Science.gov

Sample records for extremely abundant sirnas

  1. LITHIUM ABUNDANCES OF EXTREMELY METAL-POOR TURNOFF STARS

    SciTech Connect

    Aoki, Wako; Inoue, Susumu; Barklem, Paul S.; Beers, Timothy C.; Christlieb, Norbert; Perez, Ana E. GarcIa; Norris, John E.; Carollo, Daniela E-mail: Paul.Barklem@physics.uu.se E-mail: N.Christlieb@lsw.uni-heidelberg.de E-mail: jen@mso.anu.edu.au E-mail: inoue@tap.scphys.kyoto-u.ac.jp

    2009-06-20

    We have determined Li abundances for eleven metal-poor turnoff stars, among which eight have [Fe/H] <-3, based on LTE analyses of high-resolution spectra obtained with the High Dispersion Spectrograph on the Subaru Telescope. The Li abundances for four of these eight stars are determined for the first time by this study. Effective temperatures are determined by a profile analysis of H{alpha} and H{beta}. While seven stars have Li abundances as high as the Spite Plateau value, the remaining four objects with [Fe/H] <-3 have A(Li) =log (Li/H)+ 12 {approx}< 2.0, confirming the existence of extremely metal-poor (EMP) turnoff stars having low Li abundances, as reported by previous work. The average of the Li abundances for stars with [Fe/H]<-3 is lower by 0.2 dex than that of the stars with higher metallicity. No clear constraint on the metallicity dependence or scatter of the Li abundances is derived from our measurements for the stars with [Fe/H]<-3. Correlations of the Li abundance with effective temperatures, with abundances of Na, Mg, and Sr, and with the kinematical properties are investigated, but no clear correlation is seen in the EMP star sample.

  2. Genome-wide identification of endogenous RNA-directed DNA methylation loci associated with abundant 21-nucleotide siRNAs in Arabidopsis

    PubMed Central

    Zhao, Jian-Hua; Fang, Yuan-Yuan; Duan, Cheng-Guo; Fang, Rong-Xiang; Ding, Shou-Wei; Guo, Hui-Shan

    2016-01-01

    In Arabidopsis, the 24-nucleotide (nt) small interfering RNAs (siRNAs) mediates RNA-directed DNA methylation (RdDM) and transcriptional gene silencing (TGS) of transposable elements (TEs). In the present study, we examined genome-wide changes in DNA methylation and siRNA accumulation in Arabidopsis induced by expression of the Cucumber mosaic virus silencing suppressor protein 2b known to directly bind to both the 21/24-nt siRNAs as well as their associated Argonaute proteins. We demonstrated a genome-wide reduction of CHH and CHG methylation in the 2b-transgenic plants. We found that 2b suppressed RdDM not only at the previously annotated loci directed by 24-nt siRNAs but also a new set of loci associated with 21/22-nt siRNAs. Further analysis showed that the reduced methylation of TEs and coding genes targeted by 21/22-nt siRNAs was associated with sequestration of the duplex siRNAs by the 2b protein but not with changes in either siRNA production or transcription. Notably, we detected both the deletion and/or the transposition of multicopy TEs associated with 2b-induced hypomethylation, suggesting potential TE reactivation. We propose that the silencing of many TEs in Arabidopsis is controlled by the 24- and 21-nt endogenous siRNAs analogous to Drosophila TE silencing by PIWI-interacting RNAs and siRNAs. PMID:27786269

  3. Lithium abundance in a turnoff halo star on an extreme orbit

    NASA Astrophysics Data System (ADS)

    Spite, M.; Spite, F.; Caffau, E.; Bonifacio, P.

    2015-10-01

    Context. The lithium abundance in turnoff stars of the old population of our Galaxy is remarkably constant in the metallicity interval -2.8 < [Fe/H] < -2.0, defining a plateau. The Li abundance of these turnoff stars is clearly lower than the abundance predicted by the primordial nucleosynthesis in the frame of the standard Big Bang nucleosynthesis. Different scenarios have been proposed for explaining this discrepancy, along with the very low scatter of the lithium abundance around the plateau. Aims: The recently identified very high velocity star, WISE J0725-2351 appears to belong to the old Galactic population, and appears to be an extreme halo star on a bound, retrograde Galactic orbit. In this paper, we study the abundance ratios and, in particular the lithium abundance, in this star. Methods: The available spectra (ESO-Very Large Telescope) are analyzed and the abundances of Li, C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni, Sr and Ba are determined. Results: The abundance ratios in WISE J0725-2351 are those typical of old turnoff stars. The lithium abundance in this star is in close agreement with the lithium abundance found in the metal-poor turnoff stars located at moderate distance from the Sun. This high velocity star confirms, in an extreme case, that the very small scatter of the lithium plateau persists independent of the dynamic and kinematic properties of the stars. Based on observations obtained at the ESO Paranal Observatory, Chile Programmes 093.D-0127, PI: S. Geier and 189.B-0925, PI: S. Trager.Table 2 (line by line abundances of the elements) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/582/A74

  4. Distribution, abundance and diversity of the extremely halophilic bacterium Salinibacter ruber

    PubMed Central

    Antón, Josefa; Peña, Arantxa; Santos, Fernando; Martínez-García, Manuel; Schmitt-Kopplin, Philippe; Rosselló-Mora, Ramon

    2008-01-01

    Since its discovery in 1998, representatives of the extremely halophilic bacterium Salinibacter ruber have been found in many hypersaline environments across the world, including coastal and solar salterns and solar lakes. Here, we review the available information about the distribution, abundance and diversity of this member of the Bacteroidetes. PMID:18957079

  5. First high-precision differential abundance analysis of extremely metal-poor stars

    NASA Astrophysics Data System (ADS)

    Reggiani, Henrique; Meléndez, Jorge; Yong, David; Ramírez, Ivan; Asplund, Martin

    2016-02-01

    Context. Studies of extremely metal-poor stars indicate that chemical abundance ratios [X/Fe] have a root mean square scatter as low as 0.05 dex (12%). It remains unclear whether this reflects observational uncertainties or intrinsic astrophysical scatter arising from physical conditions in the interstellar medium at early times. Aims: We measure differential chemical abundance ratios in extremely metal-poor stars to investigate the limits of precision and to understand whether cosmic scatter or observational errors are dominant. Methods: We used high-resolution (R ~ 95 000) and high signal-to-noise (S/N = 700 at 5000 Å) HIRES/Keck spectra to determine high-precision differential abundances between two extremely metal-poor stars through a line-by-line differential approach. We determined stellar parameters for the star G64-37 with respect to the standard star G64-12. We performed EW measurements for the two stars for the lines recognized in both stars and performed spectral synthesis to study the carbon abundances. Results: The differential approach allowed us to obtain errors of σ(Teff) = 27 K, σ(log g) = 0.06 dex, σ( [Fe/H] ) = 0.02 dex and σ(vt) = 0.06 km s-1. We estimated relative chemical abundances with a precision as low as σ([X/Fe]) ≈ 0.01 dex. The small uncertainties demonstrate that there are genuine abundance differences larger than the measurement errors. The observed Li difference cannot be explained by the difference in mass because the less massive star has more Li. Conclusions: It is possible to achieve an abundance precision around ≈ 0.01-0.05 dex for extremely metal-poor stars, which opens new windows on the study of the early chemical evolution of the Galaxy. Table A.1 is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A67

  6. Evidence for a dispersion in the lithium abundances of extreme halo stars

    NASA Technical Reports Server (NTRS)

    Deliyannis, Constantine P.; Pinsonneault, M. H.; Duncan, Douglas K.

    1993-01-01

    Evidence is presented to the effect that there exists a small dispersion in the lithium abundances of extreme halo dwarfs. This dispersion cannot be accounted for by standard stellar models alone, particularly toward the turnoff, and would thus require early differential Galactic Li enrichment, perhaps independent of metallicity. The magnitude of the dispersion is also consistent with the predictions of evolutionary models of halo stars with rotation, which do not require, but do not rule out either, early Galactic enrichment. These rotational models also predict a significant depletion in the lithium abundance during the stars' lifetime. The rotational models predict that stars which formed with very low initial angular momentum will have lithium abundances measurably above the plateau.

  7. NEON AND CNO ABUNDANCES FOR EXTREME HELIUM STARS-A NON-LTE ANALYSIS

    SciTech Connect

    Pandey, Gajendra; Lambert, David L. E-mail: dll@astro.as.utexas.edu

    2011-02-01

    A non-LTE (NLTE) abundance analysis was carried out for three extreme helium stars (EHes): BD+10{sup 0} 2179, BD-9{sup 0} 4395, and LS IV+6{sup 0} 002, from their optical spectra with NLTE model atmospheres. NLTE TLUSTY model atmospheres were computed with H, He, C, N, O, and Ne treated in NLTE. Model atmosphere parameters were chosen from consideration of fits to observed He I line profiles and ionization equilibria of C and N ions. The program SYNSPEC was then used to determine the NLTE abundances for Ne as well as H, He, C, N, and O. LTE neon abundances from Ne I lines in the EHes: LSE 78, V1920 Cyg, HD 124448, and PV Tel, are derived from published models and an estimate of the NLTE correction applied to obtain the NLTE Ne abundance. We show that the derived abundances of these key elements, including Ne, are well matched with semi-quantitative predictions for the EHe resulting from a cold merger (i.e., no nucleosynthesis during the merger) of an He white dwarf with a C-O white dwarf.

  8. Neon and CNO Abundances for Extreme Helium Stars—A Non-LTE Analysis

    NASA Astrophysics Data System (ADS)

    Pandey, Gajendra; Lambert, David L.

    2011-02-01

    A non-LTE (NLTE) abundance analysis was carried out for three extreme helium stars (EHes): BD+10° 2179, BD-9° 4395, and LS IV+6° 002, from their optical spectra with NLTE model atmospheres. NLTE TLUSTY model atmospheres were computed with H, He, C, N, O, and Ne treated in NLTE. Model atmosphere parameters were chosen from consideration of fits to observed He I line profiles and ionization equilibria of C and N ions. The program SYNSPEC was then used to determine the NLTE abundances for Ne as well as H, He, C, N, and O. LTE neon abundances from Ne I lines in the EHes: LSE 78, V1920 Cyg, HD 124448, and PV Tel, are derived from published models and an estimate of the NLTE correction applied to obtain the NLTE Ne abundance. We show that the derived abundances of these key elements, including Ne, are well matched with semi-quantitative predictions for the EHe resulting from a cold merger (i.e., no nucleosynthesis during the merger) of an He white dwarf with a C-O white dwarf.

  9. Abundance Profiling of Extremely Metal-poor Stars and Supernova Properties in the Early Universe

    NASA Astrophysics Data System (ADS)

    Tominaga, Nozomu; Iwamoto, Nobuyuki; Nomoto, Ken'ichi

    2014-04-01

    After the big bang nucleosynthesis, the first heavy element enrichment in the universe was made by a supernova (SN) explosion of a population (Pop) III star (Pop III SN). The abundance ratios of elements produced from Pop III SNe are recorded in abundance patterns of extremely metal-poor (EMP) stars. The observations of the increasing number of EMP stars have made it possible to statistically constrain the explosion properties of Pop III SNe. We present Pop III SN models whose nucleosynthesis yields well reproduce, individually, the abundance patterns of 48 such metal-poor stars as [Fe/H] <~ - 3.5. We then derive relations between the abundance ratios of EMP stars and certain explosion properties of Pop III SNe: the higher [(C + N)/Fe] and [(C + N)/Mg] ratios correspond to the smaller ejected Fe mass and the larger compact remnant mass, respectively. Using these relations, the distributions of the abundance ratios of EMP stars are converted to those of the explosion properties of Pop III SNe. Such distributions are compared with those of the explosion properties of present day SNe: the distribution of the ejected Fe mass of Pop III SNe has the same peak as that of the present day SNe but shows an extended tail down to ~10-2-10-5 M ⊙, and the distribution of the mass of the compact remnant of Pop III SNe is as wide as that of the present-day, stellar-mass black holes. Our results demonstrate the importance of large samples of EMP stars obtained by ongoing and future EMP star surveys and subsequent high-dispersion spectroscopic observations in clarifying the nature of Pop III SNe in the early universe.

  10. Abundance profiling of extremely metal-poor stars and supernova properties in the early universe

    SciTech Connect

    Tominaga, Nozomu; Iwamoto, Nobuyuki; Nomoto, Ken'ichi E-mail: iwamoto.nobuyuki@jaea.go.jp

    2014-04-20

    After the big bang nucleosynthesis, the first heavy element enrichment in the universe was made by a supernova (SN) explosion of a population (Pop) III star (Pop III SN). The abundance ratios of elements produced from Pop III SNe are recorded in abundance patterns of extremely metal-poor (EMP) stars. The observations of the increasing number of EMP stars have made it possible to statistically constrain the explosion properties of Pop III SNe. We present Pop III SN models whose nucleosynthesis yields well reproduce, individually, the abundance patterns of 48 such metal-poor stars as [Fe/H] ≲ – 3.5. We then derive relations between the abundance ratios of EMP stars and certain explosion properties of Pop III SNe: the higher [(C + N)/Fe] and [(C + N)/Mg] ratios correspond to the smaller ejected Fe mass and the larger compact remnant mass, respectively. Using these relations, the distributions of the abundance ratios of EMP stars are converted to those of the explosion properties of Pop III SNe. Such distributions are compared with those of the explosion properties of present day SNe: the distribution of the ejected Fe mass of Pop III SNe has the same peak as that of the present day SNe but shows an extended tail down to ∼10{sup –2}-10{sup –5} M {sub ☉}, and the distribution of the mass of the compact remnant of Pop III SNe is as wide as that of the present-day, stellar-mass black holes. Our results demonstrate the importance of large samples of EMP stars obtained by ongoing and future EMP star surveys and subsequent high-dispersion spectroscopic observations in clarifying the nature of Pop III SNe in the early universe.

  11. Preliminary determination of the Non-LTE Calcium abundance in a sample of extremely metal-poor stars*

    NASA Astrophysics Data System (ADS)

    Spite, M.; Spite, F.; Bonifacio, P.; Caffau, E.; Andrievsky, S.; Korotin, S.; Cayrel, R.; François, P.

    2011-12-01

    The abundance ratios of the elements found in the extremely metal-poor stars (EMP) are a test of the yields predicted by the models of supernovae. For precise comparisons, it is of course preferable to avoid the approximation of LTE. The difference of LTE and NLTE profiles is displayed for three strong lines. The NLTE abundances of Ca are derived from the profiles of about 15 Ca I lines in the EMP giants and about 10 lines in the turnoff stars. The improved abundance trends are consistent with a [Ca/Fe] ratio constant vs. [Fe/H], and with a [Ca/Mg] ratio slightly declining when [Mg/H] increases. Also [Ca/Mg] presents a scatter larger than [Ca/Fe]. As far as the comparison with sulfur (another alpha elment) is concerned we find that [S/Ca] presents a scatter smaller than [S/Mg].

  12. NUCLEOSYNTHESIS IN HIGH-ENTROPY HOT BUBBLES OF SUPERNOVAE AND ABUNDANCE PATTERNS OF EXTREMELY METAL-POOR STARS

    SciTech Connect

    Izutani, Natsuko; Umeda, Hideyuki E-mail: umeda@astron.s.u-tokyo.ac.j

    2010-09-01

    There have been suggestions that the abundance of extremely metal-poor (EMP) stars can be reproduced by hypernovae (HNe), not by normal supernovae (SNe). However, recently it was also suggested that if the innermost neutron-rich or proton-rich matter is ejected, the abundance patterns of ejected matter are changed, and normal SNe may also reproduce the observations of EMP stars. In this Letter, we calculate explosive nucleosynthesis with various Y {sub e} and entropy, and investigate whether normal SNe with this innermost matter, which we call the 'hot-bubble' component, can reproduce the abundance of EMP stars. We find that neutron-rich (Y {sub e} = 0.45-0.49) and proton-rich (Y {sub e} = 0.51-0.55) matter can increase Zn/Fe and Co/Fe ratios as observed, but tend to overproduce other Fe-peak elements. In addition, we find that if slightly proton-rich matter with 0.50 {<=} Y {sub e} < 0.501 with s/k {sub b} {approx} 15-40 is ejected as much as {approx}0.06 M {sub sun}, even normal SNe can reproduce the abundance of EMP stars, though it requires fine-tuning of Y {sub e}. On the other hand, HNe can more easily reproduce the observations of EMP stars without fine-tuning. Our results imply that HNe are the most likely origin of the abundance pattern of EMP stars.

  13. Solar Abundances of Rock Forming Elements, Extreme Oxygen and Hydrogen in a Young Polluted White Dwarf

    NASA Astrophysics Data System (ADS)

    Farihi, J.; Koester, D.; Zuckerman, B.; Vican, L.; Gänsicke, B. T.; Smith, N.; Walth, G.; Breedt, E.

    2016-09-01

    The Teff = 20 800 K white dwarf WD 1536+520 is shown to have broadly solar abundances of the major rock forming elements O, Mg, Al, Si, Ca, and Fe, together with a strong relative depletion in the volatile elements C and S. In addition to the highest metal abundances observed to date, including log (O/He) =-3.4, the helium-dominated atmosphere has an exceptional hydrogen abundance at log (H/He) =-1.7. Within the uncertainties, the metal-to-metal ratios are consistent with the accretion of an H2O-rich and rocky parent body, an interpretation supported by the anomalously high trace hydrogen. The mixed atmosphere yields unusually short diffusion timescales for a helium atmosphere white dwarf, of no more than a few hundred yr, and equivalent to those in a much cooler, hydrogen-rich star. The overall heavy element abundances of the disrupted parent body deviate modestly from a bulk Earth pattern, and suggest the deposition of some core-like material. The total inferred accretion rate is 4.2 × 109 g s-1, and at least 4 times higher than any white dwarf with a comparable diffusion timescale. Notably, when accretion is exhausted in this system, both metals and hydrogen will become undetectable within roughly 300 Myr, thus supporting a scenario where the trace hydrogen is related to the ongoing accretion of planetary debris.

  14. Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic Svalbard.

    PubMed

    Semenchuk, Philipp R; Elberling, Bo; Cooper, Elisabeth J

    2013-08-01

    The High Arctic winter is expected to be altered through ongoing and future climate change. Winter precipitation and snow depth are projected to increase and melt out dates change accordingly. Also, snow cover and depth will play an important role in protecting plant canopy from increasingly more frequent extreme winter warming events. Flower production of many Arctic plants is dependent on melt out timing, since season length determines resource availability for flower preformation. We erected snow fences to increase snow depth and shorten growing season, and counted flowers of six species over 5 years, during which we experienced two extreme winter warming events. Most species were resistant to snow cover increase, but two species reduced flower abundance due to shortened growing seasons. Cassiope tetragona responded strongly with fewer flowers in deep snow regimes during years without extreme events, while Stellaria crassipes responded partly. Snow pack thickness determined whether winter warming events had an effect on flower abundance of some species. Warming events clearly reduced flower abundance in shallow but not in deep snow regimes of Cassiope tetragona, but only marginally for Dryas octopetala. However, the affected species were resilient and individuals did not experience any long term effects. In the case of short or cold summers, a subset of species suffered reduced reproductive success, which may affect future plant composition through possible cascading competition effects. Extreme winter warming events were shown to expose the canopy to cold winter air. The following summer most of the overwintering flower buds could not produce flowers. Thus reproductive success is reduced if this occurs in subsequent years. We conclude that snow depth influences flower abundance by altering season length and by protecting or exposing flower buds to cold winter air, but most species studied are resistant to changes. Winter warming events, often occurring

  15. Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic Svalbard

    PubMed Central

    Semenchuk, Philipp R; Elberling, Bo; Cooper, Elisabeth J

    2013-01-01

    Abstract The High Arctic winter is expected to be altered through ongoing and future climate change. Winter precipitation and snow depth are projected to increase and melt out dates change accordingly. Also, snow cover and depth will play an important role in protecting plant canopy from increasingly more frequent extreme winter warming events. Flower production of many Arctic plants is dependent on melt out timing, since season length determines resource availability for flower preformation. We erected snow fences to increase snow depth and shorten growing season, and counted flowers of six species over 5 years, during which we experienced two extreme winter warming events. Most species were resistant to snow cover increase, but two species reduced flower abundance due to shortened growing seasons. Cassiope tetragona responded strongly with fewer flowers in deep snow regimes during years without extreme events, while Stellaria crassipes responded partly. Snow pack thickness determined whether winter warming events had an effect on flower abundance of some species. Warming events clearly reduced flower abundance in shallow but not in deep snow regimes of Cassiope tetragona, but only marginally for Dryas octopetala. However, the affected species were resilient and individuals did not experience any long term effects. In the case of short or cold summers, a subset of species suffered reduced reproductive success, which may affect future plant composition through possible cascading competition effects. Extreme winter warming events were shown to expose the canopy to cold winter air. The following summer most of the overwintering flower buds could not produce flowers. Thus reproductive success is reduced if this occurs in subsequent years. We conclude that snow depth influences flower abundance by altering season length and by protecting or exposing flower buds to cold winter air, but most species studied are resistant to changes. Winter warming events, often

  16. Extremely abundant antimicrobial peptides existed in the skins of nine kinds of Chinese odorous frogs.

    PubMed

    Yang, Xinwang; Lee, Wen-Hui; Zhang, Yun

    2012-01-01

    Peptide agents are regarded as hopeful candidates to solve life-threatening resistance of pathogenic microorganisms to classic antibiotics due to their unique action mechanisms. Peptidomic and genomic investigation of natural antimicrobial peptides (AMPs) from amphibian skin secretions can provide a large amount of structure-functional information to design peptide antibiotics with therapeutic potential. In the present study, we identified a large number of AMPs from the skins of nine kinds of Chinese odorous frogs. Eighty AMPs were purified from three different odorous frogs and confirmed by peptidomic analysis. Our results indicated that post-translational modification of AMPs rarely happened in odorous frogs. cDNAs encoding precursors of 728 AMPs, including all the precursors of the confirmed 80 native peptides, were cloned from the constructed AMP cDNA libraries of nine Chinese odorous frogs. On the basis of the sequence similarity of deduced mature peptides, these 728 AMPs were grouped into 97 different families in which 71 novel families were identified. Out of these 728 AMPs, 662 AMPs were novel and 28 AMPs were reported previously in other frog species. Our results revealed that identical AMPs were widely distributed in odorous frogs; 49 presently identified AMPs could find their identical molecules in different amphibian species. Purified peptides showed strong antimicrobial activities against 4 tested microbe strains. Twenty-three deduced peptides were synthesized and their bioactivities, including antimicrobial, antioxidant, hemolytic, immunomodulatory and insulin-releasing activities, were evaluated. Our findings demonstrate the extreme diversity of AMPs in amphibian skins and provide plenty of templates to develop novel peptide antibiotics.

  17. Oxygen in the Early Galaxy: OH Lines as Tracers of Oxygen Abundance in Extremely Metal-Poor Giant Stars

    NASA Astrophysics Data System (ADS)

    Kucinskas, A.; Dobrovolskas, V.; Bonifacio, P.; Caffau, E.; Ludwig, H.-G.; Steffen, M.; Spite, M.

    2015-01-01

    Oxygen is a powerful tracer element of Galactic chemical evolution. Unfortunately, only a few oxygen lines are available in the ultraviolet-infrared stellar spectra for the reliable determination of its abundance. Moreover, oxygen abundances obtained using different spectral lines often disagree significantly. In this contribution we therefore investigate whether the inadequate treatment of convection in 1D hydrostatic model atmospheres used in the abundance determinations may be responsible for this disagreement. For this purpose, we used VLT CRIRES spectra of three EMP giants, as well as 3D hydrodynamical COBOLD and 1D hydrostatic LHD model atmospheres, to investigate the role of convection in the formation of infrared (IR) OH lines. Our results show that the presence of convection leads to significantly stronger IR OH lines. As a result, the difference in the oxygen abundance determined from IR OH lines with 3D hydrodynamical and classical 1D hydrostatic model atmospheres may reach -0.2 dots -0.3 dex. In case of the three EMP giants studied here, we obtain a good agrement between the 3D LTE oxygen abundances determined by us using vibrational-rotational IR OH lines in the spectral range of 1514-1626 nm, and oxygen abundances determined from forbidden [O I] 630 nm line in previous studies.

  18. Primary and Secondary siRNAs in Geminivirus-induced Gene Silencing

    PubMed Central

    Rajeswaran, Rajendran; Gubaeva, Ekaterina G.; Zvereva, Anna S.; Windels, David; Vazquez, Franck; Blevins, Todd; Farinelli, Laurent; Pooggin, Mikhail M.

    2012-01-01

    In plants, RNA silencing-based antiviral defense is mediated by Dicer-like (DCL) proteins producing short interfering (si)RNAs. In Arabidopsis infected with the bipartite circular DNA geminivirus Cabbage leaf curl virus (CaLCuV), four distinct DCLs produce 21, 22 and 24 nt viral siRNAs. Using deep sequencing and blot hybridization, we found that viral siRNAs of each size-class densely cover the entire viral genome sequences in both polarities, but highly abundant siRNAs correspond primarily to the leftward and rightward transcription units. Double-stranded RNA precursors of viral siRNAs can potentially be generated by host RDR-dependent RNA polymerase (RDR). However, genetic evidence revealed that CaLCuV siRNA biogenesis does not require RDR1, RDR2, or RDR6. By contrast, CaLCuV derivatives engineered to target 30 nt sequences of a GFP transgene by primary viral siRNAs trigger RDR6-dependent production of secondary siRNAs. Viral siRNAs targeting upstream of the GFP stop codon induce secondary siRNAs almost exclusively from sequences downstream of the target site. Conversely, viral siRNAs targeting the GFP 3′-untranslated region (UTR) induce secondary siRNAs mostly upstream of the target site. RDR6-dependent siRNA production is not necessary for robust GFP silencing, except when viral siRNAs targeted GFP 5′-UTR. Furthermore, viral siRNAs targeting the transgene enhancer region cause GFP silencing without secondary siRNA production. We conclude that the majority of viral siRNAs accumulating during geminiviral infection are RDR1/2/6-independent primary siRNAs. Double-stranded RNA precursors of these siRNAs are likely generated by bidirectional readthrough transcription of circular viral DNA by RNA polymerase II. Unlike transgenic mRNA, geminiviral mRNAs appear to be poor templates for RDR-dependent production of secondary siRNAs. PMID:23028332

  19. Abundance analysis of SDSS J134338.67+484426.6; an extremely metal-poor star from the MARVELS pre-survey

    NASA Astrophysics Data System (ADS)

    Susmitha Rani, A.; Sivarani, T.; Beers, T. C.; Fleming, S.; Mahadevan, S.; Ge, J.

    2016-05-01

    We present an elemental-abundance analysis of an extremely metal-poor (EMP; [Fe/H] <-3.0) star, SDSS J134338.67+484426.6, identified during the course of the Multi-object Apache Point Observatory Radial Velocity Exoplanet Large-area Survey spectroscopic pre-survey of some 20 000 stars to identify suitable candidates for exoplanet searches. This star, with an apparent magnitude V = 12.14, is the lowest metallicity star found in the pre-survey, and is one of only ˜20 known EMP stars that are this bright or brighter. Our high-resolution spectroscopic analysis shows that this star is a subgiant with [Fe/H] = -3.42, having `normal' carbon and no enhancement of neutron-capture abundances. Strontium is underabundant, [Sr/Fe] = -0.47, but the derived lower limit on [Sr/Ba] indicates that Sr is likely enhanced relative to Ba. This star belongs to the sparsely populated class of α-poor EMP stars that exhibit low ratios of [Mg/Fe], [Si/Fe], and [Ca/Fe] compared to typical halo stars at similar metallicity. The observed variations in radial velocity from several epochs of (low- and high-resolution) spectroscopic follow-up indicate that SDSS J134338.67+484426.6 is a possible long-period binary. We also discuss the abundance trends in EMP stars for r-process elements, and compare with other magnesium-poor stars.

  20. Multiplex Real-Time PCR Assays that Measure the Abundance of Extremely Rare Mutations Associated with Cancer.

    PubMed

    Vargas, Diana Y; Kramer, Fred Russell; Tyagi, Sanjay; Marras, Salvatore A E

    2016-01-01

    We describe the use of "SuperSelective" primers that enable the detection and quantitation of somatic mutations whose presence relates to cancer diagnosis, prognosis, and therapy, in real-time PCR assays that can potentially analyze rare DNA fragments present in blood samples (liquid biopsies). The design of these deoxyribonucleotide primers incorporates both a relatively long "5' anchor sequence" that hybridizes strongly to target DNA fragments, and a very short, physically and functionally separate, "3' foot sequence" that is perfectly complementary to the mutant target sequence, but mismatches the wild-type sequence. As few as ten mutant fragments can reliably be detected in the presence of 1,000,000 wild-type fragments, even when the difference between the mutant and the wild type is only a single nucleotide polymorphism. Multiplex PCR assays employing a set of SuperSelective primers, and a corresponding set of differently colored molecular beacon probes, can be used in situations where the different mutations, though occurring in different cells, are located in the same codon. These non-symmetric real-time multiplex PCR assays contain limited concentrations of each SuperSelective primer, thereby enabling the simultaneous determination of each mutation's abundance by comparing its threshold value to the threshold value of a reference gene present in the sample. PMID:27244445

  1. Multiplex Real-Time PCR Assays that Measure the Abundance of Extremely Rare Mutations Associated with Cancer

    PubMed Central

    Vargas, Diana Y.; Kramer, Fred Russell; Tyagi, Sanjay; Marras, Salvatore A. E.

    2016-01-01

    We describe the use of “SuperSelective” primers that enable the detection and quantitation of somatic mutations whose presence relates to cancer diagnosis, prognosis, and therapy, in real-time PCR assays that can potentially analyze rare DNA fragments present in blood samples (liquid biopsies). The design of these deoxyribonucleotide primers incorporates both a relatively long “5' anchor sequence” that hybridizes strongly to target DNA fragments, and a very short, physically and functionally separate, “3' foot sequence” that is perfectly complementary to the mutant target sequence, but mismatches the wild-type sequence. As few as ten mutant fragments can reliably be detected in the presence of 1,000,000 wild-type fragments, even when the difference between the mutant and the wild type is only a single nucleotide polymorphism. Multiplex PCR assays employing a set of SuperSelective primers, and a corresponding set of differently colored molecular beacon probes, can be used in situations where the different mutations, though occurring in different cells, are located in the same codon. These non-symmetric real-time multiplex PCR assays contain limited concentrations of each SuperSelective primer, thereby enabling the simultaneous determination of each mutation’s abundance by comparing its threshold value to the threshold value of a reference gene present in the sample. PMID:27244445

  2. Multiplex Real-Time PCR Assays that Measure the Abundance of Extremely Rare Mutations Associated with Cancer.

    PubMed

    Vargas, Diana Y; Kramer, Fred Russell; Tyagi, Sanjay; Marras, Salvatore A E

    2016-01-01

    We describe the use of "SuperSelective" primers that enable the detection and quantitation of somatic mutations whose presence relates to cancer diagnosis, prognosis, and therapy, in real-time PCR assays that can potentially analyze rare DNA fragments present in blood samples (liquid biopsies). The design of these deoxyribonucleotide primers incorporates both a relatively long "5' anchor sequence" that hybridizes strongly to target DNA fragments, and a very short, physically and functionally separate, "3' foot sequence" that is perfectly complementary to the mutant target sequence, but mismatches the wild-type sequence. As few as ten mutant fragments can reliably be detected in the presence of 1,000,000 wild-type fragments, even when the difference between the mutant and the wild type is only a single nucleotide polymorphism. Multiplex PCR assays employing a set of SuperSelective primers, and a corresponding set of differently colored molecular beacon probes, can be used in situations where the different mutations, though occurring in different cells, are located in the same codon. These non-symmetric real-time multiplex PCR assays contain limited concentrations of each SuperSelective primer, thereby enabling the simultaneous determination of each mutation's abundance by comparing its threshold value to the threshold value of a reference gene present in the sample.

  3. Mechanisms of immune system activation in mammalians by small interfering RNA (siRNA).

    PubMed

    Mansoori, Behzad; Mohammadi, Ali; Shir Jang, Solmaz; Baradaran, Behzad

    2016-11-01

    RNA interference (RNAi) guided by small interfering RNAs (siRNA), because of its potential to target and silence the expression of specific genes is utilized as an effective tool in a variety of biological applications. RNAi guided by siRNAs is a powerful tool to attain gene silencing in mammalian cells. One of the features which make siRNA as an amazing biological tool is extremely specific knockdown of target genes by degradation of analogous mRNAs. However, various non-specific effects limit the use of RNAi including the activation of innate immunity and inhibition of inadvertent target genes. One of the most common non-specific effects is inducing the innate immune system including cytoplasmic and endosomal activation of innate immune system, potentially offending the single in mammals. This activation is mainly interceded by immune cells, regularly through a Toll-like receptor (TLR) pathway. The siRNA sequence association of these pathways changes with the sort and position of the TLR involved. In contrast, non-immune cell activation can also arise generally siRNAs which enter into cytoplasm interacting with cytoplasmic RNA sensors such as retinoic acid-inducible gene I. Here, we explain the off-target effects of siRNAs that activate innate immune system and methods to alleviate them, to help enable impressive application of this exciting technology, Also we bold the aspect of molecular strategies permitting the design of therapeutic siRNAs with minute off-target effects.

  4. SiRNAs conjugated with aromatic compounds induce RISC-mediated antisense strand selection and strong gene-silencing activity

    SciTech Connect

    Kubo, Takanori; Yanagihara, Kazuyoshi; Takei, Yoshifumi; Mihara, Keichiro; Sato, Yuichiro; Seyama, Toshio

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer SiRNAs conjugated with aromatic compounds (Ar-siRNAs) at 5 Prime -sense strand were synthesized. Black-Right-Pointing-Pointer Ar-siRNAs increased resistance against nuclease degradation. Black-Right-Pointing-Pointer Ar-siRNAs were thermodynamically stable compared with the unmodified siRNA. Black-Right-Pointing-Pointer High levels of cellular uptake and cytoplasmic localization were found. Black-Right-Pointing-Pointer Strong gene-silencing efficacy was exhibited in the Ar-siRNAs. -- Abstract: Short interference RNA (siRNA) is a powerful tool for suppressing gene expression in mammalian cells. In this study, we focused on the development of siRNAs conjugated with aromatic compounds in order to improve the potency of RNAi and thus to overcome several problems with siRNAs, such as cellular delivery and nuclease stability. The siRNAs conjugated with phenyl, hydroxyphenyl, naphthyl, and pyrenyl derivatives showed strong resistance to nuclease degradation, and were thermodynamically stable compared with unmodified siRNA. A high level of membrane permeability in HeLa cells was also observed. Moreover, these siRNAs exhibited enhanced RNAi efficacy, which exceeded that of locked nucleic acid (LNA)-modified siRNAs, against exogenous Renilla luciferase in HeLa cells. In particular, abundant cytoplasmic localization and strong gene-silencing efficacy were found in the siRNAs conjugated with phenyl and hydroxyphenyl derivatives. The novel siRNAs conjugated with aromatic compounds are promising candidates for a new generation of modified siRNAs that can solve many of the problems associated with RNAi technology.

  5. Delivery materials for siRNA therapeutics

    NASA Astrophysics Data System (ADS)

    Kanasty, Rosemary; Dorkin, Joseph Robert; Vegas, Arturo; Anderson, Daniel

    2013-11-01

    RNA interference (RNAi) has broad potential as a therapeutic to reversibly silence any gene. To achieve the clinical potential of RNAi, delivery materials are required to transport short interfering RNA (siRNA) to the site of action in the cells of target tissues. This Review provides an introduction to the biological challenges that siRNA delivery materials aim to overcome, as well as a discussion of the way that the most effective and clinically advanced classes of siRNA delivery systems, including lipid nanoparticles and siRNA conjugates, are designed to surmount these challenges. The systems that we discuss are diverse in their approaches to the delivery problem, and provide valuable insight to guide the design of future siRNA delivery materials.

  6. siRNA and RNAi optimization.

    PubMed

    Alagia, Adele; Eritja, Ramon

    2016-05-01

    The discovery and examination of the posttranscriptional gene regulatory mechanism known as RNA interference (RNAi) contributed to the identification of small interfering RNA (siRNA) and the comprehension of its enormous potential for clinical purposes. Theoretically, the ability of specific target gene downregulation makes the RNAi pathway an appealing solution for several diseases. Despite numerous hurdles resulting from the inherent properties of siRNA molecule and proper delivery to the target tissue, more than 50 RNA-based drugs are currently under clinical testing. In this work, we analyze the recent literature in the optimization of siRNA molecules. In detail, we focused on describing the most recent advances of siRNA field aimed at optimize siRNA pharmacokinetic properties. Special attention has been given in describing the impact of RNA modifications in the potential off-target effects (OTEs) such as saturation of the RNAi machinery, passenger strand-mediated silencing, immunostimulation, and miRNA-like OTEs as well as to recent developments on the delivery issue. The novel delivery systems and modified siRNA provide significant steps toward the development of reliable siRNA molecules for therapeutic use. WIREs RNA 2016, 7:316-329. doi: 10.1002/wrna.1337 For further resources related to this article, please visit the WIREs website. PMID:26840434

  7. Label-free Quantitative Proteomics for the Extremely Thermophilic Bacterium Caldicellulosiruptor obsidiansis Reveal Distinct Abundance Patterns upon Growth on Cellobiose, Crystalline Cellulose, and Switchgrass

    SciTech Connect

    Giannone, Richard J; Lochner, Adriane; Keller, Martin; Antranikian, Garabed; Graham, David E; Hettich, Robert {Bob} L

    2011-01-01

    Mass spectrometric analysis of Caldicellulosiruptor obsidiansis cultures grown on four different carbon sources identified 65% of the cells predicted proteins in cell lysates and supernatants. Biological and technical replication together with sophisticated statistical analysis were used to reliably quantify protein abundances and their changes as a function of carbon source. Extracellular, multifunctional glycosidases were significantly more abundant on cellobiose than on the crystalline cellulose substrates Avicel and filter paper, indicating either disaccharide induction or constitutive protein expression. Highly abundant flagellar, chemotaxis, and pilus proteins were detected during growth on insoluble substrates, suggesting motility or specific substrate attachment. The highly abundant extracellular binding protein COB47-0549 together with the COB47-1616 ATPase might comprise the primary ABC-transport system for cellooligosaccharides, while COB47-0096 and COB47-0097 could facilitate monosaccharide uptake. Oligosaccharide degradation can occur either via extracellular hydrolysis by a GH1 {beta}-glycosidase or by intracellular phosphorolysis using two GH94 enzymes. When C. obsidiansis was grown on switchgrass, the abundance of hemicellulases (including GH3, GH5, GH51, and GH67 enzymes) and certain sugar transporters increased significantly. Cultivation on biomass also caused a concerted increase in cytosolic enzymes for xylose and arabinose fermentation.

  8. Label-free quantitative proteomics for the extremely thermophilic bacterium Caldicellulosiruptor obsidiansis reveal distinct abundance patterns upon growth on cellobiose, crystalline cellulose, and switchgrass.

    PubMed

    Lochner, Adriane; Giannone, Richard J; Keller, Martin; Antranikian, Garabed; Graham, David E; Hettich, Robert L

    2011-12-01

    Mass spectrometric analysis of Caldicellulosiruptor obsidiansis cultures grown on four different carbon sources identified 65% of the cells' predicted proteins in cell lysates and supernatants. Biological and technical replication together with sophisticated statistical analysis were used to reliably quantify protein abundances and their changes as a function of carbon source. Extracellular, multifunctional glycosidases were significantly more abundant on cellobiose than on the crystalline cellulose substrates Avicel and filter paper, indicating either disaccharide induction or constitutive protein expression. Highly abundant flagellar, chemotaxis, and pilus proteins were detected during growth on insoluble substrates, suggesting motility or specific substrate attachment. The highly abundant extracellular binding protein COB47_0549 together with the COB47_1616 ATPase might comprise the primary ABC-transport system for cellooligosaccharides, while COB47_0096 and COB47_0097 could facilitate monosaccharide uptake. Oligosaccharide degradation can occur either via extracellular hydrolysis by a GH1 β-glycosidase or by intracellular phosphorolysis using two GH94 enzymes. When C. obsidiansis was grown on switchgrass, the abundance of hemicellulases (including GH3, GH5, GH51, and GH67 enzymes) and certain sugar transporters increased significantly. Cultivation on biomass also caused a concerted increase in cytosolic enzymes for xylose and arabinose fermentation.

  9. Albumin pre-coating enhances intracellular siRNA delivery of multifunctional amphiphile/siRNA nanoparticles

    PubMed Central

    Kummitha, China M; Malamas, Anthony S; Lu, Zheng-Rong

    2012-01-01

    Nonspecific association of serum molecules with short-interfering RNA (siRNA) nanoparticles can change their physiochemical characteristics, and results in reduced cellular uptake in the target tissue during the systemic siRNA delivery process. Serum albumin is the most abundant protein in the body and has been used to modify the surface of nanoparticles, to inhibit association of other serum molecules. Here, we hypothesized that surface modification of lipid-based nanoparticular siRNA delivery systems with albumin could prevent their interaction with serum proteins, and improve intracellular uptake. In this study, we investigated the influence of albumin on the stability and intracellular siRNA delivery of the targeted siRNA nanoparticles of a polymerizable and pH-sensitive multifunctional surfactant N-(1-aminoethyl) iminobis[N-(oleoylcysteinylhistinyl-1-aminoethyl)propionamide] (EHCO) in serum. Serum resulted in a significant increase in the size of targeted EHCO/siRNA nanoparticles and inhibited cellular uptake of the nanoparticles. Coating of targeted EHCO/siRNA nanoparticles with bovine serum albumin at 9.4 μM prior to cell transfection improved cellular uptake and gene silencing efficacy of EHCO/siRNA targeted nanoparticles in serum-containing media, as compared with the uncoated nanoparticles. At a proper concentration, albumin has the potential to minimize interactions of serum proteins with siRNA nanoparticles for effective systemic in vivo siRNA delivery. PMID:23055731

  10. Rational Design of Immunostimulatory siRNAs

    PubMed Central

    Gantier, Michael P; Tong, Stephen; Behlke, Mark A; Irving, Aaron T; Lappas, Martha; Nilsson, Ulrika W; Latz, Eicke; McMillan, Nigel AJ; Williams, Bryan RG

    2010-01-01

    Short-interfering RNAs (siRNAs) have engendered much enthusiasm for their ability to silence the expression of specific genes. However, it is now well established that siRNAs, depending on their sequence, can be variably sensed by the innate immune system through recruitment of toll-like receptors 7 and 8 (TLR7/8). Here, we aimed to identify sequence-based modifications allowing for the design of bifunctional siRNAs with both proinflammatory and specific silencing activities, and with potentially increased therapeutic benefits. We found that the introduction of a micro-RNA (miRNA)-like nonpairing uridine-bulge in the passenger strand robustly increased immunostimulatory activity on human immune cells. This sequence modification had no effect on the silencing efficiency of the siRNA. Increased immunostimulation with the uridine-bulge design was specific to human cells, and conserved silencing efficiency required a Dicer-substrate scaffold. The increased cytokine production with the uridine-bulge design resulted in enhanced protection against Semliki Forest virus (SFV) infection, in viral assays. Thus, we characterize a design scaffold applicable to any given siRNA sequence, that results in increased innate immune activation without affecting gene silencing. Our data suggest that this sequence modification coupled with structural modification differentially recruits human TLR8 over TLR7, and could have potential application in antiviral therapies. PMID:20125126

  11. Variable and Extreme Irradiation Conditions in the Early Solar System Inferred from the Initial Abundance of 10Be in Isheyevo CAIs

    NASA Astrophysics Data System (ADS)

    Gounelle, Matthieu; Chaussidon, Marc; Rollion-Bard, Claire

    2013-02-01

    A search for short-lived 10Be in 21 calcium-aluminum-rich inclusions (CAIs) from Isheyevo, a rare CB/CH chondrite, showed that only 5 CAIs had 10B/11B ratios higher than chondritic correlating with the elemental ratio 9Be/11B, suggestive of in situ decay of this key short-lived radionuclide. The initial (10Be/9Be)0 ratios vary between ~10-3 and ~10-2 for CAI 411. The initial ratio of CAI 411 is one order of magnitude higher than the highest ratio found in CV3 CAIs, suggesting that the more likely origin of CAI 411 10Be is early solar system irradiation. The low (26Al/27Al)0 [<= 8.9 × 10-7] with which CAI 411 formed indicates that it was exposed to gradual flares with a proton fluence of a few 1019 protons cm-2, during the earliest phases of the solar system, possibly the infrared class 0. The irradiation conditions for other CAIs are less well constrained, with calculated fluences ranging between a few 1019 and 1020 protons cm-2. The variable and extreme value of the initial 10Be/9Be ratios in carbonaceous chondrite CAIs is the reflection of the variable and extreme magnetic activity in young stars observed in the X-ray domain.

  12. Recent advances in siRNA delivery.

    PubMed

    Sarisozen, Can; Salzano, Giuseppina; Torchilin, Vladimir P

    2015-12-01

    In the 1990s an unexpected gene-silencing phenomena in plants, the later called RNA interference (RNAi), perplexed scientists. Following the proof of activity in mammalian cells, small interfering RNAs (siRNAs) have quickly crept into biomedical research as a new powerful tool for the potential treatment of different human diseases based on altered gene expression. In the past decades, several promising data from ongoing clinical trials have been reported. However, despite surprising successes in many pre-clinical studies, concrete obstacles still need to be overcome to translate therapeutic siRNAs into clinical reality. Here, we provide an update on the recent advances of RNAi-based therapeutics and highlight novel synthetic platforms for the intracellular delivery of siRNAs. PMID:26609865

  13. Natural Carriers for siRNA Delivery.

    PubMed

    Karunaratne, D Nedra; Jafari, Mousa; Ranatunga, R J K Udayana; Siriwardhana, Asitha

    2015-01-01

    This review is based on carriers of natural origin such as polysaccharides, proteins, and cell derived entities which have been used for delivery of siRNA. To realize the therapeutic potential of a delivery system, the role of the carrier is of utmost importance. Historical aspects of viral vectors, the first carriers of genes are briefly outlined. Chitosan, one of the extensively experimented carriers, alginates and other polysaccharides have shown success in siRNA delivery. Peptides of natural origin and mimics thereof have emerged as another versatile carrier. Exosomes and mini cells of cellular origin are the newest entrants to the area of siRNA delivery and probably the closest one can get to a natural carrier. In many of the carriers, modifications have provided better efficiency in delivery. The salient features of the carriers and their advantages and disadvantages are also reviewed.

  14. Development of a simple, biocompatible and cost-effective Inulin-Diethylenetriamine based siRNA delivery system.

    PubMed

    Sardo, C; Farra, R; Licciardi, M; Dapas, B; Scialabba, C; Giammona, G; Grassi, M; Grassi, G; Cavallaro, G

    2015-07-30

    Small interfering RNAs (siRNAs) have the potential to be of therapeutic value for many human diseases. So far, however, a serious obstacle to their therapeutic use is represented by the absence of appropriate delivery systems able to protect them from degradation and to allow an efficient cellular uptake. In this work we developed a siRNA delivery system based on inulin (Inu), an abundant and natural polysaccharide. Inu was functionalized via the conjugation with diethylenetriamine (DETA) residues to form the complex Inu-DETA. We studied the size, surface charge and the shape of the Inu-DETA/siRNA complexes; additionally, the cytotoxicity, the silencing efficacy and the cell uptake-mechanisms were studied in the human bronchial epithelial cells (16HBE) and in the hepatocellular carcinoma derived cells (JHH6). The results presented here indicate that Inu-DETA copolymers can effectively bind siRNAs, are highly cytocompatible and, in JHH6, can effectively deliver functional siRNAs. Optimal delivery is observed using a weight ratio Inu-DETA/siRNA of 4 that corresponds to polyplexes with an average size of 600nm and a slightly negative surface charge. Moreover, the uptake and trafficking mechanisms, mainly based on micropinocytosis and clatrin mediated endocytosis, allow the homogeneous diffusion of siRNA within the cytoplasm of JHH6. Notably, in 16 HBE where the trafficking mechanism (caveolae mediated endocytosis) does not allow an even distribution of siRNA within the cell cytoplasm, no significant siRNA activity is observed. In conclusion, we developed a novel inulin-based siRNA delivery system able to efficiently release siRNA in JHH6 with negligible cytotoxicity thus opening the way for further testing in more complex in vivo models.

  15. Bioengineered Nanoparticles for siRNA delivery

    PubMed Central

    Kozielski, Kristen L.; Tzeng, Stephany Y.; Green, Jordan J.

    2014-01-01

    Short interfering RNA (siRNA) has been an important laboratory tool in the last two decades and has allowed researchers to better understand the functions of non-protein-coding genes through RNA interference (RNAi). Although RNAi holds great promise for this purpose as well as for treatment of many diseases, efforts at using siRNA have been hampered by the difficulty of safely and effectively introducing it into cells of interest, both in vitro and in vivo. To overcome this challenge, many biomaterials and nanoparticles (NPs) have been developed and optimized for siRNA delivery, often taking cues from the DNA delivery field, although different barriers exist for these two types of molecules. In this review, we discuss general properties of biomaterials and nanoparticles that are necessary for effective nucleic acid delivery. We also discuss specific examples of bioengineered materials, including lipid-based NPs, polymeric NPs, inorganic NPs, and RNA-based NPs, which clearly illustrate the problems and successes in siRNA delivery. PMID:23821336

  16. Cuboplexes: Topologically Active siRNA Delivery.

    PubMed

    Kim, Hojun; Leal, Cecilia

    2015-10-27

    RNAi technology is currently experiencing a revival due to remarkable improvements in efficacy and viability through oligonucleotide chemical manipulations and/or via their packaging into nanoscale carriers. At present, there is no FDA-approved system for siRNA technology in humans. The design of the next generation of siRNA carriers requires a deep understanding of how a nanoparticle's physicochemical properties truly impart biological stability and efficiency. For example, we now know that nanoparticles need to be sterically stabilized in order to meet adequate biodistribution profiles. At present, targeting, uptake, and, in particular, endosomal escape are among the most critical challenges impairing RNAi technologies. The disruption of endosomes encompasses membrane transformations (for example, pore formation) that cost significant elastic energy. Nanoparticle size and shape have been identified as relevant parameters impacting tissue accumulation and cellular uptake. In this paper, we demonstrate that the internal structure of lipid-based particles offers a different handle to promote endosomal membrane topological disruptions that enhance siRNA delivery. Specifically, we designed sterically stabilized lipid-based particles that differ from traditional liposomal systems by displaying highly ordered bicontinuous cubic internal structures that can be loaded with large amounts of siRNA. This system differs from traditional siRNA-containing liposomes (lipoplexes) as the particle-endosomal membrane interactions are controlled by elasticity energetics and not by electrostatics. The resulting "PEGylated cuboplex" has the ability to deliver siRNA and specifically knockdown genes with efficiencies that surpass those achieved by traditional lipoplex systems. PMID:26390340

  17. De Novo Reconstruction of Consensus Master Genomes of Plant RNA and DNA Viruses from siRNAs

    PubMed Central

    Seguin, Jonathan; Rajeswaran, Rajendran; Malpica-López, Nachelli; Martin, Robert R.; Kasschau, Kristin; Dolja, Valerian V.; Otten, Patricia; Farinelli, Laurent; Pooggin, Mikhail M.

    2014-01-01

    Virus-infected plants accumulate abundant, 21–24 nucleotide viral siRNAs which are generated by the evolutionary conserved RNA interference (RNAi) machinery that regulates gene expression and defends against invasive nucleic acids. Here we show that, similar to RNA viruses, the entire genome sequences of DNA viruses are densely covered with siRNAs in both sense and antisense orientations. This implies pervasive transcription of both coding and non-coding viral DNA in the nucleus, which generates double-stranded RNA precursors of viral siRNAs. Consistent with our finding and hypothesis, we demonstrate that the complete genomes of DNA viruses from Caulimoviridae and Geminiviridae families can be reconstructed by deep sequencing and de novo assembly of viral siRNAs using bioinformatics tools. Furthermore, we prove that this ‘siRNA omics’ approach can be used for reliable identification of the consensus master genome and its microvariants in viral quasispecies. Finally, we utilized this approach to reconstruct an emerging DNA virus and two viroids associated with economically-important red blotch disease of grapevine, and to rapidly generate a biologically-active clone representing the wild type master genome of Oilseed rape mosaic virus. Our findings show that deep siRNA sequencing allows for de novo reconstruction of any DNA or RNA virus genome and its microvariants, making it suitable for universal characterization of evolving viral quasispecies as well as for studying the mechanisms of siRNA biogenesis and RNAi-based antiviral defense. PMID:24523907

  18. Dendrimers for siRNA Delivery.

    PubMed

    Biswas, Swati; Torchilin, Vladimir P

    2013-01-01

    Since the discovery of the "starburst polymer", later renamed as dendrimer, this class of polymers has gained considerable attention for numerous biomedical applications, due mainly to the unique characteristics of this macromolecule, including its monodispersity, uniformity, and the presence of numerous functionalizable terminal groups. In recent years, dendrimers have been studied extensively for their potential application as carriers for nucleic acid therapeutics, which utilize the cationic charge of the dendrimers for effective dendrimer-nucleic acid condensation. siRNA is considered a promising, versatile tool among various RNAi-based therapeutics, which can effectively regulate gene expression if delivered successfully inside the cells. This review reports on the advancements in the development of dendrimers as siRNA carriers. PMID:24275946

  19. Dendrimers for siRNA Delivery

    PubMed Central

    Biswas, Swati; Torchilin, Vladimir P.

    2013-01-01

    Since the discovery of the “starburst polymer”, later renamed as dendrimer, this class of polymers has gained considerable attention for numerous biomedical applications, due mainly to the unique characteristics of this macromolecule, including its monodispersity, uniformity, and the presence of numerous functionalizable terminal groups. In recent years, dendrimers have been studied extensively for their potential application as carriers for nucleic acid therapeutics, which utilize the cationic charge of the dendrimers for effective dendrimer-nucleic acid condensation. siRNA is considered a promising, versatile tool among various RNAi-based therapeutics, which can effectively regulate gene expression if delivered successfully inside the cells. This review reports on the advancements in the development of dendrimers as siRNA carriers. PMID:24275946

  20. A protein sensor for siRNA asymmetry.

    PubMed

    Tomari, Yukihide; Matranga, Christian; Haley, Benjamin; Martinez, Natalia; Zamore, Phillip D

    2004-11-19

    To act as guides in the RNA interference (RNAi) pathway, small interfering RNAs (siRNAs) must be unwound into their component strands, then assembled with proteins to form the RNA-induced silencing complex (RISC), which catalyzes target messenger RNA cleavage. Thermodynamic differences in the base-pairing stabilities of the 5' ends of the two approximately 21-nucleotide siRNA strands determine which siRNA strand is assembled into the RISC. We show that in Drosophila, the orientation of the Dicer-2/R2D2 protein heterodimer on the siRNA duplex determines which siRNA strand associates with the core RISC protein Argonaute 2. R2D2 binds the siRNA end with the greatest double-stranded character, thereby orienting the heterodimer on the siRNA duplex. Strong R2D2 binding requires a 5'-phosphate on the siRNA strand that is excluded from the RISC. Thus, R2D2 is both a protein sensor for siRNA thermodynamic asymmetry and a licensing factor for entry of authentic siRNAs into the RNAi pathway.

  1. Simple gene silencing using the trans-acting siRNA pathway.

    PubMed

    Jacobs, Thomas B; Lawler, Noah J; LaFayette, Peter R; Vodkin, Lila O; Parrott, Wayne A

    2016-01-01

    In plants, particular micro-RNAs (miRNAs) induce the production of a class of small interfering RNAs (siRNA) called trans-acting siRNA (ta-siRNA) that lead to gene silencing. A single miRNA target is sufficient for the production of ta-siRNAs, which target can be incorporated into a vector to induce the production of siRNAs, and ultimately gene silencing. The term miRNA-induced gene silencing (MIGS) has been used to describe such vector systems in Arabidopsis. Several ta-siRNA loci have been identified in soybean, but, prior to this work, few of the inducing miRNAs have been experimentally validated, much less used to silence genes. Nine ta-siRNA loci and their respective miRNA targets were identified, and the abundance of the inducing miRNAs varies dramatically in different tissues. The miRNA targets were experimentally verified by silencing a transgenic GFP gene and two endogenous genes in hairy roots and transgenic plants. Small RNAs were produced in patterns consistent with the utilization of the ta-siRNA pathway. A side-by-side experiment demonstrated that MIGS is as effective at inducing gene silencing as traditional hairpin vectors in soybean hairy roots. Soybean plants transformed with MIGS vectors produced siRNAs and silencing was observed in the T1 generation. These results complement previous reports in Arabidopsis by demonstrating that MIGS is an efficient way to produce siRNAs and induce gene silencing in other species, as shown with soybean. The miRNA targets identified here are simple to incorporate into silencing vectors and offer an effective and efficient alternative to other gene silencing strategies.

  2. Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles.

    PubMed

    Kooijmans, Sander A A; Stremersch, Stephan; Braeckmans, Kevin; de Smedt, Stefaan C; Hendrix, An; Wood, Matthew J A; Schiffelers, Raymond M; Raemdonck, Koen; Vader, Pieter

    2013-11-28

    Extracellular vesicles (EVs) are specialised endogenous carriers of proteins and nucleic acids and are involved in intercellular communication. EVs are therefore proposed as candidate drug delivery systems for the delivery of nucleic acids and other macromolecules. However, the preparation of EV-based drug delivery systems is hampered by the lack of techniques to load the vesicles with nucleic acids. In this work we have now characterised in detail the use of an electroporation method for this purpose. When EVs were electroporated with fluorescently labelled siRNA, siRNA retention was comparable with previously published results (20-25% based on fluorescence spectroscopy and fluorescence fluctuation spectroscopy), and electroporation with unlabelled siRNA resulted in significant siRNA retention in the EV pellet as measured by RT-PCR. Remarkably, when siRNA was electroporated in the absence of EVs, a similar or even greater siRNA retention was measured. Nanoparticle tracking analysis and confocal microscopy showed extensive formation of insoluble siRNA aggregates after electroporation, which could be dramatically reduced by addition of EDTA. Other strategies to reduce aggregate formation, including the use of cuvettes with conductive polymer electrodes and the use of an acidic citrate electroporation buffer, resulted in a more efficient reduction of siRNA precipitation than EDTA. However, under these conditions, siRNA retention was below 0.05% and no significant differences in siRNA retention could be measured between samples electroporated in the presence or absence of EVs. Our results show that electroporation of EVs with siRNA is accompanied by extensive siRNA aggregate formation, which may cause overestimation of the amount of siRNA actually loaded into EVs. Moreover, our data clearly illustrate that electroporation is far less efficient than previously described, and highlight the necessity for alternative methods to prepare siRNA-loaded EVs.

  3. Highly efficient siRNA delivery from core-shell mesoporous silica nanoparticles with multifunctional polymer caps

    NASA Astrophysics Data System (ADS)

    Möller, Karin; Müller, Katharina; Engelke, Hanna; Bräuchle, Christoph; Wagner, Ernst; Bein, Thomas

    2016-02-01

    A new general route for siRNA delivery is presented combining porous core-shell silica nanocarriers with a modularly designed multifunctional block copolymer. Specifically, the internal storage and release of siRNA from mesoporous silica nanoparticles (MSN) with orthogonal core-shell surface chemistry was investigated as a function of pore-size, pore morphology, surface properties and pH. Very high siRNA loading capacities of up to 380 μg per mg MSN were obtained with charge-matched amino-functionalized mesoporous cores, and release profiles show up to 80% siRNA elution after 24 h. We demonstrate that adsorption and desorption of siRNA is mainly driven by electrostatic interactions, which allow for high loading capacities even in medium-sized mesopores with pore diameters down to 4 nm in a stellate pore morphology. The negatively charged MSN shell enabled the association with a block copolymer containing positively charged artificial amino acids and oleic acid blocks, which acts simultaneously as capping and endosomal release agent. The potential of this multifunctional delivery platform is demonstrated by highly effective cell transfection and siRNA delivery into KB-cells. A luciferase reporter gene knock-down of up to 80-90% was possible using extremely low cell exposures with only 2.5 μg MSN containing 0.5 μg siRNA per 100 μL well.A new general route for siRNA delivery is presented combining porous core-shell silica nanocarriers with a modularly designed multifunctional block copolymer. Specifically, the internal storage and release of siRNA from mesoporous silica nanoparticles (MSN) with orthogonal core-shell surface chemistry was investigated as a function of pore-size, pore morphology, surface properties and pH. Very high siRNA loading capacities of up to 380 μg per mg MSN were obtained with charge-matched amino-functionalized mesoporous cores, and release profiles show up to 80% siRNA elution after 24 h. We demonstrate that adsorption and desorption of

  4. In-depth sequencing of the siRNAs associated with peach latent mosaic viroid infection

    PubMed Central

    2010-01-01

    Background It has been observed that following viroid infection, there is an accumulation of viroid-derived siRNAs in infected plants. Some experimental results suggest that these small RNAs may be produced by the plant defense system to protect it from infection, indicating that viroids can elicit the RNA-silencing pathways. The objective of this study is to identify in the peach latent mosaic viroid (PLMVd), a model RNA genome, the regions that are most susceptible to RNA interference machinery. Results The RNA isolated from an infected tree have been used to sequence in parallel viroid species and small non-coding RNA species. Specifically, PLMVd RNAs were amplified, cloned and sequenced according to a conventional approach, while small non-coding RNAs were determined by high-throughput sequencing. The first led to the typing of 18 novel PLMVd variants. The second provided a library of small RNAs including 880 000 sequences corresponding to PLMVd-derived siRNAs, which makes up 11.2% of the sequences of the infected library. These siRNAs contain mainly 21-22 nucleotide RNAs and are equivalently distributed between the plus and the minus polarities of the viroid. They cover the complete viroid genome, although the amount varies depending on the regions. These regions do not necessarily correlate with the double-stranded requirement to be a substrate for Dicer-like enzymes. We noted that some sequences encompass the hammerhead self-cleavage site, indicating that the circular conformers could be processed by the RNA-silencing machinery. Finally, a bias in the relative abundance of the nature of the 5' nucleotides was observed (A, U >> G, C). Conclusions The approach used provided us a quantitative representation of the PLMVd-derived siRNAs retrieved from infected peach trees. These siRNAs account for a relatively large proportion of the small non-coding RNAs. Surprisingly, the siRNAs from some regions of the PLMVd genome appear over-represented, although these

  5. siRNA Delivery to the Glomerular Mesangium Using Polycationic Cyclodextrin Nanoparticles Containing siRNA

    PubMed Central

    Gale, Aaron; Wu, Peiwen; Ma, Rong; Davis, Mark E.

    2015-01-01

    There is an urgent need for new therapies that can halt or reverse the course of chronic kidney disease with minimal side-effect burden on the patient. Small interfering RNA (siRNA) nanoparticles are new therapeutic entities in clinical development that could be useful for chronic kidney disease treatment because they combine the tissue-specific targeting properties of nanoparticles with the gene-specific silencing effects of siRNA. Recent reports have emerged demonstrating that the kidney, specifically the glomerulus, is a readily accessible site for nanoparticle targeting. Here, we explore the hypothesis that intravenously administered polycationic cyclodextrin nanoparticles containing siRNA (siRNA/CDP-NPs) can be used for delivery of siRNA to the glomerular mesangium. We demonstrate that siRNA/CDP-NPs localize to the glomerular mesangium with limited deposition in other areas of the kidney after intravenous injection. Additionally, we report that both mouse and human mesangial cells rapidly internalize siRNA/CDP-NPs in vitro and that nanoparticle uptake can be enhanced by attaching the targeting ligands mannose or transferrin to the nanoparticle surface. Lastly, we show knockdown of mesangial enhanced green fluorescent protein expression in a reporter mouse strain following iv treatment with siRNA/CDP-NPs. Altogether, these data demonstrate the feasibility of mesangial targeting using intravenously administered siRNA/CDP-NPs. PMID:25734248

  6. Live cell imaging of duplex siRNA intracellular trafficking

    PubMed Central

    Hirsch, Markus; Helm, Mark

    2015-01-01

    Intracellular distribution of siRNA after in vitro transfection typically depends on lipopolyplexes, which must release the siRNA into the cytosol. Here, the fate of siRNAs was monitored by FRET-based live cell imaging. Subsequent to in situ observation of uptake and release processes, this approach allowed the observation of a number of hitherto uncharacterized intracellular distribution and degradation processes, commencing with a burst of endosomal releases, followed, in some cases, by fast siRNA influx into the nucleus. The continued observation of intact siRNA against a background of free fluorophores resulting from advanced degradation was possible by a specifically developed imaging algorithm, which identified populations of intact siRNA in pixels based on FRET. This proved to be essential in the end point definition of siRNA distribution, which typically featured partially degraded siRNA pools in perinuclear structures. Our results depict the initial 4 h as a critical time window, characterized by fast initial burst release into the cytosol, which lay the foundations for subsequent intracellular distribution of siRNA. Combination with a subsequent slower, but sustained release from endosomal reservoirs may contribute to the efficiency and duration of RNAi, and explain the success of lipopolyplexes in RNAi experiments in cell culture. PMID:25870407

  7. Cell-penetrating and neurotargeting dendritic siRNA nanostructures.

    PubMed

    Brunner, Korbinian; Harder, Johannes; Halbach, Tobias; Willibald, Julian; Spada, Fabio; Gnerlich, Felix; Sparrer, Konstantin; Beil, Andreas; Möckl, Leonhard; Bräuchle, Christoph; Conzelmann, Karl-Klaus; Carell, Thomas

    2015-02-01

    We report the development of dendritic siRNA nanostructures that are able to penetrate even difficult to transfect cells such as neurons with the help of a special receptor ligand. The nanoparticles elicit strong siRNA responses, despite the dendritic structure. An siRNA dendrimer directed against the crucial rabies virus (RABV) nucleoprotein (N protein) and phosphoprotein (P protein) allowed the suppression of the virus titer in neurons below the detection limit. The cell-penetrating siRNA dendrimers, which were assembled using click chemistry, open up new avenues toward finding novel molecules able to cure this deadly disease.

  8. Hypoxia-targeted siRNA delivery.

    PubMed

    Perche, F; Biswas, S; Wang, T; Zhu, L; Torchilin, V P

    2014-03-24

    Altered vasculature and the resultant chaotic tumor blood flow lead to the appearance in fast-growing tumors of regions with gradients of oxygen tension and acute hypoxia (less than 1.4% oxygen). Due to its roles in tumorigenesis and resistance to therapy, hypoxia represents a problem in cancer therapy. Insufficient delivery of therapeutic agents to the hypoxic regions in solid tumors is recognized as one of the causes of resistance to therapy. This led to the development of hypoxia imaging agents, and the use of hypoxia-activated anticancer prodrugs. Here we show the first example of the hypoxia-induced siRNA uptake and silencing using a nanocarrier consisting of polyethyleneglycol 2000, azobenzene, polyethyleneimine (PEI)(1.8 kDa), and 1,2-dioleyl-sn-glycero-3-phosphoethanolamine (DOPE) units (the nanocarrier is referred to as PAPD), where azobenzene imparts hypoxia sensitivity and specificity. We report hypoxia-activated green fluorescent protein (GFP) silencing in vitro and its downregulation in GFP-expressing tumors after intravenous administration. The proposed nanoformulation represents a novel tumor-environment-responsive modality for cancer targeting and siRNA delivery. PMID:24554550

  9. How extreme are extremes?

    NASA Astrophysics Data System (ADS)

    Cucchi, Marco; Petitta, Marcello; Calmanti, Sandro

    2016-04-01

    High temperatures have an impact on the energy balance of any living organism and on the operational capabilities of critical infrastructures. Heat-wave indicators have been mainly developed with the aim of capturing the potential impacts on specific sectors (agriculture, health, wildfires, transport, power generation and distribution). However, the ability to capture the occurrence of extreme temperature events is an essential property of a multi-hazard extreme climate indicator. Aim of this study is to develop a standardized heat-wave indicator, that can be combined with other indices in order to describe multiple hazards in a single indicator. The proposed approach can be used in order to have a quantified indicator of the strenght of a certain extreme. As a matter of fact, extremes are usually distributed in exponential or exponential-exponential functions and it is difficult to quickly asses how strong was an extreme events considering only its magnitude. The proposed approach simplify the quantitative and qualitative communication of extreme magnitude

  10. Bone site-specific delivery of siRNA

    PubMed Central

    Liu, Xinli

    2016-01-01

    Abstract Small interfering RNAs (siRNA) have enormous potential as therapeutics to target and treat various bone disorders such as osteoporosis and cancer bone metastases. However, effective and specific delivery of siRNA therapeutics to bone and bone-specific cells in vivo is very challenging. To realize the full therapeutic potential of siRNA in treating bone disorders, a safe and efficient, tissue- and cell-specific delivery system must be developed. This review focuses on recent advances in bone site-specific delivery of siRNA at the tissue or cellular level. Bone-targeted nanoparticulate siRNA carriers and various bone-targeted moieties such as bisphosphonates, oligopeptides (Asp)8 and (AspSerSer)6, and aptamers are highlighted. Incorporation of these bone-seeking targeting moieties into siRNA carriers allows for recognition of different sub-tissue functional domains of bone and also specific cell types residing in bone tissue. It also provides a means for bone-formation surface-, bone-resorption surface-, or osteoblast-specific targeting and transportation of siRNA therapeutics. The discussion mainly focuses on systemic and local bone-specific delivery of siRNA in osteoporosis and bone metastasis preclinical models. PMID:26642236

  11. siRNA delivery: from basics to therapeutic applications.

    PubMed

    Musacchio, Tiziana; Torchilin, Vladimir P

    2013-01-01

    The chance to selectively intervene and stop the development of any gene-dependent disease in different organs and pathologies makes siRNA an ideal therapeutic agent. However, serious issues should be addressed before the real therapeutic use of siRNA. The poor pharmacokinetic properties of siRNA, its short half-life, its low in vivo stability, its fast elimination by kidney filtration and its low transfection efficiency complicate the use of siRNA as a therapeutic molecule. In this review, we will describe the latest and most advanced approaches and strategies undertaken to address these limitations and improve siRNA delivery and its gene silencing efficacy as well as the prospects for its therapeutic applications. PMID:23276909

  12. Nonviral delivery of synthetic siRNAs in vivo

    PubMed Central

    Akhtar, Saghir; Benter, Ibrahim F.

    2007-01-01

    Sequence-specific gene silencing using small interfering RNA (siRNA) is a Nobel prize–winning technology that is now being evaluated in clinical trials as a potentially novel therapeutic strategy. This article provides an overview of the major pharmaceutical challenges facing siRNA therapeutics, focusing on the delivery strategies for synthetic siRNA duplexes in vivo, as this remains one of the most important issues to be resolved. This article also highlights the importance of understanding the genocompatibility/toxicogenomics of siRNA delivery reagents in terms of their impact on gene-silencing activity and specificity. Collectively, this information is essential for the selection of optimally acting siRNA delivery system combinations for the many proposed applications of RNA interference. PMID:18060020

  13. Translocation and encapsulation of siRNA inside carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Mogurampelly, Santosh; Maiti, Prabal K.

    2013-01-01

    We report spontaneous translocation of small interfering RNA (siRNA) inside carbon nanotubes (CNTs) of various diameters and chirality using all atom molecular dynamics simulations with explicit solvent. We use umbrella sampling method to calculate the free energy landscape of the siRNA entry and translocation event. Free energy profiles show that siRNA gains free energy while translocating inside CNT, and barrier for siRNA exit from CNT ranges from 40 to 110 kcal/mol depending on CNT chirality and salt concentration. The translocation time τ decreases with the increase of CNT diameter with a critical diameter of 24 Å for the translocation. In contrast, double strand DNA of the same sequence does not translocate inside CNT due to large free energy barrier for the translocation. This study helps in understanding the nucleic acid transport through nanopores at microscopic level and may help designing carbon nanotube based sensor for siRNA.

  14. Bio-inspired pulmonary surfactant-modified nanogels: A promising siRNA delivery system.

    PubMed

    De Backer, Lynn; Braeckmans, Kevin; Stuart, Marc C A; Demeester, Jo; De Smedt, Stefaan C; Raemdonck, Koen

    2015-05-28

    Inhalation therapy with small interfering RNA (siRNA) is a promising approach in the treatment of pulmonary disorders. However, clinical translation is severely limited by the lack of suitable delivery platforms. In this study, we aim to address this limitation by designing a novel bioinspired hybrid nanoparticle with a core-shell nanoarchitecture, consisting of a siRNA-loaded dextran nanogel (siNG) core and a pulmonary surfactant (Curosurf®) outer shell. The decoration of siNGs with a surfactant shell enhances the colloidal stability and prevents siRNA release in the presence of competing polyanions, which are abundantly present in biofluids. Additionally, the impact of the surfactant shell on the biological efficacy of the siNGs is determined in lung cancer cells. The presence of the surfactants substantially reduces the cellular uptake of siNGs. Remarkably, the lowered intracellular dose does not impede the gene silencing effect, suggesting a crucial role of the pulmonary surfactant in the intracellular processing of the nanoparticles. In order to surmount the observed reduction in cellular dose, folate is incorporated as a targeting ligand in the pulmonary surfactant shell to incite receptor-mediated endocytosis. The latter substantially enhances both cellular uptake and gene silencing potential, achieving efficient knockdown at siRNA concentrations in the low nanomolar range.

  15. Bio-inspired pulmonary surfactant-modified nanogels: A promising siRNA delivery system.

    PubMed

    De Backer, Lynn; Braeckmans, Kevin; Stuart, Marc C A; Demeester, Jo; De Smedt, Stefaan C; Raemdonck, Koen

    2015-05-28

    Inhalation therapy with small interfering RNA (siRNA) is a promising approach in the treatment of pulmonary disorders. However, clinical translation is severely limited by the lack of suitable delivery platforms. In this study, we aim to address this limitation by designing a novel bioinspired hybrid nanoparticle with a core-shell nanoarchitecture, consisting of a siRNA-loaded dextran nanogel (siNG) core and a pulmonary surfactant (Curosurf®) outer shell. The decoration of siNGs with a surfactant shell enhances the colloidal stability and prevents siRNA release in the presence of competing polyanions, which are abundantly present in biofluids. Additionally, the impact of the surfactant shell on the biological efficacy of the siNGs is determined in lung cancer cells. The presence of the surfactants substantially reduces the cellular uptake of siNGs. Remarkably, the lowered intracellular dose does not impede the gene silencing effect, suggesting a crucial role of the pulmonary surfactant in the intracellular processing of the nanoparticles. In order to surmount the observed reduction in cellular dose, folate is incorporated as a targeting ligand in the pulmonary surfactant shell to incite receptor-mediated endocytosis. The latter substantially enhances both cellular uptake and gene silencing potential, achieving efficient knockdown at siRNA concentrations in the low nanomolar range. PMID:25791835

  16. Small-interfering RNAs (siRNAs) as a promising tool for ocular therapy

    PubMed Central

    Guzman-Aranguez, A; Loma, P; Pintor, J

    2013-01-01

    RNA interference (RNAi) can be used to inhibit the expression of specific genes in vitro and in vivo, thereby providing an extremely useful tool for investigating gene function. Progress in the understanding of RNAi-based mechanisms has opened up new perspectives in therapeutics for the treatment of several diseases including ocular disorders. The eye is currently considered a good target for RNAi therapy mainly because it is a confined compartment and, therefore, enables local delivery of small-interfering RNAs (siRNAs) by topical instillation or direct injection. However, delivery strategies that protect the siRNAs from degradation and are suitable for long-term treatment would be help to improve the efficacy of RNAi-based therapies for ocular pathologies. siRNAs targeting critical molecules involved in the pathogenesis of glaucoma, retinitis pigmentosa and neovascular eye diseases (age-related macular degeneration, diabetic retinopathy and corneal neovascularization) have been tested in experimental animal models, and clinical trials have been conducted with some of them. This review provides an update on the progress of RNAi in ocular therapeutics, discussing the advantages and drawbacks of RNAi-based therapeutics compared to previous treatments. PMID:23937539

  17. Repression of multiple CYP2D genes in mouse primary hepatocytes with a single siRNA construct.

    PubMed

    Elraghy, Omaima; Baldwin, William S

    2015-01-01

    The Cyp2d subfamily is the second most abun-dant subfamily of hepatic drug-metabolizing CYPs. In mice, there are nine Cyp2d members that are believed to have redundant catalytic activity. We are testing and optimizing the ability of one short interfering RNA (siRNA) construct to knockdown the expression of multiple mouse Cyp2ds in primary hepatocytes. Expression of Cyp2d10, Cyp2d11, Cyp2d22, and Cyp2d26 was observed in the primary male mouse hepatocytes. Cyp2d9, which is male-specific and growth hormone-dependent, was not expressed in male primary hepatocytes, potentially because of its dependence on pulsatile growth hormone release from the anterior pituitary. Several different siRNAs at different concentrations and with different reagents were used to knockdown Cyp2d expression. siRNA constructs designed to repress only one construct often mildly repressed several Cyp2d isoforms. A construct designed to knockdown every Cyp2d isoform provided the best results, especially when incubated with transfection reagents designed specifically for primary cell culture. Interestingly, a construct designed to knockdown all Cyp2d isoforms, except Cyp2d10, caused a 2.5× increase in Cyp2d10 expression, presumably because of a compensatory response. However, while RNA expression is repressed 24 h after siRNA treatment, associated changes in Cyp2d-mediated metabolism are tenuous. Overall, this study provides data on the expression of murine Cyp2ds in primary cell lines, valuable information on designing siRNAs for silencing multiple murine CYPs, and potential pros and cons of using siRNA as a tool for repressing Cyp2d and estimating Cyp2d's role in murine xenobiotic metabolism. PMID:25124873

  18. Exosomes: Natural Carriers for siRNA Delivery.

    PubMed

    Kumar, Lalit; Verma, Shivani; Vaidya, Bhuvaneshwar; Gupta, Vivek

    2015-01-01

    Various cells of the human physiological system have the capability to release extracellular vesicles (EVs) involved in intercellular transport of proteins and nucleic acids. Exosomes are a subtype of extracellular vesicles having their origin through endocytic pathway. While being involved in intercellular transport of macromolecules, exosomes, due to their presence in several body fluids, can also be utilized as a system to commute RNA molecules and proteins in the body. Recent advances in gene therapy have provided a new outlook in disease therapeutics by modulation of gene expression using oligonucleotide based approach and exosomes have been reported a potential carrier for nucleic acid based therapeutic moieties. In recent years, small interfering RNA (siRNA) has emerged as promising therapeutic alternative for diseases with gene-based pathophysiology, however poor bioavailability limits its therapeutic potential. For effective delivery and enhancement of bioavailability of siRNA, several carriers including dendrimers, liposomes, siRNA conjugates, and siRNA aptamer chimeras, to name a few, have been explored. Exosomes can be considered a promising carrier for effective delivery of siRNA due to their existence in body's endogenous system and high tolerance. The present review focuses on delivering knowledge about exosomes, siRNA, and capability of exosomes to act as natural carriers for siRNA delivery. PMID:26486142

  19. Porous silicon microparticles for delivery of siRNA therapeutics.

    PubMed

    Shen, Jianliang; Wu, Xiaoyan; Lee, Yeonju; Wolfram, Joy; Yang, Zhizhou; Mao, Zong-Wan; Ferrari, Mauro; Shen, Haifa

    2015-01-15

    Small interfering RNA (siRNA) can be used to suppress gene expression, thereby providing a new avenue for the treatment of various diseases. However, the successful implementation of siRNA therapy requires the use of delivery platforms that can overcome the major challenges of siRNA delivery, such as enzymatic degradation, low intracellular uptake and lysosomal entrapment. Here, a protocol for the preparation and use of a biocompatible and effective siRNA delivery system is presented. This platform consists of polyethylenimine (PEI) and arginine (Arg)-grafted porous silicon microparticles, which can be loaded with siRNA by performing a simple mixing step. The silicon particles are gradually degraded over time, thereby triggering the formation of Arg-PEI/siRNA nanoparticles. This delivery vehicle provides a means for protecting and internalizing siRNA, without causing cytotoxicity. The major steps of polycation functionalization, particle characterization, and siRNA loading are outlined in detail. In addition, the procedures for determining particle uptake, cytotoxicity, and transfection efficacy are also described.

  20. SKI2 mediates degradation of RISC 5′-cleavage fragments and prevents secondary siRNA production from miRNA targets in Arabidopsis

    PubMed Central

    Branscheid, Anja; Marchais, Antonin; Schott, Gregory; Lange, Heike; Gagliardi, Dominique; Andersen, Stig Uggerhøj; Voinnet, Olivier; Brodersen, Peter

    2015-01-01

    Small regulatory RNAs are fundamental in eukaryotic and prokaryotic gene regulation. In plants, an important element of post-transcriptional control is effected by 20–24 nt microRNAs (miRNAs) and short interfering RNAs (siRNAs) bound to the ARGONAUTE1 (AGO1) protein in an RNA induced silencing complex (RISC). AGO1 may cleave target mRNAs with small RNA complementarity, but the fate of the resulting cleavage fragments remains incompletely understood. Here, we show that SKI2, SKI3 and SKI8, subunits of a cytoplasmic cofactor of the RNA exosome, are required for degradation of RISC 5′, but not 3′-cleavage fragments in Arabidopsis. In the absence of SKI2 activity, many miRNA targets produce siRNAs via the RNA-dependent RNA polymerase 6 (RDR6) pathway. These siRNAs are low-abundant, and map close to the cleavage site. In most cases, siRNAs were produced 5′ to the cleavage site, but several examples of 3′-spreading were also identified. These observations suggest that siRNAs do not simply derive from RDR6 action on stable 5′-cleavage fragments and hence that SKI2 has a direct role in limiting secondary siRNA production in addition to its function in mediating degradation of 5′-cleavage fragments. PMID:26464441

  1. Optimization of Transfection Conditions for siRNA Screening.

    PubMed

    Montoya, Justin J; Azorsa, David O

    2016-01-01

    RNAi screening of mammalian cells is often performed using siRNAs and cationic lipids as transfection reagents. Efficiency of transfection depends on growth characteristics of the cells and the cationic lipid used. With a large selection of cationic lipids available, it can often be difficult to select the optimal lipid and lipid:siRNA (vol:wt) ratio. Here, we describe the process of optimizing siRNA transfection conditions for efficient reverse transfection of mammalian cells using specific positive and negative siRNA controls. PMID:27581281

  2. MysiRNA: improving siRNA efficacy prediction using a machine-learning model combining multi-tools and whole stacking energy (ΔG).

    PubMed

    Mysara, Mohamed; Elhefnawi, Mahmoud; Garibaldi, Jonathan M

    2012-06-01

    The investigation of small interfering RNA (siRNA) and its posttranscriptional gene-regulation has become an extremely important research topic, both for fundamental reasons and for potential longer-term therapeutic benefits. Several factors affect the functionality of siRNA including positional preferences, target accessibility and other thermodynamic features. State of the art tools aim to optimize the selection of target siRNAs by identifying those that may have high experimental inhibition. Such tools implement artificial neural network models as Biopredsi and ThermoComposition21, and linear regression models as DSIR, i-Score and Scales, among others. However, all these models have limitations in performance. In this work, a neural-network trained new siRNA scoring/efficacy prediction model was developed based on combining two existing scoring algorithms (ThermoComposition21 and i-Score), together with the whole stacking energy (ΔG), in a multi-layer artificial neural network. These three parameters were chosen after a comparative combinatorial study between five well known tools. Our developed model, 'MysiRNA' was trained on 2431 siRNA records and tested using three further datasets. MysiRNA was compared with 11 alternative existing scoring tools in an evaluation study to assess the predicted and experimental siRNA efficiency where it achieved the highest performance both in terms of correlation coefficient (R(2)=0.600) and receiver operating characteristics analysis (AUC=0.808), improving the prediction accuracy by up to 18% with respect to sensitivity and specificity of the best available tools. MysiRNA is a novel, freely accessible model capable of predicting siRNA inhibition efficiency with improved specificity and sensitivity. This multiclassifier approach could help improve the performance of prediction in several bioinformatics areas. MysiRNA model, part of MysiRNA-Designer package [1], is expected to play a key role in siRNA selection and evaluation.

  3. Generation of siRNA Nanosheets for Efficient RNA Interference

    NASA Astrophysics Data System (ADS)

    Kim, Hyejin; Lee, Jae Sung; Lee, Jong Bum

    2016-04-01

    After the discovery of small interference RNA (siRNA), nanostructured siRNA delivery systems have been introduced to achieve an efficient regulation of the target gene expression. Here we report a new siRNA-generating two dimensional nanostructure in a formation of nanosized sheet. Inspired by tunable mechanical and functional properties of the previously reported RNA membrane, siRNA nanosized sheets (siRNA-NS) with multiple Dicer cleavage sites were prepared. The siRNA-NS has two dimensional structure, providing a large surface area for Dicer to cleave the siRNA-NS for the generation of functional siRNAs. Furthermore, downregulation of the cellular target gene expression was achieved by delivery of siRNA-NS without chemical modification of RNA strands or conjugation to other substances.

  4. Non-viral Methods for siRNA Delivery

    PubMed Central

    Gao, Kun; Huang, Leaf

    2009-01-01

    RNA interference (RNAi) as a mechanism to selectively degrade messenger RNA (mRNA) expression has emerged as a potential novel approach for drug target validation and the study of functional genomics. Small interfering RNAs (siRNA) therapeutics has developed rapidly and already there are clinical trials ongoing or planned. Although other challenges remain, delivery strategies for siRNA become the main hurdle that must be resolved prior to the full-scale clinical development of siRNA therapeutics. This article provides an overview of the current delivery strategies for synthetic siRNA, focusing on the targeted, self-assembled nanoparticles which show potential to become a useful and efficient tool in cancer therapy. PMID:19115957

  5. Chitosan Nanoparticles for SiRNA Delivery In Vitro.

    PubMed

    Ragelle, Héloïse; Vanvarenberg, Kevin; Vandermeulen, Gaëlle; Préat, Véronique

    2016-01-01

    RNA interference, the process in which small interfering RNAs (SiRNAs) silence a specific gene and thus inhibit the associated protein, has opened new doors for the treatment of a wide range of diseases. However, efficient delivery of SiRNAs remains a challenge, especially due to their instability in biological environments and their inability to cross cell membranes. To protect and deliver SiRNAs to mammalian cells, a variety of polymeric nanocarriers have been developed. Among them, the polysaccharide chitosan has generated great interests. This derivative of natural chitin is biodegradable and biocompatible, and can complex SiRNAs into nanoparticles on account of its positive charges. However, chitosan presents some limitations that need to be taken into account when designing chitosan/SiRNA nanoparticles. Here, we describe a method to prepare SiRNA/chitosan nanoparticles with high gene silencing efficiency and low cytotoxicity by using the ionic gelation technique.

  6. Chitosan Nanoparticles for SiRNA Delivery In Vitro.

    PubMed

    Ragelle, Héloïse; Vanvarenberg, Kevin; Vandermeulen, Gaëlle; Préat, Véronique

    2016-01-01

    RNA interference, the process in which small interfering RNAs (SiRNAs) silence a specific gene and thus inhibit the associated protein, has opened new doors for the treatment of a wide range of diseases. However, efficient delivery of SiRNAs remains a challenge, especially due to their instability in biological environments and their inability to cross cell membranes. To protect and deliver SiRNAs to mammalian cells, a variety of polymeric nanocarriers have been developed. Among them, the polysaccharide chitosan has generated great interests. This derivative of natural chitin is biodegradable and biocompatible, and can complex SiRNAs into nanoparticles on account of its positive charges. However, chitosan presents some limitations that need to be taken into account when designing chitosan/SiRNA nanoparticles. Here, we describe a method to prepare SiRNA/chitosan nanoparticles with high gene silencing efficiency and low cytotoxicity by using the ionic gelation technique. PMID:26472448

  7. Generation of siRNA Nanosheets for Efficient RNA Interference

    PubMed Central

    Kim, Hyejin; Lee, Jae Sung; Lee, Jong Bum

    2016-01-01

    After the discovery of small interference RNA (siRNA), nanostructured siRNA delivery systems have been introduced to achieve an efficient regulation of the target gene expression. Here we report a new siRNA-generating two dimensional nanostructure in a formation of nanosized sheet. Inspired by tunable mechanical and functional properties of the previously reported RNA membrane, siRNA nanosized sheets (siRNA-NS) with multiple Dicer cleavage sites were prepared. The siRNA-NS has two dimensional structure, providing a large surface area for Dicer to cleave the siRNA-NS for the generation of functional siRNAs. Furthermore, downregulation of the cellular target gene expression was achieved by delivery of siRNA-NS without chemical modification of RNA strands or conjugation to other substances. PMID:27120975

  8. Research progress on siRNA delivery with nonviral carriers

    PubMed Central

    Gao, Yan; Liu, Xin-Ling; Li, Xiao-Rong

    2011-01-01

    RNA interference is a powerful method for the knockdown of pathologically relevant genes. Small interfering RNAs (siRNAs) have been widely demonstrated as effective biomedical genetic-therapy applications for many diseases. Unfortunately, siRNA duplexes are not ideal drug-like molecules. Problems hindering their effective application fundamentally lie in their delivery, stability, and off-target effects. Delivery systems provide solutions to many of the challenges facing siRNA therapeutics. Due to some fatal disadvantages of viral vectors, nonviral carriers have been studied extensively. Aside from liposomes, nanoparticles and cationic polymer carriers have exhibited improved in vivo stability, better biocompatibility, and efficiency for gene silencing with less cellular toxicity. They may represent a promising strategy for siRNA-based therapies, especially as nanomaterials. The present review also summarizes other methods of siRNA delivery and the side effects of the nanoparticles. PMID:21720513

  9. Generation of siRNA Nanosheets for Efficient RNA Interference.

    PubMed

    Kim, Hyejin; Lee, Jae Sung; Lee, Jong Bum

    2016-01-01

    After the discovery of small interference RNA (siRNA), nanostructured siRNA delivery systems have been introduced to achieve an efficient regulation of the target gene expression. Here we report a new siRNA-generating two dimensional nanostructure in a formation of nanosized sheet. Inspired by tunable mechanical and functional properties of the previously reported RNA membrane, siRNA nanosized sheets (siRNA-NS) with multiple Dicer cleavage sites were prepared. The siRNA-NS has two dimensional structure, providing a large surface area for Dicer to cleave the siRNA-NS for the generation of functional siRNAs. Furthermore, downregulation of the cellular target gene expression was achieved by delivery of siRNA-NS without chemical modification of RNA strands or conjugation to other substances. PMID:27120975

  10. Characterization of viral siRNA populations in honey bee colony collapse disorder.

    PubMed

    Chejanovsky, Nor; Ophir, Ron; Schwager, Michal Sharabi; Slabezki, Yossi; Grossman, Smadar; Cox-Foster, Diana

    2014-04-01

    Colony Collapse Disorder (CCD), a special case of collapse of honey bee colonies, has resulted in significant losses for beekeepers. CCD-colonies show abundance of pathogens which suggests that they have a weakened immune system. Since honey bee viruses are major players in colony collapse and given the important role of viral RNA interference (RNAi) in combating viral infections we investigated if CCD-colonies elicit an RNAi response. Deep-sequencing analysis of samples from CCD-colonies from US and Israel revealed abundant small interfering RNAs (siRNA) of 21-22 nucleotides perfectly matching the Israeli acute paralysis virus (IAPV), Kashmir virus and Deformed wing virus genomes. Israeli colonies showed high titers of IAPV and a conserved RNAi-pattern of matching the viral genome. That was also observed in sample analysis from colonies experimentally infected with IAPV. Our results suggest that CCD-colonies set out a siRNA response that is specific against predominant viruses associated with colony losses.

  11. Tertiary siRNAs mediate paramutation in C. elegans.

    PubMed

    Sapetschnig, Alexandra; Sarkies, Peter; Lehrbach, Nicolas J; Miska, Eric A

    2015-03-01

    In the nematode Caenorhabditis elegans, different small RNA-dependent gene silencing mechanisms act in the germline to initiate transgenerational gene silencing. Piwi-interacting RNAs (piRNAs) can initiate transposon and gene silencing by acting upstream of endogenous short interfering RNAs (siRNAs), which engage a nuclear RNA interference (RNAi) pathway to trigger transcriptional gene silencing. Once gene silencing has been established, it can be stably maintained over multiple generations without the requirement of the initial trigger and is also referred to as RNAe or paramutation. This heritable silencing depends on the integrity of the nuclear RNAi pathway. However, the exact mechanism by which silencing is maintained across generations is not understood. Here we demonstrate that silencing of piRNA targets involves the production of two distinct classes of small RNAs with different genetic requirements. The first class, secondary siRNAs, are localized close to the direct target site for piRNAs. Nuclear import of the secondary siRNAs by the Argonaute HRDE-1 leads to the production of a distinct class of small RNAs that map throughout the transcript, which we term tertiary siRNAs. Both classes of small RNAs are necessary for full repression of the target gene and can be maintained independently of the initial piRNA trigger. Consistently, we observed a form of paramutation associated with tertiary siRNAs. Once paramutated, a tertiary siRNA generating allele confers dominant silencing in the progeny regardless of its own transmission, suggesting germline-transmitted siRNAs are sufficient for multigenerational silencing. This work uncovers a multi-step siRNA amplification pathway that promotes germline integrity via epigenetic silencing of endogenous and invading genetic elements. In addition, the same pathway can be engaged in environmentally induced heritable gene silencing and could therefore promote the inheritance of acquired traits. PMID:25811365

  12. Enhancing endosomal escape for nanoparticle mediated siRNA delivery

    NASA Astrophysics Data System (ADS)

    Ma, Da

    2014-05-01

    Gene therapy with siRNA is a promising biotechnology to treat cancer and other diseases. To realize siRNA-based gene therapy, a safe and efficient delivery method is essential. Nanoparticle mediated siRNA delivery is of great importance to overcome biological barriers for systemic delivery in vivo. Based on recent discoveries, endosomal escape is a critical biological barrier to be overcome for siRNA delivery. This feature article focuses on endosomal escape strategies used for nanoparticle mediated siRNA delivery, including cationic polymers, pH sensitive polymers, calcium phosphate, and cell penetrating peptides. Work has been done to develop different endosomal escape strategies based on nanoparticle types, administration routes, and target organ/cell types. Also, enhancement of endosomal escape has been considered along with other aspects of siRNA delivery to ensure target specific accumulation, high cell uptake, and low toxicity. By enhancing endosomal escape and overcoming other biological barriers, great progress has been achieved in nanoparticle mediated siRNA delivery.

  13. Transdermal Delivery of siRNA through Microneedle Array

    NASA Astrophysics Data System (ADS)

    Deng, Yan; Chen, Jiao; Zhao, Yi; Yan, Xiaohui; Zhang, Li; Choy, Kwongwai; Hu, Jun; Sant, Himanshu J.; Gale, Bruce K.; Tang, Tao

    2016-02-01

    Successful development of siRNA therapies has significant potential for the treatment of skin conditions (alopecia, allergic skin diseases, hyperpigmentation, psoriasis, skin cancer, pachyonychia congenital) caused by aberrant gene expression. Although hypodermic needles can be used to effectively deliver siRNA through the stratum corneum, the major challenge is that this approach is painful and the effects are restricted to the injection site. Microneedle arrays may represent a better way to deliver siRNAs across the stratum corneum. In this study, we evaluated for the first time the ability of the solid silicon microneedle array for punching holes to deliver cholesterol-modified housekeeping gene (Gapdh) siRNA to the mouse ear skin. Treating the ear with microneedles showed permeation of siRNA in the skin and could reduce Gapdh gene expression up to 66% in the skin without accumulation in the major organs. The results showed that microneedle arrays could effectively deliver siRNA to relevant regions of the skin noninvasively.

  14. Transdermal Delivery of siRNA through Microneedle Array.

    PubMed

    Deng, Yan; Chen, Jiao; Zhao, Yi; Yan, Xiaohui; Zhang, Li; Choy, Kwongwai; Hu, Jun; Sant, Himanshu J; Gale, Bruce K; Tang, Tao

    2016-01-01

    Successful development of siRNA therapies has significant potential for the treatment of skin conditions (alopecia, allergic skin diseases, hyperpigmentation, psoriasis, skin cancer, pachyonychia congenital) caused by aberrant gene expression. Although hypodermic needles can be used to effectively deliver siRNA through the stratum corneum, the major challenge is that this approach is painful and the effects are restricted to the injection site. Microneedle arrays may represent a better way to deliver siRNAs across the stratum corneum. In this study, we evaluated for the first time the ability of the solid silicon microneedle array for punching holes to deliver cholesterol-modified housekeeping gene (Gapdh) siRNA to the mouse ear skin. Treating the ear with microneedles showed permeation of siRNA in the skin and could reduce Gapdh gene expression up to 66% in the skin without accumulation in the major organs. The results showed that microneedle arrays could effectively deliver siRNA to relevant regions of the skin noninvasively. PMID:26888011

  15. Transdermal Delivery of siRNA through Microneedle Array

    PubMed Central

    Deng, Yan; Chen, Jiao; Zhao, Yi; Yan, Xiaohui; Zhang, Li; Choy, Kwongwai; Hu, Jun; Sant, Himanshu J.; Gale, Bruce K.; Tang, Tao

    2016-01-01

    Successful development of siRNA therapies has significant potential for the treatment of skin conditions (alopecia, allergic skin diseases, hyperpigmentation, psoriasis, skin cancer, pachyonychia congenital) caused by aberrant gene expression. Although hypodermic needles can be used to effectively deliver siRNA through the stratum corneum, the major challenge is that this approach is painful and the effects are restricted to the injection site. Microneedle arrays may represent a better way to deliver siRNAs across the stratum corneum. In this study, we evaluated for the first time the ability of the solid silicon microneedle array for punching holes to deliver cholesterol-modified housekeeping gene (Gapdh) siRNA to the mouse ear skin. Treating the ear with microneedles showed permeation of siRNA in the skin and could reduce Gapdh gene expression up to 66% in the skin without accumulation in the major organs. The results showed that microneedle arrays could effectively deliver siRNA to relevant regions of the skin noninvasively. PMID:26888011

  16. Stimuli-Responsive Nanoparticles for siRNA Delivery.

    PubMed

    Eloy, Josimar O; Petrilli, Raquel; Lopez, Renata F V; Lee, Robert J

    2015-01-01

    Nanoparticles have been extensively employed to deliver many drugs, including siRNA, for the treatment of a variety of diseases, particularly cancer. Lately, there has been a great deal of effort to design nanoparticles with materials that are able to respond to intrinsic or extrinsic stimuli for "on demand" delivery of siRNA. These nanoparticles are able to trigger siRNA release upon different stimuli, such as a pH decrease, redox gradient, enzyme, light, magnetic field, temperature, ultrasound or electric current. Frequently, the stimuli cause the nanoparticles to undergo protonation, hydrolytic breakdown or phase transition for triggered release of siRNA, resulting in decreased side effects and better therapeutic outcome. While studies have demonstrated efficient in vitro and in vivo delivery, these "smart" nanoparticles have not yet reached the clinic. In this review, we address different classes of nanoparticles, such as polyplexes, lipoplexes, liposomes, polymeric micelles, polymeric, lipid and inorganic nanoparticles, that are able to respond to specific stimuli for siRNA triggered-release, emphasizing their application and discussing the latest advances. PMID:26323434

  17. Characterization of rice black-streaked dwarf virus- and rice stripe virus-derived siRNAs in singly and doubly infected insect vector Laodelphax striatellus.

    PubMed

    Li, Junmin; Andika, Ida Bagus; Shen, Jiangfeng; Lv, Yuanda; Ji, Yongqiang; Sun, Liying; Chen, Jianping

    2013-01-01

    Replication of RNA viruses in insect cells triggers an antiviral defense that is mediated by RNA interference (RNAi) which generates viral-derived small interfering RNAs (siRNAs). However, it is not known whether an antiviral RNAi response is also induced in insects by reoviruses, whose double-stranded RNA genome replication is thought to occur within core particles. Deep sequencing of small RNAs showed that when the small brown planthopper (Laodelphax striatellus) was infected by Rice black-streaked dwarf virus (RBSDV) (Reoviridae; Fijivirus), more viral-derived siRNAs accumulated than when the vector insect was infected by Rice stripe virus (RSV), a negative single-stranded RNA virus. RBSDV siRNAs were predominantly 21 and 22 nucleotides long and there were almost equal numbers of positive and negative sense. RBSDV siRNAs were frequently generated from hotspots in the 5'- and 3'-terminal regions of viral genome segments but these hotspots were not associated with any predicted RNA secondary structures. Under laboratory condition, L. striatellus can be infected simultaneously with RBSDV and RSV. Double infection enhanced the accumulation of particular genome segments but not viral coat protein of RBSDV and correlated with an increase in the abundance of siRNAs derived from RBSDV. The results of this study suggest that reovirus replication in its insect vector potentially induces an RNAi-mediated antiviral response.

  18. Characterization of rice black-streaked dwarf virus- and rice stripe virus-derived siRNAs in singly and doubly infected insect vector Laodelphax striatellus.

    PubMed

    Li, Junmin; Andika, Ida Bagus; Shen, Jiangfeng; Lv, Yuanda; Ji, Yongqiang; Sun, Liying; Chen, Jianping

    2013-01-01

    Replication of RNA viruses in insect cells triggers an antiviral defense that is mediated by RNA interference (RNAi) which generates viral-derived small interfering RNAs (siRNAs). However, it is not known whether an antiviral RNAi response is also induced in insects by reoviruses, whose double-stranded RNA genome replication is thought to occur within core particles. Deep sequencing of small RNAs showed that when the small brown planthopper (Laodelphax striatellus) was infected by Rice black-streaked dwarf virus (RBSDV) (Reoviridae; Fijivirus), more viral-derived siRNAs accumulated than when the vector insect was infected by Rice stripe virus (RSV), a negative single-stranded RNA virus. RBSDV siRNAs were predominantly 21 and 22 nucleotides long and there were almost equal numbers of positive and negative sense. RBSDV siRNAs were frequently generated from hotspots in the 5'- and 3'-terminal regions of viral genome segments but these hotspots were not associated with any predicted RNA secondary structures. Under laboratory condition, L. striatellus can be infected simultaneously with RBSDV and RSV. Double infection enhanced the accumulation of particular genome segments but not viral coat protein of RBSDV and correlated with an increase in the abundance of siRNAs derived from RBSDV. The results of this study suggest that reovirus replication in its insect vector potentially induces an RNAi-mediated antiviral response. PMID:23776591

  19. Characterization of Rice Black-Streaked Dwarf Virus- and Rice Stripe Virus-Derived siRNAs in Singly and Doubly Infected Insect Vector Laodelphax striatellus

    PubMed Central

    Shen, Jiangfeng; Lv, Yuanda; Ji, Yongqiang; Sun, Liying; Chen, Jianping

    2013-01-01

    Replication of RNA viruses in insect cells triggers an antiviral defense that is mediated by RNA interference (RNAi) which generates viral-derived small interfering RNAs (siRNAs). However, it is not known whether an antiviral RNAi response is also induced in insects by reoviruses, whose double-stranded RNA genome replication is thought to occur within core particles. Deep sequencing of small RNAs showed that when the small brown planthopper (Laodelphax striatellus) was infected by Rice black-streaked dwarf virus (RBSDV) (Reoviridae; Fijivirus), more viral-derived siRNAs accumulated than when the vector insect was infected by Rice stripe virus (RSV), a negative single-stranded RNA virus. RBSDV siRNAs were predominantly 21 and 22 nucleotides long and there were almost equal numbers of positive and negative sense. RBSDV siRNAs were frequently generated from hotspots in the 5′- and 3′-terminal regions of viral genome segments but these hotspots were not associated with any predicted RNA secondary structures. Under laboratory condition, L. striatellus can be infected simultaneously with RBSDV and RSV. Double infection enhanced the accumulation of particular genome segments but not viral coat protein of RBSDV and correlated with an increase in the abundance of siRNAs derived from RBSDV. The results of this study suggest that reovirus replication in its insect vector potentially induces an RNAi-mediated antiviral response. PMID:23776591

  20. Nanovector delivery of siRNA for cancer therapy.

    PubMed

    Shen, H; Sun, T; Ferrari, M

    2012-06-01

    RNA interference holds the promise to knock down expression of every cancer gene. Both academic laboratories and pharmaceutical companies have committed heavily on manpower and financial resources to develop small interfering RNA (siRNA) cancer therapeutics over the last decade. Although significant advances have been made in the design of siRNA therapeutics and mechanism of action on cancer cell killing, there are still many hurdles to overcome including effective delivery of therapeutics in vivo. Nanotechnology has had an important role in the development of delivery vectors so far. This article summarizes current nanovectors for siRNA delivery, discusses technical challenges in overcoming biological barriers, and introduces the multistage vector system for tumor-specific delivery.

  1. Lentivirus-expressed siRNA vectors against Alzheimer disease.

    PubMed

    Peng, Kevin A; Masliah, Eliezer

    2010-01-01

    Amyloid precursor protein (APP) has been implicated in the pathogenesis of Alzheimer disease, and the accumulation of APP products ultimately leads to the familiar histopathological and clinical manifestations associated with this most common form of dementia. A protein that has been shown to promote APP accumulation is beta-secretase (beta-site APP cleaving enzyme 1, or BACE1), which is increased in the cerebrospinal fluid in those affected with Alzheimer disease. Through in vivo studies using APP transgenic mice, we demonstrated that decreasing the expression of BACE1 via lentiviral vector delivery of BACE1 siRNA has the potential for significantly reducing the cleavage of APP, accumulation of these products, and consequent neurodegeneration. As such, lentiviral-expressed siRNA against BACE1 is a therapeutic possibility in the treatment of Alzheimer disease. We detail the use of lentivirus-expressed siRNA as a method to ameliorate Alzheimer disease neuropathology in APP transgenic mice.

  2. Protease-triggered siRNA delivery vehicles.

    PubMed

    Rozema, David B; Blokhin, Andrei V; Wakefield, Darren H; Benson, Jonathan D; Carlson, Jeffrey C; Klein, Jason J; Almeida, Lauren J; Nicholas, Anthony L; Hamilton, Holly L; Chu, Qili; Hegge, Julia O; Wong, So C; Trubetskoy, Vladimir S; Hagen, Collin M; Kitas, Eric; Wolff, Jon A; Lewis, David L

    2015-07-10

    The safe and efficacious delivery of membrane impermeable therapeutics requires cytoplasmic access without the toxicity of nonspecific cytoplasmic membrane lysis. We have developed a mechanism for control of cytoplasmic release which utilizes endogenous proteases as a trigger and results in functional delivery of small interfering RNA (siRNA). The delivery approach is based on reversible inhibition of membrane disruptive polymers with protease-sensitive substrates. Proteolytic hydrolysis upon endocytosis restores the membrane destabilizing activity of the polymers thereby allowing cytoplasmic access of the co-delivered siRNA. Protease-sensitive polymer masking reagents derived from polyethylene glycol (PEG), which inhibit membrane interactions, and N-acetylgalactosamine, which targets asialoglycoprotein receptors on hepatocytes, were synthesized and used to formulate masked polymer-siRNA delivery vehicles. The size, charge and stability of the vehicles enable functional delivery of siRNA after subcutaneous administration and, with modification of the targeting ligand, have the potential for extrahepatic targeting.

  3. Innovative Delivery of siRNA to Solid Tumors by Super Carbonate Apatite

    PubMed Central

    Wu, Xin; Yamamoto, Hirofumi; Nakanishi, Hiroyuki; Yamamoto, Yuki; Inoue, Akira; Tei, Mitsuyoshi; Hirose, Hajime; Uemura, Mamoru; Nishimura, Junichi; Hata, Taishi; Takemasa, Ichiro; Mizushima, Tsunekazu; Hossain, Sharif; Akaike, Toshihiro; Matsuura, Nariaki; Doki, Yuichiro; Mori, Masaki

    2015-01-01

    RNA interference (RNAi) technology is currently being tested in clinical trials for a limited number of diseases. However, systemic delivery of small interfering RNA (siRNA) to solid tumors has not yet been achieved in clinics. Here, we introduce an in vivo pH-sensitive delivery system for siRNA using super carbonate apatite (sCA) nanoparticles, which is the smallest class of nanocarrier. These carriers consist simply of inorganic ions and accumulate specifically in tumors, yet they cause no serious adverse events in mice and monkeys. Intravenously administered sCA-siRNA abundantly accumulated in the cytoplasm of tumor cells at 4 h, indicating quick achievement of endosomal escape. sCA-survivin-siRNA induced apoptosis in HT29 tumors and significantly inhibited in vivo tumor growth of HCT116, to a greater extent than two other in vivo delivery reagents. With innovative in vivo delivery efficiency, sCA could be a useful nanoparticle for the therapy of solid tumors. PMID:25738937

  4. An atlas of soybean small RNAs identifies phased siRNAs from hundreds of coding genes.

    PubMed

    Arikit, Siwaret; Xia, Rui; Kakrana, Atul; Huang, Kun; Zhai, Jixian; Yan, Zhe; Valdés-López, Oswaldo; Prince, Silvas; Musket, Theresa A; Nguyen, Henry T; Stacey, Gary; Meyers, Blake C

    2014-12-01

    Small RNAs are ubiquitous, versatile repressors and include (1) microRNAs (miRNAs), processed from mRNA forming stem-loops; and (2) small interfering RNAs (siRNAs), the latter derived in plants by a process typically requiring an RNA-dependent RNA polymerase. We constructed and analyzed an expression atlas of soybean (Glycine max) small RNAs, identifying over 500 loci generating 21-nucleotide phased siRNAs (phasiRNAs; from PHAS loci), of which 483 overlapped annotated protein-coding genes. Via the integration of miRNAs with parallel analysis of RNA end (PARE) data, 20 miRNA triggers of 127 PHAS loci were detected. The primary class of PHAS loci (208 or 41% of the total) corresponded to NB-LRR genes; some of these small RNAs preferentially accumulate in nodules. Among the PHAS loci, novel representatives of TAS3 and noncanonical phasing patterns were also observed. A noncoding PHAS locus, triggered by miR4392, accumulated preferentially in anthers; the phasiRNAs are predicted to target transposable elements, with their peak abundance during soybean reproductive development. Thus, phasiRNAs show tremendous diversity in dicots. We identified novel miRNAs and assessed the veracity of soybean miRNAs registered in miRBase, substantially improving the soybean miRNA annotation, facilitating an improvement of miRBase annotations and identifying at high stringency novel miRNAs and their targets. PMID:25465409

  5. Extreme field science

    NASA Astrophysics Data System (ADS)

    Bulanov, S. V.; Esirkepov, T. Zh; Hayashi, Y.; Kando, M.; Kiriyama, H.; Koga, J. K.; Kondo, K.; Kotaki, H.; Pirozhkov, A. S.; Bulanov, S. S.; Zhidkov, A. G.; Rosanov, N. N.; Chen, P.; Neely, D.; Kato, Y.; Narozhny, N. B.; Korn, G.

    2011-12-01

    We discuss the progress in the development of extreme light sources that will open new horizons for studying a wide range of fundamental science and astrophysics problems. The regimes of dominant radiation reaction, which completely change the electromagnetic wave-matter interaction, will be revealed, resulting in a new extremely powerful source of ultrashort high-brightness gamma-ray pulses. The possibility of abundant electron-positron pair creation via multi-photon processes and the possibility of reaching the critical field of quantum electrodynamics, which would lead to vacuum polarization and breakdown, are attracting considerable attention.

  6. sIR: siRNA Information Resource, a web-based tool for siRNA sequence design and analysis and an open access siRNA database

    PubMed Central

    Shah, Jyoti K; Garner, Harold R; White, Michael A; Shames, David S; Minna, John D

    2007-01-01

    Background RNA interference has revolutionized our ability to study the effects of altering the expression of single genes in mammalian (and other) cells through targeted knockdown of gene expression. In this report we describe a web-based computational tool, siRNA Information Resource (sIR), which consists of a new open source database that contains validation information about published siRNA sequences and also provides a user-friendly interface to design and analyze siRNA sequences against a chosen target sequence. Results The siRNA design tool described in this paper employs empirically determined rules derived from a meta-analysis of the published data; it uses a weighted scoring system that determines the optimal sequence within a target mRNA and thus aids in the rational selection of siRNA sequences. This scoring system shows a non-linear correlation with the knockdown efficiency of siRNAs. sIR provides a fast, customized BLAST output for all selected siRNA sequences against a variety of databases so that the user can verify the uniqueness of the design. We have pre-designed siRNAs for all the known human genes (24,502) in the Refseq database. These siRNAs were pre-BLASTed against the human Unigene database to estimate the target specificity and all results are available online. Conclusion Although most of the rules for this scoring system were influenced by previously published rules, the weighted scoring system provides better flexibility in designing an appropriate siRNA when compared to the un-weighted scoring system. sIR is not only a comprehensive tool used to design siRNA sequences and lookup pre-designed siRNAs, but it is also a platform where researchers can share information on siRNA design and use. PMID:17540034

  7. Abundance of field galaxies

    NASA Astrophysics Data System (ADS)

    Klypin, Anatoly; Karachentsev, Igor; Makarov, Dmitry; Nasonova, Olga

    2015-12-01

    We present new measurements of the abundance of galaxies with a given circular velocity in the Local Volume: a region centred on the Milky Way Galaxy and extending to distance ˜10 Mpc. The sample of ˜750 mostly dwarf galaxies provides a unique opportunity to study the abundance and properties of galaxies down to absolute magnitudes MB ≈ -10 and virial masses M_vir= 109{ M_{⊙}}. We find that the standard Λ cold dark matter (ΛCDM) model gives remarkably accurate estimates for the velocity function of galaxies with circular velocities V ≳ 70 kms-1 and corresponding virial masses M_vir≳ 5× 10^{10}{ M_{⊙}}, but it badly fails by overpredicting ˜5 times the abundance of large dwarfs with velocities V = 30-40 kms-1. The warm dark matter (WDM) models cannot explain the data either, regardless of mass of WDM particle. Just as in previous observational studies, we find a shallow asymptotic slope dN/dlog V ∝ Vα, α ≈ -1 of the velocity function, which is inconsistent with the standard ΛCDM model that predicts the slope α = -3. Though reminiscent to the known overabundance of satellite problem, the overabundance of field galaxies is a much more difficult problem. For the standard ΛCDM model to survive, in the 10 Mpc radius of the Milky Way there should be 1000 not yet detected galaxies with virial mass M_vir≈ 10^{10}{ M_{⊙}}, extremely low surface brightness and no detectable H I gas. So far none of this type of galaxies have been discovered.

  8. Molecular Characteristics and Efficacy of 16D10 siRNAs in Inhibiting Root-Knot Nematode Infection in Transgenic Grape Hairy Roots

    PubMed Central

    Chronis, Demosthenis; Wang, Xiaohong; Cousins, Peter; Zhong, Gan-Yuan

    2013-01-01

    Root-knot nematodes (RKNs) infect many annual and perennial crops and are the most devastating soil-born pests in vineyards. To develop a biotech-based solution for controlling RKNs in grapes, we evaluated the efficacy of plant-derived RNA interference (RNAi) silencing of a conserved RKN effector gene, 16D10, for nematode resistance in transgenic grape hairy roots. Two hairpin-based silencing constructs, containing a stem sequence of 42 bp (pART27-42) or 271 bp (pART27-271) of the 16D10 gene, were transformed into grape hairy roots and compared for their small interfering RNA (siRNA) production and efficacy on suppression of nematode infection. Transgenic hairy root lines carrying either of the two RNAi constructs showed less susceptibility to nematode infection compared with control. Small RNA libraries from four pART27-42 and two pART27-271 hairy root lines were sequenced using an Illumina sequencing technology. The pART27-42 lines produced hundred times more 16D10-specific siRNAs than the pART27-271 lines. On average the 16D10 siRNA population had higher GC content than the 16D10 stem sequences in the RNAi constructs, supporting previous observation that plant dicer-like enzymes prefer GC-rich sequences as substrates for siRNA production. The stems of the 16D10 RNAi constructs were not equally processed into siRNAs. Several hot spots for siRNA production were found in similar positions of the hairpin stems in pART27-42 and pART27-271. Interestingly, stem sequences at the loop terminus produced more siRNAs than those at the stem base. Furthermore, the relative abundance of guide and passenger single-stranded RNAs from putative siRNA duplexes was largely correlated with their 5′ end thermodynamic strength. This study demonstrated the feasibility of using a plant-derived RNAi approach for generation of novel nematode resistance in grapes and revealed several interesting molecular characteristics of transgene siRNAs important for optimizing plant RNAi constructs

  9. Functional Delivery of siRNA in Mice Using Dendriworms

    PubMed Central

    2009-01-01

    Small interfering RNAs (siRNAs) mediate cleavage of specific, complementary mRNA sequences and thus regulate gene expression. Not surprisingly, their use for treatment of diseases that are rooted in aberrant gene expression, such as cancer, has become a paradigm that has gained wide interest. Here, we report the development of dendrimer-conjugated magnetofluorescent nanoworms that we call “dendriworms” as a modular platform for siRNA delivery in vivo. This platform maximizes endosomal escape to robustly produce protein target knockdown in vivo, and is tolerated well in mouse brain. We demonstrate that siRNA-carrying dendriworms can be readily internalized by cells and enable endosomal escape across a wide range of loading doses, whereas dendrimers or nanoworms alone are inefficient. Further, we show that dendriworms carrying siRNA against the epidermal growth factor receptor (EGFR) reduce protein levels of EGFR in human glioblastoma cells by 70−80%, 2.5-fold more efficiently than commercial cationic lipids. Dendriworms were well-tolerated after 7-days of convection-enhanced delivery to the mouse brain and in an EGFR-driven transgenic model of glioblastoma, anti- EGFR dendriworms led to specific and significant suppression of EGFR expression. Collectively, these data establish dendriworms as a multimodal platform that enables fluorescent tracking of siRNA delivery in vivo, cellular entry, endosomal escape, and knockdown of target proteins. PMID:19673534

  10. siRNA Delivery by Stimuli-Sensitive Nanocarriers

    PubMed Central

    Salzano, Giuseppina; Costa, Daniel F.; Torchilin, Vladimir P.

    2016-01-01

    Since its discovery in late 1990s, small interfering RNA (siRNA) has become a significant biopharmaceutical research tool and a powerful option for the treatment of different human diseases based on altered gene-expression. Despite promising data from many pre-clinical studies, concrete hurdles still need to be overcome to bring therapeutic siRNAs in clinic. The design of stimuli-sensitive nanopreparations for gene therapy is a lively area of the current research. Compared to conventional systems for siRNA delivery, this type of platform can respond to local stimuli that are characteristics of the pathological area of interest, allowing the release of nucleic acids at the desired site. Acidic pH, abnormal levels of enzymes, altered redox potential and magnetic field are examples of stimuli exploited in the design of stimuli-sensitive nanoparticles. In this review, we discuss on recent stimuli-sensitive strategies for siRNA delivery and we highlight on the potential of combining multiple stimuli-sensitive strategies in the same nano-platform for a better therapeutic outcome. PMID:26486143

  11. siRNA Delivery by Stimuli-Sensitive Nanocarriers.

    PubMed

    Salzano, Giuseppina; Costa, Daniel F; Torchilin, Vladimir P

    2015-01-01

    Since its discovery in the late 1990, small interfering RNA (siRNA) have quickly crept into the biopharmaceutical research as a new and powerful tool for the treatment of different human diseases based on altered gene-expression. Despite promising data from many pre-clinical studies, concrete hurdles still need to be overcome to bring therapeutic siRNAs in clinic. The design of stimuli-sensitive nanopreparations for gene therapy is a lively area of the current research. Compared to conventional systems for siRNA delivery, this type of platform can respond to local stimuli that are characteristics of the pathological area of interest, allowing the release of nucleic acids at the desired site. Acidic pH, de-regulated levels of enzymes, altered redox potential and magnetic field are examples of stimuli exploit to design stimuli-sensitive nanoparticles. In this review, we discuss on recent stimulisensitive strategies for siRNA delivery and we highlight on the potential of combining multiple stimuli-sensitive strategies in the same nano-platform for a better therapeutic outcome. PMID:26486143

  12. Docosahexaenoic Acid Conjugation Enhances Distribution and Safety of siRNA upon Local Administration in Mouse Brain

    PubMed Central

    Nikan, Mehran; Osborn, Maire F; Coles, Andrew H; Godinho, Bruno MDC; Hall, Lauren M; Haraszti, Reka A; Hassler, Matthew R; Echeverria, Dimas; Aronin, Neil; Khvorova, Anastasia

    2016-01-01

    The use of siRNA-based therapies for the treatment of neurodegenerative disease requires efficient, nontoxic distribution to the affected brain parenchyma, notably the striatum and cortex. Here, we describe the synthesis and activity of a fully chemically modified siRNA that is directly conjugated to docosahexaenoic acid (DHA), the most abundant polyunsaturated fatty acid in the mammalian brain. DHA conjugation enables enhanced siRNA retention throughout both the ipsilateral striatum and cortex following a single, intrastriatal injection (ranging from 6–60 μg). Within these tissues, DHA conjugation promotes internalization by both neurons and astrocytes. We demonstrate efficient and specific silencing of Huntingtin mRNA expression in both the ipsilateral striatum (up to 73%) and cortex (up to 51%) after 1 week. Moreover, following a bilateral intrastriatal injection (60 μg), we achieve up to 80% silencing of a secondary target, Cyclophilin B, at both the mRNA and protein level. Importantly, DHA-hsiRNAs do not induce neural cell death or measurable innate immune activation following administration of concentrations over 20 times above the efficacious dose. Thus, DHA conjugation is a novel strategy for improving siRNA activity in mouse brain, with potential to act as a new therapeutic platform for the treatment of neurodegenerative disorders. PMID:27504598

  13. Argonaute Proteins Affect siRNA Levels and Accumulation of a Novel Extrachromosomal DNA from the Dictyostelium Retrotransposon DIRS-1*

    PubMed Central

    Boesler, Benjamin; Meier, Doreen; Förstner, Konrad U.; Friedrich, Michael; Hammann, Christian; Sharma, Cynthia M.; Nellen, Wolfgang

    2014-01-01

    The retrotransposon DIRS-1 is the most abundant retroelement in Dictyostelium discoideum and constitutes the pericentromeric heterochromatin of the six chromosomes in D. discoideum. The vast majority of cellular siRNAs is derived from DIRS-1, suggesting that the element is controlled by RNAi-related mechanisms. We investigated the role of two of the five Argonaute proteins of D. discoideum, AgnA and AgnB, in DIRS-1 silencing. Deletion of agnA resulted in the accumulation of DIRS-1 transcripts, the expression of DIRS-1-encoded proteins, and the loss of most DIRS-1-derived secondary siRNAs. Simultaneously, extrachromosomal single-stranded DIRS-1 DNA accumulated in the cytoplasm of agnA− strains. These DNA molecules appear to be products of reverse transcription and thus could represent intermediate structures before transposition. We further show that transitivity of endogenous siRNAs is impaired in agnA− strains. The deletion of agnB alone had no strong effect on DIRS-1 transposon regulation. However, in agnA−/agnB− double mutant strains strongly reduced accumulation of extrachromosomal DNA compared with the single agnA− strains was observed. PMID:25352599

  14. Mucus barrier-triggered disassembly of siRNA nanocarriers

    NASA Astrophysics Data System (ADS)

    Thomsen, Troels B.; Li, Leon; Howard, Kenneth A.

    2014-10-01

    The mucus overlying mucosal epithelial surfaces presents not only a biological barrier to the penetration of potential pathogens, but also therapeutic modalities including RNAi-based nanocarriers. Movement of nanomedicines across the mucus barriers of the gastrointestinal mucosa is modulated by interactions of the nanomedicine carriers with mucin glycoproteins inside the mucus, potentiated by the large surface area of the nanocarrier. We have developed a fluorescence activation-based reporter system showing that the interaction between polyanionic mucins and the cationic chitosan/small interfering RNA (siRNA) nanocarriers (polyplexes) results in the disassembly and consequent triggered release of fluorescent siRNA. The quantity of release was found to be dependent on the molar ratio between chitosan amino groups and siRNA phosphate groups (NP ratio) of the polyplexes with a maximal estimated 48.6% release of siRNA over 30 min at NP 60. Furthermore, a microfluidic in vitro model of the gastrointestinal mucus barrier was used to visualize the dynamic interaction between chitosan/siRNA nanocarriers and native purified porcine stomach mucins. We observed strong interactions and aggregations at the mucin-liquid interface, followed by an NP ratio dependent release and consequent diffusion of siRNA across the mucin barrier. This work describes a new model of interaction at the nanocarrier-mucin interface and has important implications for the design and development of nucleic acid-based nanocarrier therapeutics for mucosal disease treatments and also provides insights into nanoscale pathogenic processes.The mucus overlying mucosal epithelial surfaces presents not only a biological barrier to the penetration of potential pathogens, but also therapeutic modalities including RNAi-based nanocarriers. Movement of nanomedicines across the mucus barriers of the gastrointestinal mucosa is modulated by interactions of the nanomedicine carriers with mucin glycoproteins inside the

  15. Beryllium and Boron abundances in population II stars

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The scientific focus of this program was to undertake UV spectroscopic abundance analyses of extremely metal poor stars with attention to determining abundances of light elements such as beryllium and boron. The abundances are likely to reflect primordial abundances within the early galaxy and help to constrain models for early galactic nucleosynthesis. The general metal abundances of these stars are also important for understanding stellar evolution.

  16. A peptidomimetic siRNA transfection reagent forhighly effectivegene silencing

    SciTech Connect

    Utku, Yeliz; Dehan, Elinor; Ouerfelli, Ouathek; Piano, Fabio; Zuckermann, Ronald N.; Pagano, Michele; Kirshenbaum, Kent

    2006-05-17

    RNA interference (RNAi) techniques hold forth great promisefor therapeutic silencing of deleterious genes. However, clinicalapplications of RNAi require the development of safe and efficientmethods for intracellular delivery of small interfering RNA (siRNA)oligonucleotides specific to targeted genes. We describe the use of alipitoid, a cationic oligopeptoid phospholipid conjugate, for non-viraltransfection of synthetic siRNA oligos in cell culture. Thispeptidomimetic delivery vehicle allows for efficient siRNA transfectionin a variety of human cell lines with negligible toxicity and promotesextensive downregulation of the targeted genes at both the protein andthe mRNA level. We compare the lipitoid reagent to a standard commercialtransfection reagent. The lipitoid is highly efficient even in primaryIMR-90 human lung fibroblasts in which other commercial reagents aretypically ineffective.

  17. Hypoxia-Responsive Copolymer for siRNA Delivery.

    PubMed

    Perche, Federico; Biswas, Swati; Patel, Niravkumar R; Torchilin, Vladimir P

    2016-01-01

    A wide variety of nanomedicine has been designed for cancer therapy. Herein, we describe the synthesis and evaluation of a hypoxia-responsive copolymer for siRNA delivery (Perche et al., Angew Chem Int Ed Engl 53:3362-3366, 2014). The synthesis is achieved using established coupling chemistry and accessible purification procedures. A polyelectrolyte-lipid conjugate (polyethyleneimine 1.8 kDa-dioleyl-phosphatidylinositol, PEI-PE) and polyethylene glycol 2000 (PEG) were assembled via the hypoxia-sensitive azobenzene (Azo) unit to obtain the PEG-Azo-PEI-DOPE copolymer. This copolymer can condense siRNA and shows hypoxia-induced cellular internalization and reporter gene downregulation in vitro and tumor accumulation in vivo after parenteral administration (Perche et al., Angew Chem Int Ed Engl 53:3362-3366, 2014). We also detail procedures to evaluate hypoxia-targeted polymers both in monolayer cultures, cancer cell spheroids and in tumor xenografts murine models. PMID:26530922

  18. Self-assembled and nanostructured siRNA delivery systems.

    PubMed

    Jeong, Ji Hoon; Park, Tae Gwan; Kim, Sun Hwa

    2011-09-01

    A wide range of organic and inorganic materials have been used in the development of nano-scale self-assembling gene delivery systems to improve the therapeutic efficacy of nucleic acid drugs. Small interfering RNA (siRNA) has recently been recognized as a promising and potent nucleic acid medicine for the treatment of incurable genetic disorders including cancer; however, siRNA-based therapeutics suffer from the same delivery problems as conventional nucleic acid drugs such as plasmid DNA and antisense oligonucleotides. Many of the delivery strategies developed for nucleic acid drugs have been applied to siRNA therapeutics, but they have not produced satisfactory in vivo gene silencing efficiencies to warrant clinical trials. This review discusses recent progress in the development of self-assembled and nanostructured delivery systems for efficient siRNA-induced gene silencing and their potential application in clinical settings. PMID:21424157

  19. Therapeutic siRNA: Principles, Challenges, and Strategies

    PubMed Central

    Gavrilov, Kseniya; Saltzman, W. Mark

    2012-01-01

    RNA interference (RNAi) is a remarkable endogenous regulatory pathway that can bring about sequence-specific gene silencing. If harnessed effectively, RNAi could result in a potent targeted therapeutic modality with applications ranging from viral diseases to cancer. The major barrier to realizing the full medicinal potential of RNAi is the difficulty of delivering effector molecules, such as small interfering RNAs (siRNAs), in vivo. An effective delivery strategy for siRNAs must address limitations that include poor stability and non-targeted biodistribution, while protecting against the stimulation of an undesirable innate immune response. The design of such a system requires rigorous understanding of all mechanisms involved. This article reviews the mechanistic principles of RNA interference, its potential, the greatest challenges for use in biomedical applications, and some of the work that has been done toward engineering delivery systems that overcome some of the hurdles facing siRNA-based therapeutics. PMID:22737048

  20. High Throughput siRNA Screening Using Reverse Transfection.

    PubMed

    von Schantz, Carina; Saarela, Jani

    2016-01-01

    RNA interference (RNAi) is a commonly used technique to knockdown gene function. Here, we describe a high throughput screening method for siRNA mediated gene silencing of the breast cancer cell line MDA-MB-231 using reverse transfection. Furthermore, we describe the setup for two separate methods for detecting viable and dead cells using either homogenous assays or image-based analysis. PMID:27581282

  1. Local administration of siRNA through Microneedle: Optimization, Bio-distribution, Tumor Suppression and Toxicity.

    PubMed

    Tang, Tao; Deng, Yan; Chen, Jiao; Zhao, Yi; Yue, Ruifeng; Choy, Kwong Wai; Wang, Chi Chiu; Du, Quan; Xu, Yan; Han, Linxiao; Chung, Tony Kwok Hung

    2016-01-01

    Although RNA interference may become a novel therapeutic approach for cancer treatment, target-site accumulation of siRNA to achieve therapeutic dosage will be a major problem. Microneedle represents a better way to deliver siRNAs and we have evaluated for the first time the capability of a silicon microneedle array for delivery of Gapdh siRNA to the skin in vivo and the results showed that the microneedle arrays could effectively deliver siRNA to relevant regions of the skin noninvasively. For the further study in this field, we evaluated the efficacy of the injectable microneedle device for local delivery of siRNA to the mouse xenograft. The results presented here indicate that local administration of siRNA through injectable microneedle could effectively deliver siRNA into the tumor region, and inhibit tumor progression without major adverse effects. PMID:27457182

  2. Local administration of siRNA through Microneedle: Optimization, Bio-distribution, Tumor Suppression and Toxicity

    PubMed Central

    Tang, Tao; Deng, Yan; Chen, Jiao; Zhao, Yi; Yue, Ruifeng; Choy, Kwong Wai; Wang, Chi Chiu; Du, Quan; Xu, Yan; Han, Linxiao; Chung, Tony Kwok Hung

    2016-01-01

    Although RNA interference may become a novel therapeutic approach for cancer treatment, target-site accumulation of siRNA to achieve therapeutic dosage will be a major problem. Microneedle represents a better way to deliver siRNAs and we have evaluated for the first time the capability of a silicon microneedle array for delivery of Gapdh siRNA to the skin in vivo and the results showed that the microneedle arrays could effectively deliver siRNA to relevant regions of the skin noninvasively. For the further study in this field, we evaluated the efficacy of the injectable microneedle device for local delivery of siRNA to the mouse xenograft. The results presented here indicate that local administration of siRNA through injectable microneedle could effectively deliver siRNA into the tumor region, and inhibit tumor progression without major adverse effects. PMID:27457182

  3. Local administration of siRNA through Microneedle: Optimization, Bio-distribution, Tumor Suppression and Toxicity

    NASA Astrophysics Data System (ADS)

    Tang, Tao; Deng, Yan; Chen, Jiao; Zhao, Yi; Yue, Ruifeng; Choy, Kwong Wai; Wang, Chi Chiu; Du, Quan; Xu, Yan; Han, Linxiao; Chung, Tony Kwok Hung

    2016-07-01

    Although RNA interference may become a novel therapeutic approach for cancer treatment, target-site accumulation of siRNA to achieve therapeutic dosage will be a major problem. Microneedle represents a better way to deliver siRNAs and we have evaluated for the first time the capability of a silicon microneedle array for delivery of Gapdh siRNA to the skin in vivo and the results showed that the microneedle arrays could effectively deliver siRNA to relevant regions of the skin noninvasively. For the further study in this field, we evaluated the efficacy of the injectable microneedle device for local delivery of siRNA to the mouse xenograft. The results presented here indicate that local administration of siRNA through injectable microneedle could effectively deliver siRNA into the tumor region, and inhibit tumor progression without major adverse effects.

  4. Recent Developments in Nanoparticle-Based siRNA Delivery for Cancer Therapy

    PubMed Central

    Lee, Jong-Min; Yoon, Tae-Jong; Cho, Young-Seok

    2013-01-01

    RNA interference (RNAi) is a gene regulation mechanism initiated by RNA molecules that enables sequence-specific gene silencing by promoting degradation of specific mRNAs. Molecular therapy using small interfering RNA (siRNA) has shown great therapeutic potential for diseases caused by abnormal gene overexpression or mutation. The major challenges to application of siRNA therapeutics include the stability and effective delivery of siRNA in vivo. Important progress in nanotechnology has led to the development of efficient siRNA delivery systems. In this review, the authors discuss recent advances in nanoparticle-mediated siRNA delivery and the application of siRNA in clinical trials for cancer therapy. This review will also offer perspectives on future applications of siRNA therapeutics. PMID:23844368

  5. Intracellular Delivery of siRNA by Polycationic Superparamagnetic Nanoparticles

    PubMed Central

    Castillo, Betzaida; Bromberg, Lev; López, Xaira; Badillo, Valerie; González Feliciano, Jose A.; González, Carlos I.; Hatton, T. Alan; Barletta, Gabriel

    2012-01-01

    The siRNA transfection efficiency of nanoparticles (NPs), composed of a superparamagnetic iron oxide core modified with polycationic polymers (poly(hexamethylene biguanide) or branched polyethyleneimine), were studied in CHO-K1 and HeLa cell lines. Both NPs demonstrated to be good siRNA transfection vehicles, but unmodified branched polyethyleneimine (25 kD) was superior on both cell lines. However, application of an external magnetic field during transfection (magnetofection) increased the efficiency of the superparamagnetic NPs. Furthermore, our results reveal that these NPs are less toxic towards CHO-K1 cell lines than the unmodified polycationic-branched polyethyleneimine (PEI). In general, the external magnetic field did not alter the cell's viability nor it disrupted the cell membranes, except for the poly(hexamethylene biguanide)-modified NP, where it was observed that in CHO-K1 cells application of the external magnetic field promoted membrane damage. This paper presents new polycationic superparamagnetic NPs as promising transfection vehicles for siRNA and demonstrates the advantages of magnetofection. PMID:22970377

  6. Essential Role for endogenous siRNAs during meiosis in mouse oocytes.

    PubMed

    Stein, Paula; Rozhkov, Nikolay V; Li, Fan; Cárdenas, Fabián L; Davydenko, Olga; Davydenk, Olga; Vandivier, Lee E; Gregory, Brian D; Hannon, Gregory J; Schultz, Richard M

    2015-02-01

    The RNase III enzyme DICER generates both microRNAs (miRNAs) and endogenous short interfering RNAs (endo-siRNAs). Both small RNA species silence gene expression post-transcriptionally in association with the ARGONAUTE (AGO) family of proteins. In mammals, there are four AGO proteins (AGO1-4), of which only AGO2 possesses endonucleolytic activity. siRNAs trigger endonucleolytic cleavage of target mRNAs, mediated by AGO2, whereas miRNAs cause translational repression and mRNA decay through association with any of the four AGO proteins. Dicer deletion in mouse oocytes leads to female infertility due to defects during meiosis I. Because mouse oocytes express both miRNAs and endo-siRNAs, this phenotype could be due to the absence of either class of small RNA, or both. However, we and others demonstrated that miRNA function is suppressed in mouse oocytes, which suggested that endo-siRNAs, not miRNAs, are essential for female meiosis. To determine if this was the case we generated mice that express a catalytically inactive knock-in allele of Ago2 (Ago2ADH) exclusively in oocytes and thereby disrupted the function of siRNAs. Oogenesis and hormonal response are normal in Ago2ADH oocytes, but meiotic maturation is impaired, with severe defects in spindle formation and chromosome alignment that lead to meiotic catastrophe. The transcriptome of these oocytes is widely perturbed and shows a highly significant correlation with the transcriptome of Dicer null and Ago2 null oocytes. Expression of the mouse transcript (MT), the most abundant transposable element in mouse oocytes, is increased. This study reveals that endo-siRNAs are essential during meiosis I in mouse females, demonstrating a role for endo-siRNAs in mammals.

  7. Red Supergiants as Cosmic Abundance Probes

    NASA Astrophysics Data System (ADS)

    Davies, B.; Kudritzki, R.-P.; Bergemann, M.; Evans, C.; Gazak, Z.; Lardo, C.; Patrick, L.; Plez, B.; Bastian, N.

    2015-09-01

    By studying a galaxy's present-day chemical abundances, we are effectively looking at its star-forming history. Cosmological simulations of galaxy evolution make predictions about the relative metal contents of galaxies as a function of their stellar mass, a trend known as the mass-metallicity relation. These predictions can be tested with observations of nearby galaxies. However, providing reliable, accurate abundance measurements at extragalactic distances is extremely challenging. In this project, we have developed a technique to extract abundance information from individual red supergiant stars at megaparsec distances. We are currently exploiting this technique using the unique capabilities of KMOS on the VLT.

  8. Construction of simple and efficient siRNA validation systems for screening and identification of effective RNAi-targeted sequences from mammalian genes.

    PubMed

    Tsai, Wen-Hui; Chang, Wen-Tsan

    2014-01-01

    RNA interference (RNAi) is an evolutionarily conserved mechanism of gene silencing induced by double-stranded RNAs (dsRNAs). Among the widely used dsRNAs, small interfering RNAs (siRNAs) and short hairpin RNAs have evolved as extremely powerful and the most popular gene silencing reagents. The key challenge to achieving efficient gene silencing especially for the purpose of therapeutics is mainly dependent on the effectiveness and specificity of the selected RNAi-targeted sequences. Practically, only a small number of dsRNAs are capable of inducing highly effective and sequence-specific gene silencing via RNAi mechanism. In addition, the efficiency of gene silencing induced by dsRNAs can only be experimentally examined based on inhibition of the target gene expression. Therefore, it is essential to develop a fully robust and comparative validation system for measuring the efficacy of designed dsRNAs. In this chapter, we focus our discussion on a reliable and quantitative reporter-based siRNA validation system that has been previously established in our laboratory. The system consists of a short synthetic DNA fragment containing an RNAi-targeted sequence of interest and two expression vectors for targeting reporter and triggering siRNA expressions. The efficiency of siRNAs is determined by their abilities to inhibit expression of the targeting reporters with easily quantified readouts including enhanced green fluorescence protein and firefly luciferase. Since only a readily available short synthetic DNA fragment is needed for constructing this reliable and efficient reporter-based siRNA validation system, this system not only provides a powerful strategy for screening highly effective RNAi-targeted sequences from mammalian genes but also implicates the use of RNAi-based dsRNA reagents for reverse functional genomics and molecular therapeutics.

  9. Current siRNA Targets in Atherosclerosis and Aortic Aneurysm

    PubMed Central

    Pradhan-Nabzdyk, Leena; Huang, Chenyu; Logerfo, Frank W.; Nabzdyk, Christoph S.

    2014-01-01

    Atherosclerosis (ATH) and aortic aneurysms (AA) remain challenging chronic diseases that confer high morbidity and mortality despite advances in medical, interventional, and surgical care. RNA interference represents a promising technology that may be utilized to silence genes contributing to ATH and AA. Despite positive results in preclinical and some clinical feasibility studies, challenges such as target/sequence validation, tissue specificity, transfection efficiency, and mitigation of unwanted off-target effects remain to be addressed. In this review the most current targets and some novel approaches in siRNA delivery are being discussed. Due to the plethora of investigated targets, only studies published between 2010 and 2014 were included. PMID:24882715

  10. Calcium phosphate nanoparticles-based systems for siRNA delivery

    PubMed Central

    Xu, Xiaochun; Li, Zehao; Zhao, Xueqin; Keen, Lawrence; Kong, Xiangdong

    2016-01-01

    Despite the enormous therapeutic potential of siRNA as a treatment strategy, the delivery is still a problem due to unfavorable biodistribution profiles and poor intracellular bioavailability. Calcium phosphate (CaP) co-precipitate has been used for nearly 40 years for in vitro transfection due to its non-toxic nature and simplicity of preparation. The surface charge of CaP will be tuned into positive by surface modification, which is important for siRNA loading and crossing cell membrane without enzymatic degradation. The new siRNA carrier system will also promote the siRNA escape from lysosome to achieve siRNA sustained delivery and high-efficiency silence. In this review, we focus on the current research activity in the development of CaP nanoparticles for siRNA delivery. These nanoparticles are mainly classified into lipid coated, polymer coated and various other types for discussion. PMID:27252888

  11. Indium-Labeling of siRNA for Small Animal SPECT Imaging.

    PubMed

    Jones, Steven; Merkel, Olivia

    2016-01-01

    Ever since the discovery of RNA interference (RNAi), therapeutic delivery of siRNA has attracted a lot of interest. However, due to the nature and structure of siRNA, a carrier is needed for any mode of systemic treatment. Furthermore, specific imaging techniques are required to trace where the deposition of the siRNA occurs throughout the body after treatment. Tracking in vivo siRNA biodistribution allows understanding and interpreting therapeutics effects and side effects. A great advantage of noninvasive imaging techniques such as SPECT imaging is that several time points can be assessed in the same subject. Thus, the time course of biodistribution or metabolic processes can be followed. Therefore, we have described an approach to modify siRNA with a DTPA (Diethylene Triamine Pentaacetic Acid) chelator in order to utilize an indium labeled siRNA for SPECT imaging. Here, we explain the details of the labeling and purification procedures.

  12. Hydroxychloroquine-conjugated gold nanoparticles for improved siRNA activity.

    PubMed

    Perche, F; Yi, Y; Hespel, L; Mi, P; Dirisala, A; Cabral, H; Miyata, K; Kataoka, K

    2016-06-01

    Current technology of siRNA delivery relies on pharmaceutical dosage forms to route maximal doses of siRNA to the tumor. However, this rationale does not address intracellular bottlenecks governing silencing activity. Here, we tested the impact of hydroxychloroquine conjugation on the intracellular fate and silencing activity of siRNA conjugated PEGylated gold nanoparticles. Addition of hydroxychloroquine improved endosomal escape and increased siRNA guide strand distribution to the RNA induced silencing complex (RISC), both crucial obstacles to the potency of siRNA. This modification significantly improved gene downregulation in cellulo. Altogether, our data suggest the benefit of this modification for the design of improved siRNA delivery systems. PMID:26986857

  13. Enhanced silencing and stabilization of siRNA polyplexes by histidine-mediated hydrogen bonds

    PubMed Central

    Chou, Szu-Ting; Hom, Kellie; Zhang, Daoning; Leng, Qixin; Tricoli, Lucas J.; Hustedt, Jason M.; Lee, Amy; Shapiro, Michael J.; Seog, Joonil; Kahn, Jason D.; Mixson, A. James

    2013-01-01

    Branched peptides containing histidines and lysines (HK) have been shown to be effective carriers for DNA and siRNA. We anticipate that elucidation of the binding mechanism of HK with siRNA will provide greater insight into the self-assembly and delivery of the HK:siRNA polyplex. Non-covalent bonds between histidine residues and nucleic acids may enhance the stability of siRNA polyplexes. We first compared the polyplex biophysical properties of a branched HK with those of branched asparagines-lysine peptide (NK). Consistent with siRNA silencing experiments, gel electrophoresis demonstrated that the HK siRNA polyplex maintained its integrity with prolonged incubation in serum, whereas siRNA in complex with NK was degraded in a time-dependent manner. Isothermal titration calorimetry of various peptides binding to siRNA at pH 7.3 showed that branched polylysine, interacted with siRNA was initially endothermic, whereas branched HK exhibited an exothermic reaction at initial binding. The exothermic interaction indicates formation of non-ionic bonds between histidines and siRNA; purely electrostatic interaction is entropy-driven and endothermic. To investigate the type of non-ionic bond, we studied the protonation state of imidazole rings of a selectively 15N labeled branched HK by heteronuclear single quantum coherence NMR. The peak of Nδ1-H tautomers of imidazole shifted downfield (in the direction of deprotonation) by 0.5 to 1.0 ppm with addition of siRNA, providing direct evidence that histidines formed hydrogen bonds with siRNA at physiological pH. These results establish that histidine-rich peptides form hydrogen bonds with siRNA, thereby enhancing the stability and biological activity of the polyplex in vitro and in vivo. PMID:24161165

  14. Designing siRNA that distinguish between genes that differ by a single nucleotide.

    PubMed

    Schwarz, Dianne S; Ding, Hongliu; Kennington, Lori; Moore, Jessica T; Schelter, Janell; Burchard, Julja; Linsley, Peter S; Aronin, Neil; Xu, Zuoshang; Zamore, Phillip D

    2006-09-01

    Small interfering RNAs (siRNAs), the guides that direct RNA interference (RNAi), provide a powerful tool to reduce the expression of a single gene in human cells. Ideally, dominant, gain-of-function human diseases could be treated using siRNAs that specifically silence the mutant disease allele, while leaving expression of the wild-type allele unperturbed. Previous reports suggest that siRNAs can be designed with single nucleotide specificity, but no rational basis for the design of siRNAs with single nucleotide discrimination has been proposed. We systematically identified siRNAs that discriminate between the wild-type and mutant alleles of two disease genes: the human Cu, Zn superoxide dismutase (SOD1) gene, which contributes to the progression of hereditary amyotrophic lateral sclerosis through the gain of a toxic property, and the huntingtin (HTT) gene, which causes Huntington disease when its CAG-repeat region expands beyond approximately 35 repeats. Using cell-free RNAi reactions in Drosophila embryo lysate and reporter assays and microarray analysis of off-target effects in cultured human cells, we identified positions within an siRNA that are most sensitive to mismatches. We also show that purine:purine mismatches imbue an siRNA with greater discriminatory power than other types of base mismatches. siRNAs in which either a G:U wobble or a mismatch is located in the "seed" sequence, the specialized siRNA guide region responsible for target binding, displayed lower levels of selectivity than those in which the mismatch was located 3' to the seed; this region of an siRNA is critical for target cleavage but not siRNA binding. Our data suggest that siRNAs can be designed to discriminate between the wild-type and mutant alleles of many genes that differ by just a single nucleotide.

  15. Targeting the Blind Spot of Polycationic Nanocarrier-Based siRNA Delivery

    PubMed Central

    Zheng, Mengyao; Pavan, Giovanni M.; Neeb, Manuel; Schaper, Andreas K.; Danani, Andrea; Klebe, Gerhard; Merkel, Olivia M.; Kissel, Thomas

    2013-01-01

    Polycationic nanocarriers attract increasing attention to the field of siRNA delivery. We investigated the self-assembly of siRNA vs pDNA with polycations, which are broadly used for nonviral gene and siRNA delivery. Although polyethyleneimine (PEI) was routinely adopted as siRNA carrier based on its efficacy in delivering pDNA, it has not been investigated yet why PEI efficiently delivers pDNA to cells but is controversially discussed in terms of efficacy for siRNA delivery. We are the first to investigate the self-assembly of PEI/siRNA vs PEI/pDNA and the steps of complexation and aggregation through different levels of hierarchy on the atomic and molecular scale with the novel synergistic use of molecular modeling, molecular dynamics simulation, isothermal titration calorimetry, and other characterization techniques. We are also the fist to elucidate atomic interactions, size, shape, stoichiometry, and association dynamics for polyplexes containing siRNA vs pDNA. Our investigation highlights differences in the hierarchical mechanism of formation of related polycation–siRNA and polycation–pDNA complexes. The results of fluorescence quenching assays indicated a biphasic behavior of siRNA binding with polycations where molecular reorganization of the siRNA within the polycations occurred at lower N/P ratios (nitrogen/phosphorus). Our results, for the first time, emphasize a biphasic behavior in siRNA complexation and the importance of low N/P ratios, which allow for excellent siRNA delivery efficiency. Our investigation highlights the formulation of siRNA complexes from a thermodynamic point of view and opens new perspectives to advance the rational design of new siRNA delivery systems. PMID:23036046

  16. RNase non-sensitive and endocytosis independent siRNA delivery system: delivery of siRNA into tumor cells and high efficiency induction of apoptosis

    NASA Astrophysics Data System (ADS)

    Jiang, Xinglu; Wang, Guobao; Liu, Ru; Wang, Yaling; Wang, Yongkui; Qiu, Xiaozhong; Gao, Xueyun

    2013-07-01

    To date, RNase degradation and endosome/lysosome trapping are still serious problems for siRNA-based molecular therapy, although different kinds of delivery formulations have been tried. In this report, a cell penetrating peptide (CPP, including a positively charged segment, a linear segment, and a hydrophobic segment) and a single wall carbon nanotube (SWCNT) are applied together by a simple method to act as a siRNA delivery system. The siRNAs first form a complex with the positively charged segment of CPP via electrostatic forces, and the siRNA-CPP further coats the surface of the SWCNT via hydrophobic interactions. This siRNA delivery system is non-sensitive to RNase and can avoid endosome/lysosome trapping in vitro. When this siRNA delivery system is studied in Hela cells, siRNA uptake was observed in 98% Hela cells, and over 70% mRNA of mammalian target of rapamycin (mTOR) is knocked down, triggering cell apoptosis on a significant scale. Our siRNA delivery system is easy to handle and benign to cultured cells, providing a very efficient approach for the delivery of siRNA into the cell cytosol and cleaving the target mRNA therein.

  17. siRNAs from an X-linked satellite repeat promote X-chromosome recognition in Drosophila melanogaster.

    PubMed

    Menon, Debashish U; Coarfa, Cristian; Xiao, Weimin; Gunaratne, Preethi H; Meller, Victoria H

    2014-11-18

    Highly differentiated sex chromosomes create a lethal imbalance in gene expression in one sex. To accommodate hemizygosity of the X chromosome in male fruit flies, expression of X-linked genes increases twofold. This is achieved by the male- specific lethal (MSL) complex, which modifies chromatin to increase expression. Mutations that disrupt the X localization of this complex decrease the expression of X-linked genes and reduce male survival. The mechanism that restricts the MSL complex to X chromatin is not understood. We recently reported that the siRNA pathway contributes to localization of the MSL complex, raising questions about the source of the siRNAs involved. The X-linked 1.688 g/cm(3) satellite related repeats (1.688(X) repeats) are restricted to the X chromosome and produce small RNA, making them an attractive candidate. We tested RNA from these repeats for a role in dosage compensation and found that ectopic expression of single-stranded RNAs from 1.688(X) repeats enhanced the male lethality of mutants with defective X recognition. In contrast, expression of double-stranded hairpin RNA from a 1.688(X) repeat generated abundant siRNA and dramatically increased male survival. Consistent with improved survival, X localization of the MSL complex was largely restored in these males. The striking distribution of 1.688(X) repeats, which are nearly exclusive to the X chromosome, suggests that these are cis-acting elements contributing to identification of X chromatin. PMID:25368194

  18. Pharmacokinetic Behaviors of Intravenously Administered siRNA in Glandular Tissues.

    PubMed

    Huang, Yuanyu; Cheng, Qiang; Ji, Jia-Li; Zheng, Shuquan; Du, Lili; Meng, Lingwei; Wu, Yidi; Zhao, Deyao; Wang, Xiaoxia; Lai, Li; Cao, Huiqing; Xiao, Kai; Gao, Shan; Liang, Zicai

    2016-01-01

    The pharmacokinetics of small interfering RNAs (siRNAs) is a pivotal issue for siRNA-based drug development. In this study, we comprehensively investigated the behavior of siRNAs in vivo in various tissues and demonstrated that intravenously-injected naked siRNA accumulated remarkably in the submandibular gland, bulbourethral gland, and pancreas, with a respective half-life of ~22.7, ~45.6, and ~30.3 h. This was further confirmed by gel separation of tissue homogenates and/or supernatants. In vivo imaging and cryosectioning suggested that delivery carriers significantly influence the distribution and elimination profiles of siRNA. Gene-silencing assays revealed that neither naked nor liposome-formulated siRNA resulted in gene knockdown in the submandibular and bulbourethral glands after systemic administration, suggesting that these glands function as drug reservoirs that enable slow siRNA release into the circulation. But robust gene-silencing was achieved by local injection of liposome-encapsulated siRNA into the submandibular gland. Our results enhance understanding of the pharmacokinetic properties of siRNAs and we believe that they will facilitate the development of siRNA therapy, especially for the submandibular gland. PMID:27446488

  19. Pharmacokinetic Behaviors of Intravenously Administered siRNA in Glandular Tissues

    PubMed Central

    Huang, Yuanyu; Cheng, Qiang; Ji, Jia-Li; Zheng, Shuquan; Du, Lili; Meng, Lingwei; Wu, Yidi; Zhao, Deyao; Wang, Xiaoxia; Lai, Li; Cao, Huiqing; Xiao, Kai; Gao, Shan; Liang, Zicai

    2016-01-01

    The pharmacokinetics of small interfering RNAs (siRNAs) is a pivotal issue for siRNA-based drug development. In this study, we comprehensively investigated the behavior of siRNAs in vivo in various tissues and demonstrated that intravenously-injected naked siRNA accumulated remarkably in the submandibular gland, bulbourethral gland, and pancreas, with a respective half-life of ~22.7, ~45.6, and ~30.3 h. This was further confirmed by gel separation of tissue homogenates and/or supernatants. In vivo imaging and cryosectioning suggested that delivery carriers significantly influence the distribution and elimination profiles of siRNA. Gene-silencing assays revealed that neither naked nor liposome-formulated siRNA resulted in gene knockdown in the submandibular and bulbourethral glands after systemic administration, suggesting that these glands function as drug reservoirs that enable slow siRNA release into the circulation. But robust gene-silencing was achieved by local injection of liposome-encapsulated siRNA into the submandibular gland. Our results enhance understanding of the pharmacokinetic properties of siRNAs and we believe that they will facilitate the development of siRNA therapy, especially for the submandibular gland. PMID:27446488

  20. Nanolayered siRNA dressing for sustained localized knockdown.

    PubMed

    Castleberry, Steven; Wang, Mary; Hammond, Paula T

    2013-06-25

    The success of RNA interference (RNAi) in medicine relies on the development of technology capable of successfully delivering it to tissues of interest. Significant research has focused on the difficult task of systemic delivery of RNAi; however its local delivery could be a more easily realized approach. Localized delivery is of particular interest for many medical applications, including the treatment of localized diseases, the modulation of cellular response to implants or tissue engineering constructs, and the management of wound healing and regenerative medicine. In this work we present an ultrathin electrostatically assembled coating for localized and sustained delivery of short interfering RNA (siRNA). This film was applied to a commercially available woven nylon dressing commonly used for surgical applications and was demonstrated to sustain significant knockdown of protein expression in multiple cell types for more than one week in vitro. Significantly, this coating can be easily applied to a medically relevant device and requires no externally delivered transfection agents for effective delivery of siRNA. These results present promising opportunities for the localized administration of RNAi. PMID:23672676

  1. Cationic lipid nanodisks as an siRNA delivery vehicle.

    PubMed

    Ghosh, Mistuni; Ren, Gang; Simonsen, Jens B; Ryan, Robert O

    2014-06-01

    The term nanodisk (ND) describes reconstituted high-density lipoprotein particles that contain one or more exogenous bioactive agents. In the present study, ND were assembled from apolipoprotein A-I, the zwitterionic glycerophospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and the synthetic cationic lipid 1,2-dimyristoyl-3-trimethylammonium-propane (DMTAP). ND formulated at a DMPC:DMTAP ratio of 70:30 (by weight) were soluble in aqueous media. The particles generated were polydisperse, with diameters ranging from ∼20 to <50 nm. In nucleic acid binding studies, agarose gel retardation assays revealed that a synthetic 23-mer double-stranded oligonucleotide (dsOligo) bound to DMTAP containing ND but not to ND formulated with DMPC alone. Sucrose density gradient ultracentrifugation studies provided additional evidence for stable dsOligo binding to DMTAP-ND. Incubation of cultured hepatoma cells with DMTAP-ND complexed with a siRNA directed against glyceraldehyde 3-phosphate dehydrogenase showed 60% knockdown efficiency. Thus, incorporation of synthetic cationic lipid (i.e., DMTAP) to ND confers an ability to bind siRNA and the resulting complexes possess target gene knockdown activity in a cultured cell model.

  2. Hybrid PET/CT for noninvasive pharmacokinetic evaluation of dynamic PolyConjugates, a synthetic siRNA delivery system.

    PubMed

    Mudd, Sarah R; Trubetskoy, Vladimir S; Blokhin, Andrei V; Weichert, Jamey P; Wolff, Jon A

    2010-07-21

    Positron emission tomography/computed tomography (PET/CT) hybrid imaging can be used to gain insights into a synthetic siRNA delivery system targeted to the liver. Either siRNA or the delivery vehicle was labeled with (64)Cu via 1, 4, 7, 10- tetraazacyclododecane- 1, 4, 7, 10- tetraacetic acid (DOTA) chelation. This study confirmed that the siRNA delivery system was successfully targeted to the liver. Incorporation of the siRNA into the delivery system protected the siRNA from renal filtration long enough so that the siRNA could be delivered to the liver. PET/CT imaging was important for confirming biodistribution and for determining differences in the distribution of labeled siRNA, siRNA incorporated into the delivery system, and the delivery system without siRNA.

  3. An Atlas of Soybean Small RNAs Identifies Phased siRNAs from Hundreds of Coding Genes[W

    PubMed Central

    Kakrana, Atul; Huang, Kun; Zhai, Jixian; Yan, Zhe; Valdés-López, Oswaldo; Prince, Silvas; Musket, Theresa A.; Stacey, Gary

    2014-01-01

    Small RNAs are ubiquitous, versatile repressors and include (1) microRNAs (miRNAs), processed from mRNA forming stem-loops; and (2) small interfering RNAs (siRNAs), the latter derived in plants by a process typically requiring an RNA-dependent RNA polymerase. We constructed and analyzed an expression atlas of soybean (Glycine max) small RNAs, identifying over 500 loci generating 21-nucleotide phased siRNAs (phasiRNAs; from PHAS loci), of which 483 overlapped annotated protein-coding genes. Via the integration of miRNAs with parallel analysis of RNA end (PARE) data, 20 miRNA triggers of 127 PHAS loci were detected. The primary class of PHAS loci (208 or 41% of the total) corresponded to NB-LRR genes; some of these small RNAs preferentially accumulate in nodules. Among the PHAS loci, novel representatives of TAS3 and noncanonical phasing patterns were also observed. A noncoding PHAS locus, triggered by miR4392, accumulated preferentially in anthers; the phasiRNAs are predicted to target transposable elements, with their peak abundance during soybean reproductive development. Thus, phasiRNAs show tremendous diversity in dicots. We identified novel miRNAs and assessed the veracity of soybean miRNAs registered in miRBase, substantially improving the soybean miRNA annotation, facilitating an improvement of miRBase annotations and identifying at high stringency novel miRNAs and their targets. PMID:25465409

  4. Solar abundance of osmium

    PubMed Central

    Jacoby, George; Aller, Lawrence H.

    1976-01-01

    The abundance parameter, log gfA, where g is the statistical weight of the lower level, f is the oscillator strength, and A is the abundance (by numbers of atoms with respect to hydrogen), has been derived for three lines of osmium by a method of spectrum synthesis. An apparent discordance of the derived abundance with that found from the carbonaceous chondrites is probably to be attributed primarily to errors in the f-values, and blending with unknown contributors. PMID:16592314

  5. Cardiomyocyte-targeted siRNA delivery by prostaglandin E(2)-Fas siRNA polyplexes formulated with reducible poly(amido amine) for preventing cardiomyocyte apoptosis.

    PubMed

    Kim, Sun Hwa; Jeong, Ji Hoon; Ou, Mei; Yockman, James W; Kim, Sung Wan; Bull, David A

    2008-11-01

    A cardiomyocyte-targeted Fas siRNA delivery system was developed using prostaglandin E(2) (PGE(2))-modified siRNA polyplexes formed by a reducible poly(amido amine) to inhibit cardiomyocyte apoptosis. PGE(2), which was used as a specific ligand for cardiomyocyte targeting, was conjugated to the terminal-end of the sense siRNA (PGE(2)-siRNA). The reducible cationic copolymer, synthesized via Michael-type polyaddition of 1,6-diaminohexane and cystamine bis-acrylamide (poly(DAH/CBA)), tightly condensed the PGE(2)-siRNA conjugate to form nanosize polyplexes having a diameter of 100-150 nm. The PGE(2)-siRNA/poly(DAH/CBA) polyplexes decomplexed to release PGE(2)-siRNA in a cytosolic reducing environment due to the degradation of the reducible poly(DAH/CBA). The cellular uptake of the PGE(2)-siRNA/poly(DAH/CBA) polyplex was increased in rat cardiomyocytes (H9C2 cells) due to PGE(2) receptor-mediated endocytosis. When H9C2 cells were transfected with siRNA against Fas, a key regulator of ischemia-induced apoptosis, the PGE(2)-Fas siRNA/poly(DAH/CBA) polyplex delivery system led to a significant increase in Fas gene silencing, resulting in inhibition of cardiomyocyte apoptosis. The PGE(2)-Fas siRNA/poly(DAH/CBA) polyplex did not induce interferon-alpha in peripheral blood mononuclear cells. These results suggest that the PGE(2)-Fas siRNA/poly(DAH/CBA) polyplex formulation may be clinically applicable as a cardiomyocyte-targeted Fas siRNA delivery system to inhibit apoptosis in cardiovascular disease.

  6. De novo reconstruction of plant RNA and DNA virus genomes from viral siRNAs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In antiviral defense, plants produce massive quantities of 21-24 nucleotide siRNAs. Here we demonstrate that the complete genomes of DNA and RNA viruses and viroids can be reconstructed by deep sequencing and de novo assembly of viral/viroid siRNAs from experimentally- and naturally-infected plants....

  7. Homology directed repair is unaffected by the absence of siRNAs in Drosophila melanogaster

    PubMed Central

    Schmidts, Ines; Böttcher, Romy; Mirkovic-Hösle, Milijana; Förstemann, Klaus

    2016-01-01

    Small interfering RNAs (siRNAs) defend the organism against harmful transcripts from exogenous (e.g. viral) or endogenous (e.g. transposons) sources. Recent publications describe the production of siRNAs induced by DNA double-strand breaks (DSB) in Neurospora crassa, Arabidopsis thaliana, Drosophila melanogaster and human cells, which suggests a conserved function. A current hypothesis is that break-induced small RNAs ensure efficient homologous recombination (HR). However, biogenesis of siRNAs is often intertwined with other small RNA species, such as microRNAs (miRNAs), which complicates interpretation of experimental results. In Drosophila, siRNAs are produced by Dcr-2 while miRNAs are processed by Dcr-1. Thus, it is possible to probe siRNA function without miRNA deregulation. We therefore examined DNA double-strand break repair after perturbation of siRNA biogenesis in cultured Drosophila cells as well as mutant flies. Our assays comprised reporters for the single-strand annealing pathway, homologous recombination and sensitivity to the DSB-inducing drug camptothecin. We could not detect any repair defects caused by the lack of siRNAs derived from the broken DNA locus. Since production of these siRNAs depends on local transcription, they may thus participate in RNA metabolism—an established function of siRNAs—rather than DNA repair. PMID:27353331

  8. Lipid-based siRNA Delivery Systems: Challenges, Promises and Solutions Along the Long Journey.

    PubMed

    Sarisozen, Can; Salzano, Giuseppina; Torchilin, Vladimir P

    2016-01-01

    RNA interference (RNAi) is an evolutionary conserved highly specific gene-silencing mechanism initiated by small interfering RNA (siRNA) molecules. Fast-paced preclinical and clinical studies helped the siRNA technology become an efficient tool for undruggable targets in different diseases including genetic diseases, viral diseases and cancer. Despite great feature of siRNAs that can down-regulate any protein in the cells, the full potential and the success of the preclinical studies could not be translated into largely successful clinical outcomes. It has become clear that the possibility of overcoming the pitfalls for in vivo siRNA therapy fully depends on delivery systems. In this review, we start with the challenges and barriers for in vivo siRNA delivery. Then we briefly discuss the recent developments in siRNA modification technology. We specifically focused on siRNA lipidation and delivery approaches with special emphasis on the lipid based hybrid systems. Here we summarize the journey of lipid-based micelle-like nanoparticle systems that combine longevity in blood, effective cellular uptake and endosomal escape for successful siRNA delivery and discuss the multifunctional stimuli-sensitive systems based on lipids as the next generation smart systems. PMID:27033509

  9. Graft-transmissible movement of inverted-repeat-induced siRNA signals into flowers.

    PubMed

    Zhang, Wenna; Kollwig, Gregor; Stecyk, Ewelina; Apelt, Federico; Dirks, Rob; Kragler, Friedrich

    2014-10-01

    In plants, small interfering RNAs (siRNA) and microRNAs move to distant tissues where they control numerous developmental and physiological processes such as morphogenesis and stress responses. Grafting techniques and transient expression systems have been employed to show that sequence-specific siRNAs with a size of 21-24 nucleotides traffic to distant organs. We used inverted-repeat constructs producing siRNA targeting the meiosis factor DISRUPTED MEIOTIC cDNA 1 (DMC1) and GFP to test whether silencing signals move into meiotically active tissues. In grafted Nicotiana tabacum, a transgenic DMC1 siRNA signal made in source tissues preferably entered the anthers formed in the first flowers. Here, the DMC1 siRNA interfered with meiotic progression and, consequently, the flowers were at least partially sterile. In agro-infiltrated N. benthamiana plants, a GFP siRNA signal produced in leaves was allocated and active in most flower tissues including anthers. In hypocotyl-grafted Arabidopsis thaliana plants, the DMC1 silencing signal consistently appeared in leaves, petioles, and stem, and only a small number of plants displayed DMC1 siRNA signals in flowers. In all three tested plant species the systemic silencing signal penetrated male sporogenic tissues suggesting that plants harbour an endogenous long-distance small RNA transport pathway facilitating siRNA signalling into meiotically active cells.

  10. siRNAmod: A database of experimentally validated chemically modified siRNAs.

    PubMed

    Dar, Showkat Ahmad; Thakur, Anamika; Qureshi, Abid; Kumar, Manoj

    2016-01-01

    Small interfering RNA (siRNA) technology has vast potential for functional genomics and development of therapeutics. However, it faces many obstacles predominantly instability of siRNAs due to nuclease digestion and subsequently biologically short half-life. Chemical modifications in siRNAs provide means to overcome these shortcomings and improve their stability and potency. Despite enormous utility bioinformatics resource of these chemically modified siRNAs (cm-siRNAs) is lacking. Therefore, we have developed siRNAmod, a specialized databank for chemically modified siRNAs. Currently, our repository contains a total of 4894 chemically modified-siRNA sequences, comprising 128 unique chemical modifications on different positions with various permutations and combinations. It incorporates important information on siRNA sequence, chemical modification, their number and respective position, structure, simplified molecular input line entry system canonical (SMILES), efficacy of modified siRNA, target gene, cell line, experimental methods, reference etc. It is developed and hosted using Linux Apache MySQL PHP (LAMP) software bundle. Standard user-friendly browse, search facility and analysis tools are also integrated. It would assist in understanding the effect of chemical modifications and further development of stable and efficacious siRNAs for research as well as therapeutics. siRNAmod is freely available at: http://crdd.osdd.net/servers/sirnamod. PMID:26818131

  11. siRNAmod: A database of experimentally validated chemically modified siRNAs

    PubMed Central

    Dar, Showkat Ahmad; Thakur, Anamika; Qureshi, Abid; Kumar, Manoj

    2016-01-01

    Small interfering RNA (siRNA) technology has vast potential for functional genomics and development of therapeutics. However, it faces many obstacles predominantly instability of siRNAs due to nuclease digestion and subsequently biologically short half-life. Chemical modifications in siRNAs provide means to overcome these shortcomings and improve their stability and potency. Despite enormous utility bioinformatics resource of these chemically modified siRNAs (cm-siRNAs) is lacking. Therefore, we have developed siRNAmod, a specialized databank for chemically modified siRNAs. Currently, our repository contains a total of 4894 chemically modified-siRNA sequences, comprising 128 unique chemical modifications on different positions with various permutations and combinations. It incorporates important information on siRNA sequence, chemical modification, their number and respective position, structure, simplified molecular input line entry system canonical (SMILES), efficacy of modified siRNA, target gene, cell line, experimental methods, reference etc. It is developed and hosted using Linux Apache MySQL PHP (LAMP) software bundle. Standard user-friendly browse, search facility and analysis tools are also integrated. It would assist in understanding the effect of chemical modifications and further development of stable and efficacious siRNAs for research as well as therapeutics. siRNAmod is freely available at: http://crdd.osdd.net/servers/sirnamod. PMID:26818131

  12. Anti-angiogenic therapy via cationic liposome-mediated systemic siRNA delivery.

    PubMed

    Tagami, Tatsuaki; Suzuki, Takuya; Matsunaga, Mariko; Nakamura, Kazuya; Moriyoshi, Naoto; Ishida, Tatsuhiro; Kiwada, Hiroshi

    2012-01-17

    siRNA has been touted as a therapeutic molecule against genetic diseases, which include cancers. But several challenging issues remain in order to achieve efficient systemic siRNA delivery and a sufficient therapeutic effect for siRNA in vivo. Cationic liposome shows promise as a carrier for nucleic acids, as it can selectively bind to angiogenic tumor blood vessels. In this way, anti-angiogenic therapy via cationic liposome-mediated systemic siRNA delivery could be achieved in cancer therapy. In the present study, we proved our assumption by preparing various kinds of polyethylene glycol (PEG)-coated siRNA/cationic liposome complexes (siRNA-lipoplexes) and screening the avidity of these siRNA-lipoplexes upon angiogenic tumor blood vessels by means of a murine dorsal air sac (DAS) model. The lipoplex, having a lipid composition of DC-6-14/POPC/CHOL/DOPE/mPEG(2000)-DSPE=20/30/30/20/5 (molar ratio) and a charge ratio of cationic liposome and siRNA=3.81 (+/-), showed a higher binding index to newly formed blood vessels. Systemic injection with the lipoplex containing siRNA for the Argonaute2 gene (apoptosis-inducible siRNA) resulted in significant anti-tumor effect without severe side effects in mice with Lewis lung carcinoma. Our results indicate that the PEGylated cationic liposome-mediated systemic delivery of cytotoxic siRNA achieves anti-angiogenesis, resulting in the suppression of tumor growth. PMID:22101286

  13. Reconsideration of in silico siRNA design from a perspective of heterogeneous data integration: problems and solutions.

    PubMed

    Liu, Qi; Zhou, Han; Zhu, Ruixin; Xu, Ying; Cao, Zhiwei

    2014-03-01

    The success of RNA interference (RNAi) depends on the interaction between short interference RNAs (siRNAs) and mRNAs. Design of highly efficient and specific siRNAs has become a challenging issue in applications of RNAi. Here, we present a detailed survey on the state-of-the-art siRNAs design, focusing on several key issues with the current in silico RNAi studies, including: (i) inconsistencies among the proposed guidelines for siRNAs design and the incomplete list of siRNAs features, (ii) improper integration of the heterogeneous cross-platform siRNAs data, (iii) inadequate consideration of the binding specificity of the target mRNAs and (iv) reduction in the 'off-target' effect in siRNAs design. With these considerations, the popular in silico siRNAs design rules are reexamined and several inconsistent viewpoints toward siRNAs feature identifications are clarified. In addition, novel computational models for siRNAs design using state-of-art machine learning techniques are discussed, which focus on heterogeneous data integration, joint feature selection and customized siRNAs screening toward highly specific targets. We believe that addressing such issues in siRNA study will provide new clues for further improved design of more efficient and specific siRNAs in RNAi.

  14. In Situ Functionalized Polymers for siRNA Delivery.

    PubMed

    Priegue, Juan M; Crisan, Daniel N; Martínez-Costas, José; Granja, Juan R; Fernandez-Trillo, Francisco; Montenegro, Javier

    2016-06-20

    A new method is reported herein for screening the biological activity of functional polymers across a consistent degree of polymerization and in situ, that is, under aqueous conditions and without purification/isolation of candidate polymers. In brief, the chemical functionality of a poly(acryloyl hydrazide) scaffold was activated under aqueous conditions using readily available aldehydes to obtain amphiphilic polymers. The transport activity of the resulting polymers can be evaluated in situ using model membranes and living cells without the need for tedious isolation and purification steps. This technology allowed the rapid identification of a supramolecular polymeric vector with excellent efficiency and reproducibility for the delivery of siRNA into human cells (HeLa-EGFP). The reported method constitutes a blueprint for the high-throughput screening and future discovery of new polymeric functional materials with important biological applications.

  15. In Situ Functionalized Polymers for siRNA Delivery.

    PubMed

    Priegue, Juan M; Crisan, Daniel N; Martínez-Costas, José; Granja, Juan R; Fernandez-Trillo, Francisco; Montenegro, Javier

    2016-06-20

    A new method is reported herein for screening the biological activity of functional polymers across a consistent degree of polymerization and in situ, that is, under aqueous conditions and without purification/isolation of candidate polymers. In brief, the chemical functionality of a poly(acryloyl hydrazide) scaffold was activated under aqueous conditions using readily available aldehydes to obtain amphiphilic polymers. The transport activity of the resulting polymers can be evaluated in situ using model membranes and living cells without the need for tedious isolation and purification steps. This technology allowed the rapid identification of a supramolecular polymeric vector with excellent efficiency and reproducibility for the delivery of siRNA into human cells (HeLa-EGFP). The reported method constitutes a blueprint for the high-throughput screening and future discovery of new polymeric functional materials with important biological applications. PMID:27100572

  16. Strategies and advances in nanomedicine for targeted siRNA delivery.

    PubMed

    Nimesh, Surendra; Gupta, Nidhi; Chandra, Ramesh

    2011-06-01

    siRNA are a rapidly emerging class of new therapeutic molecules for the treatment of inherited and acquired diseases. However, poor cellular uptake and instability in physiological conditions limits its therapeutic potential, hence a need to develop a delivery system that can protect and efficiently transport siRNA to the target cells has arisen. Nanoparticles have been proposed as suitable delivery vectors with reduced cytotoxicity and enhanced efficacy. These delivery vectors form condensed complexes with siRNA which, in turn, provides protection to siRNA against enzymatic degradation and further leads to tissue and cellular targeting. Nanoparticles derived from polymers, such as chitosan and polyethylenimine have found numerous applications owing to ease of manipulation, high stability, low cost and high gene carrying capability. This article focuses on various aspects of nanomedicine based siRNA delivery with emphasis on targeted delivery to tumors.

  17. Biological effects of hexitol and altritol-modified siRNAs targeting B-Raf

    PubMed Central

    Fisher, Michael; Abramov, Mikhail; Van Aerschot, Arthur; Rozenski, Jef; Dixit, Vidula; Juliano, Rudy L.; Herdewijn, Piet

    2009-01-01

    Increasing the effectiveness of siRNAs through chemical modification is an important task. Here we describe altritol and hexitol modified oligonucleotides targeting the B-Raf oncogene that is critical for the growth and survival of melanoma cells. Using assays for apoptosis, DNA synthesis, colony formation and B-Raf protein and message levels, we demonstrate that certain hexitol modifications can improve the effectiveness of B-Raf siRNAs and also increase duration of action. Altritol modified siRNAs were similar to or slightly less effective than unmodified B-Raf siRNA. Modifications at the 3′ or 5′ end of the sense strand, at the 3′ end of the antisense strand, or within either strand were well tolerated. The basis for the increased effectiveness of the hexitol-modified siRNAs is not fully understood but may be partly due to increased stability to nucleases. PMID:19374843

  18. Delivery strategies and potential targets for siRNA in major cancer types.

    PubMed

    Lee, So Jin; Kim, Min Ju; Kwon, Ick Chan; Roberts, Thomas M

    2016-09-01

    Small interfering RNA (siRNA) has gained attention as a potential therapeutic reagent due to its ability to inhibit specific genes in many genetic diseases. For many years, studies of siRNA have progressively advanced toward novel treatment strategies against cancer. Cancer is caused by various mutations in hundreds of genes including both proto-oncogenes and tumor suppressor genes. In order to develop siRNAs as therapeutic agents for cancer treatment, delivery strategies for siRNA must be carefully designed and potential gene targets carefully selected for optimal anti-cancer effects. In this review, various modifications and delivery strategies for siRNA delivery are discussed. In addition, we present current thinking on target gene selection in major tumor types. PMID:27259398

  19. Dicetyl phosphate-tetraethylenepentamine-based liposomes for systemic siRNA delivery.

    PubMed

    Asai, Tomohiro; Matsushita, Saori; Kenjo, Eriya; Tsuzuku, Takuma; Yonenaga, Norihito; Koide, Hiroyuki; Hatanaka, Kentaro; Dewa, Takehisa; Nango, Mamoru; Maeda, Noriyuki; Kikuchi, Hiroshi; Oku, Naoto

    2011-03-16

    Dicetyl phosphate-tetraethylenepentamine (DCP-TEPA) conjugate was newly synthesized and formed into liposomes for efficient siRNA delivery. Formulation of DCP-TEPA-based polycation liposomes (TEPA-PCL) complexed with siRNA was examined by performing knockdown experiments using stable EGFP-transfected HT1080 human fibrosarcoma cells and siRNA for GFP. An adequate amount of DCP-TEPA in TEPA-PCL and N/P ratio of TEPA-PCL/siRNA complexes were determined based on the knockdown efficiency. Then, the biodistribution of TEPA-PCL modified with poly(ethylene glycol) (PEG) was examined in BALB/c mice. As a result, TEPA-PCL modified with PEG6000 avoided reticuloendothelial system uptake and showed long circulation in the bloodstream. On the other hand, PEGylation of TEPA-PCL/siRNA complexes caused dissociation of a portion of the siRNA from the liposomes. However, we found that the use of cholesterol-conjugated siRNA improved the interaction between TEPA-PCL and siRNA, which allowed PEGylation of TEPA-PCL/siRNA complexes without siRNA dissociation. In addition, TEPA-PCL complexed with cholesterol-conjugated siRNA showed potent knockdown efficiency in stable luciferase-transfected B16-F10 murine melanoma cells. Finally, the biodistribution of cholesterol-conjugated siRNA formulated in PEGylated TEPA-PCL was examined by performing near-infrared fluorescence imaging in Colon26 NL-17 murine carcinoma-bearing mice. Our results showed that tumor targeting with siRNA via systemic administration was achieved by using PEGylated TEPA-PCL combined with active targeting with Ala-Pro-Arg-Pro-Gly, a peptide used for targeting angiogenic endothelium. PMID:21361311

  20. Controlling mesenchymal stem cell gene expression using polymer-mediated delivery of siRNA

    PubMed Central

    Benoit, Danielle S.W.; Boutin, Molly E.

    2012-01-01

    siRNA treatment has great promise to specifically control gene expression and select cell behaviors but have delivery challenges limiting their use. Particularly for applications in regenerative medicine, uniform and consistent delivery of siRNA to control gene expression and subsequent stem cell functions, such as differentiation, is paramount. Therefore, a diblock copolymer was examined for its ability to effective delivery siRNA to mesenchymal stem cells (MSCs). The diblock copolymers, which are composed of cationic blocks for siRNA complexation, protection, and uptake and pH-responsive blocks for endosomal escape, were shown to facilitate nearly 100% MSC uptake of siRNA, which is vastly superior to a commercially-available control, DharmaFECT, which resulted in only ~60% siRNA positive MSCs. Moreover, the diblock copolymer, at conditions that result in excellent knockdown (down to ~10% of control gene expression), is cytocompatible, causing no negative effects on MSC survivability. In contrast, DharmaFECT:siRNA treatment results in only ~60% survivability of MSCs. Longitudinal knockdown after siRNA treatment was examined and protein knockdown persists for ~6 days regardless of delivery system (diblock copolymer or DharmaFECT). Finally, MSC phenotype and differentiation capacity was examined after treatment with control siRNA. There is no statistically significant differences on cell surface markers of diblock copolymer:siRNA or DharmaFECT:siRNA treated or cells measured 2 weeks after siRNA delivery compared to untreated cells. Upon differentiation with typical media/culture conditions to adipogenic, chondrogenic, and osteogenic lineages and examination of histological staining markers, there is no discernable differences between treated and untreated cells, regardless of delivery mechanism. Thus, diblock copolymers examined herein facilitate uniform siRNA treatment of MSCs, inducing siRNA-specific gene and protein knockdown without adversely affecting MSC

  1. Identification of miniature inverted-repeat transposable elements (MITEs) and biogenesis of their siRNAs in the Solanaceae: new functional implications for MITEs.

    PubMed

    Kuang, Hanhui; Padmanabhan, Chellappan; Li, Feng; Kamei, Ayako; Bhaskar, Pudota B; Ouyang, Shu; Jiang, Jiming; Buell, C Robin; Baker, Barbara

    2009-01-01

    Small RNAs regulate the genome by guiding transcriptional and post-transcriptional silencing machinery to specific target sequences, including genes and transposable elements (TEs). Although miniature inverted-repeat transposable elements (MITEs) are closely associated with euchromatic genes, the broader functional impact of these short TE insertions in genes is largely unknown. We identified 22 families of MITEs in the Solanaceae (MiS1-MiS22) and found abundant MiS insertions in Solanaceae genomic DNA and expressed sequence tags (EST). Several Solanaceae MITEs generate genome changes that potentially affect gene function and regulation, most notably, a MiS insertion that provides a functionally indispensable alternative exon in the tobacco mosaic virus N resistance gene. We show that MITEs generate small RNAs that are primarily 24 nt in length, as detected by Northern blot hybridization and by sequencing small RNAs of Solanum demissum, Nicotiana glutinosa, and Nicotiana benthamiana. Additionally, we show that stable RNAi lines silencing DICER-LIKE3 (DCL3) in tobacco and RNA-dependent RNA polymerase 2 (RDR2) in potato cause a reduction in 24-nt MITE siRNAs, suggesting that, as in Arabidopsis, TE-derived siRNA biogenesis is DCL3 and RDR2 dependent. We provide evidence that DICER-LIKE4 (DCL4) may also play a role in MITE siRNA generation in the Solanaceae.

  2. DSIR: assessing the design of highly potent siRNA by testing a set of cancer-relevant target genes.

    PubMed

    Filhol, Odile; Ciais, Delphine; Lajaunie, Christian; Charbonnier, Peggy; Foveau, Nicolas; Vert, Jean-Philippe; Vandenbrouck, Yves

    2012-01-01

    Chemically synthesized small interfering RNA (siRNA) is a widespread molecular tool used to knock down genes in mammalian cells. However, designing potent siRNA remains challenging. Among tools predicting siRNA efficacy, very few have been validated on endogenous targets in realistic experimental conditions. We previously described a tool to assist efficient siRNA design (DSIR, Designer of siRNA), which focuses on intrinsic features of the siRNA sequence. Here, we evaluated DSIR's performance by systematically investigating the potency of the siRNA it designs to target ten cancer-related genes. mRNA knockdown was measured by quantitative RT-PCR in cell-based assays, revealing that over 60% of siRNA sequences designed by DSIR silenced their target genes by at least 70%. Silencing efficacy was sustained even when low siRNA concentrations were used. This systematic analysis revealed in particular that, for a subset of genes, the efficiency of siRNA constructs significantly increases when the sequence is located closer to the 5'-end of the target gene coding sequence, suggesting the distance to the 5'-end as a new feature for siRNA potency prediction. A new version of DSIR incorporating these new findings, as well as the list of validated siRNA against the tested cancer genes, has been made available on the web (http://biodev.extra.cea.fr/DSIR).

  3. Structure-Guided Control of siRNA Off-Target Effects.

    PubMed

    Suter, Scott R; Sheu-Gruttadauria, Jessica; Schirle, Nicole T; Valenzuela, Rachel; Ball-Jones, Alexi A; Onizuka, Kazumitsu; MacRae, Ian J; Beal, Peter A

    2016-07-20

    Short interfering RNAs (siRNAs) are promising therapeutics that make use of the RNA interference (RNAi) pathway, but liabilities arising from the native RNA structure necessitate chemical modification for drug development. Advances in the structural characterization of components of the human RNAi pathway have enabled structure-guided optimization of siRNA properties. Here we report the 2.3 Å resolution crystal structure of human Argonaute 2 (hAgo2), a key nuclease in the RNAi pathway, bound to an siRNA guide strand bearing an unnatural triazolyl nucleotide at position 1 (g1). Unlike natural nucleotides, this analogue inserts deeply into hAgo2's central RNA binding cleft and thus is able to modulate pairing between guide and target RNAs. The affinity of the hAgo2-siRNA complex for a seed-only matched target was significantly reduced by the triazolyl modification, while the affinity for a fully matched target was unchanged. In addition, siRNA potency for off-target repression was reduced (4-fold increase in IC50) by the modification, while on-target knockdown was improved (2-fold reduction in IC50). Controlling siRNA on-target versus microRNA (miRNA)-like off-target potency by projection of substituent groups into the hAgo2 central cleft from g1 is a new approach to enhance siRNA selectivity with a strong structural rationale. PMID:27387838

  4. Phospholipid–polyethylenimine conjugate-based micelle-like nanoparticles for siRNA delivery

    PubMed Central

    Navarro, Gemma; Sawant, Rupa R.; Essex, Sean; Tros de ILarduya, Conchita

    2012-01-01

    Gene silencing using small interfering RNA (siRNA) is a promising therapeutic strategy for the treatment of various diseases, in particular, cancer. Recently, our group reported on a novel gene carrier, the micelle-like nanoparticle (MNP), based on the combination of a covalent conjugate of phospholipid and polyethylenimine (PLPEI) with polyethylene glycol (PEG) and lipids. These long-circulating MNPs loaded with plasmid DNA-mediated gene expression in distal tumors after systemic administration in vivo. In the current study, we investigated the potential of MNPs for siRNA delivery. MNPs were prepared by condensing siRNA with PLPEI at a nitrogen/phosphate ratio of 10, where the binding of siRNA is complete. The addition of a PEG/lipid coating to the PLPEI complexes generated particles with sizes of ca. 200 nm and a neutral surface charge compared with positively charged PLPEI polyplexes without the additional coating. MNPs protected the loaded siRNA against enzymatic digestion and enhanced the cellular uptake of the siRNA payload. MNPs carrying green fluorescent protein (GFP)-targeted siRNA effectively downregulated the gene in cells that stably express GFP. Finally, MNPs were non-toxic at a wide range of concentrations and for different cell lines. PMID:22916337

  5. Structure-Guided Control of siRNA Off-Target Effects.

    PubMed

    Suter, Scott R; Sheu-Gruttadauria, Jessica; Schirle, Nicole T; Valenzuela, Rachel; Ball-Jones, Alexi A; Onizuka, Kazumitsu; MacRae, Ian J; Beal, Peter A

    2016-07-20

    Short interfering RNAs (siRNAs) are promising therapeutics that make use of the RNA interference (RNAi) pathway, but liabilities arising from the native RNA structure necessitate chemical modification for drug development. Advances in the structural characterization of components of the human RNAi pathway have enabled structure-guided optimization of siRNA properties. Here we report the 2.3 Å resolution crystal structure of human Argonaute 2 (hAgo2), a key nuclease in the RNAi pathway, bound to an siRNA guide strand bearing an unnatural triazolyl nucleotide at position 1 (g1). Unlike natural nucleotides, this analogue inserts deeply into hAgo2's central RNA binding cleft and thus is able to modulate pairing between guide and target RNAs. The affinity of the hAgo2-siRNA complex for a seed-only matched target was significantly reduced by the triazolyl modification, while the affinity for a fully matched target was unchanged. In addition, siRNA potency for off-target repression was reduced (4-fold increase in IC50) by the modification, while on-target knockdown was improved (2-fold reduction in IC50). Controlling siRNA on-target versus microRNA (miRNA)-like off-target potency by projection of substituent groups into the hAgo2 central cleft from g1 is a new approach to enhance siRNA selectivity with a strong structural rationale.

  6. In vitro inhibition of field isolates of feline calicivirus with short interfering RNAs (siRNAs).

    PubMed

    McDonagh, Phillip; Sheehy, Paul A; Fawcett, Anne; Norris, Jacqueline M

    2015-05-15

    Feline calicivirus (FCV) is a common infection of domestic cats. Most infections are mild and self-limiting; however more severe disease manifestations, such as FCV-associated virulent systemic disease, may be associated with significant morbidity and mortality. There is currently a lack of effective antiviral treatments for these disease manifestations. In this study, a panel of eight siRNAs were designed to target four conserved regions of the FCV genome. siRNAs were screened for in vitro antiviral efficacy against the reference strain FCV F9 by determination of extracellular virus titres and morphological assessment of protection from cytopathic effect. Three of the siRNA (FCV3.7, FCV4.1, and FCV4.2) demonstrated a marked antiviral effect with a greater than 99% reduction in extracellular viral titre. Titration of these effective siRNAs demonstrated a clear concentration-response relationship, with IC50 values of approximately 1 nM, and combination treatment with multiple siRNAs demonstrated additive or synergistic effects. To assess the potential usefulness of the compounds in a clinical setting, siRNAs were screened against a panel of six recent Australian FCV isolates from cats with FCV-related disease. The siRNAs shown to be effective against the reference strain FCV F9 were active against the majority of the isolates tested, although some variability was noted. Taken together these data suggest potential therapeutic application of antiviral RNAi for treating FCV-associated disease in cats.

  7. Bolaamphiphiles as carriers for siRNA delivery: From chemical syntheses to practical applications.

    PubMed

    Gupta, Kshitij; Afonin, Kirill A; Viard, Mathias; Herrero, Virginia; Kasprzak, Wojciech; Kagiampakis, Ioannis; Kim, Taejin; Koyfman, Alexey Y; Puri, Anu; Stepler, Marissa; Sappe, Alison; KewalRamani, Vineet N; Grinberg, Sarina; Linder, Charles; Heldman, Eliahu; Blumenthal, Robert; Shapiro, Bruce A

    2015-09-10

    In this study we have investigated a new class of cationic lipids--"bolaamphiphiles" or "bolas"--for their ability to efficiently deliver small interfering RNAs (siRNAs) to cancer cells. The bolas of this study consist of a hydrophobic chain with one or more positively charged head groups at each end. Recently, we reported that micelles of the bolas GLH-19 and GLH-20 (derived from vernonia oil) efficiently deliver siRNAs, while having relatively low toxicities in vitro and in vivo. Our previous studies validated that; bolaamphiphiles can be designed to vary the magnitude of siRNA shielding, its delivery, and its subsequent release. To further understand the structural features of bolas critical for siRNAs delivery, new structurally related bolas (GLH-58 and GLH-60) were designed and synthesized from jojoba oil. Both bolas have similar hydrophobic domains and contain either one, in GLH-58, or two, in GLH-60 positively charged head groups at each end of the hydrophobic core. We have computationally predicted and experimentally validated that GLH-58 formed more stable nano sized micelles than GLH-60 and performed significantly better in comparison to GLH-60 for siRNA delivery. GLH-58/siRNA complexes demonstrated better efficiency in silencing the expression of the GFP gene in human breast cancer cells at concentrations of 5μg/mL, well below the toxic dose. Moreover, delivery of multiple different siRNAs targeting the HIV genome demonstrated further inhibition of virus production.

  8. Surface-engineered targeted PPI dendrimer for efficient intracellular and intratumoral siRNA delivery.

    PubMed

    Taratula, Oleh; Garbuzenko, Olga B; Kirkpatrick, Paul; Pandya, Ipsit; Savla, Ronak; Pozharov, Vitaly P; He, Huixin; Minko, Tamara

    2009-12-16

    Low penetration ability of Small Interfering RNA (siRNA) through the cellular plasma membrane combined with its limited stability in blood, limits the effectiveness of the systemic delivery of siRNA. In order to overcome such difficulties, we constructed a nanocarrier-based delivery system by taking advantage of the lessons learned from the problems in the delivery of DNA. In the present study, siRNA nanoparticles were first formulated with Poly(Propyleneimine) (PPI) dendrimers. To provide lateral and steric stability to withstand the aggressive environment in the blood stream, the formed siRNA nanoparticles were caged with a dithiol containing cross-linker molecules followed by coating them with Poly(Ethylene Glycol) (PEG) polymer. A synthetic analog of Luteinizing Hormone-Releasing Hormone (LHRH) peptide was conjugated to the distal end of PEG polymer to direct the siRNA nanoparticles specifically to the cancer cells. Our results demonstrated that this layer-by-layer modification and targeting approach confers the siRNA nanoparticles stability in plasma and intracellular bioavailability, provides for their specific uptake by tumor cells, accumulation of siRNA in the cytoplasm of cancer cells, and efficient gene silencing. In addition, in vivo body distribution data confirmed high specificity of the proposed targeting delivery approach which created the basis for the prevention of adverse side effects of the treatment on healthy organs.

  9. Antineoplastic Effects of siRNA against TMPRSS2-ERG Junction Oncogene in Prostate Cancer

    PubMed Central

    Urbinati, Giorgia; Ali, Hafiz Muhammad; Rousseau, Quentin; Chapuis, Hubert; Desmaële, Didier; Couvreur, Patrick; Massaad-Massade, Liliane

    2015-01-01

    TMPRSS2-ERG junction oncogene is present in more than 50% of patients with prostate cancer and its expression is frequently associated with poor prognosis. Our aim is to achieve gene knockdown by siRNA TMPRSS2-ERG and then to assess the biological consequences of this inhibition. First, we designed siRNAs against the two TMPRSS2-ERG fusion variants (III and IV), most frequently identified in patients’ biopsies. Two of the five siRNAs tested were found to efficiently inhibit mRNA of both TMPRSS2-ERG variants and to decrease ERG protein expression. Microarray analysis further confirmed ERG inhibition by both siRNAs TMPRSS2-ERG and revealed one common down-regulated gene, ADRA2A, involved in cell proliferation and migration. The siRNA against TMPRSS2-ERG fusion variant IV showed the highest anti-proliferative effects: Significantly decreased cell viability, increased cleaved caspase-3 and inhibited a cluster of anti-apoptotic proteins. To propose a concrete therapeutic approach, siRNA TMPRSS2-ERG IV was conjugated to squalene, which can self-organize as nanoparticles in water. The nanoparticles of siRNA TMPRSS2-ERG-squalene injected intravenously in SCID mice reduced growth of VCaP xenografted tumours, inhibited oncoprotein expression and partially restored differentiation (decrease in Ki67). In conclusion, this study offers a new prospect of treatment for prostate cancer based on siRNA-squalene nanoparticles targeting TMPRSS2-ERG junction oncogene. PMID:25933120

  10. Surface-Engineered Targeted PPI Dendrimer for Efficient Intracellular and Intratumoral siRNA Delivery

    PubMed Central

    Taratula, Oleh; Garbuzenko, Olga B.; Kirkpatrick, Paul; Pandya, Ipsit; Savla, Ronak; Pozharov, Vitaly P.; He, Huixin; Minko, Tamara

    2009-01-01

    Low penetration ability of Small Interfering RNA (siRNA) through the cellular plasma membrane combined with its limited stability in blood, limits the effectiveness of the systemic delivery of siRNA. In order to overcome such difficulties, we constructed a nanocarrier-based delivery system by taking advantage of the lessons learned from the problems in the delivery of DNA. In the present study, siRNA nanoparticles were first formulated with Poly(Propyleneimine) (PPI) dendrimers. To provide lateral and steric stability to withstand the aggressive environment in the blood stream, the formed siRNA nanoparticles were caged with a dithiol containing cross-linker molecules followed by coating them with Poly(Ethylene Glycol) (PEG) polymer. A synthetic analog of Luteinizing Hormone-Releasing Hormone (LHRH) peptide was conjugated to the distal end of PEG polymer to direct the siRNA nanoparticles specifically to the cancer cells. Our results demonstrated that this layer-by-layer modification and targeting approach confers the siRNA nanoparticles stability in plasma and intracellular bioavailability, provides for their specific uptake by tumor cells, accumulation of siRNA in the cytoplasm of cancer cells, and efficient gene silencing. In addition, in vivo body distribution data confirmed high specificity of the proposed targeting delivery approach which created the basis for the prevention of adverse side effects of the treatment on healthy organs. PMID:19567257

  11. siRNA Knock-Down of RANK Signaling to Control Osteoclast-Mediated Bone Resorption

    PubMed Central

    Wang, Yuwei; Grainger, David W.

    2010-01-01

    Purpose To demonstrate the ability of small interfering (si)RNA targeting the cell receptor, RANK, to control osteoclast function in cultures of both primary and secondary osteoclasts and their precursor cells. Methods siRNA targeting RANK was transfected into both RAW264.7 and primary bone marrow cell cultures. RANK knock-down by siRNA and functional inhibition were assessed in both mature osteoclast and their precursor cell cultures. RANK mRNA message and protein expression after the transfections were analyzed by PCR and Western blot, respectively. Off-target effects were assessed. The inhibition of osteoclast formation was evaluated using tartrate-resistant acid phosphatase (TRAP) assay, and subsequent bone resorption was determined by resorption pit assay. Results Both osteoclasts and osteoclast precursors can be targeted by siRNA in serum-containing media. Delivery of siRNA targeting RANK to both RAW 264.7 and primary bone marrow cell cultures produces short term repression of RANK expression without off-targeting effects, and significantly inhibits both osteoclast formation and bone resorption. Moreover, data support successful RANK knock-down by siRNA specifically in mature osteoclast cultures. Conclusions RANK is demonstrated to be an attractive target for siRNA control of osteoclast activity, with utility for development of new therapeutics for low bone mass pathologies or osteoporosis. PMID:20333451

  12. Abundance estimation and conservation biology

    USGS Publications Warehouse

    Nichols, J.D.; MacKenzie, D.I.

    2004-01-01

    inference that increased recruitment was largely responsible for the improvements in population status and growth. However, various data sources also indicated that this increase in recruitment was likely a result of increased immigration rather than improved reproduction on the area. This latter inference is important from a conservation perspective in indicating the importance of birds in other locations to growth and health of the study population. Lukacs and Burnham presented material to be published elsewhere that dealt with the use of genetic markers in capture–recapture studies. The data sources for such studies are samples of hair or feces, which are then analyzed using molecular genetic techniques in order to determine individual genotypes with respect to a usually small number of loci. Two types of classification error can arise in such analyses. First, if only a small number of loci is examined, then there may be nonnegligible probabilities that multiple individual animals will have the same genotypes. The second type of error arises during the polymerase chain reaction (PCR) process and can result from failure of alleles to amplify (allelic dropout) or from PCR inhibitors in hair and feces that produce the appearance of false alleles or misprinting (Creel et al., 2003). Lukacs and Burnham developed models that formally incorporate possible misclassification of samples resulting from these errors. These models permit estimation of parameters such as abundance and survival in a manner that properly incorporates this uncertainty of individual identity. We anticipate that noninvasive sampling based on molecular genetic analyses of hair or feces will become extremely important for some species, and that the models of Lukacs and Burnham will become very popular for such analyses. MacKenzie & Nichols (2004) discuss the use of occupancy (proportion of patches or habitat area that is occupied) as a surrogate for abundance. In cases of territorial species and where

  13. DNA as Tunable Adaptor for siRNA Polyplex Stabilization and Functionalization

    PubMed Central

    Heissig, Philipp; Klein, Philipp M.; Hadwiger, Philipp; Wagner, Ernst

    2016-01-01

    siRNA and microRNA are promising therapeutic agents, which are engaged in a natural mechanism called RNA interference that modulates gene expression posttranscriptionally. For intracellular delivery of such nucleic acid triggers, we use sequence-defined cationic polymers manufactured through solid phase chemistry. They consist of an oligoethanamino amide core for siRNA complexation and optional domains for nanoparticle shielding and cell targeting. Due to the small size of siRNA, electrostatic complexes with polycations are less stable, and consequently intracellular delivery is less efficient. Here we use DNA oligomers as adaptors to increase size and charge of cargo siRNA, resulting in increased polyplex stability, which in turn boosts transfection efficiency. Extending a single siRNA with a 181-nucleotide DNA adaptor is sufficient to provide maximum gene silencing aided by cationic polymers. Interestingly, this simple strategy was far more effective than merging defined numbers (4–10) of siRNA units into one DNA scaffolded construct. For DNA attachment, the 3′ end of the siRNA passenger strand was beneficial over the 5′ end. The impact of the attachment site however was resolved by introducing bioreducible disulfides at the connection point. We also show that DNA adaptors provide the opportunity to readily link additional functional domains to siRNA. Exemplified by the covalent conjugation of the endosomolytic influenza peptide INF-7 to siRNA via a DNA backbone strand and complexing this construct with a targeting polymer, we could form a highly functional polyethylene glycol–shielded polyplex to downregulate a luciferase gene in folate receptor–positive cells. PMID:26928236

  14. Physicochemical characterization of anionic lipid-based ternary siRNA complexes.

    PubMed

    Kapoor, Mamta; Burgess, Diane J

    2012-07-01

    Physicochemical characterization is a useful tool in understanding lipoplex assemblies and their correlation to biological activity. Anionic lipid-based ternary siRNA complexes composed of anionic liposomes (DOPG/DOPE), calcium ions and siRNA, have recently been shown to be safe and efficient in a breast cancer cell culture model. In the present work, the effects of various formulation parameters such as liposome composition (DOPG/DOPE ratio) and anionic lipid/Ca2+/siRNA molar charge ratio, on the physicochemical attributes (particle size, surface charge, siRNA loading efficiency and serum stability) of these ternary anionic lipoplexes were evaluated. Particle size, siRNA loading efficiency and serum stability correlated with the in vitro silencing efficiency of these lipoplexes. For example, large lipoplex particles (5/2.5/1 anionic lipid/Ca2+/siRNA molar charge ratio) showed less efficient silencing while absolute serum stability and high siRNA loading (1.3/2.5/1 anionic lipid/Ca2+/siRNA molar charge ratio), exhibited maximum silencing in breast cancer cells. The physicochemical properties also indicated that the siRNA exists in the complexed and/or encapsulated form within the lipoplexes, depending on the anionic lipid/siRNA charge ratio. Based on these studies a model representing lipid-siRNA association within the anionic lipoplexes prepared under various formulation conditions is proposed. Physicochemical attributes can be utilized to estimate in vitro activity of lipid-siRNA complexes and understand their morphology.

  15. Hollow Inorganic Nanoparticles as Efficient Carriers for siRNA Delivery: A Comprehensive Review.

    PubMed

    Varshosaz, Jaleh; Taymouri, Somayeh

    2015-01-01

    Small interfering RNAs (siRNA) are emerging as a new opportunity for treatment of various diseases, including viral and cancer diseases via knocking down a specific gene that involves in disease development. But their clinical application is hampered because of susceptibility to degradation and difficult delivery of siRNA into cells. So it is needed to develop an efficient carrier that stabilizes and delivers siRNA efficiently and specifically into cells. Hollow inorganic nanoparticles have gained considerable attention as an efficient drug and gene delivery system. This is due to their biocompatibility, simple preparative processes, easy functionalization and high capacity for drug loading. Several nanoparticle platforms for siRNA delivery have been developed to overcome the major limitations facing the therapeutic uses of siRNA. Recently, researchers have developed a wide range of inorganic nanocarriers to increase efficacy of si-RNA-based drugs and gained efficient siRNA delivery both in vitro and in vivo. This review covers a broad spectrum of hollow inorganic nanoparticles as non-viral siRNA delivery systems. These nanoparticles are developed for enhanced cellular uptake and targeted gene silencing in vitro and in vivo and their characteristics and opportunities for clinical applications of therapeutic siRNA are discussed in this article. Various types of inorganic hollow nanovectors including: mesoporous silica nanoparticles, carbon nanotubes, graphene oxide, fullerenes, calcium phosphate nanoparticles, hollow manganese oxide, gold nanoshells, and layered double hydroxide nanoparticles used to deliver siRNA are introduced and the development of theranostics and combinational treatment is also discussed. PMID:26323421

  16. OXYGEN ABUNDANCES IN CEPHEIDS

    SciTech Connect

    Luck, R. E.; Andrievsky, S. M.; Korotin, S. N.; Kovtyukh, V. V. E-mail: serkor@skyline.od.ua E-mail: scan@deneb1.odessa.ua

    2013-07-01

    Oxygen abundances in later-type stars, and intermediate-mass stars in particular, are usually determined from the [O I] line at 630.0 nm, and to a lesser extent, from the O I triplet at 615.7 nm. The near-IR triplets at 777.4 nm and 844.6 nm are strong in these stars and generally do not suffer from severe blending with other species. However, these latter two triplets suffer from strong non-local thermodynamic equilibrium (NLTE) effects and thus see limited use in abundance analyses. In this paper, we derive oxygen abundances in a large sample of Cepheids using the near-IR triplets from an NLTE analysis, and compare those abundances to values derived from a local thermodynamic equilibrium (LTE) analysis of the [O I] 630.0 nm line and the O I 615.7 nm triplet as well as LTE abundances for the 777.4 nm triplet. All of these lines suffer from line strength problems making them sensitive to either measurement complications (weak lines) or to line saturation difficulties (strong lines). Upon this realization, the LTE results for the [O I] lines and the O I 615.7 nm triplet are in adequate agreement with the abundance from the NLTE analysis of the near-IR triplets.

  17. Interstellar Abundance Standards Revisited

    NASA Astrophysics Data System (ADS)

    Sofia, Ulysses J.; Meyer, David M.

    2001-06-01

    We evaluate the stellar abundances often used to represent the total (gas plus dust) composition of the interstellar medium. Published abundances for B stars, young later type (F and G) stars, and the Sun are compared to the modeled dust-phase and measured gas-phase compositions of the interstellar medium. This study uses abundances for the five most populous elements in dust grains-C, O, Mg, Si, and Fe-and the cosmically abundant element, N. We find that B stars have metal abundances that are too low to be considered valid representations of the interstellar medium. The commonly invoked interstellar standard that is two-thirds of the solar composition is also rejected by recent observations. Young (<=2 Gyr) F and G disk stars and the Sun, however, cannot be ruled out as reliable proxies for the total interstellar composition. If their abundances are valid representations of the interstellar medium, then the apparent underabundance of carbon with respect to that required by dust models, i.e., the carbon crisis, is substantially eased.

  18. Delivery of siRNA Using Cationic Liposomes Incorporating Stearic Acid-modified Octa-Arginine.

    PubMed

    Yang, Dongsheng; Li, Yuhuan; Qi, Yuhang; Chen, Yongzhen; Yang, Xuewei; Li, Yujing; Liu, Songcai; Lee, Robert J

    2016-07-01

    Cationic liposomes incorporating stearic acid-modified octa-arginine (StA-R8) were evaluated for survivin small interfering RNA (siRNA) delivery. StA-R8 was synthesized and incorporated into liposomes. The composition of liposomes was optimized. Physicochemical properties, cytotoxicity, cellular uptake and gene silencing activity of the liposomes complexed to survivin siRNA were investigated. The results showed that StA-R8-containing liposomes had reduced cytotoxicity and improved delivery efficiency of siRNA into cancer cells compared with StA-R8 by itself.

  19. Knocking down disease: a progress report on siRNA therapeutics

    PubMed Central

    Wittrup, Anders; Lieberman, Judy

    2016-01-01

    Small interfering RNAs (siRNAs), which downregulate gene expression guided by sequence complementarity, can be used therapeutically to block the synthesis of disease-causing proteins. The main obstacle to siRNA drugs — their delivery into the target cell cytosol — has been overcome to allow suppression of liver gene expression. Here, we review the results of recent clinical trials of siRNA therapeutics, which show efficient and durable gene knockdown in the liver, with signs of promising clinical outcomes and little toxicity. We also discuss the barriers to more widespread applications that target tissues besides the liver and the most promising avenues to overcome them. PMID:26281785

  20. Simultaneous cytosolic delivery of a chemotherapeutic and siRNA using nanoparticle-stabilized nanocapsules.

    PubMed

    Hardie, Joseph; Jiang, Ying; Tetrault, Emily R; Ghazi, Phaedra C; Tonga, Gulen Yesilbag; Farkas, Michelle E; Rotello, Vincent M

    2016-09-16

    We report on nanoparticle-stabilized capsules (NPSCs) as a platform for the co-delivery of survivin-targeted siRNA and tamoxifen. These capsules feature an inner oil core that provides a carrier for tamoxifen, and is coated on the surface with positively charged nanoparticles self-assembled with siRNA. The multifaceted chemical nature of the NPSC system enables the simultaneous delivery of both payloads directly into the cytosol in vitro. The NPSC co-delivery of tamoxifen and survivin-targeted siRNA into breast cancer cells disables the pathways that inhibit apoptosis, resulting in enhanced breast cell death. PMID:27505356

  1. Delivery of siRNA Using Cationic Liposomes Incorporating Stearic Acid-modified Octa-Arginine.

    PubMed

    Yang, Dongsheng; Li, Yuhuan; Qi, Yuhang; Chen, Yongzhen; Yang, Xuewei; Li, Yujing; Liu, Songcai; Lee, Robert J

    2016-07-01

    Cationic liposomes incorporating stearic acid-modified octa-arginine (StA-R8) were evaluated for survivin small interfering RNA (siRNA) delivery. StA-R8 was synthesized and incorporated into liposomes. The composition of liposomes was optimized. Physicochemical properties, cytotoxicity, cellular uptake and gene silencing activity of the liposomes complexed to survivin siRNA were investigated. The results showed that StA-R8-containing liposomes had reduced cytotoxicity and improved delivery efficiency of siRNA into cancer cells compared with StA-R8 by itself. PMID:27354583

  2. Simultaneous cytosolic delivery of a chemotherapeutic and siRNA using nanoparticle-stabilized nanocapsules

    NASA Astrophysics Data System (ADS)

    Hardie, Joseph; Jiang, Ying; Tetrault, Emily R.; Ghazi, Phaedra C.; Yesilbag Tonga, Gulen; Farkas, Michelle E.; Rotello, Vincent M.

    2016-09-01

    We report on nanoparticle-stabilized capsules (NPSCs) as a platform for the co-delivery of survivin-targeted siRNA and tamoxifen. These capsules feature an inner oil core that provides a carrier for tamoxifen, and is coated on the surface with positively charged nanoparticles self-assembled with siRNA. The multifaceted chemical nature of the NPSC system enables the simultaneous delivery of both payloads directly into the cytosol in vitro. The NPSC co-delivery of tamoxifen and survivin-targeted siRNA into breast cancer cells disables the pathways that inhibit apoptosis, resulting in enhanced breast cell death.

  3. The Abundance of Interstellar Fluorine

    NASA Technical Reports Server (NTRS)

    Lauroesch, James T.

    2005-01-01

    The primary objective of this program was to obtain FUSE observations of the interstellar absorption lines of F I at 951 and 954 Angstroms to derive the abundance of fluorine toward the star HD 164816. The nucleosynthetic source(s) of fluorine are still a matter of debate - the present day abundance of fluorine can potentially constrain models for pulsationally driven dredge-up in asymptotic giant branch stars. An accurate measure for the depletion behavior of fluorine will determine whether it may be detectable in QSO absorption line systems - an unambiguous detection of fluorine at suitably high redshifts would provide the best evidence to date for the neutrino process in massive stars. Furthermore, due to its extreme reactivity, measurement of the gas-phase interstellar fluorine abundance is important for models of grain chemistry. Despite the importance of measuring the interstellar fluorine abundance, at the time of our proposal only one previous detection has been made due to the low relative abundance of fluorine, the lack of lines outside the far-UV, and the blending of the available F I transitions with lines of Hz. The star HD 164816 is associated with the Lagoon nebula (M8), and at a distance of approximately 1.5 kpc probes both distant and local gas. Beginning April 8th, 2004 FUSE FP-Split observations of the star HD 164816 were obtained for this program. This data became available in the FUSE data archive May 21, 2004, and these observations were then downloaded and we began our analysis. Our analysis procedure has involved (1) fitting stellar models to the FUSE spectra, (2) using the multiple lines of Hz and N I at other wavelengths in the FUSE bandpass to derive column densities for the lines of H2 and N I which are blended with the F I features at 951 and 954 angstroms (3) the measurement of the column densities of F I and the species O I and C1 I which are important species for the dis-entangling of dust and nucleosynthetic effects. As discussed in

  4. High-Throughput Screening of Effective siRNAs Using Luciferase-Linked Chimeric mRNA

    PubMed Central

    Pang, Shen; Pokomo, Lauren; Chen, Kevin; Kamata, Masakazu; Mao, Si-Hua; Zhang, Hong; Razi, Elliot; An, Dong Sung; Chen, Irvin S. Y.

    2014-01-01

    The use of siRNAs to knock down gene expression can potentially be an approach to treat various diseases. To avoid siRNA toxicity the less transcriptionally active H1 pol III promoter, rather than the U6 promoter, was proposed for siRNA expression. To identify highly efficacious siRNA sequences, extensive screening is required, since current computer programs may not render ideal results. Here, we used CCR5 gene silencing as a model to investigate a rapid and efficient screening approach. We constructed a chimeric luciferase-CCR5 gene for high-throughput screening of siRNA libraries. After screening approximately 900 shRNA clones, 12 siRNA sequences were identified. Sequence analysis demonstrated that most (11 of the 12 sequences) of these siRNAs did not match those identified by available siRNA prediction algorithms. Significant inhibition of CCR5 in a T-lymphocyte cell line and primary T cells by these identified siRNAs was confirmed using the siRNA lentiviral vectors to infect these cells. The inhibition of CCR5 expression significantly protected cells from R5 HIV-1JRCSF infection. These results indicated that the high-throughput screening method allows efficient identification of siRNA sequences to inhibit the target genes at low levels of expression. PMID:24831610

  5. Assorted Processing of Synthetic Trans-Acting siRNAs and Its Activity in Antiviral Resistance.

    PubMed

    Zhao, Mingmin; San León, David; Mesel, Frida; García, Juan Antonio; Simón-Mateo, Carmen

    2015-01-01

    The use of syn-tasiRNAs has been proposed as an RNA interference technique alternative to those previously described: hairpin based, virus induced gene silencing or artificial miRNAs. In this study we engineered the TAS1c locus to impair Plum pox virus (PPV) infection by replacing the five native siRNAs with two 210-bp fragments from the CP and the 3´NCR regions of the PPV genome. Deep sequencing analysis of the small RNA species produced by both constructs in planta has shown that phased processing of the syn-tasiRNAs is construct-specific. While in syn-tasiR-CP construct the processing was as predicted 21-nt phased in register with miR173-guided cleavage, the processing of syn-tasiR-3NCR is far from what was expected. A 22-nt species from the miR173-guided cleavage was a guide of two series of phased small RNAs, one of them in an exact 21-nt register, and the other one in a mixed of 21-/22-nt frame. In addition, both constructs produced abundant PPV-derived small RNAs in the absence of miR173 as a consequence of a strong sense post-transcriptional gene silencing induction. The antiviral effect of both constructs was also evaluated in the presence or absence of miR173 and showed that the impairment of PPV infection was not significantly higher when miR173 was present. The results show that syn-tasiRNAs processing depends on construct-specific factors that should be further studied before the so-called MIGS (miRNA-induced gene silencing) technology can be used reliably.

  6. Cationic cell-penetrating peptides as vehicles for siRNA delivery.

    PubMed

    Beloor, Jagadish; Zeller, Skye; Choi, Chang Seon; Lee, Sang-Kyung; Kumar, Priti

    2015-01-01

    RNA interference mediated gene silencing has tremendous applicability in fields ranging from basic biological research to clinical therapy. However, delivery of siRNA across the cell membrane into the cytoplasm, where the RNA silencing machinery is located, is a significant hurdle in most primary cells. Cell-penetrating peptides (CPPs), peptides that possess an intrinsic ability to translocate across cell membranes, have been explored as a means to achieve cellular delivery of siRNA. Approaches using CPPs by themselves or through incorporation into other siRNA delivery platforms have been investigated with the intent of improving cytoplasmic delivery. Here, we review the utilization of CPPs for siRNA delivery with a focus on strategies developed to enhance cellular uptake, endosomal escape and cytoplasmic localization of CPP/siRNA complexes.

  7. Epigenome Editing of Potato by Grafting Using Transgenic Tobacco as siRNA Donor.

    PubMed

    Kasai, Atsushi; Bai, Songling; Hojo, Hatsune; Harada, Takeo

    2016-01-01

    In plants, it is possible to induce heritable transcriptional gene silencing (TGS) via RNA-directed DNA methylation (RdDM) using artificially synthesized small RNA (siRNA) homologous to the 5'-flanking region of the target gene. As the siRNA signal with a specific RNA determinant moves through plasmodesmata and sieve elements, we attempted to induce TGS of a transgene and an endogenous gene of potato (Solanum tuberosum) rootstock by grafting using siRNA produced in a tobacco (Nicotiana benthamiana) scion. Our results provide evidence that this system can induce TGS of target genes in tubers formed on potato rootstock. The TGS is maintained in the progeny tubers lacking the transported siRNAs. Our findings reveal that epigenome editing using mobile RNA has the potential to allow breeding of artificial sport cultivars in vegetative propagation crops. PMID:27564864

  8. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight

    NASA Astrophysics Data System (ADS)

    Dahlman, James E.; Barnes, Carmen; Khan, Omar F.; Thiriot, Aude; Jhunjunwala, Siddharth; Shaw, Taylor E.; Xing, Yiping; Sager, Hendrik B.; Sahay, Gaurav; Speciner, Lauren; Bader, Andrew; Bogorad, Roman L.; Yin, Hao; Racie, Tim; Dong, Yizhou; Jiang, Shan; Seedorf, Danielle; Dave, Apeksha; Singh Sandhu, Kamaljeet; Webber, Matthew J.; Novobrantseva, Tatiana; Ruda, Vera M.; Lytton-Jean, Abigail K. R.; Levins, Christopher G.; Kalish, Brian; Mudge, Dayna K.; Perez, Mario; Abezgauz, Ludmila; Dutta, Partha; Smith, Lynelle; Charisse, Klaus; Kieran, Mark W.; Fitzgerald, Kevin; Nahrendorf, Matthias; Danino, Dganit; Tuder, Rubin M.; von Andrian, Ulrich H.; Akinc, Akin; Panigrahy, Dipak; Schroeder, Avi; Koteliansky, Victor; Langer, Robert; Anderson, Daniel G.

    2014-08-01

    Dysfunctional endothelium contributes to more diseases than any other tissue in the body. Small interfering RNAs (siRNAs) can help in the study and treatment of endothelial cells in vivo by durably silencing multiple genes simultaneously, but efficient siRNA delivery has so far remained challenging. Here, we show that polymeric nanoparticles made of low-molecular-weight polyamines and lipids can deliver siRNA to endothelial cells with high efficiency, thereby facilitating the simultaneous silencing of multiple endothelial genes in vivo. Unlike lipid or lipid-like nanoparticles, this formulation does not significantly reduce gene expression in hepatocytes or immune cells even at the dosage necessary for endothelial gene silencing. These nanoparticles mediate the most durable non-liver silencing reported so far and facilitate the delivery of siRNAs that modify endothelial function in mouse models of vascular permeability, emphysema, primary tumour growth and metastasis.

  9. Epigenome Editing of Potato by Grafting Using Transgenic Tobacco as siRNA Donor

    PubMed Central

    Hojo, Hatsune; Harada, Takeo

    2016-01-01

    In plants, it is possible to induce heritable transcriptional gene silencing (TGS) via RNA-directed DNA methylation (RdDM) using artificially synthesized small RNA (siRNA) homologous to the 5'-flanking region of the target gene. As the siRNA signal with a specific RNA determinant moves through plasmodesmata and sieve elements, we attempted to induce TGS of a transgene and an endogenous gene of potato (Solanum tuberosum) rootstock by grafting using siRNA produced in a tobacco (Nicotiana benthamiana) scion. Our results provide evidence that this system can induce TGS of target genes in tubers formed on potato rootstock. The TGS is maintained in the progeny tubers lacking the transported siRNAs. Our findings reveal that epigenome editing using mobile RNA has the potential to allow breeding of artificial sport cultivars in vegetative propagation crops. PMID:27564864

  10. Systematic Comparisons of Formulations of Linear Oligolysine Peptides with siRNA and Plasmid DNA.

    PubMed

    Kwok, Albert; McCarthy, David; Hart, Stephen L; Tagalakis, Aristides D

    2016-05-01

    The effects of lysine peptide lengths on DNA and siRNA packaging and delivery were studied using four linear oligolysine peptides with 8 (K8), 16 (K16), 24 (K24) and 32 (K32) lysines. Oligolysine peptides with 16 lysines or longer were effective for stable monodisperse particle formation and optimal transfection efficiency with plasmid DNA (pDNA), but K8 formulations were less stable under anionic heparin challenge and consequently displayed poor transfection efficiency. However, here we show that the oligolysines were not able to package siRNA to form stable complexes, and consequently, siRNA transfection was unsuccessful. These results indicate that the physical structure and length of cationic peptides and their charge ratios are critical parameters for stable particle formation with pDNA and siRNA and that without packaging, delivery and transfection cannot be achieved. PMID:26684657

  11. Solar abundance of platinum

    PubMed Central

    Burger, Harry; Aller, Lawrence H.

    1975-01-01

    Three lines of neutral platinum, located at λ 2997.98 Å, λ 3064.71 Å, and λ 3301.86 Å have been used to determine the solar platinum abundance by the method of spectral synthesis. On the scale, log A(H) = 12.00, the thus-derived solar platinum abundance is 1.75 ± 0.10, in fair accord with Cameron's value of log A(Pt) = 1.69 derived by Mason from carbonaceous chondrites and calculated on the assumption that log A(Si) = 7.55 in the sun. PMID:16592278

  12. Therapeutic antidepressant potential of a conjugated siRNA silencing the serotonin transporter after intranasal administration

    PubMed Central

    Ferrés-Coy, A; Galofré, M; Pilar-Cuéllar, F; Vidal, R; Paz, V; Ruiz-Bronchal, E; Campa, L; Pazos, Á; Caso, J R; Leza, J C; Alvarado, G; Montefeltro, A; Valdizán, E M; Artigas, F; Bortolozzi, A

    2016-01-01

    Major depression brings about a heavy socio-economic burden worldwide due to its high prevalence and the low efficacy of antidepressant drugs, mostly inhibiting the serotonin transporter (SERT). As a result, ~80% of patients show recurrent or chronic depression, resulting in a poor quality of life and increased suicide risk. RNA interference (RNAi) strategies have been preliminarily used to evoke antidepressant-like responses in experimental animals. However, the main limitation for the medical use of RNAi is the extreme difficulty to deliver oligonucleotides to selected neurons/systems in the mammalian brain. Here we show that the intranasal administration of a sertraline-conjugated small interfering RNA (C-SERT-siRNA) silenced SERT expression/function and evoked fast antidepressant-like responses in mice. After crossing the permeable olfactory epithelium, the sertraline-conjugated-siRNA was internalized and transported to serotonin cell bodies by deep Rab-7-associated endomembrane vesicles. Seven-day C-SERT-siRNA evoked similar or more marked responses than 28-day fluoxetine treatment. Hence, C-SERT-siRNA (i) downregulated 5-HT1A-autoreceptors and facilitated forebrain serotonin neurotransmission, (ii) accelerated the proliferation of neuronal precursors and (iii) increased hippocampal complexity and plasticity. Further, short-term C-SERT-siRNA reversed depressive-like behaviors in corticosterone-treated mice. The present results show the feasibility of evoking antidepressant-like responses by selectively targeting neuronal populations with appropriate siRNA strategies, opening a way for further translational studies. PMID:26100539

  13. Safety of striatal infusion of siRNA in a transgenic Huntington's disease mouse model

    PubMed Central

    McGowan, Sarah; Mondo, Erica; Pfister, Edith; Mick, Eric; Friedline, Randall H.; Kim, Jason K.; Sapp, Ellen; DiFiglia, Marian; Aronin, Neil

    2016-01-01

    Background The immune system In Huntington's disease (HD) is activated and may overreact to some therapies. RNA interference using siRNA lowers mutant huntingtin (mHTT) protein but could increase immune responses. Objective To examine the innate immune response following siRNA infusion into the striatum of wild-type (WT) and HD transgenic (YAC128) mice. Methods siRNAs (2′-O-methyl phosphorothioated) were infused unilaterally into striatum of four month-old WT and YAC128 mice for 28 days. Microglia number and morphology (resting (normal), activated, dystrophic), cytokine levels, and DARPP32-positive neurons were measured in striatum immediately or 14 days post-infusion. Controls included contralateral untreated striatum, and PBS and sham treated striata. Results The striata of untreated YAC128 mice had significantly fewer resting microglia and more dystrophic microglia than WT mice, but no difference from WT in the proportion of activated microglia or total number of microglia. siRNA infusion increased the total number of microglia in YAC128 mice compared to PBS treated and untreated striata and increased the proportion of activated microglia in WT and YAC128 mice compared to untreated striata and sham treated groups. Cytokine levels were low and siRNA infusion resulted in only modest changes in those levels. siRNA infusion did not change the number of DARPP32-positive neurons. Conclusion Findings suggest that siRNA infusion may be a safe method for lowering mHTT levels in the striatum in young animals, since treatment does not produce a robust cytokine response or cause neurotoxicity. The potential long-term effects of a sustained increase in total and activated microglia after siRNA infusion in HD mice need to be explored. PMID:26444021

  14. Topical Delivery of siRNA into Skin using SPACE-peptide Carriers

    PubMed Central

    Chen, Ming; Zakrewsky, Michael; Gupta, Vivek; Anselmo, Aaron C.; Slee, Deborah H.; Muraski, John A.; Mitragotri, Samir

    2014-01-01

    Short-interfering RNAs (siRNAs) offer a potential tool for the treatment of skin disorders. However, applications of siRNA for dermatological conditions are limited by their poor permeation across the stratum corneum of the skin and low penetration into skin’s viable cells. In this study, we report the use of SPACE-peptide in combination with a DOTAP-based ethosomal carrier system to enhance skin delivery of siRNA. A DOTAP-based SPACE Ethosomal System significantly enhanced siRNA penetration into porcine skin in vitro by 6.3±1.7-fold (p<0.01) with an approximately 10-fold (p<0.01) increase in epidermis accumulation of siRNA compared to that from an aqueous solution. Penetration of siRNA was also enhanced at the cellular level. Internalization of SPACE-peptide occurred in a concentration dependent manner marked by a shift in intracellular distribution from punctate spots to diffused cytoplasmic staining at a peptide concentration of 10 mg/mL. In vitro delivery of GAPDH siRNA by SPACE peptide led to 83.3±3.0% knockdown relative to the control. In vivo experiments performed using female BALB/C mice also confirmed the efficacy of DOTAP-SES in delivering GAPDH-siRNA into skin. Topical application of DOTAP-SES on mice skin resulted in 63.2%±7.7% of GAPDH knockdown, which was significantly higher than that from GAPDH-siRNA PBS (p<0.05). DOTAP-SES formulation reported here may open new opportunities for cutaneous siRNA delivery. PMID:24434423

  15. siRNA Targeting the 2Apro Genomic Region Prevents Enterovirus 71 Replication In Vitro.

    PubMed

    Liu, Haibing; Qin, Yanyan; Kong, Zhenzhen; Shao, Qixiang; Su, Zhaoliang; Wang, Shengjun; Chen, Jianguo

    2016-01-01

    Enterovirus 71 (EV71) is the most important etiological agent of hand, foot, and mouth disease (HFMD) in young children, which is associated with severe neurological complications and has caused significant mortalities in recent HFMD outbreaks in Asia. However, there is no effective antiviral therapy against EV71. In this study, RNA interference (RNAi) was used as an antiviral strategy to inhibit EV71 replication. Three small interfering RNAs (siRNAs) targeting the 2Apro region of the EV71 genome were designed and synthesized. All the siRNAs were transfected individually into rhabdomyosarcoma (RD) cells, which were then infected with strain EV71-2006-52-9. The cytopathic effects (CPEs) in the infected RD cells, cell viability, viral titer, and viral RNA and protein expression were examined to evaluate the specific viral inhibition by the siRNAs. The results of cytopathogenicity and MTT tests indicated that the RD cells transfected with the three siRNAs showed slight CPEs and significantly high viability. The 50% tissue culture infective dose (TCID50) values demonstrated that the viral titer of the groups treated with three siRNAs were lower than those of the control groups. qRT-PCR and western blotting revealed that the levels of viral RNA and protein in the RD cells treated with the three siRNAs were lower than those in the controls. When RD cells transfected with siRNAs were also infected with strain EV71-2008-43-16, the expression of the VP1 protein was significantly inhibited. The levels of interferon α (IFN-α) and IFN-β did not differ significantly in any group. These results suggest that siRNAs targeting the 2Apro region of the EV71 genome exerted antiviral effects in vitro.

  16. Systemic Administration of siRNA via cRGD-containing Peptide

    PubMed Central

    Huang, Yuanyu; Wang, Xiaoxia; Huang, Weiyan; Cheng, Qiang; Zheng, Shuquan; Guo, Shutao; Cao, Huiqing; Liang, Xing-Jie; Du, Quan; Liang, Zicai

    2015-01-01

    Although small interfering RNAs (siRNAs) have been demonstrated to specifically silence their target genes in disease models and clinical trials, in vivo siRNA delivery is still the technical bottleneck that limits their use in therapeutic applications. In this study, a bifunctional peptide named RGD10-10R was designed and tested for its ability to deliver siRNA in vitro and in vivo. Because of their electrostatic interactions with polyarginine (10R), negatively charged siRNAs were readily complexed with RGD10-10R peptides, forming spherical RGD10-10R/siRNA nanoparticles. In addition to enhancing their serum stability by preventing RNase from attacking siRNA through steric hindrance, peptide binding facilitated siRNA transfection into MDA-MB-231 cells, as demonstrated by FACS and confocal microscopy assays and by the repressed expression of target genes. When RGD10 peptide, a receptor competitor of RGD10-10R, was added to the transfection system, the cellular internalization of RGD10-10R/siRNA was significantly compromised, suggesting a mechanism of ligand/receptor interaction. Tissue distribution assays indicated that the peptide/siRNA complex preferentially accumulated in the liver and in several exocrine/endocrine glands. Furthermore, tumor-targeted delivery of siRNA was also demonstrated by in vivo imaging and cryosection assays. In summary, RGD10-10R might constitute a novel siRNA delivery tool that could potentially be applied in tumor treatment. PMID:26300278

  17. Col V siRNA Engineered Tenocytes for Tendon Tissue Engineering

    PubMed Central

    Song, Xing Hui; Zou, Xiao Hui; Wang, Lin Lin; Ouyang, Hong Wei

    2011-01-01

    The presence of uniformly small collagen fibrils in tendon repair is believed to play a major role in suboptimal tendon healing. Collagen V is significantly elevated in healing tendons and plays an important role in fibrillogenesis. The objective of this study was to investigate the effect of a particular chain of collagen V on the fibrillogenesis of Sprague-Dawley rat tenocytes, as well as the efficacy of Col V siRNA engineered tenocytes for tendon tissue engineering. RNA interference gene therapy and a scaffold free tissue engineered tendon model were employed. The results showed that scaffold free tissue engineered tendon had tissue-specific tendon structure. Down regulation of collagen V α1 or α2 chains by siRNAs (Col5α1 siRNA, Col5α2 siRNA) had different effects on collagen I and decorin gene expressions. Col5α1 siRNA treated tenocytes had smaller collagen fibrils with abnormal morphology; while those Col5α2 siRNA treated tenocytes had the same morphology as normal tenocytes. Furthermore, it was found that tendons formed by coculture of Col5α1 siRNA treated tenocytes with normal tenocytes at a proper ratio had larger collagen fibrils and relative normal contour. Conclusively, it was demonstrated that Col V siRNA engineered tenocytes improved tendon tissue regeneration. And an optimal level of collagen V is vital in regulating collagen fibrillogenesis. This may provide a basis for future development of novel cellular- and molecular biology-based therapeutics for tendon diseases. PMID:21713001

  18. Peptide- and Amine-Modified Glucan Particles for the Delivery of Therapeutic siRNA.

    PubMed

    Cohen, Jessica L; Shen, Yuefei; Aouadi, Myriam; Vangala, Pranitha; Tencerova, Michaela; Amano, Shinya U; Nicoloro, Sarah M; Yawe, Joseph C; Czech, Michael P

    2016-03-01

    Translation of siRNA technology into the clinic is limited by the need for improved delivery systems that target specific cell types. Macrophages are particularly attractive targets for RNAi therapy because they promote pathogenic inflammatory responses in a number of important human diseases. We previously demonstrated that a multicomponent formulation of β-1,3-d-glucan-encapsulated siRNA particles (GeRPs) can specifically and potently silence genes in mouse macrophages. A major advance would be to simplify the GeRP system by reducing the number of delivery components, thus enabling more facile manufacturing and future commercialization. Here we report the synthesis and evaluation of a simplified glucan-based particle (GP) capable of delivering siRNA in vivo to selectively silence macrophage genes. Covalent attachment of small-molecule amines and short peptides containing weak bases to GPs facilitated electrostatic interaction of the particles with siRNA and aided in the endosomal release of siRNA by the proton-sponge effect. Modified GPs were nontoxic and were efficiently internalized by macrophages in vitro. When injected intraperitoneally (i.p.), several of the new peptide-modified GPs were found to efficiently deliver siRNA to peritoneal macrophages in lean, healthy mice. In an animal model of obesity-induced inflammation, i.p. administration of one of the peptide-modified GPs (GP-EP14) bound to siRNA selectively reduced the expression of target inflammatory cytokines in the visceral adipose tissue macrophages. Decreasing adipose tissue inflammation resulted in an improvement of glucose metabolism in these metabolically challenged animals. Thus, modified GPs represent a promising new simplified system for the efficient delivery of therapeutic siRNAs specifically to phagocytic cells in vivo for modulation of inflammation responses. PMID:26815386

  19. siRNA Targeting the 2Apro Genomic Region Prevents Enterovirus 71 Replication In Vitro

    PubMed Central

    Kong, Zhenzhen; Shao, Qixiang; Su, Zhaoliang; Wang, Shengjun; Chen, Jianguo

    2016-01-01

    Enterovirus 71 (EV71) is the most important etiological agent of hand, foot, and mouth disease (HFMD) in young children, which is associated with severe neurological complications and has caused significant mortalities in recent HFMD outbreaks in Asia. However, there is no effective antiviral therapy against EV71. In this study, RNA interference (RNAi) was used as an antiviral strategy to inhibit EV71 replication. Three small interfering RNAs (siRNAs) targeting the 2Apro region of the EV71 genome were designed and synthesized. All the siRNAs were transfected individually into rhabdomyosarcoma (RD) cells, which were then infected with strain EV71-2006-52-9. The cytopathic effects (CPEs) in the infected RD cells, cell viability, viral titer, and viral RNA and protein expression were examined to evaluate the specific viral inhibition by the siRNAs. The results of cytopathogenicity and MTT tests indicated that the RD cells transfected with the three siRNAs showed slight CPEs and significantly high viability. The 50% tissue culture infective dose (TCID50) values demonstrated that the viral titer of the groups treated with three siRNAs were lower than those of the control groups. qRT–PCR and western blotting revealed that the levels of viral RNA and protein in the RD cells treated with the three siRNAs were lower than those in the controls. When RD cells transfected with siRNAs were also infected with strain EV71-2008-43-16, the expression of the VP1 protein was significantly inhibited. The levels of interferon α (IFN-α) and IFN-β did not differ significantly in any group. These results suggest that siRNAs targeting the 2Apro region of the EV71 genome exerted antiviral effects in vitro. PMID:26886455

  20. Enhancing potency of siRNA targeting fusion genes by optimization outside of target sequence

    PubMed Central

    Gavrilov, Kseniya; Seo, Young-Eun; Tietjen, Gregory T.; Cui, Jiajia; Cheng, Christopher J.; Saltzman, W. Mark

    2015-01-01

    Canonical siRNA design algorithms have become remarkably effective at predicting favorable binding regions within a target mRNA, but in some cases (e.g., a fusion junction site) region choice is restricted. In these instances, alternative approaches are necessary to obtain a highly potent silencing molecule. Here we focus on strategies for rational optimization of two siRNAs that target the junction sites of fusion oncogenes BCR-ABL and TMPRSS2-ERG. We demonstrate that modifying the termini of these siRNAs with a terminal G-U wobble pair or a carefully selected pair of terminal asymmetry-enhancing mismatches can result in an increase in potency at low doses. Importantly, we observed that improvements in silencing at the mRNA level do not necessarily translate to reductions in protein level and/or cell death. Decline in protein level is also heavily influenced by targeted protein half-life, and delivery vehicle toxicity can confound measures of cell death due to silencing. Therefore, for BCR-ABL, which has a long protein half-life that is difficult to overcome using siRNA, we also developed a nontoxic transfection vector: poly(lactic-coglycolic acid) nanoparticles that release siRNA over many days. We show that this system can achieve effective killing of leukemic cells. These findings provide insights into the implications of siRNA sequence for potency and suggest strategies for the design of more effective therapeutic siRNA molecules. Furthermore, this work points to the importance of integrating studies of siRNA design and delivery, while heeding and addressing potential limitations such as restricted targetable mRNA regions, long protein half-lives, and nonspecific toxicities. PMID:26627251

  1. Peptide- and Amine-Modified Glucan Particles for the Delivery of Therapeutic siRNA.

    PubMed

    Cohen, Jessica L; Shen, Yuefei; Aouadi, Myriam; Vangala, Pranitha; Tencerova, Michaela; Amano, Shinya U; Nicoloro, Sarah M; Yawe, Joseph C; Czech, Michael P

    2016-03-01

    Translation of siRNA technology into the clinic is limited by the need for improved delivery systems that target specific cell types. Macrophages are particularly attractive targets for RNAi therapy because they promote pathogenic inflammatory responses in a number of important human diseases. We previously demonstrated that a multicomponent formulation of β-1,3-d-glucan-encapsulated siRNA particles (GeRPs) can specifically and potently silence genes in mouse macrophages. A major advance would be to simplify the GeRP system by reducing the number of delivery components, thus enabling more facile manufacturing and future commercialization. Here we report the synthesis and evaluation of a simplified glucan-based particle (GP) capable of delivering siRNA in vivo to selectively silence macrophage genes. Covalent attachment of small-molecule amines and short peptides containing weak bases to GPs facilitated electrostatic interaction of the particles with siRNA and aided in the endosomal release of siRNA by the proton-sponge effect. Modified GPs were nontoxic and were efficiently internalized by macrophages in vitro. When injected intraperitoneally (i.p.), several of the new peptide-modified GPs were found to efficiently deliver siRNA to peritoneal macrophages in lean, healthy mice. In an animal model of obesity-induced inflammation, i.p. administration of one of the peptide-modified GPs (GP-EP14) bound to siRNA selectively reduced the expression of target inflammatory cytokines in the visceral adipose tissue macrophages. Decreasing adipose tissue inflammation resulted in an improvement of glucose metabolism in these metabolically challenged animals. Thus, modified GPs represent a promising new simplified system for the efficient delivery of therapeutic siRNAs specifically to phagocytic cells in vivo for modulation of inflammation responses.

  2. Effective cytoplasmic release of siRNA from liposomal carriers by controlling the electrostatic interaction of siRNA with a charge-invertible peptide, in response to cytoplasmic pH

    NASA Astrophysics Data System (ADS)

    Itakura, Shoko; Hama, Susumu; Matsui, Ryo; Kogure, Kentaro

    2016-05-01

    Condensing siRNA with cationic polymers is a major strategy used in the development of siRNA carriers that can avoid degradation by nucleases and achieve effective delivery of siRNA into the cytoplasm. However, ineffective release of siRNA from such condensed forms into the cytoplasm is a limiting step for induction of RNAi effects, and can be attributed to tight condensation of siRNA with the cationic polymers, due to potent electrostatic interactions. Here, we report that siRNA condensed with a slightly acidic pH-sensitive peptide (SAPSP), whose total charge is inverted from positive to negative in response to cytoplasmic pH, is effectively released via electrostatic repulsion of siRNA with negatively charged SAPSP at cytoplasmic pH (7.4). The condensed complex of siRNA and positively-charged SAPSP at acidic pH (siRNA/SAPSP) was found to result in almost complete release of siRNA upon charge inversion of SAPSP at pH 7.4, with the resultant negatively-charged SAPSP having no undesirable interactions with endogenous mRNA. Moreover, liposomes encapsulating siRNA/SAPSP demonstrated knockdown efficiencies comparable to those of commercially available siRNA carriers. Taken together, SAPSP may be very useful as a siRNA condenser, as it facilitates effective cytoplasmic release of siRNA, and subsequent induction of specific RNAi effects.Condensing siRNA with cationic polymers is a major strategy used in the development of siRNA carriers that can avoid degradation by nucleases and achieve effective delivery of siRNA into the cytoplasm. However, ineffective release of siRNA from such condensed forms into the cytoplasm is a limiting step for induction of RNAi effects, and can be attributed to tight condensation of siRNA with the cationic polymers, due to potent electrostatic interactions. Here, we report that siRNA condensed with a slightly acidic pH-sensitive peptide (SAPSP), whose total charge is inverted from positive to negative in response to cytoplasmic pH, is

  3. siRNA Versus miRNA as Therapeutics for Gene Silencing.

    PubMed

    Lam, Jenny K W; Chow, Michael Y T; Zhang, Yu; Leung, Susan W S

    2015-09-15

    Discovered a little over two decades ago, small interfering RNAs (siRNAs) and microRNAs (miRNAs) are noncoding RNAs with important roles in gene regulation. They have recently been investigated as novel classes of therapeutic agents for the treatment of a wide range of disorders including cancers and infections. Clinical trials of siRNA- and miRNA-based drugs have already been initiated. siRNAs and miRNAs share many similarities, both are short duplex RNA molecules that exert gene silencing effects at the post-transcriptional level by targeting messenger RNA (mRNA), yet their mechanisms of action and clinical applications are distinct. The major difference between siRNAs and miRNAs is that the former are highly specific with only one mRNA target, whereas the latter have multiple targets. The therapeutic approaches of siRNAs and miRNAs are therefore very different. Hence, this review provides a comparison between therapeutic siRNAs and miRNAs in terms of their mechanisms of action, physicochemical properties, delivery, and clinical applications. Moreover, the challenges in developing both classes of RNA as therapeutics are also discussed.

  4. siRNAs targeted to Smad4 prevent renal fibrosis in vivo.

    PubMed

    Morishita, Yoshiyuki; Yoshizawa, Hiromichi; Watanabe, Minami; Ishibashi, Kenichi; Muto, Shigeaki; Kusano, Eiji; Nagata, Daisuke

    2014-09-19

    Renal fibrosis is the final common pathway leading to decreased renal function. No therapy has been established to prevent it. In order to establish a therapeutic approach and target molecule for renal fibrosis, we investigated the effects of Smad4 knockdown by siRNAs on renal fibrosis in vivo. Renal fibrosis mice were produced by single intraperitoneal injection of folic acid. siRNAs targeted to Smad4 (Smad4-siRNAs) (5 nmol) were injected into each mouse by systemic tail vein injection three times per week. Non-targeted siRNAs (control-siRNAs) were injected in the same way for a control group. The siRNAs were delivered to the interstitial fibrous area and tubules. Smad4-siRNAs significantly knocked down Smad4 expression and inhibited renal fibrosis. They also inhibited α-SMA-positive myofibroblasts. Control-siRNAs did not show these effects. The results of this study suggest that Smad4 knockdown is one of the crucial therapeutic options for the prevention of renal fibrosis in vivo.

  5. Pol IV-Dependent siRNA Production is Reduced in Brassica rapa.

    PubMed

    Huang, Yi; Kendall, Timmy; Mosher, Rebecca A

    2013-01-01

    Plants produce a diverse array of small RNA molecules capable of gene regulation, including Pol IV-dependent short interfering (p4-si)RNAs that trigger transcriptional gene silencing. Small RNA transcriptomes are available for many plant species, but mutations affecting the synthesis of Pol IV-dependent siRNAs are characterized only in Arabidopsis and maize, leading to assumptions regarding nature of p4-siRNAs in all other species. We have identified a mutation in the largest subunit of Pol IV, NRPD1, that impacts Pol IV activity in Brassica rapa, an agriculturally important relative of the reference plant Arabidopsis. Using this mutation we characterized the Pol IV-dependent and Pol IV-independent small RNA populations in B. rapa. In addition, our analysis demonstrates reduced production of p4-siRNAs in B. rapa relative to Arabidopsis. B. rapa genomic regions are less likely to generate p4-siRNAs than Arabidopsis but more likely to generate Pol IV-independent siRNAs, including 24 nt RNAs mapping to transposable elements. These observations underscore the diversity of small RNAs produced by plants and highlight the importance of genetic studies during small RNA analysis.

  6. Self-assembled RNA interference microsponges for efficient siRNA delivery.

    PubMed

    Lee, Jong Bum; Hong, Jinkee; Bonner, Daniel K; Poon, Zhiyong; Hammond, Paula T

    2012-04-01

    The encapsulation and delivery of short interfering RNA (siRNA) has been realized using lipid nanoparticles, cationic complexes, inorganic nanoparticles, RNA nanoparticles and dendrimers. Still, the instability of RNA and the relatively ineffectual encapsulation process of siRNA remain critical issues towards the clinical translation of RNA as a therapeutic. Here we report the synthesis of a delivery vehicle that combines carrier and cargo: RNA interference (RNAi) polymers that self-assemble into nanoscale pleated sheets of hairpin RNA, which in turn form sponge-like microspheres. The RNAi-microsponges consist entirely of cleavable RNA strands, and are processed by the cell's RNA machinery to convert the stable hairpin RNA to siRNA only after cellular uptake, thus inherently providing protection for siRNA during delivery and transport to the cytoplasm. More than half a million copies of siRNA can be delivered to a cell with the uptake of a single RNAi-microsponge. The approach could lead to novel therapeutic routes for siRNA delivery.

  7. Targeted delivery of siRNA to cell death proteins in sepsis

    PubMed Central

    Brahmamdam, Pavan; Watanabe, Eizo; Unsinger, Jacqueline; Chang, Katherine C.; Schierding, William; Hoekzema, Andrew S.; Zhou, Tony T.; McDonough, Jacquelyn S.; Holemon, Heather; Heidel, Jeremy D.; Coopersmith, Craig M.; McDunn, Jonathan E.; Hotchkiss, Richard S.

    2010-01-01

    Immune suppression is a major cause of morbidity and mortality in the septic patient. Apoptotic loss of immune effector cells such as CD4 T and B cells is a key component in the loss immune competence in sepsis. Inhibition of lymphocyte apoptosis has led to improved survival in animal models of sepsis. Using qRT-PCR of isolated splenic CD4 T and B cells, we determined that Bim and PUMA, two key cell death proteins, are markedly up-regulated during sepsis. Lymphocytes have been notoriously difficult to transfect with siRNA. Consequently a novel, cyclodextrin polymer-based, transferrin receptor-targeted, delivery vehicle was employed to co-administer siRNA to Bim and PUMA to mice immediately after cecal ligation and puncture. Anti-apoptotic siRNA based therapy markedly decreased lymphocyte apoptosis and prevented the loss of splenic CD4 T and B cells. Flow cytometry confirmed in vivo delivery of siRNA to CD4 T and B cells and also demonstrated decreases in intracellular Bim and PUMA protein. In conclusion, Bim and PUMA are two critical mediators of immune cell death in sepsis. Use of a novel cyclodextrin polymer-based, transferrin receptor-targeted siRNA delivery vehicle enables effective administration of anti-apoptotic siRNAs to lymphocytes and reverses the immune cell depletion that is a hallmark of this highly lethal disorder. PMID:19033888

  8. Efficient Gene Knockdown in Mouse Oocytes through Peptide Nanoparticle-Mediated SiRNA Transfection.

    PubMed

    Jin, Zhen; Li, Ruichao; Zhou, Chunxiang; Shi, Liya; Zhang, Xiaolan; Yang, Zhixia; Zhang, Dong

    2016-01-01

    The use of mouse oocytes as a model for studying female meiosis is very important in reproductive medicine. Gene knockdown by specific small interfering RNA (siRNA) is usually the first step in the study of the function of a target gene in mouse oocytes during in vitro maturation. Traditionally, the only way to introduce siRNA into mouse oocytes is through microinjection, which is certainly less efficient and strenuous than siRNA transfection in somatic cells. Recently, in research using somatic cells, peptide nanoparticle-mediated siRNA transfection has been gaining popularity over liposome nanoparticle-mediated methods because of its high efficiency, low toxicity, good stability, and strong serum compatibility. However, no researchers have yet tried transfecting siRNA into mouse oocytes because of the existence of the protective zona pellucida surrounding the oocyte membrane (vitelline membrane). We therefore tested whether peptide nanoparticles can introduce siRNA into mouse oocytes. In the present study, we showed for the first time that our optimized program can efficiently knock down a target gene with high specificity. Furthermore, we achieved the expected meiotic phenotypes after we knocked down a test unknown target gene TRIM75. We propose that peptide nanoparticles may be superior for preliminary functional studies of unknown genes in mouse oocytes. PMID:26974323

  9. Drug delivery of siRNA therapeutics: potentials and limits of nanosystems.

    PubMed

    Reischl, Daniela; Zimmer, Andreas

    2009-03-01

    Gene therapy is a promising tool for the treatment of human diseases that cannot be cured by rational therapies. The major limitation for the use of small interfering RNA (siRNA), both in vitro and in vivo, is the inability of naked siRNA to passively diffuse through cellular membranes due to the strong anionic charge of the phosphate backbone and consequent electrostatic repulsion from the anionic cell membrane surface. Therefore, the primary success of siRNA applications depends on suitable vectors to deliver therapeutic genes. Cellular entrance is further limited by the size of the applied siRNA molecule. Multiple delivery pathways, both viral and nonviral, have been developed to bypass these problems and have been successfully used to gain access to the intracellular environment in vitro and in vivo, and to induce RNA interference (RNAi). This review focuses on different pathways for siRNA delivery and summarizes recent progress made in the use of vector-based siRNA technology.

  10. VEGF siRNA delivery system using arginine-grafted bioreducible poly(disulfide amine).

    PubMed

    Kim, Sun Hwa; Jeong, Ji Hoon; Kim, Tae-il; Kim, Sung Wan; Bull, David A

    2009-01-01

    Small interfering RNAs (siRNAs) are able to silence their target genes when they are successfully delivered intact into the cytoplasm. Delivery systems that enhance siRNA localization to the cytoplasm can facilitate gene silencing by siRNA therapeutics. We describe an arginine-conjugated poly(cystaminebisacrylamide-diaminohexane) (poly(CBA-DAH-R)), a bioreducible cationic polymer, as an siRNA carrier for therapeutic gene silencing for cancer. After intracellular uptake of the siRNA/poly(CBA-DAH-R) polyplexes, the reductive environment of the cytoplasm cleaves the disulfide linkages in the polymeric backbone, resulting in decomplexing of the siRNA/poly(CBA-DAH-R) polyplexes and release of siRNA molecules throughout the cytoplasm. The siRNA/poly(CBA-DAH-R) polyplexes, which demonstrate increased membrane permeability with arginine modification, have a similar level of cellular uptake as siRNA/bPEI polyplexes. The VEGF siRNA/poly(CBA-DAH-R) polyplexes, however, inhibit VEGF expression to a greater degree than VEGF siRNA/bPEI in various human cancer cell lines. The improved RNAi activity demonstrated by the VEGF siRNA/poly(CBA-DAH-R) polyplexes is due to enhanced intracellular delivery and effective localization to the cytoplasm of the VEGF siRNAs. These results demonstrate that the VEGF siRNA/poly(CBA-DAH-R) polyplex delivery system may useful for siRNA-based approaches for cancer therapy.

  11. Low-Molecular-Weight Polyethyleneimine Grafted Polythiophene for Efficient siRNA Delivery.

    PubMed

    He, Pan; Hagiwara, Kyoji; Chong, Hui; Yu, Hsiao-hua; Ito, Yoshihiro

    2015-01-01

    Owing to its hydrophilicity, negative charge, small size, and labile degradation by endogenous nucleases, small interfering RNA (siRNA) delivery must be achieved by a carrier system. In this study, cationic copolymers composed of low-molecular-weight polyethylenimine and polythiophenes were synthesized and evaluated as novel self-tracking siRNA delivery vectors. The concept underlying the design of these copolymers is that hydrophobicity and rigidity of polythiophenes should enhance the transport of siRNA across the cell membrane and endosomal membrane. A gel retardation assay showed that the nanosized complexes formed between the copolymers and siRNA were stable even at a molar ratio of 1 : 2. The high cellular uptake (>80%) and localization of the copolymer vectors inside the cells were easily analyzed by tracking the fluorescence of polythiophene using fluorescent microscopy and cytometry. An in vitro luciferase knockdown (KD) assay in A549-luc cells demonstrated that the siRNA complexes with more hydrophobic copolymers achieved a higher KD efficiency of 52.8% without notable cytotoxicity, indicating protein-specific KD activity rather than solely the cytotoxicity of the materials. Our polythiophene copolymers should serve as novel, efficient, low cell toxicity, and label-free siRNA delivery systems.

  12. Pol IV-Dependent siRNA Production is Reduced in Brassica rapa

    PubMed Central

    Huang, Yi; Kendall, Timmy; Mosher, Rebecca A.

    2013-01-01

    Plants produce a diverse array of small RNA molecules capable of gene regulation, including Pol IV-dependent short interfering (p4-si)RNAs that trigger transcriptional gene silencing. Small RNA transcriptomes are available for many plant species, but mutations affecting the synthesis of Pol IV-dependent siRNAs are characterized only in Arabidopsis and maize, leading to assumptions regarding nature of p4-siRNAs in all other species. We have identified a mutation in the largest subunit of Pol IV, NRPD1, that impacts Pol IV activity in Brassica rapa, an agriculturally important relative of the reference plant Arabidopsis. Using this mutation we characterized the Pol IV-dependent and Pol IV-independent small RNA populations in B. rapa. In addition, our analysis demonstrates reduced production of p4-siRNAs in B. rapa relative to Arabidopsis. B. rapa genomic regions are less likely to generate p4-siRNAs than Arabidopsis but more likely to generate Pol IV-independent siRNAs, including 24 nt RNAs mapping to transposable elements. These observations underscore the diversity of small RNAs produced by plants and highlight the importance of genetic studies during small RNA analysis. PMID:24833221

  13. siRNA Versus miRNA as Therapeutics for Gene Silencing

    PubMed Central

    Lam, Jenny K W; Chow, Michael Y T; Zhang, Yu; Leung, Susan W S

    2015-01-01

    Discovered a little over two decades ago, small interfering RNAs (siRNAs) and microRNAs (miRNAs) are noncoding RNAs with important roles in gene regulation. They have recently been investigated as novel classes of therapeutic agents for the treatment of a wide range of disorders including cancers and infections. Clinical trials of siRNA- and miRNA-based drugs have already been initiated. siRNAs and miRNAs share many similarities, both are short duplex RNA molecules that exert gene silencing effects at the post-transcriptional level by targeting messenger RNA (mRNA), yet their mechanisms of action and clinical applications are distinct. The major difference between siRNAs and miRNAs is that the former are highly specific with only one mRNA target, whereas the latter have multiple targets. The therapeutic approaches of siRNAs and miRNAs are therefore very different. Hence, this review provides a comparison between therapeutic siRNAs and miRNAs in terms of their mechanisms of action, physicochemical properties, delivery, and clinical applications. Moreover, the challenges in developing both classes of RNA as therapeutics are also discussed. PMID:26372022

  14. Low-Molecular-Weight Polyethyleneimine Grafted Polythiophene for Efficient siRNA Delivery

    PubMed Central

    He, Pan; Hagiwara, Kyoji; Chong, Hui; Yu, Hsiao-hua; Ito, Yoshihiro

    2015-01-01

    Owing to its hydrophilicity, negative charge, small size, and labile degradation by endogenous nucleases, small interfering RNA (siRNA) delivery must be achieved by a carrier system. In this study, cationic copolymers composed of low-molecular-weight polyethylenimine and polythiophenes were synthesized and evaluated as novel self-tracking siRNA delivery vectors. The concept underlying the design of these copolymers is that hydrophobicity and rigidity of polythiophenes should enhance the transport of siRNA across the cell membrane and endosomal membrane. A gel retardation assay showed that the nanosized complexes formed between the copolymers and siRNA were stable even at a molar ratio of 1 : 2. The high cellular uptake (>80%) and localization of the copolymer vectors inside the cells were easily analyzed by tracking the fluorescence of polythiophene using fluorescent microscopy and cytometry. An in vitro luciferase knockdown (KD) assay in A549-luc cells demonstrated that the siRNA complexes with more hydrophobic copolymers achieved a higher KD efficiency of 52.8% without notable cytotoxicity, indicating protein-specific KD activity rather than solely the cytotoxicity of the materials. Our polythiophene copolymers should serve as novel, efficient, low cell toxicity, and label-free siRNA delivery systems. PMID:26539490

  15. Nanosystems based on siRNA silencing HuR expression counteract diabetic retinopathy in rat.

    PubMed

    Amadio, Marialaura; Pascale, Alessia; Cupri, Sarha; Pignatello, Rosario; Osera, Cecilia; D'Agata, Velia; D'Amico, Agata Grazia; Leggio, Gian Marco; Ruozi, Barbara; Govoni, Stefano; Drago, Filippo; Bucolo, Claudio

    2016-09-01

    We evaluated whether specifically and directly targeting human antigen R (HuR), a member of embryonic lethal abnormal vision (ELAV) proteins family, may represent a new potential therapeutic strategy to manage diabetic retinopathy. Nanosystems loaded with siRNA silencing HuR expression (lipoplexes), consisting of solid lipid nanoparticles (SLN) and liposomes (SUV) were prepared. Photon correlation spectroscopy analysis, Zeta potential measurement and atomic force microscopy (AFM) studies were carried out to characterize the complexation of siRNA with the lipid nanocarriers. Nanosystems were evaluated by using AFM and scanning electron microscopy. The lipoplexes were injected into the eye of streptozotocin (STZ)-induced diabetic rats. Retinal HuR and VEGF levels were detected by Western blot and ELISA, respectively. Retinal histology was also carried out. The results demonstrated that retinal HuR and VEGF are significantly increased in STZ-rats and are blunted by HuR siRNA treatment. Lipoplexes with a weak positive surface charge and with a 4:1 N/P (cationic lipid nitrogen to siRNA phosphate) ratio exert a better transfection efficiency, significantly dumping retinal HuR and VEGF levels. In conclusion, we demonstrated that siRNA can be efficiently delivered into the rat retina using lipid-based nanocarriers, and some of the lipoplexes loaded with siRNA silencing HuR expression are potential candidates to manage retinal diseases.

  16. Self-assembled RNA interference microsponges for efficient siRNA delivery

    NASA Astrophysics Data System (ADS)

    Lee, Jong Bum; Hong, Jinkee; Bonner, Daniel K.; Poon, Zhiyong; Hammond, Paula T.

    2012-04-01

    The encapsulation and delivery of short interfering RNA (siRNA) has been realized using lipid nanoparticles, cationic complexes, inorganic nanoparticles, RNA nanoparticles and dendrimers. Still, the instability of RNA and the relatively ineffectual encapsulation process of siRNA remain critical issues towards the clinical translation of RNA as a therapeutic. Here we report the synthesis of a delivery vehicle that combines carrier and cargo: RNA interference (RNAi) polymers that self-assemble into nanoscale pleated sheets of hairpin RNA, which in turn form sponge-like microspheres. The RNAi-microsponges consist entirely of cleavable RNA strands, and are processed by the cell’s RNA machinery to convert the stable hairpin RNA to siRNA only after cellular uptake, thus inherently providing protection for siRNA during delivery and transport to the cytoplasm. More than half a million copies of siRNA can be delivered to a cell with the uptake of a single RNAi-microsponge. The approach could lead to novel therapeutic routes for siRNA delivery.

  17. Preparation of Novel Curdlan Nanoparticles for Intracellular siRNA Delivery

    PubMed Central

    Han, Jingfen; Caia, Jia; Borjihan, Wuyinga; Ganbolda, Tsogzolmaa; Rana, Tariq M.; Baigude, Huricha

    2014-01-01

    RNA interference (RNAi) down-regulates gene expression post-transcriptionally, which is a therapeutically significant phenomenon that could potentially reduce the level of disease related proteins that are undruggable by conventional small molecular approaches. However, clinical application of small interference RNAs (siRNAs) requires design of potent siRNA sequences and development of safe and efficient delivery systems. To create a biocompatible siRNA delivery agent, we chemically modified natural polysaccharide curdlan in a regioselective manner to introduce amino group in the glucose units. The resulting 6-amino-curdlan (6AC) is water soluble and forms nanoparticles upon complexing with siRNAs. The novel curdlan-based nanoparticles efficiently delivered siRNAs to human cancer cells and mouse primary cells, and reduced 70–90% of target mRNA level. Moreover, 6AC nanoparticles delivered siRNA targeting eGFP to mouse embryonic stem (mES) cells stably expressing eGFP, and produced substantial reductions of eGFP protein level. The novel curdlan-based nanoparticle is a promising vehicle for delivery of short RNAs to knock down endogenous mRNAs. PMID:25498642

  18. Rigid nanoparticle-baseddelivery of anti-cancer siRNA: challenges and opportunities

    PubMed Central

    Wang, Zhiyong; Liu, Gang; Zheng, Hairong; Chen, Xiaoyuan

    2013-01-01

    Gene therapy is a promising strategy to treat various genetic and acquired diseases. Small interfering RNA (siRNA) is a revolutionary tool for gene therapy and the analysis of gene function. However, the development of a safe, efficient, and targetable non-viral siRNA delivery system remains a major challenge in gene therapy. An ideal delivery system should be able to encapsulate and protect the siRNA cargo from serum proteins, exhibit target tissue and cell specificity, penetrate the cell membrane, and release its cargo in the desired intracellular compartment. Nanomedicine has the potential to deal with these challenges faced by siRNA delivery. The unique characteristics of rigid nanoparticles mostly inorganic nanoparticles and allotropes of carbon nanomaterials, including high surface area, facile surface modification, controllable size, and excellent magnetic/optical/electrical properties, make them promising candidates for targeted siRNA delivery. In this review, recent progresses on rigid nanoparticle-based siRNA delivery systems will be summarized. PMID:24013011

  19. Efficient Gene Knockdown in Mouse Oocytes through Peptide Nanoparticle-Mediated SiRNA Transfection

    PubMed Central

    Jin, Zhen; Li, Ruichao; Zhou, Chunxiang; Shi, Liya; Zhang, Xiaolan; Yang, Zhixia; Zhang, Dong

    2016-01-01

    The use of mouse oocytes as a model for studying female meiosis is very important in reproductive medicine. Gene knockdown by specific small interfering RNA (siRNA) is usually the first step in the study of the function of a target gene in mouse oocytes during in vitro maturation. Traditionally, the only way to introduce siRNA into mouse oocytes is through microinjection, which is certainly less efficient and strenuous than siRNA transfection in somatic cells. Recently, in research using somatic cells, peptide nanoparticle-mediated siRNA transfection has been gaining popularity over liposome nanoparticle-mediated methods because of its high efficiency, low toxicity, good stability, and strong serum compatibility. However, no researchers have yet tried transfecting siRNA into mouse oocytes because of the existence of the protective zona pellucida surrounding the oocyte membrane (vitelline membrane). We therefore tested whether peptide nanoparticles can introduce siRNA into mouse oocytes. In the present study, we showed for the first time that our optimized program can efficiently knock down a target gene with high specificity. Furthermore, we achieved the expected meiotic phenotypes after we knocked down a test unknown target gene TRIM75. We propose that peptide nanoparticles may be superior for preliminary functional studies of unknown genes in mouse oocytes. PMID:26974323

  20. In vitro validation of self designed "universal human Influenza A siRNA".

    PubMed

    Jain, Bhawana; Jain, Amita; Prakash, Om; Singh, Ajay Kr; Dangi, Tanushree; Singh, Mastan; Singh, K P

    2015-08-01

    The genomic variability of Influenza A virus (IAV) makes it difficult for the existing vaccines or anti-influenza drugs to control. The siRNA targeting viral gene induces RNAi mechanism in the host and silent the gene by cleaving mRNA. In this study, we developed an universal siRNA and validated its efficiency in vitro. The siRNA was designed rationally, targeting the most conserved region (delineated with the help of multiple sequence alignment) of M gene of IAV strains. Three level screening method was adopted, and the most efficient one was selected on the basis of its unique position in the conserved region. The siRNA efficacy was confirmed in vitro with the Madin Darby Canine Kidney (MDCK) cell line for IAV propagation using two clinical isolates i.e., Influenza A/H3N2 and Influenza A/pdmH1N1. Of the total 168 strains worldwide and 33 strains from India, 97 bp long (position 137-233) conserved region was identified. The longest ORF of matrix gene was targeted by the selected siRNA, which showed 73.6% inhibition in replication of Influenza A/pdmH1N1 and 62.1% inhibition in replication of Influenza A/H3N2 at 48 h post infection on MDCK cell line. This study provides a basis for the development of siRNA which can be used as universal anti-IAV therapeutic agent.

  1. Ultrasound assisted siRNA delivery using PEG-siPlex loaded microbubbles.

    PubMed

    Vandenbroucke, Roosmarijn E; Lentacker, Ine; Demeester, Joseph; De Smedt, Stefaan C; Sanders, Niek N

    2008-03-20

    Short interfering RNA (siRNA) attracts much attention for the treatment of various diseases. However, its delivery, especially via systemic routes, remains a challenge. Indeed, naked siRNAs are rapidly degraded, while complexed siRNAs massively aggregate in the blood or are captured by macrophages. Although this can be circumvented by PEGylation, we found that PEGylation had a strong negative effect on the gene silencing efficiency of siRNA-liposome complexes (siPlexes). Recently, ultrasound combined with microbubbles has been used to deliver naked siRNA but the gene silencing efficiency is rather low and very high amounts of siRNA are required. To overcome the negative effects of PEGylation and to enhance the efficiency of ultrasound assisted siRNA delivery, we coupled PEGylated siPlexes (PEG-siPlexes) to microbubbles. Ultrasound radiation of these microbubbles resulted in massive release of unaltered PEG-siPlexes. Interestingly, PEG-siPlexes loaded on microbubbles were able to enter cells after exposure to ultrasound, in contrast to free PEG-siPlexes, which were not able to enter cells rapidly. Furthermore, these PEG-siPlex loaded microbubbles induced, in the presence of ultrasound, much higher gene silencing than free PEG-siPlexes. Additionally, the PEG-siPlex loaded microbubbles only silenced the expression of genes in the presence of ultrasound, which allows space and time controlled gene silencing.

  2. Abundances of light elements.

    PubMed Central

    Pagel, B E

    1993-01-01

    Recent developments in the study of abundances of light elements and their relevance to cosmological nucleosynthesis are briefly reviewed. The simplest model, based on standard cosmology and particle physics and assuming homogeneous baryon density at the relevant times, continues to stand up well. PMID:11607388

  3. RELATIVE ABUNDANCE MEASUREMENTS IN PLUMES AND INTERPLUMES

    SciTech Connect

    Guennou, C.; Hahn, M.; Savin, D. W.

    2015-07-10

    We present measurements of relative elemental abundances in plumes and interplumes. Plumes are bright, narrow structures in coronal holes that extend along open magnetic field lines far out into the corona. Previous work has found that in some coronal structures the abundances of elements with a low first ionization potential (FIP) <10 eV are enhanced relative to their photospheric abundances. This coronal-to-photospheric abundance ratio, commonly called the FIP bias, is typically 1 for elements with a high-FIP (>10 eV). We have used Extreme Ultraviolet Imaging Spectrometer observations made on 2007 March 13 and 14 over a ≈24 hr period to characterize abundance variations in plumes and interplumes. To assess their elemental composition, we used a differential emission measure analysis, which accounts for the thermal structure of the observed plasma. We used lines from ions of iron, silicon, and sulfur. From these we estimated the ratio of the iron and silicon FIP bias relative to that for sulfur. From the results, we have created FIP-bias-ratio maps. We find that the FIP-bias ratio is sometimes higher in plumes than in interplumes and that this enhancement can be time dependent. These results may help to identify whether plumes or interplumes contribute to the fast solar wind observed in situ and may also provide constraints on the formation and heating mechanisms of plumes.

  4. Solar abundance of iridium

    PubMed Central

    Drake, Stephen; Aller, Lawrence H.

    1976-01-01

    By a method of spectrum synthesis, which yields log gfA, where g is the statistical weight of the lower level, f is the oscillator strength, and A is the abundance, an attempt is made to deduce the solar iridium abundance from one relatively unblended, but fairly weak IrI line, λ 3220.78 Å. If the Corliss-Bozman f-value for this line is adopted, we find log A(Ir) = 0.82 on the scale log A(H) = 12.00. The discordance with the value found from carbonaceous chondrites may arise from faulty f-values or from difficulties arising from line blending in this far ultraviolet domain of the solar spectrum. PMID:16578735

  5. Dual-functionalized graphene oxide for enhanced siRNA delivery to breast cancer cells.

    PubMed

    Imani, Rana; Shao, Wei; Taherkhani, Samira; Emami, Shahriar Hojjati; Prakash, Satya; Faghihi, Shahab

    2016-11-01

    The aim of this study is to improve hydrocolloid stability and siRNA transfection ability of a reduced graphene oxide (rGO) based nano-carrier using a phospholipid-based amphiphilic polymer (PL-PEG) and cell penetrating peptide (CPPs). The dual functionalized nano-carrier is comprehensively characterized for its chemical structure, size, surface charge and morphology as well as thermal stability. The nano-carrier cytocompatibility, siRNA condensation ability both in the presence and absence of enzyme, endosomal buffering capacity, cellular uptake and intracellular localization are also assessed. The siRNA loaded nano-carrier is used for internalization to MCF-7 cells and its gene silencing ability is compared with AllStars Hs Cell Death siRNA as a model gene. The nano-carrier remains stable in biological solution, exhibits excellent cytocompatibility, retards the siRNA migration and protects it against enzyme degradation. The buffering capacity analysis shows that incorporation of the peptide in nano-carrier structure would increase the resistance to endo/lysosomal like acidic condition (pH 6-4) The functionalized nano-carrier which is loaded with siRNA in an optimal N:P ratio presents superior internalization efficiency (82±5.1% compared to HiPerFect(®)), endosomal escape quality and capable of inducing cell death in MCF-7 cancer cells (51±3.1% compared to non-treated cells). The success of siRNA-based therapy is largely dependent on the safe and efficient delivery system, therefore; the dual functionalized rGO introduced here could have a great potential to be used as a carrier for siRNA delivery with relevancy in therapeutics and clinical applications.

  6. Magnetic nanoparticle and magnetic field assisted siRNA delivery in vitro.

    PubMed

    Mykhaylyk, Olga; Sanchez-Antequera, Yolanda; Vlaskou, Dialechti; Cerda, Maria Belen; Bokharaei, Mehrdad; Hammerschmid, Edelburga; Anton, Martina; Plank, Christian

    2015-01-01

    This chapter describes how to design and conduct experiments to deliver siRNA to adherent cell cultures in vitro by magnetic force-assisted transfection using self-assembled complexes of small interfering RNA (siRNA) and cationic lipids or polymers that are associated with magnetic nanoparticles (MNPs). These magnetic complexes are targeted to the cell surface by the application of a gradient magnetic field. A further development of the magnetic drug-targeting concept is combining it with an ultrasound-triggered delivery using magnetic microbubbles as a carrier for gene or drug delivery. For this purpose, selected MNPs, phospholipids, and siRNAs are assembled in the presence of perfluorocarbon gas into flexible formulations of magnetic lipospheres (microbubbles). Methods are described how to accomplish the synthesis of magnetic nanoparticles for magnetofection and how to test the association of siRNA with the magnetic components of the transfection vector. A simple method is described to evaluate magnetic responsiveness of the magnetic siRNA transfection complexes and estimate the complex loading with magnetic nanoparticles. Procedures are provided for the preparation of magnetic lipoplexes and polyplexes of siRNA as well as magnetic microbubbles for magnetofection and downregulation of the target gene expression analysis with account for the toxicity determined using an MTT-based respiration activity test. A modification of the magnetic transfection triplexes with INF-7, fusogenic peptide, is described resulting in reporter gene silencing improvement in HeLa, Caco-2, and ARPE-19 cells. The methods described can also be useful for screening vector compositions and novel magnetic nanoparticle preparations for optimized siRNA transfection by magnetofection in any cell type.

  7. Potential application of injectable chitosan hydrogel treated with siRNA in chronic rhinosinusitis therapy.

    PubMed

    Cao, Cheng; Yan, Chunhong; Hu, Zhiqiang; Zhou, Shao

    2015-11-01

    Chronic rhinosinusitis is a condition with severe clinical symptoms and limited therapeutic solutions. It has been reported that vascular endothelial growth factor (VEGF) can promote nasal epithelial cell growth and result in hyperplasia of the sinuses. Therefore, the downregulation of VEGF may inhibit the process of hyperplasia. In the present study, small interfering RNA (siRNA) targeting VEGF was used to silence the expression of VEGF, and injectable chitosan based hydrogel, which is suitable for sinus injection and exhibits long‑term retention, was prepared as the siRNA carrier. Human bronchial epithelial cells were cultured directly on the hydrogel to observe the biological performance in vitro. Further in vivo effects were investigated by the injection of the hydrogel into the sinus cavity. Following the introduction of siRNA introducing, the expression of VEGF in the bronchial epithelial cells was significantly suppressed at mRNA and protein levels. The number of living cells on the gel was significantly decreased, thus resulting in the inhibition of proliferation. However, the cytoskeletal arrangement of the remaining cells were not affected substantially. The hydrogel was able to retain the siRNA for an extended duration, which enabled a sustained supply of siRNA. The in vivo sinus mucosa analysis revealed that the siRNA was able to collocate with cells and the mucosa thickness was substantially decreased. In conclusion, the results of the present study suggested that injectable chitosan based hydrogel, treated with siRNA targeting VEGF, may be used as a convenient therapeutic option for chronic rhinosinusitis.

  8. Dual-functionalized graphene oxide for enhanced siRNA delivery to breast cancer cells.

    PubMed

    Imani, Rana; Shao, Wei; Taherkhani, Samira; Emami, Shahriar Hojjati; Prakash, Satya; Faghihi, Shahab

    2016-11-01

    The aim of this study is to improve hydrocolloid stability and siRNA transfection ability of a reduced graphene oxide (rGO) based nano-carrier using a phospholipid-based amphiphilic polymer (PL-PEG) and cell penetrating peptide (CPPs). The dual functionalized nano-carrier is comprehensively characterized for its chemical structure, size, surface charge and morphology as well as thermal stability. The nano-carrier cytocompatibility, siRNA condensation ability both in the presence and absence of enzyme, endosomal buffering capacity, cellular uptake and intracellular localization are also assessed. The siRNA loaded nano-carrier is used for internalization to MCF-7 cells and its gene silencing ability is compared with AllStars Hs Cell Death siRNA as a model gene. The nano-carrier remains stable in biological solution, exhibits excellent cytocompatibility, retards the siRNA migration and protects it against enzyme degradation. The buffering capacity analysis shows that incorporation of the peptide in nano-carrier structure would increase the resistance to endo/lysosomal like acidic condition (pH 6-4) The functionalized nano-carrier which is loaded with siRNA in an optimal N:P ratio presents superior internalization efficiency (82±5.1% compared to HiPerFect(®)), endosomal escape quality and capable of inducing cell death in MCF-7 cancer cells (51±3.1% compared to non-treated cells). The success of siRNA-based therapy is largely dependent on the safe and efficient delivery system, therefore; the dual functionalized rGO introduced here could have a great potential to be used as a carrier for siRNA delivery with relevancy in therapeutics and clinical applications. PMID:27543693

  9. Fatty acid modified octa-arginine for delivery of siRNA.

    PubMed

    Li, Yuhuan; Li, Yujing; Wang, Xinmei; Lee, Robert J; Teng, Lesheng

    2015-11-10

    Therapeutic delivery of small interfering RNA (siRNA) is a major challenge that limits its potential clinical application. Four fatty acids derivatives of octa-arginine (R8) were synthesized and evaluated for the delivery of siRNA into hepatocellular carcinoma Hep G2 and human lung adenocarcinoma A549 cells. The results showed that the long chain acid oleic acid or stearic acid derivatives of R8, OA-R8 and StA-R8, were more efficient in siRNA complexation and form nanoparticles with greater stability compared to the native R8. Cellular uptake of fluorescence-labeled siRNA delivered by OA-R8 and StA-R8 in Hep G2 and A549 cells was substantially 40-50 times higher than unmodified R8. A significant reduction in siRNA cellular uptake was observed in the presence of sucrose and cytochalasin D, indicating endocytosis as a primary mechanism of cellular entry. A survivin siRNA was used to prepare nanoparticles with OA-R8 or StA-R8 and evaluated for silencing of survivin mRNA and protein in A549 cells, and the inhibition efficiencies of survivin protein reached to 50.3% and 54.6%, respectively. The results showed greater effectiveness with the derivatized R8. Taken together, these findings showed that long chain fatty acid derivatives of R8 are efficient delivery agents for siRNA and may facilitate its therapeutic application. PMID:26386137

  10. Potential application of injectable chitosan hydrogel treated with siRNA in chronic rhinosinusitis therapy

    PubMed Central

    CAO, CHENG; YAN, CHUNHONG; HU, ZHIQIANG; ZHOU, SHAO

    2015-01-01

    Chronic rhinosinusitis is a condition with severe clinical symptoms and limited therapeutic solutions. It has been reported that vascular endothelial growth factor (VEGF) can promote nasal epithelial cell growth and result in hyperplasia of the sinuses. Therefore, the downregulation of VEGF may inhibit the process of hyperplasia. In the present study, small interfering RNA (siRNA) targeting VEGF was used to silence the expression of VEGF, and injectable chitosan based hydrogel, which is suitable for sinus injection and exhibits long-term retention, was prepared as the siRNA carrier. Human bronchial epithelial cells were cultured directly on the hydrogel to observe the biological performance in vitro. Further in vivo effects were investigated by the injection of the hydrogel into the sinus cavity. Following the introduction of siRNA introducing, the expression of VEGF in the bronchial epithelial cells was significantly suppressed at mRNA and protein levels. The number of living cells on the gel was significantly decreased, thus resulting in the inhibition of proliferation. However, the cytoskeletal arrangement of the remaining cells were not affected substantially. The hydrogel was able to retain the siRNA for an extended duration, which enabled a sustained supply of siRNA. The in vivo sinus mucosa analysis revealed that the siRNA was able to collocate with cells and the mucosa thickness was substantially decreased. In conclusion, the results of the present study suggested that injectable chitosan based hydrogel, treated with siRNA targeting VEGF, may be used as a convenient therapeutic option for chronic rhinosinusitis. PMID:26299569

  11. Magnetic nanoparticle and magnetic field assisted siRNA delivery in vitro.

    PubMed

    Mykhaylyk, Olga; Sanchez-Antequera, Yolanda; Vlaskou, Dialechti; Cerda, Maria Belen; Bokharaei, Mehrdad; Hammerschmid, Edelburga; Anton, Martina; Plank, Christian

    2015-01-01

    This chapter describes how to design and conduct experiments to deliver siRNA to adherent cell cultures in vitro by magnetic force-assisted transfection using self-assembled complexes of small interfering RNA (siRNA) and cationic lipids or polymers that are associated with magnetic nanoparticles (MNPs). These magnetic complexes are targeted to the cell surface by the application of a gradient magnetic field. A further development of the magnetic drug-targeting concept is combining it with an ultrasound-triggered delivery using magnetic microbubbles as a carrier for gene or drug delivery. For this purpose, selected MNPs, phospholipids, and siRNAs are assembled in the presence of perfluorocarbon gas into flexible formulations of magnetic lipospheres (microbubbles). Methods are described how to accomplish the synthesis of magnetic nanoparticles for magnetofection and how to test the association of siRNA with the magnetic components of the transfection vector. A simple method is described to evaluate magnetic responsiveness of the magnetic siRNA transfection complexes and estimate the complex loading with magnetic nanoparticles. Procedures are provided for the preparation of magnetic lipoplexes and polyplexes of siRNA as well as magnetic microbubbles for magnetofection and downregulation of the target gene expression analysis with account for the toxicity determined using an MTT-based respiration activity test. A modification of the magnetic transfection triplexes with INF-7, fusogenic peptide, is described resulting in reporter gene silencing improvement in HeLa, Caco-2, and ARPE-19 cells. The methods described can also be useful for screening vector compositions and novel magnetic nanoparticle preparations for optimized siRNA transfection by magnetofection in any cell type. PMID:25319646

  12. Agitation during lipoplex formation improves the gene knockdown effect of siRNA.

    PubMed

    Barichello, Jose Mario; Kizuki, Shinji; Tagami, Tatsuaki; Asai, Tomohiro; Ishida, Tatsuhiro; Kikuchi, Hiroshi; Oku, Naoto; Kiwada, Hiroshi

    2011-05-30

    The successful delivery of therapeutic siRNA to the designated target cells and their availability at the intracellular site of action are crucial requirements for successful RNAi therapy. In the present study, we focused on the siRNA-lipoplex preparation procedure and its effect on the gene-knockdown efficiency of siRNA in vitro. Agitation (vortex-mixing) during siRNA-lipoplex (vor-LTsiR) preparation and its effect on the gene-knockdown efficiency of stably expressed cell GFP was investigated, and their efficiency was compared with that of spontaneously formed lipoplex (spo-LTsiR). A dramatic difference in size between lipoplexes was observed at the N/P ratio of 7.62 (siRNA dose of 30 nM), even though both lipoplexes were positively charged. With the siRNA dose of 30 nM, vor-LTsiR accomplished a 50% gene-knockdown, while spo-LTsiR managed a similar knockdown effect at the 120 nM level, suggesting that the preparation procedure remarkably affects the gene-knockdown efficacy of siRNA. The uptake of vor-LTsiR was mainly via clathrin-mediated endocytosis, whereas that of spo-LTsiR was via membrane fusion. In addition, by inhibiting clathrin-mediated endocytosis, the gene-knockdown efficiency was significantly lowered. The size of the lipoplex, promoted by the preparation procedure, is likely to define the entry pathway, resulting in an increased amount of siRNA internalized in cells and an enhanced gene-knockdown efficacy. The results of the present study definitively show that a proper siRNA-lipoplex preparation procedure makes a significant contribution to the efficiency of cellular uptake, and thereby, to the gene-knockdown efficiency of siRNA. PMID:21392562

  13. Expression data of HeLa cells treated with CENP-E siRNA or Eg5 siRNA in the presence of BubR1 siRNA.

    PubMed

    Nakayama, Yusuke; Ohashi, Akihiro

    2015-12-01

    The molecular mechanism responsible for cell fate after mitotic slippage is unclear. We investigated the postmitotic effects of different mitotic aberrations (Ohashi et al. [1]), misaligned chromosomes produced by CENP-E siRNA (siCENP-E), and monopolar spindles resulting from Eg5 siRNA (siEg5) (Miki et al. [2]). To determine which signaling pathways contribute to the postmitotic effect of siCENP-E in the presence of siBubR1 (siCENP-E + siBubR1) compared with siEg5 + siBubR1, we performed comprehensive gene expression analysis using microarray comparisons [1]. The microarray data have been deposited in NCBI's Gene Expression Omnibus (GEO) and are accessible through GEO Series accession number GSE67905. PMID:26697328

  14. Unique Gene-Silencing and Structural Properties of 2;#8242;-Fluoro-Modified siRNAs

    SciTech Connect

    Manoharan, Muthiah; Akinc, Akin; Pandey, Rajendra K.; Qin, June; Hadwiger, Philipp; John, Matthias; Mills, Kathy; Charisse, Klaus; Maier, Martin A.; Nechev, Lubomir; Greene, Emily M.; Pallan, Pradeep S.; Rozners, Eriks; Rajeev, Kallanthottathil G.; Egli, Martin

    2015-10-15

    With little or no negative impact on the activity of small interfering RNAs (siRNAs), regardless of the number of modifications or the positions within the strand, the 2'-deoxy-2'-fluoro (2'-F) modification is unique. Furthermore, the 2'-F-modified siRNA (see crystal structure) was thermodynamically more stable and more nuclease-resistant than the parent siRNA, and produced no immunostimulatory response.

  15. Intranasal sirna targeting c-kit reduces airway inflammation in experimental allergic asthma.

    PubMed

    Wu, Wei; Chen, Hui; Li, Ya-Ming; Wang, Sheng-Yu; Diao, Xin; Liu, Kai-Ge

    2014-01-01

    Allergic asthma is characterized by airway inflammation caused by infiltration and activation of inflammatory cells that produce cytokines. Many studies have revealed that c-kit, a proto-oncogene, and its ligand, stem cell factor (SCF), play an important role in the development of asthmatic inflammation. Intranasal small interference RNA (siRNA) nanoparticles targeting specific viral gene could inhibit airway inflammation. In this study, we assessed whether silencing of c-kit with intranasal small interference RNA could reduce inflammation in allergic asthma. A mouse model of experimental asthma was treated with intranasal administration of anti-c-kit siRNA to inhibit the expression of the c-kit gene. We assessed the inflammatory response in both anti-c-kit siRNA-treated and control mice. Local administration of siRNA effectively inhibited the expression of the c-kit gene and reduced airway mucus secretion and the infiltration of eosinophils in bronchoalveolar lavage fluid. Moreover, c-kit siRNA reduced the production of SCF, interleukin-4 (IL-4), and IL-5, but had no effect on interferon-γ (IFN-γ) generation. These results show that intranasal siRNA nanoparticles targeting c-kit can decrease the inflammatory response in experimental allergic asthma.

  16. Sustained delivery of siRNAs targeting viral infection by cell-degradable multilayered polyelectrolyte films.

    PubMed

    Dimitrova, Maria; Affolter, Christine; Meyer, Florent; Nguyen, Isabelle; Richard, Doriane G; Schuster, Catherine; Bartenschlager, Ralf; Voegel, Jean-Claude; Ogier, Joëlle; Baumert, Thomas F

    2008-10-21

    Gene silencing by RNA interference (RNAi) has been shown to represent a recently discovered approach for the treatment of human diseases, including viral infection. A major limitation for the success of therapeutic strategies based on RNAi has been the delivery and shortlasting action of synthetic RNA. Multilayered polyelectrolyte films (MPFs), consisting of alternate layer-by-layer deposition of polycations and polyanions, have been shown to represent an original approach for the efficient delivery of DNA and proteins to target cells. Using hepatitis C virus infection (HCV) as a model, we demonstrate that siRNAs targeting the viral genome are efficiently delivered by MPFs. This delivery method resulted in a marked, dose-dependent, specific, and sustained inhibition of HCV replication and infection in hepatocyte-derived cells. Comparative analysis demonstrated that delivery of siRNAs by MPFs was more sustained and durable than siRNA delivery by standard methods, including electroporation or liposomes. The antiviral effect of siRNA-MPFs was reversed by a hyaluronidase inhibitor, suggesting that active degradation of MPFs by cellular enzymes is required for siRNA delivery. In conclusion, our results demonstrate that cell-degradable MPFs represent an efficient and simple approach for sustained siRNA delivery targeting viral infection. Moreover, this MPF-based delivery system may represent a promising previously undescribed perspective for the use of RNAi as a therapeutic strategy for human diseases.

  17. Topical and Targeted Delivery of siRNAs to Melanoma Cells Using a Fusion Peptide Carrier.

    PubMed

    Ruan, Renquan; Chen, Ming; Sun, Sijie; Wei, Pengfei; Zou, Lili; Liu, Jing; Gao, Dayong; Wen, Longping; Ding, Weiping

    2016-01-01

    Topical application of siRNAs through the skin is a potentially effective strategy for the treatment of melanoma tumors. In this study, we designed a new and safe fusion peptide carrier SPACE-EGF to improve the skin and cell penetration function of the siRNAs and their targeting ability to B16 cells, such that the apoptosis of B16 cells can be induced. The results show that the carrier is stable and less toxic. The EGF motif does not affect the skin and cell penetration function of the SPACE. Because EGF can strongly bind EGFR, which is overexpressed in cancer cells, the targeting ability of the SPACE-EGF-siRNA complex is increased. In vitro experiments indicate that GAPDH siRNAs conjugated with SPACE-EGF can significantly reduce the GAPDH concentration in B16 cells, and c-Myc siRNAs can cause the gene silencing of c-Myc and thus the apoptosis of cells. In vivo experiments show that the topical application of c-Myc siRNAs delivered by SPACE-EGF through the skin can significantly inhibit the growth of melanoma tumors. This work may provide insight into the development of new transdermal drug carriers to treat a variety of skin disorders. PMID:27374619

  18. Topical and Targeted Delivery of siRNAs to Melanoma Cells Using a Fusion Peptide Carrier

    PubMed Central

    Ruan, Renquan; Chen, Ming; Sun, Sijie; Wei, Pengfei; Zou, Lili; Liu, Jing; Gao, Dayong; Wen, Longping; Ding, Weiping

    2016-01-01

    Topical application of siRNAs through the skin is a potentially effective strategy for the treatment of melanoma tumors. In this study, we designed a new and safe fusion peptide carrier SPACE-EGF to improve the skin and cell penetration function of the siRNAs and their targeting ability to B16 cells, such that the apoptosis of B16 cells can be induced. The results show that the carrier is stable and less toxic. The EGF motif does not affect the skin and cell penetration function of the SPACE. Because EGF can strongly bind EGFR, which is overexpressed in cancer cells, the targeting ability of the SPACE-EGF-siRNA complex is increased. In vitro experiments indicate that GAPDH siRNAs conjugated with SPACE-EGF can significantly reduce the GAPDH concentration in B16 cells, and c-Myc siRNAs can cause the gene silencing of c-Myc and thus the apoptosis of cells. In vivo experiments show that the topical application of c-Myc siRNAs delivered by SPACE-EGF through the skin can significantly inhibit the growth of melanoma tumors. This work may provide insight into the development of new transdermal drug carriers to treat a variety of skin disorders. PMID:27374619

  19. CDE-1 affects chromosome segregation through uridylation of CSR-1-bound siRNAs.

    PubMed

    van Wolfswinkel, Josien C; Claycomb, Julie M; Batista, Pedro J; Mello, Craig C; Berezikov, Eugene; Ketting, René F

    2009-10-01

    We have studied the function of a conserved germline-specific nucleotidyltransferase protein, CDE-1, in RNAi and chromosome segregation in C. elegans. CDE-1 localizes specifically to mitotic chromosomes in embryos. This localization requires the RdRP EGO-1, which physically interacts with CDE-1, and the Argonaute protein CSR-1. We found that CDE-1 is required for the uridylation of CSR-1 bound siRNAs, and that in the absence of CDE-1 these siRNAs accumulate to inappropriate levels, accompanied by defects in both meiotic and mitotic chromosome segregation. Elevated siRNA levels are associated with erroneous gene silencing, most likely through the inappropriate loading of CSR-1 siRNAs into other Argonaute proteins. We propose a model in which CDE-1 restricts specific EGO-1-generated siRNAs to the CSR-1 mediated, chromosome associated RNAi pathway, thus separating it from other endogenous RNAi pathways. The conserved nature of CDE-1 suggests that similar sorting mechanisms may operate in other animals, including mammals.

  20. Multifunctional nanocarrier based on clay nanotubes for efficient intracellular siRNA delivery and gene silencing.

    PubMed

    Wu, Hui; Shi, Yinfeng; Huang, Chusen; Zhang, Yang; Wu, Jiahui; Shen, Hebai; Jia, Nengqin

    2014-04-01

    RNA interference-mediated gene silencing relating to disease has recently emerged as a powerful method in gene therapy. Despite the promises, effective transport of siRNA with minimal side effects remains a challenge. Halloysites are cheap and naturally available aluminosilicate clay nanotubes with high mechanical strength and biocompatibility. In this study, a novel multifunctional nanocarrier based on functionalized halloysite nanotubes (f-HNTs) has been developed via electrostatic layer-by-layer assembling approach for loading and intracellular delivery of therapeutic antisurvivin siRNA and simultaneously tracking their intracellular transport, in which PEI-modified HNTs are used as gene vector, antisurvivin siRNA as gene therapeutic agent, and mercaptoacetic acid-capped CdSe quantum dots as fluorescent labeling probes. The successful assembly of the f-HNTs-siRNA complexes was systematically characterized by transmission electron microscopy (TEM), UV-visible spectrophotometry, Zeta potential measurement, fluorescence spectrophotometry, and electrochemical impedance spectroscopy. Confocal microscopy, biological TEM, and flow cytometry studies revealed that the complexes enabled the efficient intracellular delivery of siRNA for cell-specific gene silencing. MTT assays exhibited that the complexes can enhance antitumor activity. Furthermore, Western blot analysis showed that f-HNTs-mediated siRNA delivery effectively knocked down gene expression of survivin and thereby decreased the levels of target proteins of PANC-1 cells. Therefore, this study suggested that the synthesized f-HNTs were a new effective drug delivery system for potential application in cancer gene therapy.

  1. Efficient inhibition of fibroblast proliferation and collagen expression by ERK2 siRNAs

    SciTech Connect

    Li, Fengfeng; Fan, Cunyi; Cheng, Tao; Jiang, Chaoyin; Zeng, Bingfang

    2009-05-01

    Transforming growth factor-{beta}1 and fibroblast growth factor-2 play very important roles in fibroblast proliferation and collagen expression. These processes lead to the formation of joint adhesions through the SMAD and MAPK pathways, in which ERK2 is supposed to be crucial. Based on these assumptions, lentivirus (LV)-mediated small interfering RNAs (siRNAs) targeting ERK2 were used to suppress the proliferation and collagen expression of rat joint adhesion tissue fibroblasts (RJATFs). Among four siRNAs examined, siRNA1 caused an 84% reduction in ERK2 expression (p < 0.01) and was selected as the most efficient siRNA for use in this study. In subsequent experiments, significant downregulation of types I and III collagen were observed by quantitative RT-PCR and Western blot analyses. MTT assays and flow cytometry revealed marked inhibition of RJATF proliferation, but no apoptosis. In conclusion, LV-mediated ERK2 siRNAs may represent novel therapies or drug targets for preventing joint adhesion formation.

  2. PEGylation of 6-amino-6-deoxy-curdlan for efficient in vivo siRNA delivery.

    PubMed

    Altangerel, Altanzul; Cai, Jia; Liu, Lixia; Wu, Yinga; Baigude, Huricha; Han, Jingfen

    2016-05-01

    RNA interference (RNAi) is an evolutionarily conserved gene-silencing phenomenon that shows great promise for developing new therapies. However, the development of small interfering RNA (siRNA)-based therapies need to establish efficient delivery system that silences target genes with siRNA doses that is clinically feasible in humans. Here we report synthesis and in vivo study of a novel PEGylated curdlan-based nanoparticle, designated as 6AC-100PEG, obtained by conjugation of mPEG 2000 to 6-amino-6-deoxy-curdlan. The complex of siRNA/6AC-100PEG showed homogenous nanoparticles with an average diameter of 200nm. MTT assay indicated that 6AC-100PEG does not have apparent cytotoxicity. Systemic administration of a complex of siapoB/6AC-100PEG significantly reduced the level of apoB mRNA in mouse liver, indicating that 6AC-100PEG can efficiently deliver siRNA to mouse liver and induce RNAi. Administration of siRNA/6AC-100PEG to mouse did not elevate liver enzyme level in the serum, indicating that 6AC-100PEG nanoparticle is a promising in vivo siRNA delivery agent. PMID:26877000

  3. Chapter 17 - Engineering cationic liposome siRNA complexes for in vitro and in vivo delivery.

    PubMed

    Podesta, Jennifer E; Kostarelos, Kostas

    2009-01-01

    RNA interference, the sequence-specific silencing of gene expression by introduction of short interfering RNA (siRNA) is a powerful tool that that the potential to act as a therapeutic agent and the advantage of decreasing toxic effects on normal tissue sometimes seen with conventional treatments i.e. small molecule inhibitors. Naked, unmodified siRNA is poorly taken up by cells and is subject to degradation when exposed to blood proteins during systemic administration. It has also been shown to produce non-specific immune response as well as having the potential to generate 'off-target' effects. Therefore there is a requirement for a delivery system to not only protect the siRNA and facilitate its uptake, but additionally to offer the potential for targeted delivery with an aim of exploiting the high specificity afforded by RNA interference. Cationic liposomes are the most studied, non-viral delivery system used for nucleic acid delivery. As such, the use of cationic liposomes is promising for siRNA for delivery. Furthermore, polyethylene glycol (PEG) can be incorporated into the liposome formulation to create sterically stabilized or 'stealth' liposomes. Addition of PEG can reduce recognition by the reticuloendothelial system (RES) thereby prolonging circulation time. Here we describe a methodology for the complexation of siRNA with cationic liposomes and PEGylated liposomes using two protocols: mixing and encapsulation. Moreover, the different formulations are compared head to head to demonstrate their efficacy for gene silencing.

  4. Fluorescence imaging of siRNA delivery by peptide nucleic acid-based probe.

    PubMed

    Sato, Takaya; Sato, Yusuke; Iwai, Kenta; Kuge, Shusuke; Teramae, Norio; Nishizawa, Seiichi

    2015-01-01

    We report on the use of a peptide nucleic acid (PNA)-based fluorescent probe for the analysis of siRNA delivery to living cells. The probe, Py-AA-TO, possesses thiazole orange (TO) and pyrene moieties in the C- and N-termini of PNA, and can function as a light-up probe capable of selective binding to 3'-overhanging nucleotides of target siRNAs. The affinity-labeling of the siRNAs with Py-AA-TO facilitates fluorescence imaging of cellular uptake of polymer-based carriers encapsulating the siRNAs (polyplexes) through endocytosis and subsequent sequestration into lysosome. In addition, flow cytometric measurements reveal that the monitoring of Py-AA-TO fluorescence inside the cells is successfully applicable to the analysis of the polyplex disassembly. These promising functions of Py-AA-TO are presented and discussed as a basis for the design of molecular probes for fluorescent imaging and quantitative analysis of the siRNA delivery process. PMID:25864675

  5. Efficient Oncogene Silencing and Metastasis Inhibition via Systemic Delivery of siRNA

    PubMed Central

    Li, Shyh-Dar; Chono, Sumio; Huang, Leaf

    2009-01-01

    The selective delivery of small interfering RNA (siRNA) to metastatic tumors remains a challenging task. We have developed a nanoparticle (NP) formulation composed of siRNA, a carrier DNA, a polycationic peptide, and cationic liposomes. The NP was obtained by a self-assembling process, followed by surface modification with a polyethylene glycol (PEG)-conjugated ligand, anisamide. The NP was PEGylated and a ligand was presented to target sigma receptor–expressing murine melanoma cells, B16F10. The lung metastasis model was established by intravenous (IV) injection of the B16F10 cells into C57BL/6 mice. A mixture of siRNA against MDM2, c-myc, and vascular endothelial growth factor (VEGF) co-formulated in the targeted NP caused simultaneous silencing of each of the oncogenes in the metastatic nodules. Two consecutive IV injections of siRNA in the targeted NP significantly reduced the lung metastasis (~70–80%) at a relatively low dose (0.45 mg/kg), whereas free siRNA and the nontargeted NP showed little effect. This targeted NP formulation significantly prolonged the mean survival time of the animals by 30% as compared to the untreated controls. At the therapeutic dose, the targeted NP showed little local and systemic immunotoxicity and did not decrease the body weight or damage the major organs. PMID:18388916

  6. Efficient oncogene silencing and metastasis inhibition via systemic delivery of siRNA.

    PubMed

    Li, Shyh-Dar; Chono, Sumio; Huang, Leaf

    2008-05-01

    The selective delivery of small interfering RNA (siRNA) to metastatic tumors remains a challenging task. We have developed a nanoparticle (NP) formulation composed of siRNA, a carrier DNA, a polycationic peptide, and cationic liposomes. The NP was obtained by a self-assembling process, followed by surface modification with a polyethylene glycol (PEG)-conjugated ligand, anisamide. The NP was PEGylated and a ligand was presented to target sigma receptor-expressing murine melanoma cells, B16F10. The lung metastasis model was established by intravenous (i.v.) injection of the B16F10 cells into C57BL/6 mice. A mixture of siRNA against MDM2, c-myc, and vascular endothelial growth factor (VEGF) co-formulated in the targeted NP caused simultaneous silencing of each of the oncogenes in the metastatic nodules. Two consecutive i.v. injections of siRNA in the targeted NP significantly reduced the lung metastasis (approximately 70-80%) at a relatively low dose (0.45 mg/kg), whereas free siRNA and the nontargeted NP showed little effect. This targeted NP formulation significantly prolonged the mean survival time of the animals by 30% as compared to the untreated controls. At the therapeutic dose, the targeted NP showed little local and systemic immunotoxicity and did not decrease the body weight or damage the major organs.

  7. Silencing Myostatin Using Cholesterol-conjugated siRNAs Induces Muscle Growth

    PubMed Central

    Khan, Tayeba; Weber, Hans; DiMuzio, Jillian; Matter, Andrea; Dogdas, Belma; Shah, Tosha; Thankappan, Anil; Disa, Jyoti; Jadhav, Vasant; Lubbers, Laura; Sepp-Lorenzino, Laura; Strapps, Walter R; Tadin-Strapps, Marija

    2016-01-01

    Short interfering RNAs (siRNAs) are a valuable tool for gene silencing with applications in both target validation and therapeutics. Many advances have recently been made to improve potency and specificity, and reduce toxicity and immunostimulation. However, siRNA delivery to a variety of tissues remains an obstacle for this technology. To date, siRNA delivery to muscle has only been achieved by local administration or by methods with limited potential use in the clinic. We report systemic delivery of a highly chemically modified cholesterol-conjugated siRNA targeting muscle-specific gene myostatin (Mstn) to a full range of muscles in mice. Following a single intravenous injection, we observe 85–95% knockdown of Mstn mRNA in skeletal muscle and >65% reduction in circulating Mstn protein sustained for >21 days. This level of Mstn knockdown is also accompanied by a functional effect on skeletal muscle, with animals showing an increase in muscle mass, size, and strength. The cholesterol-conjugated siRNA platform described here could have major implications for treatment of a variety of muscle disorders, including muscular atrophic diseases, muscular dystrophy, and type II diabetes. PMID:27483025

  8. Glycerol monooleate-based nanocarriers for siRNA delivery in vitro.

    PubMed

    Zhen, Guoliang; Hinton, Tracey M; Muir, Benjamin W; Shi, Shuning; Tizard, Mark; McLean, Keith M; Hartley, Patrick G; Gunatillake, Pathiraja

    2012-09-01

    We present studies of the delivery of short interfering ribonucleic acid (siRNA) into a green fluorescent protein (GFP) expressing cell line, using lipid nanocarriers in cubic lyotropic liquid crystal form. These carriers are based on glycerol monooleate (GMO) and employ the use of varying concentrations of cationic siRNA binding lipids. The essential physicochemical parameters of the cationic lipid/GMO/siRNA complexes such as particle size, ζ otential, siRNA uptake stability, lyotropic mesophase behavior, cytotoxicity,and gene silencing efficiency were systematically assessed. We find that the lipid nanocarriers were effectively taken up by mammalian cells and that their siRNA payload was able to induce gene silencing in vitro. More importantly, it was found that the nonlamellar structure of some of the lipid nanocarrier formulations were more effective at gene silencing than their lamellar structured counterparts. The development of cationic lipid functionalized nonlamellar GMO-based nanostructured nanoparticles may lead to improved siRNA delivery vehicles.

  9. Genome-wide analysis of single non-templated nucleotides in plant endogenous siRNAs and miRNAs.

    PubMed

    Wang, Feng; Johnson, Nathan R; Coruh, Ceyda; Axtell, Michael J

    2016-09-01

    Plant small RNAs are subject to various modifications. Previous reports revealed widespread 3' modifications (truncations and non-templated tailing) of plant miRNAs when the 2'-O-methyltransferase HEN1 is absent. However, non-templated nucleotides in plant heterochromatic siRNAs have not been deeply studied, especially in wild-type plants. We systematically studied non-templated nucleotide patterns in plant small RNAs by analyzing small RNA sequencing libraries from Arabidopsis, tomato, Medicago, rice, maize and Physcomitrella Elevated rates of non-templated nucleotides were observed at the 3' ends of both miRNAs and endogenous siRNAs from wild-type specimens of all species. 'Off-sized' small RNAs, such as 25 and 23 nt siRNAs arising from loci dominated by 24 nt siRNAs, often had very high rates of 3'-non-templated nucleotides. The same pattern was observed in all species that we studied. Further analysis of 24 nt siRNA clusters in Arabidopsis revealed distinct patterns of 3'-non-templated nucleotides of 23 nt siRNAs arising from heterochromatic siRNA loci. This pattern of non-templated 3' nucleotides on 23 nt siRNAs is not affected by loss of known small RNA 3'-end modifying enzymes, and may result from modifications added to longer heterochromatic siRNA precursors. PMID:27207877

  10. Synergistic effect of phosphorothioate, 5'-vinylphosphonate and GalNAc modifications for enhancing activity of synthetic siRNA.

    PubMed

    Prakash, Thazha P; Kinberger, Garth A; Murray, Heather M; Chappell, Alfred; Riney, Stan; Graham, Mark J; Lima, Walt F; Swayze, Eric E; Seth, Punit P

    2016-06-15

    Chemical modifications are essential to improve metabolic stability and pharmacokinetic properties of siRNA to enable their systemic delivery. We investigated the effect of combing the phosphorothioate (PS) modification with metabolically stable phosphate analog (E)-5'-vinylphosphonate and GalNAc cluster conjugation on the activity of fully 2'-modified siRNA in cell culture and mice. Our data suggest that integrating multiple chemical approaches in one siRNA molecule improved potency 5-10 fold and provide a roadmap for developing more efficient siRNA drugs.

  11. Delivery of siRNA using ternary complexes containing branched cationic peptides: the role of peptide sequence, branching and targeting.

    PubMed

    Kudsiova, Laila; Welser, Katharina; Campbell, Frederick; Mohammadi, Atefeh; Dawson, Natalie; Cui, Lili; Hailes, Helen C; Lawrence, M Jayne; Tabor, Alethea B

    2016-03-01

    Ternary nanocomplexes, composed of bifunctional cationic peptides, lipids and siRNA, as delivery vehicles for siRNA have been investigated. The study is the first to determine the optimal sequence and architecture of the bifunctional cationic peptide used for siRNA packaging and delivery using lipopolyplexes. Specifically three series of cationic peptides of differing sequence, degrees of branching and cell-targeting sequences were co-formulated with siRNA and vesicles prepared from a 1 : 1 molar ratio of the cationic lipid DOTMA and the helper lipid, DOPE. The level of siRNA knockdown achieved in the human alveolar cell line, A549-luc cells, in both reduced serum and in serum supplemented media was evaluated, and the results correlated to the nanocomplex structure (established using a range of physico-chemical tools, namely small angle neutron scattering, transmission electron microscopy, dynamic light scattering and zeta potential measurement); the conformational properties of each component (circular dichroism); the degree of protection of the siRNA in the lipopolyplex (using gel shift assays) and to the cellular uptake, localisation and toxicity of the nanocomplexes (confocal microscopy). Although the size, charge, structure and stability of the various lipopolyplexes were broadly similar, it was clear that lipopolyplexes formulated from branched peptides containing His-Lys sequences perform best as siRNA delivery agents in serum, with protection of the siRNA in serum balanced against efficient release of the siRNA into the cytoplasm of the cell.

  12. Structural and binding study of modified siRNAs with the Argonaute 2 PAZ domain by NMR spectroscopy.

    PubMed

    Maiti, Mohitosh; Nauwelaerts, Koen; Lescrinier, Eveline; Herdewijn, Piet

    2011-02-01

    By using high-resolution NMR spectroscopy, the structures of a natural short interfering RNA (siRNA) and of several altritol nucleic acid (ANA)-modified siRNAs were determined. The interaction of modified siRNAs with the PAZ domain of the Argonaute 2 protein of Drosophila melanogaster was also studied. The structures show that the modified siRNA duplexes (ANA/RNA) adopt a geometry very similar to the naturally occurring A-type siRNA duplex. All ribose residues, except for the 3' overhang, show 3'-endo conformation. The six-membered altritol sugar in ANA occurs in a chair conformation with the nucleobase in an axial position. In all siRNA duplexes, two overhanging nucleotides at the 3' end enhance the stability of the first neighboring base pair by a stacking interaction. The first overhanging nucleotide has a rather fixed position, whereas the second overhanging nucleotide shows larger flexibility. NMR binding studies of the PAZ domain with ANA-modified siRNAs demonstrate that modifications in the double-stranded region of the antisense strand have some small effects on the binding affinity as compared with the unmodified siRNA. Modification of the 3' overhang with thymidine (dTdT) residues shows a sixfold increase in the binding affinity compared with the unmodified siRNA (relative binding affinity of 17% compared with dTdT-modified overhang), whereas modification of the 3' overhang with ANA largely decreases the binding affinity.

  13. Genome-wide analysis of single non-templated nucleotides in plant endogenous siRNAs and miRNAs

    PubMed Central

    Wang, Feng; Johnson, Nathan R.; Coruh, Ceyda; Axtell, Michael J.

    2016-01-01

    Plant small RNAs are subject to various modifications. Previous reports revealed widespread 3′ modifications (truncations and non-templated tailing) of plant miRNAs when the 2′-O-methyltransferase HEN1 is absent. However, non-templated nucleotides in plant heterochromatic siRNAs have not been deeply studied, especially in wild-type plants. We systematically studied non-templated nucleotide patterns in plant small RNAs by analyzing small RNA sequencing libraries from Arabidopsis, tomato, Medicago, rice, maize and Physcomitrella. Elevated rates of non-templated nucleotides were observed at the 3′ ends of both miRNAs and endogenous siRNAs from wild-type specimens of all species. ‘Off-sized’ small RNAs, such as 25 and 23 nt siRNAs arising from loci dominated by 24 nt siRNAs, often had very high rates of 3′-non-templated nucleotides. The same pattern was observed in all species that we studied. Further analysis of 24 nt siRNA clusters in Arabidopsis revealed distinct patterns of 3′-non-templated nucleotides of 23 nt siRNAs arising from heterochromatic siRNA loci. This pattern of non-templated 3′ nucleotides on 23 nt siRNAs is not affected by loss of known small RNA 3′-end modifying enzymes, and may result from modifications added to longer heterochromatic siRNA precursors. PMID:27207877

  14. Quantitative Silencing of EGFP Reporter Gene by Self-Assembled siRNA Lipoplexes of LinOS and Cholesterol

    PubMed Central

    2012-01-01

    Nonviral siRNA vectors prepared by the direct mixing of siRNA and mixtures of an asymmetric N4,N9-diacyl spermine conjugate, N4-linoleoyl-N9-oleoyl-1,12-diamino-4,9-diazadodecane (LinOS), with either cholesterol or DOPE, at various molar ratios of the neutral lipids, are reported. The effects of varying the lipid formulation and changing the N/P charge ratio on the intracellular delivery of siRNA to HeLa cells and on the siRNA-mediated gene silencing of a stably expressed reporter gene (EGFP) were evaluated. The presence of either cholesterol or DOPE in the mixture resulted in a marked increase in the delivery of the siRNA as well as enhanced EGFP silencing as evaluated by FACS. A LinOS/Chol 1:2 mixture resulted in the highest siRNA delivery and the most efficient EGFP silencing (reduced to 20%) at N/P = 3.0. Lowering the amount of siRNA from 15 pmol to 3.75 pmol, thus increasing the N/P charge ratio to 11.9, resulted in decreasing the amount of delivered siRNA, while the efficiency of gene silencing was comparable to that obtained with 15 pmol (N/P = 3.0) of siRNA. Mixtures of symmetrical N4,N9-dioleoyl spermine (DOS) with cholesterol at 1:2 molar ratio showed less siRNA delivery than with LinOS/Chol at N/P = 3.0 (15 pmol of siRNA), and comparable delivery at N/P = 11.9 (3.75 pmol of siRNA). The EGFP silencing was comparable with LinOS and with DOS when mixed with cholesterol 1:2 (lipoplexes prepared with 15 pmol of siRNA), but LinOS mixtures showed better EGFP silencing when the siRNA was reduced to 3.75 pmol. Lipoplex particle size determination by DLS of cholesterol mixtures was 106–118 nm, compared to 194–356 nm for lipoplexes prepared with the spermine conjugates only, and to 685 nm for the LinOS/DOPE 1:1 mixture. Confocal microscopy showed successful siRNA delivery of red tagged siRNA and quantitative EGFP knockdown in HeLa EGFP cells; Z-stack photomicrographs showed that the delivered siRNA is distributed intracellularly. Cryo-TEM of siRNA LinOS/Chol 1

  15. Late embryogenesis abundant proteins

    PubMed Central

    Olvera-Carrillo, Yadira; Reyes, José Luis

    2011-01-01

    Late Embryogenesis Abundant (LEA) proteins accumulate at the onset of seed desiccation and in response to water deficit in vegetative plant tissues. The typical LEA proteins are highly hydrophilic and intrinsically unstructured. They have been classified in different families, each one showing distinctive conserved motifs. In this manuscript we present and discuss some of the recent findings regarding their role in plant adaptation to water deficit, as well as those concerning to their possible function, and how it can be related to their intrinsic structural flexibility. PMID:21447997

  16. The Origin of Element Abundance Variations in Solar Energetic Particles

    NASA Astrophysics Data System (ADS)

    Reames, Donald V.

    2016-08-01

    Abundance enhancements, during acceleration and transport in both gradual and impulsive solar energetic particle (SEP) events, vary approximately as power laws in the mass-to-charge ratio [A/Q] of the ions. Since the Q-values depend upon the electron temperature of the source plasma, this has allowed a determination of this temperature from the pattern of element-abundance enhancements and a verification of the expected inverse-time dependence of the power of A/Q for diffusive transport of ions from the SEP events, with scattering mean free paths found to be between 0.2 and 1 AU. SEP events derived from plasma of different temperatures map into different regions in typical cross-plots of abundances, spreading the distributions. In comparisons of SEP events with temperatures above 2 MK, impulsive events show much broader non-thermal variation of abundances than do gradual events. The extensive shock waves accelerating ions in gradual events may average over much of an active region where numerous but smaller magnetic reconnections, "nanojets", produce suprathermal seed ions, thus averaging over varying abundances, while an impulsive SEP event only samples one local region of abundance variations. Evidence for a reference He/O-abundance ratio of 91, rather than 57, is also found for the hotter plasma. However, while this is similar to the solar-wind abundance of He/O, the solar-wind abundances otherwise provide an unacceptably poor reference for the SEP-abundance enhancements, generating extremely large errors.

  17. Chemical abundance of comets

    NASA Technical Reports Server (NTRS)

    Wyckoff, Susan; Wehinger, Peter

    1988-01-01

    Observations of NH2, (OI) and molecular ion spectra in comets represent virtually all of the volatile fraction of a comet nucleus. Their study leads to the N2, NH3, H2O, CO2, CO content of the nucleus, and thus to important constraints on models of comet formation and chemical processing in the primitive solar nebula. The observations of Comet Halley provide the opportunity for the first comprehensive determination of the abundances in a comet nucleus. The carbon isotope abundance ratio 12 C/13 C = 65 plus or minus 8 has been determined for Comet Halley from resolved rotational line structure in the CN B-X (0,0) band. The ratio is approximately 30 pct lower than the solar system value, 89, indicating either an enhancement of 13CN or a depletion of 12CN in the comet. Scenarios consistent with the observed carbon isotope ratio are: (1) formation of the comet at the periphery of the solar nebula in a fractionation-enriched 13CN region, or hidden from 12CN enrichment sources, and (2) capture of an interestellar comet. Long-slit charge coupled device (CCD) spectra obtained at the time of the spacecraft encounter of Comet Halley have also been analyzed. Scale lengths, production rates and column densities of CH, CN, C2 and NH2 were determined.

  18. Flare Plasma Iron Abundance

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.; Dan, Chau; Jain, Rajmal; Schwartz, Richard A.; Tolbert, Anne K.

    2008-01-01

    The equivalent width of the iron-line complex at 6.7 keV seen in flare X-ray spectra suggests that the iron abundance of the hottest plasma at temperatures >approx.10 MK may sometimes be significantly lower than the nominal coronal abundance of four times the photospheric value that is commonly assumed. This conclusion is based on X-ray spectral observations of several flares seen in common with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Solar X-ray Spectrometer (SOXS) on the second Indian geostationary satellite, GSAT-2. The implications of this will be discussed as it relates to the origin of the hot flare plasma - either plasma already in the corona that is directly heated during the flare energy release process or chromospheric plasma that is heated by flare-accelerated particles and driven up into the corona. Other possible explanations of lower-than-expected equivalent widths of the iron-line complex will also be discussed.

  19. N-Isopropylacrylamide Modified Polyethylenimines as Effective siRNA Carriers for Cancer Therapy.

    PubMed

    Chen, Jie; Lin, Lin; Guo, Zhaopei; Xu, Caina; Li, Yanhui; Tian, Huayu; Tang, Zhaohui; He, Chaoliang; Chen, Xuesi

    2016-06-01

    N-isopropylacrylamide modified PEI (PEN) was synthesized via Michael addition and was developed as an efficient siRNA delivery system both in vitro and in vivo. PEN showed significant enhanced cytocompatibility compared with commercial PEI-25k. The complexation of PEN with siRNA was studied by gel retardation, particle size and zeta potential measurement. The in vitro transfection ability of PEN was measured by qRT-PCR assay, and achieved obviously enhanced gene silencing efficiency compared with PEI-25k. The confocal imaging and flow cytometric analysis further validated its excellent intracellular trafficking ability. For antitumor treatment experiment, PEN mediated siVEGF showed obviously therapeutic effects for the treatment of CT26 tumor. Therefore, the present study demonstrated a useful strategy for constructing efficient siRNA delivery vehicles for antitumor therapy. PMID:27427585

  20. Recent progress in development of siRNA delivery vehicles for cancer therapy.

    PubMed

    Kim, Hyun Jin; Kim, Ahram; Miyata, Kanjiro; Kataoka, Kazunori

    2016-09-01

    Recent progress in RNA biology has broadened the scope of therapeutic targets of RNA drugs for cancer therapy. However, RNA drugs, typically small interfering RNAs (siRNAs), are rapidly degraded by RNases and filtrated in the kidney, thereby requiring a delivery vehicle for efficient transport to the target cells. To date, various delivery formulations have been developed from cationic lipids, polymers, and/or inorganic nanoparticles for systemic delivery of siRNA to solid tumors. This review describes the current status of clinical trials related to siRNA-based cancer therapy, as well as the remaining issues that need to be overcome to establish a successful therapy. It, then introduces various promising design strategies of delivery vehicles for stable and targeted siRNA delivery, including the prospects for future design.

  1. Highly effective inhibition of Akabane virus replication by siRNA genes.

    PubMed

    Levin, Aviad; Kutznetova, Larisa; Kahana, Ronen; Rubinstein-Guini, Marisol; Stram, Yehuda

    2006-09-01

    Since 2002 there has been a rise in arthrogryposis/hydranencephaly (AGH) incidence in Israel, caused by Akabane (AKA) and, possibly, Aino viruses. To test the ability to control the disease, three siRNA genes targeted to the S genome segment were designed and prepared in the form of siRNA cassettes. For the design all published S segment were aligned and two conserved target sequences with 100% homology were chosen. A third conserved target that was found exhibited only one base change found in the two Australian isolates and was also designed and tested. It was demonstrated that cells transfected with single siRNA genes showed 99% inhibition, as measured by real-time RT-PCR, virus titration and immunofluorescence. When cells were transfected with all three genes together the inhibition levels were increased and reached almost 100%.

  2. [Downregulation of Human Adenovirus DNA Polymerase Gene by Modified siRNAs].

    PubMed

    Nikitenko, N A; Speiseder, T; Chernolovskaya, E L; Zenkova, M A; Dobner, T; Prassolov, V S

    2016-01-01

    Human adenoviruses, in particular D8, D19, and D37, cause ocular infections. Currently, there is no available causally directed treatment, which efficiently counteracts adenoviral infectious diseases. In our previous work, we showed that gene silencing by means of RNA interference is an effective approach for downregulation of human species D adenoviruses replication. In this study, we compared the biological activity of siRNAs and their modified analogs targeting human species D adenoviruses DNA polymerase. We found that one of selectively 2'-O-methyl modified siRNAs mediates stable and long-lasting suppression of the target gene (12 days post transfection). We suppose that this siRNA can be used as a potential therapeutic agent against human species D adenoviruses.

  3. Recent progress in development of siRNA delivery vehicles for cancer therapy.

    PubMed

    Kim, Hyun Jin; Kim, Ahram; Miyata, Kanjiro; Kataoka, Kazunori

    2016-09-01

    Recent progress in RNA biology has broadened the scope of therapeutic targets of RNA drugs for cancer therapy. However, RNA drugs, typically small interfering RNAs (siRNAs), are rapidly degraded by RNases and filtrated in the kidney, thereby requiring a delivery vehicle for efficient transport to the target cells. To date, various delivery formulations have been developed from cationic lipids, polymers, and/or inorganic nanoparticles for systemic delivery of siRNA to solid tumors. This review describes the current status of clinical trials related to siRNA-based cancer therapy, as well as the remaining issues that need to be overcome to establish a successful therapy. It, then introduces various promising design strategies of delivery vehicles for stable and targeted siRNA delivery, including the prospects for future design. PMID:27352638

  4. Surface engineering of gold nanoparticles for in vitro siRNA delivery

    NASA Astrophysics Data System (ADS)

    Zhao, Enyu; Zhao, Zhixia; Wang, Jiancheng; Yang, Chunhui; Chen, Chengjun; Gao, Lingyan; Feng, Qiang; Hou, Wenjie; Gao, Mingyuan; Zhang, Qiang

    2012-07-01

    Cellular uptake, endosomal/lysosomal escape, and the effective dissociation from the carrier are a series of hurdles for specific genes to be delivered both in vitro and in vivo. To construct siRNA delivery systems, poly(allylamine hydrochloride) (PAH) and siRNA were alternately assembled on the surface of 11.8 +/- 0.9 nm Au nanoparticles (GNP), stabilized by denatured bovine serum albumin, by the ionic layer-by-layer (LbL) self-assembly method. By manipulating the outmost PAH layer, GNP-PAH vectors with different surface electric potentials were prepared. Then, the surface potential-dependent cytotoxicity of the resultant GNP-PAH particles was evaluated via sulforhodamine B (SRB) assay, while the surface potential-dependent cellular uptake efficiency was quantitatively analyzed by using the flow cytometry method based on carboxyfluorescein (FAM)-labeled siRNA. It was revealed that the GNP-PAH particles with surface potential of +25 mV exhibited the optimal cellular uptake efficiency and cytotoxicity for human breast cancer MCF-7 cells. Following these results, two more positively charged polyelectrolytes with different protonating abilities in comparison with PAH, i.e., polyethylenimine (PEI), and poly(diallyl dimethyl ammonium chloride) (PDDA), were chosen to fabricate similarly structured vectors. Confocal fluorescence microscopy studies indicated that siRNA delivered by GNP-PAH and GNP-PEI systems was better released than that delivered by the GNP-PDDA system. Further flow cytometric assays based on immunofluorescence staining of the epidermal growth factor receptor (EGFR) revealed that EGFR siRNA delivered by GNP-PAH and GNP-PEI exhibited similar down-regulation effects on EGFR expression in MCF-7 cells. The following dual fluorescence flow cytometry assays by co-staining phosphatidylserine and DNA suggested the EGFR siRNA delivered by GNP-PAH exhibited an improved silencing effect in comparison with that delivered by the commercial transfection reagent

  5. Screening Nylon-3 Polymers, a New Class of Cationic Amphiphiles, for siRNA Delivery

    PubMed Central

    2015-01-01

    Amphiphilic nucleic acid carriers have attracted strong interest. Three groups of nylon-3 copolymers (poly-β-peptides) possessing different cationic/hydrophobic content were evaluated as siRNA delivery agents in this study. Their ability to condense siRNA was determined in SYBR Gold assays. Their cytotoxicity was tested by MTT assays, their efficiency of delivering Alexa Fluor-488-labeled siRNA intracellularly in the presence and absence of uptake inhibitors was assessed by flow cytometry, and their transfection efficacies were studied by luciferase knockdown in a cell line stably expressing luciferase (H1299/Luc). Endosomal release was determined by confocal laser scanning microscopy and colocalization with lysotracker. All polymers efficiently condensed siRNA at nitrogen-to-phosphate (N/P) ratios of 5 or lower, as reflected in hydrodynamic diameters smaller than that at N/P 1. Although several formulations had negative zeta potentials at N/P 1, G2C and G2D polyplexes yielded >80% uptake in H1299/Luc cells, as determined by flow cytometry. Luciferase knockdown (20–65%) was observed after transfection with polyplexes made of the high molecular weight polymers that were the most hydrophobic. The ability of nylon-3 polymers to deliver siRNA intracellularly even at negative zeta potential implies that they mediate transport across cell membranes based on their amphiphilicity. The cellular uptake route was determined to strongly depend on the presence of cholesterol in the cell membrane. These polymers are, therefore, very promising for siRNA delivery at reduced surface charge and toxicity. Our study identified nylon-3 formulations at low N/P ratios for effective gene knockdown, indicating that nylon-3 polymers are a new, promising type of gene delivery agent. PMID:25437915

  6. Lipid modified triblock PAMAM-based nanocarriers for siRNA drug co-delivery.

    PubMed

    Biswas, Swati; Deshpande, Pranali P; Navarro, Gemma; Dodwadkar, Namita S; Torchilin, Vladimir P

    2013-01-01

    RNA interference by small interfering RNA (siRNA) holds promise to attenuate production of specific target proteins but is challenging in practice owing to the barriers for its efficient intracellular delivery. We have synthesized a triblock co-polymeric system, poly(amidoamine) dendrimer (generation 4)-poly(ethylene glycol)-1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (G(4)-D-PEG-(2K)-DOPE). G(4)-PAMAM dendrimer was utilized as a cationic source for efficient siRNA condensation; DOPE provided optimum hydrophobicity and compatible cellular interaction for enhanced cell penetration; PEG rendered flexibility to the G(4)-D for easy accessibility of siRNA for condensation; PEG-DOPE system provided stable micellization in a mixed micellar system. G(4)-D-PEG-(2K)-DOPE was incorporated into the self-assembled PEG-(5K)-PE micelles at a 1:1 molar ratio. Our results demonstrate that the modified dendrimer, G(4)-D-PEG-(2K)-DOPE and the micellar nanocarrier form stable polyplexes with siRNA, shows excellent serum stability and a significantly higher cellular uptake of siRNA that results in target protein down-regulation when compared to the G(4)-PAMAM dendrimer. Moreover, the mixed micellar system showed efficient micellization and higher drug (doxorubicin) loading efficiency. The G(4)-D-PEG-(2K)-DOPE has the higher efficacy for siRNA delivery, whereas G(4)-D-PEG-(2K)-DOPE/PEG-(5K)-PE micelles appear to be a promising carrier for drug/siRNA co-delivery, especially useful for the treatment of multi-drug resistant cancers. PMID:23137395

  7. Lipid Modified Triblock PAMAM-Based Nanocarriers for siRNA Drug Co-Delivery

    PubMed Central

    Biswas, Swati; Deshpande, Pranali P.; Navarro, Gemma; Dodwadkar, Namita S.; Torchilin, Vladimir P.

    2012-01-01

    RNA interference by short interfering RNA (siRNA) holds promise to attenuate production of specific target proteins but is challenging in practice owing to the barriers for its efficient intracellular delivery. We have synthesized a tri-block co-polymeric system, poly(amidoamine) dendrimer (generation 4)-poly(ethylene glycol)-1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (G(4)-D-PEG-2K-DOPE). G(4)-PAMAM dendrimer was utilized as a cationic source for efficient siRNA condensation; DOPE provided optimum hydrophobicity and compatible cellular interaction for enhanced cell penetration; PEG rendered flexibility to the G(4)-D for easy accessibility of siRNA for condensation; PEG-DOPE system provided stable micellization in a mixed micellar system. G(4)-D-PEG-2K-DOPE was incorporated into the self-assembled PEG-5K-PE micelles at a 1:1 molar ratio. Our results demonstrate that the modified dendrimer, G(4)-D-PEG-2K-DOPE and the micellar nanocarrier form stable polyplexes with siRNA, shows excellent serum stability and a significantly higher cellular uptake of siRNA that results in target protein down-regulation when compared to the G(4)-PAMAM-dendrimer. Moreover, the mixed micellar system showed efficient micellization and higher drug (doxorubicin) loading efficiency. The G(4)-D-PEG-2K-DOPE has the higher efficacy for siRNA delivery, whereas G(4)-D-PEG-2K-DOPE/PEG-5K-PE micelles appear to be a promising carrier for drug/siRNA co-delivery, especially useful for the treatment of multidrug resistant cancers. PMID:23137395

  8. High Sensitivity RT-qPCR Assay of Nonlabeled siRNA in Small Blood Volume for Pharmacokinetic Studies: Application to Survivin siRNA.

    PubMed

    Yeung, Bertrand Z; Lu, Ze; Wientjes, Guillaume M; Au, Jessie L-S

    2015-11-01

    RNAi therapeutics provide an opportunity to correct faulty genes, and several RNAi have entered clinical evaluation. The existing quantification methods typically use radioactivity- or fluorescence-labeled RNAi, require large blood volumes, and/or have a limited dynamic detection range. We established a quantitative reverse transcriptase real-time polymerase chain reaction (RT-qPCR) assay to measure RNAi; the model analyte was survivin siRNA (siSurvivin). A second siRNA was used as the internal standard. The three major steps were (a) extraction of the two siRNAs from blood or water, (b) synthesis of their cDNA by poly-A extension, and (c) qPCR of cDNA. Standard curves were established. Utility of the assay was demonstrated in a pharmacokinetic study where all 12 samples for the blood concentration-time profile were obtained from a single mouse given an intravenous dose of 1 nmole siSurvivin (prepared as lipoplex with pegylated cationic liposomes). The RT-qPCR assay was sensitive (lower detection limit of 100 fM) and had a 5 × 107-fold dynamic range and low sample volume requirement (10 μL). The 16-point standard curves constructed using whole blood samples were linear (R (2) > 0.98). The intraday and interday variations for the slopes were ≤6%, although the variations for accuracy and precision at individual concentrations were substantially higher (58-145%). Standard curves prepared with water in place of blood showed similar results (<6% difference), indicating water may be used when blood is not available. The current RT-qPCR assay enabled the measurement of nonlabeled siRNA in small volume of blood samples. PMID:26286676

  9. Delivery of Therapeutic siRNA to the CNS Using Cationic and Anionic Liposomes.

    PubMed

    Bender, Heather R; Kane, Sarah; Zabel, Mark D

    2016-07-23

    Prion diseases result from the misfolding of the normal, cellular prion protein (PrP(C)) to an abnormal protease resistant isomer called PrP(Res). The emergence of prion diseases in wildlife populations and their increasing threat to human health has led to increased efforts to find a treatment for these diseases. Recent studies have found numerous anti-prion compounds that can either inhibit the infectious PrP(Res) isomer or down regulate the normal cellular prion protein. However, most of these compounds do not cross the blood brain barrier to effectively inhibit PrP(Res) formation in brain tissue, do not specifically target neuronal PrP(C), and are often too toxic to use in animal or human subjects. We investigated whether siRNA delivered intravascularly and targeted towards neuronal PrP(C) is a safer and more effective anti-prion compound. This report outlines a protocol to produce two siRNA liposomal delivery vehicles, and to package and deliver PrP siRNA to neuronal cells. The two liposomal delivery vehicles are 1) complexed-siRNA liposome formulation using cationic liposomes (LSPCs), and 2) encapsulated-siRNA liposome formulation using cationic or anionic liposomes (PALETS). For the LSPCs, negatively charged siRNA is electrostatically bound to the cationic liposome. A positively charged peptide (RVG-9r [rabies virus glycoprotein]) is added to the complex, which specifically targets the liposome-siRNA-peptide complexes (LSPCs) across the blood brain barrier (BBB) to acetylcholine expressing neurons in the central nervous system (CNS). For the PALETS (peptide addressed liposome encapsulated therapeutic siRNA), the cationic and anionic lipids were rehydrated by the PrP siRNA. This procedure results in encapsulation of the siRNA within the cationic or anionic liposomes. Again, the RVG-9r neuropeptide was bound to the liposomes to target the siRNA/liposome complexes to the CNS. Using these formulations, we have successfully delivered PrP siRNA to Ach

  10. Systemic siRNA Nanoparticle-Based Drugs Combined with Radiofrequency Ablation for Cancer Therapy

    PubMed Central

    Ahmed, Muneeb; Kumar, Gaurav; Navarro, Gemma; Wang, Yuanguo; Gourevitch, Svetlana; Moussa, Marwan H.; Rozenblum, Nir; Levchenko, Tatyana; Galun, Eithan; Torchilin, Vladimir P.; Goldberg, S. Nahum

    2015-01-01

    Purpose Radiofrequency thermal ablation (RFA) of hepatic and renal tumors can be accompanied by non-desired tumorigenesis in residual, untreated tumor. Here, we studied the use of micelle-encapsulated siRNA to suppress IL-6-mediated local and systemic secondary effects of RFA. Methods We compared standardized hepatic or renal RFA (laparotomy, 1 cm active tip at 70±2°C for 5 min) and sham procedures without and with administration of 150nm micelle-like nanoparticle (MNP) anti-IL6 siRNA (DOPE-PEI conjugates, single IP dose 15 min post-RFA, C57Bl mouse:3.5 ug/100ml, Fisher 344 rat: 20ug/200ul), RFA/scrambled siRNA, and RFA/empty MNPs. Outcome measures included: local periablational cellular infiltration (α-SMA+ stellate cells), regional hepatocyte proliferation, serum/tissue IL-6 and VEGF levels at 6-72hr, and distant tumor growth, tumor proliferation (Ki-67) and microvascular density (MVD, CD34) in subcutaneous R3230 and MATBIII breast adenocarcinoma models at 7 days. Results For liver RFA, adjuvant MNP anti-IL6 siRNA reduced RFA-induced increases in tissue IL-6 levels, α-SMA+ stellate cell infiltration, and regional hepatocyte proliferation to baseline (p<0.04, all comparisons). Moreover, adjuvant MNP anti-IL6- siRNA suppressed increased distant tumor growth and Ki-67 observed in R3230 and MATBIII tumors post hepatic RFA (p<0.01). Anti-IL6 siRNA also reduced RFA-induced elevation in VEGF and tumor MVD (p<0.01). Likewise, renal RFA-induced increases in serum IL-6 levels and distant R3230 tumor growth was suppressed with anti-IL6 siRNA (p<0.01). Conclusions Adjuvant nanoparticle-encapsulated siRNA against IL-6 can be used to modulate local and regional effects of hepatic RFA to block potential unwanted pro-oncogenic effects of hepatic or renal RFA on distant tumor. PMID:26154425

  11. Clustering siRNA conjugates for MMP-responsive therapeutics in chronic wounds of diabetic animals

    NASA Astrophysics Data System (ADS)

    Kim, Hye Sung; Son, Young Ju; Yoo, Hyuk Sang

    2016-07-01

    The MMP-responsive breakdown of siRNA clusters was translated to site-specific gene transfection and enhanced wound healing in diabetic ulcers. MMP-2 siRNA was chemically tethered to the end of multi-armed PEG via MMP-cleavable linkers (4PEG-siRNA) and subsequently clustered into submicron particles complexed with LPEI. 4PEG-siRNA was more tightly complexed with LPEI and the associated cluster showed higher resistance against RNase attack, in comparison to naked siRNA. Because the size of the clusters increased depending on the increase in charge ratio of LPEI to siRNA, cellular uptake of the 4PEG-siRNA/LPEI cluster was significantly attenuated due to the huge size of the cluster. However, upon MMP treatment, the cluster dissociated into smaller particles and was efficiently endocytosed by cells. An in vivo fluorescence resonance energy transfer (FRET) study also revealed that the clusters were effectively dissociated in MMP-rich environments of dorsal wounds in diabetic animals. In addition, diabetic ulcers treated with the clusters showed a faster wound closure rate and the recovered tissue expressed a larger amount of cytokeratin along with a lower expression level of MMP-2 compared to the other groups.The MMP-responsive breakdown of siRNA clusters was translated to site-specific gene transfection and enhanced wound healing in diabetic ulcers. MMP-2 siRNA was chemically tethered to the end of multi-armed PEG via MMP-cleavable linkers (4PEG-siRNA) and subsequently clustered into submicron particles complexed with LPEI. 4PEG-siRNA was more tightly complexed with LPEI and the associated cluster showed higher resistance against RNase attack, in comparison to naked siRNA. Because the size of the clusters increased depending on the increase in charge ratio of LPEI to siRNA, cellular uptake of the 4PEG-siRNA/LPEI cluster was significantly attenuated due to the huge size of the cluster. However, upon MMP treatment, the cluster dissociated into smaller particles and was

  12. siRNA Delivery to the Lung: What’s New?

    PubMed Central

    Merkel, Olivia M.; Rubinstein, Israel; Kissel, Thomas

    2014-01-01

    RNA interference (RNAi) has been thought of as the general answer to many unmet medical needs. After the first success stories, it soon became obvious that short interfering RNA (siRNA) is not suitable for systemic administration due to its poor pharmacokinetics. Therefore local administration routes have been adopted for more successful in vivo RNAi. This paper reviews nucleic acid modifications, nanocarrier chemistry, animal models used in successful pulmonary siRNA delivery, as well as clinical translation approaches. We summarize what has been published recently and conclude with the potential problems that may still hamper the efficient clinical application of RNAi in the lung. PMID:24907426

  13. Fluorocarbon Modified Low-Molecular-Weight Polyethylenimine for siRNA Delivery.

    PubMed

    Johnson, Mark E; Shon, Judy; Guan, Brian M; Patterson, Joseph P; Oldenhuis, Nathan J; Eldredge, Alexander C; Gianneschi, Nathan C; Guan, Zhibin

    2016-08-17

    We report the synthesis and study of fluorocarbon (FC) modified polyethylenimine (PEI) for the purpose of siRNA delivery. Low-molecular-weight PEI (Mn = 600) was functionalized with fluorocarbon epoxides of varying length. All FC-modified samples with greater than 2.0 equiv of FC epoxide per PEI induced potent gene silencing in vitro. Compared to hydrocarbon (HC) analogues, the FC vectors showed greater general silencing efficacy, higher cell uptake, and reduced association with serum components. Collectively, the data suggest that modification of polyamines with FCs is a promising approach for the discovery of novel vectors for siRNA delivery.

  14. Amylose-Based Cationic Star Polymers for siRNA Delivery

    PubMed Central

    Nishimura, Tomoki; Umezaki, Kaori; Mukai, Sada-atsu; Sawada, Shin-ichi; Akiyoshi, Kazunari

    2015-01-01

    A new siRNA delivery system using a cationic glyco-star polymer is described. Spermine-modified 8-arm amylose star polymer (with a degree of polymerization of approximately 60 per arm) was synthesized by chemoenzymatic methods. The cationic star polymer effectively bound to siRNA and formed spherical complexes with an average hydrodynamic diameter of 230 nm. The cationic 8-arm star polymer complexes showed superior cellular uptake characteristics and higher gene silencing effects than a cationic 1-arm polymer. These results suggest that amylose-based star polymers are a promising nanoplatform for glycobiomaterials. PMID:26539548

  15. Delivery of Therapeutic siRNA to the CNS Using Cationic and Anionic Liposomes.

    PubMed

    Bender, Heather R; Kane, Sarah; Zabel, Mark D

    2016-01-01

    Prion diseases result from the misfolding of the normal, cellular prion protein (PrP(C)) to an abnormal protease resistant isomer called PrP(Res). The emergence of prion diseases in wildlife populations and their increasing threat to human health has led to increased efforts to find a treatment for these diseases. Recent studies have found numerous anti-prion compounds that can either inhibit the infectious PrP(Res) isomer or down regulate the normal cellular prion protein. However, most of these compounds do not cross the blood brain barrier to effectively inhibit PrP(Res) formation in brain tissue, do not specifically target neuronal PrP(C), and are often too toxic to use in animal or human subjects. We investigated whether siRNA delivered intravascularly and targeted towards neuronal PrP(C) is a safer and more effective anti-prion compound. This report outlines a protocol to produce two siRNA liposomal delivery vehicles, and to package and deliver PrP siRNA to neuronal cells. The two liposomal delivery vehicles are 1) complexed-siRNA liposome formulation using cationic liposomes (LSPCs), and 2) encapsulated-siRNA liposome formulation using cationic or anionic liposomes (PALETS). For the LSPCs, negatively charged siRNA is electrostatically bound to the cationic liposome. A positively charged peptide (RVG-9r [rabies virus glycoprotein]) is added to the complex, which specifically targets the liposome-siRNA-peptide complexes (LSPCs) across the blood brain barrier (BBB) to acetylcholine expressing neurons in the central nervous system (CNS). For the PALETS (peptide addressed liposome encapsulated therapeutic siRNA), the cationic and anionic lipids were rehydrated by the PrP siRNA. This procedure results in encapsulation of the siRNA within the cationic or anionic liposomes. Again, the RVG-9r neuropeptide was bound to the liposomes to target the siRNA/liposome complexes to the CNS. Using these formulations, we have successfully delivered PrP siRNA to Ach

  16. Simultaneous inhibition of GSK3alpha and GSK3beta using hairpin siRNA expression vectors.

    PubMed

    Yu, Jenn-Yah; Taylor, Jennifer; DeRuiter, Stacy L; Vojtek, Anne B; Turner, David L

    2003-02-01

    Short interfering RNAs (siRNAs) can mediate sequence-specific inhibition of gene expression in mammalian cells. We and others have recently developed expression vector-based systems for synthesizing siRNAs or hairpin siRNAs in mammalian cells. Expression vector-based RNA interference (RNAi) effectively suppresses expression of target genes and is likely to be a powerful tool for analysis of gene function. Here we compare inhibition by vectors expressing hairpin siRNA designs either with different loop sequences connecting the two siRNA strands, or with duplex regions of different lengths. Our results suggest that lengthening the 19-nucleotide duplex region of a relatively ineffective hairpin siRNA can increase inhibition, but increasing the length of an effective 19-nt hairpin siRNA does not increase inhibition. We also demonstrate that hairpin siRNA vectors can be used to inhibit two target genes simultaneously. We have targeted glycogen synthase kinase-3alpha (GSK-3alpha) and GSK-3beta, two related kinases involved in the regulation of a variety of cellular processes and also implicated in the pathogenesis of several human diseases. Inhibition of either GSK-3alpha or GSK-3beta by transfection of hairpin siRNA vectors leads to elevated expression of the GSK-3 target beta-catenin, whereas inhibition of both kinases further increases beta-catenin expression. Our results suggest that vector-based siRNA inhibition may be useful for dissecting the functional roles of GSK-3alpha and GSK-3beta in somatic cells. The ability to inhibit two or more genes simultaneously with hairpin siRNA expression vectors should facilitate studies of gene function in mammalian cells.

  17. Abundances in Sagittarius Stars

    NASA Astrophysics Data System (ADS)

    Bonifacio, P.; Zaggia, S.; Sbordone, L.; Santin, P.; Monaco, L.; Monai, S.; Molaro, P.; Marconi, G.; Girardi, L.; Ferraro, F.; di Marcantonio, P.; Caffau, E.; Bellazzini, M.

    The Sagittarius dwarf spheroidal is a very complex galaxy, which has undergone prolonged star formation. From the very first high resolution chemical analysis of Sgr stars, conducted using spectra obtained during the commissioning of UVES at VLT, it was clear that the star had undergone a high level of chemical processing, at variance with most of the other Local Group dwarf spheroidals. Thanks to FLAMES at VLT we now have accurate metallicities and abundances of alpha-chain elements for about 150 stars, which provide the first reliable metallicity distribution for this galaxy. Besides the already known high metallicity tail the existence of a metal-poor population has also been highlighted, although an assessment of the fraction of Sgr stars which belong to this population requires a larger sample. From our data it is also obvious that Sagittarius is a nucleated galaxy and that the centre of the nucleus coincides with M54, as already shown by Monaco et al.

  18. Evaluation of carrier-mediated siRNA delivery: lessons for the design of a stem-loop qPCR-based approach for quantification of intracellular full-length siRNA.

    PubMed

    Colombo, Stefano; Nielsen, Hanne Mørck; Foged, Camilla

    2013-03-28

    Harnessing the RNA interference (RNAi) process with chemically synthesized small interfering RNA (siRNA) is dependent on the development of efficient delivery vehicles that can help overcome the numerous barriers existing for siRNA delivery. However, quantifying the intracellular amount of siRNA delivered by use of carriers remains an analytical challenge. The purpose of the present study was to optimize and validate an analytical protocol based on stem-loop reverse transcription quantitative polymerase chain reaction (RT qPCR) to quantitatively monitor the carrier-mediated intracellular siRNA delivery. An in vitro cell culture model system expressing enhanced green fluorescent protein (EGFP) was used to develop the assay, which was based on the intracellular quantification of a full-length double-stranded Dicer substrate siRNA by stem-loop RT qPCR. The result is a well-documented protocol for accurate and sensitive determination of the effective intracellular siRNA concentration upon transfection with different reagents. Specific guidelines for the customization of the protocol are provided and reported together with an example of its application for studying a specific siRNA delivery case. The outcome of the present study is a thoroughly discussed analytical protocol generally applicable to characterize carrier-mediated siRNA delivery processes. PMID:23313963

  19. Discovery of novel peptides targeting pro-atherogenic endothelium in disturbed flow regions -Targeted siRNA delivery to pro-atherogenic endothelium in vivo

    PubMed Central

    Chung, Jihwa; Shim, Hyunbo; Kim, Kwanchang; Lee, Duhwan; Kim, Won Jong; Kang, Dong Hoon; Kang, Sang Won; Jo, Hanjoong; Kwon, Kihwan

    2016-01-01

    Atherosclerosis occurs preferentially in arterial regions exposed to disturbed blood flow. Targeting these pro-atherogenic regions is a potential anti-atherogenic therapeutic approach, but it has been extremely challenging. Here, using in vivo phage display approach and the partial carotid ligation model of flow-induced atherosclerosis in mouse, we identified novel peptides that specifically bind to endothelial cells (ECs) exposed to disturbed flow condition in pro-atherogenic regions. Two peptides, CLIRRTSIC and CPRRSHPIC, selectively bound to arterial ECs exposed to disturbed flow not only in the partially ligated carotids but also in the lesser curvature and branching point of the aortic arch in mice as well as human pulmonary artery branches. Peptides were conjugated to branched polyethylenimine-polyethylene glycol polymer to generate polyplexes carrying siRNA targeting intercellular adhesion molecule-1 (siICAM-1). In mouse model, CLIRRTSIC polyplexes carrying si-ICAM-1 specifically bound to endothelium in disturbed flow regions, reducing endothelial ICAM-1 expression. Mass spectrometry analysis revealed that non-muscle myosin heavy chain II A (NMHC IIA) is a protein targeted by CLIRRTSIC peptide. Further studies showed that shear stress regulates NMHC IIA expression and localization in ECs. The CLIRRTSIC is a novel peptide that could be used for targeted delivery of therapeutics such as siRNAs to pro-atherogenic endothelium. PMID:27173134

  20. Extreme Scale Visual Analytics

    SciTech Connect

    Wong, Pak C.; Shen, Han-Wei; Pascucci, Valerio

    2012-05-08

    Extreme-scale visual analytics (VA) is about applying VA to extreme-scale data. The articles in this special issue examine advances related to extreme-scale VA problems, their analytical and computational challenges, and their real-world applications.

  1. Knocking Down TMPRSS2-ERG Fusion Oncogene by siRNA Could be an Alternative Treatment to Flutamide.

    PubMed

    Urbinati, Giorgia; de Waziers, Isabelle; Slamiç, Mateja; Foussignière, Tobias; Ali, Hafiz M; Desmaële, Didier; Couvreur, Patrick; Massaad-Massade, Liliane

    2016-01-01

    Our purpose was to develop a new pharmacological approach for the treatment of prostate cancer (PCa), the most common neoplasia in men. Recently, we developed siRNA against the fusion oncogene TMPRSS2-ERG found in 50% of patients and showed an antitumoral activity in animal model. Herein, we want to compare or combine the developed siRNA to flutamide (FLU), one of the gold-standard treatment of PCa. Therefore, concomitant or subsequent association of FLU to siRNA TMPRSS2-ERG was performed in VCaP cells and in SCID mice bearing xenografted VCaP tumors. ERG, androgen receptor, cleaved-caspase-3 as well as phase 1 and 2 drug-metabolizing enzymes were investigated within tumors. We observed similar results in terms of TMPRSS2-ERG knock-down and cell viability impairment for all distinct schedules of administration. The association of siRNA TMPRSS2-ERG-squalene nanoparticles with flutamide displayed similar tumor growth inhibition as mice treated with siRNA TMPRSS2-ERG-squalene nanoparticles alone and was paralleled with modification of expression of ERG, androgen receptor, and cleaved-caspase-3. Phase 1 and 2 enzymes were essentially affected by FLU and reverted when combined with squalenoylated siRNA. In conclusion, these results confirm the therapeutic effectiveness of squalenoyl siRNA nanomedicine for PCa based on siRNA TMPRSS2-ERG. PMID:27023109

  2. Development of RNAi technology for targeted therapy--a track of siRNA based agents to RNAi therapeutics.

    PubMed

    Zhou, Yinjian; Zhang, Chunling; Liang, Wei

    2014-11-10

    RNA interference (RNAi) was intensively studied in the past decades due to its potential in therapy of diseases. The target specificity and universal treatment spectrum endowed siRNA advantages over traditional small molecules and protein drugs. However, barriers exist in the blood circulation system and the diseased tissues blocked the actualization of RNAi effect, which raised function versatility requirements to siRNA therapeutic agents. Appropriate functionalization of siRNAs is necessary to break through these barriers and target diseased tissues in local or systemic targeted application. In this review, we summarized that barriers exist in the delivery process and popular functionalized technologies for siRNA such as chemical modification and physical encapsulation. Preclinical targeted siRNA delivery and the current status of siRNA based RNAi therapeutic agents in clinical trial were reviewed and finally the future of siRNA delivery was proposed. The valuable experience from the siRNA agent delivery study and the RNAi therapeutic agents in clinical trial paved ways for practical RNAi therapeutics to emerge early.

  3. Transient inhibition of foot-and-mouth disease virus replication by siRNAs silencing VP1 protein coding region.

    PubMed

    Lv, Ke; Guo, Yingjun; Zhang, Yiliang; Wang, Kaiyu; Li, Ka; Zhu, Yan; Sun, Shuhan

    2009-06-01

    Foot-and-mouth disease virus (FMDV) is the causative agent of foot-and-mouth disease, a severe, clinically acute, vesicular disease of cloven-hoofed animals. RNA interference (RNAi) is a mechanism for silencing gene expression post-transcriptionally that is being exploited as a rapid antiviral strategy. To identify efficacious small interfering RNAs (siRNAs) to inhibit the replication of FMDV, candidate siRNAs corresponding to FMDV VP1 gene were designed and synthesized in vitro using T7 RNA polymerase. In reporter assays, five siRNAs showed significant sequence-specific silencing effects on the expression of VP1-EGFP fusion protein from plasmid pVP1-EGFP-N1, which was cotransfected with siRNA into 293T cells. Furthermore, using RT-qPCR, viral titration and viability assay, we identified VP1-siRNA517, VP1-siRNA113 and VP1-siRNA519 that transiently acted as potent inhibitors of FMDV replication when BHK-21 cells were infected with FMDV. In addition, variations within multiple regions of the quasispecies of FMDV were retrospectively revealed by sequencing of FMDV genes, and a single nucleotide substitution was identified as the main factor in resistance to RNAi. Our data demonstrated that the three siRNA molecules synthesized with T7 RNA polymerase could have transient inhibitory effects on the replication of FMDV.

  4. Delivery Systems for the Direct Application of siRNAs to Induce RNA Interference (RNAi) In Vivo

    PubMed Central

    Aigner, Achim

    2006-01-01

    RNA interference (RNAi) is a powerful method for specific gene silencing which may also lead to promising novel therapeutic strategies. It is mediated through small interfering RNAs (siRNAs) which sequence-specifically trigger the cleavage and subsequent degradation of their target mRNA. One critical factor is the ability to deliver intact siRNAs into target cells/organs in vivo. This review highlights the mechanism of RNAi and the guidelines for the design of optimal siRNAs. It gives an overview of studies based on the systemic or local application of naked siRNAs or the use of various nonviral siRNA delivery systems. One promising avenue is the the complexation of siRNAs with the polyethylenimine (PEI), which efficiently stabilizes siRNAs and, upon systemic administration, leads to the delivery of the intact siRNAs into different organs. The antitumorigenic effects of PEI/siRNA-mediated in vivo gene-targeting of tumor-relevant proteins like in mouse tumor xenograft models are described. PMID:17057369

  5. Knocking Down TMPRSS2-ERG Fusion Oncogene by siRNA Could be an Alternative Treatment to Flutamide

    PubMed Central

    Urbinati, Giorgia; de Waziers, Isabelle; Slamiç, Mateja; Foussignière, Tobias; Ali, Hafiz M; Desmaële, Didier; Couvreur, Patrick; Massaad-Massade, Liliane

    2016-01-01

    Our purpose was to develop a new pharmacological approach for the treatment of prostate cancer (PCa), the most common neoplasia in men. Recently, we developed siRNA against the fusion oncogene TMPRSS2-ERG found in 50% of patients and showed an antitumoral activity in animal model. Herein, we want to compare or combine the developed siRNA to flutamide (FLU), one of the gold-standard treatment of PCa. Therefore, concomitant or subsequent association of FLU to siRNA TMPRSS2-ERG was performed in VCaP cells and in SCID mice bearing xenografted VCaP tumors. ERG, androgen receptor, cleaved-caspase-3 as well as phase 1 and 2 drug-metabolizing enzymes were investigated within tumors. We observed similar results in terms of TMPRSS2-ERG knock-down and cell viability impairment for all distinct schedules of administration. The association of siRNA TMPRSS2-ERG-squalene nanoparticles with flutamide displayed similar tumor growth inhibition as mice treated with siRNA TMPRSS2-ERG-squalene nanoparticles alone and was paralleled with modification of expression of ERG, androgen receptor, and cleaved-caspase-3. Phase 1 and 2 enzymes were essentially affected by FLU and reverted when combined with squalenoylated siRNA. In conclusion, these results confirm the therapeutic effectiveness of squalenoyl siRNA nanomedicine for PCa based on siRNA TMPRSS2-ERG. PMID:27023109

  6. Conjugation of Palmitic Acid Improves Potency and Longevity of siRNA Delivered via Endosomolytic Polymer Nanoparticles

    PubMed Central

    Sarett, Samantha M.; Kilchrist, Kameron V.; Miteva, Martina; Duvall, Craig L.

    2015-01-01

    Clinical translation of siRNA therapeutics has been limited by the inability to effectively overcome the rigorous delivery barriers associated with intracellular-acting biologics. Here, in order to address both potency and longevity of siRNA gene silencing, pH-responsive micellar nanoparticle (NP) carriers loaded with siRNA conjugated to palmitic acid (siRNA-PA) were investigated as a combined approach to improve siRNA endosomal escape and stability. Conjugation to hydrophobic PA improved NP loading efficiency relative to unmodified siRNA, enabling complete packaging of siRNA-PA at a lower polymer:siRNA ratio. PA conjugation also increased intracellular uptake of the nucleic acid cargo by 35-fold and produced a 3.1-fold increase in intracellular half-life. The higher uptake and improved retention of siRNA-PA NPs correlated to a 2- and 11-fold decrease in gene silencing IC50 in comparison to siRNA NPs in fibroblasts and mesenchymal stem cells, respectively, for both the model gene luciferase and the therapeutically relevant gene PHD2. PA conjugation also significantly increased longevity of silencing activity following a single treatment, as observed in fibroblasts. Thus, conjugation of PA to siRNA paired with endosomolytic NPs is a promising approach to enhance the functional efficacy of siRNA in tissue regenerative and other applications. PMID:25641816

  7. A bridge to silencing: Co-assembling anionic nanoparticles of siRNA and hyaluronan sulfate via calcium ion bridges.

    PubMed

    Forti, Efrat; Kryukov, Olga; Elovic, Edan; Goldshtein, Matan; Korin, Efrat; Margolis, Gal; Felder, Shani; Ruvinov, Emil; Cohen, Smadar

    2016-06-28

    Therapeutic implementation of RNA interference (RNAi) through delivery of short interfering RNA (siRNA) is still facing several critical hurdles, which mostly can be solved through the use of an efficient delivery system. We hereby introduce anionic siRNA nanoparticles (NPs) co-assembled by the electrostatic interactions of the semi-synthetic polysaccharide hyaluronan-sulfate (HAS), with siRNA, mediated by calcium ion bridges. The NPs have an average size of 130nm and a mild (-10mV) negative surface charge. Transmission electron microscopy (TEM) using gold-labeled components and X-ray photoelectron spectroscopy (XPS) demonstrated the spatial organization of siRNA molecules in the particle core, surrounded by a layer of HAS. The anionic NPs efficiently encapsulated siRNA, were stable in physiological-relevant environments and were cytocompatible, not affecting cell viability or homeostasis. Efficient cellular uptake of the anionic siRNA NPs, associated with potent gene silencing (>80%), was observed across multiple cell types, including murine primary peritoneal macrophages and human hepatocellular carcinoma cells. In a clinically-relevant model of acute inflammatory response in IL-6-stimulated human hepatocytes, STAT3 silencing induced by HAS-Ca(2+)-siRNA NPs resulted in marked decrease in the total and activated STAT3 protein levels, as well as in the expression levels of downstream acute phase response genes. Collectively, anionic NPs prove to be an efficient and cytocompatible delivery system for siRNA. PMID:27117458

  8. Development of Pre-Clinical Models for Evaluating the Therapeutic Potential of Candidate siRNA Targeting STAT6

    PubMed Central

    Healey, Gareth D.; Lockridge, Jennifer A.; Zinnen, Shawn; Hopkin, Julian M.; Richards, Ivan; Walker, William

    2014-01-01

    Developing siRNA therapeutics poses technical challenges including appropriate molecular design and testing in suitable pre-clinical models. We previously detailed sequence-selection and modification strategies for siRNA candidates targeting STAT6. Here, we describe methodology that evaluates the suitability of candidate siRNA for respiratory administration. Chemically-modified siRNA exhibited similar inhibitory activity (IC50) against STAT6 in vitro compared to unmodified siRNA and apical exposure testing with Caco-2 cell monolayers showed modification was not associated with cellular toxicity. Use of a modified RNA extraction protocol improved the sensitivity of a PCR-based bio-analytical assay (lower limit of siRNA strand quantification  =  0.01 pg/µl) which was used to demonstrate that lung distribution profiles for both siRNAs were similar following intra-tracheal administration. However, after 6 hours, modified siRNA was detected in lung tissue at concentrations >1000-fold higher than unmodified siRNA. Evaluation in a rat model of allergic inflammation confirmed the persistence of modified siRNA in vivo, which was detectable in broncho-alveolar lavage (BAL) fluid, BAL cells and lung tissue samples, 72 hours after dosing. Based upon the concept of respiratory allergy as a single airway disease, we considered nasal delivery as a route for respiratory targeting, evaluating an intra-nasal exposure model that involved simple dosing followed by fine dissection of the nasal cavity. Notably, endogenous STAT6 expression was invariant throughout the nasal cavities and modified siRNA persisted for at least 3 days after administration. Coupled with our previous findings showing upregulated expression of inflammatory markers in nasal samples from asthmatics, these findings support the potential of intranasal siRNA delivery. In summary, we demonstrate the successful chemical modification of STAT6 targeting siRNA, which enhanced bio-availability without cellular

  9. Actinide abundances in ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Hagee, B.; Bernatowicz, T. J.; Podosek, F. A.; Johnson, M. L.; Burnett, D. S.

    1990-01-01

    Measurements of actinide and light REE (LREE) abundances and of phosphate abundances in equilibrated ordinary chondrites were obtained and were used to define the Pu abundance in the solar system and to determine the degree of variation of actinide and LREE abundances. The results were also used to compare directly the Pu/U ratio with the earlier obtained ratio determined indirectly, as (Pu/Nd)x(Nd/U), assuming that Pu behaves chemically as a LREE. The data, combined with high-accuracy isotope-dilution data from the literature, show that the degree of gram-scale variability of the Th, U, and LREE abundances for equilibrated ordinary chondrites is a factor of 2-3 for absolute abundances and up to 50 percent for relative abundances. The observed variations are interpreted as reflecting the differences in the compositions and/or proportions of solar nebula components accreted to ordinary chondrite parent bodies.

  10. Structural studies of the formation of lipoplexes between siRNA and selected bis-imidazolium gemini surfactants.

    PubMed

    Andrzejewska, W; Pietralik, Z; Skupin, M; Kozak, M

    2016-10-01

    Dicationic (gemini) surfactants are agents that can be used for the preparation of stable complexes of nucleic acids, particularly siRNA for therapeutic purposes. In this study, we demonstrated that bis-imidazolium gemini surfactants with variable lengths of dioxyalkyl linker groups (from dioxyethyl to dioxydodecyl) and dodecyl side chains are excellent for the complexation of siRNA. All of these compounds effectively complexed siRNA in a charge ratio range (p/n) of 1.5-10. The low resolution structure of siRNA oligomers was characterised by small angle scattering of synchrotron radiation (SR-SAXS) and ab initio modelling. The structures of the formed complexes were also analysed using SR-SAXS, circular dichroism studies and electrophoretic mobility tests. The most promising agents for complexation with siRNA were the surfactants that contained dioxyethyl and dioxyhexyl spacer groups. PMID:27424091

  11. An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress.

    PubMed

    Ito, Hidetaka; Gaubert, Hervé; Bucher, Etienne; Mirouze, Marie; Vaillant, Isabelle; Paszkowski, Jerzy

    2011-04-01

    Eukaryotic genomes consist to a significant extent of retrotransposons that are suppressed by host epigenetic mechanisms, preventing their uncontrolled propagation. However, it is not clear how this is achieved. Here we show that in Arabidopsis seedlings subjected to heat stress, a copia-type retrotransposon named ONSEN (Japanese 'hot spring') not only became transcriptionally active but also synthesized extrachromosomal DNA copies. Heat-induced ONSEN accumulation was stimulated in mutants impaired in the biogenesis of small interfering RNAs (siRNAs); however, there was no evidence of transposition occurring in vegetative tissues. After stress, both ONSEN transcripts and extrachromosomal DNA gradually decayed and were no longer detected after 20-30 days. Surprisingly, a high frequency of new ONSEN insertions was observed in the progeny of stressed plants deficient in siRNAs. Insertion patterns revealed that this transgenerational retrotransposition occurred during flower development and before gametogenesis. Therefore in plants with compromised siRNA biogenesis, memory of stress was maintained throughout development, priming ONSEN to transpose during differentiation of generative organs. Retrotransposition was not observed in the progeny of wild-type plants subjected to stress or in non-stressed mutant controls, pointing to a crucial role of the siRNA pathway in restricting retrotransposition triggered by environmental stress. Finally, we found that natural and experimentally induced variants in ONSEN insertions confer heat responsiveness to nearby genes, and therefore mobility bursts may generate novel, stress-responsive regulatory gene networks.

  12. Clustering siRNA conjugates for MMP-responsive therapeutics in chronic wounds of diabetic animals.

    PubMed

    Kim, Hye Sung; Son, Young Ju; Yoo, Hyuk Sang

    2016-07-21

    The MMP-responsive breakdown of siRNA clusters was translated to site-specific gene transfection and enhanced wound healing in diabetic ulcers. MMP-2 siRNA was chemically tethered to the end of multi-armed PEG via MMP-cleavable linkers (4PEG-siRNA) and subsequently clustered into submicron particles complexed with LPEI. 4PEG-siRNA was more tightly complexed with LPEI and the associated cluster showed higher resistance against RNase attack, in comparison to naked siRNA. Because the size of the clusters increased depending on the increase in charge ratio of LPEI to siRNA, cellular uptake of the 4PEG-siRNA/LPEI cluster was significantly attenuated due to the huge size of the cluster. However, upon MMP treatment, the cluster dissociated into smaller particles and was efficiently endocytosed by cells. An in vivo fluorescence resonance energy transfer (FRET) study also revealed that the clusters were effectively dissociated in MMP-rich environments of dorsal wounds in diabetic animals. In addition, diabetic ulcers treated with the clusters showed a faster wound closure rate and the recovered tissue expressed a larger amount of cytokeratin along with a lower expression level of MMP-2 compared to the other groups. PMID:27251781

  13. Chitosan nanoparticles for siRNA delivery: optimizing formulation to increase stability and efficiency.

    PubMed

    Ragelle, H; Riva, R; Vandermeulen, G; Naeye, B; Pourcelle, V; Le Duff, C S; D'Haese, C; Nysten, B; Braeckmans, K; De Smedt, S C; Jérôme, C; Préat, V

    2014-02-28

    This study aims at developing chitosan-based nanoparticles suitable for an intravenous administration of small interfering RNA (siRNA) able to achieve (i) high gene silencing without cytotoxicity and (ii) stability in biological media including blood. Therefore, the influence of chitosan/tripolyphosphate ratio, chitosan physicochemical properties, PEGylation of chitosan as well as the addition of an endosomal disrupting agent and a negatively charged polymer was assessed. The gene silencing activity and cytotoxicity were evaluated on B16 melanoma cells expressing luciferase. We monitored the integrity and the size behavior of siRNA nanoparticles in human plasma using fluorescence fluctuation spectroscopy and single particle tracking respectively. The presence of PEGylated chitosan and poly(ethylene imine) was essential for high levels of gene silencing in vitro. Chitosan nanoparticles immediately released siRNA in plasma while the inclusion of hyaluronic acid and high amount of poly(ethylene glycol) in the formulation improved the stability of the particles. The developed formulations of PEGylated chitosan-based nanoparticles that achieve high gene silencing in vitro, low cytotoxicity and high stability in plasma could be promising for intravenous delivery of siRNA. PMID:24389132

  14. Dual-Functional Nanoparticles Targeting CXCR4 and Delivering Antiangiogenic siRNA Ameliorate Liver Fibrosis.

    PubMed

    Liu, Chun-Hung; Chan, Kun-Ming; Chiang, Tsaiyu; Liu, Jia-Yu; Chern, Guann-Gen; Hsu, Fu-Fei; Wu, Yu-Hsuan; Liu, Ya-Chi; Chen, Yunching

    2016-07-01

    The progression of liver fibrosis, an intrinsic response to chronic liver injury, is associated with hepatic hypoxia, angiogenesis, abnormal inflammation, and significant matrix deposition, leading to the development of cirrhosis and hepatocellular carcinoma (HCC). Due to the complex pathogenesis of liver fibrosis, antifibrotic drug development has faced the challenge of efficiently and specifically targeting multiple pathogenic mechanisms. Therefore, CXCR4-targeted nanoparticles (NPs) were formulated to deliver siRNAs against vascular endothelial growth factor (VEGF) into fibrotic livers to block angiogenesis during the progression of liver fibrosis. AMD3100, a CXCR4 antagonist that was incorporated into the NPs, served dual functions: it acted as a targeting moiety and suppressed the progression of fibrosis by inhibiting the proliferation and activation of hepatic stellate cells (HSCs). We demonstrated that CXCR4-targeted NPs could deliver VEGF siRNAs to fibrotic livers, decrease VEGF expression, suppress angiogenesis and normalize the distorted vessels in the fibrotic livers in the carbon tetrachloride (CCl4) induced mouse model. Moreover, blocking SDF-1α/CXCR4 by CXCR4-targeted NPs in combination with VEGF siRNA significantly prevented the progression of liver fibrosis in CCl4-treated mice. In conclusion, the multifunctional CXCR4-targeted NPs delivering VEGF siRNAs provide an effective antifibrotic therapeutic strategy. PMID:27224003

  15. siRNA Therapy, Challenges and Underlying Perspectives of Dendrimer as Delivery Vector.

    PubMed

    Tekade, Rakesh Kumar; Maheshwari, Rahul G S; Sharma, Piyoosh A; Tekade, Muktika; Chauhan, Abhay Singh

    2015-01-01

    siRNA technology presents a helpful means of gene silencing in mammalian cells. Advancement in the field includes enhanced attentiveness in the characterization of target and off-target effects employing suitable controls and gene expression microarrays. These will permit expansion in the measurement of single and multiple target combinations and also permit comprehensive efforts to understand mammalian cell processes. Another fact is that the delivery of siRNA requires the creation of a nanoparticulate vector with controlled structural geometry and surface modalities inside the targeted cells. On the other hand, dendrimers represent the class of carrier system where massive control over size, shape and physicochemical properties makes this delivery vector exceptional and favorable in genetic transfection applications. The siRNA therapeutics may be incorporated inside the geometry of the density controlled dendrimers with the option of engineering the structure to the specific needs of the genetic material and its indication. The existing reports on the siRNA carrying and deliverance potential of dendrimers clearly suggest the significance of this novel class of polymeric architecture and certainly elevate the futuristic use of this highly branched vector as genetic material delivery system.

  16. DELIVERY OF siRNA INTO BREAST CANCER CELLS VIA PHAGE FUSION PROTEIN-TARGETED LIPOSOMES

    PubMed Central

    Bedi, Deepa; Musacchio, Tiziana; Fagbohun, Olusegun A.; Gillespie, James W.; Deinnocentes, Patricia; Bird, R. Curtis; Bookbinder, Lonnie; Torchilin, Vladimir P.; Petrenko, Valery A.

    2011-01-01

    Efficacy of siRNAs as potential anticancer therapeutics can be increased by their targeted delivery into cancer cells via tumor-specific ligands. Phage display offers an unique approach to identify highly specific and selective ligands that can deliver nanocarriers to the site of disease. In this study, we proved a novel approach for intracellular delivery of siRNAs into breast cancer cells through their encapsulation into liposomes targeted to the tumor cells with preselected intact phage proteins. The targeted siRNA liposomes were obtained by a fusion of two parental liposomes containing spontaneously inserted siRNA and fusion phage proteins. The presence of pVIII coat protein fused to a MCF-7 cell-targeting peptide DMPGTVLP in the liposomes was confirmed by Western blotting. The novel phage-targeted siRNA-nanopharmaceuticals demonstrate significant down-regulation of PRDM14 gene expression and PRDM14 protein synthesis in the target MCF- 7 cells. This approach offers the potential for development of new anticancer siRNA-based targeted nanomedicines. PMID:21050894

  17. Acid-cleavable ketal containing poly(β-amino ester) for enhanced siRNA delivery.

    PubMed

    Guk, Kyeonghye; Lim, Hyungsuk; Kim, Byungkuk; Hong, Minsung; Khang, Gilson; Lee, Dongwon

    2013-09-10

    The safe and effective intracellular delivery of nucleic acids remains the most challenging obstacle to the broad application of gene therapy in clinic. Endosomal escape of nucleic acids is also a major barrier for efficient gene delivery. Ketal linkage is known to readily cleave at the acidic pH of endosomal compartments. Here, we report ketal containing poly(β-amino ester) (KPAE) as an acid-cleavable non-viral siRNA delivery system. KPAE efficiently condensed siRNA into nanocomplexes with a diameter of ≈ 150 nm, which are stable under neutral conditions but rapidly dissociate to release siRNA at acidic pH. KPAE had a buffering capacity due to the presence of secondary amines in its backbone, confirmed by acid-base titration. Moreover, the studies of confocal fluorescence imaging using calcein and LysoTracker Red revealed that KPAE disrupted endosomes by colloid osmotic mechanism and "proton sponge" effects. Cell culture studies demonstrated that KPAE can deliver tumor necrosis factor-α (TNF-α) siRNA to lipopolysaccharide (LPS)-stimulated macrophages and significantly inhibit the expression of TNF-α. The results demonstrate that acid-cleavable KPAE has great potential as gene delivery systems based on its excellent biocompatibility, pH sensitivity and high gene delivery efficiency.

  18. Chlorotoxin bound magnetic nanovector tailored for cancer cell targeting, imaging, and siRNA delivery.

    PubMed

    Veiseh, Omid; Kievit, Forrest M; Fang, Chen; Mu, Ni; Jana, Soumen; Leung, Matthew C; Mok, Hyejung; Ellenbogen, Richard G; Park, James O; Zhang, Miqin

    2010-11-01

    Ribonucleic acid interference (RNAi) is a powerful molecular tool that has potential to revolutionize the treatment of cancer. One major challenge of applying this technology for clinical application is the lack of site-specific carriers that can effectively deliver short interfering RNA (siRNA) to cancer cells. Here we report the development and assessment of a cancer-cell specific magnetic nanovector construct for efficient siRNA delivery and non-invasive monitoring through magnetic resonance imaging (MRI). The base of the nanovector construct is comprised of a superparamagnetic iron oxide nanoparticle core coated with polyethylene glycol (PEG)-grafted chitosan, and polyethylenimine (PEI). The construct was then further functionalized with siRNA and a tumor-targeting peptide, chlorotoxin (CTX), to improve tumor specificity and potency. Flow cytometry, quantitative RT-PCR, and fluorescence microscopy analyses confirmed receptor-mediated cellular internalization of nanovectors and enhanced gene knockdown through targeted siRNA delivery. The ability of this nanovector construct to generate specific contrast enhancement of glioblastoma cells was demonstrated through MR imaging. These findings suggest that this CTX enabled nanoparticle carrier may be well suited for delivery of RNAi therapeutics to brain cancer cells.

  19. Identification of siRNA delivery enhancers by a chemical library screen

    PubMed Central

    Gilleron, Jerome; Paramasivam, Prasath; Zeigerer, Anja; Querbes, William; Marsico, Giovanni; Andree, Cordula; Seifert, Sarah; Amaya, Pablo; Stöter, Martin; Koteliansky, Victor; Waldmann, Herbert; Fitzgerald, Kevin; Kalaidzidis, Yannis; Akinc, Akin; Maier, Martin A.; Manoharan, Muthiah; Bickle, Marc; Zerial, Marino

    2015-01-01

    Most delivery systems for small interfering RNA therapeutics depend on endocytosis and release from endo-lysosomal compartments. One approach to improve delivery is to identify small molecules enhancing these steps. It is unclear to what extent such enhancers can be universally applied to different delivery systems and cell types. Here, we performed a compound library screen on two well-established siRNA delivery systems, lipid nanoparticles and cholesterol conjugated-siRNAs. We identified fifty-one enhancers improving gene silencing 2–5 fold. Strikingly, most enhancers displayed specificity for one delivery system only. By a combination of quantitative fluorescence and electron microscopy we found that the enhancers substantially differed in their mechanism of action, increasing either endocytic uptake or release of siRNAs from endosomes. Furthermore, they acted either on the delivery system itself or the cell, by modulating the endocytic system via distinct mechanisms. Interestingly, several compounds displayed activity on different cell types. As proof of principle, we showed that one compound enhanced siRNA delivery in primary endothelial cells in vitro and in the endocardium in the mouse heart. This study suggests that a pharmacological approach can improve the delivery of siRNAs in a system-specific fashion, by exploiting distinct mechanisms and acting upon multiple cell types. PMID:26220182

  20. Functionalized silicon quantum dots tailored for targeted siRNA delivery

    SciTech Connect

    Klein, S.; Zolk, O.; Fromm, M.F.; Schroedl, F.; Kryschi, C.

    2009-09-11

    For RNA interference (RNAi) mediated silencing of the ABCB1 gene in Caco-2 cells biocompatible luminescent silicon quantum dots (SiQDs) were developed to serve as self-tracking transfection tool for ABCB1 siRNA. While the 2-3 nm sized SiQD core exhibits green luminescence, the QD surfaces are completely saturated with covalently linked 2-vinylpyridine that may electrostatically bind siRNA. For down-regulating P-glycoprotein (Pgp) expression of the ABCB1 gene the SiQDs were complexed with siRNA. The cellular uptake and allocation of SiQD-siRNA complexes in Caco-2 cells were monitored using confocal laser scanning microscopy and transmission electron microscopy. The release of siRNA to the cytoplasm was verified through real-time PCR quantification of the reduced ABCB1 mRNA level. Additional evidence was obtained from time-resolved in situ fluorescence spectroscopic monitoring of the Pgp efflux dynamics in transfected Caco-2 cells which yielded significantly reduced transporter efficiencies for the Pgp substrate Rhodamine 123.

  1. Mesomorphic imidazolium salts: new vectors for efficient siRNA transfection.

    PubMed

    Dobbs, William; Heinrich, Benoît; Bourgogne, Cyril; Donnio, Bertrand; Terazzi, Emmanuel; Bonnet, Marie-Elise; Stock, Fabrice; Erbacher, Patrick; Bolcato-Bellemin, Anne-Laure; Douce, Laurent

    2009-09-23

    The preparation of chloride (1(n)) and bromide (2(n)) derivatives of 1-methyl-3-[3,4-bis(alkoxy)benzyl]-4H-imidazolium with n = 6, 12, 16, 18 is described. The two series of salts possess a rich thermotropic mesomorphism, chain-length dependent. Thus, a lamellar smectic A phase, a bicontinuous cubic Ia3d phase, and a columnar hexagonal liquid crystalline mesophase are induced as a function of increasing chain length. The mesomorphic properties were studied by polarizing optical microscopy, differential scanning calorimetry, and X-ray diffraction, and with the support of dilatometry and molecular dynamics, models for the various supramolecular arrangements of the salts are proposed. Such cationic amphiphiles were expected to be candidate molecules to design a new delivery reagent for nucleic acid transfection, particularly for short interfering RNA (siRNA). The use of an RNA interference mechanism, by introduction into cells by transfection of chemically synthesized siRNAs, is a powerful method for gene silencing studies. To exploit the potential of these amphilic imidazolium salts, these molecules were formulated with cohelper lipids and tested for their efficacy to deliver active siRNAs. Our results show high transfection efficacy of our formulated compounds and high silencing efficiency with more than 80% inhibition of the targeted gene at 10 nM siRNA concentration. Taken together our results show the potency of amphiphilic imidazolium salts as a new generation of transfection reagents for RNA interference. PMID:19715309

  2. Inhibition of simian immunodeficiency virus by foamy virus vectors expressing siRNAs

    SciTech Connect

    Park, Jeonghae; Nadeau, Peter; Zucali, James R.; Johnson, Calvin M.; Mergia, Ayalew . E-mail: mergiaa@mail.vetmed.ufl.edu

    2005-12-20

    Viral vectors available for gene therapy are either inefficient or suffer from safety concerns for human applications. Foamy viruses are non-pathogenic retroviruses that offer several unique opportunities for gene transfer in various cell types from different species. In this report, we describe the use of simian foamy virus type 1 (SFV-1) vector to examine the efficacy of therapeutic genes. Hairpin short-interfering RNA (siRNA) that targets the simian immunodeficiency virus (SIV) rev/env was placed under the control of the PolIII U6 snRNA promoter for expression and screened for silencing target genes using cognate target-reporter fusions. We have identified an effective siRNA (designated R2) which reduces the rev and env gene expression by 89% and 95%, respectively. Using the simian foamy virus type 1 (SFV-1) based vector, we delivered the PolIII expressed R2 siRNA into cultured cells and challenged with SIV. The results show that the R2 siRNA is a potent inhibitor of SIV replication as determined by p27 expression and reverse transcriptase assays. Vectors based on a non-pathogenic SFV-1 vector may provide a safe and efficient alternative to currently available vectors, and the SIV model will help devise protocols for effective anti-HIV gene therapy.

  3. siRNA transfection in larvae of the barnacle Amphibalanus amphitrite.

    PubMed

    Zhang, Gen; He, Li-Sheng; Wong, Yue Him; Yu, Li; Qian, Pei-Yuan

    2015-08-01

    RNA interference (RNAi) provides an efficient and specific technique for functional genomic studies. Yet, no successful application of RNAi has been reported in barnacles. In this study, siRNA against p38 MAPK was synthesized and then transfected into A. amphitrite larvae at either the nauplius or cyprid stage, or at both stages. Effects of siRNA transfection on the p38 MAPK level were hardly detectable in the cyprids when they were transfected at the nauplius stage. In contrast, larvae that were transfected at the cyprid stage showed lower levels of p38 MAPK than the blank and reagent controls. However, significantly decreased levels of phosphorylated p38 MAPK (pp38 MAPK) and reduced settlement rates were observed only in 'double transfections', in which larvae were exposed to siRNA solution at both the nauplius and cyprid stages. A relatively longer transfection time and more larval cells directly exposed to siRNA might explain the higher efficiency of double transfection experiments.

  4. Polymers modified with double-tailed fluorous compounds for efficient DNA and siRNA delivery.

    PubMed

    He, Bingwei; Wang, Yitong; Shao, Naimin; Chang, Hong; Cheng, Yiyun

    2015-08-01

    Cationic polymers are widely used as gene carriers, however, these polymers are usually associated with low transfection efficacy and non-negligible toxicity. Fluorination on polymers significantly improves their performances in gene delivery, but a high density of fluorous chains must be conjugated on a single polymer. Here we present a new strategy to construct fluorinated polymers with minimal fluorous chains for efficient DNA and siRNA delivery. A double-tailed fluorous compound 2-chloro-4,6-bis[(perfluorohexyl)propyloxy]-1,3,5-triazine (CBT) was conjugated on dendrimers of different generations and low molecular weight polyethylenimine via a facile synthesis. The yielding products with average numbers of 1-2 conjugated CBT moieties showed much improved EGFP and luciferase transfection efficacy compared to unmodified polymers. In addition, these polymers show high siRNA delivery efficacy on different cell lines. Among the synthesized polymers, generation 1 (G1) dendrimer modified with an average number of 1.9 CBT moieties (G1-CBT1.9) shows the highest efficacy when delivering both DNA and siRNA and its efficacy approaches that of Lipofectamine 2000. G1-CBT1.9 also shows efficient gene silencing in vivo. All of the CBT-modified polymers exhibit minimal toxicity on the cells at their optimal transfection conditions. This study provides a new strategy to design efficient fluorous polymers for DNA and siRNA delivery.

  5. Delivery of small interfering RNA (siRNA) using the sleeping beauty transposon.

    PubMed

    Fletcher, Bradley S

    2010-11-01

    RNA interference (RNAi) is an evolutionarily conserved process that silences gene expression through double-stranded RNA species in a sequence-specific manner. Small interfering RNAs (siRNAs) can promote sequence-specific degradation and/or translational repression of target RNA by activation of the RNA-induced silencing complex (RISC). Traditionally, silencing in mammalian cells had been achieved by transfection of synthetically derived siRNA duplexes, resulting in transient gene suppression of the target sequence. As the technology was advanced, inhibitory short-hairpin-shaped RNAs (shRNAs) could be produced by transcription from RNA polymerase-III (pol-III)-driven promoters, such as H1, U6, or cytomegalovirus (CMV)-enhanced pol III promoters. Following transcription, the shRNAs are processed by the enzyme Dicer into active siRNA. This approach allows for the continuous production of siRNA within cells using a DNA template and offers increased options for delivery of the pol-III-driven transcriptional units. A number of different viral vectors, as well as plasmid DNAs, have been utilized to deliver shRNA to mammalian cells. Here, the Tc1/mariner DNA transposon Sleeping Beauty (SB) is used as a tool to deliver shRNA-encoding transcriptional units. The SB transposon system uses a "cut-and-paste" mechanism to insert the transposon into random TA dinucleotides within the target genome. The shRNAs are then processed and used for gene knockdown. PMID:21041394

  6. Deep Sequencing Insights in Therapeutic shRNA Processing and siRNA Target Cleavage Precision

    PubMed Central

    Denise, Hubert; Moschos, Sterghios A.; Sidders, Benjamin; Burden, Frances; Perkins, Hannah; Carter, Nikki; Stroud, Tim; Kennedy, Michael; Fancy, Sally-Ann; Lapthorn, Cris; Lavender, Helen; Kinloch, Ross; Suhy, David; Corbau, Romu

    2014-01-01

    TT-034 (PF-05095808) is a recombinant adeno-associated virus serotype 8 (AAV8) agent expressing three short hairpin RNA (shRNA) pro-drugs that target the hepatitis C virus (HCV) RNA genome. The cytosolic enzyme Dicer cleaves each shRNA into multiple, potentially active small interfering RNA (siRNA) drugs. Using next-generation sequencing (NGS) to identify and characterize active shRNAs maturation products, we observed that each TT-034–encoded shRNA could be processed into as many as 95 separate siRNA strands. Few of these appeared active as determined by Sanger 5′ RNA Ligase-Mediated Rapid Amplification of cDNA Ends (5-RACE) and through synthetic shRNA and siRNA analogue studies. Moreover, NGS scrutiny applied on 5-RACE products (RACE-seq) suggested that synthetic siRNAs could direct cleavage in not one, but up to five separate positions on targeted RNA, in a sequence-dependent manner. These data support an on-target mechanism of action for TT-034 without cytotoxicity and question the accepted precision of substrate processing by the key RNA interference (RNAi) enzymes Dicer and siRNA-induced silencing complex (siRISC). PMID:24496437

  7. Nanoparticle-Mediated Systemic Delivery of siRNA for Treatment of Cancers and Viral Infections

    PubMed Central

    Draz, Mohamed Shehata; Fang, Binbin Amanda; Zhang, Pengfei; Hu, Zhi; Gu, Shenda; Weng, Kevin C.; Gray, Joe W.; Chen, Fanqing Frank

    2014-01-01

    RNA interference (RNAi) is an endogenous post-transcriptional gene regulatory mechanism, where non-coding, double-stranded RNA molecules interfere with the expression of certain genes in order to silence it. Since its discovery, this phenomenon has evolved as powerful technology to diagnose and treat diseases at cellular and molecular levels. With a lot of attention, short interfering RNA (siRNA) therapeutics has brought a great hope for treatment of various undruggable diseases, including genetic diseases, cancer, and resistant viral infections. However, the challenge of their systemic delivery and on how they are integrated to exhibit the desired properties and functions remains a key bottleneck for realizing its full potential. Nanoparticles are currently well known to exhibit a number of unique properties that could be strategically tailored into new advanced siRNA delivery systems. This review summarizes the various nanoparticulate systems developed so far in the literature for systemic delivery of siRNA, which include silica and silicon-based nanoparticles, metal and metal oxides nanoparticles, carbon nanotubes, graphene, dendrimers, polymers, cyclodextrins, lipids, hydrogels, and semiconductor nanocrystals. Challenges and barriers to the delivery of siRNA and the role of different nanoparticles to surmount these challenges are also included in the review. PMID:25057313

  8. Therapeutic siRNA for drug-resistant HER2-positive breast cancer

    PubMed Central

    Ngamcherdtrakul, Worapol; Castro, David J.; Morry, Jingga; Reda, Moataz M.; Gray, Joe W.; Yantasee, Wassana

    2016-01-01

    HER2 is overexpressed in about 20% of breast cancers and contributes to poor prognosis. Unfortunately, a large fraction of patients have primary or acquired resistance to the HER2-targeted therapy trastuzumab, thus a multi-drug combination is utilized in the clinic, putting significant burden on patients. We systematically identified an optimal HER2 siRNA from 76 potential sequences and demonstrated its utility in overcoming intrinsic and acquired resistance to trastuzumab and lapatinib in 18 HER2-positive cancer cell lines. We provided evidence that the drug-resistant cancer maintains dependence on HER2 for survival. Importantly, cell lines did not readily develop resistance following extended treatment with HER2 siRNA. Using our recently developed nanoparticle platform, systemic delivery of HER2 siRNA to trastuzumab-resistant tumors resulted in significant growth inhibition. Moreover, the optimal HER2 siRNA could also silence an exon 16 skipped HER2 splice variant reported to be highly oncogenic and linked to trastuzumab resistance. PMID:26894975

  9. Clustered magnetite nanocrystals cross-linked with PEI for efficient siRNA delivery.

    PubMed

    Park, Ji Won; Bae, Ki Hyun; Kim, Chunsoo; Park, Tae Gwan

    2011-02-14

    Magnetofection has been utilized as a powerful tool to enhance gene transfection efficiency via magnetic field-enforced cellular transport processes. The accelerated accumulation of nucleic acid molecules by applying an external magnetic force enables the rapid and improved transduction efficiency. In this study, we developed magnetite nanocrystal clusters (PMNCs) cross-linked with polyethylenimine (PEI) to magnetically trigger intracellular delivery of small interfering RNA (siRNA). PMNCs were produced by cross-linked assembly of catechol-functionalized branched polyethylenimine (bPEI) around magnetite nanocrystals through an oil-in-water (O/W) emulsion and solvent evaporation method. The physical properties of PMNC were characterized by TEM, DLS, TSA, and FT-IR. Finely tuned formulation of clustered magnetite nanocrystals with controlled size and shape exhibited superior saturation of magnetization value. Magnetite nanocrystal clusters could form nanosized polyelectrolyte complexes with negatively charged siRNA molecules, enabling efficient delivery of siRNA into cells upon exposure to an external magnetic field within a short time. This study introduces a new class of magnetic nanomaterials that can be utilized for magnetically driven intracellular siRNA delivery. PMID:21190334

  10. siRNA transfection in larvae of the barnacle Amphibalanus amphitrite.

    PubMed

    Zhang, Gen; He, Li-Sheng; Wong, Yue Him; Yu, Li; Qian, Pei-Yuan

    2015-08-01

    RNA interference (RNAi) provides an efficient and specific technique for functional genomic studies. Yet, no successful application of RNAi has been reported in barnacles. In this study, siRNA against p38 MAPK was synthesized and then transfected into A. amphitrite larvae at either the nauplius or cyprid stage, or at both stages. Effects of siRNA transfection on the p38 MAPK level were hardly detectable in the cyprids when they were transfected at the nauplius stage. In contrast, larvae that were transfected at the cyprid stage showed lower levels of p38 MAPK than the blank and reagent controls. However, significantly decreased levels of phosphorylated p38 MAPK (pp38 MAPK) and reduced settlement rates were observed only in 'double transfections', in which larvae were exposed to siRNA solution at both the nauplius and cyprid stages. A relatively longer transfection time and more larval cells directly exposed to siRNA might explain the higher efficiency of double transfection experiments. PMID:26113139

  11. Nanoparticle-mediated systemic delivery of siRNA for treatment of cancers and viral infections.

    PubMed

    Draz, Mohamed Shehata; Fang, Binbin Amanda; Zhang, Pengfei; Hu, Zhi; Gu, Shenda; Weng, Kevin C; Gray, Joe W; Chen, Fanqing Frank

    2014-01-01

    RNA interference (RNAi) is an endogenous post-transcriptional gene regulatory mechanism, where non-coding, double-stranded RNA molecules interfere with the expression of certain genes in order to silence it. Since its discovery, this phenomenon has evolved as powerful technology to diagnose and treat diseases at cellular and molecular levels. With a lot of attention, short interfering RNA (siRNA) therapeutics has brought a great hope for treatment of various undruggable diseases, including genetic diseases, cancer, and resistant viral infections. However, the challenge of their systemic delivery and on how they are integrated to exhibit the desired properties and functions remains a key bottleneck for realizing its full potential. Nanoparticles are currently well known to exhibit a number of unique properties that could be strategically tailored into new advanced siRNA delivery systems. This review summarizes the various nanoparticulate systems developed so far in the literature for systemic delivery of siRNA, which include silica and silicon-based nanoparticles, metal and metal oxides nanoparticles, carbon nanotubes, graphene, dendrimers, polymers, cyclodextrins, lipids, hydrogels, and semiconductor nanocrystals. Challenges and barriers to the delivery of siRNA and the role of different nanoparticles to surmount these challenges are also included in the review.

  12. Collision-induced dissociation of intact duplex and single-stranded siRNA anions.

    PubMed

    Huang, Teng-Yi; Liu, Jian; Liang, Xiaorong; Hodges, Brittany D M; McLuckey, Scott A

    2008-11-15

    A tandem mass spectrometry approach is demonstrated for complete sequencing of a model small interfering RNA (siRNA) based on ion trap collisional activation of intact single-stranded anions. Various charge states of the siRNA duplex and the individual strands were generated by nanoelectrospray (nano-ESI). The siRNA duplex anions were predominantly dissociated into the sense and antisense strands by collisional activation. The characteristic fragment ions (c/y- and a-B/w-ion series) from both strands were observed when higher activation amplitude was applied and when beam-type collisional activation was examined; however, the coexistence of fragment ions from both strands complicated spectral interpretation. The effect of precursor ion charge state on the dissociation of the individual sense and antisense strand siRNA anions was studied using ion trap collision-induced dissociation under various activation amplitudes. Through the activation of relatively low charge state precursor ions at relatively low excitation energy, selective backbone dissociation predominantly via the c/y channels was achieved. By applying relatively high excitation energy, the a-B/w channels also became prominent; however, the increase in spectral complexity made complete peak assignment difficult. In order to simplify the product ion spectra, proton-transfer reactions were applied, and complete sequencing of each strand was achieved. The application of tandem mass spectrometry to intact single-stranded anions demonstrated in this study can be adapted for the rapid identification of other noncoding RNAs in RNomics studies.

  13. Transgenic plant-derived siRNAs can suppress propagation of influenza virus in mammalian cells.

    PubMed

    Zhou, Yuanxiang; Chan, Jack H; Chan, Annie Y; Chak, Regina K F; Wong, Elaine Y L; Chye, Mee-Len; Peiris, Joseph S M; Poon, Leo L M; Lam, Eric

    2004-11-19

    As an example of the cost-effective large-scale generation of small-interfering RNA (siRNAs), we have created transgenic tobacco plants that produce siRNAs targeted to the mRNA of the non-structural protein NS1 from the influenza A virus subtype H1N1. We have investigated if these siRNAs, specifically targeted to the 5'-portion of the NS1 transcripts (5mNS1), would suppress viral propagation in mammalian cells. Agroinfiltration of transgenic tobacco with an Agrobacterium strain harboring a 5mNS1-expressing binary vector caused a reduction in 5mNS1 transcripts in the siRNA-accumulating transgenic plants. Further, H1N1 infection of siRNA-transfected mammalian cells resulted in significant suppression of viral replication. These results demonstrate that plant-derived siRNAs can inhibit viral propagation through RNA interference and could potentially be applied in control of viral-borne diseases.

  14. Deep Sequencing Insights in Therapeutic shRNA Processing and siRNA Target Cleavage Precision.

    PubMed

    Denise, Hubert; Moschos, Sterghios A; Sidders, Benjamin; Burden, Frances; Perkins, Hannah; Carter, Nikki; Stroud, Tim; Kennedy, Michael; Fancy, Sally-Ann; Lapthorn, Cris; Lavender, Helen; Kinloch, Ross; Suhy, David; Corbau, Romu

    2014-01-01

    TT-034 (PF-05095808) is a recombinant adeno-associated virus serotype 8 (AAV8) agent expressing three short hairpin RNA (shRNA) pro-drugs that target the hepatitis C virus (HCV) RNA genome. The cytosolic enzyme Dicer cleaves each shRNA into multiple, potentially active small interfering RNA (siRNA) drugs. Using next-generation sequencing (NGS) to identify and characterize active shRNAs maturation products, we observed that each TT-034-encoded shRNA could be processed into as many as 95 separate siRNA strands. Few of these appeared active as determined by Sanger 5' RNA Ligase-Mediated Rapid Amplification of cDNA Ends (5-RACE) and through synthetic shRNA and siRNA analogue studies. Moreover, NGS scrutiny applied on 5-RACE products (RACE-seq) suggested that synthetic siRNAs could direct cleavage in not one, but up to five separate positions on targeted RNA, in a sequence-dependent manner. These data support an on-target mechanism of action for TT-034 without cytotoxicity and question the accepted precision of substrate processing by the key RNA interference (RNAi) enzymes Dicer and siRNA-induced silencing complex (siRISC).Molecular Therapy-Nucleic Acids (2014) 3, e145; doi:10.1038/mtna.2013.73; published online 4 February 2014.

  15. Efficient intracellular siRNA delivery by ethyleneimine-modified amphiphilic macromolecules.

    PubMed

    Sparks, Sarah M; Waite, Carolyn L; Harmon, Alexander M; Nusblat, Leora M; Roth, Charles M; Uhrich, Kathryn E

    2011-09-01

    New materials that can bind and deliver oligonucleotides such as short interfering RNA (siRNA) without toxicity are greatly needed to fulfill the promise of therapeutic gene silencing. Amphiphilic macromolecules (AMs) were functionalized with linear ethyleneimines to create cationic AMs capable of complexing with siRNA. Structurally, the parent AM is formed from a mucic acid backbone whose tetra-hydroxy groups are alkylated with 12-carbon aliphatic chains to form the hydrophobic component of the macromolecule. This alkylated mucic acid is then mono-functionalized with poly(ethylene glycol) (PEG) as a hydrophilic component. The resulting AM contains a free carboxylic acid within the hydrophobic domain. In this work, linear ethyleneimines were conjugated to the free carboxylic acid to produce an AM with one primary amine (1N) or one primary amine and four secondary amines (5N). Further, an AM with amine substitution both to the free carboxylic acid in the hydrophobic domain and also to the adjacent PEG was synthesized to produce a polymer with one primary amine and eight secondary amines (9N), four located on each side of the AM hydrophobic domain. All amine-functionalized AMs formed nanoscale micelles but only the 5N and 9N AMs had cationic zeta potentials, which increased with increasing number of amines. All AMs exhibited less inherent cytotoxicity than linear polyethyleneimine (L-PEI) at concentrations of 10 µM and above. By increasing the length of the cationic ethyleneimine chain and the total number of amines, successful siRNA complexation and cellular siRNA delivery was achieved in a malignant glioma cell line. In addition, siRNA-induced silencing of firefly luciferase was observed using complexes of siRNA with the 9N AM and comparable to L-PEI, yet showed better cell viability at higher concentrations (above 10 µM). This work highlights the promise of cationic AMs as safe and efficient synthetic vectors for siRNA delivery. Specifically, a novel polymer (9N

  16. In Silico Design and Experimental Validation of siRNAs Targeting Conserved Regions of Multiple Hepatitis C Virus Genotypes.

    PubMed

    ElHefnawi, Mahmoud; Kim, TaeKyu; Kamar, Mona A; Min, Saehong; Hassan, Nafisa M; El-Ahwany, Eman; Kim, Heeyoung; Zada, Suher; Amer, Marwa; Windisch, Marc P

    2016-01-01

    RNA interference (RNAi) is a post-transcriptional gene silencing mechanism that mediates the sequence-specific degradation of targeted RNA and thus provides a tremendous opportunity for development of oligonucleotide-based drugs. Here, we report on the design and validation of small interfering RNAs (siRNAs) targeting highly conserved regions of the hepatitis C virus (HCV) genome. To aim for therapeutic applications by optimizing the RNAi efficacy and reducing potential side effects, we considered different factors such as target RNA variations, thermodynamics and accessibility of the siRNA and target RNA, and off-target effects. This aim was achieved using an in silico design and selection protocol complemented by an automated MysiRNA-Designer pipeline. The protocol included the design and filtration of siRNAs targeting highly conserved and accessible regions within the HCV internal ribosome entry site, and adjacent core sequences of the viral genome with high-ranking efficacy scores. Off-target analysis excluded siRNAs with potential binding to human mRNAs. Under this strict selection process, two siRNAs (HCV353 and HCV258) were selected based on their predicted high specificity and potency. These siRNAs were tested for antiviral efficacy in HCV genotype 1 and 2 replicon cell lines. Both in silico-designed siRNAs efficiently inhibited HCV RNA replication, even at low concentrations and for short exposure times (24h); they also exceeded the antiviral potencies of reference siRNAs targeting HCV. Furthermore, HCV353 and HCV258 siRNAs also inhibited replication of patient-derived HCV genotype 4 isolates in infected Huh-7 cells. Prolonged treatment of HCV replicon cells with HCV353 did not result in the appearance of escape mutant viruses. Taken together, these results reveal the accuracy and strength of our integrated siRNA design and selection protocols. These protocols could be used to design highly potent and specific RNAi-based therapeutic oligonucleotide

  17. The antifibrotic effects of TGF-{beta}1 siRNA on hepatic fibrosis in rats

    SciTech Connect

    Lang, Qing; Liu, Qi; Xu, Ning; Qian, Ke-Li; Qi, Jing-Hu; Sun, Yin-Chun; Xiao, Lang; Shi, Xiao-Feng

    2011-06-10

    Highlights: {yields} We constructed CCL4 induced liver fibrosis model successfully. {yields} We proofed that the TGF-{beta}1 siRNA had a definite therapy effect to CCL4 induced liver fibrosis. {yields} The therapy effect of TGF-{beta}1 siRNA had dose-dependent. -- Abstract: Background/aims: Hepatic fibrosis results from the excessive secretion of matrix proteins by hepatic stellate cells (HSCs), which proliferate during fibrotic liver injury. Transforming growth factor (TGF)-{beta}1 is the dominant stimulus for extracellular matrix (ECM) production by stellate cells. Our study was designed to investigate the antifibrotic effects of using short interference RNA (siRNA) to target TGF-{beta}1 in hepatic fibrosis and its mechanism in rats exposed to a high-fat diet and carbon tetrachloride (CCL4). Methods: A total of 40 healthy, male SD (Sprague-Dawley) rats were randomly divided into five even groups containing of eight rats each: normal group, model group, TGF-{beta}1 siRNA 0.125 mg/kg treatment group, TGF-{beta}1 siRNA 0.25 mg/kg treatment group and TGF-{beta}1 siRNA negative control group (0.25 mg/kg). CCL4 and a high-fat diet were used for 8 weeks to induce hepatic fibrosis. All the rats were then sacrificed to collect liver tissue samples. A portion of the liver samples were soaked in formalin for Hematoxylin-Eosin staining, classifying the degree of liver fibrosis, and detecting the expression of type I and III collagen and TGF-{beta}1; the remaining liver samples were stored in liquid nitrogen to be used for detecting TGF-{beta}1 by Western blotting and for measuring the mRNA expression of type I and III collagen and TGF-{beta}1 by quantitative real-time polymerase chain reaction. Results: Comparing the TGF-{beta}1 siRNA 0.25 mg/kg treatment group to the model group, the TGF-{beta}1 siRNA negative control group and the TGF-{beta}1 siRNA 0.125 mg/kg treatment group showed significantly reduced levels of pathological changes, protein expression and the m

  18. A biomimetic nanovector-mediated targeted cholesterol-conjugated siRNA delivery for tumor gene therapy.

    PubMed

    Ding, Yang; Wang, Wei; Feng, Meiqing; Wang, Yu; Zhou, Jianping; Ding, Xuefang; Zhou, Xin; Liu, Congyan; Wang, Ruoning; Zhang, Qiang

    2012-12-01

    RNA interference holds tremendous potential as a therapeutic approach of malignant tumors. However, safe and efficient nanovectors are extremely lack for systemic delivery of small interfering RNA (siRNA). The study aimed to develop a biomimetic nanovector, reconstituted high density lipoprotein (rHDL), mediating targeted cholesterol-conjugated siRNA (Chol-siRNA) delivery for Pokemon gene silencing therapy. Chol-siRNA-loaded rHDL nanoparticles (rHDL/Chol-siRNA complexes) were prepared using thin-film dispersion method and their characteristics were investigated in detail. RHDL/Chol-siRNA complexes at the optimal volume ratio (lipid: Chol-siRNA) exhibited high Chol-siRNA-loading efficiency (~99%), desirable nanoparticle size and excellent stability in serum. In addition, by analyzing Chol-siRNA release profile, rHDL/Chol-siRNA complexes displayed sustained-release characteristic and storage stability. Observations from FACS and confocal microscopic analyses revealed that rHDL-mediated carboxyfluorescein tagged Chol-siRNA (FAM-Chol-siRNA) transfection resulted in highly efficient uptake and specific cytoplasmic delivery of FAM-Chol-siRNA into human hepatocellular carcinoma cell line HepG2 via HDL-receptor mediated mechanism. In vitro cytotoxicity, apoptosis and Western-blot analyses revealed significant cellular growth inhibition and decrease of Pokemon and Bcl-2 protein expression in HepG2 cells treated with Chol-siRNA-Pokemon-loaded rHDL nanoparticles (rHDL/Chol-siRNA-Pokemon complexes), respectively. In in vivo studies, the near-infrared (NIR) dye Cy5 labeled Chol-siRNA-loaded rHDL nanoparticles (rHDL/Cy5-Chol-siRNA complexes) obviously accumulated in tumor of nude mice after i.v. administration as compared with Cy5-Chol-siRNA-loaded lipoplexes (Lipos/Cy5-Chol-siRNA complexes). Morover, rHDL/Chol-siRNA-Pokemon complexes demonstrated great tumor growth inhibition and significant decrease of Pokemon and Bcl-2 protein expression in vivo. These results suggested that

  19. A biomimetic nanovector-mediated targeted cholesterol-conjugated siRNA delivery for tumor gene therapy.

    PubMed

    Ding, Yang; Wang, Wei; Feng, Meiqing; Wang, Yu; Zhou, Jianping; Ding, Xuefang; Zhou, Xin; Liu, Congyan; Wang, Ruoning; Zhang, Qiang

    2012-12-01

    RNA interference holds tremendous potential as a therapeutic approach of malignant tumors. However, safe and efficient nanovectors are extremely lack for systemic delivery of small interfering RNA (siRNA). The study aimed to develop a biomimetic nanovector, reconstituted high density lipoprotein (rHDL), mediating targeted cholesterol-conjugated siRNA (Chol-siRNA) delivery for Pokemon gene silencing therapy. Chol-siRNA-loaded rHDL nanoparticles (rHDL/Chol-siRNA complexes) were prepared using thin-film dispersion method and their characteristics were investigated in detail. RHDL/Chol-siRNA complexes at the optimal volume ratio (lipid: Chol-siRNA) exhibited high Chol-siRNA-loading efficiency (~99%), desirable nanoparticle size and excellent stability in serum. In addition, by analyzing Chol-siRNA release profile, rHDL/Chol-siRNA complexes displayed sustained-release characteristic and storage stability. Observations from FACS and confocal microscopic analyses revealed that rHDL-mediated carboxyfluorescein tagged Chol-siRNA (FAM-Chol-siRNA) transfection resulted in highly efficient uptake and specific cytoplasmic delivery of FAM-Chol-siRNA into human hepatocellular carcinoma cell line HepG2 via HDL-receptor mediated mechanism. In vitro cytotoxicity, apoptosis and Western-blot analyses revealed significant cellular growth inhibition and decrease of Pokemon and Bcl-2 protein expression in HepG2 cells treated with Chol-siRNA-Pokemon-loaded rHDL nanoparticles (rHDL/Chol-siRNA-Pokemon complexes), respectively. In in vivo studies, the near-infrared (NIR) dye Cy5 labeled Chol-siRNA-loaded rHDL nanoparticles (rHDL/Cy5-Chol-siRNA complexes) obviously accumulated in tumor of nude mice after i.v. administration as compared with Cy5-Chol-siRNA-loaded lipoplexes (Lipos/Cy5-Chol-siRNA complexes). Morover, rHDL/Chol-siRNA-Pokemon complexes demonstrated great tumor growth inhibition and significant decrease of Pokemon and Bcl-2 protein expression in vivo. These results suggested that

  20. A designed recombinant fusion protein for targeted delivery of siRNA to the mouse brain.

    PubMed

    Haroon, Mohamed Mohamed; Dar, Ghulam Hassan; Jeyalakshmi, Durga; Venkatraman, Uthra; Saba, Kamal; Rangaraj, Nandini; Patel, Anant Bahadur; Gopal, Vijaya

    2016-04-28

    RNA interference represents a novel therapeutic approach to modulate several neurodegenerative disease-related genes. However, exogenous delivery of siRNA restricts their transport into different tissues and specifically into the brain mainly due to its large size and the presence of the blood-brain barrier (BBB). To overcome these challenges, we developed here a strategy wherein a peptide known to target specific gangliosides was fused to a double-stranded RNA binding protein to deliver siRNA to the brain parenchyma. The designed fusion protein designated as TARBP-BTP consists of a double-stranded RNA-binding domain (dsRBD) of human Trans Activation response element (TAR) RNA Binding Protein (TARBP2) fused to a brain targeting peptide that binds to monosialoganglioside GM1. Conformation-specific binding of TARBP2 domain to siRNA led to the formation of homogenous serum-stable complex with targeting potential. Further, uptake of the complex in Neuro-2a, IMR32 and HepG2 cells analyzed by confocal microscopy and fluorescence activated cell sorting, revealed selective requirement of GM1 for entry. Remarkably, systemic delivery of the fluorescently labeled complex (TARBP-BTP:siRNA) in ΑβPP-PS1 mouse model of Alzheimer's disease (AD) led to distinctive localization in the cerebral hemisphere. Further, the delivery of siRNA mediated by TARBP-BTP led to significant knockdown of BACE1 in the brain, in both ΑβPP-PS1 mice and wild type C57BL/6. The study establishes the growing importance of fusion proteins in delivering therapeutic siRNA to brain tissues. PMID:26948382

  1. A mPEG-PLGA-b-PLL copolymer carrier for adriamycin and siRNA delivery.

    PubMed

    Liu, Peifeng; Yu, Hui; Sun, Ying; Zhu, Mingjie; Duan, Yourong

    2012-06-01

    A amphiphilic block copolymer composed of conventional monomethoxy (polyethylene glycol)-poly (d,l-lactide-co-glycolide)-poly (l-lysine) (mPEG-PLGA-b-PLL) was synthesized. The chemical structure of this copolymer and its precursors was confirmed by Fourier Transform Infrared Spectroscopy (FTIR), (1)H Nuclear Magnetic Resonance ((1)H NMR) and Gel Permeation Chromatography (GPC). The copolymer was used to prepare nanoparticles (NPs) that were then loaded with either the anti-cancer drug adriamycin or small interfering RNA-negative (siRNA) using a double emulsion method. MTT assays used to study the in vitro cytotoxicity of mPEG-PLGA-b-PLL NPs showed that these particles were not toxic in huh-7 hepatic carcinoma cells. Confocal laser scanning microscopy (CLSM) and flow cytometer analysis results demonstrated efficient mPEG-PLGA-b-PLL NPs-mediated delivery of both adriamycin and siRNA into the cells. In vivo the targeting delivery of adriamycin or siRNA mediated by mPEG-PLGA-b-PLL NPs in the huh-7 hepatic carcinoma-bearing mice was evaluated using a fluorescence imaging system. The targeting delivery results and froze section analysis confirmed that drug or siRNA is deliver to tumor more efficiently by mPEG-PLGA-b-PLL NPs than free drug or Lipofectamine™2000. The high efficiency delivery of mPEG-PLGA-b-PLL NPs mainly due to the enhancement of cellular uptake. These results imply that mPEG-PLGA-b-PLL NPs have a great potential to be used as an effective carriers for adriamycin or siRNA.

  2. Cationic nanohydrogel particles as potential siRNA carriers for cellular delivery.

    PubMed

    Nuhn, Lutz; Hirsch, Markus; Krieg, Bettina; Koynov, Kaloian; Fischer, Karl; Schmidt, Manfred; Helm, Mark; Zentel, Rudolf

    2012-03-27

    Oligonucleotides such as short, double-stranded RNA (siRNA) or plasmid DNA (pDNA) promise high potential in gene therapy. For pharmaceutical application, however, adequate drug carriers are required. Among various concepts progressing in the market or final development, nanosized hydrogel particles may serve as novel transport media especially for siRNA. In this work, a new concept of synthesizing polymeric cationic nanohydrogels was developed, which offers a promising strategy to complex and transport siRNA into cells. For this purpose, amphiphilic reactive ester block copolymers were synthesized by RAFT polymerization of pentafluorophenyl methacrylate as reactive ester monomer together with tri(ethylene glycol)methyl ether methacrylate. In polar aprotic solvents, a self-assembly of these polymers could be observed leading to the formation of nanometer-sized polymer aggregates. The resulting superstructures were used to convert the reactive precursor block copolymers with amine-containing cross-linker molecules into covalently stabilized hydrogel particles. Detailed dynamic light scattering studies showed that the structure of the self-assembled aggregates can permanently be locked-in by this process. This method offers a new possibility to synthesize precise nanohydrogels of different size starting from various block copolymers. Moreover, via reactive ester approach, further functionalities could be attached to the nanoparticle, such as fluorescent dyes, which allowed distinct tracing of the hydrogels during complexation with siRNA or cell uptake experiments. In this respect, cellular uptake of the particles themselves as well as with its payload could be detected successfully. Looking ahead, these novel cationic nanohydrogel particles may serve as a new platform for proper siRNA delivery systems.

  3. Tumor priming enhances siRNA delivery and transfection in intraperitoneal tumors.

    PubMed

    Wang, Jie; Lu, Ze; Yeung, Bertrand Z; Wientjes, M Guillaume; Cole, David J; Au, Jessie L-S

    2014-03-28

    Cancers originating from the digestive system account for 290,000 or ~20% of all new cancer cases annually in the US. We previously developed paclitaxel-loaded tumor-penetrating microparticles (TPM) for intraperitoneal (IP) treatment of peritoneal tumors (Lu et al., 2008; Tsai et al., 2007; Tsai et al., 2013). TPM is undergoing NIH-supported IND-enabling studies for clinical evaluation. The present study evaluated the hypothesis that TPM, via inducing apoptosis and expanding the interstitial space, promotes the delivery and transfection of lipid vectors containing siRNA. The in vivo model was the metastatic human Hs766T pancreatic tumor that, upon IP injection, produced widely distributed solid tumors and ascites in the peritoneal cavity in 100% of animals. The target gene was survivin, an anti-apoptotic protein induced by chemotherapy and associated with metastases and poor prognosis of patients with gastric and colorectal cancers. The siRNA carrier was pegylated liposomes comprising cationic and neutral lipids plus a fusogenic lipid (PCat). PCat-loaded with survivin siRNA (PCat-siSurvivin) was active in cultured cells (decreased survivin mRNA and protein levels, reduced cell clonogenicity, enhanced paclitaxel activity), but lost its activity in vivo; this difference is consistent with the well-known problem of inadequate delivery and transfection of siRNA in vivo. In comparison, single agent TPM prolonged animal survival and, as expected, induced survivin expression in tumors. Addition of PCat-siSurvivin reversed the TPM-induced survivin expression and enhanced the antitumor activity of TPM. The finding that in vivo survivin knockdown by PCat-siSurvivin was successful only when it was given in combination with TPM provides the proof-of-concept that tumor priming promotes the delivery and transfection of liposomal siRNA. The data further suggest the TPM/PCat-siSurvivin combination as a potentially useful chemo-gene therapy for peritoneal cancer.

  4. Conjugated polymer nanoparticles for effective siRNA delivery to tobacco BY-2 protoplasts

    PubMed Central

    2010-01-01

    Background Post transcriptional gene silencing (PTGS) is a mechanism harnessed by plant biologists to knock down gene expression. siRNAs contribute to PTGS that are synthesized from mRNAs or viral RNAs and function to guide cellular endoribonucleases to target mRNAs for degradation. Plant biologists have employed electroporation to deliver artificial siRNAs to plant protoplasts to study gene expression mechanisms at the single cell level. One drawback of electroporation is the extensive loss of viable protoplasts that occurs as a result of the transfection technology. Results We employed fluorescent conjugated polymer nanoparticles (CPNs) to deliver siRNAs and knockdown a target gene in plant protoplasts. CPNs are non toxic to protoplasts, having little impact on viability over a 72 h period. Microscopy and flow cytometry reveal that CPNs can penetrate protoplasts within 2 h of delivery. Cellular uptake of CPNs/siRNA complexes were easily monitored using epifluorescence microscopy. We also demonstrate that CPNs can deliver siRNAs targeting specific genes in the cellulose biosynthesis pathway (NtCesA-1a and NtCesA-1b). Conclusions While prior work showed that NtCesA-1 is a factor involved in cell wall synthesis in whole plants, we demonstrate that the same gene plays an essential role in cell wall regeneration in isolated protoplasts. Cell wall biosynthesis is central to cell elongation, plant growth and development. The experiments presented here shows that NtCesA is also a factor in cell viability. We show that CPNs are valuable vehicles for delivering siRNAs to plant protoplasts to study vital cellular pathways at the single cell level. PMID:21192827

  5. Challenging the future of siRNA therapeutics against cancer: the crucial role of nanotechnology.

    PubMed

    Gomes-da-Silva, Lígia Catarina; Simões, Sérgio; Moreira, João Nuno

    2014-04-01

    The identification of numerous deregulated signaling pathways on cancer cells and supportive stromal cells has revealed several molecular targets whose downregulation can elicit significant benefits for cancer treatment. In this respect, gene downregulation can be efficiently achieved by exploiting the RNA interference mechanism, particularly by the delivery of chemical synthesized small-interfering RNAs (siRNAs), which have the ability to mediate, in a specific manner, the degradation of any mRNA with complementary nucleotide sequence. However, several concerns regarding off-target effects and immune stimulation have been raised. Depending on their sequence, siRNAs can trigger an innate immune response, which might mediate undesirable side effects that ultimately compromise their clinical utility. This is a very relevant effect that will be discussed in the present manuscript. Moreover, the major drawback in the translation of siRNAs into the clinical practice is undoubtedly their inability to accumulate in tumor sites, particularly in organs other than the liver. In fact, upon systemic administration, owing to siRNAs physico-chemical features, they are rapidly cleared from the blood stream. Therefore, the development of a proper drug delivery system is of utmost importance. In this review, some of the latest advances on different nanotechnological platforms for siRNA delivery under clinical evaluation will be discussed. Along with this, targeting approaches towards cancer and/or endothelial cells will also be addressed, as these are some of the most promising strategies to enhance specific tumor accumulation while avoiding healthy tissues. Finally, clinical information on ongoing studies in patients with advanced solid tumors will be also provided.

  6. Delivery of kinesin spindle protein targeting siRNA in solid lipid nanoparticles to cellular models of tumor vasculature

    SciTech Connect

    Ying, Bo; Campbell, Robert B.

    2014-04-04

    Highlights: • siRNA-lipid nanoparticles are solid particles not lipid bilayers with aqueous core. • High, but not low, PEG content can prevent nanoparticle encapsulation of siRNA. • PEG reduces cellular toxicity of cationic nanoparticles in vitro. • PEG reduces zeta potential while improving gene silencing of siRNA nanoparticles. • Kinesin spindle protein can be an effective target for tumor vascular targeting. - Abstract: The ideal siRNA delivery system should selectively deliver the construct to the target cell, avoid enzymatic degradation, and evade uptake by phagocytes. In the present study, we evaluated the importance of polyethylene glycol (PEG) on lipid-based carrier systems for encapsulating, and delivering, siRNA to tumor vessels using cellular models. Lipid nanoparticles containing different percentage of PEG were evaluated based on their physical chemical properties, density compared to water, siRNA encapsulation, toxicity, targeting efficiency and gene silencing in vitro. siRNA can be efficiently loaded into lipid nanoparticles (LNPs) when DOTAP is included in the formulation mixture. However, the total amount encapsulated decreased with increase in PEG content. In the presence of siRNA, the final formulations contained a mixed population of particles based on density. The major population which contains the majority of siRNA exhibited a density of 4% glucose, and the minor fraction associated with a decreased amount of siRNA had a density less than PBS. The inclusion of 10 mol% PEG resulted in a greater amount of siRNA associated with the minor fraction. Finally, when kinesin spindle protein (KSP) siRNA was encapsulated in lipid nanoparticles containing a modest amount of PEG, the proliferation of endothelial cells was inhibited due to the efficient knock down of KSP mRNA. The presence of siRNA resulted in the formation of solid lipid nanoparticles when prepared using the thin film and hydration method. LNPs with a relatively modest amount of

  7. Treatment with connexin 46 siRNA suppresses the growth of human Y79 retinoblastoma cell xenografts in vivo.

    PubMed

    Burr, Diana B; Molina, Samuel A; Banerjee, Debarshi; Low, Derek M; Takemoto, Dolores J

    2011-04-01

    Tumors with a hypoxic component, including human Y79 retinoblastoma cells, express a specific gap junction protein, Connexin 46 (Cx46), which is usually only found in naturally hypoxic tissues such as the differentiated lens. The aim of this study was to investigate if Cx46 downregulation would suppress Y79 tumor formation in vivo. Five-week old nude mice were subcutaneously implanted with human Y79 retinoblastoma cells and treated with intratumor siRNA injections of 30 μg Cx46 siRNA (n = 6), 30 μg non-silencing siRNA (n = 6), or no siRNA treatment (n = 6) every 2 days for a maximum of 10 treatments. Tumor volume (TV) was calculated from the recorded caliper measurements of length and width. Excised tumors were measured and weighed. Western blot analyses were performed to evaluate Cx46 and Cx43 expression in tumors which received Cx46 siRNA, non-silencing siRNA, or no siRNA treatment. Tumor histopathology was used to assess tumor features. Cx46 siRNA treated Y79 tumors had a reduced TV (287 mm(3) ± 77 mm(3)) when compared to the tumors of mice receiving the negative control siRNA (894 mm(3) ± 218 mm(3); P ≤ 0.03) or no siRNA (1068 mm(3) ± 192 mm(3); P ≤ 0.002). A 6-fold knockdown of Cx46 and a 3-fold rise in Cx43 protein expression was observed from western blots of tumors treated with Cx46 siRNA compared to mice treated with non-silencing siRNA. Knockdown of Cx46 with siRNA had an antitumor effect on human Y79 retinoblastoma tumors in the nude mouse model. The results suggest that anti-Cx46 therapy may be a potential target in the future treatment of retinoblastoma. PMID:21320488

  8. Abundance coefficients, a new method for measuring microorganism relative abundance

    USGS Publications Warehouse

    Forester, R.M.

    1977-01-01

    A new method of measuring the relative abundance of microorganisms by using a set of interrelated coefficients, termed 'abundance coefficients' or 'AC', is proposed. These coefficients provide a means of recording abundance for geometric density categories, and each density measurement represents an approximation of the Poisson parameter ??t. The AC is the natural logarithm of a 'characteristic value,' which is a particular number for each geometric density category. The 'characteristic values' are based upon a probabilistic error statement derived from the Poisson formula, and they present evidence for separation of the geometric category boundaries by e = 2.71828. The proposed AC provide a means for recording species abundance in a manner suitable for arithmetic manipulation, for population structure studies, and for the determination of practical limits for defining the presence or absence of a species. Further, these coefficients provide for both intrasample and intersample abundance comparisons. ?? 1977 Plenum Publishing Corporation.

  9. Self-assembled nanoscale coordination polymers carrying siRNAs and cisplatin for effective treatment of resistant ovarian cancer.

    PubMed

    He, Chunbai; Liu, Demin; Lin, Wenbin

    2015-01-01

    Resistance to the chemotherapeutic agent cisplatin is a major limitation for the successful treatment of many cancers. Development of novel strategies to overcome intrinsic and acquired resistance to chemotherapy is of critical importance to effective treatment of ovarian cancer and other types of cancers. We have sought to re-sensitize resistant ovarian cancer cells to chemotherapy by co-delivering chemotherapeutics and pooled siRNAs targeting multi-drug resistance (MDR) genes using self-assembled nanoscale coordination polymers (NCPs). In this work, NCP-1 particles with trigger release properties were first constructed by linking cisplatin prodrug-based bisphosphonate bridging ligands with Zn(2+) metal-connecting points and then coated with a cationic lipid layer, followed by the adsorption of pooled siRNAs targeting three MDR genes including survivin, Bcl-2, and P-glycoprotein via electrostatic interactions. The resulting NCP-1/siRNA particles promoted cellular uptake of cisplatin and siRNA and enabled efficient endosomal escape in cisplatin-resistant ovarian cancer cells. By down-regulating the expression of MDR genes, NCP-1/siRNAs enhanced the chemotherapeutic efficacy as indicated by cell viability assay, DNA ladder, and flow cytometry. Local administration of NCP-1/siRNAs effectively reduced tumor sizes of cisplatin-resistant SKOV-3 subcutaneous xenografts. This work shows that the NCP-1/siRNA platform holds great promise in enhancing chemotherapeutic efficacy for the effective treatment of drug-resistant cancers.

  10. CTLA4 aptamer delivers STAT3 siRNA to tumor-associated and malignant T cells

    PubMed Central

    Herrmann, Andreas; Priceman, Saul J.; Kujawski, Maciej; Xin, Hong; Cherryholmes, Gregory A.; Zhang, Wang; Zhang, Chunyan; Lahtz, Christoph; Kowolik, Claudia; Forman, Steve J.; Kortylewski, Marcin; Yu, Hua

    2014-01-01

    Intracellular therapeutic targets that define tumor immunosuppression in both tumor cells and T cells remain intractable. Here, we have shown that administration of a covalently linked siRNA to an aptamer (apt) that selectively binds cytotoxic T lymphocyte–associated antigen 4 (CTLA4apt) allows gene silencing in exhausted CD8+ T cells and Tregs in tumors as well as CTLA4-expressing malignant T cells. CTLA4 expression was upregulated in CD8+ T cells in the tumor milieu; therefore, CTLA4apt fused to a STAT3-targeting siRNA (CTLA4apt–STAT3 siRNA) resulted in internalization into tumor-associated CD8+ T cells and silencing of STAT3, which activated tumor antigen–specific T cells in murine models. Both local and systemic administration of CTLA4apt–STAT3 siRNA dramatically reduced tumor-associated Tregs. Furthermore, CTLA4apt–STAT3 siRNA potently inhibited tumor growth and metastasis in various mouse tumor models. Importantly, CTLA4 expression is observed in T cells of patients with blood malignancies, and CTLA4apt–STAT3 siRNA treatment of immunodeficient mice bearing human T cell lymphomas promoted tumor cell apoptosis and tumor growth inhibition. These data demonstrate that a CTLA4apt-based siRNA delivery strategy allows gene silencing in both tumor-associated T cells and tumor cells and inhibits tumor growth and metastasis. PMID:24892807

  11. Hybrid pulmonary surfactant-coated nanogels mediate efficient in vivo delivery of siRNA to murine alveolar macrophages.

    PubMed

    De Backer, Lynn; Naessens, Thomas; De Koker, Stefaan; Zagato, Elisa; Demeester, Jo; Grooten, Johan; De Smedt, Stefaan C; Raemdonck, Koen

    2015-11-10

    The local delivery of small interfering RNA (siRNA) to the lungs may provide a therapeutic solution to a range of pulmonary disorders. Resident alveolar macrophages (rAM) in the bronchoalveolar lumen play a critical role in lung inflammatory responses and therefore constitute a particularly attractive target for siRNA therapeutics. However, achieving efficient gene silencing in the lung while avoiding pulmonary toxicity requires appropriate formulation of siRNA in functional nanocarriers. In this study, we evaluated pulmonary surfactant-coated dextran nanogels for the delivery of siRNA to rAM upon pharyngeal aspiration in BALB/c mice. Both the surfactant-coated and uncoated nanogels achieved high levels of siRNA uptake in rAM, yet only the surfactant-coated formulation could significantly reduce gene expression on the protein level. Surfactant-coated nanogels induced a profound downregulation of target mRNA levels, reaching 70% knockdown with ~1mgkg(-1) siRNA dose. In addition, only mild acute pro-inflammatory cytokine and chemokine responses were detected one day after nanoparticle aspiration, accompanied by a moderate neutrophil infiltration in the bronchoalveolar lumen. The latter could be substantially reduced by removal of excess surfactant from the formulation. Overall, our hybrid core-shell nanoparticles have demonstrated safe and effective siRNA delivery to rAM, providing a new therapeutic approach for treatment of inflammatory pathologies in the lung.

  12. Enhanced cellular uptake and gene silencing activity of siRNA molecules mediated by chitosan-derivative nanocomplexes.

    PubMed

    Guzman-Villanueva, Diana; El-Sherbiny, Ibrahim M; Vlassov, Alexander V; Herrera-Ruiz, Dea; Smyth, Hugh D C

    2014-10-01

    The RNA interference (RNAi) constitutes a conservative mechanism in eukaryotic cells that induces silencing of target genes. In mammalians, the RNAi is triggered by siRNA (small interfering RNA) molecules. Due to its potential in silencing specific genes, the siRNA has been considered a potential alternative for the treatment of genetic and acquired diseases. However, the siRNA therapy has been limited by its low stability and rapid degradation in presence of nucleases, low cellular uptake, and immune response activation. In order to overcome these drawbacks, we propose the synthesis and characterization of non-viral delivery systems using chitosan derivatives to obtain siRNA complexes (polyplexes). The non-viral delivery systems synthesized included PEG-g-OCs (oligochitosan) and PEG-g-Cs (chitosan medium molecular weight). Both systems allowed the formation of siRNA polyplexes, increased the stability of siRNA in the presence of nucleases, enhanced cellular internalization, and showed low toxicity in the A549 cell line. Finally, the complexes obtained with the PEG-g-OCs system showed silencing activity in a GFP model in the cell line A549 in comparison with naked siRNA. PMID:25063077

  13. Hybrid pulmonary surfactant-coated nanogels mediate efficient in vivo delivery of siRNA to murine alveolar macrophages.

    PubMed

    De Backer, Lynn; Naessens, Thomas; De Koker, Stefaan; Zagato, Elisa; Demeester, Jo; Grooten, Johan; De Smedt, Stefaan C; Raemdonck, Koen

    2015-11-10

    The local delivery of small interfering RNA (siRNA) to the lungs may provide a therapeutic solution to a range of pulmonary disorders. Resident alveolar macrophages (rAM) in the bronchoalveolar lumen play a critical role in lung inflammatory responses and therefore constitute a particularly attractive target for siRNA therapeutics. However, achieving efficient gene silencing in the lung while avoiding pulmonary toxicity requires appropriate formulation of siRNA in functional nanocarriers. In this study, we evaluated pulmonary surfactant-coated dextran nanogels for the delivery of siRNA to rAM upon pharyngeal aspiration in BALB/c mice. Both the surfactant-coated and uncoated nanogels achieved high levels of siRNA uptake in rAM, yet only the surfactant-coated formulation could significantly reduce gene expression on the protein level. Surfactant-coated nanogels induced a profound downregulation of target mRNA levels, reaching 70% knockdown with ~1mgkg(-1) siRNA dose. In addition, only mild acute pro-inflammatory cytokine and chemokine responses were detected one day after nanoparticle aspiration, accompanied by a moderate neutrophil infiltration in the bronchoalveolar lumen. The latter could be substantially reduced by removal of excess surfactant from the formulation. Overall, our hybrid core-shell nanoparticles have demonstrated safe and effective siRNA delivery to rAM, providing a new therapeutic approach for treatment of inflammatory pathologies in the lung. PMID:26307350

  14. Self-assembled Nanoscale Coordination Polymers Carrying siRNAs and Cisplatin for Effective Treatment of Resistant Ovarian Cancer

    PubMed Central

    He, Chunbai; Liu, Demin; Lin, Wenbin

    2014-01-01

    Resistance to the chemotherapeutic agent cisplatin is a major limitation for the successful treatment of many cancers. Development of novel strategies to overcome intrinsic and acquired resistance to chemotherapy is of critical importance to effective treatment of ovarian cancer and other types of cancers. We have sought to re-sensitize resistant ovarian cancer cells to chemotherapy by co-delivering chemotherapeutics and pooled siRNAs targeting multi-drug resistance (MDR) genes using self-assembled nanoscale coordination polymers (NCPs). In this work, NCP-1 particles with trigger release properties were first constructed by linking cisplatin prodrug-based bisphosphonate bridging ligands with Zn2+ metal-connecting points and then coated with a cationic lipid layer, followed by the adsorption of pooled siRNAs targeting three MDR genes including survivin, Bcl-2, and P-glycoprotein via electrostatic interactions. The resulting NCP-1/siRNA particles promoted cellular uptake of cisplatin and siRNA and enabled efficient endosomal escape in cisplatin-resistant ovarian cancer cells. By down-regulating the expression of MDR genes, NCP-1/siRNAs enhanced the chemotherapeutic efficacy as indicated by cell viability assay, DNA ladder, and flow cytometry. Local administration of NCP-1/siRNAs effectively reduced tumor sizes of cisplatin-resistant SKOV-3 subcutaneous xenografts. This work shows that the NCP-1/siRNA platform holds great promise in enhancing chemotherapeutic efficacy for the effective treatment of drug-resistant cancers. PMID:25315138

  15. 21st Birthday Drinking: Extremely Extreme

    ERIC Educational Resources Information Center

    Rutledge, Patricia C.; Park, Aesoon; Sher, Kenneth J.

    2008-01-01

    Despite public recognition of the hazards of 21st birthday drinking, there is little empirical information concerning its prevalence, severity, and risk factors. Data from a sample of 2,518 college students suggest that 21st birthday drinking poses an extreme danger: (a) 4 of every 5 participants (83%) reported drinking to celebrate, (b) birthday…

  16. How extreme is extreme hourly precipitation?

    NASA Astrophysics Data System (ADS)

    Papalexiou, Simon Michael; Dialynas, Yannis G.; Pappas, Christoforos

    2016-04-01

    The importance of accurate representation of precipitation at fine time scales (e.g., hourly), directly associated with flash flood events, is crucial in hydrological design and prediction. The upper part of a probability distribution, known as the distribution tail, determines the behavior of extreme events. In general, and loosely speaking, tails can be categorized in two families: the subexponential and the hyperexponential family, with the first generating more intense and more frequent extremes compared to the latter. In past studies, the focus has been mainly on daily precipitation, with the Gamma distribution being the most popular model. Here, we investigate the behaviour of tails of hourly precipitation by comparing the upper part of empirical distributions of thousands of records with three general types of tails corresponding to the Pareto, Lognormal, and Weibull distributions. Specifically, we use thousands of hourly rainfall records from all over the USA. The analysis indicates that heavier-tailed distributions describe better the observed hourly rainfall extremes in comparison to lighter tails. Traditional representations of the marginal distribution of hourly rainfall may significantly deviate from observed behaviours of extremes, with direct implications on hydroclimatic variables modelling and engineering design.

  17. Gut Microbiota and Extreme Longevity.

    PubMed

    Biagi, Elena; Franceschi, Claudio; Rampelli, Simone; Severgnini, Marco; Ostan, Rita; Turroni, Silvia; Consolandi, Clarissa; Quercia, Sara; Scurti, Maria; Monti, Daniela; Capri, Miriam; Brigidi, Patrizia; Candela, Marco

    2016-06-01

    The study of the extreme limits of human lifespan may allow a better understanding of how human beings can escape, delay, or survive the most frequent age-related causes of morbidity, a peculiarity shown by long-living individuals. Longevity is a complex trait in which genetics, environment, and stochasticity concur to determine the chance to reach 100 or more years of age [1]. Because of its impact on human metabolism and immunology, the gut microbiome has been proposed as a possible determinant of healthy aging [2, 3]. Indeed, the preservation of host-microbes homeostasis can counteract inflammaging [4], intestinal permeability [5], and decline in bone and cognitive health [6, 7]. Aiming at deepening our knowledge on the relationship between the gut microbiota and a long-living host, we provide for the first time the phylogenetic microbiota analysis of semi-supercentenarians, i.e., 105-109 years old, in comparison to adults, elderly, and centenarians, thus reconstructing the longest available human microbiota trajectory along aging. We highlighted the presence of a core microbiota of highly occurring, symbiotic bacterial taxa (mostly belonging to the dominant Ruminococcaceae, Lachnospiraceae, and Bacteroidaceae families), with a cumulative abundance decreasing along with age. Aging is characterized by an increasing abundance of subdominant species, as well as a rearrangement in their co-occurrence network. These features are maintained in longevity and extreme longevity, but peculiarities emerged, especially in semi-supercentenarians, describing changes that, even accommodating opportunistic and allochthonous bacteria, might possibly support health maintenance during aging, such as an enrichment and/or higher prevalence of health-associated groups (e.g., Akkermansia, Bifidobacterium, and Christensenellaceae). PMID:27185560

  18. Optimizations of siRNA design for the activation of gene transcription by targeting the TATA-box motif.

    PubMed

    Fan, Miaomiao; Zhang, Yijun; Huang, Zhuoqiong; Liu, Jun; Guo, Xuemin; Zhang, Hui; Luo, Haihua

    2014-01-01

    Small interfering RNAs (siRNAs) are widely used to repress gene expression by targeting mRNAs. Some reports reveal that siRNAs can also activate or inhibit gene expression through targeting the gene promoters. Our group has found that microRNAs (miRNAs) could activate gene transcription via interaction with the TATA-box motif in gene promoters. To investigate whether siRNA targeting the same region could upregulate the promoter activity, we test the activating efficiency of siRNAs targeting the TATA-box motif of 16 genes and perform a systematic analysis to identify the common features of the functional siRNAs for effective activation of gene promoters. Further, we try various modifications to improve the activating efficiency of siRNAs and find that it is quite useful to design the promoter-targeting activating siRNA by following several rules such as (a) complementary to the TATA-box-centered region; (b) UA usage at the first two bases of the antisense strand; (c) twenty-three nucleotides (nts) in length; (d) 2'-O-Methyl (2'-OMe) modification at the 3' terminus of the antisense strand; (e) avoiding mismatches at the 3' end of the antisense strand. The optimized activating siRNAs potently enhance the expression of interleukin-2 (IL-2) gene in human and mouse primary CD4+ T cells with a long-time effect. Taken together, our study provides a guideline for rational design the promoter-targeting siRNA to sequence-specifically enhance gene expression.

  19. Nanoparticle delivery of pooled siRNA for effective treatment of non-small cell lung cancer.

    PubMed

    Yang, Yang; Hu, Yunxia; Wang, Yuhua; Li, Jun; Liu, Feng; Huang, Leaf

    2012-08-01

    Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death. To explore the potential of small interfering RNA (siRNA) therapy for NSCLC, we have developed anisamide-targeted LCP to efficiently deliver siRNA into the cytoplasm of sigma receptor-expressing NSCLC cells. Targeted LCP demonstrated a 9-fold higher siRNA delivery efficiency compared to nontargeted LCP in A549 cells in vitro. To simultaneously target multiple oncogenic mechanisms, we coformulated three siRNA sequences targeting HDM2, c-myc and VEGF oncogenes, and investigated their efficacy of cell-killing in A549 and H460 cells in vitro. The results indicated that the pooled siRNA codelivered by the targeted LCP could effectively and simultaneously knock down HDM2, c-myc and VEGF expressions and significantly inhibit tumor cell growth. After iv injection of mice bearing A549 xenografted tumor with Texas Red-labeled siRNA formulated in the targeted LCP, siRNA was successfully delivered to and concentrated in the tumor cells. Repeated intravenous injections of mice with pooled siRNA formulated in the targeted LCP significantly impaired NSCLC growth in vivo (p < 0.01) for both A549 and H460 tumors, demonstrating an ED50 for the treatment of ∼ 0.2 mg/kg in A549 tumors. The enhanced antitumor activity is due to the fact that the silencing of HDM2/c-myc/VEGF could inhibit tumor proliferation and angiogenesis and also simultaneously induce tumor apoptosis. Our results demonstrate that the targeted LCP is a promising vector to deliver pooled siRNA into tumors and to achieve multiple target blocking. This is potentially a valid therapeutic modality in the gene therapy of human NSCLC.

  20. Pulmonary Codelivery of Doxorubicin and siRNA by pH-Sensitive Nanoparticles for Therapy of Metastatic Lung Cancer.

    PubMed

    Xu, Caina; Wang, Ping; Zhang, Jingpeng; Tian, Huayu; Park, Kinam; Chen, Xuesi

    2015-09-01

    A pulmonary codelivery system that can simultaneously deliver doxorubicin (DOX) and Bcl2 siRNA to the lungs provides a promising local treatment strategy for lung cancers. In this study, DOX is conjugated onto polyethylenimine (PEI) by using cis-aconitic anhydride (CA, a pH-sensitive linker) to obtain PEI-CA-DOX conjugates. The PEI-CA-DOX/siRNA complex nanoparticles are formed spontaneously via electrostatic interaction between cationic PEI-CA-DOX and anionic siRNA. The drug release experiment shows that DOX releases faster at acidic pH than at pH 7.4. Moreover, PEI-CA-DOX/Bcl2 siRNA complex nanoparticles show higher cytotoxicity and apoptosis induction in B16F10 cells than those treated with either DOX or Bcl2 siRNA alone. When the codelivery systems are directly sprayed into the lungs of B16F10 melanoma-bearing mice, the PEI-CA-DOX/Bcl2 siRNA complex nanoparticles exhibit enhanced antitumor efficacy compared with the single delivery of DOX or Bcl2 siRNA. Compared with systemic delivery, most drug and siRNA show a long-term retention in the lungs via pulmonary delivery, and a considerable number of the drug and siRNA accumulate in tumor tissues of lungs, but rarely in normal lung tissues. The PEI-CA-DOX/Bcl2 siRNA complex nanoparticles are promising for the treatment of metastatic lung cancer by pulmonary delivery with low side effects on the normal tissues.

  1. pH-Sensitive carboxymethyl chitosan-modified cationic liposomes for sorafenib and siRNA co-delivery.

    PubMed

    Yao, Yao; Su, Zhihui; Liang, Yanchao; Zhang, Na

    2015-01-01

    Combination of chemotherapeutic drug and small interfering RNA (siRNA) can affect multiple disease pathways and has been proven effective in suppressing tumor progression. Co-delivery of drug and siRNA within a same nanocarrier is a vital means in this field. The present study aimed at the development of a pH-sensitive liposome to co-deliver drug and siRNA to tumor region. Driven by the electrostatic interaction, the pH-sensitive material, carboxymethyl chitosan (CMCS), was coated onto the surface of the cationic liposome (CL) preloaded with sorafenib (Sf) and siRNA (Si). To evaluate whether the resulting CMCS-modified Sf and siRNA co-delivery cationic liposome (CMCS-SiSf-CL) enhanced antitumor efficiency after systematic administration, in vitro and in vivo experiments were evaluated in HepG2 cells and the H22 cells-bearing Kunming mice model. The experimental results demonstrated that CMCS-SiSf-CL was able to condense siRNA efficiently and protect siRNA from being degraded by serum and RNase. The release rate of Sf from CMCS-modified liposome exhibited pH-sensitive release behavior. Furthermore, in vitro cellular uptake results showed that CMCS-SiSf-CL yielded higher fluorescence intensity at pH 6.5 than at pH 7.4, and that siRNA could be delivered to tumor site by CMCS-SiSf-CL in vivo. The in vivo antitumor efficacy showed that CMCS-Sf-CL inhibits tumor growth effectively when compared with free Sf solution. In current experimental conditions, this liposomal formulation did not show significant toxicity both in vitro and in vivo. Therefore, co-delivering Sf with siRNA by CMCS-SiSf-CL might provide a promising approach for tumor therapy. PMID:26491291

  2. Cheminformatics Approach to Gene Silencing: Z Descriptors of Nucleotides and SVM Regression Afford Predictive Models for siRNA Potency.

    PubMed

    Ebalunode, Jerry O; Zheng, Weifan

    2010-12-17

    Short interfering RNA mediated gene silencing technology has been through tremendous development over the past decade, and has found broad applications in both basic biomedical research and pharmaceutical development. Critical to the effective use of this technology is the development of reliable algorithms to predict the potency and selectivity of siRNAs under study. Existing algorithms are mostly built upon sequence information of siRNAs and then employ statistical pattern recognition or machine learning techniques to derive rules or models. However, sequence-based features have limited ability to characterize siRNAs, especially chemically modified ones. In this study, we proposed a cheminformatics approach to describe siRNAs. Principal component scores (z1, z2, z3, z4) have been derived for each of the 5 nucleotides (A, U, G, C, T) from the descriptor matrix computed by the MOE program. Descriptors of a given siRNA sequence are simply the concatenation of the z values of its composing nucleotides. Thus, for each of the 2431 siRNA sequences in the Huesken dataset, 76 descriptors were generated for the 19-NT representation, and 84 descriptors were generated for the 21-NT representation of siRNAs. Support Vector Machine regression (SVMR) was employed to develop predictive models. In all cases, the models achieved Pearson correlation coefficient r and R about 0.84 and 0.65 for the training sets and test sets, respectively. A minimum of 25 % of the whole dataset was needed to obtain predictive models that could accurately predict 75 % of the remaining siRNAs. Thus, for the first time, a cheminformatics approach has been developed to successfully model the structure-potency relationship in siRNA-based gene silencing data, which has laid a solid foundation for quantitative modeling of chemically modified siRNAs.

  3. Variations of the 3' protruding ends in synthetic short interfering RNA (siRNA) tested by microinjection in Drosophila embryos.

    PubMed

    Boutla, Alexandra; Delidakis, Christos; Livadaras, Ioannis; Tabler, Martin

    2003-01-01

    Short interfering RNAs (siRNAs) are the processing product originating from long double-stranded RNAs (dsRNAs) that are cleaved by the RNase III-like ribonuclease Dicer. As siRNAs mediate cleavage of specific single-stranded target RNAs, they are essential intermediates of RNA interference (RNAi). When applied in synthetic form, siRNAs likewise can induce the silencing process in the absence of long dsRNAs. Here, we tested variations of a conventional synthetic siRNA that had been used successfully to silence the Drosophila notch gene. The variants had two 3 ' -terminal deoxynucleotides in their protruding single-stranded ends. In one case, the deoxynulceotides would match to the notch mRNA, whereas the other variant had nonmatching deoxy-T residues, representing a widely used siRNA design. siRNAs with different combinations of sense and antisense strands were injected into Drosophila embryos at two different concentrations. We found that the all-ribonucleotide siRNA gave the best inhibition of notch expression. The combination of two modified strands with 3 ' -terminal deoxynucleotides was effective, but if combined with a sense or antisense ribostrand, the efficacy dropped. The siRNAs with nonmatching 3 ' -terminal TT residues showed a reduced silencing potential, which became evident at low concentration. An siRNA with a nonmatching 3 ' -terminal ribonucleotide in the antisense strand retained most of its silencing potential in accordance with the hypothesis that primer extension for generation of ssRNA from single-stranded mRNA does not operate in Drosophila.

  4. pH-Sensitive carboxymethyl chitosan-modified cationic liposomes for sorafenib and siRNA co-delivery

    PubMed Central

    Yao, Yao; Su, Zhihui; Liang, Yanchao; Zhang, Na

    2015-01-01

    Combination of chemotherapeutic drug and small interfering RNA (siRNA) can affect multiple disease pathways and has been proven effective in suppressing tumor progression. Co-delivery of drug and siRNA within a same nanocarrier is a vital means in this field. The present study aimed at the development of a pH-sensitive liposome to co-deliver drug and siRNA to tumor region. Driven by the electrostatic interaction, the pH-sensitive material, carboxymethyl chitosan (CMCS), was coated onto the surface of the cationic liposome (CL) preloaded with sorafenib (Sf) and siRNA (Si). To evaluate whether the resulting CMCS-modified Sf and siRNA co-delivery cationic liposome (CMCS-SiSf-CL) enhanced antitumor efficiency after systematic administration, in vitro and in vivo experiments were evaluated in HepG2 cells and the H22 cells-bearing Kunming mice model. The experimental results demonstrated that CMCS-SiSf-CL was able to condense siRNA efficiently and protect siRNA from being degraded by serum and RNase. The release rate of Sf from CMCS-modified liposome exhibited pH-sensitive release behavior. Furthermore, in vitro cellular uptake results showed that CMCS-SiSf-CL yielded higher fluorescence intensity at pH 6.5 than at pH 7.4, and that siRNA could be delivered to tumor site by CMCS-SiSf-CL in vivo. The in vivo antitumor efficacy showed that CMCS-Sf-CL inhibits tumor growth effectively when compared with free Sf solution. In current experimental conditions, this liposomal formulation did not show significant toxicity both in vitro and in vivo. Therefore, co-delivering Sf with siRNA by CMCS-SiSf-CL might provide a promising approach for tumor therapy. PMID:26491291

  5. A novel GNRs-PEI/GNRs-PEI-folate for efficiently delivering siRNA.

    PubMed

    Zhang, Yujuan; Song, Na; Fu, Jiamin; Liu, Yanling; Yu, Yanrong; Shi, Qiaofa; Fu, Yingyuan; Zhou, Nanjing; Yuan, Keng; Zhao, Lin; Zhang, Quan; Min, Weiping

    2015-01-01

    RNA interference (RNAi) employs double-stranded RNA or siRNA (small interfering RNA) to silence gene expression in cells. The widespread use of RNAi therapeutics requires the development of clinically suitable, safe and effective delivery vehicles. PEI (Poly(ethylene imine)) carrying the positive charges has attracted considerable attention for siRNA delivery. Gold nanorods (GNRs) exhibit specially localized surface plasmon resonance when excited by the visible and near-infrared laser, which is useful for photothermal therapy. However, the toxicity derived from a large amount of the surfactant cetyltrimethylammonium bromide (CTAB) during GNR synthesis severely limits their medical applications. Here, we report the synthesis of GNRs-PEI/GNRs-PEI-folate to improve biocompatibility, siRNA delivery and photothermal therapy of GNRs. Firstly, GNRs were synthesized according to the seed-mediated template-assisted protocol. The characterization results of GNRs showed: the size was length about 218 nm and width about 26.8 nm; the Zeta potential was +38.1 mV derived from CTAB on their surface; the dipole resonance extinction spectrum peak was 752 nm which is effective for photothermal therapy in vivo. Secondly, we synthesized PEI-MUA (Mercaptoundecanoic acid) and PEI-MUA-folate based on the chemical reaction between amino group of PEI and carboxyl group of MUA or Folate. PEI-MUA or PEI-MUA-folate to replace CTAB on GNRs obtained the GNRs-MUA-PEI system or the GNRs-MUA-PEI-folate system due to the solid conjugation between the thiol group of MUA and GNRs. The products were measured using the FTIR Spectrometer, and the spectra suggest MUA-PEI or PEI-MUA-folate has successfully replaced CTAB on the surface of GNRs. Finally, GNRs-MUA-PEI was incubated with siRNA-Cy3. The unbound siRNA-Cy3 was measured the intensity of fluorescence for calculating the uploaded amount of siRNA by GNRs-MUA-PEI, and the results indicate that the uploaded percentage of siRNA is about 70%. We conclude

  6. A Genome-Wide siRNA Screen to Identify Modulators of Insulin Sensitivity and Gluconeogenesis

    PubMed Central

    Yang, Ruojing; Lacson, Raul G.; Castriota, Gino; Zhang, Xiaohua D.; Liu, Yaping; Zhao, Wenqing; Einstein, Monica; Camargo, Luiz Miguel; Qureshi, Sajjad; Wong, Kenny K.; Zhang, Bei B.; Ferrer, Marc; Berger, Joel P.

    2012-01-01

    Background Hepatic insulin resistance impairs insulin’s ability to suppress hepatic glucose production (HGP) and contributes to the development of type 2 diabetes (T2D). Although the interests to discover novel genes that modulate insulin sensitivity and HGP are high, it remains challenging to have a human cell based system to identify novel genes. Methodology/Principal Findings To identify genes that modulate hepatic insulin signaling and HGP, we generated a human cell line stably expressing beta-lactamase under the control of the human glucose-6-phosphatase (G6PC) promoter (AH-G6PC cells). Both beta-lactamase activity and endogenous G6PC mRNA were increased in AH-G6PC cells by a combination of dexamethasone and pCPT-cAMP, and reduced by insulin. A 4-gene High-Throughput-Genomics assay was developed to concomitantly measure G6PC and pyruvate-dehydrogenase-kinase-4 (PDK4) mRNA levels. Using this assay, we screened an siRNA library containing pooled siRNA targeting 6650 druggable genes and identified 614 hits that lowered G6PC expression without increasing PDK4 mRNA levels. Pathway analysis indicated that siRNA-mediated knockdown (KD) of genes known to positively or negatively affect insulin signaling increased or decreased G6PC mRNA expression, respectively, thus validating our screening platform. A subset of 270 primary screen hits was selected and 149 hits were confirmed by target gene KD by pooled siRNA and 7 single siRNA for each gene to reduce G6PC expression in 4-gene HTG assay. Subsequently, pooled siRNA KD of 113 genes decreased PEPCK and/or PGC1alpha mRNA expression thereby demonstrating their role in regulating key gluconeogenic genes in addition to G6PC. Last, KD of 61 of the above 113 genes potentiated insulin-stimulated Akt phosphorylation, suggesting that they suppress gluconeogenic gene by enhancing insulin signaling. Conclusions/Significance These results support the proposition that the proteins encoded by the genes identified in our cell

  7. Surface engineering of gold nanoparticles for in vitro siRNA delivery.

    PubMed

    Zhao, Enyu; Zhao, Zhixia; Wang, Jiancheng; Yang, Chunhui; Chen, Chengjun; Gao, Lingyan; Feng, Qiang; Hou, Wenjie; Gao, Mingyuan; Zhang, Qiang

    2012-08-21

    Cellular uptake, endosomal/lysosomal escape, and the effective dissociation from the carrier are a series of hurdles for specific genes to be delivered both in vitro and in vivo. To construct siRNA delivery systems, poly(allylamine hydrochloride) (PAH) and siRNA were alternately assembled on the surface of 11.8 ± 0.9 nm Au nanoparticles (GNP), stabilized by denatured bovine serum albumin, by the ionic layer-by-layer (LbL) self-assembly method. By manipulating the outmost PAH layer, GNP-PAH vectors with different surface electric potentials were prepared. Then, the surface potential-dependent cytotoxicity of the resultant GNP-PAH particles was evaluated via sulforhodamine B (SRB) assay, while the surface potential-dependent cellular uptake efficiency was quantitatively analyzed by using the flow cytometry method based on carboxyfluorescein (FAM)-labeled siRNA. It was revealed that the GNP-PAH particles with surface potential of +25 mV exhibited the optimal cellular uptake efficiency and cytotoxicity for human breast cancer MCF-7 cells. Following these results, two more positively charged polyelectrolytes with different protonating abilities in comparison with PAH, i.e., polyethylenimine (PEI), and poly(diallyl dimethyl ammonium chloride) (PDDA), were chosen to fabricate similarly structured vectors. Confocal fluorescence microscopy studies indicated that siRNA delivered by GNP-PAH and GNP-PEI systems was better released than that delivered by the GNP-PDDA system. Further flow cytometric assays based on immunofluorescence staining of the epidermal growth factor receptor (EGFR) revealed that EGFR siRNA delivered by GNP-PAH and GNP-PEI exhibited similar down-regulation effects on EGFR expression in MCF-7 cells. The following dual fluorescence flow cytometry assays by co-staining phosphatidylserine and DNA suggested the EGFR siRNA delivered by GNP-PAH exhibited an improved silencing effect in comparison with that delivered by the commercial transfection reagent

  8. NIR light controlled photorelease of siRNA and its targeted intracellular delivery based on upconversion nanoparticles

    NASA Astrophysics Data System (ADS)

    Yang, Yanmei; Liu, Fang; Liu, Xiaogang; Xing, Bengang

    2012-12-01

    The most notable role of small interfering RNA (siRNA) is in RNA interference (RNAi) and post-transcriptional gene silencing, which leads to a surge of interest in RNAi for both biomedical research and therapeutic applications. However, ``naked'' siRNA cannot cross cellular membranes freely because of highly negative charges which limits its utility for gene therapy. In this work, a system of near-infrared (NIR) light-induced siRNA release from silica coated upconversion nanoparticles (Si-UCNPs) is presented. These Si-UCNPs were functionalized with cationic photocaged linkers through covalent bonding, which could effectively adsorb anionic siRNA through electrostatic attractions and were easily internalized by living cells. Upon NIR light irradiation, the photocaged linker on the Si-UCNPs surface could be cleaved by the upconverted UV light and thus initiated the intracellular release of the siRNA. The in vitro agarose gel electrophoresis and intracellular imaging results indicated that the Si-UCNPs-based gene carrier system allowed effective siRNA delivery and the applications of NIR light instead of direct high energy UV irradiation may greatly guarantee less cell damage.The most notable role of small interfering RNA (siRNA) is in RNA interference (RNAi) and post-transcriptional gene silencing, which leads to a surge of interest in RNAi for both biomedical research and therapeutic applications. However, ``naked'' siRNA cannot cross cellular membranes freely because of highly negative charges which limits its utility for gene therapy. In this work, a system of near-infrared (NIR) light-induced siRNA release from silica coated upconversion nanoparticles (Si-UCNPs) is presented. These Si-UCNPs were functionalized with cationic photocaged linkers through covalent bonding, which could effectively adsorb anionic siRNA through electrostatic attractions and were easily internalized by living cells. Upon NIR light irradiation, the photocaged linker on the Si-UCNPs surface

  9. Erratum: Interstellar Abundance Standards Revisited

    NASA Astrophysics Data System (ADS)

    Sofia, U. J.; Meyer, D. M.

    2001-09-01

    In the Letter ``Interstellar Abundance Standards Revisited'' by U. J. Sofia and D. M. Meyer (ApJ, 554, L221 [2001]), Table 2 and its footnotes contain several typographical errors. The corrected table is shown below. We note that the solar reference standard now implies a positive abundance of nitrogen in halo dust.

  10. Bivariate extreme value distributions

    NASA Technical Reports Server (NTRS)

    Elshamy, M.

    1992-01-01

    In certain engineering applications, such as those occurring in the analyses of ascent structural loads for the Space Transportation System (STS), some of the load variables have a lower bound of zero. Thus, the need for practical models of bivariate extreme value probability distribution functions with lower limits was identified. We discuss the Gumbel models and present practical forms of bivariate extreme probability distributions of Weibull and Frechet types with two parameters. Bivariate extreme value probability distribution functions can be expressed in terms of the marginal extremel distributions and a 'dependence' function subject to certain analytical conditions. Properties of such bivariate extreme distributions, sums and differences of paired extremals, as well as the corresponding forms of conditional distributions, are discussed. Practical estimation techniques are also given.

  11. Virus-derived siRNAs and piRNAs in immunity and pathogenesis.

    PubMed

    Ding, Shou-Wei; Lu, Rui

    2011-12-01

    Cellular organisms have evolved related pathways for the biogenesis and function of small interfering RNAs (siRNAs), microRNAs and PIWI-interacting RNAs (piRNAs). These distinct classes of small RNAs guide specific gene silencing at both transcriptional and posttranscriptional levels by serving as specificity determinants. Small RNAs of virus and host origins have been found to modulate virus–host interactions by RNA interference (RNAi), leading to antiviral immunity or viral pathogenesis. Deep sequencing-based profiling of virus-derived small RNAs as products of host immune recognition not only allowed us to gain insight into the expansion and functional specialization of host factors involved in the antiviral immunity but also made it possible to identify new viruses in a culture-independent manner. Here we review recent developments on the characterization and function of virus-derived siRNAs and piRNAs in eukaryotic hosts. PMID:22180767

  12. siRNA targeting PLK-1 induces apoptosis of synoviocytes in rheumatoid arthritis

    SciTech Connect

    Wada, Makoto; Kawahito, Yutaka . E-mail: kawahity@koto.kpu-m.ac.jp; Kimura, Shinya; Kohno, Masataka; Ishino, Hidetaka; Kimura, Mizuho; Omoto, Atsushi; Yamamoto, Aihiro; Hamaguchi, Masahide; Tsubouchi, Yasunori; Tokunaga, Daisaku; Hojo, Tatsuya; Ashihara, Eishi; Maekawa, Taira; Yoshikawa, Toshikazu

    2007-06-01

    Polo-like kinase-1 (PLK-1) is a member of the PLK family and participates in the control of cell mitosis. Here, we show that immunoreactive PLK-1 is strongly expressed in synoviocytes and some infiltrative mononuclear cells in synovial tissues from patients with rheumatoid arthritis (RA), while patients with osteoarthritis and injury show little or no expression of PLK-1 in synovial tissues. Western blot analysis shows that PLK is expressed and its expression is enhanced by IL-1{beta} in RA synoviocytes. IL-1{beta} also enhanced the cell growth of RA synoviocytes. Moreover, siRNA targeted against PLK-1 significantly decreases the expression of PLK-1 of RA synoviocytes stimulated by IL-1{beta} and suppresses the proliferation of these synoviocytes through apoptosis. These findings suggest that PLK-1 plays a critical role in the proliferation of RA synoviocytes leading to bone destruction, and siRNA against PLK-1 is potentially useful for the treatment of RA.

  13. Nanoparticle-mediated delivery of siRNA for effective lung cancer therapy.

    PubMed

    Kim, Young-Dong; Park, Tae-Eun; Singh, Bijay; Maharjan, Sushila; Choi, Yun-Jaie; Choung, Pill-Hoon; Arote, Rohidas B; Cho, Chong-Su

    2015-01-01

    Lung cancer is one of the most lethal diseases worldwide, and the survival rate is less than 15% even after the treatment. Unfortunately, chemotherapeutic treatments for lung cancer are accompanied by severe side effects, lack of selectivity and multidrug resistance. In order to overcome the limitations of conventional chemotherapy, nanoparticle-mediated RNA interference drugs represent a potential new approach due to selective silencing effect of oncogenes and multidrug resistance related genes. In this review, we provide recent advancements on nanoparticle-mediated siRNA delivery strategies including lipid system, polymeric system and rigid nanoparticles for lung cancer therapies. Importantly, codelivery of siRNA with conventional anticancer drugs and recent theranostic agents that offer great potential for lung cancer therapy is covered.

  14. Self-assembled lipid nanomedicines for siRNA tumor targeting.

    PubMed

    Tseng, Yu-Cheng; Huang, Leaf

    2009-08-01

    Lipid-based nanoparticle technology has developed from chemical drug carrier into an efficient multifunctional siRNA tumor targeting delivery system. In this review, we start with an overview of the lipid-based nanomedicine history and the two classes of lipidic vectors for DNA or siRNA delivery. Then we discuss the features of lipid-based nanomedicine that lead to effective tumor targeting and the principles behind. We also discuss nanoparticle surface modification, classes of tumor targeting ligands, and other state-of-the-art strategies for enhancing endosome release primarily focused on lipid-based systems. At the end, we show that multifunctional self-assembled lipid-based nanoparticles could also be versatile delivery vehicles for cancer molecular imaging probes. PMID:20055081

  15. Inhibition of Hepatitis B virus cccDNA replication by siRNA

    SciTech Connect

    Li Guiqiu; Gu Hongxi . E-mail: hxgu2432@163.com; Li Di; Xu Weizhen

    2007-04-06

    The development of an effective therapy for Hepatitis B virus (HBV) infection is still a challenge. Progress in RNA interference (RNAi) has shed slight on developing a new anti-HBV strategy. Here, we present a series of experiments showing a significant reduction in HBV transcripts and replication intermediates in HepG2.2.15 cells by vector-based siRNA targeted nuclear localization signal (NLS) region. More importantly, we showed that siRNA1 markedly inhibited HBV covalently closed circular DNA (cccDNA) replication. Our results indicated that HBV NLS may serve as a novel RNAi target to combat HBV infection, which can enhance anti-HBV efficacy and overcome the drawbacks of current therapies.

  16. Silencing of Inducible Immunoproteasome Subunit Expression by Chemically Modified siRNA and shRNA.

    PubMed

    Gvozdeva, Olga V; Prassolov, Vladimir S; Zenkova, Marina A; Vlassov, Valentin V; Chernolovskaya, Elena L

    2016-08-01

    Overexpression of inducible subunits of immunoproteasome is related to pathogenesis of some chronic diseases. Specific inhibition of the immunosubunits may be used for the treatment of these diseases and RNA interference is one of the potent methods used in this area. We designed 2'-O-methyl modified siRNAs with selectively protected nuclease-sensitive sites, which efficiently silence LMP2, LMP7, and MECL-1 genes expression. To provide stable long-lasting inhibition of target genes, short-hairpin RNAs (shRNA) expressed by lentiviral vectors were constructed. Our results demonstrated that chemically modified siRNAs inhibited the expression of target genes with similar efficiency or with efficiency exceeding that of corresponding shRNAs and provide silencing effect for 5 days.

  17. The effect of charge-reversal amphiphile spacer composition on DNA and siRNA delivery

    PubMed Central

    Zhang, Xiao-Xiang; Prata, Carla A. H.; McIntosh, Thomas J.; Barthélémy, Philippe; Grinstaff, Mark W.

    2010-01-01

    A series of charge-reversal amphiphiles with different spacers separating the head group from the hydrophobic chains are described for delivery of DNA and siRNA. Among them, the amphiphiles possessing a glycine spacer (e.g., B-GlyGly) showed effective DNA transfection in CHO and NIH 3T3 cells as well as siRNA gene knockdown in HepG2 and UASMC cells. Ethidium bromide quenching assays revealed that DNA was released the fastest from the lipoplex of B-GlyGly in the presence of esterase. Also, X-ray diffraction results indicated that the DNA was located between the adjacent lipid bilayers in the lipoplex of B-GlyGly. These distinct features appear to be required for high transfection activity. PMID:20433165

  18. Preparation of Polyion Complex Micelles Using Block Copolymers for SiRNA Delivery.

    PubMed

    Kim, Hyun Jin; Zheng, Meng; Miyata, Kanjiro; Kataoka, Kazunori

    2016-01-01

    Polyion complex (PIC) micelles can be prepared through the spontaneous assembly of cationic block copolymers with oppositely charged short interfering RNAs (SiRNAs). Their core-shell architectures offer a delivery platform for vulnerable SiRNA, improving their biological activities for medicinal applications such as tumor-targeted therapy. Here, we report a protocol for the preparation of SiRNA-loaded PIC micelles using a poly(ethylene glycol)-block-poly(aspartamide) derivative, providing the physicochemical criteria for well-defined micellar formulation. In addition, we describe protocols for a stability assay for SiRNA-loaded PIC micelles in the presence of serum using fluorescence correlation spectroscopy and a luciferase assay for cultured cancer cells stably expressing luciferase, thus providing the biological criteria for further medicinal applications. PMID:26472445

  19. Codelivery of anticancer drugs and siRNA by mesoporous silica nanoparticles.

    PubMed

    Hanafi-Bojd, Mohammad Yahya; Ansari, Legha; Malaekeh-Nikouei, Bizhan

    2016-09-01

    The most common method for cancer treatment is chemotherapy. Multidrug resistance (MDR) is one of the major obstacles in chemotherapeutic treatment of many human cancers. One strategy to overcome this challenge is the delivery of anticancer drugs and siRNA simultaneously using nanoparticles. Mesoporous silica nanoparticles are one of the most popular nanoparticles for cargo delivery because of their intrinsic porosity. This paper highlights recent advances in codelivery of chemotherapeutic and siRNA with mesoporous silica nanoparticles for cancer therapy. In addition, synthesis and functionalization approaches of these nanoparticles are summarized. This review presents insight into the utilization of nanoparticles and combination therapy to achieve more promising results in chemotherapy. PMID:27582236

  20. Liquid crystalline phase nanodispersions enable skin delivery of siRNA.

    PubMed

    Vicentini, Fabiana Testa Moura de Carvalho; Depieri, Lívia Vieira; Polizello, Ana Cristina Morseli; Del Ciampo, José Orestes; Spadaro, Augusto César Cropanese; Fantini, Márcia C A; Vitória Lopes Badra Bentley, Maria

    2013-01-01

    The ability of small interfering RNAs (siRNAs) to potently but reversibly silence genes in vivo has made them particularly well suited as a new class of drugs that interfere with disease-causing or disease-promoting genes. However, the largest remaining hurdle for the widespread use of this technology in skin is the lack of an effective delivery system. The aim of the present study was to evaluate nanodispersed systems in liquid crystalline phases that deliver siRNA into the skin. The proposed systems present important properties for the delivery of macromolecules in a biological medium, as they are formed by substances that have absorption-enhancing and fusogenic effects; additionally, they facilitate entrapment by cellular membranes due to their nano-scale structure. The cationic polymer polyethylenimine (PEI) or the cationic lipid oleylamine (OAM) were added to monoolein (MO)-based systems in different concentrations, and after dispersion in aqueous medium, liquid crystalline phase nanodispersions were obtained and characterized by their physicochemical properties. Then, in vitro penetration studies using diffusion cell and pig ear skin were carried out to evaluate the effect of the nanodispersions on the skin penetration of siRNA; based on these results, the nanodispersions containing MO/OA/PEI/aqueous phase (8:2:5:85, w/w/w/w) and MO/OA/OAM/aqueous phase (8:2:2:88, w/w/w/w) were selected. These systems were investigated in vivo for skin penetration, skin irritation, and the ability to knockdown glyceraldehyde 3-phosphate dehydrogenase (GAPDH) protein levels in animal models. The results showed that the studied nanodispersions may represent a promising new non-viral vehicle and can be considered highly advantageous in the treatment of skin disorders; they were effective in optimizing the skin penetration of siRNA and reducing the levels of the model protein GAPDH without causing skin irritation.

  1. Multifunctional polymeric micelles for delivery of drugs and siRNA.

    PubMed

    Jhaveri, Aditi M; Torchilin, Vladimir P

    2014-01-01

    Polymeric micelles, self-assembling nano-constructs of amphiphilic copolymers with a core-shell structure have been used as versatile carriers for delivery of drugs as well as nucleic acids. They have gained immense popularity owing to a host of favorable properties including their capacity to effectively solubilize a variety of poorly soluble pharmaceutical agents, biocompatibility, longevity, high stability in vitro and in vivo and the ability to accumulate in pathological areas with compromised vasculature. Moreover, additional functions can be imparted to these micelles by engineering their surface with various ligands and cell-penetrating moieties to allow for specific targeting and intracellular accumulation, respectively, to load them with contrast agents to confer imaging capabilities, and incorporating stimuli-sensitive groups that allow drug release in response to small changes in the environment. Recently, there has been an increasing trend toward designing polymeric micelles which integrate a number of the above functions into a single carrier to give rise to "smart," multifunctional polymeric micelles. Such multifunctional micelles can be envisaged as key to improving the efficacy of current treatments which have seen a steady increase not only in hydrophobic small molecules, but also in biologics including therapeutic genes, antibodies and small interfering RNA (siRNA). The purpose of this review is to highlight recent advances in the development of multifunctional polymeric micelles specifically for delivery of drugs and siRNA. In spite of the tremendous potential of siRNA, its translation into clinics has been a significant challenge because of physiological barriers to its effective delivery and the lack of safe, effective and clinically suitable vehicles. To that end, we also discuss the potential and suitability of multifunctional polymeric micelles, including lipid-based micelles, as promising vehicles for both siRNA and drugs. PMID:24795633

  2. Low generation polyamine dendrimers bearing flexible tetraethylene glycol as nanocarriers for plasmids and siRNA

    NASA Astrophysics Data System (ADS)

    Sharma, Rishi; Zhang, Issan; Shiao, Tze Chieh; Pavan, Giovanni M.; Maysinger, Dusica; Roy, René

    2016-02-01

    Low G1 generation polyamine dendrimers built around programmable, flexible, and short tetraethyleneglycol branches were readily prepared in a divergent manner using a combination of orthogonal AB3 or AB5 units and highly efficient chemical transformations based on Cu(i) catalyzed alkyne-azide cycloaddition (CUAAC) and thiol-ene click reactions. The constructs showed that the G1 polyamines with only twelve and eighteen amine surface groups can successfully deliver siRNA in human cells, with transfection efficiency comparable to that of Lipofectamine 2000®. Measurements of cell viability following transfection of plasmid DNA and siRNA showed that the dendritic polyamines are less cytotoxic than Lipofectamine 2000® and are thus preferable for biological applications.Low G1 generation polyamine dendrimers built around programmable, flexible, and short tetraethyleneglycol branches were readily prepared in a divergent manner using a combination of orthogonal AB3 or AB5 units and highly efficient chemical transformations based on Cu(i) catalyzed alkyne-azide cycloaddition (CUAAC) and thiol-ene click reactions. The constructs showed that the G1 polyamines with only twelve and eighteen amine surface groups can successfully deliver siRNA in human cells, with transfection efficiency comparable to that of Lipofectamine 2000®. Measurements of cell viability following transfection of plasmid DNA and siRNA showed that the dendritic polyamines are less cytotoxic than Lipofectamine 2000® and are thus preferable for biological applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06757j

  3. Liquid crystalline phase nanodispersions enable skin delivery of siRNA.

    PubMed

    Vicentini, Fabiana Testa Moura de Carvalho; Depieri, Lívia Vieira; Polizello, Ana Cristina Morseli; Del Ciampo, José Orestes; Spadaro, Augusto César Cropanese; Fantini, Márcia C A; Vitória Lopes Badra Bentley, Maria

    2013-01-01

    The ability of small interfering RNAs (siRNAs) to potently but reversibly silence genes in vivo has made them particularly well suited as a new class of drugs that interfere with disease-causing or disease-promoting genes. However, the largest remaining hurdle for the widespread use of this technology in skin is the lack of an effective delivery system. The aim of the present study was to evaluate nanodispersed systems in liquid crystalline phases that deliver siRNA into the skin. The proposed systems present important properties for the delivery of macromolecules in a biological medium, as they are formed by substances that have absorption-enhancing and fusogenic effects; additionally, they facilitate entrapment by cellular membranes due to their nano-scale structure. The cationic polymer polyethylenimine (PEI) or the cationic lipid oleylamine (OAM) were added to monoolein (MO)-based systems in different concentrations, and after dispersion in aqueous medium, liquid crystalline phase nanodispersions were obtained and characterized by their physicochemical properties. Then, in vitro penetration studies using diffusion cell and pig ear skin were carried out to evaluate the effect of the nanodispersions on the skin penetration of siRNA; based on these results, the nanodispersions containing MO/OA/PEI/aqueous phase (8:2:5:85, w/w/w/w) and MO/OA/OAM/aqueous phase (8:2:2:88, w/w/w/w) were selected. These systems were investigated in vivo for skin penetration, skin irritation, and the ability to knockdown glyceraldehyde 3-phosphate dehydrogenase (GAPDH) protein levels in animal models. The results showed that the studied nanodispersions may represent a promising new non-viral vehicle and can be considered highly advantageous in the treatment of skin disorders; they were effective in optimizing the skin penetration of siRNA and reducing the levels of the model protein GAPDH without causing skin irritation. PMID:23010565

  4. Biodegradable Calcium Phosphate Nanoparticle with Lipid Coating for Systemic siRNA Delivery

    PubMed Central

    Li, Jun; Chen, Yun-Ching; Tseng, Yu-Cheng; Huang, Leaf

    2009-01-01

    A lipid coated calcium phosphate (LCP) nanoparticle (NP) formulation was developed for efficient delivery of small interfering RNA (siRNA) to a xenograft tumor model by intravenous administration. Based on the previous formulation, liposome-polycation-DNA (LPD), which was DNA-protamine complex wrapped by cationic liposome followed by post-insertion of PEG, LCP was similar to LPD NP except that the core was replaced by a biodegradable nano-sized calcium-phosphate precipitate prepared by using water-in-oil micro-emulsions in which siRNA was entrapped. We hypothesized that after entering the cells, LCP would de-assemble at low pH in the endosome, which would cause endosome swelling and bursting to release the entrapped siRNA. Such a mechanism was demonstrated by the increase of intracellular Ca2+ concentration as shown by using a calcium specific dye Fura-2. The LCP NP was further modified by post-insertion of polyethylene glycol (PEG) with or without anisamide, a sigma-1 receptor ligand for systemic administration. Luciferase siRNA was used to evaluate the gene silencing effect in H-460 cells which were stably transduced with a luciferase gene. The anisamide modified LCP NP silenced about 70% and 50% of luciferase activity for the tumor cells in culture and those grown in a xenograft model, respectively. The un-targeted NP showed a very low silencing effect. The new formulation improved the in vitro silencing effect 3–4 folds compared to the previous LPD formulation, but had a negligible immunotoxicity. PMID:19919845

  5. An efficient and low immunostimulatory nanoparticle formulation for systemic siRNA delivery to the tumor.

    PubMed

    Chono, Sumio; Li, Shyh-Dar; Conwell, Christine C; Huang, Leaf

    2008-10-01

    We have developed a nanoparticle formulation [liposomes-protamine-hyaluronic acid nanoparticle (LPH-NP)] for systemically delivering siRNA into the tumor. The LPH-NP was prepared in a self-assembling process. Briefly, protamine and a mixture of siRNA and hyaluronic acid were mixed to prepare a negatively charged complex. Then, cationic liposomes were added to coat the complex with lipids via charge-charge interaction to prepare the LPH-NP. The LPH-NP was further modified by DSPE-PEG or DSPE-PEG-anisamide by the post-insertion method. Anisamide is a targeting ligand for the sigma receptor over-expressed in the B16F10 melanoma cells. The particle size, zeta potential and siRNA encapsulation efficiency of the formulation were approximately 115 nm, +25 mV and 90%, respectively. Luciferase siRNA was used to evaluate the gene silencing activity in the B16F10 cells, which were stably transduced with a luciferase gene. The targeted LPH-NP (PEGylated with ligand) silenced 80% of luciferase activity in the metastatic B16F10 tumor in the lung after a single i.v. injection (0.15 mg siRNA/kg). The targeted LPH-NP also showed very little immunotoxicity in a wide dose range (0.15-1.2 mg siRNA/kg), while the previously published formulation, LPD-NP (liposome-protamine-DNA nanoparticle), had a much narrow therapeutic window (0.15-0.45 mg/kg).

  6. An efficient and low immunostimulatory nanoparticle formulation for systemic siRNA delivery to the tumor

    PubMed Central

    Chono, Sumio; Li, Shyh-Dar; Conwell, Christine C.; Huang, Leaf

    2008-01-01

    We have developed a nanoparticle formulation [liposomes-protamine-hyaluronic acid nanoparticle (LPH-NP)] for systemically delivering siRNA into the tumor. The LPH-NP was prepared in a self-assembling process. Briefly, protamine and a mixture of siRNA and hyaluronic acid were mixed to prepare a negatively charged complex. Then, cationic liposomes were added to coat the complex with lipids via charge-charge interaction to prepare the LPH-NP. The LPH-NP was further modified by DSPE-PEG or DSPE-PEG-anisamide by the post-insertion method. Anisamide is a targeting ligand for the sigma receptor over-expressed in the B16F10 melanoma cells. The particle size, zeta potential and siRNA encapsulation efficiency of the formulation were approximately 115 nm, +25 mV and 90%, respectively. Luciferase siRNA was used to evaluate the gene silencing activity in the B16F10 cells, which were stably transduced with a luciferase gene. The targeted LPH-NP (PEGylated with ligand) silenced 80% of luciferase activity in the metastatic B16F10 tumor in the lung after a single i.v. injection (0.15 mg siRNA/kg). The targeted LPH-NP also showed very little immunotoxicity in a wide dose range (0.15 – 1.2 mg siRNA/kg), while the previously published formulation, LPD-NP (liposome-protamine-DNA nanoparticle), had a much narrow therapeutic window (0.15–0.45 mg/kg). PMID:18674578

  7. Lipid-mediated DNA and siRNA Transfection Efficiency Depends on Peptide Headgroup.

    PubMed

    Zhang, Xiao-Xiang; Lamanna, Caroline M; Kohman, Richie E; McIntosh, Thomas J; Han, Xue; Grinstaff, Mark W

    2013-05-01

    A series of amphiphiles with differing cationic tri- and di- peptide headgroups, designed and synthesized based on lysine (K), ornithine (O), arginine (R), and glycine (G), have been characterized and evaluated for DNA and siRNA delivery. DNA-lipoplexes formed from the tri- and di- lipopeptides possessed lipid:nucleic acid charge ratios of 7:1 to 10:1, diameters of ~200 nm to 375 nm, zeta potentials of 23 mV to 41 mV, melting temperatures of 12 °C to 46 °C, and lamellar repeat periods of 6 nm to 8 nm. These lipid-DNA complexes formed supramolecular structures in which DNA is entrapped at the surface between multilamellar liposomal vesicles. Compared to their DNA counterparts, siRNA-lipoplexes formed slightly larger complexes (348 nm to 424 nm) and required higher charge ratios to form stable structures. Additionally, it was observed that lipids with multivalent, tripeptide headgroups (i.e., KGG, OGG, and RGG) were successful at transfecting DNA in vitro, whereas DNA transfection with the dipeptide lipids proved ineffective. Cellular uptake of DNA was more effective with the KGG compared to the KG lipopeptide. In siRNA knockdown experiments, both tri- and di- peptide lipids (i.e., RGG, GGG, KG, OG, RG, GG) showed some efficacy, but total cellular uptake of siRNA complexes was not indicative of knockdown outcomes and suggested that the intracellular fate of lipoplexes may be a factor. Overall, this lipopeptide study expands the library of efficient DNA transfection vectors available for use, introduces new vectors for siRNA delivery, and begins to address the structure-activity relationships which influence delivery and transfection efficacy. PMID:24391676

  8. Lipid-mediated DNA and siRNA Transfection Efficiency Depends on Peptide Headgroup

    PubMed Central

    Zhang, Xiao-Xiang; LaManna, Caroline M.; Kohman, Richie E.; McIntosh, Thomas J.; Han, Xue; Grinstaff, Mark W.

    2013-01-01

    A series of amphiphiles with differing cationic tri- and di- peptide headgroups, designed and synthesized based on lysine (K), ornithine (O), arginine (R), and glycine (G), have been characterized and evaluated for DNA and siRNA delivery. DNA-lipoplexes formed from the tri- and di- lipopeptides possessed lipid:nucleic acid charge ratios of 7:1 to 10:1, diameters of ~200 nm to 375 nm, zeta potentials of 23 mV to 41 mV, melting temperatures of 12 °C to 46 °C, and lamellar repeat periods of 6 nm to 8 nm. These lipid-DNA complexes formed supramolecular structures in which DNA is entrapped at the surface between multilamellar liposomal vesicles. Compared to their DNA counterparts, siRNA-lipoplexes formed slightly larger complexes (348 nm to 424 nm) and required higher charge ratios to form stable structures. Additionally, it was observed that lipids with multivalent, tripeptide headgroups (i.e., KGG, OGG, and RGG) were successful at transfecting DNA in vitro, whereas DNA transfection with the dipeptide lipids proved ineffective. Cellular uptake of DNA was more effective with the KGG compared to the KG lipopeptide. In siRNA knockdown experiments, both tri- and di- peptide lipids (i.e., RGG, GGG, KG, OG, RG, GG) showed some efficacy, but total cellular uptake of siRNA complexes was not indicative of knockdown outcomes and suggested that the intracellular fate of lipoplexes may be a factor. Overall, this lipopeptide study expands the library of efficient DNA transfection vectors available for use, introduces new vectors for siRNA delivery, and begins to address the structure-activity relationships which influence delivery and transfection efficacy. PMID:24391676

  9. Multifunctional polymeric micelles for delivery of drugs and siRNA

    PubMed Central

    Jhaveri, Aditi M.; Torchilin, Vladimir P.

    2014-01-01

    Polymeric micelles, self-assembling nano-constructs of amphiphilic copolymers with a core-shell structure have been used as versatile carriers for delivery of drugs as well as nucleic acids. They have gained immense popularity owing to a host of favorable properties including their capacity to effectively solubilize a variety of poorly soluble pharmaceutical agents, biocompatibility, longevity, high stability in vitro and in vivo and the ability to accumulate in pathological areas with compromised vasculature. Moreover, additional functions can be imparted to these micelles by engineering their surface with various ligands and cell-penetrating moieties to allow for specific targeting and intracellular accumulation, respectively, to load them with contrast agents to confer imaging capabilities, and incorporating stimuli-sensitive groups that allow drug release in response to small changes in the environment. Recently, there has been an increasing trend toward designing polymeric micelles which integrate a number of the above functions into a single carrier to give rise to “smart,” multifunctional polymeric micelles. Such multifunctional micelles can be envisaged as key to improving the efficacy of current treatments which have seen a steady increase not only in hydrophobic small molecules, but also in biologics including therapeutic genes, antibodies and small interfering RNA (siRNA). The purpose of this review is to highlight recent advances in the development of multifunctional polymeric micelles specifically for delivery of drugs and siRNA. In spite of the tremendous potential of siRNA, its translation into clinics has been a significant challenge because of physiological barriers to its effective delivery and the lack of safe, effective and clinically suitable vehicles. To that end, we also discuss the potential and suitability of multifunctional polymeric micelles, including lipid-based micelles, as promising vehicles for both siRNA and drugs. PMID:24795633

  10. Targeted in vivo delivery of siRNA and an endosome-releasing agent to hepatocytes.

    PubMed

    Sebestyén, Magdolna G; Wong, So C; Trubetskoy, Vladimir; Lewis, David L; Wooddell, Christine I

    2015-01-01

    The discoveries of RNA interference (RNAi) and short interfering RNAs (siRNAs) have provided the opportunity to treat diseases in a fundamentally new way: by co-opting a natural process to inhibit gene expression at the mRNA level. Given that siRNAs must interact with the cells' natural RNAi machinery in order to exert their silencing effect, one of the most fundamental requirements for their use is efficient delivery to the desired cell type and, specifically, into the cytoplasm of those cells. Numerous research efforts involving the testing of a large number of delivery approaches using various carrier molecules and inventing several distinct formulation technologies during the past decade illustrate the difficulty and complexity of this task. We have developed synthetic polymer formulations for in vivo siRNA delivery named Dynamic PolyConjugates™ (DPCs) that are designed to mimic the features viruses possess for efficient delivery of their nucleic acids. These include small size, long half-life in circulation, capability of displaying distinct host cell tropism, efficient receptor binding and cell entry, disassembly in the endosome and subsequent release of the nucleic acid cargo to the cytoplasm. Here we present an example of this delivery platform composed of a hepatocyte-targeted endosome-releasing agent and a cholesterol-conjugated siRNA (chol-siRNA). This delivery platform forms the basis of ARC-520, an siRNA-based therapeutic for the treatment of chronic hepatitis B virus (HBV) infection. In this chapter, we provide a general overview of the steps in developing ARC-520 and detailed protocols for two critical stages of the discovery process: (1) verifying targeted in vivo delivery to hepatocytes and (2) evaluating in vivo drug efficacy using a mouse model of chronic HBV infection.

  11. Acid-Degradable Cationic Dextran Particles for the Delivery of siRNA Therapeutics

    PubMed Central

    Cohen, Jessica L.; Schubert, Stephanie; Wich, Peter R.; Cui, Lina; Cohen, Joel A.; Mynar, Justin L.; Fréchet, Jean M. J.

    2011-01-01

    We report a new acid-sensitive, biocompatible and biodegradable microparticulate delivery system, spermine modified acetalated-dextran (Spermine-Ac-DEX), which can be used to efficiently encapsulate siRNA. These particles demonstrated efficient gene knockdown in HeLa-luc cells with minimal toxicity. This knockdown was comparable to that obtained using Lipofectamine, a commercially available transfection reagent generally limited to in vitro use due to its high toxicity. PMID:21539393

  12. Multivalent dendritic polyglycerolamine with arginine and histidine end groups for efficient siRNA transfection

    PubMed Central

    Sheikhi Mehrabadi, Fatemeh; Zeng, Hanxiang; Johnson, Mark; Schlesener, Cathleen

    2015-01-01

    Summary The success of siRNA-based therapeutics highly depends on a safe and efficient delivery of siRNA into the cytosol. In this study, we post-modified the primary amines on dendritic polyglycerolamine (dPG-NH2) with different ratios of two relevant amino acids, namely, arginine (Arg) and histidine (His). To investigate the effects from introducing Arg and His to dPG, the resulting polyplexes of amino acid functionalized dPG-NH2s (AAdPGs)/siRNA were evaluated regarding cytotoxicity, transfection efficiency, and cellular uptake. Among AAdPGs, an optimal vector with (1:3) Arg to His ratio, showed efficient siRNA transfection with minimal cytotoxicity (cell viability ≥ 90%) in NIH 3T3 cells line. We also demonstrated that the cytotoxicity of dPG-NH2 decreased as a result of amino acid functionalization. While the incorporation of both cationic (Arg) and pH-responsive residues (His) are important for safe and efficient siRNA transfection, this study indicates that AAdPGs containing higher degrees of His display lower cytotoxicity and more efficient endosomal escape. PMID:26124878

  13. PolyMetformin combines carrier and anticancer activities for in vivo siRNA delivery

    PubMed Central

    Zhao, Yi; Wang, Wei; Guo, Shutao; Wang, Yuhua; Miao, Lei; Xiong, Yang; Huang, Leaf

    2016-01-01

    Metformin, a widely implemented anti-diabetic drug, exhibits potent anticancer efficacies. Herein a polymeric construction of Metformin, PolyMetformin (PolyMet) is successfully synthesized through conjugation of linear polyethylenimine (PEI) with dicyandiamide. The delocalization of cationic charges in the biguanide groups of PolyMet reduces the toxicity of PEI both in vitro and in vivo. Furthermore, the polycationic properties of PolyMet permits capture of siRNA into a core-membrane structured lipid-polycation-hyaluronic acid (LPH) nanoparticle for systemic gene delivery. Advances herein permit LPH-PolyMet nanoparticles to facilitate VEGF siRNA delivery for VEGF knockdown in a human lung cancer xenograft, leading to enhanced tumour suppressive efficacy. Even in the absence of RNAi, LPH-PolyMet nanoparticles act similarly to Metformin and induce antitumour efficacy through activation of the AMPK and inhibition of the mTOR. In essence, PolyMet successfully combines the intrinsic anticancer efficacy of Metformin with the capacity to carry siRNA to enhance the therapeutic activity of an anticancer gene therapy. PMID:27264609

  14. Selective apoptosis of breast cancer cells by siRNA targeting of BORIS.

    PubMed

    Dougherty, Christopher J; Ichim, Thomas E; Liu, Liping; Reznik, Gary; Min, Wei-Ping; Ghochikyan, Anahit; Agadjanyan, Michael G; Reznik, Boris N

    2008-05-23

    Brother of the regulator of imprinted sites (BORIS) is an epigenetically acting transcription factor which represses the tumor inhibitor functions of the tumor suppressor protein CTCF. BORIS expression has not been documented in adult females, making it an exciting molecular target for drug development in breast cancer. Previously, we demonstrated that vaccination of mice with zing-finger (ZF)-deleted non-functional BORIS results in regression of breast cancer and generation of potent anti-tumor immune responses. RNAi induction can be used as an alternative approach for selective tumor cell killing. Short interfering RNA (siRNA) molecules targeting BORIS were generated and their efficacy was tested in MDA-MB-231 breast cancer and non-malignant epithelial cell lines. Treatment with BORIS-specific siRNA, but not control siRNA led to a concentration-dependent reduction in BORIS expression and proportional apoptotic death of the cancer but not control cells. To our knowledge this is first report demonstrating a critical role of BORIS in maintaining tumor cell viability.

  15. RNA Interference Induced by the Cationic Lipid Delivery of siRNA

    NASA Astrophysics Data System (ADS)

    Bouxsein, Nathan

    2005-03-01

    Recent discoveries demonstrate that the introduction of synthetically prepared duplexes of 19-21 bp short interfering RNAs (siRNA) into mammalian cells results in the cleavage of target mRNA leading to post transcriptional gene silencing [1]. Our work focuses on the cationic-lipid (CL) mediated delivery of siRNA into mammalian cell lines in an approach similar to CL based gene delivery [2]. Co-transfection of a target and a non-target reporter plasmid followed by the CL delivery of a sequence specific siRNA allows us to probe the silencing efficiency (SE) of the target plasmid relative to non-specific silencing of both plasmids. We have created a phase diagram for SE as a function of the complex membrane charge density and as a function of the CL:siRNA charge ratio. X-ray diffraction was performed to probe the structure of the complexes at points along the phase diagram. Funding provided by NIH AI-12520, AI-20611 and GM-59288. [1] Elbashir et. al., Nature, 411 494-498 (2001) [2] Ewert et. al., Curr. Med. Chem. 11 133-149 (2004)

  16. Gold nanorod delivery of LSD1 siRNA induces human mesenchymal stem cell differentiation.

    PubMed

    Zhao, Xiongfei; Huang, Qianying; Jin, Yiqiang

    2015-09-01

    Over the past decade, theranostic nanoparticles with microsize and multifunctional ability have emerged as a new platform in biomedical field, such as cancer therapy, optical imaging and gene therapy. Gene therapy has been recently shown as a promising tool for tissue engineering as safe and effective nanotechnology-based delivery methods are developed. Controlling adhesion and differentiation of stem cells is critical for tissue regeneration. In this study, we have developed poly-sodium 4-styrenesulfonate (PSS) and poly-allylamine hydrochloride (PAH) coated AuNR-based nanocarriers, which are capable of delivering small interfering RNA (siRNA) against LSD1 to induce the differentiation of human mesenchymal stem cells. To further study the mechanism, we tested the stemness and differentiation genes and found that they have been changed with LSD1 down-regulation. In addition, with the hepatocyte growth factor (HGF), LSD1 siRNA delivery by AuNRs could promote the differentiation of the human mesenchymal stem cells (human MSCs) into a hepatocyte lineage in vitro. Our results suggest for the first time use of AuNRs as nanocarriers of delivery LSD1 siRNA to induce the differentiation of human MSCs into a hepatocyte lineage, and envision the potential application of nanotechnology in tissue remodeling (such as liver and bone) in vivo, eventually translating to clinical applications.

  17. Efficient Inhibition of wear debris-induced inflammation by locally delivered siRNA

    SciTech Connect

    Peng Xiaochun; Tao Kun; Cheng Tao; Zhu Junfeng; Zhang Xianlong

    2008-12-12

    Aseptic loosening is the most common long-term complication of total joint replacement, which is associated with the generation of wear debris. The purpose of this study was to investigate the inhibitory effect of small interfering RNA (siRNA) targeting tumor necrosis factor-{alpha} (TNF-{alpha}) on wear debris-induced inflammation. A local delivery of lentivirus-mediated TNF-{alpha} siRNA into the modified murine air pouch, which was stimulated by polymethylmethacrylate (PMMA) particles, resulted in significant blockage of TNF-{alpha} both in mRNA and protein levels for up to 4 weeks. In addition, significant down-regulation of interleukin-1 (IL-1) and interleukin-6 (IL-6) was observed in TNF-{alpha} siRNA-treated pouches. The safety profile of gene therapy was proven by Bioluminescent assay and quantitative fluorescent flux. Histological analysis revealed less inflammatory responses (thinner pouch membrane and decreased cellular infiltration) in TNF-{alpha} siRNA-treated pouches. These findings suggest that local delivery of TNF-{alpha} siRNA might be an excellent therapeutic candidate to inhibit particle-induced inflammation.

  18. PEGylated cyclodextrins as novel siRNA nanosystems: correlations between polyethylene glycol length and nanoparticle stability.

    PubMed

    Godinho, Bruno M D C; Ogier, Julien R; Quinlan, Aoife; Darcy, Raphael; Griffin, Brendan T; Cryan, John F; O'Driscoll, Caitriona M

    2014-10-01

    Silencing disease-related genes in the central nervous system (CNS) using short interfering RNA (siRNA) holds great promise for treating neurological disorders. Yet, delivery of RNAi therapeutics to the brain poses major challenges to non-viral systems, especially when considering systemic administration. Cationic nanoparticles have been widely investigated for siRNA delivery, but the tendency of these to aggregate in physiological environments limits their intravenous application. Thus, strategies to increase the stability of nanoparticles have been developed. Here, we investigated the ability of modified cationic amphiphilic or PEGylated amphiphilic cyclodextrins (CD) to formulate stable CD.siRNA nanoparticles. To this end, we describe a simple method for post-modification of pre-formed cationic CD.siRNA nanoparticles at their surface using PEGylated CDs of different PEG lengths. PEGylated CD.siRNA nanoparticles presented reduced surface charges and increased stability in physiological salt conditions. Stability of PEGylated CD.siRNA nanoparticles in vitro increased with both PEG length and PEG density at the surface. Furthermore, in a comparative pharmacokinetic study, increased systemic exposure and reduced clearance were achieved with CD-formulations when compared to naked siRNAs. However, no significant differences were observed among non-PEGylated and PEGylated CD.siRNAs suggesting that longer PEG lengths might be required for improving stability in vivo. PMID:24992319

  19. Adipocyte differentiation induced using nonspecific siRNA controls in cultured human mesenchymal stem cells

    PubMed Central

    Xu, Yunhe; Mirmalek-Sani, Sayed-Hadi; Lin, Feng; Zhang, Junlong; Oreffo, Richard O.C.

    2007-01-01

    RNA interference (RNAi) is gene silencing induced by double-stranded RNA of 21–23 nucleotides in length, termed small interfering RNA, or siRNA. RNAi-based techniques have been widely applied to elucidate gene function, identify drug targets, and used in trials as a promising adjunct to silence disease-causing genes. However, emerging evidence suggests unexpected changes in expression of untargeted genes as a consequence of an off-target effect by RNAi in mammalian cells. To date, our understanding of such effects on stem cells is limited. We transfected human fetal femur-derived mesenchymal stem cells using commercially available nonspecific siRNA controls and examined adipocyte differentiation in the cells using morphology, histochemistry, and quantitative real-time PCR to examine the expression of key genes for adipogenic or osteogenic differentiation. We report here the induction of adipocyte differentiation in human mesenchymal stem cells using nonspecific siRNAs raising concerns as to the specificity of RNAi in stem cells and, critically, a need to understand and delineate the rules governing the specificity of RNAi. PMID:17556710

  20. Delivery of siRNA via cationic Sterosomes to enhance osteogenic differentiation of mesenchymal stem cells.

    PubMed

    Cui, Zhong-Kai; Fan, Jiabing; Kim, Soyon; Bezouglaia, Olga; Fartash, Armita; Wu, Benjamin M; Aghaloo, Tara; Lee, Min

    2015-11-10

    Noggin is a specific antagonist of bone morphogenetic proteins (BMPs) that can prevent the interaction of BMPs with their receptors. RNA interfering molecules have been used to downregulate noggin expression and thereby stimulate BMP signaling and osteogenesis. Cationic liposomes are considered one of the most efficient non-viral systems for gene delivery. In the past decade, non-phospholipid liposomes (Sterosomes) formulated with single-chain amphiphiles and high content of sterols have been developed. In particular, Sterosomes composed of stearylamine (SA) and cholesterol (Chol) display distinct properties compared with traditional phospholipid liposomes, including increased positive surface charges and enhanced particle stability. Herein, we report SA/Chol Sterosome and small interfering RNA (siRNA) complexes that significantly enhanced cellular uptake and gene knockdown efficiencies in adipose derived mesenchymal stem cells with minimal cytotoxicity compared with commercially available lipofectamine 2000. Furthermore, we confirmed osteogenic efficacy of these Sterosomes loaded with noggin siRNA in in vitro two- and three-dimensional settings as well as in a mouse calvarial defect model. The delivery of siRNA via novel SA/Chol Sterosomes presents a powerful method for efficient gene knockdown. These distinct nanoparticles may present a promising alternative approach for gene delivery.

  1. Inter-molecular β-sheet structure facilitates lung-targeting siRNA delivery.

    PubMed

    Zhou, Jihan; Li, Dong; Wen, Hao; Zheng, Shuquan; Su, Cuicui; Yi, Fan; Wang, Jue; Liang, Zicai; Tang, Tao; Zhou, Demin; Zhang, Li-He; Liang, Dehai; Du, Quan

    2016-01-01

    Size-dependent passive targeting based on the characteristics of tissues is a basic mechanism of drug delivery. While the nanometer-sized particles are efficiently captured by the liver and spleen, the micron-sized particles are most likely entrapped within the lung owing to its unique capillary structure and physiological features. To exploit this property in lung-targeting siRNA delivery, we designed and studied a multi-domain peptide named K-β, which was able to form inter-molecular β-sheet structures. Results showed that K-β peptides and siRNAs formed stable complex particles of 60 nm when mixed together. A critical property of such particles was that, after being intravenously injected into mice, they further associated into loose and micron-sized aggregates, and thus effectively entrapped within the capillaries of the lung, leading to a passive accumulation and gene-silencing. The large size aggregates can dissociate or break down by the shear stress generated by blood flow, alleviating the pulmonary embolism. Besides the lung, siRNA enrichment and targeted gene silencing were also observed in the liver. This drug delivery strategy, together with the low toxicity, biodegradability, and programmability of peptide carriers, show great potentials in vivo applications. PMID:26955887

  2. Functional motor recovery from brain ischemic insult by carbon nanotube-mediated siRNA silencing

    PubMed Central

    Al-Jamal, Khuloud T.; Gherardini, Lisa; Bardi, Giuseppe; Nunes, Antonio; Guo, Chang; Bussy, Cyrill; Herrero, M. Antonia; Bianco, Alberto; Prato, Maurizio; Kostarelos, Kostas; Pizzorusso, Tommaso

    2011-01-01

    Stroke is the second cause of death worldwide with ischemic stroke accounting for 80% of all stroke insults. Caspase-3 activation contributes to brain tissue loss and downstream biochemical events that lead to programmed cell death after traumatic brain injury. Alleviation of symptoms following ischemic neuronal injury can be potentially achieved by either genetic disruption or pharmacological inhibition of caspases. Here, we studied whether silencing of Caspase-3 using carbon nanotube-mediated in vivo RNA interference (RNAi) could offer a therapeutic opportunity against stroke. Effective delivery of siRNA directly to the CNS has been shown to normalize phenotypes in animal models of several neurological diseases. It is shown here that peri-lesional stereotactic administration of a Caspase-3 siRNA (siCas 3) delivered by functionalized carbon nanotubes (f-CNT) reduced neurodegeneration and promoted functional preservation before and after focal ischemic damage of the rodent motor cortex using an endothelin-1 induced stroke model. These observations illustrate the opportunity offered by carbon nanotube-mediated siRNA delivery and gene silencing of neuronal tissue applicable to a variety of different neuropathological conditions where intervention at well localized brain foci may offer therapeutic and functional benefits. PMID:21690348

  3. Screening of efficient siRNA carriers in a library of surface-engineered dendrimers

    PubMed Central

    Liu, Hongmei; Chang, Hong; Lv, Jia; Jiang, Cong; Li, Zhenxi; Wang, Fei; Wang, Hui; Wang, Mingming; Liu, Chongyi; Wang, Xinyu; Shao, Naimin; He, Bingwei; Shen, Wanwan; Zhang, Qiang; Cheng, Yiyun

    2016-01-01

    Polymers are widely used as non-viral carriers for siRNA delivery, but concern has also arisen in their limited efficacy and inherent toxicity. Whilst many of previous efforts have been documented towards improving the performance of polymers via chemical modifications, the structure-activity relationships (SAR) of these ligand-modified polymers are not well understood. To address this issue, we systemically prepared a library of surface-engineered dendrimers (>300) as the screening pool to discover efficient siRNA carriers. The modified ligands include alkyls and fluoroalkyls, amino acids, benzene derivatives and heterocyclic compounds. Gene silencing results showed that the lead material shows excellent efficacy even in hard-to-transfect cells such as mesenchymal stem cells. The SAR studies revealed that ligands containing appropriate hydrophobicity, or ligands with both hydrophobic and functional atoms/groups are essential for polymers to achive efficient knockdown efficacy. A second-generation library designed based on the above principles further confirms the proposed design criteria. The results enable the future rational design of potent siRNA carriers. PMID:27121799

  4. Inter-molecular β-sheet structure facilitates lung-targeting siRNA delivery

    PubMed Central

    Zhou, Jihan; Li, Dong; Wen, Hao; Zheng, Shuquan; Su, Cuicui; Yi, Fan; Wang, Jue; Liang, Zicai; Tang, Tao; Zhou, Demin; Zhang, Li-He; Liang, Dehai; Du, Quan

    2016-01-01

    Size-dependent passive targeting based on the characteristics of tissues is a basic mechanism of drug delivery. While the nanometer-sized particles are efficiently captured by the liver and spleen, the micron-sized particles are most likely entrapped within the lung owing to its unique capillary structure and physiological features. To exploit this property in lung-targeting siRNA delivery, we designed and studied a multi-domain peptide named K-β, which was able to form inter-molecular β-sheet structures. Results showed that K-β peptides and siRNAs formed stable complex particles of 60 nm when mixed together. A critical property of such particles was that, after being intravenously injected into mice, they further associated into loose and micron-sized aggregates, and thus effectively entrapped within the capillaries of the lung, leading to a passive accumulation and gene-silencing. The large size aggregates can dissociate or break down by the shear stress generated by blood flow, alleviating the pulmonary embolism. Besides the lung, siRNA enrichment and targeted gene silencing were also observed in the liver. This drug delivery strategy, together with the low toxicity, biodegradability, and programmability of peptide carriers, show great potentials in vivo applications. PMID:26955887

  5. Delivery of Therapeutic siRNA to the Lung Endothelium via Novel Lipoplex Formulation DACC

    PubMed Central

    Fehring, V; Schaeper, U; Ahrens, K; Santel, A; Keil, O; Eisermann, M; Giese, K; Kaufmann, Jörg

    2014-01-01

    Posttranscriptional gene silencing by RNA interference can be therapeutically exploited to inhibit pathophysiological gene expression. However, in contrast to the established effectiveness of RNAi in vitro, safe and effective delivery of siRNAs to specific organs and cell types in vivo remains the major hurdle. Here, we report the development and in vivo characterization of a novel siRNA delivery system (DACC lipoplex) suitable for modulating target gene expression specifically in the lung vasculature. Systemic administration of DACC in mice delivered siRNA cargo functionally to the lung pulmonary endothelium. A single dose of DACC lipoplexes administered by bolus injection or by infusion was sufficient to specifically silence genes expressed in pulmonary endothelial cells such as CD31, Tie-2, VE-cadherin, or BMP-R2. When tested in a mouse model for lung cancer, repeated treatment with DACC/siRNACD31 reduced formation of lung metastases and increased life span in a mouse model of experimental lung metastasis. PMID:24390281

  6. Multifunctional, self-assembling anionic peptide-lipid nanocomplexes for targeted siRNA delivery.

    PubMed

    Tagalakis, Aristides D; Lee, Do Hyang D; Bienemann, Alison S; Zhou, Haiyan; Munye, Mustafa M; Saraiva, Luisa; McCarthy, David; Du, Zixiu; Vink, Conrad A; Maeshima, Ruhina; White, Edward A; Gustafsson, Kenth; Hart, Stephen L

    2014-09-01

    Formulations of cationic liposomes and polymers readily self-assemble by electrostatic interactions with siRNA to form cationic nanoparticles which achieve efficient transfection and silencing in vitro. However, the utility of cationic formulations in vivo is limited due to rapid clearance from the circulation, due to their association with serum proteins, as well as systemic and cellular toxicity. These problems may be overcome with anionic formulations but they provide challenges of self-assembly and transfection efficiency. We have developed anionic, siRNA nanocomplexes utilizing anionic PEGylated liposomes and cationic targeting peptides that overcome these problems. Biophysical measurements indicated that at optimal ratios of components, anionic PEGylated nanocomplexes formed spherical particles and that, unlike cationic nanocomplexes, were resistant to aggregation in the presence of serum, and achieved significant gene silencing although their non-PEGylated anionic counterparts were less efficient. We have evaluated the utility of anionic nanoparticles for the treatment of neuronal diseases by administration to rat brains of siRNA to BACE1, a key enzyme involved in the formation of amyloid plaques. Silencing of BACE1 was achieved in vivo following a single injection of anionic nanoparticles by convection enhanced delivery and specificity of RNA interference verified by 5' RACE-PCR and Western blot analysis of protein.

  7. Ability to adapt: different generations of PAMAM dendrimers show different behaviors in binding siRNA.

    PubMed

    Pavan, Giovanni M; Albertazzi, Lorenzo; Danani, Andrea

    2010-03-01

    This paper reports a molecular dynamic study to explore the diverse behavior of different generations of poly(amidoamine) (PAMAM) dendrimers in binding siRNA. Our models show good accordance with experimental measurements. Simulations demonstrate that the molecular flexibility of PAMAMs plays a crucial role in the binding event, which is controlled by the modulation between enthalpy and entropy of binding. Importantly, the ability of dendrimers to adapt to siRNA is strongly dependent on the generation and on the pH due to backfolding. While G4 demonstrates good adaptability to siRNA, G6 behaves like a rigid sphere with a consistent loss in the binding affinity. G5 shows a hybrid behavior, maintaining rigid and flexible aspects, with a strong dependence of its properties on the pH. To define the "best binder", the mere energetic definition of binding affinity appears to be no longer effective and a novel concept of "efficiency" should be considered, being the balance between enthalpy and entropy of binding indivisible from the structural flexibility. With this aim, we propose an original criterion to define and rank the ability of these molecules to adapt their structure to bind a charged target. PMID:20146540

  8. Harnessing a Physiologic Mechanism for siRNA Delivery With Mimetic Lipoprotein Particles

    PubMed Central

    Nakayama, Tomoko; Butler, James S; Sehgal, Alfica; Severgnini, Mariano; Racie, Tim; Sharman, Jennifer; Ding, Feng; Morskaya, Svetlana Shulga; Brodsky, Joshua; Tchangov, Lubomir; Kosovrasti, Verbena; Meys, Mike; Nechev, Lubomir; Wang, Gang; Peng, Chang Geng; Fang, Yupang; Maier, Martin; Rajeev, Kallanthottathil G; Li, Robert; Hettinger, Julia; Barros, Scott; Clausen, Valerie; Zhang, Xuemei; Wang, Qianfan; Hutabarat, Renta; Dokholyan, Nikolay V; Wolfrum, Christian; Manoharan, Muthiah; Kotelianski, Victor; Stoffel, Markus; Sah, Dinah WY

    2012-01-01

    Therapeutics based on RNA interference (RNAi) have emerged as a potential new class of drugs for treating human disease by silencing the target messenger RNA (mRNA), thereby reducing levels of the corresponding pathogenic protein. The major challenge for RNAi therapeutics is the development of safe delivery vehicles for small interfering RNAs (siRNAs). We previously showed that cholesterol-conjugated siRNAs (chol-siRNA) associate with plasma lipoprotein particles and distribute primarily to the liver after systemic administration to mice. We further demonstrated enhancement of silencing by administration of chol-siRNA pre-associated with isolated high-density lipoprotein (HDL) or low-density lipoprotein (LDL). In this study, we investigated mimetic lipoprotein particle prepared from recombinant apolipoprotein A1 (apoA) and apolipoprotein E3 (apoE) as a delivery vehicle for chol-siRNAs. We show that apoE-containing particle (E-lip) is highly effective in functional delivery of chol-siRNA to mouse liver. E-lip delivery was found to be considerably more potent than apoA-containing particle (A-lip). Furthermore, E-lip–mediated delivery was not significantly affected by high endogenous levels of plasma LDL. These results demonstrate that E-lip has substantial potential as delivery vehicles for lipophilic conjugates of siRNAs. PMID:22850721

  9. Utility of MicroRNAs and siRNAs in Cervical Carcinogenesis

    PubMed Central

    Díaz-González, Sacnite del Mar; Benítez-Boijseauneau, Odelia; Gómez-Cerón, Claudia; Bermúdez-Morales, Victor Hugo; Rodríguez-Dorantes, Mauricio; Pérez-Plasencia, Carlos; Peralta-Zaragoza, Oscar

    2015-01-01

    MicroRNAs and siRNAs belong to a family of small noncoding RNAs which bind through partial sequence complementarity to 3′-UTR regions of mRNA from target genes, resulting in the regulation of gene expression. MicroRNAs have become an attractive target for genetic and pharmacological modulation due to the critical function of their target proteins in several signaling pathways, and their expression profiles have been found to be altered in various cancers. A promising technology platform for selective silencing of cell and/or viral gene expression using siRNAs is currently in development. Cervical cancer is the most common cancer in women in the developing world and sexually transmitted infection with HPV is the cause of this malignancy. Therefore, a cascade of abnormal events is induced during cervical carcinogenesis, including the induction of genomic instability, reprogramming of cellular metabolic pathways, deregulation of cell proliferation, inhibition of apoptotic mechanisms, disruption of cell cycle control mechanisms, and alteration of gene expression. Thus, in the present review article, we highlight new research on microRNA expression profiles which may be utilized as biomarkers for cervical cancer. Furthermore, we discuss selective silencing of HPV E6 and E7 with siRNAs which represents a potential gene therapy strategy against cervical cancer. PMID:25874209

  10. Utility of microRNAs and siRNAs in cervical carcinogenesis.

    PubMed

    Díaz-González, Sacnite del Mar; Deas, Jessica; Benítez-Boijseauneau, Odelia; Gómez-Cerón, Claudia; Bermúdez-Morales, Victor Hugo; Rodríguez-Dorantes, Mauricio; Pérez-Plasencia, Carlos; Peralta-Zaragoza, Oscar

    2015-01-01

    MicroRNAs and siRNAs belong to a family of small noncoding RNAs which bind through partial sequence complementarity to 3'-UTR regions of mRNA from target genes, resulting in the regulation of gene expression. MicroRNAs have become an attractive target for genetic and pharmacological modulation due to the critical function of their target proteins in several signaling pathways, and their expression profiles have been found to be altered in various cancers. A promising technology platform for selective silencing of cell and/or viral gene expression using siRNAs is currently in development. Cervical cancer is the most common cancer in women in the developing world and sexually transmitted infection with HPV is the cause of this malignancy. Therefore, a cascade of abnormal events is induced during cervical carcinogenesis, including the induction of genomic instability, reprogramming of cellular metabolic pathways, deregulation of cell proliferation, inhibition of apoptotic mechanisms, disruption of cell cycle control mechanisms, and alteration of gene expression. Thus, in the present review article, we highlight new research on microRNA expression profiles which may be utilized as biomarkers for cervical cancer. Furthermore, we discuss selective silencing of HPV E6 and E7 with siRNAs which represents a potential gene therapy strategy against cervical cancer.

  11. Polyethyleneimine (PEI) Mediated siRNA Gene Silencing in the Schistosoma mansoni Snail Host, Biomphalaria glabrata

    PubMed Central

    Knight, Matty; Miller, Andre; Liu, Yijia; Scaria, Puthupparampil; Woodle, Martin; Ittiprasert, Wannaporn

    2011-01-01

    An in vivo, non-invasive technique for gene silencing by RNA interference (RNAi) in the snail, Biomphalaria glabrata, has been developed using cationic polymer polyethyleneimine (PEI) mediated delivery of long double-stranded (ds) and small interfering (si) RNA. Cellular delivery was evaluated and optimized by using a ‘mock’ fluorescent siRNA. Subsequently, we used the method to suppress expression of Cathepsin B (CathB) with either the corresponding siRNA or dsRNA of this transcript. In addition, the knockdown of peroxiredoxin (Prx) at both RNA and protein levels was achieved with the PEI-mediated soaking method. B. glabrata is an important snail host for the transmission of the parasitic digenean platyhelminth, Schistosoma mansoni that causes schistosomiasis in the neotropics. Progress is being made to realize the genome sequence of the snail and to uncover gene expression profiles and cellular pathways that enable the snail to either prevent or sustain an infection. Using PEI complexes, a convenient soaking method has been developed, enabling functional gene knockdown studies with either dsRNA or siRNA. The protocol developed offers a first whole organism method for host-parasite gene function studies needed to identify key mechanisms required for parasite development in the snail host, which ultimately are needed as points for disrupting this parasite mediated disease. PMID:21765961

  12. Gold nanorod delivery of LSD1 siRNA induces human mesenchymal stem cell differentiation.

    PubMed

    Zhao, Xiongfei; Huang, Qianying; Jin, Yiqiang

    2015-09-01

    Over the past decade, theranostic nanoparticles with microsize and multifunctional ability have emerged as a new platform in biomedical field, such as cancer therapy, optical imaging and gene therapy. Gene therapy has been recently shown as a promising tool for tissue engineering as safe and effective nanotechnology-based delivery methods are developed. Controlling adhesion and differentiation of stem cells is critical for tissue regeneration. In this study, we have developed poly-sodium 4-styrenesulfonate (PSS) and poly-allylamine hydrochloride (PAH) coated AuNR-based nanocarriers, which are capable of delivering small interfering RNA (siRNA) against LSD1 to induce the differentiation of human mesenchymal stem cells. To further study the mechanism, we tested the stemness and differentiation genes and found that they have been changed with LSD1 down-regulation. In addition, with the hepatocyte growth factor (HGF), LSD1 siRNA delivery by AuNRs could promote the differentiation of the human mesenchymal stem cells (human MSCs) into a hepatocyte lineage in vitro. Our results suggest for the first time use of AuNRs as nanocarriers of delivery LSD1 siRNA to induce the differentiation of human MSCs into a hepatocyte lineage, and envision the potential application of nanotechnology in tissue remodeling (such as liver and bone) in vivo, eventually translating to clinical applications. PMID:26046277

  13. Hydrotalcite Intercalated siRNA: Computational Characterization of the Interlayer Environment

    PubMed Central

    Zhang, Hong; Ouyang, Defang; Murthy, Vinuthaa; Wong, Yunyi; Xu, Zhiping; Smith, Sean C.

    2012-01-01

    Using molecular dynamics (MD) simulations, we explore the structural and dynamical properties of siRNA within the intercalated environment of a Mg:Al 2:1 Layered Double Hydroxide (LDH) nanoparticle. An ab initio force field (Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies: COMPASS) is used for the MD simulations of the hybrid organic-inorganic systems. The structure, arrangement, mobility, close contacts and hydrogen bonds associated with the intercalated RNA are examined and contrasted with those of the isolated RNA. Computed powder X-ray diffraction patterns are also compared with related LDH-DNA experiments. As a method of probing whether the intercalated environment approximates the crystalline or rather the aqueous state, we explore the stability of the principle parameters (e.g., the major groove width) that differentiate both A- and A'- crystalline forms of siRNA and contrast this with recent findings for the same siRNA simulated in water. We find the crystalline forms remain structurally distinct when intercalated, whereas this is not the case in water. Implications for the stability of hybrid LDH-RNA systems are discussed. PMID:24300233

  14. Small RNA transcriptomes of mangroves evolve adaptively in extreme environments

    PubMed Central

    Wen, Ming; Lin, Xingqin; Xie, Munan; Wang, Yushuai; Shen, Xu; Liufu, Zhongqi; Wu, Chung-I; Shi, Suhua; Tang, Tian

    2016-01-01

    MicroRNAs (miRNAs) and endogenous small interfering RNAs (siRNAs) are key players in plant stress responses. Here, we present the sRNA transcriptomes of mangroves Bruguiera gymnorrhiza and Kandelia candel. Comparative computational analyses and target predictions revealed that mangroves exhibit distinct sRNA regulatory networks that differ from those of glycophytes. A total of 32 known and three novel miRNA families were identified. Conserved and mangrove-specific miRNA targets were predicted; the latter were widely involved in stress responses. The known miRNAs showed differential expression between the mangroves and glycophytes, reminiscent of the adaptive stress-responsive changes in Arabidopsis. B. gymnorrhiza possessed highly abundant but less conserved TAS3 trans-acting siRNAs (tasiRNAs) in addition to tasiR-ARFs, with expanded potential targets. Our results indicate that the evolutionary alteration of sRNA expression levels and the rewiring of sRNA-regulatory networks are important mechanisms underlying stress adaptation. We also identified sRNAs that are involved in salt and/or drought tolerance and nutrient homeostasis as possible contributors to mangrove success in stressful environments. PMID:27278626

  15. Small RNA transcriptomes of mangroves evolve adaptively in extreme environments.

    PubMed

    Wen, Ming; Lin, Xingqin; Xie, Munan; Wang, Yushuai; Shen, Xu; Liufu, Zhongqi; Wu, Chung-I; Shi, Suhua; Tang, Tian

    2016-01-01

    MicroRNAs (miRNAs) and endogenous small interfering RNAs (siRNAs) are key players in plant stress responses. Here, we present the sRNA transcriptomes of mangroves Bruguiera gymnorrhiza and Kandelia candel. Comparative computational analyses and target predictions revealed that mangroves exhibit distinct sRNA regulatory networks that differ from those of glycophytes. A total of 32 known and three novel miRNA families were identified. Conserved and mangrove-specific miRNA targets were predicted; the latter were widely involved in stress responses. The known miRNAs showed differential expression between the mangroves and glycophytes, reminiscent of the adaptive stress-responsive changes in Arabidopsis. B. gymnorrhiza possessed highly abundant but less conserved TAS3 trans-acting siRNAs (tasiRNAs) in addition to tasiR-ARFs, with expanded potential targets. Our results indicate that the evolutionary alteration of sRNA expression levels and the rewiring of sRNA-regulatory networks are important mechanisms underlying stress adaptation. We also identified sRNAs that are involved in salt and/or drought tolerance and nutrient homeostasis as possible contributors to mangrove success in stressful environments. PMID:27278626

  16. Small RNA transcriptomes of mangroves evolve adaptively in extreme environments.

    PubMed

    Wen, Ming; Lin, Xingqin; Xie, Munan; Wang, Yushuai; Shen, Xu; Liufu, Zhongqi; Wu, Chung-I; Shi, Suhua; Tang, Tian

    2016-01-01

    MicroRNAs (miRNAs) and endogenous small interfering RNAs (siRNAs) are key players in plant stress responses. Here, we present the sRNA transcriptomes of mangroves Bruguiera gymnorrhiza and Kandelia candel. Comparative computational analyses and target predictions revealed that mangroves exhibit distinct sRNA regulatory networks that differ from those of glycophytes. A total of 32 known and three novel miRNA families were identified. Conserved and mangrove-specific miRNA targets were predicted; the latter were widely involved in stress responses. The known miRNAs showed differential expression between the mangroves and glycophytes, reminiscent of the adaptive stress-responsive changes in Arabidopsis. B. gymnorrhiza possessed highly abundant but less conserved TAS3 trans-acting siRNAs (tasiRNAs) in addition to tasiR-ARFs, with expanded potential targets. Our results indicate that the evolutionary alteration of sRNA expression levels and the rewiring of sRNA-regulatory networks are important mechanisms underlying stress adaptation. We also identified sRNAs that are involved in salt and/or drought tolerance and nutrient homeostasis as possible contributors to mangrove success in stressful environments.

  17. Unbinding forces and energies between a siRNA molecule and a dendrimer measured by force spectroscopy.

    PubMed

    Dumitru, Andra C; Herruzo, Elena T; Rausell, Estrella; Ceña, Valentin; Garcia, Ricardo

    2015-12-21

    We have measured the intermolecular forces between small interference RNA (siRNA) and polyamidoamine dendrimers at the single molecular level. A single molecule force spectroscopy approach has been developed to measure the unbinding forces and energies between a siRNA molecule and polyamidoamine dendrimers deposited on a mica surface in a buffer solution. We report three types of unbinding events which are characterized by forces and free unbinding energies, respectively, of 28 pN, 0.709 eV; 38 pN, 0.722 eV; and 50 pN, 0.724 eV. These events reflect different possible electrostatic interactions between the positive charges of one or two dendrimers and the negatively charged phosphate groups of a single siRNA. We have evidence of a high binding affinity of siRNA towards polyamidoamine dendrimers that leads to a 45% probability of measuring specific unbinding events.

  18. Non-Covalently Functionalized of Single-Walled Carbon Nanotubes by DSPE-PEG-PEI for SiRNA Delivery.

    PubMed

    Siu, King Sun; Zhang, Yujuan; Zheng, Xiufen; Koropatnick, James; Min, Wei-Ping

    2016-01-01

    The expression of a gene can be specifically downregulated by small interfering RNA (SiRNA). Modified carbon nanotubes (CNT) can be used to protect SiRNA and facilitate its entry into cells. Regardless of that, simple and efficient functionalization of CNT is lacking. Effective SiRNA delivery can be carried out using non-covalently functionalized CNT, where non-covalent (versus covalent) functionalization is simpler and more expeditious. Non-covalently functionalized single walled carbon nanotubes (SWCNT) that include a lipopolymer are described here. Polyethylenimine (PEI) conjugated to 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE-PEG) was generated and the products used to disperse CNT to form DSPE-PEG-PEI/CNT (DGI/C), an agent capable of facilitating SiRNA delivery to cells in vitro and organs and cells in vivo.

  19. Regulation of vascular smooth muscle cell autophagy by DNA nanotube-conjugated mTOR siRNA.

    PubMed

    You, Zaichun; Qian, Hang; Wang, Changzheng; He, Binfeng; Yan, Jiawei; Mao, Chengde; Wang, Guansong

    2015-10-01

    The efficient delivery of short interfering RNA (siRNA) is an enormous challenge in the field of gene therapy. Herein, we report a delivery nanosystem based on programmed DNA self-assembly mammalian target of rapamycin (mTOR) siRNA-loaded DNA nanotubes (DNA-NTs). We demonstrate that these siRNA-DNA-NTs can be effectively transfected into pulmonary arterial smooth muscle cells (PASMCs) via endocytosis; and that the loaded mTOR siRNA can induce obvious autophagy and inhibit cell growth under both normal and hypoxic conditions. Moreover, we found that mTOR siRNA can control the autophagy and proliferation of PASMCs under hypoxic condition, suggesting a potential therapeutic application for mTOR siRNA in diseases involving abnormal autophagy in PASMCs.

  20. Recent In Vivo Evidences of Particle-Based Delivery of Small-Interfering RNA (siRNA) into Solid Tumors

    PubMed Central

    2014-01-01

    Small-interfering RNA (siRNA) is both a powerful tool in research and a promising therapeutic platform to modulate expression of disease-related genes. Malignant tumors are attractive disease targets for nucleic acid-based therapies. siRNA directed against oncogenes, and genes driving metastases or angiogenesis have been evaluated in animal models and in some cases, in humans. The outcomes of these studies indicate that drug delivery is a significant limiting factor. This review provides perspectives on in vivo validated nanoparticle-based siRNA delivery systems. Results of recent advances in liposomes and polymeric and inorganic formulations illustrate the need for mutually optimized attributes for performance in systemic circulation, tumor interstitial space, plasma membrane, and endosomes. Physiochemical properties conducive to efficient siRNA delivery are summarized and directions for future research are discussed. PMID:25221632

  1. Li-7 abundances in halo stars: Testing stellar evolution models and the primordial Li-7 abundance

    NASA Technical Reports Server (NTRS)

    Chaboyer, Brian; Demarque, P.

    1994-01-01

    A large number of stellar evolution models with (Fe/H) = -2.3 and -3.3 have been calculated in order to determine the primordial Li-7 abundance and to test current stellar evolution models by a comparison to the extensive database of accurate Li abundances in extremely metal-poor halo stars observed by Thorburn (1994). Standard models with gray atmospheres do a very good job of fitting the observed Li abundances in stars hotter than approximately 5600 K. They predict a primordial. Li-7 abundance of log N(Li) = 2.24 +/- 0.03. Models which include microscopic diffusion predict a downward curvature in the Li-7 destruction isochrones at hot temperatures which is not present in the observations. Thus, the observations clearly rule out models which include uninhibited microscopic diffusion of Li-7 from the surface of the star. Rotational mixing inhibits the microscopic diffusion and the (Fe/H) = -2.28 stellar models which include both diffusion and rotational mixing provide an excellent match to the mean trend in T(sub eff) which is present in the observations. Both the plateau stars and the heavily depleted cool stars are well fit by these models. The rotational mixing leads to considerable Li-7 depletion in these models and the primordial Li-7 abundance inferred from these models is log N(Li) = 3.08 +/- 0.1. However, the (Fe/H) = -3.28 isochrones reveal problems with the combined models. These isochrones predict a trend of decreasing log N(Li) with increasing T(sub eff) which is not present in the observations. Possible causes for this discrepancy are discussed.

  2. Extremal surface barriers

    NASA Astrophysics Data System (ADS)

    Engelhardt, Netta; Wall, Aron C.

    2014-03-01

    We present a generic condition for Lorentzian manifolds to have a barrier that limits the reach of boundary-anchored extremal surfaces of arbitrary dimension. We show that any surface with nonpositive extrinsic curvature is a barrier, in the sense that extremal surfaces cannot be continuously deformed past it. Furthermore, the outermost barrier surface has nonnegative extrinsic curvature. Under certain conditions, we show that the existence of trapped surfaces implies a barrier, and conversely. In the context of AdS/CFT, these barriers imply that it is impossible to reconstruct the entire bulk using extremal surfaces. We comment on the implications for the firewall controversy.

  3. Co-delivery of chemosensitizing siRNA and an anticancer agent via multiple monocomplexation-induced hydrophobic association.

    PubMed

    Lee, Eunjung; Oh, Changhwoa; Kim, In-San; Kwon, Ick Chan; Kim, Sehoon

    2015-07-28

    Synergistic combination of gene targeting and chemotherapy by co-delivering siRNA and anticancer drugs has widely been investigated to develop siRNA-based therapeutics for cancer treatment. Despite clinical potential of this approach, big challenges still remain such as delivery efficiency or stability/biocompatibility of the siRNA delivery system. Here we report a simple and biocompatible co-delivering formulation based on a unique complexation method, i.e., multiple monocomplexation-induced hydrophobic association between Bcl-2 targeting siRNA and a monocationic anticancer agent (benzethonium chloride, BZT). A colloidal formulation of the hydrophobically associated multiple monocomplex (HMplex) composed of siRNA, BZT and Pluronic F-68 was spontaneously constructed by physical mixing of the ternary constituents. In vitro and in vivo studies revealed that the ternary HMplex with a low charge ratio (N/P=4) possesses a tightly complexed stable nanostructure with Pluronic surface and small colloidal size less than 10nm, which allowed for 1) suitable protection of siRNA in serum-rich physiological environment, 2) efficient intracellular transfection into the cytoplasm, and 3) successful peritumoral co-delivery into the tumor tissue with dense interstitial matrix. Compared to non-targeting HMplexes between scrambled siRNA and BZT, Bcl-2 targeting HMplexes enhanced significantly both mRNA down-regulation by siRNA and apoptosis induction by BZT, and thus greatly suppressed the tumor volume when administered to highly aggressive and resistant human breast cancer xenografts (MDA-MB-231) in mice. These results elucidate that the co-complexed siRNA and BZT were liberated by intracellular decomplexation to trigger a synergistically combined therapeutic action. The successful siRNA/chemodrug co-delivery in vivo via peritumoral route and the greatly promoted therapeutic efficacy thereby represent the clinical potential of HMplexes for adjuvant locoregional cancer treatment by

  4. Chitosan-based nanoparticles for survivin targeted siRNA delivery in breast tumor therapy and preventing its metastasis

    PubMed Central

    Sun, Ping; Huang, Wei; Jin, Mingji; Wang, Qiming; Fan, Bo; Kang, Lin; Gao, Zhonggao

    2016-01-01

    Nanoparticle-mediated small interfering RNA (siRNA) delivery is a promising therapeutic strategy in various cancers. However, it is difficult to deliver degradative siRNA to tumor tissue, and thus a safe and efficient vector for siRNA delivery is essential for cancer therapy. In this study, poly(ethylene glycol)-modified chitosan (PEG-CS) was synthesized successfully for delivering nucleic acid drug. We deemed that PEGylated CS could improve its solubility by forming a stable siRNA loaded in nanoparticles, and enhancing transfection efficiency of siRNA-loaded CS nanoparticles in cancer cell line. The research results showed that siRNA loaded in PEGylated CS (PEG-CS/siRNA) nanoparticles with smaller particle size had superior structural stability in the physical environment compared to CS nanoparticles. The data of in vitro antitumor activity revealed that 4T1 tumor cell growth was significantly inhibited and cellular uptake of PEG-CS/siRNA nanoparticles in 4T1 cells was dramatically enhanced compared to naked siRNA groups. The results from flow cytometry and confocal laser scanning microscopy showed that PEG-CS/siRNA nanoparticles were more easily taken up than naked siRNA. Importantly, PEG-CS/siRNA nanoparticles significantly reduced the growth of xenograft tumors of 4T1 cells in vivo. It has been demonstrated that the PEG-CS is a safe and efficient vector for siRNA delivery, and it can effectively reduce tumor growth and prevent metastasis. PMID:27729789

  5. Combination siRNA therapy against feline coronavirus can delay the emergence of antiviral resistance in vitro.

    PubMed

    McDonagh, Phillip; Sheehy, Paul A; Norris, Jacqueline M

    2015-03-23

    Virulent biotypes of feline coronavirus (FCoV), commonly referred to as feline infectious peritonitis virus (FIPV), can result in the development of feline infectious peritonitis (FIP), a typically fatal immune mediated disease for which there is currently no effective antiviral treatment. We previously reported the successful in vitro inhibition of FIPV replication by synthetic siRNA mediated RNA interference (RNAi) in an immortalised cell line (McDonagh et al., 2011). A major challenge facing the development of any antiviral strategy is that of resistance, a problem which is particularly acute for RNAi based therapeutics due to the exquisite sequence specificity of the targeting mechanism. The development of resistance during treatment can be minimised using combination therapy to raise the genetic barrier or using highly potent compounds which result in a more rapid and pronounced reduction in the viral replication rate, thereby reducing the formation of mutant, and potentially resistant viruses. This study investigated the efficacy of combination siRNA therapy and its ability to delay or prevent viral escape. Virus serially passaged through cells treated with a single or dual siRNAs rapidly acquired resistance, with mutations identified in the siRNA target sites. Combination therapy with three siRNA prevented viral escape over the course of five passages. To identify more potent silencing molecules we also compared the efficacy, in terms of potency and duration of action, of canonical versus Dicer-substrate siRNAs for two previously identified effective viral motifs. Dicer-substrate siRNAs showed equivalent or better potency than canonical siRNAs for the target sites investigated, and may be a more appropriate molecule for in vivo use. Combined, these data inform the potential therapeutic application of antiviral RNAi against FIPV.

  6. Effective delivery of siRNA into cancer cells and tumors using well-defined biodegradable cationic star polymers.

    PubMed

    Boyer, Cyrille; Teo, Joann; Phillips, Phoebe; Erlich, Rafael B; Sagnella, Sharon; Sharbeen, George; Dwarte, Tanya; Duong, Hien T T; Goldstein, David; Davis, Thomas P; Kavallaris, Maria; McCarroll, Joshua

    2013-06-01

    Cancer is one of the most common causes of death worldwide. Two types of cancer that have high mortality rates are pancreatic and lung cancer. Despite improvements in treatment strategies, resistance to chemotherapy and the presence of metastases are common. Therefore, novel therapies which target and silence genes involved in regulating these processes are required. Short-interfering RNA (siRNA) holds great promise as a therapeutic to silence disease-causing genes. However, siRNA requires a delivery vehicle to enter the cell to allow it to silence its target gene. Herein, we report on the design and synthesis of cationic star polymers as novel delivery vehicles for siRNA to silence genes in pancreatic and lung cancer cells. Dimethylaminoethyl methacrylate (DMAEMA) was polymerized via reversible addition-fragmentation transfer polymerization (RAFT) and then chain extended in the presence of both cross-linkers N,N-bis(acryloyl)cistamine and DMAEMA, yielding biodegradable well-defined star polymers. The star polymers were characterized by transmission electron microscopy, dynamic light scattering, ζ potential, and gel permeation chromatography. Importantly, the star polymers were able to self-assemble with siRNA and form small uniform nanoparticle complexes. Moreover, the ratios of star polymer required to complex siRNA were nontoxic in both pancreatic and lung cancer cells. Treatment with star polymer-siRNA complexes resulted in uptake of siRNA into both cell lines and a significant decrease in target gene mRNA and protein levels. In addition, delivery of clinically relevant amounts of siRNA complexed to the star polymer were able to silence target gene expression by 50% in an in vivo tumor setting. Collectively, these results provide the first evidence of well-defined small cationic star polymers to deliver active siRNA to both pancreatic and lung cancer cells and may be a valuable tool to inhibit key genes involved in promoting chemotherapy drug resistance and

  7. Enhancing in vivo circulation and siRNA delivery with biodegradable polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol) copolymers.

    PubMed

    Zheng, Mengyao; Librizzi, Damiano; Kılıç, Ayşe; Liu, Yu; Renz, Harald; Merkel, Olivia M; Kissel, Thomas

    2012-09-01

    The purpose of this study was to enhance the in vivo blood circulation time and siRNA delivery efficiency of biodegradable copolymers polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol) (hy-PEI-g-PCL-b-PEG) by introducing high graft densities of PCL-PEG chains. SYBR(®) Gold and heparin assays indicated improved stability of siRNA/copolymer-complexes with a graft density of 5. At N/P 1, only 40% siRNA condensation was achieved with non-grafted polymer, but 95% siRNA was condensed with copolymer PEI25k-(PCL570-PEG5k)(5). Intracellular uptake studies with confocal laser scanning microscopy and flow cytometry showed that the cellular uptake was increased with graft density, and copolymer PEI25k-(PCL570-PEG5k)(5) was able to deliver siRNA much more efficiently into the cytosol than into the nucleus. The in vitro knockdown effect of siRNA/hyPEI-g-PCL-b-PEG was also significantly improved with increasing graft density, and the most potent copolymer PEI25k-(PCL570-PEG5k)(5) knocked down 84.43% of the GAPDH expression. Complexes of both the copolymers with graft density 3 and 5 circulated much longer than unmodified PEI25 kDa and free siRNA, leading to a longer elimination half-life, a slower clearance and a three- or fourfold increase of the AUC compared to free siRNA, respectively. We demonstrated that the graft density of the amphiphilic chains can enhance the siRNA delivery efficiency and blood circulation, which highlights the development of safe and efficient non-viral polymeric siRNA nanocarriers that are especially stable and provide longer circulation in vivo.

  8. Effects of a human plasma membrane-associated sialidase siRNA on prostate cancer invasion

    SciTech Connect

    Li, Xiaojie; Zhang, Ling; Shao, Yueting; Liang, Zuowen; Shao, Chen; Wang, Bo; Guo, Baofeng; Li, Na; Zhao, Xuejian; Li, Yang; Xu, Deqi

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Neu3 is as one of the sialidases and regulates cell surface functions. Black-Right-Pointing-Pointer A Neu3-specific siRNA inhibited prostrate cancer cell invasion and migration. Black-Right-Pointing-Pointer The Neu3-specific siRNA inhibited prostate cancer metastasis in mice. Black-Right-Pointing-Pointer Targeting Neu3 may have utility for gene-based therapy of human cancer metastasis. -- Abstract: Human plasma membrane-associated sialidase (Neu3) is one of several sialidases that hydrolyze sialic acids in the terminal position of the carbohydrate groups of glycolipids and glycoproteins. Neu3 is mainly localized in plasma membranes and plays crucial roles in the regulation of cell surface functions. In this study, we investigated the effects and molecular mechanisms of Neu3 on cell invasion and migration in vivo and in vitro. Initially, we found that the levels of Neu3 expression were higher in prostate cancer tissues and cell lines than in normal prostate tissues based on RT-PCR and Western blotting analyses. We then applied a Neu3 siRNA approach to block Neu3 signaling using PC-3M cells as model cells. Transwell invasion assays and wound assays showed significantly decreased invasion and migration potential in the Neu3 siRNA-transfected cells. RT-PCR and Western blotting analyses revealed that Neu3 knockdown decreased the expressions of the matrix metalloproteinases MMP-2 and MMP-9. In vivo, mice injected with PC-3M cell tumors were evaluated by SPECT/CT to determine the presence of bone metastases. Mice treated with attenuated Salmonella carrying the Neu3 siRNA developed fewer bone metastases than mice treated with attenuated Salmonella carrying a control Scramble siRNA, attenuated Salmonella alone or PBS. The results for bone metastasis detection by pathology were consistent with the data obtained by SPECT/CT. Tumor blocks were evaluated by histochemical, RT-PCR and Western blotting analyses. The results revealed

  9. Mineral Abundance Near Aristarchus Crater

    NASA Astrophysics Data System (ADS)

    Bradford, Alison; Storrs, A.

    2007-12-01

    Mineral Abundance Near Aristarchus Crater Alison Bradford and Alex Storrs Towson University We analyze Hubble Space Telescope (HST) images to determine the abundance of minerals near Aristarchus crater. Following the calibration of Robinson et al. (2007) we present ratio maps of images obtained in August of 2005 showing the abundance of TiO2 and other minerals in this interesting area in the middle of Oceanus Procellarum. A prominent cleft (Schroter's Valley, presumably a collapsed lava tube) makes this region of special interest for analyzing the formation of mare basalts. Reference: Robinson, M.S., et al. (2007): "High resolution mapping of TiO2 abundances on the Moon using the Hubble Space Telescope", GRL 34, L13203

  10. The boron abundance of Procyon

    NASA Technical Reports Server (NTRS)

    Lemke, Michael; Lambert, David L.; Edvardsson, Bengt

    1993-01-01

    The B I 2496.8 A resonance line and HST/GHRS echelle spectra are used with model atmospheres and synthetic spectra to derive the B abundance of the F dwarfs Procyon (Alpha Canis Minoris), Theta Ursae Majoris, and Iota Pegasi. The B abundance of Theta UMa and Iota Peg is similar to that derived by Boesgaard and Heacox (1978) from the B II resonance line in spectra of A- and B-type stars. These two dwarfs show normal abundances of Li, Be, and B. Procyon, which is highly depleted in Li and Be, is depleted in B by a factor of at least 3. Comparison of the spectra of Procyon and the halo dwarf HD 140283 shows that the B abundance assigned by Duncan et al. (1992) to three halo dwarfs is not greatly overestimated as a result of contamination of the B I line by an unidentified line.

  11. Targeted delivery of CXCR4-siRNA by scFv for HER2(+) breast cancer therapy.

    PubMed

    Jiang, Kuo; Li, Jia; Yin, Jipeng; Ma, Qiong; Yan, Bo; Zhang, Xiang; Wang, Lei; Wang, Lifeng; Liu, Tao; Zhang, Yinglong; Fan, Qingyu; Yang, Angang; Qiu, Xiuchun; Ma, Baoan

    2015-08-01

    Therapeutics based on short interfering RNAs (siRNAs) have great potential to treat human diseases. However, the clinical application of siRNAs has been limited by their poor intracellular uptake, low serum stability, and inability to target specific cells. In this study, we addressed this lack of specificity by synthesizing a molecularly targeted CXCR4-siRNA (CXCR4si) for the treatment of HER2(+) breast cancers using a HER2-scFv-arginine nonamer peptide fusion protein (e23sFv-9R) as an siRNA carrier. The e23sFv-9R binding siRNA is able to specifically deliver the siRNA to HER2(+) breast cancer cells and concentrate and persist in orthotopic HER2(+) breast cancer xenografts for at least 36 h. CXCR4si delivered by e23sFv-9R inhibited CXCR4 gene expression, reduced proliferation and metastasis and induced apoptosis in the HER2(+) breast cancer BT-474 cell line in vitro. Moreover, the systemic delivery of CXCR4si by e23sFv-9R is able to suppress tumor growth, reduce metastasis and prolong survival in mice bearing HER2(+) xenografts. This approach causes no systemic toxicity and does not activate the innate immune response, suggesting that a fusion protein carrying CXCR4si shows promise in the treatment of HER2-overexpressing breast cancer. PMID:25956853

  12. RNA interference by osmotic lysis of pinosomes: liposome-independent transfection of siRNAs into mammalian cells.

    PubMed

    Gruber, Jens; Boese, Guido; Tuschl, Thomas; Osborn, Mary; Weber, Klaus

    2004-07-01

    The osmotic lysis of pinosomes procedure has been adapted to deliver small interfering RNAs (siRNAs) into cells in culture. Under hypertonic conditions, siRNAs were internalized into pinosomes. A subsequent osmotic shock in hypotonic buffer disrupted the pinosomes and caused the release of siRNAs into the cell cytoplasm. Both steps could be demonstrated directly using fluorescein-labeled siRNAs and confocal laser-scanning microscopy. Uptake by the pinocytosis/osmotic lysis procedure is concentration- and time-dependent. At an siRNA concentration of 0.4 microM, treatment for 40 or 80 min results in silencing efficiencies of 60% and 90%, respectively, after 44 h. A double treatment resulted in approximately equal silencing efficiencies but in reduced viability. This method has been used on a variety of human and murine cell lines including HEK293, HeLa SS6, and SW3T3 cells. Targets such as lamin A/C and Eg5 were effectively silenced. Novel silencing data are provided for Ki67, one of the few reliable prognostic markers for tumor patients. The new procedure avoids certain technical problems encountered with commercial transfection reagents while yielding silencing efficiencies that are comparable to those obtained with liposome-mediated siRNA transfection.

  13. siRNA as a tool to improve the treatment of brain diseases: Mechanism, targets and delivery.

    PubMed

    Gomes, Maria João; Martins, Susana; Sarmento, Bruno

    2015-05-01

    As the population ages, brain pathologies such as neurodegenerative diseases and brain cancer increase their incidence, being the need to find successful treatments of upmost importance. Drug delivery to the central nervous system (CNS) is required in order to reach diseases causes and treat them. However, biological barriers, mainly blood-brain barrier (BBB), are the key obstacles that prevent the effectiveness of possible treatments due to their ability to strongly limit the perfusion of compounds into the brain. Over the past decades, new approaches towards overcoming BBB and its efflux transporters had been proposed. One of these approaches here reviewed is through small interfering RNA (siRNA), which is capable to specifically target one gene and silence it in a post-transcriptional way. There are different possible functional proteins at the BBB, as the ones responsible for transport or just for its tightness, which could be a siRNA target. As important as the effective silence is the way to delivery siRNA to its anatomical site of action. This is where nanotechnology-based systems may help, by protecting siRNA circulation and providing cell/tissue-targeting and intracellular siRNA delivery. After an initial overview on incidence of brain diseases and basic features of the CNS, BBB and its efflux pumps, this review focuses on recent strategies to reach brain based on siRNA, and how to specifically target these approaches in order to treat brain diseases.

  14. Bio-inspired materials in drug delivery: Exploring the role of pulmonary surfactant in siRNA inhalation therapy.

    PubMed

    De Backer, Lynn; Cerrada, Alejandro; Pérez-Gil, Jesús; De Smedt, Stefaan C; Raemdonck, Koen

    2015-12-28

    Many pathologies of the respiratory tract are inadequately treated with existing small molecule-based therapies. The emergence of RNA interference (RNAi) enables the post-transcriptional silencing of key molecular disease factors that cannot readily be targeted with conventional small molecule drugs. Pulmonary administration of RNAi effectors, such as small interfering RNA (siRNA), allows direct delivery into the lung tissue, hence reducing systemic exposure. Unfortunately, the clinical translation of RNAi is severely hampered by inefficient delivery of siRNA therapeutics towards the cytoplasm of the target cells. In order to have a better control of the siRNA delivery process, both extra- and intracellular, siRNAs are typically formulated in nanosized delivery vehicles (nanoparticles, NPs). In the lower airways, which are the targeted sites of action for multiple pulmonary disorders, these siRNA-loaded NPs will encounter the pulmonary surfactant (PS) layer, covering the entire alveolar surface. The interaction between the instilled siRNA-loaded NPs and the PS at this nano-bio interface results in the adsorption of PS components onto the surface of the NPs. The formation of this so-called biomolecular corona conceals the original NP surface and will therefore profoundly determine the biological efficacy of the NP. Though this interplay has initially been regarded as a barrier towards efficient siRNA delivery to the respiratory target cell, recent reports have illustrated that the interaction with PS might also be beneficial for local pulmonary siRNA delivery.

  15. Multifunctional triblock Nanocarrier (PAMAM-PEG-PLL) for the efficient intracellular siRNA delivery and gene silencing.

    PubMed

    Patil, Mahesh L; Zhang, Min; Minko, Tamara

    2011-03-22

    A novel triblock poly(amido amine)-poly(ethylene glycol)-poly-l-lysine (PAMAM-PEG-PLL) nanocarrier was designed, synthesized, and evaluated for the delivery of siRNA. The design of the nanocarrier is unique and provides a solution to most of the common problems associated with the delivery and therapeutic applications of siRNA. Every component in the triblock nanocarrier plays a significant role and performs multiple functions: (1) tertiary amine groups in the PAMAM dendrimer work as a proton sponge and play a vital role in the endosomal escape and cytoplasmic delivery of siRNA; (2) PEG, a linker connecting PLL and PAMAM dendrimers renders nuclease stability and protects siRNA in human plasma; (3) PLL provides primary amines to form polyplexes with siRNA through electrostatic interaction and also acts as penetration enhancer; and (4) conjugation to PEG and PAMAM reduced toxicity of PLL and the entire triblock nanocarrier PAMAM-PEG-PLL. The data obtained show that the polyplexes resulted from the conjugation of siRNA, and the proposed nanocarriers were effectively taken up by cancer cells and induced the knock down of the target BCL2 gene. In addition, triblock nanocarrier/siRNA polyplexes showed excellent stability in human plasma.

  16. Nanoparticle siRNA against BMI-1 with a Polyethylenimine-Laminarin Conjugate for Gene Therapy in Human Breast Cancer.

    PubMed

    Ren, Xueling; Liu, Lei; Zhou, Yuxue; Zhu, Yan; Zhang, Hong; Zhang, Zhenzhong; Li, Huixiang

    2016-01-20

    The B-cell-specific Moloney leukemia virus inset site 1 gene (BMI-1) has attracted considerable attention in recent years because of its key role in breast cancer development and metastasis. The downregulation of BMI-1 expression via small interfering RNA (siRNA) effectively inhibits tumor growth. However, the successful application of this therapy is limited by the unavailability of an appropriate vector for siRNA transfer. Therefore, this study aimed to construct a novel laminarin-based nonviral gene transfer vector to carry a constructed BMI-1-targeting siRNA and to investigate the in vitro and in vivo antitumor effects of this siRNA on breast cancer cells. To enhance the siRNA-carrying capacity, we introduced polyethylenimine (PEI) to laminarin's surface via N,N'-carbonyldiimidazole, which produced the cationic PEI-modified laminarin conjugate nLP. Subsequent in vitro experiments indicated that nLP not only formed a nanoparticle with a diameter of 200 nm through electrostatic interactions with siRNA but also showed high efficiency (95.0%) in the delivery siRNA to MCF-7 cells. The nanoparticle targeting BMI-1 (nLP/siBMI-2) reduced BMI-1 expression in breast MCF-7 cells by 90.9% reduction. An in vivo tumor suppression experiment demonstrated that the nLP/siBMI-2 nanoparticle had relatively low toxicity and good gene-therapeutic efficacy, with a tumor inhibition rate of 46.6%. PMID:26629893

  17. Functionally Enhanced siRNA Targeting TNFα Attenuates DSS-induced Colitis and TLR-mediated Immunostimulation in Mice

    PubMed Central

    Ocampo, Sandra M; Romero, Carolina; Aviñó, Anna; Burgueño, Joan; Gassull, Miguel A; Bermúdez, Jordi; Eritja, Ramon; Fernandez, Ester; Perales, Jose C

    2012-01-01

    Tumor necrosis factor (TNFα) is a proinflammatory cytokine involved in the pathogenesis of inflammatory bowel disease (IBD). Although TNFα has been extensively targeted using systemic drugs, the use of antisense and small interfering RNA (siRNA) to drive down its expression at the site of inflammation should provide important advantages. In this study, native and chemically modified siRNA against TNFα was developed and characterized using a murine model of IBD. siRNA with 2′-O-methyl and propanediol modifications (siTNF-OMe-P) were resistant to nuclease degradation and provided better silencing efficacy in vitro as compared to unmodified siRNA. Every modification reduced nonspecific Toll-like receptor (TLR)-mediated immunomodulation in human peripheral blood mononuclear cells (PBMC) cells. Intrarectal administration of siTNF-OMe-P significantly ameliorated the clinical endpoints and histopathological severity in 5% dextran sulphate sodium (DSS)-treated mice as compared to unmodified and other chemically modified siRNAs. Differential gene expression assessed in siTNF-OMe-P-treated animals correlated with improved colon integrity and reduced TLR activation as compared to all treatment groups. All in all, this study demonstrates that propanediol and 2′-O-methyl modifications have profound functional consequences for siRNA efficacy in vivo. Consequently, this strategy has potential implications for therapeutic intervention in IBD and other diseases. PMID:22044934

  18. RNAi-mediated viral immunity requires amplification of virus-derived siRNAs in Arabidopsis thaliana

    PubMed Central

    Wang, Xian-Bing; Wu, Qingfa; Ito, Takao; Cillo, Fabrizio; Li, Wan-Xiang; Chen, Xuemei; Yu, Jia-Lin; Ding, Shou-Wei

    2009-01-01

    In diverse eukaryotic organisms, Dicer-processed, virus-derived small interfering RNAs direct antiviral immunity by RNA silencing or RNA interference. Here we show that in addition to core dicing and slicing components of RNAi, the RNAi-mediated viral immunity in Arabidopsis thaliana requires host RNA-directed RNA polymerase (RDR) 1 or RDR6 to produce viral secondary siRNAs following viral RNA replication-triggered biogenesis of primary siRNAs. We found that the two antiviral RDRs exhibited specificity in targeting the tripartite positive-strand RNA genome of cucumber mosaic virus (CMV). RDR1 preferentially amplified the 5′-terminal siRNAs of each of the three viral genomic RNAs, whereas an increased production of siRNAs targeting the 3′ half of RNA3 detected in rdr1 mutant plants appeared to be RDR6-dependent. However, siRNAs derived from a single-stranded 336-nucleotide satellite RNA of CMV were not amplified by either antiviral RDR, suggesting avoidance of the potent RDR-dependent silencing as a strategy for the molecular parasite of CMV to achieve preferential replication. Our work thus identifies a distinct mechanism for the amplification of immunity effectors, which together with the requirement for the biogenesis of endogenous siRNAs, may play a role in the emergence and expansion of eukaryotic RDRs. PMID:19966292

  19. Spray-dried powders enhance vaginal siRNA delivery by potentially modulating the mucus molecular sieve structure.

    PubMed

    Wu, Na; Zhang, Xinxin; Li, Feifei; Zhang, Tao; Gan, Yong; Li, Juan

    2015-01-01

    Vaginal small interfering RNA (siRNA) delivery provides a promising strategy for the prevention and treatment of vaginal diseases. However, the densely cross-linked mucus layer on the vaginal wall severely restricts nanoparticle-mediated siRNA delivery to the vaginal epithelium. In order to overcome this barrier and enhance vaginal mucus penetration, we prepared spray-dried powders containing siRNA-loaded nanoparticles. Powders with Pluronic F127 (F127), hydroxypropyl methyl cellulose (HPMC), and mannitol as carriers were obtained using an ultrasound-assisted spray-drying technique. Highly dispersed dry powders with diameters of 5-15 μm were produced. These powders showed effective siRNA protection and sustained release. The mucus-penetrating properties of the powders differed depending on their compositions. They exhibited different potential of opening mesh size of molecular sieve in simulated vaginal mucus system. A powder formulation with 0.6% F127 and 0.1% HPMC produced the maximum increase in the pore size of the model gel used to simulate vaginal mucus by rapidly extracting water from the gel and interacting with the gel; the resulting modulation of the molecular sieve effect achieved a 17.8-fold improvement of siRNA delivery in vaginal tract and effective siRNA delivery to the epithelium. This study suggests that powder formulations with optimized compositions have the potential to alter the steric barrier posed by mucus and hold promise for effective vaginal siRNA delivery.

  20. Anionic polymers for decreased toxicity and enhanced in vivo delivery of siRNA complexed with cationic liposomes.

    PubMed

    Schlegel, Anne; Largeau, Céline; Bigey, Pascal; Bessodes, Michel; Lebozec, Kristell; Scherman, Daniel; Escriou, Virginie

    2011-06-30

    We recently reported a cationic lipid-based vector of siRNA, termed siRNA lipoplex that was very efficient in specific gene silencing, both in cell culture and in mouse disease models. To be more efficient, this vector included the addition of a plasmid DNA as an anionic "cargo." Although this plasmid DNA was devoid of any eukaryotic expression cassette, we decided to replace it by an anionic polymer that would be more acceptable for clinical applications. We identified seven anionic polymers, regarded as non-toxic, biodegradable, of various characteristics and nature. The addition of polymers to siRNA lipoplexes led to the formation of particles with similar characteristics to crude siRNA lipoplexes, decreased cellular toxicity and variable in vitro gene silencing efficiency depending on the type of polymer used. Upon i.v. injection in mice, siRNA lipoplexes prepared with the best polymer, polyglutamate, led to significantly increased recovery of siRNA in liver and lung compared with lipoplexes without polymer.

  1. Influence of the size and charge of gold nanoclusters on complexation with siRNA: a molecular dynamics simulation study.

    PubMed

    Mudedla, Sathish Kumar; Azhagiya Singam, Ettayapuram Ramaprasad; Balamurugan, Kanagasabai; Subramanian, Venkatesan

    2015-11-11

    The complexation of small interfering RNA (siRNA) with positively charged gold nanoclusters has been studied in the present investigation with the help of classical molecular dynamics and steered molecular dynamics simulations accompanied by free energy calculations. The results show that gold nanoclusters form a stable complex with siRNA. The wrapping of siRNA around the gold nanocluster depends on the size and charge on the surface of the gold cluster. The binding pattern of the gold nanocluster with siRNA is also influenced by the presence of another cluster. The interaction between the positively charged amines in the gold nanocluster and the negatively charged phosphate group in the siRNA is responsible for the formation of complexes. The binding free energy value increases with the size of the gold cluster and the number of positive charges present on the surface of the gold nanocluster. The results reveal that the binding energy of small gold nanoclusters increases in the presence of another gold nanocluster while the binding of large gold nanoclusters decreases due to the introduction of another gold nanocluster. Overall, the findings have clearly demonstrated the effect of size and charge of gold nanoclusters on their interaction pattern with siRNA.

  2. Iron-Oxide-Based Nanovector for Tumor Targeted siRNA Delivery in an Orthotopic Hepatocellular Carcinoma Xenograft Mouse Model.

    PubMed

    Wang, Kui; Kievit, Forrest M; Sham, Jonathan G; Jeon, Mike; Stephen, Zachary R; Bakthavatsalam, Arvind; Park, James O; Zhang, Miqin

    2016-01-27

    Hepatocellular carcinoma (HCC) is one of the deadliest cancers worldwide. Small interfering RNA (siRNA) holds promise as a new class of therapeutics for HCC, as it can achieve sequence-specific gene knockdown with low cytotoxicity. However, the main challenge in the clinical application of siRNA lies in the lack of effective delivery approaches that need to be highly specific and thus incur low or no systemic toxicity. Here, a nonviral nanoparticle-based gene carrier is presented that can specifically deliver siRNA to HCC. The nanovector (NP-siRNA-GPC3 Ab) is made of an iron oxide core coated with chitosan-polyethylene glycol (PEG) grafted polyethyleneimine copolymer, which is further functionalized with siRNA and conjugated with a monoclonal antibody (Ab) against human glypican-3 (GPC3) receptor highly expressed in HCC. A rat RH7777 HCC cell line that coexpresses human GPC3 and firefly luciferase (Luc) is established to evaluate the nanovector. The nanoparticle-mediated delivery of siRNA against Luc effectively suppresses Luc expression in vitro without notable cytotoxicity. Significantly, NP-siLuc-GPC3 Ab administered intravenously in an orthotopic model of HCC is able to specifically bound to tumor and induce remarkable inhibition of Luc expression. The findings demonstrate the potential of using this nanovector for targeted delivery of therapeutic siRNA to HCC.

  3. Relationship Between the Physicochemical Properties of Lipid Nanoparticles and the Quality of siRNA Delivery to Liver Cells.

    PubMed

    Sato, Yusuke; Hatakeyama, Hiroto; Hyodo, Mamoru; Harashima, Hideyoshi

    2016-04-01

    While a variety of short interfering RNA (siRNA) delivery compounds have been developed, a deep understanding of the key parameters that determine the quality of siRNA delivery are not known with certainty. Therefore, an understanding of the factors required for the efficient, selective, and safe delivery of siRNA is a great challenge for successful siRNA delivery. Herein, we report on the development of two pH-sensitive cationic lipids and their use in examining the impact of the acid dissociation constant (pKa) value, lipase sensitivity and the size of lipid nanoparticles on the biodistribution, and efficiency and cell specificity of gene silencing in the liver. An increase in the pKa value resulted in a significant change in the intrahepatic localization of siRNA and gene-silencing efficiency in hepatocytes and liver sinusoidal endothelial cells (LSECs). The sensitivity of the pH-sensitive cationic lipid to lipases was a major factor in achieving hepatocyte-specific gene silencing. Increasing the particle size can improve the LSEC specificity of gene silencing. As a consequence, we succeeded in developing both a highly efficient, hepatocyte-specific formulation, and the most efficacious LSEC-targeted formulation reported to date. These findings will facilitate the development of more sophisticated siRNA delivery systems. PMID:26678452

  4. Spray-dried powders enhance vaginal siRNA delivery by potentially modulating the mucus molecular sieve structure

    PubMed Central

    Wu, Na; Zhang, Xinxin; Li, Feifei; Zhang, Tao; Gan, Yong; Li, Juan

    2015-01-01

    Vaginal small interfering RNA (siRNA) delivery provides a promising strategy for the prevention and treatment of vaginal diseases. However, the densely cross-linked mucus layer on the vaginal wall severely restricts nanoparticle-mediated siRNA delivery to the vaginal epithelium. In order to overcome this barrier and enhance vaginal mucus penetration, we prepared spray-dried powders containing siRNA-loaded nanoparticles. Powders with Pluronic F127 (F127), hydroxypropyl methyl cellulose (HPMC), and mannitol as carriers were obtained using an ultrasound-assisted spray-drying technique. Highly dispersed dry powders with diameters of 5–15 μm were produced. These powders showed effective siRNA protection and sustained release. The mucus-penetrating properties of the powders differed depending on their compositions. They exhibited different potential of opening mesh size of molecular sieve in simulated vaginal mucus system. A powder formulation with 0.6% F127 and 0.1% HPMC produced the maximum increase in the pore size of the model gel used to simulate vaginal mucus by rapidly extracting water from the gel and interacting with the gel; the resulting modulation of the molecular sieve effect achieved a 17.8-fold improvement of siRNA delivery in vaginal tract and effective siRNA delivery to the epithelium. This study suggests that powder formulations with optimized compositions have the potential to alter the steric barrier posed by mucus and hold promise for effective vaginal siRNA delivery. PMID:26347257

  5. Reductively Responsive Hydrogel Nanoparticles with Uniform Size, Shape, and Tunable Composition for Systemic siRNA Delivery in Vivo.

    PubMed

    Ma, Da; Tian, Shaomin; Baryza, Jeremy; Luft, J Christopher; DeSimone, Joseph M

    2015-10-01

    To achieve the great potential of siRNA based gene therapy, safe and efficient systemic delivery in vivo is essential. Here we report reductively responsive hydrogel nanoparticles with highly uniform size and shape for systemic siRNA delivery in vivo. "Blank" hydrogel nanoparticles with high aspect ratio were prepared using continuous particle fabrication based on PRINT (particle replication in nonwetting templates). Subsequently, siRNA was conjugated to "blank" nanoparticles via a disulfide linker with a high loading ratio of up to 18 wt %, followed by surface modification to enhance transfection. This fabrication process could be easily scaled up to prepare large quantity of hydrogel nanoparticles. By controlling hydrogel composition, surface modification, and siRNA loading ratio, siRNA conjugated nanoparticles were highly tunable to achieve high transfection efficiency in vitro. FVII-siRNA conjugated nanoparticles were further stabilized with surface coating for in vivo siRNA delivery to liver hepatocytes, and successful gene silencing was demonstrated at both mRNA and protein levels.

  6. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes.

    PubMed

    Matranga, Christian; Tomari, Yukihide; Shin, Chanseok; Bartel, David P; Zamore, Phillip D

    2005-11-18

    In the Drosophila and mammalian RNA interference pathways, siRNAs direct the protein Argonaute2 (Ago2) to cleave corresponding mRNA targets, silencing their expression. Ago2 is the catalytic component of the RNAi enzyme complex, RISC. For each siRNA duplex, only one strand, the guide, is assembled into the active RISC; the other strand, the passenger, is destroyed. An ATP-dependent helicase has been proposed first to separate the two siRNA strands, then the resulting single-stranded guide is thought to bind Ago2. Here, we show that Ago2 instead directly receives the double-stranded siRNA from the RISC assembly machinery. Ago2 then cleaves the siRNA passenger strand, thereby liberating the single-stranded guide. For siRNAs, virtually all RISC is assembled through this cleavage-assisted mechanism. In contrast, passenger-strand cleavage is not important for the incorporation of miRNAs that derive from mismatched duplexes.

  7. Elemental Abundances of Mercury-Manganese Stars

    NASA Astrophysics Data System (ADS)

    Adelman, Saul J.

    We propose to obtain a carefully planned set of multiple high dispersion exposures of three MercuryManganese stars in both the SWP and LWP cameras. These observations will be coadded to increase the S/N ratio so that accurate elemental abundances can be derived for these examples of HgMn stars, each of which represents some extreme class aspect. This will increase of sample of HgMn stars from four to seven. Of particular interest are the abundances of N and Co in which some HgMn stars have shown remarkable underabundances. Comparison of the UV and optical spectra features due to light elements such as N (and C and 0) provide an observational framework to test NLTE models such as those of Takada (1993). This work has already shed some light on some of earlier findings for normal stars. The ability to accurately determine the surface chemical composition of the late B stars through such studies will lead to better tests for theories purporting to explain the origin of the chemical peculiarities seen in this temperature domain.

  8. Survival of extreme opinions

    NASA Astrophysics Data System (ADS)

    Hsu, Jiann-wien; Huang, Ding-wei

    2009-12-01

    We study the survival of extreme opinions in various processes of consensus formation. All the opinions are treated equally and subjected to the same rules of changing. We investigate three typical models to reach a consensus in each case: (A) personal influence, (B) influence from surroundings, and (C) influence to surroundings. Starting with uniformly distributed random opinions, our calculated results show that the extreme opinions can survive in both models (A) and (B), but not in model (C). We obtain a conclusion that both personal influence and passive adaptation to the environment are not sufficient enough to eradicate all the extreme opinions. Only the active persuasion to change the surroundings eliminates the extreme opinions completely.

  9. Extreme environments and exobiology.

    PubMed

    Friedmann, E I

    1993-01-01

    Ecological research on extreme environments can be applied to exobiological problems such as the question of life on Mars. If life forms (fossil or extant) are found on Mars, their study will help to solve fundamental questions about the nature of life on Earth. Extreme environments that are beyond the range of adaptability of their inhabitants are defined as "absolute extreme". Such environments can serve as terrestrial models for the last stages of life in the history of Mars, when the surface cooled down and atmosphere and water disappeared. The cryptoendolithic microbial community in porous rocks of the Ross Desert in Antarctica and the microbial mats at the bottom of frozen Antarctic lakes are such examples. The microbial communities of Siberian permafrost show that, in frozen but stable communities, long-term survival is possible. In the context of terraforming Mars, selected microorganisms isolated from absolute extreme environments are considered for use in creation of a biological carbon cycle.

  10. Extreme environments and exobiology

    NASA Technical Reports Server (NTRS)

    Friedmann, E. I.

    1993-01-01

    Ecological research on extreme environments can be applied to exobiological problems such as the question of life on Mars. If life forms (fossil or extant) are found on Mars, their study will help to solve fundamental questions about the nature of life on Earth. Extreme environments that are beyond the range of adaptability of their inhabitants are defined as "absolute extreme". Such environments can serve as terrestrial models for the last stages of life in the history of Mars, when the surface cooled down and atmosphere and water disappeared. The cryptoendolithic microbial community in porous rocks of the Ross Desert in Antarctica and the microbial mats at the bottom of frozen Antarctic lakes are such examples. The microbial communities of Siberian permafrost show that, in frozen but stable communities, long-term survival is possible. In the context of terraforming Mars, selected microorganisms isolated from absolute extreme environments are considered for use in creation of a biological carbon cycle.

  11. Thermal spectrum of uranus: implications for large helium abundance.

    PubMed

    Orton, G S

    1986-02-21

    An analysis of the infrared spectrum of Uranus' disk between 7 micrometers and 3 millimeters suggests a volume mixing ratio for helium in the atmosphere of 40 +/- 20 percent, more than for the sun, Jupiter, or Saturn. Alternative explanations require even more extreme assumptions regarding gas abundances or aerosol vertical distribution and spectral properties. The most serious difficulty with a model containing large amounts of helium is devising a credible evolutionary or chemical model explaining the absence or segregation of so much hydrogen.

  12. A screen of chemical modifications identifies position-specific modification by UNA to most potently reduce siRNA off-target effects

    PubMed Central

    Bramsen, Jesper B.; Pakula, Malgorzata M.; Hansen, Thomas B.; Bus, Claus; Langkjær, Niels; Odadzic, Dalibor; Smicius, Romualdas; Wengel, Suzy L.; Chattopadhyaya, Jyoti; Engels, Joachim W.; Herdewijn, Piet; Wengel, Jesper; Kjems, Jørgen

    2010-01-01

    Small interfering RNAs (siRNAs) are now established as the preferred tool to inhibit gene function in mammalian cells yet trigger unintended gene silencing due to their inherent miRNA-like behavior. Such off-target effects are primarily mediated by the sequence-specific interaction between the siRNA seed regions (position 2–8 of either siRNA strand counting from the 5′-end) and complementary sequences in the 3′UTR of (off-) targets. It was previously shown that chemical modification of siRNAs can reduce off-targeting but only very few modifications have been tested leaving more to be identified. Here we developed a luciferase reporter-based assay suitable to monitor siRNA off-targeting in a high throughput manner using stable cell lines. We investigated the impact of chemically modifying single nucleotide positions within the siRNA seed on siRNA function and off-targeting using 10 different types of chemical modifications, three different target sequences and three siRNA concentrations. We found several differently modified siRNAs to exercise reduced off-targeting yet incorporation of the strongly destabilizing unlocked nucleic acid (UNA) modification into position 7 of the siRNA most potently reduced off-targeting for all tested sequences. Notably, such position-specific destabilization of siRNA–target interactions did not significantly reduce siRNA potency and is therefore well suited for future siRNA designs especially for applications in vivo where siRNA concentrations, expectedly, will be low. PMID:20453030

  13. In Silico Design and Experimental Validation of siRNAs Targeting Conserved Regions of Multiple Hepatitis C Virus Genotypes.

    PubMed

    ElHefnawi, Mahmoud; Kim, TaeKyu; Kamar, Mona A; Min, Saehong; Hassan, Nafisa M; El-Ahwany, Eman; Kim, Heeyoung; Zada, Suher; Amer, Marwa; Windisch, Marc P

    2016-01-01

    RNA interference (RNAi) is a post-transcriptional gene silencing mechanism that mediates the sequence-specific degradation of targeted RNA and thus provides a tremendous opportunity for development of oligonucleotide-based drugs. Here, we report on the design and validation of small interfering RNAs (siRNAs) targeting highly conserved regions of the hepatitis C virus (HCV) genome. To aim for therapeutic applications by optimizing the RNAi efficacy and reducing potential side effects, we considered different factors such as target RNA variations, thermodynamics and accessibility of the siRNA and target RNA, and off-target effects. This aim was achieved using an in silico design and selection protocol complemented by an automated MysiRNA-Designer pipeline. The protocol included the design and filtration of siRNAs targeting highly conserved and accessible regions within the HCV internal ribosome entry site, and adjacent core sequences of the viral genome with high-ranking efficacy scores. Off-target analysis excluded siRNAs with potential binding to human mRNAs. Under this strict selection process, two siRNAs (HCV353 and HCV258) were selected based on their predicted high specificity and potency. These siRNAs were tested for antiviral efficacy in HCV genotype 1 and 2 replicon cell lines. Both in silico-designed siRNAs efficiently inhibited HCV RNA replication, even at low concentrations and for short exposure times (24h); they also exceeded the antiviral potencies of reference siRNAs targeting HCV. Furthermore, HCV353 and HCV258 siRNAs also inhibited replication of patient-derived HCV genotype 4 isolates in infected Huh-7 cells. Prolonged treatment of HCV replicon cells with HCV353 did not result in the appearance of escape mutant viruses. Taken together, these results reveal the accuracy and strength of our integrated siRNA design and selection protocols. These protocols could be used to design highly potent and specific RNAi-based therapeutic oligonucleotide

  14. In Silico Design and Experimental Validation of siRNAs Targeting Conserved Regions of Multiple Hepatitis C Virus Genotypes

    PubMed Central

    ElHefnawi, Mahmoud; Kim, TaeKyu; Kamar, Mona A.; Min, Saehong; Hassan, Nafisa M.; El-Ahwany, Eman; Kim, Heeyoung; Zada, Suher; Amer, Marwa; Windisch, Marc P.

    2016-01-01

    RNA interference (RNAi) is a post-transcriptional gene silencing mechanism that mediates the sequence-specific degradation of targeted RNA and thus provides a tremendous opportunity for development of oligonucleotide-based drugs. Here, we report on the design and validation of small interfering RNAs (siRNAs) targeting highly conserved regions of the hepatitis C virus (HCV) genome. To aim for therapeutic applications by optimizing the RNAi efficacy and reducing potential side effects, we considered different factors such as target RNA variations, thermodynamics and accessibility of the siRNA and target RNA, and off-target effects. This aim was achieved using an in silico design and selection protocol complemented by an automated MysiRNA-Designer pipeline. The protocol included the design and filtration of siRNAs targeting highly conserved and accessible regions within the HCV internal ribosome entry site, and adjacent core sequences of the viral genome with high-ranking efficacy scores. Off-target analysis excluded siRNAs with potential binding to human mRNAs. Under this strict selection process, two siRNAs (HCV353 and HCV258) were selected based on their predicted high specificity and potency. These siRNAs were tested for antiviral efficacy in HCV genotype 1 and 2 replicon cell lines. Both in silico-designed siRNAs efficiently inhibited HCV RNA replication, even at low concentrations and for short exposure times (24h); they also exceeded the antiviral potencies of reference siRNAs targeting HCV. Furthermore, HCV353 and HCV258 siRNAs also inhibited replication of patient-derived HCV genotype 4 isolates in infected Huh-7 cells. Prolonged treatment of HCV replicon cells with HCV353 did not result in the appearance of escape mutant viruses. Taken together, these results reveal the accuracy and strength of our integrated siRNA design and selection protocols. These protocols could be used to design highly potent and specific RNAi-based therapeutic oligonucleotide

  15. Electronics for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Patel, J. U.; Cressler, J.; Li, Y.; Niu, G.

    2001-01-01

    Most of the NASA missions involve extreme environments comprising radiation and low or high temperatures. Current practice of providing friendly ambient operating environment to electronics costs considerable power and mass (for shielding). Immediate missions such as the Europa orbiter and lander and Mars landers require the electronics to perform reliably in extreme conditions during the most critical part of the mission. Some other missions planned in the future also involve substantial surface activity in terms of measurements, sample collection, penetration through ice and crust and the analysis of samples. Thus it is extremely critical to develop electronics that could reliably operate under extreme space environments. Silicon On Insulator (SOI) technology is an extremely attractive candidate for NASA's future low power and high speed electronic systems because it offers increased transconductance, decreased sub-threshold slope, reduced short channel effects, elimination of kink effect, enhanced low field mobility, and immunity from radiation induced latch-up. A common belief that semiconductor devices function better at low temperatures is generally true for bulk devices but it does not hold true for deep sub-micron SOI CMOS devices with microscopic device features of 0.25 micrometers and smaller. Various temperature sensitive device parameters and device characteristics have recently been reported in the literature. Behavior of state of the art technology devices under such conditions needs to be evaluated in order to determine possible modifications in the device design for better performance and survivability under extreme environments. Here, we present a unique approach of developing electronics for extreme environments to benefit future NASA missions as described above. This will also benefit other long transit/life time missions such as the solar sail and planetary outposts in which electronics is out open in the unshielded space at the ambient space

  16. Extreme Programming: Maestro Style

    NASA Technical Reports Server (NTRS)

    Norris, Jeffrey; Fox, Jason; Rabe, Kenneth; Shu, I-Hsiang; Powell, Mark

    2009-01-01

    "Extreme Programming: Maestro Style" is the name of a computer programming methodology that has evolved as a custom version of a methodology, called extreme programming that has been practiced in the software industry since the late 1990s. The name of this version reflects its origin in the work of the Maestro team at NASA's Jet Propulsion Laboratory that develops software for Mars exploration missions. Extreme programming is oriented toward agile development of software resting on values of simplicity, communication, testing, and aggressiveness. Extreme programming involves use of methods of rapidly building and disseminating institutional knowledge among members of a computer-programming team to give all the members a shared view that matches the view of the customers for whom the software system is to be developed. Extreme programming includes frequent planning by programmers in collaboration with customers, continually examining and rewriting code in striving for the simplest workable software designs, a system metaphor (basically, an abstraction of the system that provides easy-to-remember software-naming conventions and insight into the architecture of the system), programmers working in pairs, adherence to a set of coding standards, collaboration of customers and programmers, frequent verbal communication, frequent releases of software in small increments of development, repeated testing of the developmental software by both programmers and customers, and continuous interaction between the team and the customers. The environment in which the Maestro team works requires the team to quickly adapt to changing needs of its customers. In addition, the team cannot afford to accept unnecessary development risk. Extreme programming enables the Maestro team to remain agile and provide high-quality software and service to its customers. However, several factors in the Maestro environment have made it necessary to modify some of the conventional extreme

  17. Co-delivery of doxorubicin and siRNA using octreotide-conjugated gold nanorods for targeted neuroendocrine cancer therapy

    NASA Astrophysics Data System (ADS)

    Xiao, Yuling; Jaskula-Sztul, Renata; Javadi, Alireza; Xu, Wenjin; Eide, Jacob; Dammalapati, Ajitha; Kunnimalaiyaan, Muthusamy; Chen, Herbert; Gong, Shaoqin

    2012-10-01

    A multifunctional gold (Au) nanorod (NR)-based nanocarrier capable of co-delivering small interfering RNA (siRNA) against achaete-scute complex-like 1 (ASCL1) and an anticancer drug (doxorubicin (DOX)) specifically to neuroendocrine (NE) cancer cells was developed and characterized for combined chemotherapy and siRNA-mediated gene silencing. The Au NR was conjugated with (1) DOX, an anticancer drug, via a pH-labile hydrazone linkage to enable pH-controlled drug release, (2) polyarginine, a cationic polymer for complexing siRNA, and (3) octreotide (OCT), a tumor-targeting ligand, to specifically target NE cancer cells with overexpressed somatostatin receptors. The Au NR-based nanocarriers exhibited a uniform size distribution as well as pH-sensitive drug release. The OCT-conjugated Au NR-based nanocarriers (Au-DOX-OCT, targeted) exhibited a much higher cellular uptake in a human carcinoid cell line (BON cells) than non-targeted Au NR-based nanocarriers (Au-DOX) as measured by both flow cytometry and confocal laser scanning microscopy (CLSM). Moreover, Au-DOX-OCT-ASCL1 siRNA (Au-DOX-OCT complexed with ASCL1 siRNA) resulted in significantly higher gene silencing in NE cancer cells than Au-DOX-ASCL1 siRNA (non-targeted Au-DOX complexed with ASCL1 siRNA) as measured by an immunoblot analysis. Additionally, Au-DOX-OCT-ASCL1 siRNA was the most efficient nanocarrier at altering the NE phenotype of NE cancer cells and showed the strongest anti-proliferative effect. Thus, combined chemotherapy and RNA silencing using NE tumor-targeting Au NR-based nanocarriers could potentially enhance the therapeutic outcomes in treating NE cancers.A multifunctional gold (Au) nanorod (NR)-based nanocarrier capable of co-delivering small interfering RNA (siRNA) against achaete-scute complex-like 1 (ASCL1) and an anticancer drug (doxorubicin (DOX)) specifically to neuroendocrine (NE) cancer cells was developed and characterized for combined chemotherapy and siRNA-mediated gene silencing. The

  18. Functionalized, biodegradable hydrogels for control over sustained and localized siRNA delivery to incorporated and surrounding cells.

    PubMed

    Nguyen, Khanh; Dang, Phuong Ngoc; Alsberg, Eben

    2013-01-01

    Currently, the most severe limitation to applying RNA interference technology is delivery, including localizing the molecules to a specific site of interest to target a specific cell population and sustaining the presentation of these molecules for a controlled period of time. In this study, we engineered a functionalized, biodegradable system created by covalent incorporation of cationic linear polyethyleneimine (LPEI) into photocrosslinked dextran (DEX) hydrogels through a biodegradable ester linkage. The key innovation of this system is that control over the sustained release of short interference RNA (siRNA) was achieved, as LPEI could electrostatically interact with siRNA to maintain siRNA within the hydrogels and degradation of the covalent ester linkages between the LPEI and the hydrogels led to tunable release of LPEI/siRNA complexes over time. The covalent conjugation of LPEI did not affect the swelling or degradation properties of the hydrogels, and the addition of siRNA and LPEI had minimal effect on their mechanical properties. These hydrogels exhibited low cytotoxicity against human embryonic kidney 293 cells (HEK293). The release profiles could be tailored by varying DEX (8 and 12% w/w) and LPEI (0, 5, 10 μg/100 μl gel) concentrations with nearly 100% cumulative release achieved at day 9 (8% w/w gel) and day 17 (12% w/w gel). The released siRNA exhibited high bioactivity with cells surrounding and inside the hydrogels over an extended time period. This controllable and sustained siRNA delivery hydrogel system that permits tailored siRNA release profiles may be valuable to guide cell fate for regenerative medicine and other therapeutic applications such as cancer treatment.

  19. Inhibiting tumor growth by targeting liposomally encapsulated CDC20siRNA to tumor vasculature: therapeutic RNA interference.

    PubMed

    Majumder, Poulami; Bhunia, Sukanya; Bhattacharyya, Jayanta; Chaudhuri, Arabinda

    2014-04-28

    Many cancer cells over express CDC20 (Cell Division Cycle homologue 20), a key cell cycle regulator required for the completion of mitosis in organisms from yeast to human. A recent in vitro study showed that specific knockdown of CDC20 expression using CDC20siRNA can significantly inhibit growth of human pancreatic carcinoma cells. However, preclinical study aimed at demonstrating therapeutic potential of CDC20siRNA in inhibiting tumor growth has just begun. Using a syngeneic C57BL/6J mouse tumor model, herein we show that intravenous administration of a 19bp synthetic CDC20siRNA encapsulated within α5β1 integrin receptor selective liposomes of pegylated RGDK-lipopeptide inhibits melanoma tumor growth. Liposomally encapsulated CDC20siRNA was found to be efficient in silencing the expression of CDC20 in tumor and endothelial cells at both mRNA and protein levels under in vitro settings. Findings in the flow cytometric studies confirmed the presence of significantly enhanced populations of the G2/M phase in cells treated with liposomally encapsulated CDC20siRNA. Immunohistochemical staining of tumor cryosections from mice treated with liposomally encapsulated fluorescently labeled siRNAs revealed tumor vasculatures targeting capabilities of the present liposomal formulations. The colocalizations of the TUNEL and VE-cadherin positive cells in tumor cryosections are consistent with tumor growth inhibition being mediated via apoptosis of the tumor endothelial cells. In summary, the presently disclosed liposomal formulation of CDC20siRNA is a promising RNA interference tool for use in anti-angiogenic cancer therapy. PMID:24556418

  20. An albumin-mediated cholesterol design-based strategy for tuning siRNA pharmacokinetics and gene silencing.

    PubMed

    Bienk, Konrad; Hvam, Michael Lykke; Pakula, Malgorzata Maria; Dagnæs-Hansen, Frederik; Wengel, Jesper; Malle, Birgitte Mølholm; Kragh-Hansen, Ulrich; Cameron, Jason; Bukrinski, Jens Thostrup; Howard, Kenneth A

    2016-06-28

    Major challenges for the clinical translation of small interfering RNA (siRNA) include overcoming the poor plasma half-life, site-specific delivery and modulation of gene silencing. In this work, we exploit the intrinsic transport properties of human serum albumin to tune the blood circulatory half-life, hepatic accumulation and gene silencing; based on the number of siRNA cholesteryl modifications. We demonstrate by a gel shift assay a strong and specific affinity of recombinant human serum albumin (rHSA) towards cholesteryl-modified siRNA (Kd>1×10(-7)M) dependent on number of modifications. The rHSA/siRNA complex exhibited reduced nuclease degradation and reduced induction of TNF-α production by human peripheral blood mononuclear cells. The increased solubility of heavily cholesteryl modified siRNA in the presence of rHSA facilitated duplex annealing and consequent interaction that allowed in vivo studies using multiple cholesteryl modifications. A structural-activity-based screen of in vitro EGFP-silencing was used to select optimal siRNA designs containing cholesteryl modifications within the sense strand that were used for in vivo studies. We demonstrate plasma half-life extension in NMRI mice from t1/2 12min (naked) to t1/2 45min (single cholesteryl) and t1/2 71min (double cholesteryl) using fluorescent live bioimaging. The biodistribution showed increased accumulation in the liver for the double cholesteryl modified siRNA that correlated with an increase in hepatic Factor VII gene silencing of 28% (rHSA/siRNA) compared to 4% (naked siRNA) 6days post-injection. This work presents a novel albumin-mediated cholesteryl design-based strategy for tuning pharmacokinetics and systemic gene silencing.

  1. Targeted polymersome delivery of siRNA induces cell death of breast cancer cells dependent upon Orai3 protein expression.

    PubMed

    Pangburn, Todd O; Georgiou, Katerina; Bates, Frank S; Kokkoli, Efrosini

    2012-09-01

    Polymersomes, polymeric vesicles that self-assemble in aqueous solutions from block copolymers, have been avidly investigated in recent years as potential drug delivery agents. Past work has highlighted peptide-functionalized polymersomes as a highly promising targeted delivery system. However, few reports have investigated the ability of polymersomes to operate as gene delivery agents. In this study, we report on the encapsulation and delivery of siRNA inside of peptide-functionalized polymersomes composed of poly(1,2-butadiene)-b-poly(ethylene oxide). In particular, PR_b peptide-functionalized polymer vesicles are shown to be a promising system for siRNA delivery. PR_b is a fibronectin mimetic peptide targeting specifically the α(5)β(1) integrin. The Orai3 gene was targeted for siRNA knockdown, and PR_b-functionalized polymer vesicles encapsulating siRNA were found to specifically decrease cell viability of T47D breast cancer cells to a certain extent, while preserving viability of noncancerous MCF10A breast cells. siRNA delivery by PR_b-functionalized polymer vesicles was compared to that of a current commercial siRNA transfection agent, and produced less dramatic decreases in cancer cell viability, but compared favorably in regards to the relative toxicity of the delivery systems. Finally, delivery and vesicle release of a fluorescent encapsulate by PR_b-functionalized polymer vesicles was visualized by confocal microscopy, and colocalization with cellular endosomes and lysosomes was assessed by organelle staining. Polymersomes were observed to primarily release their encapsulate in the early endosomal intracellular compartments, and data may suggest some escape to the cytosol. These results represent a promising first generation model system for targeted delivery of siRNA.

  2. Nitrogen abundance in Comet Halley

    NASA Technical Reports Server (NTRS)

    Wyckoff, Susan; Tegler, Stephen C.; Engel, Lisa

    1991-01-01

    Data on the nitrogen-containing compounds that observed spectroscopically in the coma of Comet Halley are summarized, and the elemental abundance of nitrogen in the Comet Halley nucleus is derived. It is found that 90 percent of elemental nitrogen is in the dust fraction of the coma, while in the gas fraction, most of the nitrogen is contained in NH3 and CN. The elemental nitrogen abundance in the ice component of the nucleus was found to be deficient by a factor of about 75, relative to the solar photosphere, indicating that the chemical partitioning of N2 into NH3 and other nitrogen compounds during the evolution of the solar nebula cannot account completely for the low abundance ratio N2/NH3 = 0.1, observed in the comet. It is suggested that the low N2/NH3 ratio in Comet Halley may be explained simply by physical fractionation and/or thermal diffusion.

  3. Solar and stellar photospheric abundances

    NASA Astrophysics Data System (ADS)

    Allende Prieto, Carlos

    2016-07-01

    The determination of photospheric abundances in late-type stars from spectroscopic observations is a well-established field, built on solid theoretical foundations. Improving those foundations to refine the accuracy of the inferred abundances has proven challenging, but progress has been made. In parallel, developments on instrumentation, chiefly regarding multi-object spectroscopy, have been spectacular, and a number of projects are collecting large numbers of observations for stars across the Milky Way and nearby galaxies, promising important advances in our understanding of galaxy formation and evolution. After providing a brief description of the basic physics and input data involved in the analysis of stellar spectra, a review is made of the analysis steps, and the available tools to cope with large observational efforts. The paper closes with a quick overview of relevant ongoing and planned spectroscopic surveys, and highlights of recent research on photospheric abundances.

  4. Robust Abundance Estimation in Animal Abundance Surveys with Imperfect Detection

    EPA Science Inventory

    Surveys of animal abundance are central to the conservation and management of living natural resources. However, detection uncertainty complicates the sampling process of many species. One sampling method employed to deal with this problem is depletion (or removal) surveys in whi...

  5. Plants Encode a General siRNA Suppressor That Is Induced and Suppressed by Viruses

    PubMed Central

    Charbonnel, Cyril; Elvira-Matelot, Emilie; Bochnakian, Aurore; Comella, Pascale; Mallory, Allison C.; Lepère, Gersende; Sáez-Vásquez, Julio; Vaucheret, Hervé

    2015-01-01

    Small RNAs play essential regulatory roles in genome stability, development, and responses to biotic and abiotic stresses in most eukaryotes. In plants, the RNaseIII enzyme DICER-LIKE1 (DCL1) produces miRNAs, whereas DCL2, DCL3, and DCL4 produce various size classes of siRNAs. Plants also encode RNASE THREE-LIKE (RTL) enzymes that lack DCL-specific domains and whose function is largely unknown. We found that virus infection induces RTL1 expression, suggesting that this enzyme could play a role in plant–virus interaction. To first investigate the biochemical activity of RTL1 independent of virus infection, small RNAs were sequenced from transgenic plants constitutively expressing RTL1. These plants lacked almost all DCL2-, DCL3-, and DCL4-dependent small RNAs, indicating that RTL1 is a general suppressor of plant siRNA pathways. In vivo and in vitro assays revealed that RTL1 prevents siRNA production by cleaving dsRNA prior to DCL2-, DCL3-, and DCL4-processing. The substrate of RTL1 cleavage is likely long-perfect (or near-perfect) dsRNA, consistent with the RTL1-insensitivity of miRNAs, which derive from DCL1-processing of short-imperfect dsRNA. Virus infection induces RTL1 mRNA accumulation, but viral proteins that suppress RNA silencing inhibit RTL1 activity, suggesting that RTL1 has evolved as an inducible antiviral defense that could target dsRNA intermediates of viral replication, but that a broad range of viruses counteract RTL1 using the same protein toolbox used to inhibit antiviral RNA silencing. Together, these results reveal yet another level of complexity in the evolutionary battle between viruses and plant defenses. PMID:26696443

  6. Versatile site-specific conjugation of small molecules to siRNA using click chemistry.

    PubMed

    Yamada, Takeshi; Peng, Chang Geng; Matsuda, Shigeo; Addepalli, Haripriya; Jayaprakash, K Narayanannair; Alam, Md Rowshon; Mills, Kathy; Maier, Martin A; Charisse, Klaus; Sekine, Mitsuo; Manoharan, Muthiah; Rajeev, Kallanthottathil G

    2011-03-01

    We have previously demonstrated that conjugation of small molecule ligands to small interfering RNAs (siRNAs) and anti-microRNAs results in functional siRNAs and antagomirs in vivo. Here we report on the development of an efficient chemical strategy to make oligoribonucleotide-ligand conjugates using the copper-catalyzed azide-alkyne cycloaddition (CuAAC) or click reaction. Three click reaction approaches were evaluated for their feasibility and suitability for high-throughput synthesis: the CuAAC reaction at the monomer level prior to oligonucleotide synthesis, the solution-phase postsynthetic "click conjugation", and the "click conjugation" on an immobilized and completely protected alkyne-oligonucleotide scaffold. Nucleosides bearing 5'-alkyne moieties were used for conjugation to the 5'-end of the oligonucleotide. Previously described 2'- and 3'-O-propargylated nucleosides were prepared to introduce the alkyne moiety to the 3' and 5' termini and to the internal positions of the scaffold. Azido-functionalized ligands bearing lipophilic long chain alkyls, cholesterol, oligoamine, and carbohydrate were utilized to study the effect of physicochemical characteristics of the incoming azide on click conjugation to the alkyne-oligonucleotide scaffold in solution and on immobilized solid support. We found that microwave-assisted click conjugation of azido-functionalized ligands to a fully protected solid-support bound alkyne-oligonucleotide prior to deprotection was the most efficient "click conjugation" strategy for site-specific, high-throughput oligonucleotide conjugate synthesis tested. The siRNA conjugates synthesized using this approach effectively silenced expression of a luciferase gene in a stably transformed HeLa cell line.

  7. Reduction of bilirubin by targeting human heme oxygenase-1 through siRNA.

    PubMed

    Xia, Zhen-Wei; Li, Chun-E; Jin, You-Xin; Shi, Yi; Xu, Li-Qing; Zhong, Wen-Wei; Li, Yun-Zhu; Yu, Shan-Chang; Zhang, Zi-Li

    2007-04-01

    Neonatal hyperbilirubinemia is a common clinical condition caused mainly by the increased production and decreased excretion of bilirubin. Current treatment is aimed at reducing the serum levels of bilirubin. Heme oxygenase-1 (HO-1) is a rate-limiting enzyme that generates bilirubin. In this study we intended to suppress HO-1 using the RNA interference technique. Small interfering RNA (siRNA)-A, -B, and -C were designed based on human HO-1 (hHO-1) mRNA sequences. siRNA was transfected into a human hepatic cell line (HL-7702). hHO-1 transcription and protein levels were then determined. In addition, the inhibitory effect of siRNA on hHO-1 was assessed in cells treated with hemin or transfected with an hHO-1 plasmid. siRNA-C showed the most potent suppressive effect on hHO-1. This inhibition is dose and time dependent. Compared with control, both hemin and hHO-1 plasmids up-regulated hHO-1 expression in HL-7702 cells. However, the up-regulation was significantly attenuated by siRNA-C. Furthermore, the decrease in hHO-1 activity was coincident with the suppression of its transcription. Finally, siRNA-C was shown to reduce hHO-1 enzymatic activity and bilirubin levels. Thus, this study provides a novel therapeutic rationale by blocking bilirubin formation via siRNA for preventing and treating neonatal hyperbilirubinemia and bilirubin encephalopathy at an early clinical stage.

  8. Plants Encode a General siRNA Suppressor That Is Induced and Suppressed by Viruses.

    PubMed

    Shamandi, Nahid; Zytnicki, Matthias; Charbonnel, Cyril; Elvira-Matelot, Emilie; Bochnakian, Aurore; Comella, Pascale; Mallory, Allison C; Lepère, Gersende; Sáez-Vásquez, Julio; Vaucheret, Hervé

    2015-12-01

    Small RNAs play essential regulatory roles in genome stability, development, and responses to biotic and abiotic stresses in most eukaryotes. In plants, the RNaseIII enzyme DICER-LIKE1 (DCL1) produces miRNAs, whereas DCL2, DCL3, and DCL4 produce various size classes of siRNAs. Plants also encode RNASE THREE-LIKE (RTL) enzymes that lack DCL-specific domains and whose function is largely unknown. We found that virus infection induces RTL1 expression, suggesting that this enzyme could play a role in plant-virus interaction. To first investigate the biochemical activity of RTL1 independent of virus infection, small RNAs were sequenced from transgenic plants constitutively expressing RTL1. These plants lacked almost all DCL2-, DCL3-, and DCL4-dependent small RNAs, indicating that RTL1 is a general suppressor of plant siRNA pathways. In vivo and in vitro assays revealed that RTL1 prevents siRNA production by cleaving dsRNA prior to DCL2-, DCL3-, and DCL4-processing. The substrate of RTL1 cleavage is likely long-perfect (or near-perfect) dsRNA, consistent with the RTL1-insensitivity of miRNAs, which derive from DCL1-processing of short-imperfect dsRNA. Virus infection induces RTL1 mRNA accumulation, but viral proteins that suppress RNA silencing inhibit RTL1 activity, suggesting that RTL1 has evolved as an inducible antiviral defense that could target dsRNA intermediates of viral replication, but that a broad range of viruses counteract RTL1 using the same protein toolbox used to inhibit antiviral RNA silencing. Together, these results reveal yet another level of complexity in the evolutionary battle between viruses and plant defenses. PMID:26696443

  9. Phospholipid-detergent conjugates as novel tools for siRNA delivery.

    PubMed

    Pierrat, Philippe; Laverny, Gilles; Creusat, Gaëlle; Wehrung, Patrick; Strub, Jean-Marc; VanDorsselaer, Alain; Pons, Françoise; Zuber, Guy; Lebeau, Luc

    2013-02-11

    One of the potential benefits of drug delivery systems in medicine is the creation of nanoparticle-based vectors that deliver a therapeutic cargo in sufficient quantity to a target site to enable a selective effect, width of the therapeutic window depending on the toxicity of the vector and the cargo. In this work, we intended to improve the siRNA delivery efficiency of a new kind of nucleic acid carrier, which is the result of the conjugation of the membrane phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) to the membrane-active species Triton X-100 (TX100). We hypothesized that by improving the biodegradability the cytotoxicity of the conjugate might by reduced, whereas its original transfection potential would be tentatively preserved. DOPC was conjugated to Triton X-100 through spacers displaying various resistance to chemical hydrolysis and enzyme degradation. The results obtained through in vitro siRNA delivery experiments showed that the initial phosphoester bond can be replaced with a phospho(alkyl)enecarbonate group with no loss in the transfection activity, whereas the associated cytotoxicity was significantly decreased, as assessed by metabolic activity and membrane integrity measurements. The toxicity of the conjugates incorporating a phospho(alkyl)enesuccinnate moiety proved even lower but was clearly balanced with a reduction of the siRNA delivery efficiency. Hydrolytic stability and intracellular degradation of the conjugates were investigated by NMR spectroscopy and mass spectrometry. A general trend was that the more readily degraded conjugates were those with the lower toxicity. Otherwise, the phospho(alkyl)enecarbonate conjugates revealed some hemolytic activity, whereas the parent phosphoester did not. The reason why these conjugates behave differently with respect to hemolysis might be a consequence of unusual fusogenic properties and probably reflects the difference in the stability of the conjugates in the intracellular

  10. Extremely high latitude auroras

    NASA Astrophysics Data System (ADS)

    Gussenhoven, M. S.

    1982-04-01

    It is pointed out that imaging devices on the polar orbiting ISIS and Defense Meteorological Satellite Program (DMSP) satellites have greatly increased the extent of polar cap and auroral zone coverage and have prompted several studies of polar cap arcs. A description is presented of a statistical study of the occurrence conditions for arcs recorded in DMSP images at extremely high latitudes, taking into account corrected geomagnetic latitudes equal to or greater than 80 deg. The 80 deg boundary is chosen to minimize the problems associated with defining a polar cap boundary. Attention is given to the data base and categorization of extremely high latitude auroras, the relationship to magnetic activity, and the relationship to solar wind conditions. It is found that one category of extremely high latitude auroras is distinctly different from the rest. This category includes the oval auroras which expand poleward in the midnight sector.

  11. Coronal Abundances and Their Variation

    NASA Technical Reports Server (NTRS)

    Saba, Julia L. R.

    1996-01-01

    This contract supported the investigation of elemental abundances in the solar corona, principally through analysis of high-resolution soft X-ray spectra from the Flat Crystal Spectrometer on NASA's Solar Maximum Mission. The goals of the study were a characterization of the mean values of relative abundances of elements accessible in the FCS data, and information on the extent and circumstances of their variability. This is the Final Report, summarizing the data analysis and reporting activities which occurred during the period of performance, June 1993 - December 1996.

  12. Chemical Abundances of Symbiotic Giants

    NASA Astrophysics Data System (ADS)

    Gałan, C.; Mikołajewska, J.; Hinkle, K. H.; Joyce, R. R.

    2015-12-01

    High resolution (R ˜ 50000), near-IR spectra were used to measure photospheric abundances of CNO and elements around the iron peak for 24 symbiotic giants. Spectrum synthesis was employed using local thermal equilibrium and hydrostatic model atmospheres. The metallicities are distributed in a wide range with maximum around [Fe/H] ˜-0.4 - - 0.3 dex. Enrichment in 14N indicates that all the sample giants have experienced the first dredge-up. The relative abundance of [Ti/Fe] is generally large in red symbiotic systems.

  13. Coronal abundances and their variation

    NASA Technical Reports Server (NTRS)

    Saba, Julia L. R.

    1994-01-01

    This contract supports the investigation of elemental abundances in the solar corona, principally through analysis of high-resolution soft x-ray spectra from the Flat Crystal Spectrometer (FCS) on the Solar Maximum Mission. The goals of the study are a characterization of the mean values of relative abundances of elements accessible in the FCS data, and information on the extent and circumstances of their variability. This report is a summation of the data analysis and reporting activities which occurred during the first ten months of the contract, 15 Jun. 1993 to 15 Apr. 1994.

  14. The solar abundance of beryllium

    NASA Technical Reports Server (NTRS)

    Ross, J. E.; Aller, L. H.

    1974-01-01

    The solar abundance of beryllium is deduced from high-resolution Kitt Peak observations of the 3130.43- and 3131.08-A lines of Be II interpreted by the method of spectrum synthesis. The results are in good agreement with those previously obtained by Grevesse (1968) and by Hauge and Engvold (1968) and indicate that in the photospheric layers, beryllium is depleted below the chondritic value by a factor of about two. It is found that the beryllium abundance is equal to logN(Be)/N(H) + 12 = 1.08 plus or minus 0.05.

  15. SOLAR MODELS WITH REVISED ABUNDANCE

    SciTech Connect

    Bi, S. L.; Li, T. D.; Yang, W. M.; Li, L. H.

    2011-04-20

    We present new solar models in which we use the latest low abundances and further include the effects of rotation, magnetic fields, and extra-mixing processes. We assume that the extra-element mixing can be treated as a diffusion process, with the diffusion coefficient depending mainly on the solar internal configuration of rotation and magnetic fields. We find that such models can well reproduce the observed solar rotation profile in the radiative region. Furthermore, the proposed models can match the seismic constraints better than the standard solar models, also when these include the latest abundances, but neglect the effects of rotation and magnetic fields.

  16. Cationic Mucic Acid Polymer-Based siRNA Delivery Systems.

    PubMed

    Pan, Dorothy W; Davis, Mark E

    2015-08-19

    Nanoparticle (NP) delivery systems for small interfering RNA (siRNA) that have good systemic circulation and high nucleic acid content are highly desired for translation into clinical use. Here, a family of cationic mucic acid-containing polymers is synthesized and shown to assemble with siRNA to form NPs. A cationic mucic acid polymer (cMAP) containing alternating mucic acid and charged monomers is synthesized. When combined with siRNA, cMAP forms NPs that require steric stabilization by poly(ethylene glycol) (PEG) that is attached to the NP surface via a 5-nitrophenylboronic acid linkage (5-nitrophenylboronic acid-PEGm (5-nPBA-PEGm)) to diols on mucic acid in the cMAP in order to inhibit aggregation in biological fluids. As an alternative, cMAP is covalently conjugated with PEG via two methods. First, a copolymer is prepared with alternating cMAP-PEG units that can form loops of PEG on the surface of the formulated siRNA-containing NPs. Second, an mPEG-cMAP-PEGm triblock polymer is synthesized that could lead to a PEG brush configuration on the surface of the formulated siRNA-containing NPs. The copolymer and triblock polymer are able to form stable siRNA-containing NPs without and with the addition of 5-nPBA-PEGm. Five formulations, (i) cMAP with 5-nPBA-PEGm, (ii) cMAP-PEG copolymer both (a) with and (b) without 5-nPBA-PEGm, and (iii) mPEG-cMAP-PEGm triblock polymer both (a) with and (b) without 5-nPBA-PEGm, are used to produce NPs in the 30-40 nm size range, and their circulation times are evaluated in mice using tail vein injections. The mPEG-cMAP-PEGm triblock polymer provides the siRNA-containing NP with the longest circulation time (5-10% of the formulation remains in circulation at 60 min postdosing), even when a portion of the excess cationic components used in the formulation is filtered away prior to injection. A NP formulation using the mPEG-cMAP-PEGm triblock polymer that is free of excess components could contain as much as ca. 30 wt % siRNA. PMID

  17. Continuous cell electroporation for efficient DNA and siRNA delivery based on laminar microfluidic chips.

    PubMed

    Wei, Zewen; Li, Zhihong

    2014-01-01

    Electroporation is a high-efficiency and low-toxicity physical gene transfer method. Traditional electroporation is limited to only low volume cell samples. Here we present a continuous cell electroporation method based on commonly used microfluidic chip fabrication technology. Using easily fabricated PDMS microfluidic chip, syringe pumps, and pulse generator, we show efficient delivery of both DNA and siRNA into different cell lines. We describe the protocol of chip fabrication, apparatus setup, and cell electroporation assay. Typically, the fabrication of the devices takes 1 or 2 days and the continuous electroporation assay takes 1 h.

  18. Extremal entanglement witnesses

    NASA Astrophysics Data System (ADS)

    Hansen, Leif Ove; Hauge, Andreas; Myrheim, Jan; Sollid, Per Øyvind

    2015-02-01

    We present a study of extremal entanglement witnesses on a bipartite composite quantum system. We define the cone of witnesses as the dual of the set of separable density matrices, thus TrΩρ≥0 when Ω is a witness and ρ is a pure product state, ρ=ψψ† with ψ=ϕ⊗χ. The set of witnesses of unit trace is a compact convex set, uniquely defined by its extremal points. The expectation value f(ϕ,χ)=TrΩρ as a function of vectors ϕ and χ is a positive semidefinite biquadratic form. Every zero of f(ϕ,χ) imposes strong real-linear constraints on f and Ω. The real and symmetric Hessian matrix at the zero must be positive semidefinite. Its eigenvectors with zero eigenvalue, if such exist, we call Hessian zeros. A zero of f(ϕ,χ) is quadratic if it has no Hessian zeros, otherwise it is quartic. We call a witness quadratic if it has only quadratic zeros, and quartic if it has at least one quartic zero. A main result we prove is that a witness is extremal if and only if no other witness has the same, or a larger, set of zeros and Hessian zeros. A quadratic extremal witness has a minimum number of isolated zeros depending on dimensions. If a witness is not extremal, then the constraints defined by its zeros and Hessian zeros determine all directions in which we may search for witnesses having more zeros or Hessian zeros. A finite number of iterated searches in random directions, by numerical methods, leads to an extremal witness which is nearly always quadratic and has the minimum number of zeros. We discuss briefly some topics related to extremal witnesses, in particular the relation between the facial structures of the dual sets of witnesses and separable states. We discuss the relation between extremality and optimality of witnesses, and a conjecture of separability of the so-called structural physical approximation (SPA) of an optimal witness. Finally, we discuss how to treat the entanglement witnesses on a complex Hilbert space as a subset of the

  19. Adventure and Extreme Sports.

    PubMed

    Gomez, Andrew Thomas; Rao, Ashwin

    2016-03-01

    Adventure and extreme sports often involve unpredictable and inhospitable environments, high velocities, and stunts. These activities vary widely and include sports like BASE jumping, snowboarding, kayaking, and surfing. Increasing interest and participation in adventure and extreme sports warrants understanding by clinicians to facilitate prevention, identification, and treatment of injuries unique to each sport. This article covers alpine skiing and snowboarding, skateboarding, surfing, bungee jumping, BASE jumping, and whitewater sports with emphasis on epidemiology, demographics, general injury mechanisms, specific injuries, chronic injuries, fatality data, and prevention. Overall, most injuries are related to overuse, trauma, and environmental or microbial exposure.

  20. An in situ gelling liquid crystalline system based on monoglycerides and polyethylenimine for local delivery of siRNAs.

    PubMed

    Borgheti-Cardoso, Lívia Neves; Depieri, Lívia Vieira; Kooijmans, Sander A A; Diniz, Henrique; Calzzani, Ricardo Alexandre Junqueira; Vicentini, Fabiana Testa Moura de Carvalho; van der Meel, Roy; Fantini, Márcia Carvalho de Abreu; Iyomasa, Mamie Mizusaki; Schiffelers, Raymond M; Bentley, Maria Vitória Lopes Badra

    2015-07-10

    The development of delivery systems able to complex and release siRNA into the cytosol is essential for therapeutic use of siRNA. Among the delivery systems, local delivery has advantages over systemic administration. In this study, we developed and characterized non-viral carriers to deliver siRNA locally, based on polyethylenimine (PEI) as gene carrier, and a self-assembling drug delivery system that forms a gel in situ. Liquid crystalline formulations composed of monoglycerides (MO), PEI, propylene glycol (PG) and 0.1M Tris buffer pH 6.5 were developed and characterized by polarized light microscopy, Small Angle X-ray Scattering (SAXS), for their ability to form inverted type liquid crystalline phases (LC2) in contact with excess water, water absorption capacity, ability to complex with siRNA and siRNA release. In addition, gel formation in vivo was determined by subcutaneous injection of the formulations in mice. In water excess, precursor fluid formulations rapidly transformed into a viscous liquid crystalline phase. The presence of PEI influences the liquid crystalline structure of the LC2 formed and was crucial for complexing siRNA. The siRNA was released from the crystalline phase complexed with PEI. The release rate was dependent on the rate of water uptake. The formulation containing MO/PEI/PG/Tris buffer at 7.85:0.65:76.5:15 (w/w/w/w) complexed with 10 μM of siRNA, characterized as a mixture of cubic phase (diamond-type) and inverted hexagonal phase (after contact with excess water), showed sustained release for 7 days in vitro. In mice, in situ gel formation occurred after subcutaneous injection of the formulations, and the gels were degraded in 30 days. Initially a mild inflammatory process occurred in the tissue surrounding the gel; but after 14 days the tissue appeared normal. Taken together, this work demonstrates the rational development of an in situ gelling formulation for local release of siRNA.

  1. Enrichment of intersubtype HIV-1 recombinants in a dual infection system using HIV-1 strain-specific siRNAs

    PubMed Central

    2011-01-01

    Background Intersubtype HIV-1 recombinants in the form of unique or stable circulating recombinants forms (CRFs) are responsible for over 20% of infections in the worldwide epidemic. Mechanisms controlling the generation, selection, and transmission of these intersubtype HIV-1 recombinants still require further investigation. All intersubtype HIV-1 recombinants are generated and evolve from initial dual infections, but are difficult to identify in the human population. In vitro studies provide the most practical system to study mechanisms, but the recombination rates are usually very low in dual infections with primary HIV-1 isolates. This study describes the use of HIV-1 isolate-specific siRNAs to enrich intersubtype HIV-1 recombinants and inhibit the parental HIV-1 isolates from a dual infection. Results Following a dual infection with subtype A and D primary HIV-1 isolates and two rounds of siRNA treatment, nearly 100% of replicative virus was resistant to a siRNA specific for an upstream target sequence in the subtype A envelope (env) gene as well as a siRNA specific for a downstream target sequence in the subtype D env gene. Only 20% (10/50) of the replicating virus had nucleotide substitutions in the siRNA-target sequence whereas the remaining 78% (39/50) harbored a recombination breakpoint that removed both siRNA target sequences, and rendered the intersubtype D/A recombinant virus resistant to the dual siRNA treatment. Since siRNAs target the newly transcribed HIV-1 mRNA, the siRNAs only enrich intersubtype env recombinants and do not influence the recombination process during reverse transcription. Using this system, a strong bias is selected for recombination breakpoints in the C2 region, whereas other HIV-1 env regions, most notably the hypervariable regions, were nearly devoid of intersubtype recombination breakpoints. Sequence conservation plays an important role in selecting for recombination breakpoints, but the lack of breakpoints in many conserved

  2. Pokemon siRNA Delivery Mediated by RGD-Modified HBV Core Protein Suppressed the Growth of Hepatocellular Carcinoma.

    PubMed

    Kong, Jing; Liu, Xiaoping; Jia, Jianbo; Wu, Jinsheng; Wu, Ning; Chen, Jun; Fang, Fang

    2015-10-01

    Hepatocellular carcinoma (HCC) is a deadly human malignant tumor that is among the most common cancers in the world, especially in Asia. Hepatitis B virus (HBV) infection has been well established as a high risk factor for hepatic malignance. Studies have shown that Pokemon is a master oncogene for HCC growth, suggesting it as an ideal therapeutic target. However, efficient delivery system is still lacking for Pokemon targeting treatment. In this study, we used core proteins of HBV, which is modified with RGD peptides, to construct a biomimetic vector for the delivery of Pokemon siRNAs (namely, RGD-HBc-Pokemon siRNA). Quantitative PCR and Western blot assays revealed that RGD-HBc-Pokemon siRNA possessed the highest efficiency of Pokemon suppression in HCC cells. In vitro experiments further indicated that RGD-HBc-Pokemon-siRNA exerted a higher tumor suppressor activity on HCC cell lines, evidenced by reduced proliferation and attenuated invasiveness, than Pokemon-siRNA or RGD-HBc alone. Finally, animal studies demonstrated that RGD-HBc-Pokemon siRNA suppressed the growth of HCC xenografts in mice by a greater extent than Pokemon-siRNA or RGD-HBc alone. Based on the above results, Pokemon siRNA delivery mediated by RGD-modified HBV core protein was shown to be an effective strategy of HCC gene therapy. PMID:26356810

  3. Efficient delivery of Notch1 siRNA to SKOV3 cells by cationic cholesterol derivative-based liposome

    PubMed Central

    Zhao, Yun-Chun; Zhang, Li; Feng, Shi-Sen; Hong, Lu; Zheng, Hai-Li; Chen, Li-Li; Zheng, Xiao-Ling; Ye, Yi-Qing; Zhao, Meng-Dan; Wang, Wen-Xi; Zheng, Cai-Hong

    2016-01-01

    A novel cationic cholesterol derivative-based small interfering RNA (siRNA) interference strategy was suggested to inhibit Notch1 activation in SKOV3 cells for the gene therapy of ovarian cancer. The cationic cholesterol derivative, N-(cholesterylhemisuccinoyl-amino-3-propyl)-N, N-dimethylamine (DMAPA-chems) liposome, was incubated with siRNA at different nitrogen-to-phosphate ratios to form stabilized, near-spherical siRNA/DMAPA-chems nanoparticles with sizes of 100–200 nm and zeta potentials of 40–50 mV. The siRNA/DMAPA-chems nanoparticles protected siRNA from nuclease degradation in 25% fetal bovine serum. The nanoparticles exhibited high cell uptake and Notch1 gene knockdown efficiency in SKOV3 cells at an nitrogen-to-phosphate ratio of 100 and an siRNA concentration of 50 nM. They also inhibited the growth and promoted the apoptosis of SKOV3 cells. These results may provide the potential for using cationic cholesterol derivatives as efficient nonviral siRNA carriers for the suppression of Notch1 activation in ovarian cancer cells. PMID:27799771

  4. Insight into the relationship between the cell culture model, cell trafficking and siRNA silencing efficiency.

    PubMed

    Capel, Victoria; Vllasaliu, Driton; Watts, Peter; Stolnik, Snow

    2016-08-19

    Despite research efforts, cell uptake processes determining siRNA silencing efficiency remain unclear. Here, we examine the relationship between in vitro cell culture models, cellular trafficking and siRNA silencing efficiency to provide a mechanistic insight on siRNA delivery system design. Model siRNA-polyplexes, based on chitosan as a 'classical' condensing agent, were applied to a panel of lung epithelial cell lines, H1299, A549 and Calu-3 and cell internalization levels, trafficking pathways and gene silencing assessed on exposure to pharmacological inhibitors. The data reveal striking differences in the internalization behaviour and gene silencing efficiency in the tested cell lines, despite their common lung epithelial origins. The model system's silencing was lower where clathrin internalization pathway predominated in Calu-3, relative to silencing in H1299 cells where a non-clathrin internalization appears dominant. Increased silencing on endosomal disruption was apparent in Calu-3 cells, but absent when cellular internalization was not predominantly clathrin-mediated in A549 cells. This highlights that identifying cell trafficking pathways before incorporation of functional components to siRNA delivery systems (e.g. endosomolytic compounds) is crucial. The study hence stresses the importance of selection of appropriate cell culture model, relevant to in vivo target, to assess the gene silencing efficiency and decide which functionalities the 'stratified siRNA silencing vector' requires. PMID:27349867

  5. [Inhibition of proliferation of H5N1 subtype AIV in CEF by chemosynthetic siRNA].

    PubMed

    Li, Ru-Shu; Yu, Dan; Luo, Bao-Zheng; Bo, Qing-Ru; Xu, Hai-Nie; Sha, Cai-Hua; Liao, Xiu-Yun

    2013-06-01

    In order to study the proliferation inhibition effect of H5N1 subtype avian influenza virus (AIV) with small interfere RNA (siRNA), a total of 4 siRNAs were designed in accordance with the NP and PA genes of H5N1 subtype AIV, the siRNAs were then transfected to chicken embryo fibroblast(CEF), CEF was infected with H5N1 subtype AIV after 6 hrs. Virus titer of cell supernatant was tested at 16-56hrs post infection, and pathological changes of the cells was observed; mRNA levels of NP, PA, HA and p13-actin gene were tested at 36hrs post infection. The results showed that these 4 siRNAs could inhibit the prolif-eration of H5N1 subtype AIV in CEF in varying degrees, and one siRNA targeting PA was best per-formed. The experimental results also showed that the inhibition effect was decreased with the time prolonged. This research provides a basis for further studying RNAi on AIV prevention and control.

  6. Targeted exosome-mediated delivery of opioid receptor Mu siRNA for the treatment of morphine relapse

    PubMed Central

    Liu, Yuchen; Li, Dameng; Liu, Zhengya; Zhou, Yu; Chu, Danping; Li, Xihan; Jiang, Xiaohong; Hou, Dongxia; Chen, Xi; Chen, Yuda; Yang, Zhanzhao; Jin, Ling; Jiang, Waner; Tian, Chenfei; Zhou, Geyu; Zen, Ke; Zhang, Junfeng; Zhang, Yujing; Li, Jing; Zhang, Chen-Yu

    2015-01-01

    Cell-derived exosomes have been demonstrated to be efficient carriers of small RNAs to neighbouring or distant cells, highlighting the preponderance of exosomes as carriers for gene therapy over other artificial delivery tools. In the present study, we employed modified exosomes expressing the neuron-specific rabies viral glycoprotein (RVG) peptide on the membrane surface to deliver opioid receptor mu (MOR) siRNA into the brain to treat morphine addiction. We found that MOR siRNA could be efficiently packaged into RVG exosomes and was associated with argonaute 2 (AGO2) in exosomes. These exosomes efficiently and specifically delivered MOR siRNA into Neuro2A cells and the mouse brain. Functionally, siRNA-loaded RVG exosomes significantly reduced MOR mRNA and protein levels. Surprisingly, MOR siRNA delivered by the RVG exosomes strongly inhibited morphine relapse via the down-regulation of MOR expression levels. In conclusion, our results demonstrate that targeted RVG exosomes can efficiently transfer siRNA to the central nervous system and mediate the treatment of morphine relapse by down-regulating MOR expression levels. Our study provides a brand new strategy to treat drug relapse and diseases of the central nervous system. PMID:26633001

  7. Hydrolytic charge-reversal of PEGylated polyplexes enhances intracellular un-packaging and activity of siRNA.

    PubMed

    Werfel, Thomas A; Swain, Corban; Nelson, Christopher E; Kilchrist, Kameron V; Evans, Brian C; Miteva, Martina; Duvall, Craig L

    2016-04-01

    Hydrolytically degrading nano-polyplexes (HDG-NPs) that reverse charge through conversion of tertiary amines to carboxylic acids were investigated to improve intracellular un-packaging of siRNA and target gene silencing compared to a non-degradable analog (non-HDG-NPs). Both NP types comprised reversible addition-fragmentation chain-transfer (RAFT) synthesized diblock copolymers of a poly(ethylene glycol) (PEG) corona-forming block and a cationic block for nucleic acid packaging that incorporated butyl methacrylate (BMA) and either dimethylaminoethyl methacrylate (DMAEMA, non-HDG-NPs) or dimethylaminoethyl acrylate (DMAEA, HDG-NPs). HDG-NPs decreased significantly in size and released significantly more siRNA (∼40%) than non-HDG-NPs after 24 h in aqueous solution. While both HDG-NPs and non-HDG-NPs had comparable uptake and cytotoxicity up to 150 nM siRNA doses, HDG-NPs achieved significantly higher target gene silencing of the model gene luciferase in vitro. High resolution FRET confocal microscopy was used to monitor the intracellular un-packaging of siRNA. Non-HDG-NPs had significantly higher FRET efficiency than HDG-NPs, indicating that siRNA delivered from HDG-NPs was more fully un-packaged and therefore had improved intracellular bioavailability.

  8. Downregulation of the H-2Kd gene by siRNA affects the cytotoxicity of murine LAK cells

    PubMed Central

    2013-01-01

    To investigate the effect of the H-2Kd gene on the lymphocyte membrane, we constructed a small interfering RNA (siRNA) that targets the H-2Kd gene and compared the cytotoxicity of mouse lymphokine-activated killer (LAK) cells with different H-2Kd expression states. H-2Kd-targeting siRNA was transfected into spleen lymphocytes of BALB/C mice. Flow cytometry (FCM) was then performed to examine the expression of the H-2Kd gene in the transfected and control cells. Additionally, the cytotoxicity of the transfected cells toward the H22 and K562 cell lines was evaluated in vitro using the LDH release assay. H-2Kd-targeting siRNA significantly reduced the expression levels of the target protein, whereas pure transMessenger and non-silencing siRNA did not inhibit H-2Kd expression at the concentrations tested. The cytotoxicity of siRNA-treated LAK cells toward H22 and K562 cells was reduced significantly. The knockdown of H-2Kd gene expression by siRNA may be associated with LAK cell cytotoxicity toward neoplasm cell lines. PMID:24206544

  9. Delivery of siRNAs to Dendritic Cells Using DEC205-Targeted Lipid Nanoparticles to Inhibit Immune Responses

    PubMed Central

    Katakowski, Joseph A; Mukherjee, Gayatri; Wilner, Samantha E; Maier, Keith E; Harrison, Michael Travis; DiLorenzo, Teresa P; Levy, Matthew; Palliser, Deborah

    2016-01-01

    Due to their ability to knock down the expression of any gene, siRNAs have been heralded as ideal candidates for treating a wide variety of diseases, including those involving “undruggable” targets. However, the therapeutic potential of siRNAs remains severely limited by a lack of effective delivery vehicles. Recently, lipid nanoparticles (LNPs) containing ionizable cationic lipids have been developed for hepatic siRNA delivery. However, their suitability for delivery to other cell types has not been determined. We have modified LNPs for preferential targeting to dendritic cells (DCs), central regulators of immune responses. To achieve directed delivery, we coated LNPs with a single-chain antibody (scFv; DEC-LNPs), specific to murine DEC205, which is highly expressed on distinct DC subsets. Here we show that injection of siRNAs encapsulated in DEC-LNPs are preferentially delivered to DEC205+ DCs. Gene knockdown following uptake of DEC-LNPs containing siRNAs specific for the costimulatory molecules CD40, CD80, and CD86 dramatically decreases gene expression levels. We demonstrate the functionality of this knockdown with a mixed lymphocyte response (MLR). Overall, we report that injection of LNPs modified to restrict their uptake to a distinct cell population can confer profound gene knockdown, sufficient to inhibit powerful immune responses like the MLR. PMID:26412590

  10. Design of a platform technology for systemic delivery of siRNA to tumours using rolling circle transcription

    PubMed Central

    Jang, Mihue; Kim, Jong Hwan; Nam, Hae Yun; Kwon, Ick Chan; Ahn, Hyung Jun

    2015-01-01

    For therapeutic applications of siRNA, there are technical challenges with respect to targeted and systemic delivery. We here report a new siRNA carrier, RNAtr NPs, in a way that multiple tandem copies of RNA hairpins as a result of rolling circle transcription (RCT) can be readily adapted in tumour-targeted and systemic siRNA delivery. RNAtr NPs provide a means of condensing large amounts of multimeric RNA transcripts into the compact nanoparticles, especially without the aid of polycationic agents, and thus reduce the risk of immunogenicity and cytotoxicity by avoiding the use of synthetic polycationic reagents. This strategy allows the design of a platform technology for systemic delivery of siRNA to tumour sites, because RCT reaction, which enzymatically generates RNA polymers in multiple copy numbers at low cost, can lead to directly accessible routes to targeted and systemic delivery. Therefore, RNAtr NPs suggest great potentials as the siRNA therapeutics for cancer treatment. PMID:26246279

  11. Primary and secondary siRNA synthesis triggered by RNAs from food bacteria in the ciliate Paramecium tetraurelia.

    PubMed

    Carradec, Quentin; Götz, Ulrike; Arnaiz, Olivier; Pouch, Juliette; Simon, Martin; Meyer, Eric; Marker, Simone

    2015-02-18

    In various organisms, an efficient RNAi response can be triggered by feeding cells with bacteria producing double-stranded RNA (dsRNA) against an endogenous gene. However, the detailed mechanisms and natural functions of this pathway are not well understood in most cases. Here, we studied siRNA biogenesis from exogenous RNA and its genetic overlap with endogenous RNAi in the ciliate Paramecium tetraurelia by high-throughput sequencing. Using wild-type and mutant strains deficient for dsRNA feeding we found that high levels of primary siRNAs of both strands are processed from the ingested dsRNA trigger by the Dicer Dcr1, the RNA-dependent RNA polymerases Rdr1 and Rdr2 and other factors. We further show that this induces the synthesis of secondary siRNAs spreading along the entire endogenous mRNA, demonstrating the occurrence of both 3'-to-5' and 5'-to-3' transitivity for the first time in the SAR clade of eukaryotes (Stramenopiles, Alveolates, Rhizaria). Secondary siRNAs depend on Rdr2 and show a strong antisense bias; they are produced at much lower levels than primary siRNAs and hardly contribute to RNAi efficiency. We further provide evidence that the Paramecium RNAi machinery also processes single-stranded RNAs from its bacterial food, broadening the possible natural functions of exogenously induced RNAi in this organism. PMID:25593325

  12. siRNA delivery targeting to the lung via agglutination-induced accumulation and clearance of cationic tetraamino fullerene

    NASA Astrophysics Data System (ADS)

    Minami, Kosuke; Okamoto, Koji; Doi, Kent; Harano, Koji; Noiri, Eisei; Nakamura, Eiichi

    2014-05-01

    The efficient treatment of lung diseases requires lung-selective delivery of agents to the lung. However, lung-selective delivery is difficult because the accumulation of micrometer-sized carriers in the lung often induces inflammation and embolization-related toxicity. Here we demonstrate a lung-selective delivery system of small interfering RNA (siRNA) by controlling the size of carrier vehicle in blood vessels. The carrier is made of tetra(piperazino)fullerene epoxide (TPFE), a water-soluble cationic tetraamino fullerene. TPFE and siRNA form sub-micrometer-sized complexes in buffered solution and these complexes agglutinate further with plasma proteins in the bloodstream to form micrometer-sized particles. The agglutinate rapidly clogs the lung capillaries, releases the siRNA into lung cells to silence expression of target genes, and is then cleared rapidly from the lung after siRNA delivery. We applied our delivery system to an animal model of sepsis, indicating the potential of TPFE-based siRNA delivery for clinical applications.

  13. Selective silencing of gene target expression by siRNA expression plasmids in human cervical cancer cells.

    PubMed

    Peralta-Zaragoza, Oscar; De-la-O-Gómez, Faustino; Deas, Jessica; Fernández-Tilapa, Gloria; Fierros-Zárate, Geny Del Socorro; Gómez-Cerón, Claudia; Burguete-García, Ana; Torres-Poveda, Kirvis; Bermúdez-Morales, Victor Hugo; Rodríguez-Dorantes, Mauricio; Pérez-Plasencia, Carlos; Madrid-Marina, Vicente

    2015-01-01

    RNA interference is a natural mechanism to silence post-transcriptional gene expression in eukaryotic cells in which microRNAs act to cleave or halt the translation of target mRNAs at specific target sequences. Mature microRNAs, 19-25 nucleotides in length, mediate their effect at the mRNA level by inhibiting translation, or inducing cleavage of the mRNA target. This process is directed by the degree of complementary nucleotides between the microRNAs and the target mRNA; perfect complementary base pairing induces cleavage of mRNA, whereas several mismatches lead to translational arrest. Biological effects of microRNAs can be manipulated through the use of small interference RNAs (siRNAs) generated by chemical synthesis, or by cloning in molecular vectors. The cloning of a DNA insert in a molecular vector that will be transcribed into the corresponding siRNAs is an approach that has been developed using siRNA expression plasmids. These vectors contain DNA inserts designed with software to generate highly efficient siRNAs which will assemble into RNA-induced silencing complexes (RISC), and silence the target mRNA. In addition, the DNA inserts may be contained in cloning cassettes, and introduced in other molecular vectors. In this chapter we describe an attractive technology platform to silence cellular gene expression using specific siRNA expression plasmids, and evaluate its biological effect on target gene expression in human cervical cancer cells. PMID:25348304

  14. Pokemon siRNA Delivery Mediated by RGD-Modified HBV Core Protein Suppressed the Growth of Hepatocellular Carcinoma.

    PubMed

    Kong, Jing; Liu, Xiaoping; Jia, Jianbo; Wu, Jinsheng; Wu, Ning; Chen, Jun; Fang, Fang

    2015-10-01

    Hepatocellular carcinoma (HCC) is a deadly human malignant tumor that is among the most common cancers in the world, especially in Asia. Hepatitis B virus (HBV) infection has been well established as a high risk factor for hepatic malignance. Studies have shown that Pokemon is a master oncogene for HCC growth, suggesting it as an ideal therapeutic target. However, efficient delivery system is still lacking for Pokemon targeting treatment. In this study, we used core proteins of HBV, which is modified with RGD peptides, to construct a biomimetic vector for the delivery of Pokemon siRNAs (namely, RGD-HBc-Pokemon siRNA). Quantitative PCR and Western blot assays revealed that RGD-HBc-Pokemon siRNA possessed the highest efficiency of Pokemon suppression in HCC cells. In vitro experiments further indicated that RGD-HBc-Pokemon-siRNA exerted a higher tumor suppressor activity on HCC cell lines, evidenced by reduced proliferation and attenuated invasiveness, than Pokemon-siRNA or RGD-HBc alone. Finally, animal studies demonstrated that RGD-HBc-Pokemon siRNA suppressed the growth of HCC xenografts in mice by a greater extent than Pokemon-siRNA or RGD-HBc alone. Based on the above results, Pokemon siRNA delivery mediated by RGD-modified HBV core protein was shown to be an effective strategy of HCC gene therapy.

  15. Primary and secondary siRNA synthesis triggered by RNAs from food bacteria in the ciliate Paramecium tetraurelia

    PubMed Central

    Carradec, Quentin; Götz, Ulrike; Arnaiz, Olivier; Pouch, Juliette; Simon, Martin; Meyer, Eric; Marker, Simone

    2015-01-01

    In various organisms, an efficient RNAi response can be triggered by feeding cells with bacteria producing double-stranded RNA (dsRNA) against an endogenous gene. However, the detailed mechanisms and natural functions of this pathway are not well understood in most cases. Here, we studied siRNA biogenesis from exogenous RNA and its genetic overlap with endogenous RNAi in the ciliate Paramecium tetraurelia by high-throughput sequencing. Using wild-type and mutant strains deficient for dsRNA feeding we found that high levels of primary siRNAs of both strands are processed from the ingested dsRNA trigger by the Dicer Dcr1, the RNA-dependent RNA polymerases Rdr1 and Rdr2 and other factors. We further show that this induces the synthesis of secondary siRNAs spreading along the entire endogenous mRNA, demonstrating the occurrence of both 3′-to-5′ and 5′-to-3′ transitivity for the first time in the SAR clade of eukaryotes (Stramenopiles, Alveolates, Rhizaria). Secondary siRNAs depend on Rdr2 and show a strong antisense bias; they are produced at much lower levels than primary siRNAs and hardly contribute to RNAi efficiency. We further provide evidence that the Paramecium RNAi machinery also processes single-stranded RNAs from its bacterial food, broadening the possible natural functions of exogenously induced RNAi in this organism. PMID:25593325

  16. Cationic Polymer Modified Mesoporous Silica Nanoparticles for Targeted SiRNA Delivery to HER2+ Breast Cancer

    PubMed Central

    Ngamcherdtrakul, Worapol; Morry, Jingga; Gu, Shenda; Castro, David J.; Goodyear, Shaun M.; Sangvanich, Thanapon; Reda, Moataz M.; Lee, Richard; Mihelic, Samuel A.; Beckman, Brandon L.; Hu, Zhi; Gray, Joe W.; Yantasee, Wassana

    2015-01-01

    In vivo delivery of siRNAs designed to inhibit genes important in cancer and other diseases continues to be an important biomedical goal. We now describe a new nanoparticle construct that has been engineered for efficient delivery of siRNA to tumors. The construct is comprised of a 47-nm mesoporous silica nanoparticle (MSNP) core coated with a cross-linked PEI-PEG copolymer, carrying siRNA against the HER2 oncogene, and coupled to the anti-HER2 monoclonal antibody (trastuzumab). The construct has been engineered to increase siRNA blood half-life, enhance tumor-specific cellular uptake, and maximize siRNA knockdown efficacy. The optimized anti-HER2-nanoparticles produced apoptotic death in HER2 positive (HER2+) breast cancer cells grown in vitro, but not in HER2 negative (HER2−) cells. One dose of the siHER2-nanoparticles reduced HER2 protein levels by 60% in trastuzumab-resistant HCC1954 xenografts. Multiple doses administered intravenously over 3 weeks significantly inhibited tumor growth (p < 0.004). The siHER2-nanoparticles have an excellent safety profile in terms of blood compatibility and low cytokine induction, when exposed to human peripheral blood mononuclear cells. The construct can be produced with high batch-to-batch reproducibility and the production methods are suitable for large-scale production. These results suggest that this siHER2-nanoparticle is ready for clinical evaluation. PMID:26097445

  17. Further evaluation of a novel nano-scale gene vector for in vivo transfection of siRNA.

    PubMed

    Liu, Fan; Qiao, Fang-Fang; Tong, Man-Li; Liu, Li-Li; Fu, Zuo-Gen; Dan, Bing; Lin, Li-Rong; Yang, Tian-Ci; Zhang, Zhong-Ying

    2011-05-01

    In this research, a lipid-cationic polymer (LCP) containing the side-chain branching of brassidic acid was synthesized using chemical methods. As a gene vector for small interfering ribonucleic acid (siRNA) transfection, the efficiency and biosafety of LCP were preliminarily evaluated to investigate its possible application on tumor gene therapy. The toxicity, side-effects, and biosafety of LCP were investigated in animals based on the results of in vitro experiments. The siRNA against cyclooxygenase-2 (COX-2) was transfected by LCP to interfere with the COX-2 expression in nude-transplanted tumors. Hematoxylin and eosin stains, immunohistochemistry, reverse transcription-polymerase chain reaction, and Western blot were performed to evaluate the efficiency of LCP for siRNA transfection. The animal toxicity experiment showed that a high concentration of LCP had a low toxic effect on animals and did not induce allergic or pyrogenic reactions. The results from the in vivo transfection indicated that LCP could efficiently transfect siRNA and silence the target gene expression. The LCP gene vector for siRNA transfection is highly efficient during in vivo transfection and had low toxicity. From all aspects of tumor gene therapy and basic research, LCP is valuable for scientific research and medical applications.

  18. Non-covalently functionalized single-walled carbon nanotube for topical siRNA delivery into melanoma.

    PubMed

    Siu, King Sun; Chen, Di; Zheng, Xiufen; Zhang, Xusheng; Johnston, Nathan; Liu, Yanling; Yuan, Ken; Koropatnick, James; Gillies, Elizabeth R; Min, Wei-Ping

    2014-03-01

    RNAi can specifically regulate gene expression, but efficient delivery of siRNA in vivo is difficult while it has been shown that modified carbon nanotubes (CNT) protect siRNA, facilitate entry into cells and enhance transdermal drugs delivery. Single-walled carbon nanotubes (SWCNT) were functionalized non-covalently with succinated polyethyleimine (PEI-SA). In this study, the water soluble CNT, PEI-SA/CNT (IS/C) were isolated and characterized, the gene silencing induced by IS/C/siRNA complexes was achieved in vitro in B16-F10 cells. In vivo delivery was topically applied to shaved mouse skin, as well as topically to a C57BL/6 mice melanoma model. We found significant uptake of Cy3-labeled siRNA specific to Braf (siBraf) and gene silencing in the tumor tissue. Treatment with IS/C/siBraf resulted in attenuation of tumor growth over a 25-day period. This new delivery method has provided a new possibility for future siRNA delivery and therapy, which providing insight for the potential application and development of CNT-based siRNA delivery.

  19. Efficient Gene Silencing by Self-Assembled Complexes of siRNA and Symmetrical Fatty Acid Amides of Spermine

    PubMed Central

    Metwally, Abdelkader A.; Pourzand, Charareh; Blagbrough, Ian S.

    2011-01-01

    Gene silencing by siRNA (synthetic dsRNA of 21-25 nucleotides) is a well established biological tool in gene expression studies and has a promising therapeutic potential for difficult-to-treat diseases. Five fatty acids of various chain length and oxidation state (C12:0, C18:0, C18:1, C18:2, C22:1) were conjugated to the naturally occurring polyamine, spermine, and evaluated for siRNA delivery and gene knock-down. siRNA delivery could not be related directly to gene silencing efficiency as N4,N9-dierucoyl spermine resulted in higher siRNA delivery compared to N4,N9-dioleoyl spermine. GFP silencing in HeLa cells showed that the unsaturated fatty acid amides are more efficient than saturated fatty acid amides, with N4,N9-dioleoyl spermine resulting in the most efficient gene silencing in the presence of serum. The alamarBlue cell viability assay showed that fatty acid amides of spermine have good viability (75%–85% compared to control) except N4,N9-dilauroyl spermine which resulted in low cell viability. These results prove that unsaturated fatty acid amides of spermine are efficient, non-toxic, non-viral vectors for siRNA mediated gene silencing. PMID:24310492

  20. Evaluation of cationic nanoparticles of biodegradable copolymers as siRNA delivery system for hepatitis B treatment.

    PubMed

    Wang, Junping; Feng, Si-Shen; Wang, Shu; Chen, Zhi-Ying

    2010-11-15

    Cationic nanoparticles of biodegradable polymers such as poly (lactide) (PLA) have been shown to be promising carrier systems for DNA and siRNA delivery. However, the parameters which influence the transfection efficiency have not been investigated in details. In this work, four groups of cationic PLA-based nanoparticles were synthesized by the nanoprecipitation method and solvent evaporation method with polyethyleneimine (PEI) and chitosan as two types of surface coating materials. Cationic poly (D,L-lactide-co-glycolide) (PLGA)-PEI, PLGA-chitosan and methoxy poly (ethylene glycol)-poly (lactide) (mPEG)-PLA/PEI, mPEG-PLA-chitosan nanoparticles were characterized in terms of size and size distribution by laser scattering, surface charge by zeta potential measurement, and surface chemistry by X-ray electron spectroscopy (XPS). The four type pg nanoparticles were compared for their interaction with siRNA and nanoparticles mediated siRNA transfection efficiency with a hepatitis B model, where the inhibition effects of the double strand RNA (dsRNA) mediated by the four types of nanoparticles were evaluated by measuring the HBsAg expression level. The highest inhibition effect of HBsAg (the surface antigen of the hepatitis B Virus (HBV), which indicates current hepatitis B infection) expression was achieved by the mPEG-PLA-PEI nanoparticles mediated siRNA transfection. The results demonstrated that the siRNA delivery follows a size and surface charge dependant manner. PMID:20801205

  1. The Diffuse Extreme Ultraviolet Background

    NASA Technical Reports Server (NTRS)

    Vallerga, John; Slavin, Jonathan

    1996-01-01

    Observations of the diffuse EUV background towards 138 different directions using the spectrometers aboard the Extreme Ultraviolet Explorer satellite (EUVE) have been combined into a spectrum from 150A to 730A and represent an effective exposure of 18 million seconds. There is no significant evidence of any non-local line flux in the resultant spectrum such as that from a hot coronal plasma. These results are inconsistent with the Wisconsin C and B broad-band surveys assuming the source is a logT = 5.8 - 6.1 hot plasma in ionization equilibrium with solar abundances, confirming the previous result of Jelinksy, Vallerga and Edelstein) (hereafter Paper 1) using an observation along the ecliptic with the same instrument. To make these results consistent with the previous broad-band surveys, the plasma responsible for the emission must either be depleted in Fe by a factor of approximately 6, be behind an absorbing slab of neutral H with a column of 2 x 10(exp 19)/sq cm, or not be in collisional ionization equilibrium (CIE). One such non-CIE model (Breitswerdt and Schmutzier) that explains the soft x-ray results is also inconsistent with this EUV data.

  2. THE SOLAR FLARE IRON ABUNDANCE

    SciTech Connect

    Phillips, K. J. H.; Dennis, B. R. E-mail: Brian.R.Dennis@nasa.gov

    2012-03-20

    The abundance of iron is measured from emission line complexes at 6.65 keV (Fe line) and 8 keV (Fe/Ni line) in RHESSI X-ray spectra during solar flares. Spectra during long-duration flares with steady declines were selected, with an isothermal assumption and improved data analysis methods over previous work. Two spectral fitting models give comparable results, viz., an iron abundance that is lower than previous coronal values but higher than photospheric values. In the preferred method, the estimated Fe abundance is A(Fe) = 7.91 {+-} 0.10 (on a logarithmic scale, with A(H) = 12) or 2.6 {+-} 0.6 times the photospheric Fe abundance. Our estimate is based on a detailed analysis of 1898 spectra taken during 20 flares. No variation from flare to flare is indicated. This argues for a fractionation mechanism similar to quiet-Sun plasma. The new value of A(Fe) has important implications for radiation loss curves, which are estimated.

  3. Climate Extremes and Society

    NASA Astrophysics Data System (ADS)

    Mote, Philip

    2009-10-01

    In October 2005, as the United States still was reeling from Hurricane Katrina in August and as the alphabet was too short to contain all of that year's named Atlantic tropical storms (Hurricane Wilma was forming near Jamaica), a timely workshop in Bermuda focused on climate extremes and society (see Eos, 87(3), 25, 17 January 2006). This edited volume, which corresponds roughly to the presentations given at that workshop, offers a fascinating look at the critically important intersection of acute climate stress and human vulnerabilities. A changing climate affects humans and other living things not through the variable that most robustly demonstrates the role of rising greenhouse gases—globally averaged temperature—but through local changes, especially changes in extremes. The first part of this book, “Defining and modeling the nature of weather and climate extremes,” focuses on natural science. The second part, “Impacts of weather and climate extremes,” focuses on societal impacts and responses, emphasizing an insurance industry perspective because a primary sponsor of the workshop was the Risk Prediction Initiative, whose aim is to “support scientific research on topics of interest to its sponsors” (p. 320).

  4. Hydrological extremes and security

    NASA Astrophysics Data System (ADS)

    Kundzewicz, Z. W.; Matczak, P.

    2015-04-01

    Economic losses caused by hydrological extremes - floods and droughts - have been on the rise. Hydrological extremes jeopardize human security and impact on societal livelihood and welfare. Security can be generally understood as freedom from threat and the ability of societies to maintain their independent identity and their functional integrity against forces of change. Several dimensions of security are reviewed in the context of hydrological extremes. The traditional interpretation of security, focused on the state military capabilities, has been replaced by a wider understanding, including economic, societal and environmental aspects that get increasing attention. Floods and droughts pose a burden and serious challenges to the state that is responsible for sustaining economic development, and societal and environmental security. The latter can be regarded as the maintenance of ecosystem services, on which a society depends. An important part of it is water security, which can be defined as the availability of an adequate quantity and quality of water for health, livelihoods, ecosystems and production, coupled with an acceptable level of water-related risks to people, environments and economies. Security concerns arise because, over large areas, hydrological extremes - floods and droughts - are becoming more frequent and more severe. In terms of dealing with water-related risks, climate change can increase uncertainties, which makes the state's task to deliver security more difficult and more expensive. However, changes in population size and development, and level of protection, drive exposure to hydrological hazards.

  5. Lower extremity orthoses.

    PubMed

    Bogucki, Artur

    2002-01-31

    This article presents the medical indications and contemporary technical capabilities in orthotic management of lower extremity. The classification included typical orthoses as well as devices that today constitute an integral part of modern therapeutic procedures are presented. Therapeutic success is conditioned by professional team-work of the physician, the therapist, the orthotic technician and the patient. PMID:17679908

  6. Lower extremity prostheses.

    PubMed

    Bogucki, A

    2001-01-01

    This article discusses the technical and medical difficulties involved in the proper fitting of prostheses on the lower extremity. The factors determining the success of a prosthesis include the quality of the stump, the skill of prosthesis socket fabrication, and the proper ordering of components, as well as rehabilitation supervised by experts and professional care for the amputee. PMID:17984917

  7. Effective down-regulation of breast cancer resistance protein (BCRP) by siRNA delivery using lipid-substituted aliphatic polymers.

    PubMed

    Aliabadi, Hamidreza Montazeri; Landry, Breanne; Mahdipoor, Parvin; Hsu, Charlie Y M; Uludağ, Hasan

    2012-05-01

    Breast Cancer Resistance Protein (BCRP, ABCG2) is an efflux protein whose aberrant activity has been linked to multidrug resistance in cancer. Although siRNA delivery to down-regulate BCRP expression is promising to sensitize tumor cells against drugs, therapeutic use of siRNA requires effective carriers that can deliver siRNA intracellularly with minimal toxicity on target cells. This study explored the feasibility of special class of cationic polymers, namely lipid-substituted low molecular weight (2kDa) polyethyleneimine (PEI), as a carrier for siRNA-mediated BCRP down-regulation. Structure-function studies methodically evaluated the effect of a range of lipophilic substitutions for siRNA delivery and BCRP down-regulation. Our results showed a significant increase in siRNA delivery as a function of lipid substitution for a range of lipids ranging from C8 to C18. The BCRP silencing was correlated to siRNA delivery efficiency of the polymers, and effectively lasted for ∼5days after a single treatment of siRNA. BCRP down-regulation sensitized the drug-resistant cells to cytotoxic effect of mitoxantrone by a ∼14-fold decrease in the IC(50) value, whose effect was evident even after 14days. This study demonstrated the possibility of functional siRNA delivery by lipid-modified low molecular weight PEI and highlighted the importance of the extent and nature of lipid substitution in effective siRNA delivery. PMID:22311298

  8. Actinide abundances in ordinary chondrites

    USGS Publications Warehouse

    Hagee, B.; Bernatowicz, T.J.; Podosek, F.A.; Johnson, M.L.; Burnett, D.S.; Tatsumoto, M.

    1990-01-01

    Measurements of 244Pu fission Xe, U, Th, and light REE (LREE) abundances, along with modal petrographic determinations of phosphate abundances, were carried out on equilibrated ordinary chondrites in order to define better the solar system Pu abundance and to determine the degree of variation of actinide and LREE abundances. Our data permit comparison of the directly measured Pu/ U ratio with that determined indirectly as (Pu/Nd) ?? (Nd/U) assuming that Pu behaves chemically as a LREE. Except for Guaren??a, and perhaps H chondrites in general, Pu concentrations are similar to that determined previously for St. Se??verin, although less precise because of higher trapped Xe contents. Trapped 130Xe 136Xe ratios appear to vary from meteorite to meteorite, but, relative to AVCC, all are similar in the sense of having less of the interstellar heavy Xe found in carbonaceous chondrite acid residues. The Pu/U and Pu/Nd ratios are consistent with previous data for St. Se??verin, but both tend to be slightly higher than those inferred from previous data on Angra dos Reis. Although significant variations exist, the distribution of our Th/U ratios, along with other precise isotope dilution data for ordinary chondrites, is rather symmetric about the CI chondrite value; however, actinide/(LREE) ratios are systematically lower than the CI value. Variations in actinide or LREE absolute and relative abundances are interpreted as reflecting differences in the proportions and/or compositions of more primitive components (chondrules and CAI materials?) incorporated into different regions of the ordinary chondrite parent bodies. The observed variations of Th/U, Nd/U, or Ce/U suggest that measurements of Pu/U on any single equilibrated ordinary chondrite specimen, such as St. Se??verin, should statistically be within ??20-30% of the average solar system value, although it is also clear that anomalous samples exist. ?? 1990.

  9. Pulmonary Delivery of siRNA via Polymeric Vectors as Therapies of Asthma.

    PubMed

    Xie, Yuran; Merkel, Olivia M

    2015-10-01

    Asthma is a chronic inflammatory disease. Despite the fact that current therapies, such as the combination of inhaled corticosteroids and β2-agonists, can control the symptoms of asthma in most patients, there is still an urgent need for an alternative anti-inflammatory therapy for patients who suffer from severe asthma but lack acceptable response to conventional therapies. Many molecular factors are involved in the inflammatory process in asthma, and thus blocking the function of these factors could efficiently alleviate airway inflammation. RNA interference (RNAi) is often thought to be the answer in the search for more efficient and biocompatible treatments. However, difficulties of efficient delivery of small interference RNA (siRNA), the key factor in RNAi, to target cells and tissues have limited its clinical application. In this review, we summarize cytokines and chemokines, transcription factors, tyrosine kinases, and costimulatory factors that have been reported as targets of siRNA-mediated treatment in experimental asthma. Additionally, we conclude several targeted delivery systems of siRNA to specific cells such as T cells, macrophages, and dendritic cells, which could potentially be applied in asthma therapy.

  10. Gene silencing of SOCS3 by siRNA intranasal delivery inhibits asthma phenotype in mice.

    PubMed

    Zafra, Ma Paz; Mazzeo, Carla; Gámez, Cristina; Rodriguez Marco, Ainara; de Zulueta, Ana; Sanz, Veronica; Bilbao, Izaskun; Ruiz-Cabello, Jesús; Zubeldia, Jose M; del Pozo, Victoria

    2014-01-01

    Suppresors of cytokine signaling (SOCS) proteins regulate cytokine responses and control immune balance. Several studies have confirmed that SOCS3 is increased in asthmatic patients, and SOCS3 expression is correlated with disease severity. The objective of this study was to evaluate if delivering of SOCS3 short interfering RNA (siRNA) intranasally in lungs could be a good therapeutic approach in an asthma chronic mouse model. Our results showed that intranasal treatment with SOCS3-siRNA led to an improvement in the eosinophil count and the normalization of hyperresponsiveness to methacholine. Concomitantly, this treatment resulted in an improvement in mucus secretion, a reduction in lung collagen, which are prominent features of airway remodeling. The mechanism implies JAK/STAT and RhoA/Rho-kinase signaling pathway, because we found a decreasing in STAT3 phosphorylation status and down regulation of RhoA/Rho-kinase protein expression. These results might lead to a new therapy for the treatment of chronic asthma.

  11. miRNA, siRNA, piRNA and argonautes: news in small matters.

    PubMed

    Riedmann, Lucia T; Schwentner, Raphaela

    2010-01-01

    Since the discovery of the first microRNA (miRNA) family member lin-4 in Caenorhabditis elegans by Lee et al. and RNA interference (RNAi) by Andrew Fire and his colleagues in the 1990s, the new field of regulatory non-coding RNAs has enormously gained momentum and importance. Small regulatory RNAs comprise small interfering RNAs (siRNAs), miRNAs and Piwi-associated small RNAs (piRNAs). Generated from double-stranded RNAs (dsRNAs), siRNAs trigger sequence-specific mRNA decay also known as RNA interference (RNAi). miRNAs in association with Argonaute (AGO ) and GW182 proteins, forming the RNA-induced silencing complex (RISC), mediate fine tuning of gene expression and are involved in various biological key processes. An estimate of 500-1,000 miRNA genes exist in vertebrates and plants and about 100 in invertebrates. Each miRNA is predicted to target hundreds of mRNAs thus influencing key regulatory mechanisms of the cell. Consequently, deregulated miRNA expression has been suggested to contribute to the initiation and progression of human cancer and other diseases. piRNAs associated with Piwi proteins protect the animal germline from mobile genetic elements, thereby acting as a small RNA-based immune system. PMID:20200493

  12. Micelle-like Nanoparticles as Carriers for DNA and siRNA

    PubMed Central

    Navarro, Gemma; Pan, Jiayi; Torchilin, Vladimir P.

    2015-01-01

    Gene therapy represents a potential efficient approach of disease prevention and therapy. However, due to their poor in vivo stability, gene molecules need to be associated with delivery systems to overcome extracellular and intracellular barriers and allow access to the site of action. Cationic polymeric nanoparticles are popular carriers for small interfering RNA (siRNA) and DNA-based therapeutics for which efficient and safe delivery are important factors that need to be optimized. Micelle-like nanoparticles (MNP) (half micelles, half polymeric nanoparticles) can overcome some of the disadvantages of such cationic carriers by unifying in one single carrier the best of both delivery systems. In this review, we will discuss how the unique properties of MNP including self-assembly, condensation and protection of nucleic acids, improved cell association and gene transfection, and low toxicity may contribute to the successful application of siRNA- and DNA-based therapeutics into the clinic. Recent developments of MNP involving the addition of stimulus-sensitive functions to respond specifically to pathological or externally applied “triggers” (e.g., temperature, pH or enzymatic catalysis, light, or magnetic fields) will be discussed. Finally, we will overview the use of MNP as two-in-one carriers for the simultaneous delivery of different agents (small molecules, imaging agents) and nucleic acid combinations. PMID:25557580

  13. RNAiAtlas: a database for RNAi (siRNA) libraries and their specificity.

    PubMed

    Mazur, Slawek; Csucs, Gabor; Kozak, Karol

    2012-01-01

    Large-scale RNA interference (RNAi) experiments, especially the ones based on short-interfering RNA (siRNA) technology became increasingly popular over the past years. For such knock-down/screening purposes, different companies offer sets of oligos/reagents targeting the whole genome or a subset of it for various organisms. Obviously, the sequence (and structure) of the corresponding oligos is a key factor in obtaining reliable results in these large-scale studies and the companies use a variety of (often not fully public) algorithms to design them. Nevertheless, as the genome annotations are still continuously changing, oligos may become obsolete, so siRNA reagents should be periodically re-annotated according to the latest version of the sequence database (which of course has serious consequences also on the interpretation of the screening results). In our article, we would like to introduce a new software/database tool, the RNAiAtlas. It has been created for exploration, analysis and distribution of large scale RNAi libraries (currently limited to the human genome) with their latest annotation (including former history) but in addition it contains also specific on-target analysis results (design quality, side effects, off-targets). Database URL: http://www.rnaiatlas.ethz.ch.

  14. Innovative nanotechnologies for the delivery of oligonucleotides and siRNA.

    PubMed

    Toub, N; Malvy, C; Fattal, E; Couvreur, P

    2006-11-01

    One way to reach intracellular therapeutic targets in cells consists in the use of short nucleic acids which will bind specifically to on targets thanks to either Watson-Crick base pairing or protein nucleic acids recognition rules. Among these short nucleic acids an important class of therapeutic agents is antisense oligonucleotides and siRNAs. However, the major problem of nucleic acids is their poor stability in biological media. One method, among others, to solve the stability problem is the use of colloïdal carriers such as nanoparticles. Nanoparticles have already been applied with success to in vitro drug delivery to particular types of cells and in vivo in several experimental models. Many membrane and intracellular processes deal with nanosized structure (typically 100 nm) which are processed further through the recognition sites of receptors and enzymes. Thus non-viral nanoparticles are interesting candidates to present biochemical molecules such as nucleic acids and proteins to cells as well as to protect them in vivo during delivery. This review focuses on the recent developments in the design of nanotechnologies to improve the delivery of antisense oligonucleotides and siRNAs.

  15. siRNA screen identifies QPCT as a druggable target for Huntington's disease.

    PubMed

    Jimenez-Sanchez, Maria; Lam, Wun; Hannus, Michael; Sönnichsen, Birte; Imarisio, Sara; Fleming, Angeleen; Tarditi, Alessia; Menzies, Fiona; Ed Dami, Teresa; Xu, Catherine; Gonzalez-Couto, Eduardo; Lazzeroni, Giulia; Heitz, Freddy; Diamanti, Daniela; Massai, Luisa; Satagopam, Venkata P; Marconi, Guido; Caramelli, Chiara; Nencini, Arianna; Andreini, Matteo; Sardone, Gian Luca; Caradonna, Nicola P; Porcari, Valentina; Scali, Carla; Schneider, Reinhard; Pollio, Giuseppe; O'Kane, Cahir J; Caricasole, Andrea; Rubinsztein, David C

    2015-05-01

    Huntington's disease (HD) is a currently incurable neurodegenerative condition caused by an abnormally expanded polyglutamine tract in huntingtin (HTT). We identified new modifiers of mutant HTT toxicity by performing a large-scale 'druggable genome' siRNA screen in human cultured cells, followed by hit validation in Drosophila. We focused on glutaminyl cyclase (QPCT), which had one of the strongest effects on mutant HTT-induced toxicity and aggregation in the cell-based siRNA screen and also rescued these phenotypes in Drosophila. We found that QPCT inhibition induced the levels of the molecular chaperone αB-crystallin and reduced the aggregation of diverse proteins. We generated new QPCT inhibitors using in silico methods followed by in vitro screening, which rescued the HD-related phenotypes in cell, Drosophila and zebrafish HD models. Our data reveal a new HD druggable target affecting mutant HTT aggregation and provide proof of principle for a discovery pipeline from druggable genome screen to drug development. PMID:25848931

  16. Gene Silencing of SOCS3 by siRNA Intranasal Delivery Inhibits Asthma Phenotype in Mice

    PubMed Central

    Mazzeo, Carla; Gámez, Cristina; Rodriguez Marco, Ainara; de Zulueta, Ana; Sanz, Veronica; Bilbao, Izaskun; Ruiz-Cabello, Jesús; Zubeldia, Jose M.; del Pozo, Victoria

    2014-01-01

    Suppresors of cytokine signaling (SOCS) proteins regulate cytokine responses and control immune balance. Several studies have confirmed that SOCS3 is increased in asthmatic patients, and SOCS3 expression is correlated with disease severity. The objective of this study was to evaluate if delivering of SOCS3 short interfering RNA (siRNA) intranasally in lungs could be a good therapeutic approach in an asthma chronic mouse model. Our results showed that intranasal treatment with SOCS3-siRNA led to an improvement in the eosinophil count and the normalization of hyperresponsiveness to methacholine. Concomitantly, this treatment resulted in an improvement in mucus secretion, a reduction in lung collagen, which are prominent features of airway remodeling. The mechanism implies JAK/STAT and RhoA/Rho-kinase signaling pathway, because we found a decreasing in STAT3 phosphorylation status and down regulation of RhoA/Rho-kinase protein expression. These results might lead to a new therapy for the treatment of chronic asthma. PMID:24637581

  17. Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity

    NASA Astrophysics Data System (ADS)

    Whitehead, Kathryn A.; Dorkin, J. Robert; Vegas, Arturo J.; Chang, Philip H.; Veiseh, Omid; Matthews, Jonathan; Fenton, Owen S.; Zhang, Yunlong; Olejnik, Karsten T.; Yesilyurt, Volkan; Chen, Delai; Barros, Scott; Klebanov, Boris; Novobrantseva, Tatiana; Langer, Robert; Anderson, Daniel G.

    2014-06-01

    One of the most significant challenges in the development of clinically viable delivery systems for RNA interference therapeutics is to understand how molecular structures influence delivery efficacy. Here, we have synthesized 1,400 degradable lipidoids and evaluate their transfection ability and structure-function activity. We show that lipidoid nanoparticles mediate potent gene knockdown in hepatocytes and immune cell populations on IV administration to mice (siRNA EC50 values as low as 0.01 mg kg-1). We identify four necessary and sufficient structural and pKa criteria that robustly predict the ability of nanoparticles to mediate greater than 95% protein silencing in vivo. Because these efficacy criteria can be dictated through chemical design, this discovery could eliminate our dependence on time-consuming and expensive cell culture assays and animal testing. Herein, we identify promising degradable lipidoids and describe new design criteria that reliably predict in vivo siRNA delivery efficacy without any prior biological testing.

  18. Micelle-like nanoparticles as carriers for DNA and siRNA.

    PubMed

    Navarro, Gemma; Pan, Jiayi; Torchilin, Vladimir P

    2015-02-01

    Gene therapy represents a potential efficient approach of disease prevention and therapy. However, due to their poor in vivo stability, gene molecules need to be associated with delivery systems to overcome extracellular and intracellular barriers and allow access to the site of action. Cationic polymeric nanoparticles are popular carriers for small interfering RNA (siRNA) and DNA-based therapeutics for which efficient and safe delivery are important factors that need to be optimized. Micelle-like nanoparticles (MNP) (half micelles, half polymeric nanoparticles) can overcome some of the disadvantages of such cationic carriers by unifying in one single carrier the best of both delivery systems. In this review, we will discuss how the unique properties of MNP including self-assembly, condensation and protection of nucleic acids, improved cell association and gene transfection, and low toxicity may contribute to the successful application of siRNA- and DNA-based therapeutics into the clinic. Recent developments of MNP involving the addition of stimulus-sensitive functions to respond specifically to pathological or externally applied "triggers" (e.g., temperature, pH or enzymatic catalysis, light, or magnetic fields) will be discussed. Finally, we will overview the use of MNP as two-in-one carriers for the simultaneous delivery of different agents (small molecules, imaging agents) and nucleic acid combinations. PMID:25557580

  19. Cationic and PEGylated Amphiphilic Cyclodextrins: Co-Formulation Opportunities for Neuronal Sirna Delivery.

    PubMed

    O'Mahony, Aoife M; Ogier, Julien; Darcy, Raphael; Cryan, John F; O'Driscoll, Caitriona M

    2013-01-01

    Optimising non-viral vectors for neuronal siRNA delivery presents a significant challenge. Here, we investigate a co-formulation, consisting of two amphiphilic cyclodextrins (CDs), one cationic and the other PEGylated, which were blended together for siRNA delivery to a neuronal cell culture model. Co-formulated CD-siRNA complexes were characterised in terms of size, charge and morphology. Stability in salt and serum was also examined. Uptake was determined by flow cytometry and toxicity was measured by MTT assay. Knockdown of a luciferase reporter gene was used as a measure of gene silencing efficiency. Incorporation of a PEGylated CD in the formulation had significant effects on the physical and biological properties of CD.siRNA complexes. Co-formulated complexes exhibited a lower surface charge and greater stability in a high salt environment. However, the inclusion of the PEGylated CD also dramatically reduced gene silencing efficiency due to its effects on neuronal uptake. The co-formulation strategy for cationic and PEGylated CDs improved the stability of the CD.siRNA delivery systems, although knockdown efficiency was impaired. Future work will focus on the addition of targeting ligands to the co-formulated complexes to restore transfection capabilities. PMID:23805220

  20. Degradable cationic nanohydrogel particles for stimuli-responsive release of siRNA.

    PubMed

    Nuhn, Lutz; Braun, Lydia; Overhoff, Iris; Kelsch, Annette; Schaeffel, David; Koynov, Kaloian; Zentel, Rudolf

    2014-12-01

    Well-defined nanogels have become quite attractive as safe and stable carriers for siRNA delivery. However, to avoid nanoparticle accumulation, they need to provide a stimuli-responsive degradation mechanism that can be activated at the payload's site of action. In this work, the synthetic concept for generating well-defined nanohydrogel particles is extended to incorporate disulfide cross-linkers into a cationic nanonetwork for redox-triggered release of oligonucleotide payload as well as nanoparticle degradation under reductive conditions of the cytoplasm. Therefore, a novel disulfide-modified spermine cross-linker is designed that both allows disassembly of the nanogel as well as removal of cationic charge from residual polymer fragments. The degradation process is monitored by scanning electron microscopy (SEM) and fluorescence correlation spectroscopy (FCS). Moreover, siRNA release is analyzed by agarose gel electrophoresis and a fluorescent RNA detection assay. The results exemplify the versatility of the applied nanogel manufacturing process, which allows alternative stimuli-responsive core cross-linkers to be integrated for triggered oligonucleotide release as well as effective biodegradation for reduced nanotoxicity.

  1. Guanabenz (Wytensin™) selectively enhances uptake and efficacy of hydrophobically modified siRNAs

    PubMed Central

    Osborn, Maire F.; Alterman, Julia F.; Nikan, Mehran; Cao, Hong; Didiot, Marie C.; Hassler, Matthew R.; Coles, Andrew H.; Khvorova, Anastasia

    2015-01-01

    One of the major obstacles to the pharmaceutical success of oligonucleotide therapeutics (ONTs) is efficient delivery from the point of injection to the intracellular setting where functional gene silencing occurs. In particular, a significant fraction of internalized ONTs are nonproductively sequestered in endo-lysosomal compartments. Here, we describe a two-step, robust assay for high-throughput de novo detection of small bioactive molecules that enhance cellular uptake, endosomal escape, and efficacy of ONTs. Using this assay, we screened the LOPAC (Sigma–Aldrich) Library of Pharmacologically Active Compounds and discovered that Guanabenz acetate (Wytensin™), an FDA-approved drug formerly used as an antihypertensive agent, is capable of markedly increasing the cellular internalization and target mRNA silencing of hydrophobically modified siRNAs (hsiRNAs), yielding a ∼100-fold decrease in hsiRNA IC50 (from 132 nM to 2.4 nM). This is one of the first descriptions of a high-throughput small-molecule screen to identify novel chemistries that specifically enhance siRNA intracellular efficacy, and can be applied toward expansion of the chemical diversity of ONTs. PMID:26400165

  2. Lipid nanoparticle siRNA treatment of Ebola-virus-Makona-infected nonhuman primates.

    PubMed

    Thi, Emily P; Mire, Chad E; Lee, Amy C H; Geisbert, Joan B; Zhou, Joy Z; Agans, Krystle N; Snead, Nicholas M; Deer, Daniel J; Barnard, Trisha R; Fenton, Karla A; MacLachlan, Ian; Geisbert, Thomas W

    2015-05-21

    The current outbreak of Ebola virus in West Africa is unprecedented, causing more cases and fatalities than all previous outbreaks combined, and has yet to be controlled. Several post-exposure interventions have been employed under compassionate use to treat patients repatriated to Europe and the United States. However, the in vivo efficacy of these interventions against the new outbreak strain of Ebola virus is unknown. Here we show that lipid-nanoparticle-encapsulated short interfering RNAs (siRNAs) rapidly adapted to target the Makona outbreak strain of Ebola virus are able to protect 100% of rhesus monkeys against lethal challenge when treatment was initiated at 3 days after exposure while animals were viraemic and clinically ill. Although all infected animals showed evidence of advanced disease including abnormal haematology, blood chemistry and coagulopathy, siRNA-treated animals had milder clinical features and fully recovered, while the untreated control animals succumbed to the disease. These results represent the first, to our knowledge, successful demonstration of therapeutic anti-Ebola virus efficacy against the new outbreak strain in nonhuman primates and highlight the rapid development of lipid-nanoparticle-delivered siRNA as a countermeasure against this highly lethal human disease.

  3. Host Generated siRNAs Attenuate Expression of Serine Protease Gene in Myzus persicae

    PubMed Central

    Bhatia, Varnika; Bhattacharya, Ramcharan; Uniyal, Prem L.; Singh, Rajendra; Niranjan, Rampal S.

    2012-01-01

    Background Sap sucking hemipteran aphids damage diverse crop species. Although delivery of ds-RNA or siRNA through microinjection/feeding has been demonstrated, the efficacy of host-mediated delivery of aphid-specific dsRNA in developing aphid resistance has been far from being elucidated. Methodology/Principal Findings Transgenic Arabidopsis expressing ds-RNA of Myzus persicae serine protease (MySP) was developed that triggered the generation of corresponding siRNAs amenable for delivery to the feeding aphids. M. persicae when fed on the transgenic plants for different time intervals under controlled growth conditions resulted in a significant attenuation of the expression of MySP and a commensurate decline in gut protease activity. Although the survivability of these aphids was not affected, there was a noticeable decline in their fecundity resulting in a significant reduction in parthenogenetic population. Conclusions/Significance The study highlighted the feasibility of developing host based RNAi-mediated resistance against hemipteran pest aphids. PMID:23071558

  4. Structure-Based Design of Dendritic Peptide Bolaamphiphiles for siRNA Delivery

    PubMed Central

    2015-01-01

    Development of safe and effective delivery vectors is a critical challenge for the application of RNA interference (RNAi)-based biotechnologies. In this study we show the rational design of a series of nove