been accomplished and optical testing results analyzed for three of the mirrors. As-turned values of 1.7 arc sec full width at half maximum (FWHM) and half energy width (HEW) of 5 arc seconds in the visible have been achieved. These results illustrate the great potential of precision fabrication technology for the production of large grazing incidence optics.

  5. EUV and infra-red lines of Fe 13

    NASA Technical Reports Server (NTRS)

    Young, P. R.; Mason, Helen E.; Thomas, R. J.

    1994-01-01

    New level population calculations for Fe-XIII are presented, and line intensities predicted. The extreme ultraviolet (EUV) lines are compared with the recent observations of the solar extreme ultraviolet rocket telescope and spectrograph (SERTS), and density estimates for the active region are given. Uses of the Fe-XIII lines are suggested, both for the sun and other stars, and the possibility of coordinating SOHO studies of EUV lines with ground based observations of Fe-XIII infrared lines is discussed.

  6. Absolute intensity calibration of flat-field space-resolved extreme ultraviolet spectrometer using radial profiles of visible and extreme ultraviolet bremsstrahlung continuum emitted from high-density plasmas in Large Helical Device

    SciTech Connect

    Dong Chunfeng; Wang Erhui; Morita, Shigeru; Goto, Motoshi

    2011-11-15

    A precise absolute intensity calibration of a flat-field space-resolved extreme ultraviolet (EUV) spectrometer working in wavelength range of 60-400 A is carried out using a new calibration technique based on radial profile measurement of the bremsstrahlung continuum in Large Helical Device. A peaked vertical profile of the EUV bremsstrahlung continuum has been successfully observed in high-density plasmas (n{sub e}{>=} 10{sup 14} cm{sup -3}) with hydrogen ice pellet injection. The absolute calibration can be done by comparing the EUV bremsstrahlung profile with the visible bremsstrahlung profile of which the absolute value has been already calibrated using a standard lamp. The line-integrated profile of measured visible bremsstrahlung continuum is firstly converted into the local emissivity profile by considering a magnetic surface distortion due to the plasma pressure, and the local emissivity profile of EUV bremsstrahlung is secondly calculated by taking into account the electron temperature profile and free-free gaunt factor. The line-integrated profile of the EUV bremsstrahlung continuum is finally calculated from the local emissivity profile in order to compare with measured EUV bremsstrahlung profile. The absolute intensity calibration can be done by comparing measured and calculated EUV bremsstrahlung profiles. The calibration factor is thus obtained as a function of wavelength with excellent accuracy. It is also found in the profile analysis that the grating reflectivity of EUV emissions is constant along the direction perpendicular to the wavelength dispersion. Uncertainties on the calibration factor determined with the present method are discussed including charge-coupled device operation modes.

  7. The Extreme Ultraviolet and X-Ray Irradiance Sensors (EXIS) on GOES-16: Measurements, Data Products, and First Results

    NASA Astrophysics Data System (ADS)

    Epavier, Francis; Woods, Thomas; Jones, Andrew; Snow, Martin; Woodraska, Donald; Thiemann, Edward; McClintock, William; Anfinson, Michael; Viereck, Rodney; Machol, Janet; Todirita, Monica; Comeyne, Gustave; Tadikonda, Sivakumara

    2017-04-01

    Launched in November 2016, the NOAA GOES-16 satellite has the EXIS suite that consists of all new versions of the Extreme Ultraviolet Sensors (EUVS) and X-Ray Sensors (XRS) for monitoring the solar irradiance in the wavelength range that drives the thermosphere and ionosphere. The new XRS features updated technology, an increased dynamic range, and flare location capability, while continuing the longstanding historical record of solar soft X-ray measurements of flare variability. The previous version of the EUVS measured broad bandpasses, whereas the new EUVS measures specific solar line emissions selected to span the range of temperatures and variability in the solar atmosphere, allowing for the modeling of the full spectral range. In this presentation we will describe the measurements, models, validation, and first results for the GOES-16 EXIS.

  8. Effect of xenon bombardment on ruthenium-coated grazing incidence collector mirror lifetime for extreme ultraviolet lithography

    SciTech Connect

    Nieto, Martin; Allain, Jean-Paul; Titov, Vladimir; Hendricks, Matthew R.; Hassanein, Ahmed; Rokusek, Daniel; Chrobak, Christopher; Tarrio, Charles; Barad, Yaniv; Grantham, Steven; Lucatorto, Thomas B.; Rice, Brian

    2006-09-01

    The effect of energetic xenon ion bombardment on the extreme ultraviolet (EUV) reflectivity performance of mirrors is of vital importance for the performance of discharge- and laser-produced plasma extreme ultraviolet lithography sources. To study these effects, we measured absolute and relative reflectivities at the National Institute of Standards and Technology and the Interaction of Materials with Particles and Components Testing facility to quantify the effects of singly ionized Xe ion bombardment on the reflectivity of Ru EUV collector mirrors. Results show that unity sputtering is reached at Xe{sup +} energies near 400-500 eV. The Xe{sup +}-induced sputter yield decreases an order of magnitude with only a 60% decrease in energy. Incident angle-dependent data of Xe{sup +} bombardment show that the sputter yield is weakly dependent on angle at energies near 1 keV. Dynamic measurements of in situ EUV reflectivity during Xe{sup +} irradiation show that the oxygen state of the reflecting mirror has a significant effect on reflectivity performance. For example, 13.5 nm light reflecting from an oxygen-rich mirror results in over a 40% loss in reflectivity. These studies also found that the surface roughness increased only at the atomic scale (subnanometer scale) when exposed to energetic Xe{sup +} and thus did not contribute to EUV reflectivity losses except for cases of very high fluences (>10{sup 16} cm{sup -2})

  9. Extreme Ultraviolet Frequency Combs for Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ozawa, A.; Herrmann, M.; Vernaleken, A.; Gohle, Ch.; Bernhardt, B.; Wilken, T.; Schneider, W.; Welter, Ph. Vilar; Knünz, S.; Batteiger, V.; Holzwarth, R.; Peters, E.; Reinhardt, S.; Hänsch, T. W.; Udem, Th.

    2009-04-01

    Optical spectroscopy has matured to the most precise measurement tool in physics thanks to advances in single ion trapping and the possibility to directly measure the frequency of laser light. However, almost 50 years after the invention of the laser the spectral region that can be investigated in this way is still restricted to wavelengths below the near ultraviolet. The much larger spectral band of the extreme ultraviolet (XUV), where many fundamental transitions of say hydrogen like ions reside, is thus far unexplored by high precision laser spectroscopy. One possible route to narrow band radiation in this region could be the use of high order harmonics generated with short laser pulses of high repetition rate focused in a gas jet. Meanwhile μW power levels in the XUV at multi-MHz repetition rates have been demonstrated which are the main prerequisites for this method. The 1S-2S two photon transition at 60 nm in singly ionized helium is a rewarding candidate because it allows sensitive tests of quantum electrodynamics.

  10. Extreme Ultraviolet Solar Spectroscopy with CHIPS

    NASA Astrophysics Data System (ADS)

    Hurwitz, Mark V.; Sasseen, T. P.; Sirk, M.; Marchant, W.; McDonald, J.; Thorsness, J.; Lewis, M.; Woods, T.

    2006-12-01

    The Cosmic Hot Interstellar Plasma Spectrometer (CHIPS) can be utilized to collect extreme ultraviolet spectra of the full solar disk. CHIPS has been collecting solar spectra since late 2005, although the observation geometry was not standardized until April 2006. Since that time, CHIPS has been accumulating spectra on nearly a daily basis. As for the diffuse emission that CHIPS was designed to observe, the bandpass is about 90 to 260 Å, with a peak resolution (λ/Δλ) of about 100. The instrumental efficiency as a function of wavelength is expected to be stable, but is subject to an overall scale factor that is less certain. We explain how CHIPS can collect these spectra, and present representative results.

  11. Photoresists in extreme ultraviolet lithography (EUVL)

    NASA Astrophysics Data System (ADS)

    De Simone, Danilo; Vesters, Yannick; Vandenberghe, Geert

    2017-06-01

    The evolutionary advances in photosensitive material technology, together with the shortening of the exposure wavelength in the photolithography process, have enabled and driven the transistor scaling dictated by Moore's law for the last 50 years. Today, the shortening wavelength trend continues to improve the chips' performance over time by feature size miniaturization. The next-generation lithography technology for high-volume manufacturing (HVM) is extreme ultraviolet lithography (EUVL), using a light source with a wavelength of 13.5 nm. Here, we provide a brief introduction to EUVL and patterning requirements for sub-0-nm feature sizes from a photomaterial standpoint, discussing traditional and novel photoresists. Emphasis will be put on the novel class of metal-containing resists (MCRs) as well as their challenges from a manufacturing prospective.

  12. Femtosecond transparency in the extreme ultraviolet

    NASA Astrophysics Data System (ADS)

    Tarana, Michal; Greene, Chris H.

    2012-06-01

    Electromagnetically induced transparency-like behavior in the extreme ultraviolet (XUV) is studied theoretically, including the effect of intense 800nm laser dressing of He 2s2p(^1P^o) and 2p^2(^2S^e) autoionizing states. We present an ab initio solution of the time-dependent Schr"odinger equation in an LS-coupling configuration interaction basis set. The method enables a rigorous treatment of optical field ionization of these coupled autoionizing states into the N = 2 continuum in addition to N = 1. Our calculated transient absorption spectra show the formation of the Autler-Townes doublet in the presence of the dressing laser field. The presented results are in encouraging agreement with experiment [1]. [4pt] [1] Z.H. Loh, C.H. Greene, and S. R. Leone, Chem. Phys. 350, 7 (2008)

  13. Correction technique of EBM-6000 prepared for EUV mask writing

    NASA Astrophysics Data System (ADS)

    Yoshitake, Shusuke; Sunaoshi, Hitoshi; Yashima, Jun; Tamamushi, Shuichi; Ogasawara, Munehiro

    2007-10-01

    Image placement (IP) errors caused by electro-static chuck (ESC) and non-flatness of mask are additional factors in writing extreme ultra-violet (EUV) mask, and minimizing their influences is being fervently addressed. New correction technique of EBM-6000 has been developed for EUV mask writing based on the conventional grid matching correction (GMC) without ESC to obtain good reproducibility to satisfy user's requirement to develop EUV mask at an early stage.

  14. EUNIS: Extreme-Ultraviolet Normal-Incidence Spectrometer

    NASA Astrophysics Data System (ADS)

    Thomas, R. J.; Davila, J. M.

    2001-05-01

    GSFC is in the process of assembling an Extreme-Ultraviolet Normal-Incidence Spectrometer called EUNIS, to be flown as a sounding rocket payload. This instrument builds on the many technical innovations pioneered by our highly successful SERTS experiment, which has now flown a total of ten times, most recently last summer. The new design will have somewhat improved spatial and spectral resolutions, as well as two orders of magnitude greater sensitivity, permitting high signal/noise EUV spectroscopy with a temporal resolution near 1~second for the first time ever. In order to achieve such high time cadence, a novel detector system is being developed, based on Active-Pixel-Sensor electronics, a key component of our design. The high sensitivity of EUNIS will allow entirely new studies of transient coronal phenomena, such as the rapid loop dynamics seen by TRACE, and searches for non-thermal motions indicative of magnetic reconnection or wave heating. Another observing mode will be to raster a two dimensional region on the disk, giving data on much larger solar areas than could be covered with SERTS. The increased sensitivity will also permit useful EUV spectra at heights of 2--3~Rsun above the limb, where the transition between the static corona and the solar wind might occur. In addition, the new design features two independent optical systems, which more than double the spectral bandwidth covered on each flight. Its 300--370Å bandpass includes He~II 304Å and strong lines from Fe~XI--XVI, extending the current SERTS range of 300--355Å to further improve our ongoing series of calibration under-flights for SOHO/CDS and EIT. The second bandpass of 170--230Å has a sequence of very strong Fe~IX--XIV lines, and will allow under-flight support for two more channels on SOHO/EIT, two channels on TRACE, one on Solar-B/EIS, and all four channels on the STEREO/EUVI instrument. First flight of the new EUNIS payload is scheduled for 2002 October from White Sands Missile Range

  15. Geomagnetic Tail Lab (GEOTAIL) Diffuse Ultraviolet Experiment (DUVE) Processing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    At Launch Complex 17 Pad A, Kennedy Space Center (KSC) workers are installing the payload fairing around the Extreme Ultraviolet Explorer (EUVE) mated to a Delta II rocket. The EUVE spacecraft is designed to study the extreme ultraviolet portion of the spectrum.

  16. Imaging polarimeters for solar extreme ultraviolet astronomy

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Fineschi, Silvano; Fontenla, Juan M.; Walker, Arthur B. C., Jr.

    1991-01-01

    Accounts are given of EUV/FUV polarimetric instrument concepts for solar research which observe linear polarization in the spectral lines which originate in the outer solar atmosphere. The coronagraph/polarimeter instruments discussed employ all-reflective optical systems using ultrasmooth, low-scatter normal incidence mirrors and reflective polarization analyzers. The reflecting polarization analyzers operate at the Brewster angle.

  17. EUVE photometric observations of the Moon

    NASA Astrophysics Data System (ADS)

    Gladstone, G. R.; McDonald, J. S.; Boyd, W. T.; Bowyer, S.

    1994-03-01

    During its all-sky survey, the Extreme Ultraviolet Explorer (EUVE) satellite observed the Moon several times at first and last quarters, and once immediately following the Dec. 10 1992 lunar eclipse. We present here a portion of this data, in the form of extreme-ultraviolet (EUV) images of the Moon and derived geometric albedos. From the EUVE photometer data we obtain average geometric albedos of 0.15% (+/- 0.03%), 3.1% (+/- 0.3%), and 3.5% (+/- 0.3%), over wavelength intervals of 150-240 A, 400-580 A, and 550-650 A, respectively. An upper limit geometric albedo of 0.13% is obtained for the wavelength interval 75-180 A. Also, using previously published ROSAT data, we estimate a lunar geometric albedo of 0.014% (+/- 0.002%) over the wavelength interval 50-80 A. These EUV albedos (and previously published far-ultraviolet albedos) are well fit by the scaled reflectivities of SiO2 and Al2O3. Over the wavelength ranges of the EUVE photometers, the observed brightness of the Moon seems to be largely consistent with reflected sunlight rather than X-ray fluorescence. Since the L- and M-shell fluorescence signal is expected to be carried by only small number of emission lines, however, it will require EUV observations of higher spectral resolution (approximately less than 5 A) to determine their exact contribution, if any, to the lunar EUV spectrum.

  18. Advanced materials for multilayer mirrors for extreme ultraviolet solar astronomy.

    PubMed

    Bogachev, S A; Chkhalo, N I; Kuzin, S V; Pariev, D E; Polkovnikov, V N; Salashchenko, N N; Shestov, S V; Zuev, S Y

    2016-03-20

    We provide an analysis of contemporary multilayer optics for extreme ultraviolet (EUV) solar astronomy in the wavelength ranges: λ=12.9-13.3  nm, λ=17-21  nm, λ=28-33  nm, and λ=58.4  nm. We found new material pairs, which will make new spaceborne experiments possible due to the high reflection efficiencies, spectral resolution, and long-term stabilities of the proposed multilayer coatings. In the spectral range λ=13  nm, Mo/Be multilayer mirrors were shown to demonstrate a better ratio of reflection efficiency and spectral resolution compared with the commonly used Mo/Si. In the spectral range λ=17-21  nm, a new multilayer structure Al/Si was proposed, which had higher spectral resolution along with comparable reflection efficiency compared with the commonly used Al/Zr multilayer structures. In the spectral range λ=30  nm, the Si/B4C/Mg/Cr multilayer structure turned out to best obey reflection efficiency and long-term stability. The B4C and Cr layers prevented mutual diffusion of the Si and Mg layers. For the spectral range λ=58  nm, a new multilayer Mo/Mg-based structure was developed; its reflection efficiency and long-term stability have been analyzed. We also investigated intrinsic stresses inherent for most of the multilayer structures and proposed possibilities for stress elimination.

  19. Sources for beyond extreme ultraviolet lithography and water window imaging

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Gerry; Li, Bowen; Dunne, Padraig; Hayden, Paddy; Kilbane, Deirdre; Lokasani, Ragava; Long, Elaine; Ohashi, Hayato; O'Reilly, Fergal; Sheil, John; Sheridan, Paul; Sokell, Emma; Suzuki, Chihiro; White, Elgiva; Higashiguchi, Takeshi

    2015-05-01

    Lithography tools are being built and shipped to semiconductor manufacturers for high volume manufacturing using extreme ultraviolet lithography (EUVL) at a wavelength of 13.5 nm. This wavelength is based on the availability of Mo/Si multilayer mirrors (MLMs) with a reflectivity of ˜70% at this wavelength. Moreover, the primary lithography tool manufacturer, ASML, has identified 6.x nm, where x˜7, as the wavelength of choice for so-called Beyond EUVL, based on the availability of La/B4C MLMs, with theoretical reflectance approaching 80% at this wavelength. The optimum sources have been identified as laser produced plasmas of Gd and Tb, as n = 4-n = 4 transitions in their ions emit strongly near this wavelength. However, to date, the highest conversion efficiency obtained, for laser to EUV energy emitted within the 0.6% wavelength bandwidth of the mirror is only 0.8%, pointing to the need to identify other potential sources or consider the selection of other wavelengths. At the same time, sources for other applications are being developed. Conventional sources for soft x-ray microscopy use H-like line emission from liquid nitrogen or carbon containing liquid jets which can be focused using zone plates. Recently the possibility of using MLMs with n = 4-n = 4 emission from a highly charged Bi plasma was proposed and subsequently the possibility of using Δn = 1 transitions in 3rd row transition elements was identified. All of these studies seek to identify spectral features that coincide with the reflectance characteristics of available MLMs, determine the conditions under which they are optimized and establish the maximum conversion efficiencies obtainable. Thus, there is a need for systematic studies of laser produced plasmas of a wide range of elements as some of the challenges are similar for all of these sources and some recent results will be presented.

  20. Solar extreme ultraviolet variability of the quiet Sun

    NASA Astrophysics Data System (ADS)

    Shakeri, F.; Teriaca, L.; Solanki, S. K.

    2015-09-01

    The last solar minimum has been unusually quiet compared to the previous minima (since space-based radiometric measurements are available). The Sun's magnetic flux was substantially lower during this minimum. Some studies also show that the total solar irradiance during the minimum after cycle 23 may have dropped below the values known from the two minima prior to that. For chromospheric and coronal radiation, the situation is less clear-cut. The Sun's 10.7 cm flux shows a decrease of ~4% during the solar minimum in 2008 compared to the previous minimum, but Ca ii K does not. Here we consider additional wavelengths in the extreme ultraviolet (EUV), specifically transitions of He i at 584.3 Å and O v at 629.7 Å, of which the CDS spectrometer aboard SOHO has been taking regular scans along the solar central meridian since 1996. We analysed this unique dataset to verify if and how the radiance distribution undergoes measurable variations between cycle minima. To achieve this aim we determined the radiance distribution of quiet areas around the Sun centre. Concentrating on the last two solar minima, we found out that there is very little variation in the radiance distribution of the chromospheric spectral line He i between these minima. The same analysis shows a modest, although significant, 4% variation in the radiance distribution of the TR spectral line O v. These results are comparable to those obtained by earlier studies employing other spectral features, and they confirm that chromospheric indices display a small variation, whereas in the transition region a more significant reduction of the brighter features is visible.

  1. Line image sensors for spectroscopic applications in the extreme ultraviolet

    NASA Astrophysics Data System (ADS)

    Banyay, Matus; Brose, Sascha; Juschkin, Larissa

    2009-10-01

    The spectral range of extreme ultraviolet radiation (XUV or EUV) is an active area of research incorporating many scientific fields such as microscopy, lithography or reflectometry. During the last decade, a lot of effort has been put into transferring many of the known techniques developed at linear accelerators into the laboratory using discharge-produced plasmas (DPPs) or laser-produced plasmas (LPPs) as an alternative light source. In particular, the semiconductor industry is in need of on-site tools in the shorter wavelength range for production and inspection of structured surfaces with nanometer resolution. Here traditional charge coupled device (CCD) image sensors are inapplicable as detectors because of the strong absorption of XUV by matter prohibiting any generation of electron-hole pairs inside a deep lying p-n junction. As a solution, two-dimensional backthinned CCDs are available in the market offering high sensitivity to XUV light. Although for many applications a one-dimensional line scanning image sensor would be sufficient, they are non-existent for XUV. It is only lately that manufacturers have started to adopt the principle of backthinning to CCD line sensors to enhance sensitivity in the long wavelength UV range (>200 nm). Here we show that generally these compact sensors offer good quantum efficiencies in the XUV which make them a candidate for many spectroscopic applications and future industrial inline inspection tools for which costly two-dimensional CCDs are oversized. We have successfully implemented a compact sensor device into a laboratory XUV spectrometer and reflectometer. Our measurements compare the quantum efficiency of a state-of-the-art XUV array CCD to a phosphor-coated line sensor and a new backthinned line sensor. Additionally, we show recorded spectra from a laboratory DPP source to demonstrate the potential of a wide range of applications.

  2. Sensitivity enhancement of chemically amplified resists and performance study using extreme ultraviolet interference lithography

    NASA Astrophysics Data System (ADS)

    Buitrago, Elizabeth; Nagahara, Seiji; Yildirim, Oktay; Nakagawa, Hisashi; Tagawa, Seiichi; Meeuwissen, Marieke; Nagai, Tomoki; Naruoka, Takehiko; Verspaget, Coen; Hoefnagels, Rik; Rispens, Gijsbert; Shiraishi, Gosuke; Terashita, Yuichi; Minekawa, Yukie; Yoshihara, Kosuke; Oshima, Akihiro; Vockenhuber, Michaela; Ekinci, Yasin

    2016-07-01

    Extreme ultraviolet lithography (EUVL, λ=13.5 nm) is the most promising candidate to manufacture electronic devices for future technology nodes in the semiconductor industry. Nonetheless, EUVL still faces many technological challenges as it moves toward high-volume manufacturing (HVM). A key bottleneck from the tool design and performance point of view has been the development of an efficient, high-power EUV light source for high throughput production. Consequently, there has been extensive research on different methodologies to enhance EUV resist sensitivity. Resist performance is measured in terms of its ultimate printing resolution, line width roughness (LWR), sensitivity [S or best energy (BE)], and exposure latitude (EL). However, there are well-known fundamental trade-off relationships (line width roughness, resolution and sensitivity trade-off) among these parameters for chemically amplified resists (CARs). We present early proof-of-principle results for a multiexposure lithography process that has the potential for high sensitivity enhancement without compromising other important performance characteristics by the use of a "Photosensitized Chemically Amplified Resist™" (PSCAR™). With this method, we seek to increase the sensitivity by combining a first EUV pattern exposure with a second UV-flood exposure (λ=365 nm) and the use of a PSCAR. In addition, we have evaluated over 50 different state-of-the-art EUV CARs. Among these, we have identified several promising candidates that simultaneously meet sensitivity, LWR, and EL high-performance requirements with the aim of resolving line space (L/S) features for the 7- and 5-nm logic node [16- and 13-nm half-pitch (HP), respectively] for HVM. Several CARs were additionally found to be well resolved down to 12- and 11-nm HP with minimal pattern collapse and bridging, a remarkable feat for CARs. Finally, the performance of two negative tone state-of-the-art alternative resist platforms previously investigated

  3. Research in extreme ultraviolet and far ultraviolet astronomy

    NASA Technical Reports Server (NTRS)

    Bowyer, C. S.

    1987-01-01

    Analysis and interpretation continued on data generated by the flight of 27.086 in April of 1986 and by the successful UVX mission. Optical and mechanical design of the 1 meter EUV telescope, planned for launch with the large SPARTAN type carrier, ASTRO-SPAS, was also continued. The major effort centered on the preparation of flight 27.106, scheduled to launch in September, 1986. Work which was performed included: design of the skins and bulkheads; completion of the optical, mechanical, and electrical design; purchase of the major components of the instruments; assemblage of the electrical components; and performance of theoretical work, to support the data interpretation.

  4. Extreme ultraviolet light sources for use in semiconductor lithography—state of the art and future development

    NASA Astrophysics Data System (ADS)

    Stamm, Uwe

    2004-12-01

    This paper gives an overview of the development status and plans of extreme ultraviolet (EUV) light sources at XTREME technologies, a joint venture of Lambda Physik AG, Göttingen and JENOPTIK LOS GmbH, Jena, Germany. Results for gas discharge-produced plasma (GDPP) and laser-produced plasma (LPP), the two major technologies in EUV sources, are presented. The GDPP EUV sources use the Z-pinch principle with efficient sliding-discharge pre-ionization. First prototypes of commercial gas discharge sources with an EUV power of 35 W in 2π sr have already been integrated into EUV microsteppers. These sources are equipped with a debris-filter which supports an optics lifetime exceeding 100 million pulses at 1 kHz repetition rate. The same lifetime was achieved for the components of the discharge system itself. The progress in the development of high-power discharge sources based on xenon resulted in an EUV power of 200 W into a 2π sr solid angle, in continuous operation, at 4.5 kHz repetition rate, by implementation of porous-metal cooling technology. The available intermediate focus (IF) power is 22 W taking into account experimentally verified losses in a 1.8 sr source collector module. The usable IF power depends on the etendue of the optical system of the EUV scanner. For the current size of the EUV emitting plasma the etendue acceptance factor may be below 0.5. The currently usable IF power with 1.8 sr collector mirror may therefore be about 10 W. Z-pinch discharge sources with Sn as the emitter have been developed as a more efficient alternative to xenon fuelled sources. Tin sources showed a conversion efficiency (CE) that was double that of xenon. EUV power of 400 W in 2π sr has been generated at only 4.5 kHz repetition rate. The available IF power is 44 W. Estimates evaluating the tin source performance reveal the potential for achieving high-volume manufacturing (HVM) power specification by using existing technology. Because of their small plasma size and the

  5. Changes of solar extreme ultraviolet spectrum in solar cycle 24

    NASA Astrophysics Data System (ADS)

    Hao, Yongqiang; Zhang, Donghe; Xiao, Zuo; Huang, Jianping

    2016-07-01

    Following the extreme solar minimum during 2008 - 2009, solar activity keeps low in solar cycle 24 (SC24) and is making SC24 the weakest one of recent cycles. In this paper, we compare the solar EUV spectral irradiance between SC23 and SC24, using the measurements by the Solar EUV Experiment (SEE) on the Thermospheric Ionospheric Mesospheric Energy and Dynamics (TIMED) spacecraft. The EUV spectrum varies with solar activity, and is in general a linear function of a proxy index P= (F10.7 + F10.7A)/2. However, we find the slope of this function, i.e., the change rate of irradiance at each wavelength with P, differs between SC23 and SC24. Consequently, at a given P level, the irradiance in SC24 is higher at wavelength of 30 - 50 nm, but lower at 60 - 120 nm and longward of 140 nm; the inter-cycle variation of EUV irradiance at some wavelengths can be 30 - 40% in absolute flux. We further examine 38 most intense emission lines and find that, taking P as a reference, most of the bright coronal lines get stronger in SC24 and, by contrast, those from the chromosphere and transition region have less variability in SC24. We therefore suggest that, the empirical relation between solar EUV and P, which is derived from observations in previous solar cycles, may not adapt to SC24. The changes in EUV spectrum need to be considered in the models for aeronomic study, especially those using F10.7 index as an input parameter.

  6. Wafer and reticle positioning system for the Extreme Ultraviolet Lithography Engineering Test Stand

    SciTech Connect

    WRONOSKY,JOHN B.; SMITH,TONY G.; CRAIG,MARCUS J.; STURGIS,BEVERLY R.; DARNOLD,JOEL R.; WERLING,DAVID K.; KINCY,MARK A.; TICHENOR,DANIEL A.; WILLIAMS,MARK E.; BISCHOFF,PAUL

    2000-01-27

    This paper is an overview of the wafer and reticle positioning system of the Extreme Ultraviolet Lithography (EUVL) Engineering Test Stand (ETS). EUVL represents one of the most promising technologies for supporting the integrated circuit (IC) industry's lithography needs for critical features below 100nm. EUVL research and development includes development of capabilities for demonstrating key EUV technologies. The ETS is under development at the EUV Virtual National Laboratory, to demonstrate EUV full-field imaging and provide data that supports production-tool development. The stages and their associated metrology operated in a vacuum environment and must meet stringent outgassing specifications. A tight tolerance is placed on the stage tracking performance to minimize image distortion and provide high position repeatability. The wafer must track the reticle with less than {+-}3nm of position error and jitter must not exceed 10nm rms. To meet these performance requirements, magnetically levitated positioning stages utilizing a system of sophisticated control electronics will be used. System modeling and experimentation have contributed to the development of the positioning system and results indicate that desired ETS performance is achievable.

  7. Imaging extreme ultraviolet spectrometer employing a single toroidal diffraction grating: the initial evaluation.

    PubMed

    Huber, M C; Timothy, J G; Morgan, J S; Lemaitre, G; Tondello, G; Jannitti, E; Scarin, P

    1988-08-15

    A high-efficiency extreme ultraviolet (EUV) imaging spectrometer has been constructed and tested. The spectrometer employs a concave toroidal grating illuminated at normal incidence in a Rowland circle mounting and has only one reflecting surface. The toroidal grating has been fabricated by a new technique employing an elastically deformable submaster grating which is replicated in a spherical form and then mechanically distorted to produce the desired aspect ratio of the toroidal surface for stigmatic imaging over the selected wavelength range. The fixed toroidal grating used in the spectrometer is then replicated from this surface. Photographic tests and initial photoelectric tests with a 2-D pulse-counting detector system have verified the image quality of the toroidal grating at wavelengths near 600 A. The results of these initial tests are described in detail, and the basic designs of two instruments which could employ the imaging spectrometer for astrophysical investigations in space are briefly described, namely, a high-resolution EUV spectroheliometer for studies of the solar chromosphere, transition region, and corona and an EUV spectroscopic telescope for studies of nonsolar objects.

  8. Extreme Ultraviolet Explorer deep survey observations of a large flare on AU Microscopii

    NASA Technical Reports Server (NTRS)

    Cully, Scott L.; Siegmund, Oswald H. W.; Vedder, Peter W.; Vallerga, John V.

    1993-01-01

    We have made the first extended observation of a stellar flare in the EUV with 100 s time resolution. The flare was detected on AU Mic by the Extreme Ultraviolet Explorer satellite at 12:38 UT on 1992 July 15 during a 4 d observation from 1992 July 14 to 18. This was a large flare detected in the Lexan/boron (65-190 A) band with an observed peak count rate of 7.0 +/- 0.5 counts/s, corresponding to a peak luminosity of 10 exp 30 erg/s in the Lexan/boron bandpass. This is significantly above the measured quiescent level of 0.4 +/- 0.2 counts/s. The flare consisted of a sharp peak lasting about 2 hr, followed by a decaying tail that lasted more than a day. The total EUV energy of the event is estimated to be 3 x 10 exp 34 ergs. A second, smaller flare was also observed and is described. We conclude that the large emission measures on order of 6 x 10 exp 53/cu cm are due to large volumes with characteristic length scales of order the stellar radius. We compare these EUV observations with stellar flare observations in other bandpasses and estimate the likelihood of seeing similar flares in future observations.

  9. Extreme Ultraviolet Explorer observations of the magnetic cataclysmic variable RE 1938-461

    NASA Technical Reports Server (NTRS)

    Warren, John K.; Vallerga, John V.; Mauche, Christopher W.; Mukai, Koji; Siegmund, Oswald H. W.

    1993-01-01

    The magnetic cataclysmic variable RE 1938-461 was observed by the Extreme Ultraviolet Explorer (EUVE) Deep Survey instrument on 1992 July 8-9 during in-orbit calibration. It was detected in the Lexan/ boron (65-190 A) band, with a quiescent count rate of 0.0062 +/- 0.0017/s, and was not detected in the aluminum/carbon (160-360 A) band. The Lexan/boron count rate is lower than the corresponding ROSAT wide-field camera Lexan/boron count rate. This is consistent with the fact that the source was in a low state during an optical observation performed just after the EUVE observation, whereas it was in an optical high state during the ROSAT observation. The quiescent count rates are consistent with a virtual cessation of accretion. Two transient events lasting about 1 hr occurred during the Lexan/boron pointing, the second at a count rate of 0.050 +/- 0.006/s. This appears to be the first detection of an EUV transient during the low state of a magnetic cataclysmic variable. We propose two possible explanations for the transient events.

  10. Extreme ultraviolet spectroscopy and modeling of Cu on the SSPX Spheromak and laser plasma 'Sparky'

    SciTech Connect

    Weller, M. E.; Safronova, A. S.; Kantsyrev, V. L.; Safronova, U. I.; Petkov, E. E.; Wilcox, P. G.; Osborne, G. C.; Clementson, J.; Beiersdorfer, P.

    2012-10-15

    Impurities play a critical role in magnetic fusion research. In large quantities, impurities can cool and dilute plasma creating problems for achieving ignition and burn; however in smaller amounts the impurities could provide valuable information about several plasma parameters through the use of spectroscopy. Many impurity ions radiate within the extreme ultraviolet (EUV) range. Here, we report on spectra from the silver flat field spectrometer, which was implemented at the Sustained Spheromak Physics experiment (SSPX) to monitor ion impurity emissions. The chamber within the SSPX was made of Cu, which makes M-shell Cu a prominent impurity signature. The Spect3D spectral analysis code was utilized to identify spectral features in the range of 115-315 A and to more fully understand the plasma conditions. A second set of experiments was carried out on the compact laser-plasma x-ray/EUV facility 'Sparky' at UNR, with Cu flat targets used. The EUV spectra were recorded between 40-300 A and compared with results from SSPX.

  11. CO2 laser drives extreme ultraviolet nano-lithography — second life of mature laser technology

    NASA Astrophysics Data System (ADS)

    Nowak, K. M.; Ohta, T.; Suganuma, T.; Fujimoto, J.; Mizoguchi, H.; Sumitani, A.; Endo, A.

    2013-12-01

    It was shown both theoretically and experimentally that nanosecond order laser pulses at 10.6 micron wavelength were superior for driving the Sn plasma extreme ultraviolet (EUV) source for nano-lithography for the reasons of higher conversion efficiency, lower production of debris and higher average power levels obtainable in CO2 media without serious problems of beam distortions and nonlinear effects occurring in competing solid-state lasers at high intensities. The renewed interest in such pulse format, wavelength, repetition rates in excess of 50 kHz and average power levels in excess of 18 kiloWatt has sparked new opportunities for a matured multi-kiloWatt CO2 laser technology. The power demand of EUV source could be only satisfied by a Master-Oscillator-Power-Amplifier system configuration, leading to a development of a new type of hybrid pulsed CO2 laser employing a whole spectrum of CO2 technology, such as fast flow systems and diffusion-cooled planar waveguide lasers, and relatively recent quantum cascade lasers. In this paper we review briefly the history of relevant pulsed CO2 laser technology and the requirements for multi-kiloWatt CO2 laser, intended for the laser-produced plasma EUV source, and present our recent advances, such as novel solid-state seeded master oscillator and efficient multi-pass amplifiers built on planar waveguide CO2 lasers.

  12. Extreme ultraviolet spectroscopy of low-Z ion plasmas for fusion applications

    SciTech Connect

    Wilcox, P. G.; Safronova, A. S.; Kantsyrev, V. L.; Safronova, U. I.; Williamson, K. M.; Yilmaz, M. F.; Clementson, J.; Beiersdorfer, P.; Struve, K. W.

    2008-10-15

    The study of impurities is a key component of magnetic fusion research as it is directly related to plasma properties and steady-state operation. Two of the most important low-Z impurities are carbon and oxygen. The appropriate method of diagnosing these ions in plasmas is extreme ultraviolet (EUV) spectroscopy. In this work the results of two different sets of experiments are considered, and the spectra in a spectral region from 40 to 300 A are analyzed. The first set of experiments was carried out at the Sustained Spheromak Physics Experiment at LLNL, where EUV spectra of oxygen ions were recorded. The second set of experiments was performed at the compact laser-plasma x-ray/EUV facility 'Sparky' at UNR. In particular, Mylar and Teflon slabs were used as targets to produce carbon, oxygen, and fluorine ions of different ionization stages. Nonlocal thermodynamic equilibrium kinetic models of O, F, and C were applied to identify the most diagnostically important spectral features of low-Z ions between 40 to 300 A and to provide plasma parameters for both sets of experiments.

  13. Durability of capped multilayer mirrors for high volume manufacturing extreme ultraviolet lithography tool

    NASA Astrophysics Data System (ADS)

    Matsunari, S.; Kakutani, Y.; Aoki, T.; Kawata, S.; Murakami, K.

    2009-03-01

    Si/Mo multi-layer mirrors are oxidized by a photochemical reaction with water gas and extreme ultraviolet (EUV) light. They do not have enough durability in EUV lithography tools. 14 types of capped mirror samples (SiO2, TiO2, V2O5, Cr2O3, Mn2O3, Y2O3, Nb2O5, RuO2, Rh2O3, PdO, SnO2, La2O3, CeO2, WO3-capped) have been investigated on the anti-oxidation property under the 150-1600J/mm2 EUV irradiation at SR facilities. We have irradiated samples under the 1x10-4Pa and 9x10-4Pa water vapors. TiO2, V2O5, Cr2O3, Nb2O5, CeO2-capped mirror samples suppress reflectance drops and Si layers oxidation. These metal ions have similar radii. We have measured local structure of the RuO2 layer with lower durability. The RuO2 layer is amorphous. This Amorphous RuO2 layer loses the long range order of bonds and the short range order of the first shell. The Ru-O bonds remains with losing coordination number. To accelerate durability tests for a high volume machine, we have constructed a new dedicated beam line at the SAGA Light Source.

  14. Emulation of anamorphic imaging on the SHARP extreme ultraviolet mask microscope

    SciTech Connect

    Benk, Markus P.; Wojdyla, Antoine; Chao, Weilun; Salmassi, Farhad H.; Oh, Sharon R.; Wang, Yow-Gwo; Miyakawa, Ryan H.; Naulleau, Patrick P.; Goldberg, Kenneth A.

    2016-07-12

    The SHARP high-numerical aperture actinic reticle review project is a synchrotron-based, extreme ultraviolet (EUV) microscope dedicated to photomask research. SHARP emulates the illumination and imaging conditions of current EUV lithography scanners and those several generations into the future. An anamorphic imaging optic with increased mask-side numerical aperture (NA) in the horizontal and increased demagnification in the vertical direction has been proposed in this paper to overcome limitations of current multilayer coatings and extend EUV lithography beyond 0.33 NA. Zoneplate lenses with an anamorphic 4×/8× NA of 0.55 are fabricated and installed in the SHARP microscope to emulate anamorphic imaging. SHARP’s Fourier synthesis illuminator with a range of angles exceeding the collected solid angle of the newly designed elliptical zoneplates can produce arbitrary angular source spectra matched to anamorphic imaging. A target with anamorphic dense features down to 50-nm critical dimension is fabricated using 40 nm of nickel as the absorber. In a demonstration experiment, anamorphic imaging at 0.55 4×/8× NA and 6 deg central ray angle (CRA) is compared with conventional imaging at 0.5 4× NA and 8 deg CRA. A significant contrast loss in horizontal features is observed in the conventional images. Finally, the anamorphic images show the same image quality in the horizontal and vertical directions.

  15. Resist Materials for Extreme Ultraviolet Lithography: Toward Low-Cost Single-Digit-Nanometer Patterning.

    PubMed

    Ashby, Paul D; Olynick, Deirdre L; Ogletree, D Frank; Naulleau, Patrick P

    2015-10-14

    Extreme ultraviolet lithography (EUVL) is the leading technology for enabling miniaturization of computational components over the next decade. Next-generation resists will need to meet demanding performance criteria of 10 nm critical dimension, 1.2 nm line-edge roughness, and 20 mJ cm(-2) exposure dose. Here, the current state of the development of EUV resist materials is reviewed. First, pattern formation in resist materials is described and the Hansen solubility sphere (HSS) is used as a framework for understanding the pattern-development process. Then, recent progress in EUVL resist chemistry and characterization is discussed. Incremental advances are obtained by transferring chemically amplified resist materials developed for 193 nm lithography to EUV wavelengths. Significant advances will result from synthesizing high-absorbance resist materials using heavier atoms. In the framework of the HSS model, these materials have significant room for improvement and thus offer great promise as high-performance EUV resists for patterning of sub-10 nm features. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Extreme ultraviolet detection using AlGaN-on-Si inverted Schottky photodiodes

    SciTech Connect

    Malinowski, Pawel E.; Mertens, Robert; Van Hoof, Chris; Duboz, Jean-Yves; Semond, Fabrice; Frayssinet, Eric; Verhoeve, Peter; Giordanengo, Boris; BenMoussa, Ali

    2011-04-04

    We report on the fabrication of aluminum gallium nitride (AlGaN) Schottky diodes for extreme ultraviolet (EUV) detection. AlGaN layers were grown on silicon wafers by molecular beam epitaxy with the conventional and inverted Schottky structure, where the undoped, active layer was grown before or after the n-doped layer, respectively. Different current mechanisms were observed in the two structures. The inverted Schottky diode was designed for the optimized backside sensitivity in the hybrid imagers. A cut-off wavelength of 280 nm was observed with three orders of magnitude intrinsic rejection ratio of the visible radiation. Furthermore, the inverted structure was characterized using a EUV source based on helium discharge and an open electrode design was used to improve the sensitivity. The characteristic He I and He II emission lines were observed at the wavelengths of 58.4 nm and 30.4 nm, respectively, proving the feasibility of using the inverted layer stack for EUV detection.

  17. Ptychographic imaging with a compact gas-discharge plasma extreme ultraviolet light source.

    PubMed

    Odstrcil, M; Bussmann, J; Rudolf, D; Bresenitz, R; Miao, Jianwei; Brocklesby, W S; Juschkin, L

    2015-12-01

    We report the demonstration of a scanning probe coherent diffractive imaging method (also known as ptychographic CDI) using a compact and partially coherent gas-discharge plasma source of extreme ultraviolet (EUV) radiation at a 17.3 nm wavelength. Until now, CDI has been mainly carried out with coherent, high-brightness light sources, such as third generation synchrotrons, x-ray free-electron lasers, and high harmonic generation. Here we performed ptychographic lensless imaging of an extended sample using a compact, lab-scale source. The CDI reconstructions were achieved by applying constraint relaxation to the CDI algorithm. Experimental results indicate that our method can handle the low spatial coherence and broadband nature of the EUV illumination, as well as the residual background due to visible light emitted by the gas-discharge source. The ability to conduct ptychographic imaging with lab-scale and partially coherent EUV sources is expected to significantly expand the applications of this powerful CDI method.

  18. Extreme ultraviolet detection using AlGaN-on-Si inverted Schottky photodiodes

    NASA Astrophysics Data System (ADS)

    Malinowski, Pawel E.; Duboz, Jean-Yves; De Moor, Piet; Minoglou, Kyriaki; John, Joachim; Horcajo, Sara Martin; Semond, Fabrice; Frayssinet, Eric; Verhoeve, Peter; Esposito, Marco; Giordanengo, Boris; BenMoussa, Ali; Mertens, Robert; Van Hoof, Chris

    2011-04-01

    We report on the fabrication of aluminum gallium nitride (AlGaN) Schottky diodes for extreme ultraviolet (EUV) detection. AlGaN layers were grown on silicon wafers by molecular beam epitaxy with the conventional and inverted Schottky structure, where the undoped, active layer was grown before or after the n-doped layer, respectively. Different current mechanisms were observed in the two structures. The inverted Schottky diode was designed for the optimized backside sensitivity in the hybrid imagers. A cut-off wavelength of 280 nm was observed with three orders of magnitude intrinsic rejection ratio of the visible radiation. Furthermore, the inverted structure was characterized using a EUV source based on helium discharge and an open electrode design was used to improve the sensitivity. The characteristic He I and He II emission lines were observed at the wavelengths of 58.4 nm and 30.4 nm, respectively, proving the feasibility of using the inverted layer stack for EUV detection.

  19. Extreme Ultraviolet Fractional Orbital Angular Momentum Beams from High Harmonic Generation

    PubMed Central

    Turpin, Alex; Rego, Laura; Picón, Antonio; San Román, Julio; Hernández-García, Carlos

    2017-01-01

    We investigate theoretically the generation of extreme-ultraviolet (EUV) beams carrying fractional orbital angular momentum. To this end, we drive high-order harmonic generation with infrared conical refraction (CR) beams. We show that the high-order harmonic beams emitted in the EUV/soft x-ray regime preserve the characteristic signatures of the driving beam, namely ringlike transverse intensity profile and CR-like polarization distribution. As a result, through orbital and spin angular momentum conservation, harmonic beams are emitted with fractional orbital angular momentum, and they can be synthesized into structured attosecond helical beams –or “structured attosecond light springs”– with rotating linear polarization along the azimuth. Our proposal overcomes the state of the art limitations for the generation of light beams far from the visible domain carrying non-integer orbital angular momentum and could be applied in fields such as diffraction imaging, EUV lithography, particle trapping, and super-resolution imaging. PMID:28281655

  20. Emulation of anamorphic imaging on the SHARP extreme ultraviolet mask microscope

    NASA Astrophysics Data System (ADS)

    Benk, Markus P.; Wojdyla, Antoine; Chao, Weilun; Salmassi, Farhad; Oh, Sharon; Wang, Yow-Gwo; Miyakawa, Ryan H.; Naulleau, Patrick P.; Goldberg, Kenneth A.

    2016-07-01

    The SHARP high-numerical aperture actinic reticle review project is a synchrotron-based, extreme ultraviolet (EUV) microscope dedicated to photomask research. SHARP emulates the illumination and imaging conditions of current EUV lithography scanners and those several generations into the future. An anamorphic imaging optic with increased mask-side numerical aperture (NA) in the horizontal and increased demagnification in the vertical direction has been proposed to overcome limitations of current multilayer coatings and extend EUV lithography beyond 0.33 NA. Zoneplate lenses with an anamorphic 4×/8× NA of 0.55 are fabricated and installed in the SHARP microscope to emulate anamorphic imaging. SHARP's Fourier synthesis illuminator with a range of angles exceeding the collected solid angle of the newly designed elliptical zoneplates can produce arbitrary angular source spectra matched to anamorphic imaging. A target with anamorphic dense features down to 50-nm critical dimension is fabricated using 40 nm of nickel as the absorber. In a demonstration experiment, anamorphic imaging at 0.55 4×/8× NA and 6 deg central ray angle (CRA) is compared with conventional imaging at 0.5 4× NA and 8 deg CRA. A significant contrast loss in horizontal features is observed in the conventional images. The anamorphic images show the same image quality in the horizontal and vertical directions.

  1. Simulation of particle velocity in a laser-produced tin plasma extreme ultraviolet source

    SciTech Connect

    Masnavi, Majid; Nakajima, Mitsuo; Horioka, Kazuhiko; Araghy, Homaira Parchamy; Endo, Akira

    2011-06-15

    In connection with fast heating in a laser produced plasma (LPP) extreme ultraviolet (EUV) source, the superheating behavior of bulk tin (Sn) at high heating rates is investigated. A constant temperature and pressure molecular dynamics simulation using modified Lennard-Jones and Coulomb potentials suitable for studying the liquid structure of Sn is employed in order to derive the caloric curves of the solid and liquid phases. The results have shown transient effects on the phase transitions. Superheating is observed during the melting and vaporizing processes. The velocity distribution of Sn particles against typical laser fluence in a LPP EUV light source has been numerically investigated using a simplified method including a one-dimensional, two-temperature, molecular dynamics, and steady-state ionization model. In the framework of our model, it was found that ejected Sn particles have a maximum velocity on the order of 10 to 40 km/s in plasma created using a nanosecond pre-pulse neodymium-doped yttrium aluminum garnet (Nd:YAG, 1.06 {mu}m) laser in EUV lithography experiments.

  2. The solar flare extreme ultraviolet to hard X-ray ratio

    NASA Technical Reports Server (NTRS)

    Mcclymont, A. N.; Canfield, R. C.

    1986-01-01

    Simultaneous measurements of the peak 10-1030 A extreme ultraviolet (EUV) flux enhancement and more than 10 keV hard X-ray (HXR) peak flux of many solar flare bursts, ranging over about four orders of magnitude in HXR intensity, are studied. A real departure from linearity is found in the relationship between the peak EUV and HXR fluxes in impulsive flare bursts. This relationship is well described by a given power law. Comparison of the predictions of the impulsive nonthermal thick-target electron beam model with observations shows that the model satisfactorily predicts the observed time differences between the HXR and EUV peaks and explains the data very well under given specific assumptions. It is concluded that the high-energy fluxes implied by the invariant area thick-target model cannot be completely ruled out, while the invariant area model with smaller low cutoff requires impossibly large beam densities. A later alternative thick-target model is suggested.

  3. TEMPERATURE AND EXTREME-ULTRAVIOLET INTENSITY IN A CORONAL PROMINENCE CAVITY AND STREAMER

    SciTech Connect

    Kucera, T. A.; Tripathi, D.

    2012-09-20

    We analyze the temperature and EUV line emission of a coronal cavity and surrounding streamer in terms of a morphological forward model. We use a series of iron line ratios observed with the Hinode Extreme-ultraviolet Imaging Spectrograph (EIS) on 2007 August 9 to constrain temperature as a function of altitude in a morphological forward model of the streamer and cavity. We also compare model predictions to the EIS EUV line intensities and polarized brightness (pB) data from the Mauna Loa Solar Observatory (MLSO) Mark 4 K-coronameter. This work builds on earlier analysis using the same model to determine geometry of and density in the same cavity and streamer. The fit to the data with altitude-dependent temperature profiles indicates that both the streamer and cavity have temperatures in the range 1.4-1.7 MK. However, the cavity exhibits substantial substructure such that the altitude-dependent temperature profile is not sufficient to completely model conditions in the cavity. Coronal prominence cavities are structured by magnetism so clues to this structure are to be found in their plasma properties. These temperature substructures are likely related to structures in the cavity magnetic field. Furthermore, we find that the model overestimates the EUV line intensities by a factor of 4-10, without overestimating pB. We discuss this difference in terms of filling factors and uncertainties in density diagnostics and elemental abundances.

  4. Emulation of anamorphic imaging on the SHARP extreme ultraviolet mask microscope

    DOE PAGES

    Benk, Markus P.; Wojdyla, Antoine; Chao, Weilun; ...

    2016-07-12

    The SHARP high-numerical aperture actinic reticle review project is a synchrotron-based, extreme ultraviolet (EUV) microscope dedicated to photomask research. SHARP emulates the illumination and imaging conditions of current EUV lithography scanners and those several generations into the future. An anamorphic imaging optic with increased mask-side numerical aperture (NA) in the horizontal and increased demagnification in the vertical direction has been proposed in this paper to overcome limitations of current multilayer coatings and extend EUV lithography beyond 0.33 NA. Zoneplate lenses with an anamorphic 4×/8× NA of 0.55 are fabricated and installed in the SHARP microscope to emulate anamorphic imaging. SHARP’smore » Fourier synthesis illuminator with a range of angles exceeding the collected solid angle of the newly designed elliptical zoneplates can produce arbitrary angular source spectra matched to anamorphic imaging. A target with anamorphic dense features down to 50-nm critical dimension is fabricated using 40 nm of nickel as the absorber. In a demonstration experiment, anamorphic imaging at 0.55 4×/8× NA and 6 deg central ray angle (CRA) is compared with conventional imaging at 0.5 4× NA and 8 deg CRA. A significant contrast loss in horizontal features is observed in the conventional images. Finally, the anamorphic images show the same image quality in the horizontal and vertical directions.« less

  5. Simulation of particle velocity in a laser-produced tin plasma extreme ultraviolet source

    NASA Astrophysics Data System (ADS)

    Masnavi, Majid; Nakajima, Mitsuo; Horioka, Kazuhiko; Araghy, Homaira Parchamy; Endo, Akira

    2011-06-01

    In connection with fast heating in a laser produced plasma (LPP) extreme ultraviolet (EUV) source, the superheating behavior of bulk tin (Sn) at high heating rates is investigated. A constant temperature and pressure molecular dynamics simulation using modified Lennard-Jones and Coulomb potentials suitable for studying the liquid structure of Sn is employed in order to derive the caloric curves of the solid and liquid phases. The results have shown transient effects on the phase transitions. Superheating is observed during the melting and vaporizing processes. The velocity distribution of Sn particles against typical laser fluence in a LPP EUV light source has been numerically investigated using a simplified method including a one-dimensional, two-temperature, molecular dynamics, and steady-state ionization model. In the framework of our model, it was found that ejected Sn particles have a maximum velocity on the order of 10 to 40 km/s in plasma created using a nanosecond pre-pulse neodymium-doped yttrium aluminum garnet (Nd:YAG, 1.06 μm) laser in EUV lithography experiments.

  6. Reflective masks for extreme ultraviolet lithography

    SciTech Connect

    Nguyen, Khanh Bao

    1994-05-01

    Extreme ultraviolet lithographic masks are made by patterning multilayer reflective coatings with high normal incidence reflectivity. Masks can be patterned by depositing a patterned absorber layer above the coating or by etching the pattern directly into the coating itself. Electromagnetic simulations showed that absorber-overlayer masks have superior imaging characteristics over etched masks (less sensitive to incident angles and pattern profiles). In an EUVL absorber overlayer mask, defects can occur in the mask substrate, reflective coating, and absorber pattern. Electromagnetic simulations showed that substrate defects cause the most severe image degradation. A printability study of substrate defects for absorber overlayer masks showed that printability of 25 nm high substrate defects are comparable to defects in optical lithography. Simulations also indicated that the manner in which the defects are covered by multilayer reflective coatings can affect printability. Coverage profiles that result in large lateral spreading of defect geometries amplify the printability of the defects by increasing their effective sizes. Coverage profiles of Mo/Si coatings deposited above defects were studied by atomic force microscopy and TEM. Results showed that lateral spread of defect geometry is proportional to height. Undercut at defect also increases the lateral spread. Reductions in defect heights were observed for 0.15 μm wide defect lines. A long-term study of Mo/Si coating reflectivity revealed that Mo/Si coatings with Mo as the top layer suffer significant reductions in reflectivity over time due to oxidation.

  7. The Berkeley extreme ultraviolet calibration facility

    NASA Technical Reports Server (NTRS)

    Welsh, Barry Y.; Jelinsky, Patrick; Malina, Roger F.

    1988-01-01

    The vacuum calibration facilities of the Space Sciences Laboratory, University of California at Berkeley are designed for the calibration and testing of EUV and FUV spaceborne instrumentation (spectral range 44-2500 A). The facility includes one large cylindrical vacuum chamber (3 x 5 m) containing two EUV collimators, and it is equipped with a 4-axis manipulator of angular-control resolution 1 arcsec for payloads weighing up to 500 kg. In addition, two smaller cylindrical chambers, each 0.9 x 1.2 m, are available for vacuum and thermal testing of UV detectors, filters, and space electronics hardware. All three chambers open into class-10,000 clean rooms, and all calibrations are referred to NBS secondary standards.

  8. The EXCEED mission - the Earth-orbiting EUV spectrometer -

    NASA Astrophysics Data System (ADS)

    Yoshikawa, I.

    2012-12-01

    An earth-orbiting Extreme Ultraviolet spectroscopic mission, EXtreme ultraviolet spectrosCope for ExosphEric Dynamics explore (EXCEED) that will be launched in 2012 is now under development. The EXCEED mission will carry out out-of-atmosphere observations of Extreme Ultraviolet (EUV: 60-145 nm) emissions from tenuous plasmas around the planets (Mercury, Mars, Venus, and Jupiter). In this paper, we will introduce the general mission overview and current status of the mission.

  9. Slow Patchy Extreme-ultraviolet Propagating Fronts Associated with Fast Coronal Magneto-acoustic Waves in Solar Eruptions

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Ding, M. D.; Chen, P. F.

    2015-08-01

    Using the high spatiotemporal resolution extreme ultraviolet (EUV) observations of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we conduct a statistical study of the observational properties of the coronal EUV propagating fronts. We find that it might be a universal phenomenon for two types of fronts to coexist in a large solar eruptive event. It is consistent with the hybrid model of EUV propagating fronts, which predicts that coronal EUV propagating fronts consist of both a fast magneto-acoustic wave and a nonwave component. We find that the morphologies, propagation behaviors, and kinematic features of the two EUV propagating fronts are completely different from each other. The fast magneto-acoustic wave fronts are almost isotropic. They travel continuously from the flaring region across multiple magnetic polarities to global distances. On the other hand, the slow nonwave fronts appear as anisotropic and sequential patches of EUV brightening. Each patch propagates locally in the magnetic domains where the magnetic field lines connect to the bottom boundary and stops at the magnetic domain boundaries. Within each magnetic domain, the velocities of the slow patchy nonwave component are an order of magnitude lower than that of the fast-wave component. However, the patches of the slow EUV propagating front can jump from one magnetic domain to a remote one. The velocities of such a transit between different magnetic domains are about one-third to one-half of those of the fast-wave component. The results show that the velocities of the nonwave component, both within one magnetic domain and between different magnetic domains, are highly nonuniform due to the inhomogeneity of the magnetic field in the lower atmosphere.

  10. THE INFLUENCE OF THE EXTREME ULTRAVIOLET SPECTRAL ENERGY DISTRIBUTION ON THE STRUCTURE AND COMPOSITION OF THE UPPER ATMOSPHERE OF EXOPLANETS

    SciTech Connect

    Guo, J. H.; Ben-Jaffel, Lotfi E-mail: bjaffel@iap.fr

    2016-02-20

    By varying the profiles of stellar extreme ultraviolet (EUV) spectral energy distributions (SEDs), we tested the influences of stellar EUV SEDs on the physical and chemical properties of an escaping atmosphere. We apply our model to study four exoplanets: HD 189733b, HD 209458b, GJ 436b, and Kepler-11b. We find that the total mass loss rates of an exoplanet, which are determined mainly by the integrated fluxes, are moderately affected by the profiles of the EUV SED, but the composition and species distributions in the atmosphere can be dramatically modified by the different profiles of the EUV SED. For exoplanets with a high hydrodynamic escape parameter (λ), the amount of atomic hydrogen produced by photoionization at different altitudes can vary by one to two orders of magnitude with the variation of stellar EUV SEDs. The effect of photoionization of H is prominent when the EUV SED is dominated by the low-energy spectral region (400–900 Å), which pushes the transition of H/H{sup +} to low altitudes. In contrast, the transition of H/H{sup +} moves to higher altitudes when most photons are concentrated in the high-energy spectral region (50–400 Å). For exoplanets with a low λ, the lower temperatures of the atmosphere make many chemical reactions so important that photoionization alone can no longer determine the composition of the escaping atmosphere. For HD 189733b, it is possible to explain the time variability of Lyα between 2010 and 2011 by a change in the EUV SED of the host K-type star, yet invoking only thermal H i in the atmosphere.

  11. SLOW PATCHY EXTREME-ULTRAVIOLET PROPAGATING FRONTS ASSOCIATED WITH FAST CORONAL MAGNETO-ACOUSTIC WAVES IN SOLAR ERUPTIONS

    SciTech Connect

    Guo, Y.; Ding, M. D.; Chen, P. F.

    2015-08-15

    Using the high spatiotemporal resolution extreme ultraviolet (EUV) observations of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we conduct a statistical study of the observational properties of the coronal EUV propagating fronts. We find that it might be a universal phenomenon for two types of fronts to coexist in a large solar eruptive event. It is consistent with the hybrid model of EUV propagating fronts, which predicts that coronal EUV propagating fronts consist of both a fast magneto-acoustic wave and a nonwave component. We find that the morphologies, propagation behaviors, and kinematic features of the two EUV propagating fronts are completely different from each other. The fast magneto-acoustic wave fronts are almost isotropic. They travel continuously from the flaring region across multiple magnetic polarities to global distances. On the other hand, the slow nonwave fronts appear as anisotropic and sequential patches of EUV brightening. Each patch propagates locally in the magnetic domains where the magnetic field lines connect to the bottom boundary and stops at the magnetic domain boundaries. Within each magnetic domain, the velocities of the slow patchy nonwave component are an order of magnitude lower than that of the fast-wave component. However, the patches of the slow EUV propagating front can jump from one magnetic domain to a remote one. The velocities of such a transit between different magnetic domains are about one-third to one-half of those of the fast-wave component. The results show that the velocities of the nonwave component, both within one magnetic domain and between different magnetic domains, are highly nonuniform due to the inhomogeneity of the magnetic field in the lower atmosphere.

  12. Estimation of optimum density and temperature for maximum efficiency of tin ions in Z discharge extreme ultraviolet sources

    SciTech Connect

    Masnavi, Majid; Nakajima, Mitsuo; Hotta, Eiki; Horioka, Kazuhiko; Niimi, Gohta; Sasaki, Akira

    2007-02-01

    Extreme ultraviolet (EUV) discharge-based lamps for EUV lithography need to generate extremely high power in the narrow spectrum band of 13.5{+-}0.135 nm. A simplified collisional-radiative model and radiative transfer solution for an isotropic medium were utilized to investigate the wavelength-integrated light outputs in tin (Sn) plasma. Detailed calculations using the Hebrew University-Lawrence Livermore atomic code were employed for determination of necessary atomic data of the Sn{sup 4+} to Sn{sup 13+} charge states. The result of model is compared with experimental spectra from a Sn-based discharge-produced plasma. The analysis reveals that considerably larger efficiency compared to the so-called efficiency of a black-body radiator is formed for the electron density {approx_equal}10{sup 18} cm{sup -3}. For higher electron density, the spectral efficiency of Sn plasma reduces due to the saturation of resonance transitions.

  13. Evidence for the Wave Nature of an Extreme Ultraviolet Wave Observed by the Atmospheric Imaging Assembly on Board the Solar Dynamics Observatory

    NASA Astrophysics Data System (ADS)

    Shen, Yuandeng; Liu, Yu

    2012-07-01

    Extreme-ultraviolet (EUV) waves have been found for about 15 years. However, significant controversy remains over their physical natures and origins. In this paper, we report an EUV wave that was accompanied by an X1.9 flare and a partial halo coronal mass ejection (CME). Using high temporal and spatial resolution observations taken by the Solar Dynamics Observatory and the Solar-TErrestrial RElations Observatory, we are able to investigate the detailed kinematics of the EUV wave. We find several arguments that support the fast-mode wave scenario. (1) The speed of the EUV wave (570 km s-1) is higher than the sound speed of the quiet-Sun corona. (2) Significant deceleration of the EUV wave (-130 m s-2) is found during its propagation. (3) The EUV wave resulted in the oscillations of a loop and a filament along its propagation path, and a reflected wave from the polar coronal hole is also detected. (4) Refraction or reflection effect is observed when the EUV wave was passing through two coronal bright points. (5) The dimming region behind the wavefront stopped to expand when the wavefront started to become diffuse. (6) The profiles of the wavefront exhibited a dispersive nature, and the magnetosonic Mach number of the EUV wave derived from the highest intensity jump is about 1.4. In addition, triangulation indicates that the EUV wave propagated within a height range of about 60-100 Mm above the photosphere. We propose that the EUV wave observed should be a nonlinear fast-mode magnetosonic wave that propagated freely in the corona after it was driven by the CME expanding flanks during the initial period.

  14. EVIDENCE FOR THE WAVE NATURE OF AN EXTREME ULTRAVIOLET WAVE OBSERVED BY THE ATMOSPHERIC IMAGING ASSEMBLY ON BOARD THE SOLAR DYNAMICS OBSERVATORY

    SciTech Connect

    Shen Yuandeng; Liu Yu

    2012-07-20

    Extreme-ultraviolet (EUV) waves have been found for about 15 years. However, significant controversy remains over their physical natures and origins. In this paper, we report an EUV wave that was accompanied by an X1.9 flare and a partial halo coronal mass ejection (CME). Using high temporal and spatial resolution observations taken by the Solar Dynamics Observatory and the Solar-TErrestrial RElations Observatory, we are able to investigate the detailed kinematics of the EUV wave. We find several arguments that support the fast-mode wave scenario. (1) The speed of the EUV wave (570 km s{sup -1}) is higher than the sound speed of the quiet-Sun corona. (2) Significant deceleration of the EUV wave (-130 m s{sup -2}) is found during its propagation. (3) The EUV wave resulted in the oscillations of a loop and a filament along its propagation path, and a reflected wave from the polar coronal hole is also detected. (4) Refraction or reflection effect is observed when the EUV wave was passing through two coronal bright points. (5) The dimming region behind the wavefront stopped to expand when the wavefront started to become diffuse. (6) The profiles of the wavefront exhibited a dispersive nature, and the magnetosonic Mach number of the EUV wave derived from the highest intensity jump is about 1.4. In addition, triangulation indicates that the EUV wave propagated within a height range of about 60-100 Mm above the photosphere. We propose that the EUV wave observed should be a nonlinear fast-mode magnetosonic wave that propagated freely in the corona after it was driven by the CME expanding flanks during the initial period.

  15. Surface modification of polymers for biocompatibility via exposure to extreme ultraviolet radiation.

    PubMed

    Inam Ul Ahad; Bartnik, Andrzej; Fiedorowicz, Henryk; Kostecki, Jerzy; Korczyc, Barbara; Ciach, Tomasz; Brabazon, Dermot

    2014-09-01

    Polymeric biomaterials are being widely used for the treatment of various traumata, diseases and defects in human beings due to ease in their synthesis. As biomaterials have direct interaction with the extracellular environment in the biological world, biocompatibility is a topic of great significance. The introduction or enhancement of biocompatibility in certain polymers is still a challenge to overcome. Polymer biocompatibility can be controlled by surface modification. Various physical and chemical methods (e.g., chemical and plasma treatment, ion implantation, and ultraviolet irradiation etc.) are in use or being developed for the modification of polymer surfaces. However an important limitation in their employment is the alteration of bulk material. Different surface and bulk properties of biomaterials are often desirable for biomedical applications. Because extreme ultraviolet (EUV) radiation penetration is quite limited even in low density mediums, it could be possible to use it for surface modification without influencing the bulk material. This article reviews the degree of biocompatibility of different polymeric biomaterials being currently employed in various biomedical applications, the surface properties required to be modified for biocompatibility control, plasma and laser ablation based surface modification techniques, and research studies indicating possible use of EUV for enhancing biocompatibility.

  16. Extending the path for efficient extreme ultraviolet sources for advanced nanolithography

    NASA Astrophysics Data System (ADS)

    Sizyuk, Tatyana; Hassanein, Ahmed

    2015-09-01

    Developing efficient light sources for extreme ultraviolet (EUV) lithography is one of the most important problems of high volume manufacturing (HVM) of the next generation computer chips. Critical components of this technology are continued to face challenges in the demanding performance for HVM. Current investigations of EUV and beyond EUV (BEUV) community are focused on the dual-pulse laser produced plasma (LPP) using droplets of mass-limited targets. Two main objectives as well as challenges in the optimization of these light sources are related to enhancement of the conversion efficiency (CE) of the source and increase components lifetime of the collector optical system. These require significant experimental and computer simulation efforts. These requirements call for fine detail analysis of various plasma physics processes involved in laser target interactions and their effects on source optimization. We continued to enhance our comprehensive HEIGHTS simulation package and upgrade our CMUXE laboratories to study and optimize the efficiency of LPP sources. Integrated modeling and experimental research were done to both benchmark simulation results and to make projections and realistic predictions of the development path for powerful EUVL devices for HVM requirements. We continued the detail analysis of dual-pulse laser systems using various laser wavelengths and delay times between the two pulses. We showed that the efficiency of EUV sources can be improved utilizing the higher harmonics of Nd:YAG laser for the prepulse and the first harmonics for the main pulse, while still having lower efficiency than the combination involving CO2 laser in the range of parameters studied in this case. The differences in optimization process as well as in the source characteristics for two combinations of laser wavelengths were analyzed based on details of atomic and hydrodynamics processes during the evolving plasma plumes.

  17. Extending the path for efficient extreme ultraviolet sources for advanced nanolithography

    SciTech Connect

    Sizyuk, Tatyana; Hassanein, Ahmed

    2015-09-15

    Developing efficient light sources for extreme ultraviolet (EUV) lithography is one of the most important problems of high volume manufacturing (HVM) of the next generation computer chips. Critical components of this technology are continued to face challenges in the demanding performance for HVM. Current investigations of EUV and beyond EUV (BEUV) community are focused on the dual-pulse laser produced plasma (LPP) using droplets of mass-limited targets. Two main objectives as well as challenges in the optimization of these light sources are related to enhancement of the conversion efficiency (CE) of the source and increase components lifetime of the collector optical system. These require significant experimental and computer simulation efforts. These requirements call for fine detail analysis of various plasma physics processes involved in laser target interactions and their effects on source optimization. We continued to enhance our comprehensive HEIGHTS simulation package and upgrade our CMUXE laboratories to study and optimize the efficiency of LPP sources. Integrated modeling and experimental research were done to both benchmark simulation results and to make projections and realistic predictions of the development path for powerful EUVL devices for HVM requirements. We continued the detail analysis of dual-pulse laser systems using various laser wavelengths and delay times between the two pulses. We showed that the efficiency of EUV sources can be improved utilizing the higher harmonics of Nd:YAG laser for the prepulse and the first harmonics for the main pulse, while still having lower efficiency than the combination involving CO{sub 2} laser in the range of parameters studied in this case. The differences in optimization process as well as in the source characteristics for two combinations of laser wavelengths were analyzed based on details of atomic and hydrodynamics processes during the evolving plasma plumes.

  18. Spectroscopy of Highly Charged Tin Ions for AN Extreme Ultraviolet Light Source for Lithography

    NASA Astrophysics Data System (ADS)

    Torretti, Francesco; Windberger, Alexander; Ubachs, Wim; Hoekstra, Ronnie; Versolato, Oscar; Ryabtsev, Alexander; Borschevsky, Anastasia; Berengut, Julian; Crespo Lopez-Urrutia, Jose

    2017-06-01

    Laser-produced tin plasmas are the prime candidates for the generation of extreme ultraviolet (EUV) light around 13.5 nm in nanolithographic applications. This light is generated primarily by atomic transitions in highly charged tin ions: Sn^{8+}-Sn^{14+}. Due to the electronic configurations of these charge states, thousands of atomic lines emit around 13.5 nm, clustered in a so-called unresolved transition array. As a result, accurate line identification becomes difficult in this regime. Nevertheless, this issue can be circumvented if one turns to the optical: with far fewer atomic states, only tens of transitions take place and the spectra can be resolved with far more ease. We have investigated optical emission lines in an electron-beam-ion-trap (EBIT), where we managed to charge-state resolve the spectra. Based on this technique and on a number of different ab initio techniques for calculating the level structure, the optical spectra could be assigned [1,2]. As a conclusion the assignments of EUV transitions in the literature require corrections. The EUV and optical spectra are measured simultaneously in the controlled conditions of the EBIT as well as in a droplet-based laser-produced plasma source providing information on the contribution of Sn^{q+} charge states to the EUV emission. [1] A. Windberger, F. Torretti, A. Borschevsky, A. Ryabtsev, S. Dobrodey, H. Bekker, E. Eliav, U. Kaldor, W. Ubachs, R. Hoekstra, J.R. Crespo Lopez-Urrutia, O.O. Versolato, Analysis of the fine structure of Sn^{11+} - Sn^{14+} ions by optical spectroscopy in an electron beam ion trap, Phys. Rev. A 94, 012506 (2016). [2] F. Torretti, A. Windberger, A. Ryabtsev, S. Dobrodey, H. Bekker, W. Ubachs, R. Hoekstra, E.V. Kahl, J.C. Berengut, J.R. Crespo Lopez-Urrutia, O.O. Versolato, Optical spectroscopy of complex open 4d-shell ions Sn^{7+} - Sn^{10+}, arXiv:1612.00747

  19. Spectral observations of the extreme ultraviolet background.

    PubMed

    Labov, S E; Bowyer, S

    1991-04-20

    A grazing incidence spectrometer was designed to measure the diffuse extreme ultraviolet background. It was flown on a sounding rocket, and data were obtained on the diffuse background between 80 and 650 angstroms. These are the first spectral measurements of this background below 520 angstroms. Several emission features were detected, including interplanetary He I 584 angstroms emission and geocoronal He II 304 angstroms emission. Other features observed may originate in a hot ionized interstellar gas, but if this interpretation is correct, gas at several different temperatures is present. The strongest of these features is consistent with O V emission at 630 angstroms. This emission, when combined with upper limits for other lines, restricts the temperature of this component to 5.5 < log T < 5.7, in agreement with temperatures derived from O VI absorption studies. A power-law distribution of temperatures is consistent with this feature only if the power-law coefficient is negative, as is predicted for saturated evaporation of clouds in a hot medium. In this case, the O VI absorption data confine the filling factor of the emission of f < or = 4% and the pressure to more than 3.7 x 10(4) cm-3 K, substantially above ambient interstellar pressure. Such a pressure enhancement has been predicted for clouds undergoing saturated evaporation. Alternatively, if the O V emission covers a considerable fraction of the sky, it would be a major source of ionization. A feature centered at about 99 angstroms is well fitted by a cluster of Fe XVIII and Fe XIX lines from gas at log T = 6.6-6.8. These results are consistent with previous soft X-ray observations with low-resolution detectors. A feature found near 178 angstroms is consistent with Fe X and Fe XI emission from gas at log T = 6; this result is consistent with results from experiments employing broad-band soft X-ray detectors.

  20. Carbon contamination topography analysis of EUV masks

    SciTech Connect

    Fan, Y.-J.; Yankulin, L.; Thomas, P.; Mbanaso, C.; Antohe, A.; Garg, R.; Wang, Y.; Murray, T.; Wuest, A.; Goodwin, F.; Huh, S.; Cordes, A.; Naulleau, P.; Goldberg, K. A.; Mochi, I.; Gullikson, E.; Denbeaux, G.

    2010-03-12

    The impact of carbon contamination on extreme ultraviolet (EUV) masks is significant due to throughput loss and potential effects on imaging performance. Current carbon contamination research primarily focuses on the lifetime of the multilayer surfaces, determined by reflectivity loss and reduced throughput in EUV exposure tools. However, contamination on patterned EUV masks can cause additional effects on absorbing features and the printed images, as well as impacting the efficiency of cleaning process. In this work, several different techniques were used to determine possible contamination topography. Lithographic simulations were also performed and the results compared with the experimental data.

  1. The extreme ultraviolet continuum of quasi-stellar objects and the ionization of the intergalactic medium

    NASA Astrophysics Data System (ADS)

    Telfer, Randal Crawford

    2002-09-01

    We use a sample of 332 Hubble Space Telescope spectra of 184 quasi-stellar objects (QSOs) with redshifts of z > 0.33 to study their typical extreme ultraviolet (EUV) spectral properties. We find that the continuum emission of QSOs between 500 and 1200 Å can be described by a power law with a typical index of αEUV ≈ -1.57 (Fν ∝ να ) for radio-quiet QSOs and αEUV ≈ -1.96 for radio-loud QSOs. Using the spectra from four of our sample QSOs, we create stacked composite absorption spectra to search for weak EUV absorption lines associated with intervening absorbers in the intergalactic medium (IGM) in the redshift range 1.6 < z < 2.9. We successfully detect O V λ630 in subsamples of Lyα absorbers throughout the 1013 to 1016.2 cm-2 range of H I column densities with at least 99% confidence. We only detect O IV λ788, O IV λ554, O III λ833, and He I λ584 in absorbers with Lyα equivalent widths ≳ 0.6 Å. Using photoionization models, we conclude that the lack of detectable O IV absorption except in the strongest absorption systems suggests a hard ultraviolet background, in agreement with measurements of the ratio of He II to H I in the IGM. The required background source spectrum is consistent with the EUV continuum shape of QSOs that we have derived, suggesting that photoionization by QSOs is the dominant ionization mechanism for the IGM at z ˜ 2 to 3. We estimate that the oxygen abundance relative to hydrogen in the IGM is around 10-1.5 to 10-1.9 times the standard solar abundance ratio. Comparing to studies of carbon, this implies that oxygen is a factor of 4 to 10 times more abundant than carbon with respect to the solar abundances. This relative overabundance of oxygen is consistent with other estimates of chemical abundances in the early universe and implies enrichment of the IGM by the products of high-mass stars.

  2. Mask characterization for critical dimension uniformity budget breakdown in advanced extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Nikolsky, Peter; Strolenberg, Chris; Nielsen, Rasmus; Nooitgedacht, Tjitte; Davydova, Natalia; Yang, Greg; Lee, Shawn; Park, Chang-Min; Kim, Insung; Yeo, Jeong-Ho

    2013-04-01

    As the International Technology Roadmap for Semiconductors critical dimension uniformity (CDU) specification shrinks, semiconductor companies need to maintain a high yield of good wafers per day and high performance (and hence market value) of finished products. This cannot be achieved without continuous analysis and improvement of on-product CDU as one of the main drivers for process control and optimization with better understanding of main contributors from the litho cluster: mask, process, metrology and scanner. We will demonstrate a study of mask CDU characterization and its impact on CDU Budget Breakdown (CDU BB) performed for advanced extreme ultraviolet (EUV) lithography with 1D (dense lines) and 2D (dense contacts) feature cases. We will show that this CDU contributor is one of the main differentiators between well-known ArFi and new EUV CDU budgeting principles. We found that reticle contribution to intrafield CDU should be characterized in a specific way: mask absorber thickness fingerprints play a role comparable with reticle CDU in the total reticle part of the CDU budget. Wafer CD fingerprints, introduced by this contributor, may or may not compensate variations of mask CDs and hence influence on total mask impact on intrafield CDU at the wafer level. This will be shown on 1D and 2D feature examples. Mask stack reflectivity variations should also be taken into account: these fingerprints have visible impact on intrafield CDs at the wafer level and should be considered as another contributor to the reticle part of EUV CDU budget. We also observed mask error enhancement factor (MEEF) through field fingerprints in the studied EUV cases. Variations of MEEF may play a role towards the total intrafield CDU and may need to be taken into account for EUV lithography. We characterized MEEF-through-field for the reviewed features, with results herein, but further analysis of this phenomenon is required. This comprehensive approach to quantifying the mask part of

  3. Extreme Ultraviolet Late-Phase Flares: Before and During the Solar Dynamics Observatory Mission

    NASA Astrophysics Data System (ADS)

    Woods, Thomas N.

    2014-09-01

    The solar extreme-ultraviolet (EUV) observations from the Solar Dynamics Observatory (SDO) have revealed interesting characteristics of warm coronal emissions, such as Fe xvi 335 Å emission, which peak soon after the hot coronal X-ray emissions peak during a flare and then sometimes peak for a second time hours after the X-ray flare peak. This flare type, with two warm coronal emission peaks but only one X-ray peak, has been named the EUV late phase (Woods et al., Astrophys. J. 739, 59, 2011). These flares have the distinct properties of i) having a complex magnetic-field structure with two initial sets of coronal loops, with one upper set overlaying a lower set, ii) having an eruptive flare initiated in the lower set and disturbing both loop sets, iii) having the hot coronal emissions emitted only from the lower set in conjunction with the X-ray peak, and iv) having the first peak of the warm coronal emissions associated with the lower set and its second peak emitted from the upper set many minutes to hours after the first peak and without a second X-ray enhancement. The disturbance of the coronal loops by the eruption is at about the same time, but the relaxation and cooling down of the heated coronal loops during the post-flare reconnections have different time scales with the longer, upper loops being significantly delayed from the lower loops. The difference in these cooling time scales is related to the difference between the two peak times of the warm coronal emission and is also apparent in the decay profile of the X-ray emissions having two distinct decays, with the first decay slope being steeper (faster) and the delayed decay slope being smaller (slower) during the time of the warm-coronal-emission second peak. The frequency and relationship of the EUV late-phase decay times between the Fe xvi 335 Å two flare peaks and X-ray decay slopes are examined using three years of SDO/ EUV Variability Experiment (EVE) data, and the X-ray dual-decay character is

  4. Nanoscale imaging using a compact laser plasma EUV source

    NASA Astrophysics Data System (ADS)

    Wachulak, Przemyslaw; Bartnik, Andrzej; Fiedorowicz, Henryk; Kostecki, Jerzy; Jarocki, Roman; Szczurek, Miroslaw; Szczurek, Anna; Feigl, Torsten; Pina, Ladislav

    2012-05-01

    High resolution imaging methods and techniques are currently under development. One of them is an extreme ultraviolet (EUV) microscopy, based on Fresnel zone plates. In this paper a compact, high-repetition, laser-plasma EUV source, emitting quasi-monochromatic radiation at 13.8nm wavelength was used in a desktop EUV transmission microscopy with a spatial (half-pitch) resolution of 50nm. EUV microscopy images of objects with various thicknesses and the spatial resolution measurements using the knife-edge test are presented.

  5. Laser-plasma extreme ultraviolet and soft X-ray sources based on a double stream gas puff target: interaction of the radiation pulses with matter

    NASA Astrophysics Data System (ADS)

    Bartnik, A.

    2015-06-01

    In this work a review of investigations concerning interaction of intense extreme ultraviolet (EUV) and soft X-ray (SXR) pulses with matter is presented. The investigations were performed using laser-produced plasma (LPP) EUV/SXR sources based on a double stream gas puff target. The sources are equipped with dedicated collectors allowing for efficient focusing of the EUV/SXR radiation pulses. Intense radiation in a wide spectral range, as well as a quasi-monochromatic radiation can be produced. In the paper different kinds of LPP EUV/SXR sources developed in the Institute of Optoelectronics, Military University of Technology are described. Radiation intensities delivered by the sources are sufficient for different kinds of interaction experiments including EUV/SXR induced ablation, surface treatment, EUV fluorescence or photoionized plasma creation. A brief review of the main results concerning this kind of experiments performed by author of the paper are presented. However, since the LPP sources cannot compete with large scale X-ray sources like synchrotrons, free electron lasers or high energy density plasma sources, it was indicated that some investigations not requiring extreme irradiation parameters can be performed using the small scale installations. Some results, especially concerning low temperature photoionized plasmas are very unique and could be hardly obtained using the large facilities.

  6. A study of extreme-ultraviolet emission from cataclysmic variables

    NASA Technical Reports Server (NTRS)

    Polidan, Ronald S.; Mauche, Christopher W.; Wade, Richard A.

    1990-01-01

    Voyager far- and extreme UV spectrophotometric observations of five cataclysmic variables (the dwarf novae SS Cyg and VW Hyi and the novalike variables V3885 Sgr, RW Sex, and IX Vel) are combined with neutral hydrogen column densities derived from the curve-of-growth analysis of interstellar absorption lines in high-resolution IUE spectra to place upper limits on the emitted flux in the 600-700 A EUV band. The Voyager observations of VW Hyi were obtained during both normal and superoutbursts. Detailed accretion disk model calculations show that most of the 600-700 A flux in these systems should originate in the inner accretion disk rather than in the boundary layer. For VW Hyi, the low neutral hydrogen column and excellent Voyager superoutburst data place the observed upper limit to the 600-700 A flux well below the expected EUV flux from the model calculations.

  7. Extreme ultra-violet burst, particle heating, and whistler wave emission in fast magnetic reconnection induced by kink-driven Rayleigh-Taylor instability

    SciTech Connect

    Chai, Kil-Byoung; Zhai, Xiang; Bellan, Paul M.

    2016-03-15

    A spatially localized energetic extreme ultra-violet (EUV) burst is imaged at the presumed position of fast magnetic reconnection in a plasma jet produced by a coaxial helicity injection source; this EUV burst indicates strong localized electron heating. A circularly polarized high frequency magnetic field perturbation is simultaneously observed at some distance from the reconnection region indicating that the reconnection emits whistler waves and that Hall dynamics likely governs the reconnection. Spectroscopic measurement shows simultaneous fast ion heating. The electron heating is consistent with Ohmic dissipation, while the ion heating is consistent with ion trajectories becoming stochastic.

  8. Efficient 13.5 nm extreme ultraviolet emission from Sn plasma irradiated by a long CO{sub 2} laser pulse

    SciTech Connect

    Tao, Y.; Tillack, M. S.; Sequoia, K. L.; Burdt, R. A.; Yuspeh, S.; Najmabadi, F.

    2008-06-23

    The effect of pulse duration on in-band (2% bandwidth) conversion efficiency (CE) from a CO{sub 2} laser to 13.5 nm extreme ultraviolet (EUV) light was investigated for Sn plasma. It was found that high in-band CE, 2.6%, is consistently obtained using a CO{sub 2} laser with pulse durations from 25 to 110 ns. Employing a long pulse, for example, 110 ns, in a CO{sub 2} laser system used in an EUV lithography source could make the system significantly more efficient, simpler, and cheaper as compared to that using a short pulse of 25 ns or shorter.

  9. Extreme-Ultraviolet Spectroscopy of Nearby B-Stars: Testing Models of Cosmic Reionization

    NASA Astrophysics Data System (ADS)

    Green, James

    This is a four-year sounding rocket investigation focusing on the extreme-ultraviolet (EUV; 500 – 1150 Å) spectrophotometry of nearby B-stars. Our observations will not only provide powerful constraints on stellar atmosphere models, but also provide key insights towards understanding the reionization of the early universe. The critical region from 700 – 900 Å, where the ionization cross section for neutral hydrogen is at its greatest, has never been observed for any B stars , nor is there any planned instrumentation to cover this waveband. Therefore, a sub-orbital mission is the ideal program to accomplish this science. We will develop a sounding rocket payload called DEUCE – the Dual-channel Extreme Ultraviolet Continuum Experiment. The proposed program addresses NASA’s strategic goals by: A) making unique observations relevant to the physics of re-ionization; B)demonstrating the space worthiness of a new class of ultraviolet detectors, and C)training the next generation of NASA space-mission scientists and PIs

  10. Nonspecular scattering from extreme ultraviolet multilayer coatings

    NASA Astrophysics Data System (ADS)

    Stearns, D. G.; Gullikson, E. M.

    2000-06-01

    We review our recent studies of nonspecular scattering from multilayer coatings designed for high reflectivity in the wavelength range of 1-100 nm. A linear, continuum growth model is used to describe the structure of the interfacial roughness in the multilayer coatings. This model accounts for both the partial replication of the substrate roughness and the intrinsic roughness introduced by the multilayer growth. The scattering of radiation from the roughness is calculated within the distorted-wave Born approximation and is compared to experimental measurements. Observations of particular interest are: (1) enhanced nonspecular scattering from the correlated roughness of the coatings and (2) asymmetry in the measured scattering due to phase effects produced by an off-normal angle of deposition during film growth. As an application of our results we consider the effect of nonspecular scattering in EUV lithography.

  11. Extreme Ultraviolet Lithography - Reflective Mask Technology

    SciTech Connect

    Walton, C.C.; Kearney, P.A.; Mirkarimi, P.B.; Bowers, J.M.; Cerjan, C.; Warrick, A.L.; Wilhelmsen, K.; Fought, E.; Moore, C.; Larson, C.; Baker, S.; Burkhart, S.C.; Hector, S.D.

    2000-05-09

    EUVL mask blanks consist of a distributed Bragg reflector made of 6.7nm-pitch bi-layers of MO and Si deposited upon a precision Si or glass substrate. The layer deposition process has been optimized for low defects, by application of a vendor-supplied but highly modified ion-beam sputter deposition system. This system is fully automated using SMIF technology to obtain the lowest possible environmental- and handling-added defect levels. Originally designed to coat 150mm substrates, it was upgraded in July, 1999 to 200 mm and has coated runs of over 50 substrates at a time with median added defects >100nm below 0.05/cm{sup 2}. These improvements have resulted from a number of ion-beam sputter deposition system modifications, upgrades, and operational changes, which will be discussed. Success in defect reduction is highly dependent upon defect detection, characterization, and cross-platform positional registration. We have made significant progress in adapting and extending commercial tools to this purpose, and have identified the surface scanner detection limits for different defect classes, and the signatures of false counts and non-printable scattering anomalies on the mask blank. We will present key results and how they have helped reduce added defects. The physics of defect reduction and mitigation is being investigated by a program on multilayer growth over deliberately placed perturbations (defects) of varying size. This program includes modeling of multilayer growth and modeling of defect printability. We developed a technique for depositing uniformly sized gold spheres on EUVL substrates, and have studied the suppression of the perturbations during multilayer growth under varying conditions. This work is key to determining the lower limit of critical defect size for EUV Lithography. We present key aspects of this work. We will summarize progress in all aspects of EUVL mask blank development, and present detailed results on defect reduction and mask blank

  12. True covariance simulation of the EUVE (extreme ultra violet explorer) update filter

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, I. Y.; Harman, R. R.

    1990-01-01

    This paper presents a covariance analysis of the performance and sensitivity of the attitude determination Extended Kalman Filter (EKF) used by the onboard computer (OBC) of the Extreme Ultra Violet Explorer (EUVE) spacecraft. The linearized dynamics and measurement equations of the error states are used in formulating the 'truth model' describing the order of the systems involved. The 'design model' used by the OBC EKF is then obtained by reducing the order of the truth model. The covariance matrix of the EKF which uses the reduced order model is not the correct covariance of the EKF estimation error. A 'true covariance analysis' has to be carried out in order to evaluate the correct accuracy of the OBC generated estimates. The results of such analysis are presented which indicate both the performance and the sensitivity of the OBC EKF.

  13. Electron-induced interaction of selected hydrocarbons with TiO2 surfaces: the relevance to extreme ultraviolet lithography.

    PubMed

    Yakshinskiy, B V; Zalkind, S; Bartynski, R A; Caudillo, R

    2010-03-03

    The aim of this work is to characterize desorption induced by electronic transition processes that affect the reflectivity of TiO2-capped multilayer mirrors used in extreme ultraviolet (EUV) lithography. A low energy electron beam is employed to mimic excitations initiated by EUV radiation. Temperature programmed desorption, x-ray photoelectron spectroscopy, and low energy ion scattering are used to analyze the surface reactions. Carbon film growth on the TiO2(011) crystalline surface is measured during 10-100 eV electron bombardment in benzene or methyl methacrylate vapor over a wide range of pressures and temperatures near 300 K. Low energy secondary electrons excited by EUV photons contribute substantially to the carbon accumulation on clean TiO2 cap layers. For benzene on clean TiO2, secondary electron effects dominate in the initial stages of carbon accumulation, whereas for C-covered TiO2, direct excitations appear to dominate. We report on the adsorption energy, the steady-state coverage of the molecules on the surface and the cross sections for electron-stimulated dissociation: all key parameters for understanding and modeling the processes relating to the EUV lithography mirrors.

  14. DIFFRACTION, REFRACTION, AND REFLECTION OF AN EXTREME-ULTRAVIOLET WAVE OBSERVED DURING ITS INTERACTIONS WITH REMOTE ACTIVE REGIONS

    SciTech Connect

    Shen Yuandeng; Liu Yu; Zhao Ruijuan; Tian Zhanjun; Su Jiangtao; Li Hui; Ichimoto, Kiyoshi; Shibata, Kazunari

    2013-08-20

    We present observations of the diffraction, refraction, and reflection of a global extreme-ultraviolet (EUV) wave propagating in the solar corona. These intriguing phenomena are observed when the wave interacts with two remote active regions, and together they exhibit properties of an EUV wave. When the wave approached AR11465, it became weaker and finally disappeared in the active region, but a few minutes later a new wavefront appeared behind the active region, and it was not concentric with the incoming wave. In addition, a reflected wave was also simultaneously observed on the wave incoming side. When the wave approached AR11459, it transmitted through the active region directly and without reflection. The formation of the new wavefront and the transmission could be explained with diffraction and refraction effects, respectively. We propose that the different behaviors observed during the interactions may be caused by different speed gradients at the boundaries of the two active regions. We find that the EUV wave formed ahead of a group of expanding loops a few minutes after the start of the loops' expansion, which represents the initiation of the associated coronal mass ejection (CME). Based on these results, we conclude that the EUV wave should be a nonlinear magnetosonic wave or shock driven by the associated CME, which propagated faster than the ambient fast mode speed and gradually slowed down to an ordinary linear wave. Our observations support the hybrid model that includes both fast wave and slow non-wave components.

  15. Optimization of the size ratio of Sn sphere and laser focal spot for an extreme ultraviolet light source

    SciTech Connect

    Yuspeh, S.; Sequoia, K. L.; Tao, Y.; Tillack, M. S.; Burdt, R.; Najmabadi, F.

    2008-12-01

    The effect of the ratio of Sn sphere diameter to laser focal spot size (SD/FSS) on conversion efficiency (CE) from laser to in-band (2%) 13.5 nm extreme ultraviolet (EUV) light was investigated by fixing the laser spot size and irradiating variable diameter spheres. It was found that a minimum SD/FSS, i.e., 2.5, is necessary to produce high in-band CE, which is 15% higher than planar targets. Two-dimensional plasma density profile maps showed that the density of the dominant in-band EUV emission region and the size of the surrounding absorbing plasma can be manipulated by geometric effects of the SD/FSS ratio.

  16. Efficient extreme ultraviolet plasma source generated by a CO{sub 2} laser and a liquid xenon microjet target

    SciTech Connect

    Ueno, Yoshifumi; Ariga, Tatsuya; Soumagne, George; Higashiguchi, Takeshi; Kubodera, Shoichi; Pogorelsky, Igor; Pavlishin, Igor; Stolyarov, Daniil; Babzien, Marcus; Kusche, Karl; Yakimenko, Vitaly

    2007-05-07

    We demonstrated efficacy of a CO{sub 2}-laser-produced xenon plasma in the extreme ultraviolet (EUV) spectral region at 13.5 nm at variable laser pulse widths between 200 ps and 25 ns. The plasma target was a 30 {mu}m liquid xenon microjet. To ensure the optimum coupling of CO{sub 2} laser energy with the plasma, they applied a prepulse yttrium aluminum garnet laser. The authors measured the conversion efficiency (CE) of the 13.5 nm EUV emission for different pulse widths of the CO{sub 2} laser. A maximum CE of 0.6% was obtained for a CO{sub 2} laser pulse width of 25 ns at an intensity of 5x10{sup 10} W/cm{sup 2}.

  17. Highly sensitive visible-blind extreme ultraviolet Ni/4H-SiC Schottky photodiodes with large detection area.

    PubMed

    Hu, Jun; Xin, Xiaobin; Zhao, Jian H; Yan, Feng; Guan, Bing; Seely, John; Kjornrattanawanich, Benjawan

    2006-06-01

    Ni/4H-SiC Schottky photodiodes of 5 mm x 5 mm area have been fabricated and characterized. The photodiodes show less than 0.1 pA dark current at -4 V and an ideality factor of 1.06. A quantum efficiency (QE) between 3 and 400 nm has been calibrated and compared with Si photodiodes optimized for extreme ultraviolet (EUV) detection. In the EUV region, the QE of SiC detectors increases from 0.14 electrons/photon at 120 nm to 30 electrons/photon at 3 nm. The mean energy of electron-hole pair generation of 4H-SiC estimated from the spectral QE is found to be 7.9 eV.

  18. Correlation method for the measure of mask-induced line-edge roughness in extreme ultraviolet lithography

    SciTech Connect

    Naulleau, Patrick

    2009-05-25

    As critical dimensions for leading-edge semiconductor devices shrink, line-edge roughness (LER) requirements are pushing well into the single digit nanometer regime. At these scales many new sources of LER must be considered. In the case of extreme ultraviolet (EUV) lithography, modeling has shown the lithographic mask to be a source of significant concern. Here we present a correlation-based methodology for experimentally measuring the magnitude of mask contributors to printed LER. The method is applied to recent printing results from a 0.3 numerical aperture EUV microfield exposure tool. The measurements demonstrate that such effects are indeed present and of significant magnitude. The method is also used to explore the effects of illumination coherence and defocus and has been used to verify model-based predictions of mask-induced LER.

  19. High-intensity source of extreme ultraviolet

    NASA Technical Reports Server (NTRS)

    Paresce, E.; Kumar, S.; Bowyer, S.

    1972-01-01

    High intensity ultraviolet radiation source was developed which is suitable for emission below 500 A. Source, useful for 100 to 1000 A range, is simple and inexpensive to construct, easy to operate, and very stable. Because of sufficiently intense output spectrum, source can be used with monochromator at wavelengths as low as 160 A.

  20. Cluster beam targets for laser plasma extreme ultraviolet and soft x-ray sources

    DOEpatents

    Kublak, G.D.; Richardson, M.C.

    1996-11-19

    Method and apparatus for producing extreme ultraviolet (EUV) and soft x-ray radiation from an ultra-low debris plasma source are disclosed. Targets are produced by the free jet expansion of various gases through a temperature controlled nozzle to form molecular clusters. These target clusters are subsequently irradiated with commercially available lasers of moderate intensity (10{sup 11}--10{sup 12} watts/cm{sup 2}) to produce a plasma radiating in the region of 0.5 to 100 nanometers. By appropriate adjustment of the experimental conditions the laser focus can be moved 10--30 mm from the nozzle thereby eliminating debris produced by plasma erosion of the nozzle. 5 figs.

  1. Contamination control program results from three years of ground operations on the Extreme Ultraviolet Explorer instruments

    NASA Technical Reports Server (NTRS)

    Ray, David C.; Jelinsky, Sharon; Welsh, Barry Y.; Malina, Roger F.

    1990-01-01

    A stringent contamination-control plan has been developed for the optical components of the Extreme Ultraviolet Explorer instruments, whose performance in the 80-900 A wavelength range is highly sensitive to particulate and molecular contamination. The contamination-control program has been implemented over the last three years during assembly, test and calibration phases of the instrument. These phases have now been completed and the optics cavities of the instruments have been sealed until deployment in space. Various approaches are discussed which have been used during ground operations to meet optics' contamination goals within the project schedule and budget. The measured optical properties of EUV witness mirrors are also presented which remained with the flight mirrors during ground operations. These were used to track optical degradation due to contamination from the cleanroom and high-vacuum test-chamber environments.

  2. Contamination control program results from three years of ground operations on the Extreme Ultraviolet Explorer instruments

    NASA Technical Reports Server (NTRS)

    Ray, David C.; Jelinsky, Sharon; Welsh, Barry Y.; Malina, Roger F.

    1990-01-01

    A stringent contamination-control plan has been developed for the optical components of the Extreme Ultraviolet Explorer instruments, whose performance in the 80-900 A wavelength range is highly sensitive to particulate and molecular contamination. The contamination-control program has been implemented over the last three years during assembly, test and calibration phases of the instrument. These phases have now been completed and the optics cavities of the instruments have been sealed until deployment in space. Various approaches are discussed which have been used during ground operations to meet optics' contamination goals within the project schedule and budget. The measured optical properties of EUV witness mirrors are also presented which remained with the flight mirrors during ground operations. These were used to track optical degradation due to contamination from the cleanroom and high-vacuum test-chamber environments.

  3. Stochastic effects in 11 nm imaging of extreme ultraviolet lithography with chemically amplified resists

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro; Santillan, Julius Joseph; Itani, Toshiro

    2014-03-01

    The resolution of extreme ultraviolet (EUV) lithography with chemically amplified resist processes has reached 16 nm (half-pitch). The development of chemically amplified resists is ongoing toward the 11 nm node. However, the stochastic effects are increasingly becoming a significant concern with the continuing shrinkage of features. In this study, the fluctuation of protected unit distribution caused by the stochastic effects during image formation was investigated assuming line-and-space patterns with 11 nm half-pitch. Contrary to expectations, the standard deviation of the number of protected units connected to a polymer after postexposure baking (PEB) did not differ from that for 16 nm half-pitch. The standard deviation after PEB increased with the effective reaction radius for deprotection and the initial standard deviation before PEB. Because of the severe requirements for resist processes, the stochastic effects in chemical reactions should be taken into account in the design of next-generation resists.

  4. Latest results from the SEMATECH Berkeley extreme ultraviolet microfield exposure tool

    SciTech Connect

    Naulleau, Patrick; Anderson, Christopher N.; Chiu, Jerrin; Dean, Kim; Denham, Paul; George, Simi; Goldberg, Kenneth A.; Hoef, Brian; Jones, Gideon; Koh, Chawon; La Fontaine, Bruno; Ma, Andy; Montgomery, Warren; Niakoula, Dimitra; Park, Joo-On; Wallow, Tom; Wurm, Stefan

    2008-09-02

    Microfield exposure tools (METs) continue to play a dominant role in the development of extreme ultraviolet (EUV) resists. One of these tools is the 0.3 numerical aperture SEMATECH Berkeley MET operating as a resist and mask test center. Here they present an update on the tool summarizing some of the latest test and characterization results. they provide an update on the long-term aberration stability of the tool and present line-space imaging in chemically amplified photoresist down to the 20-nm half-pitch level. Although resist development has shown substantial progress in the area of resolution, line-edge-roughness (LER) remains a significant concern. Here we present a summary of recent LER performance results and consider the effect of mask contributors to the LER observed from the SEMATECH Berkeley microfield tool.

  5. The extreme ultraviolet imager of solar orbiter: optical design and alignment scheme

    NASA Astrophysics Data System (ADS)

    Halain, J.-P.; Mazzoli, A.; Meining, S.; Rochus, P.; Renotte, E.; Auchère, F.; Schühle, U.; Delmotte, F.; Dumesnil, C.; Philippon, A.; Mercier, R.; Hermans, A.

    2015-09-01

    The Extreme Ultraviolet Imager (EUI) is one of the remote sensing instruments on-board the Solar Orbiter mission. It will provide dual-band full-Sun images of the solar corona in the extreme ultraviolet (17.1 nm and 30.4 nm), and high resolution images of the solar disk in both extreme ultraviolet (17.1 nm) and vacuum ultraviolet (Lyman-alpha 121.6 nm). The EUI optical design takes heritage of previous similar instruments. The Full Sun Imager (FSI) channel is a single mirror Herschel design telescope. The two High Resolution Imager (HRI) channels are based on a two-mirror optical refractive scheme, one Ritchey-Chretien and one Gregory optical design for the EUV and the Lyman-alpha channels, respectively. The spectral performances of the EUI channels are obtained thanks to dedicated mirror multilayer coatings and specific band-pass filters. The FSI channel uses a dual-band mirror coating combined with aluminum and zirconium band-pass filters. The HRI channels use optimized band-pass selection mirror coatings combined with aluminum band-pass filters and narrow band interference filters for Lyman-alpha. The optical performances result from accurate mirror manufacturing tolerances and from a two-step alignment procedure. The primary mirrors are first co-aligned. The HRI secondary mirrors and focal planes positions are then adjusted to have an optimum interferometric cavity in each of these two channels. For that purpose a dedicated alignment test setup has been prepared, composed of a dummy focal plane assembly representing the detector position. Before the alignment on the flight optical bench, the overall alignment method has been validated on the Structural and Thermal Model, on a dummy bench using flight spare optics, then on the Qualification Model to be used for the system verification test and qualifications.

  6. FIBRILLAR CHROMOSPHERIC SPICULE-LIKE COUNTERPARTS TO AN EXTREME-ULTRAVIOLET AND SOFT X-RAY BLOWOUT CORONAL JET

    SciTech Connect

    Sterling, Alphonse C.; Moore, Ronald L.; Harra, Louise K. E-mail: ron.moore@nasa.go

    2010-10-20

    We observe an erupting jet feature in a solar polar coronal hole, using data from Hinode/Solar Optical Telescope (SOT), Extreme Ultraviolet Imaging Spectrometer (EIS), and X-Ray Telescope (XRT), with supplemental data from STEREO/EUVI. From extreme-ultraviolet (EUV) and soft X-ray (SXR) images we identify the erupting feature as a blowout coronal jet: in SXRs it is a jet with a bright base, and in EUV it appears as an eruption of relatively cool ({approx}50,000 K) material of horizontal size scale {approx}30'' originating from the base of the SXR jet. In SOT Ca II H images, the most pronounced analog is a pair of thin ({approx}1'') ejections at the locations of either of the two legs of the erupting EUV jet. These Ca II features eventually rise beyond 45'', leaving the SOT field of view, and have an appearance similar to standard spicules except that they are much taller. They have velocities similar to that of 'type II' spicules, {approx}100 km s{sup -1}, and they appear to have spicule-like substructures splitting off from them with horizontal velocity {approx}50 km s{sup -1}, similar to the velocities of splitting spicules measured by Sterling et al. Motions of splitting features and of other substructures suggest that the macroscopic EUV jet is spinning or unwinding as it is ejected. This and earlier work suggest that a subpopulation of Ca II type II spicules are the Ca II manifestation of portions of larger scale erupting magnetic jets. A different subpopulation of type II spicules could be blowout jets occurring on a much smaller horizontal size scale than the event we observe here.

  7. Low-cost method for producing extreme ultraviolet lithography optics

    DOEpatents

    Folta, James A.; Montcalm, Claude; Taylor, John S.; Spiller, Eberhard A.

    2003-11-21

    Spherical and non-spherical optical elements produced by standard optical figuring and polishing techniques are extremely expensive. Such surfaces can be cheaply produced by diamond turning; however, the roughness in the diamond turned surface prevent their use for EUV lithography. These ripples are smoothed with a coating of polyimide before applying a 60 period Mo/Si multilayer to reflect a wavelength of 134 .ANG. and have obtained peak reflectivities close to 63%. The savings in cost are about a factor of 100.

  8. PRODUCTION OF THE EXTREME-ULTRAVIOLET LATE PHASE OF AN X CLASS FLARE IN A THREE-STAGE MAGNETIC RECONNECTION PROCESS

    SciTech Connect

    Dai, Y.; Ding, M. D.; Guo, Y.

    2013-08-20

    We report on observations of an X class flare on 2011 September 6 by the instruments on board the Solar Dynamics Observatory. The flare occurs in a complex active region with multiple polarities. The Extreme-Ultraviolet (EUV) Variability Experiment observations in the warm coronal emission reveal three enhancements, the third of which corresponds to an EUV late phase. The three enhancements have a one-to-one correspondence to the three stages in flare evolution identified by the spatially resolved Atmospheric Imaging Assembly observations, which are characterized by a flux rope eruption, a moderate filament ejection, and the appearance of EUV late phase loops, respectively. The EUV late phase loops are spatially and morphologically distinct from the main flare loops. Multi-channel analysis suggests the presence of a continuous but fragmented energy injection during the EUV late phase resulting in the warm corona nature of the late phase loops. Based on these observational facts, we propose a three-stage magnetic reconnection scenario to explain the flare evolution. Reconnections in different stages involve different magnetic fields but show a casual relationship between them. The EUV late phase loops are mainly produced by the least energetic magnetic reconnection in the last stage.

  9. Modification of magnetic properties of Pt/Co/Pt trilayers driven by nanosecond pulses of extreme ultraviolet irradiation

    NASA Astrophysics Data System (ADS)

    Sveklo, I.; Kurant, Z.; Bartnik, A.; Klinger, D.; Sobierajski, R.; Wawro, A.; Kisielewski, J.; Tekielak, M.; Maziewski, A.

    2017-01-01

    An irreversible rotation of magnetization from in-plane to an out-of-plane direction was induced in Pt/Co/Pt epitaxial trilayers by single and multiple pulses of extreme ultraviolet (EUV) irradiations. The radial dependence of remanence, coercivity and saturation fields across the irradiated spots was studied with the help of magneto-optical techniques for the samples with various Co and Pt buffer layer thicknesses. The sample surface and magnetic ordering were investigated using atomic force and magnetic force microscopies. Based on magnetic and morphological changes, the residual stress after thermoplastic deformation in the spot area is discussed as a reason for the observed transformation.

  10. Extreme ultraviolet photodissociative excitation of molecular oxygen

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.

    1974-01-01

    Photodissociation processes in molecular oxygen occurring in the wavelength range from 500 to 900 A, investigated through observations of the resulting atomic fluorescence radiation, are reported. The dispersed radiation from a continuous light source was used to excite the gas, and the resulting fluorescence radiation was observed in the ultraviolet and infrared. The results obtained are compared with the dissociation cross sections derived by Matsunaga and Watanabe (1967).

  11. Reflectance enhancement in the extreme ultraviolet and soft x rays by means of multilayers with more than two materials.

    PubMed

    Larruquert, Juan I

    2002-02-01

    Sub-quarterwave multilayer coatings with more than two different materials are shown to provide a reflectance enhancement compared with the standard two-material multilayer coatings when reflectance is limited by material absorption. A remarkable reflectance enhancement is obtained when the materials in the multilayer are moderately absorbing. A simple rule based on the material optical constants is provided to select the most suitable materials for the multilayer and to arrange the materials in the correct sequence in order to obtain the highest possible reflectance. It is shown that sub-quarterwave multilayers generalize the concept of multilayers, of which the standard two-material multilayers are a particular case. Various examples illustrate the benefit of sub-quarter-wave multilayer coatings for highest reflectance in the extreme ultraviolet. Applications for sub-quarterwave multilayer coatings are envisaged for astronomy in the extreme ultraviolet (EUV) and soft x rays and also for future EUY lithography.

  12. Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): Overview of Science Objectives, Instrument Design, Data Products, and Model Developments

    NASA Technical Reports Server (NTRS)

    Woods, T. N.; Eparvier, F. G.; Hock, R.; Jones, A. R.; Woodraska, D.; Judge, D.; Didkovsky, L.; Lean, J.; Mariska, J.; Warren, H.; hide

    2010-01-01

    The highly variable solar extreme ultraviolet (EUV) radiation is the major energy input to the Earth's upper atmosphere, strongly impacting the geospace environment, affecting satellite operations, communications, and navigation. The Extreme ultraviolet Variability Experiment (EVE) onboard the NASA Solar Dynamics Observatory (SDO) will measure the solar EUV irradiance from 0.1 to 105 nm with unprecedented spectral resolution (0.1 nm), temporal cadence (ten seconds), and accuracy (20%). EVE includes several irradiance instruments: The Multiple EUV Grating Spectrographs (MEGS)-A is a grazingincidence spectrograph that measures the solar EUV irradiance in the 5 to 37 nm range with 0.1-nm resolution, and the MEGS-B is a normal-incidence, dual-pass spectrograph that measures the solar EUV irradiance in the 35 to 105 nm range with 0.1-nm resolution. To provide MEGS in-flight calibration, the EUV SpectroPhotometer (ESP) measures the solar EUV irradiance in broadbands between 0.1 and 39 nm, and a MEGS-Photometer measures the Sun s bright hydrogen emission at 121.6 nm. The EVE data products include a near real-time space-weather product (Level 0C), which provides the solar EUV irradiance in specific bands and also spectra in 0.1-nm intervals with a cadence of one minute and with a time delay of less than 15 minutes. The EVE higher-level products are Level 2 with the solar EUV irradiance at higher time cadence (0.25 seconds for photometers and ten seconds for spectrographs) and Level 3 with averages of the solar irradiance over a day and over each one-hour period. The EVE team also plans to advance existing models of solar EUV irradiance and to operationally use the EVE measurements in models of Earth s ionosphere and thermosphere. Improved understanding of the evolution of solar flares and extending the various models to incorporate solar flare events are high priorities for the EVE team.

  13. EUV mask pilot line at Intel Corporation

    NASA Astrophysics Data System (ADS)

    Stivers, Alan R.; Yan, Pei-Yang; Zhang, Guojing; Liang, Ted; Shu, Emily Y.; Tejnil, Edita; Lieberman, Barry; Nagpal, Rajesh; Hsia, Kangmin; Penn, Michael; Lo, Fu-Chang

    2004-12-01

    The introduction of extreme ultraviolet (EUV) lithography into high volume manufacturing requires the development of a new mask technology. In support of this, Intel Corporation has established a pilot line devoted to encountering and eliminating barriers to manufacturability of EUV masks. It concentrates on EUV-specific process modules and makes use of the captive standard photomask fabrication capability of Intel Corporation. The goal of the pilot line is to accelerate EUV mask development to intersect the 32nm technology node. This requires EUV mask technology to be comparable to standard photomask technology by the beginning of the silicon wafer process development phase for that technology node. The pilot line embodies Intel's strategy to lead EUV mask development in the areas of the mask patterning process, mask fabrication tools, the starting material (blanks) and the understanding of process interdependencies. The patterning process includes all steps from blank defect inspection through final pattern inspection and repair. We have specified and ordered the EUV-specific tools and most will be installed in 2004. We have worked with International Sematech and others to provide for the next generation of EUV-specific mask tools. Our process of record is run repeatedly to ensure its robustness. This primes the supply chain and collects information needed for blank improvement.

  14. Extreme Ultraviolet (XUV) Coronal Spectroheliograph - Experiment S082A

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This chart describes Skylab's Extreme Ultraviolet (XUV) Coronal Spectroheliograph, one of the eight Apollo Telescope Mount facilities. It was designed to sequentially photograph the solar chromosphere and corona in selected ultraviolet wavelengths . The instrument also obtained information about composition, temperature, energy conversion and transfer, and plasma processes of the chromosphere and lower corona. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  15. Extreme Ultraviolet (XUV) Coronal Spectroheliograph - Experiment S082A

    NASA Technical Reports Server (NTRS)

    1971-01-01

    This photograph shows Skylab's Extreme Ultraviolet (XUV) Spectroheliograph during an acceptance test and checkout procedures in April 1971. The unit was an Apollo Telescope Mount (ATM) instrument designed to sequentially photograph the solar chromosphere and corona in selected ultraviolet wavelengths. The instrument also obtained information about composition, temperature, energy conversion and transfer, and plasma processes of the chromosphere and lower corona. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  16. Energy transport in short-pulse-laser-heated targets measured using extreme ultraviolet laser backlighting.

    PubMed

    Wilson, L A; Tallents, G J; Pasley, J; Whittaker, D S; Rose, S J; Guilbaud, O; Cassou, K; Kazamias, S; Daboussi, S; Pittman, M; Delmas, O; Demailly, J; Neveu, O; Ros, D

    2012-08-01

    The accurate characterization of thermal electron transport and the determination of heating by suprathermal electrons in laser driven solid targets are both issues of great importance to the current experiments being performed at the National Ignition Facility, which aims to achieve thermonuclear fusion ignition using lasers. Ionization, induced by electronic heat conduction, can cause the opacity of a material to drop significantly once bound-free photoionization is no longer energetically possible. We show that this drop in opacity enables measurements of the transmission of extreme ultraviolet (EUV) laser pulses at 13.9 nm to act as a signature of the heating of thin (50 nm) iron layers with a 50-nm thick parylene-N (CH) overlay irradiated by 35-fs pulses at irradiance 3×10(16) Wcm(-2). Comparing EUV transmission measurements at different times after irradiation to fluid code simulations shows that the target is instantaneously heated by hot electrons (with approximately 10% of the laser energy), followed by thermal conduction with a flux limiter of ≈0.05.

  17. On the Importance of the Flare's Late Phase for the Solar Extreme Ultraviolet Irradiance

    NASA Technical Reports Server (NTRS)

    Woods, Thomas N.; Eparvier, Frank; Jones, Andrew R.; Hock, Rachel; Chamberlin, Phillip C.; Klimchuk, James A.; Didkovsky, Leonid; Judge, Darrell; Mariska, John; Bailey, Scott; hide

    2011-01-01

    The new solar extreme ultraviolet (EUV) irradiance observations from NASA Solar Dynamics Observatory (SDO) have revealed a new class of solar flares that are referred to as late phase flares. These flares are characterized by the hot 2-5 MK coronal emissions (e.g., Fe XVI 33.5 nm) showing large secondary peaks that appear many minutes to hours after an eruptive flare event. In contrast, the cool 0.7-1.5 MK coronal emissions (e.g., Fe IX 17.1 nm) usually dim immediately after the flare onset and do not recover until after the delayed second peak of the hot coronal emissions. We refer to this period of 1-5 hours after the fl amrea sin phase as the late phase, and this late phase is uniquely different than long duration flares associated with 2-ribbon flares or large filament eruptions. Our analysis of the late phase flare events indicates that the late phase involves hot coronal loops near the flaring region, not directly related to the original flaring loop system but rather with the higher post-eruption fields. Another finding is that space weather applications concerning Earth s ionosphere and thermosphere need to consider these late phase flares because they can enhance the total EUV irradiance flare variation by a factor of 2 when the late phase contribution is included.

  18. Mode Conversion of a Solar Extreme-ultraviolet Wave over a Coronal Cavity

    NASA Astrophysics Data System (ADS)

    Zong, Weiguo; Dai, Yu

    2017-01-01

    We report on observations of an extreme-ultraviolet (EUV) wave event in the Sun on 2011 January 13 by Solar Terrestrial Relations Observatory and Solar Dynamics Observatory in quadrature. Both the trailing edge and the leading edge of the EUV wave front in the north direction are reliably traced, revealing generally compatible propagation velocities in both perspectives and a velocity ratio of about 1/3. When the wave front encounters a coronal cavity near the northern polar coronal hole, the trailing edge of the front stops while its leading edge just shows a small gap and extends over the cavity, meanwhile getting significantly decelerated but intensified. We propose that the trailing edge and the leading edge of the northward propagating wave front correspond to a non-wave coronal mass ejection component and a fast-mode magnetohydrodynamic wave component, respectively. The interaction of the fast-mode wave and the coronal cavity may involve a mode conversion process, through which part of the fast-mode wave is converted to a slow-mode wave that is trapped along the magnetic field lines. This scenario can reasonably account for the unusual behavior of the wave front over the coronal cavity.

  19. Spectroscopic study of debris mitigation with minimum-mass Sn laser plasma for extreme ultraviolet lithography

    SciTech Connect

    Namba, S.; Fujioka, S.; Nishimura, H.; Yasuda, Y.; Nagai, K.; Miyanaga, N.; Izawa, Y.; Mima, K.; Takiyama, K.

    2006-04-24

    An experimental study was made of a target consisting of the minimum mass of pure tin (Sn) necessary for the highest conversion to extreme ultraviolet (EUV) light while minimizing the generation of plasma debris. The minimum-mass target comprised a thin Sn layer coated on a plastic shell and was irradiated with a Nd:YAG laser pulse. The expansion behavior of neutral atoms and singly charged ions emanating from the Sn plasma were investigated by spatially resolved visible spectroscopy. A remarkable reduction of debris emission in the backward direction with respect to the incident laser beam was demonstrated with a decrease in the thickness of the Sn layer. The optimal thickness of the Sn layer for a laser pulse of 9 ns at 7x10{sup 10} W/cm{sup 2} was found to be 40 nm, at which low-debris emission in the backward direction and a high conversion to 13.5 nm EUV radiation were simultaneously attained.

  20. Extreme ultraviolet emission and confinement of tin plasmas in the presence of a magnetic field

    SciTech Connect

    Roy, Amitava E-mail: aroy@barc.gov.in; Murtaza Hassan, Syed; Harilal, Sivanandan S.; Hassanein, Ahmed; Endo, Akira; Mocek, Tomas

    2014-05-15

    We investigated the role of a guiding magnetic field on extreme ultraviolet (EUV) and ion emission from a laser produced Sn plasma for various laser pulse duration and intensity. For producing plasmas, planar slabs of pure Sn were irradiated with 1064 nm, Nd:YAG laser pulses with varying pulse duration (5–15 ns) and intensity. A magnetic trap was fabricated with the use of two neodymium permanent magnets which provided a magnetic field strength ∼0.5 T along the plume expansion direction. Our results indicate that the EUV conversion efficiency do not depend significantly on applied axial magnetic field. Faraday Cup ion analysis of Sn plasma show that the ion flux reduces by a factor of ∼5 with the application of an axial magnetic field. It was found that the plasma plume expand in the lateral direction with peak velocity measured to be ∼1.2 cm/μs and reduced to ∼0.75 cm/μs with the application of an axial magnetic field. The plume expansion features recorded using fast photography in the presence and absence of 0.5 T axial magnetic field are simulated using particle-in-cell code. Our simulation results qualitatively predict the plasma behavior.

  1. A study of the mechanical vibrations of a table-top extreme ultraviolet interference nanolithography tool.

    PubMed

    Prezioso, S; De Marco, P; Zuppella, P; Santucci, S; Ottaviano, L

    2010-04-01

    A prototype low cost table-top extreme ultraviolet (EUV) laser source (1.5 ns pulse duration, lambda=46.9 nm) was successfully employed as a laboratory scale interference nanolithography (INL) tool. Interference patterns were obtained with a simple Lloyd's mirror setup. Periodic structures on Polymethylmethacrylate/Si substrates were produced on large areas (8 mm(2)) with resolutions from 400 to 22.5 nm half pitch (the smallest resolution achieved so far with table-top EUV laser sources). The mechanical vibrations affecting both the laser source and Lloyd's setup were studied to determine if and how they affect the lateral resolution of the lithographic system. The vibration dynamics was described by a statistical model based on the assumption that the instantaneous position of the vibrating mechanical parts follows a normal distribution. An algorithm was developed to simulate the process of sample irradiation under different vibrations. The comparison between simulations and experiments allowed to estimate the characteristic amplitude of vibrations that was deduced to be lower than 50 nm. The same algorithm was used to reproduce the expected pattern profiles in the lambda/4 half pitch physical resolution limit. In that limit, a nonzero pattern modulation amplitude was obtained from the simulations, comparable to the peak-to-valley height (2-3 nm) measured for the 45 nm spaced fringes, indicating that the mechanical vibrations affecting the INL tool do not represent a limit in scaling down the resolution.

  2. Stable droplet generator for a high brightness laser produced plasma extreme ultraviolet source

    NASA Astrophysics Data System (ADS)

    Vinokhodov, A.; Krivokorytov, M.; Sidelnikov, Yu.; Krivtsun, V.; Medvedev, V.; Bushuev, V.; Koshelev, K.; Glushkov, D.; Ellwi, S.

    2016-10-01

    We present the results of the low-melting liquid metal droplets generation based on excited Rayleigh jet breakup. We discuss on the operation of the industrial and in-house designed and manufactured dispensing devices for the droplets generation. Droplet diameter can be varied in the range of 30-90 μm. The working frequency of the droplets, velocity, and the operating temperature were in the ranges of 20-150 kHz, 4-15 m/s, and up to 250 °C, respectively. The standard deviations for the droplet center of mass position both their diameter σ < 1 μm at the distance of 45 mm from the nozzle. Stable operation in the long-term (over 1.5 h) was demonstrated for a wide range of the droplet parameters: diameters, frequencies, and velocities. Physical factors affecting the stability of the generator operation have been identified. The technique for droplet synchronization, allowing using the droplet as a target for laser produced plasma, has been created; in particular, the generator has been successfully used in a high brightness extreme ultraviolet (EUV) light source. The operation with frequency up to 8 kHz was demonstrated as a result of the experimental simulation, which can provide an average brightness of the EUV source up to ˜1.2 kW/mm2 sr.

  3. Characterization of an expanded-field Schwarzschild objective for extreme ultraviolet lithography

    SciTech Connect

    Kubiak, G.D.; Tichenor, D.A.; Ray-Chaudhuri, A.K.

    1994-08-01

    The performance of a new 10x-reduction Schwarzschild system for projection imaging at 13.4 nm wavelength is reported. The optical design is optimized to achieve 0.1 {mu}m resolution over a 0.4 mm image field of view, an increase in area of a factor of 100 over previous designs. An off-set aperture, located on the convex primary, defines an unobscured 0.08 numerical aperture. The system is illuminated using extreme ultraviolet (EUV) radiation emitted from a laser plasma source and collected by an ellipsoidal condenser. A 450 turning mirror is used to relay the collected EUV radiation onto a near-normal reflecting mask. Multiple sets of primary and secondary elements were fabricated, matched and clocked to minimize the effects of small figure errors on imaging performance. Optical metrology indicates that the wave-front error within the subaperture used is within a factor of two of the design value. Images recorded in PMMA and ZEP 520 resists reveal good imaging fidelity over much of the 0.4 mm field with equal line/space gratings being resolved to 0.1 {mu}m.

  4. Droplet-based, high-brightness extreme ultraviolet laser plasma source for metrology

    NASA Astrophysics Data System (ADS)

    Vinokhodov, A. Yu.; Krivokorytov, M. S.; Sidelnikov, Yu. V.; Krivtsun, V. M.; Medvedev, V. V.; Koshelev, K. N.

    2016-10-01

    We report on the development of a high brightness source of extreme ultraviolet radiation (EUV) with a working wavelength of 13.5 nm. The source is based on a laser-produced plasma driven by pulsed radiation of a Nd:YAG laser system. Liquid droplets of Sn-In eutectic alloy were used as the source fuel. The droplets were created by a droplet generator operating in the jet break-up regime. The EUV emission properties of the plasma, including the emission spectrum, time profile, and conversion efficiency of laser radiation into useful 13.5 nm photons, have been characterized. Using the shadowgraphy technique, we demonstrated the production of corpuscular debris by the plasma source and the influence of the plasma on the neighboring droplet targets. The high-frequency laser operation was simulated by usage of the dual pulse regime. Based on the experimental results, we discuss the physical phenomena that could affect the source operation at high repetition rates. Finally, we estimate that an average source brightness of 1.2 kW/mm2 sr is feasible at a high repetition rate.

  5. Compact advanced extreme-ultraviolet imaging spectrometer for spatiotemporally varying tungsten spectra from fusion plasmas

    NASA Astrophysics Data System (ADS)

    Song, Inwoo; Seon, C. R.; Hong, Joohwan; An, Y. H.; Barnsley, R.; Guirlet, R.; Choe, Wonho

    2017-09-01

    A compact advanced extreme-ultraviolet (EUV) spectrometer operating in the EUV wavelength range of a few nanometers to measure spatially resolved line emissions from tungsten (W) was developed for studying W transport in fusion plasmas. This system consists of two perpendicularly crossed slits—an entrance aperture and a space-resolved slit—inside a chamber operating as a pinhole, which enables the system to obtain a spatial distribution of line emissions. Moreover, a so-called v-shaped slit was devised to manage the aperture size for measuring the spatial resolution of the system caused by the finite width of the pinhole. A back-illuminated charge-coupled device was used as a detector with 2048 × 512 active pixels, each with dimensions of 13.5 × 13.5 μm2. After the alignment and installation on Korea superconducting tokamak advanced research, the preliminary results were obtained during the 2016 campaign. Several well-known carbon atomic lines in the 2-7 nm range originating from intrinsic carbon impurities were observed and used for wavelength calibration. Further, the time behavior of their spatial distributions is presented.

  6. Dynamic absorption coefficients of chemically amplified resists and nonchemically amplified resists at extreme ultraviolet

    NASA Astrophysics Data System (ADS)

    Fallica, Roberto; Stowers, Jason K.; Grenville, Andrew; Frommhold, Andreas; Robinson, Alex P. G.; Ekinci, Yasin

    2016-07-01

    The dynamic absorption coefficients of several chemically amplified resists (CAR) and non-CAR extreme ultraviolet (EUV) photoresists are measured experimentally using a specifically developed setup in transmission mode at the x-ray interference lithography beamline of the Swiss Light Source. The absorption coefficient α and the Dill parameters ABC were measured with unprecedented accuracy. In general, the α of resists match very closely with the theoretical value calculated from elemental densities and absorption coefficients, whereas exceptions are observed. In addition, through the direct measurements of the absorption coefficients and dose-to-clear values, we introduce a new figure of merit called chemical sensitivity to account for all the postabsorption chemical reaction ongoing in the resist, which also predicts a quantitative clearing volume and clearing radius, due to the photon absorption in the resist. These parameters may help provide deeper insight into the underlying mechanisms of the EUV concepts of clearing volume and clearing radius, which are then defined and quantitatively calculated.

  7. Characterization of an expanded-field Schwarzschild objective for extreme ultraviolet lithography

    SciTech Connect

    Kubiak, G.D.; Tichenor, D.A.; Ray-Chaudhuri, A.K.; Malinowski, M.E.; Stulen, R.H.; Haney, S.J.; Berger, K.W.; Nissen, R.P.; Wilkerson, G.A.; Paul, P.H. ); Bjorkholm, J.E.; Fetter, L.A.; Freeman, R.R.; Himel, M.D.; MacDowell, A.A.; Tennant, D.M.; Wood, O.R. II ); Waskiewicz, W.K.; White, D.L.; Windt, D.L. ); Jewell, T.E. )

    1994-11-01

    The performance of a new 10[times]-reduction Schwarzschild system for projection imaging at 13.4 nm wavelength is reported. The optical design is optimized to achieve 0.1 [mu]m resolution over a 0.4 mm image field of view, an increase in area of a factor of 100 over previous designs. An offset aperture, located on the convex primary, defines an unobscured 0.08 numerical aperture. The system is illuminated using extreme ultraviolet (EUV) radiation emitted from a laser plasma source and collected by an ellipsoidal condenser. A 45[degree] turning mirror is used to relay the collected EUV radiation onto a near-normal reflecting mask. Multiple sets of primary and secondary elements were fabricated, matched, and clocked to minimize the effects of small figure errors on imaging performance. Optical metrology indicates that the wave-front error within the subaperture used is within a factor of 2 of the design value. Images recorded in poly(methyl methacrylate) and ZEP 520 (Nippon Zeon) resists reveal good imaging fidelity over much of the 0.4 mm field with equal line/space gratings being resolved to 0.1 [mu]m.

  8. Multilayer coated optics for an alpha-class extreme ultraviolet lithography system

    SciTech Connect

    Folta, J A; Grabner, R F; Hudyma, R M; Montcalm, C; Schmidt, M A; Spiller, E; Walton, C C; Wedowski, M

    1999-08-25

    We present the results of coating the first set of optical elements for an alpha-class extreme-ultraviolet (EUV) lithography system, the Engineering Test Stand (ETS). The optics were coated with Mo/Si multilayer mirrors using an upgraded DC-magnetron sputtering system. Characterization of the near-normal incidence EUV reflectance was performed using synchrotron radiation from the Advanced Light Source at the Lawrence Berkeley National Laboratory. Stringent requirements were met for these multilayer coatings in terms of reflectance, wavelength matching among the different optics, and thickness control across the diameter of each individual optic. Reflectances above 65% were achieved at 13.35 nm at near-normal angles of incidence. The run-to-run reproducibility of the reflectance peak wavelength was maintained to within 0.4%, providing the required wavelength matching among the seven multilayer-coated optics. The thickness uniformity (or gradient) was controlled to within {+-}0.25% peak-to-valley (P-V) for the condenser optics and {+-}0.1% P-V for the four projection optics, exceeding the prescribed specification for the optics of the ETS.

  9. AN EXTREME ULTRAVIOLET WAVE ASSOCIATED WITH A MICRO-SIGMOID ERUPTION

    SciTech Connect

    Zheng Ruisheng; Jiang Yunchun; Yang Jiayan; Bi Yi; Hong Junchao; Yang Dan; Yang Bo

    2012-07-10

    Taking advantage of the high temporal and spatial resolution of the Solar Dynamics Observatory (SDO) observations, we present an extreme ultraviolet (EUV) wave associated with a micro-sigmoid eruption on 2010 October 21. The micro-sigmoid underwent a typical 'sigmoid-to-arcade' evolution via tether-cutting reconnection, accompanied by a B1.7 flare, a filament eruption, and coronal twin dimmings. In the eruption, the newly formed sigmoidal loops expanded quickly, and the expansion likely triggered an EUV wave. The wave onset was nearly simultaneous with the start of the eruption and the associated flare. The wave had a nearly circular front and propagated at a constant velocity of 270-350 km s{sup -1} with very little angular dependence. Remarkably, in some direction, the wave encountered a small loop and refracted at a higher speed. All the results provide evidences that the wave was a fast-mode magnetohydrodynamic (MHD) wave. Owing to the close temporal and spatial relationship between the wave and the expanding loops, we believe that the wave was most likely triggered by the fast expansion of the newly formed sigmoidal loops, which evolved into the leading front of the invisible micro-coronal mass ejection.

  10. Long-lived nonthermal electron distribution in aluminum excited by femtosecond extreme ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Bisio, Francesco; Principi, Emiliano; Magnozzi, Michele; Simoncig, Alberto; Giangrisostomi, Erika; Mincigrucci, Riccardo; Pasquali, Luca; Masciovecchio, Claudio; Boscherini, Federico; Canepa, Maurizio

    2017-08-01

    We report a time-resolved study of the relaxation dynamics of Al films excited by ultrashort intense free-electron laser (FEL) extreme ultraviolet pulses. The system response was measured through a pump-probe detection scheme, in which an intense FEL pulse tuned around the Al L2 ,3 edge (72.5 eV) acted as the pump, while a time-delayed ultrafast pulse probed the near-infrared (NIR) reflectivity of the Al film. Remarkably, following the intense FEL excitation, the reflectivity of the film exhibited no detectable variation for hundreds of femtoseconds. Following this latency time, sizable reflectivity changes were observed. Exploiting recent theoretical calculations of the EUV-excited electron dynamics [N. Medvedev et al., Phys. Rev. Lett. 107, 165003 (2011), 10.1103/PhysRevLett.107.165003], the delayed NIR-reflectivity evolution is interpreted invoking the formation of very-long-living nonthermal hot electron distributions in Al after exposure to intense EUV pulses. Our data represent the first evidence in the time domain of such an intriguing behavior.

  11. A volume-limited ROSAT survey of extreme ultraviolet emission from all nondegenerate stars within 10 parsecs

    NASA Technical Reports Server (NTRS)

    Wood, Brian E.; Brown, Alexander; Linsky, Jeffrey L.; Kellett, Barry J.; Bromage, Gordon E.; Hodgkin, Simon T.; Pye, John P.

    1994-01-01

    We report the results of a volume-limited ROSAT Wide Field Camera (WFC) survey of all nondegenerate stars within 10 pc. Of the 220 known star systems within 10 pc, we find that 41 are positive detections in at least one of the two WFC filter bandpasses (S1 and S2), while we consider another 14 to be marginal detections. We compute X-ray luminosities for the WFC detections using Einstein Imaging Proportional Counter (IPC) data, and these IPC luminosities are discussed along with the WFC luminosities throughout the paper for purposes of comparison. Extreme ultraviolet (EUV) luminosity functions are computed for single stars of different spectral types using both S1 and S2 luminosities, and these luminosity functions are compared with X-ray luminosity functions derived by previous authors using IPC data. We also analyze the S1 and S2 luminosity functions of the binary stars within 10 pc. We find that most stars in binary systems do not emit EUV radiation at levels different from those of single stars, but there may be a few EUV-luminous multiple-star systems which emit excess EUV radiation due to some effect of binarity. In general, the ratio of X-ray luminosity to EUV luminosity increases with increasing coronal emission, suggesting that coronally active stars have higher coronal temperatures. We find that our S1, S2, and IPC luminosities are well correlated with rotational velocity, and we compare activity-rotation relations determined using these different luminosities. Late M stars are found to be significantly less luminous in the EUV than other late-type stars. The most natural explanation for this results is the concept of coronal saturation -- the idea that late-type stars can emit only a limited fraction of their total luminosity in X-ray and EUV radiation, which means stars with very low bolometric luminosities must have relatively low X-ray and EUV luminosities as well. The maximum level of coronal emission from stars with earlier spectral types is studied

  12. A volume-limited ROSAT survey of extreme ultraviolet emission from all nondegenerate stars within 10 parsecs

    NASA Astrophysics Data System (ADS)

    Wood, Brian E.; Brown, Alexander; Linsky, Jeffrey L.; Kellett, Barry J.; Bromage, Gordon E.; Hodgkin, Simon T.; Pye, John P.

    1994-07-01

    We report the results of a volume-limited ROSAT Wide Field Camera (WFC) survey of all nondegenerate stars within 10 pc. Of the 220 known star systems within 10 pc, we find that 41 are positive detections in at least one of the two WFC filter bandpasses (S1 and S2), while we consider another 14 to be marginal detections. We compute X-ray luminosities for the WFC detections using Einstein Imaging Proportional Counter (IPC) data, and these IPC luminosities are discussed along with the WFC luminosities throughout the paper for purposes of comparison. Extreme ultraviolet (EUV) luminosity functions are computed for single stars of different spectral types using both S1 and S2 luminosities, and these luminosity functions are compared with X-ray luminosity functions derived by previous authors using IPC data. We also analyze the S1 and S2 luminosity functions of the binary stars within 10 pc. We find that most stars in binary systems do not emit EUV radiation at levels different from those of single stars, but there may be a few EUV-luminous multiple-star systems which emit excess EUV radiation due to some effect of binarity. In general, the ratio of X-ray luminosity to EUV luminosity increases with increasing coronal emission, suggesting that coronally active stars have higher coronal temperatures. We find that our S1, S2, and IPC luminosities are well correlated with rotational velocity, and we compare activity-rotation relations determined using these different luminosities. Late M stars are found to be significantly less luminous in the EUV than other late-type stars. The most natural explanation for this results is the concept of coronal saturation -- the idea that late-type stars can emit only a limited fraction of their total luminosity in X-ray and EUV radiation, which means stars with very low bolometric luminosities must have relatively low X-ray and EUV luminosities as well. The maximum level of coronal emission from stars with earlier spectral types is studied

  13. A volume-limited ROSAT survey of extreme ultraviolet emission from all nondegenerate stars within 10 parsecs

    NASA Technical Reports Server (NTRS)

    Wood, Brian E.; Brown, Alexander; Linsky, Jeffrey L.; Kellett, Barry J.; Bromage, Gordon E.; Hodgkin, Simon T.; Pye, John P.

    1994-01-01

    We report the results of a volume-limited ROSAT Wide Field Camera (WFC) survey of all nondegenerate stars within 10 pc. Of the 220 known star systems within 10 pc, we find that 41 are positive detections in at least one of the two WFC filter bandpasses (S1 and S2), while we consider another 14 to be marginal detections. We compute X-ray luminosities for the WFC detections using Einstein Imaging Proportional Counter (IPC) data, and these IPC luminosities are discussed along with the WFC luminosities throughout the paper for purposes of comparison. Extreme ultraviolet (EUV) luminosity functions are computed for single stars of different spectral types using both S1 and S2 luminosities, and these luminosity functions are compared with X-ray luminosity functions derived by previous authors using IPC data. We also analyze the S1 and S2 luminosity functions of the binary stars within 10 pc. We find that most stars in binary systems do not emit EUV radiation at levels different from those of single stars, but there may be a few EUV-luminous multiple-star systems which emit excess EUV radiation due to some effect of binarity. In general, the ratio of X-ray luminosity to EUV luminosity increases with increasing coronal emission, suggesting that coronally active stars have higher coronal temperatures. We find that our S1, S2, and IPC luminosities are well correlated with rotational velocity, and we compare activity-rotation relations determined using these different luminosities. Late M stars are found to be significantly less luminous in the EUV than other late-type stars. The most natural explanation for this results is the concept of coronal saturation -- the idea that late-type stars can emit only a limited fraction of their total luminosity in X-ray and EUV radiation, which means stars with very low bolometric luminosities must have relatively low X-ray and EUV luminosities as well. The maximum level of coronal emission from stars with earlier spectral types is studied

  14. Towards High Accuracy Reflectometry for Extreme-Ultraviolet Lithography.

    PubMed

    Tarrio, Charles; Grantham, Steven; Squires, Matthew B; Vest, Robert E; Lucatorto, Thomas B

    2003-01-01

    Currently the most demanding application of extreme ultraviolet optics is connected with the development of extreme ultraviolet lithography. Not only does each of the Mo/Si multilayer extreme-ultraviolet stepper mirrors require the highest attainable reflectivity at 13 nm (nearly 70 %), but the central wavelength of the reflectivity of these mirrors must be measured with a wavelength repeatability of 0.001 nm and the peak reflectivity of the reflective masks with a repeatability of 0.12 %. We report on two upgrades of our NIST/DARPA Reflectometry Facility that have given us the ability to achieve 0.1 % repeatability and 0.3 % absolute uncertainty in our reflectivity measurements. A third upgrade, a monochromator with thermal and mechanical stability for improved wavelength repeatability, is currently in the design phase.

  15. Towards High Accuracy Reflectometry for Extreme-Ultraviolet Lithography

    PubMed Central

    Tarrio, Charles; Grantham, Steven; Squires, Matthew B.; Vest, Robert E.; Lucatorto, Thomas B.

    2003-01-01

    Currently the most demanding application of extreme ultraviolet optics is connected with the development of extreme ultraviolet lithography. Not only does each of the Mo/Si multilayer extreme-ultraviolet stepper mirrors require the highest attainable reflectivity at 13 nm (nearly 70 %), but the central wavelength of the reflectivity of these mirrors must be measured with a wavelength repeatability of 0.001 nm and the peak reflectivity of the reflective masks with a repeatability of 0.12 %. We report on two upgrades of our NIST/DARPA Reflectometry Facility that have given us the ability to achieve 0.1 % repeatability and 0.3 % absolute uncertainty in our reflectivity measurements. A third upgrade, a monochromator with thermal and mechanical stability for improved wavelength repeatability, is currently in the design phase. PMID:27413610

  16. Compact X-Ray And Extreme-Ultraviolet Monochromator

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    1991-01-01

    Monochromator for x-ray and extreme-ultraviolet radiation provides higher spectral resolution than achieved with thin-metal-foil broad-band-pass filters. Uses Bragg reflection to band-pass-filter radiation from high-intensity, broad-spectrum source. Operates over much broader x-ray and extreme-ultraviolet spectrum than devices based upon natural crystals. Intended to filter continuum radiation from sources like synchrotrons, laser plasma sources, free-electron lasers, and wigglers to produce monochromatic beams for testing and analysis of x-ray and extreme-ultraviolet telescopes and microscopes, for calibration of photographic films and detectors, for biological and biomedical research, for x-ray lithography, for processing of materials, and for research in properties of materials.

  17. Atmosphere and water loss from early Mars under extreme solar wind and extreme ultraviolet conditions.

    PubMed

    Terada, Naoki; Kulikov, Yuri N; Lammer, Helmut; Lichtenegger, Herbert I M; Tanaka, Takashi; Shinagawa, Hiroyuki; Zhang, Tielong

    2009-01-01

    The upper limits of the ion pickup and cold ion outflow loss rates from the early martian atmosphere shortly after the Sun arrived at the Zero-Age-Main-Sequence (ZAMS) were investigated. We applied a comprehensive 3-D multi-species magnetohydrodynamic (MHD) model to an early martian CO(2)-rich atmosphere, which was assumed to have been exposed to a solar XUV [X-ray and extreme ultraviolet (EUV)] flux that was 100 times higher than today and a solar wind that was about 300 times denser. We also assumed the late onset of a planetary magnetic dynamo, so that Mars had no strong intrinsic magnetic field at that early period. We found that, due to such extreme solar wind-atmosphere interaction, a strong magnetic field of about approximately 4000 nT was induced in the entire dayside ionosphere, which could efficiently protect the upper atmosphere from sputtering loss. A planetary obstacle ( approximately ionopause) was formed at an altitude of about 1000 km above the surface due to the drag force and the mass loading by newly created ions in the highly extended upper atmosphere. We obtained an O(+) loss rate by the ion pickup process, which takes place above the ionopause, of about 1.5 x 10(28) ions/s during the first < or =150 million years, which is about 10(4) times greater than today and corresponds to a water loss equivalent to a global martian ocean with a depth of approximately 8 m. Consequently, even if the magnetic protection due to the expected early martian magnetic dynamo is neglected, ion pickup and sputtering were most likely not the dominant loss processes for the planet's initial atmosphere and water inventory. However, it appears that the cold ion outflow into the martian tail, due to the transfer of momentum from the solar wind to the ionospheric plasma, could have removed a global ocean with a depth of 10-70 m during the first < or =150 million years after the Sun arrived at the ZAMS.

  18. Sub-diffraction-limited multilayer coatings for the 0.3 numerical aperture micro-exposure tool for extreme ultraviolet lithography.

    PubMed

    Soufli, Regina; Hudyma, Russell M; Spiller, Eberhard; Gullikson, Eric M; Schmidt, Mark A; Robinson, Jeff C; Baker, Sherry L; Walton, Christopher C; Taylor, John S

    2007-06-20

    Multilayer coating results are discussed for the primary and secondary mirrors of the micro-exposure tool (MET): a 0.30 NA lithographic imaging system with a 200 microm x 600 microm field of view at the wafer plane, operating in the extreme ultraviolet (EUV) region at an illumination wavelength around 13.4 nm. Mo/Si multilayers were deposited by DC-magnetron sputtering on large-area, curved MET camera substrates. A velocity modulation technique was implemented to consistently achieve multilayer thickness profiles with added figure errors below 0.1 nm rms demonstrating sub-diffraction-limited performance, as defined by the classical diffraction limit of Rayleigh (0.25 waves peak to valley) or Marechal (0.07 waves rms). This work is an experimental demonstration of sub-diffraction- limited multilayer coatings for high-NA EUV imaging systems, which resulted in the highest resolution microfield EUV images to date.

  19. First observation of natural circular dichroism spectra in the extreme ultraviolet region using a polarizing undulator-based optical system and its polarization characteristics.

    PubMed

    Tanaka, Masahito; Yagi-Watanabe, Kazutoshi; Kaneko, Fusae; Nakagawa, Kazumichi

    2009-07-01

    Natural circular dichroism (CD) spectra in the extreme ultraviolet (EUV) region down to a wavelength of 80 nm have been observed for the first time, using an alanine thin film deposited on sodium salicylate coated glass as a sample. Calibrated EUV-CD spectra of L-alanine exhibited a large negative peak at around 120 nm and a positive CD signal below 90 nm, which were roughly predicted by theoretical calculations. A CD measurement system with an Onuki-type polarizing undulator was used to obtain the EUV-CD spectra. This CD system, the development of which took five years, can be used to observe even weak natural CD spectra. The polarization characteristics of this system were also evaluated in order to calibrate the recorded CD spectra.

  20. Instrumentation on the RAIDS experiment 2: Extreme ultraviolet spectrometer, photometer, and near IR spectrometer

    NASA Astrophysics Data System (ADS)

    Christensen, A. B.; Kayser, D. C.; Pranke, J. B.; Chakrabarti, Supriya; McCoy, R. P.

    1994-02-01

    The RAIDS experiment consists of eight instruments spanning the wavelength range from the extreme ultraviolet (55 nm) to the near infrared (800 nm) oriented to view the Earth's limb from the NOAA-J spacecraft to be launched into a circular orbit in 1993. Through measurements of the natural optical emissions and scattered sunlight originating in the upper atmosphere including the mesosphere and thermosphere, state variables such as temperature, composition, density and ion concentration of this region will be inferred. This report describes the subset of instruments fabricated or otherwise provided by the Space and Environment Technology Center (formerly Space Sciences Laboratory) at The Aerospace Corp. The companion to this report describes the instruments from the Naval Research Laboratory. The Extreme Ultraviolet Spectrograph (EUVS), the three fixed filter photometers OI (630), OI (777), and Na (589), and the near infrared spectrometer (NIR) will be described. These are all mounted on a mechanical scan platform that scans the limb from approximately 75 to 750 km in the orbital plane of the satellite every 90 seconds.

  1. [Design of optical system for solar extreme-ultraviolet imaging spectrometer].

    PubMed

    Liu, Zhuang; Gong, Yan

    2012-03-01

    Hyper-spectral imaging observation of the sun in the EUV region is an important method of research for solar's upper transition region, corona and plasma's physical property. Based on the application objective of solar extreme ultraviolet imaging spectrometer (SEUIS), combined with the current states of domestic and foreign extreme ultraviolet imaging spectrometer, a few of parameters for SEUIS design were drew up in the present paper. The advantages and disadvantages of all kinds of optical configurations were discussed,and the configuration of combination of telescope and spectrometer was chosen. The available main components were also described, off-axis parabolic mirror was chosen for telescope, and a high density uniform-line-space toroidal grating for dispersion device. The optical system which satisfies the performance parameters was designed. The design process, detailed parameters and results were presented in the end. The working wavelength of the optics system is 17.0-21.0 nm, the field of view is 1 228" x 1 024", the spatial resolution is 0.8 arc sec x pixel(-1), the spectral resolution is about 0.00198 nm x pixel(-1), and the total length of system is about 2.8 m.

  2. Applications of extreme ultraviolet compact lasers to nanopatterning and high resolution holographic imaging

    NASA Astrophysics Data System (ADS)

    Wachulak, Przemyslaw Wojciech

    This dissertation describes two applications of extreme ultraviolet light in nanotechnology. Using radiation with a wavelength in the extreme ultraviolet (EUV) range allows to reach scales much smaller than with a conventional visible illumination. The first part of this dissertation describes a series of experiments that allowed the patterning at nanometer scales with sub-100nm resolution. Two types of photoresists (positive tone - PMMA and negative tone - HSQ) were patterned over the areas up to a few mm2 with features as small as 45nm using the interferometric lithography approach, reaching resolution equivalent to the wavelength of the illumination - 46.9nm. For the nanopatterning experiments two types of interferometers were studied in detail: Lloyd's mirror configuration and an amplitude division interferometer. Both approaches are presented and their advantages and drawbacks are discussed. The second part of the dissertation focuses on holographic imaging with ultimate resolution approaching the wavelength of the illumination. Different experiments were performed using Gabor's in-line holographic configuration and its capabilities in the EUV region were discussed. Holographic imaging was performed with different objects: AFM probes, spherical markers and carbon nanotubes. The holograms were stored in a high resolution recording medium - photoresist, digitized with an atomic force microscope and numerically reconstructed using a code based on the Fresnel propagator algorithm achieving in the reconstructed images the ultimate wavelength resolution. The resolution for the carbon nano-tubes images was assessed by two independent measurements: the knife-edge test resulting 45.5nm and an algorithm based on the correlation between the reconstructed image and a set of templates with variable resolution obtained by successive Gaussian filtering. This analysis yielded a resolution ˜46nm. A similar algorithm that allowed for the simultaneous assessment of the

  3. Study of CD variation caused by the black border effect and out-of-band radiation in extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Gao, Weimin; Niroomand, Ardavan; Lorusso, Gian F.; Boone, Robert; Lucas, Kevin; Demmerle, Wolfgang

    2014-04-01

    Although extreme ultraviolet lithography (EUVL) remains a promising candidate for semiconductor device manufacturing of the 1× nm half pitch node and beyond, many technological burdens have to be overcome. The "field edge effect" in EUVL is one of them. The image border region of an EUV mask, also known as the "black border" (BB), reflects a few percent of the incident EUV light, resulting in a leakage of light into neighboring exposure fields, especially at the corner of the field where three adjacent exposures take place. This effect significantly impacts on critical dimension (CD) uniformity (CDU) across the exposure field. To avoid this phenomenon, a light-shielding border is introduced by etching away the entire absorber and multilayer at the image border region of the EUV mask. We present a method of modeling the field edge effect (also called the BB effect) by using rigorous lithography simulation with a calibrated resist model. An additional "flare level" at the field edge is introduced on top of the exposure tool flare map to account for the BB effect. The parameters in this model include the reflectivity and the width of the BB, which are mainly determining the leakage of EUV light and its influence range, respectively. Another parameter is the transition width which represents the half shadow effect of the reticle masking blades. By setting the corresponding parameters, the simulation results match well the experimental results obtained at the IMEC's NXE:3100 EUV exposure tool. Moreover, these results indicate that the out-of-band (OoB) radiation also contributes to the CDU. Using simulation, we can also determine the OoB effect rigorously using the methodology of an "effective mask blank." The study demonstrates that the impact of BB and OoB effects on CDU can be well predicted by simulations.

  4. Development of extreme ultraviolet and soft x-ray multilayer optics for scientific studies with femtosecond/attosecond sources

    SciTech Connect

    Aquila, Andrew Lee

    2009-05-21

    The development of multilayer optics for extreme ultraviolet (EUV) radiation has led to advancements in many areas of science and technology, including materials studies, EUV lithography, water window microscopy, plasma imaging, and orbiting solar physics imaging. Recent developments in femtosecond and attosecond EUV pulse generation from sources such as high harmonic generation lasers, combined with the elemental and chemical specificity provided by EUV radiation, are opening new opportunities to study fundamental dynamic processes in materials. Critical to these efforts is the design and fabrication of multilayer optics to transport, focus, shape and image these ultra-fast pulses This thesis describes the design, fabrication, characterization, and application of multilayer optics for EUV femtosecond and attosecond scientific studies. Multilayer mirrors for bandwidth control, pulse shaping and compression, tri-material multilayers, and multilayers for polarization control are described. Characterization of multilayer optics, including measurement of material optical constants, reflectivity of multilayer mirrors, and metrology of reflected phases of the multilayer, which is critical to maintaining pulse size and shape, were performed. Two applications of these multilayer mirrors are detailed in the thesis. In the first application, broad bandwidth multilayers were used to characterize and measure sub-100 attosecond pulses from a high harmonic generation source and was performed in collaboration with the Max-Planck institute for Quantum Optics and Ludwig- Maximilians University in Garching, Germany, with Professors Krausz and Kleineberg. In the second application, multilayer mirrors with polarization control are useful to study femtosecond spin dynamics in an ongoing collaboration with the T-REX group of Professor Parmigiani at Elettra in Trieste, Italy. As new ultrafast x-ray sources become available, for example free electron lasers, the multilayer designs

  5. EUV lithography

    NASA Astrophysics Data System (ADS)

    Kemp, Kevin; Wurm, Stefan

    2006-10-01

    Extreme ultraviolet lithography (EUVL) technology and infrastructure development has made excellent progress over the past several years, and tool suppliers are delivering alpha tools to customers. However, requirements in source, mask, optics, and resist are very challenging, and significant development efforts are still needed to support beta and production-level performance. Some of the important advances in the past few years include increased source output power, tool and optics system development and integration, and mask blank defect reduction. For example, source power has increased to levels approaching specification, but reliable source operation at these power levels has yet to be fully demonstrated. Significant efforts are also needed to achieve the resolution, line width roughness, and photospeed requirements for EUV photoresists. Cost of ownership and extendibility to future nodes are key factors in determining the outlook for the manufacturing insertion of EUVL. Since wafer throughput is a critical cost factor, source power, resist sensitivity, and system design all need to be carefully considered. However, if the technical and business challenges can be met, then EUVL will be the likely technology of choice for semiconductor manufacturing at the 32, 22, 16 and 11 nm half-pitch nodes. To cite this article: K. Kemp, S. Wurm, C. R. Physique 7 (2006).

  6. Method for generating extreme ultraviolet with mather-type plasma accelerators for use in Extreme Ultraviolet Lithography

    DOEpatents

    Hassanein, Ahmed; Konkashbaev, Isak

    2006-10-03

    A device and method for generating extremely short-wave ultraviolet electromagnetic wave uses two intersecting plasma beams generated by two plasma accelerators. The intersection of the two plasma beams emits electromagnetic radiation and in particular radiation in the extreme ultraviolet wavelength. In the preferred orientation two axially aligned counter streaming plasmas collide to produce an intense source of electromagnetic radiation at the 13.5 nm wavelength. The Mather type plasma accelerators can utilize tin, or lithium covered electrodes. Tin, lithium or xenon can be used as the photon emitting gas source.

  7. EUV astronomical spectroscopy with CCD detectors

    NASA Technical Reports Server (NTRS)

    Stern, R. A.; Catura, R. C.; Blouke, M. M.; Winzenread, M.

    1986-01-01

    The applicability of CCD detectors to astronomical extreme ultraviolet (EUV) spectroscopy (100-1250 A) is discussed. The advantages of CCDs in this spectral region include internal electron yield, the potential for very high quantum efficiency (about 50-90 percent), and broad wavelength response. Visible light suppression is achieved by a combination of low grating scattering, greater than unity electron yield in the EUV, and various filter techniques. For the current generation of CCDs, detection of only a few EUV photons will rapidly overwhelm the read noise; thus, for all practical S/N ratios used in astronomical spectroscopy, read noise will be negligible compared to the poisson statistics of the detected photons. A model based on experimental data for the quantum efficiency and electron yield of CCDs in the EUV is discussed.

  8. Earth-orbiting extreme ultraviolet spectroscopic mission: SPRINT-A/EXCEED

    NASA Astrophysics Data System (ADS)

    Yoshikawa, I.; Tsuchiya, F.; Yamazaki, A.; Yoshioka, K.; Uemizu, K.; Murakami, G.; Kimura, T.; Kagitani, M.; Terada, N.; Kasaba, Y.; Sakanoi, T.; Ishii, H.; Uji, K.

    2012-09-01

    The EXCEED (Extreme Ultraviolet Spectroscope for Exospheric Dynamics) mission is an Earth-orbiting extreme ultraviolet (EUV) spectroscopic mission and the first in the SPRINT series being developed by ISAS/JAXA. It will be launched in the summer of 2013. EUV spectroscopy is suitable for observing tenuous gases and plasmas around planets in the solar system (e.g., Mercury, Venus, Mars, Jupiter, and Saturn). Advantage of remote sensing observation is to take a direct picture of the plasma dynamics and distinguish between spatial and temporal variability explicitly. One of the primary observation targets is an inner magnetosphere of Jupiter, whose plasma dynamics is dominated by planetary rotation. Previous observations have shown a few percents of the hot electron population in the inner magnetosphere whose temperature is 100 times higher than the background thermal electrons. Though the hot electrons have a significant impact on the energy balance in the inner magnetosphere, their generation process has not yet been elucidated. In the EUV range, a number of emission lines originate from plasmas distributed in Jupiter's inner magnetosphere. The EXCEED spectrograph is designed to have a wavelength range of 55-145 nm with minimum spectral resolution of 0.4 nm, enabling the electron temperature and ion composition in the inner magnetosphere to be determined. Another primary objective is to investigate an unresolved problem concerning the escape of the atmosphere to space. Although there have been some in-situ observations by orbiters, our knowledge is still limited. The EXCEED mission plans to make imaging observations of plasmas around Venus and Mars to determine the amounts of escaping atmosphere. The instrument's field of view (FOV) is so wide that we can get an image from the interaction region between the solar wind and planetary plasmas down to the tail region at one time. This will provide us with information about outward-flowing plasmas, e.g., their composition

  9. Dynamic range considerations for EUV MAMA detectors. [Extreme UV Multianode Microchannel Array

    NASA Technical Reports Server (NTRS)

    Illing, Rainer M. E.; Bybee, Richard L.; Timothy, J. G.

    1990-01-01

    The multianode microchannel array (MAMA) has been chosen as the detector for two instruments on the ESA/NASA Solar Heliospheric Observatory. The response of the MAMA to the two extreme types of solar spectra, disk and corona, have been modeled with a view toward evaluating dynamic range effects present. The method of MAMA operation is discussed, with emphasis given to modeling the effect of electron cloud charge spreading to several detector anodes and amplifiers (n-fold events). Representative synthetic EUV spectra have been created. The detector response to these spectra is modeled by dissecting the input photon radiation field across the detector array into contributions to the various amplifier channels. The results of this dissection are shown for spectral regions across the entire wavelength region of interest. These results are used to identify regions in which total array photon counting rate or individual amplifier rate may exceed the design limits. This allows the design or operational modes to be tailored to eliminate the problem areas.

  10. Dynamic range considerations for EUV MAMA detectors. [Extreme UV Multianode Microchannel Array

    NASA Technical Reports Server (NTRS)

    Illing, Rainer M. E.; Bybee, Richard L.; Timothy, J. G.

    1990-01-01

    The multianode microchannel array (MAMA) has been chosen as the detector for two instruments on the ESA/NASA Solar Heliospheric Observatory. The response of the MAMA to the two extreme types of solar spectra, disk and corona, have been modeled with a view toward evaluating dynamic range effects present. The method of MAMA operation is discussed, with emphasis given to modeling the effect of electron cloud charge spreading to several detector anodes and amplifiers (n-fold events). Representative synthetic EUV spectra have been created. The detector response to these spectra is modeled by dissecting the input photon radiation field across the detector array into contributions to the various amplifier channels. The results of this dissection are shown for spectral regions across the entire wavelength region of interest. These results are used to identify regions in which total array photon counting rate or individual amplifier rate may exceed the design limits. This allows the design or operational modes to be tailored to eliminate the problem areas.

  11. X ray, extreme and far ultraviolet optical thin films for space applications

    NASA Technical Reports Server (NTRS)

    Zukic, Muamer; Torr, Douglas G.; Kim, Jongmin

    1993-01-01

    Far and extreme ultraviolet optical thin film filters find many uses in space astronomy, space astrophysics, and space aeronomy. Spacebased spectrographs are used for studying emission and absorption features of the earth, planets, sun, stars, and the interstellar medium. Most of these spectrographs use transmission or reflection filters. This requirement has prompted a search for selective filtering coatings with high throughput in the FUV and EUV spectral region. Important progress toward the development of thin film filters with improved efficiency and stability has been made in recent years. The goal for this field is the minimization of absorption to get high throughput and enhancement of wavelength selection. The Optical Aeronomy Laboratory (OAL) at the University of Alabama in Huntsville has recently developed the technology to determine optical constants of bulk and film materials for wavelengths extending from x-rays (0.1 nm) to the FUV (200 nm), and several materials have been identified that were used for designs of various optical devices which previously have been restricted to space application in the visible and near infrared. A new design concept called the Pi-multilayer was introduced and applied to the design of optical coatings for wavelengths extending from x-rays to the FUV. Section 3 of this report explains the Pi-multilayer approach and demonstrates its application for the design and fabrication of the FUV coatings. Two layer Pi-stacks have been utilized for the design of reflection filters in the EUV wavelength range from 70 - 100 nm. In order to eliminate losses due to the low reflection of the imaging optics and increase throughput and out-of-band rejection of the EUV instrumentation we introduced a self-filtering camera concept. In the FUV region, MgF2 and LiF crystals are known to be birefringent. Transmission polarizers and quarterwave retarders made of MgF2 or LiF crystals are commercially available but the performances are poor. New

  12. Comparison of solar radio and extreme ultraviolet synoptic limb charts during the present solar maximum

    NASA Astrophysics Data System (ADS)

    Oliveira e Silva, A. J.; Selhorst, C. L.; Simões, P. J. A.; Giménez de Castro, C. G.

    2016-08-01

    Aims: The present solar cycle is particular in many aspects: it had a delayed rising phase, it is the weakest of the last 100 yrs, and it presents two peaks separated by more than one year. To understand the impact of these characteristics on the solar chromosphere and coronal dynamics, images from a wide wavelength range are needed. In this work we use the 17 GHz radio continuum, which is formed in the upper chromosphere and the extreme ultraviolet (EUV) lines 304 and 171 Å, that come from the transition region (He ii, T ~ 6-8 × 104 K) and the corona (Fe IX, X, T ~ 106 K), respectively.We extend upon a previous similar analysis, and compare the mean equatorial and polar brightening behavior at radio and EUV wavelengths during the maximum of the present solar cycle, covering the period between 2010 and 2015. Methods: We analyze daily images at 304 and 171 Å obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). The 17 GHz maps were obtained by the Nobeyama Radioheliograph (NoRH). To construct synoptic limb charts, we calculated the mean emission of delimited limb areas with 100'' wide and angular separation of 5°. Results: At the equatorial region, the results show a hemispheric asymmetry of the solar activity. The northern hemisphere dominance is coincident with the first sunspot number peak, whereas the second peak occurs concurrently with the increase in the activity at the south. The polar emission reflects the presence of coronal holes at both EUV wavelengths, moreover, the 17 GHz polar brightenings can be associated with the coronal holes. Until 2013, both EUV coronal holes and radio polar brightenings were more predominant at the south pole.Since then they have not been apparent in the north, but thus appear in the beginning of 2015 in the south as observed in the synoptic charts. Conclusions: This work strengthens the association between coronal holes and the 17 GHz polar brightenings as it is evident in the

  13. Compensation methods using a new model for buried defects in extreme ultraviolet lithography masks

    NASA Astrophysics Data System (ADS)

    Clifford, Chris H.; Chan, Tina T.; Neureuther, Andrew R.; Li, Ying; Peng, Danping; Pang, Linyong

    2010-09-01

    A new method for predicting the reflection from an extreme ultraviolet (EUV) multilayer is described which when implemented into the new Defect Printability Simulator (DPS) can calculate the image produced by an EUV mask with a buried defect several orders of magnitude faster than the finite difference time domain (FDTD). A new buried defect compensation method is also demonstrated to correct the in focus image of a line space pattern containing a buried defect. The new multilayer model accounts for the disruption of the magnitude and phase of the reflected field from an EUV multilayer defect. It does this by sampling the multilayer on a non-uniform grid and calculating the analytic complex local reflection coefficient at each point. After this step, the effect of the optical path difference due to the surface defect profile is added to the total reflected field to accurately predict the reflected magnitude and phase at all points on the multilayer surface. The accuracy of the new multilayer model and the full DPS simulator is verified by comparisons to FDTD simulations. The largest difference between the two methods was 0.8nm for predicting the CD change due to a buried defect through focus. This small difference is within the margin of error for FDTD simulations of EUV multilayers. The runtime of DPS is compared to extrapolated FDTD runtimes for many simulation domain sizes and DPS is 4-5 orders of magnitude faster for all cases. For example, DPS can calculate the reflected image from a 1μm x 1μm mask area in less than 30 seconds on a single processor. FDTD would take a month on four processors. The new compensation strategy demonstrated in this work is able to remove all CD error in the simulated image due to a buried defect in a 22nm dense line space pattern. The method is iterative and a full DPS simulation is run for every iteration. After each simulation, the absorber pattern is adjusted based on the difference of the thresholded target image and

  14. TWO TYPES OF EXTREME-ULTRAVIOLET BRIGHTENINGS IN AR 10926 OBSERVED BY HINODE/EIS

    SciTech Connect

    Lee, K.-S.; Moon, Y.-J.; Choe, G. S.; Kim, Sujin; Cho, Kyung-Suk; Imada, S.

    2011-07-20

    We have investigated seven extreme-ultraviolet (EUV) brightenings in the active region AR 10926 on 2006 December 2 observed by the EUV Imaging Spectrometer on board the Hinode spacecraft. We have determined their Doppler velocities and non-thermal velocities from 15 EUV spectral lines (log T = 4.7 - 6.4) by fitting each line profile to a Gaussian function. The Doppler velocity maps for different temperatures are presented to show the height dependence of the Doppler shifts. It is found that the active region brightenings show two distinct Doppler shift patterns. The type 1 brightening shows a systematic increase of Doppler velocity from -68 km s{sup -1} (strong blueshift) at log T = 4.7 to -2 km s{sup -1} (weak blueshift) at log T = 6.4, while the type 2 brightenings have Doppler velocities in the range from -20 km s{sup -1} to 20 km s{sup -1}. The type 1 brightening point is considered to sit in an upward reconnection outflow whose speed decreases with height. In both types of brightenings, the non-thermal velocity is found to be significantly enhanced at log T = 5.8 compared to the background region. We have also determined electron densities from line ratios and derived temperatures from emission measure loci using the CHIANTI atomic database. The electron densities of all brightenings are comparable to typical values in active regions (log N{sub e} = 9.9-10.4). The emission measure loci plots indicate that these brightenings should be multi-thermal whereas the background is isothermal. The differential emission measure as a function of temperature shows multiple peaks in the EUV brightening regions, while it has only a single peak (log T = 6.0) in the background region. Using Michelson Doppler Imager magnetograms, we have found that the type 1 brightening is associated with a canceling magnetic feature with a flux canceling rate of 2.4 x 10{sup 18} Mx hr{sup -1}. We also found the canceling magnetic feature and chromospheric brightenings in the type 1

  15. An EUVE Spectrum of the Moon

    NASA Astrophysics Data System (ADS)

    Gladstone, G. R.; McDonald, J. S.; Boyd, W. T.; Bowyer, S.

    1993-05-01

    During its all-sky survey, the Extreme Ultraviolet Explorer (EUVE) satellite observed the Moon several times at first and last quarters, and once near the December 10, 1992, lunar eclipse. We present here results for the EUV albedo of the Moon, and examine for the first time an EUVE spectrum of the Moon. Extreme ultraviolet observations of the Moon are of considerable interest, since it has been speculated that lunar EUV emissions are primarily due to L- and M-shell X-ray fluorescence and may provide a useful diagnostic of surface elemental abundances. Using the EUVE photometer observations, we have determined average lunar geometric albedos of 0.15% (+/- 0.02%), 3.1% (+/- 0.2%), and 3.5% (+/- 0.2%), over wavelength intervals of 150--240\\ang, 400--580\\ang, and 550--650\\ang, respectively. An upper limit geometric albedo of 0.13% is obtained for the wavelength interval 75--180\\ang. Also, using previously published ROSAT data we estimate a lunar geometric albedo of 0.0097% (+/- 0.0012%) over the wavelength interval 50--80\\ang. These EUV albedos, and previously published far-ultraviolet albedos from Apollo 17 and Mariner 10, are well fit by the scaled reflectivities of SiO_2 and Al_2O_3. Over the wavelength ranges of the EUVE photometers, the observed brightness of the Moon seems to be largely consistent with reflected sunlight rather than X-ray fluorescence. Since the L- and M-shell fluorescence signal is expected to be carried by only a few emission lines, however, EUV observations with higher spectral resolution are required to determine their exact contribution, if any, to the lunar EUV spectrum. Using a 1/2 hour spectrum obtained by the EUVE spectrometers on December 10, 1992, we will determine the level of the X-ray fluorescence contribution to the lunar EUV spectrum. This work has been supported by NASA contract NAS5-30180.

  16. Direct photo-etching of poly(methyl methacrylate) using focused extreme ultraviolet radiation from a table-top laser-induced plasma source

    SciTech Connect

    Barkusky, Frank; Peth, Christian; Bayer, Armin; Mann, Klaus

    2007-06-15

    In order to perform material interaction studies with intense extreme ultraviolet (EUV) radiation, a Schwarzschild mirror objective coated with Mo/Si multilayers was adapted to a compact laser-based EUV plasma source (pulse energy 3 mJ at {lambda}=13.5 nm, plasma diameter {approx}300 {mu}m). By 10x demagnified imaging of the plasma a pulse energy density of {approx}75 mJ/cm{sup 2} at a pulse length of 6 ns can be achieved in the image plane of the objective. As demonstrated for poly(methyl methacrylate) (PMMA), photoetching of polymer surfaces is possible at this EUV fluence level. This paper presents first results, including a systematic determination of PMMA etching rates under EUV irradiation. Furthermore, the contribution of out-of-band radiation to the surface etching of PMMA was investigated by conducting a diffraction experiment for spectral discrimination from higher wavelength radiation. Imaging of a pinhole positioned behind the plasma accomplished the generation of an EUV spot of 1 {mu}m diameter, which was employed for direct writing of surface structures in PMMA.

  17. Effects of low-molecular weight resist components on dissolution behavior of chemically amplified resists for extreme ultraviolet lithography studied by quartz crystal microbalance

    NASA Astrophysics Data System (ADS)

    Mitsuyasu, Masaki; Yamamoto, Hiroki; Kozawa, Takahiro

    2015-03-01

    It is challenging to implement extreme ultraviolet (EUV) lithography for mass production because the demands for the EUV resist materials are very strict. Under such circumstances, it is important in EUV resist design to clarify the dissolution behavior of the resist film into alkaline developer. In particular, the dissolution in exposed area of resist films is one of the most critical processes. However, the details in dissolution process of EUV resist have not been investigated thus far. In this study, the dissolution of poly(4-hydroxystyrene) (PHS) polymer and PHS partially-protected with t-butoxycarbonyl group (t-BOC-PHS) with and without additives such as acid generator and amines was studied by using the quartz crystal microbalance (QCM) method. The dissolution behavior of thin films was investigated by varying the exposure dose and the acid generator concentration from the standpoint of a systematic understanding of the effects of each resist component on dissolution kinetics. The dissolution speed became slower with increase of TPS-tf concentration in PHS and t-BOC-PHS. It is important for the EUV resist design to take into account the concentration of undecomposed PAG.

  18. Alternate charging profiles for the onboard nickel cadmium batteries of the Explorer Platform/Extreme Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Prettyman-Lukoschek, Jill S.

    1995-01-01

    The Explorer Platform/Extreme Ultraviolet Explorer (EP/EUVE) spacecraft power is provided by the Modular Power Subsystems (MPS) which contains three 50 ampere-hour Nickel Cadmium (NiCd) batteries. The batteries were fabricated by McDonnell Douglas Electronics Systems Company, with the cells fabricated by Gates Aerospace Batteries (GAB), Gainesville, Florida. Shortly following launch, the battery performance characteristics showed similar signatures as the anomalous performance observed on both the Upper Atmosphere Research Satellite (UARS) and the Compton Gamma Ray Observatory (CGRO). This prompted the development and implementation of alternate charging profiles to optimize the spacecraft battery performance. The Flight Operations Team (FOT), under the direction of Goddard Space Flight Center's (GSFC) EP/EUVE Project and Space Power Applications Branch have monitored and managed battery performance through control of the battery Charge to Discharge (C/D) ratio and implementation of a Solar Array (SA) offset. This paper provides a brief overview of the EP/EUVE mission, the MPS, the FOT's battery management for achieving the alternate charging profile, and the observed spacecraft battery performance.

  19. Radiation damage resistance of AlGaN detectors for applications in the extreme-ultraviolet spectral range

    SciTech Connect

    Barkusky, Frank; Peth, Christian; Bayer, Armin; Mann, Klaus; John, Joachim; Malinowski, Pawel E.

    2009-09-15

    We report on the fabrication of aluminum gallium nitride (AlGaN) Schottky-photodiode-based detectors. AlGaN layers were grown using metal-organic chemical vapor deposition (MOCVD) on Si(111) wafers. The diodes were characterized at a wavelength of 13.5 nm using a table-top extreme-ultraviolet (EUV) radiation source, consisting of a laser-produced xenon plasma and a Schwarzschild objective. The responsivity of the diodes was tested between EUV energies ranging from 320 nJ down to several picojoules. For low fluences, a linear responsivity of 7.14 mAs/J could be determined. Saturation starts at approximately 1 nJ, merging into a linear response of 0.113 mAs/J, which could be attributed to the photoeffect on the Au electrodes on top of the diode. Furthermore, degradation tests were performed up to an absolute dose of 3.3x10{sup 19} photons/cm{sup 2}. AlGaN photodiodes were compared to commercially available silicon-based photodetectors. For AlGaN diodes, responsivity does not change even for the highest EUV dose, whereas the response of the Si diode decreases linearly to {approx}93% after 2x10{sup 19} photons/cm{sup 2}.

  20. Radiation damage resistance of AlGaN detectors for applications in the extreme-ultraviolet spectral range.

    PubMed

    Barkusky, Frank; Peth, Christian; Bayer, Armin; Mann, Klaus; John, Joachim; Malinowski, Pawel E

    2009-09-01

    We report on the fabrication of aluminum gallium nitride (AlGaN) Schottky-photodiode-based detectors. AlGaN layers were grown using metal-organic chemical vapor deposition (MOCVD) on Si(111) wafers. The diodes were characterized at a wavelength of 13.5 nm using a table-top extreme-ultraviolet (EUV) radiation source, consisting of a laser-produced xenon plasma and a Schwarzschild objective. The responsivity of the diodes was tested between EUV energies ranging from 320 nJ down to several picojoules. For low fluences, a linear responsivity of 7.14 mAs/J could be determined. Saturation starts at approximately 1 nJ, merging into a linear response of 0.113 mAs/J, which could be attributed to the photoeffect on the Au electrodes on top of the diode. Furthermore, degradation tests were performed up to an absolute dose of 3.3x10(19) photons/cm(2). AlGaN photodiodes were compared to commercially available silicon-based photodetectors. For AlGaN diodes, responsivity does not change even for the highest EUV dose, whereas the response of the Si diode decreases linearly to approximately 93% after 2x10(19) photons/cm(2).

  1. Design of anamorphic magnification high-numerical aperture objective for extreme ultraviolet lithography by curvatures combination method.

    PubMed

    Liu, Yan; Li, Yanqiu; Cao, Zhen

    2016-06-20

    An anamorphic magnification extreme ultraviolet (EUV) lithographic objective could increase the size of the exposure field at a wafer in the orthogonal scanning direction to improve the throughput of the lithographic system. In this paper, we present a curvatures combination method for an anamorphic magnification EUV lithographic objective with high numerical aperture (NA). This method achieves an anamorphic magnification initial structure by use of the double-curvature surfaces, which are formed by combining the curvatures of the corresponding surfaces into two coaxial spherical systems. A series of control measures is taken to design the two coaxial spherical systems for ensuring the rationalities of the initial structure and the surfaces after combining. The image quality of the anamorphic initial structure is optimized by a gradual optimization process. Finally, as an example, we design an Mx1/4 and My1/8 anamorphic magnification EUV lithographic objective with the presented design method. This objective achieves 0.5 NA and a 26  mm×16.5  mm exposure field at the wafer. The wavefront error RMS reaches 0.06λ (λ=13.5  nm), and the distortion is less than 2.8 nm. The design result proves the availability of the curvatures combination method.

  2. Extreme ultraviolet mask defect inspection with a half pitch 16-nm node using simulated projection electron microscope images

    NASA Astrophysics Data System (ADS)

    Iida, Susumu; Amano, Tsuyoshi; Hirano, Ryoichi; Terasawa, Tsuneo; Watanabe, Hidehiro

    2013-04-01

    According to an International Technology Roadmap for Semiconductors (ITRS-2012) update, the sensitivity requirement for an extreme ultraviolet (EUV) mask pattern inspection system is to be less than 18 nm for half pitch (hp) 16-nm node devices. The inspection sensitivity of extrusion and intrusion defects on hp 64-nm line-and-space patterned EUV mask were investigated using simulated projection electron microscope (PEM) images. The obtained defect images showed that the optimization of current density and image processing techniques were essential for the detection of defects. Extrusion and intrusion defects 16 nm in size were detected on images formed by 3000 electrons per pixel. The landing energy also greatly influenced the defect detection efficiency. These influences were different for extrusion and intrusion defects. These results were in good agreement with experimentally obtained yield curves of the mask materials and the elevation angles of the defects. These results suggest that the PEM technique has a potential to detect 16-nm size defects on an hp 64-nm patterned EUV mask.

  3. An Upper Limit on the Ratio Between the Extreme Ultraviolet and the Bolometric Luminosities of Stars Hosting Habitable Planets

    NASA Astrophysics Data System (ADS)

    Sengupta, Sujan

    2016-06-01

    A large number of terrestrial planets in the classical habitable zone of stars of different spectral types have already been discovered and many are expected to be discovered in the near future. However, owing to the lack of knowledge on the atmospheric properties, the ambient environment of such planets are unknown. It is known that sufficient amount of Extreme Ultraviolet (EUV) radiation from the star can drive hydrodynamic outflow of hydrogen that may drag heavier species from the atmosphere of the planet. If the rate of mass loss is sufficiently high, then substantial amount of volatiles would escape causing the planet to become uninhabitable. Considering energy-limited hydrodynamical mass loss with an escape rate that causes oxygen to escape alongwith hydrogen, an upper limit for the ratio between the EUV and the bolometric luminosities of stars which constrains the habitability of planets around them is presented here. Application of the limit to planet-hosting stars with known EUV luminosities implies that many M-type of stars should not have habitable planets around them.

  4. Boron and silicon - Filters for the extreme ultraviolet

    NASA Technical Reports Server (NTRS)

    Labov, S.; Bowyer, S.; Steele, G.

    1985-01-01

    Thin films of boron and silicon have been developed using electron beam deposition. The transmissions of these filters were measured from soft X-ray wavelengths to the far ultraviolet and at optical wavelengths. The boron filter transmission peaks near 66 A and the silicon filter peaks near 136 A as expected on theoretical grounds, but the extreme ultraviolet bandpass is narrower than expected. The peak transmission of these filters does not change with time, but the width of the silicon filter bandpass is reduced slightly as the filter ages.

  5. Science With The Extreme Ultraviolet Spectrometer For Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Young, P. R.; EUS Science Working Group

    2007-01-01

    The CCLRC Rutherford Appleton Laboratory (UK) is leading a consortium that proposes to build an ultraviolet spectrometer for Solar Orbiter provisionally called the Extreme Ultraviolet Spectrometer (EUS). The selection of wavelength bands for EUS has been re-assessed by the EUS Science Working Group in recent months and the final decision calls for three wavelength bands covering 700-800 Å, 970-1040 Å, and 1163-1265 Å. The key features of these bands are summarised here, and particular science topics that can be addressed by EUS are discussed.

  6. Near-resonant four-wave mixing of attosecond extreme-ultraviolet pulses with near-infrared pulses in neon: Detection of electronic coherences

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Warrick, Erika R.; Fidler, Ashley; Leone, Stephen R.; Neumark, Daniel M.

    2016-08-01

    Coherent narrow-band extreme-ultraviolet (EUV) light is generated by a near-resonant four-wave mixing (FWM) process between attosecond pulse trains and near-infrared pulses in neon gas. The near-resonant FWM process involves one vacuum-ultraviolet (VUV) photon and two near-infrared (NIR) photons and produces new higher-energy frequency components corresponding to the n s /n d to ground-state (2 s22 p6) transitions in the neon atom. The EUV emission exhibits small angular divergence (2 mrad) and monotonically increasing intensity over a pressure range of 0.5-16 Torr, suggesting phase matching in the production of the narrow-bandwidth coherent EUV light. In addition, time-resolved scans of the NIR nonlinear mixing process reveal the detection of a persistent, ultrafast bound electronic wave packet based on a coherent superposition initiated by the VUV pulse in the neon atoms. This FWM process using attosecond pulses offers a means for both efficient narrow-band EUV source generation and time-resolved investigations of ultrafast dynamics.

  7. Exploring EUV Spicules Using 304 Angstrom He II Data from SDO AIA

    NASA Technical Reports Server (NTRS)

    Snyder, Ian R.; Sterling, Alphonse C.; Falconer, David A.; Moore, Ron L.

    2014-01-01

    We present results from a statistical study of He II 304 Angstrom Extreme Ultraviolet (EUV) spicules at the limb of the Sun. We also measured properties of one macrospicule; macrospicules are longer than most spicules, and much broader in width than spicules. We use high-cadence (12 second) and high-resolution (0.6 arcseconds pixels) resolution data from the Atmospheric Imaging Array (AIA) instrument on the Solar Dynamic Observatory (SDO). All of the observed events occurred near the solar north pole, where quiet Sun or coronal hole environments ensued. We examined the maximum lengths, maximum rise velocities, and lifetimes of 33 Extreme Ultraviolet (EUV) spicules and the macrospicule. For the bulk of the Extreme Ultraviolet (EUV) spicules these quantities are, respectively, approximately 10,000-40,000 kilometers, 20-100 kilometers per second, and approximately 100- approximately 1000 seconds. For the macrospicule the corresponding quantities were respectively approximately 60,000 kilometers, approximately 130 kilometers per second, approximately 1800 seconds, which is typical of macrospicules measured by other workers. Therefore macrospicules are taller, longer-lived, and faster than most Extreme Ultraviolet (EUV) spicules. The rise profiles of both the spicules and the macrospicules match well a second-order ("parabolic" ) trajectory, although the acceleration was often weaker than that of solar gravity in the profiles fitted to the trajectories. Our macrospicule also had an obvious brightening at its base at birth, while such brightening was not apparent for the Extreme Ultraviolet (EUV) spicules. Most of the Extreme Ultraviolet (EUV) spicules remained visible during their descent back to the solar surface, although a small percentage of the spicules and the macrospicule faded out before falling back to the surface. Our sample of macrospicules is not yet large enough to determine whether their initiation mechanism is identical to that of Extreme Ultraviolet (EUV

  8. Progress on EUV-source development, tool integration and applications

    NASA Astrophysics Data System (ADS)

    Lebert, Rainer; Jagle, Bernhard; Wies, Christian; Stamm, Uwe; Kleinschmidt, Juergen; Gaebel, Kai; Schriever, Guido; Pankert, Joseph; Bergmann, Klaus; Neff, Willi; Egbert, Andre

    2005-06-01

    In EUV lithography, extreme ultraviolet radiation of 13.5 nm wavelength is used to print feature with resolutions consis-tent with the requirements of the 45 nm technology node or below. EUV is produced by heating xenon, tin, or other ele-ments to a plasma state, using either magnetic compression or laser irradiation. The key concerns-identified at the third EUV-Symposium-are the ability to supply defect-free masks and to increase source component lifetimes to meet the wafer throughput requirements for high volume manufacturing. Source availability and performance, however, made steady progress within the last years on two lines of actions: High power sources for high volume production and medium and low power sources for allowing in-house metrology and performance studies on EUV-mask-blanks, EUV-Masks, photoresists and optical elements. For "volume production sources" 50 W of collected EUV powers are already available by various suppliers. Compact discharge sources of medium power in the range of 10-100 mW / sr / 2% bandwidth and low power EUV-tubes of low-est cost of ownership and superior stability are ideal for peripheral metrology on components for EUV-Lithography. These low power sources supplement beamlines at storage rings by transferring EUV-applications to individual R&D labs. Proceeding integration of those EUV sources into tools for technology development like open frame and micro-exposers, and in tools for actinic metrology is the best proof of the progress. As of today, the first EUV sources and measurement equipment are available to be used for EUV system, mask, optics and component as well as lithography process development. With the commercial availability of EUV-plasma sources other applications using short wave-length, XUV-radiation will be feasible in a laboratory environment. Some examples of XUV applications are discussed.

  9. The EUVE Right Angle Program (RAP)

    NASA Astrophysics Data System (ADS)

    Sommers, J.; Christian, D.; Craig, N.; Jessop, H.; Stroozas, B.

    1996-05-01

    The Extreme Ultraviolet Explorer (EUVE ) has three scanning telescopes that observe in a direction perpendicular to that of the primary guest observer (GO) telescope---the Deep Survey/Spectrometer (DS/S). During the first 6 months of the EUVE mission, the scanning telescopes were used to conduct an all-sky survey consisting of short exposures ( ~ 500 s) of the entire sky between 58--740 Angstroms . These telescopes are now being used during GO observations to conduct simultaneous long exposure (typically 40+ ks) observations as part of the very successful---and publicly accessible---EUVE Right Angle Program (RAP). To date, the EUVE RAP has provided photometric and timing data on late-type stars and CVs and has been responsible for detecting dozens of previously unknown extreme ultraviolet sources, including many stars without optical counterparts. This poster presents some of the exciting results found with EUVE RAP data, along with general information about the program and instructions for submitting RAP proposals. This work is supported by NASA contract NAS5-29298.

  10. Single-expose patterning development for EUV lithography

    NASA Astrophysics Data System (ADS)

    De Silva, Anuja; Petrillo, Karen; Meli, Luciana; Shearer, Jeffrey C.; Beique, Genevieve; Sun, Lei; Seshadri, Indira; Oh, Taehwan; Han, Seulgi; Saulnier, Nicole; Lee, Joe; Arnold, John C.; Hamieh, Bassem; Felix, Nelson M.; Furukawa, Tsuyoshi; Singh, Lovejeet; Ayothi, Ramakrishnan

    2017-03-01

    Initial readiness of EUV (extreme ultraviolet) patterning was demonstrated in 2016 with IBM Alliance's 7nm device technology. The focus has now shifted to driving the 'effective' k1 factor and enabling the second generation of EUV patterning. With the substantial cost of EUV exposure there is significant interest in extending the capability to do single exposure patterning with EUV. To enable this, emphasis must be placed on the aspect ratios, adhesion, defectivity reduction, etch selectivity, and imaging control of the whole patterning process. Innovations in resist materials and processes must be included to realize the full entitlement of EUV lithography at 0.33NA. In addition, enhancements in the patterning process to enable good defectivity, lithographic process window, and post etch pattern fidelity are also required. Through this work, the fundamental material challenges in driving down the effective k1 factor will be highlighted.

  11. Determining the critical size of EUV mask substrate defects

    SciTech Connect

    Goldberg, Kenneth A.; Gullikson, Eric M.; Han, Hakseung; Cho, Wonil; Jeon, Chan-Uk; Wurm, Stefan

    2008-05-26

    Determining the printability of substrate defects beneath the extreme ultraviolet (EUV) reflecting multilayer stack is an important issue in EUVL lithography. Several simulation studies have been performed in the past to determine the tolerable defect size on EUV mask blank substrates but the industry still has no exact specification based on real printability tests. Therefore, it is imperative to experimentally determine the printability of small defects on a mask blanks that are caused by substrate defects using direct printing of programmed substrate defect in an EUV exposure tools. SEMATECH fabricated bump type program defect masks using standard electron beam lithography and performed printing tests with the masks using an EUV exposure tool. Defect images were also captured using SEMATECH's Berkeley Actinic Imaging Tool in order to compare aerial defect images with secondary electron microscope images from exposed wafers. In this paper, a comprehensive understanding of substrate defect printability will be presented and printability specifications of EUV mask substrate defects will be discussed.

  12. Determining the Critcial Size of EUV Mask Substrate Defects

    SciTech Connect

    Mccall, Monnikue M; Han, Hakseung; Cho, Wonil; Goldberg, Kenneth; Gullikson, Eric; Jeon, Chan-Uk; Wurm, Stefan

    2008-02-28

    Determining the printability of substrate defects beneath the extreme ultraviolet (EUV) reflecting multilayer stack is an important issue in EUVL lithography. Several simulation studies have been performed in the past to determine the tolerable defect size on EUV mask blank substrates but the industry still has no exact specification based on real printability tests. Therefore, it is imperative to experimentally determine the printability of small defects on a mask blanks that are caused by substrate defects using direct printing of programmed substrate defect in an EUV exposure tool. SEMATECH fabricated bump type program defect masks using standard electron beam lithography and performed printing tests with the masks using an EUV exposure tool. Defect images were also captured using SEMATECH's Berkeley Actinic Imaging Tool in order to compare aerial defect images with secondary electron microscope images from exposed wafers. In this paper, a comprehensive understanding of substrate defect printability will be presented and printability specifications of EUV mask substrate defects will be discussed.

  13. Improvement of EUV mix-match overlay for production implementation

    NASA Astrophysics Data System (ADS)

    Park, Sarohan; Lee, ByoungHoon; Lee, Byong-Seog; Lee, Inwhan; Lim, Chang-Moon

    2016-03-01

    The improvement of overlay control in extreme ultra-violet (EUV) lithography is one of critical issues for successful mass production by using it. Especially it is important to improve the mix and match overlay or matched machine overlay (MMO) between EUV and ArF immersion tool, because EUV process will be applied to specific layers that have more competitive cost edge against ArF immersion multiple patterning with the early mass productivity of EUVL. Therefore it is necessary to consider the EUV overlay target with comparing the overlay specification of double patterning technology (DPT) and spacer patterning technology (SPT). This paper will discuss about required overlay controllability and current performance of EUV, and challenges for future improvement.

  14. Applications of Laser Plasma EUV Source Based on a Gas Puff Target

    SciTech Connect

    Bartnik, A.; Fiedorowicz, H.; Jarocki, R.; Kostecki, J.; Rakowski, R.; Szczurek, A.; Szczurek, M.

    2008-03-19

    Laser plasma with temperature of the order of tens eV can be an efficient source of extreme ultraviolet (EUV). The radiation can be focused using different kind of optics giving sufficient fluence for some applications. In this work we present results of investigations concerning different applications of a laser plasma EUV source based on a double stream gas puff target. The experiments were connected with micromachining of organic polymers by direct photo-etching luminescence excited with EUV and using the source for EUV microscopy.

  15. Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling

    NASA Astrophysics Data System (ADS)

    Fomenkov, Igor; Brandt, David; Ershov, Alex; Schafgans, Alexander; Tao, Yezheng; Vaschenko, Georgiy; Rokitski, Slava; Kats, Michael; Vargas, Michael; Purvis, Michael; Rafac, Rob; La Fontaine, Bruno; De Dea, Silvia; LaForge, Andrew; Stewart, Jayson; Chang, Steven; Graham, Matthew; Riggs, Daniel; Taylor, Ted; Abraham, Mathew; Brown, Daniel

    2017-06-01

    Extreme ultraviolet (EUV) lithography is expected to succeed in 193-nm immersion multi-patterning technology for sub-10-nm critical layer patterning. In order to be successful, EUV lithography has to demonstrate that it can satisfy the industry requirements in the following critical areas: power, dose stability, etendue, spectral content, and lifetime. Currently, development of second-generation laser-produced plasma (LPP) light sources for the ASML's NXE:3300B EUV scanner is complete, and first units are installed and operational at chipmaker customers. We describe different aspects and performance characteristics of the sources, dose stability results, power scaling, and availability data for EUV sources and also report new development results.

  16. Analytical techniques for mechanistic characterization of EUV photoresists

    NASA Astrophysics Data System (ADS)

    Grzeskowiak, Steven; Narasimhan, Amrit; Murphy, Michael; Ackerman, Christian; Kaminsky, Jake; Brainard, Robert L.; Denbeaux, Greg

    2017-03-01

    Extreme ultraviolet (EUV, 13.5 nm) lithography is the prospective technology for high volume manufacturing by the microelectronics industry. Significant strides towards achieving adequate EUV source power and availability have been made recently, but a limited rate of improvement in photoresist performance still delays the implementation of EUV. Many fundamental questions remain to be answered about the exposure mechanisms of even the relatively well understood chemically amplified EUV photoresists. Moreover, several groups around the world are developing revolutionary metal-based resists whose EUV exposure mechanisms are even less understood. Here, we describe several evaluation techniques to help elucidate mechanistic details of EUV exposure mechanisms of chemically amplified and metal-based resists. EUV absorption coefficients are determined experimentally by measuring the transmission through a resist coated on a silicon nitride membrane. Photochemistry can be evaluated by monitoring small outgassing reaction products to provide insight into photoacid generator or metal-based resist reactivity. Spectroscopic techniques such as thin-film Fourier transform infrared (FTIR) spectroscopy can measure the chemical state of a photoresist system pre- and post-EUV exposure. Additionally, electrolysis can be used to study the interaction between photoresist components and low energy electrons. Collectively, these techniques improve our current understanding of photomechanisms for several EUV photoresist systems, which is needed to develop new, better performing materials needed for high volume manufacturing.

  17. Fundamentals of EUV resist-inorganic hardmask interactions

    NASA Astrophysics Data System (ADS)

    Goldfarb, Dario L.; Glodde, Martin; De Silva, Anuja; Sheshadri, Indira; Felix, Nelson M.; Lionti, Krystelle; Magbitang, Teddie

    2017-03-01

    High resolution Extreme Ultraviolet (EUV) patterning is currently limited by EUV resist thickness and pattern collapse, thus impacting the faithful image transfer into the underlying stack. Such limitation requires the investigation of improved hardmasks (HMs) as etch transfer layers for EUV patterning. Ultrathin (<5nm) inorganic HMs can provide higher etch selectivity, lower post-etch LWR, decreased defectivity and wet strippability compared to spin-on hybrid HMs (e.g., SiARC), however such novel layers can induce resist adhesion failure and resist residue. Therefore, a fundamental understanding of EUV resist-inorganic HM interactions is needed in order to optimize the EUV resist interfacial behavior. In this paper, novel materials and processing techniques are introduced to characterize and improve the EUV resist-inorganic HM interface. HM surface interactions with specific EUV resist components are evaluated for open-source experimental resist formulations dissected into its individual additives using EUV contrast curves as an effective characterization method to determine post-development residue formation. Separately, an alternative adhesion promoter platform specifically tailored for a selected ultrathin inorganic HM based on amorphous silicon (aSi) is presented and the mitigation of resist delamination is exemplified for the cases of positive-tone and negative-tone development (PTD, NTD). Additionally, original wafer priming hardware for the deposition of such novel adhesion promoters is unveiled. The lessons learned in this work can be directly applied to the engineering of EUV resist materials and processes specifically designed to work on such novel HMs.

  18. EUVE GO Survey: High Levels of User Satisfaction

    NASA Astrophysics Data System (ADS)

    Stroozas, B. A.

    2000-12-01

    This paper describes the results of a detailed customer survey of Guest Observers (GOs) for NASA's Extreme Ultraviolet Explorer (EUVE) astronomy satellite observatory. The purpose of the research survey was to (1) measure the levels of GO customer satisfaction with respect to EUVE observing services, and (2) compare the observing experiences of EUVE GOs with their experiences using other satellite observatories. This survey was conducted as a business research project -- part of the author's graduate work as an MBA candidate. A total sample of 38 respondents, from a working population of 101 "active" EUVE GOs, participated in this survey. The results, which provided a profile of the "typical" EUVE GO, showed in a statistically significant fashion that these GOs were more than satisfied with the available EUVE observing services. In fact, the sample GOs generally rated their EUVE observing experiences to be better than average as compared to their experiences as GOs on other missions. These relatively high satisfaction results are particularly pleasing to the EUVE Project which, given its significantly reduced staffing environment at U.C. Berkeley, has continued to do more with less. This paper outlines the overall survey process: the relevant background and previous research, the survey design and methodology, and the final results and their interpretation. The paper also points out some general limitations and weaknesses of the study, along with some recommended actions for the EUVE Project and for NASA in general. This work was funded by NASA/UCB Cooperative Agreement NCC5-138.

  19. Irradiation stability of silicon photodiodes for extreme-ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Scholze, Frank; Klein, Roman; Bock, Thomas

    2003-10-01

    Photodiodes are used as easy-to-operate detectors in the extreme-ultraviolet spectral range. At the Physikalisch-Technische Bundesanstalt photodiodes are calibrated with an uncertainty of spectral responsivity of 0.3% or less. Stable photodiodes are a prerequisite for the dissemination of these high-accuracy calibrations to customers. Silicon photodiodes with different top layers were exposed to intense extreme-ultraviolet irradiation. Diodes coated with diamondlike carbon or TiSiN proved to be stable within a few percent up to a radiant exposure of 100 kJ/cm2. The changes in responsivity could be explained as being due to carbon contamination and to changes in the internal charge collection efficiency. In ultrahigh vacuum, no indication of oxidation was found.

  20. Cleaning process for EUV optical substrates

    SciTech Connect

    Weber, F.J.; Spiller, E.A.

    1999-09-28

    A cleaning process is disclosed for surfaces with very demanding cleanliness requirements, such as extreme-ultraviolet (EUV) optical substrates. Proper cleaning of optical substrates prior to applying reflective coatings thereon is very critical in the fabrication of the reflective optics used in EUV lithographic systems, for example. The cleaning process involves ultrasonic cleaning in acetone, methanol, and a pH neutral soap, such as FL-70, followed by rinsing in de-ionized water and drying with dry filtered nitrogen in conjunction with a spin-rinse.

  1. Cleaning process for EUV optical substrates

    DOEpatents

    Weber, Frank J.; Spiller, Eberhard A.

    1999-01-01

    A cleaning process for surfaces with very demanding cleanliness requirements, such as extreme-ultraviolet (EUV) optical substrates. Proper cleaning of optical substrates prior to applying reflective coatings thereon is very critical in the fabrication of the reflective optics used in EUV lithographic systems, for example. The cleaning process involves ultrasonic cleaning in acetone, methanol, and a pH neutral soap, such as FL-70, followed by rinsing in de-ionized water and drying with dry filtered nitrogen in conjunction with a spin-rinse.

  2. Metrology of 13-nm optics for extreme ultraviolet lithography

    SciTech Connect

    Beckwith, J.F.; Patterson, S.R.; Thompson, D.C.; Badami, V.; Smith, S.

    1997-02-03

    This report documents activities carried in support of the design and construction of an ultra-high precision measuring machine intended for the support of Extreme Ultraviolet Lithography development (for semiconductor fabrication). At the outset, this project was aimed at the overall fabrication of such a measuring machine. Shortly after initiation, however, the scope of activities was reduced and effort was concentrated on the key technical advances necessary to support such machine development: high accuracy surface sensing and highly linear distance interferometry.

  3. An extreme ultraviolet interferometer using high order harmonic generation

    NASA Astrophysics Data System (ADS)

    Laban, D. E.; Palmer, A. J.; Wallace, W. C.; Gaffney, N. S.; Notermans, R. P. M. J. W.; Clevis, T. T. J.; Pullen, M. G.; Jiang, D.; Quiney, H. M.; Litvinyuk, I. V.; Kielpinski, D.; Sang, R. T.

    2014-04-01

    We present a new interferometer technique based on the interference of high-order harmonic generation radiation from translatable successive gas jets. The phase shifts in the apparatus are shown to originate from the Gouy phase shift of the driving laser. The technique can be used to deliver time delays between light pulses and we demonstrate the unprecedented capability of delivering pulses of extreme ultraviolet light delayed in time by as small as 100 zeptoseconds.

  4. Removal of Tin from Extreme Ultraviolet Collector Optics by an In-Situ Hydrogen Plasma

    NASA Astrophysics Data System (ADS)

    Elg, Daniel Tyler

    Throughout the 1980s and 1990s, as the semiconductor industry upheld Moore's Law and continuously shrank device feature sizes, the wavelength of the lithography source remained at or below the resolution limit of the minimum feature size. Since 2001, however, the light source has been the 193nm ArF excimer laser. While the industry has managed to keep up with Moore's Law, shrinking feature sizes without shrinking the lithographic wavelength has required extra innovations and steps that increase fabrication time, cost, and error. These innovations include immersion lithography and double patterning. Currently, the industry is at the 14 nm technology node. Thus, the minimum feature size is an order of magnitude below the exposure wavelength. For the 10 nm node, triple and quadruple patterning have been proposed, causing potentially even more cost, fabrication time, and error. Such a trend cannot continue indefinitely in an economic fashion, and it is desirable to decrease the wavelength of the lithography sources. Thus, much research has been invested in extreme ultraviolet lithography (EUVL), which uses 13.5 nm light. While much progress has been made in recent years, some challenges must still be solved in order to yield a throughput high enough for EUVL to be commercially viable for high-volume manufacturing (HVM). One of these problems is collector contamination. Due to the 92 eV energy of a 13.5 nm photon, EUV light must be made by a plasma, rather than by a laser. Specifically, the industrially-favored EUV source topology is to irradiate a droplet of molten Sn with a laser, creating a dense, hot laser-produced plasma (LPP) and ionizing the Sn to (on average) the +10 state. Additionally, no materials are known to easily transmit EUV. All EUV light must be collected by a collector optic mirror, which cannot be guarded by a window. The plasmas used in EUV lithography sources expel Sn ions and neutrals, which degrade the quality of collector optics. The mitigation

  5. Extreme-Ultraviolet Vortices from a Free-Electron Laser

    NASA Astrophysics Data System (ADS)

    Rebernik Ribič, Primož; Rösner, Benedikt; Gauthier, David; Allaria, Enrico; Döring, Florian; Foglia, Laura; Giannessi, Luca; Mahne, Nicola; Manfredda, Michele; Masciovecchio, Claudio; Mincigrucci, Riccardo; Mirian, Najmeh; Principi, Emiliano; Roussel, Eléonore; Simoncig, Alberto; Spampinati, Simone; David, Christian; De Ninno, Giovanni

    2017-07-01

    Extreme-ultraviolet vortices may be exploited to steer the magnetic properties of nanoparticles, increase the resolution in microscopy, and gain insight into local symmetry and chirality of a material; they might even be used to increase the bandwidth in long-distance space communications. However, in contrast to the generation of vortex beams in the infrared and visible spectral regions, production of intense, extreme-ultraviolet and x-ray optical vortices still remains a challenge. Here, we present an in-situ and an ex-situ technique for generating intense, femtosecond, coherent optical vortices at a free-electron laser in the extreme ultraviolet. The first method takes advantage of nonlinear harmonic generation in a helical undulator, producing vortex beams at the second harmonic without the need for additional optical elements, while the latter one relies on the use of a spiral zone plate to generate a focused, micron-size optical vortex with a peak intensity approaching 1014 W /cm2 , paving the way to nonlinear optical experiments with vortex beams at short wavelengths.

  6. Preliminary Results of the Extreme Ultraviolet Explorer Right Angle Program

    NASA Astrophysics Data System (ADS)

    McDonald, K.; Craig, N.; Sirk, M. M.; Drake, J. J.; Malina, R. F.

    1993-12-01

    During the guest observer phase of the EUVE Mission, data are being collected with the survey scanners and the Deep Survey Scanner. The EUVE Right Angle Program (RAP) involves the analysis of this data set and the coordination of possible simultaneous observations with ground based instruments. This data set consists of several discrete pointings performed at a much deeper level than the previous EUVE all-sky survey, although covering only a few percent of the sky. Analysis of this data set has detected a large number of previously undetected EUV sources. We present here a preliminary list of the sources observed during the EUVE Right Angle Program and compare properties of this list with properties of the EUVE Bright Source List. This work has been supported by NASA contract NAS5--30180.

  7. Ultraviolet and extreme ultraviolet spectroscopy of the solar corona at the Naval Research Laboratory.

    PubMed

    Moses, J D; Ko, Y-K; Laming, J M; Provornikova, E A; Strachan, L; Beltran, S Tun

    2015-11-01

    We review the history of ultraviolet and extreme ultraviolet spectroscopy with a specific focus on such activities at the Naval Research Laboratory and on studies of the extended solar corona and solar-wind source regions. We describe the problem of forecasting solar energetic particle events and discuss an observational technique designed to solve this problem by detecting supra-thermal seed particles as extended wings on spectral lines. Such seed particles are believed to be a necessary prerequisite for particle acceleration by heliospheric shock waves driven by a coronal mass ejection.

  8. Implications of image plane line-edge roughness requirements on extreme ultraviolet mask specifications

    SciTech Connect

    Naulleau, P. P.; George, Simi A.

    2009-02-13

    Line-edge roughness (LER) and the related effect of contact size variation remain as significant challenges facing the commercialization of extreme ultraviolet (EUV) lithography. LER is typically viewed as a resist problem; however, recent simulation results have shown that the mask can indeed be an important contributor. Problems arise from both mask absorber LER as well as mask multilayer roughness leading to random phase variations in the reflected beam (see Fig. 1). The latter effect is especially important as higher coherence off-axis illumination conditions are used and defocus is considered. Here we describe these effect in detail and explore how they will impact EUV mask requirements for the 22-nm half-pitch node and beyond. Figure 2 shows modeling results for 22-nm lines printed in a 0.32-numerical aperture system with 100-nm defocus assuming a mask with 0.24-nm rms multilayer roughness and no absorber edge roughness (unlike the example in Fig. 1). The impact of the phase roughness on the printed line-edge roughness is clearly evident and demonstrates the basic problem with mask roughness. The more detailed modeling-based analysis to be presented will account for performance throughout the process window as well as non-stochastic resist effects. We note that the mean-field resist effect is important to consider because, in practice, the resist is the limiting resolution element in the system and therefore dominates the mask-error enhancement factor (MEEF). As is typically the case with projection-optic-induced MEEF, the resist-induced MEEF will lead to even tighter mask requirements. Note that we do not consider resist stochastic effects since the purpose of this study is isolate mask-induced sources of image-plane roughness.

  9. Analysis of Cassini UVIS Extreme and Far Ultraviolet Observations of Saturn’s Atmosphere

    NASA Astrophysics Data System (ADS)

    Parkinson, Christopher D.; Koskinen, Tommi; Gronoff, Guillaume; Yung, Yuk L.; Esposito, Larry

    2015-11-01

    The atmosphere of Saturn is mainly composed of H2 and neutral atomic helium. The study of He 584 Å and H Lyman-α brightnesses is interesting as the EUV and FUV (Extreme and Far Ultraviolet) planetary airglow have the potential to yield useful information about mixing and other important parameters in its thermosphere. Time variation, asymmetries, and polar enhancement of the airglow are also possible and analysis already performed using the public archived Cassini mission data sets have shown we can solve some of the outstanding problems associated with these phenomena for Saturn.Specifically, we have (1) examined epochal eddy mixing disparities in the Saturnian upper atmosphere and quantify temporal mixing variations that may have occurred in the upper atmosphere of Saturn, as may be evidenced in Cassini mission data, (2) quantified any enhanced mixing in the auroral regions of Saturn, and (3) performed a robust study of Saturnian H Lyman-α brightness with the view to discover any longitudinal H Lyman-α planetary asymmetry or “bulge” across the disc such as was discovered by Voyager at Jupiter, indicative of the distribution of atomic H and accounting for the observed flux and any variations from the normal temperature profile.We have analyzed Cassini UVIS EUV and FUV airglow data from Saturn using sophisticated photochemical and radiative transfer models to investigate unexplained differences in the dynamical processes operating within its upper atmosphere. Powerful analysis techniques allow us to extract information on atmospheric mixing, temperatures, and temporal changes due to the solar and seasonal cycles from the variations in distribution and intensity of airglow emissions that result. We report on results of these efforts to date.

  10. THE FIRST STRAY LIGHT CORRECTED EXTREME-ULTRAVIOLET IMAGES OF SOLAR CORONAL HOLES

    SciTech Connect

    Shearer, Paul; Gilbert, Anna C.; Frazin, Richard A.; Hero III, Alfred O. E-mail: annacg@umich.edu E-mail: hero@umich.edu

    2012-04-10

    Coronal holes are the source regions of the fast solar wind, which fills most of the solar system volume near the cycle minimum. Removing stray light from extreme-ultraviolet (EUV) images of the Sun's corona is of high astrophysical importance, as it is required to make meaningful determinations of temperatures and densities of coronal holes. EUV images tend to be dominated by the component of the stray light due to the long-range scatter caused by the microroughness of telescope mirror surfaces, and this component has proven very difficult to measure in pre-flight characterization. In-flight characterization heretofore has proven elusive due to the fact that the detected image is simultaneously nonlinear in two unknown functions: the stray light pattern and the true image that would be seen by an ideal telescope. Using a constrained blind deconvolution technique that takes advantage of known zeros in the true image provided by a fortuitous lunar transit, we have removed the stray light from solar images seen by the EUVI instrument on STEREO-B in all four filter bands (171, 195, 284, and 304 A). Uncertainty measures of the stray light corrected images, which include the systematic error due to misestimation of the scatter, are provided. It is shown that in EUVI, stray light contributes up to 70% of the emission in coronal holes seen on the solar disk, which has dramatic consequences for diagnostics of temperature and density and therefore estimates of key plasma parameters such as the plasma {beta} and ion-electron collision rates.

  11. Advances in the reduction and compensation of film stress in high-reflectance multilayer coatings for extreme ultraviolet lithography applications

    SciTech Connect

    Mirkarimi, P.B., LLNL

    1998-02-20

    Due to the stringent surface figure requirements for the multilayer-coated optics in an extreme ultraviolet (EUV) projection lithography system, it is desirable to minimize deformation due to the multilayer film stress. However, the stress must be reduced or compensated without reducing EUV reflectivity, since the reflectivity has a strong impact on the throughput of a EUV lithography tool. In this work we identify and evaluate several leading techniques for stress reduction and compensation as applied to Mo/Si and Mo/Be multilayer films. The measured film stress for Mo/Si films with EUV reflectances near 67.4% at 13.4 nm is approximately - 420 MPa (compressive), while it is approximately +330 MPa (tensile) for Mo/Be films with EUV reflectances near 69.4% at 11.4 nm. Varying the Mo-to-Si ratio can be used to reduce the stress to near zero levels, but at a large loss in EUV reflectance (> 20%). The technique of varying the base pressure (impurity level) yielded a 10% decrease in stress with a 2% decrease in reflectance for our multilayers. Post-deposition annealing was performed and it was observed that while the cost in reflectance is relatively high (3.5%) to bring the stress to near zero levels (i.e., reduce by 1 00%), the stress can be reduced by 75% with only a 1.3% drop in reflectivity at annealing temperatures near 200{degrees}C. A study of annealing during Mo/Si deposition was also performed; however, no practical advantage was observed by heating during deposition. A new non-thermal (athermal) buffer-layer technique was developed to compensate for the effects of stress. Using this technique with amorphous silicon and Mo/Be buffer-layers it was possible to obtain Mo/Be and Mo/Si multilayer films with a near zero net film stress and less than a 1% loss in reflectivity. For example a Mo/Be film with 68.7% reflectivity at 11.4 nm and a Mo/Si film with 66.5% reflectivity at 13.3 nm were produced with net stress values less than 30 MPa.

  12. Low density of neutral hydrogen and helium in the local interstellar medium: Extreme Ultraviolet Explorer photometry of the Lyman continuum of the hot white dwarfs MCT 0501-2858, MCT 0455-2812, HZ 43, and GD 153.

    PubMed

    Vennes, S; Dupuis, J; Bowyer, S; Fontaine, G; Wiercigroch, A; Jelinsky, P; Wesemael, F; Malina, R

    1994-01-20

    The first comprehensive sky survey of the extreme ultraviolet (EUV) spectral range performed by the Extreme Ultraviolet Explorer (EUVE) has uncovered a handful of very bright sources at wavelengths longer than the He I 504 angstroms photoionization edge. Among these objects are four white dwarfs with exceptionally low interstellar medium (ISM) column densities along the line of sight. Analysis of EUV photometry of the He-rich DO white dwarf MCT 0501-2858 and the H-rich DA white dwarf MCT 0455-2812 along one line of sight and of the DA white dwarfs HZ 43 and GD 153 near the north Galactic pole indicates that the overall minimum column density of the neutral material centered on the Sun is N(H I)= 0.5-1.0 x 10(18) cm-2. In the case of MCT 0501-2858, EUV photometric measurements provide a clear constraint to the effective temperature (60,000-70,000 K). Given these neutral hydrogen columns, the actual contribution to the density of neutral species from the immediate solar environment (the "local fluff") would only cover a distance of approximately 2-3 pc (assuming an average density n(H I) = 0.1 cm-3) leaving these lines of sight almost entirely within the hot phase of the ISM. A preliminary examination of the complete EUVE long-wavelength survey indicates that these lines of sight are exceptional and set a minimum column density in the solar environment.

  13. Low density of neutral hydrogen and helium in the local interstellar medium: Extreme Ultraviolet Explorer photometry of the Lyman continuum of the hot white dwarfs MCT 0501-2858, MCT 0455-2812, HZ 43, and GD 153

    NASA Technical Reports Server (NTRS)

    Vennes, Stephane; Dupuis, Jean; Bowyer, Stuart; Fontaine, Gilles; Wiercigroch, Alexandria; Jelinsky, Patrick; Wesemael, Francois; Malina, Roger

    1994-01-01

    The first comprehensive sky survey of the extreme ultraviolet (EUV) spectral range performed by the Extreme Ultraviolet Explorer (EUVE) has uncovered a handful of very bright sources at wavelengths longer than the He I 504 A photoionization edge. Among these objects are four white dwarfs with exceptionally low interstellar medium (ISM) column densities along the line of sight. Analysis of EUV photometry of the He-rich DO white dwarf MCT 0501-2858 and the H-rich DA white dwarf MCT 0455-2812 along one line of sight and of the DA white dwarfs HZ 43 and GD 153 near the north Galactic pole indicates that the overall minimum column density of the neutral material centered on the Sun is N(H I) = 0.5-1.0 x 10(exp 18)/sq cm. In the case of MCT 0501-2858, EUV photometric measurements provide a clear constraint to the effective temperature (60,000-70,000 K). Given these neutral hydrogen columns, the actual contribution to the density of neutral species from the immediate solar environment (the 'local fluff') would only cover a distance of approximately equals 2-3 pc (assuming an average density n(H I) = 0.1/cu cm) leaving these lines of sight almost entirely within the hot phase of the ISM. A preliminary examination of the complete EUVE long-wavelength survey indicates that these lines of sight are exceptional and set a minimum column density in the solar environment.

  14. Status of EUV reticle handling solution in meeting 32 nm HP EUV lithography

    NASA Astrophysics Data System (ADS)

    He, Long; Wurm, Stefan; Seidel, Phil; Orvek, Kevin; Betancourt, Ernie; Underwood, Jon

    2008-03-01

    Significant progress has been made over the past several years in developing extreme ultraviolet (EUV) mask infrastructure, especially in EUV reticle handling and protection. Today, the industry has converged to standardize the dual pod reticle carrier approach in developing EUV reticle handling solutions. SEMATECH has already established reticle handling infrastructure compliant with industry's draft standard, including carrier, robotic carrier handling, automated carrier cleaning, vacuum protection, and state-of-the-art particulate contamination testing capabilities. It proves to be one of the key enablers in developing EUV reticle protection solutions, through broad collaboration with industry stakeholders and suppliers. In this paper, we discuss our in-house reticle handling infrastructure and provide insights on how to apply it in EUV lithography pilot line development and future production line. We present particulate contamination free baseline results of state-of-the-art EUV reticle carriers, i.e., sPod, throughout lifecycle uses. We will also compare the results against requirements for 32 nm half-pitch (HP) EUV lithography, to identify the remaining challenges ahead of the industry.

  15. Concept Study Report: Extreme-Ultraviolet Imaging Spectrometer Solar-B

    NASA Technical Reports Server (NTRS)

    Doschek, George, A.; Brown, Charles M.; Davila, Joseph M.; Dere, Kenneth P.; Korendyke, Clarence M.; Mariska, John T.; Seely, John F.

    1999-01-01

    We propose a next generation Extreme-ultraviolet Imaging Spectrometer (EIS) that for the first time combines high spectral, spatial, and temporal resolution in a single solar spectroscopic instrument. The instrument consists of a multilayer-coated off-axis telescope mirror and a multilayer-coated grating spectrometer. The telescope mirror forms solar images on the spectrometer entrance slit assembly. The spectrometer forms stigmatic spectra of the solar region located at the slit. This region is selected by the articulated telescope mirror. Monochromatic images are obtained either by rastering the solar region across a narrow entrance slit, or by using a very wide slit (called a slot) in place of the slit. Monochromatic images of the region centered on the slot are obtained in a single exposure. Half of each optic is coated to maximize reflectance at 195 Angstroms; the other half to maximize reflectance at 270 Angstroms. The two Extreme Ultraviolet (EUV) wavelength bands have been selected to maximize spectral and dynamical and plasma diagnostic capabilities. Spectral lines are observed that are formed over a temperature range from about 0.1 MK to about 20 MK. The main EIS instrument characteristics are: wavelength bands - 180 to 204 Angstroms; 250 to 290 Angstroms; spectral resolution - 0.0223 Angstroms/pixel (34.3km/s at 195 Angstroms and 23.6 km/s at 284 Angstroms); slit dimensions - 4 slits, two currently specified dimensions are 1" x 1024" and 50" x 1024" (the slot); largest spatial field of view in a single exposure - 50" x 1024"; highest time resolution for active region velocity studies - 4.4 s.

  16. Stress evolution in molybdenum/silicon multilayer mirrors for extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Freitag, James Mac

    The continued shrinking of microelectronic device size necessitates advances in lithography, including possibly using extreme ultraviolet (EUV) light. The Mo/Si multilayer system is a promising candidate for reflective optics at a wavelength of roughly 135 A. However, these multilayers manifest high compressive stresses of approximately -350 MPa, which cause unacceptable distortion of the optical element. The goal of this project was to develop fundamental understanding of the origins of stress during growth of Mo/Si multilayers. A 40-bilayer structure deposited by DC-magnetron sputtering yielded a peak reflectivity of 65.7% at a wavelength of 136 A. We collected the stress data during deposition by in situ substrate curvature measurements using a multiple parallel laser beam technique. We measured large tensile and compressive curvature transients during initial growth of Mo on Si and Si on Mo. However, by sputtering with Kr rather than conventional Ar, it is possible to suppress the compressive transient upon Si deposition and thereby redress the compressive stress. Evidence implies that intermixing and alloying at the Mo-Si interfaces by asymmetric Si diffusion cause the transients. Indeed, Mo/Si multilayers sputtered with Kr exhibit less intermixing and high EUV reflectivity. However, the roughness of the multilayer may limit reflectivity and we therefore compare the roughness of Kr- and Ar-sputtered multilayers. Roughness, which leads to nonspecular scattering is problematic for EUV imaging systems because it decreases the useful throughput of a lithography system. We used x-ray diffraction to characterize the evolution of roughness with increasing number of bilayers in Mo/Si multilayers sputtered by Ar and Kr. By fitting a self-affine model of roughness to the diffuse spectra, we extracted the roughness and in-plane correlation lengths. We find that the lateral length scale of the roughness increases with the number of bilayers; however, the magnitude of the

  17. The solar extreme ultra-violet corona: Resolved loops and the unresolved active region corona

    NASA Astrophysics Data System (ADS)

    Cirtain, Jonathan Wesley

    In this work, physical characteristics of the solar corona as observed in the Extreme Ultra-Violet (EUV) regime are investigated. The focus will be the regions of intense EUV radiation generally found near the locations of sunspots. These regions are commonly called active regions. Multiple space- based observing platforms have been deployed in the last decade; it is possible to use several of these observatories in combination to develop a more complete picture of the solar corona. Joint Observing Program 146 was created to collect spectroscopic intensities using the Coronal Diagnostic Spectrometer on Solar and Heliospheric Observatory and EUV images using NASA's Transition Region and Coronal Explorer. The emission line intensities are analyzed to develop an understanding of the temperature and density of the active region coronal plasma. However, the performance of the CDS instrument in the spatial and temporal domains is limited and to compensate for these limitations, data collected by the TRACE instrument provide a high spatial and temporal resolution set of observations. One of the most exciting unsolved problems in solar astrophysics is to understand why the corona maintains a temperature roughly two orders of magnitude higher than the underlying material. A detailed investigation of the coronal emission has provided constraints on models of the heating mechanism, since the temperature, density and evolution of emission rates for multiple ionic species are indicative of the mechanism(s) working to heat the corona. The corona appears to consist of multiple unresolved structures as well as resolved active region structures, called coronal loops. The purpose of the present work is to determine the characteristics of the unresolved background corona. Using the characterizations of the coronal unresolved background, results for loops after background subtraction are also presented. This work demonstrates the magnitude of the unresolved coronal emission with

  18. RE J1255+266: Detection of an extremely bright EUV transient

    NASA Technical Reports Server (NTRS)

    Dahlem, M.; Kreysing, H.-C.; White, S. M.; Engels, D.; Condon, J. J.; Harmon, B. A.; Zhang, S. N.; Kouveliotou, C.; Paciesas, W. S.; Voges, W.

    1995-01-01

    During a pointed ROSAT observation in the direction of the Coma cluster of galaxies an exceptionally bright EUV source, RE J1255+266, was detected serendipitously. The source is located close to the Galactic North Pole, at b(sub II) is approximately or equal to 89 deg. Its observed EUV flux (62 - 110 eV) at the time of the detection was of order 7 x 10(exp -9) ergs/sq cm, making RE J1255+266 temporarily one of the brightest EUV sources on the sky. The EUV flare of RE J1255+266 has a light curve with a decay time of about 0.86 days. With respect to earlier non-detections, the source brightened by a factor of approximately 7000. Such a behavior has not been observed before. Thus, it is unclear what type of source RE J1255+266 might be. Up to now no positive identification with any known source could be obtained. Emission at the position of the source was previously only detected in the 1987 Green Bank radio continuum survey. Simultaneous observations with Compton Gamma Ray Observatory/Burst and Transient Source Experiment (CGRO/BATSE) resulted in non-detections of the source in the 8 - 50 keV energy range.

  19. RE J1255+266: Detection of an extremely bright EUV transient

    NASA Technical Reports Server (NTRS)

    Dahlem, M.; Kreysing, H.-C.; White, S. M.; Engels, D.; Condon, J. J.; Harmon, B. A.; Zhang, S. N.; Kouveliotou, C.; Paciesas, W. S.; Voges, W.

    1995-01-01

    During a pointed ROSAT observation in the direction of the Coma cluster of galaxies an exceptionally bright EUV source, RE J1255+266, was detected serendipitously. The source is located close to the Galactic North Pole, at b(sub II) is approximately or equal to 89 deg. Its observed EUV flux (62 - 110 eV) at the time of the detection was of order 7 x 10(exp -9) ergs/sq cm, making RE J1255+266 temporarily one of the brightest EUV sources on the sky. The EUV flare of RE J1255+266 has a light curve with a decay time of about 0.86 days. With respect to earlier non-detections, the source brightened by a factor of approximately 7000. Such a behavior has not been observed before. Thus, it is unclear what type of source RE J1255+266 might be. Up to now no positive identification with any known source could be obtained. Emission at the position of the source was previously only detected in the 1987 Green Bank radio continuum survey. Simultaneous observations with Compton Gamma Ray Observatory/Burst and Transient Source Experiment (CGRO/BATSE) resulted in non-detections of the source in the 8 - 50 keV energy range.

  20. Condenser for ring-field deep-ultraviolet and extreme-ultraviolet lithography

    DOEpatents

    Chapman, Henry N.; Nugent, Keith A.

    2001-01-01

    A condenser for use with a ring-field deep ultraviolet or extreme ultraviolet lithography system. A condenser includes a ripple-plate mirror which is illuminated by a collimated beam at grazing incidence. The ripple plate comprises a plate mirror into which is formed a series of channels along an axis of the mirror to produce a series of concave surfaces in an undulating pattern. Light incident along the channels of the mirror is reflected onto a series of cones. The distribution of slopes on the ripple plate leads to a distribution of angles of reflection of the incident beam. This distribution has the form of an arc, with the extremes of the arc given by the greatest slope in the ripple plate. An imaging mirror focuses this distribution to a ring-field arc at the mask plane.

  1. Condenser for ring-field deep ultraviolet and extreme ultraviolet lithography

    DOEpatents

    Chapman, Henry N.; Nugent, Keith A.

    2002-01-01

    A condenser for use with a ring-field deep ultraviolet or extreme ultraviolet lithography system. A condenser includes a ripple-plate mirror which is illuminated by a collimated or converging beam at grazing incidence. The ripple plate comprises a flat or curved plate mirror into which is formed a series of channels along an axis of the mirror to produce a series of concave surfaces in an undulating pattern. Light incident along the channels of the mirror is reflected onto a series of cones. The distribution of slopes on the ripple plate leads to a distribution of angles of reflection of the incident beam. This distribution has the form of an arc, with the extremes of the arc given by the greatest slope in the ripple plate. An imaging mirror focuses this distribution to a ring-field arc at the mask plane.

  2. Optical Identification of Quasar 0917+7122 in the Direction of an Extreme-Ultraviolet Source

    NASA Technical Reports Server (NTRS)

    Maoz, D.; Ofek, E. O.; Shemi, A.; Barth, A. J.; Filippenko, A. V.; Brotherton, M. S.; Wills, B. J.; Lockman, F. J.

    1996-01-01

    We report the optical identification of an R = 18.3 mag, z = 2.432 quasar at the position of a 6 cm radio source and a faint ROSAT PSPC X-ray source. The quasar lies within the error circles of unidentified extreme-UV (EUV) detections by the EUVE and ROSAT WFC all-sky surveys at approximately 400 A and approximately 150 A, respectively. A 21 cm H I emission measurement in the direction of the quasar with a 21'-diameter beam yields a total H I column density of N(sub H) = 3.3 x 10(exp 20) /sq cm, two orders of magnitude higher than the maximum allowed for transparency through the Galaxy in the EUV The source of the EUV flux is therefore probably nearby (approximately < 100 pc), and unrelated to the quasar.

  3. Berkeley extreme-ultraviolet airglow rocket spectrometer - BEARS

    NASA Technical Reports Server (NTRS)

    Cotton, D. M.; Chakrabarti, S.

    1992-01-01

    The Berkeley EUV airglow rocket spectrometer (BEARS) instrument is described. The instrument was designed in particular to measure the dominant lines of atomic oxygen in the FUV and EUV dayglow at 1356, 1304, 1027, and 989 A, which is the ultimate source of airglow emissions. The optical and mechanical design of the instrument, the detector, electronics, calibration, flight operations, and results are examined.

  4. Extreme ultraviolet observations from voyager 2 encounter with jupiter.

    PubMed

    Sandel, B R; Shemansky, D E; Broadfoot, A L; Bertaux, J L; Blamont, J E; Belton, M J; Ajello, J M; Holberg, J B; Atreya, S K; Donahue, T M; Moos, H W; Strobel, D F; McConnell, J C; Dalgarno, A; Goody, R; McElroy, M B; Takacs, P Z

    1979-11-23

    Extreme ultraviolet spectral observations of the Jovian planetary system made during the Voyager 2 encounter have extended our knowledge of many of the phenomena and physical processes discovered by the Voyager 1 ultraviolet spectrometer. In the 4 months between encounters, the radiation from Io's plasma torus has increased in intensity by a factor of about 2. This change was accompanied by a decrease in plasma temperature of about 30 percent. The high-latitude auroral zones have been positively associated with the magnetic projection of the plasma torus onto the planet. Emission in molecular hydrogen bands has been detected from the equatorial regions of Jupiter, indicating planetwide electron precipitation. Hydrogen Lyman alpha from the dark side of the planet has been measured at an intensity of about 1 kilorayleigh. An observation of the occultation of alpha Leonis by Jupiter was carried out successfully and the data are being analyzed in detail.

  5. Nanoplasmonic generation of ultrashort EUV pulses

    NASA Astrophysics Data System (ADS)

    Choi, Joonhee; Lee, Dong-Hyub; Han, Seunghwoi; Park, In-Yong; Kim, Seungchul; Kim, Seung-Woo

    2012-10-01

    Ultrashort extreme-ultraviolet (EUV) light pulses are an important tool for time-resolved pump-probe spectroscopy to investigate the ultrafast dynamics of electrons in atoms and molecules. Among several methods available to generate ultrashort EUV light pulses, the nonlinear frequency upconversion process of high-harmonic generation (HHG) draws attention as it is capable of producing coherent EUV pulses with precise control of burst timing with respect to the driving near-infrared (NIR) femtosecond laser. In this report, we present and discuss our recent experimental data obtained by the plasmon-driven HHG method that generate EUV radiation by means of plasmonic nano-focusing of NIR femtosecond pulses. For experiment, metallic waveguides having a tapered hole of funnel shape inside were fabricated by adopting the focused-ion-beam process on a micro-cantilever substrate. The plasmonic field formed within the funnelwaveguides being coupled with the incident femtosecond pulse permitted intensity enhancement by a factor of ~350, which creates a hot spot of sub-wavelength size with intensities strong enough for HHG. Experimental results showed that with injection of noble gases into the funnel-waveguides, EUV radiation is generated up to wavelengths of 32 nm and 29.6 nm from Ar and Ne gas atoms, respectively. Further, it was observed that lower-order EUV harmonics are cut off in the HHG spectra by the tiny exit aperture of the funnel-waveguide.

  6. Pattern collapse mitigation strategies for EUV lithography

    NASA Astrophysics Data System (ADS)

    Goldfarb, Dario L.; Bruce, Robert L.; Bucchignano, James J.; Klaus, David P.; Guillorn, Michael A.; Wu, Chunghsi J.

    2012-03-01

    In this study, a comprehensive approach towards assessing pattern collapse challenges and solutions for Extreme Ultraviolet Lithography (EUV) resists beyond the 14nm node is undertaken. The fundamental forces that drive pattern deformation are reassessed in order to propose a generalized design criterion for EUV photoresists and aqueous surfactanated rinses. Furthermore, ultimate pattern collapse solutions such as solvent drying utilizing pressurized fluids (supercritical CO2) are exemplified for sub-60nm pitch EUV patterning. In parallel, alternative EUV integration schemes that use a metal-based hardmask (MHM) are studied using a specifically tailored self-assembled monolayer (SAM) to prevent delamination-driven pattern collapse due to resist-hardmask interfacial adhesion failure. Finally, the marginal image transfer of 40nm pitched L/S of ultrathin EUV resist into a SiARC-underlayer stack appears to be gated by the EUV resist resolution limit and the reduced film thickness budget. An alternative method for achieving improved postetch line width roughness (LWR) with an ultrathin MHM-based integration scheme is herein demonstrated.

  7. Mechanisms of EUV exposure: electrons and holes

    NASA Astrophysics Data System (ADS)

    Narasimhan, Amrit; Grzeskowiak, Steven; Ackerman, Christian; Flynn, Tracy; Denbeaux, Greg; Brainard, Robert L.

    2017-03-01

    In extreme ultraviolet (EUV) lithography, 92 eV photons are used to expose photoresists. Current EUV photoresists are composed of photoacid generators (PAGs) in polymer matrices. Secondary electrons (2 - 80 eV) created in resists during EUV exposure play large role in acid-production. There are several proposed mechanisms for electron-resist interactions: internal excitation, electron trapping, and hole-initiated chemistry. Here, we will address two central questions in EUV resist research: (1) How many electrons are generated per EUV photon absorption? (2) By which mechanisms do these electrons interact and react with molecules in the resist? We will use this framework to evaluate the contributions of electron trapping and hole initiated chemistry to acid production in chemically amplified photoresists, with specific emphasis on the interdependence of these mechanisms. We will show measurements of acid yield from direct bulk electrolysis of PAGs and EUV exposures of PAGs in phenolic and nonphenolic polymers to narrow down the mechanistic possibilities in chemically amplified resists.

  8. Continued Analysis of EUVE Solar System Observations

    NASA Technical Reports Server (NTRS)

    Gladstone, G. Randall

    2001-01-01

    This is the final report for this project. We proposed to continue our work on extracting important results from the EUVE (Extreme UltraViolet Explorer) archive of lunar and jovian system observations. In particular, we planned to: (1) produce several monochromatic images of the Moon at the wavelengths of the brightest solar EUV emission lines; (2) search for evidence of soft X-ray emissions from the Moon and/or X-ray fluorescence at specific EUV wavelengths; (3) search for localized EUV and soft X-ray emissions associated with each of the Galilean satellites; (4) search for correlations between localized Io Plasma Torus (IPT) brightness and volcanic activity on Io; (5) search for soft X-ray emissions from Jupiter; and (6) determine the long term variability of He 58.4 nm emissions from Jupiter, and relate these to solar variability. However, the ADP review panel suggested that the work concentrate on the Jupiter/IPT observations, and provided half the requested funding. Thus we have performed no work on the first two tasks, and instead concentrated on the last three. In addition we used funds from this project to support reduction and analysis of EUVE observations of Venus. While this was not part of the original statement of work, it is entirely in keeping with extracting important results from EUVE solar system observations.

  9. S2E simulation of an ERL-based high-power EUV-FEL source for lithography

    NASA Astrophysics Data System (ADS)

    Nakamura, N.; Kato, R.; Miyajima, T.; Shimada, M.; Hotei, T.; Hajima, R.

    2017-07-01

    Energy recovery linac (ERL) based extreme ultraviolet (EUV) free electron lasers (FELs) are candidates of a next-generation high-power EUV source for lithography. An ERL-based EUV FEL source has been designed in order to demonstrate the feasibility of generating a 10-kW class EUV power. Start-to-End (S2E) simulation including the injection beam optimization, bunch compression, FEL lasing and bunch decompression is performed for the designed EUV source. As a result it is demonstrated that the EUV FEL can produce high power more than 10 kW at 10 mA and that the electron beam can be well transported throughout the EUV source without beam loss.

  10. Simultaneous Extreme-Ultraviolet Explorer and Optical Observations of Ad Leonis: Evidence for Large Coronal Loops and the Neupert Effect in Stellar Flares

    NASA Technical Reports Server (NTRS)

    Hawley, Suzanne L.; Fisher, George H.; Simon, Theodore; Cully, Scott L.; Deustua, Susana E.; Jablonski, Marek; Johns-Krull, Christopher; Pettersen, Bjorn R.; Smith, Verne; Spiesman, William J.; hide

    1995-01-01

    We report on the first simultaneous Extreme-Ultraviolet Explorer (EUVE) and optical observations of flares on the dMe flare star AD Leonis. The data show the following features: (1) Two flares (one large and one of moderate size) of several hours duration were observed in the EUV wavelength range; (2) Flare emission observed in the optical precedes the emission seen with EUVE; and (3) Several diminutions (DIMs) in the optical continuum were observed during the period of optical flare activity. To interpret these data, we develop a technique for deriving the coronal loop length from the observed rise and decay behavior of the EUV flare. The technique is generally applicable to existing and future coronal observations of stellar flares. We also determine the pressure, column depth, emission measure, loop cross-sectional area, and peak thermal energy during the two EUV flares, and the temperature, area coverage, and energy of the optical continuum emission. When the optical and coronal data are combined, we find convincing evidence of a stellar 'Neupert effect' which is a strong signature of chromospheric evaporation models. We then argue that the known spatial correlation of white-light emission with hard X-ray emission in solar flares, and the identification of the hard X-ray emission with nonthermal bremsstrahlung produced by accelerated electrons, provides evidence that flare heating on dMe stars is produced by the same electron precipitation mechanism that is inferred to occur on the Sun. We provide a thorough picture of the physical processes that are operative during the largest EUV flare, compare and contrast this picture with the canonical solar flare model, and conclude that the coronal loop length may be the most important factor in determining the flare rise time and energetics.

  11. Study of extreme-ultraviolet emission and properties of a coronal streamer from PROBA2/SWAP, HINODE/EIS and Mauna Loa Mk4 observations

    SciTech Connect

    Goryaev, F.; Slemzin, V.; Vainshtein, L.; Williams, David R.

    2014-02-01

    Wide-field extreme-ultraviolet (EUV) telescopes imaging in spectral bands sensitive to 1 MK plasma on the Sun often observe extended, ray-like coronal structures stretching radially from active regions to distances of 1.5-2 R {sub ☉}, which represent the EUV counterparts of white-light streamers. To explain this phenomenon, we investigated the properties of a streamer observed on 2010 October 20 and 21, by the PROBA2/SWAP EUV telescope together with the Hinode/EIS (HOP 165) and the Mauna Loa Mk4 white-light coronagraph. In the SWAP 174 Å band comprising the Fe IX-Fe XI lines, the streamer was detected to a distance of 2 R {sub ☉}. We assume that the EUV emission is dominated by collisional excitation and resonant scattering of monochromatic radiation coming from the underlying corona. Below 1.2 R {sub ☉}, the plasma density and temperature were derived from the Hinode/EIS data by a line-ratio method. Plasma conditions in the streamer and in the background corona above 1.2 R {sub ☉} from the disk center were determined by forward-modeling the emission that best fit the observational data in both EUV and white light. It was found that the plasma in the streamer above 1.2 R {sub ☉} is nearly isothermal, with a temperature of T = 1.43 ± 0.08 MK. The hydrostatic scale-height temperature determined from the evaluated density distribution was significantly higher (1.72 ± 0.08 MK), which suggests the existence of outward plasma flow along the streamer. We conclude that, inside the streamer, collisional excitation provided more than 90% of the observed EUV emission, whereas, in the background corona, the contribution of resonance scattering became comparable with that of collisions at R ≳ 2 R {sub ☉}.

  12. Far ultraviolet and extreme ultraviolet rocket instrumentation for measuring the solar spectral irradiance and terrestrial airglow

    NASA Technical Reports Server (NTRS)

    Woods, Thomas N.; Bailey, Scott M.; Solomon, Stanley C.; Rottman, Gary J.

    1992-01-01

    A sounding-rocket experiment is being developed for the study of EUV spectral irradiance and its effects on the upper atmosphere, using three solar EUV instruments devised by the Laboratory for Atmospheric and Space Physics. These include a 25-cm Rowland circle EUV spectrograph, an array of Si X-UV photodiodes, and an X-UV imager with 20 arcsec resolution of the sun.

  13. Far ultraviolet and extreme ultraviolet rocket instrumentation for measuring the solar spectral irradiance and terrestrial airglow

    NASA Technical Reports Server (NTRS)

    Woods, Thomas N.; Bailey, Scott M.; Solomon, Stanley C.; Rottman, Gary J.

    1992-01-01

    A sounding-rocket experiment is being developed for the study of EUV spectral irradiance and its effects on the upper atmosphere, using three solar EUV instruments devised by the Laboratory for Atmospheric and Space Physics. These include a 25-cm Rowland circle EUV spectrograph, an array of Si X-UV photodiodes, and an X-UV imager with 20 arcsec resolution of the sun.

  14. Uncertainty Associated with Using Earth-Based EUV Measurements to Estimate EUV Irradiance at Other Planets

    NASA Astrophysics Data System (ADS)

    Thiemann, E.; Eparvier, F. G.; Chamberlin, P. C.; Woods, T. N.

    2016-12-01

    Solar Extreme Ultraviolet (EUV) radiation is a primary energy input into the upper atmospheres of terrestrial planets; driving variations in atmospheric temperature, ionization and escape. Solar EUV emissions are not homogenous over the solar sphere; rather regions of more or less intense emission span the surface, resulting in a highly structured emission intensity distribution. These structures rotate at the approximate 27-day sidereal solar rotation period, resulting in EUV irradiance that varies in both time and space. Therefore, understanding the role of solar variability as a driver of atmospheric variability requires accurate estimates of the EUV input at the time and location of interest. Although NASA has sent probes to study the upper atmospheres of other planets for nearly 50 years, the the EUV Monitor (EUVM) onboard the Mars Atmosphere and Volatile EvolutioN mission is the first instrument included on a planetary mission dedicated to characterizing the solar EUV input to the planet's atmosphere. EUVM measures 0.1-7 nm soft x-ray, 17-22 nm EUV and 121.6 nm Lyman-alpha irradiance; and uses these bands as inputs to an EUV spectral irradiance model. With the exception of MAVEN, researchers typically need to estimate EUV irradiance at a planet of interest using Earth based measurements. Most often, Earth-based EUV proxy measurements, such as F10.7 or Lyman-alpha, are shifted in time according to the 27-day solar rotation period. Because the EUV emitting structures on the Sun emerge and decay over daily timescales, time shifted Earth-based irradiance measurements have some inherent uncertainty. For the first time, an extensive set of calibrated EUV measurements are available at another planet. This novel dataset can be used to quantify the uncertainty inherent in extrapolating measurements from Earth to other points in the solar system. We use two years of EUVM measurements to quantify the uncertainty associated with extrapolating the three EUVM bands to

  15. A solar EUV flux model

    SciTech Connect

    Tobiska, W.K.; Barth, C.A. )

    1990-06-01

    A model of the solar extreme ultraviolet (EUV) irradiance variability has been developed for aeronomical use and has been named SERF2 by the Solar Electromagnetic Radiation Flux Study. The model is valid between 1981 and 1989 and is based on the Atmosphere Explorer E (AE-E) satellite EUV data set which is correlated with independent solar emissions measured during and after the AE-E mission. Additionally, spectral modifications are made to the model based on 18 separate rocket flights for all levels of solar activity. Two daily measured solar emissions, the H Lyman {alpha} line at 121.6 nm observed by the Solar Mesosphere Explorer satellite and the Ottawa 10.7-cm radio flux observed at the ground, are used in the model as indices for full-disk solar EUV chromospheric irradiance variations and transition region-coronal irradiance variations, respectively. The model wavelength equation coefficients are presented in tabular form for 39 wavelength groups or discrete lines from 1.9 to 105.0 nm along with spectral weighting function coefficients which modify the irradiance magnitudes based upon model wavelength fits to rocket-observed spectra. The model satisfies the general constraint of duplicating rocket-observed EUV irradiance for a wise variety of solar activity conditions. The model development is discussed, an example calculation is given, and the comparisons with constraining rocket data sets are shown.

  16. EUVE survey observations of the moon

    NASA Technical Reports Server (NTRS)

    Mcdonald, J. S.; Gladstone, G. R.

    1993-01-01

    Preliminary survey images of the moon obtained by the Extreme Ultraviolet Explorer and results of data analysis are presented. The preliminary results indicate that the brightness of the moon varies little from observation to observation. Early results also show that the lunar albedo closely matches the relative reflectivity of mineral found on the moon's surface. Further studies are conducted during the spectroscopy phase of the EUVE mission to confirm current results regarding the presence of X-ray fluorescence in the data.

  17. EUVE survey observations of the moon

    NASA Technical Reports Server (NTRS)

    Mcdonald, J. S.; Gladstone, G. R.

    1993-01-01

    Preliminary survey images of the moon obtained by the Extreme Ultraviolet Explorer and results of data analysis are presented. The preliminary results indicate that the brightness of the moon varies little from observation to observation. Early results also show that the lunar albedo closely matches the relative reflectivity of mineral found on the moon's surface. Further studies are conducted during the spectroscopy phase of the EUVE mission to confirm current results regarding the presence of X-ray fluorescence in the data.

  18. High numerical aperture projection system for extreme ultraviolet projection lithography

    DOEpatents

    Hudyma, Russell M.

    2000-01-01

    An optical system is described that is compatible with extreme ultraviolet radiation and comprises five reflective elements for projecting a mask image onto a substrate. The five optical elements are characterized in order from object to image as concave, convex, concave, convex, and concave mirrors. The optical system is particularly suited for ring field, step and scan lithography methods. The invention uses aspheric mirrors to minimize static distortion and balance the static distortion across the ring field width which effectively minimizes dynamic distortion. The present invention allows for higher device density because the optical system has improved resolution that results from the high numerical aperture, which is at least 0.14.

  19. Extreme ultraviolet radiation emitted by helium microwave driven plasmas

    SciTech Connect

    Espinho, S.; Felizardo, E.; Tatarova, E. Alves, L. L.

    2016-06-28

    The extreme ultraviolet radiation emitted by helium microwave-driven (2.45 GHz) plasmas operating at low-pressure conditions was investigated. Novel data regarding emitted spectral lines of excited helium atoms and ions in the 20–33 nm wavelength range and their intensity behavior with variation of discharge operational conditions are presented. The intensity of all the spectral emissions was found to strongly increase with the microwave power delivered to the plasma. Furthermore, the intensity of the ionic spectral emissions decreases by nearly one order of magnitude as the pressure was raised from 0.2 to 0.5 mbar.

  20. Extreme ultraviolet spectrometer based on a transmission electron microscopy grid

    SciTech Connect

    Sistrunk, Emily; Gühr, Markus

    2014-12-12

    Here, we performed extreme ultraviolet spectroscopy using an 80 lines/mm transmission electron microscope mesh as the dispersive element. We also present the usefulness of this instrument for dispersing a high harmonic spectrum from the 13th to the 29th harmonic of a Ti:sapph laser, corresponding to a wavelength range from 60 to 27 nm. The resolution of the instrument is limited by the image size of the high harmonic generation region on the detector. Finally, the resolution in first order diffraction is under 2 nm over the entire spectral range with a resolving power around 30.

  1. Extreme-ultraviolet Bragg holographic structures: theory and experiments

    SciTech Connect

    Jannson, T.; Savant, G.; Wang, L. )

    1991-10-01

    A theoretical analysis of extreme-ultraviolet (XUV) Bragg (volume) holographic diffraction structures with arbitrary periodic spatial-modulation profiles is presented, and two basic approaches for the fabrication of XUV holographic optical elements suggested by the theory are discussed. The theoretical results are compared with preliminary experimental observations from XUV Bragg holographic structures recently fabricated in the laboratory, and fairly good agreement is found. This comparison indicates that our holographic materials can reach very high refractive-index modulation ({Delta}n{similar to}0.4) and are thus good candidates for the production of high-efficiency XUV holographic optical elements.

  2. A rocket measurement of the extreme ultraviolet dayglow

    NASA Technical Reports Server (NTRS)

    Christensen, A. B.

    1976-01-01

    Extreme ultraviolet spectra of the mid-latitude dayglow in the wavelength range of 550 to 1250A have been obtained with a rocket borne grating spectrometer at a resolution of 20A. Spectra were obtained in the altitude range of 140 to 280 km. The spectra are dominated by emissions from atomic multiplets and no molecular bands have been identified with certainty. The strongest emissions other than H Lyman-alpha are OI (989) and OII (834). Other prominent emissions include He I(584), N II(916) and N II(1085). An unexpected feature near 612A has an intensity comparable to He I(584).

  3. Extreme ultraviolet emission spectra of Gd and Tb ions

    SciTech Connect

    Kilbane, D.; O'Sullivan, G.

    2010-11-15

    Theoretical extreme ultraviolet emission spectra of gadolinium and terbium ions calculated with the Cowan suite of codes and the flexible atomic code (FAC) relativistic code are presented. 4d-4f and 4p-4d transitions give rise to unresolved transition arrays in a range of ions. The effects of configuration interaction are investigated for transitions between singly excited configurations. Optimization of emission at 6.775 nm and 6.515 nm is achieved for Gd and Tb ions, respectively, by consideration of plasma effects. The resulting synthetic spectra are compared with experimental spectra recorded using the laser produced plasma technique.

  4. A rocket measurement of the extreme ultraviolet dayglow

    NASA Technical Reports Server (NTRS)

    Christensen, A. B.

    1976-01-01

    Extreme ultraviolet spectra of the mid-latitude dayglow in the wavelength range of 550 to 1250A have been obtained with a rocket borne grating spectrometer at a resolution of 20A. Spectra were obtained in the altitude range of 140 to 280 km. The spectra are dominated by emissions from atomic multiplets and no molecular bands have been identified with certainty. The strongest emissions other than H Lyman-alpha are OI (989) and OII (834). Other prominent emissions include He I(584), N II(916) and N II(1085). An unexpected feature near 612A has an intensity comparable to He I(584).

  5. Rabi oscillations in extreme ultraviolet ionization of atomic argon

    NASA Astrophysics Data System (ADS)

    Flögel, Martin; Durá, Judith; Schütte, Bernd; Ivanov, Misha; Rouzée, Arnaud; Vrakking, Marc J. J.

    2017-02-01

    We demonstrate Rabi oscillations in nonlinear ionization of argon by an intense femtosecond extreme ultraviolet (XUV) laser field produced by high-harmonic generation. We monitor the formation of A r2 + as a function of the time delay between the XUV pulse and an additional near-infrared (NIR) femtosecond laser pulse, and show that the population of an A r+* intermediate resonance exhibits strong modulations both due to an NIR laser-induced Stark shift and XUV-induced Rabi cycling between the ground state of A r+ and the A r+* excited state. Our experiment represents a direct experimental observation of a Rabi-cycling process in the XUV regime.

  6. Interferometry in the Extreme Ultraviolet and X-Ray

    NASA Technical Reports Server (NTRS)

    Cash, W.; Shipley, A.; Osterman, S.; Joy, M. K.

    2000-01-01

    We report on demonstration of an x-ray interferometer that uses plane mirrors at grazing incidence to create interference fringes in the extreme ultraviolet and soft x-ray portions of the spectrum. X-ray interferometry has historically been implemented through narrow band, diffractive systems that split the wavefront. Our system, by using two separate optical channels to create interference from two areas of the wavefront, has broad band response and much higher efficiency. We discuss some applications of this technique to astronomy and microscopy including the possibility of eventually capturing a micro-arcsecond image of a black hole.

  7. Structural Characterization and Lifetime Stability of Mo/Y Extreme Ultraviolet Multilayer Mirrors

    SciTech Connect

    Kjornrattanawanich, B; Bajt, S

    2004-05-20

    We observe a dramatic dependence of the extreme ultraviolet (EUV) reflectivity of Mo/Y multilayers on the oxygen content of yttrium. This is explained by a change in microstructure, increase in roughness of the Y layers and not by an increase in absorption due to oxygen in Y layers. We find best reflectivity of 38.4% is achieved with an oxygen content of 25%, which reduces to 32.6% and 29.6% for multilayers manufactured from oxygen free yttrium and 39%-oxygen yttrium, respectively. These results highlight the importance of experimentally determined optical constants as well as interface roughness in multilayer calculations. In addition, lifetime stability of Mo/Y multilayers with different capping layers was monitored for one year. The molybdenum- and palladium-capped samples exhibited low surface roughness and about 4% relative reflectivity loss in one year. The relative reflectivity loss on yttrium-capped sample (yttrium with 39% oxygen) was about 8%. However, the reflectivity loss in all three capping layers occurred within the first 100 days after the deposition and the reflectivity remained stable afterwards.

  8. Low-line edge roughness extreme ultraviolet photoresists of organotin carboxylates

    NASA Astrophysics Data System (ADS)

    Del Re, Ryan; Passarelli, James; Sortland, Miriam; Cardineau, Brian; Ekinci, Yasin; Buitrago, Elizabeth; Neisser, Mark; Freedman, Daniel A.; Brainard, Robert L.

    2015-10-01

    Pure thin films of organotin compounds have been lithographically evaluated using extreme ultraviolet lithography (EUVL, 13.5 nm). Twenty compounds of the type R2Sn) were spin-coated from solutions in toluene, exposed to EUV light, and developed in organic solvents. Exposures produced negative-tone contrast curves and dense-line patterns using interference lithography. Contrast-curve studies indicated that the photosensitivity is linearly related to the molecular weight of the carboxylate group bound to tin. Additionally, photosensitivity was found to be linearly related to free radical stability of the hydrocarbon group bound directly to tin (R=phenyl, butyl, and benzyl). Dense-line patterning capabilities varied, but two resists in particular show exceptionally good line edge roughness (LER). A resist composed of an amorphous film of )SnCC)2 (1) achieved 1.4 nm LER at 22-nm half-pitch patterning and a resist composed of )Sn) (2) achieved 1.1 nm LER at 35-nm half-pitch at high exposure doses (600 mJ/cm2). Two photoresists that use olefin-based carboxylates, )SnCCH (3) and )SnCC (4), demonstrated better photospeeds (5 mJ/cm2 and 27 mJ/cm2) but worse LER.

  9. The Extreme Ultraviolet Imagers (EUVIs): Earth-observing telescopes on International Space Station

    NASA Astrophysics Data System (ADS)

    Uji, Kentaro; Yoshikawa, Ichiro; Yoshioka, Kazuo; Murakami, Go; Yamazaki, Atsushi

    2012-11-01

    The Extreme Ultraviolet Imagers (EUVIs) were launched on 21st July 2012 as payloads to the Exposed Facility of the Japanese Experiment Module (JEM-EF) on the International Space Station. The EUVIs are parts of the IMAP (Ionosphere, Mesosphere, upper Atmosphere, and Plasmasphere mapping) mission to observe the Earth's upper atmosphere, mesosphere, ionosphere, thermosphere and plasmasphere. The other part of IMAP is a visible and near-infrared spectral imager (VISI). In this mission, we install two independent and identical telescopes. One telescope detects the terrestrial EUV emission from O+ (at the wavelength of 83.4 nm), and the other one detects He+ (30.4 nm). At the altitude of approximately 400 km, the two telescopes direct towards the Earth's limb to look at the ionosphere and plasmasphere from the inside-out. The maximum spatial resolution is 0.1° and time resolution is 1 minute. The optical instruments consist of multilayer coated mirrors which are optimized for 30.4 nm, metallic thin filters and 5-stage microchannel plates to pick up photon events efficiently. In our presentation, we report the mission overview, the instruments and the result of ground calibrations.

  10. Incident angle change caused by different off-axis illumination in extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Kim, Eun-Jin; You, Jee-Hye; Kim, Seong-Sue; Cho, Han-Ku; An, Ilsin; Oh, Hye-Keun

    2009-03-01

    Extreme ultraviolet lithography (EUVL) is believed to be possible patterning technology which can make 22 nm and below. EUV uses a reflective mask so that the mask is shined with the oblique incident light. Thus, the study of incident angle effect is very important. Currently, 6 degree oblique incidence is main stream, but 5 degree incident angle is also studied for 0.25 NA. Incident angles larger than 6 degree are also considered for larger NA. This incident angle will affect many things, eventually to the line width. Shadow effect also strongly depends on the incident angle. This shadow effect in the EUVL mask is an important factor that decreases the contrast of the aerial image and causes a directional problem, thus it will make line width variation. The off-axis illumination (OAI) will be used with conventional on-axis illumination to make much smaller patterns. This OAI will split the main beam and change the incident angle. We found that if the incident angle increased with higher degree of coherence, the aerial image went worse. The CD difference between the horizontal and the vertical pattern is also dependent on the degree of coherence even though it is small.

  11. Extreme ultraviolet diagnostic upgrades for kink mode control on the HBT-EP tokamak

    NASA Astrophysics Data System (ADS)

    Levesque, J. P.; Brooks, J. W.; Desanto, S.; Mauel, M. E.; Navratil, G. A.; Page, J. W.; Hansen, C. J.; Delgado-Aparicio, L.

    2016-10-01

    Optical diagnostics can provide non-invasive measurements of tokamak equilibria and the internal characteristics of MHD mode activity. We present research plans and ongoing progress on upgrading extreme ultraviolet (EUV) diagnostics in the HBT-EP tokamak. Four sets of 16 poloidal views will allow tomographic reconstruction of plasma emissivity and internal kink mode structure. Emission characteristics of naturally-occurring m/n = 2/1, 3/2, and 3/1 tearing and kink modes will be compared with expectations from a synthetic diagnostic. Coupling between internal and external modes leading up to disruptions is studied. The internal plasma response to external magnetic perturbations is investigated, and compared with magnetic response measurements. Correlation between internal emissivity and external magnetic measurements provides a global picture of long-wavelength MHD instabilities. Measurements are input to HBT-EP's GPU-based feedback system, allowing active feedback for kink modes using only optical sensors and both magnetic and edge current actuators. A separate two-color, 16-chord tangential system will be installed next year to allow reconstruction of temperature profiles and their fluctuations versus time. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  12. Phase defect mitigation strategy: fiducial mark requirements on extreme ultraviolet lithography mask

    NASA Astrophysics Data System (ADS)

    Murachi, Tetsunori; Amano, Tsuyoshi; Oh, Sung Hyun

    2012-03-01

    For Extreme Ultra-Violet Lithography (EUVL), fabrication of defect free multi-layered (ML) mask blanks is one of the difficult challenges. ML defects come from substrate defects and adders during ML coating, cannot be removed, and are called as phase defect. If we can accept ML blanks with certain number of phase defects, the blank yield will be drastically up. In order to use such blanks, the phase defects need to be identified and located during ML blank defect inspection before absorber patterning. To locate phase defects on the blanks accurately and precisely, Fiducial Marks (FM) on ML blanks are needed for mask alignment and defect location information. The proposed requirement of defect location accuracy is <=20 nm [1]. In this paper, we will present the result of feasibility study on the requirements of FM on EUVL mask by simulations & experiments to establish the phase defect mitigation method with EUV Actinic Blank Inspection (ABI) tool. And the optimum ranges of FM line width, depth, and fabrication method on EUVL mask based on above results are >= 5 um line width, >= 100 nm depth FM etched into ML respectively, and additional finer FMs for magnified optics.

  13. A Molecular- and Nano-Electronics Test (MONET) platform fabricated using extreme ultraviolet lithography.

    SciTech Connect

    Dentinger, Paul M.; Cardinale, Gregory F.; Hunter, Luke L.; Talin, Albert Alec

    2003-12-01

    We describe the fabrication and characterization of an electrode array test structure, designed for electrical probing of molecules and nanocrystals. We use Extreme Ultraviolet Lithography (EUVL) to define the electrical test platform features. As fabricated, the platform includes nominal electrode gaps of 0 nm, 40 nm, 60 nm, and 80 nm. Additional variation in electrode gap is achieved by controlling the exposure conditions, such as dose and focus. To enable EUVL based nanofabrication, we develop a novel bi-level photoresist process. The bi-level photoresist consists of a combination of a commercially available polydimethylglutarimide (PMGI) bottom layer and an experimental EUVL photoresist top (imaging) layer. We measure the sensitivity of PMGI to EUV exposure dose as a function of photoresist pre-bake temperature, and using this data, optimize a metal lift-off process. Reliable fabrication of 700 Angstrom thick Au structures with sub-1000 Angstrom critical dimensions is achieved, even without the use of a Au adhesion layer, such as Ti. Several test platforms are used to characterize electrical properties of organic molecules deposited as self assembled monolayers.

  14. Generation of circularly polarized radiation from a compact plasma-based extreme ultraviolet light source for tabletop X-ray magnetic circular dichroism studies

    SciTech Connect

    Wilson, Daniel; Rudolf, Denis Juschkin, Larissa; Weier, Christian; Adam, Roman; Schneider, Claus M.; Winkler, Gerrit; Frömter, Robert; Danylyuk, Serhiy; Bergmann, Klaus; Grützmacher, Detlev

    2014-10-15

    Generation of circularly polarized light in the extreme ultraviolet (EUV) spectral region (about 25 eV–250 eV) is highly desirable for applications in spectroscopy and microscopy but very challenging to achieve in a small-scale laboratory. We present a compact apparatus for generation of linearly and circularly polarized EUV radiation from a gas-discharge plasma light source between 50 eV and 70 eV photon energy. In this spectral range, the 3p absorption edges of Fe (54 eV), Co (60 eV), and Ni (67 eV) offer a high magnetic contrast often employed for magneto-optical and electron spectroscopy as well as for magnetic imaging. We simulated and designed an instrument for generation of linearly and circularly polarized EUV radiation and performed polarimetric measurements of the degree of linear and circular polarization. Furthermore, we demonstrate first measurements of the X-ray magnetic circular dichroism at the Co 3p absorption edge with a plasma-based EUV light source. Our approach opens the door for laboratory-based, element-selective spectroscopy of magnetic materials and spectro-microscopy of ferromagnetic domains.

  15. Generation of circularly polarized radiation from a compact plasma-based extreme ultraviolet light source for tabletop X-ray magnetic circular dichroism studies.

    PubMed

    Wilson, Daniel; Rudolf, Denis; Weier, Christian; Adam, Roman; Winkler, Gerrit; Frömter, Robert; Danylyuk, Serhiy; Bergmann, Klaus; Grützmacher, Detlev; Schneider, Claus M; Juschkin, Larissa

    2014-10-01

    Generation of circularly polarized light in the extreme ultraviolet (EUV) spectral region (about 25 eV-250 eV) is highly desirable for applications in spectroscopy and microscopy but very challenging to achieve in a small-scale laboratory. We present a compact apparatus for generation of linearly and circularly polarized EUV radiation from a gas-discharge plasma light source between 50 eV and 70 eV photon energy. In this spectral range, the 3p absorption edges of Fe (54 eV), Co (60 eV), and Ni (67 eV) offer a high magnetic contrast often employed for magneto-optical and electron spectroscopy as well as for magnetic imaging. We simulated and designed an instrument for generation of linearly and circularly polarized EUV radiation and performed polarimetric measurements of the degree of linear and circular polarization. Furthermore, we demonstrate first measurements of the X-ray magnetic circular dichroism at the Co 3p absorption edge with a plasma-based EUV light source. Our approach opens the door for laboratory-based, element-selective spectroscopy of magnetic materials and spectro-microscopy of ferromagnetic domains.

  16. Relationships between quencher diffusion constant and exposure dose dependences of line width, line edge roughness, and stochastic defect generation in extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro

    2015-01-01

    Control of the acid catalytic chain reaction is essential in the pattern formation of chemically amplified resists used for the high-volume production of semiconductor devices. In this study, the relationships between the quencher diffusion constant and the exposure dose dependences of the line width, line edge roughness (LER), and stochastic defect generation were investigated assuming extreme ultraviolet (EUV) lithography. The dependence of the latent images of line-and-space patterns with 16 nm half-pitch on the quencher diffusion constant was calculated on the basis of sensitization and reaction mechanisms of chemically amplified EUV resists. The exposure latitude of the line width increased with the quencher diffusion constant. The dependences of LER and stochastic defect (bridges and pinching) generation on the deviation of the exposure dose became weak by increasing the quencher diffusion constant, similarly to the case for the dependence of the line width.

  17. Feasibility study of sub-10-nm-half-pitch fabrication by chemically amplified resist processes of extreme ultraviolet lithography: II. Stochastic effects

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro; Santillan, Julius Joseph; Itani, Toshiro

    2015-03-01

    Line edge roughness (LER) rapidly increases in the sub-10-nm-half-pitch region of resist processes used for the fabrication of semiconductor devices. Sub-10-nm fabrication with high throughput is a challenging task. In this study, the stochastic effects (LER and stochastic defect generation) of chemically amplified resist processes in the sub-10-nm-half-pitch node were investigated, assuming the use of extreme ultraviolet (EUV) lithography. The latent images were calculated by a Monte Carlo method on the basis of the sensitization and reaction mechanisms of chemically amplified EUV resists. 7-nm-half-pitch fabrication by chemically amplified resist processes is considered to be feasible. However, significant improvement in the efficiencies of the conversion processes from optical images to resist images is required.

  18. Extending resolution limits of EUV resist materials

    NASA Astrophysics Data System (ADS)

    Krysak, Marie; Leeson, Michael; Han, Eungnak; Blackwell, James; Harlson, Shane

    2015-03-01

    Extreme ultraviolet lithography (EUVL) technology continues to progress and remains a viable candidate for next generation lithography1, which drives the need for EUV resists capable of high resolution with high sensitivity and low LWR. While chemically amplified resists (CARs) have demonstrated the ability to pattern 12nm half-pitch features2, pattern collapse continues to limit their ultimate resolution. We have taken multiple approaches to extend resist capabilities past these limits. Recent results in pattern collapse mitigation using a resist encapsulation and etch back strategy will be discussed. We continue to investigate EUV patterning of semi-inorganic resists to simultaneously increase EUV photon absorption and extend mechanical strength beyond CAR capabilities. The limitations of metal oxide-based nanoparticle photoresists have been investigated, and have provided key insights to further understanding the mechanism of this class of materials.

  19. Development of the RAIDS (Remote Atmospheric and Ionospheric Detector System) extreme-ultraviolet wedge and strip detector. Technical report

    SciTech Connect

    Kayser, D.C.; Chater, W.T.; Christensen, A.B.; Howey, C.K.; Pranke, J.B.

    1989-08-28

    In the next few years the Remote Atmospheric and Ionospheric Detector System (RAIDS) package will be flown on a TIROS spacecraft. The Extreme Ultraviolet Spectrometer (EUVS) experiment contains a position-sensitive detector based on wedge and strip anode technology. A detector design has been implemented in brazed alumina and Kovar to provide a rugged bakeable housing and anode. A stack of three 80:1 microchannel plates is operated at 3500-4100 V to achieve a gain of about 10{sup 7} power. The top MCP is to be coated with MgF for increased quantum efficiency in the range of 500-1150 A. Fabrication of the wedge and strip anode on brazed alumina has presented some challenging problems. In this report, a summary of fabrication techniques and detector performance characteristics is presented.

  20. THE CORONAL AND HELIOSPHERIC 2007 MAY 19 EVENT: CORONAL MASS EJECTION, EXTREME ULTRAVIOLET IMAGER WAVE, RADIO BURSTS, AND ENERGETIC ELECTRONS

    SciTech Connect

    Kerdraon, A.; Pick, M.; Hoang, S.; Wang, Y.-M.; Haggerty, D.

    2010-05-20

    We study the global development of the 2007 May 19 event and investigate the origin and the escape of the energetic electrons responsible for the interplanetary bursts and for the solar energetic particle event. The data analysis combines radio spectral and imaging observations with STEREO EUV observations. We also use the direction-finding capabilities on the Wind/Waves radio instrument. Electron acceleration and injections into the interplanetary medium occur with some delay after the flare. It is shown that they are related to the expansion of the coronal mass ejection and of the extreme ultraviolet imager wave. There are two accelerations at two different locations in the corona which correspond to two different electron trajectories in the interplanetary medium.