Science.gov

Sample records for extremely abundant sirnas

  1. The lithium abundance in extreme halo stars

    SciTech Connect

    Hobbs, L.M.; Thorburn, J.A. )

    1991-07-01

    New observations are reported of atmospheric Li abundances for six extremely metal-poor dwarfs with Fe-H ratios not higher than {minus}2.59 and T(e) not lower than 5950 K. The spectra were obtained in 1990 at Kitt Peak National Observatory, using the echelle spectrograph with the UV Fast camera. The resulting Li abundances for these stars range between N(Li) values of 1.99 and 2.24, where N(Li) = 12 + log (Li/H). These results agree with the abundances reported previously for five other metal-poor dwarfs with the Fe/H ratios not above {minus}2.60. The invariance of Li abundance in these 11 stars indicates a primordial origin for most of the Li observed in these Galactic stars. 23 refs.

  2. LITHIUM ABUNDANCES OF EXTREMELY METAL-POOR TURNOFF STARS

    SciTech Connect

    Aoki, Wako; Inoue, Susumu; Barklem, Paul S.; Beers, Timothy C.; Christlieb, Norbert; Perez, Ana E. GarcIa; Norris, John E.; Carollo, Daniela E-mail: Paul.Barklem@physics.uu.se E-mail: N.Christlieb@lsw.uni-heidelberg.de E-mail: jen@mso.anu.edu.au E-mail: inoue@tap.scphys.kyoto-u.ac.jp

    2009-06-20

    We have determined Li abundances for eleven metal-poor turnoff stars, among which eight have [Fe/H] <-3, based on LTE analyses of high-resolution spectra obtained with the High Dispersion Spectrograph on the Subaru Telescope. The Li abundances for four of these eight stars are determined for the first time by this study. Effective temperatures are determined by a profile analysis of H{alpha} and H{beta}. While seven stars have Li abundances as high as the Spite Plateau value, the remaining four objects with [Fe/H] <-3 have A(Li) =log (Li/H)+ 12 {approx}< 2.0, confirming the existence of extremely metal-poor (EMP) turnoff stars having low Li abundances, as reported by previous work. The average of the Li abundances for stars with [Fe/H]<-3 is lower by 0.2 dex than that of the stars with higher metallicity. No clear constraint on the metallicity dependence or scatter of the Li abundances is derived from our measurements for the stars with [Fe/H]<-3. Correlations of the Li abundance with effective temperatures, with abundances of Na, Mg, and Sr, and with the kinematical properties are investigated, but no clear correlation is seen in the EMP star sample.

  3. Extreme possible variations of the deuterium abundance within the Galaxy

    NASA Astrophysics Data System (ADS)

    Delbourgo-Salvador, P.; Audouze, J.; Vidal-Madjar, A.

    1987-03-01

    In order to reconcile the present baryonic densities deduced respectively from the primordial abundances of D and 4He, some recent chemical evolution models imply that D could have been destroyed more thoroughly during the Galaxy evolution than what was previously predicted. Under the conditions outlined by these models, the present abundance of D may vary by factors as large as 50 in different parts of the Galaxy. If such variations are not observed, this implies that the ratio X(D)prim/X(D)present is not large (2 - 3): the simplest Big Bang models may then be unable to reconcile the baryonic densities predicted by D and 4He respectively.

  4. Genome-wide identification of endogenous RNA-directed DNA methylation loci associated with abundant 21-nucleotide siRNAs in Arabidopsis

    PubMed Central

    Zhao, Jian-Hua; Fang, Yuan-Yuan; Duan, Cheng-Guo; Fang, Rong-Xiang; Ding, Shou-Wei; Guo, Hui-Shan

    2016-01-01

    In Arabidopsis, the 24-nucleotide (nt) small interfering RNAs (siRNAs) mediates RNA-directed DNA methylation (RdDM) and transcriptional gene silencing (TGS) of transposable elements (TEs). In the present study, we examined genome-wide changes in DNA methylation and siRNA accumulation in Arabidopsis induced by expression of the Cucumber mosaic virus silencing suppressor protein 2b known to directly bind to both the 21/24-nt siRNAs as well as their associated Argonaute proteins. We demonstrated a genome-wide reduction of CHH and CHG methylation in the 2b-transgenic plants. We found that 2b suppressed RdDM not only at the previously annotated loci directed by 24-nt siRNAs but also a new set of loci associated with 21/22-nt siRNAs. Further analysis showed that the reduced methylation of TEs and coding genes targeted by 21/22-nt siRNAs was associated with sequestration of the duplex siRNAs by the 2b protein but not with changes in either siRNA production or transcription. Notably, we detected both the deletion and/or the transposition of multicopy TEs associated with 2b-induced hypomethylation, suggesting potential TE reactivation. We propose that the silencing of many TEs in Arabidopsis is controlled by the 24- and 21-nt endogenous siRNAs analogous to Drosophila TE silencing by PIWI-interacting RNAs and siRNAs. PMID:27786269

  5. Lithium abundance in a turnoff halo star on an extreme orbit

    NASA Astrophysics Data System (ADS)

    Spite, M.; Spite, F.; Caffau, E.; Bonifacio, P.

    2015-10-01

    Context. The lithium abundance in turnoff stars of the old population of our Galaxy is remarkably constant in the metallicity interval -2.8 < [Fe/H] < -2.0, defining a plateau. The Li abundance of these turnoff stars is clearly lower than the abundance predicted by the primordial nucleosynthesis in the frame of the standard Big Bang nucleosynthesis. Different scenarios have been proposed for explaining this discrepancy, along with the very low scatter of the lithium abundance around the plateau. Aims: The recently identified very high velocity star, WISE J0725-2351 appears to belong to the old Galactic population, and appears to be an extreme halo star on a bound, retrograde Galactic orbit. In this paper, we study the abundance ratios and, in particular the lithium abundance, in this star. Methods: The available spectra (ESO-Very Large Telescope) are analyzed and the abundances of Li, C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni, Sr and Ba are determined. Results: The abundance ratios in WISE J0725-2351 are those typical of old turnoff stars. The lithium abundance in this star is in close agreement with the lithium abundance found in the metal-poor turnoff stars located at moderate distance from the Sun. This high velocity star confirms, in an extreme case, that the very small scatter of the lithium plateau persists independent of the dynamic and kinematic properties of the stars. Based on observations obtained at the ESO Paranal Observatory, Chile Programmes 093.D-0127, PI: S. Geier and 189.B-0925, PI: S. Trager.Table 2 (line by line abundances of the elements) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/582/A74

  6. Distribution, abundance and diversity of the extremely halophilic bacterium Salinibacter ruber

    PubMed Central

    Antón, Josefa; Peña, Arantxa; Santos, Fernando; Martínez-García, Manuel; Schmitt-Kopplin, Philippe; Rosselló-Mora, Ramon

    2008-01-01

    Since its discovery in 1998, representatives of the extremely halophilic bacterium Salinibacter ruber have been found in many hypersaline environments across the world, including coastal and solar salterns and solar lakes. Here, we review the available information about the distribution, abundance and diversity of this member of the Bacteroidetes. PMID:18957079

  7. Impact of Extreme Streamflows on Brook Trout Young-of-Year Abundance

    NASA Astrophysics Data System (ADS)

    Blum, A. G.; Letcher, B. H.; Vogel, R. M.

    2016-12-01

    An understanding of how extreme streamflows influence ecological outcomes is necessary to prioritize, protect and restore ecosystems threatened by climate change and other human impacts. Highly sensitive to stream flows and temperature, salmonids, such as brook trout, are often used as ecological indicators. Unfortunately, streamflow measurements at brook trout sampling sites are rarely available, making it difficult to assess the relationship between flows and trout abundance. In this study, a long-term dataset of brook trout counts from 29 years across 115 sites in Shenandoah National Park (SNP) was used to assess the utility of predicted extreme streamflows for improving our understanding of brook trout young-of-the-year (YOY) abundance. High and low streamflows at ungaged trout sampling sites were predicted using regional regression equations based on gaged flows at nearby unregulated sites. We assessed a range of flow metrics with the goal of identifying which metrics were most closely related to variations in brook trout YOY abundance. Bayesian hierarchical models which allowed coefficients on predicted streamflows to vary by site and accounted for imperfect detection of brook trout were used. We found that estimates of extreme streamflows are important predictors of next summer brook trout YOY abundance in SNP. These findings can help inform streamflow targets and thereby promote environmental conservation and management. For areas with similar data scarcity challenges, these methods can be used to predict the response of other species to extreme flows. In many regions, extreme hydrologic events are expected to increase with climate change, making an understanding of the relationship between extreme streamflows and population resilience particularly important.

  8. First high-precision differential abundance analysis of extremely metal-poor stars

    NASA Astrophysics Data System (ADS)

    Reggiani, Henrique; Meléndez, Jorge; Yong, David; Ramírez, Ivan; Asplund, Martin

    2016-02-01

    Context. Studies of extremely metal-poor stars indicate that chemical abundance ratios [X/Fe] have a root mean square scatter as low as 0.05 dex (12%). It remains unclear whether this reflects observational uncertainties or intrinsic astrophysical scatter arising from physical conditions in the interstellar medium at early times. Aims: We measure differential chemical abundance ratios in extremely metal-poor stars to investigate the limits of precision and to understand whether cosmic scatter or observational errors are dominant. Methods: We used high-resolution (R ~ 95 000) and high signal-to-noise (S/N = 700 at 5000 Å) HIRES/Keck spectra to determine high-precision differential abundances between two extremely metal-poor stars through a line-by-line differential approach. We determined stellar parameters for the star G64-37 with respect to the standard star G64-12. We performed EW measurements for the two stars for the lines recognized in both stars and performed spectral synthesis to study the carbon abundances. Results: The differential approach allowed us to obtain errors of σ(Teff) = 27 K, σ(log g) = 0.06 dex, σ( [Fe/H] ) = 0.02 dex and σ(vt) = 0.06 km s-1. We estimated relative chemical abundances with a precision as low as σ([X/Fe]) ≈ 0.01 dex. The small uncertainties demonstrate that there are genuine abundance differences larger than the measurement errors. The observed Li difference cannot be explained by the difference in mass because the less massive star has more Li. Conclusions: It is possible to achieve an abundance precision around ≈ 0.01-0.05 dex for extremely metal-poor stars, which opens new windows on the study of the early chemical evolution of the Galaxy. Table A.1 is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A67

  9. Lithium abundances in extremely metal-poor turn-off stars

    NASA Astrophysics Data System (ADS)

    Sbordone, L.; Bonifacio, P.; Caffau, E.

    We discuss the current status of the sample of Lithium abundances in extremely metal poor (EMP) turn-off (TO) stars collected by our group, and compare it with the available literature results. In the last years, evidences have accumulated of a progressive disruption of the Spite plateau in stars of extremely low metallicity. What appears to be a flat, thin plateau above [Fe/H]˜-2.8 turns, at lower metallicities, into a broader distribution for which the plateau level constitutes the upper limit, but more and more stars show lower Li abundances. The sample we have collected currently counts abundances or upper limits for 44 EMP TO stars between [Fe/H]=-2.5 and -3.5, plus the ultra-metal poor star SDSS J102915+172927 at [Fe/H]=-4.9. The ``meltdown'' of the Spite plateau is quite evident and, at the current status of the sample, does not appear to be restricted to the cool end of the effective temperature distribution. SDSS J102915+172927 displays an extreme Li depletion that contrasts with its otherwise quite ordinary set of [X/Fe] ratios.

  10. NEON AND CNO ABUNDANCES FOR EXTREME HELIUM STARS-A NON-LTE ANALYSIS

    SciTech Connect

    Pandey, Gajendra; Lambert, David L. E-mail: dll@astro.as.utexas.edu

    2011-02-01

    A non-LTE (NLTE) abundance analysis was carried out for three extreme helium stars (EHes): BD+10{sup 0} 2179, BD-9{sup 0} 4395, and LS IV+6{sup 0} 002, from their optical spectra with NLTE model atmospheres. NLTE TLUSTY model atmospheres were computed with H, He, C, N, O, and Ne treated in NLTE. Model atmosphere parameters were chosen from consideration of fits to observed He I line profiles and ionization equilibria of C and N ions. The program SYNSPEC was then used to determine the NLTE abundances for Ne as well as H, He, C, N, and O. LTE neon abundances from Ne I lines in the EHes: LSE 78, V1920 Cyg, HD 124448, and PV Tel, are derived from published models and an estimate of the NLTE correction applied to obtain the NLTE Ne abundance. We show that the derived abundances of these key elements, including Ne, are well matched with semi-quantitative predictions for the EHe resulting from a cold merger (i.e., no nucleosynthesis during the merger) of an He white dwarf with a C-O white dwarf.

  11. Detailed Abundances in Extremely Metal Poor Dwarf Stars Extracted from SDSS

    NASA Astrophysics Data System (ADS)

    Sbordone, L.; Bonifacio, P.; Caffau, E.; Ludwig, H.-G.

    2012-08-01

    We report on the result of an ongoing campaign to determine chemical abundances in extremely metal poor (EMP) turn-off (TO) stars selected from the Sloan Digital Sky Survey (SDSS) low resolution spectra. This contribution focuses principally on the largest part of the sample (18 stars out of 29), observed with UVES@VLT and analyzed by means of the automatic abundance analysis code MyGIsFOS to derive atmosphere parameters and detailed compositions. The most significant findings include i) the detection of a C-rich, strongly Mg-enhanced star ([Mg/Fe]=1.45); ii) a group of Mn-rich stars ([Mn/Fe]>-0.4); iii) a group of Ni-rich stars ([Ni/Fe]>0.2). Li is measured in twelve stars, while for three upper limits are derived.

  12. Oxygen abundance from strong-line methods at extremely low metallicities

    NASA Astrophysics Data System (ADS)

    Morales-Luis, A. B.; Sánchez Almeida, J.; Pérez Montero, E.; Muñoz-Tuñon, C.; Aguerri, J. A. L.; Vilchez, J. M.; Terlevich, E.; Terlevich, R.

    2013-05-01

    The determination of oxygen abundance in nebulae requires measuring a significant number of emission lines distributed along a wide spectral range. The required measurements are hard to obtain at high redshift, where sources are very faint, and where the accessible spectral range is limited. These difficulties are often overcome using empirical relationships between the oxygen abundance and the fluxes in a small number of strong lines. The so-called strong-line methods are often the only practical alternative for metallicity estimate at high redshift. In this sense, the low metallicities range is particularly important since high redshift objects are primitive and so of low metallic content. One of the most widely used relationships links the oxygen with the ratio between [NII]6583 and Hα. This relationship shows a large scatter at low metallicity. In an effort to bring down the errors, we re-calibrated the relationship using a large sample of extremely metal-poor galaxies. The SDSS spectra of the galaxies were all analyzed in the same way to minimize systematic errors. To our surprise, the decrease of scatter reveals that the ratio [N{II}]6583 to Hα seems to be independent of metallicity at low oxygen abundance (12+log[{O}/{H}] < 7.6). This result casts doubts on the metallicities of high-redshift objects based on the relationship. We explain how the re-calibration was carried (including the sample selection and the abundance determinations). In addition, we try explain what produces the lack of correlation.

  13. Abundance profiling of extremely metal-poor stars and supernova properties in the early universe

    SciTech Connect

    Tominaga, Nozomu; Iwamoto, Nobuyuki; Nomoto, Ken'ichi E-mail: iwamoto.nobuyuki@jaea.go.jp

    2014-04-20

    After the big bang nucleosynthesis, the first heavy element enrichment in the universe was made by a supernova (SN) explosion of a population (Pop) III star (Pop III SN). The abundance ratios of elements produced from Pop III SNe are recorded in abundance patterns of extremely metal-poor (EMP) stars. The observations of the increasing number of EMP stars have made it possible to statistically constrain the explosion properties of Pop III SNe. We present Pop III SN models whose nucleosynthesis yields well reproduce, individually, the abundance patterns of 48 such metal-poor stars as [Fe/H] ≲ – 3.5. We then derive relations between the abundance ratios of EMP stars and certain explosion properties of Pop III SNe: the higher [(C + N)/Fe] and [(C + N)/Mg] ratios correspond to the smaller ejected Fe mass and the larger compact remnant mass, respectively. Using these relations, the distributions of the abundance ratios of EMP stars are converted to those of the explosion properties of Pop III SNe. Such distributions are compared with those of the explosion properties of present day SNe: the distribution of the ejected Fe mass of Pop III SNe has the same peak as that of the present day SNe but shows an extended tail down to ∼10{sup –2}-10{sup –5} M {sub ☉}, and the distribution of the mass of the compact remnant of Pop III SNe is as wide as that of the present-day, stellar-mass black holes. Our results demonstrate the importance of large samples of EMP stars obtained by ongoing and future EMP star surveys and subsequent high-dispersion spectroscopic observations in clarifying the nature of Pop III SNe in the early universe.

  14. AGB star intershell abundances inferred from UV spectra of extremely hot post-AGB stars

    NASA Astrophysics Data System (ADS)

    Werner, K.; Rauch, T.; Reiff, E.; Kruk, J. W.

    2009-04-01

    The hydrogen-deficiency in extremely hot post-AGB stars of spectral class PG1159 is probably caused by a (very) late helium-shell flash or a AGB final thermal pulse that consumes the hydrogen envelope, exposing the usually-hidden intershell region. Thus, the photospheric element abundances of these stars allow us to draw conclusions about details of nuclear burning and mixing processes in the precursor AGB stars. We compare predicted element abundances to those determined by quantitative spectral analyses performed with advanced non-LTE model atmospheres. A good qualitative and quantitative agreement is found for many species (He, C, N, O, Ne, F, Si, Ar) but discrepancies for others (P, S, Fe) point at shortcomings in stellar evolution models for AGB stars. Almost all of the chemical trace elements in these hot stars can only be identified in the UV spectral range. The Far Ultraviolet Spectroscopic Explorer and the Hubble Space Telescope played a crucial role for this research.

  15. First Stars. III. A detailed elemental abundance study of four extremely metal-poor giant stars

    NASA Astrophysics Data System (ADS)

    François, P.; Depagne, E.; Hill, V.; Spite, M.; Spite, F.; Plez, B.; Beers, T. C.; Barbuy, B.; Cayrel, R.; Andersen, J.; Bonifacio, P.; Molaro, P.; Nordström, B.; Primas, F.

    2003-06-01

    This paper reports detailed abundance analyses for four extremely metal-poor (XMP) giant stars with [Fe/H]<-3.8, based on high-resolution, high-S/N spectra from the ESO VLT (Kueyen/UVES) and LTE model atmosphere calculations. The derived [alpha /Fe] ratios in our sample exhibit a small dispersion, confirming previous findings in the literature, i.e. a constant overabundance of the alpha -elements with a very small (if any) dependence on [Fe/H]. In particular, the very small scatter we determine for [Si/Fe] suggests that this element shows a constant overabundance at very low metallicity, a conclusion which could not have been derived from the widely scattered [Si/Fe] values reported in the literature for less metal-poor stars. For the iron-peak elements, our precise abundances for the four XMP stars in our sample confirm the decreasing trend of Cr and Mn with decreasing [Fe/H], as well as the increasing trend for Co and the absence of any trend for Sc and Ni. In contrast to the significant spread of the ratios [Sr/Fe] and [Ba/Fe], we find [Sr/Ba] in our sample to be roughly solar, with a much lower dispersion than previously found for stars in the range -3.5 < [Fe/H] < -2.5. Based on observations made with the ESO Very Large Telescope at Paranal Observatory, Chile (Large Programme ID 165.N-0276(A)). The complete version of Table 5 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.125.5) or via http:/ /cdsweb.u-strasbg.fr/cgi-bin/qcat?J /A+A/403/1105

  16. Extreme abundance ratios in the polluted atmosphere of the cool white dwarf NLTT 19868

    NASA Astrophysics Data System (ADS)

    Kawka, Adela; Vennes, Stéphane

    2016-05-01

    We present an analysis of intermediate-dispersion spectra and photometric data of the newly identified cool, polluted white dwarf NLTT 19868. The spectra obtained with X-shooter on the Very Large Telescope-Melipal show strong lines of calcium, and several lines of magnesium, aluminium and iron. We use these spectra and the optical-to-near-infrared spectral energy distribution to constrain the atmospheric parameters of NLTT 19868. Our analysis shows that NLTT 19868 is iron poor with respect to aluminium and calcium. A comparison with other cool, polluted white dwarfs shows that the Fe to Ca abundance ratio (Fe/Ca) varies by up to approximately two orders of magnitudes over a narrow temperature range with NLTT 19868 at one extremum in the Fe/Ca ratio and, in contrast, NLTT 888 at the other extremum. The sample shows evidence of extreme diversity in the composition of the accreted material: in the case of NLTT 888, the inferred composition of the accreted matter is akin to iron-rich planetary core composition, while in the case of NLTT 19868 it is close to mantle composition depleted by subsequent chemical separation at the bottom of the convection zone.

  17. Chemical Abundances in the Extremely Carbon-rich and Xenon-rich Halo Planetary Nebula H4-1

    NASA Astrophysics Data System (ADS)

    Otsuka, Masaaki; Tajitsu, Akito

    2013-12-01

    We performed detailed chemical abundance analysis of the extremely metal-poor ([Ar/H] ~ -2) halo planetary nebula (PN) H4-1 based on the multi-wavelength spectra from Subaru/HDS, GALEX, SDSS, and Spitzer/IRS and determined the abundances of 10 elements. The C and O abundances were derived from collisionally excited lines (CELs) and are almost consistent with abundances from recombination lines (RLs). We demonstrated that the large discrepancy in the C abundance between CEL and RL in H4-1 can be solved using the temperature fluctuation model. We reported the first detection of the [Xe III] λ5846 line in H4-1 and determination of its elemental abundance ([Xe/H] > +0.48). H4-1 is the most Xe-rich PN among the Xe-detected PNe. The observed abundances are close to the theoretical prediction by a 2.0 M ⊙ single star model with an initially element rich ([r/Fe] = +2.0 dex) rapid neutron-capture process (r-process). The observed Xe abundance would be a product of the r-process in primordial supernovae. The [C/O]-[Ba/(Eu or Xe)] diagram suggests that the progenitor of H4-1 shares the evolution with carbon-enhanced metal-poor (CEMP)-r/s and CEMP-no stars. The progenitor of H4-1 is presumably a binary formed in an r-process-rich environment.

  18. Chemical abundances in the extremely carbon-rich and xenon-rich halo planetary nebula H4-1

    SciTech Connect

    Otsuka, Masaaki; Tajitsu, Akito E-mail: tajitsu@subaru.naoj.org

    2013-12-01

    We performed detailed chemical abundance analysis of the extremely metal-poor ([Ar/H] ∼ –2) halo planetary nebula (PN) H4-1 based on the multi-wavelength spectra from Subaru/HDS, GALEX, SDSS, and Spitzer/IRS and determined the abundances of 10 elements. The C and O abundances were derived from collisionally excited lines (CELs) and are almost consistent with abundances from recombination lines (RLs). We demonstrated that the large discrepancy in the C abundance between CEL and RL in H4-1 can be solved using the temperature fluctuation model. We reported the first detection of the [Xe III] λ5846 line in H4-1 and determination of its elemental abundance ([Xe/H] > +0.48). H4-1 is the most Xe-rich PN among the Xe-detected PNe. The observed abundances are close to the theoretical prediction by a 2.0 M {sub ☉} single star model with an initially element rich ([r/Fe] = +2.0 dex) rapid neutron-capture process (r-process). The observed Xe abundance would be a product of the r-process in primordial supernovae. The [C/O]-[Ba/(Eu or Xe)] diagram suggests that the progenitor of H4-1 shares the evolution with carbon-enhanced metal-poor (CEMP)-r/s and CEMP-no stars. The progenitor of H4-1 is presumably a binary formed in an r-process-rich environment.

  19. NUCLEOSYNTHESIS IN HIGH-ENTROPY HOT BUBBLES OF SUPERNOVAE AND ABUNDANCE PATTERNS OF EXTREMELY METAL-POOR STARS

    SciTech Connect

    Izutani, Natsuko; Umeda, Hideyuki E-mail: umeda@astron.s.u-tokyo.ac.j

    2010-09-01

    There have been suggestions that the abundance of extremely metal-poor (EMP) stars can be reproduced by hypernovae (HNe), not by normal supernovae (SNe). However, recently it was also suggested that if the innermost neutron-rich or proton-rich matter is ejected, the abundance patterns of ejected matter are changed, and normal SNe may also reproduce the observations of EMP stars. In this Letter, we calculate explosive nucleosynthesis with various Y {sub e} and entropy, and investigate whether normal SNe with this innermost matter, which we call the 'hot-bubble' component, can reproduce the abundance of EMP stars. We find that neutron-rich (Y {sub e} = 0.45-0.49) and proton-rich (Y {sub e} = 0.51-0.55) matter can increase Zn/Fe and Co/Fe ratios as observed, but tend to overproduce other Fe-peak elements. In addition, we find that if slightly proton-rich matter with 0.50 {<=} Y {sub e} < 0.501 with s/k {sub b} {approx} 15-40 is ejected as much as {approx}0.06 M {sub sun}, even normal SNe can reproduce the abundance of EMP stars, though it requires fine-tuning of Y {sub e}. On the other hand, HNe can more easily reproduce the observations of EMP stars without fine-tuning. Our results imply that HNe are the most likely origin of the abundance pattern of EMP stars.

  20. Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic Svalbard.

    PubMed

    Semenchuk, Philipp R; Elberling, Bo; Cooper, Elisabeth J

    2013-08-01

    The High Arctic winter is expected to be altered through ongoing and future climate change. Winter precipitation and snow depth are projected to increase and melt out dates change accordingly. Also, snow cover and depth will play an important role in protecting plant canopy from increasingly more frequent extreme winter warming events. Flower production of many Arctic plants is dependent on melt out timing, since season length determines resource availability for flower preformation. We erected snow fences to increase snow depth and shorten growing season, and counted flowers of six species over 5 years, during which we experienced two extreme winter warming events. Most species were resistant to snow cover increase, but two species reduced flower abundance due to shortened growing seasons. Cassiope tetragona responded strongly with fewer flowers in deep snow regimes during years without extreme events, while Stellaria crassipes responded partly. Snow pack thickness determined whether winter warming events had an effect on flower abundance of some species. Warming events clearly reduced flower abundance in shallow but not in deep snow regimes of Cassiope tetragona, but only marginally for Dryas octopetala. However, the affected species were resilient and individuals did not experience any long term effects. In the case of short or cold summers, a subset of species suffered reduced reproductive success, which may affect future plant composition through possible cascading competition effects. Extreme winter warming events were shown to expose the canopy to cold winter air. The following summer most of the overwintering flower buds could not produce flowers. Thus reproductive success is reduced if this occurs in subsequent years. We conclude that snow depth influences flower abundance by altering season length and by protecting or exposing flower buds to cold winter air, but most species studied are resistant to changes. Winter warming events, often occurring

  1. Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic Svalbard

    PubMed Central

    Semenchuk, Philipp R; Elberling, Bo; Cooper, Elisabeth J

    2013-01-01

    Abstract The High Arctic winter is expected to be altered through ongoing and future climate change. Winter precipitation and snow depth are projected to increase and melt out dates change accordingly. Also, snow cover and depth will play an important role in protecting plant canopy from increasingly more frequent extreme winter warming events. Flower production of many Arctic plants is dependent on melt out timing, since season length determines resource availability for flower preformation. We erected snow fences to increase snow depth and shorten growing season, and counted flowers of six species over 5 years, during which we experienced two extreme winter warming events. Most species were resistant to snow cover increase, but two species reduced flower abundance due to shortened growing seasons. Cassiope tetragona responded strongly with fewer flowers in deep snow regimes during years without extreme events, while Stellaria crassipes responded partly. Snow pack thickness determined whether winter warming events had an effect on flower abundance of some species. Warming events clearly reduced flower abundance in shallow but not in deep snow regimes of Cassiope tetragona, but only marginally for Dryas octopetala. However, the affected species were resilient and individuals did not experience any long term effects. In the case of short or cold summers, a subset of species suffered reduced reproductive success, which may affect future plant composition through possible cascading competition effects. Extreme winter warming events were shown to expose the canopy to cold winter air. The following summer most of the overwintering flower buds could not produce flowers. Thus reproductive success is reduced if this occurs in subsequent years. We conclude that snow depth influences flower abundance by altering season length and by protecting or exposing flower buds to cold winter air, but most species studied are resistant to changes. Winter warming events, often

  2. Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands.

    PubMed

    Dalcin Martins, Paula; Hoyt, David W; Bansal, Sheel; Mills, Christopher T; Tfaily, Malak; Tangen, Brian A; Finocchiaro, Raymond G; Johnston, Michael D; McAdams, Brandon C; Solensky, Matthew J; Smith, Garrett J; Chin, Yu-Ping; Wilkins, Michael J

    2017-08-01

    Inland waters are increasingly recognized as critical sites of methane emissions to the atmosphere, but the biogeochemical reactions driving such fluxes are less well understood. The Prairie Pothole Region (PPR) of North America is one of the largest wetland complexes in the world, containing millions of small, shallow wetlands. The sediment pore waters of PPR wetlands contain some of the highest concentrations of dissolved organic carbon (DOC) and sulfur species ever recorded in terrestrial aquatic environments. Using a suite of geochemical and microbiological analyses, we measured the impact of sedimentary carbon and sulfur transformations in these wetlands on methane fluxes to the atmosphere. This research represents the first study of coupled geochemistry and microbiology within the PPR and demonstrates how the conversion of abundant labile DOC pools into methane results in some of the highest fluxes of this greenhouse gas to the atmosphere ever reported. Abundant DOC and sulfate additionally supported some of the highest sulfate reduction rates ever measured in terrestrial aquatic environments, which we infer to account for a large fraction of carbon mineralization in this system. Methane accumulations in zones of active sulfate reduction may be due to either the transport of free methane gas from deeper locations or the co-occurrence of methanogenesis and sulfate reduction. If both respiratory processes are concurrent, any competitive inhibition of methanogenesis by sulfate-reducing bacteria may be lessened by the presence of large labile DOC pools that yield noncompetitive substrates such as methanol. Our results reveal some of the underlying mechanisms that make PPR wetlands biogeochemical hotspots, which ultimately leads to their critical, but poorly recognized role in regional greenhouse gas emissions. © 2017 John Wiley & Sons Ltd.

  3. Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands

    USGS Publications Warehouse

    Martins, Paula; Hoyt, David W.; Bansal, Sheel; Mills, Christopher; Tfaily, Malak; Tangen, Brian; Finocchiaro, Raymond; Johnston, Michael D.; McAdams, Brandon C.; Solensky, Matthew J.; Smith, Garrett J.; Chin, Yu-Ping; Wilkins, Michael J.

    2017-01-01

    Inland waters are increasingly recognized as critical sites of methane emissions to the atmosphere, but the biogeochemical reactions driving such fluxes are less well understood. The Prairie Pothole Region (PPR) of North America is one of the largest wetland complexes in the world, containing millions of small, shallow wetlands. The sediment pore waters of PPR wetlands contain some of the highest concentrations of dissolved organic carbon (DOC) and sulfur species ever recorded in terrestrial aquatic environments. Using a suite of geochemical and microbiological analyses, we measured the impact of sedimentary carbon and sulfur transformations in these wetlands on methane fluxes to the atmosphere. This research represents the first study of coupled geochemistry and microbiology within the PPR and demonstrates how the conversion of abundant labile DOC pools into methane results in some of the highest fluxes of this greenhouse gas to the atmosphere ever reported. Abundant DOC and sulfate additionally supported some of the highest sulfate reduction rates ever measured in terrestrial aquatic environments, which we infer to account for a large fraction of carbon mineralization in this system. Methane accumulations in zones of active sulfate reduction may be due to either the transport of free methane gas from deeper locations or the co-occurrence of methanogenesis and sulfate reduction. If both respiratory processes are concurrent, any competitive inhibition of methanogenesis by sulfate-reducing bacteria may be lessened by the presence of large labile DOC pools that yield noncompetitive substrates such as methanol. Our results reveal some of the underlying mechanisms that make PPR wetlands biogeochemical hotspots, which ultimately leads to their critical, but poorly recognized role in regional greenhouse gas emissions.

  4. Non-local Thermodynamic Equilibrium Abundance Analyses of the Extreme Helium Stars V652 Her and HD 144941

    NASA Astrophysics Data System (ADS)

    Pandey, Gajendra; Lambert, David L.

    2017-10-01

    Optical high-resolution spectra of V652 Her and HD 144941, the two extreme helium stars with exceptionally low C/He ratios, have been subjected to a non-LTE abundance analysis using the tools TLUSTY and SYNSPEC. Defining atmospheric parameters were obtained from a grid of non-LTE atmospheres and a variety of spectroscopic indicators including He i and He ii line profiles, and the ionization equilibrium of ion pairs such as C ii/C iii and N ii/N iii. The various indicators provide a consistent set of atmospheric parameters: T eff = 25,000 ± 300 K, log g = 3.10 ± 0.12(cgs), and ξ = 13 ± 2 km s‑1 are provided for V652 Her, and T eff = 22,000 ± 600 K, log g = 3.45 ± 0.15 (cgs), and ξ = 10 km s‑1 are provided for HD 144941. In contrast to the non-LTE analyses, the LTE analyses—LTE atmospheres and an LTE line analysis—with the available indicators do not provide a consistent set of atmospheric parameters. The principal non-LTE effect on the elemental abundances is on the neon abundance. It is generally considered that these extreme helium stars with their very low C/He ratio result from the merger of two helium white dwarfs. Indeed, the derived composition of V652 Her is in excellent agreement with predictions by Zhang & Jeffery, who model the slow merger of helium white dwarfs; a slow merger results in the merged star having the composition of the accreted white dwarf. In the case of HD 144941, which appears to have evolved from metal-poor stars, a slow merger is incompatible with the observed composition but variations of the merger rate may account for the observed composition. More detailed theoretical studies of the merger of a pair of helium white dwarfs are to be encouraged.

  5. Extremely abundant antimicrobial peptides existed in the skins of nine kinds of Chinese odorous frogs.

    PubMed

    Yang, Xinwang; Lee, Wen-Hui; Zhang, Yun

    2012-01-01

    Peptide agents are regarded as hopeful candidates to solve life-threatening resistance of pathogenic microorganisms to classic antibiotics due to their unique action mechanisms. Peptidomic and genomic investigation of natural antimicrobial peptides (AMPs) from amphibian skin secretions can provide a large amount of structure-functional information to design peptide antibiotics with therapeutic potential. In the present study, we identified a large number of AMPs from the skins of nine kinds of Chinese odorous frogs. Eighty AMPs were purified from three different odorous frogs and confirmed by peptidomic analysis. Our results indicated that post-translational modification of AMPs rarely happened in odorous frogs. cDNAs encoding precursors of 728 AMPs, including all the precursors of the confirmed 80 native peptides, were cloned from the constructed AMP cDNA libraries of nine Chinese odorous frogs. On the basis of the sequence similarity of deduced mature peptides, these 728 AMPs were grouped into 97 different families in which 71 novel families were identified. Out of these 728 AMPs, 662 AMPs were novel and 28 AMPs were reported previously in other frog species. Our results revealed that identical AMPs were widely distributed in odorous frogs; 49 presently identified AMPs could find their identical molecules in different amphibian species. Purified peptides showed strong antimicrobial activities against 4 tested microbe strains. Twenty-three deduced peptides were synthesized and their bioactivities, including antimicrobial, antioxidant, hemolytic, immunomodulatory and insulin-releasing activities, were evaluated. Our findings demonstrate the extreme diversity of AMPs in amphibian skins and provide plenty of templates to develop novel peptide antibiotics.

  6. Probing the Site for r-Process Nucleosynthesis with Abundances of Barium and Magnesium in Extremely Metal-poor Stars.

    PubMed

    Tsujimoto; Shigeyama; Yoshii

    2000-03-01

    We suggest that if the astrophysical site for r-process nucleosynthesis in the early Galaxy is confined to a narrow mass range of Type II supernova (SN II) progenitors, with a lower mass limit of Mms=20 M middle dot in circle, a unique feature in the observed distribution of [Ba/Mg] versus [Mg/H] for extremely metal-poor stars can be adequately reproduced. We associate this feature, a bifurcation of the observed elemental ratios into two branches in the Mg abundance interval -3.7abundance ratios of stars which were formed in the dense shells of the interstellar medium swept up by SNe II with Mms<20 M middle dot in circle that do not synthesize r-process elements, and it applies to stars with observed Mg abundances in the range &sqbl0;Mg&solm0;H&sqbr0;<-2.7. The Ba abundances in these stars reflect those of the interstellar gas at the (later) time of their formation. The existence of a [Ba/Mg] i-branch strongly suggests that SNe II that are associated with stars of progenitor mass Mms

  7. Quantitative spectroscopy of extreme helium stars Model atmospheres and a non-LTE abundance analysis of BD+10°2179

    NASA Astrophysics Data System (ADS)

    Kupfer, T.; Przybilla, N.; Heber, U.; Jeffery, C. S.; Behara, N. T.; Butler, K.

    2017-10-01

    Extreme helium stars (EHe stars) are hydrogen-deficient supergiants of spectral type A and B. They are believed to result from mergers in double degenerate systems. In this paper, we present a detailed quantitative non-LTE spectral analysis for BD+10°2179, a prototype of this rare class of stars, using UV-Visual Echelle Spectrograph and Fiber-fed Extended Range Optical Spectrograph spectra covering the range from ∼3100 to 10 000 Å. Atmosphere model computations were improved in two ways. First, since the UV metal line blanketing has a strong impact on the temperature-density stratification, we used the atlas12 code. Additionally, We tested atlas12 against the benchmark code sterne3, and found only small differences in the temperature and density stratifications, and good agreement with the spectral energy distributions. Secondly, 12 chemical species were treated in non-LTE. Pronounced non-LTE effects occur in individual spectral lines but, for the majority, the effects are moderate to small. The spectroscopic parameters give Teff =17 300±300 K and log g = 2.80±0.10, and an evolutionary mass of 0.55±0.05 M⊙. The star is thus slightly hotter, more compact and less massive than found in previous studies. The kinematic properties imply a thick-disc membership, which is consistent with the metallicity [Fe/H] ≈ -1 and α-enhancement. The refined light-element abundances are consistent with the white dwarf merger scenario. We further discuss the observed helium spectrum in an appendix, detecting dipole-allowed transitions from about 150 multiplets plus the most comprehensive set of known/predicted isolated forbidden components to date. Moreover, a so far unreported series of pronounced forbidden He I components is detected in the optical-UV.

  8. The Chemical Abundances of Stars in the Halo (CASH) Project. II. New Extremely Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Krugler, Julie A.; Frebel, A.; Roederer, I. U.; Sneden, C.; Shetrone, M.; Beers, T.; Christlieb, N.

    2011-01-01

    We present new abundance results from the Chemical Abundances of Stars in the Halo (CASH) project. The 500 CASH spectra were observed using the Hobby-Eberly Telescope in "snapshot" mode and are analyzed using an automated stellar parameter and abundance pipeline called CASHCODE. For the 20 most metal-poor stars of the CASH sample we have obtained high resolution spectra using the Magellan Telescope in order to test the uncertainties and systematic errors associated with the snapshot quality (i.e., R 15,000 and S/N 65) HET spectra and to calibrate the newly developed CASHCODE by making a detailed comparison between the stellar parameters and abundances determined from the high resolution and snapshot spectra. We find that the CASHCODE stellar parameters (effective temperature, surface gravity, metallicity, and microturbulence) agree well with the results of the manual analysis of the high resolution spectra. We present the abundances of three newly discovered stars with [Fe/H] < -3.5. For the entire pilot sample, we find typical halo abundance ratios with alpha-enhancement and Fe-peak depletion and a range of n-capture elements. The full CASH sample will be used to derive statistically robust abundance trends and frequencies (e.g. carbon and n-capture), as well as placing constraints on nucleosynthetic processes that occurred in the early universe.

  9. Extreme CO Isotopic Abundances in the ULIRG IRAS 13120-5453: An Extremely Young Starburst or Top-heavy Initial Mass Function

    NASA Astrophysics Data System (ADS)

    Sliwa, Kazimierz; Wilson, Christine D.; Aalto, Susanne; Privon, George C.

    2017-05-01

    We present ALMA 12CO (J = 1-0, 3-2 and 6-5), 13CO (J = 1-0), and C18O (J = 1-0) observations of the local ultraluminous infrared galaxy (ULIRG) IRAS 13120-5453. The morphologies of the three isotopic species differ, as 13CO shows a hole in emission toward the center. We measure integrated brightness temperature line ratios of 12CO/13CO ≥ 60 (exceeding 200) and 13CO/C18O ≤ 1 in the central region. Assuming optical thin emission, C18O is more abundant than 13CO in several regions. The abundances within the central 500 pc are consistent with the enrichment of the interstellar medium via a young starburst (<7 Myr), a top-heavy initial mass function, or a combination of both.

  10. THE CHEMICAL ABUNDANCES OF STARS IN THE HALO (CASH) PROJECT. II. A SAMPLE OF 14 EXTREMELY METAL-POOR STARS ,

    SciTech Connect

    Hollek, Julie K.; Sneden, Christopher; Shetrone, Matthew; Frebel, Anna; Roederer, Ian U.; Beers, Timothy C.; Kang, Sung-ju; Thom, Christopher E-mail: chris@astro.as.utexas.edu E-mail: afrebel@cfa.harvard.edu E-mail: beers@pa.msu.edu E-mail: cthom@stsci.edu

    2011-11-20

    We present a comprehensive abundance analysis of 20 elements for 16 new low-metallicity stars from the Chemical Abundances of Stars in the Halo (CASH) project. The abundances have been derived from both Hobby-Eberly Telescope High Resolution Spectrograph snapshot spectra (R {approx}15, 000) and corresponding high-resolution (R {approx}35, 000) Magellan Inamori Kyocera Echelle spectra. The stars span a metallicity range from [Fe/H] from -2.9 to -3.9, including four new stars with [Fe/H] < -3.7. We find four stars to be carbon-enhanced metal-poor (CEMP) stars, confirming the trend of increasing [C/Fe] abundance ratios with decreasing metallicity. Two of these objects can be classified as CEMP-no stars, adding to the growing number of these objects at [Fe/H]< - 3. We also find four neutron-capture-enhanced stars in the sample, one of which has [Eu/Fe] of 0.8 with clear r-process signatures. These pilot sample stars are the most metal-poor ([Fe/H] {approx}< -3.0) of the brightest stars included in CASH and are used to calibrate a newly developed, automated stellar parameter and abundance determination pipeline. This code will be used for the entire {approx}500 star CASH snapshot sample. We find that the pipeline results are statistically identical for snapshot spectra when compared to a traditional, manual analysis from a high-resolution spectrum.

  11. Solar abundances of rock-forming elements, extreme oxygen and hydrogen in a young polluted white dwarf

    NASA Astrophysics Data System (ADS)

    Farihi, J.; Koester, D.; Zuckerman, B.; Vican, L.; Gänsicke, B. T.; Smith, N.; Walth, G.; Breedt, E.

    2016-12-01

    The Teff = 20 800 K white dwarf WD 1536+520 is shown to have broadly solar abundances of the major rock-forming elements O, Mg, Al, Si, Ca, and Fe, together with a strong relative depletion in the volatile elements C and S. In addition to the highest metal abundances observed to date, including log (O/He) = -3.4, the helium-dominated atmosphere has an exceptional hydrogen abundance at log (H/He) = -1.7. Within the uncertainties, the metal-to-metal ratios are consistent with the accretion of an H2O-rich and rocky parent body, an interpretation supported by the anomalously high trace hydrogen. The mixed atmosphere yields unusually short diffusion time-scales for a helium atmosphere white dwarf, of no more than a few hundred years, and equivalent to those in a much cooler, hydrogen-rich star. The overall heavy element abundances of the disrupted parent body deviate modestly from a bulk Earth pattern, and suggest the deposition of some core-like material. The total inferred accretion rate is 4.2 × 109 g s-1, and at least four times higher than for any white dwarf with a comparable diffusion time-scale. Notably, when accretion is exhausted in this system, both metals and hydrogen will become undetectable within roughly 300 Myr, thus supporting a scenario where the trace hydrogen is related to the ongoing accretion of planetary debris.

  12. The Chemical Abundances of Stars in the Halo (CASH) Project. II. A Sample of 14 Extremely Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Hollek, Julie K.; Frebel, Anna; Roederer, Ian U.; Sneden, Christopher; Shetrone, Matthew; Beers, Timothy C.; Kang, Sung-ju; Thom, Christopher

    2011-11-01

    We present a comprehensive abundance analysis of 20 elements for 16 new low-metallicity stars from the Chemical Abundances of Stars in the Halo (CASH) project. The abundances have been derived from both Hobby-Eberly Telescope High Resolution Spectrograph snapshot spectra (R ~15, 000) and corresponding high-resolution (R ~35, 000) Magellan Inamori Kyocera Echelle spectra. The stars span a metallicity range from [Fe/H] from -2.9 to -3.9, including four new stars with [Fe/H] < -3.7. We find four stars to be carbon-enhanced metal-poor (CEMP) stars, confirming the trend of increasing [C/Fe] abundance ratios with decreasing metallicity. Two of these objects can be classified as CEMP-no stars, adding to the growing number of these objects at [Fe/H]< - 3. We also find four neutron-capture-enhanced stars in the sample, one of which has [Eu/Fe] of 0.8 with clear r-process signatures. These pilot sample stars are the most metal-poor ([Fe/H] <~ -3.0) of the brightest stars included in CASH and are used to calibrate a newly developed, automated stellar parameter and abundance determination pipeline. This code will be used for the entire ~500 star CASH snapshot sample. We find that the pipeline results are statistically identical for snapshot spectra when compared to a traditional, manual analysis from a high-resolution spectrum. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen. Based on observations gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  13. Abundance analysis of SDSS J134338.67+484426.6; an extremely metal-poor star from the MARVELS pre-survey

    NASA Astrophysics Data System (ADS)

    Susmitha Rani, A.; Sivarani, T.; Beers, T. C.; Fleming, S.; Mahadevan, S.; Ge, J.

    2016-05-01

    We present an elemental-abundance analysis of an extremely metal-poor (EMP; [Fe/H] <-3.0) star, SDSS J134338.67+484426.6, identified during the course of the Multi-object Apache Point Observatory Radial Velocity Exoplanet Large-area Survey spectroscopic pre-survey of some 20 000 stars to identify suitable candidates for exoplanet searches. This star, with an apparent magnitude V = 12.14, is the lowest metallicity star found in the pre-survey, and is one of only ˜20 known EMP stars that are this bright or brighter. Our high-resolution spectroscopic analysis shows that this star is a subgiant with [Fe/H] = -3.42, having `normal' carbon and no enhancement of neutron-capture abundances. Strontium is underabundant, [Sr/Fe] = -0.47, but the derived lower limit on [Sr/Ba] indicates that Sr is likely enhanced relative to Ba. This star belongs to the sparsely populated class of α-poor EMP stars that exhibit low ratios of [Mg/Fe], [Si/Fe], and [Ca/Fe] compared to typical halo stars at similar metallicity. The observed variations in radial velocity from several epochs of (low- and high-resolution) spectroscopic follow-up indicate that SDSS J134338.67+484426.6 is a possible long-period binary. We also discuss the abundance trends in EMP stars for r-process elements, and compare with other magnesium-poor stars.

  14. Primary and Secondary siRNAs in Geminivirus-induced Gene Silencing

    PubMed Central

    Rajeswaran, Rajendran; Gubaeva, Ekaterina G.; Zvereva, Anna S.; Windels, David; Vazquez, Franck; Blevins, Todd; Farinelli, Laurent; Pooggin, Mikhail M.

    2012-01-01

    In plants, RNA silencing-based antiviral defense is mediated by Dicer-like (DCL) proteins producing short interfering (si)RNAs. In Arabidopsis infected with the bipartite circular DNA geminivirus Cabbage leaf curl virus (CaLCuV), four distinct DCLs produce 21, 22 and 24 nt viral siRNAs. Using deep sequencing and blot hybridization, we found that viral siRNAs of each size-class densely cover the entire viral genome sequences in both polarities, but highly abundant siRNAs correspond primarily to the leftward and rightward transcription units. Double-stranded RNA precursors of viral siRNAs can potentially be generated by host RDR-dependent RNA polymerase (RDR). However, genetic evidence revealed that CaLCuV siRNA biogenesis does not require RDR1, RDR2, or RDR6. By contrast, CaLCuV derivatives engineered to target 30 nt sequences of a GFP transgene by primary viral siRNAs trigger RDR6-dependent production of secondary siRNAs. Viral siRNAs targeting upstream of the GFP stop codon induce secondary siRNAs almost exclusively from sequences downstream of the target site. Conversely, viral siRNAs targeting the GFP 3′-untranslated region (UTR) induce secondary siRNAs mostly upstream of the target site. RDR6-dependent siRNA production is not necessary for robust GFP silencing, except when viral siRNAs targeted GFP 5′-UTR. Furthermore, viral siRNAs targeting the transgene enhancer region cause GFP silencing without secondary siRNA production. We conclude that the majority of viral siRNAs accumulating during geminiviral infection are RDR1/2/6-independent primary siRNAs. Double-stranded RNA precursors of these siRNAs are likely generated by bidirectional readthrough transcription of circular viral DNA by RNA polymerase II. Unlike transgenic mRNA, geminiviral mRNAs appear to be poor templates for RDR-dependent production of secondary siRNAs. PMID:23028332

  15. Multiplex Real-Time PCR Assays that Measure the Abundance of Extremely Rare Mutations Associated with Cancer

    PubMed Central

    Vargas, Diana Y.; Kramer, Fred Russell; Tyagi, Sanjay; Marras, Salvatore A. E.

    2016-01-01

    We describe the use of “SuperSelective” primers that enable the detection and quantitation of somatic mutations whose presence relates to cancer diagnosis, prognosis, and therapy, in real-time PCR assays that can potentially analyze rare DNA fragments present in blood samples (liquid biopsies). The design of these deoxyribonucleotide primers incorporates both a relatively long “5' anchor sequence” that hybridizes strongly to target DNA fragments, and a very short, physically and functionally separate, “3' foot sequence” that is perfectly complementary to the mutant target sequence, but mismatches the wild-type sequence. As few as ten mutant fragments can reliably be detected in the presence of 1,000,000 wild-type fragments, even when the difference between the mutant and the wild type is only a single nucleotide polymorphism. Multiplex PCR assays employing a set of SuperSelective primers, and a corresponding set of differently colored molecular beacon probes, can be used in situations where the different mutations, though occurring in different cells, are located in the same codon. These non-symmetric real-time multiplex PCR assays contain limited concentrations of each SuperSelective primer, thereby enabling the simultaneous determination of each mutation’s abundance by comparing its threshold value to the threshold value of a reference gene present in the sample. PMID:27244445

  16. Minimizing off-target effects by using diced siRNAs for RNA interference

    PubMed Central

    Myers, Jason W; Chi, Jen-Tsan; Gong, Delquin; Schaner, Marci E; Brown, Patrick O; Ferrell, James E

    2006-01-01

    Microarray studies have shown that individual synthetic small interfering RNAs (siRNAs) can have substantial off-target effects. Pools of siRNAs, produced by incubation of dsRNAs with recombinant Dicer or RNase III, can also be used to silence genes. Here we show that diced siRNA pools are highly complex, containing hundreds of different individual siRNAs. This high complexity could either compound the problem of off-target effects, since the number of potentially problematic siRNAs is high, or it could diminish the problem, since the concentration of any individual problematic siRNA is low. We therefore compared the off-target effects of diced siRNAs to chemically synthesized siRNAs. In agreement with previous reports, we found that two chemically synthesized siRNAs targeted against p38α MAPK (MAPK14) induced off-target changes in the abundance of hundreds of mRNAs. In contrast, three diced siRNA pools against p38α MAPK had almost no off-target effects. The off-target effects of a synthetic siRNA were reduced when the siRNA was diluted 3-fold in a diced pool and completely alleviated when it was diluted 30- or 300-fold, suggesting that when problematic siRNAs are present within a diced pool, their absolute concentration is too low to result in significant off-target effects. These data rationalize the observed high specificity of RNA interference in C. elegans and D. melanogaster, where gene suppression is mediated by endogenously-generated diced siRNA pools, and provide a strategy for improving the specificity of RNA interference experiments and screens in mammalian cells. PMID:19771225

  17. Fundamental Physics with the Hubble Frontier Fields: Constraining Dark Matter Models with the Abundance of Extremely Faint and Distant Galaxies

    NASA Astrophysics Data System (ADS)

    Menci, N.; Merle, A.; Totzauer, M.; Schneider, A.; Grazian, A.; Castellano, M.; Sanchez, N. G.

    2017-02-01

    We show that the measured abundance of ultra-faint lensed galaxies at z≈ 6 in the Hubble Frontier Fields (HFF) provides stringent constraints on the parameter space of (i) dark matter models based on keV sterile neutrinos; (ii) “fuzzy” wavelike dark matter models, based on Bose–Einstein condensates of ultra-light particles. For the case of sterile neutrinos, we consider two production mechanisms: resonant production through mixing with active neutrinos and the decay of scalar particles. For the former model, we derive constraints for the combination of sterile neutrino mass {m}ν and mixing parameter {\\sin }2(2θ ) which provide the tightest lower bounds on the mixing angle (and hence on the lepton asymmetry) derived so far by methods independent of baryonic physics. For the latter we compute the allowed combinations of the scalar mass, its coupling to the Higgs field, and the Yukawa coupling of scalar to sterile neutrinos. We compare our results to independent existing astrophysical bounds on sterile neutrinos in the same mass range. For the case of “fuzzy” dark matter, we show that the observed number density ≈ 1/{{Mpc}}3 of high-redshift galaxies in the HFF sets a lower limit {m}\\psi ≥slant 8\\cdot {10}-22 eV (at the 3-σ confidence level) on the particle mass, a result that strongly disfavors wavelike bosonic dark matter as a viable model for structure formation. We discuss the impact on our results of uncertainties due to systematics in the selection of highly magnified, faint galaxies at high redshift.

  18. Low to Extremely Low Water Abundances Measured in Nominally Anhydrous Minerals in Mafic to Granitic Apollo Rock Clasts

    NASA Technical Reports Server (NTRS)

    Simon, J. I.; Christoffersen, R.; Wang, J.; Alexander, C. M. O'D.; Mills, R. D.; Hauri, E. H.

    2017-01-01

    Lunar sample-based volatile studies have focused on assessing the inventory and distribution of water in the Moon. Some have focused on the relatively young mare basalts and pyroclastic glasses, which result from partial melting of the relatively young lunar mantle. Less certain is the water inventory for the oldest materials available, which have the greater potential to record the earliest history of volatiles in the Moon (and thus provide evidence for the "wet" vs. "dry" accretion hypotheses of the Earth-Moon system. Studies of volatiles in ancient lunar rocks have largely focused on apatite. One recent FTIR (Fourier Transform Infrared Radiometer) study of plagioclase reported a relatively "wet" (approximately 320 parts per million) magma for primordial ferroan anorthosites (FANs). Another, a NanoSIMS study of alkali feldspar, reported a "wet" (approximately 1 weight percentage) felsic magma, but due to the differentiation processes required for silicic magmatism in the lunar crust, predicted an essentially "dry" (less than 100 parts per million) bulk Moon. Thus, despite evidence that appears to complicate the early "dry" Moon paradigm, there is no apparent unanimity among the measurements, even those on apatite. This disparity is clearly seen by the order of magnitude different water estimates for lunar "alkali-rich suite rocks" (Fig. 1). Some of the apparent differences may be explained by recent improvements in the apatite-based water estimates that better account for relative compatibilities of OH-, Cl, and F. In the present work, we seek to expand our understanding of the volatile abundances in early formed lunar magmas, their source reservoirs, and to address the potential role that felsic magmas play on the lunar hydrogen budget over time by employing NanoSIMS analysis of nominally anhydrous minerals.

  19. Strategies for in vivo delivery of siRNAs: recent progress.

    PubMed

    Higuchi, Yuriko; Kawakami, Shigeru; Hashida, Mitsuru

    2010-06-01

    RNA interference (RNAi) is a post-transcriptional gene-silencing mechanism that involves the degradation of messenger RNA in a highly sequence-specific manner. Double-stranded small interfering RNA (siRNA), consisting of 21-25 nucleotides, can induce RNAi and inhibit the expression of target proteins. Therefore, siRNA is considered a promising therapeutic for treatment of a variety of diseases, including genetic and viral diseases, and cancer. Clinical trials of siRNA are ongoing or have been planned, although some issues need to be addressed. For example, cellular uptake of naked siRNA is extremely low due to its polyanionic nature. Furthermore, siRNA is easily degraded by enzymes in blood, tissues, and cells. Several types of chemically modified siRNA have been produced and investigated to improve stability; these have involved modification of the siRNA backbone, the sugar moiety, and the nucleotide bases of antisense and/or sense strands. Because the accumulation at the target site after administration is extremely low, even if stability is improved, an effective delivery system is required to induce RNAi at the site of action. Delivery strategies can be categorized into physical methods, conjugation methods, and drug delivery system carrier-mediated methods. Physical techniques can enhance siRNA uptake at a specific tissue site using electroporation, pressure, mechanical massage, etc. Terminal modification of siRNAs can enhance their resistance to degradation by exonucleases in serum and tissue. Moreover, modification with a suitable ligand can achieve targeted delivery. Several types of carrier for drug delivery have been developed for siRNA in addition to traditional cationic liposome and cationic polymer systems. Ultrasound and microbubbles or liposomal bubbles have also been used in combination with a carrier for siRNA delivery. New materials with unique characteristics such as carbon nanotubes, gold nanoparticles, and gold nanorods have attracted attention

  20. Drawing siRNAs of viral origin out from plant siRNAs libraries.

    PubMed

    Miozzi, Laura; Pantaleo, Vitantonio

    2015-01-01

    Viruses are obligate intracellular entities that infect all forms of life. In plants, invading viral nucleic acids trigger RNA silencing machinery and it results in the accumulation of viral short interfering RNAs (v-siRNAs). The study of v-siRNAs population in biological samples has become a major part of many research projects aiming to identify viruses infecting them, including unknown viruses, even at extremely low titer. Currently, siRNA populations are investigated by high-throughput sequencing approaches, which generate very large data sets. The major difficulty in these studies is to properly analyze such huge amount of data. In this regard, easy-to-use bioinformatics tools to groom and decipher siRNA libraries and to draw out v-siRNAs are needed. Here we describe a workflow, which permit users with little experience in bioinformatics to draw out v-siRNAs from raw data sequences obtained by Illumina technology. Such pipeline has been released in the context of Galaxy, an open source Web-based platform for bioinformatics analyses.

  1. Engineering approaches in siRNA delivery.

    PubMed

    Barba, Anna Angela; Cascone, Sara; Caccavo, Diego; Lamberti, Gaetano; Chiarappa, Gianluca; Abrami, Michela; Grassi, Gabriele; Grassi, Mario; Tomaiuolo, Giovanna; Guido, Stefano; Brucato, Valerio; Carfì Pavia, Francesco; Ghersi, Giulio; La Carrubba, Vincenzo; Abbiati, Roberto Andrea; Manca, Davide

    2017-02-14

    siRNAs are very potent drug molecules, able to silence genes involved in pathologies development. siRNAs have virtually an unlimited therapeutic potential, particularly for the treatment of inflammatory diseases. However, their use in clinical practice is limited because of their unfavorable properties to interact and not to degrade in physiological environments. In particular they are large macromolecules, negatively charged, which undergo rapid degradation by plasmatic enzymes, are subject to fast renal clearance/hepatic sequestration, and can hardly cross cellular membranes. These aspects seriously impair siRNAs as therapeutics. As in all the other fields of science, siRNAs management can be advantaged by physical-mathematical descriptions (modeling) in order to clarify the involved phenomena from the preparative step of dosage systems to the description of drug-body interactions, which allows improving the design of delivery systems/processes/therapies. This review analyzes a few mathematical modeling approaches currently adopted to describe the siRNAs delivery, the main procedures in siRNAs vectors' production processes and siRNAs vectors' release from hydrogels, and the modeling of pharmacokinetics of siRNAs vectors. Furthermore, the use of physical models to study the siRNAs vectors' fate in blood stream and in the tissues is presented. The general view depicts a framework maybe not yet usable in therapeutics, but with promising possibilities for forthcoming applications.

  2. SiRNAs conjugated with aromatic compounds induce RISC-mediated antisense strand selection and strong gene-silencing activity

    SciTech Connect

    Kubo, Takanori; Yanagihara, Kazuyoshi; Takei, Yoshifumi; Mihara, Keichiro; Sato, Yuichiro; Seyama, Toshio

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer SiRNAs conjugated with aromatic compounds (Ar-siRNAs) at 5 Prime -sense strand were synthesized. Black-Right-Pointing-Pointer Ar-siRNAs increased resistance against nuclease degradation. Black-Right-Pointing-Pointer Ar-siRNAs were thermodynamically stable compared with the unmodified siRNA. Black-Right-Pointing-Pointer High levels of cellular uptake and cytoplasmic localization were found. Black-Right-Pointing-Pointer Strong gene-silencing efficacy was exhibited in the Ar-siRNAs. -- Abstract: Short interference RNA (siRNA) is a powerful tool for suppressing gene expression in mammalian cells. In this study, we focused on the development of siRNAs conjugated with aromatic compounds in order to improve the potency of RNAi and thus to overcome several problems with siRNAs, such as cellular delivery and nuclease stability. The siRNAs conjugated with phenyl, hydroxyphenyl, naphthyl, and pyrenyl derivatives showed strong resistance to nuclease degradation, and were thermodynamically stable compared with unmodified siRNA. A high level of membrane permeability in HeLa cells was also observed. Moreover, these siRNAs exhibited enhanced RNAi efficacy, which exceeded that of locked nucleic acid (LNA)-modified siRNAs, against exogenous Renilla luciferase in HeLa cells. In particular, abundant cytoplasmic localization and strong gene-silencing efficacy were found in the siRNAs conjugated with phenyl and hydroxyphenyl derivatives. The novel siRNAs conjugated with aromatic compounds are promising candidates for a new generation of modified siRNAs that can solve many of the problems associated with RNAi technology.

  3. Delivery materials for siRNA therapeutics

    NASA Astrophysics Data System (ADS)

    Kanasty, Rosemary; Dorkin, Joseph Robert; Vegas, Arturo; Anderson, Daniel

    2013-11-01

    RNA interference (RNAi) has broad potential as a therapeutic to reversibly silence any gene. To achieve the clinical potential of RNAi, delivery materials are required to transport short interfering RNA (siRNA) to the site of action in the cells of target tissues. This Review provides an introduction to the biological challenges that siRNA delivery materials aim to overcome, as well as a discussion of the way that the most effective and clinically advanced classes of siRNA delivery systems, including lipid nanoparticles and siRNA conjugates, are designed to surmount these challenges. The systems that we discuss are diverse in their approaches to the delivery problem, and provide valuable insight to guide the design of future siRNA delivery materials.

  4. Label-free Quantitative Proteomics for the Extremely Thermophilic Bacterium Caldicellulosiruptor obsidiansis Reveal Distinct Abundance Patterns upon Growth on Cellobiose, Crystalline Cellulose, and Switchgrass

    SciTech Connect

    Giannone, Richard J; Lochner, Adriane; Keller, Martin; Antranikian, Garabed; Graham, David E; Hettich, Robert {Bob} L

    2011-01-01

    Mass spectrometric analysis of Caldicellulosiruptor obsidiansis cultures grown on four different carbon sources identified 65% of the cells predicted proteins in cell lysates and supernatants. Biological and technical replication together with sophisticated statistical analysis were used to reliably quantify protein abundances and their changes as a function of carbon source. Extracellular, multifunctional glycosidases were significantly more abundant on cellobiose than on the crystalline cellulose substrates Avicel and filter paper, indicating either disaccharide induction or constitutive protein expression. Highly abundant flagellar, chemotaxis, and pilus proteins were detected during growth on insoluble substrates, suggesting motility or specific substrate attachment. The highly abundant extracellular binding protein COB47-0549 together with the COB47-1616 ATPase might comprise the primary ABC-transport system for cellooligosaccharides, while COB47-0096 and COB47-0097 could facilitate monosaccharide uptake. Oligosaccharide degradation can occur either via extracellular hydrolysis by a GH1 {beta}-glycosidase or by intracellular phosphorolysis using two GH94 enzymes. When C. obsidiansis was grown on switchgrass, the abundance of hemicellulases (including GH3, GH5, GH51, and GH67 enzymes) and certain sugar transporters increased significantly. Cultivation on biomass also caused a concerted increase in cytosolic enzymes for xylose and arabinose fermentation.

  5. Heavy metals in a light white dwarf: abundances of the metal-rich, extremely low-mass GALEX J1717+6757

    NASA Astrophysics Data System (ADS)

    Hermes, J. J.; Gänsicke, B. T.; Koester, D.; Bours, M. C. P.; Townsley, D. M.; Farihi, J.; Marsh, T. R.; Littlefair, Stuart; Dhillon, V. S.; Gianninas, A.; Breedt, E.; Raddi, R.

    2014-10-01

    Using the Hubble Space Telescope, we detail the first abundance analysis enabled by far-ultraviolet spectroscopy of a low-mass (≃0.19 M⊙) white dwarf (WD), GALEX J1717+6757, which is in a 5.9-h binary with a fainter, more-massive companion. We see absorption from nine metals, including roughly solar abundances of Ca, Fe, Ti, and P. We detect a significantly sub-solar abundance of C, and put upper limits on N and O that are also markedly sub-solar. Updated diffusion calculations indicate that all metals should settle out of the atmosphere of this 14 900 K, log g = 5.67 WD in the absence of radiative forces in less than 20 yr, orders of magnitude faster than the cooling age of hundreds of Myr. We demonstrate that ongoing accretion of rocky material that is often the cause of atmospheric metals in isolated, more massive WDs is unlikely to explain the observed abundances in GALEX J1717+6757. Using new radiative levitation calculations, we determine that radiative forces can counteract diffusion and support many but not all of the elements present in the atmosphere of this WD; radiative levitation cannot, on its own, explain all of the observed abundance patterns, and additional mechanisms such as rotational mixing may be required. Finally, we detect both primary and secondary eclipses using ULTRACAM high-speed photometry, which we use to constrain the low-mass WD radius and rotation rate as well as update the ephemeris from the discovery observations of this WD+WD binary.

  6. VARIABLE AND EXTREME IRRADIATION CONDITIONS IN THE EARLY SOLAR SYSTEM INFERRED FROM THE INITIAL ABUNDANCE OF {sup 10}Be IN ISHEYEVO CAIs

    SciTech Connect

    Gounelle, Matthieu; Chaussidon, Marc; Rollion-Bard, Claire

    2013-02-01

    A search for short-lived {sup 10}Be in 21 calcium-aluminum-rich inclusions (CAIs) from Isheyevo, a rare CB/CH chondrite, showed that only 5 CAIs had {sup 10}B/{sup 11}B ratios higher than chondritic correlating with the elemental ratio {sup 9}Be/{sup 11}B, suggestive of in situ decay of this key short-lived radionuclide. The initial ({sup 10}Be/{sup 9}Be){sub 0} ratios vary between {approx}10{sup -3} and {approx}10{sup -2} for CAI 411. The initial ratio of CAI 411 is one order of magnitude higher than the highest ratio found in CV3 CAIs, suggesting that the more likely origin of CAI 411 {sup 10}Be is early solar system irradiation. The low ({sup 26}Al/{sup 27}Al){sub 0} [{<=} 8.9 Multiplication-Sign 10{sup -7}] with which CAI 411 formed indicates that it was exposed to gradual flares with a proton fluence of a few 10{sup 19} protons cm{sup -2}, during the earliest phases of the solar system, possibly the infrared class 0. The irradiation conditions for other CAIs are less well constrained, with calculated fluences ranging between a few 10{sup 19} and 10{sup 20} protons cm{sup -2}. The variable and extreme value of the initial {sup 10}Be/{sup 9}Be ratios in carbonaceous chondrite CAIs is the reflection of the variable and extreme magnetic activity in young stars observed in the X-ray domain.

  7. Suppression of diabetic retinopathy with GLUT1 siRNA.

    PubMed

    You, Zhi-Peng; Zhang, Yu-Lan; Shi, Ke; Shi, Lu; Zhang, Yue-Zhi; Zhou, Yue; Wang, Chang-Yun

    2017-08-07

    To investigate the effect of glucose transporter-1 (GLUT1) inhibition on diabetic retinopathy, we divided forty-eight mice into scrambled siRNA, diabetic scrambled siRNA, and GLUT1 siRNA (intravitreally injected) groups. Twenty-one weeks after diabetes induction, we calculated retinal glucose concentrations, used electroretinography (ERG) and histochemical methods to assess photoreceptor degeneration, and conducted immunoblotting, leukostasis and vascular leakage assays to estimate microangiopathy. The diabetic scrambled siRNA and GLUT1 siRNA exhibited higher glucose concentrations than scrambled siRNA, but GLUT1 siRNA group concentrations were only 50.05% of diabetic scrambled siRNA due to downregulated GLUT1 expression. The diabetic scrambled siRNA and GLUT1 siRNA had lower ERG amplitudes and ONL thicknesses than scrambled siRNA. However, compared with diabetic scrambled siRNA, GLUT1 siRNA group amplitudes and thicknesses were higher. Diabetic scrambled siRNA cones were more loosely arranged and had shorter outer segments than GLUT1 siRNA cones. ICAM-1 and TNF-α expression levels, adherent leukocyte numbers, fluorescence leakage areas and extravasated Evans blue in diabetic scrambled siRNA were higher than those in scrambled siRNA. However, these parameters in the GLUT1 siRNA were lower than diabetic scrambled siRNA. Together, these results demonstrate that GLUT1 siRNA restricted glucose transport by inhibiting GLUT1 expression, which decreased retinal glucose concentrations and ameliorated diabetic retinopathy.

  8. Distinct and concurrent pathways of Pol II- and Pol IV-dependent siRNA biogenesis at a repetitive trans-silencer locus in Arabidopsis thaliana.

    PubMed

    Sasaki, Taku; Lee, Tzuu-fen; Liao, Wen-Wei; Naumann, Ulf; Liao, Jo-Ling; Eun, Changho; Huang, Ya-Yi; Fu, Jason L; Chen, Pao-Yang; Meyers, Blake C; Matzke, Antonius J M; Matzke, Marjori

    2014-07-01

    Short interfering RNAs (siRNAs) homologous to transcriptional regulatory regions can induce RNA-directed DNA methylation (RdDM) and transcriptional gene silencing (TGS) of target genes. In our system, siRNAs are produced by transcribing an inverted DNA repeat (IR) of enhancer sequences, yielding a hairpin RNA that is processed by several Dicer activities into siRNAs of 21-24 nt. Primarily 24-nt siRNAs trigger RdDM of the target enhancer in trans and TGS of a downstream GFP reporter gene. We analyzed siRNA accumulation from two different structural forms of a trans-silencer locus in which tandem repeats are embedded in the enhancer IR and distinguished distinct RNA polymerase II (Pol II)- and Pol IV-dependent pathways of siRNA biogenesis. At the original silencer locus, Pol-II transcription of the IR from a 35S promoter produces a hairpin RNA that is diced into abundant siRNAs of 21-24 nt. A silencer variant lacking the 35S promoter revealed a normally masked Pol IV-dependent pathway that produces low levels of 24-nt siRNAs from the tandem repeats. Both pathways operate concurrently at the original silencer locus. siRNAs accrue only from specific regions of the enhancer and embedded tandem repeat. Analysis of these sequences and endogenous tandem repeats producing siRNAs revealed the preferential accumulation of siRNAs at GC-rich regions containing methylated CG dinucleotides. In addition to supporting a correlation between base composition, DNA methylation and siRNA accumulation, our results highlight the complexity of siRNA biogenesis at repetitive loci and show that Pol II and Pol IV use different promoters to transcribe the same template.

  9. Abundances in Przybylski's star

    NASA Astrophysics Data System (ADS)

    Cowley, C. R.; Ryabchikova, T.; Kupka, F.; Bord, D. J.; Mathys, G.; Bidelman, W. P.

    2000-09-01

    We have derived abundances for 54 elements in the extreme roAp star HD101065. ESO spectra with a resolution of about 80000, and S/N of 200 or more were employed. The adopted model has Teff=6600K, and log(g)=4.2. Because of the increased line opacity and consequent low gas pressure, convection plays no significant role in the temperature structure. Lighter elemental abundances through the iron group scatter about standard abundance distribution (SAD) (solar) values. Iron and nickel are about one order of magnitude deficient while cobalt is enhanced by 1.5dex. Heavier elements, including the lanthanides, generally follow the solar pattern but enhanced by 3 to 4dex. Odd-Z elements are generally less abundant than their even-Z neighbours. With a few exceptions (e.g. Yb), the abundance pattern among the heavy elements is remarkably coherent, and resembles a displaced solar distribution.

  10. DNA repair investigations using siRNA.

    PubMed

    Miller, Holly; Grollman, Arthur P

    2003-06-11

    Small interfering RNA (siRNA) is a revolutionary tool for the experimental modulation of gene expression, in many cases making redundant the need for specific gene mutations and allowing examination of the effect of modulating essential genes. It has now been shown that siRNA phenotypes resulting from stable transfection with short hairpin RNA (shRNA) can be transmitted through the mouse germ line and Rosenquist and his colleagues have used shRNA, which is processed in vivo to siRNA, to create germline transgenic mice in which a target DNA repair gene has been silenced. Here, Holly Miller and Arthur P. Grollman give the background of these discoveries, provide an overview of current uses, and look at future applications of this research.

  11. Recent advances in siRNA delivery.

    PubMed

    Sarisozen, Can; Salzano, Giuseppina; Torchilin, Vladimir P

    2015-12-01

    In the 1990s an unexpected gene-silencing phenomena in plants, the later called RNA interference (RNAi), perplexed scientists. Following the proof of activity in mammalian cells, small interfering RNAs (siRNAs) have quickly crept into biomedical research as a new powerful tool for the potential treatment of different human diseases based on altered gene expression. In the past decades, several promising data from ongoing clinical trials have been reported. However, despite surprising successes in many pre-clinical studies, concrete obstacles still need to be overcome to translate therapeutic siRNAs into clinical reality. Here, we provide an update on the recent advances of RNAi-based therapeutics and highlight novel synthetic platforms for the intracellular delivery of siRNAs.

  12. Development of a simple, biocompatible and cost-effective Inulin-Diethylenetriamine based siRNA delivery system.

    PubMed

    Sardo, C; Farra, R; Licciardi, M; Dapas, B; Scialabba, C; Giammona, G; Grassi, M; Grassi, G; Cavallaro, G

    2015-07-30

    Small interfering RNAs (siRNAs) have the potential to be of therapeutic value for many human diseases. So far, however, a serious obstacle to their therapeutic use is represented by the absence of appropriate delivery systems able to protect them from degradation and to allow an efficient cellular uptake. In this work we developed a siRNA delivery system based on inulin (Inu), an abundant and natural polysaccharide. Inu was functionalized via the conjugation with diethylenetriamine (DETA) residues to form the complex Inu-DETA. We studied the size, surface charge and the shape of the Inu-DETA/siRNA complexes; additionally, the cytotoxicity, the silencing efficacy and the cell uptake-mechanisms were studied in the human bronchial epithelial cells (16HBE) and in the hepatocellular carcinoma derived cells (JHH6). The results presented here indicate that Inu-DETA copolymers can effectively bind siRNAs, are highly cytocompatible and, in JHH6, can effectively deliver functional siRNAs. Optimal delivery is observed using a weight ratio Inu-DETA/siRNA of 4 that corresponds to polyplexes with an average size of 600nm and a slightly negative surface charge. Moreover, the uptake and trafficking mechanisms, mainly based on micropinocytosis and clatrin mediated endocytosis, allow the homogeneous diffusion of siRNA within the cytoplasm of JHH6. Notably, in 16 HBE where the trafficking mechanism (caveolae mediated endocytosis) does not allow an even distribution of siRNA within the cell cytoplasm, no significant siRNA activity is observed. In conclusion, we developed a novel inulin-based siRNA delivery system able to efficiently release siRNA in JHH6 with negligible cytotoxicity thus opening the way for further testing in more complex in vivo models.

  13. siRNA for Influenza Therapy

    PubMed Central

    Barik, Sailen

    2010-01-01

    Influenza virus is one of the most prevalent and ancient infections in humans. About a fifth of world’s population is infected by influenza virus annually, leading to high morbidity and mortality, particularly in infants, the elderly and the immunocompromised. In the US alone, influenza outbreaks lead to roughly 30,000 deaths each year. Current vaccines and anti-influenza drugs are of limited use due to high mutation rate of the virus and side effects. In recent years, RNA interference, triggered by synthetic short interfering RNA (siRNA), has rapidly evolved as a potent antiviral regimen. Properly designed siRNAs have been shown to function as potent inhibitors of influenza virus replication. The siRNAs outperform traditional small molecule antivirals in a number of areas, such as ease of design, modest cost, and fast turnaround. Although specificity and tissue delivery remain major bottlenecks in the clinical applications of RNAi in general, intranasal application of siRNA against respiratory viruses including, but not limited to influenza virus, has experienced significant success and optimism, which is reviewed here. PMID:21994689

  14. Bioengineered nanoparticles for siRNA delivery.

    PubMed

    Kozielski, Kristen L; Tzeng, Stephany Y; Green, Jordan J

    2013-01-01

    Short interfering RNA (siRNA) has been an important laboratory tool in the last two decades and has allowed researchers to better understand the functions of nonprotein-coding genes through RNA interference (RNAi). Although RNAi holds great promise for this purpose as well as for treatment of many diseases, efforts at using siRNA have been hampered by the difficulty of safely and effectively introducing it into cells of interest, both in vitro and in vivo. To overcome this challenge, many biomaterials and nanoparticles (NPs) have been developed and optimized for siRNA delivery, often taking cues from the DNA delivery field, although different barriers exist for these two types of molecules. In this review, we discuss general properties of biomaterials and nanoparticles that are necessary for effective nucleic acid delivery. We also discuss specific examples of bioengineered materials, including lipid-based NPs, polymeric NPs, inorganic NPs, and RNA-based NPs, which clearly illustrate the problems and successes in siRNA delivery.

  15. Bioengineered Nanoparticles for siRNA delivery

    PubMed Central

    Kozielski, Kristen L.; Tzeng, Stephany Y.; Green, Jordan J.

    2014-01-01

    Short interfering RNA (siRNA) has been an important laboratory tool in the last two decades and has allowed researchers to better understand the functions of non-protein-coding genes through RNA interference (RNAi). Although RNAi holds great promise for this purpose as well as for treatment of many diseases, efforts at using siRNA have been hampered by the difficulty of safely and effectively introducing it into cells of interest, both in vitro and in vivo. To overcome this challenge, many biomaterials and nanoparticles (NPs) have been developed and optimized for siRNA delivery, often taking cues from the DNA delivery field, although different barriers exist for these two types of molecules. In this review, we discuss general properties of biomaterials and nanoparticles that are necessary for effective nucleic acid delivery. We also discuss specific examples of bioengineered materials, including lipid-based NPs, polymeric NPs, inorganic NPs, and RNA-based NPs, which clearly illustrate the problems and successes in siRNA delivery. PMID:23821336

  16. De Novo Reconstruction of Consensus Master Genomes of Plant RNA and DNA Viruses from siRNAs

    PubMed Central

    Seguin, Jonathan; Rajeswaran, Rajendran; Malpica-López, Nachelli; Martin, Robert R.; Kasschau, Kristin; Dolja, Valerian V.; Otten, Patricia; Farinelli, Laurent; Pooggin, Mikhail M.

    2014-01-01

    Virus-infected plants accumulate abundant, 21–24 nucleotide viral siRNAs which are generated by the evolutionary conserved RNA interference (RNAi) machinery that regulates gene expression and defends against invasive nucleic acids. Here we show that, similar to RNA viruses, the entire genome sequences of DNA viruses are densely covered with siRNAs in both sense and antisense orientations. This implies pervasive transcription of both coding and non-coding viral DNA in the nucleus, which generates double-stranded RNA precursors of viral siRNAs. Consistent with our finding and hypothesis, we demonstrate that the complete genomes of DNA viruses from Caulimoviridae and Geminiviridae families can be reconstructed by deep sequencing and de novo assembly of viral siRNAs using bioinformatics tools. Furthermore, we prove that this ‘siRNA omics’ approach can be used for reliable identification of the consensus master genome and its microvariants in viral quasispecies. Finally, we utilized this approach to reconstruct an emerging DNA virus and two viroids associated with economically-important red blotch disease of grapevine, and to rapidly generate a biologically-active clone representing the wild type master genome of Oilseed rape mosaic virus. Our findings show that deep siRNA sequencing allows for de novo reconstruction of any DNA or RNA virus genome and its microvariants, making it suitable for universal characterization of evolving viral quasispecies as well as for studying the mechanisms of siRNA biogenesis and RNAi-based antiviral defense. PMID:24523907

  17. Dendrimers for siRNA Delivery

    PubMed Central

    Biswas, Swati; Torchilin, Vladimir P.

    2013-01-01

    Since the discovery of the “starburst polymer”, later renamed as dendrimer, this class of polymers has gained considerable attention for numerous biomedical applications, due mainly to the unique characteristics of this macromolecule, including its monodispersity, uniformity, and the presence of numerous functionalizable terminal groups. In recent years, dendrimers have been studied extensively for their potential application as carriers for nucleic acid therapeutics, which utilize the cationic charge of the dendrimers for effective dendrimer-nucleic acid condensation. siRNA is considered a promising, versatile tool among various RNAi-based therapeutics, which can effectively regulate gene expression if delivered successfully inside the cells. This review reports on the advancements in the development of dendrimers as siRNA carriers. PMID:24275946

  18. Aptamer mediated siRNA delivery

    PubMed Central

    Chu, Ted C.; Twu, Karen Y.; Ellington, Andrew D.; Levy, Matthew

    2006-01-01

    Nucleic acids that bind to cells and are subsequently internalized could prove to be novel delivery reagents. An anti-prostate specific membrane antigen aptamer that has previously been shown to bind to prostate tumor cells was coupled to siRNAs via a modular streptavidin bridge. The resulting conjugates could be simply added onto cells without any further preparation, and were taken up within 30 min. The siRNA-mediated inhibition of gene expression was as efficient as observed with conventional lipid-based reagents, and was dependent upon conjugation to the aptamer. These results suggest new venues for the therapeutic delivery of siRNAs and for the development of reagents that can be used to probe cellular physiology. PMID:16740739

  19. An inside job for siRNAs.

    PubMed

    Golden, Daniel E; Gerbasi, Vincent R; Sontheimer, Erik J

    2008-08-08

    Among the three main categories of small silencing RNAs in insects and mammals-siRNAs, miRNAs, and piRNAs-siRNAs were thought to arise primarily from exogenous sources, whereas miRNAs and piRNAs arise from endogenous loci. Recent work in flies and mice reveals several classes of endogenous siRNAs (endo-siRNAs) that contribute to functions previously reserved for miRNAs and piRNAs, including gene regulation and transposon suppression.

  20. Warm temperatures induce transgenerational epigenetic release of RNA silencing by inhibiting siRNA biogenesis in Arabidopsis.

    PubMed

    Zhong, Si-Hui; Liu, Jun-Zhong; Jin, Hua; Lin, Lin; Li, Qun; Chen, Ying; Yuan, Yue-Xing; Wang, Zhi-Yong; Huang, Hai; Qi, Yi-Jun; Chen, Xiao-Ya; Vaucheret, Hervé; Chory, Joanne; Li, Jianming; He, Zu-Hua

    2013-05-28

    Owing to their sessile nature, plants have evolved sophisticated genetic and epigenetic regulatory systems to respond quickly and reversibly to daily and seasonal temperature changes. However, our knowledge of how plants sense and respond to warming ambient temperatures is rather limited. Here we show that an increase in growth temperature from 22 °C to 30 °C effectively inhibited transgene-induced posttranscriptional gene silencing (PTGS) in Arabidopsis. Interestingly, warmth-induced PTGS release exhibited transgenerational epigenetic inheritance. We discovered that the warmth-induced PTGS release occurred during a critical step that leads to the formation of double-stranded RNA (dsRNA) for producing small interfering RNAs (siRNAs). Deep sequencing of small RNAs and RNA blot analysis indicated that the 22-30 °C increase resulted in a significant reduction in the abundance of many trans-acting siRNAs that require dsRNA for biogenesis. We discovered that the temperature increase reduced the protein abundance of SUPPRESSOR OF GENE SILENCING 3, as a consequence, attenuating the formation of stable dsRNAs required for siRNA biogenesis. Importantly, SUPPRESSOR OF GENE SILENCING 3 overexpression released the warmth-triggered inhibition of siRNA biogenesis and reduced the transgenerational epigenetic memory. Thus, our study reveals a previously undescribed association between warming temperatures, an epigenetic system, and siRNA biogenesis.

  1. Alkane-modified short polyethyleneimine for siRNA delivery

    PubMed Central

    Schroeder, Avi; Dahlman, James E.; Sahay, Gaurav; Love, Kevin T.; Jiang, Shan; Eltoukhy, Ahmed A.; Levins, Christopher G.; Wang, Yingxia; Anderson, Daniel G.

    2012-01-01

    RNA interference (RNAi) is a highly specific gene-silencing mechanism triggered by small interfering RNA (siRNA). Effective intracellular delivery requires the development of potent siRNA carriers. Here, we describe the synthesis and screening of a series of siRNA delivery materials. Short polyethyleneimine (PEI, Mw 600) was selected as a cationic backbone to which lipid tails were conjugated at various levels of saturation. In solution these polymer–lipid hybrids self-assemble to form nanoparticles capable of complexing siRNA. The complexes silence genes specifically and with low cytotoxicity. The efficiency of gene knockdown increased as the number of lipid tails conjugated to the PEI backbone increased. This is explained by reducing the binding affinity between the siRNA strands to the complex, thereby enabling siRNA release after cellular internalization. These results highlight the importance of complexation strength when designing siRNA delivery materials. PMID:22155553

  2. Alkane-modified short polyethyleneimine for siRNA delivery.

    PubMed

    Schroeder, Avi; Dahlman, James E; Sahay, Gaurav; Love, Kevin T; Jiang, Shan; Eltoukhy, Ahmed A; Levins, Christopher G; Wang, Yingxia; Anderson, Daniel G

    2012-06-10

    RNA interference (RNAi) is a highly specific gene-silencing mechanism triggered by small interfering RNA (siRNA). Effective intracellular delivery requires the development of potent siRNA carriers. Here, we describe the synthesis and screening of a series of siRNA delivery materials. Short polyethyleneimine (PEI, Mw 600) was selected as a cationic backbone to which lipid tails were conjugated at various levels of saturation. In solution these polymer-lipid hybrids self-assemble to form nanoparticles capable of complexing siRNA. The complexes silence genes specifically and with low cytotoxicity. The efficiency of gene knockdown increased as the number of lipid tails conjugated to the PEI backbone increased. This is explained by reducing the binding affinity between the siRNA strands to the complex, thereby enabling siRNA release after cellular internalization. These results highlight the importance of complexation strength when designing siRNA delivery materials.

  3. Predicting siRNA efficacy based on multiple selective siRNA representations and their combination at score level

    NASA Astrophysics Data System (ADS)

    He, Fei; Han, Ye; Gong, Jianting; Song, Jiazhi; Wang, Han; Li, Yanwen

    2017-03-01

    Small interfering RNAs (siRNAs) may induce to targeted gene knockdown, and the gene silencing effectiveness relies on the efficacy of the siRNA. Therefore, the task of this paper is to construct an effective siRNA prediction method. In our work, we try to describe siRNA from both quantitative and qualitative aspects. For quantitative analyses, we form four groups of effective features, including nucleotide frequencies, thermodynamic stability profile, thermodynamic of siRNA-mRNA interaction, and mRNA related features, as a new mixed representation, in which thermodynamic of siRNA-mRNA interaction is introduced to siRNA efficacy prediction for the first time to our best knowledge. And then an F-score based feature selection is employed to investigate the contribution of each feature and remove the weak relevant features. Meanwhile, we encode the siRNA sequence and existed empirical design rules as a qualitative siRNA representation. These two kinds of siRNA representations are combined to predict siRNA efficacy by supported Vector Regression (SVR) at score level. The experimental results indicate that our method may select the features with powerful discriminative ability and make the two kinds of siRNA representations work at full capacity. The prediction results also demonstrate that our method can outperform other popular siRNA efficacy prediction algorithms.

  4. Predicting siRNA efficacy based on multiple selective siRNA representations and their combination at score level

    PubMed Central

    He, Fei; Han, Ye; Gong, Jianting; Song, Jiazhi; Wang, Han; Li, Yanwen

    2017-01-01

    Small interfering RNAs (siRNAs) may induce to targeted gene knockdown, and the gene silencing effectiveness relies on the efficacy of the siRNA. Therefore, the task of this paper is to construct an effective siRNA prediction method. In our work, we try to describe siRNA from both quantitative and qualitative aspects. For quantitative analyses, we form four groups of effective features, including nucleotide frequencies, thermodynamic stability profile, thermodynamic of siRNA-mRNA interaction, and mRNA related features, as a new mixed representation, in which thermodynamic of siRNA-mRNA interaction is introduced to siRNA efficacy prediction for the first time to our best knowledge. And then an F-score based feature selection is employed to investigate the contribution of each feature and remove the weak relevant features. Meanwhile, we encode the siRNA sequence and existed empirical design rules as a qualitative siRNA representation. These two kinds of siRNA representations are combined to predict siRNA efficacy by supported Vector Regression (SVR) at score level. The experimental results indicate that our method may select the features with powerful discriminative ability and make the two kinds of siRNA representations work at full capacity. The prediction results also demonstrate that our method can outperform other popular siRNA efficacy prediction algorithms. PMID:28317874

  5. Simple gene silencing using the trans-acting siRNA pathway.

    PubMed

    Jacobs, Thomas B; Lawler, Noah J; LaFayette, Peter R; Vodkin, Lila O; Parrott, Wayne A

    2016-01-01

    In plants, particular micro-RNAs (miRNAs) induce the production of a class of small interfering RNAs (siRNA) called trans-acting siRNA (ta-siRNA) that lead to gene silencing. A single miRNA target is sufficient for the production of ta-siRNAs, which target can be incorporated into a vector to induce the production of siRNAs, and ultimately gene silencing. The term miRNA-induced gene silencing (MIGS) has been used to describe such vector systems in Arabidopsis. Several ta-siRNA loci have been identified in soybean, but, prior to this work, few of the inducing miRNAs have been experimentally validated, much less used to silence genes. Nine ta-siRNA loci and their respective miRNA targets were identified, and the abundance of the inducing miRNAs varies dramatically in different tissues. The miRNA targets were experimentally verified by silencing a transgenic GFP gene and two endogenous genes in hairy roots and transgenic plants. Small RNAs were produced in patterns consistent with the utilization of the ta-siRNA pathway. A side-by-side experiment demonstrated that MIGS is as effective at inducing gene silencing as traditional hairpin vectors in soybean hairy roots. Soybean plants transformed with MIGS vectors produced siRNAs and silencing was observed in the T1 generation. These results complement previous reports in Arabidopsis by demonstrating that MIGS is an efficient way to produce siRNAs and induce gene silencing in other species, as shown with soybean. The miRNA targets identified here are simple to incorporate into silencing vectors and offer an effective and efficient alternative to other gene silencing strategies.

  6. In-depth sequencing of the siRNAs associated with peach latent mosaic viroid infection

    PubMed Central

    2010-01-01

    Background It has been observed that following viroid infection, there is an accumulation of viroid-derived siRNAs in infected plants. Some experimental results suggest that these small RNAs may be produced by the plant defense system to protect it from infection, indicating that viroids can elicit the RNA-silencing pathways. The objective of this study is to identify in the peach latent mosaic viroid (PLMVd), a model RNA genome, the regions that are most susceptible to RNA interference machinery. Results The RNA isolated from an infected tree have been used to sequence in parallel viroid species and small non-coding RNA species. Specifically, PLMVd RNAs were amplified, cloned and sequenced according to a conventional approach, while small non-coding RNAs were determined by high-throughput sequencing. The first led to the typing of 18 novel PLMVd variants. The second provided a library of small RNAs including 880 000 sequences corresponding to PLMVd-derived siRNAs, which makes up 11.2% of the sequences of the infected library. These siRNAs contain mainly 21-22 nucleotide RNAs and are equivalently distributed between the plus and the minus polarities of the viroid. They cover the complete viroid genome, although the amount varies depending on the regions. These regions do not necessarily correlate with the double-stranded requirement to be a substrate for Dicer-like enzymes. We noted that some sequences encompass the hammerhead self-cleavage site, indicating that the circular conformers could be processed by the RNA-silencing machinery. Finally, a bias in the relative abundance of the nature of the 5' nucleotides was observed (A, U >> G, C). Conclusions The approach used provided us a quantitative representation of the PLMVd-derived siRNAs retrieved from infected peach trees. These siRNAs account for a relatively large proportion of the small non-coding RNAs. Surprisingly, the siRNAs from some regions of the PLMVd genome appear over-represented, although these

  7. siRNA and cancer immunotherapy.

    PubMed

    Ghafouri-Fard, Soudeh; Ghafouri-Fard, Somayyeh

    2012-09-01

    Immunotherapeutic approaches have been gaining attention in the field of cancer treatment because of their possible ability to eradicate cancer cells as well as metastases by recruiting the host immune system. On the other hand, RNA-based therapeutics with the ability to silence expression of specific targets are currently under clinical investigation for various disorders including cancer. As the mechanisms of tumor evasion from the host immune system are versatile, different molecules have the capacity to be targeted by RNAi technology in order to enhance the immune response against tumors. This technology has been used to silence specific targets in tumor cells, as well as immune cells in cancer cell lines, animal models and clinical trials. siRNAs can also stimulate innate immune responses through activation of Toll-like receptors. Although currently clinical trials of the application of siRNA in cancer immunotherapy are few, it is predicted that in future this technology will be used broadly in cancer treatment.

  8. Highly efficient siRNA delivery from core-shell mesoporous silica nanoparticles with multifunctional polymer caps

    NASA Astrophysics Data System (ADS)

    Möller, Karin; Müller, Katharina; Engelke, Hanna; Bräuchle, Christoph; Wagner, Ernst; Bein, Thomas

    2016-02-01

    A new general route for siRNA delivery is presented combining porous core-shell silica nanocarriers with a modularly designed multifunctional block copolymer. Specifically, the internal storage and release of siRNA from mesoporous silica nanoparticles (MSN) with orthogonal core-shell surface chemistry was investigated as a function of pore-size, pore morphology, surface properties and pH. Very high siRNA loading capacities of up to 380 μg per mg MSN were obtained with charge-matched amino-functionalized mesoporous cores, and release profiles show up to 80% siRNA elution after 24 h. We demonstrate that adsorption and desorption of siRNA is mainly driven by electrostatic interactions, which allow for high loading capacities even in medium-sized mesopores with pore diameters down to 4 nm in a stellate pore morphology. The negatively charged MSN shell enabled the association with a block copolymer containing positively charged artificial amino acids and oleic acid blocks, which acts simultaneously as capping and endosomal release agent. The potential of this multifunctional delivery platform is demonstrated by highly effective cell transfection and siRNA delivery into KB-cells. A luciferase reporter gene knock-down of up to 80-90% was possible using extremely low cell exposures with only 2.5 μg MSN containing 0.5 μg siRNA per 100 μL well.A new general route for siRNA delivery is presented combining porous core-shell silica nanocarriers with a modularly designed multifunctional block copolymer. Specifically, the internal storage and release of siRNA from mesoporous silica nanoparticles (MSN) with orthogonal core-shell surface chemistry was investigated as a function of pore-size, pore morphology, surface properties and pH. Very high siRNA loading capacities of up to 380 μg per mg MSN were obtained with charge-matched amino-functionalized mesoporous cores, and release profiles show up to 80% siRNA elution after 24 h. We demonstrate that adsorption and desorption of

  9. siRNA Against KIR3DL1 as a Potential Gene Therapeutic Agent in Controlling HIV-1 Infection

    PubMed Central

    Fu, Geng-Feng; Pan, Ji-Cheng; Lin, Nan; Hu, Hai-Yang; Tang, Wei-Ming; Xu, Jin-Shui; Wang, Xiao-Liang; Xu, Xiao-Qin; Qiu, Tao; Liu, Xiao-Yan; Chen, Guo-Hong; Mahapatra, Tanmay; Huan, Xi-Ping

    2014-01-01

    Abstract Objectives: The aim of this study was to develop a small interfering RNA (siRNA) against the expression of KIR3DL1 receptor on natural killer (NK) cells, in order to promote the ability of NK cells to destroy human immunodeficiency virus (HIV)-infected cells and thus prevent failure of siRNA therapy targeting human immunodeficiency virus type 1 (HIV-1) virus among HIV-1 infected patients in vitro. Methods: A siRNA targeting KIR3DL1 was synthesized and then modified with cholesterol, methylene, and sulfate. The inhibitory action of the siRNAs on primary cultured NK cells was detected. The amount of IFN-γ and TNF-α secretions in NK cells was measured. The intended functions of NK cells in vitro were analyzed by CFSE and PI methods. Results: There were no significant differences in inhibiting the expression of KIR3DL1 on NK cells between the modified and unmodified siRNAs, while inhibition by each of them differed significantly from controls. The amount of IFN-γ and TNF-α secretions in the NK cells was abundant due to unsuccessful expression of KIR3DL1 on NK cells, which further promoted function of the NK cells. Conclusion: The siRNA against KIR3DL1 could enhance the ability of the NK cells to kill the HIV-1 infected cells in vitro and successfully prevented the failure of siRNA therapy targeting the HIV-1 virus. Therefore, it can act as a potential gene therapeutic agent among HIV-1 infected people. PMID:24834927

  10. Dendrimeric siRNA for Efficient Gene Silencing.

    PubMed

    Hong, Cheol Am; Eltoukhy, Ahmed A; Lee, Hyukjin; Langer, Robert; Anderson, Daniel G; Nam, Yoon Sung

    2015-06-01

    Programmable molecular self-assembly of siRNA molecules provides precisely controlled generation of dendrimeric siRNA nanostructures. The second-generation dendrimers of siRNA can be effectively complexed with a low-molecular-weight, cationic polymer (poly(β-amino ester), PBAE) to generate stable nanostructures about 160 nm in diameter via strong electrostatic interactions. Condensation and gene silencing efficiencies increase with the increased generation of siRNA dendrimers due to a high charge density and structural flexibility.

  11. Thermodynamic instability of siRNA duplex is a prerequisite for dependable prediction of siRNA activities

    PubMed Central

    Ichihara, Masatoshi; Murakumo, Yoshiki; Masuda, Akio; Matsuura, Toru; Asai, Naoya; Jijiwa, Mayumi; Ishida, Maki; Shinmi, Jun; Yatsuya, Hiroshi; Qiao, Shanlou; Takahashi, Masahide; Ohno, Kinji

    2007-01-01

    We developed a simple algorithm, i-Score (inhibitory-Score), to predict active siRNAs by applying a linear regression model to 2431 siRNAs. Our algorithm is exclusively comprised of nucleotide (nt) preferences at each position, and no other parameters are taken into account. Using a validation dataset comprised of 419 siRNAs, we found that the prediction accuracy of i-Score is as good as those of s-Biopredsi, ThermoComposition21 and DSIR, which employ a neural network model or more parameters in a linear regression model. Reynolds and Katoh also predict active siRNAs efficiently, but the numbers of siRNAs predicted to be active are less than one-eighth of that of i-Score. We additionally found that exclusion of thermostable siRNAs, whose whole stacking energy (ΔG) is less than −34.6 kcal/mol, improves the prediction accuracy in i-Score, s-Biopredsi, ThermoComposition21 and DSIR. We also developed a universal target vector, pSELL, with which we can assay an siRNA activity of any sequence in either the sense or antisense direction. We assayed 86 siRNAs in HEK293 cells using pSELL, and validated applicability of i-Score and the whole ΔG value in designing siRNAs. PMID:17884914

  12. How extreme are extremes?

    NASA Astrophysics Data System (ADS)

    Cucchi, Marco; Petitta, Marcello; Calmanti, Sandro

    2016-04-01

    High temperatures have an impact on the energy balance of any living organism and on the operational capabilities of critical infrastructures. Heat-wave indicators have been mainly developed with the aim of capturing the potential impacts on specific sectors (agriculture, health, wildfires, transport, power generation and distribution). However, the ability to capture the occurrence of extreme temperature events is an essential property of a multi-hazard extreme climate indicator. Aim of this study is to develop a standardized heat-wave indicator, that can be combined with other indices in order to describe multiple hazards in a single indicator. The proposed approach can be used in order to have a quantified indicator of the strenght of a certain extreme. As a matter of fact, extremes are usually distributed in exponential or exponential-exponential functions and it is difficult to quickly asses how strong was an extreme events considering only its magnitude. The proposed approach simplify the quantitative and qualitative communication of extreme magnitude

  13. Bone site-specific delivery of siRNA

    PubMed Central

    Liu, Xinli

    2016-01-01

    Abstract Small interfering RNAs (siRNA) have enormous potential as therapeutics to target and treat various bone disorders such as osteoporosis and cancer bone metastases. However, effective and specific delivery of siRNA therapeutics to bone and bone-specific cells in vivo is very challenging. To realize the full therapeutic potential of siRNA in treating bone disorders, a safe and efficient, tissue- and cell-specific delivery system must be developed. This review focuses on recent advances in bone site-specific delivery of siRNA at the tissue or cellular level. Bone-targeted nanoparticulate siRNA carriers and various bone-targeted moieties such as bisphosphonates, oligopeptides (Asp)8 and (AspSerSer)6, and aptamers are highlighted. Incorporation of these bone-seeking targeting moieties into siRNA carriers allows for recognition of different sub-tissue functional domains of bone and also specific cell types residing in bone tissue. It also provides a means for bone-formation surface-, bone-resorption surface-, or osteoblast-specific targeting and transportation of siRNA therapeutics. The discussion mainly focuses on systemic and local bone-specific delivery of siRNA in osteoporosis and bone metastasis preclinical models. PMID:26642236

  14. Molecular Mechanisms and Biological Functions of siRNA.

    PubMed

    Dana, Hassan; Chalbatani, Ghanbar Mahmoodi; Mahmoodzadeh, Habibollah; Karimloo, Rezvan; Rezaiean, Omid; Moradzadeh, Amirreza; Mehmandoost, Narges; Moazzen, Fateme; Mazraeh, Ali; Marmari, Vahid; Ebrahimi, Mohammad; Rashno, Mohammad Menati; Abadi, Saeid Jan; Gharagouzlo, Elahe

    2017-06-01

    One of the most important advances in biology has been the discovery that siRNA (small interfering RNA) is able to regulate the expression of genes, by a phenomenon known as RNAi (RNA interference). The discovery of RNAi, first in plants and Caenorhabditis elegans and later in mammalian cells, led to the emergence of a transformative view in biomedical research. siRNA has gained attention as a potential therapeutic reagent due to its ability to inhibit specific genes in many genetic diseases. siRNAs can be used as tools to study single gene function both in vivo and in-vitro and are an attractive new class of therapeutics, especially against undruggable targets for the treatment of cancer and other diseases. The siRNA delivery systems are categorized as non-viral and viral delivery systems. The non-viral delivery system includes polymers; Lipids; peptides etc. are the widely studied delivery systems for siRNA. Effective pharmacological use of siRNA requires 'carriers' that can deliver the siRNA to its intended site of action. The carriers assemble the siRNA into supramolecular complexes that display functional properties during the delivery process.

  15. Effect of Surface Properties on Liposomal siRNA Delivery

    PubMed Central

    Xia, Yuqiong; Tian, Jie; Chen, Xiaoyuan

    2015-01-01

    Liposomes are one of the most widely investigated carriers for siRNA delivery. The surface properties of liposomal carriers, including the surface charge, PEGylation, and ligand modification can significantly affect the gene silencing efficiency. Three barriers of systemic siRNA delivery (long blood circulation, efficient tumor penetration and efficient cellular uptake/endosomal escape) are analyzed on liposomal carriers with different surface charges, PEGylations and ligand modifications. Cationic formulations dominate siRNA delivery and neutral formulations also have good performance while anionic formulations are generally not proper for siRNA delivery. The PEG dilemma (prolonged blood circulation vs. reduced cellular uptake/endosomal escape) and the side effect of repeated PEGylated formulation (accelerated blood clearance) were discussed. Effects of ligand modification on cationic and neutral formulations were analyzed. Finally, we summarized the achievements in liposomal siRNA delivery, outlined existing problems and provided some future perspectives. PMID:26695117

  16. Effect of surface properties on liposomal siRNA delivery.

    PubMed

    Xia, Yuqiong; Tian, Jie; Chen, Xiaoyuan

    2016-02-01

    Liposomes are one of the most widely investigated carriers for siRNA delivery. The surface properties of liposomal carriers, including the surface charge, PEGylation, and ligand modification can significantly affect the gene silencing efficiency. Three barriers of systemic siRNA delivery (long blood circulation, efficient tumor penetration and efficient cellular uptake/endosomal escape) are analyzed on liposomal carriers with different surface charges, PEGylations and ligand modifications. Cationic formulations dominate siRNA delivery and neutral formulations also have good performance while anionic formulations are generally not proper for siRNA delivery. The PEG dilemma (prolonged blood circulation vs. reduced cellular uptake/endosomal escape) and the side effect of repeated PEGylated formulation (accelerated blood clearance) were discussed. Effects of ligand modification on cationic and neutral formulations were analyzed. Finally, we summarized the achievements in liposomal siRNA delivery, outlined existing problems and provided some future perspectives. Published by Elsevier Ltd.

  17. Nonviral delivery of synthetic siRNAs in vivo

    PubMed Central

    Akhtar, Saghir; Benter, Ibrahim F.

    2007-01-01

    Sequence-specific gene silencing using small interfering RNA (siRNA) is a Nobel prize–winning technology that is now being evaluated in clinical trials as a potentially novel therapeutic strategy. This article provides an overview of the major pharmaceutical challenges facing siRNA therapeutics, focusing on the delivery strategies for synthetic siRNA duplexes in vivo, as this remains one of the most important issues to be resolved. This article also highlights the importance of understanding the genocompatibility/toxicogenomics of siRNA delivery reagents in terms of their impact on gene-silencing activity and specificity. Collectively, this information is essential for the selection of optimally acting siRNA delivery system combinations for the many proposed applications of RNA interference. PMID:18060020

  18. siRNA delivery: from basics to therapeutic applications.

    PubMed

    Musacchio, Tiziana; Torchilin, Vladimir P

    2013-01-01

    The chance to selectively intervene and stop the development of any gene-dependent disease in different organs and pathologies makes siRNA an ideal therapeutic agent. However, serious issues should be addressed before the real therapeutic use of siRNA. The poor pharmacokinetic properties of siRNA, its short half-life, its low in vivo stability, its fast elimination by kidney filtration and its low transfection efficiency complicate the use of siRNA as a therapeutic molecule. In this review, we will describe the latest and most advanced approaches and strategies undertaken to address these limitations and improve siRNA delivery and its gene silencing efficacy as well as the prospects for its therapeutic applications.

  19. Translocation and encapsulation of siRNA inside carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Mogurampelly, Santosh; Maiti, Prabal K.

    2013-01-01

    We report spontaneous translocation of small interfering RNA (siRNA) inside carbon nanotubes (CNTs) of various diameters and chirality using all atom molecular dynamics simulations with explicit solvent. We use umbrella sampling method to calculate the free energy landscape of the siRNA entry and translocation event. Free energy profiles show that siRNA gains free energy while translocating inside CNT, and barrier for siRNA exit from CNT ranges from 40 to 110 kcal/mol depending on CNT chirality and salt concentration. The translocation time τ decreases with the increase of CNT diameter with a critical diameter of 24 Å for the translocation. In contrast, double strand DNA of the same sequence does not translocate inside CNT due to large free energy barrier for the translocation. This study helps in understanding the nucleic acid transport through nanopores at microscopic level and may help designing carbon nanotube based sensor for siRNA.

  20. Experimental validation of the importance of seed complement frequency to siRNA specificity.

    PubMed

    Anderson, Emily M; Birmingham, Amanda; Baskerville, Scott; Reynolds, Angela; Maksimova, Elena; Leake, Devin; Fedorov, Yuriy; Karpilow, Jon; Khvorova, Anastasia

    2008-05-01

    Pairing between the hexamer seed region of a small interfering RNA (siRNA) guide strand (nucleotides 2-7) and complementary sequences in the 3' UTR of mature transcripts has been implicated as an important element in off-target gene regulation and false positive phenotypes. To better understand the association between seed sequences and off-target profiles we performed an analysis of all possible (4096) hexamers and identified a nonuniform distribution of hexamer frequencies across the 3' UTR transcriptome. Subsequent microarray analysis of cells transfected with siRNAs having seeds with low, medium, or high seed complement frequencies (SCFs) revealed that duplexes with low SCFs generally induced fewer off-targets and off-target phenotypes than molecules with more abundant 3' UTR complements. These findings provide the first experimentally validated strategy for designing siRNAs with enhanced specificity and allow for more accurate interpretation of high throughput screening data generated with existing siRNA/shRNA collections.

  1. Bio-inspired pulmonary surfactant-modified nanogels: A promising siRNA delivery system.

    PubMed

    De Backer, Lynn; Braeckmans, Kevin; Stuart, Marc C A; Demeester, Jo; De Smedt, Stefaan C; Raemdonck, Koen

    2015-05-28

    Inhalation therapy with small interfering RNA (siRNA) is a promising approach in the treatment of pulmonary disorders. However, clinical translation is severely limited by the lack of suitable delivery platforms. In this study, we aim to address this limitation by designing a novel bioinspired hybrid nanoparticle with a core-shell nanoarchitecture, consisting of a siRNA-loaded dextran nanogel (siNG) core and a pulmonary surfactant (Curosurf®) outer shell. The decoration of siNGs with a surfactant shell enhances the colloidal stability and prevents siRNA release in the presence of competing polyanions, which are abundantly present in biofluids. Additionally, the impact of the surfactant shell on the biological efficacy of the siNGs is determined in lung cancer cells. The presence of the surfactants substantially reduces the cellular uptake of siNGs. Remarkably, the lowered intracellular dose does not impede the gene silencing effect, suggesting a crucial role of the pulmonary surfactant in the intracellular processing of the nanoparticles. In order to surmount the observed reduction in cellular dose, folate is incorporated as a targeting ligand in the pulmonary surfactant shell to incite receptor-mediated endocytosis. The latter substantially enhances both cellular uptake and gene silencing potential, achieving efficient knockdown at siRNA concentrations in the low nanomolar range. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Sunspots, Starspots, and Elemental Abundances

    NASA Astrophysics Data System (ADS)

    Doschek, G. A.; Warren, H. P.

    2017-07-01

    Element abundances in the solar photosphere, chromosphere, transition region, and corona are key parameters for investigating sources of the solar wind and for estimating radiative losses in the quiet corona and in dynamical events such as solar flares. Abundances in the solar corona and photosphere differ from each other depending on the first ionization potential (FIP) of the element. Normally, abundances with FIP values less than about 10 eV are about 3-4 times more abundant in the corona than in the photosphere. However, recently, an inverse FIP effect was found in small regions near sunspots where elements with FIP less than 10 eV are less abundant relative to high FIP elements (≥slant 10 eV) than they are in the photosphere. This is similar to fully convective stars with large starspots. The inverse FIP effect is predicted to occur in the vicinity of sunspots/starspots. Up to now, the solar anomalous abundances have only been found in very spatially small areas. In this paper, we show that in the vicinity of sunspots there can be substantially larger areas with abundances that are between coronal and photospheric abundances and sometimes just photospheric abundances. In some cases, the FIP effect tends to shut down near sunspots. We examine several active regions with relatively large sunspots that were observed with the Extreme-ultraviolet Imaging Spectrometer on the Hinode spacecraft in cycle 24.

  3. Small-interfering RNAs (siRNAs) as a promising tool for ocular therapy

    PubMed Central

    Guzman-Aranguez, A; Loma, P; Pintor, J

    2013-01-01

    RNA interference (RNAi) can be used to inhibit the expression of specific genes in vitro and in vivo, thereby providing an extremely useful tool for investigating gene function. Progress in the understanding of RNAi-based mechanisms has opened up new perspectives in therapeutics for the treatment of several diseases including ocular disorders. The eye is currently considered a good target for RNAi therapy mainly because it is a confined compartment and, therefore, enables local delivery of small-interfering RNAs (siRNAs) by topical instillation or direct injection. However, delivery strategies that protect the siRNAs from degradation and are suitable for long-term treatment would be help to improve the efficacy of RNAi-based therapies for ocular pathologies. siRNAs targeting critical molecules involved in the pathogenesis of glaucoma, retinitis pigmentosa and neovascular eye diseases (age-related macular degeneration, diabetic retinopathy and corneal neovascularization) have been tested in experimental animal models, and clinical trials have been conducted with some of them. This review provides an update on the progress of RNAi in ocular therapeutics, discussing the advantages and drawbacks of RNAi-based therapeutics compared to previous treatments. PMID:23937539

  4. Repression of multiple CYP2D genes in mouse primary hepatocytes with a single siRNA construct.

    PubMed

    Elraghy, Omaima; Baldwin, William S

    2015-01-01

    The Cyp2d subfamily is the second most abun-dant subfamily of hepatic drug-metabolizing CYPs. In mice, there are nine Cyp2d members that are believed to have redundant catalytic activity. We are testing and optimizing the ability of one short interfering RNA (siRNA) construct to knockdown the expression of multiple mouse Cyp2ds in primary hepatocytes. Expression of Cyp2d10, Cyp2d11, Cyp2d22, and Cyp2d26 was observed in the primary male mouse hepatocytes. Cyp2d9, which is male-specific and growth hormone-dependent, was not expressed in male primary hepatocytes, potentially because of its dependence on pulsatile growth hormone release from the anterior pituitary. Several different siRNAs at different concentrations and with different reagents were used to knockdown Cyp2d expression. siRNA constructs designed to repress only one construct often mildly repressed several Cyp2d isoforms. A construct designed to knockdown every Cyp2d isoform provided the best results, especially when incubated with transfection reagents designed specifically for primary cell culture. Interestingly, a construct designed to knockdown all Cyp2d isoforms, except Cyp2d10, caused a 2.5× increase in Cyp2d10 expression, presumably because of a compensatory response. However, while RNA expression is repressed 24 h after siRNA treatment, associated changes in Cyp2d-mediated metabolism are tenuous. Overall, this study provides data on the expression of murine Cyp2ds in primary cell lines, valuable information on designing siRNAs for silencing multiple murine CYPs, and potential pros and cons of using siRNA as a tool for repressing Cyp2d and estimating Cyp2d's role in murine xenobiotic metabolism.

  5. Porous silicon microparticles for delivery of siRNA therapeutics.

    PubMed

    Shen, Jianliang; Wu, Xiaoyan; Lee, Yeonju; Wolfram, Joy; Yang, Zhizhou; Mao, Zong-Wan; Ferrari, Mauro; Shen, Haifa

    2015-01-15

    Small interfering RNA (siRNA) can be used to suppress gene expression, thereby providing a new avenue for the treatment of various diseases. However, the successful implementation of siRNA therapy requires the use of delivery platforms that can overcome the major challenges of siRNA delivery, such as enzymatic degradation, low intracellular uptake and lysosomal entrapment. Here, a protocol for the preparation and use of a biocompatible and effective siRNA delivery system is presented. This platform consists of polyethylenimine (PEI) and arginine (Arg)-grafted porous silicon microparticles, which can be loaded with siRNA by performing a simple mixing step. The silicon particles are gradually degraded over time, thereby triggering the formation of Arg-PEI/siRNA nanoparticles. This delivery vehicle provides a means for protecting and internalizing siRNA, without causing cytotoxicity. The major steps of polycation functionalization, particle characterization, and siRNA loading are outlined in detail. In addition, the procedures for determining particle uptake, cytotoxicity, and transfection efficacy are also described.

  6. Chemical and structural diversity of siRNA molecules.

    PubMed

    Nawrot, Barbara; Sipa, Katarzyna

    2006-01-01

    Short interfering RNAs (siRNAs) are 21-23 nt long double-stranded oligoribonucleotides which in mammalian cells exhibit a potency for sequence-specific gene silencing via an RNA interference (RNAi) pathway. It has been already proven that exogenous, chemically synthesized siRNA molecules are effective inhibitors of gene expression and are widely applied for analysis of protein function and proteomics-based target identification. Moreover, since their discovery siRNA molecules have been implemented as potential candidates for therapeutic applications. Variously modified siRNA molecules containing sugar modifications (2'-OMe, -F, -O-allyl, -amino, orthoesters and LNA analogues), internucleotide phospodiester bond modifications (phosphorothioates, boranophosphates), base modifications (s(2)U) as well as 3'-terminal cholesterol-conjugated constructs were investigated as potential candidates for effective inhibition of gene expression. This chapter reviews an impact of chemical and structural modifications of siRNA molecules on their serum and thermal stability, cellular and in vivo activity, cellular uptake, biodistribution and cytotoxicity. Functional analysis of chemically modified siRNA molecules allows for better understanding of the mechanism of the RNA interference process as well as demonstrates immense efforts in optimizing in vivo potency of siRNA molecules for RNAi-based drug design.

  7. Strategies for siRNA navigation to desired cells.

    PubMed

    Sioud, Mouldy

    2015-01-01

    Whilst small interfering (si) RNAs have emerged as a promising therapeutic modality for treating a diversity of human diseases, delivery constitutes the most serious obstacle to siRNA drug development. As the most used delivery agents can enter all cell types, specificity must be built into the delivery agents or directly attached to the siRNA molecules. The use of antibodies, peptides, Peptide-Fc fusions, aptamers, and other targeting ligands has now enabled efficient gene silencing in the desired cell populations/tissues in vitro and in vivo. The present review summarizes these current innovations, which are important for the design of safe therapeutic siRNAs.

  8. SKI2 mediates degradation of RISC 5′-cleavage fragments and prevents secondary siRNA production from miRNA targets in Arabidopsis

    PubMed Central

    Branscheid, Anja; Marchais, Antonin; Schott, Gregory; Lange, Heike; Gagliardi, Dominique; Andersen, Stig Uggerhøj; Voinnet, Olivier; Brodersen, Peter

    2015-01-01

    Small regulatory RNAs are fundamental in eukaryotic and prokaryotic gene regulation. In plants, an important element of post-transcriptional control is effected by 20–24 nt microRNAs (miRNAs) and short interfering RNAs (siRNAs) bound to the ARGONAUTE1 (AGO1) protein in an RNA induced silencing complex (RISC). AGO1 may cleave target mRNAs with small RNA complementarity, but the fate of the resulting cleavage fragments remains incompletely understood. Here, we show that SKI2, SKI3 and SKI8, subunits of a cytoplasmic cofactor of the RNA exosome, are required for degradation of RISC 5′, but not 3′-cleavage fragments in Arabidopsis. In the absence of SKI2 activity, many miRNA targets produce siRNAs via the RNA-dependent RNA polymerase 6 (RDR6) pathway. These siRNAs are low-abundant, and map close to the cleavage site. In most cases, siRNAs were produced 5′ to the cleavage site, but several examples of 3′-spreading were also identified. These observations suggest that siRNAs do not simply derive from RDR6 action on stable 5′-cleavage fragments and hence that SKI2 has a direct role in limiting secondary siRNA production in addition to its function in mediating degradation of 5′-cleavage fragments. PMID:26464441

  9. Chaperonin–Dendrimer Conjugates for siRNA Delivery

    PubMed Central

    Nussbaumer, Martin G.; Duskey, Jason T.; Rother, Martin; Renggli, Kasper; Chami, Mohamed

    2016-01-01

    The group II chaperonin thermosome (THS) is a hollow protein nanoparticle that can encapsulate macromolecular guests. Two large pores grant access to the interior of the protein cage. Poly(amidoamine) (PAMAM) is conjugated into THS to act as an anchor for small interfering RNA (siRNA), allowing to load the THS with therapeutic payload. THS–PAMAM protects siRNA from degradation by RNase A and traffics KIF11 and GAPDH siRNA into U87 cancer cells. By modification of the protein cage with the cell‐penetrating peptide TAT, RNA interference is also induced in PC‐3 cells. THS–PAMAM protein–polymer conjugates are therefore promising siRNA transfection reagents and greatly expand the scope of protein cages in drug delivery applications. PMID:27840795

  10. Non-viral Methods for siRNA Delivery

    PubMed Central

    Gao, Kun; Huang, Leaf

    2009-01-01

    RNA interference (RNAi) as a mechanism to selectively degrade messenger RNA (mRNA) expression has emerged as a potential novel approach for drug target validation and the study of functional genomics. Small interfering RNAs (siRNA) therapeutics has developed rapidly and already there are clinical trials ongoing or planned. Although other challenges remain, delivery strategies for siRNA become the main hurdle that must be resolved prior to the full-scale clinical development of siRNA therapeutics. This article provides an overview of the current delivery strategies for synthetic siRNA, focusing on the targeted, self-assembled nanoparticles which show potential to become a useful and efficient tool in cancer therapy. PMID:19115957

  11. siRNA delivery: Loaded-up microsponges

    NASA Astrophysics Data System (ADS)

    Grabow, Wade W.; Jaeger, Luc

    2012-04-01

    Self-assembled microsponges of hairpin RNA polymers achieve, with one thousand times lower concentration, the same degree of gene silencing in tumour-carrying mice as conventional nanoparticle-based siRNA delivery vehicles.

  12. Generation of siRNA Nanosheets for Efficient RNA Interference

    NASA Astrophysics Data System (ADS)

    Kim, Hyejin; Lee, Jae Sung; Lee, Jong Bum

    2016-04-01

    After the discovery of small interference RNA (siRNA), nanostructured siRNA delivery systems have been introduced to achieve an efficient regulation of the target gene expression. Here we report a new siRNA-generating two dimensional nanostructure in a formation of nanosized sheet. Inspired by tunable mechanical and functional properties of the previously reported RNA membrane, siRNA nanosized sheets (siRNA-NS) with multiple Dicer cleavage sites were prepared. The siRNA-NS has two dimensional structure, providing a large surface area for Dicer to cleave the siRNA-NS for the generation of functional siRNAs. Furthermore, downregulation of the cellular target gene expression was achieved by delivery of siRNA-NS without chemical modification of RNA strands or conjugation to other substances.

  13. Characterization of viral siRNA populations in honey bee colony collapse disorder.

    PubMed

    Chejanovsky, Nor; Ophir, Ron; Schwager, Michal Sharabi; Slabezki, Yossi; Grossman, Smadar; Cox-Foster, Diana

    2014-04-01

    Colony Collapse Disorder (CCD), a special case of collapse of honey bee colonies, has resulted in significant losses for beekeepers. CCD-colonies show abundance of pathogens which suggests that they have a weakened immune system. Since honey bee viruses are major players in colony collapse and given the important role of viral RNA interference (RNAi) in combating viral infections we investigated if CCD-colonies elicit an RNAi response. Deep-sequencing analysis of samples from CCD-colonies from US and Israel revealed abundant small interfering RNAs (siRNA) of 21-22 nucleotides perfectly matching the Israeli acute paralysis virus (IAPV), Kashmir virus and Deformed wing virus genomes. Israeli colonies showed high titers of IAPV and a conserved RNAi-pattern of matching the viral genome. That was also observed in sample analysis from colonies experimentally infected with IAPV. Our results suggest that CCD-colonies set out a siRNA response that is specific against predominant viruses associated with colony losses. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Targeting siRNA Missiles to HER2+ Breast Cancer

    DTIC Science & Technology

    2007-06-01

    Breast Cancer PRINCIPAL INVESTIGATOR: Lali K. Medina-Kauwe, Ph.D. CONTRACTING ORGANIZATION: Cedars-Sinai Medical Center...5a. CONTRACT NUMBER Targeting siRNA Missiles to HER2+ Breast Cancer 5b. GRANT NUMBER W81XWH-06-1-0549 5c. PROGRAM ELEMENT NUMBER 6...that delivery conjugates can be assembled that can direct siRNA molecules to target cells, including HER2+ human breast cancer cells, in culture in

  15. MysiRNA: improving siRNA efficacy prediction using a machine-learning model combining multi-tools and whole stacking energy (ΔG).

    PubMed

    Mysara, Mohamed; Elhefnawi, Mahmoud; Garibaldi, Jonathan M

    2012-06-01

    The investigation of small interfering RNA (siRNA) and its posttranscriptional gene-regulation has become an extremely important research topic, both for fundamental reasons and for potential longer-term therapeutic benefits. Several factors affect the functionality of siRNA including positional preferences, target accessibility and other thermodynamic features. State of the art tools aim to optimize the selection of target siRNAs by identifying those that may have high experimental inhibition. Such tools implement artificial neural network models as Biopredsi and ThermoComposition21, and linear regression models as DSIR, i-Score and Scales, among others. However, all these models have limitations in performance. In this work, a neural-network trained new siRNA scoring/efficacy prediction model was developed based on combining two existing scoring algorithms (ThermoComposition21 and i-Score), together with the whole stacking energy (ΔG), in a multi-layer artificial neural network. These three parameters were chosen after a comparative combinatorial study between five well known tools. Our developed model, 'MysiRNA' was trained on 2431 siRNA records and tested using three further datasets. MysiRNA was compared with 11 alternative existing scoring tools in an evaluation study to assess the predicted and experimental siRNA efficiency where it achieved the highest performance both in terms of correlation coefficient (R(2)=0.600) and receiver operating characteristics analysis (AUC=0.808), improving the prediction accuracy by up to 18% with respect to sensitivity and specificity of the best available tools. MysiRNA is a novel, freely accessible model capable of predicting siRNA inhibition efficiency with improved specificity and sensitivity. This multiclassifier approach could help improve the performance of prediction in several bioinformatics areas. MysiRNA model, part of MysiRNA-Designer package [1], is expected to play a key role in siRNA selection and evaluation.

  16. Transdermal Delivery of siRNA through Microneedle Array

    NASA Astrophysics Data System (ADS)

    Deng, Yan; Chen, Jiao; Zhao, Yi; Yan, Xiaohui; Zhang, Li; Choy, Kwongwai; Hu, Jun; Sant, Himanshu J.; Gale, Bruce K.; Tang, Tao

    2016-02-01

    Successful development of siRNA therapies has significant potential for the treatment of skin conditions (alopecia, allergic skin diseases, hyperpigmentation, psoriasis, skin cancer, pachyonychia congenital) caused by aberrant gene expression. Although hypodermic needles can be used to effectively deliver siRNA through the stratum corneum, the major challenge is that this approach is painful and the effects are restricted to the injection site. Microneedle arrays may represent a better way to deliver siRNAs across the stratum corneum. In this study, we evaluated for the first time the ability of the solid silicon microneedle array for punching holes to deliver cholesterol-modified housekeeping gene (Gapdh) siRNA to the mouse ear skin. Treating the ear with microneedles showed permeation of siRNA in the skin and could reduce Gapdh gene expression up to 66% in the skin without accumulation in the major organs. The results showed that microneedle arrays could effectively deliver siRNA to relevant regions of the skin noninvasively.

  17. Biodegradable Multiamine Polymeric Vector for siRNA Delivery.

    PubMed

    Yuan, Yuanyuan; Gong, Faming; Cao, Yang; Chen, Weicai; Cheng, Du; Shuai, Xintao

    2015-04-01

    The gene silencing activity of small interfering RNA (siRNA) has led to their use as tools for target validation and as potential therapeutics for a variety of diseases. A major challenge is the development of vectors with high delivery efficiency and low toxicity. Although poly(ethylenimine) (PEI) has been regarded as the most promising polymeric vector for nucleic acid delivery, the nonbiodegradable structure greatly hinders its clinical application. In the present study, a diblock copolymer, PEG-PAsp(DIP-DETA), of poly(ethylene glycol) (PEG) and poly(L-aspartic acid) (PAsp) randomly grafted with pH-sensitive 2-(diisopropylamino)ethylamine (DIP) and diethylenetriamine (DETA) groups was synthesized via ring-opening polymerization and aminolysis reaction. Similar to polyethylenimine (PEI), the copolymer possesses a multiamine structure that not only allows effective siRNA complexation at neutral pH but also facilitates lysosomal release of siRNA via a proton buffering effect. Moreover, the poly(L-aspartic acid) backbone renders the vector biodegradability, which is not achievable with PEI. This novel polymeric vector can mediate effective intracellular siRNA delivery in various cancer cells. Consequently, the delivery of BCL-2 siRNA resulted in target gene silencing, inducing apoptosis and inhibiting the growth of cancer cells. These results show the potential of this non-PEI based polymeric vector with proton buffering capacity and biodegradability for siRNA delivery in cancer therapy.

  18. A database of breast oncogenic specific siRNAs.

    PubMed

    Tyagi, Atul; Semwal, Manoj; Sharma, Ashok

    2017-08-18

    Breast cancer is a serious problem causing the death of women across the world. At present, one of the major challenges is to design drugs to target breast cancer specific gene(s). RNA interference (RNAi) is an important technique for targeted gene silencing that may lead to promising novel therapeutic strategies for breast cancer. Therefore, identification of such molecules having high oncogene specificity is the need of the hour. Here, we have developed a database named as Breast Oncogenic Specific siRNAs (BOSS, http://bioinformatics.cimap.res.in/sharma/boss/ ) on the basis of the current research status on siRNA-mediated repression of oncogenes in different breast cancer cell lines. BOSS is a resource of experimentally validated breast oncogenic siRNAs, collected from research articles and patents published yet. The present database contains information on 865 breast oncogenic siRNA entries. Each entry provides comprehensive information of an siRNA that includes its name, sequence, target gene, type of cells, and inhibition value, etc. Additionally, some useful tools like siRNAMAP and BOSS BLAST were also developed and linked with the database. siRNAMAP can be used for the selection of best siRNA against a target gene while BOSS BLAST tool helps to locate the siRNA sequences in deferent oncogenes.

  19. Kinesin spindle protein SiRNA slows tumor progression.

    PubMed

    Marra, Emanuele; Palombo, Fabio; Ciliberto, Gennaro; Aurisicchio, Luigi

    2013-01-01

    The kinesin spindle protein (KSP), a member of the kinesin superfamily of microtubule-based motors, plays a critical role in mitosis as it mediates centrosome separation and bipolar spindle assembly and maintenance. Inhibition of KSP function leads to cell cycle arrest at mitosis with the formation of monoastral microtubule arrays, and ultimately, to cell death. Several KSP inhibitors are currently being studied in clinical trials and provide new opportunities for the development of novel anticancer therapeutics. RNA interference (RNAi) may represent a powerful strategy to interfere with key molecular pathways involved in cancer. In this study, we have established an efficient method for intratumoral delivery of siRNA. We evaluated short interfering RNA (siRNA) duplexes targeting luciferase as surrogate marker or KSP sequence. To examine the potential feasibility of RNAi therapy, the siRNA was transfected into pre-established lesions by means of intratumor electro-transfer of RNA therapeutics (IERT). This technology allowed cell permeation of the nucleic acids and to efficiently knock down gene expression, albeit transiently. The KSP-specific siRNA drastically reduced outgrowth of subcutaneous melanoma and ovarian cancer lesions. Our results show that intratumoral electro-transfer of siRNA is feasible and KSP-specific siRNA may provide a novel strategy for therapeutic intervention.

  20. Enhancing endosomal escape for nanoparticle mediated siRNA delivery

    NASA Astrophysics Data System (ADS)

    Ma, Da

    2014-05-01

    Gene therapy with siRNA is a promising biotechnology to treat cancer and other diseases. To realize siRNA-based gene therapy, a safe and efficient delivery method is essential. Nanoparticle mediated siRNA delivery is of great importance to overcome biological barriers for systemic delivery in vivo. Based on recent discoveries, endosomal escape is a critical biological barrier to be overcome for siRNA delivery. This feature article focuses on endosomal escape strategies used for nanoparticle mediated siRNA delivery, including cationic polymers, pH sensitive polymers, calcium phosphate, and cell penetrating peptides. Work has been done to develop different endosomal escape strategies based on nanoparticle types, administration routes, and target organ/cell types. Also, enhancement of endosomal escape has been considered along with other aspects of siRNA delivery to ensure target specific accumulation, high cell uptake, and low toxicity. By enhancing endosomal escape and overcoming other biological barriers, great progress has been achieved in nanoparticle mediated siRNA delivery.

  1. [SiRNA technology, the gene therapy of the future?].

    PubMed

    Rácz, Zsuzsanna; Hamar, Péter

    2008-01-27

    A new era in genetics started 17 years ago, when co-suppression in petunia was discovered. Later, co-suppression was identified as RNA interference (RNAi) in many plant and lower eukaryote animals. Although an ancient antiviral host defense mechanism in plants, the physiologic role of RNAi in mammals is still not completely understood. RNAi is directed by short interfering RNAs (siRNAs), one subtype of short double stranded RNAs. In this review we summarize the history and mechanisms of RNAi. We also aim to highlight the correlation between structure and efficacy of siRNAs. Delivery is the most important obstacle for siRNA based gene therapy. Viral and nonviral deliveries are discussed. In vivo delivery is the next obstacle to clinical trials with siRNAs. Although hydrodynamic treatment is effective in animals, it cannot be used in human therapy. One possibility is organ selective catheterization. The known side effects of synthesized siRNAs are also discussed. Although there are many problems to face in this new field of gene therapy, successful in vitro and in vivo experiments raise hope for treating human disease with siRNA.

  2. Lipid-based vectors for siRNA delivery

    PubMed Central

    Zhang, Shubiao; Zhi, Defu; Huang, Leaf

    2016-01-01

    siRNA therapeutics has developed rapidly and already there are clinical trials ongoing or planned; however, the delivery of siRNA into cells, tissues or organs remains to be a major obstacle. Lipid-based vectors hold the most promising position among non-viral vectors, as they have a similar structure to cell or organelle membranes. But when used in the form of liposomes, these vectors have shown some problems. Therefore, either the nature of lipids themselves or forms used should be improved. As a novel class of lipid like materials, lipidoids have the advantages of easy synthesis and the ability for delivering siRNA to obtain excellent silencing activity. However, the toxicities of lipidoids have not been thoroughly studied. pH responsive lipids have also gained great attention recently, though some of the amine-based lipids are not novel in terms of chemical structures. More complex self-assembly structures, such as LPD (LPH) and LCP, may provide a good solution to siRNA delivery. They have demonstrated controlled particle morphology and size and siRNA delivery activity for both in vitro and in vivo. PMID:22994300

  3. Stimuli-Responsive Nanoparticles for siRNA Delivery.

    PubMed

    Eloy, Josimar O; Petrilli, Raquel; Lopez, Renata F V; Lee, Robert J

    2015-01-01

    Nanoparticles have been extensively employed to deliver many drugs, including siRNA, for the treatment of a variety of diseases, particularly cancer. Lately, there has been a great deal of effort to design nanoparticles with materials that are able to respond to intrinsic or extrinsic stimuli for "on demand" delivery of siRNA. These nanoparticles are able to trigger siRNA release upon different stimuli, such as a pH decrease, redox gradient, enzyme, light, magnetic field, temperature, ultrasound or electric current. Frequently, the stimuli cause the nanoparticles to undergo protonation, hydrolytic breakdown or phase transition for triggered release of siRNA, resulting in decreased side effects and better therapeutic outcome. While studies have demonstrated efficient in vitro and in vivo delivery, these "smart" nanoparticles have not yet reached the clinic. In this review, we address different classes of nanoparticles, such as polyplexes, lipoplexes, liposomes, polymeric micelles, polymeric, lipid and inorganic nanoparticles, that are able to respond to specific stimuli for siRNA triggered-release, emphasizing their application and discussing the latest advances.

  4. Multifunctional Superparamagnetic Nanoparticles: From Synthesis to siRNA Delivery.

    PubMed

    Arami, Sanam; Mahdavi, Majid; Rashidi, Mohammad Reza; Fathi, Marziyeh; Hejazi, Mohammad Saeid; Samadi, Nasser

    2017-01-01

    Targeted delivery of small interfering RNA (siRNA) to the specific tumor tissues and cells is the key challenge in the development of RNA interference as a therapeutic application. To target breast cancer, we developed a cationic nanoparticle as a therapeutic delivery system. The successful synthesis of the magnetic nanoparticles modified by polyaspartate (PAA) and polyethyleneimine (PEI) was confirmed using fourier transform infrared (FT-IR) measurements. The designed nanoparticle has been characterized evaluating its size and charge before and after nanoplex formation with siRNA. The designed nanoparticle could effectively form nanoplex with siRNA in 2:1 w/w ratio. Survivin siRNA was used to suppress the antiapoptotic gene, survivin, in MCF-7 cells. According to the importance of combinational therapy, Mitoxantrone (MTX) was used as a chemotherapeutic agent as well. The multifunctional nanoparticles have been successfully entered into about 63% of the MCF-7 cells shown via microscopic and flowcytometric methods. This effective cellular uptake led to the cell apoptosis. Down regulation of survivin was determined in mRNA and protein levels using Real Time PCR and western blotting, respectively. Gathering all obtained data, it was concluded that Fe3O4-PAA-PEI nanoparticles can deliver siRNA effectively into the cytoplasm of the MCF-7 breast cancer cells and induce apoptosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Technologies for Controlled, Local Delivery of siRNA

    PubMed Central

    Sarett, Samantha M.; Nelson, Christopher E.; Duvall, Craig L.

    2015-01-01

    The discovery of RNAi in the late 1990s unlocked a new realm of therapeutic possibilities by enabling potent and specific silencing of theoretically any desired genetic target. Better elucidation of the mechanism of action, the impact of chemical modifications that stabilize and reduce nonspecific effects of siRNA molecules, and the key design considerations for effective delivery systems has spurred progress toward developing clinically-successful siRNA therapies. A logical aim for initial siRNA translation is local therapies, as delivering siRNA directly to its site of action helps to ensure that a sufficient dose reaches the target tissue, lessens the potential for off-target side effects, and circumvents the substantial systemic delivery barriers. While topical siRNA delivery has progressed into numerous clinical trials, an enormous opportunity also exists to develop sustained-release, local delivery systems that enable both spatial and temporal control of gene silencing. This review focuses on material platforms that establish both localized and controlled gene silencing, with emphasis on the systems that show most promise for clinical translation. PMID:26476177

  6. Oral siRNA Delivery to Treat Colorectal Liver Metastases.

    PubMed

    Kang, Sung Hun; Revuri, Vishnu; Lee, Sang-Joon; Cho, Sungpil; Park, In-Kyu; Cho, Kwang Jae; Bae, Woo Kyun; Lee, Yong-Kyu

    2017-09-13

    Convenient multiple dosing makes oral administration an ideal route for delivery of therapeutic siRNA. However, hostile GI environments and non-specific biological trafficking prevent from achieving appropriate bioavailability of siRNA. Here, an orally administered AuNP-siRNA-glycol chitosan-taurocholic acid nanoparticle (AR-GT NPs), was developed to selectively deliver Akt2 siRNA and treat colorectal liver metastases (CLM). AR-GT NPs are dual padlocked non-viral vectors in which the initially formed AuNP-siRNA (AR) conjugates are further encompassed by bifunctional glycol chitosan-taurocholic acid (GT) conjugates. Covering the surface of AR with GT protected the Akt2 siRNA from GI degradation, facilitated active transport through enterocytes and enhanced selective accumulation in CLM. Our studies in CLM animal models resulted in the reduction in Akt2 production, followed by initiation of apoptosis in cancer cells after oral administration of Akt2 siRNA-loaded AR-GT. This therapeutic siRNA delivery system may be a promising approach in treating liver-associated diseases.

  7. FRET-labeled siRNA probes for tracking assembly and disassembly of siRNA nanocomplexes.

    PubMed

    Alabi, Christopher A; Love, Kevin T; Sahay, Gaurav; Stutzman, Tina; Young, Whitney T; Langer, Robert; Anderson, Daniel G

    2012-07-24

    The assembly, stability, and timely disassembly of short interfering RNA (siRNA) nanocomplexes have the potential to affect the efficiency of siRNA delivery and gene silencing. As such, the design of new probes that can measure these properties without significantly perturbing the nanocomplexes or their environment may facilitate the study and further development of new siRNA nanocomplexes. Herein, we study Förster resonance energy transfer (FRET)-labeled siRNA probes that can track the assembly, stability, and disassembly of siRNA nanocomplexes in different environments. The probe is composed of two identical siRNAs, each labeled with a fluorophore. Upon nanocomplex formation, the siRNA-bound fluorophores become locally aggregated within the nanocomplex and undergo FRET. A key advantage of this technique is that the delivery vehicle (DV) need not be labeled, thus enabling the characterization of a large variety of nanocarriers, some of which may be difficult or even impossible to label. We demonstrate proof-of-concept by measuring the assembly of various DVs with siRNAs and show good agreement with gel electrophoresis experiments. As a consequence of not having to label the DV, we are able to determine nanocomplex biophysical parameters such as the extracellular apparent dissociation constants (K(D)) and intracellular disassembly half-life for several in-house and proprietary commercial DVs. Furthermore, the lack of DV modification allows for a true direct comparison between DVs as well as correlation between their biophysical properties and gene silencing.

  8. Physcomitrella patens DCL3 Is Required for 22–24 nt siRNA Accumulation, Suppression of Retrotransposon-Derived Transcripts, and Normal Development

    PubMed Central

    Cho, Sung Hyun; Addo-Quaye, Charles; Coruh, Ceyda; Arif, M. Asif; Ma, Zhaorong; Frank, Wolfgang; Axtell, Michael J.

    2008-01-01

    Endogenous 24 nt short interfering RNAs (siRNAs), derived mostly from intergenic and repetitive genomic regions, constitute a major class of endogenous small RNAs in flowering plants. Accumulation of Arabidopsis thaliana 24 nt siRNAs requires the Dicer family member DCL3, and clear homologs of DCL3 exist in both flowering and non-flowering plants. However, the absence of a conspicuous 24 nt peak in the total RNA populations of several non-flowering plants has raised the question of whether this class of siRNAs might, in contrast to the ancient 21 nt microRNAs (miRNAs) and 21–22 nt trans-acting siRNAs (tasiRNAs), be an angiosperm-specific innovation. Analysis of non-miRNA, non-tasiRNA hotspots of small RNA production within the genome of the moss Physcomitrella patens revealed multiple loci that consistently produced a mixture of 21–24 nt siRNAs with a peak at 23 nt. These Pp23SR loci were significantly enriched in transposon content, depleted in overlap with annotated genes, and typified by dense concentrations of the 5-methyl cytosine (5 mC) DNA modification. Deep sequencing of small RNAs from two independent Ppdcl3 mutants showed that the P. patens DCL3 homolog is required for the accumulation of 22–24 nt siRNAs, but not 21 nt siRNAs, at Pp23SR loci. The 21 nt component of Pp23SR-derived siRNAs was also unaffected by a mutation in the RNA-dependent RNA polymerase mutant Pprdr6. Transcriptome-wide, Ppdcl3 mutants failed to accumulate 22–24 nt small RNAs from repetitive regions while transcripts from two abundant families of long terminal repeat (LTR) retrotransposon-associated reverse transcriptases were up-regulated. Ppdcl3 mutants also displayed an acceleration of leafy gametophore production, suggesting that repetitive siRNAs may play a role in the development of P. patens. We conclude that intergenic/repeat-derived siRNAs are indeed a broadly conserved, distinct class of small regulatory RNAs within land plants. PMID:19096705

  9. VisuFect-mediated siRNA delivery into zygotes.

    PubMed

    Joo, Jin Young; Lee, Jonghwan; Ko, Hae Young; Lee, Yong Seung; Heo, Hyejung; Gu, Ha-Na; Cho, Sujeong; Kim, Soonhag

    2015-11-01

    Current methods for delivering foreign genetic materials into mammalian cells are highly successful. However, these methods cannot be applied in oocyte or embryo systems due to their toxicity and low efficiency. Moreover, no satisfactory methods exist for delivering foreign genetic material without inducing physical damage to membranes. Here we developed an organic compound (VisuFect)-mediated small interfering RNA (siRNA) delivery method and evaluated this method in P19 cells and mouse zygotes. Oct4-siRNA conjugated VisuFect (Oct4-siRNA-VF) permeated the zona pellucida effectively and localized inside mouse zygotes without inducing membrane damage. Successful VisuFect-mediated delivery was further demonstrated by strong transcriptional repression of Oct4 expression by the delivered Oct4-siRNA, in addition to repressed embryonic development of mouse zygotes. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Lentivirus-expressed siRNA vectors against Alzheimer disease.

    PubMed

    Peng, Kevin A; Masliah, Eliezer

    2010-01-01

    Amyloid precursor protein (APP) has been implicated in the pathogenesis of Alzheimer disease, and the accumulation of APP products ultimately leads to the familiar histopathological and clinical manifestations associated with this most common form of dementia. A protein that has been shown to promote APP accumulation is beta-secretase (beta-site APP cleaving enzyme 1, or BACE1), which is increased in the cerebrospinal fluid in those affected with Alzheimer disease. Through in vivo studies using APP transgenic mice, we demonstrated that decreasing the expression of BACE1 via lentiviral vector delivery of BACE1 siRNA has the potential for significantly reducing the cleavage of APP, accumulation of these products, and consequent neurodegeneration. As such, lentiviral-expressed siRNA against BACE1 is a therapeutic possibility in the treatment of Alzheimer disease. We detail the use of lentivirus-expressed siRNA as a method to ameliorate Alzheimer disease neuropathology in APP transgenic mice.

  11. Nanotechnology for in vivo targeted siRNA delivery.

    PubMed

    Dahlman, James E; Kauffman, Kevin J; Langer, Robert; Anderson, Daniel G

    2014-01-01

    Small interfering RNAs (siRNAs) can specifically inhibit gene expression. As a result, they have tremendous scientific and clinical potential. However, the use of these molecules in patients and animal models has been limited by challenges with delivery. Intracellular RNA delivery is difficult; it requires a system that protects the siRNA from degradative nucleases in the bloodstream, minimizes clearance by the reticuloendothelial system, maximizes delivery to the target tissue, and promotes entry into, and out of, an endocytic vesicle. Despite these barriers, recent data suggest that RNA may be targeted to cells of interest in vivo. Herein we outline strategies for targeted siRNA delivery, and describe how these strategies may be improved.

  12. Systemic siRNA delivery via hydrodynamic intravascular injection.

    PubMed

    Lewis, David L; Wolff, Jon A

    2007-03-30

    The main barrier to the use of RNAi in mammalian systems is the difficulty in delivering siRNA or shRNA to the appropriate tissues. Although progress has been made in this area, many of the technologies developed require specialized expertise and reagents that are beyond the reach of most investigators. In contrast, the hydrodynamic injection technique is simple to perform and enables highly efficient delivery of naked, unmodified siRNA to a number of tissues, especially the liver. This review describes the development of the technique and explores the possible mechanisms that enable uptake of siRNA to biological effect. Examples of the use of hydrodynamic injection in animal models of disease and for the study of gene function are presented and discussed.

  13. Unraveling siRNA unzipping kinetics with graphene

    NASA Astrophysics Data System (ADS)

    Mogurampelly, Santosh; Panigrahi, Swati; Bhattacharyya, Dhananjay; Sood, A. K.; Maiti, Prabal K.

    2012-08-01

    Using all atom molecular dynamics simulations, we report spontaneous unzipping and strong binding of small interfering RNA (siRNA) on graphene. Our dispersion corrected density functional theory based calculations suggest that nucleosides of RNA have stronger attractive interactions with graphene as compared to DNA residues. These stronger interactions force the double stranded siRNA to spontaneously unzip and bind to the graphene surface. Unzipping always nucleates at one end of the siRNA and propagates to the other end after few base-pairs get unzipped. While both the ends get unzipped, the middle part remains in double stranded form because of torsional constraint. Unzipping probability distributions fitted to single exponential function give unzipping time (τ) of the order of few nanoseconds which decrease exponentially with temperature. From the temperature variation of unzipping time we estimate the energy barrier to unzipping.

  14. Characterization of rice black-streaked dwarf virus- and rice stripe virus-derived siRNAs in singly and doubly infected insect vector Laodelphax striatellus.

    PubMed

    Li, Junmin; Andika, Ida Bagus; Shen, Jiangfeng; Lv, Yuanda; Ji, Yongqiang; Sun, Liying; Chen, Jianping

    2013-01-01

    Replication of RNA viruses in insect cells triggers an antiviral defense that is mediated by RNA interference (RNAi) which generates viral-derived small interfering RNAs (siRNAs). However, it is not known whether an antiviral RNAi response is also induced in insects by reoviruses, whose double-stranded RNA genome replication is thought to occur within core particles. Deep sequencing of small RNAs showed that when the small brown planthopper (Laodelphax striatellus) was infected by Rice black-streaked dwarf virus (RBSDV) (Reoviridae; Fijivirus), more viral-derived siRNAs accumulated than when the vector insect was infected by Rice stripe virus (RSV), a negative single-stranded RNA virus. RBSDV siRNAs were predominantly 21 and 22 nucleotides long and there were almost equal numbers of positive and negative sense. RBSDV siRNAs were frequently generated from hotspots in the 5'- and 3'-terminal regions of viral genome segments but these hotspots were not associated with any predicted RNA secondary structures. Under laboratory condition, L. striatellus can be infected simultaneously with RBSDV and RSV. Double infection enhanced the accumulation of particular genome segments but not viral coat protein of RBSDV and correlated with an increase in the abundance of siRNAs derived from RBSDV. The results of this study suggest that reovirus replication in its insect vector potentially induces an RNAi-mediated antiviral response.

  15. Beryllium and Boron abundances in population II stars

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The scientific focus of this program was to undertake UV spectroscopic abundance analyses of extremely metal poor stars with attention to determining abundances of light elements such as beryllium and boron. The abundances are likely to reflect primordial abundances within the early galaxy and help to constrain models for early galactic nucleosynthesis. The general metal abundances of these stars are also important for understanding stellar evolution.

  16. Innovative Delivery of siRNA to Solid Tumors by Super Carbonate Apatite

    PubMed Central

    Wu, Xin; Yamamoto, Hirofumi; Nakanishi, Hiroyuki; Yamamoto, Yuki; Inoue, Akira; Tei, Mitsuyoshi; Hirose, Hajime; Uemura, Mamoru; Nishimura, Junichi; Hata, Taishi; Takemasa, Ichiro; Mizushima, Tsunekazu; Hossain, Sharif; Akaike, Toshihiro; Matsuura, Nariaki; Doki, Yuichiro; Mori, Masaki

    2015-01-01

    RNA interference (RNAi) technology is currently being tested in clinical trials for a limited number of diseases. However, systemic delivery of small interfering RNA (siRNA) to solid tumors has not yet been achieved in clinics. Here, we introduce an in vivo pH-sensitive delivery system for siRNA using super carbonate apatite (sCA) nanoparticles, which is the smallest class of nanocarrier. These carriers consist simply of inorganic ions and accumulate specifically in tumors, yet they cause no serious adverse events in mice and monkeys. Intravenously administered sCA-siRNA abundantly accumulated in the cytoplasm of tumor cells at 4 h, indicating quick achievement of endosomal escape. sCA-survivin-siRNA induced apoptosis in HT29 tumors and significantly inhibited in vivo tumor growth of HCT116, to a greater extent than two other in vivo delivery reagents. With innovative in vivo delivery efficiency, sCA could be a useful nanoparticle for the therapy of solid tumors. PMID:25738937

  17. Innovative delivery of siRNA to solid tumors by super carbonate apatite.

    PubMed

    Wu, Xin; Yamamoto, Hirofumi; Nakanishi, Hiroyuki; Yamamoto, Yuki; Inoue, Akira; Tei, Mitsuyoshi; Hirose, Hajime; Uemura, Mamoru; Nishimura, Junichi; Hata, Taishi; Takemasa, Ichiro; Mizushima, Tsunekazu; Hossain, Sharif; Akaike, Toshihiro; Matsuura, Nariaki; Doki, Yuichiro; Mori, Masaki

    2015-01-01

    RNA interference (RNAi) technology is currently being tested in clinical trials for a limited number of diseases. However, systemic delivery of small interfering RNA (siRNA) to solid tumors has not yet been achieved in clinics. Here, we introduce an in vivo pH-sensitive delivery system for siRNA using super carbonate apatite (sCA) nanoparticles, which is the smallest class of nanocarrier. These carriers consist simply of inorganic ions and accumulate specifically in tumors, yet they cause no serious adverse events in mice and monkeys. Intravenously administered sCA-siRNA abundantly accumulated in the cytoplasm of tumor cells at 4 h, indicating quick achievement of endosomal escape. sCA-survivin-siRNA induced apoptosis in HT29 tumors and significantly inhibited in vivo tumor growth of HCT116, to a greater extent than two other in vivo delivery reagents. With innovative in vivo delivery efficiency, sCA could be a useful nanoparticle for the therapy of solid tumors.

  18. Role of Arabidopsis AGO6 in siRNA accumulation, DNA methylation and transcriptional gene silencing

    PubMed Central

    Zheng, Xianwu; Zhu, Jianhua; Kapoor, Avnish; Zhu, Jian-Kang

    2007-01-01

    Argonautes (AGOs) are conserved proteins that contain an RNA-binding PAZ domain and an RNase H-like PIWI domain. In Arabidopsis, except for AGO1, AGO4 and AGO7, the roles of seven other AGOs in gene silencing are not known. We found that a mutation in AGO6 partially suppresses transcriptional gene silencing in the DNA demethylase mutant ros1-1. In ago6-1ros1-1 plants, RD29A promoter short interfering RNAs (siRNAs) are less abundant, and cytosine methylation at both transgenic and endogenous RD29A promoters is reduced, compared to that in ros1-1. Interestingly, the ago4-1 mutation has a stronger suppression of the transcriptional silencing phenotype of ros1-1 mutant. Analysis of cytosine methylation at the endogenous MEA-ISR, AtREP2 and SIMPLEHAT2 loci revealed that the CpNpG and asymmetric methylation levels are lower in either of the ago6-1 and ago4-1 single mutants than those in the wild type, and the levels are the lowest in the ago6-1ago4-1 double mutant. These results suggest that AGO6 is important for the accumulation of specific heterochromatin-related siRNAs, and for DNA methylation and transcriptional gene silencing, this function is partly redundant with AGO4. PMID:17332757

  19. Gene silencing by chemically modified siRNAs.

    PubMed

    Engels, Joachim W

    2013-03-25

    RNA interference (RNAi) has not only already risen as a gold standard for validating gene function in basic science studies, but also holds great promise as a new therapeutic paradigm. Advantages of RNAi-based therapeutics include relatively fast initial screening and the ability to target proteins not yet addressable by traditional drug design strategies. In this review we describe the development of chemically modified small inhibiting siRNAs and their application as potential therapeutics during the past decade. Focus is on proper siRNA design, choice of chemical modification and how to circumvent immunogenicity as well as off-target effects.

  20. sIR: siRNA Information Resource, a web-based tool for siRNA sequence design and analysis and an open access siRNA database.

    PubMed

    Shah, Jyoti K; Garner, Harold R; White, Michael A; Shames, David S; Minna, John D

    2007-05-31

    RNA interference has revolutionized our ability to study the effects of altering the expression of single genes in mammalian (and other) cells through targeted knockdown of gene expression. In this report we describe a web-based computational tool, siRNA Information Resource (sIR), which consists of a new open source database that contains validation information about published siRNA sequences and also provides a user-friendly interface to design and analyze siRNA sequences against a chosen target sequence. The siRNA design tool described in this paper employs empirically determined rules derived from a meta-analysis of the published data; it uses a weighted scoring system that determines the optimal sequence within a target mRNA and thus aids in the rational selection of siRNA sequences. This scoring system shows a non-linear correlation with the knockdown efficiency of siRNAs. sIR provides a fast, customized BLAST output for all selected siRNA sequences against a variety of databases so that the user can verify the uniqueness of the design. We have pre-designed siRNAs for all the known human genes (24,502) in the Refseq database. These siRNAs were pre-BLASTed against the human Unigene database to estimate the target specificity and all results are available online. Although most of the rules for this scoring system were influenced by previously published rules, the weighted scoring system provides better flexibility in designing an appropriate siRNA when compared to the un-weighted scoring system. sIR is not only a comprehensive tool used to design siRNA sequences and lookup pre-designed siRNAs, but it is also a platform where researchers can share information on siRNA design and use.

  1. Improved nucleic acid descriptors for siRNA efficacy prediction

    PubMed Central

    Sciabola, Simone; Cao, Qing; Orozco, Modesto; Faustino, Ignacio; Stanton, Robert V.

    2013-01-01

    Although considerable progress has been made recently in understanding how gene silencing is mediated by the RNAi pathway, the rational design of effective sequences is still a challenging task. In this article, we demonstrate that including three-dimensional descriptors improved the discrimination between active and inactive small interfering RNAs (siRNAs) in a statistical model. Five descriptor types were used: (i) nucleotide position along the siRNA sequence, (ii) nucleotide composition in terms of presence/absence of specific combinations of di- and trinucleotides, (iii) nucleotide interactions by means of a modified auto- and cross-covariance function, (iv) nucleotide thermodynamic stability derived by the nearest neighbor model representation and (v) nucleic acid structure flexibility. The duplex flexibility descriptors are derived from extended molecular dynamics simulations, which are able to describe the sequence-dependent elastic properties of RNA duplexes, even for non-standard oligonucleotides. The matrix of descriptors was analysed using three statistical packages in R (partial least squares, random forest, and support vector machine), and the most predictive model was implemented in a modeling tool we have made publicly available through SourceForge. Our implementation of new RNA descriptors coupled with appropriate statistical algorithms resulted in improved model performance for the selection of siRNA candidates when compared with publicly available siRNA prediction tools and previously published test sets. Additional validation studies based on in-house RNA interference projects confirmed the robustness of the scoring procedure in prospective studies. PMID:23241392

  2. siRNA Delivery by Stimuli-Sensitive Nanocarriers

    PubMed Central

    Salzano, Giuseppina; Costa, Daniel F.; Torchilin, Vladimir P.

    2016-01-01

    Since its discovery in late 1990s, small interfering RNA (siRNA) has become a significant biopharmaceutical research tool and a powerful option for the treatment of different human diseases based on altered gene-expression. Despite promising data from many pre-clinical studies, concrete hurdles still need to be overcome to bring therapeutic siRNAs in clinic. The design of stimuli-sensitive nanopreparations for gene therapy is a lively area of the current research. Compared to conventional systems for siRNA delivery, this type of platform can respond to local stimuli that are characteristics of the pathological area of interest, allowing the release of nucleic acids at the desired site. Acidic pH, abnormal levels of enzymes, altered redox potential and magnetic field are examples of stimuli exploited in the design of stimuli-sensitive nanoparticles. In this review, we discuss on recent stimuli-sensitive strategies for siRNA delivery and we highlight on the potential of combining multiple stimuli-sensitive strategies in the same nano-platform for a better therapeutic outcome. PMID:26486143

  3. Extreme Heat

    MedlinePlus

    ... Hurricanes Landslides & Debris Flow Nuclear Blast Nuclear Power Plants Pandemic Power Outages Radiological Dispersion Device Severe Weather Snowstorms & Extreme Cold Space Weather Thunderstorms & Lightning Tornadoes ...

  4. Overcoming the Challenges of siRNA Delivery: Nanoparticle Strategies.

    PubMed

    Shajari, Neda; Mansoori, Behzad; Davudian, Sadaf; Mohammadi, Ali; Baradaran, Behzad

    2017-01-01

    Despite therapeutics based on siRNA have an immense potential for the treatment of incurable diseases such as cancers. However, the in vivo utilization of siRNA and also the delivery of this agent to the target site is one of the most controversial challenges. The helpful assistance by nanoparticles can improve stable delivery and also enhance efficacy. More nanoparticle-based siRNA therapeutics is expected to become available in the near future. The search strategy followed the guidelines of the Centre of Reviews and Dissemination. The studies were identified from seven databases (Scopus, Web of Science, Academic Search Premiere, CINAHL, Medline Ovid, Eric and Cochrane Library). Studies was selected based on titles, abstracts and full texts. One hundred twenty nine papers were included in the review. These papers defined hurdles in RNAi delivery and also strategies to overcome these hurdles. This review discussed the existing hurdles for systemic administration of siRNA as therapeutic agents and highlights the various strategies to overcome these hurdles, including lipid-based nanoparticles and polymeric nanoparticles, and we also briefly reviewed chemical modification. Delivery of siRNA to the target site is the biggest challenge for its application in the clinic. The findings of this review confirmed by encapsulation siRNA in the nanoparticles can overcome these challenges. The rapid progress in nanotechnology has enabled the development of effective nanoparticles as the carrier for siRNA delivery. However, our data about siRNA-based therapeutics and also nanomedicine are still limited. More clinical data needs to be completely understood in the benefits and drawbacks of siRNA-based therapeutics. Prospective studies must pay attention to the in vivo safety profiles of the different delivery systems, including uninvited immune system stimulation and cytotoxicity. In essence, the development of nontoxic, biocompatible, and biodegradable delivery systems for

  5. Mucus barrier-triggered disassembly of siRNA nanocarriers

    NASA Astrophysics Data System (ADS)

    Thomsen, Troels B.; Li, Leon; Howard, Kenneth A.

    2014-10-01

    The mucus overlying mucosal epithelial surfaces presents not only a biological barrier to the penetration of potential pathogens, but also therapeutic modalities including RNAi-based nanocarriers. Movement of nanomedicines across the mucus barriers of the gastrointestinal mucosa is modulated by interactions of the nanomedicine carriers with mucin glycoproteins inside the mucus, potentiated by the large surface area of the nanocarrier. We have developed a fluorescence activation-based reporter system showing that the interaction between polyanionic mucins and the cationic chitosan/small interfering RNA (siRNA) nanocarriers (polyplexes) results in the disassembly and consequent triggered release of fluorescent siRNA. The quantity of release was found to be dependent on the molar ratio between chitosan amino groups and siRNA phosphate groups (NP ratio) of the polyplexes with a maximal estimated 48.6% release of siRNA over 30 min at NP 60. Furthermore, a microfluidic in vitro model of the gastrointestinal mucus barrier was used to visualize the dynamic interaction between chitosan/siRNA nanocarriers and native purified porcine stomach mucins. We observed strong interactions and aggregations at the mucin-liquid interface, followed by an NP ratio dependent release and consequent diffusion of siRNA across the mucin barrier. This work describes a new model of interaction at the nanocarrier-mucin interface and has important implications for the design and development of nucleic acid-based nanocarrier therapeutics for mucosal disease treatments and also provides insights into nanoscale pathogenic processes.The mucus overlying mucosal epithelial surfaces presents not only a biological barrier to the penetration of potential pathogens, but also therapeutic modalities including RNAi-based nanocarriers. Movement of nanomedicines across the mucus barriers of the gastrointestinal mucosa is modulated by interactions of the nanomedicine carriers with mucin glycoproteins inside the

  6. siRNA machinery in whitefly (Bemisia tabaci).

    PubMed

    Upadhyay, Santosh Kumar; Dixit, Sameer; Sharma, Shailesh; Singh, Harpal; Kumar, Jitesh; Verma, Praveen C; Chandrashekar, K

    2013-01-01

    RNA interference has been emerged as an utmost tool for the control of sap sucking insect pests. Systemic response is necessary to control them in field condition. Whitefly is observed to be more prone to siRNA in recent studies, however the siRNA machinery and mechanism is not well established. To identify the core siRNA machinery, we curated transcriptome data of whitefly from NCBI database. Partial mRNA sequences encoding Dicer2, R2D2, Argonaute2 and Sid1 were identified by tblastn search of homologous sequences from Aphis glycines and Tribolium castaneum. Complete encoding sequences were obtained by RACE, protein sequences derived by Expasy translate tool and confirmed by blastp analysis. Conserved domain search and Prosite-Scan showed similar domain architecture as reported in homologs from related insects. We found helicase, PAZ, RNaseIIIa, RNaseIIIb and double-stranded RNA-binding fold (DSRBF) in Dicer2; DsRBD in R2D2; and PAZ and PIWI domains in Argonaute2. Eleven transmembrane domains were detected in Sid1. Sequence homology and phylogenetic analysis revealed that RNAi machinery of whitefly is close to Aphids. Real-time PCR analysis showed similar expression of these genes in different developmental stages as reported in A. glycines and T. castaneum. Further, the expression level of above genes was quite similar to the housekeeping gene actin. Availability of core siRNA machinery including the Sid1 and their universal expression in reasonable quantity indicated significant response of whitefly towards siRNA. Present report opens the way for controlling whitefly, one of the most destructive crop insect pest.

  7. siRNA Machinery in Whitefly (Bemisia tabaci)

    PubMed Central

    Upadhyay, Santosh Kumar; Dixit, Sameer; Sharma, Shailesh; Singh, Harpal; Kumar, Jitesh; Verma, Praveen C.; Chandrashekar, K.

    2013-01-01

    Background RNA interference has been emerged as an utmost tool for the control of sap sucking insect pests. Systemic response is necessary to control them in field condition. Whitefly is observed to be more prone to siRNA in recent studies, however the siRNA machinery and mechanism is not well established. Methodology/Principal Findings To identify the core siRNA machinery, we curated transcriptome data of whitefly from NCBI database. Partial mRNA sequences encoding Dicer2, R2D2, Argonaute2 and Sid1 were identified by tblastn search of homologous sequences from Aphis glycines and Tribolium castaneum. Complete encoding sequences were obtained by RACE, protein sequences derived by Expasy translate tool and confirmed by blastp analysis. Conserved domain search and Prosite-Scan showed similar domain architecture as reported in homologs from related insects. We found helicase, PAZ, RNaseIIIa, RNaseIIIb and double-stranded RNA-binding fold (DSRBF) in Dicer2; DsRBD in R2D2; and PAZ and PIWI domains in Argonaute2. Eleven transmembrane domains were detected in Sid1. Sequence homology and phylogenetic analysis revealed that RNAi machinery of whitefly is close to Aphids. Real-time PCR analysis showed similar expression of these genes in different developmental stages as reported in A. glycines and T. castaneum. Further, the expression level of above genes was quite similar to the housekeeping gene actin. Conclusions/Significance Availability of core siRNA machinery including the Sid1 and their universal expression in reasonable quantity indicated significant response of whitefly towards siRNA. Present report opens the way for controlling whitefly, one of the most destructive crop insect pest. PMID:24391810

  8. Molecular Characteristics and Efficacy of 16D10 siRNAs in Inhibiting Root-Knot Nematode Infection in Transgenic Grape Hairy Roots

    PubMed Central

    Chronis, Demosthenis; Wang, Xiaohong; Cousins, Peter; Zhong, Gan-Yuan

    2013-01-01

    Root-knot nematodes (RKNs) infect many annual and perennial crops and are the most devastating soil-born pests in vineyards. To develop a biotech-based solution for controlling RKNs in grapes, we evaluated the efficacy of plant-derived RNA interference (RNAi) silencing of a conserved RKN effector gene, 16D10, for nematode resistance in transgenic grape hairy roots. Two hairpin-based silencing constructs, containing a stem sequence of 42 bp (pART27-42) or 271 bp (pART27-271) of the 16D10 gene, were transformed into grape hairy roots and compared for their small interfering RNA (siRNA) production and efficacy on suppression of nematode infection. Transgenic hairy root lines carrying either of the two RNAi constructs showed less susceptibility to nematode infection compared with control. Small RNA libraries from four pART27-42 and two pART27-271 hairy root lines were sequenced using an Illumina sequencing technology. The pART27-42 lines produced hundred times more 16D10-specific siRNAs than the pART27-271 lines. On average the 16D10 siRNA population had higher GC content than the 16D10 stem sequences in the RNAi constructs, supporting previous observation that plant dicer-like enzymes prefer GC-rich sequences as substrates for siRNA production. The stems of the 16D10 RNAi constructs were not equally processed into siRNAs. Several hot spots for siRNA production were found in similar positions of the hairpin stems in pART27-42 and pART27-271. Interestingly, stem sequences at the loop terminus produced more siRNAs than those at the stem base. Furthermore, the relative abundance of guide and passenger single-stranded RNAs from putative siRNA duplexes was largely correlated with their 5′ end thermodynamic strength. This study demonstrated the feasibility of using a plant-derived RNAi approach for generation of novel nematode resistance in grapes and revealed several interesting molecular characteristics of transgene siRNAs important for optimizing plant RNAi constructs

  9. Molecular characteristics and efficacy of 16D10 siRNAs in inhibiting root-knot nematode infection in transgenic grape hairy roots.

    PubMed

    Yang, Yingzhen; Jittayasothorn, Yingyos; Chronis, Demosthenis; Wang, Xiaohong; Cousins, Peter; Zhong, Gan-Yuan

    2013-01-01

    Root-knot nematodes (RKNs) infect many annual and perennial crops and are the most devastating soil-born pests in vineyards. To develop a biotech-based solution for controlling RKNs in grapes, we evaluated the efficacy of plant-derived RNA interference (RNAi) silencing of a conserved RKN effector gene, 16D10, for nematode resistance in transgenic grape hairy roots. Two hairpin-based silencing constructs, containing a stem sequence of 42 bp (pART27-42) or 271 bp (pART27-271) of the 16D10 gene, were transformed into grape hairy roots and compared for their small interfering RNA (siRNA) production and efficacy on suppression of nematode infection. Transgenic hairy root lines carrying either of the two RNAi constructs showed less susceptibility to nematode infection compared with control. Small RNA libraries from four pART27-42 and two pART27-271 hairy root lines were sequenced using an Illumina sequencing technology. The pART27-42 lines produced hundred times more 16D10-specific siRNAs than the pART27-271 lines. On average the 16D10 siRNA population had higher GC content than the 16D10 stem sequences in the RNAi constructs, supporting previous observation that plant dicer-like enzymes prefer GC-rich sequences as substrates for siRNA production. The stems of the 16D10 RNAi constructs were not equally processed into siRNAs. Several hot spots for siRNA production were found in similar positions of the hairpin stems in pART27-42 and pART27-271. Interestingly, stem sequences at the loop terminus produced more siRNAs than those at the stem base. Furthermore, the relative abundance of guide and passenger single-stranded RNAs from putative siRNA duplexes was largely correlated with their 5' end thermodynamic strength. This study demonstrated the feasibility of using a plant-derived RNAi approach for generation of novel nematode resistance in grapes and revealed several interesting molecular characteristics of transgene siRNAs important for optimizing plant RNAi constructs.

  10. siRNAs from an X-linked satellite repeat promote X-chromosome recognition in Drosophila melanogaster.

    PubMed

    Menon, Debashish U; Coarfa, Cristian; Xiao, Weimin; Gunaratne, Preethi H; Meller, Victoria H

    2014-11-18

    Highly differentiated sex chromosomes create a lethal imbalance in gene expression in one sex. To accommodate hemizygosity of the X chromosome in male fruit flies, expression of X-linked genes increases twofold. This is achieved by the male- specific lethal (MSL) complex, which modifies chromatin to increase expression. Mutations that disrupt the X localization of this complex decrease the expression of X-linked genes and reduce male survival. The mechanism that restricts the MSL complex to X chromatin is not understood. We recently reported that the siRNA pathway contributes to localization of the MSL complex, raising questions about the source of the siRNAs involved. The X-linked 1.688 g/cm(3) satellite related repeats (1.688(X) repeats) are restricted to the X chromosome and produce small RNA, making them an attractive candidate. We tested RNA from these repeats for a role in dosage compensation and found that ectopic expression of single-stranded RNAs from 1.688(X) repeats enhanced the male lethality of mutants with defective X recognition. In contrast, expression of double-stranded hairpin RNA from a 1.688(X) repeat generated abundant siRNA and dramatically increased male survival. Consistent with improved survival, X localization of the MSL complex was largely restored in these males. The striking distribution of 1.688(X) repeats, which are nearly exclusive to the X chromosome, suggests that these are cis-acting elements contributing to identification of X chromatin.

  11. Docosahexaenoic Acid Conjugation Enhances Distribution and Safety of siRNA upon Local Administration in Mouse Brain

    PubMed Central

    Nikan, Mehran; Osborn, Maire F; Coles, Andrew H; Godinho, Bruno MDC; Hall, Lauren M; Haraszti, Reka A; Hassler, Matthew R; Echeverria, Dimas; Aronin, Neil; Khvorova, Anastasia

    2016-01-01

    The use of siRNA-based therapies for the treatment of neurodegenerative disease requires efficient, nontoxic distribution to the affected brain parenchyma, notably the striatum and cortex. Here, we describe the synthesis and activity of a fully chemically modified siRNA that is directly conjugated to docosahexaenoic acid (DHA), the most abundant polyunsaturated fatty acid in the mammalian brain. DHA conjugation enables enhanced siRNA retention throughout both the ipsilateral striatum and cortex following a single, intrastriatal injection (ranging from 6–60 μg). Within these tissues, DHA conjugation promotes internalization by both neurons and astrocytes. We demonstrate efficient and specific silencing of Huntingtin mRNA expression in both the ipsilateral striatum (up to 73%) and cortex (up to 51%) after 1 week. Moreover, following a bilateral intrastriatal injection (60 μg), we achieve up to 80% silencing of a secondary target, Cyclophilin B, at both the mRNA and protein level. Importantly, DHA-hsiRNAs do not induce neural cell death or measurable innate immune activation following administration of concentrations over 20 times above the efficacious dose. Thus, DHA conjugation is a novel strategy for improving siRNA activity in mouse brain, with potential to act as a new therapeutic platform for the treatment of neurodegenerative disorders. PMID:27504598

  12. Utilizing Selected Di- and Trinucleotides of siRNA to Predict RNAi Activity

    PubMed Central

    Han, Ye; Liu, Yuanning; Zhang, Hao; He, Fei; Shu, Chonghe

    2017-01-01

    Small interfering RNAs (siRNAs) induce posttranscriptional gene silencing in various organisms. siRNAs targeted to different positions of the same gene show different effectiveness; hence, predicting siRNA activity is a crucial step. In this paper, we developed and evaluated a powerful tool named “siRNApred” with a new mixed feature set to predict siRNA activity. To improve the prediction accuracy, we proposed 2-3NTs as our new features. A Random Forest siRNA activity prediction model was constructed using the feature set selected by our proposed Binary Search Feature Selection (BSFS) algorithm. Experimental data demonstrated that the binding site of the Argonaute protein correlates with siRNA activity. “siRNApred” is effective for selecting active siRNAs, and the prediction results demonstrate that our method can outperform other current siRNA activity prediction methods in terms of prediction accuracy. PMID:28243313

  13. Lipid flippases promote antiviral silencing and the biogenesis of viral and host siRNAs in Arabidopsis.

    PubMed

    Guo, Zhongxin; Lu, Jinfeng; Wang, Xianbing; Zhan, Binhui; Li, Wanxiang; Ding, Shou-Wei

    2017-02-07

    Dicer-mediated processing of virus-specific dsRNA into short interfering RNAs (siRNAs) in plants and animals initiates a specific antiviral defense by RNA interference (RNAi). In this study, we developed a forward genetic screen for the identification of host factors required for antiviral RNAi in Arabidopsis thaliana Using whole-genome sequencing and a computational pipeline, we identified aminophospholipid transporting ATPase 2 (ALA2) and the related ALA1 in the type IV subfamily of P-type ATPases as key components of antiviral RNAi. ALA1 and ALA2 are flippases, which are transmembrane lipid transporter proteins that transport phospholipids across cellular membranes. We found that the ala1/ala2 single- and double-mutant plants exhibited enhanced disease susceptibility to cucumber mosaic virus when the virus-encoded function to suppress RNAi was disrupted. Notably, the antiviral activity of both ALA1 and ALA2 was abolished by a single amino acid substitution known to inactivate the flippase activity. Genetic analysis revealed that ALA1 and ALA2 acted to enhance the amplification of the viral siRNAs by RNA-dependent RNA polymerase (RdRP) 1 (RDR1) and RDR6 and of the endogenous virus-activated siRNAs by RDR1. RNA virus replication by plant viral RdRPs occurs inside vesicle-like membrane invaginations induced by the recruitment of the viral RdRP and host factors to subcellular membrane microdomains enriched with specific phospholipids. Our results suggest that the phospholipid transporter activity of ALA1/ALA2 may be necessary for the formation of similar invaginations for the synthesis of dsRNA precursors of highly abundant viral and host siRNAs by the cellular RdRPs.

  14. Inhibition of liver fibrosis using vitamin A-coupled liposomes to deliver matrix metalloproteinase-2 siRNA in vitro

    PubMed Central

    LI, YIPING; LIU, FENG; DING, FENGAN; CHEN, PINGSHENG; TANG, MENG

    2015-01-01

    Hepatic fibrosis is a common form of wound healing in response to chronic liver injuries and can lead to more serious complications, including mortality. It is well-established that hepatic stellate cells (HSCs) are central mediators of hepatic fibrosis, and matrix metalloproteinase-2 (MMP-2) is important in the formation of liver fibrosis. In addition, HSCs are the primary cells secreting MMP-2 and extracellular matrix, therefore, there has been increasing interest in developing agents with high selectivity towards HSCs. However, no clinical drugs based on MMP-2, directed against HSCs, have been used to prevent fibrosis. Following consideration of the abundant vitamin A (VitA) receptors expressed on the cellular membrane of HSCs, the present study constructed VitA-coupled liposomes (VitA-lips) using dicyclohexylcarbodiimide-1, 3-diaminopentane condensation, rotatory film processing and ultrasonic oscillation. The results revealed that the liposomes exhibited low cytotoxicity and a suitable binding ability to MMP-2 small interference (si)RNA. Furthermore, the liposomes effectively delivered MMP-2 siRNA to the HSC-T6 cells. When HSCs were treated with the liposomes carrying MMP-2 siRNA (VitA-lip-MMP-2 siRNA), the mRNA expression and activity of MMP-2, and the protein expression levels of α-smooth muscle actin and type I collagen were significantly reduced. These results suggested that inhibition of the expression of MMP-2 in HSC-T6 cells may contribute to preventing hepatic fibrosis, and provided experimental support to the development of specific drugs against MMP-2 to prevent fibrogenesis in chronic liver disease. PMID:26017616

  15. Identification of effective siRNA against K-ras in human pancreatic cancer cell line MiaPaCa-2 by siRNA expression cassette.

    PubMed

    Wang, Wei; Wang, Chun-You; Dong, Ju-Hua; Chen, Xiong; Zhang, Min; Zhao, Gang

    2005-04-07

    We shall construct the small interfering RNA (siRNA) expression cassette (SEC) targeting activated K-ras gene sequence, identify more effective siRNA sequence against K-ras gene in human pancreatic cancer cell line MiaPaCa-2 by SEC and reveal the anti-cancer effects of RNA interference (RNAi) and its therapeutic possibilities. Three different sites of SECs were constructed by PCR. K1/siRNA, K2/siRNA and K3/siRNA are located at sites 194, 491 and 327, respectively. They were transfected into MiaPaCa-2 cells by liposome to inhibit the expression of activated K-ras. In the interfering groups of sites 194 and 491, we detected the apoptosis in cells by FACS after they were incubated for 48 h, then we tested the alternation of K-ras gene in MiaPaCa-2 cells by RT-PCR immunofluorescence, respectively. Introduction of the K1/siRNA and K2/siRNA against K-ras into MiaPaCa-2 cells leads to increased apoptosis, and the number of apoptotic cells is increased compared with control cells. The tests of RT-PCR immunofluorescence show the effects of inhibiting expression of activated K-ras gene by RNA interference in the K1/siRNA and K2/siRNA groups. We also find that the introduction of K3/siRNA has no effect on MiaPaCa-2 cells. K1/siRNA and K2/siRNA can inhibit the expression of activated K-ras but K3/siRNA has no effect, demonstrating that K1/siRNA and K2/siRNA are effective sequences against K-ras gene and K3/siRNA are not. We conclude that specific siRNA against K-ras expression may be a powerful tool to be used therapeutically against human pancreatic cancer.

  16. Sunspots, Starspots, and Elemental Abundances

    NASA Astrophysics Data System (ADS)

    Doschek, George A.; Warren, Harry P.

    2017-08-01

    The composition of plasma in solar and stellar atmospheres is not fixed, but varies from feature to feature. These variations are organized by the First Ionization Potential (FIP) of the element. Solar measurements often indicate that low FIP elements (< 10eV, such as Fe, Si, Mg) are enriched by factors of 3-4 in the corona relative to high FIP elements (>10 eV, such as C, N, O, Ar, He) compared to abundances in the photosphere. Stellar observations have also shown similar enrichments. An inverse FIP effect, where the low FIP elements are depleted, has been observed in stellar coronae of stars believed to have large starspots in their photospheres. The abundances are important for determining radiative loss rates in models, tracing the origin of the slow solar wind, and for understanding wave propagation in the chromosphere and corona. Recently, inverse FIP effects have been discovered in the Sun (Doschek, Warren, & Feldman 2015, ApJ, 808, L7) from spectra obtained by the Extreme-ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft. The inverse FIP regions seem always to be near sunspots and cover only a very small area (characteristic length = a few arcseconds). However, in pursuing the search for inverse FIP regions, we have found that in some sunspot groups the coronal abundance at a temperature of 3-4 MK can be near photospheric over much larger areas of the sun near the sunspots (e.g., 6,000 arcsec2). Also, sometimes the abundances at 3-4 MK are in between coronal and photospheric values. This can occur in small areas of an active region. It is predicted (Laming 2015, Sol. Phys., 12, 2) that the FIP effect should be highly variable in the corona. Several examples of coronal abundance variations are presented. Our work indicates that a comprehensive re-investigation of solar abundances is highly desirable. This work is supported by a NASA Hinode grant.

  17. Cytoplasm-responsive nanocarriers conjugated with a functional cell-penetrating peptide for systemic siRNA delivery.

    PubMed

    Tanaka, Ko; Kanazawa, Takanori; Horiuchi, Shogo; Ando, Taichi; Sugawara, Ken; Takashima, Yuuki; Seta, Yasuo; Okada, Hiroaki

    2013-10-15

    To develop a gene carrier for cancer therapy by systemic injection, we synthesized methoxypolyethylene glycol-polycaprolactone (MPEG-PCL) diblock copolymers conjugated with a cytoplasm-responsive cell-penetrating peptide (CPP), CH2R4H2C (C, Cys; H, His; R, Arg). The carrier/small interfering RNA (siRNA) complexes (N/P ratio of 20) had a particle size of approximately 50 nm and stabilized the siRNA against RNase. The cellular uptake ability of the carrier/FAM-siRNA complexes with fetal bovine serum was significantly higher than that of naked FAM-siRNA. In addition, the carrier/anti-vascular endothelial growth factor siRNA (siVEGF) complexes attained a significantly greater silencing effect than naked siVEGF with low cytotoxicity, resulting from higher uptake, early endosomal escape, and efficient release from the complexes in the cytoplasm. Furthermore, intravenous injection of MPEG-PCL-CH2R4H2C/siVEGF complexes had a significantly higher anti-tumor effect in S-180 tumor-bearing mice, which could be attributed to the rigid compaction of siRNA by ionic interactions and disulfide linkages in the CPP polymer micelles in the blood, as well as higher release following cleavage of the disulfide bonds in the reductive cytosol. Taken together, our data demonstrated that these cytoplasm-responsive polymer micelles conjugated with multi-functional CPP, could facilitate siVEGF delivery to tumor tissues after systemic injection and could exert an extremely strong anti-tumor effect. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Establishment of conditional vectors for hairpin siRNA knockdowns

    PubMed Central

    Matsukura, Shiro; Jones, Peter A.; Takai, Daiya

    2003-01-01

    Small interference RNA (siRNA) is an emerging methodology in reverse genetics. Here we report the development of a new tetracycline-inducible vector-based siRNA system, which uses a tetracycline-responsive derivative of the U6 promoter and the tetracycline repressor for conditional in vivo transcription of short hairpin RNA. This method prevents potential lethality immediately after transfection of a vector when the targeted gene is indispensable, or the phenotype of the knockdown is lethal or results in a growth abnormality. We show that the controlled knockdown of DNA methyltransferase 1 (DNMT1) in human cancer resulted in growth arrest. Removal of the inducer, doxycycline, from treated cells led to re-expression of the targeted gene. Thus the method allows for a highly controlled approach to gene knockdown. PMID:12888529

  19. Exosomes for targeted siRNA delivery across biological barriers.

    PubMed

    El Andaloussi, Samir; Lakhal, Samira; Mäger, Imre; Wood, Matthew J A

    2013-03-01

    Using oligonucleotide-based drugs to modulate gene expression has opened a new avenue for drug discovery. In particular small interfering RNAs (siRNAs) are being rapidly recognized as promising therapeutic tools, but their poor bioavailability limits the full realization of their clinical potential. In recent years, cumulating evidence has emerged for the role of membrane vesicles, secreted by most cells and found in all body fluids, as key mediators of information transmission between cells. Importantly, a sub-group of these termed exosomes, have recently been shown to contain various RNA species and to mediate their horizontal transfer to neighbouring- or distant recipient cells. Here, we provide a brief overview on membrane vesicles and their role in exchange of genetic information. We also describe how these natural carriers of genetic material can be harnessed to overcome the obstacle of poor delivery and allow efficient systemic delivery of exogenous siRNA across biological barriers such as the blood-brain barrier.

  20. Therapeutic siRNA: Principles, Challenges, and Strategies

    PubMed Central

    Gavrilov, Kseniya; Saltzman, W. Mark

    2012-01-01

    RNA interference (RNAi) is a remarkable endogenous regulatory pathway that can bring about sequence-specific gene silencing. If harnessed effectively, RNAi could result in a potent targeted therapeutic modality with applications ranging from viral diseases to cancer. The major barrier to realizing the full medicinal potential of RNAi is the difficulty of delivering effector molecules, such as small interfering RNAs (siRNAs), in vivo. An effective delivery strategy for siRNAs must address limitations that include poor stability and non-targeted biodistribution, while protecting against the stimulation of an undesirable innate immune response. The design of such a system requires rigorous understanding of all mechanisms involved. This article reviews the mechanistic principles of RNA interference, its potential, the greatest challenges for use in biomedical applications, and some of the work that has been done toward engineering delivery systems that overcome some of the hurdles facing siRNA-based therapeutics. PMID:22737048

  1. Guide Strand 3'-End Modifications Regulate siRNA Specificity.

    PubMed

    Valenzuela, Rachel A P; Onizuka, Kazumitsu; Ball-Jones, Alexi A; Hu, Tiannan; Suter, Scott R; Beal, Peter A

    2016-12-14

    Short interfering RNA (siRNA)-triggered gene knockdown through the RNA interference (RNAi) pathway is widely used to study gene function, and siRNA-based therapeutics are in development. However, as the guide strand of an siRNA can function like a natural microRNA (miRNA), siRNAs often repress hundreds of off-target transcripts with complementarity only to the seed region (nucleotides 2-8) of the guide strand. Here, we describe novel guide strand 3'-end modifications derived from 1-ethynylribose (1-ER) and copper-catalyzed azide-alkyne cycloaddition reactions and evaluate their impact on target versus miRNA-like off-target knockdown. Surprisingly, when positioned at the guide strand 3'-end, the parent 1-ER modification substantially reduced off-target knockdown while having no measurable effect on on-target knockdown potency. In addition, these modifications were shown to modulate siRNA affinity for the hAgo2 PAZ domain. However, the change in PAZ domain binding affinity was not sufficient to predict the modification's effect on miRNA-like off targeting.

  2. Therapeutic potential of siRNA and DNAzymes in cancer.

    PubMed

    Karnati, Hanuma Kumar; Yalagala, Ravi Shekar; Undi, Rambabu; Pasupuleti, Satya Ratan; Gutti, Ravi Kumar

    2014-10-01

    Cancer is characterized by uncontrolled cell growth, invasion, and metastasis and possess threat to humans worldwide. The scientific community is facing numerous challenges despite several efforts to cure cancer. Though a number of studies were done earlier, the molecular mechanism of cancer progression is not completely understood. Currently available treatments like surgery resection, adjuvant chemotherapy, and radiotherapy are not completely effective in curing all the cancers. Recent advances in the antisense technology provide a powerful tool to investigate various cancer pathways and target them. Small interfering RNAs (siRNAs) could be effective in downregulating the cancer-associated genes, but their in vivo delivery is the main obstacle. DNA enzymes (DNAzymes) have great potential in the treatment of cancer due to high selectivity and significant catalytic efficiency. In this review, we are focusing on antisense molecules such as siRNA and DNAzymes in cancer therapeutics development. This review also describes the challenges and approaches to overcome obstacles involved in using siRNA and DNAzymes in the treatment of cancers.

  3. Protease-triggered siRNA delivery vehicles.

    PubMed

    Rozema, David B; Blokhin, Andrei V; Wakefield, Darren H; Benson, Jonathan D; Carlson, Jeffrey C; Klein, Jason J; Almeida, Lauren J; Nicholas, Anthony L; Hamilton, Holly L; Chu, Qili; Hegge, Julia O; Wong, So C; Trubetskoy, Vladimir S; Hagen, Collin M; Kitas, Eric; Wolff, Jon A; Lewis, David L

    2015-07-10

    The safe and efficacious delivery of membrane impermeable therapeutics requires cytoplasmic access without the toxicity of nonspecific cytoplasmic membrane lysis. We have developed a mechanism for control of cytoplasmic release which utilizes endogenous proteases as a trigger and results in functional delivery of small interfering RNA (siRNA). The delivery approach is based on reversible inhibition of membrane disruptive polymers with protease-sensitive substrates. Proteolytic hydrolysis upon endocytosis restores the membrane destabilizing activity of the polymers thereby allowing cytoplasmic access of the co-delivered siRNA. Protease-sensitive polymer masking reagents derived from polyethylene glycol (PEG), which inhibit membrane interactions, and N-acetylgalactosamine, which targets asialoglycoprotein receptors on hepatocytes, were synthesized and used to formulate masked polymer-siRNA delivery vehicles. The size, charge and stability of the vehicles enable functional delivery of siRNA after subcutaneous administration and, with modification of the targeting ligand, have the potential for extrahepatic targeting. Copyright © 2015. Published by Elsevier B.V.

  4. siRNA vs. shRNA: similarities and differences.

    PubMed

    Rao, Donald D; Vorhies, John S; Senzer, Neil; Nemunaitis, John

    2009-07-25

    RNA interference (RNAi) is a natural process through which expression of a targeted gene can be knocked down with high specificity and selectivity. Using available technology and bioinformatics investigators will soon be able to identify relevant bio molecular tumor network hubs as potential key targets for knockdown approaches. Methods of mediating the RNAi effect involve small interfering RNA (siRNA), short hairpin RNA (shRNA) and bi-functional shRNA. The simplicity of siRNA manufacturing and transient nature of the effect per dose are optimally suited for certain medical disorders (i.e. viral injections). However, using the endogenous processing machinery, optimized shRNA constructs allow for high potency and sustainable effects using low copy numbers resulting in less off-target effects, particularly if embedded in a miRNA scaffold. Bi-functional design may further enhance potency and safety of RNAi-based therapeutics. Remaining challenges include tumor selective delivery vehicles and more complete evaluation of the scope and scale of off-target effects. This review will compare siRNA, shRNA and bi-functional shRNA.

  5. Ocular neuroprotection by siRNA targeting caspase-2

    PubMed Central

    Ahmed, Z; Kalinski, H; Berry, M; Almasieh, M; Ashush, H; Slager, N; Brafman, A; Spivak, I; Prasad, N; Mett, I; Shalom, E; Alpert, E; Di Polo, A; Feinstein, E; Logan, A

    2011-01-01

    Retinal ganglion cell (RGC) loss after optic nerve damage is a hallmark of certain human ophthalmic diseases including ischemic optic neuropathy (ION) and glaucoma. In a rat model of optic nerve transection, in which 80% of RGCs are eliminated within 14 days, caspase-2 was found to be expressed and cleaved (activated) predominantly in RGC. Inhibition of caspase-2 expression by a chemically modified synthetic short interfering ribonucleic acid (siRNA) delivered by intravitreal administration significantly enhanced RGC survival over a period of at least 30 days. This exogenously delivered siRNA could be found in RGC and other types of retinal cells, persisted inside the retina for at least 1 month and mediated sequence-specific RNA interference without inducing an interferon response. Our results indicate that RGC apoptosis induced by optic nerve injury involves activation of caspase-2, and that synthetic siRNAs designed to inhibit expression of caspase-2 represent potential neuroprotective agents for intervention in human diseases involving RGC loss. PMID:21677688

  6. Cosmic abundance of boron.

    NASA Technical Reports Server (NTRS)

    Cameron, A. G. W.; Colgate, S. A.; Grossman, L.

    1973-01-01

    All abundances are expressed relative to a million atoms of Si. An average abundance of boron in ordinary chondrites is 6.2. The boron abundance in meteorites is highly variable. It has been found that the abundances in carbonaceous chondrites are very much higher than those in ordinary chondrites. The condensation of boron and beryllium from a cooling, low-pressure gas of solar composition is discussed together with the occurrence of boron in the interstellar medium, questions of element abundances in the sun, problems of boron production by cosmic rays, and boron production from supernovae.

  7. Local administration of siRNA through Microneedle: Optimization, Bio-distribution, Tumor Suppression and Toxicity

    NASA Astrophysics Data System (ADS)

    Tang, Tao; Deng, Yan; Chen, Jiao; Zhao, Yi; Yue, Ruifeng; Choy, Kwong Wai; Wang, Chi Chiu; Du, Quan; Xu, Yan; Han, Linxiao; Chung, Tony Kwok Hung

    2016-07-01

    Although RNA interference may become a novel therapeutic approach for cancer treatment, target-site accumulation of siRNA to achieve therapeutic dosage will be a major problem. Microneedle represents a better way to deliver siRNAs and we have evaluated for the first time the capability of a silicon microneedle array for delivery of Gapdh siRNA to the skin in vivo and the results showed that the microneedle arrays could effectively deliver siRNA to relevant regions of the skin noninvasively. For the further study in this field, we evaluated the efficacy of the injectable microneedle device for local delivery of siRNA to the mouse xenograft. The results presented here indicate that local administration of siRNA through injectable microneedle could effectively deliver siRNA into the tumor region, and inhibit tumor progression without major adverse effects.

  8. Local administration of siRNA through Microneedle: Optimization, Bio-distribution, Tumor Suppression and Toxicity

    PubMed Central

    Tang, Tao; Deng, Yan; Chen, Jiao; Zhao, Yi; Yue, Ruifeng; Choy, Kwong Wai; Wang, Chi Chiu; Du, Quan; Xu, Yan; Han, Linxiao; Chung, Tony Kwok Hung

    2016-01-01

    Although RNA interference may become a novel therapeutic approach for cancer treatment, target-site accumulation of siRNA to achieve therapeutic dosage will be a major problem. Microneedle represents a better way to deliver siRNAs and we have evaluated for the first time the capability of a silicon microneedle array for delivery of Gapdh siRNA to the skin in vivo and the results showed that the microneedle arrays could effectively deliver siRNA to relevant regions of the skin noninvasively. For the further study in this field, we evaluated the efficacy of the injectable microneedle device for local delivery of siRNA to the mouse xenograft. The results presented here indicate that local administration of siRNA through injectable microneedle could effectively deliver siRNA into the tumor region, and inhibit tumor progression without major adverse effects. PMID:27457182

  9. Local administration of siRNA through Microneedle: Optimization, Bio-distribution, Tumor Suppression and Toxicity.

    PubMed

    Tang, Tao; Deng, Yan; Chen, Jiao; Zhao, Yi; Yue, Ruifeng; Choy, Kwong Wai; Wang, Chi Chiu; Du, Quan; Xu, Yan; Han, Linxiao; Chung, Tony Kwok Hung

    2016-07-26

    Although RNA interference may become a novel therapeutic approach for cancer treatment, target-site accumulation of siRNA to achieve therapeutic dosage will be a major problem. Microneedle represents a better way to deliver siRNAs and we have evaluated for the first time the capability of a silicon microneedle array for delivery of Gapdh siRNA to the skin in vivo and the results showed that the microneedle arrays could effectively deliver siRNA to relevant regions of the skin noninvasively. For the further study in this field, we evaluated the efficacy of the injectable microneedle device for local delivery of siRNA to the mouse xenograft. The results presented here indicate that local administration of siRNA through injectable microneedle could effectively deliver siRNA into the tumor region, and inhibit tumor progression without major adverse effects.

  10. miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis.

    PubMed

    Creasey, Kate M; Zhai, Jixian; Borges, Filipe; Van Ex, Frederic; Regulski, Michael; Meyers, Blake C; Martienssen, Robert A

    2014-04-17

    In plants, post-transcriptional gene silencing (PTGS) is mediated by DICER-LIKE 1 (DCL1)-dependent microRNAs (miRNAs), which also trigger 21-nucleotide secondary short interfering RNAs (siRNAs) via RNA-DEPENDENT RNA POLYMERASE 6 (RDR6), DCL4 and ARGONAUTE 1 (AGO1), whereas transcriptional gene silencing (TGS) of transposons is mediated by 24-nucleotide heterochromatic (het)siRNAs, RDR2, DCL3 and AGO4 (ref. 4). Transposons can also give rise to abundant 21-nucleotide 'epigenetically activated' small interfering RNAs (easiRNAs) in DECREASED DNA METHYLATION 1 (ddm1) and DNA METHYLTRANSFERASE 1 (met1) mutants, as well as in the vegetative nucleus of pollen grains and in dedifferentiated plant cell cultures. Here we show that easiRNAs in Arabidopsis thaliana resemble secondary siRNAs, in that thousands of transposon transcripts are specifically targeted by more than 50 miRNAs for cleavage and processing by RDR6. Loss of RDR6, DCL4 or DCL1 in a ddm1 background results in loss of 21-nucleotide easiRNAs and severe infertility, but 24-nucleotide hetsiRNAs are partially restored, supporting an antagonistic relationship between PTGS and TGS. Thus miRNA-directed easiRNA biogenesis is a latent mechanism that specifically targets transposon transcripts, but only when they are epigenetically reactivated during reprogramming of the germ line. This ancient recognition mechanism may have been retained both by transposons to evade long-term heterochromatic silencing and by their hosts for genome defence.

  11. Sequential intravenous injection of anionic polymer and cationic lipoplex of siRNA could effectively deliver siRNA to the liver.

    PubMed

    Hattori, Yoshiyuki; Arai, Shohei; Okamoto, Ryou; Hamada, Megumi; Kawano, Kumi; Yonemochi, Etsuo

    2014-12-10

    In this study, we developed novel siRNA transfer method to the liver by sequential intravenous injection of anionic polymer and cationic liposome/cholesterol-modified siRNA complex (cationic lipoplex). When cationic lipoplex was intravenously injected into mice, the accumulation of siRNA was mainly observed in the lungs. In contrast, when cationic lipoplex was intravenously injected at 1 min after intravenous injection of poly-L-glutamic acid (PGA) or chondroitin sulfate C (CS), siRNA was accumulated in the liver. In terms of suppression of gene expression in vivo, apolipoprotein B (ApoB) mRNA in the liver and low-density-lipoprotein (LDL) and very low-density-lipoprotein (VLDL) cholesterol level in serum were reduced at 48 h after single sequential injection of PGA or CS plus cationic lipoplex of cholesterol-modified ApoB siRNA. Furthermore, sequential injections of PGA plus cationic lipoplex of cholesterol-modified luciferase siRNA could reduce luciferase activity in tumor xenografts bearing liver metastasis of human breast tumor MCF-7-Luc. From these findings, sequential injection of anionic polymer and cationic lipoplex of siRNA might produce a systemic vector of siRNA to the liver. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Abundances of the elements.

    NASA Technical Reports Server (NTRS)

    Urey, H. C.

    1972-01-01

    An elemental abundance table along the lines used by Suess and Urey (1956) is presented. Since this early work, other studies have been made, and improvement in the abundance tables has been made as more reliable data have become available. Some changes in the original tables have been made, but the original abundances and their variations with mass numbers remain remarkably similar. The solar abundance of iron for many years appeared to be very much less relative to silicon than would be indicated by the data from the meteorites.

  13. A novel mechanism is involved in cationic lipid-mediated functional siRNA delivery.

    PubMed

    Lu, James J; Langer, Robert; Chen, Jianzhu

    2009-01-01

    A key challenge for therapeutic application of RNA interference is to efficiently deliver synthetic small interfering RNAs (siRNAs) into target cells that will lead to the knockdown of the target transcript (functional siRNA delivery). To facilitate rational development of nonviral carriers, we have investigated by imaging, pharmacological and genetic approaches the mechanisms by which a cationic lipid carrier mediates siRNA delivery into mammalian cells. We show that approximately 95% of siRNA lipoplexes enter the cells through endocytosis and persist in endolysosomes for a prolonged period of time. However, inhibition of clathrin-, caveolin-, or lipid-raft-mediated endocytosis or macropinocytosis fails to inhibit the knockdown of the target transcript. In contrast, depletion of cholesterol from the plasma membrane has little effect on the cellular uptake of siRNA lipoplexes, but it abolishes the target transcript knockdown. Furthermore, functional siRNA delivery occurs within a few hours and is gradually inhibited by lowering temperatures. These results demonstrate that although endocytosis is responsible for the majority of cellular uptake of siRNA lipoplexes, a minor pathway, probably mediated by fusion between siRNA lipoplexes and the plasma membrane, is responsible for the functional siRNA delivery. Our findings suggest possible directions for improving functional siRNA delivery by cationic lipids.

  14. A Novel Mechanism Is Involved in Cationic Lipid-Mediated Functional siRNA Delivery

    PubMed Central

    2009-01-01

    A key challenge for therapeutic application of RNA interference is to efficiently deliver synthetic small interfering RNAs (siRNAs) into target cells that will lead to the knockdown of the target transcript (functional siRNA delivery). To facilitate rational development of nonviral carriers, we have investigated by imaging, pharmacological and genetic approaches the mechanisms by which a cationic lipid carrier mediates siRNA delivery into mammalian cells. We show that ∼95% of siRNA lipoplexes enter the cells through endocytosis and persist in endolysosomes for a prolonged period of time. However, inhibition of clathrin-, caveolin-, or lipid-raft-mediated endocytosis or macropinocytosis fails to inhibit the knockdown of the target transcript. In contrast, depletion of cholesterol from the plasma membrane has little effect on the cellular uptake of siRNA lipoplexes, but it abolishes the target transcript knockdown. Furthermore, functional siRNA delivery occurs within a few hours and is gradually inhibited by lowering temperatures. These results demonstrate that although endocytosis is responsible for the majority of cellular uptake of siRNA lipoplexes, a minor pathway, probably mediated by fusion between siRNA lipoplexes and the plasma membrane, is responsible for the functional siRNA delivery. Our findings suggest possible directions for improving functional siRNA delivery by cationic lipids. PMID:19292453

  15. Effects of Lipofectamine 2000/siRNA complexes on autophagy in hepatoma cells.

    PubMed

    Mo, Robert H; Zaro, Jennica L; Ou, Jing-Hsiung James; Shen, Wei-Chiang

    2012-05-01

    Lipofectamine 2000 is commonly used for siRNA transfections. However, few studies have examined cellular responses to this delivery system. The purpose of this study is to evaluate the effect of siRNA transfection using Lipofectamine 2000 on cellular autophagy. Huh7.5 cells, stably transfected to express GFP-LC3, were treated with Lipofectamine 2000/negative control siRNA (NC siRNA) complexes. At different time points after treatment, cells were lysed and analyzed by immunoblotting and fluorescence spectroscopy. Cells were also observed using confocal microscopy. An increase of endogenous LC3 lipidation, GFP-LC3 fluorescence, and autophagosomal puncta was observed in cells treated with Lipofectamine 2000/NC siRNA complexes. The kinetics of the increase of GFP-LC3 fluorescence correlated with the concentration of NC siRNA transfected, where 50, 100, and 200 nM NC siRNA caused a significant increase at 72, 48, and 24 h, respectively, after transfection. A similar effect on the GFP-LC3 signal was also observed for cells treated with Lipofectamine 2000 complexed with two other NC siRNAs. The effects were also confirmed in another hepatoma cell line, H4IIE, by immunoblotting. Lipofectamine 2000-mediated transport of NC siRNAs led to an increase of autophagosomes in a dose- and time-dependent manner. Thus, this effect on cells should be taken into consideration when using this approach for intracellular delivery of siRNA.

  16. Targeting siRNA Missiles to Her2+ Breast Cancer

    DTIC Science & Technology

    2009-06-01

    testing for targeted toxicity of HerPBK10-siRNA, we assessed cytotoxic potential in vivo after intratumoral (IT) injection of complexes in tumor-bearing...single tail vein injection of Dox alone or the complex (HerDox) (0.02 mg/kg with respect to Dox conc) and were imaged live using a customized macro...mice were injected 0.02 mg/kg (final Dox dose) of HerDox ox via the tail vein and imaged with a om small animal imager. A, Imaging of mice after

  17. RIsearch2: suffix array-based large-scale prediction of RNA-RNA interactions and siRNA off-targets.

    PubMed

    Alkan, Ferhat; Wenzel, Anne; Palasca, Oana; Kerpedjiev, Peter; Rudebeck, Anders Frost; Stadler, Peter F; Hofacker, Ivo L; Gorodkin, Jan

    2017-01-20

    Intermolecular interactions of ncRNAs are at the core of gene regulation events, and identifying the full map of these interactions bears crucial importance for ncRNA functional studies. It is known that RNA-RNA interactions are built up by complementary base pairings between interacting RNAs and high level of complementarity between two RNA sequences is a powerful predictor of such interactions. Here, we present RIsearch2, a large-scale RNA-RNA interaction prediction tool that enables quick localization of potential near-complementary RNA-RNA interactions between given query and target sequences. In contrast to previous heuristics which either search for exact matches while including G-U wobble pairs or employ simplified energy models, we present a novel approach using a single integrated seed-and-extend framework based on suffix arrays. RIsearch2 enables fast discovery of candidate RNA-RNA interactions on genome/transcriptome-wide scale. We furthermore present an siRNA off-target discovery pipeline that not only predicts the off-target transcripts but also computes the off-targeting potential of a given siRNA. This is achieved by combining genome-wide RIsearch2 predictions with target site accessibilities and transcript abundance estimates. We show that this pipeline accurately predicts siRNA off-target interactions and enables off-targeting potential comparisons between different siRNA designs. RIsearch2 and the siRNA off-target discovery pipeline are available as stand-alone software packages from http://rth.dk/resources/risearch.

  18. Addition of poly (propylene glycol) to multiblock copolymer to optimize siRNA delivery

    PubMed Central

    Dai, Zhi; Arévalo, Maria T; Li, Junwei; Zeng, Mingtao

    2014-01-01

    Previous studies have examined different strategies for siRNA delivery with varying degrees of success. These include use of viral vectors, cationic liposomes, and polymers. Several copolymers were designed and synthesized based on blocks of poly(ethylene glycol) PEG, poly(propylene glycol) PPG, and poly(l-lysine). These were designated as P1, P2, and P3. We studied the copolymer self-assembly, siRNA binding, particle size, surface potential, architecture of the complexes, and siRNA delivery. Silencing of GFP using copolymer P3 to deliver GFP-specific siRNA to Neuro-2a cells expressing GFP was almost as effective as using Lipofectamine 2000, with minimal cytotoxicity. Thus, we have provided a new copolymer platform for siRNA delivery that we can continue to modify for improved delivery of siRNA in vitro and eventually in vivo. PMID:24424156

  19. Calcium phosphate nanoparticles-based systems for siRNA delivery

    PubMed Central

    Xu, Xiaochun; Li, Zehao; Zhao, Xueqin; Keen, Lawrence; Kong, Xiangdong

    2016-01-01

    Despite the enormous therapeutic potential of siRNA as a treatment strategy, the delivery is still a problem due to unfavorable biodistribution profiles and poor intracellular bioavailability. Calcium phosphate (CaP) co-precipitate has been used for nearly 40 years for in vitro transfection due to its non-toxic nature and simplicity of preparation. The surface charge of CaP will be tuned into positive by surface modification, which is important for siRNA loading and crossing cell membrane without enzymatic degradation. The new siRNA carrier system will also promote the siRNA escape from lysosome to achieve siRNA sustained delivery and high-efficiency silence. In this review, we focus on the current research activity in the development of CaP nanoparticles for siRNA delivery. These nanoparticles are mainly classified into lipid coated, polymer coated and various other types for discussion. PMID:27252888

  20. Hydroxychloroquine-conjugated gold nanoparticles for improved siRNA activity.

    PubMed

    Perche, F; Yi, Y; Hespel, L; Mi, P; Dirisala, A; Cabral, H; Miyata, K; Kataoka, K

    2016-06-01

    Current technology of siRNA delivery relies on pharmaceutical dosage forms to route maximal doses of siRNA to the tumor. However, this rationale does not address intracellular bottlenecks governing silencing activity. Here, we tested the impact of hydroxychloroquine conjugation on the intracellular fate and silencing activity of siRNA conjugated PEGylated gold nanoparticles. Addition of hydroxychloroquine improved endosomal escape and increased siRNA guide strand distribution to the RNA induced silencing complex (RISC), both crucial obstacles to the potency of siRNA. This modification significantly improved gene downregulation in cellulo. Altogether, our data suggest the benefit of this modification for the design of improved siRNA delivery systems.

  1. Indium-Labeling of siRNA for Small Animal SPECT Imaging

    PubMed Central

    Jones, Steven; Merkel, Olivia

    2016-01-01

    Ever since the discovery of RNA interference (RNAi), therapeutic delivery of siRNA has attracted a lot of interest. However, due to the nature and structure of siRNA, a carrier is needed for any mode of systemic treatment. Furthermore, specific imaging techniques are required to trace where the deposition of the siRNA occurs throughout the body after treatment. Tracking in vivo siRNA biodistribution allows understanding and interpreting therapeutics effects and side effects. A great advantage of noninvasive imaging techniques such as SPECT imaging is that several time points can be assessed in the same subject. Thus, the time course of biodistribution or metabolic processes can be followed. Therefore, we have described an approach to modify siRNA with a DTPA (Diethylene Triamine Pentaacetic Acid) chelator in order to utilize an indium labeled siRNA for SPECT imaging. Here, we explain the details of the labeling and purification procedures. PMID:26530916

  2. Indium-Labeling of siRNA for Small Animal SPECT Imaging.

    PubMed

    Jones, Steven; Merkel, Olivia

    2016-01-01

    Ever since the discovery of RNA interference (RNAi), therapeutic delivery of siRNA has attracted a lot of interest. However, due to the nature and structure of siRNA, a carrier is needed for any mode of systemic treatment. Furthermore, specific imaging techniques are required to trace where the deposition of the siRNA occurs throughout the body after treatment. Tracking in vivo siRNA biodistribution allows understanding and interpreting therapeutics effects and side effects. A great advantage of noninvasive imaging techniques such as SPECT imaging is that several time points can be assessed in the same subject. Thus, the time course of biodistribution or metabolic processes can be followed. Therefore, we have described an approach to modify siRNA with a DTPA (Diethylene Triamine Pentaacetic Acid) chelator in order to utilize an indium labeled siRNA for SPECT imaging. Here, we explain the details of the labeling and purification procedures.

  3. Addition of poly (propylene glycol) to multiblock copolymer to optimize siRNA delivery.

    PubMed

    Dai, Zhi; Arévalo, Maria T; Li, Junwei; Zeng, Mingtao

    2014-01-01

    Previous studies have examined different strategies for siRNA delivery with varying degrees of success. These include use of viral vectors, cationic liposomes, and polymers. Several copolymers were designed and synthesized based on blocks of poly(ethylene glycol) PEG, poly(propylene glycol) PPG, and poly(l-lysine). These were designated as P1, P2, and P3. We studied the copolymer self-assembly, siRNA binding, particle size, surface potential, architecture of the complexes, and siRNA delivery. Silencing of GFP using copolymer P3 to deliver GFP-specific siRNA to Neuro-2a cells expressing GFP was almost as effective as using Lipofectamine 2000, with minimal cytotoxicity. Thus, we have provided a new copolymer platform for siRNA delivery that we can continue to modify for improved delivery of siRNA in vitro and eventually in vivo.

  4. Construction of simple and efficient siRNA validation systems for screening and identification of effective RNAi-targeted sequences from mammalian genes.

    PubMed

    Tsai, Wen-Hui; Chang, Wen-Tsan

    2014-01-01

    RNA interference (RNAi) is an evolutionarily conserved mechanism of gene silencing induced by double-stranded RNAs (dsRNAs). Among the widely used dsRNAs, small interfering RNAs (siRNAs) and short hairpin RNAs have evolved as extremely powerful and the most popular gene silencing reagents. The key challenge to achieving efficient gene silencing especially for the purpose of therapeutics is mainly dependent on the effectiveness and specificity of the selected RNAi-targeted sequences. Practically, only a small number of dsRNAs are capable of inducing highly effective and sequence-specific gene silencing via RNAi mechanism. In addition, the efficiency of gene silencing induced by dsRNAs can only be experimentally examined based on inhibition of the target gene expression. Therefore, it is essential to develop a fully robust and comparative validation system for measuring the efficacy of designed dsRNAs. In this chapter, we focus our discussion on a reliable and quantitative reporter-based siRNA validation system that has been previously established in our laboratory. The system consists of a short synthetic DNA fragment containing an RNAi-targeted sequence of interest and two expression vectors for targeting reporter and triggering siRNA expressions. The efficiency of siRNAs is determined by their abilities to inhibit expression of the targeting reporters with easily quantified readouts including enhanced green fluorescence protein and firefly luciferase. Since only a readily available short synthetic DNA fragment is needed for constructing this reliable and efficient reporter-based siRNA validation system, this system not only provides a powerful strategy for screening highly effective RNAi-targeted sequences from mammalian genes but also implicates the use of RNAi-based dsRNA reagents for reverse functional genomics and molecular therapeutics.

  5. RNase non-sensitive and endocytosis independent siRNA delivery system: delivery of siRNA into tumor cells and high efficiency induction of apoptosis

    NASA Astrophysics Data System (ADS)

    Jiang, Xinglu; Wang, Guobao; Liu, Ru; Wang, Yaling; Wang, Yongkui; Qiu, Xiaozhong; Gao, Xueyun

    2013-07-01

    To date, RNase degradation and endosome/lysosome trapping are still serious problems for siRNA-based molecular therapy, although different kinds of delivery formulations have been tried. In this report, a cell penetrating peptide (CPP, including a positively charged segment, a linear segment, and a hydrophobic segment) and a single wall carbon nanotube (SWCNT) are applied together by a simple method to act as a siRNA delivery system. The siRNAs first form a complex with the positively charged segment of CPP via electrostatic forces, and the siRNA-CPP further coats the surface of the SWCNT via hydrophobic interactions. This siRNA delivery system is non-sensitive to RNase and can avoid endosome/lysosome trapping in vitro. When this siRNA delivery system is studied in Hela cells, siRNA uptake was observed in 98% Hela cells, and over 70% mRNA of mammalian target of rapamycin (mTOR) is knocked down, triggering cell apoptosis on a significant scale. Our siRNA delivery system is easy to handle and benign to cultured cells, providing a very efficient approach for the delivery of siRNA into the cell cytosol and cleaving the target mRNA therein.

  6. Enhanced silencing and stabilization of siRNA polyplexes by histidine-mediated hydrogen bonds

    PubMed Central

    Chou, Szu-Ting; Hom, Kellie; Zhang, Daoning; Leng, Qixin; Tricoli, Lucas J.; Hustedt, Jason M.; Lee, Amy; Shapiro, Michael J.; Seog, Joonil; Kahn, Jason D.; Mixson, A. James

    2013-01-01

    Branched peptides containing histidines and lysines (HK) have been shown to be effective carriers for DNA and siRNA. We anticipate that elucidation of the binding mechanism of HK with siRNA will provide greater insight into the self-assembly and delivery of the HK:siRNA polyplex. Non-covalent bonds between histidine residues and nucleic acids may enhance the stability of siRNA polyplexes. We first compared the polyplex biophysical properties of a branched HK with those of branched asparagines-lysine peptide (NK). Consistent with siRNA silencing experiments, gel electrophoresis demonstrated that the HK siRNA polyplex maintained its integrity with prolonged incubation in serum, whereas siRNA in complex with NK was degraded in a time-dependent manner. Isothermal titration calorimetry of various peptides binding to siRNA at pH 7.3 showed that branched polylysine, interacted with siRNA was initially endothermic, whereas branched HK exhibited an exothermic reaction at initial binding. The exothermic interaction indicates formation of non-ionic bonds between histidines and siRNA; purely electrostatic interaction is entropy-driven and endothermic. To investigate the type of non-ionic bond, we studied the protonation state of imidazole rings of a selectively 15N labeled branched HK by heteronuclear single quantum coherence NMR. The peak of Nδ1-H tautomers of imidazole shifted downfield (in the direction of deprotonation) by 0.5 to 1.0 ppm with addition of siRNA, providing direct evidence that histidines formed hydrogen bonds with siRNA at physiological pH. These results establish that histidine-rich peptides form hydrogen bonds with siRNA, thereby enhancing the stability and biological activity of the polyplex in vitro and in vivo. PMID:24161165

  7. Designing siRNA That Distinguish between Genes That Differ by a Single Nucleotide

    PubMed Central

    Kennington, Lori; Moore, Jessica T; Schelter, Janell; Burchard, Julja; Linsley, Peter S; Aronin, Neil; Xu, Zuoshang; Zamore, Phillip D

    2006-01-01

    Small interfering RNAs (siRNAs), the guides that direct RNA interference (RNAi), provide a powerful tool to reduce the expression of a single gene in human cells. Ideally, dominant, gain-of-function human diseases could be treated using siRNAs that specifically silence the mutant disease allele, while leaving expression of the wild-type allele unperturbed. Previous reports suggest that siRNAs can be designed with single nucleotide specificity, but no rational basis for the design of siRNAs with single nucleotide discrimination has been proposed. We systematically identified siRNAs that discriminate between the wild-type and mutant alleles of two disease genes: the human Cu, Zn superoxide dismutase (SOD1) gene, which contributes to the progression of hereditary amyotrophic lateral sclerosis through the gain of a toxic property, and the huntingtin (HTT) gene, which causes Huntington disease when its CAG-repeat region expands beyond approximately 35 repeats. Using cell-free RNAi reactions in Drosophila embryo lysate and reporter assays and microarray analysis of off-target effects in cultured human cells, we identified positions within an siRNA that are most sensitive to mismatches. We also show that purine:purine mismatches imbue an siRNA with greater discriminatory power than other types of base mismatches. siRNAs in which either a G:U wobble or a mismatch is located in the “seed” sequence, the specialized siRNA guide region responsible for target binding, displayed lower levels of selectivity than those in which the mismatch was located 3′ to the seed; this region of an siRNA is critical for target cleavage but not siRNA binding. Our data suggest that siRNAs can be designed to discriminate between the wild-type and mutant alleles of many genes that differ by just a single nucleotide. PMID:16965178

  8. MysiRNA-Designer: A Workflow for Efficient siRNA Design

    PubMed Central

    Mysara, Mohamed; Garibaldi, Jonathan M.; ElHefnawi, Mahmoud

    2011-01-01

    The design of small interfering RNA (siRNA) is a multi factorial problem that has gained the attention of many researchers in the area of therapeutic and functional genomics. MysiRNA score was previously introduced that improves the correlation of siRNA activity prediction considering state of the art algorithms. In this paper, a new program, MysiRNA-Designer, is described which integrates several factors in an automated work-flow considering mRNA transcripts variations, siRNA and mRNA target accessibility, and both near-perfect and partial off-target matches. It also features the MysiRNA score, a highly ranked correlated siRNA efficacy prediction score for ranking the designed siRNAs, in addition to top scoring models Biopredsi, DISR, Thermocomposition21 and i-Score, and integrates them in a unique siRNA score-filtration technique. This multi-score filtration layer filters siRNA that passes the 90% thresholds calculated from experimental dataset features. MysiRNA-Designer takes an accession, finds conserved regions among its transcript space, finds accessible regions within the mRNA, designs all possible siRNAs for these regions, filters them based on multi-scores thresholds, and then performs SNP and off-target filtration. These strict selection criteria were tested against human genes in which at least one active siRNA was designed from 95.7% of total genes. In addition, when tested against an experimental dataset, MysiRNA-Designer was found capable of rejecting 98% of the false positive siRNAs, showing superiority over three state of the art siRNA design programs. MysiRNA is a freely accessible (Microsoft Windows based) desktop application that can be used to design siRNA with a high accuracy and specificity. We believe that MysiRNA-Designer has the potential to play an important role in this area. PMID:22046244

  9. SiRNA delivery with functionalized carbon nanotubes.

    PubMed

    Varkouhi, Amir Khashayar; Foillard, Stéphanie; Lammers, Twan; Schiffelers, Raymond M; Doris, Eric; Hennink, Wim E; Storm, Gert

    2011-09-20

    Carbon nanotubes (CNTs) have been studied for drug, antigen and nucleic acid delivery both in vitro and in vivo. Due to their nano-needle structure, they are supposed to cross the plasma membrane and enter directly into the cytoplasm likely upon an endocytosis-independent mechanism without inducing cell death. In this study, two cationically functionalized CNTs (CNT-PEI and CNT-pyridinium) were investigated for siRNA delivery. Both functionalized CNTs complexed siRNA and showed 10-30% silencing activity and a cytotoxicity of 10-60%. However, in terms of reduced toxicity or increased silencing activity, CNT-PEI and CNT-pyridinium did not show an added value over PEI and other standard transfection systems. Probably, the type of functionalization of carbon nanotubes might be a key parameter to obtain an efficient and non-cytotoxic CNT-based delivery system. Nevertheless, in view of the present results and importantly also of the non-degradability of CNTs, preference should currently be given to designing biodegradable carriers which mimic the needle structure of CNTs.

  10. SiRNA Crosslinked Nanoparticles for the Treatment of Inflammation‐induced Liver Injury

    PubMed Central

    Tang, Yaqin; Zeng, Ziying; He, Xiao; Wang, Tingting

    2016-01-01

    RNA interference mediated by small interfering RNA (siRNA) provides a powerful tool for gene regulation, and has a broad potential as a promising therapeutic strategy. However, therapeutics based on siRNA have had limited clinical success due to their undesirable pharmacokinetic properties. This study presents pH‐sensitive nanoparticles‐based siRNA delivery systems (PNSDS), which are positive‐charge‐free nanocarriers, composed of siRNA chemically crosslinked with multi‐armed poly(ethylene glycol) carriers via acid‐labile acetal linkers. The unique siRNA crosslinked structure of PNSDS allows it to have minimal cytotoxicity, high siRNA loading efficiency, and a stimulus‐responsive property that enables the selective intracellular release of siRNA in response to pH conditions. This study demonstrates that PNSDS can deliver tumor necrosis factor alpha (TNF‐α) siRNA into macrophages and induce the efficient down regulation of the targeted gene in complete cell culture media. Moreover, PNSDS with mannose targeting moieties can selectively accumulate in mice liver, induce specific inhibition of macrophage TNF‐α expression in vivo, and consequently protect mice from inflammation‐induced liver damages. Therefore, this novel siRNA delivering platform would greatly improve the therapeutic potential of RNAi based therapies. PMID:28251047

  11. 22-Nucleotide RNAs trigger secondary siRNA biogenesis in plants.

    PubMed

    Chen, Ho-Ming; Chen, Li-Teh; Patel, Kanu; Li, Yi-Hang; Baulcombe, David C; Wu, Shu-Hsing

    2010-08-24

    The effect of RNA silencing in plants can be amplified if the production of secondary small interfering RNAs (siRNAs) is triggered by the interaction of microRNAs (miRNAs) or siRNAs with a long target RNA. miRNA and siRNA interactions are not all equivalent, however; most of them do not trigger secondary siRNA production. Here we use bioinformatics to show that the secondary siRNA triggers are miRNAs and transacting siRNAs of 22 nt, rather than the more typical 21-nt length. Agrobacterium-mediated transient expression in Nicotiana benthamiana confirms that the siRNA-initiating miRNAs, miR173 and miR828, are effective as triggers only if expressed in a 22-nt form and, conversely, that increasing the length of miR319 from 21 to 22 nt converts it to an siRNA trigger. We also predicted and validated that the 22-nt miR771 is a secondary siRNA trigger. Our data demonstrate that the function of small RNAs is influenced by size, and that a length of 22 nt facilitates the triggering of secondary siRNA production.

  12. siRNAs induce efficient RNAi response in Bombyx mori embryos.

    PubMed

    Yamaguchi, Junichi; Mizoguchi, Takayuki; Fujiwara, Haruhiko

    2011-01-01

    Short interference RNA (siRNA) is widely used in mammalian cells. In insects, however, reports concerning the suitablility of siRNA in vivo is very limited compared with that of long dsRNA, which is thought to be more effective. There is insufficient information on the essential rules of siRNA design in insects, as very few siRNAs have been tested in this context. To establish an effective method of gene silencing using siRNA in vivo in insects, we determined the effects of siRNA on seven target genes. We designed siRNAs according to a new guideline and injected them into eggs of Bombyx mori. At the mRNA level, the expression of most of these genes was successfully silenced, down to less than half the constitutive level, which in some cases led to the development of distinctive phenotypes. In addition, we observed stronger effect of siRNA both on the mRNA level and the phenotype than that of long dsRNA under comparable conditions. These results indicate that direct injection of siRNA is an effective reverse-genetics tool for the analysis of embryogenesis in vivo in insects.

  13. Turning Squalene into Cationic Lipid Allows a Delivery of siRNA in Cultured Cells.

    PubMed

    Bertrand, Jean-Rémi; Lucas, Claire; Pham, Ngoc Minh; Durieu, Catherine; Couvreur, Patrick; Malvy, Claude Paul; Desmaële, Didier

    2015-06-01

    Covalent binding of squalene to siRNA has already been shown to be an interesting way of delivering siRNA in vivo. Whether squalene derivatives could also be used to deliver siRNA in cells without covalent binding similar to usual transfection with cationic lipids is the question addressed in this article. Accordingly, we investigated the activity of two squalene derivatives bearing a quaternary ammonium head group and a guanidinium group, respectively. The second derivative displayed interesting properties for delivering siRNA into cells in vitro.

  14. Turning Squalene into Cationic Lipid Allows a Delivery of siRNA in Cultured Cells

    PubMed Central

    Bertrand, Jean-Rémi; Lucas, Claire; Pham, Ngoc Minh; Durieu, Catherine; Couvreur, Patrick; Desmaële, Didier

    2015-01-01

    Covalent binding of squalene to siRNA has already been shown to be an interesting way of delivering siRNA in vivo. Whether squalene derivatives could also be used to deliver siRNA in cells without covalent binding similar to usual transfection with cationic lipids is the question addressed in this article. Accordingly, we investigated the activity of two squalene derivatives bearing a quaternary ammonium head group and a guanidinium group, respectively. The second derivative displayed interesting properties for delivering siRNA into cells in vitro. PMID:25894614

  15. Development of siRNA payloads to target KRAS-mutant cancer

    PubMed Central

    Ritchie, Cayde D.; Thapar, Vishal; Lee, Liam C.; Hsu, Dennis J.; Grace, Danielle; Carver, Joseph O.; Zuber, Johannes; Luo, Ji; McCormick, Frank; Lowe, Scott W.

    2014-01-01

    RNA interference (RNAi) is a powerful tool for target identification and can lead to novel therapies for pharmacologically intractable targets such as KRAS. RNAi therapy must combine potent siRNA payloads with reliable in vivo delivery for efficient target inhibition. We employed a functional “Sensor” assay to establish a library of potent siRNAs against RAS pathway genes and show they efficiently suppress their targets at low dose. This reduces off-target effects and enables combination gene knockdown. We administered Sensor siRNAs in vitro and in vivo and validated the delivery of KRAS siRNA alone and siRNA targeting the complete RAF effector node (A/B/C-RAF) as promising strategies to treat KRAS-mutant colorectal cancer. We further demonstrate that improved therapeutic efficacy is achieved by formulating siRNA payloads that combine both single-gene siRNA and node-targeted siRNAs (KRAS+PIK3C-A/B). The customizable nature of Sensor siRNA payloads offers a universal platform for combination target identification and development of RNAi therapeutics. PMID:25100204

  16. Tracking in vitro and in vivo siRNA electrotransfer in tumor cells

    PubMed Central

    Paganin-Gioanni, Aurelie; Bellard, Elisabeth; Couderc, Bettina; Teissié, Justin; Golzio, Muriel

    2008-01-01

    RNA interference-mediated gene silencing offers the potential of targeted inhibition of disease-relevant genes. In vivo delivery of RNAi reagents can be obtained by a variety of approaches. Physical delivery methods appear safer and lack side effects. Electro-permeabilization is one of the non-viral methods successfully used to transfer small interfering RNAs (siRNAs) in vitro and in vivo. A promising approach may be, very little is known about the fundamental processes mediating siRNA transfer. In this study, we have investigated cellular delivery pathways involved in electro-delivery of siRNAs by a direct fluorescence imaging method. An Alexa-labeled siRNA was electro-transferred into murine melanoma cells stably-expressing the enhanced green fluorescent protein (eGFP) target reporter gene. The silencing of eGFP gene expression was quantified by time-lapsed fluorescence microscopy. Fluorescently-labeled siRNAs were found distributed homogeneously in cytoplasm 48 hours after electro-transfer, apparently by diffusion. Furthermore, siRNAs showed homogeneous distribution in vivo 48 hrs after intra-tumoral injection followed by electro- permeabilization. Histological fluorescence microscopy showed that siRNAs were mostly localized in the cytoplasm. Overall, this study shows that electro-permeabilization facilitates cytoplasmic distribution of siRNA, both in cultured cells and in vivo. This method offers a potential therapeutic tool to facilitate direct siRNA penetration into solid tumors. PMID:19771237

  17. Interfacially Engineered Pyridinium Pseudogemini Surfactants as Versatile and Efficient Supramolecular Delivery Systems for DNA, siRNA, and mRNA.

    PubMed

    Satyal, Uttam; Draghici, Bogdan; Dragic, Lisa L; Zhang, Qiangnan; Norris, Kyle W; Madesh, Muniswamy; Brailoiu, Eugen; Ilies, Marc A

    2017-09-06

    This article presents the synthesis, self-assembly, and biological activity as transfection agents for pDNA, siRNA, and mRNA of novel pyridinium pseudogemini surfactants, interfacially engineered from the most efficient gemini surfactants and lipids generated in our amphiphile research program. Formulation of novel amphiphiles in water revealed supramolecular properties very similar to those of gemini surfactants, despite their lipidlike charge/mass ratio. This dual character was found also to enhance endosomal escape and significantly increase the transfection efficiency. We were also successful in identifying the parameters governing the efficient delivery of pDNA, siRNA, and mRNA, drawing valuable structure-activity and structure-property relationships for each nucleic acid type, and establishing DNA/siRNA/mRNA comparisons. Several supramolecular complexes identified in this study proved to be extremely efficient nucleic acid delivery systems, displaying excellent serum stability and tissue penetration in three-dimensional organoids.

  18. Abundance estimation and conservation biology

    USGS Publications Warehouse

    Nichols, J.D.; MacKenzie, D.I.

    2004-01-01

    inference that increased recruitment was largely responsible for the improvements in population status and growth. However, various data sources also indicated that this increase in recruitment was likely a result of increased immigration rather than improved reproduction on the area. This latter inference is important from a conservation perspective in indicating the importance of birds in other locations to growth and health of the study population. Lukacs and Burnham presented material to be published elsewhere that dealt with the use of genetic markers in capture–recapture studies. The data sources for such studies are samples of hair or feces, which are then analyzed using molecular genetic techniques in order to determine individual genotypes with respect to a usually small number of loci. Two types of classification error can arise in such analyses. First, if only a small number of loci is examined, then there may be nonnegligible probabilities that multiple individual animals will have the same genotypes. The second type of error arises during the polymerase chain reaction (PCR) process and can result from failure of alleles to amplify (allelic dropout) or from PCR inhibitors in hair and feces that produce the appearance of false alleles or misprinting (Creel et al., 2003). Lukacs and Burnham developed models that formally incorporate possible misclassification of samples resulting from these errors. These models permit estimation of parameters such as abundance and survival in a manner that properly incorporates this uncertainty of individual identity. We anticipate that noninvasive sampling based on molecular genetic analyses of hair or feces will become extremely important for some species, and that the models of Lukacs and Burnham will become very popular for such analyses. MacKenzie & Nichols (2004) discuss the use of occupancy (proportion of patches or habitat area that is occupied) as a surrogate for abundance. In cases of territorial species and where

  19. OXYGEN ABUNDANCES IN CEPHEIDS

    SciTech Connect

    Luck, R. E.; Andrievsky, S. M.; Korotin, S. N.; Kovtyukh, V. V. E-mail: serkor@skyline.od.ua E-mail: scan@deneb1.odessa.ua

    2013-07-01

    Oxygen abundances in later-type stars, and intermediate-mass stars in particular, are usually determined from the [O I] line at 630.0 nm, and to a lesser extent, from the O I triplet at 615.7 nm. The near-IR triplets at 777.4 nm and 844.6 nm are strong in these stars and generally do not suffer from severe blending with other species. However, these latter two triplets suffer from strong non-local thermodynamic equilibrium (NLTE) effects and thus see limited use in abundance analyses. In this paper, we derive oxygen abundances in a large sample of Cepheids using the near-IR triplets from an NLTE analysis, and compare those abundances to values derived from a local thermodynamic equilibrium (LTE) analysis of the [O I] 630.0 nm line and the O I 615.7 nm triplet as well as LTE abundances for the 777.4 nm triplet. All of these lines suffer from line strength problems making them sensitive to either measurement complications (weak lines) or to line saturation difficulties (strong lines). Upon this realization, the LTE results for the [O I] lines and the O I 615.7 nm triplet are in adequate agreement with the abundance from the NLTE analysis of the near-IR triplets.

  20. Elemental Abundances in NGC 3516

    NASA Technical Reports Server (NTRS)

    Turner, T. J.; Kraemer, S. B.; Mushotzky, R. F.; George, I. M.; Gabel, J. R.

    2003-01-01

    We present Reflection Grating Spectrometer data from an XMM-Newton observation of the Seyfert 1 galaxy NGC 3516, taken while the continuum source was in an extremely low flux state. This observation offers a rare opportunity for a detailed study of emission from a Seyfert 1 galaxy as these are usually dominated by high nuclear continuum levels and heavy absorption. The spectrum shows numerous narrow emission lines (FWHM approximately less than 1300 kilometers per second) in the 0.3 - 2 keV range, including the H-like lines of C, N, and O and the He-like lines of N, O and Ne. The emission-line ratios and the narrow width of the radiative recombination continuum of CVI indicate that the gas is photoionized and of fairly low temperature (kT approximately less than 0.01 keV). The availability of emission lines from different elements for two iso-electronic sequences allows us to constrain the element abundances. These data show that the N lines are far stronger than would be expected from gas of solar abundances. Based on our photoionization models we find that nitrogen is overabundant in the central regions of the galaxy, compared to carbon, oxygen and neon by at least a factor of 2.5. We suggest that this is the result of secondary production of nitrogen in intermediate mass stars, and indicative of the history of star formation in NGC 3516.

  1. Influence of Coronal Abundance Variations

    NASA Technical Reports Server (NTRS)

    Gurman, Joseph (Technical Monitor); DeLuca, Edward

    2005-01-01

    During the final year of this program we concentrated on understanding the how to constrain the models with the best available observations. Work on developing accurate temperature and density diagnostics fkom TRACE and CDS together with constrained fits of non-potential force free fields will be extremely useful in the guiding the next generation of coronal models. The program has produced three fully operation numerical codes that model multi-species of ions in coronal loops: Static models and constant flow models. The time dependent numerical models have not been completed. We have extended the steady flow investigations to study the effect these flows have on coronal structure as observed with TRACE. Coronal observations derive from heavy-ion emission; thus, we focus on the extent to which flow may modify coronal abundances by examining the heavy-ion abundance stratification within long-lived loops. We discuss the magnitudes of the physical effects modeled and compare simulated results with TRACE observations. These results can have a profound effect on the interpretation of TRACE observations.

  2. Abundances in Hot Evolved Stars

    NASA Astrophysics Data System (ADS)

    Werner, Klaus; Rauch, Thomas; Kruk, Jeffrey W.

    2009-05-01

    The hydrogen-deficiency in extremely hot post-AGB stars of spectral class PG1159 is probably caused by a (very) late helium-shell flash or a AGB final thermal pulse that consumes the hydrogen envelope, exposing the usually-hidden intershell region. Thus, the photospheric element abundances of these stars allow us to draw conclusions about details of nuclear burning and mixing processes in the precursor AGB stars. We compare predicted element abundances to those determined by quantitative spectral analyses performed with advanced non-LTE model atmospheres. A good qualitative and quantitative agreement is found for many species (He, C, N, O, Ne, F, Si, Ar) but discrepancies for others (P, S, Fe) point at shortcomings in stellar evolution models for AGB stars. Almost all of the chemical trace elements in these hot stars can only be identified in the UV spectral range. The Far Ultraviolet Spectroscopic Explorer and the Hubble Space Telescope played a crucial role for this research.

  3. [Construction and identification of a multiple myeloma-specific APE1 siRNA expression vector].

    PubMed

    Yang, Zhen-zhou; Chen, Xing-hua; Wang, Dong; Wang, Ge; Xiang, De-bing

    2006-04-01

    To construct a multiple myeloma (MM)-specific APE1siRNA expression vector, and detect the specific knock-down effect of the siRNA on expression of APE1 protein. APE1siRNA cDNA sequence was designed, synthesized and inserted into pSilencer 2.0-U6 linear expression vector. pSilencer APE1siRNA was digested by enzyme EcoRI and BamHI, then linear vector and IgP fragments were conjugated by T4 DNA ligase. pSilencer IgP-APE1siRNA and pSilencer IE-IgP-APE1siRNA were digested by enzyme EcoRI or XhoI. Linear vector and IE or Kappa fragments were conjugated by T4 DNA ligase. Then a MM specific pSilencer K-IE-IgP-APE1siRNA was cloned. The recombinant products were identified by DNA sequencing and enzyme digestions at each step. pSilencer K-IE-IgP-APE1siRNA plasmid was transfected to KM3, HOS, MDA-231 cells by liposome. APE1 gene silence induced by RNAi was analysed by Western blot. APE1 protein in KM3 cells could be knocked down effectively and specifically by pSilencer K-IE-IgP-APE1siRNA vector. After 2 days, the level of APE1 protein in KM3 cells transfected with siRNA was 0.118 +/- 0.047, while that transfected with plasmid only was 0.988 +/- 0.029. The efficiency of gene silence was 90%. A MM specific APE1siRNA expression vector was successfully constructed.

  4. Development of streptavidin-based nanocomplex for siRNA delivery.

    PubMed

    Shukla, Ravi S; Tai, Wanyi; Mahato, Rubi; Jin, Wei; Cheng, Kun

    2013-12-02

    In our previous study, we have identified a PCBP2 siRNA that exhibits antifibrotic activity in rat hepatic stellate cells (HSCs) by inhibition of αCP2, a protein responsible for stabilization of the collagen α1 (I) mRNA in alcoholic liver fibrosis. This study aims to develop a streptavidin-based nanocomplex that can efficiently deliver the PCBP2 siRNA to HSCs. Biotin-siRNA and biotin-cholesterol were mixed with streptavidin to form the streptavidin-biotin complex, which was further condensed electrostatically with positively charged protamine to form the final multicomponent siRNA nanocomplex in the size range of 150-250 nm. The siRNA nanocomplex does not induce cytotoxicity in rat HSCs as compared to commercially available transfection agents. The cellular uptake efficiency of the siRNA nanocomplex is higher in rat HSCs than other cell lines, such as Caco-2 and PC-3, indicating that receptor-mediated endocytosis mainly contributes to the cellular uptake of the siRNA nanocomplex. The siRNA nanocomplex exhibits more than 85% silencing effect on the PCBP2 mRNA in HSCs. Stability study indicates that the nanocomplex can efficiently protect siRNA from degradation in the serum. The streptavidin-based multicomponent siRNA nanocomplex provides a promising strategy to deliver the PCBP2 siRNA to HSCs. Moreover, the nanocomplex can be used as a platform for other diseases by changing the siRNA sequence and targeting ligand.

  5. Integrated siRNA design based on surveying of features associated with high RNAi effectiveness

    PubMed Central

    Gong, Wuming; Ren, Yongliang; Xu, Qiqi; Wang, Yejun; Lin, Dong; Zhou, Haiyan; Li, Tongbin

    2006-01-01

    Background Short interfering RNAs have allowed the development of clean and easily regulated methods for disruption of gene expression. However, while these methods continue to grow in popularity, designing effective siRNA experiments can be challenging. The various existing siRNA design guidelines suffer from two problems: they differ considerably from each other, and they produce high levels of false-positive predictions when tested on data of independent origins. Results Using a distinctly large set of siRNA efficacy data assembled from a vast diversity of origins (the siRecords data, containing records of 3,277 siRNA experiments targeting 1,518 genes, derived from 1,417 independent studies), we conducted extensive analyses of all known features that have been implicated in increasing RNAi effectiveness. A number of features having positive impacts on siRNA efficacy were identified. By performing quantitative analyses on cooperative effects among these features, then applying a disjunctive rule merging (DRM) algorithm, we developed a bundle of siRNA design rule sets with the false positive problem well curbed. A comparison with 15 online siRNA design tools indicated that some of the rule sets we developed surpassed all of these design tools commonly used in siRNA design practice in positive predictive values (PPVs). Conclusion The availability of the large and diverse siRNA dataset from siRecords and the approach we describe in this report have allowed the development of highly effective and generally applicable siRNA design rule sets. Together with ever improving RNAi lab techniques, these design rule sets are expected to make siRNAs a more useful tool for molecular genetics, functional genomics, and drug discovery studies. PMID:17129386

  6. HIVsirDB: A Database of HIV Inhibiting siRNAs

    PubMed Central

    Thakur, Nishant; Sharma, Arun; Raghava, Gajendra P. S.; Kumar, Manoj

    2011-01-01

    Background Human immunodeficiency virus (HIV) is responsible for millions of deaths every year. The current treatment involves the use of multiple antiretroviral agents that may harm patients due to their toxic nature. RNA interference (RNAi) is a potent candidate for the future treatment of HIV, uses short interfering RNA (siRNA/shRNA) for silencing HIV genes. In this study, attempts have been made to create a database HIVsirDB of siRNAs responsible for silencing HIV genes. Descriptions HIVsirDB is a manually curated database of HIV inhibiting siRNAs that provides comprehensive information about each siRNA or shRNA. Information was collected and compiled from literature and public resources. This database contains around 750 siRNAs that includes 75 partially complementary siRNAs differing by one or more bases with the target sites and over 100 escape mutant sequences. HIVsirDB structure contains sixteen fields including siRNA sequence, HIV strain, targeted genome region, efficacy and conservation of target sequences. In order to facilitate user, many tools have been integrated in this database that includes; i) siRNAmap for mapping siRNAs on target sequence, ii) HIVsirblast for BLAST search against database, iii) siRNAalign for aligning siRNAs. Conclusion HIVsirDB is a freely accessible database of siRNAs which can silence or degrade HIV genes. It covers 26 types of HIV strains and 28 cell types. This database will be very useful for developing models for predicting efficacy of HIV inhibiting siRNAs. In summary this is a useful resource for researchers working in the field of siRNA based HIV therapy. HIVsirDB database is accessible at http://crdd.osdd.net/raghava/hivsir/. PMID:22022467

  7. Lipid-based systemic delivery of siRNA

    PubMed Central

    Tseng, Yu-Cheng; Mozumdar, Subho; Huang, Leaf

    2011-01-01

    RNAi technology has brought a new category of treatments for various diseases including genetic diseases, viral diseases, and cancer. Despite the great versatility of RNAi that can down regulate almost any protein in the cells, the delicate and precise machinery used for silencing is the same. The major challenge indeed for RNAi-based therapy is the delivery system. In this review, we start with the uniqueness and mechanism of RNAi machinery and the utility of RNAi in therapeutics. Then we discuss the challenges in systemic siRNA delivery by dividing them into two categories--kinetic and physical barriers. At the end, we discuss different strategies to overcome these barriers, especially focusing on the step of endosome escape. Toxicity issues and current successful examples for lipid-based delivery are also included in the review. PMID:19328215

  8. In Situ Functionalized Polymers for siRNA Delivery.

    PubMed

    Priegue, Juan M; Crisan, Daniel N; Martínez-Costas, José; Granja, Juan R; Fernandez-Trillo, Francisco; Montenegro, Javier

    2016-06-20

    A new method is reported herein for screening the biological activity of functional polymers across a consistent degree of polymerization and in situ, that is, under aqueous conditions and without purification/isolation of candidate polymers. In brief, the chemical functionality of a poly(acryloyl hydrazide) scaffold was activated under aqueous conditions using readily available aldehydes to obtain amphiphilic polymers. The transport activity of the resulting polymers can be evaluated in situ using model membranes and living cells without the need for tedious isolation and purification steps. This technology allowed the rapid identification of a supramolecular polymeric vector with excellent efficiency and reproducibility for the delivery of siRNA into human cells (HeLa-EGFP). The reported method constitutes a blueprint for the high-throughput screening and future discovery of new polymeric functional materials with important biological applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Therapeutic antidepressant potential of a conjugated siRNA silencing the serotonin transporter after intranasal administration.

    PubMed

    Ferrés-Coy, A; Galofré, M; Pilar-Cuéllar, F; Vidal, R; Paz, V; Ruiz-Bronchal, E; Campa, L; Pazos, Á; Caso, J R; Leza, J C; Alvarado, G; Montefeltro, A; Valdizán, E M; Artigas, F; Bortolozzi, A

    2016-03-01

    Major depression brings about a heavy socio-economic burden worldwide due to its high prevalence and the low efficacy of antidepressant drugs, mostly inhibiting the serotonin transporter (SERT). As a result, ~80% of patients show recurrent or chronic depression, resulting in a poor quality of life and increased suicide risk. RNA interference (RNAi) strategies have been preliminarily used to evoke antidepressant-like responses in experimental animals. However, the main limitation for the medical use of RNAi is the extreme difficulty to deliver oligonucleotides to selected neurons/systems in the mammalian brain. Here we show that the intranasal administration of a sertraline-conjugated small interfering RNA (C-SERT-siRNA) silenced SERT expression/function and evoked fast antidepressant-like responses in mice. After crossing the permeable olfactory epithelium, the sertraline-conjugated-siRNA was internalized and transported to serotonin cell bodies by deep Rab-7-associated endomembrane vesicles. Seven-day C-SERT-siRNA evoked similar or more marked responses than 28-day fluoxetine treatment. Hence, C-SERT-siRNA (i) downregulated 5-HT1A-autoreceptors and facilitated forebrain serotonin neurotransmission, (ii) accelerated the proliferation of neuronal precursors and (iii) increased hippocampal complexity and plasticity. Further, short-term C-SERT-siRNA reversed depressive-like behaviors in corticosterone-treated mice. The present results show the feasibility of evoking antidepressant-like responses by selectively targeting neuronal populations with appropriate siRNA strategies, opening a way for further translational studies.

  10. Legacies from extreme drought increase ecosystem sensitivity to future extremes

    NASA Astrophysics Data System (ADS)

    Smith, M. D.; Knapp, A.; Hoover, D. L.; Avolio, M. L.; Felton, A. J.; Wilcox, K. R.

    2016-12-01

    Climate extremes, such as drought, are increasing in frequency and intensity, and the ecological consequences of these extreme events can be substantial and widespread. Although there is still much to be learned about how ecosystems will respond to an intensification of drought, even less is known about the factors that determine post-drought recovery of ecosystem function. Such knowledge is particularly important because post-drought recovery periods can be protracted depending on the extent to which key plant populations, community structure and biogeochemical processes are affected. These drought legacies may alter ecosystem function for many years post-drought and may impact future sensitivity to climate extremes. We experimentally imposed two extreme growing season droughts in a central US grassland to assess the impacts of repeated droughts on ecosystem resistance (response) and resilience (recovery). We found that this grassland was not resistant to the first extreme drought due to reduced productivity and differential sensitivity of the co-dominant C4 grass (Andropogon gerardii) and C3 forb (Solidago canadensis) species. This differential sensitivity led to a reordering of species abundances within the plant community. Yet, despite this large shift in plant community composition, which persisted post-drought, the grassland was highly resilient post-drought, due to increased abundance of the dominant C4 grass. Because of this shift to increased C4 grass dominance, we expected that previously-droughted grassland would be more resistant to a second extreme drought. However, contrary to these expectations, previously droughted grassland was more sensitive to drought than grassland that had not experienced drought. Thus, our result suggest that legacies of drought (shift in community composition) may increase ecosystem sensitivity to future extreme events.

  11. Rational modification of oligoarginine for highly efficient siRNA delivery: structure-activity relationship and mechanism of intracellular trafficking of siRNA.

    PubMed

    Chu, Dafeng; Xu, Wen; Pan, Ran; Ding, Yong; Sui, Weiping; Chen, P

    2015-02-01

    Recently, cell-penetrating peptides (CPPs) have received much attention for cellular delivery of therapeutic molecules. However, in the case of CPPs as carriers for siRNA delivery, their utility is often restricted by low cellular uptake and/or entrapment in endosomes. Here, in order to deliver siRNAs with high efficiency, oligoarginine, a prominent member in CPPs, is rationally modified with oligohistidine and stearyl moieties (STR-) by fully taking into account the formation of nanoparticles, uptake and intracellular trafficking. We show that when the ratio of histidine/arginine in a peptide sequence is >1.5, pronounced gene silencing is induced. Following this rule, STR-HnR8 (n=16 and 20) are developed, which show a high knockdown efficiency rarely reported before. Finally, we find that endosomal escape of siRNA induced by stearylated and oligohistidylated oligoarginine is only from "proton-sponge" effect. Taken together, our results suggest a new strategy for the improvement of CPP-based siRNA delivery systems. This study present a novel cell penetrating peptide-based siRNA delivery system utilizing modified oligo-arginine demonstrating a successful siRNA delivery approach. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Progress and perspective of inorganic nanoparticles based siRNA delivery system

    PubMed Central

    Jiang, Ying; Huo, Shuaidong; Hardie, Joseph; Liang, Xing-Jie; Rotello, Vincent M.

    2016-01-01

    Introduction Small interfering RNA (siRNA) is an effective method for regulating the expression of proteins, even “undruggable” ones that are nearly impossible to target through traditional small molecule therapeutics. Delivery to the cell and then to the cytosol is the primary requirement for realization of therapeutic potential of siRNA. Areas covered We summarize recent advances in the design of inorganic nanoparticle with surface functionality and physicochemical properties engineered for siRNA delivery. Specifically, we discuss the main approaches developed so far to load siRNA into/onto NPs, and NP surface chemistry engineered for enhanced intracellular siRNA delivery, endosomal escape, and targeted delivery of siRNA to disease cells and tissues. Expert Opinion Several challenges remain in developing inorganic NPs for efficient and effective siRNA delivery. Getting the material to the chosen site is important, however the greatest hurdle may well be delivery into the cytosol, either through efficient endosomal escape or by direct cytosolic siRNA delivery. Effective delivery at the organismic and cellular level coupled with biocompatible vehicles with low immunogenic response will facilitate the clinical translation of RNAi for the treatment of genetic diseases. PMID:26735861

  13. Lipid-based siRNA Delivery Systems: Challenges, Promises and Solutions Along the Long Journey.

    PubMed

    Sarisozen, Can; Salzano, Giuseppina; Torchilin, Vladimir P

    RNA interference (RNAi) is an evolutionary conserved highly specific gene-silencing mechanism initiated by small interfering RNA (siRNA) molecules. Fast-paced preclinical and clinical studies helped the siRNA technology become an efficient tool for undruggable targets in different diseases including genetic diseases, viral diseases and cancer. Despite great feature of siRNAs that can down-regulate any protein in the cells, the full potential and the success of the preclinical studies could not be translated into largely successful clinical outcomes. It has become clear that the possibility of overcoming the pitfalls for in vivo siRNA therapy fully depends on delivery systems. In this review, we start with the challenges and barriers for in vivo siRNA delivery. Then we briefly discuss the recent developments in siRNA modification technology. We specifically focused on siRNA lipidation and delivery approaches with special emphasis on the lipid based hybrid systems. Here we summarize the journey of lipid-based micelle-like nanoparticle systems that combine longevity in blood, effective cellular uptake and endosomal escape for successful siRNA delivery and discuss the multifunctional stimuli-sensitive systems based on lipids as the next generation smart systems.

  14. Inhibition of hepatitis C virus replication by intracellular delivery of multiple siRNAs by nanosomes.

    PubMed

    Chandra, Partha K; Kundu, Anup K; Hazari, Sidhartha; Chandra, Sruti; Bao, Lili; Ooms, Tara; Morris, Gilbert F; Wu, Tong; Mandal, Tarun K; Dash, Srikanta

    2012-09-01

    Sustained antiviral responses of chronic hepatitis C virus (HCV) infection have improved recently by the use of direct-acting antiviral agents along with interferon (IFN)-α and ribavirin. However, the emergence of drug-resistant variants is expected to be a major problem. We describe here a novel combinatorial small interfering RNA (siRNA) nanosome-based antiviral approach to clear HCV infection. Multiple siRNAs targeted to the highly conserved 5'-untranslated region (UTR) of the HCV genome were synthesized and encapsulated into lipid nanoparticles called nanosomes. We show that siRNA can be repeatedly delivered to 100% of cells in culture using nanosomes without toxicity. Six siRNAs dramatically reduced HCV replication in both the replicon and infectious cell culture model. Repeated treatments with two siRNAs were better than a single siRNA treatment in minimizing the development of an escape mutant, resulting in rapid inhibition of viral replication. Systemic administration of combinatorial siRNA-nanosomes is well tolerated in BALB/c mice without liver injury or histological toxicity. As a proof-of-principle, we showed that systemic injections of siRNA nanosomes significantly reduced HCV replication in a liver tumor-xenotransplant mouse model of HCV. Our results indicate that systemic delivery of combinatorial siRNA nanosomes can be used to minimize the development of escape mutants and inhibition of HCV infection.

  15. Ultrasound-Targeted Microbubble Destruction to Deliver siRNA Cancer Therapy

    PubMed Central

    Carson, Andrew R; McTiernan, Charles F; Lavery, Linda; Grata, Michelle; Leng, Xiaoping; Wang, Jianjun; Chen, Xucai; Villanueva, Flordeliza S

    2012-01-01

    Microbubble contrast agents can specifically deliver nucleic acids to target tissues when exposed to ultrasound treatment parameters that mediate microbubble destruction. In this study, we evaluated whether microbubbles and ultrasound targeted microbubble destruction (UTMD) could be used to enhance delivery of EGFR-directed small inhibitory RNA (siRNA) to murine squamous cell carcinomas. Custom designed microbubbles efficiently bound siRNA and mediated RNAse protection. UTMD-mediated delivery of microbubbles loaded with EGFR-directed siRNA to murine squamous carcinoma cells in vitro reduced EGFR expression and EGF-dependent growth, relative to delivery of control siRNA. Similarly, serial UTMD-mediated delivery of EGFR siRNA to squamous cell carcinoma in vivo decreased EGFR expression and increased tumor doubling times, relative to controls receiving EGFR siRNA loaded microbubbles but not ultrasound or control siRNA loaded microbubbles and UTMD. Taken together, our results offer a preclinical proof of concept for customized microbubbles and UTMD to deliver gene-targeted siRNA for cancer therapy. PMID:23010078

  16. A Nonpolycationic Fully Proteinaceous Multiagent System for Potent Targeted Delivery of siRNA

    PubMed Central

    Liu, David V; Yang, Nicole J; Wittrup, K Dane

    2014-01-01

    Protein-based methods of targeted short-interfering RNA (siRNA) delivery have the potential to solve some of the problems faced by nanoparticle-based methods, such as poor pharmacokinetics and biodistribution, low tumor penetration, and polydispersity. However, protein-based targeted delivery has been limited to fusion proteins with polycationic peptides as siRNA carriers, whose high charge density in some cases results in undesirable biophysical and in vivo properties. Here, we present a fully proteinaceous, multiagent approach for targeted siRNA delivery to epidermal growth factor receptor (EGFR), using a nonpolycationic carrier for siRNA. Each agent contributes a fundamentally different mechanism of action that work together for potent targeted RNA interference. The first agent is an EGFR-targeted fusion protein that uses a double-stranded RNA-binding domain as a nonpolycationic siRNA carrier. This double-stranded RNA-binding domain fusion protein can deliver siRNA to the endosomes of an EGFR-expressing cell line. A second agent delivers the cholesterol-dependent cytolysin, perfringolysin O, in a targeted manner, which enhances the endosomal escape of siRNA and induces gene silencing. A third agent that clusters EGFR increases gene-silencing potency and decreases cytolysin toxicity. Altogether, this system is potent, with only 16 nmol/l siRNA required for gene silencing and a therapeutic window that spans two orders of magnitude of targeted cytolysin concentrations. PMID:24825362

  17. Selecting effective siRNA target sequences by using Bayes' theorem.

    PubMed

    Takasaki, Shigeru

    2009-10-01

    Short interfering RNA (siRNA) has been widely used for studying gene functions in mammalian cells but varies markedly in its gene silencing efficacy. Although many design rules/guidelines for effective siRNAs based on various criteria have been reported recently, there are few consistencies among them. This makes it difficult to select effective siRNA sequences in mammalian genes. Another shortcoming of most previously reported methods is that they cannot estimate the probability that a candidate sequence will silence the target gene. The analytical prediction method proposed in the present study uses Bayes' theorem to select effective siRNA target sequences from many possible candidate sequences. It is quite different from the previous score-based siRNA design techniques and can predict the probability that a candidate siRNA sequence will be effective. The results of evaluating it by applying it to recently reported effective and ineffective siRNA sequences for various genes indicate that it would be useful for many other genes. It should therefore be useful for selecting siRNA sequences effective for mammalian genes.

  18. Targeted Delivery of Anti-coxsackievirus siRNAs Using Ligand-conjugated Packaging RNAs

    PubMed Central

    Zhang, Huifang M.; Su, Yue; Guo, Songchuan; Yuan, Ji; Lim, Travis; Liu, Jing; Guo, Peixuan; Yang, Decheng

    2013-01-01

    Coxsackievirus B3 (CVB3) is a common pathogen of myocarditis. We previously synthesized a siRNA targeting the CVB3 protease 2A (siRNA/2A) gene and achieved reduction of CVB3 replication by 92% in vitro. However, like other drugs under development, CVB3 siRNA faces a major challenge of targeted delivery. In this study, we investigated a novel approach to deliver CVB3 siRNAs to a specific cell population (e.g. HeLa cells containing folate receptor) using receptor ligand (folate)-linked packaging RNA (pRNA) from bacterial phage phi29. pRNA monomers can spontaneously form dimers and multimers under optimal conditions by base-pairing between their stem loops. By covalently linking a fluorescence-tag to folate, we delivered the conjugate specifically to HeLa cells without the need of transfection. We further demonstrated that pRNA covalently conjugated to siRNA/2A achieved an equivalent antiviral effect to that of the siRNA/2A alone. Finally, the drug targeted delivery was further evaluated by using pRNA monomers or dimers, which carried both the siRNA/2A and folate ligand and demonstrated that both of them strongly inhibited CVB3 replication. These data indicate that pRNA as a siRNA carrier can specifically deliver the drug to target cells via its ligand and specific receptor interaction and inhibit virus replication effectively. PMID:19616030

  19. De novo reconstruction of plant RNA and DNA virus genomes from viral siRNAs

    USDA-ARS?s Scientific Manuscript database

    In antiviral defense, plants produce massive quantities of 21-24 nucleotide siRNAs. Here we demonstrate that the complete genomes of DNA and RNA viruses and viroids can be reconstructed by deep sequencing and de novo assembly of viral/viroid siRNAs from experimentally- and naturally-infected plants....

  20. Using small RNA deep sequencing data to detect siRNA duplexes induced by plant viruses

    USDA-ARS?s Scientific Manuscript database

    Small interfering RNA (siRNA) duplexes are produced in plants during virus infection, which are short (usually 21 to 24-base pair) double-stranded RNAs (dsRNAs) with several overhanging nucleotides on the 5' end and 3' end. The investigation of the siRNA duplexes is useful to better understand the R...

  1. Silencing the roadblocks to effective triple-negative breast cancer treatments by siRNA nanoparticles.

    PubMed

    Parvani, Jenny G; Jackson, Mark W

    2017-04-01

    Over the past decade, RNA interference (RNAi) has been ubiquitously utilized to study biological function in vitro; however, limitations were associated with its utility in vivo More recently, small interfering RNA (siRNA) nanoparticles with improved biocompatibility have gained prevalence as a potential therapeutic option for the treatment of various diseases. The adaptability of siRNA nanoparticles enables the delivery of virtually any siRNA, which is especially advantageous for therapeutic applications in heterogeneous diseases that lack unifying molecular features, such as triple-negative breast cancer (TNBC). TNBC is an aggressive subtype of breast cancer that is stratified by the lack of estrogen receptor/progesterone receptor expression and HER2 amplification. There are currently no FDA-approved targeted therapies for the treatment of TNBCs, making cytotoxic chemotherapy the only treatment option available to these patients. In this review, we outline the current status of siRNA nanoparticles in clinical trials for cancer treatment and discuss the promising preclinical approaches that have utilized siRNA nanoparticles for TNBC treatment. Next, we address TNBC subtype-specific therapeutic interventions and highlight where and how siRNA nanoparticles fit into these strategies. Lastly, we point out ongoing challenges in the field of siRNA nanoparticle research that, if addressed, would significantly improve the efficacy of siRNA nanoparticles as a therapeutic option for cancer treatment. © 2017 Society for Endocrinology.

  2. Insertion sequences enrichment in extreme Red sea brine pool vent.

    PubMed

    Elbehery, Ali H A; Aziz, Ramy K; Siam, Rania

    2017-03-01

    Mobile genetic elements are major agents of genome diversification and evolution. Limited studies addressed their characteristics, including abundance, and role in extreme habitats. One of the rare natural habitats exposed to multiple-extreme conditions, including high temperature, salinity and concentration of heavy metals, are the Red Sea brine pools. We assessed the abundance and distribution of different mobile genetic elements in four Red Sea brine pools including the world's largest known multiple-extreme deep-sea environment, the Red Sea Atlantis II Deep. We report a gradient in the abundance of mobile genetic elements, dramatically increasing in the harshest environment of the pool. Additionally, we identified a strong association between the abundance of insertion sequences and extreme conditions, being highest in the harshest and deepest layer of the Red Sea Atlantis II Deep. Our comparative analyses of mobile genetic elements in secluded, extreme and relatively non-extreme environments, suggest that insertion sequences predominantly contribute to polyextremophiles genome plasticity.

  3. The Abundance of Interstellar Fluorine

    NASA Technical Reports Server (NTRS)

    Lauroesch, James T.

    2005-01-01

    The primary objective of this program was to obtain FUSE observations of the interstellar absorption lines of F I at 951 and 954 Angstroms to derive the abundance of fluorine toward the star HD 164816. The nucleosynthetic source(s) of fluorine are still a matter of debate - the present day abundance of fluorine can potentially constrain models for pulsationally driven dredge-up in asymptotic giant branch stars. An accurate measure for the depletion behavior of fluorine will determine whether it may be detectable in QSO absorption line systems - an unambiguous detection of fluorine at suitably high redshifts would provide the best evidence to date for the neutrino process in massive stars. Furthermore, due to its extreme reactivity, measurement of the gas-phase interstellar fluorine abundance is important for models of grain chemistry. Despite the importance of measuring the interstellar fluorine abundance, at the time of our proposal only one previous detection has been made due to the low relative abundance of fluorine, the lack of lines outside the far-UV, and the blending of the available F I transitions with lines of Hz. The star HD 164816 is associated with the Lagoon nebula (M8), and at a distance of approximately 1.5 kpc probes both distant and local gas. Beginning April 8th, 2004 FUSE FP-Split observations of the star HD 164816 were obtained for this program. This data became available in the FUSE data archive May 21, 2004, and these observations were then downloaded and we began our analysis. Our analysis procedure has involved (1) fitting stellar models to the FUSE spectra, (2) using the multiple lines of Hz and N I at other wavelengths in the FUSE bandpass to derive column densities for the lines of H2 and N I which are blended with the F I features at 951 and 954 angstroms (3) the measurement of the column densities of F I and the species O I and C1 I which are important species for the dis-entangling of dust and nucleosynthetic effects. As discussed in

  4. Efficient siRNA delivery system using carboxilated single-wall carbon nanotubes in cancer treatment.

    PubMed

    Neagoe, Ioana Berindan; Braicu, Cornelia; Matea, Cristian; Bele, Constantin; Florin, Graur; Gabriel, Katona; Veronica, Chedea; Irimie, Alexandru

    2012-08-01

    Several functionalized carbon nanotubes have been designed and tested for the purpose of nucleic acid delivery. In this study, the capacity of SWNTC-COOH for siRNA deliverey were investigated delivery in parallel with an efficient commercial system. Hep2G cells were reverse-transfected with 50 nM siRNA (p53 siRNA, TNF-alphasiRNA, VEGFsiRNA) using the siPORT NeoFX (Ambion) transfection agent in paralel with SWNTC-COOH, functionalised with siRNA. The highest level of gene inhibition was observed in the cases treated with p53 siRNA gene; in the case of transfection with siPort, the NeoFX value was 33.8%, while in the case of SWNTC-COOH as delivery system for p53 siRNA was 37.5%. The gene silencing capacity for VEGF was 53.7%, respectively for TNF-alpha 56.7% for siPORT NeoFX delivery systems versus 47.7% (VEGF) and 46.5% (TNF-alpha) for SWNTC-COOH delivery system. SWNTC-COOH we have been showed to have to be an efficient carrier system. The results from the inhibition of gene expresion for both transfection systems were confirmed at protein level. Overall, the lowest mRNA expression was confirmed at protein level, especially in the case of p53 siRNA and TNF-alpha siRNA transfection. Less efficient reduction protein expressions were observed in the case of VEGF siRNA, for both transfection systems at 24 h; only at 48 h, there was a statistically significant reduction of VEGF protein expression. SWCNT-COOH determined an efficient delivery of siRNA. SWNTC-COOH, combined with suitable tumor markers like p53 siRNA, TNFalpha siRNA or VEGF siRNA can be used for the efficient delivery of siRNA.

  5. Reconsideration of in silico siRNA design from a perspective of heterogeneous data integration: problems and solutions.

    PubMed

    Liu, Qi; Zhou, Han; Zhu, Ruixin; Xu, Ying; Cao, Zhiwei

    2014-03-01

    The success of RNA interference (RNAi) depends on the interaction between short interference RNAs (siRNAs) and mRNAs. Design of highly efficient and specific siRNAs has become a challenging issue in applications of RNAi. Here, we present a detailed survey on the state-of-the-art siRNAs design, focusing on several key issues with the current in silico RNAi studies, including: (i) inconsistencies among the proposed guidelines for siRNAs design and the incomplete list of siRNAs features, (ii) improper integration of the heterogeneous cross-platform siRNAs data, (iii) inadequate consideration of the binding specificity of the target mRNAs and (iv) reduction in the 'off-target' effect in siRNAs design. With these considerations, the popular in silico siRNAs design rules are reexamined and several inconsistent viewpoints toward siRNAs feature identifications are clarified. In addition, novel computational models for siRNAs design using state-of-art machine learning techniques are discussed, which focus on heterogeneous data integration, joint feature selection and customized siRNAs screening toward highly specific targets. We believe that addressing such issues in siRNA study will provide new clues for further improved design of more efficient and specific siRNAs in RNAi.

  6. Non-Catalytic RISCs and Kinetics Determine Mammalian siRNA Sub-Cellular Localization.

    PubMed

    Ji, Fengmin; Liu, Lianyun; Tien, Ya-Hsin; Peng, Yi-Hsien; Lee, Hoong-Chien

    2015-01-01

    Small interfering RNAs (siRNAs) are fundamental to the regulation of cell function. Much is known about its gene interfering mechanism, but a kinetic description of it is still lacking. Here, we derived a set of reaction-diffusion equations for multiple RNA-induced silencing complex (RISC) pathways that give quantitative temporal and spatial descriptions of the siRNA process in mammalian cell, and are able to correctly describe all salient experimentally observed patterns of sub-cellular siRNA localization, including those that, at first glance, appear irreconcilable. These results suggest siRNA sub-cellular localization mainly concerns the non-catalytic RISC-target complex, and is caused by the selectiveness of RISC-target interaction and the permeability of the nuclear membrane to siRNA strands but not to RISC-target complexes. Our method is expected to be useful in devising RNAi based cell regulation strategies.

  7. HSP47 siRNA conjugated with cationized gelatin microspheres suppresses peritoneal fibrosis in mice.

    PubMed

    Obata, Yoko; Nishino, Tomoya; Kushibiki, Toshihiro; Tomoshige, Ryuji; Xia, Zhiyin; Miyazaki, Masanobu; Abe, Katsushige; Koji, Takehiko; Tabata, Yasuhiko; Kohno, Shigeru

    2012-07-01

    Heat shock protein 47 (HSP47), a collagen-specific molecular chaperone, is essential for the biosynthesis and secretion of collagen and is expressed in the fibrotic peritoneum. In the present study, we evaluated the efficacy of HSP47 small interfering RNA (siRNA) to suppress the development of peritoneal fibrosis induced by chlorhexidine gluconate in mice. We initially confirmed that biodegradable cationized gelatin microspheres (CGMs) containing HSP47 siRNA could continuously release siRNA over 21 days as a result of microsphere degradation. We then determined that a single injection of CGMs incorporating HSP47 siRNA suppressed collagen expression and macrophage infiltration, thereby preventing peritoneal fibrosis. Therefore, we suggest that this controlled-release technology using HSP47 siRNA is a potential treatment for peritoneal fibrosis. Additionally, RNA interference combined with CGMs as a drug-delivery system may lead to new strategies for knocking down specific genes in vivo.

  8. Multi-target siRNA: Therapeutic Strategy for Hepatocellular Carcinoma

    PubMed Central

    Li, Tiejun; Xue, Yuwen; Wang, Guilan; Gu, Tingting; Li, Yunlong; Zhu, York Yuanyuan; Chen, Li

    2016-01-01

    Multiple targets RNAi strategy is a preferred way to treat multigenic diseases, especially cancers. In the study, multi-target siRNAs were designed to inhibit NET-1, EMS1 and VEGF genes in hepatocellular carcinoma (HCC) cells. And multi-target siRNAs showed better silencing effects on NET-1, EMS1 and VEGF, compared with single target siRNA. Moreover, multi-target siRNA showed greater suppression effects on proliferation, migration, invasion, angiogenesis and induced apoptosis in HCC cells. The results suggested that multi-target siRNA might be a preferred strategy for cancer therapy and NET-1, EMS1 and VEGF could be effective targets for HCC treatments. PMID:27390607

  9. ICS-283: a system for targeted intravenous delivery of siRNA.

    PubMed

    Schiffelers, Raymond M; Storm, Gert

    2006-05-01

    ICS-283 was developed within Intradigm Corporation as a system that is designed for the systemic delivery of therapeutic small interfering (siRNA) to sites of pathological angiogenesis. The non-viral siRNA delivery system is based on synthetic nanoparticles, known as Targe (Intradigm Corporation), which functions as a broad-platform technology to deliver siRNA to specific target cells in diseased tissues. The system is constructed to incorporate different functionalities that address critical needs for successful nucleic acid delivery. The TargeTran synthetic vector is a self-assembling, layered nanoparticle that protects and targets siRNA to specific cell types in pathological tissues. At present, ICS-283 is the only antiangiogenic siRNA delivery system that is designed for intravenous administration to treat angiogenesis-driven diseases.

  10. siRNA and miRNA processing: new functions for Cajal bodies.

    PubMed

    Pontes, Olga; Pikaard, Craig S

    2008-04-01

    In diverse eukaryotes, micro-RNAs (miRNAs) and small interfering RNAs (siRNAs) regulate important processes that include mRNA inactivation, viral defense, chromatin modification, and transposon silencing. Recently, nucleolus-associated Cajal bodies in plants have been implicated as sites of siRNA and miRNA biogenesis, whereas in animals siRNA and miRNA dicing occurs in the cytoplasm. The plant nucleolus also contains proteins of the nonsense-mediated mRNA decay pathway that in animals are found associated with cytoplasmic processing bodies (P-bodies). P-bodies also function in the degradation of mRNAs subjected to miRNA and siRNA targeting. Collectively, these observations suggest interesting variations in the way siRNAs and miRNAs can accomplish their similar functions in plants and animals.

  11. [In vivo imaging of liposomal small interfering RNA (siRNA) trafficking by positron emission tomography].

    PubMed

    Ando, Hidenori; Yonenaga, Norihito; Asai, Tomohiro; Hatanaka, Kentaro; Koide, Hiroyuki; Tsuzuku, Takuma; Harada, Norihiro; Tsukada, Hideo; Oku, Naoto

    2012-01-01

    In the development of nucleic acid medicines such as small interfering RNA (siRNA) drugs, one problem is how to study the pharmacokinetics and pharmacodynamics, since the precise in vivo behavior of siRNA is hard to detect. In this research, to establish a highly sensitive detection system of siRNA biodistribution in the whole body, the technology of positron imaging was applied. First, a one-step synthetic method in which double-stranded siRNA was directly labeled by a positron emitter, (18)F, was developed. By using [(18)F]-labeled siRNA ([(18)F]-siRNA), the complex of siRNA and polycation liposomes (PCL) containing dicetylphosphate tetraethylenepentamine (TEPA-PCL) was prepared. Then, the biodistribution of the siRNA after intravenous administration to mice was analyzed by planar positron imaging system (PPIS). As a result, whereas naked [(18)F]-siRNA was immediately excreted in mouse bladder after administration, the complex with cationic liposome (CL) was trapped in the lungs. Furthermore, [(18)F]-siRNA carried with PEGylated CL (PL) was distributed throughout the body, suggesting that it circulated in the bloodstream for an extended period of time. Additionally, PET imaging revealed more detailed biodistribution of the siRNA than in vivo imaging system (IVIS) because PET imaging is not affected by the depth variation of target tissues. On the other hand, to induce high accumulation of siRNAs against c-myc, MDM2, and VEGF in tumor tissue, a tumor-targeting probe, RGD peptide, was grafted at the top of PEG chain in PEGylated TEPA-PCL and the effect of the complex on experimental lung metastasis of B16 melanoma was examined. The complex suppressed the progression of tumor. We believe that the positron imaging data would support the development of siRNA agent for clinical use.

  12. Dicetyl phosphate-tetraethylenepentamine-based liposomes for systemic siRNA delivery.

    PubMed

    Asai, Tomohiro; Matsushita, Saori; Kenjo, Eriya; Tsuzuku, Takuma; Yonenaga, Norihito; Koide, Hiroyuki; Hatanaka, Kentaro; Dewa, Takehisa; Nango, Mamoru; Maeda, Noriyuki; Kikuchi, Hiroshi; Oku, Naoto

    2011-03-16

    Dicetyl phosphate-tetraethylenepentamine (DCP-TEPA) conjugate was newly synthesized and formed into liposomes for efficient siRNA delivery. Formulation of DCP-TEPA-based polycation liposomes (TEPA-PCL) complexed with siRNA was examined by performing knockdown experiments using stable EGFP-transfected HT1080 human fibrosarcoma cells and siRNA for GFP. An adequate amount of DCP-TEPA in TEPA-PCL and N/P ratio of TEPA-PCL/siRNA complexes were determined based on the knockdown efficiency. Then, the biodistribution of TEPA-PCL modified with poly(ethylene glycol) (PEG) was examined in BALB/c mice. As a result, TEPA-PCL modified with PEG6000 avoided reticuloendothelial system uptake and showed long circulation in the bloodstream. On the other hand, PEGylation of TEPA-PCL/siRNA complexes caused dissociation of a portion of the siRNA from the liposomes. However, we found that the use of cholesterol-conjugated siRNA improved the interaction between TEPA-PCL and siRNA, which allowed PEGylation of TEPA-PCL/siRNA complexes without siRNA dissociation. In addition, TEPA-PCL complexed with cholesterol-conjugated siRNA showed potent knockdown efficiency in stable luciferase-transfected B16-F10 murine melanoma cells. Finally, the biodistribution of cholesterol-conjugated siRNA formulated in PEGylated TEPA-PCL was examined by performing near-infrared fluorescence imaging in Colon26 NL-17 murine carcinoma-bearing mice. Our results showed that tumor targeting with siRNA via systemic administration was achieved by using PEGylated TEPA-PCL combined with active targeting with Ala-Pro-Arg-Pro-Gly, a peptide used for targeting angiogenic endothelium.

  13. siRNA liposome-gold nanorod vectors for multispectral optoacoustic tomography theranostics

    NASA Astrophysics Data System (ADS)

    Taruttis, Adrian; Lozano, Neus; Nunes, Antonio; Jasim, Dhifaf A.; Beziere, Nicolas; Herzog, Eva; Kostarelos, Kostas; Ntziachristos, Vasilis

    2014-10-01

    Therapeutic applications of gene silencing using siRNA have seen increasing interest over the past decade. The optimization of the delivery and biodistribution of siRNA using liposome-gold nanorod (AuNRs) nanoscale carriers can greatly benefit from adept imaging methods that can visualize the time-resolved delivery performance of such vectors. In this work, we describe the effect of AuNR length incorporated with liposomes and show their complexation with siRNA as a novel gene delivery vehicle. We demonstrate the application of multispectral optoacoustic tomography (MSOT) to longitudinally visualize the localisation of siRNA carrying liposome-AuNR hybrids within tumors. Combination of in vivo MSOT with ex vivo fluorescence cryo-slice imaging offers further insight into the siRNA transport and activity obtained.Therapeutic applications of gene silencing using siRNA have seen increasing interest over the past decade. The optimization of the delivery and biodistribution of siRNA using liposome-gold nanorod (AuNRs) nanoscale carriers can greatly benefit from adept imaging methods that can visualize the time-resolved delivery performance of such vectors. In this work, we describe the effect of AuNR length incorporated with liposomes and show their complexation with siRNA as a novel gene delivery vehicle. We demonstrate the application of multispectral optoacoustic tomography (MSOT) to longitudinally visualize the localisation of siRNA carrying liposome-AuNR hybrids within tumors. Combination of in vivo MSOT with ex vivo fluorescence cryo-slice imaging offers further insight into the siRNA transport and activity obtained. Electronic supplementary information (ESI) available: Experimental section and dark-field microscopy in both tumors 24 h after injection of the complex have been included. See DOI: 10.1039/c4nr04164j

  14. Identification of miniature inverted-repeat transposable elements (MITEs) and biogenesis of their siRNAs in the Solanaceae: new functional implications for MITEs.

    PubMed

    Kuang, Hanhui; Padmanabhan, Chellappan; Li, Feng; Kamei, Ayako; Bhaskar, Pudota B; Ouyang, Shu; Jiang, Jiming; Buell, C Robin; Baker, Barbara

    2009-01-01

    Small RNAs regulate the genome by guiding transcriptional and post-transcriptional silencing machinery to specific target sequences, including genes and transposable elements (TEs). Although miniature inverted-repeat transposable elements (MITEs) are closely associated with euchromatic genes, the broader functional impact of these short TE insertions in genes is largely unknown. We identified 22 families of MITEs in the Solanaceae (MiS1-MiS22) and found abundant MiS insertions in Solanaceae genomic DNA and expressed sequence tags (EST). Several Solanaceae MITEs generate genome changes that potentially affect gene function and regulation, most notably, a MiS insertion that provides a functionally indispensable alternative exon in the tobacco mosaic virus N resistance gene. We show that MITEs generate small RNAs that are primarily 24 nt in length, as detected by Northern blot hybridization and by sequencing small RNAs of Solanum demissum, Nicotiana glutinosa, and Nicotiana benthamiana. Additionally, we show that stable RNAi lines silencing DICER-LIKE3 (DCL3) in tobacco and RNA-dependent RNA polymerase 2 (RDR2) in potato cause a reduction in 24-nt MITE siRNAs, suggesting that, as in Arabidopsis, TE-derived siRNA biogenesis is DCL3 and RDR2 dependent. We provide evidence that DICER-LIKE4 (DCL4) may also play a role in MITE siRNA generation in the Solanaceae.

  15. NSE abundance data

    SciTech Connect

    Odrzywolek, Andrzej

    2012-07-15

    A novel method of calculating nuclear statistical equilibrium (NSE) is presented. Basic equations are carefully solved using arbitrary precision arithmetic. A special interpolation procedure is then used to retrieve all abundances using tabulated results for neutrons and protons, together with basic nuclear data. Proton and neutron abundance tables, basic nuclear data, and partition functions for nuclides used in the calculations are provided. A simple interpolation algorithm using pre-calculated p and n abundances tabulated as functions of kT, {rho} and Y{sub e} is outlined. Unique properties of this method are: (1) ability to pick up out of NSE selected nuclei only, (2) computational time scaling linearly with number of re-calculated abundances, (3) relatively small amount of stored data: only two large tables, (4) slightly faster than solving the NSE equations using traditional Newton-Raphson methods for small networks (few tens of species); superior for huge (800-3000) networks, (5) does not require initial guess; works well on random input, (6) can be tailored to specific application, (7) ability to use third-party NSE solvers to obtain fully compatible tables, and (8) encapsulation of the NSE code for bug-free calculations. A range of applications for this approach is possible: covering tests of traditional NSE Newton-Raphson codes, generating starting values, code-to-code verification, and possible replacement of the old legacy procedures in supernova simulations.

  16. Abundances of light elements.

    PubMed Central

    Pagel, B E

    1993-01-01

    Recent developments in the study of abundances of light elements and their relevance to cosmological nucleosynthesis are briefly reviewed. The simplest model, based on standard cosmology and particle physics and assuming homogeneous baryon density at the relevant times, continues to stand up well. PMID:11607388

  17. Atelocollagen-mediated in vivo siRNA transfection in ovarian carcinoma is influenced by tumor site, siRNA target and administration route.

    PubMed

    Meryet-Figuière, Matthieu; Lecerf, Charlotte; Varin, Emilie; Coll, Jean-Luc; Louis, Marie-Hélène; Dutoit, Soizic; Giffard, Florence; Blanc-Fournier, Cécile; Hedir, Siham; Vigneron, Nicolas; Brotin, Emilie; Pelletier, Laurent; Josserand, Véronique; Denoyelle, Christophe; Poulain, Laurent

    2017-10-01

    Ovarian cancer is the leading cause of death from gynecological malignancies worldwide, and innate or acquired chemoresistance of ovarian cancer cells is the major cause of therapeutic failure. It has been demonstrated that the concomitant inhibition of Bcl-xL and Mcl-1 anti-apoptotic activities is able to trigger apoptosis in chemoresistant ovarian cancer cells. In this context, siRNA-mediated Bcl‑xL and Mcl-1 inhibition constitutes an appealing strategy by which to eliminate chemoresistant cancer cells. However, the safest and most efficient way to vectorize siRNAs in vivo is still under debate. In the present study, using in vivo bioluminescence imaging, we evaluated the interest of atelocollagen to vectorize siRNAs by intraperitoneal (i.p.) or intravenous (i.v.) administration in 2 xenografted ovarian cancer models (peritoneal carcinomatosis and subcutaneous tumors in nude mice). Whereas i.p. administration of atelocollagen-vectorized siRNA in the peritoneal carcinomatosis model did not induce any gene downregulation, a 70% transient downregulation of luciferase expression was achieved after i.v. injection of atelocollagen-vectorized siRNA in the subcutaneous (s.c.) model. However, the use of siRNA targeting Bcl-xL or Mcl-1 did not induce target-specific downregulation in vivo in nude mice. Our results therefore show that atelocollagen complex formulation, the administration route, tumor site and the identity of the siRNA target influence the efficiency of atelocollagen‑mediated siRNA delivery.

  18. Bolaamphiphiles as carriers for siRNA delivery: From chemical syntheses to practical applications.

    PubMed

    Gupta, Kshitij; Afonin, Kirill A; Viard, Mathias; Herrero, Virginia; Kasprzak, Wojciech; Kagiampakis, Ioannis; Kim, Taejin; Koyfman, Alexey Y; Puri, Anu; Stepler, Marissa; Sappe, Alison; KewalRamani, Vineet N; Grinberg, Sarina; Linder, Charles; Heldman, Eliahu; Blumenthal, Robert; Shapiro, Bruce A

    2015-09-10

    In this study we have investigated a new class of cationic lipids--"bolaamphiphiles" or "bolas"--for their ability to efficiently deliver small interfering RNAs (siRNAs) to cancer cells. The bolas of this study consist of a hydrophobic chain with one or more positively charged head groups at each end. Recently, we reported that micelles of the bolas GLH-19 and GLH-20 (derived from vernonia oil) efficiently deliver siRNAs, while having relatively low toxicities in vitro and in vivo. Our previous studies validated that; bolaamphiphiles can be designed to vary the magnitude of siRNA shielding, its delivery, and its subsequent release. To further understand the structural features of bolas critical for siRNAs delivery, new structurally related bolas (GLH-58 and GLH-60) were designed and synthesized from jojoba oil. Both bolas have similar hydrophobic domains and contain either one, in GLH-58, or two, in GLH-60 positively charged head groups at each end of the hydrophobic core. We have computationally predicted and experimentally validated that GLH-58 formed more stable nano sized micelles than GLH-60 and performed significantly better in comparison to GLH-60 for siRNA delivery. GLH-58/siRNA complexes demonstrated better efficiency in silencing the expression of the GFP gene in human breast cancer cells at concentrations of 5μg/mL, well below the toxic dose. Moreover, delivery of multiple different siRNAs targeting the HIV genome demonstrated further inhibition of virus production.

  19. Delivery of siRNA to the Mouse Lung via a Functionalized Lipopolyamine

    PubMed Central

    Polach, Kevin J; Matar, Majed; Rice, Jennifer; Slobodkin, Gregory; Sparks, Jeff; Congo, Richard; Rea-Ramsey, Angela; McClure, Diane; Brunhoeber, Elaine; Krampert, Monika; Schuster, Andrea; Jahn-Hofmann, Kerstin; John, Matthias; Vornlocher, Hans-Peter; Fewell, Jason G; Anwer, Khursheed; Geick, Anke

    2012-01-01

    We have designed a series of versatile lipopolyamines which are amenable to chemical modification for in vivo delivery of small interfering RNA (siRNA). This report focuses on one such lipopolyamine (Staramine), its functionalized derivatives and the lipid nanocomplexes it forms with siRNA. Intravenous (i.v.) administration of Staramine/siRNA nanocomplexes modified with methoxypolyethylene glycol (mPEG) provides safe and effective delivery of siRNA and significant target gene knockdown in the lungs of normal mice, with much lower knockdown in liver, spleen, and kidney. Although siRNA delivered via Staramine is initially distributed across all these organs, the observed clearance rate from the lung tissue is considerably slower than in other tissues resulting in prolonged siRNA accumulation on the timescale of RNA interference (RNAi)-mediated transcript depletion. Complete blood count (CBC) analysis, serum chemistry analysis, and histopathology results are all consistent with minimal toxicity. An in vivo screen of mPEG modified Staramine nanocomplexes-containing siRNAs targeting lung cell-specific marker proteins reveal exclusive transfection of endothelial cells. Safe and effective delivery of siRNA to the lung with chemically versatile lipopolyamine systems provides opportunities for investigation of pulmonary cell function in vivo as well as potential treatments of pulmonary disease with RNAi-based therapeutics. PMID:21988874

  20. Antineoplastic Effects of siRNA against TMPRSS2-ERG Junction Oncogene in Prostate Cancer

    PubMed Central

    Urbinati, Giorgia; Ali, Hafiz Muhammad; Rousseau, Quentin; Chapuis, Hubert; Desmaële, Didier; Couvreur, Patrick; Massaad-Massade, Liliane

    2015-01-01

    TMPRSS2-ERG junction oncogene is present in more than 50% of patients with prostate cancer and its expression is frequently associated with poor prognosis. Our aim is to achieve gene knockdown by siRNA TMPRSS2-ERG and then to assess the biological consequences of this inhibition. First, we designed siRNAs against the two TMPRSS2-ERG fusion variants (III and IV), most frequently identified in patients’ biopsies. Two of the five siRNAs tested were found to efficiently inhibit mRNA of both TMPRSS2-ERG variants and to decrease ERG protein expression. Microarray analysis further confirmed ERG inhibition by both siRNAs TMPRSS2-ERG and revealed one common down-regulated gene, ADRA2A, involved in cell proliferation and migration. The siRNA against TMPRSS2-ERG fusion variant IV showed the highest anti-proliferative effects: Significantly decreased cell viability, increased cleaved caspase-3 and inhibited a cluster of anti-apoptotic proteins. To propose a concrete therapeutic approach, siRNA TMPRSS2-ERG IV was conjugated to squalene, which can self-organize as nanoparticles in water. The nanoparticles of siRNA TMPRSS2-ERG-squalene injected intravenously in SCID mice reduced growth of VCaP xenografted tumours, inhibited oncoprotein expression and partially restored differentiation (decrease in Ki67). In conclusion, this study offers a new prospect of treatment for prostate cancer based on siRNA-squalene nanoparticles targeting TMPRSS2-ERG junction oncogene. PMID:25933120

  1. Structure-Guided Control of siRNA Off-Target Effects.

    PubMed

    Suter, Scott R; Sheu-Gruttadauria, Jessica; Schirle, Nicole T; Valenzuela, Rachel; Ball-Jones, Alexi A; Onizuka, Kazumitsu; MacRae, Ian J; Beal, Peter A

    2016-07-20

    Short interfering RNAs (siRNAs) are promising therapeutics that make use of the RNA interference (RNAi) pathway, but liabilities arising from the native RNA structure necessitate chemical modification for drug development. Advances in the structural characterization of components of the human RNAi pathway have enabled structure-guided optimization of siRNA properties. Here we report the 2.3 Å resolution crystal structure of human Argonaute 2 (hAgo2), a key nuclease in the RNAi pathway, bound to an siRNA guide strand bearing an unnatural triazolyl nucleotide at position 1 (g1). Unlike natural nucleotides, this analogue inserts deeply into hAgo2's central RNA binding cleft and thus is able to modulate pairing between guide and target RNAs. The affinity of the hAgo2-siRNA complex for a seed-only matched target was significantly reduced by the triazolyl modification, while the affinity for a fully matched target was unchanged. In addition, siRNA potency for off-target repression was reduced (4-fold increase in IC50) by the modification, while on-target knockdown was improved (2-fold reduction in IC50). Controlling siRNA on-target versus microRNA (miRNA)-like off-target potency by projection of substituent groups into the hAgo2 central cleft from g1 is a new approach to enhance siRNA selectivity with a strong structural rationale.

  2. Cancer-targeting siRNA delivery from porous silicon nanoparticles.

    PubMed

    Wan, Yuan; Apostolou, Sinoula; Dronov, Roman; Kuss, Bryone; Voelcker, Nicolas H

    2014-10-01

    Porous silicon nanoparticles (pSiNPs) with tunable pore size are biocompatible and biodegradable, suggesting that they are suitable biomaterials as vehicles for drug delivery. Loading of small interfering RNA (siRNA) into the pores of pSiNPs can protect siRNA from degradation as well as improve the cellular uptake. We aimed to deliver MRP1 siRNA loaded into pSiNPs to glioblastoma cells, and to demonstrate downregulation of MRP1 at the mRNA and protein levels. 50-220 nm pSiNPs with an average pore size of 26 nm were prepared, followed by electrostatic adsorption of siRNA into pores. Oligonucleotide loading and release profiles were investigated; MRP1 mRNA and protein expression, cell viability and cell apoptosis were studied. Approximately 7.7 µg of siRNA was loaded per mg of pSiNPs. Cells readily took up nanoparticles after 30 min incubation. siRNA-loaded pSiNPs were able to effectively downregulate target mRNA (~40%) and protein expression (31%), and induced cell apoptosis and necrosis (33%). siRNA loaded pSiNPs downregulated mRNA and protein expression and induced cell death. This novel siRNA delivery system may pave the way towards developing more effective tumor therapies.

  3. SiRNA sequence model: redesign algorithm based on available genome-wide libraries.

    PubMed

    Kozak, Karol

    2013-12-01

    The evolution of RNA interference (RNAi) and the development of technologies exploiting its biology have enabled scientists to rapidly examine the consequences of depleting a particular gene product in cells. Design tools have been developed based on experimental data to increase the knockdown efficiency of siRNAs. Not all siRNAs that are developed to a given target mRNA are equally effective. Currently available design algorithms take an accession, identify conserved regions among their transcript space, find accessible regions within the mRNA, design all possible siRNAs for these regions, filter them based on multi-scores thresholds, and then perform off-target filtration. These different criteria are used by commercial suppliers to produce siRNA genome-wide libraries for different organisms. In this article, we analyze existing siRNA design algorithms and evaluate weight of design parameters for libraries produced in the last decade. We proved that not all essential parameters are currently applied by siRNA vendors. Based on our evaluation results, we were able to suggest an siRNA sequence pattern. The findings in our study can be useful for commercial vendors improving the design of RNAi constructs, by addressing both the issue of potency and the issue of specificity.

  4. Development and optimization of nanosomal formulations for siRNA delivery to the liver.

    PubMed

    Kundu, Anup K; Chandra, Partha K; Hazari, Sidhartha; Pramar, Yashoda V; Dash, Srikanta; Mandal, Tarun K

    2012-02-01

    The objective of this study is to develop an effective siRNA delivery system for successful delivery to the liver for the treatment of HCV. Nanosize liposomes (nanosomes) have been prepared using a mixture of cholesterol and DOTAP. A functional siRNA was encapsulated into nanosomes following condensation with protamine sulfate. The delivery of siRNA was optimized in an in vitro cell culture system. The efficacy of the formulations was evaluated by measuring functional gene silencing and cytotoxicity. Encapsulation of siRNA ≥ 7.4 nM resulted in successful delivery of siRNA to nearly 100% of cells. The formulations containing lipid-to-siRNA ratio ≥ 10.56:1 instantly cleared approximately 85% of HCV while maintaining cell viability at about 90%. The formulations were sonicated to further reduce the particle size. The size of these formulations was decreased up to 100 nm. However, there were no significant changes observed in zeta potential, or in siRNA encapsulation and integrity following sonication. The sonicated formulations also showed higher liver hepatocytes deposition and gene silencing properties. This study therefore provides a novel approach of siRNA delivery to liver hepatocytes, which can also be applied to treat HCV in chronic liver diseases.

  5. Dendrimers as Carriers for siRNA Delivery and Gene Silencing: A Review

    PubMed Central

    Huang, Weizhe; He, Ziying

    2013-01-01

    RNA interference (RNAi) was first literaturally reported in 1998 and has become rapidly a promising tool for therapeutic applications in gene therapy. In a typical RNAi process, small interfering RNAs (siRNA) are used to specifically downregulate the expression of the targeted gene, known as the term “gene silencing.” One key point for successful gene silencing is to employ a safe and efficient siRNA delivery system. In this context, dendrimers are emerging as potential nonviral vectors to deliver siRNA for RNAi purpose. Dendrimers have attracted intense interest since their emanating research in the 1980s and are extensively studied as efficient DNA delivery vectors in gene transfer applications, due to their unique features based on the well-defined and multivalent structures. Knowing that DNA and RNA possess a similar structure in terms of nucleic acid framework and the electronegative nature, one can also use the excellent DNA delivery properties of dendrimers to develop effective siRNA delivery systems. In this review, the development of dendrimer-based siRNA delivery vectors is summarized, focusing on the vector features (siRNA delivery efficiency, cytotoxicity, etc.) of different types of dendrimers and the related investigations on structure-activity relationship to promote safe and efficient siRNA delivery system. PMID:24288498

  6. Random small interfering RNA library screen identifies siRNAs that induce human erythroleukemia cell differentiation.

    PubMed

    Fan, Cuiqing; Xiong, Yuan; Zhu, Ning; Lu, Yabin; Zhang, Jiewen; Wang, Song; Liang, Zicai; Shen, Yan; Chen, Meihong

    2011-03-01

    Cancers are characterized by poor differentiation. Differentiation therapy is a strategy to alleviate malignant phenotypes by inducing cancer cell differentiation. Here we carried out a combinatorial high-throughput screen with a random siRNA library on human erythroleukemia K-562 cell differentiation. Two siRNAs screened from the library were validated to be able to induce erythroid differentiation to varying degrees, determined by CD235 and globin up-regulation, GATA-2 down-regulation, and cell growth inhibition. The screen we performed here is the first trial of screening cancer differentiation-inducing agents from a random siRNA library, demonstrating that a random siRNA library can be considered as a new resource in efforts to seek new therapeutic agents for cancers. As a random siRNA library has a broad coverage for the entire genome, including known/unknown genes and protein coding/non-coding sequences, screening using a random siRNA library can be expected to greatly augment the repertoire of therapeutic siRNAs for cancers.

  7. Therapeutic Effects of Myeloid Cell Leukemia-1 siRNA on Human Acute Myeloid Leukemia Cells

    PubMed Central

    Karami, Hadi; Baradaran, Behzad; Esfahani, Ali; Sakhinia, Masoud; Sakhinia, Ebrahim

    2014-01-01

    Purpose: Up-regulation of Mcl-1, a known anti-apoptotic protein, is associated with the survival and progression of various malignancies including leukemia. The aim of this study was to explore the effect of Mcl-1 small interference RNA (siRNA) on the proliferation and apoptosis of HL-60 acute myeloid leukemia (AML) cells. Methods: siRNA transfection was performed using Lipofectamine™2000 reagent. Relative mRNA and protein expressions were quantified by quantitative real-time PCR and Western blotting, respectively. Trypan blue assay was performed to assess tumor cell proliferation after siRNA transfection. The cytotoxic effect of Mcl-1 siRNA on leukemic cells was measured using MTT assay. Apoptosis was detected using ELISA cell death assay. Results: Mcl-1 siRNA clearly lowered both Mcl-1 mRNA and protein levels in a time-dependent manner, leading to marked inhibition of cell survival and proliferation. Furthermore, Mcl-1 down-regulation significantly enhanced the extent of HL-60 apoptotic cells. Conclusion: Our results suggest that the down-regulation of Mcl-1 by siRNA can effectively trigger apoptosis and inhibit the proliferation of leukemic cells. Therefore, Mcl-1 siRNA may be a potent adjuvant in AML therapy. PMID:24754007

  8. Identification and Characterization of Receptor-Specific Peptides for siRNA Delivery

    PubMed Central

    2012-01-01

    Tumor-targeted delivery of siRNA remains a major barrier in fully realizing the therapeutic potential of RNA interference. While cell-penetrating peptides (CPP) are promising siRNA carrier candidates, they are universal internalizers that lack cell-type specificity. Herein, we design and screen a library of tandem tumor-targeting and cell-penetrating peptides that condense siRNA into stable nanocomplexes for cell type-specific siRNA delivery. Through physiochemical and biological characterization, we identify a subset of the nanocomplex library of that are taken up by cells via endocytosis, trigger endosomal escape and unpacking of the carrier, and ultimately deliver siRNA to the cytosol in a receptor-specific fashion. To better understand the structure–activity relationships that govern receptor-specific siRNA delivery, we employ computational regression analysis and identify a set of key convergent structural properties, namely the valence of the targeting ligand and the charge of the peptide, that help transform ubiquitously internalizing cell-penetrating peptides into cell type-specific siRNA delivery systems. PMID:22909216

  9. Effect of Inducible Co-Stimulatory Molecule siRNA in Cerebral Infarction Rat Models

    PubMed Central

    Luo, Yingquan; Yang, Yu; Zhang, Hui; Zhang, Ting; Wang, Yina; Tan, Shengyu; Xu, Yan; Li, Dan; Ye, Ling; Chen, Ping

    2015-01-01

    Background T cell-induced inflammatory response and related cytokine secretion at the injury site may participate in the pathogenesis of cerebral infarction. Recent studies established inducible co-stimulatory molecule (ICOS) as a novel T cell-related factor for its activation and functions. We thus investigate the role of ICOS in cerebral infarction. Material/Methods The siRNA of ICOS was first used to suppress the gene expression in cultured lymphocytes. An in vivo study was then performed by intravenous application of ICOS siRNA in cerebral infarction rats. Survival rates, neurological scores, serum tumor necrosis factor (TNF)-α, interleukin (IL)-1, and IL-17 levels were observed. Results The expression of ICOS in cultured lymphocytes was significantly suppressed by siRNA. In the in vivo study, the application of siRNA effectively lowered mortality rates of rats, in addition to the improvement of neurological behaviors and amelioration of cerebral tissue damage. Serum levels of TNF-α, IL-1 and IL-17 were all significantly suppressed after siRNA injection. Conclusions ICOS siRNA can protect brain tissues from ischemia injuries after cerebral infarction, improve limb movement and coordination, lower the mortality rate of rats, and inhibit T cell-induced cytokines. These results collectively suggest the potential treatment efficacy of ICOS siRNA against cerebral infarction. PMID:26436531

  10. Cationic derivatives of biocompatible hyaluronic acids for delivery of siRNA and antisense oligonucleotides.

    PubMed

    Han, Su-Eun; Kang, Hyungu; Shim, Ga Yong; Kim, Sun Jae; Choi, Han-Gon; Kim, Jiseok; Hahn, Sei Kwang; Oh, Yu-Kyoung

    2009-02-01

    In this study, we tested the use of cationic polymer derivatives of biocompatible hyaluronic acid (HA) as a delivery system of siRNA and antisense oligonucleotides. HA was modified with cationic polymer polyethylenimine (PEI). When compared with PEI alone, cationic PEI derivatives of HA (HA-PEI) provided increased cellular delivery of Small interfering RNA (siRNA) in B16F1, A549, HeLa, and Hep3B tumor cells. Indeed, more than 95% of the cells were positive for siRNA following its delivery with HA-PEI. A survivin-specific siRNA that was delivered using HA-PEI potently reduced the mRNA expression levels of the target gene in all of the cell lines. By contrast, survivin-specific siRNA delivered by PEI alone did not induce a significant reduction in mRNA levels. In green fluorescent protein (GFP)-expressing 293 T cells, a loss of GFP expression was evident in the cells that had been treated with GFP-specific siRNA and HA-PEI complex. The inhibition of target gene expression by antisense oligonucleotide G3139 was also enhanced after delivery with HA-PEI. Moreover, HA-PEI displayed lower cytotoxicity than PEI alone. These results suggest that HA-PEI could be further developed as biocompatible delivery systems of siRNA and antisense oligonucleotides for enhanced cellular uptake and inhibition of target gene expression.

  11. Surface abundances of ON stars

    NASA Astrophysics Data System (ADS)

    Martins, F.; Simón-Díaz, S.; Palacios, A.; Howarth, I.; Georgy, C.; Walborn, N. R.; Bouret, J.-C.; Barbá, R.

    2015-06-01

    Context. Massive stars burn hydrogen through the CNO cycle during most of their evolution. When mixing is efficient or when mass transfer in binary systems occurs, chemically processed material is observed at the surface of O and B stars. Aims: ON stars show stronger lines of nitrogen than morphologically normal counterparts. Whether this corresponds to the presence of material processed through the CNO cycle is not known. Our goal is to answer this question. Methods: We performed a spectroscopic analysis of a sample of ON stars with atmosphere models. We determined the fundamental parameters as well as the He, C, N, and O surface abundances. We also measured the projected rotational velocities. We compared the properties of the ON stars to those of normal O stars. Results: We show that ON stars are usually rich in helium. Their CNO surface abundances are fully consistent with predictions of nucleosynthesis. ON stars are more chemically evolved and rotate - on average - faster than normal O stars. Evolutionary models including rotation cannot account for the extreme enrichment observed among ON main sequence stars. Some ON stars are members of binary systems, but others are single stars as indicated by stable radial velocities. Mass transfer is therefore not a simple explanation for the observed chemical properties. Conclusions: We conclude that ON stars show extreme chemical enrichment at their surface, consistent with nucleosynthesis through the CNO cycle. Its origin is not clear at present. Based on observations obtained 1) at the Anglo-Australian Telescope; 2) at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii; 3) at the ESO/La Silla Observatory under programs 081.D-2008, 083.D-0589, 086.D-0997; 4) the Nordic Optical Telescope, operated on the island of La

  12. RELATIVE ABUNDANCE MEASUREMENTS IN PLUMES AND INTERPLUMES

    SciTech Connect

    Guennou, C.; Hahn, M.; Savin, D. W.

    2015-07-10

    We present measurements of relative elemental abundances in plumes and interplumes. Plumes are bright, narrow structures in coronal holes that extend along open magnetic field lines far out into the corona. Previous work has found that in some coronal structures the abundances of elements with a low first ionization potential (FIP) <10 eV are enhanced relative to their photospheric abundances. This coronal-to-photospheric abundance ratio, commonly called the FIP bias, is typically 1 for elements with a high-FIP (>10 eV). We have used Extreme Ultraviolet Imaging Spectrometer observations made on 2007 March 13 and 14 over a ≈24 hr period to characterize abundance variations in plumes and interplumes. To assess their elemental composition, we used a differential emission measure analysis, which accounts for the thermal structure of the observed plasma. We used lines from ions of iron, silicon, and sulfur. From these we estimated the ratio of the iron and silicon FIP bias relative to that for sulfur. From the results, we have created FIP-bias-ratio maps. We find that the FIP-bias ratio is sometimes higher in plumes than in interplumes and that this enhancement can be time dependent. These results may help to identify whether plumes or interplumes contribute to the fast solar wind observed in situ and may also provide constraints on the formation and heating mechanisms of plumes.

  13. Synthesis and characterization of amino acid-functionalized calcium phosphate nanoparticles for siRNA delivery.

    PubMed

    Bakan, Feray; Kara, Goknur; Cokol Cakmak, Melike; Cokol, Murat; Denkbas, Emir Baki

    2017-06-27

    Small interfering RNAs (siRNA) are short nucleic acid fragments of about 20-27 nucleotides, which can inhibit the expression of specific genes. siRNA based RNAi technology has emerged as a promising method for the treatment of a variety of diseases. However, a major limitation in the therapeutic use of siRNA is its rapid degradation in plasma and cellular cytoplasm, resulting in short half-life. In addition, as siRNA molecules cannot penetrate into the cell efficiently, it is required to use a carrier system for its delivery. In this work, chemically and morphologically different calcium phosphate (CaP) nanoparticles, including spherical-like hydroxyapatite (HA-s), needle-like hydroxyapatite (HA-n) and calcium deficient hydroxyapatite (CDHA) nanoparticles were synthesized by the sol-gel technique and the effects of particle characteristics on the binding capacity of siRNA were investigated. In order to enhance the gene loading efficiency, the nanoparticles were functionalized with arginine and the morphological and their structural characteristics were analyzed. The addition of arginine did not significantly change the particle sizes; however, it provided a significantly increased binding of siRNA for all types of CaP nanoparticles, as revealed by spectrophotometric measurements analysis. Arginine functionalized HA-n nanoparticles showed the best binding behavior with siRNA among the other nanoparticles due to its high, positive zeta potential (+18.8mV) and high surface area of Ca(++) rich "c" plane. MTT cytotoxicity assays demonstrated that all the nanoparticles tested herein were biocompatible. Our results suggest that high siRNA entrapment in each of the three modified non-toxic CaP nanoparticles make them promising candidates as a non-viral vector for delivering therapeutic siRNA molecules to treat cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Consensus siRNA for inhibition of HCV genotype-4 replication

    PubMed Central

    Zekri, Abdel Rahman N; Bahnassy, Abeer A; El-Din, Hanaa M Alam; Salama, Hosny M

    2009-01-01

    Background HCV is circulating as a heterogeneous group of quasispecies. It has been addressed that siRNA can inhibit HCV replication in-vitro using HCV clone and/or replicon which have only one genotype. The current study was conducted to assess whether siRNA can inhibit different HCV genotypes with many quasispecies and to assess whether consensus siRNA have the same effect as regular siRNA. Methods We generated two chemically synthesized consensus siRNAs (Z3 and Z5) which cover most known HCV genotype sequences and quasispecies using Ambium system. Highly positive HCV patient's serum with nine quasispecies was transfected in-vitro to Huh-7 cell line which supports HCV genotype-4 replication. siRNA (Z3&Z5) were transfected according to Qiagen Porta-lipid technique and subsequently cultured for eight days. HCV replication was monitored by RT-PCR for detection of plus and minus strands. Real-time PCR was used for quantification of HCV, whereas detection of the viral core protein was performed by western blot. Results HCV RNA levels decreased 18-fold (P = 0.001) and 25-fold (P = 0.0005) in cells transfected with Z3 and Z5, respectively, on Day 2 post transfection and continued for Day 3 by Z3 and Day 7 by Z5. Reduction of core protein expression was reported at Day 2 post Z3 siRNA transfection and at Day 1 post Z5 siRNA, which was persistent for Day 4 for the former and for Day 6 for the latter. Conclusion Consensus siRNA could be used as a new molecular target therapy to effectively inhibit HCV replication in the presence of more than one HCV quasispecies. PMID:19173711

  15. Assessment of siRNA pharmacokinetics using ELISA-based quantification.

    PubMed

    Kim, Eun-Joong; Park, Tae Gwan; Oh, Yu-Kyoung; Shim, Chang-Koo

    2010-04-02

    Here, we developed a novel ELISA-based assay for quantifying double-stranded intact siRNAs for in vivo pharmacokinetic analysis. The assay makes use of dual-labeled unmethylated or methylated siRNA, 5'-end-labeled on one strand with biotin (capture marker), and with dinitrophenol (detection marker), on the other end. This ELISA-based assay was linear over the range of 10-100 fmol/ml, with a sensitivity (5.4 fmol/ml) 629-fold higher than fluorometric quantification methods. The coefficient of variation (CV) of the ELISA quantification was 9.4% for intra-assay and 12.1% for inter-assay. The assay was specific for double-stranded siRNAs. The intensity of the detected signal was reduced to background levels in the presence of single-stranded RNA. The ELISA-based assay revealed that the levels of methylated forms of siRNAs after transfection into A549 and HeLa cells were significantly higher than those of unmethylated siRNA forms. Applying this assay to a study of the pharmacokinetic profiles of intravenously administered siRNAs, we found that the higher blood concentrations were achieved using the methylated form of siRNAs than unmethylated form. Moreover, methylated siRNAs complexed to DOTAP-based cationic liposomes showed significantly higher and prolonged blood concentration-time profile, with 2.2-fold lower clearance rate (0.11+/-0.02 ml/min) as compared to the uncomplexed form. These results demonstrate the utility of an ELISA-based assay for evaluating chemically modified siRNAs and cationic delivery systems, particularly from a pharmacokinetic perspective.

  16. Sustained delivery of siRNA from dopamine-coated stainless steel surfaces.

    PubMed

    Joddar, Binata; Albayrak, Aydin; Kang, Jeonghwa; Nishihara, Mizuki; Abe, Hiroshi; Ito, Yoshihiro

    2013-05-01

    Dopamine, an adhesive protein can be covalently deposited onto biomaterials. In this study, we evaluated the ability of dopamine-coated surfaces for small interfering RNA (siRNA) immobilization and release. Dopamine was deposited onto 316L stainless steel discs either as a monolayer at acidic pH or as polydopamine at alkaline pH, following which siRNA was immobilized onto these discs. To investigate the RNA interference ability of immobilized siRNA, reduction of luciferase expression in HeLa, and reduction of Egr-1 expression and cell proliferation in human aortic smooth muscle cells (HAoSMCs) were determined. Dopamine treatment of 316L stainless steel discs under both the acidic and alkaline conditions resulted in the deposition of amino (NH2) groups, which enabled electrostatic immobilization of siRNA. The immobilized siRNA was released from both types of coatings, and enhanced the percent suppression of firefly luciferase activity of HeLa significantly up to ~96.5% compared to HeLa on non-dopamine controls (18%). Both the release of siRNA and the percent suppression of firefly luciferase activity were sustained for at least 7 days. In another set of experiments, siRNA sequences targeting to inhibit the activity of the transcription factor Egr-1 were eluted from dopamine-coated surfaces to HAoSMCs. Egr-1 siRNA eluted from dopamine-coated surfaces, significantly reduced the proliferation of HAoSMCs and their protein expression of Egr-1. Therefore, this method of surface immobilization of siRNA onto dopamine-coated surfaces might be effective for nucleic acid delivery from stents. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. N-Alkyl-PEI Functional Iron Oxide Nanocluster for Efficient siRNA Delivery**

    PubMed Central

    Liu, Gang; Xie, Jin; Zhang, Fan; Wang, Zhi-Yong; Luo, Kui; Zhu, Lei; Quan, Qi-Meng; Niu, Gang; Lee, Seulki

    2013-01-01

    Small interfering RNA (siRNA) is an emerging class of therapeutics, working by regulating the expression of a specific gene involved in disease progression. Despite the promises, effective transport of siRNA with minimal side effects remains a challenge. In this study, a non-viral nanoparticle gene carrier has been developed and its efficiency for siRNA delivery and transfection has been validated at both in vitro and in vivo levels. Such a nanocarrier, abbreviated as Alkyl-PEI2k-IO, was constructed with a core of iron oxide (IO) and a shell of alkylated PEI2000 (Alkyl-PEI2k). It was found to be able to bind with siRNA, resulting in well-dispersed nanoparticles with a controlled clustering structure and narrow size distribution. Electrophoresis studies showed that the Alkyl-PEI2k-IOs could retard siRNA completely at N/P ratios above 10, protect siRNA from enzymatic degradation in serum and release complexed siRNA efficiently in the presence of polyanionic heparin. The knockdown efficiency of the siRNA loaded nanocarriers was assessed with 4T1 cells stably expressing luciferase (fluc-4T1) and further, with a fluc-4T1 xenograft model. Significant downregulation of luciferase was observed, and unlike the high molecular weight analogs, the Alkyl-PEI2k coated IOs showed a good biocompatibility. In conclusion, Alkyl-PEI2k-IOs demonstrate highly efficient delivery of siRNA and an innocuous toxic profile, making it a potential carrier for gene therapy. PMID:21861295

  18. Serum-stabilized naked caspase-3 siRNA protects autotransplant kidneys in a porcine model.

    PubMed

    Yang, Cheng; Zhao, Tian; Zhao, Zitong; Jia, Yichen; Li, Long; Zhang, Yufang; Song, Mangen; Rong, Ruiming; Xu, Ming; Nicholson, Michael L; Zhu, Tongyu; Yang, Bin

    2014-10-01

    The naked small interfering RNA (siRNA) of caspase-3, a key player in ischemia reperfusion injury, was effective in cold preserved and hemoreperfused kidneys, but not autotransplanted kidneys in our porcine models. Here, chemically modified serum stabilized caspase-3 siRNAs were further evaluated. The left kidney was retrieved and infused by University of Wisconsin solution with/without 0.3 mg caspase-3 or negative siRNA into the renal artery for 24-hour cold storage (CS). After an intravenous injection of 0.9 mg siRNA and right-uninephrectomy, the left kidney was autotransplanted for 2 weeks. The effectiveness of caspase-3 siRNA was confirmed by caspase-3 knockdown in the post-CS and/or post-transplant kidneys with reduced apoptosis and inflammation, while the functional caspase-3 siRNA in vivo was proved by detected caspase-3 mRNA degradation intermediates. HMGB1 protein was also decreased in the post-transplanted kidneys; correlated positively with renal IL-1β mRNA, but negatively with serum IL-10 or IL-4. The minimal off-target effects of caspase-3 siRNA were seen with favorable systemic responses. More importantly, renal function, associated with active caspase-3, HMGB1, apoptosis, inflammation, and tubulointerstitial damage, was improved by caspase-3 siRNA. Taken together, the 2-week autotransplanted kidneys were protected when caspase-3 siRNA administrated locally and systemically, which provides important evidence for future clinical trials.

  19. DNA as Tunable Adaptor for siRNA Polyplex Stabilization and Functionalization

    PubMed Central

    Heissig, Philipp; Klein, Philipp M.; Hadwiger, Philipp; Wagner, Ernst

    2016-01-01

    siRNA and microRNA are promising therapeutic agents, which are engaged in a natural mechanism called RNA interference that modulates gene expression posttranscriptionally. For intracellular delivery of such nucleic acid triggers, we use sequence-defined cationic polymers manufactured through solid phase chemistry. They consist of an oligoethanamino amide core for siRNA complexation and optional domains for nanoparticle shielding and cell targeting. Due to the small size of siRNA, electrostatic complexes with polycations are less stable, and consequently intracellular delivery is less efficient. Here we use DNA oligomers as adaptors to increase size and charge of cargo siRNA, resulting in increased polyplex stability, which in turn boosts transfection efficiency. Extending a single siRNA with a 181-nucleotide DNA adaptor is sufficient to provide maximum gene silencing aided by cationic polymers. Interestingly, this simple strategy was far more effective than merging defined numbers (4–10) of siRNA units into one DNA scaffolded construct. For DNA attachment, the 3′ end of the siRNA passenger strand was beneficial over the 5′ end. The impact of the attachment site however was resolved by introducing bioreducible disulfides at the connection point. We also show that DNA adaptors provide the opportunity to readily link additional functional domains to siRNA. Exemplified by the covalent conjugation of the endosomolytic influenza peptide INF-7 to siRNA via a DNA backbone strand and complexing this construct with a targeting polymer, we could form a highly functional polyethylene glycol–shielded polyplex to downregulate a luciferase gene in folate receptor–positive cells. PMID:26928236

  20. Ammonia abundances in comets

    NASA Astrophysics Data System (ADS)

    Wyckoff, S.; Tegler, S.; Engel, L.

    The emission band strengths of the NH2 bands of Comets Halley, Hartley-Good, Thiele, and Borrelly were measured to determine the NH2 column densities for the comets. Production rates obtained using the Haser and vectorial models are in agreement within the observational errors, suggesting that a simple two-step decay model may be used to approximate the NH2 distribution in a comet's coma. Ammonia-to-water abundance ratios from 0.01 to 0.4 percent were found for the four comets. The ratio in Comet Halley is found to be Q(NH3)/Q(H2O) = 0.002 + or - 0.001. No significant difference in the ammonia abundance was found before or after perihelion in Comet Halley.

  1. Simultaneous cytosolic delivery of a chemotherapeutic and siRNA using nanoparticle-stabilized nanocapsules.

    PubMed

    Hardie, Joseph; Jiang, Ying; Tetrault, Emily R; Ghazi, Phaedra C; Tonga, Gulen Yesilbag; Farkas, Michelle E; Rotello, Vincent M

    2016-09-16

    We report on nanoparticle-stabilized capsules (NPSCs) as a platform for the co-delivery of survivin-targeted siRNA and tamoxifen. These capsules feature an inner oil core that provides a carrier for tamoxifen, and is coated on the surface with positively charged nanoparticles self-assembled with siRNA. The multifaceted chemical nature of the NPSC system enables the simultaneous delivery of both payloads directly into the cytosol in vitro. The NPSC co-delivery of tamoxifen and survivin-targeted siRNA into breast cancer cells disables the pathways that inhibit apoptosis, resulting in enhanced breast cell death.

  2. FGFR3 silencing by siRNA inhibits invasion of A549 cells

    PubMed Central

    Li, Yuhua; Liu, Xiguang; Zhang, Hongjun; Jiang, Tao; Xiao, Wenjing; Zhao, Shufen; Yu, Xiaoyun; Han, Fanjie

    2016-01-01

    The present study identified that fibroblast growth factor receptor 3 (FGFR3) was significantly upregulated in bone metastasis of lung adenocarcinoma. RNA interference (RNAi) is a powerful approach for treating a wide range of human diseases, including cancer, through downregulating the expression of selected genes. In the present study, the invasiveness of A549 cells cultured in vitro was altered by small interfering (si)RNA targeting FGFR3, and the regulatory effect of silencing FGFR3 on the expression levels of E-cadherin and matrix metalloproteinase (MMP)9 was investigated. Human lung adenocarcinoma A549 cells were transfected with synthetic specific siRNAs targeting a fragment of the FGFR3 gene (namely, siRNA-855, siRNA-1447 and siRNA-2076) or with negative control (NC) siRNA. Cells were divided into five groups (A, siRNA-855 group; B, siRNA-1447 group; C, siRNA-2076 group; D, NC-siRNA group; and E, blank control group). The effect of the above siRNAs targeting FGFR3 on the invasion capacity of A549 cells was detected by Transwell assay. siRNAs against FGFR3 were transfected into A549 cells with by Lipofectamine® 2000, and the expression levels of FGFR3, E-cadherin and MMP9 were measured by reverse transcription-quantitative polymerase chain reaction and western blot assay. The experimental findings indicated that the expression levels of FGFR3 and MMP9 were significantly reduced in the siRNA-FGFR3-transfected groups (A-C groups), compared with those in the D and E groups (P<0.01). In addition, the expression levels of E-cadherin were markedly elevated in the A-C groups, compared with those in the D and E groups (P<0.01). There was no significant difference in E-cadherin expression between the A-C groups, or between the D and E groups (P>0.05). These results indicated that siRNA-FGFR3 was able to decrease the invasiveness of A549 cells, inhibit the expression of MMP9 and increase the expression of E-cadherin by downregulating the expression of FGFR3. Taken

  3. Whole-Genome Thermodynamic Analysis Reduces siRNA Off-Target Effects

    PubMed Central

    Chen, Xi; Liu, Peng; Chou, Hui-Hsien

    2013-01-01

    Small interfering RNAs (siRNAs) are important tools for knocking down targeted genes, and have been widely applied to biological and biomedical research. To design siRNAs, two important aspects must be considered: the potency in knocking down target genes and the off-target effect on any nontarget genes. Although many studies have produced useful tools to design potent siRNAs, off-target prevention has mostly been delegated to sequence-level alignment tools such as BLAST. We hypothesize that whole-genome thermodynamic analysis can identify potential off-targets with higher precision and help us avoid siRNAs that may have strong off-target effects. To validate this hypothesis, two siRNA sets were designed to target three human genes IDH1, ITPR2 and TRIM28. They were selected from the output of two popular siRNA design tools, siDirect and siDesign. Both siRNA design tools have incorporated sequence-level screening to avoid off-targets, thus their output is believed to be optimal. However, one of the sets we tested has off-target genes predicted by Picky, a whole-genome thermodynamic analysis tool. Picky can identify off-target genes that may hybridize to a siRNA within a user-specified melting temperature range. Our experiments validated that some off-target genes predicted by Picky can indeed be inhibited by siRNAs. Similar experiments were performed using commercially available siRNAs and a few off-target genes were also found to be inhibited as predicted by Picky. In summary, we demonstrate that whole-genome thermodynamic analysis can identify off-target genes that are missed in sequence-level screening. Because Picky prediction is deterministic according to thermodynamics, if a siRNA candidate has no Picky predicted off-targets, it is unlikely to cause off-target effects. Therefore, we recommend including Picky as an additional screening step in siRNA design. PMID:23484018

  4. Simultaneous cytosolic delivery of a chemotherapeutic and siRNA using nanoparticle-stabilized nanocapsules

    NASA Astrophysics Data System (ADS)

    Hardie, Joseph; Jiang, Ying; Tetrault, Emily R.; Ghazi, Phaedra C.; Yesilbag Tonga, Gulen; Farkas, Michelle E.; Rotello, Vincent M.

    2016-09-01

    We report on nanoparticle-stabilized capsules (NPSCs) as a platform for the co-delivery of survivin-targeted siRNA and tamoxifen. These capsules feature an inner oil core that provides a carrier for tamoxifen, and is coated on the surface with positively charged nanoparticles self-assembled with siRNA. The multifaceted chemical nature of the NPSC system enables the simultaneous delivery of both payloads directly into the cytosol in vitro. The NPSC co-delivery of tamoxifen and survivin-targeted siRNA into breast cancer cells disables the pathways that inhibit apoptosis, resulting in enhanced breast cell death.

  5. Assorted Processing of Synthetic Trans-Acting siRNAs and Its Activity in Antiviral Resistance.

    PubMed

    Zhao, Mingmin; San León, David; Mesel, Frida; García, Juan Antonio; Simón-Mateo, Carmen

    2015-01-01

    The use of syn-tasiRNAs has been proposed as an RNA interference technique alternative to those previously described: hairpin based, virus induced gene silencing or artificial miRNAs. In this study we engineered the TAS1c locus to impair Plum pox virus (PPV) infection by replacing the five native siRNAs with two 210-bp fragments from the CP and the 3´NCR regions of the PPV genome. Deep sequencing analysis of the small RNA species produced by both constructs in planta has shown that phased processing of the syn-tasiRNAs is construct-specific. While in syn-tasiR-CP construct the processing was as predicted 21-nt phased in register with miR173-guided cleavage, the processing of syn-tasiR-3NCR is far from what was expected. A 22-nt species from the miR173-guided cleavage was a guide of two series of phased small RNAs, one of them in an exact 21-nt register, and the other one in a mixed of 21-/22-nt frame. In addition, both constructs produced abundant PPV-derived small RNAs in the absence of miR173 as a consequence of a strong sense post-transcriptional gene silencing induction. The antiviral effect of both constructs was also evaluated in the presence or absence of miR173 and showed that the impairment of PPV infection was not significantly higher when miR173 was present. The results show that syn-tasiRNAs processing depends on construct-specific factors that should be further studied before the so-called MIGS (miRNA-induced gene silencing) technology can be used reliably.

  6. Construction of a vector generating both siRNA and a fluorescent reporter: a siRNA study in cultured neurons.

    PubMed

    Yoon, Seung Yong; Choi, Jung Eun; Hwang, Onyou; Hong, Hea Nam; Lee, Heuiran; Kim, Yoo Kyum; Cho, Sung-Woo; Kim, Hyun; Kim, DongHou

    2004-08-31

    RNA interference is an important tool for gene silencing. However, its application to primary cultured cells has been limited by low transfection efficiencies. In this work we developed a vector which encodes both siRNA and red fluorescent protein. Using this vector we could markedly suppress green fluorescent protein (GFP) and bim an endogenous gene. Primary cultured cortical neurons transfected with siRNA against doublecortin showed that doublecortin expression was significantly inhibited in nearly all the transfected neurons. This vector identifies the transfected cells and should be useful for loss-of-gene function studies in neurons.

  7. Epigenome Editing of Potato by Grafting Using Transgenic Tobacco as siRNA Donor

    PubMed Central

    Hojo, Hatsune; Harada, Takeo

    2016-01-01

    In plants, it is possible to induce heritable transcriptional gene silencing (TGS) via RNA-directed DNA methylation (RdDM) using artificially synthesized small RNA (siRNA) homologous to the 5'-flanking region of the target gene. As the siRNA signal with a specific RNA determinant moves through plasmodesmata and sieve elements, we attempted to induce TGS of a transgene and an endogenous gene of potato (Solanum tuberosum) rootstock by grafting using siRNA produced in a tobacco (Nicotiana benthamiana) scion. Our results provide evidence that this system can induce TGS of target genes in tubers formed on potato rootstock. The TGS is maintained in the progeny tubers lacking the transported siRNAs. Our findings reveal that epigenome editing using mobile RNA has the potential to allow breeding of artificial sport cultivars in vegetative propagation crops. PMID:27564864

  8. Functional MnO nanoclusters for efficient siRNA delivery†

    PubMed Central

    Xing, Ruijun; Liu, Gang; Quan, Qimeng; Bhirde, Ashwinkumar; Zhang, Guofeng; Jin, Albert; Bryant, L. Henry; Zhang, Angela; Liang, Amy; Eden, Henry S.; Hou, Yanglong; Chen, Xiaoyuan

    2015-01-01

    A non-viral gene delivery nanovehicle based on Alkyl-PEI2k capped MnO nanoclusters was synthesized via a simple, facile method and used for efficient siRNA delivery and magnetic resonance imaging. PMID:21991584

  9. Carbon Nanotubes: Solution for the Therapeutic Delivery of siRNA?

    PubMed Central

    Kirkpatrick, D. Lynn; Weiss, Michelle; Naumov, Anton; Bartholomeusz, Geoffrey; Weisman, R. Bruce; Gliko, Olga

    2012-01-01

    Carbon nanotubes have many unique physical and chemical properties that are being widely explored for potential applications in biomedicine especially as transporters of drugs, proteins, DNA and RNA into cells. Specifically, single-walled carbon nanotubes (SWCNT) have been shown to deliver siRNA to tumors in vivo. The low toxicity, the excellent membrane penetration ability, the protection afforded against blood breakdown of the siRNA payload and the good biological activity seen in vivo suggests that SWCNT may become universal transfection vehicles for siRNA and other RNAs for therapeutic applications. This paper will introduce a short review of a number of therapeutic applications for carbon nanotubes and provide recent data suggesting SWCNT are an excellent option for the delivery of siRNA clinically. PMID:28817045

  10. Molecular determinants for cyclo-oligosaccharide-based nanoparticle-mediated effective siRNA transfection.

    PubMed

    Manzanares, Darío; Araya-Durán, Ingrid; Gallego-Yerga, Laura; Játiva, Pablo; Márquez-Miranda, Valeria; Canan, Jonathan; Jiménez Blanco, José Luis; Mellet, Carmen Ortiz; González-Nilo, Fernando Danilo; García Fernández, José Manuel; Ceña, Valentín

    2017-07-01

    To study the structural requirements that a cyclooligosaccharide-based nanoparticle must fulfill to be an efficient siRNA transfection vector. siRNA protection from degradation by RNAses, transfection efficiency and the thermodynamic parameters of the nanoparticle/siRNA interactions were studied on pairs of amphiphilic molecules using biochemical techniques and molecular dynamics. The lower the siRNA solvent accessible surface area in the presence of the nanoparticle, higher the protection from RNAse-mediated degradation in the corresponding nanocomplex; a moderate nanoparticle/siRNA binding energy value further facilitates reversible complexation and binding to the target cellular mRNA. The use, in advance, of these parameters will provide a useful indication of the potential of a molecular nanoparticle as siRNA transfecting vector.

  11. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight

    NASA Astrophysics Data System (ADS)

    Dahlman, James E.; Barnes, Carmen; Khan, Omar F.; Thiriot, Aude; Jhunjunwala, Siddharth; Shaw, Taylor E.; Xing, Yiping; Sager, Hendrik B.; Sahay, Gaurav; Speciner, Lauren; Bader, Andrew; Bogorad, Roman L.; Yin, Hao; Racie, Tim; Dong, Yizhou; Jiang, Shan; Seedorf, Danielle; Dave, Apeksha; Singh Sandhu, Kamaljeet; Webber, Matthew J.; Novobrantseva, Tatiana; Ruda, Vera M.; Lytton-Jean, Abigail K. R.; Levins, Christopher G.; Kalish, Brian; Mudge, Dayna K.; Perez, Mario; Abezgauz, Ludmila; Dutta, Partha; Smith, Lynelle; Charisse, Klaus; Kieran, Mark W.; Fitzgerald, Kevin; Nahrendorf, Matthias; Danino, Dganit; Tuder, Rubin M.; von Andrian, Ulrich H.; Akinc, Akin; Panigrahy, Dipak; Schroeder, Avi; Koteliansky, Victor; Langer, Robert; Anderson, Daniel G.

    2014-08-01

    Dysfunctional endothelium contributes to more diseases than any other tissue in the body. Small interfering RNAs (siRNAs) can help in the study and treatment of endothelial cells in vivo by durably silencing multiple genes simultaneously, but efficient siRNA delivery has so far remained challenging. Here, we show that polymeric nanoparticles made of low-molecular-weight polyamines and lipids can deliver siRNA to endothelial cells with high efficiency, thereby facilitating the simultaneous silencing of multiple endothelial genes in vivo. Unlike lipid or lipid-like nanoparticles, this formulation does not significantly reduce gene expression in hepatocytes or immune cells even at the dosage necessary for endothelial gene silencing. These nanoparticles mediate the most durable non-liver silencing reported so far and facilitate the delivery of siRNAs that modify endothelial function in mouse models of vascular permeability, emphysema, primary tumour growth and metastasis.

  12. Nanoengineered strategies for siRNA delivery: from target assessment to cancer therapeutic efficacy.

    PubMed

    Mishra, Dinesh Kumar; Balekar, Neelam; Mishra, Pradyumna Kumar

    2017-04-01

    The promise of RNA interference (RNAi) technology in cancer therapeutics aims to deliver small interfering RNA (siRNA) for silencing of gene expression in cell type-specific pathway. However, the challenge for the delivery of stable siRNA is hindered by an immune-hostile tumor microenvironment and physiological barriers of the circulatory system. Therefore, the development and validation of safe, stable, and efficient nanoengineered delivery systems are highly essential for effective delivery of siRNA into cancer cells. This review focuses on gene-silencing mechanisms, challenges to siRNA delivery, design and delivery of nanocarrier systems, ongoing clinical trials, and translational prospects for siRNA-mediated cancer therapeutics.

  13. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight.

    PubMed

    Dahlman, James E; Barnes, Carmen; Khan, Omar F; Thiriot, Aude; Jhunjunwala, Siddharth; Shaw, Taylor E; Xing, Yiping; Sager, Hendrik B; Sahay, Gaurav; Speciner, Lauren; Bader, Andrew; Bogorad, Roman L; Yin, Hao; Racie, Tim; Dong, Yizhou; Jiang, Shan; Seedorf, Danielle; Dave, Apeksha; Singh Sandhu, Kamaljeet; Webber, Matthew J; Novobrantseva, Tatiana; Ruda, Vera M; Lytton-Jean, Abigail K R; Levins, Christopher G; Kalish, Brian; Mudge, Dayna K; Perez, Mario; Abezgauz, Ludmila; Dutta, Partha; Smith, Lynelle; Charisse, Klaus; Kieran, Mark W; Fitzgerald, Kevin; Nahrendorf, Matthias; Danino, Dganit; Tuder, Rubin M; von Andrian, Ulrich H; Akinc, Akin; Panigrahy, Dipak; Schroeder, Avi; Koteliansky, Victor; Langer, Robert; Anderson, Daniel G

    2014-08-01

    Dysfunctional endothelium contributes to more diseases than any other tissue in the body. Small interfering RNAs (siRNAs) can help in the study and treatment of endothelial cells in vivo by durably silencing multiple genes simultaneously, but efficient siRNA delivery has so far remained challenging. Here, we show that polymeric nanoparticles made of low-molecular-weight polyamines and lipids can deliver siRNA to endothelial cells with high efficiency, thereby facilitating the simultaneous silencing of multiple endothelial genes in vivo. Unlike lipid or lipid-like nanoparticles, this formulation does not significantly reduce gene expression in hepatocytes or immune cells even at the dosage necessary for endothelial gene silencing. These nanoparticles mediate the most durable non-liver silencing reported so far and facilitate the delivery of siRNAs that modify endothelial function in mouse models of vascular permeability, emphysema, primary tumour growth and metastasis.

  14. Endogenous siRNAs Derived from Transposons and mRNAs in Drosophila Somatic Cells

    PubMed Central

    Ghildiyal, Megha; Seitz, Hervé; Horwich, Michael D.; Li, Chengjian; Du, Tingting; Lee, Soohyun; Xu, Jia; Kittler, Ellen L.W.; Zapp, Maria L.; Weng, Zhiping; Zamore, Phillip D.

    2009-01-01

    Small interfering RNAs (siRNAs) direct RNA interference (RNAi) in eukaryotes. In flies, somatic cells produce siRNAs from exogenous double-stranded RNA (dsRNA) as a defense against viral infection. We identified endogenous siRNAs (endo-siRNAs), 21 nucleotides in length, that correspond to transposons and heterochromatic sequences in the somatic cells of Drosophila melanogaster. We also detected endo-siRNAs complementary to messenger RNAs (mRNAs); these siRNAs disproportionately mapped to the complementary regions of overlapping mRNAs predicted to form double-stranded RNA in vivo. Normal accumulation of somatic endo-siRNAs requires the siRNA-generating ribonuclease Dicer-2 and the RNAi effector protein Argonaute2 (Ago2). We propose that endo-siRNAs generated by the fly RNAi pathway silence selfish genetic elements in the soma, much as Piwi-interacting RNAs do in the germ line. PMID:18403677

  15. Cytoplasmic delivery of siRNAs to monocytes and dendritic cells via electroporation.

    PubMed

    Sioud, Mouldy

    2015-01-01

    RNA interference has been of great interest not only as a research tool to suppress gene expression but also as an emerging therapeutic strategy to silence disease genes. However, the therapeutic use of siRNA faces the in vivo delivery challenge. An alternative method that could potentially be used for siRNA delivery into primary immune cells for therapeutic purposes is an ex vivo route, whereby immune cells could be isolated from a patient, reprogrammed with siRNAs, and infused back into the same patient. This chapter describes siRNA delivery into human primary monocytes and dendritic cells using a standard electroporation technique. Dendritic cells occupy a central role in the immune system, orchestrating a wide repertoire of responses that span from the development of self-tolerance to the generation of protective CD8+ T cell immunity.

  16. Smart Inulin-Based Polycationic Nanodevices for siRNA Delivery.

    PubMed

    Cavallaro, G; Sardo, C; Scialabba, C; Licciardi, M; Giammona, G

    2017-01-01

    The advances of short interfering RNA (siRNA) mediated therapy provide a powerful option for the treatment of many diseases by silencing the expression of targeted genes including cancer development and progression. Inulin is a very simple and biocompatible polysaccharide proposed by our groups to produce interesting delivery systems for Nucleic Acid Based Drugs (NABDs), such as siRNA, either as polycations able to give polyplexes and polymeric coatings for nanosystems having a metallic core. In this research field, different functionalizing groups were linked to the inulin backbone with specific aims including oligoamine such as Ethylendiammine (EDA), Diethylediamine (DETA), Spermine, (SPM) etc. In this contribution the main Inulin-based nanodevices for the delivery of siRNA have been reported, analysed and compared with particular reference to their chemical design and structure, biocompatibility, siRNA complexing ability, silencing ability. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Low cytotoxicity fluorescent PAMAM dendrimer as gene carriers for monitoring the delivery of siRNA

    NASA Astrophysics Data System (ADS)

    Guan, Lingmei; Huang, Saipeng; Chen, Zhao; Li, Yanchao; Liu, Ke; Liu, Yang; Du, Libo

    2015-09-01

    Visual detection of gene vectors has attracted a great deal of attention due to the application of these vectors in monitoring and evaluating the effect of gene carriers in living cells. A non-viral vector, the fluorescent PAMAM dendrimer (F-PAMAM), was synthesized through conjugation of PAMAM dendrimers and fluorescein. In vitro and ex vivo experiments show that F-PAMAM exhibits superphotostability, low cytotoxicity and facilitates endocytosis by A549 cells. The vector has a high siRNA binding affinity and it increases the efficiency of cy5-siRNA delivery in A549 cells, in comparison with a cy5-siRNA monomer. Our results provide a new method for simultaneously monitoring the delivery of siRNA and its non-viral carriers in living cells.

  18. Uptake and intracellular traffic of siRNA dendriplexes in glioblastoma cells and macrophages

    PubMed Central

    Perez, Ana Paula; Cosaka, Maria Luz; Romero, Eder Lilia; Morilla, Maria Jose

    2011-01-01

    Background Gene silencing using small interfering RNA (siRNA) is a promising new therapeutic approach for glioblastoma. The endocytic uptake and delivery of siRNA to intracellular compartments could be enhanced by complexation with polyamidoamine dendrimers. In the present work, the uptake mechanisms and intracellular traffic of siRNA/generation 7 dendrimer complexes (siRNA dendriplexes) were screened in T98G glioblastoma and J774 macrophages. Methods The effect of a set of chemical inhibitors of endocytosis on the uptake and silencing capacity of dendriplexes was determined by flow cytometry. Colocalization of fluorescent dendriplexes with endocytic markers and occurrence of intracellular dissociation were assessed by confocal laser scanning microscopy. Results Uptake of siRNA dendriplexes by T98G cells was reduced by methyl-β-cyclodextrin, and genistein, and cytochalasine D, silencing activity was reduced by genistein; dendriplexes colocalized with cholera toxin subunit B. Therefore, caveolin-dependent endocytosis was involved both in the uptake and silencing activity of siRNA dendriplexes. On the other hand, uptake of siRNA dendriplexes by J774 cells was reduced by methyl-β-cyclodextrin, genistein, chlorpromazine, chloroquine, cytochalasine D, and nocodazole, the silencing activity was not affected by chlorpromazine, genistein or chloroquine, and dendriplexes colocalized with transferrin and cholera toxin subunit B. Thus, both clathrin-dependent and caveolin-dependent endocytosis mediated the uptake and silencing activity of the siRNA dendriplexes. SiRNA dendriplexes were internalized at higher rates by T98G but induced lower silencing than in J774 cells. SiRNA dendriplexes showed relatively slow dissociation kinetics, and their escape towards the cytosol was not mediated by acidification independently of the uptake pathway. Conclusion The extent of cellular uptake of siRNA dendriplexes was inversely related to their silencing activity. The higher silencing

  19. Safety of Striatal Infusion of siRNA in a Transgenic Huntington's Disease Mouse Model.

    PubMed

    Johnson, Emily; Chase, Kathryn; McGowan, Sarah; Mondo, Erica; Pfister, Edith; Mick, Eric; Friedline, Randall H; Kim, Jason K; Sapp, Ellen; DiFiglia, Marian; Aronin, Neil

    2015-01-01

    The immune system In Huntington's disease (HD) is activated and may overreact to some therapies. RNA interference using siRNA lowers mutant huntingtin (mHTT) protein but could increase immune responses. To examine the innate immune response following siRNA infusion into the striatum of wild-type (WT) and HD transgenic (YAC128) mice. siRNAs (2'-O-methyl phosphorothioated) were infused unilaterally into striatum of four month-old WT and YAC128 mice for 28 days. Microglia number and morphology (resting (normal), activated, dystrophic), cytokine levels, and DARPP32-positive neurons were measured in striatum immediately or 14 days post-infusion. Controls included contralateral untreated striatum, and PBS and sham treated striata. The striata of untreated YAC128 mice had significantly fewer resting microglia and more dystrophic microglia than WT mice, but no difference from WT in the proportion of activated microglia or total number of microglia. siRNA infusion increased the total number of microglia in YAC128 mice compared to PBS treated and untreated striata and increased the proportion of activated microglia in WT and YAC128 mice compared to untreated striata and sham treated groups. Cytokine levels were low and siRNA infusion resulted in only modest changes in those levels. siRNA infusion did not change the number of DARPP32-positive neurons. Findings suggest that siRNA infusion may be a safe method for lowering mHTT levels in the striatum in young animals, since treatment does not produce a robust cytokine response or cause neurotoxicity. The potential long-term effects of a sustained increase in total and activated microglia after siRNA infusion in HD mice need to be explored.

  20. Peptide- and Amine-Modified Glucan Particles for the Delivery of Therapeutic siRNA

    PubMed Central

    Aouadi, Myriam; Vangala, Pranitha; Tencerova, Michaela; Amano, Shinya U.; Nicoloro, Sarah M.; Yawe, Joseph C.; Czech, Michael P.

    2016-01-01

    Translation of siRNA technology into the clinic is limited by the need for improved delivery systems that target specific cell types. Macrophages are particularly attractive targets for RNAi therapy because they promote pathogenic inflammatory responses in a number of important human diseases. We previously demonstrated that a multi-component formulation of β-1,3-D-glucan-encapsulated siRNA particles (GeRPs) can specifically and potently silence genes in mouse macrophages. A major advance would be to simplify the GeRP system by reducing the number of delivery components, thus enabling more facile manufacturing and future commercialization. Here we report the synthesis and evaluation of a simplified glucan-based particle (GP) capable of delivering siRNA in vivo to selectively silence macrophage genes. Covalent attachment of small-molecule amines and short peptides containing weak bases to GPs facilitated electrostatic interaction of the particles with siRNA and aided in the endosomal release of siRNA by the proton-sponge effect. Modified GPs were non-toxic and were efficiently internalized by macrophages in vitro. When injected intraperitoneally (i.p.), several of the new peptide-modified GPs were found to efficiently deliver siRNA to peritoneal macrophages in lean, healthy mice. In an animal model of obesity-induced inflammation, i.p. administration of one of the peptide-modified GPs (GP-EP14) bound to siRNA selectively reduced the expression of target inflammatory cytokines in the visceral adipose tissue macrophages. Decreasing adipose tissue inflammation resulted in an improvement of glucose metabolism in these metabolically challenged animals. Thus, modified GPs represent a promising new simplified system for the efficient delivery of therapeutic siRNAs specifically to phagocytic cells in vivo for modulation of inflammation responses. PMID:26815386

  1. Polycationic nanoparticles for siRNA delivery: comparing ARGET ATRP and UV-initiated formulations.

    PubMed

    Forbes, Diane C; Peppas, Nicholas A

    2014-03-25

    In this work, we develop and evaluate polycationic nanoparticles for the delivery of small interfering RNA (siRNA). Delivery remains a major challenge for translating siRNA to the clinic, and overcoming the delivery challenge requires effective siRNA delivery vehicles that meet the demands of the specific delivery strategy. Cross-linked polycationic nanoparticle formulations were synthesized using ARGET ATRP or UV-initiated polymerization. The one-step, one-pot, surfactant-stabilized monomer-in-water synthesis technique may provide a simpler and faster alternative to complicated, multistep techniques and an alternative to methods that rely on toxic organic solvents. The polymer nanoparticles were synthesized using the cationic monomer 2-(diethylamino)ethyl methacrylate, the hydrophobic monomer tert-butyl methacrylate to tune pH responsiveness, the hydrophilic monomer poly(ethylene glycol) methyl ether methacrylate to improve biocompatibility, and cross-linking agent tetraethylene glycol dimethacrylate to enhance colloidal stability. Four formulations were evaluated for their suitability as siRNA delivery vehicles in vitro with the human embryonic kidney cell line HEK293T or the murine macrophage cell line RAW264.7. The polycationic nanoparticles demonstrated efficient and rapid loading of the anionic siRNA following complexation. Confocal microscopy as well as flow cytometry analysis of cells treated with polycationic nanoparticles loaded with fluorescently labeled siRNA demonstrated that the polycationic nanoparticles promoted cellular uptake of fluorescently labeled siRNA. Knockdown experiments using polycationic nanoparticles to deliver siRNA demonstrated evidence of knockdown, thus demonstrating potential as an alternative route to creating polycationic nanoparticles.

  2. Topical Delivery of siRNA into Skin using SPACE-peptide Carriers

    PubMed Central

    Chen, Ming; Zakrewsky, Michael; Gupta, Vivek; Anselmo, Aaron C.; Slee, Deborah H.; Muraski, John A.; Mitragotri, Samir

    2014-01-01

    Short-interfering RNAs (siRNAs) offer a potential tool for the treatment of skin disorders. However, applications of siRNA for dermatological conditions are limited by their poor permeation across the stratum corneum of the skin and low penetration into skin’s viable cells. In this study, we report the use of SPACE-peptide in combination with a DOTAP-based ethosomal carrier system to enhance skin delivery of siRNA. A DOTAP-based SPACE Ethosomal System significantly enhanced siRNA penetration into porcine skin in vitro by 6.3±1.7-fold (p<0.01) with an approximately 10-fold (p<0.01) increase in epidermis accumulation of siRNA compared to that from an aqueous solution. Penetration of siRNA was also enhanced at the cellular level. Internalization of SPACE-peptide occurred in a concentration dependent manner marked by a shift in intracellular distribution from punctate spots to diffused cytoplasmic staining at a peptide concentration of 10 mg/mL. In vitro delivery of GAPDH siRNA by SPACE peptide led to 83.3±3.0% knockdown relative to the control. In vivo experiments performed using female BALB/C mice also confirmed the efficacy of DOTAP-SES in delivering GAPDH-siRNA into skin. Topical application of DOTAP-SES on mice skin resulted in 63.2%±7.7% of GAPDH knockdown, which was significantly higher than that from GAPDH-siRNA PBS (p<0.05). DOTAP-SES formulation reported here may open new opportunities for cutaneous siRNA delivery. PMID:24434423

  3. N-Alkyl-PEI-functionalized iron oxide nanoclusters for efficient siRNA delivery.

    PubMed

    Liu, Gang; Xie, Jin; Zhang, Fan; Wang, Zhiyong; Luo, Kui; Zhu, Lei; Quan, Qimeng; Niu, Gang; Lee, Seulki; Ai, Hua; Chen, Xiaoyuan

    2011-10-04

    Small-interfering RNA (siRNA) is an emerging class of therapeutics, which works by regulating the expression of a specific gene involved in disease progression. Despite the promises, effective transport of siRNA with minimal side effects remains a challenge. In this study, a nonviral nanoparticle gene carrier is developed and its efficiency for siRNA delivery and transfection is validated at both in vitro and in vivo levels. Such a nanocarrier, abbreviated as Alkyl-PEI2k-IO, was constructed with a core of iron oxide nanoparticles (IOs) and a shell of alkylated polyethyleneimine of 2000 Da [corrected] molecualr weight (Alkyl-PEI2k). It is found to be able to bind with siRNA, resulting in well-dispersed nanoparticles with a controlled clustering structure and narrow size distribution. Electrophoresis studies show that the Alkyl-PEI2k-IOs could retard siRNA completely at N:P ratios (i.e., PEI nitrogen to nucleic acid phosphate) above 10, protect siRNA from enzymatic degradation in serum, and release complexed siRNA efficiently in the presence of polyanionic heparin. The knockdown efficiency of the siRNA-loaded nanocarriers is assessed with 4T1 cells stably expressing luciferase (fluc-4T1) and further, with a fluc-4T1 xenograft model. Significant down-regulation of luciferase is observed, and unlike high-molecular-weight analogues, the Alkyl-PEI2k-coated IOs show good biocompatibility. In conclusion, Alkyl-PEI2k-IOs demonstrate highly efficient delivery of siRNA and an innocuous toxic profile, making it a potential carrier for gene therapy.

  4. [Efficacy of siRNA on feline leukemia virus replication in vitro].

    PubMed

    Lehmann, Melanie; Weber, Karin; Rauch, Gisep; Hofmann-Lehmann, Regina; Hosie, Margaret J; Meli, Marina L; Hartmann, Katrin

    2015-01-01

    Feline leukemia virus (FeLV) can lead to severe clinical signs in cats. Until now, there is no effective therapy for FeLV-infected cats. RNA interference-based antiviral therapy is a new concept. Specific small interfering RNA (siRNA) are designed complementary to the mRNA of a target region, and thus inhibit replication. Several studies have proven efficacy of siRNAs in inhibiting virus replication. The aim of this study was to evaluate the inhibitory potential of siRNAs against FeLV replication in vitro. siRNAs against the FeLV env gene and the host cell surface receptor (feTHTR1) which is used by FeLV-A for entry as well as siRNA that were not complementary to the FeLV or cat genome, were tested. Crandell feline kidney cells (CrFK cells) were transfected with FeLV-A/Glasgow-1. On day 13, infected cells were transfected with siRNAs. As control, cells were mock-transfected or treated with azidothymidine (AZT) (5 μg/ml). Culture supernatants were analyzed for FeLV RNA using quantitative real-time RT-PCR and for FeLV p27 by ELISA every 24 hours for five days. All siRNAs significantly reduced viral RNA and p27 production, starting after 48 hours. The fact that non-complementary siRNAs also inhibited virus replication may lead to the conclusion that unspecific mechanisms rather than specific binding lead to inhibition.

  5. Enhancing potency of siRNA targeting fusion genes by optimization outside of target sequence

    PubMed Central

    Gavrilov, Kseniya; Seo, Young-Eun; Tietjen, Gregory T.; Cui, Jiajia; Cheng, Christopher J.; Saltzman, W. Mark

    2015-01-01

    Canonical siRNA design algorithms have become remarkably effective at predicting favorable binding regions within a target mRNA, but in some cases (e.g., a fusion junction site) region choice is restricted. In these instances, alternative approaches are necessary to obtain a highly potent silencing molecule. Here we focus on strategies for rational optimization of two siRNAs that target the junction sites of fusion oncogenes BCR-ABL and TMPRSS2-ERG. We demonstrate that modifying the termini of these siRNAs with a terminal G-U wobble pair or a carefully selected pair of terminal asymmetry-enhancing mismatches can result in an increase in potency at low doses. Importantly, we observed that improvements in silencing at the mRNA level do not necessarily translate to reductions in protein level and/or cell death. Decline in protein level is also heavily influenced by targeted protein half-life, and delivery vehicle toxicity can confound measures of cell death due to silencing. Therefore, for BCR-ABL, which has a long protein half-life that is difficult to overcome using siRNA, we also developed a nontoxic transfection vector: poly(lactic-coglycolic acid) nanoparticles that release siRNA over many days. We show that this system can achieve effective killing of leukemic cells. These findings provide insights into the implications of siRNA sequence for potency and suggest strategies for the design of more effective therapeutic siRNA molecules. Furthermore, this work points to the importance of integrating studies of siRNA design and delivery, while heeding and addressing potential limitations such as restricted targetable mRNA regions, long protein half-lives, and nonspecific toxicities. PMID:26627251

  6. Evaluation of Exogenous siRNA Addition as a Metabolic Engineering Tool for Modifying Biopharmaceuticals

    PubMed Central

    Tummala, Seshu; Titus, Michael; Wilson, Lee; Wang, Chunhua; Ciatto, Carlo; Foster, Donald; Szabo, Zoltan; Guttman, Andras; Li, Chen; Bettencourt, Brian; Jayaraman, Muthuswamy; Deroot, Jack; Thill, Greg; Kocisko, David; Pollard, Stuart; Charisse, Klaus; Kuchimanchi, Satya; Hinkle, Greg; Milstein, Stuart; Myers, Rachel; Wu, Shiaw-Lin; Karger, Barry; Rossomando, Anthony

    2012-01-01

    Traditional metabolic engineering approaches, including homologous recombination, zinc finger nucleases, and short hairpin RNA (shRNA), have previously been employed to generate biologics with specific characteristics that improve efficacy, potency, and safety. An alternative approach is to exogenously add soluble small interfering RNA (siRNA) duplexes, formulated with a cationic lipid, directly to cells grown in shake flasks or bioreactors, This approach has the following potential advantages : no cell line development required, ability to tailor mRNA silencing by adjusting siRNA concentration, simultaneous silencing of multiple target genes, and potential temporal control of down regulation of target gene expression. In this study, we demonstrate proof of concept of the siRNA feeding approach as a metabolic engineering tool in the context of increasing monoclonal antibody afucosylation. First, potent siRNA duplexes targeting fut8 and gmds were dosed into shake flasks with cells that express an anti-CD20 monoclonal antibody. Dose response studies demonstrated the ability to titrate the silencing effect. Furthermore, siRNA addition resulted in no deleterious effects on cell growth, final protein titer, or specific productivity. In bioreactors, antibodies produced by cells following siRNA treatment exhibited improved functional characteristics compared to antibodies from untreated cells, including increased levels of afucosylation (63%), a 17-fold improvement in FCgRIIIa binding, and an increase in specific cell lysis by up to 30%, as determined in an ADCC assay. In addition, standard purification procedures effectively cleared the exogenously added siRNA and transfection agent. Moreover, no differences were observed when other key product quality structural attributes were compared to untreated controls. These results establish that exogenous addition of siRNA represents a potentially novel metabolic engineering tool to improve biopharmaceutical function and

  7. siRNA Targeting the 2Apro Genomic Region Prevents Enterovirus 71 Replication In Vitro

    PubMed Central

    Kong, Zhenzhen; Shao, Qixiang; Su, Zhaoliang; Wang, Shengjun; Chen, Jianguo

    2016-01-01

    Enterovirus 71 (EV71) is the most important etiological agent of hand, foot, and mouth disease (HFMD) in young children, which is associated with severe neurological complications and has caused significant mortalities in recent HFMD outbreaks in Asia. However, there is no effective antiviral therapy against EV71. In this study, RNA interference (RNAi) was used as an antiviral strategy to inhibit EV71 replication. Three small interfering RNAs (siRNAs) targeting the 2Apro region of the EV71 genome were designed and synthesized. All the siRNAs were transfected individually into rhabdomyosarcoma (RD) cells, which were then infected with strain EV71-2006-52-9. The cytopathic effects (CPEs) in the infected RD cells, cell viability, viral titer, and viral RNA and protein expression were examined to evaluate the specific viral inhibition by the siRNAs. The results of cytopathogenicity and MTT tests indicated that the RD cells transfected with the three siRNAs showed slight CPEs and significantly high viability. The 50% tissue culture infective dose (TCID50) values demonstrated that the viral titer of the groups treated with three siRNAs were lower than those of the control groups. qRT–PCR and western blotting revealed that the levels of viral RNA and protein in the RD cells treated with the three siRNAs were lower than those in the controls. When RD cells transfected with siRNAs were also infected with strain EV71-2008-43-16, the expression of the VP1 protein was significantly inhibited. The levels of interferon α (IFN-α) and IFN-β did not differ significantly in any group. These results suggest that siRNAs targeting the 2Apro region of the EV71 genome exerted antiviral effects in vitro. PMID:26886455

  8. Systemic Administration of siRNA via cRGD-containing Peptide

    PubMed Central

    Huang, Yuanyu; Wang, Xiaoxia; Huang, Weiyan; Cheng, Qiang; Zheng, Shuquan; Guo, Shutao; Cao, Huiqing; Liang, Xing-Jie; Du, Quan; Liang, Zicai

    2015-01-01

    Although small interfering RNAs (siRNAs) have been demonstrated to specifically silence their target genes in disease models and clinical trials, in vivo siRNA delivery is still the technical bottleneck that limits their use in therapeutic applications. In this study, a bifunctional peptide named RGD10-10R was designed and tested for its ability to deliver siRNA in vitro and in vivo. Because of their electrostatic interactions with polyarginine (10R), negatively charged siRNAs were readily complexed with RGD10-10R peptides, forming spherical RGD10-10R/siRNA nanoparticles. In addition to enhancing their serum stability by preventing RNase from attacking siRNA through steric hindrance, peptide binding facilitated siRNA transfection into MDA-MB-231 cells, as demonstrated by FACS and confocal microscopy assays and by the repressed expression of target genes. When RGD10 peptide, a receptor competitor of RGD10-10R, was added to the transfection system, the cellular internalization of RGD10-10R/siRNA was significantly compromised, suggesting a mechanism of ligand/receptor interaction. Tissue distribution assays indicated that the peptide/siRNA complex preferentially accumulated in the liver and in several exocrine/endocrine glands. Furthermore, tumor-targeted delivery of siRNA was also demonstrated by in vivo imaging and cryosection assays. In summary, RGD10-10R might constitute a novel siRNA delivery tool that could potentially be applied in tumor treatment. PMID:26300278

  9. Safety of striatal infusion of siRNA in a transgenic Huntington's disease mouse model

    PubMed Central

    McGowan, Sarah; Mondo, Erica; Pfister, Edith; Mick, Eric; Friedline, Randall H.; Kim, Jason K.; Sapp, Ellen; DiFiglia, Marian; Aronin, Neil

    2016-01-01

    Background The immune system In Huntington's disease (HD) is activated and may overreact to some therapies. RNA interference using siRNA lowers mutant huntingtin (mHTT) protein but could increase immune responses. Objective To examine the innate immune response following siRNA infusion into the striatum of wild-type (WT) and HD transgenic (YAC128) mice. Methods siRNAs (2′-O-methyl phosphorothioated) were infused unilaterally into striatum of four month-old WT and YAC128 mice for 28 days. Microglia number and morphology (resting (normal), activated, dystrophic), cytokine levels, and DARPP32-positive neurons were measured in striatum immediately or 14 days post-infusion. Controls included contralateral untreated striatum, and PBS and sham treated striata. Results The striata of untreated YAC128 mice had significantly fewer resting microglia and more dystrophic microglia than WT mice, but no difference from WT in the proportion of activated microglia or total number of microglia. siRNA infusion increased the total number of microglia in YAC128 mice compared to PBS treated and untreated striata and increased the proportion of activated microglia in WT and YAC128 mice compared to untreated striata and sham treated groups. Cytokine levels were low and siRNA infusion resulted in only modest changes in those levels. siRNA infusion did not change the number of DARPP32-positive neurons. Conclusion Findings suggest that siRNA infusion may be a safe method for lowering mHTT levels in the striatum in young animals, since treatment does not produce a robust cytokine response or cause neurotoxicity. The potential long-term effects of a sustained increase in total and activated microglia after siRNA infusion in HD mice need to be explored. PMID:26444021

  10. pH-responsive hybrid quantum dots for targeting hypoxic tumor siRNA delivery.

    PubMed

    Zhu, HongYan; Zhang, ShengYu; Ling, Yong; Meng, GuoLiang; Yang, Yu; Zhang, Wei

    2015-12-28

    Hypoxia is a characteristic of cancer and plays a key role in tumorigenesis, angiogenesis and resistance to cancer therapies. SiRNA treatment is effective against hypoxic tumors by gene silencing. However, siRNA delivery to the hypoxic regions of solid tumors still presents a challenge due to the distance from blood vessels and the increased presence of efflux transporters. Therefore, tumor therapies would be improved through the immediate development of an effective siRNA delivery system to hypoxic regions. To this end, we synthesized a system to deliver HIF-1α siRNA into hypoxic tumor cells. The system consists of a functional shell composed of 2-deoxyglucose (DG)-polyethylene glycol (PEG) connected with the compound of lipoic acid, lysine and 9-poly-d-arginine (LA-Lys-9R) by a hydrazone bond and a core of CdTe quantum dots (QDs). The molecular structure of DG-PEG-LA-Lys-9R was confirmed by liquid chromatography-mass spectrometry (LC-MS), nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared spectroscopy (FTIR), and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The multifunctional CdTe QDs measured approximately 200 nm and showed excellent biocompatibility, perfect siRNA binding capability and enhanced hypoxic tumor targeting. Importantly, the system described here is pH-responsive with a hydrazone bond; therefore, it avoids GLUT1 receptor-mediated endocytic recycling, resulting in irreversible delivery of the siRNA. We used Western blots to confirm the superior gene silencing efficiency induced by the DG-PEG-LA-Lys-9R with hydrazone modified CdTe QDs. Here, we demonstrate high efficacy of the siRNA tumor delivery system using in vitro and in vivo experiments. In addition, these studies demonstrate that pH-responsive hybrid quantum dots show improved antitumor efficacy with decreased organ toxicity, indicating a promising siRNA delivery system for hypoxic cancer therapy.

  11. Col V siRNA engineered tenocytes for tendon tissue engineering.

    PubMed

    Lu, Ping; Zhang, Guo Rong; Song, Xing Hui; Zou, Xiao Hui; Wang, Lin Lin; Ouyang, Hong Wei

    2011-01-01

    The presence of uniformly small collagen fibrils in tendon repair is believed to play a major role in suboptimal tendon healing. Collagen V is significantly elevated in healing tendons and plays an important role in fibrillogenesis. The objective of this study was to investigate the effect of a particular chain of collagen V on the fibrillogenesis of Sprague-Dawley rat tenocytes, as well as the efficacy of Col V siRNA engineered tenocytes for tendon tissue engineering. RNA interference gene therapy and a scaffold free tissue engineered tendon model were employed. The results showed that scaffold free tissue engineered tendon had tissue-specific tendon structure. Down regulation of collagen V α1 or α2 chains by siRNAs (Col5α1 siRNA, Col5α2 siRNA) had different effects on collagen I and decorin gene expressions. Col5α1 siRNA treated tenocytes had smaller collagen fibrils with abnormal morphology; while those Col5α2 siRNA treated tenocytes had the same morphology as normal tenocytes. Furthermore, it was found that tendons formed by coculture of Col5α1 siRNA treated tenocytes with normal tenocytes at a proper ratio had larger collagen fibrils and relative normal contour. Conclusively, it was demonstrated that Col V siRNA engineered tenocytes improved tendon tissue regeneration. And an optimal level of collagen V is vital in regulating collagen fibrillogenesis. This may provide a basis for future development of novel cellular- and molecular biology-based therapeutics for tendon diseases.

  12. Col V siRNA Engineered Tenocytes for Tendon Tissue Engineering

    PubMed Central

    Song, Xing Hui; Zou, Xiao Hui; Wang, Lin Lin; Ouyang, Hong Wei

    2011-01-01

    The presence of uniformly small collagen fibrils in tendon repair is believed to play a major role in suboptimal tendon healing. Collagen V is significantly elevated in healing tendons and plays an important role in fibrillogenesis. The objective of this study was to investigate the effect of a particular chain of collagen V on the fibrillogenesis of Sprague-Dawley rat tenocytes, as well as the efficacy of Col V siRNA engineered tenocytes for tendon tissue engineering. RNA interference gene therapy and a scaffold free tissue engineered tendon model were employed. The results showed that scaffold free tissue engineered tendon had tissue-specific tendon structure. Down regulation of collagen V α1 or α2 chains by siRNAs (Col5α1 siRNA, Col5α2 siRNA) had different effects on collagen I and decorin gene expressions. Col5α1 siRNA treated tenocytes had smaller collagen fibrils with abnormal morphology; while those Col5α2 siRNA treated tenocytes had the same morphology as normal tenocytes. Furthermore, it was found that tendons formed by coculture of Col5α1 siRNA treated tenocytes with normal tenocytes at a proper ratio had larger collagen fibrils and relative normal contour. Conclusively, it was demonstrated that Col V siRNA engineered tenocytes improved tendon tissue regeneration. And an optimal level of collagen V is vital in regulating collagen fibrillogenesis. This may provide a basis for future development of novel cellular- and molecular biology-based therapeutics for tendon diseases. PMID:21713001

  13. Peptide- and Amine-Modified Glucan Particles for the Delivery of Therapeutic siRNA.

    PubMed

    Cohen, Jessica L; Shen, Yuefei; Aouadi, Myriam; Vangala, Pranitha; Tencerova, Michaela; Amano, Shinya U; Nicoloro, Sarah M; Yawe, Joseph C; Czech, Michael P

    2016-03-07

    Translation of siRNA technology into the clinic is limited by the need for improved delivery systems that target specific cell types. Macrophages are particularly attractive targets for RNAi therapy because they promote pathogenic inflammatory responses in a number of important human diseases. We previously demonstrated that a multicomponent formulation of β-1,3-d-glucan-encapsulated siRNA particles (GeRPs) can specifically and potently silence genes in mouse macrophages. A major advance would be to simplify the GeRP system by reducing the number of delivery components, thus enabling more facile manufacturing and future commercialization. Here we report the synthesis and evaluation of a simplified glucan-based particle (GP) capable of delivering siRNA in vivo to selectively silence macrophage genes. Covalent attachment of small-molecule amines and short peptides containing weak bases to GPs facilitated electrostatic interaction of the particles with siRNA and aided in the endosomal release of siRNA by the proton-sponge effect. Modified GPs were nontoxic and were efficiently internalized by macrophages in vitro. When injected intraperitoneally (i.p.), several of the new peptide-modified GPs were found to efficiently deliver siRNA to peritoneal macrophages in lean, healthy mice. In an animal model of obesity-induced inflammation, i.p. administration of one of the peptide-modified GPs (GP-EP14) bound to siRNA selectively reduced the expression of target inflammatory cytokines in the visceral adipose tissue macrophages. Decreasing adipose tissue inflammation resulted in an improvement of glucose metabolism in these metabolically challenged animals. Thus, modified GPs represent a promising new simplified system for the efficient delivery of therapeutic siRNAs specifically to phagocytic cells in vivo for modulation of inflammation responses.

  14. Trends in the Binding of Cell Penetrating Peptides to siRNA: A Molecular Docking Study

    PubMed Central

    Gunathunge, B. G. C. M.; Wimalasiri, P. N.; Karunaratne, D. N.

    2017-01-01

    The use of gene therapeutics, including short interfering RNA (siRNA), is limited by the lack of efficient delivery systems. An appealing approach to deliver gene therapeutics involves noncovalent complexation with cell penetrating peptides (CPPs) which are able to penetrate the cell membranes of mammals. Although a number of CPPs have been discovered, our understanding of their complexation and translocation of siRNA is as yet insufficient. Here, we report on computational studies comparing the binding affinities of CPPs with siRNA, considering a variety of CPPs. Specifically, seventeen CPPs from three different categories, cationic, amphipathic, and hydrophobic CPPs, were studied. Molecular mechanics were used to minimize structures, while molecular docking calculations were used to predict the orientation and favorability of sequentially binding multiple peptides to siRNA. Binding scores from docking calculations were highest for amphipathic peptides over cationic and hydrophobic peptides. Results indicate that initial complexation of peptides will likely occur along the major groove of the siRNA, driven by electrostatic interactions. Subsequent binding of CPPs is likely to occur in the minor groove and later on bind randomly, to siRNA or previously bound CPPs, through hydrophobic interactions. However, hydrophobic CPPs do not show this binding pattern. Ultimately binding yields a positively charged nanoparticle capable of noninvasive cellular import of therapeutic molecules. PMID:28321253

  15. A retro-inverso cell-penetrating peptide for siRNA delivery.

    PubMed

    Vaissière, Anaïs; Aldrian, Gudrun; Konate, Karidia; Lindberg, Mattias F; Jourdan, Carole; Telmar, Anthony; Seisel, Quentin; Fernandez, Frédéric; Viguier, Véronique; Genevois, Coralie; Couillaud, Franck; Boisguerin, Prisca; Deshayes, Sébastien

    2017-04-28

    Small interfering RNAs (siRNAs) are powerful tools to control gene expression. However, due to their poor cellular permeability and stability, their therapeutic development requires a specific delivery system. Among them, cell-penetrating peptides (CPP) have been shown to transfer efficiently siRNA inside the cells. Recently we developed amphipathic peptides able to self-assemble with siRNAs as peptide-based nanoparticles and to transfect them into cells. However, despite the great potential of these drug delivery systems, most of them display a low resistance to proteases. Here, we report the development and characterization of a new CPP named RICK corresponding to the retro-inverso form of the CADY-K peptide. We show that RICK conserves the main biophysical features of its L-parental homologue and keeps the ability to associate with siRNA in stable peptide-based nanoparticles. Moreover the RICK:siRNA self-assembly prevents siRNA degradation and induces inhibition of gene expression. This new approach consists in a promising strategy for future in vivo application, especially for targeted anticancer treatment (e.g. knock-down of cell cycle proteins). Graphical abstract RICK-based nanoparticles: RICK peptides and siRNA self-assemble in peptide-based nanoparticles to penetrate into the cells and to induce target protein knock-down.

  16. Buffering Capacity and Size of siRNA Polyplexes Influence Cytokine Levels

    PubMed Central

    Leng, Qixin; Chou, Szu-Ting; Scaria, Puthupparampil V; Woodle, Martin C; Mixson, A James

    2012-01-01

    Induction of cytokines by small interfering RNA (siRNA) polyplexes has been a significant concern of researchers attempting to minimize the toxicity of this promising therapy. Although cationic carriers of siRNA are known to increase cytokine levels, few systematic studies have been done to determine what properties of the carrier are important to modulate cytokines. Because branched histidine-lysine (HK) peptides are effective carriers of siRNA and their sequence can be readily modified, we selected this class of carrier to determine which sequences of the peptide were important for cytokine induction. With the use of peripheral blood mononuclear cells (PBMCs), the HK peptide with a higher number of histidines (H3K(+H)4b) in complex with siRNA induced lower levels of cytokines compared with other HK (e.g., H2K4b, H3K4b, H3K(+N)4b) siRNA nanoplexes. Notably, these peptides' siRNA polyplexes showed a similar pattern of cytokine induction when injected intravenously in a mouse model, i.e., the HK with higher content of histidines induced cytokines the least. As indicated by the pH-sensitive dye within acidic endosomes, the greater pH-buffering capacity of H3K(+H)4b compared with other HK peptides may explain why cytokine levels were reduced. In addition to buffering capacity, the size of HK polyplexes markedly influenced cytokine production. PMID:23032972

  17. Delivery of siRNA into the cytoplasm by liposomal bubbles and ultrasound.

    PubMed

    Negishi, Yoichi; Endo, Yoko; Fukuyama, Tetsuya; Suzuki, Ryo; Takizawa, Tomoko; Omata, Daiki; Maruyama, Kazuo; Aramaki, Yukihiko

    2008-12-08

    Small interfering RNA (siRNA) is expected to be a novel therapeutic tool, however, its utilization has been limited by inefficient delivery systems. Recently, we have developed novel polyethyleneglycol modified liposomes (Bubble liposomes; BL) entrapping an ultrasound (US) imaging gas, which can work as a gene delivery tool with US exposure. In this study, we investigated whether the BL were suitable for the delivery of siRNA. BL efficiently delivered siRNA with only 10 s of exposure to US in vitro. Specific gene silencing effects could be achieved well even in the presence of serum or with the disruption of endocytosis. We suggest that siRNA is directly introduced into the cytoplasm by the BL and US and the mechanism enables effective transfection within a short time and in the presence of high serum. Transfection of siRNA into the tibialis muscles with BL and US was also performed. The gene-silencing effect could be sustained for more than 3 weeks. Thus, BL could be a useful siRNA delivery tool in vitro and in vivo.

  18. Design of a Multicomponent Peptide-Woven Nanocomplex for Delivery of siRNA

    PubMed Central

    Jun, Eunsung; Kim, Soyoun; Kim, Jong-Ho; Cha, Kiweon; So, In-Seop; Son, Hye-Nam; Lee, Byung-Heon; Kim, Kwangmeyung; Kwon, Ick Chan; Kim, Sang Yoon; Kim, In-San

    2015-01-01

    We developed and tested a multicomponent peptide-woven siRNA nanocomplex (PwSN) comprising different peptides designed for efficient cellular targeting, endosomal escape, and release of siRNA. To enhance tumor-specific cellular uptake, we connected an interleukin-4 receptor-targeting peptide (I4R) to a nine-arginine peptide (9r), yielding I4R-9r. To facilitate endosomal escape, we blended endosomolytic peptides into the I4R-9r to form a multicomponent nanocomplex. Lastly, we modified 9r peptides by varying the number and positions of positive charges to obtain efficient release of siRNA from the nanocomplex in the cytosol. Using this step-wise approach for overcoming the biological challenges of siRNA delivery, we obtained an optimized PwSN with significant biological activity in vitro and in vivo. Interestingly, surface plasmon resonance analyses and three-dimensional peptide models demonstrated that our designed peptide adopted a unique structure that was correlated with faster complex disassembly and a better gene-silencing effect. These studies further elucidate the siRNA nanocomplex delivery pathway and demonstrate the applicability of our stepwise strategy to the design of siRNA carriers capable of overcoming multiple challenges and achieving efficient delivery. PMID:25705892

  19. Nanotechnology As Potential Tool for siRNA Delivery in Parkinson's Disease.

    PubMed

    Cortés, Hernán; Alcalá-Alcalá, Sergio; Ávalos-Fuentes, Arturo; Mendoza-Muñoz, Nestor; Quintanar-Guerrero, David; Leyva-Gómez, Gerardo; Florán, Benjamín

    2017-03-21

    The lack of an outright treatment for Parkinson's disease (PD) is a pivotal concern in medicine and has driven the search for novel alternatives for treating the disease. Among the proposed approaches, small interfering RNA (siRNA)-based therapy is attracting significant attention as a potential method for the treatment of PD; however, siRNAs delivery possesses potential drawbacks, such as reduced stability in blood circulation and low capacity for reaching the target site. Therefore, siRNA delivery to the brain is a key issue that remains unsolved to date. In this regard, nanoparticles are being developed as carriers for siRNAs and represent an alternative to common vectors; the formulation of siRNAs in nanoparticles would possess several advantages over other vectors, such as controlled delivery and low toxicity profiles. Therefore, in this article we focus on siRNA-based approaches to PD and the latest advances for designing nanoparticles that effectively target siRNAs to the action site and that protect these against degradation in blood circulation. Additionally, we discuss the technological aspects for tackling the challenge that siRNAs targeting to the brain represents.

  20. Recombinant high density lipoprotein nanoparticles for target-specific delivery of siRNA.

    PubMed

    Rui, Mengjie; Tang, Hailing; Li, Yan; Wei, Xiaohui; Xu, Yuhong

    2013-05-01

    Regulation of gene expression using small interfering RNA (siRNA) is a promising strategy for treatments of numerous diseases. However, the progress towards broad application of siRNA requires the development of safe and effective vectors that target to specific cells. In this study, we developed a novel recombinant high density lipoprotein (rHDL) vector with high siRNA encapsulation efficiency. They were prepared by condensing siRNA with various commercial cationic polymers and coating the polyplex with a layer of lipids and apolipoprotein AI (apo AI). The rHDL nanoparticles were used to transfect SMMC-7721 hepatoma cells with stable luciferase expression. The uptake and intracellular trafficing of siRNA were also investigated. Characterization studies revealed these rHDL nanoparticles had similar physical properties as natural HDLs. The various rHDL formulations had high silencing efficiency (more than 70% knockdown) in hepatocytes with minimum cytotoxicity. Moreover, the uptake of rHDL by SMMC-7721 was confirmed to be mediated through the natural HDL uptake pathway. The work described here demonstrated the optimized rHDL nanoparticles may offer a promising tool for siRNA delivery to the liver.

  1. Low-Molecular-Weight Polyethyleneimine Grafted Polythiophene for Efficient siRNA Delivery.

    PubMed

    He, Pan; Hagiwara, Kyoji; Chong, Hui; Yu, Hsiao-hua; Ito, Yoshihiro

    2015-01-01

    Owing to its hydrophilicity, negative charge, small size, and labile degradation by endogenous nucleases, small interfering RNA (siRNA) delivery must be achieved by a carrier system. In this study, cationic copolymers composed of low-molecular-weight polyethylenimine and polythiophenes were synthesized and evaluated as novel self-tracking siRNA delivery vectors. The concept underlying the design of these copolymers is that hydrophobicity and rigidity of polythiophenes should enhance the transport of siRNA across the cell membrane and endosomal membrane. A gel retardation assay showed that the nanosized complexes formed between the copolymers and siRNA were stable even at a molar ratio of 1 : 2. The high cellular uptake (>80%) and localization of the copolymer vectors inside the cells were easily analyzed by tracking the fluorescence of polythiophene using fluorescent microscopy and cytometry. An in vitro luciferase knockdown (KD) assay in A549-luc cells demonstrated that the siRNA complexes with more hydrophobic copolymers achieved a higher KD efficiency of 52.8% without notable cytotoxicity, indicating protein-specific KD activity rather than solely the cytotoxicity of the materials. Our polythiophene copolymers should serve as novel, efficient, low cell toxicity, and label-free siRNA delivery systems.

  2. Endosomolytic anionic polymer for the cytoplasmic delivery of siRNAs in localized in vivo applications

    PubMed Central

    Khormaee, Sariah; Choi, Yong; Shen, Michael J.; Xu, Biying; Wu, Haitao; Griffiths, Gary L.; Chen, Rongjun; Slater, Nigel K. H.; Park, John K.

    2013-01-01

    The use of small interfering RNAs (siRNAs) to down-regulate the expression of disease-associated proteins carries significant promise for the treatment of a variety of clinical disorders. One of the main barriers to the widespread clinical use of siRNAs, however, is their entrapment and degradation within the endolysosomal pathway of target cells. Here we report the trafficking and function of PP75, a non-toxic, biodegradable, lipid membrane disruptive anionic polymer composed of phenylalanine derivatized poly(L-lysine iso-phthalamide). PP75 is readily endocytosed by cells, safely permeabilizes endolysosomes in a pH dependent manner and facilitates the transfer of co-endocytosed materials directly into the cytoplasm. The covalent attachment of siRNAs to PP75 using disulfide linkages generates conjugates that effectively traffic siRNAs to the cytoplasm of target cells both in vitro and in vivo. In a subcutaneous malignant glioma tumor model, a locally delivered PP75-stathmin siRNA conjugate decreases stathmin expression in tumor cells and, in combination with the nitrosourea chemotherapy carmustine, is highly effective at inhibiting tumor growth. PP75 may be clinically useful for the local delivery of siRNAs, in particular for the treatment of solid tumors. PMID:24273480

  3. Strategies for ocular siRNA delivery: Potential and limitations of non-viral nanocarriers.

    PubMed

    Thakur, Ajit; Fitzpatrick, Scott; Zaman, Abeyat; Kugathasan, Kapilan; Muirhead, Ben; Hortelano, Gonzalo; Sheardown, Heather

    2012-06-11

    Controlling gene expression via small interfering RNA (siRNA) has opened the doors to a plethora of therapeutic possibilities, with many currently in the pipelines of drug development for various ocular diseases. Despite the potential of siRNA technologies, barriers to intracellular delivery significantly limit their clinical efficacy. However, recent progress in the field of drug delivery strongly suggests that targeted manipulation of gene expression via siRNA delivered through nanocarriers can have an enormous impact on improving therapeutic outcomes for ophthalmic applications. Particularly, synthetic nanocarriers have demonstrated their suitability as a customizable multifunctional platform for the targeted intracellular delivery of siRNA and other hydrophilic and hydrophobic drugs in ocular applications. We predict that synthetic nanocarriers will simultaneously increase drug bioavailability, while reducing side effects and the need for repeated intraocular injections. This review will discuss the recent advances in ocular siRNA delivery via non-viral nanocarriers and the potential and limitations of various strategies for the development of a 'universal' siRNA delivery system for clinical applications.

  4. Efficient Gene Knockdown in Mouse Oocytes through Peptide Nanoparticle-Mediated SiRNA Transfection.

    PubMed

    Jin, Zhen; Li, Ruichao; Zhou, Chunxiang; Shi, Liya; Zhang, Xiaolan; Yang, Zhixia; Zhang, Dong

    2016-01-01

    The use of mouse oocytes as a model for studying female meiosis is very important in reproductive medicine. Gene knockdown by specific small interfering RNA (siRNA) is usually the first step in the study of the function of a target gene in mouse oocytes during in vitro maturation. Traditionally, the only way to introduce siRNA into mouse oocytes is through microinjection, which is certainly less efficient and strenuous than siRNA transfection in somatic cells. Recently, in research using somatic cells, peptide nanoparticle-mediated siRNA transfection has been gaining popularity over liposome nanoparticle-mediated methods because of its high efficiency, low toxicity, good stability, and strong serum compatibility. However, no researchers have yet tried transfecting siRNA into mouse oocytes because of the existence of the protective zona pellucida surrounding the oocyte membrane (vitelline membrane). We therefore tested whether peptide nanoparticles can introduce siRNA into mouse oocytes. In the present study, we showed for the first time that our optimized program can efficiently knock down a target gene with high specificity. Furthermore, we achieved the expected meiotic phenotypes after we knocked down a test unknown target gene TRIM75. We propose that peptide nanoparticles may be superior for preliminary functional studies of unknown genes in mouse oocytes.

  5. In vitro validation of self designed "universal human Influenza A siRNA".

    PubMed

    Jain, Bhawana; Jain, Amita; Prakash, Om; Singh, Ajay Kr; Dangi, Tanushree; Singh, Mastan; Singh, K P

    2015-08-01

    The genomic variability of Influenza A virus (IAV) makes it difficult for the existing vaccines or anti-influenza drugs to control. The siRNA targeting viral gene induces RNAi mechanism in the host and silent the gene by cleaving mRNA. In this study, we developed an universal siRNA and validated its efficiency in vitro. The siRNA was designed rationally, targeting the most conserved region (delineated with the help of multiple sequence alignment) of M gene of IAV strains. Three level screening method was adopted, and the most efficient one was selected on the basis of its unique position in the conserved region. The siRNA efficacy was confirmed in vitro with the Madin Darby Canine Kidney (MDCK) cell line for IAV propagation using two clinical isolates i.e., Influenza A/H3N2 and Influenza A/pdmH1N1. Of the total 168 strains worldwide and 33 strains from India, 97 bp long (position 137-233) conserved region was identified. The longest ORF of matrix gene was targeted by the selected siRNA, which showed 73.6% inhibition in replication of Influenza A/pdmH1N1 and 62.1% inhibition in replication of Influenza A/H3N2 at 48 h post infection on MDCK cell line. This study provides a basis for the development of siRNA which can be used as universal anti-IAV therapeutic agent.

  6. Low molecular weight chitosan conjugated with folate for siRNA delivery in vitro: optimization studies

    PubMed Central

    Fernandes, Julio C; Qiu, Xingping; Winnik, Francoise M; Benderdour, Mohamed; Zhang, Xiaoling; Dai, Kerong; Shi, Qin

    2012-01-01

    The low transfection efficiency of chitosan is one of its drawbacks as a gene delivery carrier. Low molecular weight chitosan may help to form small-sized polymer-DNA or small interfering RNA (siRNA) complexes. Folate conjugation may improve gene transfection efficiency because of the promoted uptake of folate receptor-bearing cells. In the present study, chitosan was conjugated with folate and investigated for its efficacy as a delivery vector for siRNA in vitro. We demonstrate that the molecular weight of chitosan has a major influence on its biological and physicochemical properties, and very low molecular weight chitosan (below 10 kDa) has difficulty in forming stable complexes with siRNA. In this study, chitosan 25 kDa and 50 kDa completely absorbed siRNA and formed nanoparticles (≤220 nm) at a chitosan to siRNA weight ratio of 50:1. The introduction of a folate ligand onto chitosan decreased nanoparticle toxicity. Compared with chitosan-siRNA, folate-chitosan-siRNA nanoparticles improved gene silencing transfection efficiency. Therefore, folate-chitosan shows potential as a viable candidate vector for safe and efficient siRNA delivery. PMID:23209368

  7. Mapping Optimal Charge Density and Length of ROMP-Based PTDMs for siRNA Internalization.

    PubMed

    Caffrey, Leah M; deRonde, Brittany M; Minter, Lisa M; Tew, Gregory N

    2016-10-10

    A fundamental understanding of how polymer structure impacts internalization and delivery of biologically relevant cargoes, particularly small interfering ribonucleic acid (siRNA), is of critical importance to the successful design of improved delivery reagents. Herein we report the use of ring-opening metathesis polymerization (ROMP) methods to synthesize two series of guanidinium-rich protein transduction domain mimics (PTDMs): one based on an imide scaffold that contains one guanidinium moiety per repeat unit, and another based on a diester scaffold that contains two guanidinium moieties per repeat unit. By varying both the degree of polymerization and, in effect, the relative number of cationic charges in each PTDM, the performances of the two ROMP backbones for siRNA internalization were evaluated and compared. Internalization of fluorescently labeled siRNA into Jurkat T cells demonstrated that fluorescein isothiocyanate (FITC)-siRNA internalization had a charge content dependence, with PTDMs containing approximately 40 to 60 cationic charges facilitating the most internalization. Despite this charge content dependence, the imide scaffold yielded much lower viabilities in Jurkat T cells than the corresponding diester PTDMs with similar numbers of cationic charges, suggesting that the diester scaffold is preferred for siRNA internalization and delivery applications. These developments will not only improve our understanding of the structural factors necessary for optimal siRNA internalization, but will also guide the future development of optimized PTDMs for siRNA internalization and delivery.

  8. Rigid nanoparticle-baseddelivery of anti-cancer siRNA: challenges and opportunities

    PubMed Central

    Wang, Zhiyong; Liu, Gang; Zheng, Hairong; Chen, Xiaoyuan

    2013-01-01

    Gene therapy is a promising strategy to treat various genetic and acquired diseases. Small interfering RNA (siRNA) is a revolutionary tool for gene therapy and the analysis of gene function. However, the development of a safe, efficient, and targetable non-viral siRNA delivery system remains a major challenge in gene therapy. An ideal delivery system should be able to encapsulate and protect the siRNA cargo from serum proteins, exhibit target tissue and cell specificity, penetrate the cell membrane, and release its cargo in the desired intracellular compartment. Nanomedicine has the potential to deal with these challenges faced by siRNA delivery. The unique characteristics of rigid nanoparticles mostly inorganic nanoparticles and allotropes of carbon nanomaterials, including high surface area, facile surface modification, controllable size, and excellent magnetic/optical/electrical properties, make them promising candidates for targeted siRNA delivery. In this review, recent progresses on rigid nanoparticle-based siRNA delivery systems will be summarized. PMID:24013011

  9. New Type of BACE1 siRNA Delivery to Cells

    PubMed Central

    Jabłkowski, Maciej; Szemraj, Maciej; Oszajca, Katarzyna; Janiszewska, Grażyna; Bartkowiak, Jacek; Szemraj, Janusz

    2014-01-01

    Background Small interfering RNA (siRNA) gene therapy is a new molecular approach in the search for an efficient therapy for Alzheimer disease (AD), based on the principle of RNA interference. Reducing BACE activity can have great therapeutic potential for the treatment of AD. In this study, receptor-mediated delivery was used to deliver opioid peptide-conjugated BACE 1 to INR-32 human neuroblastoma cells. Material/Methods An INR-32 human neuroblastoma cell line was stably transfected to express the APP cDNA coding fragment containing the predicted sites for cleavage by α, β, or γ-secretase. This was then treated with BACE 1 siRNA to silence BACE gene expression. BACE gene transcription and translation was determined using BACE-1 siRNA cross-linked with opioid peptide, together with RT-PCR, Western blot analysis, and ELISA. Results Receptor-mediated delivery was used to introduce BACE1 siRNA to the APP – INR 32 human neuroblastoma cells. Decreased BACE mRNA and protein expression were observed after the cells were transfected with BACE1 siRNA. Conclusions Delivery of BACE1 siRNA appears to specifically reduce the cleavage of APP by inhibiting BACE1 activity. PMID:25491230

  10. Design of a multicomponent peptide-woven nanocomplex for delivery of siRNA.

    PubMed

    Jun, Eunsung; Kim, Soyoun; Kim, Jong-Ho; Cha, Kiweon; So, In-Seop; Son, Hye-Nam; Lee, Byung-Heon; Kim, Kwangmeyung; Kwon, Ick Chan; Kim, Sang Yoon; Kim, In-San

    2015-01-01

    We developed and tested a multicomponent peptide-woven siRNA nanocomplex (PwSN) comprising different peptides designed for efficient cellular targeting, endosomal escape, and release of siRNA. To enhance tumor-specific cellular uptake, we connected an interleukin-4 receptor-targeting peptide (I4R) to a nine-arginine peptide (9r), yielding I4R-9r. To facilitate endosomal escape, we blended endosomolytic peptides into the I4R-9r to form a multicomponent nanocomplex. Lastly, we modified 9r peptides by varying the number and positions of positive charges to obtain efficient release of siRNA from the nanocomplex in the cytosol. Using this step-wise approach for overcoming the biological challenges of siRNA delivery, we obtained an optimized PwSN with significant biological activity in vitro and in vivo. Interestingly, surface plasmon resonance analyses and three-dimensional peptide models demonstrated that our designed peptide adopted a unique structure that was correlated with faster complex disassembly and a better gene-silencing effect. These studies further elucidate the siRNA nanocomplex delivery pathway and demonstrate the applicability of our stepwise strategy to the design of siRNA carriers capable of overcoming multiple challenges and achieving efficient delivery.

  11. Specific subcellular localization of siRNAs delivered by lipoplex in MCF-7 breast cancer cells.

    PubMed

    Lavigne, Carole; Thierry, Alain R

    2007-10-01

    In order to better understand the mechanism of delivery of siRNAs by lipid-based vectors, we investigated the subcellular distribution of siRNAs directed against cyclin D1 delivered by the DLS system in the breast cancer cell line MCF-7. Cells were treated with cyclopentenone or 17beta-estradiol to modulate the level of expression of cyclin D1 mRNA. We qualitatively observed that siRNA localized to specific cytoplasmic compartments in the periphery of the nucleus in granular-like structures that do not correspond to early endosomal vesicles. In cells treated with either cyclopentenone or 17beta-estradiol cellular distribution of siRNAs was not affected but variations in the amount of siRNAs present in cells were found. We suggest these variations might be associated with the effects of cyclopentenone and 17beta-estradiol in cyclin D1 gene expression. Low cytotoxicity and highly cellular uptake of lipoplexes was observed in the presence of serum indicating that the DLS system could be a useful tool for siRNA vectorization in vitro and in vivo.

  12. Solid polymeric microparticles enhance the delivery of siRNA to macrophages in vivo

    PubMed Central

    Lee, Sungmun; Yang, Stephen C.; Kao, Chen-Yu; Pierce, Robert H.; Murthy, Niren

    2009-01-01

    Therapeutics based on small interfering RNA (siRNA) have a great clinical potential; however, delivery problems have limited their clinical efficacy, and new siRNA delivery vehicles are greatly needed. In this report, we demonstrate that submicron particles (800–900 nm) composed of the polyketal PK3 and chloroquine, termed as the PKCNs, can deliver tumor necrosis factor-α (TNF-α) siRNA in vivo to Kupffer cells efficiently and inhibit gene expression in the liver at concentrations as low as 3.5 μg/kg. The high delivery efficiency of the PKCNs arises from the unique properties of PK3, which can protect siRNA from serum nucleases, stimulate cell uptake and trigger a colloid osmotic disruption of the phagosome and release encapsulated siRNA into the cell cytoplasm. We anticipate numerous applications of the PKCNs for siRNA delivery to macrophages, given their high delivery efficiency, and the central role of macrophages in causing diseases such as hepatitis, liver cirrhosis and chronic renal disease. PMID:19783825

  13. Preparation of Novel Curdlan Nanoparticles for Intracellular siRNA Delivery

    PubMed Central

    Han, Jingfen; Caia, Jia; Borjihan, Wuyinga; Ganbolda, Tsogzolmaa; Rana, Tariq M.; Baigude, Huricha

    2014-01-01

    RNA interference (RNAi) down-regulates gene expression post-transcriptionally, which is a therapeutically significant phenomenon that could potentially reduce the level of disease related proteins that are undruggable by conventional small molecular approaches. However, clinical application of small interference RNAs (siRNAs) requires design of potent siRNA sequences and development of safe and efficient delivery systems. To create a biocompatible siRNA delivery agent, we chemically modified natural polysaccharide curdlan in a regioselective manner to introduce amino group in the glucose units. The resulting 6-amino-curdlan (6AC) is water soluble and forms nanoparticles upon complexing with siRNAs. The novel curdlan-based nanoparticles efficiently delivered siRNAs to human cancer cells and mouse primary cells, and reduced 70–90% of target mRNA level. Moreover, 6AC nanoparticles delivered siRNA targeting eGFP to mouse embryonic stem (mES) cells stably expressing eGFP, and produced substantial reductions of eGFP protein level. The novel curdlan-based nanoparticle is a promising vehicle for delivery of short RNAs to knock down endogenous mRNAs. PMID:25498642

  14. Pol IV-Dependent siRNA Production is Reduced in Brassica rapa

    PubMed Central

    Huang, Yi; Kendall, Timmy; Mosher, Rebecca A.

    2013-01-01

    Plants produce a diverse array of small RNA molecules capable of gene regulation, including Pol IV-dependent short interfering (p4-si)RNAs that trigger transcriptional gene silencing. Small RNA transcriptomes are available for many plant species, but mutations affecting the synthesis of Pol IV-dependent siRNAs are characterized only in Arabidopsis and maize, leading to assumptions regarding nature of p4-siRNAs in all other species. We have identified a mutation in the largest subunit of Pol IV, NRPD1, that impacts Pol IV activity in Brassica rapa, an agriculturally important relative of the reference plant Arabidopsis. Using this mutation we characterized the Pol IV-dependent and Pol IV-independent small RNA populations in B. rapa. In addition, our analysis demonstrates reduced production of p4-siRNAs in B. rapa relative to Arabidopsis. B. rapa genomic regions are less likely to generate p4-siRNAs than Arabidopsis but more likely to generate Pol IV-independent siRNAs, including 24 nt RNAs mapping to transposable elements. These observations underscore the diversity of small RNAs produced by plants and highlight the importance of genetic studies during small RNA analysis. PMID:24833221

  15. Efficient Gene Knockdown in Mouse Oocytes through Peptide Nanoparticle-Mediated SiRNA Transfection

    PubMed Central

    Jin, Zhen; Li, Ruichao; Zhou, Chunxiang; Shi, Liya; Zhang, Xiaolan; Yang, Zhixia; Zhang, Dong

    2016-01-01

    The use of mouse oocytes as a model for studying female meiosis is very important in reproductive medicine. Gene knockdown by specific small interfering RNA (siRNA) is usually the first step in the study of the function of a target gene in mouse oocytes during in vitro maturation. Traditionally, the only way to introduce siRNA into mouse oocytes is through microinjection, which is certainly less efficient and strenuous than siRNA transfection in somatic cells. Recently, in research using somatic cells, peptide nanoparticle-mediated siRNA transfection has been gaining popularity over liposome nanoparticle-mediated methods because of its high efficiency, low toxicity, good stability, and strong serum compatibility. However, no researchers have yet tried transfecting siRNA into mouse oocytes because of the existence of the protective zona pellucida surrounding the oocyte membrane (vitelline membrane). We therefore tested whether peptide nanoparticles can introduce siRNA into mouse oocytes. In the present study, we showed for the first time that our optimized program can efficiently knock down a target gene with high specificity. Furthermore, we achieved the expected meiotic phenotypes after we knocked down a test unknown target gene TRIM75. We propose that peptide nanoparticles may be superior for preliminary functional studies of unknown genes in mouse oocytes. PMID:26974323

  16. A polycation coated liposome as efficient siRNA carrier to overcome multidrug resistance.

    PubMed

    Xia, Yuqiong; Wang, Xiaofei; Cheng, He; Fang, Mei; Ning, Pengbo; Zhou, Yulu; Chen, Wei; Song, Hongjin

    2017-08-12

    Multidrug resistance (MDR) is one of the important factors that impede effective chemotherapy against cancer. Codelivery of MDR1 siRNA (silencing ABCB1 gene) and anticancer drug can greatly inhibit tumor proliferation. Here in this work, we synthesized poly(diallyldimethylammonium chloride) (PDADMAC) coated liposome formula as siMDR1 carrier (AL-PDAD-RNA) and applied it to reverse doxorubicin resistance of OVCAR8/ADR cells. The AL-PDAD-RNA can load siRNA effectively and release siRNA under physiological conditions, leading to improved tumor inhibition than free DOX without siRNA treatment. Meanwhile, the gene silencing effect of AL-PDAD-RNA was shown to be comparable to that of commercial transfection agent lipofectamine, but with less toxicity. The main novelty of this work is to offer a new type of siRNA carrier (PDADMAC coated liposome, AL-PDAD), which is simple-structured, highly-effective and non-toxic. Therefore, we anticipate that PDADMAC-coated liposomes would be very promising in the application of other siRNA delivery or even plasmid delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Self-assembled RNA interference microsponges for efficient siRNA delivery

    NASA Astrophysics Data System (ADS)

    Lee, Jong Bum; Hong, Jinkee; Bonner, Daniel K.; Poon, Zhiyong; Hammond, Paula T.

    2012-04-01

    The encapsulation and delivery of short interfering RNA (siRNA) has been realized using lipid nanoparticles, cationic complexes, inorganic nanoparticles, RNA nanoparticles and dendrimers. Still, the instability of RNA and the relatively ineffectual encapsulation process of siRNA remain critical issues towards the clinical translation of RNA as a therapeutic. Here we report the synthesis of a delivery vehicle that combines carrier and cargo: RNA interference (RNAi) polymers that self-assemble into nanoscale pleated sheets of hairpin RNA, which in turn form sponge-like microspheres. The RNAi-microsponges consist entirely of cleavable RNA strands, and are processed by the cell’s RNA machinery to convert the stable hairpin RNA to siRNA only after cellular uptake, thus inherently providing protection for siRNA during delivery and transport to the cytoplasm. More than half a million copies of siRNA can be delivered to a cell with the uptake of a single RNAi-microsponge. The approach could lead to novel therapeutic routes for siRNA delivery.

  18. Construction of a PLGA based, targeted siRNA delivery system for treatment of osteoporosis.

    PubMed

    Sezlev Bilecen, Deniz; Rodriguez-Cabello, Jose Carlos; Uludag, Hasan; Hasirci, Vasif

    2017-11-01

    Osteoporosis, a systemic skeletal disorder, occurs when bone turnover balance is disrupted. With the identification of the genes involved in the pathogenesis of the disease, studies on development of new treatments has intensified. Short interfering RNA (siRNA) is used to knockdown disease related gene expressions. Targeting siRNA in vivo is challenging. The maintenance of therapeutic plasma level is hampered by clearance of siRNA from the body. Targeted systems are useful in increasing the drug concentration at the target site and decreasing side effects. Aim of the present study was to develop an injectable siRNA delivery system to protect siRNA during systemic distribution and target the siRNA to bone tissue using a thermoresponsive, genetically engineered, elastin-like recombinamer (ELR), designed to interact with the mineral component of bone. The delivery system consisted of DNAoligo as a siRNA substitute complexed with the cationic polymer, polyethyleneimine (PEI), at N/P ratio of 20. The complex was encapsulated in poly(lactic acid-co-glycolic acid) (PLGA) nanocapsules. PLGA capsules were characterized by SEM, TEM and XPS. FTIR was used to show the preferential attachment of ELR to HAp. Encapsulation efficiency of the complex in PLGA nanocapsules was 48%. The release kinetics of the complex fits the Higuchi release kinetics.

  19. Can siRNA technology provide the tools for gene therapy of the future?

    PubMed

    Rácz, Zs; Hamar, P

    2006-01-01

    A new era in genetics has started 15 years ago, when co-suppression in petunia has been discovered. Later, co-suppression was identified as RNA interference (RNAi) in many plant and lower eukaryote animals. Although an ancient antiviral host defense mechanism in plants, the physiologic role of RNAi in mammals is still not completely understood. RNAi is directed by short interfering RNAs (siRNAs), one subtype of short double stranded RNAs. In this review we summarize the history and mechanisms of RNAi. We also aim to highlight the correlation between structure and efficacy of siRNAs. Delivery is the most important obstacle for siRNA based gene therapy. Viral and nonviral deliveries are discussed. In vivo delivery is the next obstacle to clinical trials with siRNAs. Although hydrodynamic treatment is effective in animals, it cannot be used in human therapy. One possibility is organ selective catheterization. The known side effects of synthesized siRNAs are also discussed. Although there are many problems to face in this new field of gene therapy, successful in vitro and in vivo experiments raise hope for treating human disease with siRNA.

  20. [siRNAs with high specificity to the target: a systematic design by CRM algorithm].

    PubMed

    Alsheddi, T; Vasin, L; Meduri, R; Randhawa, M; Glazko, G; Baranova, A

    2008-01-01

    'Off-target' silencing effect hinders the development of siRNA-based therapeutic and research applications. Common solution to this problem is an employment of the BLAST that may miss significant alignments or an exhaustive Smith-Waterman algorithm that is very time-consuming. We have developed a Comprehensive Redundancy Minimizer (CRM) approach for mapping all unique sequences ("targets") 9-to-15 nt in size within large sets of sequences (e.g. transcriptomes). CRM outputs a list of potential siRNA candidates for every transcript of the particular species. These candidates could be further analyzed by traditional "set-of-rules" types of siRNA designing tools. For human, 91% of transcripts are covered by candidate siRNAs with kernel targets of N = 15. We tested our approach on the collection of previously described experimentally assessed siRNAs and found that the correlation between efficacy and presence in CRM-approved set is significant (r = 0.215, p-value = 0.0001). An interactive database that contains a precompiled set of all human siRNA candidates with minimized redundancy is available at http://129.174.194.243. Application of the CRM-based filtering minimizes potential "off-target" silencing effects and could improve routine siRNA applications.

  1. siRNA Versus miRNA as Therapeutics for Gene Silencing

    PubMed Central

    Lam, Jenny K W; Chow, Michael Y T; Zhang, Yu; Leung, Susan W S

    2015-01-01

    Discovered a little over two decades ago, small interfering RNAs (siRNAs) and microRNAs (miRNAs) are noncoding RNAs with important roles in gene regulation. They have recently been investigated as novel classes of therapeutic agents for the treatment of a wide range of disorders including cancers and infections. Clinical trials of siRNA- and miRNA-based drugs have already been initiated. siRNAs and miRNAs share many similarities, both are short duplex RNA molecules that exert gene silencing effects at the post-transcriptional level by targeting messenger RNA (mRNA), yet their mechanisms of action and clinical applications are distinct. The major difference between siRNAs and miRNAs is that the former are highly specific with only one mRNA target, whereas the latter have multiple targets. The therapeutic approaches of siRNAs and miRNAs are therefore very different. Hence, this review provides a comparison between therapeutic siRNAs and miRNAs in terms of their mechanisms of action, physicochemical properties, delivery, and clinical applications. Moreover, the challenges in developing both classes of RNA as therapeutics are also discussed. PMID:26372022

  2. Strategies for ocular siRNA delivery: Potential and limitations of non-viral nanocarriers

    PubMed Central

    2012-01-01

    Controlling gene expression via small interfering RNA (siRNA) has opened the doors to a plethora of therapeutic possibilities, with many currently in the pipelines of drug development for various ocular diseases. Despite the potential of siRNA technologies, barriers to intracellular delivery significantly limit their clinical efficacy. However, recent progress in the field of drug delivery strongly suggests that targeted manipulation of gene expression via siRNA delivered through nanocarriers can have an enormous impact on improving therapeutic outcomes for ophthalmic applications. Particularly, synthetic nanocarriers have demonstrated their suitability as a customizable multifunctional platform for the targeted intracellular delivery of siRNA and other hydrophilic and hydrophobic drugs in ocular applications. We predict that synthetic nanocarriers will simultaneously increase drug bioavailability, while reducing side effects and the need for repeated intraocular injections. This review will discuss the recent advances in ocular siRNA delivery via non-viral nanocarriers and the potential and limitations of various strategies for the development of a ‘universal’ siRNA delivery system for clinical applications. PMID:22686441

  3. Flare Plasma Iron Abundance

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.; Dan, Chau; Jain, Rajmal; Schwartz, Richard A.; Tolbert, Anne K.

    2008-01-01

    The equivalent width of the iron-line complex at 6.7 keV seen in flare X-ray spectra suggests that the iron abundance of the hottest plasma at temperatures >approx.10 MK may sometimes be significantly lower than the nominal coronal abundance of four times the photospheric value that is commonly assumed. This conclusion is based on X-ray spectral observations of several flares seen in common with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Solar X-ray Spectrometer (SOXS) on the second Indian geostationary satellite, GSAT-2. The implications of this will be discussed as it relates to the origin of the hot flare plasma - either plasma already in the corona that is directly heated during the flare energy release process or chromospheric plasma that is heated by flare-accelerated particles and driven up into the corona. Other possible explanations of lower-than-expected equivalent widths of the iron-line complex will also be discussed.

  4. Effective cytoplasmic release of siRNA from liposomal carriers by controlling the electrostatic interaction of siRNA with a charge-invertible peptide, in response to cytoplasmic pH

    NASA Astrophysics Data System (ADS)

    Itakura, Shoko; Hama, Susumu; Matsui, Ryo; Kogure, Kentaro

    2016-05-01

    Condensing siRNA with cationic polymers is a major strategy used in the development of siRNA carriers that can avoid degradation by nucleases and achieve effective delivery of siRNA into the cytoplasm. However, ineffective release of siRNA from such condensed forms into the cytoplasm is a limiting step for induction of RNAi effects, and can be attributed to tight condensation of siRNA with the cationic polymers, due to potent electrostatic interactions. Here, we report that siRNA condensed with a slightly acidic pH-sensitive peptide (SAPSP), whose total charge is inverted from positive to negative in response to cytoplasmic pH, is effectively released via electrostatic repulsion of siRNA with negatively charged SAPSP at cytoplasmic pH (7.4). The condensed complex of siRNA and positively-charged SAPSP at acidic pH (siRNA/SAPSP) was found to result in almost complete release of siRNA upon charge inversion of SAPSP at pH 7.4, with the resultant negatively-charged SAPSP having no undesirable interactions with endogenous mRNA. Moreover, liposomes encapsulating siRNA/SAPSP demonstrated knockdown efficiencies comparable to those of commercially available siRNA carriers. Taken together, SAPSP may be very useful as a siRNA condenser, as it facilitates effective cytoplasmic release of siRNA, and subsequent induction of specific RNAi effects.Condensing siRNA with cationic polymers is a major strategy used in the development of siRNA carriers that can avoid degradation by nucleases and achieve effective delivery of siRNA into the cytoplasm. However, ineffective release of siRNA from such condensed forms into the cytoplasm is a limiting step for induction of RNAi effects, and can be attributed to tight condensation of siRNA with the cationic polymers, due to potent electrostatic interactions. Here, we report that siRNA condensed with a slightly acidic pH-sensitive peptide (SAPSP), whose total charge is inverted from positive to negative in response to cytoplasmic pH, is

  5. The Origin of Element Abundance Variations in Solar Energetic Particles

    NASA Astrophysics Data System (ADS)

    Reames, Donald V.

    2016-08-01

    Abundance enhancements, during acceleration and transport in both gradual and impulsive solar energetic particle (SEP) events, vary approximately as power laws in the mass-to-charge ratio [A/Q] of the ions. Since the Q-values depend upon the electron temperature of the source plasma, this has allowed a determination of this temperature from the pattern of element-abundance enhancements and a verification of the expected inverse-time dependence of the power of A/Q for diffusive transport of ions from the SEP events, with scattering mean free paths found to be between 0.2 and 1 AU. SEP events derived from plasma of different temperatures map into different regions in typical cross-plots of abundances, spreading the distributions. In comparisons of SEP events with temperatures above 2 MK, impulsive events show much broader non-thermal variation of abundances than do gradual events. The extensive shock waves accelerating ions in gradual events may average over much of an active region where numerous but smaller magnetic reconnections, "nanojets", produce suprathermal seed ions, thus averaging over varying abundances, while an impulsive SEP event only samples one local region of abundance variations. Evidence for a reference He/O-abundance ratio of 91, rather than 57, is also found for the hotter plasma. However, while this is similar to the solar-wind abundance of He/O, the solar-wind abundances otherwise provide an unacceptably poor reference for the SEP-abundance enhancements, generating extremely large errors.

  6. Extreme Heat Guidebook

    EPA Pesticide Factsheets

    The 'Climate Change and Extreme Heat: What You Can Do to Prepare' handbook explains the connection between climate change and extreme heat events, and outlines actions citizens can take to protect their health during extreme heat.

  7. BSA Nanoparticles for siRNA Delivery: Coating Effects on Nanoparticle Properties, Plasma Protein Adsorption, and In Vitro siRNA Delivery

    PubMed Central

    Yogasundaram, Haran; Bahniuk, Markian Stephan; Singh, Harsh-Deep; Aliabadi, Hamidreza Montezari; Uludağ, Hasan; Unsworth, Larry David

    2012-01-01

    Developing vehicles for the delivery of therapeutic molecules, like siRNA, is an area of active research. Nanoparticles composed of bovine serum albumin, stabilized via the adsorption of poly-L-lysine (PLL), have been shown to be potentially inert drug-delivery vehicles. With the primary goal of reducing nonspecific protein adsorption, the effect of using comb-type structures of poly(ethylene glycol) (1 kDa, PEG) units conjugated to PLL (4.2 and 24 kDa) on BSA-NP properties, apparent siRNA release rate, cell viability, and cell uptake were evaluated. PEGylated PLL coatings resulted in NPs with ζ-potentials close to neutral. Incubation with platelet-poor plasma showed the composition of the adsorbed proteome was similar for all systems. siRNA was effectively encapsulated and released in a sustained manner from all NPs. With 4.2 kDa PLL, cellular uptake was not affected by the presence of PEG, but PEG coating inhibited uptake with 24 kDa PLL NPs. Moreover, 24 kDa PLL systems were cytotoxic and this cytotoxicity was diminished upon PEG incorporation. The overall results identified a BSA-NP coating structure that provided effective siRNA encapsulation while reducing ζ-potential, protein adsorption, and cytotoxicity, necessary attributes for in vivo application of drug-delivery vehicles. PMID:22919392

  8. Comparative characterization and cytotoxicity study of TAT-peptide as potential vectors for siRNA and Dicer-substrate siRNA.

    PubMed

    Katas, Haliza; Abdul Ghafoor Raja, Maria; Ee, Lee Choy

    2014-11-01

    Recently, a newly discovered Dicer-substrate siRNA (DsiRNA) demonstrates higher potency in gene silencing than siRNA but both suffer from rapid degradation, poor cellular uptake and chemical instability. Therefore, Tat-peptide was exploited to protect and facilitate their delivery into cells. In this study, Tat-peptide was complexed with siRNA or DsiRNA through simple complexation. The physicochemical properties (particle size, surface charge and morphology) of the complexes formed were then characterized. The ability of Tat-peptide to carry and protect siRNA or DsiRNA was determined by UV-Vis spectrophotometry and serum protection assay, respectively. Cytotoxicity effect of these complexes was assessed in V79 cell line. siRNA-Tat complexes had particle size ranged from 186 ± 17.8 to 375 ± 8.3 nm with surface charge ranged from -9.3 ± 1.0 to +13.5 ± 1.0 mV, depending on the Tat-to-siRNA concentration ratio. As for DsiRNA-Tat complexes, the particle size was smaller than the ones complexed with siRNA, ranging from 176 ± 8.6 to 458 ± 14.7 nm. Their surface charge was in the range of +27.1 ± 3.6 to +38.1 ± 0.9 mV. Both oligonucleotide (ON) species bound strongly to Tat-peptide, forming stable complexes with loading efficiency of more than 86%. These complexes were relatively non cytotoxic as the cell viability of ∼90% was achieved. In conclusion, Tat-peptide has a great potential as siRNA and DsiRNA vector due to the formation of stable complexes with desirable physical characteristics, low toxicity and able to carry high amount of siRNA or DsiRNA.

  9. Oxygen abundance and convection

    NASA Astrophysics Data System (ADS)

    Van't Veer, C.; Cayrel, R.

    The triplet IR lines of O I near 777 nm are computed with the Kurucz's code, modified to accept several convection models. The program has been run with the MLT algorithm, with l/H = 1.25 and 0.5, and with the Canuto-Mazzitelli and Canuto-Goldman-Mazzitelli approaches, on a metal-poor turnoff-star model atmosphere with Teff=6200 K, log g = 4.3, [Fe/H]= -1.5. The results show that the differences in equivalent widths for the 4 cases do not exceed 2 per cent (0.3 mA). The convection treatment is therefore not an issue for the oxygen abundance derived from the permitted lines.

  10. Comparison of cationic and amphipathic cell penetrating peptides for siRNA delivery and efficacy.

    PubMed

    Mo, Robert H; Zaro, Jennica L; Shen, Wei-Chiang

    2012-02-06

    Cell penetrating peptides (CPPs) are short strands of arginine- and/or lysine-rich peptides (<30 amino acids) that use their cationic nature for efficient intracellular accumulation. CPPs have been used for small interfering RNA (siRNA) delivery by direct complexation with the siRNA anionic phosphate backbone. During this process, however, part of the CPP cationic charges are neutralized, and the resultant loss of free positive charges may substantially compromise CPP's internalization capabilities and eventually reduce siRNA delivery efficiency. The purpose of this study was to design a novel type of polyplex for siRNA delivery to overcome the CPP neutralization issue. This novel polyplex consists of three components: siRNA, 21mer oligolysine (K21) chemically modified to incorporate CPP conjugation sites (K21-PDP), and CPP delivery moiety. The siRNA was first neutralized by cationic charges of K21-PDP to form a polyplex. Then a cationic (hexaarginine, R6) or an amphipathic (model amphipathic peptide, MAP) CPP was conjugated to the polyplex. Agarose gel shift assays indicated that the siRNA could be released from the polyplex after K21-PDP degradation or polyplex dilution. Furthermore, the total intracellular internalization of these two CPP-polyplexes was studied. Compared with R6-polyplex, MAP-polyplex exhibited 170- and 600-fold greater uptake of fluorescently labeled siRNA at 1 and 6 h post-transfection, respectively. MAP-polyplex also exhibited comparable GFP silencing effects as Lipofectamine 2000 complex in Huh7.5 cells stably transfected to express GFP-light chain 3 protein, whereas R6-polyplex did not demonstrate significant silencing activity. Further studies indicated that the K21-PDP-siRNA polyplex formation and conjugation of MAP to the polyplex were essential for siRNA polyplex uptake and gene silencing. MAP-polyplex was also shown to be unaffected by the presence of 10% FBS during transfection. In addition, MAP-polyplex uptake was dependent on

  11. Comparison of Cationic and Amphipathic Cell Penetrating Peptides for siRNA Delivery and Efficacy

    PubMed Central

    Mo, Robert H.; Zaro, Jennica L.; Shen, Wei-Chiang

    2012-01-01

    Cell penetrating peptides (CPPs) are short strands of arginine and/or lysine-rich peptides (<30 amino acids) that use their cationic nature for efficient intracellular accumulation. CPPs have been used for small interfering RNA (siRNA) delivery by direct complexation with the siRNA anionic phosphate backbone. During this process, however, part of the CPP cationic charges are neutralized, and the resultant loss of free positive charges may substantially compromise CPP’s internalization capabilities and eventually reduce siRNA delivery efficiency. The purpose of this study was to design a novel type of polyplex for siRNA delivery to overcome the CPP neutralization issue. This novel polyplex consists of three components: siRNA, 21mer oligolysine (K21) chemically modified to incorporate CPP conjugation sites (K21-PDP), and CPP delivery moiety. The siRNA was first neutralized by cationic charges of K21-PDP to form a polyplex. Then a cationic (hexa-arginine – R6) or an amphipathic (model amphipathic peptide – MAP) CPP was conjugated to the polyplex. Agarose gel shift assays indicated that the siRNA could be released from the polyplex after K21-PDP degradation or polyplex dilution. Furthermore, the total intracellular internalization of these two CPP-polyplexes was studied. Compared with R6-polyplex, MAP-polyplex exhibited 170 and 600-fold greater uptake of fluorescently-labeled siRNA at 1 and 6 h post-transfection, respectively. MAP-polyplex also exhibited comparable GFP silencing effects as Lipofectamine 2000 complex in Huh7.5 cells stably transfected to express GFP-LC3, whereas R6-polyplex did not demonstrate significant silencing activity. Further studies indicated that the K21-PDP/siRNA polyplex formation and conjugation of MAP to the polyplex were essential for siRNA polyplex uptake and gene silencing. MAP-polyplex was also shown to be unaffected by the presence of 10% FBS during transfection. In addition, MAP-polyplex uptake was dependent on vesicle formation

  12. [Experimental study of MAT1 gene silencing mediated by siRNA in pancreatic cancer].

    PubMed

    Liu, Jian-ping; Yuan, Shi-zhen; Zhang, Shi-neng

    2007-10-16

    To investigate the inhibitory effect of gene silencing mediated by MAT1-siRNA constructed in vitro transcription for pancreatic cancer in vivo and in vitro. 21-nt double strand siRNA targeting MAT1 gene was constructed and labeled with Cy3 fluorescent labeling reagent. Human pancreatic cancer cells of the line BxPC3 were cultured and divided into 4 groups: MAT1-siRNA transfected group, negative siRNA control group, lipid control group, and blank control group. The rate of cell duplication was determined by counting the cells for three consecutive days. Cell cycle profiles were determined by flow cytometry. Semi-quantitative analysis of the level of MAT1-mRNA expression was performed using the RT-PCR technique. The level of MAT1 protein expression was analyzed by Western-blotting. 18 nude mice were injected subcutaneously with BxPC3 cells to establish mouse tumor models, and then divided randomly into 3 equal groups: MAT1-siRNA group undergoing injection of MAT1-siRNA directly into the tumors 2 times a week for 4 weeks, blank control group, and negative MAT1-siRNA group. 4 weeks later the mice were killed to observe the weight and size of tumor and to calculate the tumor inhibition rate. Two of the 4 designed MAT1-siRNAs significantly suppressed the growth of the BxPC3 cells. 72 h after transfection the cell duplication was inhibited by 34.9% in the MAT1-siRNA transfection group. The cell cycle profile showed 83.9% of the MAT1-siRNA transfected cells were in the G0/G1 phase, a rate significantly higher than that in the blank control group (59.86%, P < 0.01). 48 h later the content of MAT1-mRNA of the MAT1-siRNA transfected cells was significantly reduced by 80.12%, and 72 h after the transfection the content of MAT1 protein was reduced by 50.12%, a rate significantly higher than those of the 2 control groups (both P < 0.01). The weight and volume of the transplant tumors in the MAT1-siRNA injected nude mice were significantly reduced compare with the negative siRNA

  13. Thermo-sensitive nanoparticles for triggered release of siRNA.

    PubMed

    Yang, Zheng; Cheng, Qiang; Jiang, Qian; Deng, Liandong; Liang, Zicai; Dong, Anjie

    2015-01-01

    Efficient delivery of small interfering RNA (siRNA) is crucially required for cancer gene therapy. Herein, a thermo-sensitive copolymer with a simple structure, poly (ethylene glycol) methyl ether acrylate-b-poly (N-isopropylacrylamide) (mPEG-b-PNIPAM) was developed. A novel kind of thermo-sensitive nanoparticles (DENPs) was constructed for the cold-shock triggered release of siRNA by double emulsion-solvent evaporation method using mPEG-b-PNIPAM and a cationic lipid, 3β [N-(N', N'-dimethylaminoethane)-carbamoyl] cholesterol [DC-Chol]. DENPs were observed by transmission electron microscopy and dynamical light scattering before and after 'cold shock' treatment. The encapsulation efficiency (EE) of siRNA in DENPs, which was measured by fluorescence spectrophotometer was 96.8% while it was significantly reduced to be 23.2% when DC-Chol was absent. DENPs/siRNA NPs exhibited a thermo-sensitive siRNA release character that the cumulatively released amount of siRNA from cold shock was approximately 2.2 folds higher after 7 days. In vitro luciferase silencing experiments indicated that DENPs showed potent gene silencing efficacy in HeLa-Luc cells (HeLa cells steadily expressed luciferase), which was further enhanced by a cold shock. Furthermore, MTT assay showed that cell viability with DENPs/siRNA up to 200 nM remained above 80%. We also observed that most of siRNA was accumulated in kidney mediated by DENPs instead of liver and spleen in vivo experiments. Thus, DENPs as a cold shock responsive quick release model for siRNA or hydrophilic macromolecules delivery provide a new way to nanocarrier design and clinic therapy.

  14. Potential application of injectable chitosan hydrogel treated with siRNA in chronic rhinosinusitis therapy

    PubMed Central

    CAO, CHENG; YAN, CHUNHONG; HU, ZHIQIANG; ZHOU, SHAO

    2015-01-01

    Chronic rhinosinusitis is a condition with severe clinical symptoms and limited therapeutic solutions. It has been reported that vascular endothelial growth factor (VEGF) can promote nasal epithelial cell growth and result in hyperplasia of the sinuses. Therefore, the downregulation of VEGF may inhibit the process of hyperplasia. In the present study, small interfering RNA (siRNA) targeting VEGF was used to silence the expression of VEGF, and injectable chitosan based hydrogel, which is suitable for sinus injection and exhibits long-term retention, was prepared as the siRNA carrier. Human bronchial epithelial cells were cultured directly on the hydrogel to observe the biological performance in vitro. Further in vivo effects were investigated by the injection of the hydrogel into the sinus cavity. Following the introduction of siRNA introducing, the expression of VEGF in the bronchial epithelial cells was significantly suppressed at mRNA and protein levels. The number of living cells on the gel was significantly decreased, thus resulting in the inhibition of proliferation. However, the cytoskeletal arrangement of the remaining cells were not affected substantially. The hydrogel was able to retain the siRNA for an extended duration, which enabled a sustained supply of siRNA. The in vivo sinus mucosa analysis revealed that the siRNA was able to collocate with cells and the mucosa thickness was substantially decreased. In conclusion, the results of the present study suggested that injectable chitosan based hydrogel, treated with siRNA targeting VEGF, may be used as a convenient therapeutic option for chronic rhinosinusitis. PMID:26299569

  15. Chitosan Hydrogel as siRNA vector for prolonged gene silencing

    PubMed Central

    2014-01-01

    Background The periodontitis is one of the most prevalent diseases with alveolar resorption in adult people and is the main cause of the tooth loss. To investigate the possibility for protecting the loss of alveolar bone in periodontal diseases, a RNAi-based therapeutic strategy is applied for silencing RANK signaling using thermosensitive chitosan hydrogel as siRNA reservoir and vector. Results The thermosensitive chitosan hydrogel was formed from solution (PH = 7.2, at 4°C) at 37°C within 8 minutes. The degradation rates of hydrogel were ~50% and 5% (W remaining/W beginning) in the presence and absence of lysozyme, respectively, over a period of 20 days. The concurrent cumulative in vitro release of Cy3-labeled siRNA from the hydrogel was 50% and 17% over 14 days, with or without lysozyme digestion, respectively. High cell viability (>88%) was maintained for cells treated with hydrogel loaded with RANK specific siRNA and RANK knockdown was prolonged for up to 9 days when cells were incubated with siRNA/hydrogel complex. In vivo release of siRNA was investigated in a subcutaneous delivery setup in mice. The fluorescent signal from siRNA within hydrogel was remained for up to 14 days compared to less than one day for siRNA alone. Conclusions Chitosan hydrogel can potentially serve as a suitable reservoir and vector for local sustained delivery of siRNA in potential therapy. PMID:24946934

  16. siRNA delivery to lung-metastasized tumor by systemic injection with cationic liposomes.

    PubMed

    Hattori, Yoshiyuki; Nakamura, Ayako; Arai, Shohei; Kawano, Kumi; Maitani, Yoshie; Yonemochi, Etsuo

    2015-01-01

    Cationic liposomes can efficiently deliver siRNA to the lung by intravenous injection of cationic liposome/siRNA complexes (lipoplexes). The aim of this study was to examine a formulation of cationic liposomes for siRNA delivery to lung metastasis of breast tumor. For the preparation of cationic liposomes, 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or dimethyldioctadecylammonium bromide (DDAB) as a cationic lipid and cholesterol (Chol) or 1,2-dioleoyl-L-α-glycero-3-phosphatidylethanolamine (DOPE) as a neutral lipid were used. In vitro and in vivo gene silencing effects by cationic lipoplexes were evaluated after transfection into stably luciferase-expressing human breast tumor MCF-7-Luc cells and after intravenous injection into mice with lung MCF-7-Luc metastasis, respectively. Intracellular localization of siRNA after transfection into MCF-7 cells by cationic lipoplexes and biodistribution of siRNA after intravenous injection of cationic lipoplexes into the mice with lung metastasis were examined by confocal and fluorescent microscopy analyses, respectively. In in vitro transfection, DOTAP/DOPE and DDAB/DOPE lipoplexes of luciferase siRNA strongly suppressed luciferase activity in MCF-7-Luc cells, but DOTAP/Chol and DDAB/Chol lipoplexes did not, although DOTAP/Chol and DDAB/Chol lipoplexes exhibited higher cellular uptake than DOTAP/DOPE and DDAB/DOPE lipoplexes. When their cationic lipoplexes were intravenously injected into mice with lung MCF-7-Luc metastasis, siRNAs were mainly accumulated in the lungs; however, the reduced luciferase activities in the lung-metastasized tumors were observed only by injections of DOTAP/Chol and DOTAP/DOPE lipoplexes, but not by DDAB/Chol and DDAB/DOPE lipoplexes. DOTAP-based liposomes might be useful as an in vivo siRNA delivery carrier that can induce gene silencing in lung-metastasized tumors.

  17. CXCR4-targeted modular peptide carriers for efficient anti-VEGF siRNA delivery.

    PubMed

    Egorova, Anna; Shubina, Anastasia; Sokolov, Dmitriy; Selkov, Sergey; Baranov, Vladislav; Kiselev, Anton

    2016-12-30

    The application of small interfering RNA (siRNA) for specific gene inhibition is a promising strategy in gene therapy treatments. The efficient cellular delivery of therapeutic siRNA is a critical step in RNA interference (RNAi) application. Highly efficient siRNA carriers should be developed for specific cellular uptake, stable RNA-complexes formation and intracellular RNA release. To study these features, we evaluated modular peptide carriers bearing CXCR4 targeting ligand for their ability to condense siRNA, facilitate endosomal escape and VEGFA gene silencing in CXCR4-expressing endothelial and glioblastoma cells. Peptide carriers were shown to condense and protect siRNA from RNAse degradation. Various N/P ratios were used for physicochemical characterization to optimize siRNA/peptide complexes for in vitro studies. On average, cytotoxicity of siRNA-polyplexes depended on cell type and was not higher than that of PEI/siRNA complexes. VEGFA gene knockdown was significantly improved with CXCR4-targeted carriers in contrast to nontargeted peptides. siRNA delivery by means of ligandconjugated carriers resulted in 2.5-3-fold decrease of VEGF expression in glioblastoma cells and in 1.5-2-fold decrease of VEGF expression in endothelial cells. Delivery of siRNA/peptide complexes resulted in 2-6- fold decrease in VEGF protein yield and in significant inhibition of endothelial cells migration. The study shows that implication of peptide carriers modified with CXCR4 ligand is a promising approach to develop targeted siRNA delivery system into CXCR4-expressing cancer and endothelial cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. PEGylation of lipoplexes: The right balance between cytotoxicity and siRNA effectiveness.

    PubMed

    Lechanteur, Anna; Furst, Tania; Evrard, Brigitte; Delvenne, Philippe; Hubert, Pascale; Piel, Géraldine

    2016-10-10

    The delivery of small interfering RNA (siRNA) is an attractive therapeutic approach to treat several pathologies, such as viral infections or cancers. However, the stability and the efficacy of these biotherapies are still a major obstacle to their use. Cationic liposomes (DOTAP/Chol/DOPE 1/0.75/0.5M ratio) have been complexed to siRNA (lipoplexes) in order to be administrated by the vaginal route, in the context of HPV16 induced cervical preneoplastic lesions. To overcome the constraint of the cervico-vaginal mucus, PEGylation is required to allow the diffusion of lipoplexes through it. Thereby, PEGylated lipoplexes coated with three types of polyethylene glycol (PEG) as DSPE-PEG2000, DSPE-PEG750 or C8-PEG2000-Ceramide (Ceramide-PEG2000) at different densities have been developed and characterized. PEGylated lipoplexes were successfully prepared and showed a hydrodynamic diameter around 200nm, appropriate for vaginal application. In vitro assays on HPV16 positive cell lines revealed that a positive charge of PEGylated lipoplexes allows a higher mRNA knockdown by siRNA. However, the cationic property is also associated to cytotoxicity. The addition of a high percentage of PEG prevented this toxicity but seemed also to reduce siRNA endosomal escape, probably by steric hindrance. The decreasing of PEG density of Ceramide-PEG2000 to 20% allows the release of siRNA and in consequence, biological activities, contrarily to DSPE-PEG. These results suggest that Ceramide-PEG is more appropriate for siRNA delivery compared to DSPE-PEG. In conclusion, the right balance between cytotoxicity and siRNA effectiveness has been found with the transfection of lipoplexes coated with 20% of Ceramide-PEG2000. This new nanovector could have a high potential against multiple mucosal diseases, such as human papillomavirus-induced genital lesions.

  19. In vitro inhibition of field isolates of feline calicivirus with short interfering RNAs (siRNAs).

    PubMed

    McDonagh, Phillip; Sheehy, Paul A; Fawcett, Anne; Norris, Jacqueline M

    2015-05-15

    Feline calicivirus (FCV) is a common infection of domestic cats. Most infections are mild and self-limiting; however more severe disease manifestations, such as FCV-associated virulent systemic disease, may be associated with significant morbidity and mortality. There is currently a lack of effective antiviral treatments for these disease manifestations. In this study, a panel of eight siRNAs were designed to target four conserved regions of the FCV genome. siRNAs were screened for in vitro antiviral efficacy against the reference strain FCV F9 by determination of extracellular virus titres and morphological assessment of protection from cytopathic effect. Three of the siRNA (FCV3.7, FCV4.1, and FCV4.2) demonstrated a marked antiviral effect with a greater than 99% reduction in extracellular viral titre. Titration of these effective siRNAs demonstrated a clear concentration-response relationship, with IC50 values of approximately 1 nM, and combination treatment with multiple siRNAs demonstrated additive or synergistic effects. To assess the potential usefulness of the compounds in a clinical setting, siRNAs were screened against a panel of six recent Australian FCV isolates from cats with FCV-related disease. The siRNAs shown to be effective against the reference strain FCV F9 were active against the majority of the isolates tested, although some variability was noted. Taken together these data suggest potential therapeutic application of antiviral RNAi for treating FCV-associated disease in cats. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Magnetic nanoparticle and magnetic field assisted siRNA delivery in vitro.

    PubMed

    Mykhaylyk, Olga; Sanchez-Antequera, Yolanda; Vlaskou, Dialechti; Cerda, Maria Belen; Bokharaei, Mehrdad; Hammerschmid, Edelburga; Anton, Martina; Plank, Christian

    2015-01-01

    This chapter describes how to design and conduct experiments to deliver siRNA to adherent cell cultures in vitro by magnetic force-assisted transfection using self-assembled complexes of small interfering RNA (siRNA) and cationic lipids or polymers that are associated with magnetic nanoparticles (MNPs). These magnetic complexes are targeted to the cell surface by the application of a gradient magnetic field. A further development of the magnetic drug-targeting concept is combining it with an ultrasound-triggered delivery using magnetic microbubbles as a carrier for gene or drug delivery. For this purpose, selected MNPs, phospholipids, and siRNAs are assembled in the presence of perfluorocarbon gas into flexible formulations of magnetic lipospheres (microbubbles). Methods are described how to accomplish the synthesis of magnetic nanoparticles for magnetofection and how to test the association of siRNA with the magnetic components of the transfection vector. A simple method is described to evaluate magnetic responsiveness of the magnetic siRNA transfection complexes and estimate the complex loading with magnetic nanoparticles. Procedures are provided for the preparation of magnetic lipoplexes and polyplexes of siRNA as well as magnetic microbubbles for magnetofection and downregulation of the target gene expression analysis with account for the toxicity determined using an MTT-based respiration activity test. A modification of the magnetic transfection triplexes with INF-7, fusogenic peptide, is described resulting in reporter gene silencing improvement in HeLa, Caco-2, and ARPE-19 cells. The methods described can also be useful for screening vector compositions and novel magnetic nanoparticle preparations for optimized siRNA transfection by magnetofection in any cell type.

  1. Plant siRNAs from introns mediate DNA methylation of host genes

    PubMed Central

    Chen, Dijun; Meng, Yijun; Yuan, Chunhui; Bai, Lin; Huang, Donglin; Lv, Shaolei; Wu, Ping; Chen, Ling-ling; Chen, Ming

    2011-01-01

    Small RNAs (sRNAs), largely known as microRNAs (miRNAs) and short interfering RNAs (siRNAs), emerged as the critical components of genetic and epigenetic regulation in eukaryotic genomes. In animals, a sizable portion of miRNAs reside within the introns of protein-coding genes, designated as mirtron genes. Recently, high-throughput sequencing (HTS) revealed a huge amount of sRNAs that derived from introns in plants, such as the monocot rice (Oryza sativa). However, the biogenesis and the biological functions of this kind of sRNAs remain elusive. Here, we performed a genome-scale survey of intron-derived sRNAs in rice based on HTS data. Several introns were found to have great potential to form internal hairpin structures, and the short hairpins could generate miRNAs while the larger ones could produce siRNAs. Furthermore, 22 introns, termed “sirtrons,” were identified from the rice protein-coding genes. The single-stranded sirtrons produced a diverse set of siRNAs from long hairpin structures. These sirtron-derived siRNAs are dominantly 21 nt, 22 nt, and 24 nt in length, whose production relied on DCL4, DCL2, and DCL3, respectively. We also observed a strong tendency for the sirtron-derived siRNAs to be coexpressed with their host genes. Finally, the 24-nt siRNAs incorporated with Argonaute 4 (AGO4) could direct DNA methylation on their host genes. In this regard, homeostatic self-regulation between intron-derived siRNAs and their host genes was proposed. PMID:21518803

  2. Knockdown of antiapoptotic genes in breast cancer cells by siRNA loaded into hybrid nanoparticles

    NASA Astrophysics Data System (ADS)

    João de Mello, Leônidas, Jr.; Rosa Souza, Gabriela Regina; Winter, Evelyn; Silva, Adny Henrique; Pittella, Frederico; Creczynski-Pasa, Tânia Beatriz

    2017-04-01

    Tumorigenesis is related to an imbalance in controlling mechanisms of apoptosis. Expression of the genes BCL-2 and BCL-xL results in the promotion of cell survival by inhibiting apoptosis. Thus, a novel approach to suppress antiapoptotic genes is the use of small interfering RNA (siRNA) in cancer cells. However, there are some limitations for the application of siRNA such as the need for vectors to pass the cell membrane and deliver the nucleic acid. In this study CaP-siRNA-PEG-polyanion hybrid nanoparticles were developed to promote siRNA delivery to cultured human breast cancer cells (MCF-7) in order to evaluate whether the silencing of antiapoptotic genes BCL-2 and BCL-xL by siRNA would increase cancer cell death. After 48 h of incubation the expression of BCL-2 and BCL-xL genes decreased to 49% and 23%, respectively. The siRNA sequence used induced cancer cell death at a concentration of 200 nM siRNA after 72 h of incubation. As the targeted proteins are related to the resistance to chemotherapeutic drugs, the nanocarriers systems were also tested in the presence of doxorubicin (DOX). The results showed a significant reduction in the CC50 of the DOX, after silencing the antiapoptotic genes. In addition, an increase in apoptotic cell counts for both incubations conditions was observed as well. In conclusion, silencing antiapoptotic genes such as BCL-2 and BCL-xL through the use of siRNA carried by hybrid nanoparticles showed to be effective in vitro, and presents a promising strategy for pre-clinical analysis, especially when combined with DOX against breast cancer.

  3. Human DMBT1-Derived Cell-Penetrating Peptides for Intracellular siRNA Delivery.

    PubMed

    Tuttolomondo, Martina; Casella, Cinzia; Hansen, Pernille Lund; Polo, Ester; Herda, Luciana M; Dawson, Kenneth A; Ditzel, Henrik J; Mollenhauer, Jan

    2017-09-15

    Small interfering RNA (siRNA) is a promising molecule for gene therapy, but its therapeutic administration remains problematic. Among the recently proposed vectors, cell-penetrating peptides show great promise in in vivo trials for siRNA delivery. Human protein DMBT1 (deleted in malignant brain tumor 1) is a pattern recognition molecule that interacts with polyanions and recognizes and aggregates bacteria. Taking advantage of these properties, we investigated whether specific synthetic DMBT1-derived peptides could be used to formulate nanoparticles for siRNA administration. Using an electrophoretic mobility shift assay and UV spectra, we identified two DMBT1 peptides that could encapsulate the siRNA with a self- and co-assembly mechanism. The complexes were stable for at least 2 hr in the presence of either fetal bovine serum (FBS) or RNase A, with peptide-dependent time span protection. ζ-potential, circular dichroism, dynamic light scattering, and transmission electron microscopy revealed negatively charged nanoparticles with an average diameter of 10-800 nm, depending on the reaction conditions, and a spherical or rice-shaped morphology, depending on the peptide and β-helix conformation. We successfully transfected human MCF7 cells with fluorescein isothiocyanate (FITC)-DMBT1-peptide-Cy3-siRNA complexes. Finally, DMBT1 peptides encapsulating an siRNA targeting a fluorescent reporter gene showed efficient gene silencing in MCF7-recombinant cells. These results lay the foundation for a new research line to exploit DMBT1-peptide nanocomplexes for therapeutic siRNA delivery. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Expression data of HeLa cells treated with CENP-E siRNA or Eg5 siRNA in the presence of BubR1 siRNA

    PubMed Central

    Nakayama, Yusuke; Ohashi, Akihiro

    2015-01-01

    The molecular mechanism responsible for cell fate after mitotic slippage is unclear. We investigated the postmitotic effects of different mitotic aberrations (Ohashi et al. [1]), misaligned chromosomes produced by CENP-E siRNA (siCENP-E), and monopolar spindles resulting from Eg5 siRNA (siEg5) (Miki et al. [2]). To determine which signaling pathways contribute to the postmitotic effect of siCENP-E in the presence of siBubR1 (siCENP-E + siBubR1) compared with siEg5 + siBubR1, we performed comprehensive gene expression analysis using microarray comparisons [1]. The microarray data have been deposited in NCBI's Gene Expression Omnibus (GEO) and are accessible through GEO Series accession number GSE67905. PMID:26697328

  5. Capella: Structure and Abundances

    NASA Technical Reports Server (NTRS)

    Brickhouse, Nancy S.

    1999-01-01

    This grant covers the analysis of EUVE spectra of the cool star binary system Capella. This project has also required the analysis of simultaneous Advanced Satellite for Cosmology and Astrophysics (ASCA) data. The ASCA spectrum of Capella could not be fit with standard models; by imposing models based on strong lines observed with EUVE, a problem wavelength region was identified. Correcting the problem required calculations of atomic collision strengths of higher principal quantum number than had ever been calculated. With these new models applied to the ASCA spectrum, better fits were obtained. Findings are that: (1) ASCA and EUVE spectra are both dominated by a region at 6 x 10(exp 6) K. (2) The high energy cut-off of the ASCA spectrum is consistent with emission from the highest ionization stages of EUVE, namely Fe XXIV. (3) EUVE requires a continuous emission measure distribution with more than two temperatures. (4) The ASCA spectra are of such high statistical significance that systematic uncertainties dominate, including atomic physics issues and calibration issues. (5) While the ASCA spectral fits achieve lower Chi(exp 2 with two-temperature fits, the EUVE-derived emission measure distribution models are also consistent with the spectra. (6) The Fe/H ratio obtained from the ASCA fit is within 20 % of the Fe/H abundance obtained from the summed spectra of Capella over 5 EUVE pointings, as well as the 1996 EUVE data. This result confirms our claims that quasi-continua composed of weak emission lines in the short wavelength spectrometer of EUVE are not major contributors to the measured Capella continuum. Other abundance ratios are also determined from the ASCA data, using models derived with EUVE. Si, Si, and Mg appear to be close to solar photospheric values, while the ratio of Ne/Fe is three to four times lower than solar photospheric values. Whether there is a general First Ionization Potential (FIP) effect or a specific neon anomaly cannot be determined

  6. Actinide abundances in ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Hagee, B.; Bernatowicz, T. J.; Podosek, F. A.; Johnson, M. L.; Burnett, D. S.

    1990-01-01

    Measurements of actinide and light REE (LREE) abundances and of phosphate abundances in equilibrated ordinary chondrites were obtained and were used to define the Pu abundance in the solar system and to determine the degree of variation of actinide and LREE abundances. The results were also used to compare directly the Pu/U ratio with the earlier obtained ratio determined indirectly, as (Pu/Nd)x(Nd/U), assuming that Pu behaves chemically as a LREE. The data, combined with high-accuracy isotope-dilution data from the literature, show that the degree of gram-scale variability of the Th, U, and LREE abundances for equilibrated ordinary chondrites is a factor of 2-3 for absolute abundances and up to 50 percent for relative abundances. The observed variations are interpreted as reflecting the differences in the compositions and/or proportions of solar nebula components accreted to ordinary chondrite parent bodies.

  7. Photochemical Regulation of Gene Expression Using Caged siRNAs with Single Terminal Vitamin E Modification.

    PubMed

    Ji, Yuzhuo; Yang, Jiali; Wu, Li; Yu, Lijia; Tang, Xinjing

    2016-02-05

    Caged siRNAs with a single photolabile linker and/or vitamin E (vitE) modification at the 5' terminal were rationally designed and synthesized. These virtually inactive caged siRNAs were successfully used to photoregulate both firefly luciferase and GFP gene expression in cells with up to an 18.6-fold enhancement of gene silencing activity, which represents one of the best reported photomodulation of gene silencing efficiencies to date. siRNA tracking and vitE competition experiments indicated that the inactivity of vitE-modified siRNAs was not due to the bulky moiety of vitE; rather, the involvement of vitE-binding proteins has a large contribution to caged siRNA inactivation by preventing the dissociation of siRNA/lipo complexes and/or siRNA release. Further patterning experiments revealed the ability to spatially regulate gene expression through simple light irradiation.

  8. Degradable Dextran Nanopolymer as a Carrier for Choline Kinase (ChoK) siRNA Cancer Therapy

    PubMed Central

    Chen, Zhihang; Krishnamachary, Balaji; Bhujwalla, Zaver M.

    2016-01-01

    Although small interfering RNA (siRNA) therapy has proven to be a specific and effective treatment in cells, the delivery of siRNA is a challenge for the applications of siRNA therapy. We present a degradable dextran with amine groups as an siRNA nano-carrier. In our nano-carrier, the amine groups are conjugated to the dextran platform through the acetal bonds, which are acid sensitive. Therefore this siRNA carrier is stable in neutral and basic conditions, while the amine groups can be cleaved and released from dextran platform under weak acid conditions (such as in endosomes). The cleavage and release of amine groups can reduce the toxicity of cationic polymer and enhance the transfection efficiency. We successfully applied this nano-carrier to deliver choline kinase (ChoK) siRNA for ChoK inhibition in cells.

  9. Highly efficient siRNA delivery system into human and murine cells using single-wall carbon nanotubes.

    PubMed

    Ladeira, M S; Andrade, V A; Gomes, E R M; Aguiar, C J; Moraes, E R; Soares, J S; Silva, E E; Lacerda, R G; Ladeira, L O; Jorio, A; Lima, P; Leite, M Fatima; Resende, R R; Guatimosim, S

    2010-09-24

    Development of RNA interference (RNAi) technology utilizing short interfering RNA sequences (siRNA) has focused on creating methods for delivering siRNAs to cells and for enhancing siRNA stability in vitro and in vivo. Here, we describe a novel approach for siRNA cellular delivery using siRNA coiling into carboxyl-functionalized single-wall carbon nanotubes (SWCNTs). The CNT-siRNA delivery system successfully demonstrates nonspecific toxicity and transfection efficiency greater than 95%. This approach offers the potential for siRNA delivery into different types of cells, including hard-to-transfect cells, such as neuronal cells and cardiomyocytes. We also tested the CNT-siRNA system in a non-metastatic human hepatocellular carcinoma cell line (SKHep1). In all types of cells used in this work the CNT-siRNA delivery system showed high efficiency and apparent no side effects for various in vitro applications.

  10. Autophagy plays a dual role during intracellular siRNA delivery by lipoplex and polyplex nanoparticles.

    PubMed

    Song, Wen; Ma, Zhiwei; Zhang, Yumei; Yang, Chuanxu

    2017-08-01

    Growing evidence indicates that autophagy plays a vital role during intracellular DNA delivery mediated by lipoplex and polyplex nanoparticles. However, autophagy in intracellular siRNA delivery has not been well understood. In this study, lipofectamine 2000 and chitosan were used to formulate lipoplex and polyplex with siRNA for systematically investigating the interplay between siRNA delivery and autophagy. After transfection of H1299 cells with lipoplex and polyplex, the number of autophagic vacuoles was increased significantly indicated by the accumulation of monodansylcadaverine (MDC) staining. Western blot revealed that the LC3-II expression was significantly increased after transfection, whereas p-mTOR expression was not influenced apparently. In addition, small-molecule autophagy modulators significantly affected transfection efficiency. Specifically, the mTOR-dependent autophagy inducer rapamycin enhanced the knockdown efficiency of both lipoplex and polyplex, whereas mTOR-dependent autophagy inhibitor 3-methyladenine (3-MA) suppressed their silencing efficiency. On the contrary, mTOR-independent autophagy inducer LiBr decreased whereas mTOR-independent autophagy inhibitor thapsigargin (TG) increased the knockdown efficacy. Immunofluorescence staining showed that siRNA was partially co-localized with autophagosomes and the percentage of co-localized siRNA was significantly affected by autophagy modulators in the opposite trend of gene knockdown efficacy. In conclusion, our study suggests that autophagy plays an important role during the intracellular siRNA trafficking mediated by both lipoplex and polyplex. Modulating autophagy process will result in distinct knockdown efficiency, which may be applied as a potential convenient way for improving siRNA delivery efficacy. Although tremendous effects has been made in the development of non-viral siRNA delivery systems, the intracellular siRNA trafficking has not been elucidated clearly. In this study, we

  11. Intranasal sirna targeting c-kit reduces airway inflammation in experimental allergic asthma.

    PubMed

    Wu, Wei; Chen, Hui; Li, Ya-Ming; Wang, Sheng-Yu; Diao, Xin; Liu, Kai-Ge

    2014-01-01

    Allergic asthma is characterized by airway inflammation caused by infiltration and activation of inflammatory cells that produce cytokines. Many studies have revealed that c-kit, a proto-oncogene, and its ligand, stem cell factor (SCF), play an important role in the development of asthmatic inflammation. Intranasal small interference RNA (siRNA) nanoparticles targeting specific viral gene could inhibit airway inflammation. In this study, we assessed whether silencing of c-kit with intranasal small interference RNA could reduce inflammation in allergic asthma. A mouse model of experimental asthma was treated with intranasal administration of anti-c-kit siRNA to inhibit the expression of the c-kit gene. We assessed the inflammatory response in both anti-c-kit siRNA-treated and control mice. Local administration of siRNA effectively inhibited the expression of the c-kit gene and reduced airway mucus secretion and the infiltration of eosinophils in bronchoalveolar lavage fluid. Moreover, c-kit siRNA reduced the production of SCF, interleukin-4 (IL-4), and IL-5, but had no effect on interferon-γ (IFN-γ) generation. These results show that intranasal siRNA nanoparticles targeting c-kit can decrease the inflammatory response in experimental allergic asthma.

  12. Hypoxia-responsive ionizable liposome delivery siRNA for glioma therapy

    PubMed Central

    Liu, Hong-Mei; Zhang, Ya-Fei; Xie, Yan-Dong; Cai, Yi-Fan; Li, Bai-Yang; Li, Wen; Zeng, Ling-Yu; Li, Yu-Ling; Yu, Ru-Tong

    2017-01-01

    Here, we report the hypoxia-responsive ionizable liposomes to deliver small interference RNA (siRNA) anticancer drugs, which can selectively enhance cellular uptake of the siRNA under hypoxic and low-pH conditions to cure glioma. For this purpose, malate dehydrogenase lipid molecules were synthesized, which contain nitroimidazole groups that impart hypoxia sensitivity and specificity as hydrophobic tails, and tertiary amines as hydrophilic head groups. These malate dehydrogenase molecules, together with DSPE-PEG2000 and cholesterol, were self-assembled into O′1,O1-(3-(dimethylamino)propane-1,2-diyl) 16-bis(2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl) di(hexadecanedioate) liposomes (MLP) to encapsulate siRNA through electrostatic interaction. Our study showed that the MLP could deliver polo-like kinase 1 siRNA (siPLK1) into glioma cells and effectively enhance the cellular uptake of MLP/siPLK1 because of increased positive charges induced by hypoxia and low pH. Moreover, MLP/siPLK1 was shown to be very effective in inhibiting the growth of glioma cells both in vitro and in vivo. Therefore, the MLP is a promising siRNA delivery system for tumor therapy. PMID:28223799

  13. Multifunctional nanocarrier based on clay nanotubes for efficient intracellular siRNA delivery and gene silencing.

    PubMed

    Wu, Hui; Shi, Yinfeng; Huang, Chusen; Zhang, Yang; Wu, Jiahui; Shen, Hebai; Jia, Nengqin

    2014-04-01

    RNA interference-mediated gene silencing relating to disease has recently emerged as a powerful method in gene therapy. Despite the promises, effective transport of siRNA with minimal side effects remains a challenge. Halloysites are cheap and naturally available aluminosilicate clay nanotubes with high mechanical strength and biocompatibility. In this study, a novel multifunctional nanocarrier based on functionalized halloysite nanotubes (f-HNTs) has been developed via electrostatic layer-by-layer assembling approach for loading and intracellular delivery of therapeutic antisurvivin siRNA and simultaneously tracking their intracellular transport, in which PEI-modified HNTs are used as gene vector, antisurvivin siRNA as gene therapeutic agent, and mercaptoacetic acid-capped CdSe quantum dots as fluorescent labeling probes. The successful assembly of the f-HNTs-siRNA complexes was systematically characterized by transmission electron microscopy (TEM), UV-visible spectrophotometry, Zeta potential measurement, fluorescence spectrophotometry, and electrochemical impedance spectroscopy. Confocal microscopy, biological TEM, and flow cytometry studies revealed that the complexes enabled the efficient intracellular delivery of siRNA for cell-specific gene silencing. MTT assays exhibited that the complexes can enhance antitumor activity. Furthermore, Western blot analysis showed that f-HNTs-mediated siRNA delivery effectively knocked down gene expression of survivin and thereby decreased the levels of target proteins of PANC-1 cells. Therefore, this study suggested that the synthesized f-HNTs were a new effective drug delivery system for potential application in cancer gene therapy.

  14. Synergistic Silencing: Combinations of Lipid-like Materials for Efficacious siRNA Delivery

    PubMed Central

    Whitehead, Kathryn A; Sahay, Gaurav; Li, George Z; Love, Kevin T; Alabi, Christopher A; Ma, Minglin; Zurenko, Christopher; Querbes, William; Langer, Robert S; Anderson, Daniel G

    2011-01-01

    Despite the promise of RNA interference (RNAi) therapeutics, progress toward the clinic has been slowed by the difficulty of delivering short interfering RNA (siRNA) into cellular targets within the body. Nearly all siRNA delivery vehicles developed to date employ a single cationic or ionizable material. In order to increase the material space available for development of siRNA delivery therapeutics, this study examined the possibility of using binary combinations of ionizable lipid-like materials to synergistically achieve gene silencing. Interestingly, it was found that ineffective single lipid-like materials could be formulated together in a single delivery vehicle to induce near-complete knockdown of firefly luciferase and factor VII in HeLa cells and in mice, respectively. Microscopy experiments suggested that synergistic action resulted when combining materials that respectively mediated cellular uptake and endosomal escape, two important steps in the delivery process. Together, the data indicate that formulating lipid-like materials in combination can significantly improve siRNA delivery outcomes while increasing the material space available for therapeutic development. It is anticipated that this binary formulation strategy could be applicable to any siRNA delivery material in any target cell population that utilizes the two-step endosomal delivery pathway. PMID:21750531

  15. Improved siRNA delivery efficiency via solvent-induced condensation of micellar nanoparticles

    NASA Astrophysics Data System (ADS)

    Wu, Juan; Qu, Wei; Williford, John-Michael; Ren, Yong; Jiang, Xuesong; Jiang, Xuan; Pan, Deng; Mao, Hai-Quan; Luijten, Erik

    2017-05-01

    Efficient delivery of short interfering RNA (siRNA) remains one of the primary challenges of RNA interference therapy. Polyethylene glycol (PEG)ylated polycationic carriers have been widely used for the condensation of DNA and RNA molecules into complex-core micelles. The PEG corona of such nanoparticles can significantly improve their colloidal stability in serum, but PEGylation of the carriers also reduces their condensation capacity, hindering the generation of micellar particles with sufficient complex stability. This presents a particularly significant challenge for packaging siRNA into complex micelles, as it has a much smaller size and more rigid chain structure than DNA plasmids. Here, we report a new method to enhance the condensation of siRNA with PEGylated linear polyethylenimine using organic solvent and to prepare smaller siRNA nanoparticles with a more extended PEG corona and consequently higher stability. As a proof of principle, we have demonstrated the improved gene knockdown efficiency resulting from the reduced siRNA micelle size in mice livers following intravenous administration.

  16. Silencing Myostatin Using Cholesterol-conjugated siRNAs Induces Muscle Growth

    PubMed Central

    Khan, Tayeba; Weber, Hans; DiMuzio, Jillian; Matter, Andrea; Dogdas, Belma; Shah, Tosha; Thankappan, Anil; Disa, Jyoti; Jadhav, Vasant; Lubbers, Laura; Sepp-Lorenzino, Laura; Strapps, Walter R; Tadin-Strapps, Marija

    2016-01-01

    Short interfering RNAs (siRNAs) are a valuable tool for gene silencing with applications in both target validation and therapeutics. Many advances have recently been made to improve potency and specificity, and reduce toxicity and immunostimulation. However, siRNA delivery to a variety of tissues remains an obstacle for this technology. To date, siRNA delivery to muscle has only been achieved by local administration or by methods with limited potential use in the clinic. We report systemic delivery of a highly chemically modified cholesterol-conjugated siRNA targeting muscle-specific gene myostatin (Mstn) to a full range of muscles in mice. Following a single intravenous injection, we observe 85–95% knockdown of Mstn mRNA in skeletal muscle and >65% reduction in circulating Mstn protein sustained for >21 days. This level of Mstn knockdown is also accompanied by a functional effect on skeletal muscle, with animals showing an increase in muscle mass, size, and strength. The cholesterol-conjugated siRNA platform described here could have major implications for treatment of a variety of muscle disorders, including muscular atrophic diseases, muscular dystrophy, and type II diabetes. PMID:27483025

  17. CDE-1 affects chromosome segregation through uridylation of CSR-1-bound siRNAs.

    PubMed

    van Wolfswinkel, Josien C; Claycomb, Julie M; Batista, Pedro J; Mello, Craig C; Berezikov, Eugene; Ketting, René F

    2009-10-02

    We have studied the function of a conserved germline-specific nucleotidyltransferase protein, CDE-1, in RNAi and chromosome segregation in C. elegans. CDE-1 localizes specifically to mitotic chromosomes in embryos. This localization requires the RdRP EGO-1, which physically interacts with CDE-1, and the Argonaute protein CSR-1. We found that CDE-1 is required for the uridylation of CSR-1 bound siRNAs, and that in the absence of CDE-1 these siRNAs accumulate to inappropriate levels, accompanied by defects in both meiotic and mitotic chromosome segregation. Elevated siRNA levels are associated with erroneous gene silencing, most likely through the inappropriate loading of CSR-1 siRNAs into other Argonaute proteins. We propose a model in which CDE-1 restricts specific EGO-1-generated siRNAs to the CSR-1 mediated, chromosome associated RNAi pathway, thus separating it from other endogenous RNAi pathways. The conserved nature of CDE-1 suggests that similar sorting mechanisms may operate in other animals, including mammals.

  18. Chapter 17 - Engineering cationic liposome siRNA complexes for in vitro and in vivo delivery.

    PubMed

    Podesta, Jennifer E; Kostarelos, Kostas

    2009-01-01

    RNA interference, the sequence-specific silencing of gene expression by introduction of short interfering RNA (siRNA) is a powerful tool that that the potential to act as a therapeutic agent and the advantage of decreasing toxic effects on normal tissue sometimes seen with conventional treatments i.e. small molecule inhibitors. Naked, unmodified siRNA is poorly taken up by cells and is subject to degradation when exposed to blood proteins during systemic administration. It has also been shown to produce non-specific immune response as well as having the potential to generate 'off-target' effects. Therefore there is a requirement for a delivery system to not only protect the siRNA and facilitate its uptake, but additionally to offer the potential for targeted delivery with an aim of exploiting the high specificity afforded by RNA interference. Cationic liposomes are the most studied, non-viral delivery system used for nucleic acid delivery. As such, the use of cationic liposomes is promising for siRNA for delivery. Furthermore, polyethylene glycol (PEG) can be incorporated into the liposome formulation to create sterically stabilized or 'stealth' liposomes. Addition of PEG can reduce recognition by the reticuloendothelial system (RES) thereby prolonging circulation time. Here we describe a methodology for the complexation of siRNA with cationic liposomes and PEGylated liposomes using two protocols: mixing and encapsulation. Moreover, the different formulations are compared head to head to demonstrate their efficacy for gene silencing.

  19. Efficient siRNA Delivery Using a Polyamidoamine Dendrimer with a Modified Pentaerythritol Core

    PubMed Central

    Kwak, Kwang Joo; Wang, Xinmei; Yung, Bryant; Lee, L. James; Wang, Yanming; Wang, Peng George; Lee, Robert J.

    2015-01-01

    Purpose Delivery of siRNA into cells remains a critical challenge. Our lab has shown a novel polyamidoamine (PAMAM) dendrimer with modified pentaerythritol derivative core (PD dendrimer) to exhibit high plasmid DNA transfection efficiency and low cytotoxicity. Here, we evaluate PD dendrimer as a siRNA carrier. Methods Agarose gel electrophoresis and AFM were used to confirm formation of generation 5 (G5)-PD dendrimer/siRNA nanoparticles (NPs). G5 PD dendrimer/anti-luciferase siRNA NPs were used to transfect SK Hep-1 cells with stable luciferase expression. Effects of various endocytic pathway inhibitors on uptake of G5 PD dendrimer/siRNA NPs in SK Hep-1 cells were also investigated. Results Agarose gel electrophoresis indicated that G5 PD dendrimer and siRNA formed NPs at weight ratios >0.5:1. G5 PD dendrimer showed effective luciferase gene silencing when weight ratio was 3.0:1 and above. Treatment with endocytosis inhibitors showed that clathrin-mediated endocytosis was the main endocytic pathway by which G5-PD dendrimer/siRNA NPs enter the cell. Conclusions These results show that the novel G5 PD dendrimer has high siRNA delivery activity and is promising as a delivery agent for its therapeutic application. PMID:22274556

  20. Efficient siRNA delivery using a polyamidoamine dendrimer with a modified pentaerythritol core.

    PubMed

    Zhang, Yue; Zhou, Chenguang; Kwak, Kwang Joo; Wang, Xinmei; Yung, Bryant; Lee, L James; Wang, Yanming; Wang, Peng George; Lee, Robert J

    2012-06-01

    Delivery of siRNA into cells remains a critical challenge. Our lab has shown a novel polyamidoamine (PAMAM) dendrimer with modified pentaerythritol derivative core (PD dendrimer) to exhibit high plasmid DNA transfection efficiency and low cytotoxicity. Here, we evaluate PD dendrimer as a siRNA carrier. Agarose gel electrophoresis and AFM were used to confirm formation of generation 5 (G5)-PD dendrimer/siRNA nanoparticles (NPs). G5 PD dendrimer/anti-luciferase siRNA NPs were used to transfect SK Hep-1 cells with stable luciferase expression. Effects of various endocytic pathway inhibitors on uptake of G5 PD dendrimer/siRNA NPs in SK Hep-1 cells were also investigated. Agarose gel electrophoresis indicated that G5 PD dendrimer and siRNA formed NPs at weight ratios >0.5:1. G5 PD dendrimer showed effective luciferase gene silencing when weight ratio was 3.0:1 and above. Treatment with endocytosis inhibitors showed that clathrin-mediated endocytosis was the main endocytic pathway by which G5-PD dendrimer/siRNA NPs enter the cell. These results show that the novel G5 PD dendrimer has high siRNA delivery activity and is promising as a delivery agent for its therapeutic application.

  1. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling

    PubMed Central

    Sahay, Gaurav; Querbes, William; Alabi, Christopher; Eltoukhy, Ahmed; Sarkar, Sovan; Zurenko, Christopher; Karagiannis, Emannouil; Love, Kevin; Chen, Delai; Zoncu, Roberto; Buganim, Yosef; Schroeder, Avi; Langer, Robert; Anderson, Daniel G.

    2013-01-01

    Despite substantial efforts to understand the interactions between nanoparticles and cells, the cellular processes that determine the efficiency of intracellular drug delivery remain largely unclear. Here we examined cellular uptake of siRNA delivered in lipid nanoparticles (LNPs) using cellular trafficking probes in combination with automated high-throughput confocal microscopy as well as defined perturbations of cellular pathways paired with systems biology approaches to uncover protein-protein and protein-small molecule interactions. We show that multiple cell signaling effectors are required for initial cellular entry of LNPs through macropinocytosis, including proton pumps, mTOR, and cathepsins. SiRNA delivery is substantially reduced as ≅70% of the internalized siRNA undergoes exocytosis through egress of LNPs from late endosomes/lysosomes. Niemann Pick type C1 (NPC1) is shown to be an important regulator of the major recycling pathways of LNP-delivered siRNAs. NPC1-deficient cells show enhanced cellular retention of LNPs inside late endosomes/lysosomes and increased gene silencing of the target gene. Our data suggests that siRNA delivery efficiency might be improved by designing delivery vehicles that can escape the recycling pathways. PMID:23792629

  2. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling.

    PubMed

    Sahay, Gaurav; Querbes, William; Alabi, Christopher; Eltoukhy, Ahmed; Sarkar, Sovan; Zurenko, Christopher; Karagiannis, Emmanouil; Love, Kevin; Chen, Delai; Zoncu, Roberto; Buganim, Yosef; Schroeder, Avi; Langer, Robert; Anderson, Daniel G

    2013-07-01

    Despite efforts to understand the interactions between nanoparticles and cells, the cellular processes that determine the efficiency of intracellular drug delivery remain unclear. Here we examine cellular uptake of short interfering RNA (siRNA) delivered in lipid nanoparticles (LNPs) using cellular trafficking probes in combination with automated high-throughput confocal microscopy. We also employed defined perturbations of cellular pathways paired with systems biology approaches to uncover protein-protein and protein-small molecule interactions. We show that multiple cell signaling effectors are required for initial cellular entry of LNPs through macropinocytosis, including proton pumps, mTOR and cathepsins. siRNA delivery is substantially reduced as ≅70% of the internalized siRNA undergoes exocytosis through egress of LNPs from late endosomes/lysosomes. Niemann-Pick type C1 (NPC1) is shown to be an important regulator of the major recycling pathways of LNP-delivered siRNAs. NPC1-deficient cells show enhanced cellular retention of LNPs inside late endosomes and lysosomes, and increased gene silencing of the target gene. Our data suggest that siRNA delivery efficiency might be improved by designing delivery vehicles that can escape the recycling pathways.

  3. Atelocollagen-mediated Systemic Delivery Prevents Immunostimulatory Adverse Effects of siRNA in Mammals

    PubMed Central

    Inaba, Shinichiro; Nagahara, Shunji; Makita, Naoki; Tarumi, Yuzo; Ishimoto, Takuji; Matsuo, Seiichi; Kadomatsu, Kenji; Takei, Yoshifumi

    2012-01-01

    Short interfering RNA (siRNA) is a potent activator of the mammalian innate immune system. When considering possible clinical applications of siRNA for humans, the adverse immunostimulatory effects must also be taken into account. Here, we show that atelocollagen-mediated systemic delivery of siRNA without chemical modifications did not cause any immunostimulation in both animals and human peripheral blood mononuclear cells (PBMCs), even if the siRNA harbored an interferon (IFN)-inducible sequence. In contrast, systemic delivery of immunostimulatory RNA (isRNA)-mediated by a cationic lipid (such as Invivofectamine) induced potent type-I IFNs and inflammatory cytokines. Regarding the mechanism by which the isRNA/atelocollagen complex avoided adverse effects on immunostimulation, we revealed that this complex was not incorporated into PBMCs. On the other hand, Invivofectamine delivered isRNA into PBMCs. The use of either atelocollagen or Invivofectamine as a vehicle elicited significant and undistinguishable therapeutic effects in a contact hypersensitivity (CHS) inflammatory model mouse, when we intravenously injected the siRNA targeting monocyte chemoattractant protein-1 as the complex. For the goal of realizing siRNA-based medicines for humans, atelocollagen is an excellent and promising delivery vehicle, and it has the useful advantage of evading detection by the “radar” of innate immunity. PMID:22031237

  4. Targeted delivery of siRNA into breast cancer cells via phage fusion proteins.

    PubMed

    Bedi, Deepa; Gillespie, James W; Petrenko, Vasily A; Ebner, Andreas; Leitner, Michael; Hinterdorfer, Peter; Petrenko, Valery A

    2013-02-04

    Nucleic acids, including antisense oligonucleotides, small interfering RNA (siRNA), aptamers, and rybozymes, emerged as versatile therapeutics due to their ability to interfere in a well-planned manner with the flow of genetic information from DNA to protein. However, a systemic use of NAs is hindered by their instability in physiological liquids and inability of intracellular accumulation in the site of action. We first evaluated the potential of cancer specific phage fusion proteins as targeting ligands that provide encapsulation, protection, and navigation of siRNA to the target cell. The tumor-specific proteins were isolated from phages that were affinity selected from a landscape phage library against target breast cancer cells. It was found that fusion phage coat protein fpVIII displaying cancer-targeting peptides can effectively encapsulate siRNAs and deliver them into the cells leading to specific silencing of the model gene GAPDH. Complexes of siRNA and phage protein form nanoparticles (nanophages), which were characterized by atomic force microscopy and ELISA, and their stability was demonstrated by resistance of encapsulated siRNA to degradation by serum nucleases. The phage protein/siRNA complexes can make a new type of highly selective, stable, active, and physiologically acceptable cancer nanomedicine.

  5. Delivery of siRNA into breast cancer cells via phage fusion protein-targeted liposomes.

    PubMed

    Bedi, Deepa; Musacchio, Tiziana; Fagbohun, Olusegun A; Gillespie, James W; Deinnocentes, Patricia; Bird, R Curtis; Bookbinder, Lonnie; Torchilin, Vladimir P; Petrenko, Valery A

    2011-06-01

    Efficacy of siRNAs as potential anticancer therapeutics can be increased by their targeted delivery into cancer cells via tumor-specific ligands. Phage display offers a unique approach to identify highly specific and selective ligands that can deliver nanocarriers to the site of disease. In this study, we proved a novel approach for intracellular delivery of siRNAs into breast cancer cells through their encapsulation into liposomes targeted to the tumor cells with preselected intact phage proteins. The targeted siRNA liposomes were obtained by a fusion of two parental liposomes containing spontaneously inserted siRNA and fusion phage proteins. The presence of pVIII coat protein fused to a MCF-7 cell-targeting peptide DMPGTVLP in the liposomes was confirmed by Western blotting. The novel phage-targeted siRNA-nanopharmaceuticals demonstrate significant down-regulation of PRDM14 gene expression and PRDM14 protein synthesis in the target MCF-7 cells. This approach offers the potential for development of new anticancer siRNA-based targeted nanomedicines. In this study, the authors report a novel approach for targeted intracellular delivery of siRNAs into breast cancer cells through encapsulation into liposomes targeted to the tumor cells with preselected intact phage proteins. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Co-delivery of siRNA and therapeutic agents using nanocarriers to overcome cancer resistance.

    PubMed

    Creixell, Mar; Peppas, Nicholas A

    2012-08-01

    There are two main mechanisms by which cells become multidrug resistant (MDR): by increasing drug efflux pumps on the cell membrane and by increasing anti-apoptotic pathways. The use of nanotechnology to develop nanodelivery systems has allowed researchers to overcome limitations of antineoplastic drugs by increasing the solubility of the drug and decreasing the toxicity to healthy tissues. By encapsulating drugs into nanoparticles that bypass the efflux pumps, drug efflux is reduced, hence increasing the intracellular concentration of the drug. siRNA has the ability to disrupt cellular pathways by knocking down genes, opening the door to down regulating anti-apoptotic pathways. The use of nanocarriers to deliver siRNA, prevents both renal clearance and RNase degradation by protecting siRNA chains, increasing their half life in blood. It has been suggested that co-delivering drugs and siRNA together in the same delivery system would be more effective in overcoming resistance of cancer cells than co-treatment of cancer cells with delivery systems carrying either siRNA or drugs. In this study we discuss the progress of nanoscale co-delivery systems in overcoming multidrug cancer resistance.

  7. Improved siRNA Delivery Efficiency via Solvent-Induced Condensation of Micellar Nanoparticles.

    PubMed

    Wu, Juan; Qu, Wei; Williford, John-Michael; Ren, Yong; Jiang, Xuesong; Jiang, Xuan; Pan, Deng; Mao, Hai-Quan; Luijten, Erik

    2017-03-07

    Efficient delivery of siRNA remains one of the primary challenges of RNA interference therapy. PEGylated polycationic carriers have been widely used for the condensation of DNA and RNA molecules into complex-core micelles. The PEG corona of such nanoparticles can significantly improve their colloidal stability in serum, but PEGylation of the carriers also reduces their condensation capacity, hindering the generation of micellar particles with sufficient complex stability. This presents a particularly significant challenge for packaging siRNA into complex micelles, as it has a much smaller size and more rigid chain structure than DNA plasmids. Here, we report a new method to enhance the condensation of siRNA with PEGylated linear polyethylenimine (lPEI) using organic solvent and to prepare smaller siRNA nanoparticles with a more extended PEG corona and consequently higher stability. As a proof of principle, we have demonstrated the improved gene knockdown efficiency resulting from the reduced siRNA micelle size in mouse liver following intravenous administration.

  8. Combinatorial treatment of idiopathic pulmonary fibrosis using nanoparticles with prostaglandin E and siRNA(s).

    PubMed

    Garbuzenko, Olga B; Ivanova, Vera; Kholodovych, Vladislav; Reimer, David C; Reuhl, Kenneth R; Yurkow, Edvard; Adler, Derek; Minko, Tamara

    2017-08-01

    Inhalation delivery of prostaglandin E (PGE2) in combination with selected siRNA(s) was proposed for the efficient treatment of idiopathic pulmonary fibrosis (IPF). Nanostructured lipid carriers (NLC) were used as a delivery system for PGE2 with and without siRNAs targeted to MMP3, CCL12, and HIF1Alpha mRNAs. The model of IPF was developed in SKH1 mice by intratracheal administration of bleomycin at a dose of 1.5U/kg. Results showed that NLC-PGE2 in combination with three siRNAs delivered locally to the lungs by inhalation markedly reduced mouse body mass, substantially limited hydroxyproline content in the lungs and disturbances of the mRNAs and protein expression, restricted lung tissue damage and prevented animal mortality. Our data provide evidence that IPF can be effectively treated by inhalation of the NLC-PGE2 in combination with siRNAs delivered locally into the lungs. This effect could not be achieved by using NLC containing just PGE2 or siRNA(s) alone. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Kinetic analysis of the effects of target structure on siRNA efficiency

    NASA Astrophysics Data System (ADS)

    Chen, Jiawen; Zhang, Wenbing

    2012-12-01

    RNAi efficiency for target cleavage and protein expression is related to the target structure. Considering the RNA-induced silencing complex (RISC) as a multiple turnover enzyme, we investigated the effect of target mRNA structure on siRNA efficiency with kinetic analysis. The 4-step model was used to study the target cleavage kinetic process: hybridization nucleation at an accessible target site, RISC-mRNA hybrid elongation along with mRNA target structure melting, target cleavage, and enzyme reactivation. At this model, the terms accounting for the target accessibility, stability, and the seed and the nucleation site effects are all included. The results are in good agreement with that of experiments which show different arguments about the structure effects on siRNA efficiency. It shows that the siRNA efficiency is influenced by the integrated factors of target's accessibility, stability, and the seed effects. To study the off-target effects, a simple model of one siRNA binding to two mRNA targets was designed. By using this model, the possibility for diminishing the off-target effects by the concentration of siRNA was discussed.

  10. Promoting siRNA delivery via enhanced cellular uptake using an arginine-decorated amphiphilic dendrimer

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoxuan; Liu, Cheng; Zhou, Jiehua; Chen, Chao; Qu, Fanqi; Rossi, John J.; Rocchi, Palma; Peng, Ling

    2015-02-01

    RNA interference (RNAi) with small interfering RNA (siRNA) is expected to offer an attractive means to specifically and efficiently silence disease-associated genes for treating various diseases provided that safe and efficient delivery systems are available. In this study, we have established an arginine-decorated amphiphilic dendrimer composed of a hydrophobic alkyl chain and a hydrophilic PAMAM dendron bearing arginine terminals as nonviral vector for siRNA delivery. Indeed, this dendrimer proved to be very effective at delivering siRNAs in human prostate cancer PC-3 cells and in human hematopoietic CD34+ stem cells, leading to improved gene silencing compared to the corresponding nonarginine decorated dendrimer. Further investigation confirmed that this dendrimer was granted with the capacity to form stable nanoparticles with siRNA and significantly enhance cellular uptake of siRNA. In addition, this dendrimer revealed no discernible cytotoxicity. All these findings demonstrate that decoration of the dendrimer surface with arginine residues is indeed a useful strategy to improve the delivery ability of dendrimers.

  11. siRNA delivery system based on magnetic nanovectors: Characterization and stability evaluation.

    PubMed

    Abdelrahman, Mohammed; Douziech Eyrolles, Laurence; Alkarib, Suad Y; Hervé-Aubert, Katel; Ben Djemaa, Sanaa; Marchais, Hervé; Chourpa, Igor; David, Stephanie

    2017-08-30

    Gene therapy and particularly small interfering RNA (siRNA) is a promising therapeutic method for treatment of various human diseases, especially cancer. However the lack of an ideal delivery system limits its clinical applications. Effective anticancer drug development represents the key for translation of research advances into medicines. Previously we reported, the optimization of magnetic siRNA nanovectors (MSN) formulation based on superparamagnetic iron oxide nanoparticles (SPION) and chitosan for systemic administration. This work aimed at using rational design to further optimize and develop MSN. Therefore, formulated MSN were first purified, then their physical and chemical properties were studied mainly through capillary electrophoresis. 95% of siRNA was found enclosed within the purified MSN (pMSN). pMSN showed colloidal stability at pH 7.4, effective protection of siRNA against ribonuclease degradation up to 24 hours and few siRNA release (less than 10%) at pH 7.4. These findings push toward further evaluation studies in vitro and/or in vivo, indicating the appropriateness of pMSN for cancer theranostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Mechanisms of Nanoparticle Mediated siRNA Transfection by Melittin-Derived Peptides

    PubMed Central

    Hou, Kirk K.; Pan, Hua; Ratner, Lee; Schlesinger, Paul H.; Wickline, Samuel A.

    2014-01-01

    Traditional peptide-mediated siRNA transfection via peptide transduction domains exhibits limited cytoplasmic delivery of siRNA due to endosomal entrapment. This work overcomes these limitations with the use of membrane-destabilizing peptides derived from melittin for the knockdown of NFkB signaling in a model of adult T-Cell leukemia/lymphoma. While the mechanism of siRNA delivery into the cytoplasmic compartment by peptide transduction domains has not been well studied, our analysis of melittin derivatives indicates that concurrent nanocomplex disassembly and peptide-mediated endosomolysis are crucial to siRNA transfection. Importantly, in the case of the most active derivative, p5RHH, this process is initiated by acidic pH, indicating that endosomal acidification after macropinocytosis can trigger siRNA release into the cytoplasm. These data provide general principles regarding nanocomplex response to endocytosis which may guide the development of peptide/siRNA nanocomplex-based transfection. PMID:24053333

  13. Efficient inhibition of fibroblast proliferation and collagen expression by ERK2 siRNAs

    SciTech Connect

    Li, Fengfeng; Fan, Cunyi; Cheng, Tao; Jiang, Chaoyin; Zeng, Bingfang

    2009-05-01

    Transforming growth factor-{beta}1 and fibroblast growth factor-2 play very important roles in fibroblast proliferation and collagen expression. These processes lead to the formation of joint adhesions through the SMAD and MAPK pathways, in which ERK2 is supposed to be crucial. Based on these assumptions, lentivirus (LV)-mediated small interfering RNAs (siRNAs) targeting ERK2 were used to suppress the proliferation and collagen expression of rat joint adhesion tissue fibroblasts (RJATFs). Among four siRNAs examined, siRNA1 caused an 84% reduction in ERK2 expression (p < 0.01) and was selected as the most efficient siRNA for use in this study. In subsequent experiments, significant downregulation of types I and III collagen were observed by quantitative RT-PCR and Western blot analyses. MTT assays and flow cytometry revealed marked inhibition of RJATF proliferation, but no apoptosis. In conclusion, LV-mediated ERK2 siRNAs may represent novel therapies or drug targets for preventing joint adhesion formation.

  14. Unique Gene-Silencing and Structural Properties of 2;#8242;-Fluoro-Modified siRNAs

    SciTech Connect

    Manoharan, Muthiah; Akinc, Akin; Pandey, Rajendra K.; Qin, June; Hadwiger, Philipp; John, Matthias; Mills, Kathy; Charisse, Klaus; Maier, Martin A.; Nechev, Lubomir; Greene, Emily M.; Pallan, Pradeep S.; Rozners, Eriks; Rajeev, Kallanthottathil G.; Egli, Martin

    2015-10-15

    With little or no negative impact on the activity of small interfering RNAs (siRNAs), regardless of the number of modifications or the positions within the strand, the 2'-deoxy-2'-fluoro (2'-F) modification is unique. Furthermore, the 2'-F-modified siRNA (see crystal structure) was thermodynamically more stable and more nuclease-resistant than the parent siRNA, and produced no immunostimulatory response.

  15. Capella: Structure and Abundances

    NASA Technical Reports Server (NTRS)

    Brickhouse, Nancy S.

    1999-01-01

    This grant covers the analysis of ASCA spectra of the cool star binary system Capella. This project has also required the analysis of simultaneous EUVE data. The ASCA spectrum of Capella could not be fit with standard models; by imposing models based on strong lines observed with EUVE, a problem wavelength region was identified. Correcting the problem required calculations of atomic collision strengths of higher principal quantum number than had ever been calculated, resulting in a paper in process by Liedahl and Brickhouse. With these new models applied to the ASCA spectrum, better fits were obtained. While solar abundance ratios are generally consistent with the ASCA data, the ratio of Ne/Fe is three to four times lower than solar photospheric values. Whether there is a general First Ionization Potential (FIP) effect or a specific neon anomaly cannot be determined from these data. Detailed discussion has been provided to NASA in the most recent annual report (1997). Two poster presentations have been made regarding modeling requirements. A substantial paper is in the final revision form, following review by six co-authors. The results of this work have wide implications, since the newly calculated emission lines almost certainly contribute to other problems in fitting not only other stellar spectra, but also composite supernova remnants, galaxies, and cooling flow clusters of galaxies. Furthermore, Liedahl and Brickhouse have identified other species for which lines of a similar nature (high principal quantum number) will contribute significant flux. For moderate resolution X-ray spectra, lines left out of the models in relatively isolated bands, will be attributed to continuum flux by spectral fitting engines, causing errors in line-to-continuum ratios. Thus addressing the general theoretical problem is of crucial importance.

  16. Delivery of siRNA using ternary complexes containing branched cationic peptides: the role of peptide sequence, branching and targeting.

    PubMed

    Kudsiova, Laila; Welser, Katharina; Campbell, Frederick; Mohammadi, Atefeh; Dawson, Natalie; Cui, Lili; Hailes, Helen C; Lawrence, M Jayne; Tabor, Alethea B

    2016-03-01

    Ternary nanocomplexes, composed of bifunctional cationic peptides, lipids and siRNA, as delivery vehicles for siRNA have been investigated. The study is the first to determine the optimal sequence and architecture of the bifunctional cationic peptide used for siRNA packaging and delivery using lipopolyplexes. Specifically three series of cationic peptides of differing sequence, degrees of branching and cell-targeting sequences were co-formulated with siRNA and vesicles prepared from a 1 : 1 molar ratio of the cationic lipid DOTMA and the helper lipid, DOPE. The level of siRNA knockdown achieved in the human alveolar cell line, A549-luc cells, in both reduced serum and in serum supplemented media was evaluated, and the results correlated to the nanocomplex structure (established using a range of physico-chemical tools, namely small angle neutron scattering, transmission electron microscopy, dynamic light scattering and zeta potential measurement); the conformational properties of each component (circular dichroism); the degree of protection of the siRNA in the lipopolyplex (using gel shift assays) and to the cellular uptake, localisation and toxicity of the nanocomplexes (confocal microscopy). Although the size, charge, structure and stability of the various lipopolyplexes were broadly similar, it was clear that lipopolyplexes formulated from branched peptides containing His-Lys sequences perform best as siRNA delivery agents in serum, with protection of the siRNA in serum balanced against efficient release of the siRNA into the cytoplasm of the cell.

  17. Synthesis and evaluation of degradable polyurea block copolymers as siRNA delivery agents.

    PubMed

    Cass, Peter; Knower, Warren; Hinton, Tracey; Shi, Shuning; Grusche, Felix; Tizard, Mark; Gunatillake, Pathiraja

    2013-09-01

    Chain extension by diisocyanate condensation provides a versatile and convenient means for preparing block copolymers. We have utilized this chemistry to prepare reducible multiblock polycations for siRNA delivery. This approach, an alternative to oxidative coupling, was suitable for preparing multiblock polycations with defined molecular weight and architecture. The polymer, PEG-b-multi-(polyhexylurea-co-oligo-L-lysine)-b-PEG, was capable of electrostatically condensing siRNA to form nano-sized polyplexes across a broad compositional range. We demonstrated that the polyplexes enter the cells via endocytosis and interact with the endosome membrane leading to destabilization and hence endosome escape. Another feature of these polymers is their multiple intra-chain disulfide linkages. This enables weakening of the polyplex via chain scission within the cytosol's reductive environment. In addition to the controlled preparation of the polymer, the polyplexes were capable of delivering siRNA in vitro to silence greater than 50% green fluorescent protein expression with negligible toxicity.

  18. Selective Modification of HK Peptides Enhances siRNA Silencing of Tumor Targets In Vivo

    PubMed Central

    Chou, Szu-Ting; Leng, Qixin; Scaria, Puthupparampil; Woodle, Martin; Mixson, A. James

    2011-01-01

    Our research has focused on systemic delivery of small interference RNA (siRNA) by branched peptides composed of histidine and lysine, called HK peptides. After studying several HK peptides, one four-branched peptide, H3K(+H)4b, with a predominant repeating pattern of -HHHK-, was found to be an effective carrier of siRNA. Although the unmodified H3K(+H)4b carrier of siRNA targeting an oncogene was previously shown to have promise in a tumor-bearing mouse model, we sought to develop a more effective HK carrier of siRNA in the current study. Our primary goal was to determine whether different ligand (cyclic RGD)-pegylation patterns on the H3K(+H)4b peptide affect siRNA delivery in vitro and in vivo. We compared the unmodified H3K(+H)4b with two modified H3K(+H)4b peptides for their ability to deliver siRNA in a tumor-bearing mouse model; one modified HK peptide, (RGD-PEG)4-H3K(+H)4b, had four cRGD-PEG conjugated to each molecule, while the other peptide, (RGD-PEG)-H3K(+H)4b, had one cRGD-PEG per molecule. Although the modified HK peptides by themselves did not form stable nanoplexes with siRNA, combination of a highly charged unmodified HK peptide, H2K4b, with either of the modified HK peptides did form stable siRNA nanoparticles. For in vitro experiments with MDA-MB-435 cells that expressed luciferase, the H3K(+H)4b siRNA nanoplexes targeting luciferase decreased its activity by 90% compared with negligible down-regulation by the modified H3K(+H)4b nanoplexes (P<0.01). In contrast, the two modified H3K(+H)4b siRNA nanoplexes administered intravenously were more effective than the H3K(+H)4b nanoplexes in silencing luciferase in a tumor xenograft model. The luciferase activity in tumor lysates of mice administered H3K(+H)4b, (RGD-PEG)-H3K(+H)4b, and (RGD-PEG)4-H3K(+H)4b nanoplexes decreased by 18%, 35%, and 75%, respectively. Thus, the siRNA nanoplex incorporating the highly modified peptide, (RGD-PEG)4-H3K(+H)4b, was the most effective at silencing its target in vivo

  19. Carbon nanotube-mediated siRNA delivery for gene silencing in cancer cells

    NASA Astrophysics Data System (ADS)

    Hong, Tu; Guo, Honglian; Xu, Yaqiong

    2011-10-01

    Small interfering RNA (siRNA) is potentially a promising tool in influencing gene expression with a high degree of target specificity. However, its poor intracellular uptake, instability in vivo, and non-specific immune stimulations impeded its effect in clinical applications. In this study, carbon nanotubes (CNTs) functionalized with two types of phospholipid-polyethylene glycol (PEG) have shown capabilities to stabilize siRNA in cell culture medium during the transfection and efficiently deliver siRNA into neuroblastoma and breast cancer cells. Moreover, the intrinsic optical properties of CNTs have been investigated through absorption and fluorescence measurements. We have found that the directly-functionalized groups play an important role on the fluorescence imaging of functionalized CNTs. The unique fluorescence imaging and high delivery efficiency make CNTs a promising material to deliver drugs and evaluate the treatment effect simultaneously.

  20. Exosomes as nanocarriers for siRNA delivery: paradigms and challenges

    PubMed Central

    Shahabipour, Fahimeh; Banach, Maciej

    2016-01-01

    Exosomes are nano-sized vesicles that facilitate intercellular communications through carrying genetic materials and functional biomolecules. Owing to their unique size and structure, exosomes have emerged as a useful tool to overcome the limitations of siRNA delivery. The use of exosomes as siRNA delivery vehicles lacks certain disadvantages of the existing foreign delivery systems such as viruses, polycationic polymers and liposomes, and introduces several advantages including inherent capacity to pass through biological barriers and escape from phagocytosis by the reticuloendothelial system, as well as being biocompatible, non-toxic, and immunologically inert. Different strategies have been employed to harness exosome-based delivery systems, including surface modification with targeting ligands, and using exosome-display technology, virus-modified exosomes, and exosome-mimetic vesicles. The present review provides a capsule summary of the recent advances and current challenges in the field of exosome-mediated siRNA delivery. PMID:27904525

  1. Oral administration of ginger-derived nanolipids loaded with siRNA as a novel approach for efficient siRNA drug delivery to treat ulcerative colitis.

    PubMed

    Zhang, Mingzhen; Wang, Xiaoyu; Han, Moon Kwon; Collins, James F; Merlin, Didier

    2017-08-01

    To develop novel siRNA delivery system overcoming the limitations of synthetic nanoparticles, such as potential side effects, nonspecificity and economic production for ulcerative colitis therapy. Nanoparticles composed of edible ginger-derived lipid, termed ginger-derived lipid vehicles (GDLVs) were generated from ginger lipids through hydration of a lipid film, a commonly used method for a liposome fabrication. The morphology, biocompatibility and transfection efficiency of GDLVs loaded with siRNA-CD98 (siRNA-CD98/GDLVs) were characterized by standard methods. Orally administered siRNA-CD98/GDLVs were effectively targeted specifically to colon tissues, resulting in reduced expression of CD98. These GDLVs have great promise as efficient siRNA-delivery vehicles while potentially obviating issues related to the traditional synthetic nanoparticles. As such, they help shift the current paradigm of siRNA delivery away from artificially synthesized nanoparticles toward the use of naturally derived nanovehicles from edible plants.

  2. Measuring Solar Abundances with Seismology

    NASA Astrophysics Data System (ADS)

    Mussack, K.; Gough, D.

    2009-12-01

    The revision of the photospheric abundances proferred by Asplund et al. (2005) has rendered opacity theory inconsistent with the seismologically determined opacity through the Sun. This highlights the need for a direct seismological measurement of solar abundances. Here we describe the technique used to measure abundances with seismology, examine our ability to detect differences between solar models using this technique, and discuss its application in the Sun.

  3. Abundances in dwarf irregular galaxies

    NASA Technical Reports Server (NTRS)

    Dufour, Reginald J.

    1986-01-01

    The results of abundance studies of dwarf irregular galaxies and similar objects are reviewed with special attention to variations in the CNO element group. Observations of the forbidden N II and semiforbidden C III lines in the most metal-poor galaxy known, IZw 18, are presented for the first time and CNO abundances are derived via a photoionization model and discussed in the context of the abundances found in other metal-poor H II regions and galaxies.

  4. Bioinformatics prediction of siRNAs as potential antiviral agents against dengue viruses

    PubMed Central

    Villegas-Rosales, Paula M; Méndez-Tenorio, Alfonso; Ortega-Soto, Elizabeth; Barrón, Blanca L

    2012-01-01

    Dengue virus (DENV 1-4) represents the major emerging arthropod-borne viral infection in the world. Currently, there is neither an available vaccine nor a specific treatment. Hence, there is a need of antiviral drugs for these viral infections; we describe the prediction of short interfering RNA (siRNA) as potential therapeutic agents against the four DENV serotypes. Our strategy was to carry out a series of multiple alignments using ClustalX program to find conserved sequences among the four DENV serotype genomes to obtain a consensus sequence for siRNAs design. A highly conserved sequence among the four DENV serotypes, located in the encoding sequence for NS4B and NS5 proteins was found. A total of 2,893 complete DENV genomes were downloaded from the NCBI, and after a depuration procedure to identify identical sequences, 220 complete DENV genomes were left. They were edited to select the NS4B and NS5 sequences, which were aligned to obtain a consensus sequence. Three different servers were used for siRNA design, and the resulting siRNAs were aligned to identify the most prevalent sequences. Three siRNAs were chosen, one targeted the genome region that codifies for NS4B protein and the other two; the region for NS5 protein. Predicted secondary structure for DENV genomes was used to demonstrate that the siRNAs were able to target the viral genome forming double stranded structures, necessary to activate the RNA silencing machinery. PMID:22829722

  5. Targeted Sterically Stabilized Phospholipid siRNA Nanomedicine for Hepatic and Renal Fibrosis

    PubMed Central

    Khaja, Fatima; Jayawardena, Dulari; Kuzmis, Antonina; Önyüksel, Hayat

    2016-01-01

    Since its discovery, small interfering RNA (siRNA) has been considered a potent tool for modulating gene expression. It has the ability to specifically target proteins via selective degradation of messenger RNA (mRNA) not easily accessed by conventional drugs. Hence, RNA interference (RNAi) therapeutics have great potential in the treatment of many diseases caused by faulty protein expression such as fibrosis and cancer. However, for clinical application siRNA faces a number of obstacles, such as poor in vivo stability, and off-target effects. Here we developed a unique targeted nanomedicine to tackle current siRNA delivery issues by formulating a biocompatible, biodegradable and relatively inexpensive nanocarrier of sterically stabilized phospholipid nanoparticles (SSLNPs). This nanocarrier is capable of incorporating siRNA in its core through self-association with a novel cationic lipid composed of naturally occuring phospholipids and amino acids. This overall assembly protects and delivers sufficient amounts of siRNA to knockdown over-expressed protein in target cells. The siRNA used in this study, targets connective tissue growth factor (CTGF), an important regulator of fibrosis in both hepatic and renal cells. Furthermore, asialoglycoprotein receptors are targeted by attaching the galactosamine ligand to the nanocarries which enhances the uptake of nanoparticles by hepatocytes and renal tubular epithelial cells, the major producers of CTGF in fibrosis. On animals this innovative nanoconstruct, small interfering RNA in sterically stabilized phospholipid nanoparticles (siRNA-SSLNP), showed favorable pharmacokinetic properties and accumulated mostly in hepatic and renal tissues making siRNA-SSLNP a suitable system for targeting liver and kidney fibrotic diseases.

  6. Screening nylon-3 polymers, a new class of cationic amphiphiles, for siRNA delivery.

    PubMed

    Nadithe, Venkatareddy; Liu, Runhui; Killinger, Bryan A; Movassaghian, Sara; Kim, Na Hyung; Moszczynska, Anna B; Masters, Kristyn S; Gellman, Samuel H; Merkel, Olivia M

    2015-02-02

    Amphiphilic nucleic acid carriers have attracted strong interest. Three groups of nylon-3 copolymers (poly-β-peptides) possessing different cationic/hydrophobic content were evaluated as siRNA delivery agents in this study. Their ability to condense siRNA was determined in SYBR Gold assays. Their cytotoxicity was tested by MTT assays, their efficiency of delivering Alexa Fluor-488-labeled siRNA intracellularly in the presence and absence of uptake inhibitors was assessed by flow cytometry, and their transfection efficacies were studied by luciferase knockdown in a cell line stably expressing luciferase (H1299/Luc). Endosomal release was determined by confocal laser scanning microscopy and colocalization with lysotracker. All polymers efficiently condensed siRNA at nitrogen-to-phosphate (N/P) ratios of 5 or lower, as reflected in hydrodynamic diameters smaller than that at N/P 1. Although several formulations had negative zeta potentials at N/P 1, G2C and G2D polyplexes yielded >80% uptake in H1299/Luc cells, as determined by flow cytometry. Luciferase knockdown (20-65%) was observed after transfection with polyplexes made of the high molecular weight polymers that were the most hydrophobic. The ability of nylon-3 polymers to deliver siRNA intracellularly even at negative zeta potential implies that they mediate transport across cell membranes based on their amphiphilicity. The cellular uptake route was determined to strongly depend on the presence of cholesterol in the cell membrane. These polymers are, therefore, very promising for siRNA delivery at reduced surface charge and toxicity. Our study identified nylon-3 formulations at low N/P ratios for effective gene knockdown, indicating that nylon-3 polymers are a new, promising type of gene delivery agent.

  7. RGD-based active targeting of novel polycation liposomes bearing siRNA for cancer treatment.

    PubMed

    Yonenaga, Norihito; Kenjo, Eriya; Asai, Tomohiro; Tsuruta, Atsushi; Shimizu, Kosuke; Dewa, Takehisa; Nango, Mamoru; Oku, Naoto

    2012-06-10

    For the purpose of systemic delivery of siRNA, we previously developed polycation liposomes (PCLs) containing dicetylphosphate-tetraethylenepentamine (DCP-TEPA) as an effective siRNA carrier. In the present study, to endow these PCLs (TEPA-PCL) actively target cancer cells and angiogenic vessels, we decorated the PCLs with cyclic RGD, by using cyclic RGD-grafted distearoylphosphatidylethanolamine-polyethylene glycol (DSPE-PEG), and investigated the usefulness of this type of carrier (RGD-PEG-PCL) for active targeting. Firstly, the gene-silencing efficacy of siRNA for luciferase (siLuc2) formulated in RGD-PEG-PCL (RGD-PEG-PCL/siLuc2) was examined in vitro by using B16F10-luc2 murine melanoma cells stably expressing the luciferase 2 gene, where the siRNA was grafted with cholesterol at the 3'-end of the sense strand (siRNA-C) for the stable association of the siRNA with the PCL. RGD-PEG-PCL/siLuc2 showed high knockdown efficiency compared with siLuc2 formulated in PEGylated TEPA-PCL without cyclic RGD (PEG-PCL). Next, the gene-silencing efficacy of RGD-PEG-PCL/siLuc2 was examined in vivo by use of B16F10-luc2 lung metastatic model mice. The intravenous injection of RGD-PEG-PCL/siLuc2 showed high knockdown efficiency against metastatic B16F10-luc2 tumors in the lungs of the mice, as assessed with an in vivo imaging system. These data strongly suggest that systemic and active targeting siRNA delivery using RGD-PEG-PCL is useful for cancer RNAi therapy.

  8. Targeted delivery of siRNA to macrophages for anti-inflammatory treatment.

    PubMed

    Kim, Sang-Soo; Ye, Chunting; Kumar, Priti; Chiu, Isaac; Subramanya, Sandesh; Wu, Haoquan; Shankar, Premlata; Manjunath, N

    2010-05-01

    Inflammation mediated by tumor necrosis factor-alpha (TNF-alpha) and the associated neuronal apoptosis characterizes a number of neurologic disorders. Macrophages and microglial cells are believed to be the major source of TNF-alpha in the central nervous system (CNS). Here, we show that suppression of TNF-alpha by targeted delivery of small interfering RNA (siRNA) to macrophage/microglial cells dramatically reduces lipopolysaccharide (LPS)-induced neuroinflammation and neuronal apoptosis in vivo. Because macrophage/microglia express the nicotinic acetylcholine receptor (AchR) on their surface, we used a short AchR-binding peptide derived from the rabies virus glycoprotein (RVG) as a targeting ligand. This peptide was fused to nona-D-arginine residues (RVG-9dR) to enable siRNA binding. RVG-9dR was able to deliver siRNA to induce gene silencing in macrophages and microglia cells from wild type, but not AchR-deficient mice, confirming targeting specificity. Treatment with anti-TNF-alpha siRNA complexed to RVG-9dR achieved efficient silencing of LPS-induced TNF-alpha production by primary macrophages and microglia cells in vitro. Moreover, intravenous injection with RVG-9dR-complexed siRNA in mice reduced the LPS-induced TNF-alpha levels in blood as well as in the brain, leading to a significant reduction in neuronal apoptosis. These results demonstrate that RVG-9dR provides a tool for siRNA delivery to macrophages and microglia and that suppression of TNF-alpha can potentially be used to suppress neuroinflammation in vivo.

  9. Screening Nylon-3 Polymers, a New Class of Cationic Amphiphiles, for siRNA Delivery

    PubMed Central

    2015-01-01

    Amphiphilic nucleic acid carriers have attracted strong interest. Three groups of nylon-3 copolymers (poly-β-peptides) possessing different cationic/hydrophobic content were evaluated as siRNA delivery agents in this study. Their ability to condense siRNA was determined in SYBR Gold assays. Their cytotoxicity was tested by MTT assays, their efficiency of delivering Alexa Fluor-488-labeled siRNA intracellularly in the presence and absence of uptake inhibitors was assessed by flow cytometry, and their transfection efficacies were studied by luciferase knockdown in a cell line stably expressing luciferase (H1299/Luc). Endosomal release was determined by confocal laser scanning microscopy and colocalization with lysotracker. All polymers efficiently condensed siRNA at nitrogen-to-phosphate (N/P) ratios of 5 or lower, as reflected in hydrodynamic diameters smaller than that at N/P 1. Although several formulations had negative zeta potentials at N/P 1, G2C and G2D polyplexes yielded >80% uptake in H1299/Luc cells, as determined by flow cytometry. Luciferase knockdown (20–65%) was observed after transfection with polyplexes made of the high molecular weight polymers that were the most hydrophobic. The ability of nylon-3 polymers to deliver siRNA intracellularly even at negative zeta potential implies that they mediate transport across cell membranes based on their amphiphilicity. The cellular uptake route was determined to strongly depend on the presence of cholesterol in the cell membrane. These polymers are, therefore, very promising for siRNA delivery at reduced surface charge and toxicity. Our study identified nylon-3 formulations at low N/P ratios for effective gene knockdown, indicating that nylon-3 polymers are a new, promising type of gene delivery agent. PMID:25437915

  10. Knockdown of Antiapoptotic Genes in Breast Cancer Cells by siRNA Loaded Into Hybrid Nanoparticles.

    PubMed

    Mello Júnior, Leônidas; Rosa E Souza, Gabriela; Winter, Evelyn; Henrique Silva, Adny; Pittella, Frederico; Creczynski-Pasa, Tânia Beatriz

    2017-02-23

    Tumorigenesis is related to an imbalance in controlling mechanisms of apoptosis. Expression of the genes BCL-2 and BCL-xL results in promotion of cell survival by inhibiting apoptosis. Thus, a novel approach to suppress antiapoptotic genes is the use of small interfering RNA (siRNA) in cancer cells. However, there are some limitations for the application of siRNA such as low bioavailability, requiring vectors as a strategy to achieve the nucleic acid transfection. In this study formulations containing CaP-siRNA-PEG-polyanion hybrid nanoparticles were developed to enhance siRNA delivery to cultured human breast cancer cells (MCF-7) in order to evaluate if the silencing of antiapoptotic genes BCL-2 and BCL-xL by siRNA would succeed in increasing cancer cells death. After 48h of incubation the expression of BCL-2 and BCL-xL genes decreased to 49% and 23%, respectively. The formulation proved to be toxic to cancer cells at concentration of 200 nM siRNA after 72h of incubation. As the targeted proteins are related to the resistance to chemotherapeutic drugs, the nanocarriers systems were also tested in the presence of doxorubicin (DOX). The results showed a significant reduction in CC50 of DOX, for both targets. In addition, an increase in apoptotic cell counts for both incubations conditions was observed as well. In conclusion, silencing antiapoptotic genes such as BCL-2 and BCL-xL through the use of siRNA carried by hybrid nanoparticles showed to be effective in vitro, and presents a promising strategy for pre-clinical analysis, especially when combined with DOX against breast cancer.

  11. Comprehensive evaluation of canonical versus Dicer-substrate siRNA in vitro and in vivo

    PubMed Central

    Foster, Donald J.; Barros, Scott; Duncan, Rick; Shaikh, Sarfraz; Cantley, William; Dell, Amy; Bulgakova, Elena; O'Shea, Jonathan; Taneja, Nate; Kuchimanchi, Satya; Sherrill, Christopher B.; Akinc, Akin; Hinkle, Gregory; Seila White, Amy C.; Pang, Bo; Charisse, Klaus; Meyers, Rachel; Manoharan, Muthiah; Elbashir, Sayda M.

    2012-01-01

    Since the discovery of RNA interference (RNAi), researchers have identified a variety of small interfering RNA (siRNA) structures that demonstrate the ability to silence gene expression through the classical RISC-mediated mechanism. One such structure, termed “Dicer-substrate siRNA” (dsiRNA), was proposed to have enhanced potency via RISC-mediated gene silencing, although a comprehensive comparison of canonical siRNAs and dsiRNAs remains to be described. The present study evaluates the in vitro and in vivo activities of siRNAs and dsiRNAs targeting Phosphatase and Tensin Homolog (PTEN) and Factor VII (FVII). More than 250 compounds representing both siRNA and dsiRNA structures were evaluated for silencing efficacy. Lead compounds were assessed for duration of silencing and other key parameters such as cytokine induction. We identified highly active compounds from both canonical siRNAs and 25/27 dsiRNAs. Lead compounds were comparable in potency both in vitro and in vivo as well as duration of silencing in vivo. Duplexes from both structural classes tolerated 2′-OMe chemical modifications well with respect to target silencing, although some modified dsiRNAs demonstrated reduced activity. On the other hand, dsiRNAs were more immunostimulatory as compared with the shorter siRNAs, both in vitro and in vivo. Because the dsiRNA structure does not confer any appreciable benefits in vitro or in vivo while demonstrating specific liabilities, further studies are required to support their applications in RNAi therapeutics. PMID:22294662

  12. Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes.

    PubMed

    Rozema, David B; Lewis, David L; Wakefield, Darren H; Wong, So C; Klein, Jason J; Roesch, Paula L; Bertin, Stephanie L; Reppen, Tom W; Chu, Qili; Blokhin, Andrei V; Hagstrom, James E; Wolff, Jon A

    2007-08-07

    Achieving efficient in vivo delivery of siRNA to the appropriate target cell would be a major advance in the use of RNAi in gene function studies and as a therapeutic modality. Hepatocytes, the key parenchymal cells of the liver, are a particularly attractive target cell type for siRNA delivery given their central role in several infectious and metabolic disorders. We have developed a vehicle for the delivery of siRNA to hepatocytes both in vitro and in vivo, which we have named siRNA Dynamic PolyConjugates. Key features of the Dynamic PolyConjugate technology include a membrane-active polymer, the ability to reversibly mask the activity of this polymer until it reaches the acidic environment of endosomes, and the ability to target this modified polymer and its siRNA cargo specifically to hepatocytes in vivo after simple, low-pressure i.v. injection. Using this delivery technology, we demonstrate effective knockdown of two endogenous genes in mouse liver: apolipoprotein B (apoB) and peroxisome proliferator-activated receptor alpha (ppara). Knockdown of apoB resulted in clear phenotypic changes that included a significant reduction in serum cholesterol and increased fat accumulation in the liver, consistent with the known functions of apoB. Knockdown of ppara also resulted in a phenotype consistent with its known function, although with less penetrance than observed in apoB knockdown mice. Analyses of serum liver enzyme and cytokine levels in treated mice indicated that the siRNA Dynamic PolyConjugate was nontoxic and well tolerated.

  13. Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes

    PubMed Central

    Rozema, David B.; Lewis, David L.; Wakefield, Darren H.; Wong, So C.; Klein, Jason J.; Roesch, Paula L.; Bertin, Stephanie L.; Reppen, Tom W.; Chu, Qili; Blokhin, Andrei V.; Hagstrom, James E.; Wolff, Jon A.

    2007-01-01

    Achieving efficient in vivo delivery of siRNA to the appropriate target cell would be a major advance in the use of RNAi in gene function studies and as a therapeutic modality. Hepatocytes, the key parenchymal cells of the liver, are a particularly attractive target cell type for siRNA delivery given their central role in several infectious and metabolic disorders. We have developed a vehicle for the delivery of siRNA to hepatocytes both in vitro and in vivo, which we have named siRNA Dynamic PolyConjugates. Key features of the Dynamic PolyConjugate technology include a membrane-active polymer, the ability to reversibly mask the activity of this polymer until it reaches the acidic environment of endosomes, and the ability to target this modified polymer and its siRNA cargo specifically to hepatocytes in vivo after simple, low-pressure i.v. injection. Using this delivery technology, we demonstrate effective knockdown of two endogenous genes in mouse liver: apolipoprotein B (apoB) and peroxisome proliferator-activated receptor alpha (ppara). Knockdown of apoB resulted in clear phenotypic changes that included a significant reduction in serum cholesterol and increased fat accumulation in the liver, consistent with the known functions of apoB. Knockdown of ppara also resulted in a phenotype consistent with its known function, although with less penetrance than observed in apoB knockdown mice. Analyses of serum liver enzyme and cytokine levels in treated mice indicated that the siRNA Dynamic PolyConjugate was nontoxic and well tolerated. PMID:17652171

  14. Activation of cell membrane-localized Toll-like receptor 3 by siRNA.

    PubMed

    Pirher, Nina; Pohar, Jelka; Manček-Keber, Mateja; Benčina, Mojca; Jerala, Roman

    2017-09-01

    Small interfering RNA molecules (siRNA) are short dsRNAs that are used for different therapeutic applications. On the other hand, dsRNAs can bind to and activate cell RNA sensors and consequently trigger inflammatory response. Here we show that siRNA activates primary human endothelial cells and human lymphatic endothelial cells and that this response is inhibited by antibodies against TLR3. In contrast, the activation of human lymphatic endothelial cells by poly(I:C) was inhibited by bafilomycin but not by anti-TLR3 antibodies. Bafilomycin also inhibited poly(I:C) but not siRNA cell stimulation in TLR3-transfected HEK293. The response to siRNA required the expression of UNC93B1, which directs TLR3 to the surface of HEK293 cells. We propose that the engaged signaling pathway of TLR3 depends on the receptor localization and on the length of the dsRNA, where the activation of cell membrane TLR3 by short dsRNA leads to a predominantly proinflammatory response, whereas TLR3 activation in endosomal compartments by long dsRNA is characterized by the production of type I IFN. A molecular model suggests that the siRNA can bind to the binding sites of the TLR3 ectodomain and trigger receptor dimerization. These results contribute to understanding of the mechanism of side effects seen in the therapeutic application of naked, unmodified siRNA as a result of the activation of TLR3 localized at the plasma membrane. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  15. Surface engineering of gold nanoparticles for in vitro siRNA delivery

    NASA Astrophysics Data System (ADS)

    Zhao, Enyu; Zhao, Zhixia; Wang, Jiancheng; Yang, Chunhui; Chen, Chengjun; Gao, Lingyan; Feng, Qiang; Hou, Wenjie; Gao, Mingyuan; Zhang, Qiang

    2012-07-01

    Cellular uptake, endosomal/lysosomal escape, and the effective dissociation from the carrier are a series of hurdles for specific genes to be delivered both in vitro and in vivo. To construct siRNA delivery systems, poly(allylamine hydrochloride) (PAH) and siRNA were alternately assembled on the surface of 11.8 +/- 0.9 nm Au nanoparticles (GNP), stabilized by denatured bovine serum albumin, by the ionic layer-by-layer (LbL) self-assembly method. By manipulating the outmost PAH layer, GNP-PAH vectors with different surface electric potentials were prepared. Then, the surface potential-dependent cytotoxicity of the resultant GNP-PAH particles was evaluated via sulforhodamine B (SRB) assay, while the surface potential-dependent cellular uptake efficiency was quantitatively analyzed by using the flow cytometry method based on carboxyfluorescein (FAM)-labeled siRNA. It was revealed that the GNP-PAH particles with surface potential of +25 mV exhibited the optimal cellular uptake efficiency and cytotoxicity for human breast cancer MCF-7 cells. Following these results, two more positively charged polyelectrolytes with different protonating abilities in comparison with PAH, i.e., polyethylenimine (PEI), and poly(diallyl dimethyl ammonium chloride) (PDDA), were chosen to fabricate similarly structured vectors. Confocal fluorescence microscopy studies indicated that siRNA delivered by GNP-PAH and GNP-PEI systems was better released than that delivered by the GNP-PDDA system. Further flow cytometric assays based on immunofluorescence staining of the epidermal growth factor receptor (EGFR) revealed that EGFR siRNA delivered by GNP-PAH and GNP-PEI exhibited similar down-regulation effects on EGFR expression in MCF-7 cells. The following dual fluorescence flow cytometry assays by co-staining phosphatidylserine and DNA suggested the EGFR siRNA delivered by GNP-PAH exhibited an improved silencing effect in comparison with that delivered by the commercial transfection reagent

  16. Protective effects of IL28RA siRNA on cardiomyocytes in hypoxia/reoxygenation injury.

    PubMed

    Gong, Ge; Li, Yanyan; Yang, Xinxing; Geng, Hongyu; Lu, Xinzheng; Wang, Liansheng; Yang, Zhijian

    2017-09-01

    We demonstrate the protective effects of the siRNA-mediated inhibition of the interleukin-28 receptor alpha (IL28RA) subunit on cardiomyocytes in hypoxia/reoxygenation (H/R) injury and explore the associated mechanism. After designing and synthesizing three pairs of siRNA that effectively reduced IL28RA gene expression in vitro (siRNA-6158, siRNA-6160, and siRNA-6162), primary neonatal rat cardiomyocytes were transfected using a liposome transfection method. Six groups were included based on the siRNA that was used and the treatment simulating reperfusion injury: control group, H/R group, H/R+negative control group, H/R+siRNA-6158 group, H/R+siRNA-6160 group, and H/R+siRNA-6162 group. Cell survival and apoptosis rates were measured along with lactate dehydrogenase levels in the cell culture supernatant. Protein levels of IL28RA, phosphatidylinositol 3-kinase, catalytic subunit gamma (PI3KCG), Bcl-2, Bax, and ß-actin were also measured. The H/R+siRNA-6158 and H/R+siRNA-6160 groups had significantly higher survival rates and increased PI3KCG-to-ß-actin and Bcl-2-to-Bax ratios than the the H/R and H/R+negative control groups (p<0.05). The H/R+siRNA-6158 and H/R+siRNA-6160 groups also exhibited reduced rates of apoptosis and reduced IL28RA-to-ß-actin ratios (p<0.05). No significant difference was observed among the H/R+siRNA-6162, H/R, and H/R+negative control groups. IL28RA siRNA-6158 and -6160 were able to protect cardiomyocytes from H/R injury by inhibiting apoptosis. This strategy of inhibiting IL28RA gene expression may reduce reperfusion injury in the treatment of patients with acute myocardial infarction.

  17. Tumor-targeted delivery of siRNA using fatty acyl-CGKRK peptide conjugates.

    PubMed

    Sharma, Meenakshi; El-Sayed, Naglaa Salem; Do, Hung; Parang, Keykavous; Tiwari, Rakesh Kumar; Aliabadi, Hamidreza Montazeri

    2017-07-21

    Tumor-targeted carriers provide efficient delivery of chemotherapeutic agents to tumor tissue. CGKRK is one of the well-known tumor targeting peptides with significant specificity for angiogenic blood vessels and tumor cells. Here, we designed fatty acyl conjugated CGKRK peptides, based on the hypothesis that hydrophobically-modified CGKRK peptide could enhance cellular permeation and delivery of siRNA targeted to tumor cells for effective silencing of selected proteins. We synthesized six fatty acyl-peptide conjugates, using a diverse chain of saturated and unsaturated fatty acids to study the efficiency of this approach. At peptide:siRNA weight/weight ratio of 10:1 (N/P ≈ 13.6), almost all the peptides showed complete binding with siRNA, and at a w/w ratio of 20:1 (N/P ≈ 27.3), complete protection of siRNA from early enzymatic degradation was observed. Conjugated peptides and peptide/siRNA complexes did not show significant cytotoxicity in selected cell lines. The oleic acid-conjugated peptide showed the highest efficiency in siRNA uptake and silencing of kinesin spindle protein at peptide:siRNA w/w ratio of 80:1 (N/P ≈ 109). The siRNA internalization into non-tumorigenic kidney cells was negligible with all fatty acyl-peptide conjugates. These results indicate that conjugation of fatty acids to CGKRK could create an efficient delivery system for siRNA silencing specifically in tumor cells.

  18. Diatomite biosilica nanocarriers for siRNA transport inside cancer cells.

    PubMed

    Rea, Ilaria; Martucci, Nicola M; De Stefano, Luca; Ruggiero, Immacolata; Terracciano, Monica; Dardano, Principia; Migliaccio, Nunzia; Arcari, Paolo; Taté, Rosarita; Rendina, Ivo; Lamberti, Annalisa

    2014-12-01

    Diatomite is a natural porous biomaterial of sedimentary origin, formed by fragments of diatom siliceous skeletons, called "frustules". Due to large availability in many areas of the world, chemical stability, and non-toxicity, these fossil structures have been widespread used in lot of industrial applications, such as food production, water extracting agent, production of cosmetics and pharmaceutics. However, diatomite is surprisingly still rarely used in biomedical applications. In this work, we exploit diatomite nanoparticles for small interfering ribonucleic acid (siRNA) transport inside human epidermoid cancer cells (H1355). Morphology and composition of diatomite microfrustules (average size lower than 40μm) are investigated by scanning electron microscopy equipped by energy dispersive X-ray spectroscopy, Fourier transform infrared analysis, and photoluminescence measurements. Nanometric porous particles (average size lower than 450nm) are obtained by mechanical crushing, sonication, and filtering of micrometric frustules. siRNA bioconjugation is performed on both micrometric and nanometric fragments by silanization. In-vitro experiments show very low toxicity on exposure of the cells to diatomite nanoparticle concentration up to 300μg/ml for 72h. Confocal microscopy imaging performed on cancer cells incubated with siRNA conjugated nanoparticles demonstrates a cytoplasmatic localization of vectors. Gene silencing by delivered siRNA is also demonstrated. Our studies endorse diatomite nanoparticles as non-toxic nanocarriers for siRNA transport in cancer cells. siRNA is a powerful molecular tool for cancer treatment but its delivery is inefficient due to the difficulty to penetrate the cell membrane. siRNA-diatomite nanoconjugate may be well suited for delivery of therapeutic to cancer cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Pmp22 mutant allele-specific siRNA alleviates demyelinating neuropathic phenotype in vivo.

    PubMed

    Lee, Ji-Su; Chang, Eun Hyuk; Koo, Ok Jae; Jwa, Dong Hwan; Mo, Won Min; Kwak, Geon; Moon, Hyo Won; Park, Hwan Tae; Hong, Young Bin; Choi, Byung-Ok

    2017-04-01

    Charcot-Marie-Tooth disease (CMT) is a genetic disorder that can be caused by aberrations in >80 genes. CMT has heterogeneous modes of inheritance, including autosomal dominant, autosomal recessive, X-linked dominant, and X-linked recessive. Over 95% of cases are dominantly inherited. In this study, we investigated whether regulation of a mutant allele by an allele-specific small interfering RNA (siRNA) can alleviate the demyelinating neuropathic phenotype of CMT. We designed 19 different allele-specific siRNAs for Trembler J (Tr-J) mice harboring a naturally occurring mutation (Leu16Pro) in Pmp22. Using a luciferase assay, we identified an siRNA that specifically and selectively reduced the expression level of the mutant allele and reversed the low viability of Schwann cells caused by mutant Pmp22 over-expression in vitro. The in vivo efficacy of the allele-specific siRNA was assessed by its intraperitoneal injection to postnatal day 6 of Tr-J mice. Administration of the allele-specific siRNA to Tr-J mice significantly enhanced motor function and muscle volume, as assessed by the rotarod test and magnetic resonance imaging analysis, respectively. Increases in motor nerve conduction velocity and compound muscle action potentials were also observed in the treated mice. In addition, myelination, as evidenced by toluidine blue staining and electron microscopy, was augmented in the sciatic nerves of the mice after allele-specific siRNA treatment. After validating suppression of the Pmp22 mutant allele at the mRNA level in the Schwann cells of Tr-J mice, we observed increased expression levels of myelinating proteins such as myelin basic protein and myelin protein zero. These data indicate that selective suppression of the Pmp22 mutant allele by non-viral delivery of siRNA alleviates the demyelinating neuropathic phenotypes of CMT in vivo, implicating allele-specific siRNA treatment as a potent therapeutic strategy for dominantly inherited peripheral neuropathies

  20. Lipid-modified aminoglycoside derivatives for in vivo siRNA delivery.

    PubMed

    Zhang, Yunlong; Pelet, Jeisa M; Heller, Daniel A; Dong, Yizhou; Chen, Delai; Gu, Zhen; Joseph, Brian J; Wallas, Jasmine; Anderson, Daniel G

    2013-09-06

    Rationally designed siRNA delivery materials that are enabled by lipid-modified aminoglycosides are demonstrated. Leading materials identified are able to self-assemble with siRNA into well-defined nanoparticles and induce efficient gene knockdown both in vitro and in vivo. Histology studies and liver function tests reveal that no apparent toxicity is caused by these nanoparticles at doses over two orders of magnitude. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Amylose-Based Cationic Star Polymers for siRNA Delivery

    PubMed Central

    Nishimura, Tomoki; Umezaki, Kaori; Mukai, Sada-atsu; Sawada, Shin-ichi; Akiyoshi, Kazunari

    2015-01-01

    A new siRNA delivery system using a cationic glyco-star polymer is described. Spermine-modified 8-arm amylose star polymer (with a degree of polymerization of approximately 60 per arm) was synthesized by chemoenzymatic methods. The cationic star polymer effectively bound to siRNA and formed spherical complexes with an average hydrodynamic diameter of 230 nm. The cationic 8-arm star polymer complexes showed superior cellular uptake characteristics and higher gene silencing effects than a cationic 1-arm polymer. These results suggest that amylose-based star polymers are a promising nanoplatform for glycobiomaterials. PMID:26539548

  2. Histidine-rich cationic amphipathic peptides for plasmid DNA and siRNA delivery.

    PubMed

    Kichler, Antoine; Mason, A James; Marquette, Arnaud; Bechinger, Burkhard

    2013-01-01

    Amphipathic, pH-responsive, membrane-active peptides such as LAH4 and derivatives thereof have the ability to effectively deliver genes and small interfering RNA (siRNA) into mammalian cells. Their ability to bind and protect nucleic acids and then disrupt membranes when activated at low pH enables them to harness the endocytic machinery to deliver cargo efficiently and with low associated toxicity. This chapter describes protocols for the chemical synthesis of transfection peptides of the LAH4 family, complex formation with nucleic acids, and their use for the in vitro delivery of either plasmid DNA or siRNA into mammalian cell lines.

  3. siRNA Delivery to the Lung: What’s New?

    PubMed Central

    Merkel, Olivia M.; Rubinstein, Israel; Kissel, Thomas

    2014-01-01

    RNA interference (RNAi) has been thought of as the general answer to many unmet medical needs. After the first success stories, it soon became obvious that short interfering RNA (siRNA) is not suitable for systemic administration due to its poor pharmacokinetics. Therefore local administration routes have been adopted for more successful in vivo RNAi. This paper reviews nucleic acid modifications, nanocarrier chemistry, animal models used in successful pulmonary siRNA delivery, as well as clinical translation approaches. We summarize what has been published recently and conclude with the potential problems that may still hamper the efficient clinical application of RNAi in the lung. PMID:24907426

  4. Functional polymer-based siRNA delivery carrier that recognizes site-specific biosignals.

    PubMed

    Takemoto, Hiroyasu; Nishiyama, Nobuhiro

    2017-09-18

    Responsive molecular designs to specific biosignals in microenvironments endow site-specific functionalities with associated polymers. Thus, the construction of small interfering RNA (siRNA) carriers with functional polymers enables smart programs that are triggered by sequential biosignals in a pathway to the targeted cytosol for effective gene silencing. In this review, we explain rational strategies for the design of functional polymers with responsiveness to biosignals and describe the examples of smart carriers for siRNA delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Clustering siRNA conjugates for MMP-responsive therapeutics in chronic wounds of diabetic animals

    NASA Astrophysics Data System (ADS)

    Kim, Hye Sung; Son, Young Ju; Yoo, Hyuk Sang

    2016-07-01

    The MMP-responsive breakdown of siRNA clusters was translated to site-specific gene transfection and enhanced wound healing in diabetic ulcers. MMP-2 siRNA was chemically tethered to the end of multi-armed PEG via MMP-cleavable linkers (4PEG-siRNA) and subsequently clustered into submicron particles complexed with LPEI. 4PEG-siRNA was more tightly complexed with LPEI and the associated cluster showed higher resistance against RNase attack, in comparison to naked siRNA. Because the size of the clusters increased depending on the increase in charge ratio of LPEI to siRNA, cellular uptake of the 4PEG-siRNA/LPEI cluster was significantly attenuated due to the huge size of the cluster. However, upon MMP treatment, the cluster dissociated into smaller particles and was efficiently endocytosed by cells. An in vivo fluorescence resonance energy transfer (FRET) study also revealed that the clusters were effectively dissociated in MMP-rich environments of dorsal wounds in diabetic animals. In addition, diabetic ulcers treated with the clusters showed a faster wound closure rate and the recovered tissue expressed a larger amount of cytokeratin along with a lower expression level of MMP-2 compared to the other groups.The MMP-responsive breakdown of siRNA clusters was translated to site-specific gene transfection and enhanced wound healing in diabetic ulcers. MMP-2 siRNA was chemically tethered to the end of multi-armed PEG via MMP-cleavable linkers (4PEG-siRNA) and subsequently clustered into submicron particles complexed with LPEI. 4PEG-siRNA was more tightly complexed with LPEI and the associated cluster showed higher resistance against RNase attack, in comparison to naked siRNA. Because the size of the clusters increased depending on the increase in charge ratio of LPEI to siRNA, cellular uptake of the 4PEG-siRNA/LPEI cluster was significantly attenuated due to the huge size of the cluster. However, upon MMP treatment, the cluster dissociated into smaller particles and was

  6. Abundance coefficients, a new method for measuring microorganism relative abundance

    USGS Publications Warehouse

    Forester, R.M.

    1977-01-01

    A new method of measuring the relative abundance of microorganisms by using a set of interrelated coefficients, termed 'abundance coefficients' or 'AC', is proposed. These coefficients provide a means of recording abundance for geometric density categories, and each density measurement represents an approximation of the Poisson parameter ??t. The AC is the natural logarithm of a 'characteristic value,' which is a particular number for each geometric density category. The 'characteristic values' are based upon a probabilistic error statement derived from the Poisson formula, and they present evidence for separation of the geometric category boundaries by e = 2.71828. The proposed AC provide a means for recording species abundance in a manner suitable for arithmetic manipulation, for population structure studies, and for the determination of practical limits for defining the presence or absence of a species. Further, these coefficients provide for both intrasample and intersample abundance comparisons. ?? 1977 Plenum Publishing Corporation.

  7. Extreme Environments Rig

    NASA Image and Video Library

    2013-08-13

    The Glenn Extreme Environment Chamber (GEER) simulates the extreme conditions found in space and tests many devices that will explore Venus to see if they can withstand the punishing environment and temperatures over 800 degrees F.

  8. In Vitro and In Vivo Efficacy of SYL040012, a Novel siRNA Compound for Treatment of Glaucoma

    PubMed Central

    Martínez, Tamara; González, Maria Victoria; Roehl, Ingo; Wright, Natalia; Pañeda, Covadonga; Jiménez, Ana Isabel

    2014-01-01

    Glaucoma is a progressive ocular syndrome characterized by degeneration of the optic nerve and irreversible visual field loss. Elevated intraocular pressure (IOP) is the main risk factor for glaucoma. Increased IOP is the result of an imbalance between synthesis and outflow of aqueous humor (AH). Blocking β2 adrenergic receptor (ADRB2) has shown to reduce IOP by decreasing production of AH at the ciliary body (CB). SYL040012 is a siRNA designed to specifically silence ADRB2 currently under development for glaucoma treatment. Here, we show that SYL040012 specifically reduces ADRB2 expression in cell cultures and eye tissues. The compound enters the eye shortly after administration in eye drops and is rapidly distributed among structures of the anterior segment of the eye. In addition, SYL040012 is actively taken up by cells of the CB but not by cells of systemic organs such as the lungs, where inhibition of ADRB2 could cause undesirable side effects. Moreover, SYL040012 reduces IOP in normotensive and hypertensive animal models and the effect appears to be long lasting and extremely well tolerated both locally and systemically. PMID:24025749

  9. Extreme Scale Visual Analytics

    SciTech Connect

    Wong, Pak C.; Shen, Han-Wei; Pascucci, Valerio

    2012-05-08

    Extreme-scale visual analytics (VA) is about applying VA to extreme-scale data. The articles in this special issue examine advances related to extreme-scale VA problems, their analytical and computational challenges, and their real-world applications.

  10. Conjugation of Palmitic Acid Improves Potency and Longevity of siRNA Delivered via Endosomolytic Polymer Nanoparticles

    PubMed Central

    Sarett, Samantha M.; Kilchrist, Kameron V.; Miteva, Martina; Duvall, Craig L.

    2015-01-01

    Clinical translation of siRNA therapeutics has been limited by the inability to effectively overcome the rigorous delivery barriers associated with intracellular-acting biologics. Here, in order to address both potency and longevity of siRNA gene silencing, pH-responsive micellar nanoparticle (NP) carriers loaded with siRNA conjugated to palmitic acid (siRNA-PA) were investigated as a combined approach to improve siRNA endosomal escape and stability. Conjugation to hydrophobic PA improved NP loading efficiency relative to unmodified siRNA, enabling complete packaging of siRNA-PA at a lower polymer:siRNA ratio. PA conjugation also increased intracellular uptake of the nucleic acid cargo by 35-fold and produced a 3.1-fold increase in intracellular half-life. The higher uptake and improved retention of siRNA-PA NPs correlated to a 2- and 11-fold decrease in gene silencing IC50 in comparison to siRNA NPs in fibroblasts and mesenchymal stem cells, respectively, for both the model gene luciferase and the therapeutically relevant gene PHD2. PA conjugation also significantly increased longevity of silencing activity following a single treatment, as observed in fibroblasts. Thus, conjugation of PA to siRNA paired with endosomolytic NPs is a promising approach to enhance the functional efficacy of siRNA in tissue regenerative and other applications. PMID:25641816

  11. Codelivery of mTERT siRNA and paclitaxel by chitosan-based nanoparticles promoted synergistic tumor suppression.

    PubMed

    Wei, Wei; Lv, Pi-Ping; Chen, Xiao-Ming; Yue, Zhan-Guo; Fu, Qiang; Liu, Shi-Ying; Yue, Hua; Ma, Guang-Hui

    2013-05-01

    Clinical applications of siRNA are being hindered by poor intracellular uptake and enzymatic degradation. To address these problems, we devised an oral delivery system for telomerase reverse transcriptase siRNA using N-((2-hydroxy-3-trimethylammonium) propyl) chitosan chloride (HTCC) nanoparticles (HNP). Both the porous structure and the positive charge of HNP facilitated siRNA encapsulation. The outer coating of HTCC not only protected siRNA from enzymatic degradation, but also improved siRNA permeability in intestine tract. In vivo and in vitro experiments proved that HNP could effectively deliver siRNA to lesion site and further into tumor cells. On the basis of confirming the antitumor activity of HNP:siRNA, we continued to encapsulate a hydrophobic chemotherapeutic drug-paclitaxel (PTX) into HNP to form a "two-in-one" nano-complex (HNP:siRNA/PTX). We demonstrated that HNP:siRNA/PTX could simultaneously ferry siRNA and PTX into tumor cells and increase drug concentration, which, in particular, was much more effective in tumor suppression than that of traditional cocktail therapy. These results suggested that the HNP, as a powerful delivery system for both siRNA and chemotherapeutic drug, would have a far-reaching application in human cancer therapy.

  12. Development of RNAi technology for targeted therapy--a track of siRNA based agents to RNAi therapeutics.

    PubMed

    Zhou, Yinjian; Zhang, Chunling; Liang, Wei

    2014-11-10

    RNA interference (RNAi) was intensively studied in the past decades due to its potential in therapy of diseases. The target specificity and universal treatment spectrum endowed siRNA advantages over traditional small molecules and protein drugs. However, barriers exist in the blood circulation system and the diseased tissues blocked the actualization of RNAi effect, which raised function versatility requirements to siRNA therapeutic agents. Appropriate functionalization of siRNAs is necessary to break through these barriers and target diseased tissues in local or systemic targeted application. In this review, we summarized that barriers exist in the delivery process and popular functionalized technologies for siRNA such as chemical modification and physical encapsulation. Preclinical targeted siRNA delivery and the current status of siRNA based RNAi therapeutic agents in clinical trial were reviewed and finally the future of siRNA delivery was proposed. The valuable experience from the siRNA agent delivery study and the RNAi therapeutic agents in clinical trial paved ways for practical RNAi therapeutics to emerge early.

  13. Knocking Down TMPRSS2-ERG Fusion Oncogene by siRNA Could be an Alternative Treatment to Flutamide

    PubMed Central

    Urbinati, Giorgia; de Waziers, Isabelle; Slamiç, Mateja; Foussignière, Tobias; Ali, Hafiz M; Desmaële, Didier; Couvreur, Patrick; Massaad-Massade, Liliane

    2016-01-01

    Our purpose was to develop a new pharmacological approach for the treatment of prostate cancer (PCa), the most common neoplasia in men. Recently, we developed siRNA against the fusion oncogene TMPRSS2-ERG found in 50% of patients and showed an antitumoral activity in animal model. Herein, we want to compare or combine the developed siRNA to flutamide (FLU), one of the gold-standard treatment of PCa. Therefore, concomitant or subsequent association of FLU to siRNA TMPRSS2-ERG was performed in VCaP cells and in SCID mice bearing xenografted VCaP tumors. ERG, androgen receptor, cleaved-caspase-3 as well as phase 1 and 2 drug-metabolizing enzymes were investigated within tumors. We observed similar results in terms of TMPRSS2-ERG knock-down and cell viability impairment for all distinct schedules of administration. The association of siRNA TMPRSS2-ERG-squalene nanoparticles with flutamide displayed similar tumor growth inhibition as mice treated with siRNA TMPRSS2-ERG-squalene nanoparticles alone and was paralleled with modification of expression of ERG, androgen receptor, and cleaved-caspase-3. Phase 1 and 2 enzymes were essentially affected by FLU and reverted when combined with squalenoylated siRNA. In conclusion, these results confirm the therapeutic effectiveness of squalenoyl siRNA nanomedicine for PCa based on siRNA TMPRSS2-ERG. PMID:27023109

  14. De novo reconstruction of consensus master genomes of plant RNA and DNA viruses from siRNAs

    USDA-ARS?s Scientific Manuscript database

    In antiviral defense, plants produce massive quantities of 21-24 nucleotide siRNAs. Here we demonstrate that the complete genomes of DNA and RNA viruses and viroids can be reconstructed by deep sequencing and de novo assembly of viral/viroid siRNAs from experimentally- and naturally-infected plants....

  15. Engineering RNA for Targeted siRNA Delivery and Medical Application

    PubMed Central

    Guo, Peixuan; Coban, Oana; Snead, Nick; Trebley, Joe; Hoeprich, Steve; Guo, Songchuan; Shu, Yi

    2010-01-01

    RNA engineering for nanotechnology and medical applications is an exciting emerging research field. RNA has intrinsically defined features on the nanometer scale and is a particularly interesting candidate for such applications due to its amazing diversity, flexibility and versatility in structure and function. Specifically, the current use of siRNA to silence target genes involved in disease has generated much excitement in the scientific community. The intrinsic ability to sequence-specifically down-regulate gene expression in a temporally- and spatially-controlled fashion has led to heightened interest and rapid development of siRNA-based therapeutics. Though methods for gene silencing with high efficacy and specificity have been achieved in vitro, the effective delivery of nucleic acids to specific cells in vivo has been a hurdle for RNA therapeutics. This review covers different RNA-based approaches for diagnosis, prevention and treatment of human disease, with a focus on the latest developments of nonviral carriers of siRNA for delivery in vivo. The applications and challenges of siRNA therapy, as well as potential solutions to these problems, the approaches for using phi29 pRNA-based vectors as polyvalent vehicles for specific delivery of siRNA, ribozymes, drugs or other therapeutic agents to specific cells for therapy will also be addressed. PMID:20230868

  16. Polymers modified with double-tailed fluorous compounds for efficient DNA and siRNA delivery.

    PubMed

    He, Bingwei; Wang, Yitong; Shao, Naimin; Chang, Hong; Cheng, Yiyun

    2015-08-01

    Cationic polymers are widely used as gene carriers, however, these polymers are usually associated with low transfection efficacy and non-negligible toxicity. Fluorination on polymers significantly improves their performances in gene delivery, but a high density of fluorous chains must be conjugated on a single polymer. Here we present a new strategy to construct fluorinated polymers with minimal fluorous chains for efficient DNA and siRNA delivery. A double-tailed fluorous compound 2-chloro-4,6-bis[(perfluorohexyl)propyloxy]-1,3,5-triazine (CBT) was conjugated on dendrimers of different generations and low molecular weight polyethylenimine via a facile synthesis. The yielding products with average numbers of 1-2 conjugated CBT moieties showed much improved EGFP and luciferase transfection efficacy compared to unmodified polymers. In addition, these polymers show high siRNA delivery efficacy on different cell lines. Among the synthesized polymers, generation 1 (G1) dendrimer modified with an average number of 1.9 CBT moieties (G1-CBT1.9) shows the highest efficacy when delivering both DNA and siRNA and its efficacy approaches that of Lipofectamine 2000. G1-CBT1.9 also shows efficient gene silencing in vivo. All of the CBT-modified polymers exhibit minimal toxicity on the cells at their optimal transfection conditions. This study provides a new strategy to design efficient fluorous polymers for DNA and siRNA delivery.

  17. Therapeutic siRNA for drug-resistant HER2-positive breast cancer

    PubMed Central

    Ngamcherdtrakul, Worapol; Castro, David J.; Morry, Jingga; Reda, Moataz M.; Gray, Joe W.; Yantasee, Wassana

    2016-01-01

    HER2 is overexpressed in about 20% of breast cancers and contributes to poor prognosis. Unfortunately, a large fraction of patients have primary or acquired resistance to the HER2-targeted therapy trastuzumab, thus a multi-drug combination is utilized in the clinic, putting significant burden on patients. We systematically identified an optimal HER2 siRNA from 76 potential sequences and demonstrated its utility in overcoming intrinsic and acquired resistance to trastuzumab and lapatinib in 18 HER2-positive cancer cell lines. We provided evidence that the drug-resistant cancer maintains dependence on HER2 for survival. Importantly, cell lines did not readily develop resistance following extended treatment with HER2 siRNA. Using our recently developed nanoparticle platform, systemic delivery of HER2 siRNA to trastuzumab-resistant tumors resulted in significant growth inhibition. Moreover, the optimal HER2 siRNA could also silence an exon 16 skipped HER2 splice variant reported to be highly oncogenic and linked to trastuzumab resistance. PMID:26894975

  18. Delivery of siRNA and other macromolecules into skin and cells using a peptide enhancer.

    PubMed

    Hsu, Tracy; Mitragotri, Samir

    2011-09-20

    Delivery of macromolecules into cells and tissues such as skin is a major challenge. This obstacle poses a particular challenge for the delivery of siRNA where cellular and tissue level transport barriers need to be overcome. siRNAs are potential therapeutics for various dermatological diseases including psoriasis, atopic dermatitis, and cancer; however, their utility is limited by their low absorption across the stratum corneum (SC) and into viable cells of skin. Here, we address this challenge using a peptide identified by phage display termed skin penetrating and cell entering (SPACE) peptide. In vitro studies indicated that the SPACE peptide, when conjugated to cargoes such as small molecules and proteins, was able to facilitate their penetration across the SC into epidermis and dermis. The peptide also exhibited increased penetration into various cells including keratinocytes, fibroblasts, and endothelial cells, likely through a macropinocytosis pathway. The ability of SPACE peptide to deliver siRNA was tested in vivo using two targets, interleukin-10 and GAPDH. Conjugation of the peptide to siRNA led to their enhanced absorption into skin and knockdown of corresponding protein targets.

  19. Functionalized silicon quantum dots tailored for targeted siRNA delivery

    SciTech Connect

    Klein, S.; Zolk, O.; Fromm, M.F.; Schroedl, F.; Kryschi, C.

    2009-09-11

    For RNA interference (RNAi) mediated silencing of the ABCB1 gene in Caco-2 cells biocompatible luminescent silicon quantum dots (SiQDs) were developed to serve as self-tracking transfection tool for ABCB1 siRNA. While the 2-3 nm sized SiQD core exhibits green luminescence, the QD surfaces are completely saturated with covalently linked 2-vinylpyridine that may electrostatically bind siRNA. For down-regulating P-glycoprotein (Pgp) expression of the ABCB1 gene the SiQDs were complexed with siRNA. The cellular uptake and allocation of SiQD-siRNA complexes in Caco-2 cells were monitored using confocal laser scanning microscopy and transmission electron microscopy. The release of siRNA to the cytoplasm was verified through real-time PCR quantification of the reduced ABCB1 mRNA level. Additional evidence was obtained from time-resolved in situ fluorescence spectroscopic monitoring of the Pgp efflux dynamics in transfected Caco-2 cells which yielded significantly reduced transporter efficiencies for the Pgp substrate Rhodamine 123.

  20. HPV16E7-specific siRNA inhibits cell proliferation in CaSki cells.

    PubMed

    Li, Jun-guo; Li, Li; Zhang, Shui-Wen; Wei, Xiaoguang

    2015-03-01

    High-risk human papilloma virus (HPV) infection is the main cause for the genesis of cervical carcinomas. After infection, E6 and E7 genes of HPV were integrated to the genome of the cervical epithelium. Continued expression of the transforming oncoproteins E6 and E7 not only drives the neoplastic progression in cervical epithelium, but also plays an important role in maintaining the malignant phenotype of cervical cancer cells. The aim of this study is to explore the effects of liposomal transfection of HPV16E7 siRNA on the proliferation of cervical carcinoma cell line CaSki. The siRNA interfering HPV16E7 gene was synthesized and transfected into CaSki cells by liposome to observe the cell morphology changes under microscope. The cell proliferation index was detected by flow cytometry; HPV16E7 mRNA expression was determined by RT-PCR and its protein level was determined by Western blot. After transfection of the CaSki cell by siRNA, cell proliferation was inhibited significantly, and the expression of HPV16E7 mRNA and protein level of HPV16E7 decreased. HPV16E7 siRNA is able to inhibit growth of CaSki cells. HPV16E7 might become a new target for genetic therapy of cervical carcinoma.

  1. Comparing Gene Silencing and Physiochemical Properties in siRNA Bound Cationic Star-Polymer Complexes.

    PubMed

    Dearnley, Megan; Reynolds, Nicholas P; Cass, Peter; Wei, Xiaohu; Shi, Shuning; Mohammed, A Aalam; Le, Tam; Gunatillake, Pathiraja; Tizard, Mark L; Thang, San H; Hinton, Tracey M

    2016-11-14

    The translation of siRNA into clinical therapies has been significantly delayed by issues surrounding the delivery of naked siRNA to target cells. Here we investigate siRNA delivery by cationic acrylic polymers developed by Reversible Addition-Fragmentation chain Transfer (RAFT) mediated free radical polymerization. We investigated cell uptake and gene silencing of a series of siRNA-star polymer complexes both in the presence and absence of a protein "corona". Using a multidisciplinary approach including quantitative nanoscale mechanical-atomic force microscopy, dynamic light scattering and nanoparticle tracking analysis we have characterized the nanoscale morphology, stiffness, and surface charge of the complexes with and without the protein corona. This is one of the first examples of a comprehensive physiochemical analysis of siRNA-polymer complexes being performed alongside in vitro biological assays, allowing us to describe a set of desirable physical features of cationic polymer complexes that promote gene silencing. Multifaceted studies such as this will improve our understanding of structure-function relationships in nanotherapeutics, facilitating the rational design of polymer-mediated siRNA delivery systems for novel treatment strategies.

  2. Mechanistic profiling of the siRNA delivery dynamics of lipid-polymer hybrid nanoparticles.

    PubMed

    Colombo, Stefano; Cun, Dongmei; Remaut, Katrien; Bunker, Matt; Zhang, Jianxin; Martin-Bertelsen, Birte; Yaghmur, Anan; Braeckmans, Kevin; Nielsen, Hanne M; Foged, Camilla

    2015-03-10

    Understanding the delivery dynamics of nucleic acid nanocarriers is fundamental to improve their design for therapeutic applications. We investigated the carrier structure-function relationship of lipid-polymer hybrid nanoparticles (LPNs) consisting of poly(DL-lactic-co-glycolic acid) (PLGA) nanocarriers modified with the cationic lipid dioleoyltrimethyl-ammoniumpropane (DOTAP). A library of siRNA-loaded LPNs was prepared by systematically varying the nitrogen-to-phosphate (N/P) ratio. Atomic force microscopy (AFM) and cryo-transmission electron microscopy (cryo-TEM) combined with small angle X-ray scattering (SAXS) and confocal laser scanning microscopy (CLSM) studies suggested that the siRNA-loaded LPNs are characterized by a core-shell structure consisting of a PLGA matrix core coated with lamellar DOTAP structures with siRNA localized both in the core and in the shell. Release studies in buffer and serum-containing medium combined with in vitro gene silencing and quantification of intracellular siRNA suggested that this self-assembling core-shell structure influences the siRNA release kinetics and the delivery dynamics. A main delivery mechanism appears to be mediated via the release of transfection-competent siRNA-DOTAP lipoplexes from the LPNs. Based on these results, we suggest a model for the nanostructural characteristics of the LPNs, in which the siRNA is organized in lamellar superficial assemblies and/or as complexes entrapped in the polymeric matrix. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Hydrogel doped with nanoparticles for local sustained release of siRNA in breast cancer.

    PubMed

    Segovia, Nathaly; Pont, Maria; Oliva, Nuria; Ramos, Victor; Borrós, Salvador; Artzi, Natalie

    2015-01-28

    Of all the much hyped and pricy cancer drugs, the benefits from the promising siRNA small molecule drugs are limited. Lack of efficient delivery vehicles that would release the drug locally, protect it from degradation, and ensure high transfection efficiency, precludes it from fulfilling its full potential. This work presents a novel platform for local and sustained delivery of siRNA with high transfection efficiencies both in vitro and in vivo in a breast cancer mice model. siRNA protection and high transfection efficiency are enabled by their encapsulation in oligopeptide-terminated poly(β-aminoester) (pBAE) nanoparticles. Sustained delivery of the siRNA is achieved by the enhanced stability of the nanoparticles when embedded in a hydrogel scaffold based on polyamidoamine (PAMAM) dendrimer cross-linked with dextran aldehyde. The combination of oligopeptide-terminated pBAE polymers and biodegradable hydrogels shows improved transfection efficiency in vivo even when compared with the most potent commercially available transfection reagents. These results highlight the advantage of using composite materials for successful delivery of these highly promising small molecules to combat cancer.

  4. RVG-peptide-linked trimethylated chitosan for delivery of siRNA to the brain.

    PubMed

    Gao, Yikun; Wang, Zhan-You; Zhang, Jinghai; Zhang, Youxi; Huo, Hong; Wang, Tianyi; Jiang, Tongying; Wang, Siling

    2014-03-10

    In this work, a peptide derived from the rabies virus glycoprotein (RVG) was linked to siRNA/trimethylated chitosan (TMC) complexes through bifunctional PEG for efficient brain-targeted delivery of siRNA. The physiochemical properties of the complexes, such as siRNA complexing ability, size and ζ potential, morphology, serum stability, and cytotoxicity, were investigated prior to studying the cellular uptake, in vitro gene silencing efficiency, and in vivo biodistribution. The RVG-peptide-linked siRNA/TMC-PEG complexes showed increased serum stability, negligible cytotoxicity, and higher cellular uptake than the unmodified siRNA/TMC-mPEG complexes in acetylcholine receptor positive Neuro2a cells. The potent knockdown of BACE1, a therapeutic target in Alzheimer's disease, demonstrated the gene silencing efficiency. In vivo imaging analysis showed significant accumulation of Cy5-siRNA in the isolated brain of mice injected with RVG-peptide-linked complexes. Therefore, the RVG-peptide-linked TMC-PEG developed in this study can be used as a potential carrier for delivery of siRNA to the brain.

  5. Synthesis and gene silencing properties of siRNAs containing terminal amide linkages.

    PubMed

    Gaglione, Maria; Mercurio, M Emilia; Potenza, Nicoletta; Mosca, Nicola; Russo, Aniello; Novellino, Ettore; Cosconati, Sandro; Messere, Anna

    2014-01-01

    The active components of the RNAi are 21 nucleotides long dsRNAs containing a 2 nucleotide overhang at the 3' end, carrying 5'-phosphate and 3'-hydroxyl groups (siRNAs). Structural analysis revealed that the siRNA is functionally bound at both ends to RISC. Terminal modifications are considered with interest as the introduction of chemical moieties interferes with the 3' overhang recognition by the PAZ domain and the 5'-phosphate recognition by the MID and PIWI domains of RISC. Herein, we report the synthesis of modified siRNAs containing terminal amide linkages by introducing hydroxyethylglycine PNA (hegPNA) moieties at 5', and at 3' positions and on both terminals. Results of gene silencing studies highlight that some of these modifications are compatible with the RNAi machinery and markedly increase the resistance to serum-derived nucleases even after 24 h of incubation. Molecular docking simulations were attained to give at atomistic level a clearer picture of the effect of the most performing modifications on the interactions with the human Argonaute 2 PAZ, MID, and PIWI domains. This study adds another piece to the puzzle of the heterogeneous chemical modifications that can be attained to enhance the silencing efficiency of siRNAs.

  6. Novel targeted therapy for neuroblastoma: silencing the MXD3 gene using siRNA.

    PubMed

    Duong, Connie; Yoshida, Sakiko; Chen, Cathy; Barisone, Gustavo; Diaz, Elva; Li, Yueju; Beckett, Laurel; Chung, Jong; Antony, Reuben; Nolta, Jan; Nitin, Nitin; Satake, Noriko

    2017-09-01

    BackgroundNeuroblastoma is the second most common extracranial cancer in children. Current therapies for neuroblastoma, which use a combination of chemotherapy drugs, have limitations for high-risk subtypes and can cause significant long-term adverse effects in young patients. Therefore, a new therapy is needed. In this study, we investigated the transcription factor MXD3 as a potential therapeutic target in neuroblastoma.MethodsMXD3 expression was analyzed in five neuroblastoma cell lines by immunocytochemistry and quantitative real-time reverse transcription PCR, and in 18 primary patient tumor samples by immunohistochemistry. We developed nanocomplexes using siRNA and superparamagnetic iron oxide nanoparticles to target MXD3 in neuroblastoma cell lines in vitro as a single-agent therapeutic and in combination with doxorubicin, vincristine, cisplatin, or maphosphamide-common drugs used in current neuroblastoma treatment.ResultsMXD3 was highly expressed in neuroblastoma cell lines and in patient tumors that had high-risk features. Neuroblastoma cells treated in vitro with the MXD3 siRNA nanocomplexes showed MXD3 protein knockdown and resulted in cell apoptosis. Furthermore, on combining MXD3 siRNA nanocomplexes with each of the four drugs, all showed additive efficacy.ConclusionThese results indicate that MXD3 is a potential new target and that the use of MXD3 siRNA nanocomplexes is a novel therapeutic approach for neuroblastoma.

  7. Intrathecal siRNA against GPNMB attenuates nociception in a rat model of neuropathic pain.

    PubMed

    Hou, Lili; Zhang, Yanfeng; Yang, Yong; Xiang, Kai; Tan, Qindong; Guo, Qulian

    2015-02-01

    Neuropathic pain is characterized by hyperalgesia, allodynia, and spontaneous pain. Recent studies have shown that glycoprotein nonmetastatic melanoma B (GPNMB) plays a pivotal role in neuronal survival and neuroprotection. However, the role of GPNMB in neuropathic pain remains unknown. The aim of the present study was to assess the role of GPNMB in neuropathic pain. In cultured spinal cord neurons, we used two small interfering RNAs (siRNAs) targeting the complementary DNA (cDNA) sequence of rat GPNMB that had potent inhibitory effects on GPNMB, and siRNA1-GPNMB was selected for further in vivo study as it had the higher inhibitory effect. After sciatic nerve injury in rats, the endogenous level of GPNMB was increased in a time-dependent manner in the spinal cord. Furthermore, the intrathecal injection of siRNA1-GPNMB inhibited the expression of GPNMB and pro-inflammatory factors (TNF-α, IL-1β, and IL-6) and alleviated mechanical allodynia and thermal hyperalgesia in the chronic constriction injury (CCI) model of rats. Taken together, our findings suggest that siRNA against GPNMB can alleviate the chronic neuropathic pain caused by CCI, and this effect may be mediated by attenuated expression of TNF-α, IL-1β, and IL-6 in the spinal cord of CCI rats. Therefore, inhibition of GPNMB may provide a novel strategy for the treatment of neuropathic pain.

  8. DELIVERY OF siRNA INTO BREAST CANCER CELLS VIA PHAGE FUSION PROTEIN-TARGETED LIPOSOMES

    PubMed Central

    Bedi, Deepa; Musacchio, Tiziana; Fagbohun, Olusegun A.; Gillespie, James W.; Deinnocentes, Patricia; Bird, R. Curtis; Bookbinder, Lonnie; Torchilin, Vladimir P.; Petrenko, Valery A.

    2011-01-01

    Efficacy of siRNAs as potential anticancer therapeutics can be increased by their targeted delivery into cancer cells via tumor-specific ligands. Phage display offers an unique approach to identify highly specific and selective ligands that can deliver nanocarriers to the site of disease. In this study, we proved a novel approach for intracellular delivery of siRNAs into breast cancer cells through their encapsulation into liposomes targeted to the tumor cells with preselected intact phage proteins. The targeted siRNA liposomes were obtained by a fusion of two parental liposomes containing spontaneously inserted siRNA and fusion phage proteins. The presence of pVIII coat protein fused to a MCF-7 cell-targeting peptide DMPGTVLP in the liposomes was confirmed by Western blotting. The novel phage-targeted siRNA-nanopharmaceuticals demonstrate significant down-regulation of PRDM14 gene expression and PRDM14 protein synthesis in the target MCF- 7 cells. This approach offers the potential for development of new anticancer siRNA-based targeted nanomedicines. PMID:21050894

  9. RNA nanoparticle as a vector for targeted siRNA delivery into glioblastoma mouse model

    PubMed Central

    Lee, Tae Jin; Haque, Farzin; Shu, Dan; Yoo, Ji Young; Li, Hui; Yokel, Robert A.; Horbinski, Craig; Kim, Tae Hyong; Kim, Sung-Hak; Kwon, Chang-Hyuk; Nakano, Ichiro; Kaur, Balveen; Guo, Peixuan; Croce, Carlo M.

    2015-01-01

    Systemic siRNA administration to target and treat glioblastoma, one of the most deadly cancers, requires robust and efficient delivery platform without immunogenicity. Here we report newly emerged multivalent naked RNA nanoparticle (RNP) based on pRNA 3-way-junction (3WJ) from bacteriophage phi29 to target glioblastoma cells with folate (FA) ligand and deliver siRNA for gene silencing. Systemically injected FA-pRNA-3WJ RNPs successfully targeted and delivered siRNA into brain tumor cells in mice, and efficiently reduced luciferase reporter gene expression (4-fold lower than control). The FA-pRNA-3WJ RNP also can target human patient-derived glioblastoma stem cells, thought to be responsible for tumor initiation and deadly recurrence, without accumulation in adjacent normal brain cells, nor other major internal organs. This study provides possible application of pRNA-3WJ RNP for specific delivery of therapeutics such as siRNA, microRNA and/or chemotherapeutic drugs into glioblastoma cells without inflicting collateral damage to healthy tissues. PMID:25885522

  10. RNA nanoparticle as a vector for targeted siRNA delivery into glioblastoma mouse model.

    PubMed

    Lee, Tae Jin; Haque, Farzin; Shu, Dan; Yoo, Ji Young; Li, Hui; Yokel, Robert A; Horbinski, Craig; Kim, Tae Hyong; Kim, Sung-Hak; Kwon, Chang-Hyuk; Nakano, Ichiro; Kaur, Balveen; Guo, Peixuan; Croce, Carlo M

    2015-06-20

    Systemic siRNA administration to target and treat glioblastoma, one of the most deadly cancers, requires robust and efficient delivery platform without immunogenicity. Here we report newly emerged multivalent naked RNA nanoparticle (RNP) based on pRNA 3-way-junction (3WJ) from bacteriophage phi29 to target glioblastoma cells with folate (FA) ligand and deliver siRNA for gene silencing. Systemically injected FA-pRNA-3WJ RNPs successfully targeted and delivered siRNA into brain tumor cells in mice, and efficiently reduced luciferase reporter gene expression (4-fold lower than control). The FA-pRNA-3WJ RNP also can target human patient-derived glioblastoma stem cells, thought to be responsible for tumor initiation and deadly recurrence, without accumulation in adjacent normal brain cells, nor other major internal organs. This study provides possible application of pRNA-3WJ RNP for specific delivery of therapeutics such as siRNA, microRNA and/or chemotherapeutic drugs into glioblastoma cells without inflicting collateral damage to healthy tissues.

  11. In situ electroporation of surface-bound siRNAs in microwell arrays†

    PubMed Central

    Jain, Tilak; Papas, Adrian; Jadhav, Amol; McBride, Ryan

    2012-01-01

    Gene silencing using RNA interference (RNAi) has become a prominent biological tool for gene annotation, pathway analysis, and target discovery in mammalian cells. High-throughput screens conducted using whole-genome siRNA libraries have uncovered rich sets of new genes involved in a variety of biological processes and cellular models of disease. However, high-throughput RNAi screening is not yet a mainstream tool in life science research because current screening platforms are expensive and onerous. Miniaturizing the RNAi screening platform to reduce cost and increase throughput will enable its widespread use and harness its potential for rapid genome annotation. With this aim, we have combined semi-conductor microfabrication and nanolitre dispensing techniques to develop miniaturized electroporation-ready microwell arrays loaded with siRNA molecules in which multiplexed gene knockdown can be achieved. Arrays of microwells are created using high-aspect ratio biocompatible photoresists on optically transparent and conductive Indium-Tin Oxide (ITO) substrates with integrated micro-electrodes to enable in situ electroporation. Non-contact inkjet microarraying allows precise dispensing of nanolitre volumes into the microwell structures. We have achieved parallel electroporation of multiple mammalian cells cultured in these microwell arrays and observed efficient knockdown of genes with surface-bound, printed siRNAs. Further integration of microfabrication and non-contact nanolitre dispensing techniques described here may enable single-substrate whole-genome siRNA screening in mammalian cells. PMID:22245984

  12. Clustered magnetite nanocrystals cross-linked with PEI for efficient siRNA delivery.

    PubMed

    Park, Ji Won; Bae, Ki Hyun; Kim, Chunsoo; Park, Tae Gwan

    2011-02-14

    Magnetofection has been utilized as a powerful tool to enhance gene transfection efficiency via magnetic field-enforced cellular transport processes. The accelerated accumulation of nucleic acid molecules by applying an external magnetic force enables the rapid and improved transduction efficiency. In this study, we developed magnetite nanocrystal clusters (PMNCs) cross-linked with polyethylenimine (PEI) to magnetically trigger intracellular delivery of small interfering RNA (siRNA). PMNCs were produced by cross-linked assembly of catechol-functionalized branched polyethylenimine (bPEI) around magnetite nanocrystals through an oil-in-water (O/W) emulsion and solvent evaporation method. The physical properties of PMNC were characterized by TEM, DLS, TSA, and FT-IR. Finely tuned formulation of clustered magnetite nanocrystals with controlled size and shape exhibited superior saturation of magnetization value. Magnetite nanocrystal clusters could form nanosized polyelectrolyte complexes with negatively charged siRNA molecules, enabling efficient delivery of siRNA into cells upon exposure to an external magnetic field within a short time. This study introduces a new class of magnetic nanomaterials that can be utilized for magnetically driven intracellular siRNA delivery.

  13. Dual-Functional Nanoparticles Targeting CXCR4 and Delivering Antiangiogenic siRNA Ameliorate Liver Fibrosis.

    PubMed

    Liu, Chun-Hung; Chan, Kun-Ming; Chiang, Tsaiyu; Liu, Jia-Yu; Chern, Guann-Gen; Hsu, Fu-Fei; Wu, Yu-Hsuan; Liu, Ya-Chi; Chen, Yunching

    2016-07-05

    The progression of liver fibrosis, an intrinsic response to chronic liver injury, is associated with hepatic hypoxia, angiogenesis, abnormal inflammation, and significant matrix deposition, leading to the development of cirrhosis and hepatocellular carcinoma (HCC). Due to the complex pathogenesis of liver fibrosis, antifibrotic drug development has faced the challenge of efficiently and specifically targeting multiple pathogenic mechanisms. Therefore, CXCR4-targeted nanoparticles (NPs) were formulated to deliver siRNAs against vascular endothelial growth factor (VEGF) into fibrotic livers to block angiogenesis during the progression of liver fibrosis. AMD3100, a CXCR4 antagonist that was incorporated into the NPs, served dual functions: it acted as a targeting moiety and suppressed the progression of fibrosis by inhibiting the proliferation and activation of hepatic stellate cells (HSCs). We demonstrated that CXCR4-targeted NPs could deliver VEGF siRNAs to fibrotic livers, decrease VEGF expression, suppress angiogenesis and normalize the distorted vessels in the fibrotic livers in the carbon tetrachloride (CCl4) induced mouse model. Moreover, blocking SDF-1α/CXCR4 by CXCR4-targeted NPs in combination with VEGF siRNA significantly prevented the progression of liver fibrosis in CCl4-treated mice. In conclusion, the multifunctional CXCR4-targeted NPs delivering VEGF siRNAs provide an effective antifibrotic therapeutic strategy.

  14. Molecularly Self-Assembled Nucleic Acid Nanoparticles for Targeted In Vivo siRNA Delivery

    PubMed Central

    Lee, Hyukjin; Lytton-Jean, Abigail K. R.; Chen, Yi; Love, Kevin T.; Park, Angela I.; Karagiannis, Emmanouil D.; Sehgal, Alfica; Querbes, William; Zurenko, Christopher S.; Jayaraman, Muthusamy; Peng, Chang G.; Charisse, Klaus; Borodovsky, Anna; Manoharan, Muthiah; Donahoe, Jessica S.; Truelove, Jessica; Nahrendorf, Matthias; Langer, Robert; Anderson, Daniel G.

    2013-01-01

    Nanoparticles are employed for delivering therapeutics into cells1,2. However, size, shape, surface chemistry and the presentation of targeting ligands on the surface of nanoparticles can affect circulation half-life and biodistribution, cell specific internalization, excretion, toxicity, and efficacy3-7. A variety of materials have been explored for delivering small interfering RNAs (siRNAs) - a therapeutic agent that suppresses the expression of targeted genes8,9. However, conventional delivery nanoparticles such as liposomes and polymeric systems are heterogeneous in size, composition and surface chemistry, and this can lead to suboptimal performance, lack of tissue specificity and potential toxicity10-12. Here, we show that self-assembled DNA tetrahedral nanoparticles with a well-defined size can deliver siRNAs into cells and silence target genes in tumours. Monodisperse nanoparticles are prepared through the self-assembly of complementary DNA strands. Because the DNA strands are easily programmable, the size of the nanoparticles and the spatial orientation and density of cancer targeting ligands (such as peptides and folate) on the nanoparticle surface can be precisely controlled. We show that at least three folate molecules per nanoparticle is required for optimal delivery of the siRNAs into cells and, gene silencing occurs only when the ligands are in the appropriate spatial orientation. In vivo, these nanoparticles showed a longer blood circulation time (t1/2 ∼ 24.2 min) than the parent siRNA (t1/2 ∼ 6 min). PMID:22659608

  15. Focused ultrasound for targeted delivery of siRNA and efficient knockdown of Htt expression.

    PubMed

    Burgess, Alison; Huang, Yuexi; Querbes, William; Sah, Dinah W; Hynynen, Kullervo

    2012-10-28

    RNA interference is a promising strategy for the treatment of Huntington's disease (HD) as it can specifically decrease the expression of the mutant Huntingtin protein (Htt). However, siRNA does not cross the blood-brain barrier and therefore delivery to the brain is limited to direct CNS delivery. Non-invasive delivery of siRNA through the blood-brain barrier (BBB) would be a significant advantage for translating this therapy to HD patients. Focused ultrasound (FUS), combined with intravascular delivery of microbubble contrast agent, was used to locally and transiently disrupt the BBB in the right striatum of adult rats. 48h following treatment with siRNA, the right (treated) and the left (control) striatum were dissected and analyzed for Htt mRNA levels. We demonstrate that FUS can non-invasively deliver siRNA-Htt directly to the striatum leading to a significant reduction of Htt expression in a dose dependent manner. Furthermore, we show that reduction of Htt with siRNA-Htt was greater when the extent of BBB disruption was increased. This study demonstrates that siRNA treatment for knockdown of mutant Htt is feasible without the surgical intervention previously required for direct delivery to the brain.

  16. Gold nanoclusters-assisted delivery of NGF siRNA for effective treatment of pancreatic cancer

    PubMed Central

    Lei, Yifeng; Tang, Lixue; Xie, Yangzhouyun; Xianyu, Yunlei; Zhang, Lingmin; Wang, Peng; Hamada, Yoh; Jiang, Kai; Zheng, Wenfu; Jiang, Xingyu

    2017-01-01

    Pancreatic cancer is one of the deadliest human cancers, whose progression is highly dependent on the nervous microenvironment. The suppression of gene expression of nerve growth factor (NGF) may have great potential in pancreatic cancer treatment. Here we show that gold nanocluster-assisted delivery of siRNA of NGF (GNC–siRNA) allows efficient NGF gene silencing and pancreatic cancer treatment. The GNC–siRNA complex increases the stability of siRNA in serum, prolongs the circulation lifetime of siRNA in blood and enhances the cellular uptake and tumour accumulation of siRNA. The GNC–siRNA complex potently downregulates the NGF expression in Panc-1 cells and in pancreatic tumours, and effectively inhibits the tumour progression in three pancreatic tumour models (subcutaneous model, orthotopic model and patient-derived xenograft model) without adverse effects. Our study constitutes a straightforward but effective approach to inhibit pancreatic cancer via NGF knockdown, suggesting a promising therapeutic direction for pancreatic cancer. PMID:28440296

  17. Magnetic Core-Shell Silica Nanoparticles with Large Radial Mesopores for siRNA Delivery.

    PubMed

    Xiong, Lin; Bi, Jingxu; Tang, Youhong; Qiao, Shi-Zhang

    2016-09-01

    A novel type of magnetic core-shell silica nanoparticles is developed for small interfering RNA (siRNA) delivery. These nanoparticles are fabricated by coating super-paramagnetic magnetite nanocrystal clusters with radial large-pore mesoporous silica. The amine functionalized nanoparticles have small particle sizes around 150 nm, large radial mesopores of 12 nm, large surface area of 411 m(2) g(-1) , high pore volume of 1.13 cm(3) g(-1) and magnetization of 25 emu g(-1) . Thus, these nanoparticles possess both high loading capacity of siRNA (2 wt%) and strong magnetic response under an external magnetic field. An acid-liable coating composed of tannic acid can further protect the siRNA loaded in these nanoparticles. The coating also increases the dispersion stability of the siRNA-loaded carrier and can serve as a pH-responsive releasing switch. Using the magnetic silica nanoparticles with tannic acid coating as carriers, functional siRNA has been successfully delivered into the cytoplasm of human osteosarcoma cancer cells in vitro. The delivery is significantly enhanced with the aid of the external magnetic field.

  18. Identification of siRNA delivery enhancers by a chemical library screen

    PubMed Central

    Gilleron, Jerome; Paramasivam, Prasath; Zeigerer, Anja; Querbes, William; Marsico, Giovanni; Andree, Cordula; Seifert, Sarah; Amaya, Pablo; Stöter, Martin; Koteliansky, Victor; Waldmann, Herbert; Fitzgerald, Kevin; Kalaidzidis, Yannis; Akinc, Akin; Maier, Martin A.; Manoharan, Muthiah; Bickle, Marc; Zerial, Marino

    2015-01-01

    Most delivery systems for small interfering RNA therapeutics depend on endocytosis and release from endo-lysosomal compartments. One approach to improve delivery is to identify small molecules enhancing these steps. It is unclear to what extent such enhancers can be universally applied to different delivery systems and cell types. Here, we performed a compound library screen on two well-established siRNA delivery systems, lipid nanoparticles and cholesterol conjugated-siRNAs. We identified fifty-one enhancers improving gene silencing 2–5 fold. Strikingly, most enhancers displayed specificity for one delivery system only. By a combination of quantitative fluorescence and electron microscopy we found that the enhancers substantially differed in their mechanism of action, increasing either endocytic uptake or release of siRNAs from endosomes. Furthermore, they acted either on the delivery system itself or the cell, by modulating the endocytic system via distinct mechanisms. Interestingly, several compounds displayed activity on different cell types. As proof of principle, we showed that one compound enhanced siRNA delivery in primary endothelial cells in vitro and in the endocardium in the mouse heart. This study suggests that a pharmacological approach can improve the delivery of siRNAs in a system-specific fashion, by exploiting distinct mechanisms and acting upon multiple cell types. PMID:26220182

  19. Combination of integrin siRNA and irradiation for breast cancer therapy

    SciTech Connect

    Cao Qizhen; Cai Weibo; Li Tianfang; Yang Yong; Chen Kai; Xing Lei; Chen Xiaoyuan . E-mail: shawchen@stanford.edu

    2006-12-22

    Up-regulation of integrin {alpha}{sub v}{beta}{sub 3} has been shown to play a key role in tumor angiogenesis and metastasis. In this study, we evaluated the role of integrin {alpha}{sub v}{beta}{sub 3} in breast cancer cell resistance to ionizing irradiation (IR) and tested the anti-tumor efficacy of combining integrin {alpha}{sub v} siRNA and IR. Colonogenic survival assay, cell proliferation, apoptosis, and cell cycle analysis were carried out to determine the treatment effect of siRNA, IR, or combination of both on MDA-MB-435 cells (integrin {alpha}{sub v}{beta}{sub 3}-positive). Integrin {alpha}{sub v}{beta}{sub 3}-negative MCF-7 cells exert more radiosensitivity than MDA-MB-435 cells. IR up-regulates integrin {alpha}{sub v}{beta}{sub 3} expression in MDA-MB-435 cells and integrin {alpha}{sub v} siRNA can effectively reduce both {alpha}{sub v} and {alpha}{sub v}{beta}{sub 3} integrin expression, leading to increased radiosensitivity. Integrin {alpha}{sub v} siRNA also promotes IR-induced apoptosis and enhances IR-induced G2/M arrest in cell cycle progression. This study, with further optimization, may provide a simple and highly efficient treatment strategy for breast cancer as well as other integrin {alpha}{sub v}{beta}{sub 3}-positive cancer types.

  20. Multifunctional Envelope-Type siRNA Delivery Nanoparticle Platform for Prostate Cancer Therapy.

    PubMed

    Xu, Xiaoding; Wu, Jun; Liu, Yanlan; Saw, Phei Er; Tao, Wei; Yu, Mikyung; Zope, Harshal; Si, Michelle; Victorious, Amanda; Rasmussen, Jonathan; Ayyash, Dana; Farokhzad, Omid C; Shi, Jinjun

    2017-03-28

    With the capability of specific silencing of target gene expression, RNA interference (RNAi) technology is emerging as a promising therapeutic modality for the treatment of cancer and other diseases. One key challenge for the clinical applications of RNAi is the safe and effective delivery of RNAi agents such as small interfering RNA (siRNA) to a particular nonliver diseased tissue (e.g., tumor) and cell type with sufficient cytosolic transport. In this work, we proposed a multifunctional envelope-type nanoparticle (NP) platform for prostate cancer (PCa)-specific in vivo siRNA delivery. A library of oligoarginine-functionalized and sharp pH-responsive polymers was synthesized and used for self-assembly with siRNA into NPs with the features of long blood circulation and pH-triggered oligoarginine-mediated endosomal membrane penetration. By further modification with ACUPA, a small molecular ligand specifically recognizing prostate-specific membrane antigen (PSMA) receptor, this envelope-type nanoplatform with multifunctional properties can efficiently target PSMA-expressing PCa cells and silence target gene expression. Systemic delivery of the siRNA NPs can efficiently silence the expression of prohibitin 1 (PHB1), which is upregulated in PCa and other cancers, and significantly inhibit PCa tumor growth. These results suggest that this multifunctional envelope-type nanoplatform could become an effective tool for PCa-specific therapy.

  1. Gold nanoclusters-assisted delivery of NGF siRNA for effective treatment of pancreatic cancer

    NASA Astrophysics Data System (ADS)

    Lei, Yifeng; Tang, Lixue; Xie, Yangzhouyun; Xianyu, Yunlei; Zhang, Lingmin; Wang, Peng; Hamada, Yoh; Jiang, Kai; Zheng, Wenfu; Jiang, Xingyu

    2017-04-01

    Pancreatic cancer is one of the deadliest human cancers, whose progression is highly dependent on the nervous microenvironment. The suppression of gene expression of nerve growth factor (NGF) may have great potential in pancreatic cancer treatment. Here we show that gold nanocluster-assisted delivery of siRNA of NGF (GNC-siRNA) allows efficient NGF gene silencing and pancreatic cancer treatment. The GNC-siRNA complex increases the stability of siRNA in serum, prolongs the circulation lifetime of siRNA in blood and enhances the cellular uptake and tumour accumulation of siRNA. The GNC-siRNA complex potently downregulates the NGF expression in Panc-1 cells and in pancreatic tumours, and effectively inhibits the tumour progression in three pancreatic tumour models (subcutaneous model, orthotopic model and patient-derived xenograft model) without adverse effects. Our study constitutes a straightforward but effective approach to inhibit pancreatic cancer via NGF knockdown, suggesting a promising therapeutic direction for pancreatic cancer.

  2. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight

    PubMed Central

    Khan, Omar; Thiriot, Aude; Jhunjunwala, Siddharth; Shaw, Taylor E.; Xing, Yiping; Sager, Hendrik B.; Sahay, Gaurav; Speciner, Lauren; Bader, Andrew; Bogorad, Roman L.; Yin, Hao; Racie, Tim; Dong, Yizhou; Jiang, Shan; Seedorf, Danielle; Dave, Apeksha; Sandu, Kamaljeet S.; Webber, Matthew J.; Novobrantseva, Tatiana; Ruda, Vera M.; Lytton-Jean, Abigail K.R.; Levins, Christopher G.; Kalish, Brian; Mudge, Dayna K.; Perez, Mario; Abezgauz, Ludmila; Dutta, Partha; Smith, Lynelle; Charisse, Klaus; Kieran, Mark W.; Fitzgerald, Kevin; Nahrendorf, Matthias; Danino, Dganit; Tuder, Rubin M.; von Andrian, Ulrich H.; Akinc, Akin; Schroeder, Avi; Panigrahy, Dipak; Kotelianski, Victor; Langer, Robert; Anderson, Daniel G.

    2014-01-01

    Dysfunctional endothelium contributes to more disease than any other tissue in the body. Small interfering RNAs (siRNAs) have the potential to help study and treat endothelial cells in vivo by durably silencing multiple genes simultaneously, but efficient siRNA delivery has so far remained challenging. Here we show that polymeric nanoparticles made of low molecular weight polyamines and lipids can deliver siRNA to endothelial cells with high efficiency, thereby facilitating the simultaneous silencing of multiple endothelial genes in vivo. Unlike lipid or lipid-like nanoparticles, this formulation does not significantly reduce gene expression in hepatocytes or immune cells even at the dosage necessary for endothelial gene silencing. It mediates the most durable non-liver silencing reported to date, and facilitates the delivery of siRNAs that modify endothelial function in mouse models of vascular permeability, emphysema, primary tumour growth, and metastasis. We believe these nanoparticles improve the ability to study endothelial gene function in vivo, and may be used to treat diseases caused by vascular dysfunction. PMID:24813696

  3. Novel siRNA formulation to effectively knockdown mutant p53 in osteosarcoma.

    PubMed

    Kundu, Anup K; Iyer, Swathi V; Chandra, Sruti; Adhikari, Amit S; Iwakuma, Tomoo; Mandal, Tarun K

    2017-01-01

    The tumor suppressor p53 plays a crucial role in the development of osteosarcoma. The primary objective of this study is to develop and optimize lipid based nanoparticle formulations that can carry siRNA and effectively silence mutant p53 in 318-1, a murine osteosarcoma cell line. The nanoparticles were composed of a mixture of two lipids (cholesterol and DOTAP) and either PLGA or PLGA-PEG and prepared by using an EmulsiFlex-B3 high pressure homogenizer. A series of studies that include using different nanoparticles, different amount of siRNAs, cell numbers, incubation time, transfection media volume, and storage temperature was performed to optimize the gene silencing efficiency. Replacement of lipids by PLGA or PLGA-PEG decreased the particle size and overall cytotoxicity. Among all lipid-polymer nanoformulations, nanoparticles with 10% PLGA showed highest mutant p53 knockdown efficiency while maintaining higher cell viability when a nanoparticle to siRNA ratio equal to 6.8:0.66 and 75 nM siRNA was used. With long term storage the mutant p53 knockdown efficiency decreased to a greater extent. This study warrants a future evaluation of this formulation for gene silencing efficiency of mutant p53 in tissue culture and animal models for the treatment of osteosarcoma.

  4. Novel lipoproteoplex delivers Keap1 siRNA based gene therapy to accelerate diabetic wound healing.

    PubMed

    Rabbani, Piul S; Zhou, Anna; Borab, Zachary M; Frezzo, Joseph A; Srivastava, Nikita; More, Haresh T; Rifkin, William J; David, Joshua A; Berens, Samuel J; Chen, Raymond; Hameedi, Sophia; Junejo, Muhammad H; Kim, Camille; Sartor, Rita A; Liu, Che F; Saadeh, Pierre B; Montclare, Jin K; Ceradini, Daniel J

    2017-07-01

    Therapeutics utilizing siRNA are currently limited by the availability of safe and effective delivery systems. Cutaneous diseases, specifically ones with significant genetic components are ideal candidates for topical siRNA based therapy but the anatomical structure of skin presents a considerable hurdle. Here, we optimized a novel liposome and protein hybrid nanoparticle delivery system for the topical treatment of diabetic wounds with severe oxidative stress. We utilized a cationic lipid nanoparticle (CLN) composed of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and the edge activator sodium cholate (NaChol), in a 6:1 ratio of DOTAP:NaChol (DNC). Addition of a cationic engineered supercharged coiled-coil protein (CSP) in a 10:1:1 ratio of DNC:CSP:siRNA produced a stable lipoproteoplex (LPP) nanoparticle, with optimal siRNA complexation, minimal cytotoxicity, and increased transfection efficacy. In a humanized murine diabetic wound healing model, our optimized LPP formulation successfully delivered siRNA targeted against Keap1, key repressor of Nrf2 which is a central regulator of redox mechanisms. Application of LPP complexing siKeap1 restored Nrf2 antioxidant function, accelerated diabetic tissue regeneration, and augmented reduction-oxidation homeostasis in the wound environment. Our topical LPP delivery system can readily be translated into clinical use for the treatment of diabetic wounds and can be extended to other cutaneous diseases with genetic components. Published by Elsevier Ltd.

  5. Target-specific delivery of siRNA into hepatoma cells' cytoplasm by bifunctional carrier peptide.

    PubMed

    Liu, Xiaoxuan; Zhu, Lin; Ma, Jingjing; Qiao, Xinxiao; Zhu, Dunwan; Liu, Lanxia; Leng, Xigang

    2017-02-01

    RNA interference (RNAi) is among the most potential approach for the therapy of hepatocellular carcinoma and the major barrier hindering siRNA therapeutics is the low efficiency of delivery to the desired cells. The current study aimed at developing a novel peptide for more efficient hepatoma targeted siRNA delivery, by combining luteinizing hormone-releasing hormone with hepatoma targeting specificity and MPG(△NLS) with cytoplasm-delivery tendency. The developed bifunctional peptide LHRH-MPG(△NLS) and siRNA were mixed together and resulted in LHRH-MPG(△NLS)/siRNA polyplexes through self-assembly. The polyplexes were characterized by agarose gel retardation and dynamic light scatting analysis. Hepatoma targeting specificity was analyzed with the GE IN Cell Analyzer 2000 High-Content Cellular Analysis System after cell transfection, and the effect of RNA interference was detected by RT-PCR. The results demonstrated that LHRH-MPG(△NLS) was able to assemble with siRNA to form stable and nano-sized peptide/siRNA polyplexes, which could inhibit the expression of the target gene and was essentially non-cytotoxic, as compared with the commercial transfection reagent lipofectamine 2000.

  6. PEGylated poly(ethylene imine) copolymer-delivered siRNA inhibits HIV replication in vitro.

    PubMed

    Weber, Nick D; Merkel, Olivia M; Kissel, Thomas; Muñoz-Fernández, María Ángeles

    2012-01-10

    RNA interference is increasingly being utilized for the specific targeting and down-regulation of disease-causing genes, including targeting viral infections such as HIV. T lymphocytes, the primary target for HIV, are very difficult to treat with gene therapy applications such as RNA interference because of issues with drug delivery. To circumvent these problems, we investigated poly(ethylene imine) (PEI) as a method of improving transfection efficiency of siRNA to T lymphocytes. Additionally, polyethylene glycol (PEG) moieties were engrafted to the PEI polymers with the goals of improving stability and reducing cytotoxicity. Initial studies on PEG-PEI/siRNA polyplex formation, size and their interaction with cell membranes demonstrated their feasibility as drug delivery agents. Assays with lymphocytes revealed low cytotoxicity profiles of the polyplexes at pharmacologically relevant concentrations with PEGylated copolymers obtaining the best results. Successful transfection of a T cell line or primary T cells with siRNA was observed via flow cytometry and confocal microscopy. Finally, the biological effect of copolymer-delivered siRNA was measured. Of particular significance, siRNA targeted to the HIV gene nef and delivered by one of the PEG-PEI copolymers in repetitive treatments every 2-3 days was observed to inhibit HIV replication to the same extent as azidothymidine over the course of 15 days. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Inhibition of simian immunodeficiency virus by foamy virus vectors expressing siRNAs

    SciTech Connect

    Park, Jeonghae; Nadeau, Peter; Zucali, James R.; Johnson, Calvin M.; Mergia, Ayalew . E-mail: mergiaa@mail.vetmed.ufl.edu

    2005-12-20

    Viral vectors available for gene therapy are either inefficient or suffer from safety concerns for human applications. Foamy viruses are non-pathogenic retroviruses that offer several unique opportunities for gene transfer in various cell types from different species. In this report, we describe the use of simian foamy virus type 1 (SFV-1) vector to examine the efficacy of therapeutic genes. Hairpin short-interfering RNA (siRNA) that targets the simian immunodeficiency virus (SIV) rev/env was placed under the control of the PolIII U6 snRNA promoter for expression and screened for silencing target genes using cognate target-reporter fusions. We have identified an effective siRNA (designated R2) which reduces the rev and env gene expression by 89% and 95%, respectively. Using the simian foamy virus type 1 (SFV-1) based vector, we delivered the PolIII expressed R2 siRNA into cultured cells and challenged with SIV. The results show that the R2 siRNA is a potent inhibitor of SIV replication as determined by p27 expression and reverse transcriptase assays. Vectors based on a non-pathogenic SFV-1 vector may provide a safe and efficient alternative to currently available vectors, and the SIV model will help devise protocols for effective anti-HIV gene therapy.

  8. Nanoparticle-Mediated Systemic Delivery of siRNA for Treatment of Cancers and Viral Infections

    PubMed Central

    Draz, Mohamed Shehata; Fang, Binbin Amanda; Zhang, Pengfei; Hu, Zhi; Gu, Shenda; Weng, Kevin C.; Gray, Joe W.; Chen, Fanqing Frank

    2014-01-01

    RNA interference (RNAi) is an endogenous post-transcriptional gene regulatory mechanism, where non-coding, double-stranded RNA molecules interfere with the expression of certain genes in order to silence it. Since its discovery, this phenomenon has evolved as powerful technology to diagnose and treat diseases at cellular and molecular levels. With a lot of attention, short interfering RNA (siRNA) therapeutics has brought a great hope for treatment of various undruggable diseases, including genetic diseases, cancer, and resistant viral infections. However, the challenge of their systemic delivery and on how they are integrated to exhibit the desired properties and functions remains a key bottleneck for realizing its full potential. Nanoparticles are currently well known to exhibit a number of unique properties that could be strategically tailored into new advanced siRNA delivery systems. This review summarizes the various nanoparticulate systems developed so far in the literature for systemic delivery of siRNA, which include silica and silicon-based nanoparticles, metal and metal oxides nanoparticles, carbon nanotubes, graphene, dendrimers, polymers, cyclodextrins, lipids, hydrogels, and semiconductor nanocrystals. Challenges and barriers to the delivery of siRNA and the role of different nanoparticles to surmount these challenges are also included in the review. PMID:25057313

  9. Structural studies of the formation of lipoplexes between siRNA and selected bis-imidazolium gemini surfactants.

    PubMed

    Andrzejewska, W; Pietralik, Z; Skupin, M; Kozak, M

    2016-10-01

    Dicationic (gemini) surfactants are agents that can be used for the preparation of stable complexes of nucleic acids, particularly siRNA for therapeutic purposes. In this study, we demonstrated that bis-imidazolium gemini surfactants with variable lengths of dioxyalkyl linker groups (from dioxyethyl to dioxydodecyl) and dodecyl side chains are excellent for the complexation of siRNA. All of these compounds effectively complexed siRNA in a charge ratio range (p/n) of 1.5-10. The low resolution structure of siRNA oligomers was characterised by small angle scattering of synchrotron radiation (SR-SAXS) and ab initio modelling. The structures of the formed complexes were also analysed using SR-SAXS, circular dichroism studies and electrophoretic mobility tests. The most promising agents for complexation with siRNA were the surfactants that contained dioxyethyl and dioxyhexyl spacer groups. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Design of a platform technology for systemic delivery of siRNA to tumours using rolling circle transcription

    NASA Astrophysics Data System (ADS)

    Jang, Mihue; Kim, Jong Hwan; Nam, Hae Yun; Kwon, Ick Chan; Ahn, Hyung Jun

    2015-08-01

    For therapeutic applications of siRNA, there are technical challenges with respect to targeted and systemic delivery. We here report a new siRNA carrier, RNAtr NPs, in a way that multiple tandem copies of RNA hairpins as a result of rolling circle transcription (RCT) can be readily adapted in tumour-targeted and systemic siRNA delivery. RNAtr NPs provide a means of condensing large amounts of multimeric RNA transcripts into the compact nanoparticles, especially without the aid of polycationic agents, and thus reduce the risk of immunogenicity and cytotoxicity by avoiding the use of synthetic polycationic reagents. This strategy allows the design of a platform technology for systemic delivery of siRNA to tumour sites, because RCT reaction, which enzymatically generates RNA polymers in multiple copy numbers at low cost, can lead to directly accessible routes to targeted and systemic delivery. Therefore, RNAtr NPs suggest great potentials as the siRNA therapeutics for cancer treatment.

  11. The antifibrotic effects of TGF-{beta}1 siRNA on hepatic fibrosis in rats

    SciTech Connect

    Lang, Qing; Liu, Qi; Xu, Ning; Qian, Ke-Li; Qi, Jing-Hu; Sun, Yin-Chun; Xiao, Lang; Shi, Xiao-Feng

    2011-06-10

    Highlights: {yields} We constructed CCL4 induced liver fibrosis model successfully. {yields} We proofed that the TGF-{beta}1 siRNA had a definite therapy effect to CCL4 induced liver fibrosis. {yields} The therapy effect of TGF-{beta}1 siRNA had dose-dependent. -- Abstract: Background/aims: Hepatic fibrosis results from the excessive secretion of matrix proteins by hepatic stellate cells (HSCs), which proliferate during fibrotic liver injury. Transforming growth factor (TGF)-{beta}1 is the dominant stimulus for extracellular matrix (ECM) production by stellate cells. Our study was designed to investigate the antifibrotic effects of using short interference RNA (siRNA) to target TGF-{beta}1 in hepatic fibrosis and its mechanism in rats exposed to a high-fat diet and carbon tetrachloride (CCL4). Methods: A total of 40 healthy, male SD (Sprague-Dawley) rats were randomly divided into five even groups containing of eight rats each: normal group, model group, TGF-{beta}1 siRNA 0.125 mg/kg treatment group, TGF-{beta}1 siRNA 0.25 mg/kg treatment group and TGF-{beta}1 siRNA negative control group (0.25 mg/kg). CCL4 and a high-fat diet were used for 8 weeks to induce hepatic fibrosis. All the rats were then sacrificed to collect liver tissue samples. A portion of the liver samples were soaked in formalin for Hematoxylin-Eosin staining, classifying the degree of liver fibrosis, and detecting the expression of type I and III collagen and TGF-{beta}1; the remaining liver samples were stored in liquid nitrogen to be used for detecting TGF-{beta}1 by Western blotting and for measuring the mRNA expression of type I and III collagen and TGF-{beta}1 by quantitative real-time polymerase chain reaction. Results: Comparing the TGF-{beta}1 siRNA 0.25 mg/kg treatment group to the model group, the TGF-{beta}1 siRNA negative control group and the TGF-{beta}1 siRNA 0.125 mg/kg treatment group showed significantly reduced levels of pathological changes, protein expression and the m

  12. Chlorine Abundances in Cool Stars

    NASA Astrophysics Data System (ADS)

    Maas, Zachary; Pilachowski, Catherine A.

    2016-01-01

    We measured the chlorine abundance in 15 evolved giants and one M dwarf in the solar neighborhood. High resolution L-Band spectra were obtained using the Phoenix infrared spectrometer on the Kitt Peak National Observatory Mayall 4m telescope. Chlorine is thought to be primarily produced in explosive oxygen burning but stellar chlorine abundances are virtually unknown. We measured the 35Cl abundance from an HCl feature at 3.69 microns.Analysis of our full sample of giants and dwarfs found the HCl feature is only present in stars with temperatures below 3900K. The [Cl/Fe] abundances in stars with solar metallicity matches the abundance seen in the Sun. Measurements of the [Cl/O] ratio in our sample stars is also consistent with [Cl/O] ratios found in planetary nebulae and H II regions. Our measured abundances are all within one standard deviation, 0.3 dex on average, and are consistent with current chemical evolution models for chlorine in the solar neighborhood. A slight decrease in [Cl/Fe] abundance as [Fe/H] increases may be present and must be verified with future Cl abundances measurements in lower metallicity stars. The average [Cl/Fe] ratio in our sample is -0.07 with a standard deviation of 0.13. An upper limit to the 37Cl isotope abundance in the star RZ Ari, measured from a feature at 3.70 microns, puts a lower limit of 2.5 on the Cl 35/37 isotope ratio for this star. This ratio is consistent with the solar system value of 35/37=3.11.

  13. Effective Non-Viral Delivery of siRNA to Acute Myeloid Leukemia Cells with Lipid-Substituted Polyethylenimines

    PubMed Central

    Landry, Breanne; Aliabadi, Hamidreza Montazeri; Samuel, Anuja; Gül-Uludağ, Hilal; Jiang, Xiaoyan; Kutsch, Olaf; Uludağ, Hasan

    2012-01-01

    Use of small interfering RNA (siRNA) is a promising approach for AML treatment as the siRNA molecule can be designed to specifically target proteins that contribute to aberrant cell proliferation in this disease. However, a clinical-relevant means of delivering siRNA molecules must be developed, as the cellular delivery of siRNA is problematic. Here, we report amphiphilic carriers combining a cationic polymer (2 kDa polyethyleneimine, PEI2) with lipophilic moieties to facilitate intracellular delivery of siRNA to AML cell lines. Complete binding of siRNA by the designed carriers was achieved at a polymer:siRNA ratio of ∼0.5 and led to siRNA/polymer complexes of ∼100 nm size. While the native PEI2 did not display cytotoxicity on AML cell lines THP-1, KG-1 and HL-60, lipid-modification on PEI2 slightly increased the cytotoxicity, which was consistent with increased interaction of polymers with cell membranes. Cellular delivery of siRNA was dependent on the nature of lipid substituent and the extent of lipid substitution, and varied among the three AML cell lines used. Linoleic acid-substituted polymers performed best among the prepared polymers and gave a siRNA delivery equivalent to better performing commercial reagents. Using THP-1 cells and a reporter (GFP) and an endogenous (CXCR4) target, effective silencing of the chosen targets was achieved with 25 to 50 nM of siRNA concentrations, and without adversely affecting subsequent cell growth. We conclude that lipid-substituted PEI2 can serve as an effective delivery of siRNA to leukemic cells and could be employed in molecular therapy of leukemia. PMID:22952927

  14. Development of a novel endosomolytic diblock copolymer for siRNA delivery

    PubMed Central

    Convertine, Anthony J.; Benoit, Danielle S.W.; Duvall, Craig L.; Hoffman, Allan S.; Stayton, Patrick S.

    2011-01-01

    The gene knockdown activity of small interfering RNA (siRNA) has led to their use as target validation tools and as potential therapeutics for a variety of diseases. The delivery of these double-stranded RNA macromolecules has proven to be challenging, however, and in many cases, is a barrier to their deployment. Here we report the development of a new diblock copolymer family that was designed to enhance the systemic and intracellular delivery of siRNA. These diblock copolymers were synthesized using the controlled reversible addition fragmentation chain transfer polymerization (RAFT) method and are composed of a positively-charged block of dimethylaminoethyl methacrylate (DMAEMA) to mediate siRNA condensation, and a second endosomal-releasing block composed of DMAEMA and propylacrylic acid (PAA) in roughly equimolar ratios, together with butyl methacylate (BMA). A related series of diblock compositions were characterized, with the cationic block kept constant, and with the ratio of DMAEMA and PAA to BMA varied. These carriers became sharply hemolytic at endosomal pH regimes, with increasing hemolytic activity seen as the percentage of BMA in the second block was systematically increased. The diblock copolymers condensed siRNA into 80–250 nm particles with slightly positive Zeta potentials. SiRNA-mediated knockdown of a model protein, namely glyceraldehyde 3-phosphate dehydrogenase (GAPDH), in HeLa cells generally followed the hemolytic activity trends, with the most hydrophobic second block (highest BMA content) exhibiting the best knockdown. This pH-responsive carrier designed to mediate endosomal release shows significant promise for the intracellular delivery of siRNA. PMID:18973780

  15. A mPEG-PLGA-b-PLL copolymer carrier for adriamycin and siRNA delivery.

    PubMed

    Liu, Peifeng; Yu, Hui; Sun, Ying; Zhu, Mingjie; Duan, Yourong

    2012-06-01

    A amphiphilic block copolymer composed of conventional monomethoxy (polyethylene glycol)-poly (d,l-lactide-co-glycolide)-poly (l-lysine) (mPEG-PLGA-b-PLL) was synthesized. The chemical structure of this copolymer and its precursors was confirmed by Fourier Transform Infrared Spectroscopy (FTIR), (1)H Nuclear Magnetic Resonance ((1)H NMR) and Gel Permeation Chromatography (GPC). The copolymer was used to prepare nanoparticles (NPs) that were then loaded with either the anti-cancer drug adriamycin or small interfering RNA-negative (siRNA) using a double emulsion method. MTT assays used to study the in vitro cytotoxicity of mPEG-PLGA-b-PLL NPs showed that these particles were not toxic in huh-7 hepatic carcinoma cells. Confocal laser scanning microscopy (CLSM) and flow cytometer analysis results demonstrated efficient mPEG-PLGA-b-PLL NPs-mediated delivery of both adriamycin and siRNA into the cells. In vivo the targeting delivery of adriamycin or siRNA mediated by mPEG-PLGA-b-PLL NPs in the huh-7 hepatic carcinoma-bearing mice was evaluated using a fluorescence imaging system. The targeting delivery results and froze section analysis confirmed that drug or siRNA is deliver to tumor more efficiently by mPEG-PLGA-b-PLL NPs than free drug or Lipofectamine™2000. The high efficiency delivery of mPEG-PLGA-b-PLL NPs mainly due to the enhancement of cellular uptake. These results imply that mPEG-PLGA-b-PLL NPs have a great potential to be used as an effective carriers for adriamycin or siRNA. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  16. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles

    PubMed Central

    Davis, Mark E.; Zuckerman, Jonathan E.; Choi, Chung Hang J.; Seligson, David; Tolcher, Anthony; Alabi, Christopher A.; Yen, Yun; Heidel, Jeremy D.; Ribas, Antoni

    2010-01-01

    Therapeutics that are designed to engage RNA interference (RNAi) pathways have the potential to provide new, major ways of imparting therapy to patients.1,2 Fire et al. first demonstrated that long, double stranded RNAs mediate RNAi in Caenorhabditis elegans,3 and Elbashir et al. opened the pathway to the use of RNAi for human therapy by showing that small interfering RNAs (siRNAs: ca. 21 base pair double stranded RNA) can elicit RNAi in mammalian cells without producing an interferon response.4 We are currently conducting the first-in-human Phase I clinical trial involving the systemic administration of siRNA to patients with solid cancers using a targeted, nanoparticle delivery system. Here we provide evidence of inducing an RNAi mechanism of action in a human from the delivered siRNA. Tumor biopsies from melanoma patients obtained after treatment reveal: (i) the presence of intracellularly-localized nanoparticles in amounts that correlate with dose levels of the nanoparticles administered (this is a first for systemically delivered nanoparticles of any kind), and (ii) reduction in both the specific mRNA (M2 subunit of ribonucleotide reductase (RRM2)) and the protein (RRM2) when compared to pre-dosing tissue. Most importantly, we detect the presence of an mRNA fragment that demonstrates siRNA mediated mRNA cleavage occurs specifically at the site predicted for an RNAi mechanism from a patient who received the highest dose of the nanoparticles. These data when taken in total demonstrate that siRNA administered systemically to a human can produce a specific gene inhibition (reduction in mRNA and protein) by an RNAi mechanism of action. PMID:20305636

  17. Rolling circle transcription-based polymeric siRNA nanoparticles for tumor-targeted delivery.

    PubMed

    Lee, Jae Hyeop; Ku, Sook Hee; Kim, Min Ju; Lee, So Jin; Kim, Hyun Cheol; Kim, Kwangmeyung; Kim, Sun Hwa; Kwon, Ick Chan

    2017-10-10

    RNA, one of the major biological macromolecules, has been considered as an attractive building material for bottom-up fabrication of nanostructures in the past few decades due to advancements in RNA biology, RNA chemistry and RNA nanotechnology. Most recently, an isothermal enzymatic nucleic acid amplification method termed rolling circle transcription (RCT), which achieves a large-scale synthesis of RNA nanostructures, has emerged as one of fascinating techniques for RNAi-based therapies. Herein, we proposed a newly designed RCT method for synthesis of polymeric siRNA nanoflower, referred to 'RCT and annealing-generated polymeric siRNA (RAPSI)': (1) Amplification of the antisense strand of siRNA via RCT process and (2) annealing of chimeric sense strand containing 3'-terminal DNA nucleotides that provide enzyme cleavage sites. To verify its potentials in RNAi-based cancer therapy, the newly designed RAPSI nanoflower was further complexed with glycol chitosan (GC) derivatives, and systemically delivered to PC-3 xenograft tumors. The resultant RAPSI nanoparticles exhibited the improved particle stability against polyanion competition or nuclease attack. When the RAPSI nanoparticles reached to the cytoplasmic region, active mono siRNA was liberated and significantly down-regulated the expression of target VEGF gene in PC-3 cells. Excellent tumor-homing efficacy and anti-tumor effects of the RAPSI nanoparticles were further demonstrated. Overall, the proposed RCT-based polymeric siRNA nanoflower formulation can provide a new platform technology that allows further functional modifications via an advanced annealing method for systemic cancer RNAi therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Li-7 abundances in halo stars: Testing stellar evolution models and the primordial Li-7 abundance

    NASA Technical Reports Server (NTRS)

    Chaboyer, Brian; Demarque, P.

    1994-01-01

    A large number of stellar evolution models with (Fe/H) = -2.3 and -3.3 have been calculated in order to determine the primordial Li-7 abundance and to test current stellar evolution models by a comparison to the extensive database of accurate Li abundances in extremely metal-poor halo stars observed by Thorburn (1994). Standard models with gray atmospheres do a very good job of fitting the observed Li abundances in stars hotter than approximately 5600 K. They predict a primordial. Li-7 abundance of log N(Li) = 2.24 +/- 0.03. Models which include microscopic diffusion predict a downward curvature in the Li-7 destruction isochrones at hot temperatures which is not present in the observations. Thus, the observations clearly rule out models which include uninhibited microscopic diffusion of Li-7 from the surface of the star. Rotational mixing inhibits the microscopic diffusion and the (Fe/H) = -2.28 stellar models which include both diffusion and rotational mixing provide an excellent match to the mean trend in T(sub eff) which is present in the observations. Both the plateau stars and the heavily depleted cool stars are well fit by these models. The rotational mixing leads to considerable Li-7 depletion in these models and the primordial Li-7 abundance inferred from these models is log N(Li) = 3.08 +/- 0.1. However, the (Fe/H) = -3.28 isochrones reveal problems with the combined models. These isochrones predict a trend of decreasing log N(Li) with increasing T(sub eff) which is not present in the observations. Possible causes for this discrepancy are discussed.

  19. Li-7 abundances in halo stars: Testing stellar evolution models and the primordial Li-7 abundance

    NASA Technical Reports Server (NTRS)

    Chaboyer, Brian; Demarque, P.

    1994-01-01

    A large number of stellar evolution models with (Fe/H) = -2.3 and -3.3 have been calculated in order to determine the primordial Li-7 abundance and to test current stellar evolution models by a comparison to the extensive database of accurate Li abundances in extremely metal-poor halo stars observed by Thorburn (1994). Standard models with gray atmospheres do a very good job of fitting the observed Li abundances in stars hotter than approximately 5600 K. They predict a primordial. Li-7 abundance of log N(Li) = 2.24 +/- 0.03. Models which include microscopic diffusion predict a downward curvature in the Li-7 destruction isochrones at hot temperatures which is not present in the observations. Thus, the observations clearly rule out models which include uninhibited microscopic diffusion of Li-7 from the surface of the star. Rotational mixing inhibits the microscopic diffusion and the (Fe/H) = -2.28 stellar models which include both diffusion and rotational mixing provide an excellent match to the mean trend in T(sub eff) which is present in the observations. Both the plateau stars and the heavily depleted cool stars are well fit by these models. The rotational mixing leads to considerable Li-7 depletion in these models and the primordial Li-7 abundance inferred from these models is log N(Li) = 3.08 +/- 0.1. However, the (Fe/H) = -3.28 isochrones reveal problems with the combined models. These isochrones predict a trend of decreasing log N(Li) with increasing T(sub eff) which is not present in the observations. Possible causes for this discrepancy are discussed.

  20. The boron abundance of Procyon

    NASA Astrophysics Data System (ADS)

    Lemke, Michael; Lambert, David L.; Edvardsson, Bengt

    1993-05-01

    The B I 2496.8 A resonance line and HST/GHRS echelle spectra are used with model atmospheres and synthetic spectra to derive the B abundance of the F dwarfs Procyon (Alpha Canis Minoris), Theta Ursae Majoris, and Iota Pegasi. The B abundance of Theta UMa and Iota Peg is similar to that derived by Boesgaard and Heacox (1978) from the B II resonance line in spectra of A- and B-type stars. These two dwarfs show normal abundances of Li, Be, and B. Procyon, which is highly depleted in Li and Be, is depleted in B by a factor of at least 3. Comparison of the spectra of Procyon and the halo dwarf HD 140283 shows that the B abundance assigned by Duncan et al. (1992) to three halo dwarfs is not greatly overestimated as a result of contamination of the B I line by an unidentified line.

  1. Ammonia abundances in four comets

    NASA Astrophysics Data System (ADS)

    Wyckoff, S.; Tegler, S. C.; Engel, L.

    1991-02-01

    NH2 emission band strengths were measured in four comets and the NH2 column densities were determined in order to measure the ammonia content of the comets. The mean ammonia/water abundance ratio derived for the four comets is found to be 0.13 + or - 0.06 percent, with no significant variation among the comets. The uniformity of this abundance attests to a remarkable degree of chemical homogeneity over large scales in the comet-forming region of the primordial solar nebula, and contrasts with the CO abundance variations found previously in comets. The N2 and NH3 abundances indicate a condensation temperature in the range 20-160 K, consistent with virtually all comet formation hypotheses.

  2. Ammonia abundances in four comets

    NASA Technical Reports Server (NTRS)

    Wickoff, Susan; Tegler, Stephen C.; Engel, Lisa

    1991-01-01

    NH2 emission band strengths were measured in four comets and the NH2 column densities were determined in order to measure the ammonia content of the comets. The mean ammonia/water abundance ratio derived for the four comets is found to be 0.13 + or - 0.06 percent, with no significant variation among the comets. The uniformity of this abundance attests to a remarkable degree of chemical homogeneity over large scales in the comet-forming region of the primordial solar nebula, and contrasts with the CO abundance variations found previously in comets. The N2 and NH3 abundances indicate a condensation temperature in the range 20-160 K, consistent with virtually all comet formation hypotheses.

  3. The boron abundance of Procyon

    NASA Technical Reports Server (NTRS)

    Lemke, Michael; Lambert, David L.; Edvardsson, Bengt

    1993-01-01

    The B I 2496.8 A resonance line and HST/GHRS echelle spectra are used with model atmospheres and synthetic spectra to derive the B abundance of the F dwarfs Procyon (Alpha Canis Minoris), Theta Ursae Majoris, and Iota Pegasi. The B abundance of Theta UMa and Iota Peg is similar to that derived by Boesgaard and Heacox (1978) from the B II resonance line in spectra of A- and B-type stars. These two dwarfs show normal abundances of Li, Be, and B. Procyon, which is highly depleted in Li and Be, is depleted in B by a factor of at least 3. Comparison of the spectra of Procyon and the halo dwarf HD 140283 shows that the B abundance assigned by Duncan et al. (1992) to three halo dwarfs is not greatly overestimated as a result of contamination of the B I line by an unidentified line.

  4. The boron abundance of Procyon

    NASA Technical Reports Server (NTRS)

    Lemke, Michael; Lambert, David L.; Edvardsson, Bengt

    1993-01-01

    The B I 2496.8 A resonance line and HST/GHRS echelle spectra are used with model atmospheres and synthetic spectra to derive the B abundance of the F dwarfs Procyon (Alpha Canis Minoris), Theta Ursae Majoris, and Iota Pegasi. The B abundance of Theta UMa and Iota Peg is similar to that derived by Boesgaard and Heacox (1978) from the B II resonance line in spectra of A- and B-type stars. These two dwarfs show normal abundances of Li, Be, and B. Procyon, which is highly depleted in Li and Be, is depleted in B by a factor of at least 3. Comparison of the spectra of Procyon and the halo dwarf HD 140283 shows that the B abundance assigned by Duncan et al. (1992) to three halo dwarfs is not greatly overestimated as a result of contamination of the B I line by an unidentified line.

  5. Soft computing model for optimized siRNA design by identifying off target possibilities using artificial neural network model.

    PubMed

    Murali, Reena; John, Philips George; Peter S, David

    2015-05-15

    The ability of small interfering RNA (siRNA) to do posttranscriptional gene regulation by knocking down targeted genes is an important research topic in functional genomics, biomedical research and in cancer therapeutics. Many tools had been developed to design exogenous siRNA with high experimental inhibition. Even though considerable amount of work has been done in designing exogenous siRNA, design of effective siRNA sequences is still a challenging work because the target mRNAs must be selected such that their corresponding siRNAs are likely to be efficient against that target and unlikely to accidentally silence other transcripts due to sequence similarity. In some cases, siRNAs may tolerate mismatches with the target mRNA, but knockdown of genes other than the intended target could make serious consequences. Hence to design siRNAs, two important concepts must be considered: the ability in knocking down target genes and the off target possibility on any nontarget genes. So before doing gene silencing by siRNAs, it is essential to analyze their off target effects in addition to their inhibition efficacy against a particular target. Only a few methods have been developed by considering both efficacy and off target possibility of siRNA against a gene. In this paper we present a new design of neural network model with whole stacking energy (ΔG) that enables to identify the efficacy and off target effect of siRNAs against target genes. The tool lists all siRNAs against a particular target with their inhibition efficacy and number of matches or sequence similarity with other genes in the database. We could achieve an excellent performance of Pearson Correlation Coefficient (R=0. 74) and Area Under Curve (AUC=0.906) when the threshold of whole stacking energy is ≥-34.6 kcal/mol. To the best of the author's knowledge, this is one of the best score while considering the "combined efficacy and off target possibility" of siRNA for silencing a gene. The proposed model

  6. Improvement of cytomegalovirus pp65 DNA vaccine efficacy by co-administration of siRNAs targeting BAK and BAX.

    PubMed

    Liu, Jixiao; Feng, Keke; Zhao, Lu; Luo, Haining; Zhu, Yingjun

    2017-06-01

    The efficacy of DNA vaccines may be improved by small interfering (si)RNA adjuvants targeting pro-apoptotic genes. The aim of the present study was to investigate the capacity of siRNAs targeting B-cell lymphoma 2 homologous antagonist killer (BAK) and B-cell lymphoma 2-associated X protein (BAX) to improve the efficacy of a cytomegalovirus (CMV) vaccine. BALB/c mice were divided into four groups (n=18 in each): unimmunized and immunized with pcDNA 3.1-pp65 expressing CMV 65 kDa matrix phosphoprotein and BAK + BAX siRNAs, pcDNA 3.1-pp65 and control siRNA, or control pcDNA 3.1 and BAK + BAX siRNAs. Immunizations were performed twice with an interval of 3 weeks. CMV-specific mouse splenocyte interferon (IFN)-γ secretion was assessed by ELISPOT; furthermore, an in vivo cytotoxic T lymphocyte assay was performed 2 weeks after the last immunization. After lethal CMV challenge of the mice, body weight, virus titers in the spleens and salivary glands as well as survival were recorded. The amount of splenocytes secreting IFN-γ in response to CMV pp65 peptides and specific lysis of peptide-pulsed target cells were significantly higher in mice administered pcDNA3.1-pp65 and BAK + BAX siRNAs than those in mice administered pcDNA3.1-pp65 and control siRNA (P<0.05 for each). After the virus challenge, the virus titers in the spleens and salivary glands of mice given pcDNA3.1-pp65 and BAK + BAX siRNAs were significantly lower than those in mice immunized with pcDNA3.1-pp65 and control siRNA (P<0.05 for each). Furthermore, mice immunized with pcDNA 3.1-pp65 and control siRNA or BAK + BAX siRNAs survived for longer, and at 21 days after lethal CMV challenge, 66 and 100% of these mice survived, respectively. These mice also experienced less weight loss compared with mice immunized with pcDNA3.1-pp65 and control siRNA (P<0.05). In conclusion, intradermal administration of siRNAs targeting BAK and BAX improved the efficacy of CMV pp65 DNA vaccine.

  7. Delivery of kinesin spindle protein targeting siRNA in solid lipid nanoparticles to cellular models of tumor vasculature

    SciTech Connect

    Ying, Bo; Campbell, Robert B.

    2014-04-04

    Highlights: • siRNA-lipid nanoparticles are solid particles not lipid bilayers with aqueous core. • High, but not low, PEG content can prevent nanoparticle encapsulation of siRNA. • PEG reduces cellular toxicity of cationic nanoparticles in vitro. • PEG reduces zeta potential while improving gene silencing of siRNA nanoparticles. • Kinesin spindle protein can be an effective target for tumor vascular targeting. - Abstract: The ideal siRNA delivery system should selectively deliver the construct to the target cell, avoid enzymatic degradation, and evade uptake by phagocytes. In the present study, we evaluated the importance of polyethylene glycol (PEG) on lipid-based carrier systems for encapsulating, and delivering, siRNA to tumor vessels using cellular models. Lipid nanoparticles containing different percentage of PEG were evaluated based on their physical chemical properties, density compared to water, siRNA encapsulation, toxicity, targeting efficiency and gene silencing in vitro. siRNA can be efficiently loaded into lipid nanoparticles (LNPs) when DOTAP is included in the formulation mixture. However, the total amount encapsulated decreased with increase in PEG content. In the presence of siRNA, the final formulations contained a mixed population of particles based on density. The major population which contains the majority of siRNA exhibited a density of 4% glucose, and the minor fraction associated with a decreased amount of siRNA had a density less than PBS. The inclusion of 10 mol% PEG resulted in a greater amount of siRNA associated with the minor fraction. Finally, when kinesin spindle protein (KSP) siRNA was encapsulated in lipid nanoparticles containing a modest amount of PEG, the proliferation of endothelial cells was inhibited due to the efficient knock down of KSP mRNA. The presence of siRNA resulted in the formation of solid lipid nanoparticles when prepared using the thin film and hydration method. LNPs with a relatively modest amount of

  8. Chlorine Abundances in Cool Stars

    NASA Astrophysics Data System (ADS)

    Maas, Z. G.; Pilachowski, C. A.; Hinkle, K.

    2016-12-01

    Chlorine abundances are reported in 15 evolved giants and 1 M dwarf in the solar neighborhood. The Cl abundance was measured using the vibration-rotation 1-0 P8 line of H35Cl at 3.69851 μm. The high-resolution L-band spectra were observed using the Phoenix infrared spectrometer on the Kitt Peak Mayall 4 m telescope. The average [35Cl/Fe] abundance in stars with -0.72 < [Fe/H] < 0.20 is [35Cl/Fe] = (-0.10 ± 0.15) dex. The mean difference between the [35Cl/Fe] ratios measured in our stars and chemical evolution model values is (0.16 ± 0.15) dex. The [35Cl/Ca] ratio has an offset of ˜0.35 dex above model predictions, suggesting that chemical evolution models are underproducing Cl at the high metallicity range. Abundances of C, N, O, Si, and Ca were also measured in our spectral region and are consistent with F and G dwarfs. The Cl versus O abundances from our sample match Cl abundances measured in planetary nebula and H ii regions. In one star where both H35Cl and H37Cl could be measured, a 35Cl/37Cl isotope ratio of 2.2 ± 0.4 was found, consistent with values found in the Galactic ISM and predicted chemical evolution models.

  9. Element Abundance Determination in Hot Evolved Stars

    NASA Astrophysics Data System (ADS)

    Werner, Klaus

    The hydrogen-deficiency in extremely hot post-AGB stars of spectral class PG1159 is probably caused by a (very) late helium-shell flash or a AGB final thermal pulse that consumes the hydrogen envelope, exposing the usually-hidden intershell region. Thus, the photospheric element abundances of these stars allow us to draw conclusions about details of nuclear burning and mixing processes in the precursor AGB stars. We compare predicted element abundances to those determined by quantitative spectral analyses performed with advanced non-LTE model atmospheres. A good qualitative and quantitative agreement is found for many species (He, C, N, O, Ne, F, Si, Ar) but discrepancies for others (P, S, Fe) point at shortcomings in stellar evolution models for AGB stars. Almost all of the chemical trace elements in these hot stars can only be identified in the UV spectral range. The Far Ultraviolet Spectroscopic Explorer and the Hubble Space Telescope played a crucial role for this research.

  10. Re-examination of siRNA specificity questions role of PICH and Tao1 in the spindle checkpoint and identifies Mad2 as a sensitive target for small RNAs.

    PubMed

    Hübner, Nadja C; Wang, Lily Hui-Ching; Kaulich, Manuel; Descombes, Patrick; Poser, Ina; Nigg, Erich A

    2010-04-01

    The DNA-dependent adenosine triphosphatase (ATPase) Plk1-interacting checkpoint helicase (PICH) has recently been implicated in spindle checkpoint (SAC) signaling (Baumann et al., Cell 128(1):101-114, 2007). Depletion of PICH by siRNA abolished the SAC and resulted in an apparently selective loss of Mad2 from kinetochores, suggesting a role for PICH in the regulation of the Mad1-Mad2 interaction. An apparent rescue of SAC functionality by overexpression of PICH in PICH-depleted cells initially seemed to confirm a role for PICH in the SAC. However, we have subsequently discovered that all PICH-directed siRNA oligonucleotides that abolish the SAC also reduce Mad2 mRNA and protein expression. This reduction is functionally significant, as PICH siRNA does not abolish SAC activity in a cell line that harbors a bacterial artificial chromosome driving the expression of murine Mad2. Moreover, we identified several siRNA duplexes that effectively deplete PICH but do not significantly affect SAC functionality or Mad2 abundance or localization. Finally, we discovered that the ability of overexpressed PICH to restore SAC activity in PICH-depleted cells depends on sequestration of the mitotic kinase Plk1 rather than ATPase activity of PICH, pointing to an underlying mechanism of "bypass suppression." In support of this view, depletion or inhibition of Plk1 also rescued SAC activity in cells harboring low levels of Mad2. This observation suggests that a reduction of Plk1 activity partially compensates for reduced Mad2 levels and argues that Plk1 normally reduces the strength of SAC signaling. Collectively, our results question the role of PICH in the SAC and instead identify Mad2 as a sensitive off target for small RNA duplexes. In support of the latter conclusion, our evidence suggests that an off-target effect on Mad2 may also contribute to explain the apparent role of the Tao1 kinase in SAC signaling.

  11. Upper Extremity Length Equalization

    PubMed Central

    DeCoster, Thomas A.; Ritterbusch, John; Crawford, Mark

    1992-01-01

    Significant upper extremity length inequality is uncommon but can cause major functional problems. The ability to position and use the hand may be impaired by shortness of any of the long bones of the upper extremity. In many respects upper and lower extremity length problems are similar. They most commonly occur after injury to a growing bone and the treatment modalities utilized in the lower extremity may be applied to the upper extremity. These treatment options include epiphysiodesis, shortening osteotomy, angulatory correction osteotomy and lengthening. This report reviews the literature relative to upper extremity length inequality and equalization and presents an algorithm for evaluation and planning appropriate treatment for patients with this condition. This algorithm is illustrated by two clinical cases of posttraumatic shortness of the radius which were effectively treated. ImagesFigure 1Figure 2Figure 3

  12. Gut Microbiota and Extreme Longevity.

    PubMed

    Biagi, Elena; Franceschi, Claudio; Rampelli, Simone; Severgnini, Marco; Ostan, Rita; Turroni, Silvia; Consolandi, Clarissa; Quercia, Sara; Scurti, Maria; Monti, Daniela; Capri, Miriam; Brigidi, Patrizia; Candela, Marco

    2016-06-06

    The study of the extreme limits of human lifespan may allow a better understanding of how human beings can escape, delay, or survive the most frequent age-related causes of morbidity, a peculiarity shown by long-living individuals. Longevity is a complex trait in which genetics, environment, and stochasticity concur to determine the chance to reach 100 or more years of age [1]. Because of its impact on human metabolism and immunology, the gut microbiome has been proposed as a possible determinant of healthy aging [2, 3]. Indeed, the preservation of host-microbes homeostasis can counteract inflammaging [4], intestinal permeability [5], and decline in bone and cognitive health [6, 7]. Aiming at deepening our knowledge on the relationship between the gut microbiota and a long-living host, we provide for the first time the phylogenetic microbiota analysis of semi-supercentenarians, i.e., 105-109 years old, in comparison to adults, elderly, and centenarians, thus reconstructing the longest available human microbiota trajectory along aging. We highlighted the presence of a core microbiota of highly occurring, symbiotic bacterial taxa (mostly belonging to the dominant Ruminococcaceae, Lachnospiraceae, and Bacteroidaceae families), with a cumulative abundance decreasing along with age. Aging is characterized by an increasing abundance of subdominant species, as well as a rearrangement in their co-occurrence network. These features are maintained in longevity and extreme longevity, but peculiarities emerged, especially in semi-supercentenarians, describing changes that, even accommodating opportunistic and allochthonous bacteria, might possibly support health maintenance during aging, such as an enrichment and/or higher prevalence of health-associated groups (e.g., Akkermansia, Bifidobacterium, and Christensenellaceae).

  13. Detailed abundances in EMP dwarfs from SDSS

    NASA Astrophysics Data System (ADS)

    Sbordone, Luca; Caffau, Elisabetta; Bonifacio, Piercarlo

    2012-09-01

    We report on the current status of an ongoing survey to select extremely metal poor (EMP) turn-off (TO) stars from Sloan Digital Sky Survey (SDSS) spectra, and determine their detailed chemical composition through high resolution follow-up. So far, 26 stars have been observed with UVESatVLT and X-SHOOTERatVLT, all but two showing an iron content below [Fe/H]=-3. Among them we detected the current record holder for the lowest total metallicity (SDSS J102915+172927, Z=10-5 Zsolar), four carbon-enhanced extremely metal poor objects (CEMP), as well as subsets with enhanced Ni and Mn. Lithium abundances or upper limits were derived, confirming the previously detected ``meltdown'' of the Spite plateau for metallicities below about [Fe/H]=-2.8. SDSS J102915+172927 in particular shows no detectable Li I 670.8 doublet, leading to an upper limit of A(Li)<1.1, hinting to an even deeper Li depletion in TO stars below [Fe/H]=-4. Spectroscopic follow-up is currently being prosecuted by the recently started ESO large program TOPoS, aiming to observe about 80 more EMP candidates.

  14. Extreme Velocity Wind Sensor

    NASA Technical Reports Server (NTRS)

    Perotti, Jose; Voska, Ned (Technical Monitor)

    2002-01-01

    This presentation provides an overview of the development of new hurricane wind sensor (Extreme Velocity Wind Sensor) for the Kennedy Space Center (KSC) which is designed to withstand winds of up to three hundred miles an hour. The proposed Extreme Velocity Wind Sensor contains no moveable components that would be exposed to extreme wind conditions. Topics covered include: need for new hurricane wind sensor, conceptual design, software applications, computational fluid dynamic simulations of design concept, preliminary performance tests, and project status.

  15. How extreme is extreme hourly precipitation?

    NASA Astrophysics Data System (ADS)

    Papalexiou, Simon Michael; Dialynas, Yannis G.; Pappas, Christoforos

    2016-04-01

    The importance of accurate representation of precipitation at fine time scales (e.g., hourly), directly associated with flash flood events, is crucial in hydrological design and prediction. The upper part of a probability distribution, known as the distribution tail, determines the behavior of extreme events. In general, and loosely speaking, tails can be categorized in two families: the subexponential and the hyperexponential family, with the first generating more intense and more frequent extremes compared to the latter. In past studies, the focus has been mainly on daily precipitation, with the Gamma distribution being the most popular model. Here, we investigate the behaviour of tails of hourly precipitation by comparing the upper part of empirical distributions of thousands of records with three general types of tails corresponding to the Pareto, Lognormal, and Weibull distributions. Specifically, we use thousands of hourly rainfall records from all over the USA. The analysis indicates that heavier-tailed distributions describe better the observed hourly rainfall extremes in comparison to lighter tails. Traditional representations of the marginal distribution of hourly rainfall may significantly deviate from observed behaviours of extremes, with direct implications on hydroclimatic variables modelling and engineering design.

  16. 21st Birthday Drinking: Extremely Extreme

    ERIC Educational Resources Information Center

    Rutledge, Patricia C.; Park, Aesoon; Sher, Kenneth J.

    2008-01-01

    Despite public recognition of the hazards of 21st birthday drinking, there is little empirical information concerning its prevalence, severity, and risk factors. Data from a sample of 2,518 college students suggest that 21st birthday drinking poses an extreme danger: (a) 4 of every 5 participants (83%) reported drinking to celebrate, (b) birthday…

  17. 21st Birthday Drinking: Extremely Extreme

    ERIC Educational Resources Information Center

    Rutledge, Patricia C.; Park, Aesoon; Sher, Kenneth J.

    2008-01-01

    Despite public recognition of the hazards of 21st birthday drinking, there is little empirical information concerning its prevalence, severity, and risk factors. Data from a sample of 2,518 college students suggest that 21st birthday drinking poses an extreme danger: (a) 4 of every 5 participants (83%) reported drinking to celebrate, (b) birthday…

  18. Noninvasive Drug Delivery Using Ultrasound: Targeting Melanoma Using siRNA Against Mutant (V600E) B-Raf

    NASA Astrophysics Data System (ADS)

    Tran, Melissa A.; Gowda, Raghavendra; Park, Eun-Joo; Adair, James; Smith, Nadine; Kester, Mark; Robertson, Gavin P.

    2009-04-01

    Melanoma is the most deadly form of skin cancer. Currently early surgical removal is the best treatment option for melanoma patients with little hope of successful treatment of late stage melanoma. Clearly new treatment options must be explored. Topical administration of drugs provides the advantage of being able to apply large quantities of drug in close proximity to the tumor without the issue of systemic side effects. However, the natural barrier formed by the skin must first be overcome for topical treatment to become a viable option. With this in mind we have sought to use low-frequency ultrasound to transiently permeabilize the stratum corneum and successfully deliver liposomal siRNA to melanoma cells residing at the basement membrane. B-Raf is one of the most frequently activated genes in melanoma, making it an ideal candidate for targeting via siRNA. The novel liposomes used in this study load siRNA, protect if from the outside environment and lead to knockdown of target message. Combining ultrasound with liposomal siRNA we show that siRNA can be delivered into melanoma cells. Additionally, we show that siRNA to mutant B-Raf can effectively inhibit melanoma growth in reconstructs and in mice by 60% and 30% respectively. Therefore, ultrasound with liposomal siRNA is a potentially valuable treatment option for melanoma patients.

  19. In Silico, In Vitro, and In Vivo Studies Indicate the Potential Use of Bolaamphiphiles for Therapeutic siRNAs Delivery

    PubMed Central

    Kim, Taejin; Afonin, Kirill A.; Viard, Mathias; Koyfman, Alexey Y; Sparks, Selene; Heldman, Eliahu; Grinberg, Sarina; Linder, Charles; Blumenthal, Robert P; Shapiro, Bruce A

    2013-01-01

    Specific small interfering RNAs (siRNAs) designed to silence different oncogenic pathways can be used for cancer therapy. However, non-modified naked siRNAs have short half-lives in blood serum and encounter difficulties in crossing biological membranes due to their negative charge. These obstacles can be overcome by using siRNAs complexed with bolaamphiphiles, consisting of two positively charged head groups that flank an internal hydrophobic chain. Bolaamphiphiles have relatively low toxicities, long persistence in the blood stream, and most importantly, in aqueous conditions can form poly-cationic micelles thus, becoming amenable to association with siRNAs. Herein, two different bolaamphiphiles with acetylcholine head groups attached to an alkyl chain in two distinct configurations are compared for their abilities to complex with siRNAs and deliver them into cells inducing gene silencing. Our explicit solvent molecular dynamics (MD) simulations showed that bolaamphiphiles associate with siRNAs due to electrostatic, hydrogen bonding, and hydrophobic interactions. These in silico studies are supported by various in vitro and in cell culture experimental techniques as well as by some in vivo studies. Results demonstrate that depending on the application, the extent of siRNA chemical protection, delivery efficiency, and further intracellular release can be varied by simply changing the type of bolaamphiphile used. PMID:23511334

  20. Hybrid pulmonary surfactant-coated nanogels mediate efficient in vivo delivery of siRNA to murine alveolar macrophages.

    PubMed

    De Backer, Lynn; Naessens, Thomas; De Koker, Stefaan; Zagato, Elisa; Demeester, Jo; Grooten, Johan; De Smedt, Stefaan C; Raemdonck, Koen

    2015-11-10

    The local delivery of small interfering RNA (siRNA) to the lungs may provide a therapeutic solution to a range of pulmonary disorders. Resident alveolar macrophages (rAM) in the bronchoalveolar lumen play a critical role in lung inflammatory responses and therefore constitute a particularly attractive target for siRNA therapeutics. However, achieving efficient gene silencing in the lung while avoiding pulmonary toxicity requires appropriate formulation of siRNA in functional nanocarriers. In this study, we evaluated pulmonary surfactant-coated dextran nanogels for the delivery of siRNA to rAM upon pharyngeal aspiration in BALB/c mice. Both the surfactant-coated and uncoated nanogels achieved high levels of siRNA uptake in rAM, yet only the surfactant-coated formulation could significantly reduce gene expression on the protein level. Surfactant-coated nanogels induced a profound downregulation of target mRNA levels, reaching 70% knockdown with ~1mgkg(-1) siRNA dose. In addition, only mild acute pro-inflammatory cytokine and chemokine responses were detected one day after nanoparticle aspiration, accompanied by a moderate neutrophil infiltration in the bronchoalveolar lumen. The latter could be substantially reduced by removal of excess surfactant from the formulation. Overall, our hybrid core-shell nanoparticles have demonstrated safe and effective siRNA delivery to rAM, providing a new therapeutic approach for treatment of inflammatory pathologies in the lung. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Intranasal brain delivery of cationic nanoemulsion-encapsulated TNFα siRNA in prevention of experimental neuroinflammation.

    PubMed

    Yadav, Sunita; Gandham, Srujan K; Panicucci, Riccardo; Amiji, Mansoor M

    2016-05-01

    Neuroinflammation is a hallmark of acute and chronic neurodegenerative disorders. The main aim of this study was to evaluate the therapeutic efficacy of intranasal cationic nanoemulsion encapsulating an anti-TNFα siRNA, for potential anti-inflammatory therapy. TNFα siRNA nanoemulsions were prepared and characterized for particle size, surface charge, morphology, and stability and encapsulation efficiency. Qualitative and quantitative intracellular uptake studies by confocal imaging and flow cytometry, respectively, showed higher uptake compared to Lipofectamine® transfected siRNA. Nanoemulsion significantly lowered TNFα levels in LPS-stimulated cells. Upon intranasal delivery of cationic nanoemulsions almost 5 fold higher uptake was observed in the rat brain compared to non-encapsulated siRNA. More importantly, intranasal delivery of TNFα siRNA nanoemulsions in vivo markedly reduced the unregulated levels of TNFα in an LPS-induced model of neuroinflammation. These results indicate that intranasal delivery of cationic nanoemulsions encapsulating TNFα siRNA offered an efficient means of gene knockdown and this approach has significant potential in prevention of neuroinflammation. Neuroinflammation is often seen in patients with neurodegenerative disorders and tumor necrosis factor-alpha (TNFα) plays a significant role in contributing to neuronal dysfunction. As a result, inhibition of TNFα may alleviate disease severity. In this article, the authors investigated using a cationic nanoemulsion system carrying TNFα siRNA intra-nasally to protect against neuroinflammation. This new method may provide a future approach in this clinical setting. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Circular RNAs are abundant, conserved, and associated with ALU repeats

    PubMed Central

    Jeck, William R.; Sorrentino, Jessica A.; Wang, Kai; Slevin, Michael K.; Burd, Christin E.; Liu, Jinze; Marzluff, William F.; Sharpless, Norman E.

    2013-01-01

    Circular RNAs composed of exonic sequence have been described in a small number of genes. Thought to result from splicing errors, circular RNA species possess no known function. To delineate the universe of endogenous circular RNAs, we performed high-throughput sequencing (RNA-seq) of libraries prepared from ribosome-depleted RNA with or without digestion with the RNA exonuclease, RNase R. We identified >25,000 distinct RNA species in human fibroblasts that contained non-colinear exons (a “backsplice”) and were reproducibly enriched by exonuclease degradation of linear RNA. These RNAs were validated as circular RNA (ecircRNA), rather than linear RNA, and were more stable than associated linear mRNAs in vivo. In some cases, the abundance of circular molecules exceeded that of associated linear mRNA by >10-fold. By conservative estimate, we identified ecircRNAs from 14.4% of actively transcribed genes in human fibroblasts. Application of this method to murine testis RNA identified 69 ecircRNAs in precisely orthologous locations to human circular RNAs. Of note, paralogous kinases HIPK2 and HIPK3 produce abundant ecircRNA from their second exon in both humans and mice. Though HIPK3 circular RNAs contain an AUG translation start, it and other ecircRNAs were not bound to ribosomes. Circular RNAs could be degraded by siRNAs and, therefore, may act as competing endogenous RNAs. Bioinformatic analysis revealed shared features of circularized exons, including long bordering introns that contained complementary ALU repeats. These data show that ecircRNAs are abundant, stable, conserved and nonrandom products of RNA splicing that could be involved in control of gene expression. PMID:23249747

  3. Cheminformatics Approach to Gene Silencing: Z Descriptors of Nucleotides and SVM Regression Afford Predictive Models for siRNA Potency.

    PubMed

    Ebalunode, Jerry O; Zheng, Weifan

    2010-12-17

    Short interfering RNA mediated gene silencing technology has been through tremendous development over the past decade, and has found broad applications in both basic biomedical research and pharmaceutical development. Critical to the effective use of this technology is the development of reliable algorithms to predict the potency and selectivity of siRNAs under study. Existing algorithms are mostly built upon sequence information of siRNAs and then employ statistical pattern recognition or machine learning techniques to derive rules or models. However, sequence-based features have limited ability to characterize siRNAs, especially chemically modified ones. In this study, we proposed a cheminformatics approach to describe siRNAs. Principal component scores (z1, z2, z3, z4) have been derived for each of the 5 nucleotides (A, U, G, C, T) from the descriptor matrix computed by the MOE program. Descriptors of a given siRNA sequence are simply the concatenation of the z values of its composing nucleotides. Thus, for each of the 2431 siRNA sequences in the Huesken dataset, 76 descriptors were generated for the 19-NT representation, and 84 descriptors were generated for the 21-NT representation of siRNAs. Support Vector Machine regression (SVMR) was employed to develop predictive models. In all cases, the models achieved Pearson correlation coefficient r and R about 0.84 and 0.65 for the training sets and test sets, respectively. A minimum of 25 % of the whole dataset was needed to obtain predictive models that could accurately predict 75 % of the remaining siRNAs. Thus, for the first time, a cheminformatics approach has been developed to successfully model the structure-potency relationship in siRNA-based gene silencing data, which has laid a solid foundation for quantitative modeling of chemically modified siRNAs.

  4. Single-step assembly of cationic lipid-polymer hybrid nanoparticles for systemic delivery of siRNA.

    PubMed

    Yang, Xian-Zhu; Dou, Shuang; Wang, Yu-Cai; Long, Hong-Yan; Xiong, Meng-Hua; Mao, Cheng-Qiong; Yao, Yan-Dan; Wang, Jun

    2012-06-26

    The clinical success of therapeutics of small interfering RNA (siRNA) is still hindered by its delivery systems. Cationic polymer or lipid-based vehicles as the major delivery systems of siRNA cannot sufficiently satisfy siRNA therapeutic applications. It is hypothesized that cationic lipid-polymer hybrid nanoparticles may take advantage of both