Extreme events and natural hazards: The complexity perspective
NASA Astrophysics Data System (ADS)
Schultz, Colin
2012-10-01
Advanced societies have become quite proficient at defending against moderate-size earthquakes, hurricanes, floods, or other natural assaults. What still pose a significant threat, however, are the unknowns, the extremes, the natural phenomena encompassed by the upper tail of the probability distribution. Alongside the large or powerful events, truly extreme natural disasters are those that tie different systems together: an earthquake that causes a tsunami, which leads to flooding, which takes down a nuclear reactor. In the geophysical monograph Extreme Events and Natural Hazards: The Complexity Perspective, editors A. Surjalal Sharma, Armin Bunde, Vijay P. Dimro, and Daniel N. Baker present a lens through which such multidisciplinary phenomena can be understood. In this interview, Eos talks to Sharma about complexity science, predicting extreme events and natural hazards, and the push for "big data."
NASA Astrophysics Data System (ADS)
Keilis-Borok, V. I.; Soloviev, A. A.
2010-09-01
Socioeconomic and natural complex systems persistently generate extreme events also known as disasters, crises, or critical transitions. Here we analyze patterns of background activity preceding extreme events in four complex systems: economic recessions, surges in homicides in a megacity, magnetic storms, and strong earthquakes. We use as a starting point the indicators describing the system's behavior and identify changes in an indicator's trend. Those changes constitute our background events (BEs). We demonstrate a premonitory pattern common to all four systems considered: relatively large magnitude BEs become more frequent before extreme event. A premonitory change of scaling has been found in various models and observations. Here we demonstrate this change in scaling of uniformly defined BEs in four real complex systems, their enormous differences notwithstanding.
Geophysical Hazards and Preventive Disaster Management of Extreme Natural Events
NASA Astrophysics Data System (ADS)
Ismail-Zadeh, A.; Takeuchi, K.
2007-12-01
Geophysical hazard is potentially damaging natural event and/or phenomenon, which may cause the loss of life or injury, property damage, social and economic disruption, or environmental degradation. Extreme natural hazards are a key manifestation of the complex hierarchical nonlinear Earth system. An understanding, accurate modeling and forecasting of the extreme hazards are most important scientific challenges. Several recent extreme natural events (e.g., 2004 Great Indian Ocean Earthquake and Tsunami and the 2005 violent Katrina hurricane) demonstrated strong coupling between solid Earth and ocean, and ocean and atmosphere. These events resulted in great humanitarian tragedies because of a weak preventive disaster management. The less often natural events occur (and the extreme events are rare by definition), the more often the disaster managers postpone the preparedness to the events. The tendency to reduce the funding for preventive disaster management of natural catastrophes is seldom follows the rules of responsible stewardship for future generations neither in developing countries nor in highly developed economies where it must be considered next to malfeasance. Protecting human life and property against earthquake disasters requires an uninterrupted chain of tasks: from (i) understanding of physics of the events, analysis and monitoring, through (ii) interpretation, modeling, hazard assessment, and prediction, to (iii) public awareness, preparedness, and preventive disaster management.
Effect of Environment-Based Coursework on the Nature of Attitudes toward the Endangered Species Act.
ERIC Educational Resources Information Center
Bright, Alan D.; Tarrant, Michael A.
2002-01-01
Examines college students' attitudes and complexity of thinking about the Endangered Species Act (ESA) and the effects of environment-based coursework on their attitudes and thinking. Investigates attitudes in terms of their direction, extremity, ambivalence, and importance and measures complexity of thinking as integrative complexity. (Contains…
ENVIRONMENTAL QUALITY AND LANDSCAPE-RISK ASSESSMENT IN THE YANTRA RIVER BASIN
Landscape characteristics exert their impact on the processes occurring in river basins in many directions and may influence in a different way the environmental security and some related constraints like extreme natural events. The complex nature of landscape structure and dynam...
Getting Alice through the door: social science research and natural resource management
Alan W. Ewert
1995-01-01
A number of trends are altering the role of science in natural resource management. These trends include the growing political power of science, the recognition that most natural resource problems are extremely complex and not prone to uni-dimensional solutions, and the increasing need to integrate an understanding of the human component into the planning and decision-...
Genome sequence of the cultivated cotton Gossypium arboreum
USDA-ARS?s Scientific Manuscript database
Cotton is one of the most economically important natural fiber crops in the world, and the complex tetraploid nature of its genome (AADD, 2n = 52) makes genetic, genomic and functional analyses extremely challenging. Here we sequenced and assembled 98.3% of the 1.7-gigabase G. arboreum (AA, 2n = 26...
Annamalai, Murali; Hristeva, Stanimira; Bielska, Martyna; Ortega, Raquel; Kumar, Kamal
2017-05-18
Despite the great contribution of natural products in the history of successful drug discovery, there are significant limitations that persuade the pharmaceutical industry to evade natural products in drug discovery research. The extreme scarcity as well as structural complexity of natural products renders their practical synthetic access and further modifications extremely challenging. Although other alternative technologies, particularly combinatorial chemistry, were embraced by the pharmaceutical industry to get quick access to a large number of small molecules with simple frameworks that often lack three-dimensional complexity, hardly any success was achieved in the discovery of lead molecules. To acquire chemotypes beholding structural features of natural products, for instance high sp ³ character, the synthesis of compound collections based on core-scaffolds of natural products presents a promising strategy. Here, we report a natural product inspired synthesis of six different chemotypes and their derivatives for drug discovery research. These bicyclic hetero- and carbocyclic scaffolds are highly novel, rich in sp ³ features and with ideal physicochemical properties to display drug likeness. The functional groups on the scaffolds were exploited further to generate corresponding compound collections. Synthesis of two of these collections exemplified with ca. 350 compounds are each also presented. The whole compound library is being exposed to various biological screenings within the European Lead Factory consortium.
NASA Astrophysics Data System (ADS)
Semiletov, I. P.; Pipko, I.; Gustafsson, O.; Anderson, L. G.; Sergienko, V.; Pugach, S.; Dudarev, O.; Charkin, A. N.; Gukov, A.; Bröder, L.; Andersson, A.; Shakhova, N. E.
2015-12-01
Ocean acidification (OA) is a direct, fast, and strong effect of anthropogenic carbon dioxide (CO2), which is challenging marine ecosystems and carbon cycling. The Arctic Ocean is particularly sensitive and exhibits the highest levels of OA (lowest pH) because more CO2 can dissolve in cold water. We here use decadal data to show that extreme and extensive OA in the East Siberian Arctic Shelf (ESAS) is caused not by direct uptake of atmospheric CO2 but rather by naturally-driven processes: carbon mobilization from thawing coastal permafrost/coastal ice complexes, and freshening due to growing Arctic river runoff and ice melt, which transport carbon along with freshwater to the ESAS. These processes compose a unique acidifying phenomenon that causes persistent, and potentially increasing, aragonite under-saturation of the entire water column. Extreme aragonite under-saturation in the western near-shore ESAS is associated with >80% depression of the total calcifying benthic biomass. Massive OA on the ESAS, the largest sea shelf system of the World Ocean, illustrates the complexity of the Earth system interacting with increasing anthropogenic pressure.
Bringing Technology to the Resource Manager ... and Not the Reverse
Daniel L. Schmoldt
1992-01-01
Many natural resource managers envision their jobs as pressed between the resources that they have a mandate to manage and the technological aides that are essential tools to conduct those management activities. On the one hand, managers are straining to understand an extremely complex array of natural systems and the management pressures placed on those systems. Then...
NASA Astrophysics Data System (ADS)
Balasis, Georgios; Potirakis, Stelios M.; Papadimitriou, Constantinos; Zitis, Pavlos I.; Eftaxias, Konstantinos
2015-04-01
The field of study of complex systems considers that the dynamics of complex systems are founded on universal principles that may be used to describe a great variety of scientific and technological approaches of different types of natural, artificial, and social systems. We apply concepts of the nonextensive statistical physics, on time-series data of observable manifestations of the underlying complex processes ending up to different extreme events, in order to support the suggestion that a dynamical analogy characterizes the generation of a single magnetic storm, solar flare, earthquake (in terms of pre-seismic electromagnetic signals) , epileptic seizure, and economic crisis. The analysis reveals that all the above mentioned different extreme events can be analyzed within similar mathematical framework. More precisely, we show that the populations of magnitudes of fluctuations included in all the above mentioned pulse-like-type time series follow the traditional Gutenberg-Richter law as well as a nonextensive model for earthquake dynamics, with similar nonextensive q-parameter values. Moreover, based on a multidisciplinary statistical analysis we show that the extreme events are characterized by crucial common symptoms, namely: (i) high organization, high compressibility, low complexity, high information content; (ii) strong persistency; and (iii) existence of clear preferred direction of emerged activities. These symptoms clearly discriminate the appearance of the extreme events under study from the corresponding background noise.
(Geo)Ethics. Step 1: Preparedness.
NASA Astrophysics Data System (ADS)
Marone, Eduardo
2015-04-01
Natural hazards have been defined in several ways in recent decades. Whatever your choice, it will be fine provided you consider that they are complex physical phenomena that expose a natural area to risk of loss of life, environmental degradation and property damages. In a time-line, one may divide the hazards, particularly those considered extremes, in a pre-event phase, the event itself and a post-event period. At this moment, I would like to promote an initial reflection by focusing in the geoethical behaviour scientists have to bear in mind accordingly to the particular characteristics of the pre-event phase, considering ethics as a way of systematizing, defending and recommending concepts of right and wrong conduct. In an accelerated world, where the pressure of the every day life gives us little room to exercise our mind to think in such apparent démodé issues as ethics, society, nature, responsibilities and duties, I would like to invite you to stop few minutes and reflect on the ethical implications of being a geoscientists dealing with natural hazards in the XXI century. The most dangerous hazards are those extreme events with a rapid onset (earthquakes, tsunamis, etc.). Thus far, science has not found effective ways to predict and reduce most natural hazards. If we are not capable to forecast or minimize the effect of an extreme event, geosciences, and scientists, are responsible of in deep risk assessments for areas that might be subject to natural hazards also contributing to preparedness of society. However, we have been working on that issues, but it seems we are not being as efficient as needed. On the risk analysis, which includes forecast models, we use to be too Cartesians, taking too much time in arriving to conclusions when a non clear cause-effect chain can be identified. It is our ethical duty to evaluate when to stop searching for causes when dealing with complex systems. The search for a specific cause for a given extreme natural event may be futile when dealing with a nonlinear system, with complex and unknown feedbacks mechanisms, because every link in the feedback loop is both cause and effect. Most of the risk analysis of natural hazards is linked to the effects of an extreme event, not to the causes, making almost useless for society and nature putting more effort trying to identify the causes than to analyse the consequences (effects). Regarding preparedness, also scientists need to improve their(our) behaviour. Preparedness implies the society as a whole, with its cultural, educational and resilience diversity. Scientists have to put the equivalent amount of energy in publishing their findings in high impact journals as well as in disseminating their discoveries for the society in a less jargonish (scientifish) format, because our primary ethical obligation is with society, neither with our peers nor our employers.
Complex Fluids and Hydraulic Fracturing.
Barbati, Alexander C; Desroches, Jean; Robisson, Agathe; McKinley, Gareth H
2016-06-07
Nearly 70 years old, hydraulic fracturing is a core technique for stimulating hydrocarbon production in a majority of oil and gas reservoirs. Complex fluids are implemented in nearly every step of the fracturing process, most significantly to generate and sustain fractures and transport and distribute proppant particles during and following fluid injection. An extremely wide range of complex fluids are used: naturally occurring polysaccharide and synthetic polymer solutions, aqueous physical and chemical gels, organic gels, micellar surfactant solutions, emulsions, and foams. These fluids are loaded over a wide range of concentrations with particles of varying sizes and aspect ratios and are subjected to extreme mechanical and environmental conditions. We describe the settings of hydraulic fracturing (framed by geology), fracturing mechanics and physics, and the critical role that non-Newtonian fluid dynamics and complex fluids play in the hydraulic fracturing process.
Seafloor off Natural Bridges State Beach, Santa Cruz, California
Storlazzi, Curt D.; Golden, Nadine E.; Gibbons, Helen
2013-01-01
The seafloor off Natural Bridges State Beach, Santa Cruz, California, is extremely varied, with sandy flats, boulder fields, faults, and complex bedrock ridges. These ridges support rich marine ecosystems; some of them form the "reefs" that produce world-class surf breaks. Colors indicate seafloor depth, from red-orange (about 2 meters or 7 feet) to magenta (25 meters or 82 feet).
NASA Astrophysics Data System (ADS)
Watkins, Nicholas; Chapman, Sandra; Rosenberg, Sam; Credgington, Dan; Sanchez, Raul
2010-05-01
In 2 far-sighted contributions in the 1960s Mandelbrot showed the ubiquity of both non-Gaussian fluctuations and long-ranged temporal memory (the "Noah" and "Joseph" effects, respectively) in the natural and man-made worlds. Much subsequent work in complexity science has contributed to the physical underpinning of these effects, particularly in cases where complex interactions in a system cause a driven or random perturbation to be nonlinearly amplified in amplitude and/or spread out over a wide range of frequencies. In addition the modelling of catastrophes has begun to incorporate the insights which these approaches have offered into the likelihood of extreme and long-lived fluctuations. I will briefly survey how the application of the above ideas in the earth system has been a key focus and motivation of research into natural complexity at BAS [e.g. Watkins & Freeman, Science, 2008; Edwards et al, Nature, 2007]. I will then discuss in detail a standard toy model (linear fractional stable motion, LFSM) which combines the Noah and Joseph effects in a controllable way and explain how it differs from the widely used continuous time random walk. I will describe how LFSM is being used to explore the interplay of the above two effects in the distribution of bursts above thresholds. I will describe ongoing work to improve the accuracy of maximum likelihood-based estimation of burst size and waiting time distributions for LFSM first reported in [Watkins et al, PRE, 2009]; and will also touch on similar work for multifractal models [Watkins et al, PRL comment, 2009].
The Evolution of Biological Complexity in Digital Organisms
NASA Astrophysics Data System (ADS)
Ofria, Charles
2013-03-01
When Darwin first proposed his theory of evolution by natural selection, he realized that it had a problem explaining the origins of traits of ``extreme perfection and complication'' such as the vertebrate eye. Critics of Darwin's theory have latched onto this perceived flaw as a proof that Darwinian evolution is impossible. In anticipation of this issue, Darwin described the perfect data needed to understand this process, but lamented that such data are ``scarcely ever possible'' to obtain. In this talk, I will discuss research where we use populations of digital organisms (self-replicating and evolving computer programs) to elucidate the genetic and evolutionary processes by which new, highly-complex traits arise, drawing inspiration directly from Darwin's wistful thinking and hypotheses. During the process of evolution in these fully-transparent computational environments we can measure the incorporation of new information into the genome, a process akin to a natural Maxwell's Demon, and identify the original source of any such information. We show that, as Darwin predicted, much of the information used to encode a complex trait was already in the genome as part of simpler evolved traits, and that many routes must be possible for a new complex trait to have a high probability of successfully evolving. In even more extreme examples of the evolution of complexity, we are now using these same principles to examine the evolutionary dynamics the drive major transitions in evolution; that is transitions to higher-levels of organization, which are some of the most complex evolutionary events to occur in nature. Finally, I will explore some of the implications of this research to other aspects of evolutionary biology and as well as ways that these evolutionary principles can be applied toward solving computational and engineering problems.
[Ecology of vector systems: a tangle of complexity].
Rodhain, F
2008-06-01
The long co-evolutionary process between arthropods and microorganisms has resulted in a wide variety of relationships. One such relationship involves a wide range of infectious agents (virus, bacteria, protozoa, helminthes) that use blood-feeding arthropods (insects and mites) as vectors for transmission from one vertebrate to another. Transmission involves three components, i.e., microorganism, vector(s), and vertebrate host(s). Study under natural conditions has shown that the underlying mechanisms are extremely complex with circulation of the infectious agents depending on numerous conditions linked not only to bioecology but also to genetic factors in all three component populations. The role of arthropods sometimes goes beyond that of a transmitter of disease. In some cases they also serve as reservoirs or disseminators. In addition changes in the environment whether due to natural causes or human activities (e.g. pollution, agropastoralism, urbanization, transportation network development, and climate change) can have profound and rapid effects on the mechanisms underlying these vector systems. In short the ecology of vector systems closely reflects the extreme complexity of epidemiological studies on diseases caused by infectious agents depending on this type of transmission. As a result prediction of infectious risks and planning of preventive action are difficult. It appears obvious that a good understanding of vector systems in their natural context will require a truly ecological approach to the diseases that must be the focus of extremely close epidemiologic surveillance. Achieving this goal will necessitate more than the skills of physicians and veterinarians. It will require the contribution of specialists from a variety of fields such as microbiology, entomology, systematics, climatology, ecology, urbanism, social sciences, economic development, and many others.
Prediction of extreme floods in the eastern Central Andes based on a complex networks approach.
Boers, N; Bookhagen, B; Barbosa, H M J; Marwan, N; Kurths, J; Marengo, J A
2014-10-14
Changing climatic conditions have led to a significant increase in the magnitude and frequency of extreme rainfall events in the Central Andes of South America. These events are spatially extensive and often result in substantial natural hazards for population, economy and ecology. Here we develop a general framework to predict extreme events by introducing the concept of network divergence on directed networks derived from a non-linear synchronization measure. We apply our method to real-time satellite-derived rainfall data and predict more than 60% (90% during El Niño conditions) of rainfall events above the 99th percentile in the Central Andes. In addition to the societal benefits of predicting natural hazards, our study reveals a linkage between polar and tropical regimes as the responsible mechanism: the interplay of northward migrating frontal systems and a low-level wind channel from the western Amazon to the subtropics.
Field Scale Monitoring and Modeling of Water and Chemical Transfer in the Vadose Zone
USDA-ARS?s Scientific Manuscript database
Natural resource systems involve highly complex interactions of soil-plant-atmosphere-management components that are extremely difficult to quantitatively describe. Computer simulations for prediction and management of watersheds, water supply areas, and agricultural fields and farms have become inc...
Castelle, Cindy J; Roger, Magali; Bauzan, Marielle; Brugna, Myriam; Lignon, Sabrina; Nimtz, Manfred; Golyshina, Olga V; Giudici-Orticoni, Marie-Thérèse; Guiral, Marianne
2015-08-01
The extremely acidophilic archaeon Ferroplasma acidiphilum is found in iron-rich biomining environments and is an important micro-organism in naturally occurring microbial communities in acid mine drainage. F. acidiphilum is an iron oxidizer that belongs to the order Thermoplasmatales (Euryarchaeota), which harbors the most extremely acidophilic micro-organisms known so far. At present, little is known about the nature or the structural and functional organization of the proteins in F. acidiphilum that impact the iron biogeochemical cycle. We combine here biochemical and biophysical techniques such as enzyme purification, activity measurements, proteomics and spectroscopy to characterize the iron oxidation pathway(s) in F. acidiphilum. We isolated two respiratory membrane protein complexes: a 850 kDa complex containing an aa3-type cytochrome oxidase and a blue copper protein, which directly oxidizes ferrous iron and reduces molecular oxygen, and a 150 kDa cytochrome ba complex likely composed of a di-heme cytochrome and a Rieske protein. We tentatively propose that both of these complexes are involved in iron oxidation respiratory chains, functioning in the so-called uphill and downhill electron flow pathways, consistent with autotrophic life. The cytochrome ba complex could possibly play a role in regenerating reducing equivalents by a reverse ('uphill') electron flow. This study constitutes the first detailed biochemical investigation of the metalloproteins that are potentially directly involved in iron-mediated energy conservation in a member of the acidophilic archaea of the genus Ferroplasma. Copyright © 2015 Elsevier B.V. All rights reserved.
Mergers and acquisitions in professional organizations: a complex adaptive systems approach.
Walls, M E; McDaniel, R R
1999-09-01
Nurse managers face unique challenges as they cope with mergers and acquisitions among health care organizations. These challenges can be better understood if it is recognized that health care institutions are professional organizations and that the transformations required are extremely difficult. These difficulties are caused, in part, by the institutionalized nature of professional organizations, and this nature is explicated. Professional organizations are stubborn. They are repositories of expertise and values that are societal in origin and difficult to change. When professional organizations are understood as complex adaptive systems, complexity theory offers insight that provide strategies for managing mergers and acquisitions that may not be apparent when more traditional conceptualizations of professional organizations are used. Specific managerial techniques consistent with both the institutionalized characteristics and the complex adaptive systems characteristics of professional organizations are offered to nurse managers.
An Improved Text Localization Method for Natural Scene Images
NASA Astrophysics Data System (ADS)
Jiang, Mengdi; Cheng, Jianghua; Chen, Minghui; Ku, Xishu
2018-01-01
In order to extract text information effectively from natural scene image with complex background, multi-orientation perspective and multilingual languages, we present a new method based on the improved Stroke Feature Transform (SWT). Firstly, The Maximally Stable Extremal Region (MSER) method is used to detect text candidate regions. Secondly, the SWT algorithm is used in the candidate regions, which can improve the edge detection compared with tradition SWT method. Finally, the Frequency-tuned (FT) visual saliency is introduced to remove non-text candidate regions. The experiment results show that, the method can achieve good robustness for complex background with multi-orientation perspective, various characters and font sizes.
The influence of tree stands and a noise barrier on near-roadway air quality
Prediction of air pollution exposure levels of people living near or commuting on roadways is still very problematic due to the highly localized nature of traffic intensity, fleet composition, and extremely complex air flow patterns in urban areas. Both modelling and field studie...
Geometric Demonstration of the Fundamental Theorems of the Calculus
ERIC Educational Resources Information Center
Sauerheber, Richard D.
2010-01-01
After the monumental discovery of the fundamental theorems of the calculus nearly 350 years ago, it became possible to answer extremely complex questions regarding the natural world. Here, a straightforward yet profound demonstration, employing geometrically symmetric functions, describes the validity of the general power rules for integration and…
An individual-based modeling approach to simulating recreation use in wilderness settings
Randy Gimblett; Terry Daniel; Michael J. Meitner
2000-01-01
Landscapes protect biological diversity and provide unique opportunities for human-nature interactions. Too often, these desirable settings suffer from extremely high visitation. Given the complexity of social, environmental and economic interactions, resource managers need tools that provide insights into the cause and effect relationships between management actions...
Bayesian versus politically motivated reasoning in human perception of climate anomalies
NASA Astrophysics Data System (ADS)
Ripberger, Joseph T.; Jenkins-Smith, Hank C.; Silva, Carol L.; Carlson, Deven E.; Gupta, Kuhika; Carlson, Nina; Dunlap, Riley E.
2017-11-01
In complex systems where humans and nature interact to produce joint outcomes, mitigation, adaptation, and resilience require that humans perceive feedback—signals of health and distress—from natural systems. In many instances, humans readily perceive feedback. In others, feedback is more difficult to perceive, so humans rely on experts, heuristics, biases, and/or identify confirming rationalities that may distort perceptions of feedback. This study explores human perception of feedback from natural systems by testing alternate conceptions about how individuals perceive climate anomalies, a form of feedback from the climate system. Results indicate that individuals generally perceive climate anomalies, especially when the anomalies are relatively extreme and persistent. Moreover, this finding is largely robust to political differences that generate predictable but small biases in feedback perception at extreme ends of the partisan spectrum. The subtlety of these biases bodes well for mitigation, adaptation, and resilience as human systems continue to interact with a changing climate system.
Evaluating teams in extreme environments: from issues to answers.
Bishop, Sheryl L
2004-07-01
The challenge to effectively evaluating teams in extreme environments necessarily involves a wide range of physiological, psychological, and psychosocial factors. The high reliance on technology, the growing frequency of multinational and multicultural teams, and the demand for longer duration missions all further compound the complexity of the problem. The primary goal is the insurance of human health and well-being with expectations that such priorities will naturally lead to improved chances for performance and mission success. This paper provides an overview of some of the most salient immediate challenges for selecting, training, and supporting teams in extreme environments, gives exemplars of research findings concerning these challenges, and discusses the need for future research.
2013-05-20
territorial and resource disputes, violent extremism, natural disasters , proliferation, illicit trafficking and more. This complex security...killed by natural disasters annually. Those figures represent 90% and 65% of the world totals, respectively.” 32 The benefits of having two operational...demand …We train to a 5 full range of missions, from humanitarian assistance and disaster relief, to maritime security operations, to amphibious
ERIC Educational Resources Information Center
Lee, Matthew R.; Berthelot, Ashley
2012-01-01
On occasion, colleges and universities are confronted with natural or technological disasters that affect their communities or their constituents throughout the state. While these situations demand a coordinated institutional research response, administration and management of these endeavors are extremely complex. In this paper we discuss the…
Information and knowledge management in support of sustainable forestry: a review
H. Michael Rauscher; Daniel L. Schmoldt; Harald Vacik
2007-01-01
For individuals, organizations and nations, success and even survival depend upon making good decisions. Doing so can be extremely difficult when problems are not well structured and situations are complex, as they are for natural resource management. Recent advances in computer technology coupled with the increase in accessibility brought about by the...
Linking species richness, biodiversity and ecosystem function in soil system
David C. Coleman; William B. Whitman
2004-01-01
Soils are the central organizing entities in terrestrial ecosystem and possess extremely diverse prokaryotic and eukaryotic biota. They are physically and chemically complex, with micro- and macro-aggregates embedded within a solid, liquid and gaseous matrix that is continually changing in response to natural and human-induced perturbations. Recent advances in...
NASA Astrophysics Data System (ADS)
Matyas, Cs.; Berki, I.; Drüszler, A.; Eredics, A.; Galos, B.; Moricz, N.; Rasztovits, E.
2012-04-01
In whole Central Europe agricultural production is highly vulnerable and sensitive to impacts of projected climatic changes. The low-elevation regions of the Carpathian Basin (most of the territory of Hungary), where precipitation is the minimum factor of production, are especially exposed to climatic extremes, especially to droughts. Rainfed agriculture, animal husbandry on nature-close pastures and nature-close forestry are the most sensitive sectors due to limited possibilities to counterbalance moisture supply constraints. These sectors have to be best prepared to frequency increase of extreme events, disasters and economic losses. So far, there is a lack of information about the middle and long term consequences on regional and local level. Therefore the importance of complex, long term management planning and of land use optimation is increasing. The aim of the initiative is to set up a fine-scale, GIS-based, complex, integrated system for the definition of the most important regional and local challenges and tasks of climate change adaptation and mitigation in agriculture, forestry, animal husbandry and also nature protection. The Service Center for Climate Change Adaptation in Agriculture is planned to provide the following services: § Complex, GIS-supported database, which integrates the basic information about present and projected climates, extremes, hydrology and soil conditions; § Evaluation of existing satellite-based and earth-based monitoring systems; § GIS-supported information about the future trends of climate change impacts on the agroecological potential and sensitivity status on regional and local level (e.g. land cover/use and expectable changes, production, water and carbon cycle, biodiversity and other ecosystem services, potential pests and diseases, tolerance limits etc.) in fine-scale horizontal resolution, based first of all on natural produce, including also social and economic consequences; § Complex decision supporting system on regional and local scale for middle- and long term adaptation and mitigation strategies, providing information on optimum technologies and energy balances. Cooperation with already existing Climate Service Centres and national and international collaboration in monitoring and research are important elements of the activity of the Centre. In the future, the Centre is planned to form part of a national information system on climate change adaptation and mitigation, supported by the Ministry of Development. Keywords: climate change impacts, forestry, rainfed agriculture, animal husbandry
Shape memory polymer network with thermally distinct elasticity and plasticity.
Zhao, Qian; Zou, Weike; Luo, Yingwu; Xie, Tao
2016-01-01
Stimuli-responsive materials with sophisticated yet controllable shape-changing behaviors are highly desirable for real-world device applications. Among various shape-changing materials, the elastic nature of shape memory polymers allows fixation of temporary shapes that can recover on demand, whereas polymers with exchangeable bonds can undergo permanent shape change via plasticity. We integrate the elasticity and plasticity into a single polymer network. Rational molecular design allows these two opposite behaviors to be realized at different temperature ranges without any overlap. By exploring the cumulative nature of the plasticity, we demonstrate easy manipulation of highly complex shapes that is otherwise extremely challenging. The dynamic shape-changing behavior paves a new way for fabricating geometrically complex multifunctional devices.
NASA Astrophysics Data System (ADS)
Bender, Carl
2017-01-01
The theory of complex variables is extremely useful because it helps to explain the mathematical behavior of functions of a real variable. Complex variable theory also provides insight into the nature of physical theories. For example, it provides a simple and beautiful picture of quantization and it explains the underlying reason for the divergence of perturbation theory. By using complex-variable methods one can generalize conventional Hermitian quantum theories into the complex domain. The result is a new class of parity-time-symmetric (PT-symmetric) theories whose remarkable physical properties have been studied and verified in many recent laboratory experiments.
Cramer, Christopher J.; Tolman, William B.
2008-01-01
Using interwoven experimental and theoretical methods, detailed studies of several structurally defined 1:1 Cu/O2 complexes have provided important fundamental chemical information useful for understanding the nature of intermediates involved in aerobic oxidations in synthetic and enzymatic copper-mediated catalysis. In particular, these studies have shed new light onto the factors that influence the mode of O2 coordination (end-on vs. side-on) and the electronic structure, which can vary between Cu(II)-superoxo and Cu(III)-peroxo extremes. PMID:17458929
NASA Astrophysics Data System (ADS)
Faizan, Mohd; Afroz, Ziya; Alam, Mohammad Jane; Bhat, Sheeraz Ahmad; Ahmad, Shabbir; Ahmad, Afaq
2018-05-01
The intermolecular interactions in complex formation between 2-amino-4-hydroxy-6-methylpyrimidine (AHMP) and 2,3-pyrazinedicarboxylicacid (PDCA) have been explored using density functional theory calculations. The isolated 1:1 molecular geometry of proton transfer (PT) complex between AHMP and PDCA has been optimized on a counterpoise corrected potential energy surface (PES) at DFT-B3LYP/6-31G(d,p) level of theory in the gaseous phase. Further, the formation of hydrogen bonded charge transfer (HBCT) complex between PDCA and AHMP has been also discussed. PT energy barrier between two extremes is calculated using potential energy surface (PES) scan by varying bond length. The intermolecular interactions have been analyzed from theoretical perspective of natural bond orbital (NBO) analysis. In addition, the interaction energy between molecular fragments involved in the complex formation has been also computed by counterpoise procedure at same level of theory.
NASA Astrophysics Data System (ADS)
Binley, A. M.; Cheng, Q.; Tao, M.; Chen, X.
2017-12-01
The southwest China karst region is one of the largest globally continuous karst areas. The great (structural, hydrological and geochemical) complexity of karstic environments and their rapidly evolving nature make them extremely vulnerable to natural and anthropogenic processes/activities. Characterising the location and properties of structures within the karst critical zone, and understanding how the landform is evolving is essential for the mitigation and adaption to locally- and globally-driven changes. Because of the specific nature of karst geology and geomorphology in the humid tropics and subtropics, spatial heterogeneity is high, evidenced by specific landforms features. Such heterogeneity leads to a high dynamic variability of hydrological processes in space and time, along with a complex exchange of surface water and groundwater. Investigating karst hydrogeological features is extremely challenging because of the three-dimensional nature of the system. Observations from boreholes can vary significantly over several metres, making conventional aquifer investigative methods limited. Geophysical methods have emerged as potentially powerful tools for hydrogeological investigations. Geophysical surveys can help to obtain more insight into the complex conduit networks and depth of weathering, both of which can provide quantitative information about the hydrological and hydrochemical dynamics of the system, in addition to providing a better understanding of how critical zone structures have been established and how the landscape is evolving. We present here results from recent geophysical field campaigns in SW China. We illustrate the effectiveness of electrical methods for mapping soil infil in epikarst and report results from field-based investigations along hillslope and valley transects. Our results reveal distinct zones of relatively high electrical conductivity to depths of tens of metres, which we attribute to localised increased fracture density. We discuss how such surveys can be used alongside other investigative techniques to help improve our understanding of the structure and function of this complex subsurface environment.
NASA Astrophysics Data System (ADS)
Balasis, George; Donner, Reik V.; Donges, Jonathan F.; Radebach, Alexander; Eftaxias, Konstantinos; Kurths, Jürgen
2013-04-01
The dynamics of many complex systems is characterized by the same universal principles. In particular, systems which are otherwise quite different in nature show striking similarities in their behavior near tipping points (bifurcations, phase transitions, sudden regime shifts) and associated extreme events. Such critical phenomena are frequently found in diverse fields such as climate, seismology, or financial markets. Notably, the observed similarities include a high degree of organization, persistent behavior, and accelerated energy release, which are common to (among others) phenomena related to geomagnetic variability of the terrestrial magnetosphere (intense magnetic storms), seismic activity (electromagnetic emissions prior to earthquakes), solar-terrestrial physics (solar flares), neurophysiology (epileptic seizures), and socioeconomic systems (stock market crashes). It is an open question whether the spatial and temporal complexity associated with extreme events arises from the system's structural organization (geometry) or from the chaotic behavior inherent to the nonlinear equations governing the dynamics of these phenomena. On the one hand, the presence of scaling laws associated with earthquakes and geomagnetic disturbances suggests understanding these events as generalized phase transitions similar to nucleation and critical phenomena in thermal and magnetic systems. On the other hand, because of the structural organization of the systems (e.g., as complex networks) the associated spatial geometry and/or topology of interactions plays a fundamental role in the emergence of extreme events. Here, a few aspects of the interplay between geometry and dynamics (critical phase transitions) that could result in the emergence of extreme events, which is an open problem, will be discussed.
Learning in LAMS: Lesson from a Student Teacher Exploring Gene Ethics
ERIC Educational Resources Information Center
Dennis, Carina
2012-01-01
Due to its complex and microscopic nature, genetics is a difficult subject for many learners to conceptually grasp. Graphics, animation and video material can be extremely helpful to their understanding. A wealth of educational online content about genetics has been created over the past decade in the wake of the human genome being sequenced.…
Shape memory polymer network with thermally distinct elasticity and plasticity
Zhao, Qian; Zou, Weike; Luo, Yingwu; Xie, Tao
2016-01-01
Stimuli-responsive materials with sophisticated yet controllable shape-changing behaviors are highly desirable for real-world device applications. Among various shape-changing materials, the elastic nature of shape memory polymers allows fixation of temporary shapes that can recover on demand, whereas polymers with exchangeable bonds can undergo permanent shape change via plasticity. We integrate the elasticity and plasticity into a single polymer network. Rational molecular design allows these two opposite behaviors to be realized at different temperature ranges without any overlap. By exploring the cumulative nature of the plasticity, we demonstrate easy manipulation of highly complex shapes that is otherwise extremely challenging. The dynamic shape-changing behavior paves a new way for fabricating geometrically complex multifunctional devices. PMID:26824077
Logit-normal mixed model for Indian Monsoon rainfall extremes
NASA Astrophysics Data System (ADS)
Dietz, L. R.; Chatterjee, S.
2014-03-01
Describing the nature and variability of Indian monsoon rainfall extremes is a topic of much debate in the current literature. We suggest the use of a generalized linear mixed model (GLMM), specifically, the logit-normal mixed model, to describe the underlying structure of this complex climatic event. Several GLMM algorithms are described and simulations are performed to vet these algorithms before applying them to the Indian precipitation data procured from the National Climatic Data Center. The logit-normal model was applied with fixed covariates of latitude, longitude, elevation, daily minimum and maximum temperatures with a random intercept by weather station. In general, the estimation methods concurred in their suggestion of a relationship between the El Niño Southern Oscillation (ENSO) and extreme rainfall variability estimates. This work provides a valuable starting point for extending GLMM to incorporate the intricate dependencies in extreme climate events.
Serafini, Gianluca; Gonda, Xenia; Canepa, Giovanna; Pompili, Maurizio; Rihmer, Zoltan; Amore, Mario; Engel-Yeger, Batya
2017-03-01
The involvement of extreme sensory processing patterns, impulsivity, alexithymia, and hopelessness was hypothesized to contribute to the complex pathophysiology of major depression and bipolar disorder. However, the nature of the relation between these variables has not been thoroughly investigated. This study aimed to explore the association between extreme sensory processing patterns, impulsivity, alexithymia, depression, and hopelessness. We recruited 281 euthymic participants (mean age=47.4±12.1) of which 62.3% with unipolar major depression and 37.7% with bipolar disorder. All participants completed the Adolescent/Adult Sensory Profile (AASP), Toronto Alexithymia Scale (TAS-20), second version of the Beck Depression Inventory (BDI-II), Barratt Impulsivity Scale (BIS), and Beck Hopelessness Scale (BHS). Lower registration of sensory input showed a significant correlation with depression, impulsivity, attentional/motor impulsivity, and alexithymia. It was significantly more frequent among participants with elevated hopelessness, and accounted for 22% of the variance in depression severity, 15% in greater impulsivity, 36% in alexithymia, and 3% in hopelessness. Elevated sensory seeking correlated with enhanced motor impulsivity and decreased non-planning impulsivity. Higher sensory sensitivity and sensory avoiding correlated with depression, impulsivity, and alexithymia. The study was limited by the relatively small sample size and cross-sectional nature of the study. Furthermore, only self-report measures that may be potentially biased by social desirability were used. Extreme sensory processing patterns, impulsivity, alexithymia, depression, and hopelessness may show a characteristic pattern in patients with major affective disorders. The careful assessment of sensory profiles may help in developing targeted interventions and improve functional/adaptive strategies. Copyright © 2016 Elsevier B.V. All rights reserved.
Michelle F. Tacconelli; Edward F. Loewenstein
2012-01-01
Natural resource managers must often balance multiple objectives on a single property. When these objectives are seemingly conflicting, the managerâs job can be extremely difficult and complex. This paper presents a decision support tool, designed to aid land managers in optimizing wildlife habitat needs while accomplishing additional objectives such as ecosystem...
Matrix Perturbation Techniques in Structural Dynamics
NASA Technical Reports Server (NTRS)
Caughey, T. K.
1973-01-01
Matrix perturbation are developed techniques which can be used in the dynamical analysis of structures where the range of numerical values in the matrices extreme or where the nature of the damping matrix requires that complex valued eigenvalues and eigenvectors be used. The techniques can be advantageously used in a variety of fields such as earthquake engineering, ocean engineering, aerospace engineering and other fields concerned with the dynamical analysis of large complex structures or systems of second order differential equations. A number of simple examples are included to illustrate the techniques.
Linking disaster resilience and urban sustainability: a glocal approach for future cities.
Asprone, Domenico; Manfredi, Gaetano
2015-01-01
Resilience and sustainability will be two primary objectives of future cities. The violent consequences of extreme natural events and the environmental, social and economic burden of contemporary cities make the concepts of resilience and sustainability extremely relevant. In this paper we analyse the various definitions of resilience and sustainability applied to urban systems and propose a synthesis, based on similarities between the two concepts. According to the proposed approach, catastrophic events and the subsequent transformations occurring in urban systems represent a moment in the city life cycle to be seen in terms of the complex sustainability framework. Hence, resilience is seen as a requirement for urban system sustainability. In addition, resilience should be evaluated not only for single cities, with their physical and social systems, but also on a global scale, taking into account the complex and dynamic relationships connecting contemporary cities. © 2014 The Author(s). Disasters © Overseas Development Institute, 2014.
Siri, José Gabriel; Newell, Barry; Proust, Katrina; Capon, Anthony
2016-03-01
Extreme events, both natural and anthropogenic, increasingly affect cities in terms of economic losses and impacts on health and well-being. Most people now live in cities, and Asian cities, in particular, are experiencing growth on unprecedented scales. Meanwhile, the economic and health consequences of climate-related events are worsening, a trend projected to continue. Urbanization, climate change and other geophysical and social forces interact with urban systems in ways that give rise to complex and in many cases synergistic relationships. Such effects may be mediated by location, scale, density, or connectivity, and also involve feedbacks and cascading outcomes. In this context, traditional, siloed, reductionist approaches to understanding and dealing with extreme events are unlikely to be adequate. Systems approaches to mitigation, management and response for extreme events offer a more effective way forward. Well-managed urban systems can decrease risk and increase resilience in the face of such events. © 2015 APJPH.
Features of the complexation of octadecane-2,4-dione and lanthanide ions in Langmuir monolayers
NASA Astrophysics Data System (ADS)
Sokolov, M. E.; Repina, I. N.; Raitman, O. A.; Kolokolov, F. A.; Panyushkin, V. T.
2016-05-01
Monolayers of octadecane-2,4-dione on the surfaces of EuCl3 and TbCl3 solutions in the concentration range of 1 × 10-4 to 5 × 10-3 M at pH 5.8 are studied. It is found that the limiting area of octadecane-2,4-dione molecule in a monolayer dependence on Eu3+ and Tb3+ concentration is of extreme nature. The formation of complex compounds in the ligand monolayer is postulated, and structures are proposed for these compounds at different concentrations of metal ions.
The nature of selection on the major histocompatibility complex.
Apanius, V; Penn, D; Slev, P R; Ruff, L R; Potts, W K
1997-01-01
Only natural selection can account for the extreme genetic diversity of genes of the major histocompatibility complex (MHC). Although the structure and function of classic MHC genes is well understood at the molecular and cellular levels, there is controversy about how MHC diversity is selectively maintained. The diversifying selection can be driven by pathogen interactions and inbreeding avoidance mechanisms. Pathogen-driven selection can maintain MHC polymorphism based on heterozygote advantage or frequency-dependent selection due to pathogen evasion of MHC-dependent immune recognition. Empirical evidence demonstrates that specific MHC haplotypes are resistant to certain infectious agents, while susceptible to others. These data are consistent with both heterozygote advantage and frequency-dependent models. Additional research is needed to discriminate between these mechanisms. Infectious agents can precipitate autoimmunity and can potentially contribute to MHC diversity through molecular mimicry and by favoring immunodominance. MHC-dependent abortion and mate choice, based on olfaction, can also maintain MHC diversity and probably functions both to avoid genome-wide inbreeding and produce MHC-heterozygous offspring with increased immune responsiveness. Although this diverse set of hypotheses are often treated as competing alternatives, we believe that they all fit into a coherent, internally consistent thesis. It is likely that at least in some species, all of these mechanisms operate, leading to the extreme diversification found in MHC genes.
Chronic obstructive pulmonary disease: nature-nurture interactions.
Clancy, John; Nobes, Maggie
A person's health status is rarely constant, it is usually subject to continual change as a person moves from health to illness and usually back to health again; the health-illness continuum illustrates this dynamism. This highlights the person's various states of health and illness (ranging from extremely good health to clinically defined mild, moderate and severe illness) and their fluctuations throughout the life span, until ultimately leading to the pathology associated with the person's death. Maintenance of a stable homeostatic environment within the body to support the stability of this continuum depends on a complex series of ultimately intracellular chemical reactions. These reactions are activated by environmental factors that cause the expression of genes associated with healthy phenotypes as well as illness susceptibility genes associated with homeostatic imbalances. Obviously, the body aims to support intracellular and extracellular environments allied with health; however, the complexity of these nature-nurture interactions results in illness throughout an individual's life span. This paper will discuss the nature-nurture interactions of chronic obstructive pulmonary disease.
Shallow seismicity in volcanic system: what role does the edifice play?
NASA Astrophysics Data System (ADS)
Bean, Chris; Lokmer, Ivan
2017-04-01
Seismicity in the upper two kilometres in volcanic systems is complex and very diverse in nature. The origins lie in the multi-physics nature of source processes and in the often extreme heterogeneity in near surface structure, which introduces strong seismic wave propagation path effects that often 'hide' the source itself. Other complicating factors are that we are often in the seismic near-field so waveforms can be intrinsically more complex than in far-field earthquake seismology. The traditional focus for an explanation of the diverse nature of shallow seismic signals is to call on the direct action of fluids in the system. Fits to model data are then used to elucidate properties of the plumbing system. Here we show that solutions based on these conceptual models are not unique and that models based on a diverse range of quasi-brittle failure of low stiffness near surface structures are equally valid from a data fit perspective. These earthquake-like sources also explain aspects of edifice deformation that are as yet poorly quantified.
NASA Astrophysics Data System (ADS)
Ismail-Zadeh, A.; Beer, T.
2013-05-01
Humans face climatic and hydro-meteorological hazards on different scales in time and space. In particular natural hazards can have disastrous impact in the short term (flood) and in the long term (drought) as they affect human life and health as well as impacting dramatically on the sustainable development of society. They represent a pending danger for vulnerable lifelines, infrastructure and the agricultural systems that depend on the water supply, reservoirs, pipelines, and power plants. Developed countries are affected, but the impact is disproportionate within the developing world. Extreme natural events such as extreme floods or prolonged drought can change the life and economic development of developing nations and stifle their development for decades. The beginning of the XX1st century has been marked by a significant number of natural disasters, such as floods, severe storms, wildfires, hurricanes, and tsunamis. Extreme natural events cause devastation resulting in loss of human life, large environmental damage, and partial or total loss of infrastructure that, in the longer time, will affect the potential for agricultural recovery. Recent catastrophic events of the early 21st century (e.g. floods in Pakistan and Thailand, the 2011 Tohoku earthquake and tsunami) remind us once again that there is a strong coupling between complex solid Earth, oceanic, and atmospheric processes and that even developed countries such as Japan are subject to agricultural declines as a result of disastrous hydro-meteorological events. Scientific community recognizes that communication between the groups of experts of various international organizations dealing with natural hazards and their activity in disaster risk reduction and food security needs to be strengthened. Several international scientific unions and intergovernmental institutions set up a consortium of experts to promote studies of weather, climate and their interaction with agriculture, food and their socio-economic consequence.
Zhang, Wen; Liu, Peiqing; Guo, Hao; Wang, Jinjun
2017-11-01
The permutation entropy and the statistical complexity are employed to study the boundary-layer transition induced by the surface roughness. The velocity signals measured in the transition process are analyzed with these symbolic quantifiers, as well as the complexity-entropy causality plane, and the chaotic nature of the instability fluctuations is identified. The frequency of the dominant fluctuations has been found according to the time scales corresponding to the extreme values of the symbolic quantifiers. The laminar-turbulent transition process is accompanied by the evolution in the degree of organization of the complex eddy motions, which is also characterized with the growing smaller and flatter circles in the complexity-entropy causality plane. With the help of the permutation entropy and the statistical complexity, the differences between the chaotic fluctuations detected in the experiments and the classical Tollmien-Schlichting wave are shown and discussed. It is also found that the chaotic features of the instability fluctuations can be approximated with a number of regular sine waves superimposed on the fluctuations of the undisturbed laminar boundary layer. This result is related to the physical mechanism in the generation of the instability fluctuations, which is the noise-induced chaos.
NASA Astrophysics Data System (ADS)
Zhang, Wen; Liu, Peiqing; Guo, Hao; Wang, Jinjun
2017-11-01
The permutation entropy and the statistical complexity are employed to study the boundary-layer transition induced by the surface roughness. The velocity signals measured in the transition process are analyzed with these symbolic quantifiers, as well as the complexity-entropy causality plane, and the chaotic nature of the instability fluctuations is identified. The frequency of the dominant fluctuations has been found according to the time scales corresponding to the extreme values of the symbolic quantifiers. The laminar-turbulent transition process is accompanied by the evolution in the degree of organization of the complex eddy motions, which is also characterized with the growing smaller and flatter circles in the complexity-entropy causality plane. With the help of the permutation entropy and the statistical complexity, the differences between the chaotic fluctuations detected in the experiments and the classical Tollmien-Schlichting wave are shown and discussed. It is also found that the chaotic features of the instability fluctuations can be approximated with a number of regular sine waves superimposed on the fluctuations of the undisturbed laminar boundary layer. This result is related to the physical mechanism in the generation of the instability fluctuations, which is the noise-induced chaos.
Germination and seedling establishment in orchids: a complex of requirements
Rasmussen, Hanne N.; Dixon, Kingsley W.; Jersáková, Jana; Těšitelová, Tamara
2015-01-01
Background Seedling recruitment is essential to the sustainability of any plant population. Due to the minute nature of seeds and early-stage seedlings, orchid germination in situ was for a long time practically impossible to observe, creating an obstacle towards understanding seedling site requirements and fluctuations in orchid populations. The introduction of seed packet techniques for sowing and retrieval in natural sites has brought with it important insights, but many aspects of orchid seed and germination biology remain largely unexplored. Key Considerations The germination niche for orchids is extremely complex, because it is defined by requirements not only for seed lodging and germination, but also for presence of a fungal host and its substrate. A mycobiont that the seedling can parasitize is considered an essential element, and a great diversity of Basidiomycota and Ascomycota have now been identified for their role in orchid seed germination, with fungi identifiable as imperfect Rhizoctonia species predominating. Specificity patterns vary from orchid species employing a single fungal lineage to species associating individually with a limited selection of distantly related fungi. A suitable organic carbon source for the mycobiont constitutes another key requirement. Orchid germination also relies on factors that generally influence the success of plant seeds, both abiotic, such as light/shade, moisture, substrate chemistry and texture, and biotic, such as competitors and antagonists. Complexity is furthermore increased when these factors influence seeds/seedling, fungi and fungal substrate differentially. Conclusions A better understanding of germination and seedling establishment is needed for conservation of orchid populations. Due to the obligate association with a mycobiont, the germination niches in orchid species are extremely complex and varied. Microsites suitable for germination can be small and transient, and direct observation is difficult. An experimental approach using several levels of environmental manipulation/control is recommended. PMID:26271118
Tambora and the mackerel year: phenology and fisheries during an extreme climate event
Alexander, Karen E.; Leavenworth, William B.; Hall, Carolyn; Mattocks, Steven; Bittner, Steven M.; Klein, Emily; Staudinger, Michelle D.; Bryan, Alexander; Rosset, Julianne; Willis, Theodore V.; Carr, Benjamin H.; Jordaan, Adrian
2017-01-01
Global warming has increased the frequency of extreme climate events, yet responses of biological and human communities are poorly understood, particularly for aquatic ecosystems and fisheries. Retrospective analysis of known outcomes may provide insights into the nature of adaptations and trajectory of subsequent conditions. We consider the 1815 eruption of the Indonesian volcano Tambora and its impact on Gulf of Maine (GoM) coastal and riparian fisheries in 1816. Applying complex adaptive systems theory with historical methods, we analyzed fish export data and contemporary climate records to disclose human and piscine responses to Tambora’s extreme weather at different spatial and temporal scales while also considering sociopolitical influences. Results identified a tipping point in GoM fisheries induced by concatenating social and biological responses to extreme weather. Abnormal daily temperatures selectively affected targeted fish species—alewives, shad, herring, and mackerel—according to their migration and spawning phenologies and temperature tolerances. First to arrive, alewives suffered the worst. Crop failure and incipient famine intensified fishing pressure, especially in heavily settled regions where dams already compromised watersheds. Insufficient alewife runs led fishers to target mackerel, the next species appearing in abundance along the coast; thus, 1816 became the “mackerel year.” Critically, the shift from riparian to marine fisheries persisted and expanded after temperatures moderated and alewives recovered. We conclude that contingent human adaptations to extraordinary weather permanently altered this complex system. Understanding how adaptive responses to extreme events can trigger unintended consequences may advance long-term planning for resilience in an uncertain future.
Tambora and the mackerel year: Phenology and fisheries during an extreme climate event
Alexander, Karen E.; Leavenworth, William B.; Willis, Theodore V.; Hall, Carolyn; Mattocks, Steven; Bittner, Steven M.; Klein, Emily; Staudinger, Michelle; Bryan, Alexander; Rosset, Julianne; Carr, Benjamin H.; Jordaan, Adrian
2017-01-01
Global warming has increased the frequency of extreme climate events, yet responses of biological and human communities are poorly understood, particularly for aquatic ecosystems and fisheries. Retrospective analysis of known outcomes may provide insights into the nature of adaptations and trajectory of subsequent conditions. We consider the 1815 eruption of the Indonesian volcano Tambora and its impact on Gulf of Maine (GoM) coastal and riparian fisheries in 1816. Applying complex adaptive systems theory with historical methods, we analyzed fish export data and contemporary climate records to disclose human and piscine responses to Tambora’s extreme weather at different spatial and temporal scales while also considering sociopolitical influences. Results identified a tipping point in GoM fisheries induced by concatenating social and biological responses to extreme weather. Abnormal daily temperatures selectively affected targeted fish species—alewives, shad, herring, and mackerel—according to their migration and spawning phenologies and temperature tolerances. First to arrive, alewives suffered the worst. Crop failure and incipient famine intensified fishing pressure, especially in heavily settled regions where dams already compromised watersheds. Insufficient alewife runs led fishers to target mackerel, the next species appearing in abundance along the coast; thus, 1816 became the “mackerel year.” Critically, the shift from riparian to marine fisheries persisted and expanded after temperatures moderated and alewives recovered. We conclude that contingent human adaptations to extraordinary weather permanently altered this complex system. Understanding how adaptive responses to extreme events can trigger unintended consequences may advance long-term planning for resilience in an uncertain future. PMID:28116356
NASA Astrophysics Data System (ADS)
Gentry, R. W.; Koirala, S. R.
2008-12-01
Resource managers in the future will be required to make decisions regarding complex systems under extreme uncertainty and to evaluate the sustainability of these natural systems. The variability and extremes of precipitation will be one of the major variables impacting natural systems, and decision making. These future decisions will be evaluated based upon economic costs and benefits, and core mission valuation. This will be particularly important in evaluating the effects and impacts of climate change on natural system response. In this case study, we evaluate the signal organization and its nature within a watershed in east Tennessee. In this study, temporal analyses were conducted on weekly time series data of water chemistry (nitrate, chloride, sulfate and calcium concentrations) collected from November 1995 to December 2005 at the West Fork of Walker Branch in Oak Ridge, Tennessee (Mulholland 1993, 2004). Hydrochemistry plays an important role in ecosystem services, particularly nitrate (Mulholland et al. 2008), and in general the signal responses can be complex. The time series in this study was modeled using a wavelet approach as a mechanism for evaluating short-term temporal effects. In general, time series signals of watershed hydrochemistry may provide clues as to broad environmental, ecological and economic impacts at the basin scale. References: Mulholland, P.J. (1993), Hydrometric and stream chemistry evidence of three storm flowpaths in Walker Branch Watershed, Journal of Hydrology, 151: 291-316. Mulholland, P.J. (2004). The importance of in-stream uptake for regulating stream concentrations and outputs of N and P from a forested watershed: evidence from long-term chemistry records for Walker Branch Watershed, Biogeochemistr. 70: 403-426. Mulholland, P.J., A.M. Helton, G.C. Poole, R.O. Hall Jr., S.K. Hamilton, B.J. Peterson, J.L. Tank, L.R. Ashkenas, L.W. Cooper, C.N. Dahm, W.K. Dodds, S.E.E. Findlay, S.V. Gregory, N.B. Grimm, S.L. Johnson, W.H. McDowell, J.L. Meyer, H.M. Valett, J.R. Webster, C.P. Arango, J.J. Beaulieu, M.J. Bernot, A.J. Burgin, C.L Crenshaw, L.T. Johnson, B.R. Niederlehner, J.M. O'Brien, J.D. Potter, R.W. Sheibley, D.J. Sobota, and S.M. Thomas (2008). Stream denitrification across biomes and its response to anthropogenic nitrate loading, Nature, 452(13): 202-206.
Ultrastable cellulosome-adhesion complex tightens under load.
Schoeler, Constantin; Malinowska, Klara H; Bernardi, Rafael C; Milles, Lukas F; Jobst, Markus A; Durner, Ellis; Ott, Wolfgang; Fried, Daniel B; Bayer, Edward A; Schulten, Klaus; Gaub, Hermann E; Nash, Michael A
2014-12-08
Challenging environments have guided nature in the development of ultrastable protein complexes. Specialized bacteria produce discrete multi-component protein networks called cellulosomes to effectively digest lignocellulosic biomass. While network assembly is enabled by protein interactions with commonplace affinities, we show that certain cellulosomal ligand-receptor interactions exhibit extreme resistance to applied force. Here, we characterize the ligand-receptor complex responsible for substrate anchoring in the Ruminococcus flavefaciens cellulosome using single-molecule force spectroscopy and steered molecular dynamics simulations. The complex withstands forces of 600-750 pN, making it one of the strongest bimolecular interactions reported, equivalent to half the mechanical strength of a covalent bond. Our findings demonstrate force activation and inter-domain stabilization of the complex, and suggest that certain network components serve as mechanical effectors for maintaining network integrity. This detailed understanding of cellulosomal network components may help in the development of biocatalysts for production of fuels and chemicals from renewable plant-derived biomass.
NASA Technical Reports Server (NTRS)
Simpson, M. L.; Sayler, G. S.; Fleming, J. T.; Applegate, B.
2001-01-01
The ability to manipulate systems on the molecular scale naturally leads to speculation about the rational design of molecular-scale machines. Cells might be the ultimate molecular-scale machines and our ability to engineer them is relatively advanced when compared with our ability to control the synthesis and direct the assembly of man-made materials. Indeed, engineered whole cells deployed in biosensors can be considered one of the practical successes of molecular-scale devices. However, these devices explore only a small portion of cellular functionality. Individual cells or self-organized groups of cells perform extremely complex functions that include sensing, communication, navigation, cooperation and even fabrication of synthetic nanoscopic materials. In natural systems, these capabilities are controlled by complex genetic regulatory circuits, which are only partially understood and not readily accessible for use in engineered systems. Here, we focus on efforts to mimic the functionality of man-made information-processing systems within whole cells.
Impact of delayed information in sub-second complex systems
NASA Astrophysics Data System (ADS)
Manrique, Pedro D.; Zheng, Minzhang; Johnson Restrepo, D. Dylan; Hui, Pak Ming; Johnson, Neil F.
What happens when you slow down the delivery of information in large-scale complex systems that operate faster than the blink of an eye? This question just adopted immediate commercial, legal and political importance following U.S. regulators' decision to allow an intentional 350 microsecond delay to be added in the ultrafast network of financial exchanges. However there is still no scientific understanding available to policymakers of the potential system-wide impact of such delays. Here we take a first step in addressing this question using a minimal model of a population of competing, heterogeneous, adaptive agents which has previously been shown to produce similar statistical features to real markets. We find that while certain extreme system-level behaviors can be prevented by such delays, the duration of others is increased. This leads to a highly non-trivial relationship between delays and system-wide instabilities which warrants deeper empirical investigation. The generic nature of our model suggests there should be a fairly wide class of complex systems where such delay-driven extreme behaviors can arise, e.g. sub-second delays in brain function possibly impacting individuals' behavior, and sub-second delays in navigational systems potentially impacting the safety of driverless vehicles.
Extreme Wind, Rain, Storm Surge, and Flooding: Why Hurricane Impacts are Difficult to Forecast?
NASA Astrophysics Data System (ADS)
Chen, S. S.
2017-12-01
The 2017 hurricane season is estimated as one of the costliest in the U.S. history. The damage and devastation caused by Hurricane Harvey in Houston, Irma in Florida, and Maria in Puerto Rico are distinctly different in nature. The complexity of hurricane impacts from extreme wind, rain, storm surge, and flooding presents a major challenge in hurricane forecasting. A detailed comparison of the storm impacts from Harvey, Irma, and Maria will be presented using observations and state-of-the-art new generation coupled atmosphere-wave-ocean hurricane forecast model. The author will also provide an overview on what we can expect in terms of advancement in science and technology that can help improve hurricane impact forecast in the near future.
Flooding experience at Veracruz: not only a natural disaster
NASA Astrophysics Data System (ADS)
Welsh-Rodriguez, C. M.; Nava Bringas, M.; Ochoa Martinez, C.; Local; regional impacts of global change
2013-05-01
The Veracruz state lies on the middle of the Gulf of Mexico in Mexican Republic; has a surface of 72815 Km2 represent almost the 4% of Mexico. Due to the complex topography, the rainfall, runoff and the extreme weather the 33% of Mexican water goes trough Veracruz, and every year the presence of tropical depressions, tropical storms and hurricanes impacts on the habitants of Veracruz (7.5 millions). For Veracruz the Sierra Madre is the natural border on the West and on the East the Gulf of Mexico. It is located from 17°10' to 23°38' (N) and between 93° to 99° (W). We will try to get the find out the primary information source for the floods on 2005 and 20010 and correlate with the laws on environment and civil protection for Veracruz. In 1999 a tropical depression more than 200 000 persons and more than 20 died, in 2005 Stan hurricane affected more than a million persons but no one died. In 2010 the effects of hurricane Karl were similar but a few days after the tropical depression Mathew affected 150 000 persons more and 15 people died. The patterns of people habitat in Veracruz since middle of XX century follows the oil industry develop at south east Mexico, so the risk increased as the population density increased, that's a critical reason to concluded that is not only cause - effect issue on Veracruz. So if the extreme events increase as consequence of the climate variability and climate change the vulnerability on this region will not be address in prevention policies, and the future scenario on adaptation will be a deep complex problem to solve from all perspectives.Reported impactst; Extreme events. Data from Veracruz Government.
Forecasting seasonal hydrologic response in major river basins
NASA Astrophysics Data System (ADS)
Bhuiyan, A. M.
2014-05-01
Seasonal precipitation variation due to natural climate variation influences stream flow and the apparent frequency and severity of extreme hydrological conditions such as flood and drought. To study hydrologic response and understand the occurrence of extreme hydrological events, the relevant forcing variables must be identified. This study attempts to assess and quantify the historical occurrence and context of extreme hydrologic flow events and quantify the relation between relevant climate variables. Once identified, the flow data and climate variables are evaluated to identify the primary relationship indicators of hydrologic extreme event occurrence. Existing studies focus on developing basin-scale forecasting techniques based on climate anomalies in El Nino/La Nina episodes linked to global climate. Building on earlier work, the goal of this research is to quantify variations in historical river flows at seasonal temporal-scale, and regional to continental spatial-scale. The work identifies and quantifies runoff variability of major river basins and correlates flow with environmental forcing variables such as El Nino, La Nina, sunspot cycle. These variables are expected to be the primary external natural indicators of inter-annual and inter-seasonal patterns of regional precipitation and river flow. Relations between continental-scale hydrologic flows and external climate variables are evaluated through direct correlations in a seasonal context with environmental phenomenon such as sun spot numbers (SSN), Southern Oscillation Index (SOI), and Pacific Decadal Oscillation (PDO). Methods including stochastic time series analysis and artificial neural networks are developed to represent the seasonal variability evident in the historical records of river flows. River flows are categorized into low, average and high flow levels to evaluate and simulate flow variations under associated climate variable variations. Results demonstrated not any particular method is suited to represent scenarios leading to extreme flow conditions. For selected flow scenarios, the persistence model performance may be comparable to more complex multivariate approaches, and complex methods did not always improve flow estimation. Overall model performance indicates inclusion of river flows and forcing variables on average improve model extreme event forecasting skills. As a means to further refine the flow estimation, an ensemble forecast method is implemented to provide a likelihood-based indication of expected river flow magnitude and variability. Results indicate seasonal flow variations are well-captured in the ensemble range, therefore the ensemble approach can often prove efficient in estimating extreme river flow conditions. The discriminant prediction approach, a probabilistic measure to forecast streamflow, is also adopted to derive model performance. Results show the efficiency of the method in terms of representing uncertainties in the forecasts.
NASA Astrophysics Data System (ADS)
Ruane, A. C.
2016-12-01
The Agricultural Model Intercomparison and Improvement Project (AgMIP) has been working since 2010 to build a modeling framework capable of representing the complexities of agriculture, its dependence on climate, and the many elements of society that depend on food systems. AgMIP's 30+ activities explore the interconnected nature of climate, crop, livestock, economics, food security, and nutrition, using common protocols to systematically evaluate the components of agricultural assessment and allow multi-model, multi-scale, and multi-method analysis of intertwining changes in socioeconomic development, environmental change, and technological adaptation. AgMIP is now launching Coordinated Global and Regional Assessments (CGRA) with a particular focus on unforeseen consequences of development strategies, interactions between global and local systems, and the resilience of agricultural systems to extreme climate events. Climate extremes shock the agricultural system through local, direct impacts (e.g., droughts, heat waves, floods, severe storms) and also through teleconnections propagated through international trade. As the climate changes, the nature of climate extremes affecting agriculture is also likely to change, leading to shifting intensity, duration, frequency, and geographic extents of extremes. AgMIP researchers are developing new scenario methodologies to represent near-term extreme droughts in a probabilistic manner, field experiments that impose heat wave conditions on crops, increased resolution to differentiate sub-national drought impacts, new behavioral functions that mimic the response of market actors faced with production shortfalls, analysis of impacts from simultaneous failures of multiple breadbasket regions, and more detailed mapping of food and socioeconomic indicators into food security and nutrition metrics that describe the human impact in diverse populations. Agricultural models illustrate the challenges facing agriculture, allowing resilience planning even as precise prediction of extremes remains difficult. Increased research is necessary to understand hazards, vulnerability, and exposure of populations to characterize the risk of shocks and mechanisms by which unexpected losses drive land-use transitions.
Slavens, Brooke A; Harris, Gerald F
2008-01-01
Human motion analysis has evolved from the lower extremity to the upper extremity. Rehabilitation engineering is reliant upon three-dimensional biome-chanical models for a thorough understanding of upper body motions and forces in order to improve treatment methods, rehabilitation strategies and to prevent injury. Due to the complex nature of upper body movements, a standard biomechanical model does not exist. This paper reviews several kinematic and kinetic rehabilitation engineering models from the literature. These models may capture a single joint; multijoints such as the shoulder, elbow and wrist; or a combination of joints and an ambulatory aid, which serves as the extension of the upper arm. With advances in software and hardware, new models continuously arise due to the clinical questions at hand. When designing a biomechanical upper extremity model, several key components must be determined. These include deciding on the anatomic segments of the model, the number of markers and placement on bony landmarks, the definition of joint coordinate systems, and the description of the joint motions. It is critical to apply the proper model to further our understanding of pathologic populations.
2001-06-01
reiteration of the most dominant feature of the post-Cold War global order the emergence of ethnic and religious issues as major themes of state and...security. Considerations such as historical roots and legacy, ethnic identities, civilization linkages, colonial experiences, geographic location, and...extremely complex in nature. A common phenomenon during the Cold War was the tendency of the armed forces to intervene when ethnic differences arose. Thus
Strides in Preservation of Malawi's Natural Stone
NASA Astrophysics Data System (ADS)
Kamanga, Tamara; Chisenga, Chikondi; Katonda, Vincent
2017-04-01
The geology of Malawi is broadly grouped into four main lithological units that is the Basement Complex, the Karoo Super group, Tertiary to Quaternary sedimentary deposits and the Chilwa Alkaline province. The basement complex rocks cover much of the country and range in age from late Precambrian to early Paleozoic. They have been affected by three major phases of deformation and metamorphism that is the Irumide, Ubendian and The Pan-African. These rocks comprise gneisses, granulites and schists with associated mafic, ultramafic, syenites and granite rocks. The Karoo System sedimentary rocks range in age from Permian to lower Jurassic and are mainly restricted to two areas in the extreme North and extreme Alkaline Province - late Jurassic to Cretaceous in age, preceded by upper Karoo Dolerite dyke swarms and basaltic lavas, have been intruded into the Basement Complex gneisses of southern Malawi. Malawi is endowed with different types of natural stone deposits most of which remain unexploited and explored. Over twenty quarry operators supply quarry stone for road and building construction in Malawi. Hundreds of artisanal workers continue to supply aggregate stones within and on the outskirts of urban areas. Ornamental stones and granitic dimension stones are also quarried, but in insignificant volumes. In Northern Malawi, there are several granite deposits including the Nyika, which is the largest single outcrop occupying approximately 260.5 km2 , Mtwalo Amazonite an opaque to translucent bluish -green variety of microcline feldspar that occurs in alkali granites and pegmatite, the Ilomba granite (sodalite) occurring in small areas within biotite; apatite, plagioclase and calcite. In the Center, there are the Dzalanyama granites, and the Sani granites. In the South, there are the Mangochi granites. Dolerite and gabbroic rocks spread across the country, treading as black granites. Malawi is also endowed with many deposits of marble. A variety of other igneous, metamorphic and sedimentary rocks are also used as dimension stones. Discovery and preservation of more natural stone deposits through research is essential in the country .Natural stone preservation has not only the potential to generate significant direct and indirect economic benefits for Malawi but also to preserve its heritage .
Understanding neuromotor strategy during functional upper extremity tasks using symbolic dynamics.
Nathan, Dominic E; Guastello, Stephen J; Prost, Robert W; Jeutter, Dean C
2012-01-01
The ability to model and quantify brain activation patterns that pertain to natural neuromotor strategy of the upper extremities during functional task performance is critical to the development of therapeutic interventions such as neuroprosthetic devices. The mechanisms of information flow, activation sequence and patterns, and the interaction between anatomical regions of the brain that are specific to movement planning, intention and execution of voluntary upper extremity motor tasks were investigated here. This paper presents a novel method using symbolic dynamics (orbital decomposition) and nonlinear dynamic tools of entropy, self-organization and chaos to describe the underlying structure of activation shifts in regions of the brain that are involved with the cognitive aspects of functional upper extremity task performance. Several questions were addressed: (a) How is it possible to distinguish deterministic or causal patterns of activity in brain fMRI from those that are really random or non-contributory to the neuromotor control process? (b) Can the complexity of activation patterns over time be quantified? (c) What are the optimal ways of organizing fMRI data to preserve patterns of activation, activation levels, and extract meaningful temporal patterns as they evolve over time? Analysis was performed using data from a custom developed time resolved fMRI paradigm involving human subjects (N=18) who performed functional upper extremity motor tasks with varying time delays between the onset of intention and onset of actual movements. The results indicate that there is structure in the data that can be quantified through entropy and dimensional complexity metrics and statistical inference, and furthermore, orbital decomposition is sensitive in capturing the transition of states that correlate with the cognitive aspects of functional task performance.
Controlling extreme events on complex networks
NASA Astrophysics Data System (ADS)
Chen, Yu-Zhong; Huang, Zi-Gang; Lai, Ying-Cheng
2014-08-01
Extreme events, a type of collective behavior in complex networked dynamical systems, often can have catastrophic consequences. To develop effective strategies to control extreme events is of fundamental importance and practical interest. Utilizing transportation dynamics on complex networks as a prototypical setting, we find that making the network ``mobile'' can effectively suppress extreme events. A striking, resonance-like phenomenon is uncovered, where an optimal degree of mobility exists for which the probability of extreme events is minimized. We derive an analytic theory to understand the mechanism of control at a detailed and quantitative level, and validate the theory numerically. Implications of our finding to current areas such as cybersecurity are discussed.
Biomimetics: lessons from nature--an overview.
Bhushan, Bharat
2009-04-28
Nature has developed materials, objects and processes that function from the macroscale to the nanoscale. These have gone through evolution over 3.8 Gyr. The emerging field of biomimetics allows one to mimic biology or nature to develop nanomaterials, nanodevices and processes. Properties of biological materials and surfaces result from a complex interplay between surface morphology and physical and chemical properties. Hierarchical structures with dimensions of features ranging from the macroscale to the nanoscale are extremely common in nature to provide properties of interest. Molecular-scale devices, superhydrophobicity, self-cleaning, drag reduction in fluid flow, energy conversion and conservation, high adhesion, reversible adhesion, aerodynamic lift, materials and fibres with high mechanical strength, biological self-assembly, antireflection, structural coloration, thermal insulation, self-healing and sensory-aid mechanisms are some of the examples found in nature that are of commercial interest. This paper provides a broad overview of the various objects and processes of interest found in nature and applications under development or available in the marketplace.
Natural product-like virtual libraries: recursive atom-based enumeration.
Yu, Melvin J
2011-03-28
A new molecular enumerator is described that allows chemically and architecturally diverse sets of natural product-like and drug-like structures to be generated from a core structure as simple as a single carbon atom or as complex as a polycyclic ring system. Integrated with a rudimentary machine-learning algorithm, the enumerator has the ability to assemble biased virtual libraries enriched in compounds predicted to meet target criteria. The ability to dynamically generate relatively small focused libraries in a recursive manner could reduce the computational time and infrastructure necessary to construct and manage extremely large static libraries. Depending on enumeration conditions, natural product-like structures can be produced with a wide range of heterocyclic and alicyclic ring assemblies. Because natural products represent a proven source of validated structures for identifying and designing new drug candidates, mimicking the structural and topological diversity found in nature with a dynamic set of virtual natural product-like compounds may facilitate the creation of new ideas for novel, biologically relevant lead structures in areas of uncharted chemical space.
Getty, Kendra; Delgado-Jaime, Mario Ulises
2010-01-01
The nature of the lowest energy bound-state transition in the Ru K-edge X-ray Absorption Spectra for a series of Grubbs-type ruthenium complexes was investigated. The pre-edge feature was unambiguously assigned as resulting from formally electric dipole forbidden Ru 4d←1s transitions. The intensities of these transitions are extremely sensitive to the ligand environment and the symmetry of the metal centre. In centrosymmetric complexes the pre-edge is very weak since it is limited by the weak electric quadrupole intensity mechanism. By contrast, upon breaking centrosymmetry, Ru 5p-4d mixing allows for introduction of electric dipole allowed character resulting in a dramatic increase in the pre-edge intensity. The information content of this approach is explored as it relates to complexes of importance in olefin metathesis and its relevance as a tool for the study of reactive intermediates. PMID:20151030
Emergent complexity of the cytoskeleton: from single filaments to tissue
Huber, F.; Schnauß, J.; Rönicke, S.; Rauch, P.; Müller, K.; Fütterer, C.; Käs, J.
2013-01-01
Despite their overwhelming complexity, living cells display a high degree of internal mechanical and functional organization which can largely be attributed to the intracellular biopolymer scaffold, the cytoskeleton. Being a very complex system far from thermodynamic equilibrium, the cytoskeleton's ability to organize is at the same time challenging and fascinating. The extensive amounts of frequently interacting cellular building blocks and their inherent multifunctionality permits highly adaptive behavior and obstructs a purely reductionist approach. Nevertheless (and despite the field's relative novelty), the physics approach has already proved to be extremely successful in revealing very fundamental concepts of cytoskeleton organization and behavior. This review aims at introducing the physics of the cytoskeleton ranging from single biopolymer filaments to multicellular organisms. Throughout this wide range of phenomena, the focus is set on the intertwined nature of the different physical scales (levels of complexity) that give rise to numerous emergent properties by means of self-organization or self-assembly. PMID:24748680
Complex agro-ecosystems for food security in a changing climate
Khumairoh, Uma; Groot, Jeroen CJ; Lantinga, Egbert A
2012-01-01
Attempts to increase food crop yields by intensifying agricultural systems using high inputs of nonrenewable resources and chemicals frequently lead to de-gradation of natural resources, whereas most technological innovations are not accessible for smallholders that represent the majority of farmers world wide. Alternatively, cocultures consisting of assemblages of plant and animal species can support ecological processes of nutrient cycling and pest control, which may lead to increasing yields and declining susceptibility to extreme weather conditions with increasing complexity of the systems. Here we show that enhancing the complexity of a rice production system by adding combinations of compost, azolla, ducks, and fish resulted in strongly increased grain yields and revenues in a season with extremely adverse weather conditions on East Java, Indonesia. We found that azolla, duck, and fish increased plant nutrient content, tillering and leaf area expansion, and strongly reduced the density of six different pests. In the most complex system comprising all components the highest grain yield was obtained. The net revenues of this system from sales of rice grain, fish, and ducks, after correction for extra costs, were 114% higher than rice cultivation with only compost as fertilizer. These results provide more insight in the agro-ecological processes and demonstrate how complex agricultural systems can contribute to food security in a changing climate. If smallholders can be trained to manage these systems and are supported for initial investments by credits, their livelihoods can be improved while producing in an ecologically benign way. PMID:22957173
NASA Astrophysics Data System (ADS)
Kumari, Komal; Donzis, Diego
2017-11-01
Highly resolved computational simulations on massively parallel machines are critical in understanding the physics of a vast number of complex phenomena in nature governed by partial differential equations. Simulations at extreme levels of parallelism present many challenges with communication between processing elements (PEs) being a major bottleneck. In order to fully exploit the computational power of exascale machines one needs to devise numerical schemes that relax global synchronizations across PEs. This asynchronous computations, however, have a degrading effect on the accuracy of standard numerical schemes.We have developed asynchrony-tolerant (AT) schemes that maintain order of accuracy despite relaxed communications. We show, analytically and numerically, that these schemes retain their numerical properties with multi-step higher order temporal Runge-Kutta schemes. We also show that for a range of optimized parameters,the computation time and error for AT schemes is less than their synchronous counterpart. Stability of the AT schemes which depends upon history and random nature of delays, are also discussed. Support from NSF is gratefully acknowledged.
DNA-labeled clay: A sensitive new method for tracing particle transport
Mahler, B.J.; Winkler, M.; Bennett, P.; Hillis, D.M.
1998-01-01
The behavior of mobile colloids and sediment in most natural environments remains poorly understood, in part because characteristics of existing sediment tracers limit their wide-spread use. Here we describe the development of a new approach that uses a DNA-labeled montmorillonite clay as a highly sensitive and selective sediment tracer that can potentially characterize sediment and colloid transport in a wide variety of environments, including marine, wetland, ground-water, and atmospheric systems. Characteristics of DNA in natural systems render it unsuitable as an aqueous tracer but admirably suited as a label for tracing particulates. The DNA-labeled-clay approach, using techniques developed from molecular biology, has extremely low detection limits, very specific detection, and a virtually infinite number of tracer signatures. Furthermore, DNA-labeled clay has the same physical characteristics as the particles it is designed to trace, it is environmentally benign, and it can be relatively inexpensively produced and detected. Our initial results show that short (500 base pair) strands of synthetically produced DNA reversibly adsorb to both Na-montmorillonite and powdered silica surfaces via a magnesium bridge. The DNA-montmorillonite surface complexes are stable in calcium-bicarbonate spring waters for periods of up to 18 days and only slowly desorb to the aqueous phase, whereas the silica surface complex is stable only in distilled water. Both materials readily release the adsorbed DNA in dilute EDTA solutions for amplification by the polymerase chain reaction (PCR) and quantification. The stability of the DNA-labeled clay complex suggests that this material would be appropriate for use as an extremely sensitive sediment tracer for flow periods of as long as 2 weeks, and possibly longer.
NASA Astrophysics Data System (ADS)
Renschler, C.; Sheridan, M. F.; Patra, A. K.
2008-05-01
The impact and consequences of extreme geophysical events (hurricanes, floods, wildfires, volcanic flows, mudflows, etc.) on properties and processes should be continuously assessed by a well-coordinated interdisciplinary research and outreach approach addressing risk assessment and resilience. Communication between various involved disciplines and stakeholders is the key to a successful implementation of an integrated risk management plan. These issues become apparent at the level of decision support tools for extreme events/disaster management in natural and managed environments. The Geospatial Project Management Tool (GeoProMT) is a collaborative platform for research and training to document and communicate the fundamental steps in transforming information for extreme events at various scales for analysis and management. GeoProMT is an internet-based interface for the management of shared geo-spatial and multi-temporal information such as measurements, remotely sensed images, and other GIS data. This tool enhances collaborative research activities and the ability to assimilate data from diverse sources by integrating information management. This facilitates a better understanding of natural processes and enhances the integrated assessment of resilience against both the slow and fast onset of hazard risks. Fundamental to understanding and communicating complex natural processes are: (a) representation of spatiotemporal variability, extremes, and uncertainty of environmental properties and processes in the digital domain, (b) transformation of their spatiotemporal representation across scales (e.g. interpolation, aggregation, disaggregation.) during data processing and modeling in the digital domain, and designing and developing tools for (c) geo-spatial data management, and (d) geo-spatial process modeling and effective implementation, and (e) supporting decision- and policy-making in natural resources and hazard management at various spatial and temporal scales of interest. GeoProMT is useful for researchers, practitioners, and decision-makers, because it provides an integrated environmental system assessment and data management approach that considers the spatial and temporal scales and variability in natural processes. Particularly in the occurrence or onset of extreme events it can utilize the latest data sources that are available at variable scales, combine them with existing information, and update assessment products such as risk and vulnerability assessment maps. Because integrated geo-spatial assessment requires careful consideration of all the steps in utilizing data, modeling and decision-making formats, each step in the sequence must be assessed in terms of how information is being scaled. At the process scale various geophysical models (e.g. TITAN, LAHARZ, or many other examples) are appropriate for incorporation in the tool. Some examples that illustrate our approach include: 1) coastal parishes impacted by Hurricane Rita (Southwestern Louisiana), 2) a watershed affected by extreme rainfall induced debris-flows (Madison County, Virginia; Panabaj, Guatemala; Casita, Nicaragua), and 3) the potential for pyroclastic flows to threaten a city (Tungurahua, Ecuador). This research was supported by the National Science Foundation.
High resolution modeling of a small urban catchment
NASA Astrophysics Data System (ADS)
Skouri-Plakali, Ilektra; Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel
2016-04-01
Flooding is one of the most complex issues that urban environments have to deal with. In France, flooding remains the first natural risk with 72% of decrees state of natural disaster issued between October 1982 and mid-November 2014. Flooding is a result of meteorological extremes that are usually aggravated by the hydrological behavior of urban catchments and human factors. The continuing urbanization process is indeed changing the whole urban water cycle by limiting the infiltration and promoting runoff. Urban environments are very complex systems due to their extreme variability, the interference between human activities and natural processes but also the effect of the ongoing urbanization process that changes the landscape and hardly influences their hydrologic behavior. Moreover, many recent works highlight the need to simulate all urban water processes at their specific temporal and spatial scales. However, considering urban catchments heterogeneity still challenging for urban hydrology, even after advances noticed in term of high-resolution data collection and computational resources. This issue is more to be related to the architecture of urban models being used and how far these models are ready to take into account the extreme variability of urban catchments. In this work, high spatio-temporal resolution modeling is performed for a small and well-equipped urban catchment. The aim of this work is to identify urban modeling needs in terms of spatial and temporal resolution especially for a very small urban area (3.7 ha urban catchment located in the Perreux-sur-Marne city at the southeast of Paris) MultiHydro model was selected to carry out this work, it is a physical based and fully distributed model that interacts four existing modules each of them representing a portion of the water cycle in urban environments. MultiHydro was implemented at 10m, 5m and 2m resolution. Simulations were performed at different spatio-temporal resolutions and analyzed with respect to real flow measurements. First Results coming out show improvements obtained in terms of the model performance at high spatio-temporal resolution.
Predictability of extremes in non-linear hierarchically organized systems
NASA Astrophysics Data System (ADS)
Kossobokov, V. G.; Soloviev, A.
2011-12-01
Understanding the complexity of non-linear dynamics of hierarchically organized systems progresses to new approaches in assessing hazard and risk of the extreme catastrophic events. In particular, a series of interrelated step-by-step studies of seismic process along with its non-stationary though self-organized behaviors, has led already to reproducible intermediate-term middle-range earthquake forecast/prediction technique that has passed control in forward real-time applications during the last two decades. The observed seismic dynamics prior to and after many mega, great, major, and strong earthquakes demonstrate common features of predictability and diverse behavior in course durable phase transitions in complex hierarchical non-linear system of blocks-and-faults of the Earth lithosphere. The confirmed fractal nature of earthquakes and their distribution in space and time implies that many traditional estimations of seismic hazard (from term-less to short-term ones) are usually based on erroneous assumptions of easy tractable analytical models, which leads to widespread practice of their deceptive application. The consequences of underestimation of seismic hazard propagate non-linearly into inflicted underestimation of risk and, eventually, into unexpected societal losses due to earthquakes and associated phenomena (i.e., collapse of buildings, landslides, tsunamis, liquefaction, etc.). The studies aimed at forecast/prediction of extreme events (interpreted as critical transitions) in geophysical and socio-economical systems include: (i) large earthquakes in geophysical systems of the lithosphere blocks-and-faults, (ii) starts and ends of economic recessions, (iii) episodes of a sharp increase in the unemployment rate, (iv) surge of the homicides in socio-economic systems. These studies are based on a heuristic search of phenomena preceding critical transitions and application of methodologies of pattern recognition of infrequent events. Any study of rare phenomena of highly complex origin, by their nature, implies using problem oriented methods, which design breaks the limits of classical statistical or econometric applications. The unambiguously designed forecast/prediction algorithms of the "yes or no" variety, analyze the observable quantitative integrals and indicators available to a given date, then provides unambiguous answer to the question whether a critical transition should be expected or not in the next time interval. Since the predictability of an originating non-linear dynamical system is limited in principle, the probabilistic component of forecast/prediction algorithms is represented by the empirical probabilities of alarms, on one side, and failures-to-predict, on the other, estimated on control sets achieved in the retro- and prospective experiments. Predicting in advance is the only decisive test of forecast/predictions and the relevant on-going experiments are conducted in the case seismic extremes, recessions, and increases of unemployment rate. The results achieved in real-time testing keep being encouraging and confirm predictability of the extremes.
Ultrastable cellulosome-adhesion complex tightens under load
Schoeler, Constantin; Malinowska, Klara H.; Bernardi, Rafael C.; Milles, Lukas F.; Jobst, Markus A.; Durner, Ellis; Ott, Wolfgang; Fried, Daniel B.; Bayer, Edward A.; Schulten, Klaus; Gaub, Hermann E.; Nash, Michael A.
2014-01-01
Challenging environments have guided nature in the development of ultrastable protein complexes. Specialized bacteria produce discrete multi-component protein networks called cellulosomes to effectively digest lignocellulosic biomass. While network assembly is enabled by protein interactions with commonplace affinities, we show that certain cellulosomal ligand–receptor interactions exhibit extreme resistance to applied force. Here, we characterize the ligand–receptor complex responsible for substrate anchoring in the Ruminococcus flavefaciens cellulosome using single-molecule force spectroscopy and steered molecular dynamics simulations. The complex withstands forces of 600–750 pN, making it one of the strongest bimolecular interactions reported, equivalent to half the mechanical strength of a covalent bond. Our findings demonstrate force activation and inter-domain stabilization of the complex, and suggest that certain network components serve as mechanical effectors for maintaining network integrity. This detailed understanding of cellulosomal network components may help in the development of biocatalysts for production of fuels and chemicals from renewable plant-derived biomass. PMID:25482395
Cost to Set up Common Languages
NASA Astrophysics Data System (ADS)
Latora, Vito
Complexity is a highly interdisciplinary science. Although there are drawbacks for researchers to work at the interface of different fields, such as the cost to set up common languages, and the risks associated with not being recognized by any of the well-established scientific communities, some of my recent work indicates that interdisciplinarity can be extremely rewarding. Drawing on large data sets on scientific production during several decades, we have shown that highly interdisciplinary scholars can outperform specialized ones, and that scientists can enhance their performance by seeking collaborators with expertise in various fields. My vision for complexity is based on the added value of its interdisciplinary nature. I list below three research directions that I am personally eager to explore, and that I think will be among the main challenges of complexity in the next 10 years...
Germination and seedling establishment in orchids: a complex of requirements.
Rasmussen, Hanne N; Dixon, Kingsley W; Jersáková, Jana; Těšitelová, Tamara
2015-09-01
Seedling recruitment is essential to the sustainability of any plant population. Due to the minute nature of seeds and early-stage seedlings, orchid germination in situ was for a long time practically impossible to observe, creating an obstacle towards understanding seedling site requirements and fluctuations in orchid populations. The introduction of seed packet techniques for sowing and retrieval in natural sites has brought with it important insights, but many aspects of orchid seed and germination biology remain largely unexplored. The germination niche for orchids is extremely complex, because it is defined by requirements not only for seed lodging and germination, but also for presence of a fungal host and its substrate. A mycobiont that the seedling can parasitize is considered an essential element, and a great diversity of Basidiomycota and Ascomycota have now been identified for their role in orchid seed germination, with fungi identifiable as imperfect Rhizoctonia species predominating. Specificity patterns vary from orchid species employing a single fungal lineage to species associating individually with a limited selection of distantly related fungi. A suitable organic carbon source for the mycobiont constitutes another key requirement. Orchid germination also relies on factors that generally influence the success of plant seeds, both abiotic, such as light/shade, moisture, substrate chemistry and texture, and biotic, such as competitors and antagonists. Complexity is furthermore increased when these factors influence seeds/seedling, fungi and fungal substrate differentially. A better understanding of germination and seedling establishment is needed for conservation of orchid populations. Due to the obligate association with a mycobiont, the germination niches in orchid species are extremely complex and varied. Microsites suitable for germination can be small and transient, and direct observation is difficult. An experimental approach using several levels of environmental manipulation/control is recommended. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Management of combat-related urological trauma in the modern era.
Williams, Molly; Jezior, James
2013-09-01
Complex genitourinary injuries--associated with lower-extremity amputation as well as pelvic and abdominal wounding--have emerged as common occurrences in current military combat operations. The nature of combat injuries of the genitourinary tract is varied, as are the strategies used in their management. For example, 5% of all combat injuries include wounds of the urinary system or genitalia. For injuries that are predominantly penetrating in nature, immediate care requires the judicious preservation of viable tissue. Once the patient is stable, urethral, corporal and testicular lacerations are closed primarily, whereas soft tissue injuries are re-approximated in a delayed fashion. Negative-pressure dressings have been a useful aid in wound management; wound coverage is most commonly completed with split-thickness skin grafts and local flaps. Complex penile and urethral reconstructions are often delayed so orthopaedic injuries can heal and the patient can manage activities of daily living. Final reconstruction requires a urologist with a full understanding of reconstructive techniques.
NASA Astrophysics Data System (ADS)
Ludwig, R.
2017-12-01
There is as yet no confirmed knowledge whether and how climate change contributes to the magnitude and frequency of hydrological extreme events and how regional water management could adapt to the corresponding risks. The ClimEx project (2015-2019) investigates the effects of climate change on the meteorological and hydrological extreme events and their implications for water management in Bavaria and Québec. High Performance Computing is employed to enable the complex simulations in a hydro-climatological model processing chain, resulting in a unique high-resolution and transient (1950-2100) dataset of climatological and meteorological forcing and hydrological response: (1) The climate module has developed a large ensemble of high resolution data (12km) of the CRCM5 RCM for Central Europe and North-Eastern North America, downscaled from 50 members of the CanESM2 GCM. The dataset is complemented by all available data from the Euro-CORDEX project to account for the assessment of both natural climate variability and climate change. The large ensemble with several thousand model years provides the potential to catch rare extreme events and thus improves the process understanding of extreme events with return periods of 1000+ years. (2) The hydrology module comprises process-based and spatially explicit model setups (e.g. WaSiM) for all major catchments in Bavaria and Southern Québec in high temporal (3h) and spatial (500m) resolution. The simulations form the basis for in depth analysis of hydrological extreme events based on the inputs from the large climate model dataset. The specific data situation enables to establish a new method for `virtual perfect prediction', which assesses climate change impacts on flood risk and water resources management by identifying patterns in the data which reveal preferential triggers of hydrological extreme events. The presentation will highlight first results from the analysis of the large scale ClimEx model ensemble, showing the current and future ratio of natural variability and climate change impacts on meteorological extreme events. Selected data from the ensemble is used to drive a hydrological model experiment to illustrate the capacity to better determine the recurrence periods of hydrological extreme events under conditions of climate change.
NASA Astrophysics Data System (ADS)
Ajayakumar, J.; Shook, E.; Turner, V. K.
2017-10-01
With social media becoming increasingly location-based, there has been a greater push from researchers across various domains including social science, public health, and disaster management, to tap in the spatial, temporal, and textual data available from these sources to analyze public response during extreme events such as an epidemic outbreak or a natural disaster. Studies based on demographics and other socio-economic factors suggests that social media data could be highly skewed based on the variations of population density with respect to place. To capture the spatio-temporal variations in public response during extreme events we have developed the Socio-Environmental Data Explorer (SEDE). SEDE collects and integrates social media, news and environmental data to support exploration and assessment of public response to extreme events. For this study, using SEDE, we conduct spatio-temporal social media response analysis on four major extreme events in the United States including the "North American storm complex" in December 2015, the "snowstorm Jonas" in January 2016, the "West Virginia floods" in June 2016, and the "Hurricane Matthew" in October 2016. Analysis is conducted on geo-tagged social media data from Twitter and warnings from the storm events database provided by National Centers For Environmental Information (NCEI) for analysis. Results demonstrate that, to support complex social media analyses, spatial and population-based normalization and filtering is necessary. The implications of these results suggests that, while developing software solutions to support analysis of non-conventional data sources such as social media, it is quintessential to identify the inherent biases associated with the data sources, and adapt techniques and enhance capabilities to mitigate the bias. The normalization strategies that we have developed and incorporated to SEDE will be helpful in reducing the population bias associated with social media data and will be useful for researchers and decision makers to enhance their analysis on spatio-temporal social media responses during extreme events.
Extreme fluctuations in stochastic network coordination with time delays
NASA Astrophysics Data System (ADS)
Hunt, D.; Molnár, F.; Szymanski, B. K.; Korniss, G.
2015-12-01
We study the effects of uniform time delays on the extreme fluctuations in stochastic synchronization and coordination problems with linear couplings in complex networks. We obtain the average size of the fluctuations at the nodes from the behavior of the underlying modes of the network. We then obtain the scaling behavior of the extreme fluctuations with system size, as well as the distribution of the extremes on complex networks, and compare them to those on regular one-dimensional lattices. For large complex networks, when the delay is not too close to the critical one, fluctuations at the nodes effectively decouple, and the limit distributions converge to the Fisher-Tippett-Gumbel density. In contrast, fluctuations in low-dimensional spatial graphs are strongly correlated, and the limit distribution of the extremes is the Airy density. Finally, we also explore the effects of nonlinear couplings on the stability and on the extremes of the synchronization landscapes.
NASA Astrophysics Data System (ADS)
Davis, A. B.; Kao, C. J.
2001-05-01
The overarching mission of Los Alamos National Laboratory is to use science and technology to reduce nuclear danger. In the complex multipolar reality of the post cold-war era, this core mission is naturally enlarged to include all weapons of mass destruction (nuclear, chemical, and biological) as well as acts of terrorism. Traditionally, LANL and other institutions in the DOE weapons complex pay little attention to the reasons a country or group of individuals chooses the road of proliferation. That is considered a ``soft'' science at best and, at any rate, is left to other government agencies, their non-governmental and their international partners. However, this division-of-labor overlooks an area of challenging science where DOE laboratories such as LANL, in partnership with academia, can offer valuable insight into a sensitive ``trigger'' in the proliferation process. Indeed, a population subjected to catastrophic environmental degradation becomes far more likely to endorse a proliferant regime or spawn terrorist groups simply because it has little more to lose. Once physical health and economic survival is in jeopardy, whole populations and individuals alike become desperate. This situation is more easily exploited politically than remedied through international aid, especially when the region is already volatile. Scenarios of political de-stabilization due to environmental degradation become even more likely when reminded that the planet is gradually warming and, quite possibly, this trend in the mean will drive changes in extreme weather patterns, quite possibly, for the worse in terms of intensity, duration and frequency. Of the long list of natural disasters that threaten populations and infrastructure, most involve the atmosphere, largely because it is the least inert (hence most turbulent) of the geophysical fluids. Furthermore, the dominant nonlinear response in a complex socio-environmental system is generically not to a change in the mean, but to a critical threshold crossing. So extreme atmospheric phenomena are of the essence yet they are poorly understood, even in a steady climate, because they challenge both dynamical modelers and statisticians. The authors will describe a preliminary proposal to harness some of the unique human, computational and observational resources at LANL that could lead to a significant breakthrough in our understanding of extreme weather mechanisms and how they relate to climate and climate change. If implemented, this program could open new relationships between the laboratory and presently unsuspecting client-agencies such as FEMA, CDC, EPA, State Department, and so on.
NASA Astrophysics Data System (ADS)
Guidetti, Roberto; Tiziana, Altiero; Cesari, Michele; Rizzo, Angela Maria; Bertolani, Roberto; Galletta, Giuseppe; Dalessandro, Maurizio; Rebecchi, Lorena
Extreme habitats are highly selective and can host only living organisms possessing specific adaptations to stressors. Among extreme habitats, space environment has particular charac-teristics of radiations, vacuum, microgravity and temperature, which induce rapid changes in living systems. Consequently, the response of multicellular complex organisms, able to colo-nize extreme environments, to space stresses can give very useful information on the ability to withstand a single stress or stress combinations. This knowledge on changes in living systems in space, with their similarity to the ageing processes, offers the opportunity to improve human life both on Earth and in space. Even though experimentation in space has often been carried out using unicellular organisms, multicellular organisms are very relevant in order to develop the appropriate countermeasures to avoid the risks imposed by environmental space in humans. The little attention received by multicellular organisms is probably due, other than to difficul-ties in the manipulation of biological materials in space, to the presence of only few organisms with the potential to tolerate environmental space stresses. Among them, tardigrades are small invertebrates representing an attractive animal model to study adaptive strategies for surviving extreme environments, including space environment. Tardigrades are little known microscopic aquatic animals (250-800 m in body length) distributed in different environments (from the deep sea to high mountains and deserts all over the world), and frequently inhabiting very unstable and unpredictable habitats (e.g. interstices of mosses, lichens, leaf litter, freshwater ponds, cryoconite holes). Their ability to live in the extreme environments is related to a wide variety of their life histories and adaptive strategies. A widespread and crucial strategy is cryptobiosis, a form of quiescence. It includes strategies such as anhydrobiosis and cryobiosis, characterized by a complete or almost complete metabolic standstill. The ability of tardigrades to colonize terrestrial habitats is linked to their well known ability to enter anhydrobiosis when their habi-tat desiccates. Tardigrades survive dehydration by entering a highly stable state of suspended animation due to complete desiccation (¿ 95Results on tardigrades open a window on the fu-ture perspective in astrobiology and in their applications. The discovery and identification of metabolites naturally synthesized by tardigrades to perform a remarkable protection against the damages to cellular components and DNA due to desiccation, radiation, microgravity and oxidation stresses, will be used to define the countermeasures to protect sensitive organisms, including humans, not naturally able to withstand extreme stresses under space conditions, for the future long-term explorations of our solar system, including Mars.
A role for relaxed selection in the evolution of the language capacity
Deacon, Terrence W.
2010-01-01
Explaining the extravagant complexity of the human language and our competence to acquire it has long posed challenges for natural selection theory. To answer his critics, Darwin turned to sexual selection to account for the extreme development of language. Many contemporary evolutionary theorists have invoked incredibly lucky mutation or some variant of the assimilation of acquired behaviors to innate predispositions in an effort to explain it. Recent evodevo approaches have identified developmental processes that help to explain how complex functional synergies can evolve by Darwinian means. Interestingly, many of these developmental mechanisms bear a resemblance to aspects of Darwin's mechanism of natural selection, often differing only in one respect (e.g., form of duplication, kind of variation, competition/cooperation). A common feature is an interplay between processes of stabilizing selection and processes of relaxed selection at different levels of organism function. These may play important roles in the many levels of evolutionary process contributing to language. Surprisingly, the relaxation of selection at the organism level may have been a source of many complex synergistic features of the human language capacity, and may help explain why so much language information is “inherited” socially. PMID:20445088
Wong, Emily S W; Sanderson, Claire E; Deakin, Janine E; Whittington, Camilla M; Papenfuss, Anthony T; Belov, Katherine
2009-08-01
Natural killer (NK) cell receptors belong to two unrelated, but functionally analogous gene families: the immunoglobulin superfamily, situated in the leukocyte receptor complex (LRC) and the C-type lectin superfamily, located in the natural killer complex (NKC). Here, we describe the largest NK receptor gene expansion seen to date. We identified 213 putative C-type lectin NK receptor homologs in the genome of the platypus. Many have arisen as the result of a lineage-specific expansion. Orthologs of OLR1, CD69, KLRE, CLEC12B, and CLEC16p genes were also identified. The NKC is split into at least two regions of the genome: 34 genes map to chromosome 7, two map to a small autosome, and the remainder are unanchored in the current genome assembly. No NK receptor genes from the LRC were identified. The massive C-type lectin expansion and lack of Ig-domain-containing NK receptors represents the most extreme polarization of NK receptors found to date. We have used this new data from platypus to trace the possible evolutionary history of the NK receptor clusters.
NASA Astrophysics Data System (ADS)
Jajcay, N.; Kravtsov, S.; Tsonis, A.; Palus, M.
2017-12-01
A better understanding of dynamics in complex systems, such as the Earth's climate is one of the key challenges for contemporary science and society. A large amount of experimental data requires new mathematical and computational approaches. Natural complex systems vary on many temporal and spatial scales, often exhibiting recurring patterns and quasi-oscillatory phenomena. The statistical inference of causal interactions and synchronization between dynamical phenomena evolving on different temporal scales is of vital importance for better understanding of underlying mechanisms and a key for modeling and prediction of such systems. This study introduces and applies information theory diagnostics to phase and amplitude time series of different wavelet components of the observed data that characterizes El Niño. A suite of significant interactions between processes operating on different time scales was detected, and intermittent synchronization among different time scales has been associated with the extreme El Niño events. The mechanisms of these nonlinear interactions were further studied in conceptual low-order and state-of-the-art dynamical, as well as statistical climate models. Observed and simulated interactions exhibit substantial discrepancies, whose understanding may be the key to an improved prediction. Moreover, the statistical framework which we apply here is suitable for direct usage of inferring cross-scale interactions in nonlinear time series from complex systems such as the terrestrial magnetosphere, solar-terrestrial interactions, seismic activity or even human brain dynamics.
Krupnik, Tomasz; Kotabová, Eva; van Bezouwen, Laura S.; Mazur, Radosław; Garstka, Maciej; Nixon, Peter J.; Barber, James; Kaňa, Radek; Boekema, Egbert J.; Kargul, Joanna
2013-01-01
Members of the rhodophytan order Cyanidiales are unique among phototrophs in their ability to live in extremely low pH levels and moderately high temperatures. The photosynthetic apparatus of the red alga Cyanidioschyzon merolae represents an intermediate type between cyanobacteria and higher plants, suggesting that this alga may provide the evolutionary link between prokaryotic and eukaryotic phototrophs. Although we now have a detailed structural model of photosystem II (PSII) from cyanobacteria at an atomic resolution, no corresponding structure of the eukaryotic PSII complex has been published to date. Here we report the isolation and characterization of a highly active and robust dimeric PSII complex from C. merolae. We show that this complex is highly stable across a range of extreme light, temperature, and pH conditions. By measuring fluorescence quenching properties of the isolated C. merolae PSII complex, we provide the first direct evidence of pH-dependent non-photochemical quenching in the red algal PSII reaction center. This type of quenching, together with high zeaxanthin content, appears to underlie photoprotection mechanisms that are efficiently employed by this robust natural water-splitting complex under excess irradiance. In order to provide structural details of this eukaryotic form of PSII, we have employed electron microscopy and single particle analyses to obtain a 17 Å map of the C. merolae PSII dimer in which we locate the position of the protein mass corresponding to the additional extrinsic protein stabilizing the oxygen-evolving complex, PsbQ′. We conclude that this lumenal subunit is present in the vicinity of the CP43 protein, close to the membrane plane. PMID:23775073
Laws of distribution of the snow cover on the greater Caucasus (Soviet Union)
NASA Technical Reports Server (NTRS)
Gurtovaya, Y. Y.; Sulakvelidze, G. K.; Yashina, A. V.
1985-01-01
The laws of the distribution of the snow cover on the mountains of the greater Caucasus are discussed. It is shown that an extremely unequal distribution of the snow cover is caused by the complex orography of this territory, the diversity of climatic conditions and by the difference in altitude. Regions of constant, variable and unstable snow cover are distinguished because of the clearly marked division into altitude layers, each of which is characterized by climatic differences in the nature of the snow accumulation.
Darwinism, not mutationism, explains the design of organisms.
Gardner, Andy
2013-04-01
Shapiro claims that advances in molecular genetics have undermined Darwinism, leading him to advocate mutationism. However, this extreme view is bourne out of conceptual error. He has misunderstood the distinction between gradualism and saltationism, which do not concern the rate of genetic change, but rather the emergence of complex design. And he has misunderstood the relationship between the dynamics of natural selection and the agency of individual organisms: these are not competing hypotheses, but rather alternative conceptualizations of the same phenomenon. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kleiter, Ingo; Luerding, Ralf; Diendorfer, Gerhard; Rek, Helga; Bogdahn, Ulrich; Schalke, Berthold
2007-01-01
The case of a 23‐year‐old mountaineer who was hit by a lightning strike to the occiput causing a large central visual field defect and bilateral tympanic membrane ruptures is described. Owing to extreme agitation, the patient was set to a drug‐induced coma for 3 days. After extubation, she experienced simple and complex visual hallucinations for several days, but otherwise recovered largely. Neuropsychological tests revealed deficits in fast visual detection tasks and non‐verbal learning, and indicated a right temporal lobe dysfunction, consistent with a right temporal focus on electroencephalography. Four months after the accident, she developed a psychological reaction consisting of nightmares with reappearance of the complex visual hallucinations and a depressive syndrome. Using the European Cooperation for Lightning Detection network, a meteorological system for lightning surveillance, the exact geographical location and nature of the lightning flash were retrospectively retraced. PMID:17369595
Kleiter, Ingo; Luerding, Ralf; Diendorfer, Gerhard; Rek, Helga; Bogdahn, Ulrich; Schalke, Berthold
2009-01-01
The case of a 23-year-old mountaineer who was hit by a lightning strike to the occiput causing a large central visual field defect and bilateral tympanic membrane ruptures is described. Owing to extreme agitation, the patient was sent into a drug-induced coma for 3 days. After extubation, she experienced simple and complex visual hallucinations for several days, but otherwise largely recovered. Neuropsychological tests revealed deficits in fast visual detection tasks and non-verbal learning and indicated a right temporal lobe dysfunction, consistent with a right temporal focus on electroencephalography. At 4 months after the accident, she developed a psychological reaction consisting of nightmares, with reappearance of the complex visual hallucinations and a depressive syndrome. Using the European Cooperation for Lightning Detection network, a meteorological system for lightning surveillance, the exact geographical location and nature of the lightning strike were retrospectively retraced PMID:21734915
Insights into the nature of cometary organic matter from terrestrial analogues
NASA Astrophysics Data System (ADS)
Court, Richard W.; Sephton, Mark A.
2012-04-01
The nature of cometary organic matter is of great interest to investigations involving the formation and distribution of organic matter relevant to the origin of life. We have used pyrolysis-Fourier transform infrared (FTIR) spectroscopy to investigate the chemical effects of the irradiation of naturally occurring bitumens, and to relate their products of pyrolysis to their parent assemblages. The information acquired has then been applied to the complex organic matter present in cometary nuclei and comae. Amalgamating the FTIR data presented here with data from published studies enables the inference of other comprehensive trends within hydrocarbon mixtures as they are progressively irradiated in a cometary environment, namely the polymerization of lower molecular weight compounds; an increased abundance of polycyclic aromatic hydrocarbon structures; enrichment in 13C; reduction in atomic H/C ratio; elevation of atomic O/C ratio and increase in the temperature required for thermal degradation. The dark carbonaceous surface of a cometary nucleus will display extreme levels of these features, relative to the nucleus interior, while material in the coma will reflect the degree of irradiation experienced by its source location in the nucleus. Cometary comae with high methane/water ratios indicate a nucleus enriched in methane, favouring the formation of complex organic matter via radiation-induced polymerization of simple precursors. In contrast, production of complex organic matter is hindered in a nucleus possessing a low methane/water ration, with the complex organic matter that does form possessing more oxygen-containing species, such as alcohol, carbonyl and carboxylic acid functional groups, resulting from reactions with hydroxyl radicals formed by the radiolysis of the more abundant water. These insights into the properties of complex cometary organic matter should be of particular interest to both remote observation and space missions involving in situ analyses and sample return of cometary materials.
NASA Astrophysics Data System (ADS)
Dugger, A. L.; Zhang, Y.; Gochis, D.; Yu, W.; McCreight, J. L.; Karsten, L.; Rafieeinasab, A.; Sampson, K. M.; Salas, F.; Read, L.; Pan, L.; Yates, D. N.; Cosgrove, B.; Clark, E. P.
2017-12-01
Streamflow extremes (lows and peaks) tend to have disproportionately higher impacts on the human and natural systems compared to mean streamflow. Examining and understanding the spatiotemporal distributions of streamflow extremes is of significant interests to both the research community and the water resources management. In this work, the output from the 24-year (1993 through 2016) retrospective runs of the National Water Model (NWM) version of WRF-Hydro will be analyzed for streamflow extremes over the CONUS domain. The CONUS domain was configured at 1-km resolution for land surface grid and 250-m resolution for terrain routing. The WRF-Hydro runs were forced by the regridded and downscaled NLDAS2 data. The analyses focus on daily mean streamflow values over the full water year and within the summer and winter seasons. Connections between NWM streamflow and other hydrologic variables (e.g. snowpack, soil moisture/saturation and ET) with variations in large-scale climate phenomena, e.g., El Niño - Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), and North American monsoon are examined. The CONUS domain has a diverse environment and is characterized by complex terrain, heterogeneous land surfaces and ecosystems, and numerous hydrological basins. The potential dependence of streamflow extremes on regional terrain character, climatic conditions, and ecologic zones will also be investigated.
Applying systems biology methods to the study of human physiology in extreme environments
2013-01-01
Systems biology is defined in this review as ‘an iterative process of computational model building and experimental model revision with the aim of understanding or simulating complex biological systems’. We propose that, in practice, systems biology rests on three pillars: computation, the omics disciplines and repeated experimental perturbation of the system of interest. The number of ethical and physiologically relevant perturbations that can be used in experiments on healthy humans is extremely limited and principally comprises exercise, nutrition, infusions (e.g. Intralipid), some drugs and altered environment. Thus, we argue that systems biology and environmental physiology are natural symbionts for those interested in a system-level understanding of human biology. However, despite excellent progress in high-altitude genetics and several proteomics studies, systems biology research into human adaptation to extreme environments is in its infancy. A brief description and overview of systems biology in its current guise is given, followed by a mini review of computational methods used for modelling biological systems. Special attention is given to high-altitude research, metabolic network reconstruction and constraint-based modelling. PMID:23849719
Fox-Rabinovich, German S; Yamamoto, Kenji; Beake, Ben D; Gershman, Iosif S; Kovalev, Anatoly I; Veldhuis, Stephen C; Aguirre, Myriam H; Dosbaeva, Goulnara; Endrino, Jose L
2012-08-01
Adaptive wear-resistant coatings produced by physical vapor deposition (PVD) are a relatively new generation of coatings which are attracting attention in the development of nanostructured materials for extreme tribological applications. An excellent example of such extreme operating conditions is high performance machining of hard-to-cut materials. The adaptive characteristics of such coatings develop fully during interaction with the severe environment. Modern adaptive coatings could be regarded as hierarchical surface-engineered nanostructural materials. They exhibit dynamic hierarchy on two major structural scales: (a) nanoscale surface layers of protective tribofilms generated during friction and (b) an underlying nano/microscaled layer. The tribofilms are responsible for some critical nanoscale effects that strongly impact the wear resistance of adaptive coatings. A new direction in nanomaterial research is discussed: compositional and microstructural optimization of the dynamically regenerating nanoscaled tribofilms on the surface of the adaptive coatings during friction. In this review we demonstrate the correlation between the microstructure, physical, chemical and micromechanical properties of hard coatings in their dynamic interaction (adaptation) with environment and the involvement of complex natural processes associated with self-organization during friction. Major physical, chemical and mechanical characteristics of the adaptive coating, which play a significant role in its operating properties, such as enhanced mass transfer, and the ability of the layer to provide dissipation and accumulation of frictional energy during operation are presented as well. Strategies for adaptive nanostructural coating design that enhance beneficial natural processes are outlined. The coatings exhibit emergent behavior during operation when their improved features work as a whole. In this way, as higher-ordered systems, they achieve multifunctionality and high wear resistance under extreme tribological conditions.
Fox-Rabinovich, German S; Yamamoto, Kenji; Beake, Ben D; Gershman, Iosif S; Kovalev, Anatoly I; Veldhuis, Stephen C; Aguirre, Myriam H.; Dosbaeva, Goulnara; Endrino, Jose L
2012-01-01
Adaptive wear-resistant coatings produced by physical vapor deposition (PVD) are a relatively new generation of coatings which are attracting attention in the development of nanostructured materials for extreme tribological applications. An excellent example of such extreme operating conditions is high performance machining of hard-to-cut materials. The adaptive characteristics of such coatings develop fully during interaction with the severe environment. Modern adaptive coatings could be regarded as hierarchical surface-engineered nanostructural materials. They exhibit dynamic hierarchy on two major structural scales: (a) nanoscale surface layers of protective tribofilms generated during friction and (b) an underlying nano/microscaled layer. The tribofilms are responsible for some critical nanoscale effects that strongly impact the wear resistance of adaptive coatings. A new direction in nanomaterial research is discussed: compositional and microstructural optimization of the dynamically regenerating nanoscaled tribofilms on the surface of the adaptive coatings during friction. In this review we demonstrate the correlation between the microstructure, physical, chemical and micromechanical properties of hard coatings in their dynamic interaction (adaptation) with environment and the involvement of complex natural processes associated with self-organization during friction. Major physical, chemical and mechanical characteristics of the adaptive coating, which play a significant role in its operating properties, such as enhanced mass transfer, and the ability of the layer to provide dissipation and accumulation of frictional energy during operation are presented as well. Strategies for adaptive nanostructural coating design that enhance beneficial natural processes are outlined. The coatings exhibit emergent behavior during operation when their improved features work as a whole. In this way, as higher-ordered systems, they achieve multifunctionality and high wear resistance under extreme tribological conditions. PMID:27877499
Partnerships for affordable and equitable disaster insurance
NASA Astrophysics Data System (ADS)
Mysiak, J.; Pérez-Blanco, C. D.
2015-08-01
Extreme events are becoming more frequent and intense, inflating the economic damages and social hardship set-off by natural catastrophes. Amidst budgetary cuts, there is a growing concern on societies' ability to design solvent disaster recovery strategies, while addressing equity and affordability concerns. The participation of private sector along with public one through Public-Private Partnerships (PPPs) has gained on importance as a means to address these seemingly conflicting objectives through the provision of (catastrophic) natural hazard insurance. This is the case of many OECD countries, notably some EU Member States such as the United Kingdom and Spain. The EU legislator has adapted to this new scenario and recently produced major reforms in the legislation and regulation that govern the framework in which PPPs for (catastrophic) natural hazard insurance develop. This paper has a dual objective: (1) review the complex legal background that rules the provision of insurance against natural catastrophes in the EU after these major reforms, (2) assess the implications of the reforms and offer concise Policy Guiding Principles.
Response of the Vegetation-Climate System to High Temperature (Invited)
NASA Astrophysics Data System (ADS)
Berry, J. A.
2009-12-01
High temperature extremes may lead to inhibition of photosynthesis and stomatal closure at the leaf scale. When these responses occur over regional scales, they can initiate a positive feedback loop in the coupled vegetation-climate system. The fraction of net radiation that is used by the land surface to evaporate water decreases leading to deeper, drier boundary layers, fewer clouds, increased solar radiation reaching the surface, and possibility reduced precipitation. These interactions within the vegetation-climate system may amplify natural (or greenhouse gas forced) variations in temperature and further stress the vegetation. Properly modeling of this system depends, among other things, on getting the plant responses to high temperature correct. I will review the current state of this problem and present some studies of rain forest trees to high temperature and drought conducted in the Biosphere 2 enclosure that illustrate how experiments in controlled systems can contribute to our understanding of complex systems to extreme events.
Achieving Transformational Materials Performance in a New Era of Science
Sarrao, John
2017-12-22
The inability of current materials to meet performance requirements is a key stumbling block for addressing grand challenges in energy and national security. Fortunately, materials research is on the brink of a new era - a transition from observation and validation of materials properties to prediction and control of materials performance. In this talk, I describe the nature of the current challenge, the prospects for success, and a specific facility concept, MaRIE, that will provide the needed capabilities to meet these challenges, especially for materials in extreme environments. MaRIE, for Matter-Radiation Interactions in Extremes, is Los Alamos' concept to realize this vision of 21st century materials research. This vision will be realized through enhancements to the current LANSCE accelerator, development of a fourth-generation x-ray light source co-located with the proton accelerator, and a comprehensive synthesis and characterization facility focused on controlling complex materials and the defect/structure link to materials performance.
Dancing with Nature: Rhythm and Harmony in Extreme Sport Participation
ERIC Educational Resources Information Center
Brymer, Eric; Gray, Tonia
2009-01-01
Research on extreme sports has downplayed the importance of the athletes' connection to the natural world. This neglect stems, in part, from the assumption that these activities derive their meaning primarily from risk. The authors' long-term research reveals that the interplay between adventure athletes and the natural world is, in fact, crucial…
Hammar, J
2014-07-01
The Arctic charr Salvelinus alpinus species complex has been shown to be exceptionally vulnerable to rapid abiotic and biotic changes. Salvelinus alpinus, however, inhabit environmental extremes ranging from lakes and rivers in the High Arctic to deep multi-fish species lakes far outside the polar region. Long-term responses to post-glacial environmental variations and successively increased interspecific interactions reveal an essential degree of natural ecological resilience and phenotypic flexibility. Case studies in Scandinavia and Newfoundland illustrate the alternate trophic roles of S. alpinus, and its flexible niche use and life-history changes in order to regain or maintain body size in gradients of lakes with increasing fish species diversity. While allopatric in northern low-productive upland lakes, landlocked populations are commonly structured by cannibalism. In sympatry with other fish species, S. alpinus mostly serve as prey, with their decreasing growth and body size reflecting the successive diet shift from littoral macro-benthos to zooplankton and profundal microbenthos as interspecific competition for food and habitat intensifies. Interactions with natural and introduced superior zooplankton feeders and ultimate predators finally become detrimental. Consequently, the niche of S. alpinus is increasingly compressed in lakes along latitudinal and altitudinal gradients, although certain natural key conditions offer S. alpinus temporary asylum in the inescapable process towards local and regional extinction. The water temperature drop during winter allows S. alpinus to temporarily resume the richer littoral dietary and spatial niche use in low diversity lakes. In southern lowland and coastal lakes with more complex fish communities, access to key prey species such as profundal macro-crustaceans and smelt Osmerus spp. allow S. alpinus to regain its original niche space and characteristics as a large piscivore. In conclusion, S. alpinus along its evolutionary landscape demonstrates associated alterations of life-history characteristics, such as body size and longevity, and thus reproductive traits demonstrating similarities between northern cannibals and southern piscivores. Although including a high degree of natural resilience, obviously differing among S. alpinus populations along its range, differences seen in extreme marginal populations may have been adaptive and the product of an evolutionary response with optimized growth resulting from natural selection due to ultimate intra or inter-specific competition and predation. © 2014 The Fisheries Society of the British Isles.
Rich, Paul M; Breshears, David D; White, Amanda B
2008-02-01
Ecosystem responses to key climate drivers are reflected in phenological dynamics such as the timing and degree of "green-up" that integrate responses over spatial scales from individual plants to ecosystems. This integration is clearest in ecosystems dominated by a single species or life form, such as seasonally dynamic grasslands or more temporally constant evergreen forests. Yet many ecosystems have substantial contribution of cover from both herbaceous and woody evergreen plants. Responses of mixed woody-herbaceous ecosystems to climate are of increasing concern due to their extensive nature, the potential for such systems to yield more complex responses than those dominated by a single life form, and projections that extreme climate and weather events will increase in frequency and intensity with global warming. We present responses of a mixed woody-herbaceous ecosystem type to an extreme event: regional-scale piñon pine mortality following an extended drought and the subsequent herbaceous green-up following the first wet period after the drought. This example highlights how reductions in greenness of the slower, more stable evergreen woody component can rapidly be offset by increases associated with resources made available to the relatively more responsive herbaceous component. We hypothesize that such two-phase phenological responses to extreme events are characteristic of many mixed woody-herbaceous ecosystems.
Detection of timescales in evolving complex systems
Darst, Richard K.; Granell, Clara; Arenas, Alex; Gómez, Sergio; Saramäki, Jari; Fortunato, Santo
2016-01-01
Most complex systems are intrinsically dynamic in nature. The evolution of a dynamic complex system is typically represented as a sequence of snapshots, where each snapshot describes the configuration of the system at a particular instant of time. This is often done by using constant intervals but a better approach would be to define dynamic intervals that match the evolution of the system’s configuration. To this end, we propose a method that aims at detecting evolutionary changes in the configuration of a complex system, and generates intervals accordingly. We show that evolutionary timescales can be identified by looking for peaks in the similarity between the sets of events on consecutive time intervals of data. Tests on simple toy models reveal that the technique is able to detect evolutionary timescales of time-varying data both when the evolution is smooth as well as when it changes sharply. This is further corroborated by analyses of several real datasets. Our method is scalable to extremely large datasets and is computationally efficient. This allows a quick, parameter-free detection of multiple timescales in the evolution of a complex system. PMID:28004820
Materials Manufactured from 3D Printed Synthetic Biology Arrays
NASA Technical Reports Server (NTRS)
Gentry, Diana; Micks, Ashley
2013-01-01
Many complex, biologically-derived materials have extremely useful properties (think wood or silk), but are unsuitable for space-related applications due to production, manufacturing, or processing limitations. Large-scale ecosystem-based production, such as raising and harvesting trees for wood, is impractical in a self-contained habitat such as a space station or potential Mars colony. Manufacturing requirements, such as the specialized equipment needed to harvest and process cotton, add too much upmass for current launch technology. Cells in nature are already highly specialized for making complex biological materials on a micro scale. We envision combining these strengths with the recently emergent technologies of synthetic biology and 3D printing to create 3D-structured arrays of cells that are bioengineered to secrete different materials in a specified three-dimensional pattern.
Crew collaboration in space: a naturalistic decision-making perspective
NASA Technical Reports Server (NTRS)
Orasanu, Judith
2005-01-01
Successful long-duration space missions will depend on the ability of crewmembers to respond promptly and effectively to unanticipated problems that arise under highly stressful conditions. Naturalistic decision making (NDM) exploits the knowledge and experience of decision makers in meaningful work domains, especially complex sociotechnical systems, including aviation and space. Decision making in these ambiguous, dynamic, high-risk environments is a complex task that involves defining the nature of the problem and crafting a response to achieve one's goals. Goal conflicts, time pressures, and uncertain outcomes may further complicate the process. This paper reviews theory and research pertaining to the NDM model and traces some of the implications for space crews and other groups that perform meaningful work in extreme environments. It concludes with specific recommendations for preparing exploration crews to use NDM effectively.
Keane, Carol A; Magee, Christopher A; Kelly, Peter J
2016-11-01
Traumatic childhood experiences predict many adverse outcomes in adulthood including Complex-PTSD. Understanding complex trauma within socially disadvantaged populations has important implications for policy development and intervention implementation. This paper examined the nature of complex trauma experienced by disadvantaged individuals using a latent class analysis (LCA) approach. Data were collected through the large-scale Journeys Home Study (N=1682), utilising a representative sample of individuals experiencing low housing stability. Data on adverse childhood experiences, adulthood interpersonal trauma and relevant covariates were collected through interviews at baseline (Wave 1). Latent class analysis (LCA) was conducted to identify distinct classes of childhood trauma history, which included physical assault, neglect, and sexual abuse. Multinomial logistic regression investigated childhood relevant factors associated with class membership such as biological relationship of primary carer at age 14 years and number of times in foster care. Of the total sample (N=1682), 99% reported traumatic adverse childhood experiences. The most common included witnessing of violence, threat/experience of physical abuse, and sexual assault. LCA identified six distinct childhood trauma history classes including high violence and multiple traumas. Significant covariate differences between classes included: gender, biological relationship of primary carer at age 14 years, and time in foster care. Identification of six distinct childhood trauma history profiles suggests there might be unique treatment implications for individuals living in extreme social disadvantage. Further research is required to examine the relationship between these classes of experience, consequent impact on adulthood engagement, and future transitions though homelessness. Copyright © 2016 Elsevier Ltd. All rights reserved.
Structured Light-Matter Interactions Enabled By Novel Photonic Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Litchinitser, Natalia; Feng, Liang
The synergy of complex materials and complex light is expected to add a new dimension to the science of light and its applications [1]. The goal of this program is to investigate novel phenomena emerging at the interface of these two branches of modern optics. While metamaterials research was largely focused on relatively “simple” linearly or circularly polarized light propagation in “complex” nanostructured, carefully designed materials with properties not found in nature, many singular optics studies addressed “complex” structured light transmission in “simple” homogeneous, isotropic, nondispersive transparent media, where both spin and orbital angular momentum are independently conserved. However, ifmore » both light and medium are complex so that structured light interacts with a metamaterial whose optical materials properties can be designed at will, the spin or angular momentum can change, which leads to spin-orbit interaction and many novel optical phenomena that will be studied in the proposed project. Indeed, metamaterials enable unprecedented control over light propagation, opening new avenues for using spin and quantum optical phenomena, and design flexibility facilitating new linear and nonlinear optical properties and functionalities, including negative index of refraction, magnetism at optical frequencies, giant optical activity, subwavelength imaging, cloaking, dispersion engineering, and unique phase-matching conditions for nonlinear optical interactions. In this research program we focused on structured light-matter interactions in complex media with three particularly remarkable properties that were enabled only with the emergence of metamaterials: extreme anisotropy, extreme material parameters, and magneto-electric coupling–bi-anisotropy and chirality.« less
Computational data sciences for assessment and prediction of climate extremes
NASA Astrophysics Data System (ADS)
Ganguly, A. R.
2011-12-01
Climate extremes may be defined inclusively as severe weather events or large shifts in global or regional weather patterns which may be caused or exacerbated by natural climate variability or climate change. This area of research arguably represents one of the largest knowledge-gaps in climate science which is relevant for informing resource managers and policy makers. While physics-based climate models are essential in view of non-stationary and nonlinear dynamical processes, their current pace of uncertainty reduction may not be adequate for urgent stakeholder needs. The structure of the models may in some cases preclude reduction of uncertainty for critical processes at scales or for the extremes of interest. On the other hand, methods based on complex networks, extreme value statistics, machine learning, and space-time data mining, have demonstrated significant promise to improve scientific understanding and generate enhanced predictions. When combined with conceptual process understanding at multiple spatiotemporal scales and designed to handle massive data, interdisciplinary data science methods and algorithms may complement or supplement physics-based models. Specific examples from the prior literature and our ongoing work suggests how data-guided improvements may be possible, for example, in the context of ocean meteorology, climate oscillators, teleconnections, and atmospheric process understanding, which in turn can improve projections of regional climate, precipitation extremes and tropical cyclones in an useful and interpretable fashion. A community-wide effort is motivated to develop and adapt computational data science tools for translating climate model simulations to information relevant for adaptation and policy, as well as for improving our scientific understanding of climate extremes from both observed and model-simulated data.
Climate change and the effects of temperature extremes on Australian flying-foxes.
Welbergen, Justin A; Klose, Stefan M; Markus, Nicola; Eby, Peggy
2008-02-22
Little is known about the effects of temperature extremes on natural systems. This is of increasing concern now that climate models predict dramatic increases in the intensity, duration and frequency of such extremes. Here we examine the effects of temperature extremes on behaviour and demography of vulnerable wild flying-foxes (Pteropus spp.). On 12 January 2002 in New South Wales, Australia, temperatures exceeding 42 degrees C killed over 3500 individuals in nine mixed-species colonies. In one colony, we recorded a predictable sequence of thermoregulatory behaviours (wing-fanning, shade-seeking, panting and saliva-spreading, respectively) and witnessed how 5-6% of bats died from hyperthermia. Mortality was greater among the tropical black flying-fox, Pteropus alecto (10-13%) than the temperate grey-headed flying-fox, Pteropus poliocephalus (less than 1%), and young and adult females were more affected than adult males (young, 23-49%; females, 10-15%; males, less than 3%). Since 1994, over 30000 flying-foxes (including at least 24500 P. poliocephalus) were killed during 19 similar events. Although P. alecto was relatively less affected, it is currently expanding its range into the more variable temperature envelope of P. poliocephalus, which increases the likelihood of die-offs occurring in this species. Temperature extremes are important additional threats to Australian flying-foxes and the ecosystem services they provide, and we recommend close monitoring of colonies where temperatures exceeding 42.0 degrees C are predicted. The effects of temperature extremes on flying-foxes highlight the complex implications of climate change for behaviour, demography and species survival.
Strategies for target identification of antimicrobial natural products.
Farha, Maya A; Brown, Eric D
2016-05-04
Covering: 2000 to 2015Despite a pervasive decline in natural product research at many pharmaceutical companies over the last two decades, natural products have undeniably been a prolific and unsurpassed source for new lead antibacterial compounds. Due to their inherent complexity, natural extracts face several hurdles in high-throughout discovery programs, including target identification. Target identification and validation is a crucial process for advancing hits through the discovery pipeline, but has remained a major bottleneck. In the case of natural products, extremely low yields and limited compound supply further impede the process. Here, we review the wealth of target identification strategies that have been proposed and implemented for the characterization of novel antibacterials. Traditionally, these have included genomic and biochemical-based approaches, which, in recent years, have been improved with modern-day technology and better honed for natural product discovery. Further, we discuss the more recent innovative approaches for uncovering the target of new antibacterial natural products, which have resulted from modern advances in chemical biology tools. Finally, we present unique screening platforms implemented to streamline the process of target identification. The different innovative methods to respond to the challenge of characterizing the mode of action for antibacterial natural products have cumulatively built useful frameworks that may advocate a renovated interest in natural product drug discovery programs.
Birke, A; Aluja, M
2017-12-04
The preference-performance hypothesis (PPH) has widely been used to explain host exploitation patterns by phytophagous insects. However, this hypothesis often fails in the case of polyphagous species when compared with specialists. One explanation, validated by the information-processing hypothesis (IPH), considers that polyphagous insects are unable to process a large array of cues, which hinders females from distinguishing between high- and low- quality hosts. Here we analyzed Anastrepha ludens female host preference and offspring performance, and tested if neuronal limitations could possibly play a role in the incapacity of the polyphagous A. ludens to make 'accurate decisions' and therefore partially explain mismatches related to PPH. Results testing the PPH by correlating female preference to six naturally occurring hosts and its offspring outcomes show that A. ludens females oviposited greater proportions of eggs on fruit according to hierarchical preferences. Infestation level was low in white sapote, the preferential and seemingly putative ancestral host, likely due to sapote defence mechanisms. Pupal weight and adult size were lower when A. ludens larvae developed in guava (conditional host that was artificially infested) and peach, a lower ranked host compared with 'Marsh' grapefruit, white sapote, and 'Manila' mango (three preferred hosts). Larvae reared in 'Manzano' pepper, a low-ranked host, performed better than in peach and guava. Results testing the IPH, show that polyphagous A. ludens females were less accurate when discerning between a non natural host (guava) when compared with a preferred, natural host (grapefruit): error rate was significantly higher, number of oviposited fruit in a 6-h period was extremely low, time searching and ovipositing took longer, and pupae recovery was extremely low. Our findings indicate that both hypotheses tested are complementary and help better understand host use by A. ludens. However, we also discuss the complexity of polyphagy considering other factors such as plant resistance/defence mechanisms which are not fully addressed in both theories tested.
Extreme Value Analysis of hydro meteorological extremes in the ClimEx Large-Ensemble
NASA Astrophysics Data System (ADS)
Wood, R. R.; Martel, J. L.; Willkofer, F.; von Trentini, F.; Schmid, F. J.; Leduc, M.; Frigon, A.; Ludwig, R.
2017-12-01
Many studies show an increase in the magnitude and frequency of hydrological extreme events in the course of climate change. However the contribution of natural variability to the magnitude and frequency of hydrological extreme events is not yet settled. A reliable estimate of extreme events is from great interest for water management and public safety. In the course of the ClimEx Project (www.climex-project.org) a new single-model large-ensemble was created by dynamically downscaling the CanESM2 large-ensemble with the Canadian Regional Climate Model version 5 (CRCM5) for an European Domain and a Northeastern North-American domain. By utilizing the ClimEx 50-Member Large-Ensemble (CRCM5 driven by CanESM2 Large-Ensemble) a thorough analysis of natural variability in extreme events is possible. Are the current extreme value statistical methods able to account for natural variability? How large is the natural variability for e.g. a 1/100 year return period derived from a 50-Member Large-Ensemble for Europe and Northeastern North-America? These questions should be answered by applying various generalized extreme value distributions (GEV) to the ClimEx Large-Ensemble. Hereby various return levels (5-, 10-, 20-, 30-, 60- and 100-years) based on various lengths of time series (20-, 30-, 50-, 100- and 1500-years) should be analyzed for the maximum one day precipitation (RX1d), the maximum three hourly precipitation (RX3h) and the streamflow for selected catchments in Europe. The long time series of the ClimEx Ensemble (7500 years) allows us to give a first reliable estimate of the magnitude and frequency of certain extreme events.
High Energy Astrophysics Mission
NASA Technical Reports Server (NTRS)
White, Nicholas E.; Ormes, Jonathan F. (Technical Monitor)
2000-01-01
The nature of gravity and its relationship to the other three forces and to quantum theory is one of the major challenges facing us as we begin the new century. In order to make progress we must challenge the current theories by observing the effects of gravity under the most extreme conditions possible. Black holes represent one extreme, where the laws of physics as we understand them break down. The Universe as whole is another extreme, where its evolution and fate is dominated by the gravitational influence of dark matter and the nature of the Cosmological constant. The early universe represents a third extreme, where it is thought that gravity may somehow be unified with the other forces. NASA's "Cosmic Journeys" program is part of a NASA/NSF/DoE tri-agency initiative designed to observe the extremes of gravity throughout the universe. This program will probe the nature of black holes, ultimately obtaining a direct image of the event horizon. It will investigate the large scale structure of the Universe to constrain the location and nature of dark matter and the nature of the cosmological constant. Finally it will search for and study the highest energy processes, that approach those found in the early universe. I will outline the High Energy Astrophysics part of this program.
Poverty, Disease, and the Ecology of Complex Systems
Pluciński, Mateusz M.; Murray, Megan B.; Farmer, Paul E.; Barrett, Christopher B.; Keenan, Donald C.
2014-01-01
Understanding why some human populations remain persistently poor remains a significant challenge for both the social and natural sciences. The extremely poor are generally reliant on their immediate natural resource base for subsistence and suffer high rates of mortality due to parasitic and infectious diseases. Economists have developed a range of models to explain persistent poverty, often characterized as poverty traps, but these rarely account for complex biophysical processes. In this Essay, we argue that by coupling insights from ecology and economics, we can begin to model and understand the complex dynamics that underlie the generation and maintenance of poverty traps, which can then be used to inform analyses and possible intervention policies. To illustrate the utility of this approach, we present a simple coupled model of infectious diseases and economic growth, where poverty traps emerge from nonlinear relationships determined by the number of pathogens in the system. These nonlinearities are comparable to those often incorporated into poverty trap models in the economics literature, but, importantly, here the mechanism is anchored in core ecological principles. Coupled models of this sort could be usefully developed in many economically important biophysical systems—such as agriculture, fisheries, nutrition, and land use change—to serve as foundations for deeper explorations of how fundamental ecological processes influence structural poverty and economic development. PMID:24690902
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuhki, Naoya; O'Brien, S.J.
1990-01-01
The major histocompatibility complex (MHC) is a multigene complex of tightly linked homologous genes that encode cell surface antigens that play a key role in immune regulation and response to foreign antigens. In most species, MHC gene products display extreme antigenic polymorphism, and their variability has been interpreted to reflect an adaptive strategy for accommodating rapidly evolving infectious agents that periodically afflict natural populations. Determination of the extent of MHC variation has been limited to populations in which skin grafting is feasible or for which serological reagents have been developed. The authors present here a quantitative analysis of restriction fragmentmore » length polymorphism of MHC class I genes in several mammalian species (cats, rodents, humans) known to have very different levels of genetic diversity based on functional MHC assays and on allozyme surveys. When homologous class I probes were employed, a notable concordance was observed between the extent of MHC restriction fragment variation and functional MHC variation detected by skin grafts or genome-wide diversity estimated by allozyme screens. These results confirm the genetically depauperate character of the African cheetah, Acinonyx jubatus, and the Asiatic lion, Panthera leo persica; further, they support the use of class I MHC molecular reagents in estimating the extent and character of genetic diversity in natural populations.« less
Yuhki, N; O'Brien, S J
1990-01-01
The major histocompatibility complex (MHC) is a multigene complex of tightly linked homologous genes that encode cell surface antigens that play a key role in immune regulation and response to foreign antigens. In most species, MHC gene products display extreme antigenic polymorphism, and their variability has been interpreted to reflect an adaptive strategy for accommodating rapidly evolving infectious agents that periodically afflict natural populations. Determination of the extent of MHC variation has been limited to populations in which skin grafting is feasible or for which serological reagents have been developed. We present here a quantitative analysis of restriction fragment length polymorphism of MHC class I genes in several mammalian species (cats, rodents, humans) known to have very different levels of genetic diversity based on functional MHC assays and on allozyme surveys. When homologous class I probes were employed, a notable concordance was observed between the extent of MHC restriction fragment variation and functional MHC variation detected by skin grafts or genome-wide diversity estimated by allozyme screens. These results confirm the genetically depauperate character of the African cheetah, Acinonyx jubatus, and the Asiatic lion, Panthera leo persica; further, they support the use of class I MHC molecular reagents in estimating the extent and character of genetic diversity in natural populations. Images PMID:1967831
Poverty, disease, and the ecology of complex systems.
Ngonghala, Calistus N; Pluciński, Mateusz M; Murray, Megan B; Farmer, Paul E; Barrett, Christopher B; Keenan, Donald C; Bonds, Matthew H
2014-04-01
Understanding why some human populations remain persistently poor remains a significant challenge for both the social and natural sciences. The extremely poor are generally reliant on their immediate natural resource base for subsistence and suffer high rates of mortality due to parasitic and infectious diseases. Economists have developed a range of models to explain persistent poverty, often characterized as poverty traps, but these rarely account for complex biophysical processes. In this Essay, we argue that by coupling insights from ecology and economics, we can begin to model and understand the complex dynamics that underlie the generation and maintenance of poverty traps, which can then be used to inform analyses and possible intervention policies. To illustrate the utility of this approach, we present a simple coupled model of infectious diseases and economic growth, where poverty traps emerge from nonlinear relationships determined by the number of pathogens in the system. These nonlinearities are comparable to those often incorporated into poverty trap models in the economics literature, but, importantly, here the mechanism is anchored in core ecological principles. Coupled models of this sort could be usefully developed in many economically important biophysical systems--such as agriculture, fisheries, nutrition, and land use change--to serve as foundations for deeper explorations of how fundamental ecological processes influence structural poverty and economic development.
Turbulent pipe flow at extreme Reynolds numbers.
Hultmark, M; Vallikivi, M; Bailey, S C C; Smits, A J
2012-03-02
Both the inherent intractability and complex beauty of turbulence reside in its large range of physical and temporal scales. This range of scales is captured by the Reynolds number, which in nature and in many engineering applications can be as large as 10(5)-10(6). Here, we report turbulence measurements over an unprecedented range of Reynolds numbers using a unique combination of a high-pressure air facility and a new nanoscale anemometry probe. The results reveal previously unknown universal scaling behavior for the turbulent velocity fluctuations, which is remarkably similar to the well-known scaling behavior of the mean velocity distribution.
Intelligibility in microbial complex systems: Wittgenstein and the score of life.
Baquero, Fernando; Moya, Andrés
2012-01-01
Knowledge in microbiology is reaching an extreme level of diversification and complexity, which paradoxically results in a strong reduction in the intelligibility of microbial life. In our days, the "score of life" metaphor is more accurate to express the complexity of living systems than the classic "book of life." Music and life can be represented at lower hierarchical levels by music scores and genomic sequences, and such representations have a generational influence in the reproduction of music and life. If music can be considered as a representation of life, such representation remains as unthinkable as life itself. The analysis of scores and genomic sequences might provide mechanistic, phylogenetic, and evolutionary insights into music and life, but not about their real dynamics and nature, which is still maintained unthinkable, as was proposed by Wittgenstein. As complex systems, life or music is composed by thinkable and only showable parts, and a strategy of half-thinking, half-seeing is needed to expand knowledge. Complex models for complex systems, based on experiences on trans-hierarchical integrations, should be developed in order to provide a mixture of legibility and imageability of biological processes, which should lead to higher levels of intelligibility of microbial life.
Intelligibility in microbial complex systems: Wittgenstein and the score of life
Baquero, Fernando; Moya, Andrés
2012-01-01
Knowledge in microbiology is reaching an extreme level of diversification and complexity, which paradoxically results in a strong reduction in the intelligibility of microbial life. In our days, the “score of life” metaphor is more accurate to express the complexity of living systems than the classic “book of life.” Music and life can be represented at lower hierarchical levels by music scores and genomic sequences, and such representations have a generational influence in the reproduction of music and life. If music can be considered as a representation of life, such representation remains as unthinkable as life itself. The analysis of scores and genomic sequences might provide mechanistic, phylogenetic, and evolutionary insights into music and life, but not about their real dynamics and nature, which is still maintained unthinkable, as was proposed by Wittgenstein. As complex systems, life or music is composed by thinkable and only showable parts, and a strategy of half-thinking, half-seeing is needed to expand knowledge. Complex models for complex systems, based on experiences on trans-hierarchical integrations, should be developed in order to provide a mixture of legibility and imageability of biological processes, which should lead to higher levels of intelligibility of microbial life. PMID:22919679
Time-varying Concurrent Risk of Extreme Droughts and Heatwaves in California
NASA Astrophysics Data System (ADS)
Sarhadi, A.; Diffenbaugh, N. S.; Ausin, M. C.
2016-12-01
Anthropogenic global warming has changed the nature and the risk of extreme climate phenomena such as droughts and heatwaves. The concurrent of these nature-changing climatic extremes may result in intensifying undesirable consequences in terms of human health and destructive effects in water resources. The present study assesses the risk of concurrent extreme droughts and heatwaves under dynamic nonstationary conditions arising from climate change in California. For doing so, a generalized fully Bayesian time-varying multivariate risk framework is proposed evolving through time under dynamic human-induced environment. In this methodology, an extreme, Bayesian, dynamic copula (Gumbel) is developed to model the time-varying dependence structure between the two different climate extremes. The time-varying extreme marginals are previously modeled using a Generalized Extreme Value (GEV) distribution. Bayesian Markov Chain Monte Carlo (MCMC) inference is integrated to estimate parameters of the nonstationary marginals and copula using a Gibbs sampling method. Modelled marginals and copula are then used to develop a fully Bayesian, time-varying joint return period concept for the estimation of concurrent risk. Here we argue that climate change has increased the chance of concurrent droughts and heatwaves over decades in California. It is also demonstrated that a time-varying multivariate perspective should be incorporated to assess realistic concurrent risk of the extremes for water resources planning and management in a changing climate in this area. The proposed generalized methodology can be applied for other stochastic nature-changing compound climate extremes that are under the influence of climate change.
NASA Astrophysics Data System (ADS)
Ludwig, Ralf; Baese, Frank; Braun, Marco; Brietzke, Gilbert; Brissette, Francois; Frigon, Anne; Giguère, Michel; Komischke, Holger; Kranzlmueller, Dieter; Leduc, Martin; Martel, Jean-Luc; Ricard, Simon; Schmid, Josef; von Trentini, Fabian; Turcotte, Richard; Weismueller, Jens; Willkofer, Florian; Wood, Raul
2017-04-01
The recent accumulation of extreme hydrological events in Bavaria and Québec has stimulated scientific and also societal interest. In addition to the challenges of an improved prediction of such situations and the implications for the associated risk management, there is, as yet, no confirmed knowledge whether and how climate change contributes to the magnitude and frequency of hydrological extreme events and how regional water management could adapt to the corresponding risks. The ClimEx project (2015-2019) investigates the effects of climate change on the meteorological and hydrological extreme events and their implications for water management in Bavaria and Québec. High Performance Computing is employed to enable the complex simulations in a hydro-climatological model processing chain, resulting in a unique high-resolution and transient (1950-2100) dataset of climatological and meteorological forcing and hydrological response: (1) The climate module has developed a large ensemble of high resolution data (12km) of the CRCM5 RCM for Central Europe and North-Eastern North America, downscaled from 50 members of the CanESM2 GCM. The dataset is complemented by all available data from the Euro-CORDEX project to account for the assessment of both natural climate variability and climate change. The large ensemble with several thousand model years provides the potential to catch rare extreme events and thus improves the process understanding of extreme events with return periods of 1000+ years. (2) The hydrology module comprises process-based and spatially explicit model setups (e.g. WaSiM) for all major catchments in Bavaria and Southern Québec in high temporal (3h) and spatial (500m) resolution. The simulations form the basis for in depth analysis of hydrological extreme events based on the inputs from the large climate model dataset. The specific data situation enables to establish a new method for 'virtual perfect prediction', which assesses climate change impacts on flood risk and water resources management by identifying patterns in the data which reveal preferential triggers of hydrological extreme events. The presentation will highlight first results from the analysis of the large scale ClimEx model ensemble, showing the current and future ratio of natural variability and climate change impacts on meteorological extreme events. Selected data from the ensemble is used to drive a hydrological model experiment to illustrate the capacity to better determine the recurrence periods of hydrological extreme events under conditions of climate change. [The authors acknowledge funding for the project from the Bavarian State Ministry for the Environment and Consumer Protection].
Educating against Extremism: Towards a Critical Politicisation of Young People
ERIC Educational Resources Information Center
Davies, Lynn
2009-01-01
This paper is based on a recently published book, "Educating Against Extremism" (Davies, "Educating Against Extremism," 2008), which explores the potential role of schools in averting the more negative and violent forms of extremism in a country. It examines the nature of extremism; identity formation and radicalisation; religious belief, faith…
NaturCare from AlphaMed: the non-scented ostomy deodorant.
Rudoni, C; Sica, J
NaturCare is an ostomy deodorant manufactured and distributed by AlphaMed. Currently, it is the only non-scented deodorant available on prescription. Odour can be extremely stressful to both the person with a stoma (ostomist) and those involved in their care. Since NaturCare has no artificial scents added to its formula, it can be extremely helpful to those who find the odour embarrassing.
NASA Astrophysics Data System (ADS)
Gavrishchaka, V. V.; Ganguli, S. B.
2001-12-01
Reliable forecasting of rare events in a complex dynamical system is a challenging problem that is important for many practical applications. Due to the nature of rare events, data set available for construction of the statistical and/or machine learning model is often very limited and incomplete. Therefore many widely used approaches including such robust algorithms as neural networks can easily become inadequate for rare events prediction. Moreover in many practical cases models with high-dimensional inputs are required. This limits applications of the existing rare event modeling techniques (e.g., extreme value theory) that focus on univariate cases. These approaches are not easily extended to multivariate cases. Support vector machine (SVM) is a machine learning system that can provide an optimal generalization using very limited and incomplete training data sets and can efficiently handle high-dimensional data. These features may allow to use SVM to model rare events in some applications. We have applied SVM-based system to the problem of large-amplitude substorm prediction and extreme event forecasting in stock and currency exchange markets. Encouraging preliminary results will be presented and other possible applications of the system will be discussed.
One-step assembly of coordination complexes for versatile film and particle engineering.
Ejima, Hirotaka; Richardson, Joseph J; Liang, Kang; Best, James P; van Koeverden, Martin P; Such, Georgina K; Cui, Jiwei; Caruso, Frank
2013-07-12
The development of facile and versatile strategies for thin-film and particle engineering is of immense scientific interest. However, few methods can conformally coat substrates of different composition, size, shape, and structure. We report the one-step coating of various interfaces using coordination complexes of natural polyphenols and Fe(III) ions. Film formation is initiated by the adsorption of the polyphenol and directed by pH-dependent, multivalent coordination bonding. Aqueous deposition is performed on a range of planar as well as inorganic, organic, and biological particle templates, demonstrating an extremely rapid technique for producing structurally diverse, thin films and capsules that can disassemble. The ease, low cost, and scalability of the assembly process, combined with pH responsiveness and negligible cytotoxicity, makes these films potential candidates for biomedical and environmental applications.
Slipicevic, Osman; Masic, Izet
2012-01-01
Extremely complex health care organizations, by their structure and organization, operate in a constantly changing business environment, and such situation implies and requires complex and demanding health management. Therefore, in order to manage health organizations in a competent manner, health managers must possess various managerial skills and be familiar with problems in health care. Research, identification, analysis, and assessment of health management education and training needs are basic preconditions for the development and implementation of adequate programs to meet those needs. Along with other specific activities, this research helped to determine the nature, profile, and level of top-priority needs for education. The need for knowledge of certain areas in health management, as well as the need for mastering concrete managerial competencies has been recognized as top-priorities requiring additional improvement and upgrading. PMID:23922519
Turk, Elisabeth E
2010-06-01
Hypothermia refers to a situation where there is a drop in body core temperature below 35 degrees C. It is a potentially fatal condition. In forensic medicine and pathology, cases of hypothermia often pose a special challenge to experts because of their complex nature, and the often absent or nonspecific nature of morphological findings. The scene of the incident may raise suspicions of a crime initially, due to phenomena such as terminal burrowing behavior and paradoxical undressing. An element of hypothermia often contributes to the cause of death in drug- and alcohol-related fatalities, in the homeless, in immersion deaths, in accidents and in cases of abuse or neglect, making the condition extremely relevant to forensic medical specialists. The aim of this review is to give an overview of the pathophysiological aspects of hypothermia and to illustrate different aspects relevant to forensic medical casework.
Bespoke physics for living technology.
Ackley, David H
2013-01-01
In the physics of the natural world, basic tasks of life, such as homeostasis and reproduction, are extremely complex operations, requiring the coordination of billions of atoms even in simple cases. By contrast, artificial living organisms can be implemented in computers using relatively few bits, and copying a data structure is trivial. Of course, the physical overheads of the computers themselves are huge, but since their programmability allows digital "laws of physics" to be tailored like a custom suit, deploying living technology atop an engineered computational substrate might be as or more effective than building directly on the natural laws of physics, for a substantial range of desirable purposes. This article suggests basic criteria and metrics for bespoke physics computing architectures, describes one such architecture, and offers data and illustrations of custom living technology competing to reproduce while collaborating on an externally useful computation.
Apanasenko, Irina E; Selyutina, Olga Yu; Polyakov, Nikolay E; Suntsova, Lyubov P; Meteleva, Elizaveta S; Dushkin, Alexander V; Vachali, Preejith; Bernstein, Paul S
2015-04-15
Xanthophyll carotenoids zeaxanthin and lutein play a special role in the prevention and treatment of visual diseases. These carotenoids are not produced by the human body and must be consumed in the diet. On the other hand, extremely low water solubility of these carotenoids and their instability restrict their practical application as components of food or medicinal formulations. Preparation of supramolecular complexes of zeaxanthin and lutein with glycyrrhizic acid, its disodium salt and the natural polysaccharide arabinogalactan allows one to minimize the aforementioned disadvantages when carotenoids are used in food processing as well as for production of therapeutic formulations with enhanced solubility and stability. In the present study, the formation of supramolecular complexes was investigated by NMR relaxation, surface plasmon resonance (SPR) and optical absorption techniques. The complexes increase carotenoid solubility more than 1000-fold. The kinetics of carotenoid decay in reactions with ozone molecules, hydroperoxyl radicals and metal ions were measured in water and organic solutions, and significant increases in oxidation stability of lutein and zeaxanthin in arabinogalactan and glycyrrhizin complexes were detected. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zotos, Euaggelos E.
2018-06-01
The circular Sitnikov problem, where the two primary bodies are prolate or oblate spheroids, is numerically investigated. In particular, the basins of convergence on the complex plane are revealed by using a large collection of numerical methods of several order. We consider four cases, regarding the value of the oblateness coefficient which determines the nature of the roots (attractors) of the system. For all cases we use the iterative schemes for performing a thorough and systematic classification of the nodes on the complex plane. The distribution of the iterations as well as the probability and their correlations with the corresponding basins of convergence are also discussed. Our numerical computations indicate that most of the iterative schemes provide relatively similar convergence structures on the complex plane. However, there are some numerical methods for which the corresponding basins of attraction are extremely complicated with highly fractal basin boundaries. Moreover, it is proved that the efficiency strongly varies between the numerical methods.
In vivo insertion pool sequencing identifies virulence factors in a complex fungal–host interaction
Uhse, Simon; Pflug, Florian G.; Stirnberg, Alexandra; Ehrlinger, Klaus; von Haeseler, Arndt
2018-01-01
Large-scale insertional mutagenesis screens can be powerful genome-wide tools if they are streamlined with efficient downstream analysis, which is a serious bottleneck in complex biological systems. A major impediment to the success of next-generation sequencing (NGS)-based screens for virulence factors is that the genetic material of pathogens is often underrepresented within the eukaryotic host, making detection extremely challenging. We therefore established insertion Pool-Sequencing (iPool-Seq) on maize infected with the biotrophic fungus U. maydis. iPool-Seq features tagmentation, unique molecular barcodes, and affinity purification of pathogen insertion mutant DNA from in vivo-infected tissues. In a proof of concept using iPool-Seq, we identified 28 virulence factors, including 23 that were previously uncharacterized, from an initial pool of 195 candidate effector mutants. Because of its sensitivity and quantitative nature, iPool-Seq can be applied to any insertional mutagenesis library and is especially suitable for genetically complex setups like pooled infections of eukaryotic hosts. PMID:29684023
How sexual selection can drive the evolution of costly sperm ornamentation
NASA Astrophysics Data System (ADS)
Lüpold, Stefan; Manier, Mollie K.; Puniamoorthy, Nalini; Schoff, Christopher; Starmer, William T.; Luepold, Shannon H. Buckley; Belote, John M.; Pitnick, Scott
2016-05-01
Post-copulatory sexual selection (PSS), fuelled by female promiscuity, is credited with the rapid evolution of sperm quality traits across diverse taxa. Yet, our understanding of the adaptive significance of sperm ornaments and the cryptic female preferences driving their evolution is extremely limited. Here we review the evolutionary allometry of exaggerated sexual traits (for example, antlers, horns, tail feathers, mandibles and dewlaps), show that the giant sperm of some Drosophila species are possibly the most extreme ornaments in all of nature and demonstrate how their existence challenges theories explaining the intensity of sexual selection, mating-system evolution and the fundamental nature of sex differences. We also combine quantitative genetic analyses of interacting sex-specific traits in D. melanogaster with comparative analyses of the condition dependence of male and female reproductive potential across species with varying ornament size to reveal complex dynamics that may underlie sperm-length evolution. Our results suggest that producing few gigantic sperm evolved by (1) Fisherian runaway selection mediated by genetic correlations between sperm length, the female preference for long sperm and female mating frequency, and (2) longer sperm increasing the indirect benefits to females. Our results also suggest that the developmental integration of sperm quality and quantity renders post-copulatory sexual selection on ejaculates unlikely to treat male-male competition and female choice as discrete processes.
Natural Hazards characterisation in industrial practice
NASA Astrophysics Data System (ADS)
Bernardara, Pietro
2017-04-01
The definition of rare hydroclimatic extremes (up to 10-4 annual probability of occurrence) is of the utmost importance for the design of high value industrial infrastructures, such as grids, power plants, offshore platforms. The underestimation as well as the overestimation of the risk may lead to huge costs (ex. mid-life expensive works or overdesign) which may even prevent the project to happen. Nevertheless, the uncertainty associated to the extrapolation towards the rare frequencies are huge and manifold. They are mainly due to the scarcity of observations, the lack of quality on the extreme value records and on the arbitrary choice of the models used for extrapolations. This often put the design engineers in uncomfortable situations when they must choose the design values to use. Providentially, the recent progresses in the earth observation techniques, information technology, historical data collection and weather and ocean modelling are making huge datasets available. A careful use of big datasets of observations and modelled data are leading towards a better understanding of the physics of the underlying phenomena, the complex interactions between them and thus of the extreme events frequency extrapolations. This will move the engineering practice from the single site, small sample, application of statistical analysis to a more spatially coherent, physically driven extrapolation of extreme values. Few examples, from the EDF industrial practice are given to illustrate these progresses and their potential impact on the design approaches.
OPTIMIZING THROUGH CO-EVOLUTIONARY AVALANCHES
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. BOETTCHER; A. PERCUS
2000-08-01
We explore a new general-purpose heuristic for finding high-quality solutions to hard optimization problems. The method, called extremal optimization, is inspired by ''self-organized critically,'' a concept introduced to describe emergent complexity in many physical systems. In contrast to Genetic Algorithms which operate on an entire ''gene-pool'' of possible solutions, extremal optimization successively replaces extremely undesirable elements of a sub-optimal solution with new, random ones. Large fluctuations, called ''avalanches,'' ensue that efficiently explore many local optima. Drawing upon models used to simulate far-from-equilibrium dynamics, extremal optimization complements approximation methods inspired by equilibrium statistical physics, such as simulated annealing. With only onemore » adjustable parameter, its performance has proved competitive with more elaborate methods, especially near phase transitions. Those phase transitions are found in the parameter space of most optimization problems, and have recently been conjectured to be the origin of some of the hardest instances in computational complexity. We will demonstrate how extremal optimization can be implemented for a variety of combinatorial optimization problems. We believe that extremal optimization will be a useful tool in the investigation of phase transitions in combinatorial optimization problems, hence valuable in elucidating the origin of computational complexity.« less
Injuries from combat explosions in Iraq: injury type, location, and severity.
Eskridge, Susan L; Macera, Caroline A; Galarneau, Michael R; Holbrook, Troy L; Woodruff, Susan I; MacGregor, Andrew J; Morton, Deborah J; Shaffer, Richard A
2012-10-01
Explosions have caused a greater percentage of injuries in Iraq and Afghanistan than in any other large-scale conflict. Improvements in body armour and field medical care have improved survival and changed the injury profile of service personnel. This study's objective was to determine the nature, body region, and severity of injuries caused by an explosion episode in male service personnel. A descriptive analysis was conducted of 4623 combat explosion episodes in Iraq between March 2004 and December 2007. The Barell matrix was used to describe the nature and body regions of injuries due to a combat explosion. A total of 17,637 International Classification of Diseases, Ninth Revision (ICD-9) codes were assigned to the 4623 explosion episodes, with an average of 3.8 ICD-9 codes per episode. The most frequent single injury type was a mild traumatic brain injury (TBI; 10.8%). Other frequent injuries were open wounds in the lower extremity (8.8%) and open wounds of the face (8.2%), which includes tympanic membrane rupture. The extremities were the body regions most often injured (41.3%), followed by head and neck (37.4%) and torso (8.8%). The results of this study support previous observations of TBI as a pre-eminent injury of the wars in Iraq and Afghanistan, with mild TBI as the most common single injury in this large cohort of explosion episodes. The extremities had the highest frequency of injuries for any one body region. The majority of the explosion episodes resulted in more than one injury, and the variety of injuries across nearly every body region and injury type suggests a complex nature of explosion injuries. Understanding the constellation of injuries commonly caused by explosions will assist in the mitigation, treatment, and rehabilitation of the effects of these injuries. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Margaret E.; Mukhopadhyay, Aindrila; Keasling, Jay D.
In this paper, we report an engineered strain of Escherichia coli that catabolizes the carbonaceous component of the extremely toxic chemical warfare agent sarin. Enzymatic decomposition of sarin generates isopropanol waste that, with this engineered strain, is then transformed into acetyl-CoA by enzymatic conversion with a key reaction performed by the acetone carboxylase complex (ACX). We engineered the heterologous expression of the ACX complex from Xanthobacter autotrophicus PY2 to match the naturally occurring subunit stoichiometry and purified the recombinant complex from E. coli for biochemical analysis. Incorporating this ACX complex and enzymes from diverse organisms, we introduced an isopropanol degradationmore » pathway in E. coli, optimized induction conditions, and decoupled enzyme expression to probe pathway bottlenecks. Our engineered E. coli consumed 65% of isopropanol compared to no-cell controls and was able to grow on isopropanol as a sole carbon source. Finally, in the process, reconstitution of this large ACX complex (370 kDa) in a system naïve to its structural and mechanistic requirements allowed us to study this otherwise cryptic enzyme in more detail than would have been possible in the less genetically tractable native Xanthobacter system.« less
Extreme weather and climate events with ecological relevance: a review
Meehl, Gerald A.
2017-01-01
Robust evidence exists that certain extreme weather and climate events, especially daily temperature and precipitation extremes, have changed in regard to intensity and frequency over recent decades. These changes have been linked to human-induced climate change, while the degree to which climate change impacts an individual extreme climate event (ECE) is more difficult to quantify. Rapid progress in event attribution has recently been made through improved understanding of observed and simulated climate variability, methods for event attribution and advances in numerical modelling. Attribution for extreme temperature events is stronger compared with other event types, notably those related to the hydrological cycle. Recent advances in the understanding of ECEs, both in observations and their representation in state-of-the-art climate models, open new opportunities for assessing their effect on human and natural systems. Improved spatial resolution in global climate models and advances in statistical and dynamical downscaling now provide climatic information at appropriate spatial and temporal scales. Together with the continued development of Earth System Models that simulate biogeochemical cycles and interactions with the biosphere at increasing complexity, these make it possible to develop a mechanistic understanding of how ECEs affect biological processes, ecosystem functioning and adaptation capabilities. Limitations in the observational network, both for physical climate system parameters and even more so for long-term ecological monitoring, have hampered progress in understanding bio-physical interactions across a range of scales. New opportunities for assessing how ECEs modulate ecosystem structure and functioning arise from better scientific understanding of ECEs coupled with technological advances in observing systems and instrumentation. This article is part of the themed issue ‘Behavioural, ecological and evolutionary responses to extreme climatic events’. PMID:28483866
Extreme weather and climate events with ecological relevance: a review.
Ummenhofer, Caroline C; Meehl, Gerald A
2017-06-19
Robust evidence exists that certain extreme weather and climate events, especially daily temperature and precipitation extremes, have changed in regard to intensity and frequency over recent decades. These changes have been linked to human-induced climate change, while the degree to which climate change impacts an individual extreme climate event (ECE) is more difficult to quantify. Rapid progress in event attribution has recently been made through improved understanding of observed and simulated climate variability, methods for event attribution and advances in numerical modelling. Attribution for extreme temperature events is stronger compared with other event types, notably those related to the hydrological cycle. Recent advances in the understanding of ECEs, both in observations and their representation in state-of-the-art climate models, open new opportunities for assessing their effect on human and natural systems. Improved spatial resolution in global climate models and advances in statistical and dynamical downscaling now provide climatic information at appropriate spatial and temporal scales. Together with the continued development of Earth System Models that simulate biogeochemical cycles and interactions with the biosphere at increasing complexity, these make it possible to develop a mechanistic understanding of how ECEs affect biological processes, ecosystem functioning and adaptation capabilities. Limitations in the observational network, both for physical climate system parameters and even more so for long-term ecological monitoring, have hampered progress in understanding bio-physical interactions across a range of scales. New opportunities for assessing how ECEs modulate ecosystem structure and functioning arise from better scientific understanding of ECEs coupled with technological advances in observing systems and instrumentation.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).
Nature-Inspired Cognitive Evolution to Play MS. Pac-Man
NASA Astrophysics Data System (ADS)
Tan, Tse Guan; Teo, Jason; Anthony, Patricia
Recent developments in nature-inspired computation have heightened the need for research into the three main areas of scientific, engineering and industrial applications. Some approaches have reported that it is able to solve dynamic problems and very useful for improving the performance of various complex systems. So far however, there has been little discussion about the effectiveness of the application of these models to computer and video games in particular. The focus of this research is to explore the hybridization of nature-inspired computation methods for optimization of neural network-based cognition in video games, in this case the combination of a neural network with an evolutionary algorithm. In essence, a neural network is an attempt to mimic the extremely complex human brain system, which is building an artificial brain that is able to self-learn intelligently. On the other hand, an evolutionary algorithm is to simulate the biological evolutionary processes that evolve potential solutions in order to solve the problems or tasks by applying the genetic operators such as crossover, mutation and selection into the solutions. This paper investigates the abilities of Evolution Strategies (ES) to evolve feed-forward artificial neural network's internal parameters (i.e. weight and bias values) for automatically generating Ms. Pac-man controllers. The main objective of this game is to clear a maze of dots while avoiding the ghosts and to achieve the highest possible score. The experimental results show that an ES-based system can be successfully applied to automatically generate artificial intelligence for a complex, dynamic and highly stochastic video game environment.
Patterns of precipitation and soil moisture extremes in Texas, US: A complex network analysis
NASA Astrophysics Data System (ADS)
Sun, Alexander Y.; Xia, Youlong; Caldwell, Todd G.; Hao, Zengchao
2018-02-01
Understanding of the spatial and temporal dynamics of extreme precipitation not only improves prediction skills, but also helps to prioritize hazard mitigation efforts. This study seeks to enhance the understanding of spatiotemporal covariation patterns embedded in precipitation (P) and soil moisture (SM) by using an event-based, complex-network-theoretic approach. Events concurrences are quantified using a nonparametric event synchronization measure, and spatial patterns of hydroclimate variables are analyzed by using several network measures and a community detection algorithm. SM-P coupling is examined using a directional event coincidence analysis measure that takes the order of event occurrences into account. The complex network approach is demonstrated for Texas, US, a region possessing a rich set of hydroclimate features and is frequented by catastrophic flooding. Gridded daily observed P data and simulated SM data are used to create complex networks of P and SM extremes. The uncovered high degree centrality regions and community structures are qualitatively in agreement with the overall existing knowledge of hydroclimate extremes in the study region. Our analyses provide new visual insights on the propagation, connectivity, and synchronicity of P extremes, as well as the SM-P coupling, in this flood-prone region, and can be readily used as a basis for event-driven predictive analytics for other regions.
[A method for reproducing amnesia in mice by the complex extremal exposure].
Iasnetsov, V V; Provornova, N A
2003-01-01
It is suggested to reproduce a retrograde amnesia in mice by means of a complex extremal action: emaciating swim in cold water with simultaneous wheel rotation. It was found that nootropes such as pyracetam, mexidol, semax, nooglutil, acephen, and noopept fully or completely prevent from the amnesia development.
Division of labour and the evolution of extreme specialization.
Cooper, Guy A; West, Stuart A
2018-05-28
Division of labour is a common feature of social groups, from biofilms to complex animal societies. However, we lack a theoretical framework that can explain why division of labour has evolved on certain branches of the tree of life but not others. Here, we model the division of labour over a cooperative behaviour, considering both when it should evolve and the extent to which the different types should become specialized. We found that: (1) division of labour is usually-but not always-favoured by high efficiency benefits to specialization and low within-group conflict; and (2) natural selection favours extreme specialization, where some individuals are completely dependent on the helping behaviour of others. We make a number of predictions, several of which are supported by the existing empirical data, from microbes and animals, while others suggest novel directions for empirical work. More generally, we show how division of labour can lead to mutual dependence between different individuals and hence drive major evolutionary transitions, such as those to multicellularity and eusociality.
NASA Technical Reports Server (NTRS)
Santanello, Joseph A., Jr.; Peters-Lidard, Christa D.; Kumar, Sujay V.; Dong, Xiquan; Kennedy, Aaron D.
2011-01-01
The degree of coupling between the land surface and PBL in NWP models remains largely undiagnosed due to the complex interactions and feedbacks present across a range of scales. In this study, a framework for diagnosing local land-atmosphere coupling (LoCo) is presented using a coupled mesoscale model with observations during the summers of 2006/7 in the U.S. Southern Great Plains. Specifically, the Weather Research and Forecasting (WRF) model has been coupled to NASA's Land Information System (LIS), which enables a suite of PBL and land surface model (LSM) options along provides a flexible and high-resolution representation and initialization of land surface physics and states. This coupling is one component of a larger project to develop a NASA-Unified WRF (NU-WRF) system. A range of diagnostics exploring the feedbacks between soil moisture and precipitation are examined for the dry/wet extremes, along with the sensitivity of PBL-LSM coupling to perturbations in soil moisture.
NASA Astrophysics Data System (ADS)
Konapala, Goutam; Mishra, Ashok
2017-12-01
The quantification of spatio-temporal hydroclimatic extreme events is a key variable in water resources planning, disaster mitigation, and preparing climate resilient society. However, quantification of these extreme events has always been a great challenge, which is further compounded by climate variability and change. Recently complex network theory was applied in earth science community to investigate spatial connections among hydrologic fluxes (e.g., rainfall and streamflow) in water cycle. However, there are limited applications of complex network theory for investigating hydroclimatic extreme events. This article attempts to provide an overview of complex networks and extreme events, event synchronization method, construction of networks, their statistical significance and the associated network evaluation metrics. For illustration purpose, we apply the complex network approach to study the spatio-temporal evolution of droughts in Continental USA (CONUS). A different drought threshold leads to a new drought event as well as different socio-economic implications. Therefore, it would be interesting to explore the role of thresholds on spatio-temporal evolution of drought through network analysis. In this study, long term (1900-2016) Palmer drought severity index (PDSI) was selected for spatio-temporal drought analysis using three network-based metrics (i.e., strength, direction and distance). The results indicate that the drought events propagate differently at different thresholds associated with initiation of drought events. The direction metrics indicated that onset of mild drought events usually propagate in a more spatially clustered and uniform approach compared to onsets of moderate droughts. The distance metric shows that the drought events propagate for longer distance in western part compared to eastern part of CONUS. We believe that the network-aided metrics utilized in this study can be an important tool in advancing our knowledge on drought propagation as well as other hydroclimatic extreme events. Although the propagation of droughts is investigated using the network approach, however process (physics) based approaches is essential to further understand the dynamics of hydroclimatic extreme events.
Early Reconstructions of Complex Lower Extremity Battlefield Soft Tissue Wounds
Ebrahimi, Ali; Nejadsarvari, Nasrin; Ebrahimi, Azin; Rasouli, Hamid Reza
2017-01-01
BACKGROUND Severe lower extremity trauma as a devastating combat related injury is on the rise and this presents reconstructive surgeons with significant challenges to reach optimal cosmetic and functional outcomes. This study assessed early reconstructions of complex lower extremity battlefield soft tissue wounds. METHODS This was a prospective case series study of battled field injured patients which was done in the Department of Plastic Surgery, Baqiyatallah University of Medical Sciences hospitals, Tehran, Iran between 2013-2015. In this survey, 73 patients were operated for reconstruction of lower extremity soft tissue defects due to battlefield injuries RESULTS Seventy-three patients (65 men, 8 womens) ranging from 21-48 years old (mean: 35 years) were enrolled. Our study showed that early debridement and bone stabilization and later coverage of complex battlefields soft tissue wounds with suitable flaps and grafts of lower extremity were effective method for difficult wounds managements with less amputation and infections. CONCLUSION Serial debridement and bone stabilization before early soft tissue reconstruction according to reconstructive ladder were shown to be essential steps. PMID:29218283
Microbial-Catalyzed Biotransformation of Multifunctional Triterpenoids Derived from Phytonutrients
Shah, Syed Adnan Ali; Tan, Huey Ling; Sultan, Sadia; Mohd Faridz, Muhammad Afifi Bin; Mohd Shah, Mohamad Azlan Bin; Nurfazilah, Sharifah; Hussain, Munawar
2014-01-01
Microbial-catalyzed biotransformations have considerable potential for the generation of an enormous variety of structurally diversified organic compounds, especially natural products with complex structures like triterpenoids. They offer efficient and economical ways to produce semi-synthetic analogues and novel lead molecules. Microorganisms such as bacteria and fungi could catalyze chemo-, regio- and stereospecific hydroxylations of diverse triterpenoid substrates that are extremely difficult to produce by chemical routes. During recent years, considerable research has been performed on the microbial transformation of bioactive triterpenoids, in order to obtain biologically active molecules with diverse structures features. This article reviews the microbial modifications of tetranortriterpenoids, tetracyclic triterpenoids and pentacyclic triterpenoids. PMID:25003642
Tikhaze, A K; Konovalova, G G; Lankin, V Z; Kaminnyi, A I; Kaminnaja, V I; Ruuge, E K; Kukharchuk, V V
2005-08-01
We studied the effects of 30-day peroral treatment with beta-carotene, a complex of antioxidant vitamins (vitamins C and E and provitamin A) and selenium, and solubilized ubiquinone Q(10) on the antioxidant potential in rat liver (ascorbate-dependent free radical oxidation of unsaturated membrane phospholipids). beta-Carotene irrespective of the administration route increased antioxidant potential of the liver by 2-3.5 times. The complex of antioxidant vitamins and selenium increased this parameter by more than 15 times. Antiradical activity in rat liver was extremely high after administration of solubilized ubiquinone Q(10) (increase by more than by 36 times). It can be expected that reduced ubiquinone Q(10) in vivo should produce a more pronounced protective effect due to activity of the system for bioregeneration of this natural antioxidant.
Inquiry Science for Liberal Arts Students: A Topical Course on Sound
NASA Astrophysics Data System (ADS)
Pine, Jerry; Hinckley, Joy; Mims, Sandra; Smith, Joel
1997-04-01
We have developed a topical general studies physics course for liberal arts students, and particularly for preservice elementary teachers. The course is taught entirely in a lab, and is based on a mix of student inquiries and ''sense-making'' in discussion. There are no lectures. A physics professor and a master elementary teacher co-lead. The students begin by conceptualizing the nature of sound by examining everyday phenomena, and then progress through a study of topics such as waves, interference, sysnthesis of complex sounds from pure tones, analysis of complex sounds into spectra, and independent projects. They use the computer program Soundedit Pro and the Macintosh interface as a powerful tool for analysis and synthesis. The student response has been extremely enthusiastic, though most have come to the course with very strong physics anxiety. The course has so far been trial-taught at five California campuses, and incorporatio into some of hte regular curricula seems promising.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dub, Pavel A.; Gordon, John C.
2016-03-21
The catalytic hydrogenation of prochiral ketones with second and third-row transition metal complexes bearing chelating chiral ligands containing at least one N–H functionality has achieved unparalleled performance, delivering, in the best cases, chiral alcohols with up to 99.9% ee using extremely small catalyst loadings (~10 -5 mol%). Hence the efficacy of this reaction has closely approached that of natural enzymatic systems and the reaction itself has become one of the most efficient artificial catalytic reactions developed to date. This paper describes the current level of understanding of the mechanism of enantioselective hydrogenation and transfer hydrogenation of aromatic ketones with pioneeringmore » prototypes of bifunctional catalysts, the Noyori and Noyori–Ikariya complexes. Finally, analysis presented herein expands the concept of “metal–ligand cooperation”, redefines the term “cooperative ligand” and introduces “H –/H + outer-sphere hydrogenation” as a novel paradigm in outer-sphere hydrogenation.« less
Atopic Dermatitis in Animals and People: An Update and Comparative Review
Marsella, Rosanna; De Benedetto, Anna
2017-01-01
Atopic dermatitis is an extremely common, pruritic, and frustrating disease to treat in both people and animals. Atopic dermatitis is multifactorial and results from complex interactions between genetic and environmental factors. Much progress has been done in recent years in terms of understanding the complex pathogenesis of this clinical syndrome and the identification of new treatments. As we learn more about it, we appreciate the striking similarities that exist in the clinical manifestations of this disease across species. Both in animals and people, atopic disease is becoming increasingly common and important similarities exist in terms of immunologic aberrations and the propensity for allergic sensitization. The purpose of this review is to highlight the most recent views on atopic dermatitis in both domestic species and in people emphasizing the similarities and the differences. A comparative approach can be beneficial in understanding the natural course of this disease and the variable response to existing therapies. PMID:29056696
Atopic Dermatitis in Animals and People: An Update and Comparative Review.
Marsella, Rosanna; De Benedetto, Anna
2017-07-26
Atopic dermatitis is an extremely common, pruritic, and frustrating disease to treat in both people and animals. Atopic dermatitis is multifactorial and results from complex interactions between genetic and environmental factors. Much progress has been done in recent years in terms of understanding the complex pathogenesis of this clinical syndrome and the identification of new treatments. As we learn more about it, we appreciate the striking similarities that exist in the clinical manifestations of this disease across species. Both in animals and people, atopic disease is becoming increasingly common and important similarities exist in terms of immunologic aberrations and the propensity for allergic sensitization. The purpose of this review is to highlight the most recent views on atopic dermatitis in both domestic species and in people emphasizing the similarities and the differences. A comparative approach can be beneficial in understanding the natural course of this disease and the variable response to existing therapies.
NASA Technical Reports Server (NTRS)
Vishniac, H. S.
1981-01-01
The multiple stresses temperature, moisture, and for chemoheterotrophs, sources of carbon and energy of the Dry Valley Antarctica soils allow at best depauperate communities, low in species diversity and population density. The nature of community structure, the operation of biogeochemical cycles, the evolution and mechanisms of adaptation to this habitat are of interest in informing speculations upon life on other planets as well as in modeling the limits of gene life. Yeasts of the Cryptococcus vishniacil complex (Basidiobiastomycetes) are investigated, as the only known indigenes of the most hostile, lichen free, parts of the Dry Valleys. Methods were developed for isolating these yeasts (methods which do not exclude the recovery of other microbiota). The definition of the complex was refined and the importance of nitrogen sources was established as well as substrate competition in fitness to the Dry Valley habitats.
... Safe Videos for Educators Search English Español Natural Childbirth KidsHealth / For Parents / Natural Childbirth What's in this ... the pain, extremely empowering and rewarding. About Natural Childbirth Natural childbirth is a "low-tech" way of ...
Jain, Nickul S; Lopez, Gregory D; Bederman, S Samuel; Wirth, Garrett A; Scolaro, John A
2016-08-01
High-energy injuries can result in complete or partial loss of the talus. Ipsilateral fractures to the lower limb increase the complexity of surgical management, and treatment is guided by previous case reports of similar injuries. A case of complex lower-extremity trauma with extruded and missing talar body and ipsilateral type IIIB open tibia fracture is presented. Surgical limb reconstruction and salvage was performed successfully with a single orthopaedic implant in a manner not described previously in the literature. The purpose of this case report is to present the novel use of a single orthopaedic implant for treatment of a complex, open traumatic injury. Previous case reports in the literature have described the management of complete or partial talar loss. We describe the novel use of a long hindfoot fusion nail and staged bone grafting to achieve tibiocalcaneal arthrodesis for the treatment of complex lower-extremity trauma. Therapeutic, Level IV: Case study. © 2015 The Author(s).
Greenough, G; McGeehin, M; Bernard, S M; Trtanj, J; Riad, J; Engelberg, D
2001-05-01
Extreme weather events such as precipitation extremes and severe storms cause hundreds of deaths and injuries annually in the United States. Climate change may alter the frequency, timing, intensity, and duration of these events. Increases in heavy precipitation have occurred over the past century. Future climate scenarios show likely increases in the frequency of extreme precipitation events, including precipitation during hurricanes, raising the risk of floods. Frequencies of tornadoes and hurricanes cannot reliably be projected. Injury and death are the direct health impacts most often associated with natural disasters. Secondary effects, mediated by changes in ecologic systems and public health infrastructure, also occur. The health impacts of extreme weather events hinge on the vulnerabilities and recovery capacities of the natural environment and the local population. Relevant variables include building codes, warning systems, disaster policies, evacuation plans, and relief efforts. There are many federal, state, and local government agencies and nongovernmental organizations involved in planning for and responding to natural disasters in the United States. Future research on health impacts of extreme weather events should focus on improving climate models to project any trends in regional extreme events and as a result improve public health preparedness and mitigation. Epidemiologic studies of health effects beyond the direct impacts of disaster will provide a more accurate measure of the full health impacts and will assist in planning and resource allocation.
Microfluidic colloid filtration
Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J. C.; Wessling, Matthias
2016-01-01
Filtration of natural and colloidal matter is an essential process in today’s water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a “cake layer” – often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level. PMID:26927706
Detecting text in natural scenes with multi-level MSER and SWT
NASA Astrophysics Data System (ADS)
Lu, Tongwei; Liu, Renjun
2018-04-01
The detection of the characters in the natural scene is susceptible to factors such as complex background, variable viewing angle and diverse forms of language, which leads to poor detection results. Aiming at these problems, a new text detection method was proposed, which consisted of two main stages, candidate region extraction and text region detection. At first stage, the method used multiple scale transformations of original image and multiple thresholds of maximally stable extremal regions (MSER) to detect the text regions which could detect character regions comprehensively. At second stage, obtained SWT maps by using the stroke width transform (SWT) algorithm to compute the candidate regions, then using cascaded classifiers to propose non-text regions. The proposed method was evaluated on the standard benchmark datasets of ICDAR2011 and the datasets that we made our own data sets. The experiment results showed that the proposed method have greatly improved that compared to other text detection methods.
A case of Rocky Mountain spotted fever.
Rubel, Barry S
2007-01-01
Rocky Mountain spotted fever is a serious, generalized infection that is spread to humans through the bite of infected ticks. It can be lethal but it is curable. The disease gets its name from the Rocky Mountain region where it was first identified in 1896. The fever is caused by the bacterium Rickettsia rickettsii and is maintained in nature in a complex life cycle involving ticks and mammals. Humans are considered to be accidental hosts and are not involved in the natural transmission cycle of this pathogen. The author examined a 47-year-old woman during a periodic recall appointment. The patient had no dental problems other than the need for routine prophylaxis but mentioned a recent problem with swelling of her extremities with an accompanying rash and general malaise and soreness in her neck region. Tests were conducted and a diagnosis of Rocky Mountain spotted fever was made.
Patellofemoral anatomy and biomechanics: current concepts
ZAFFAGNINI, STEFANO; DEJOUR, DAVID; GRASSI, ALBERTO; BONANZINGA, TOMMASO; MUCCIOLI, GIULIO MARIA MARCHEGGIANI; COLLE, FRANCESCA; RAGGI, FEDERICO; BENZI, ANDREA; MARCACCI, MAURILIO
2013-01-01
The patellofemoral joint, due to its particular bone anatomy and the numerous capsuloligamentous structures and muscles that act dynamically on the patella, is considered one of the most complex joints in the human body from the biomechanical point of view. The medial patellofemoral ligament (MPFL) has been demonstrated to contribute 60% of the force that opposes lateral displacement of the patella, and MPFL injury results in an approximately 50% reduction in the force needed to dislocate the patella laterally with the knee extended. For this reason, recent years have seen a growing interest in the study of this important anatomical structure, whose aponeurotic nature has thus been demonstrated. The MPFL acts as a restraint during motion, playing an active role under conditions of laterally applied stress, but an only marginal role during natural knee flexion. However, it remains extremely difficult to clearly define the anatomy of the MPFL and its relationships with other anatomical structures. PMID:25606512
Astronomical Correlates of Architecture and Landscape in Mesoamerica
NASA Astrophysics Data System (ADS)
Šprajc, Ivan
Mesoamerican civic and ceremonial buildings were largely oriented to astronomical phenomena on the horizon, mostly to sunrises and sunsets on particular dates; some orientations were probably intended to mark major lunar standstills and Venus extremes. Solar orientations must have had a practical function, allowing the use of observational calendars that facilitated a proper scheduling of agricultural activities. Moreover, some important buildings seem to have been erected on carefully selected places, with the purpose of employing prominent peaks on the local horizon as natural markers of sunrises and sunsets on relevant dates. However, the characteristics of buildings incorporating deliberate alignments, their predominant clockwise skew from cardinal directions, and their relations to the surrounding natural and cultural landscape reveal that the architectural and urban planning in Mesoamerica was dictated by a complex set of rules, in which astronomical considerations were embedded in a broader framework of cosmological concepts substantiated by political ideology.
A Concept of Cross-Ferroic Plasma Turbulence
Inagaki, S.; Kobayashi, T.; Kosuga, Y.; Itoh, S.-I.; Mitsuzono, T.; Nagashima, Y.; Arakawa, H.; Yamada, T.; Miwa, Y.; Kasuya, N.; Sasaki, M.; Lesur, M.; Fujisawa, A.; Itoh, K.
2016-01-01
The variety of scalar and vector fields in laboratory and nature plasmas is formed by plasma turbulence. Drift-wave fluctuations, driven by density gradients in magnetized plasmas, are known to relax the density gradient while they can generate flows. On the other hand, the sheared flow in the direction of magnetic fields causes Kelvin-Helmholtz type instabilities, which mix particle and momentum. These different types of fluctuations coexist in laboratory and nature, so that the multiple mechanisms for structural formation exist in extremely non-equilibrium plasmas. Here we report the discovery of a new order in plasma turbulence, in which chained structure formation is realized by cross-interaction between inhomogeneities of scalar and vector fields. The concept of cross-ferroic turbulence is developed, and the causal relation in the multiple mechanisms behind structural formation is identified, by measuring the relaxation rate and dissipation power caused by the complex turbulence-driven flux. PMID:26917218
ERIC Educational Resources Information Center
Hall, Darlene Kordich
1999-01-01
Compares three groups of young sexually abused children on seven "Complex" Posttraumatic Stress Disorder/Disorders of Extreme Stress (CP/DES) indices. As cumulative number of types of trauma increased, the number of CP/DES symptoms rose. Results suggest that CP/DES also characterizes sexually abused children, especially those who have…
Predictability of Extreme Climate Events via a Complex Network Approach
NASA Astrophysics Data System (ADS)
Muhkin, D.; Kurths, J.
2017-12-01
We analyse climate dynamics from a complex network approach. This leads to an inverse problem: Is there a backbone-like structure underlying the climate system? For this we propose a method to reconstruct and analyze a complex network from data generated by a spatio-temporal dynamical system. This approach enables us to uncover relations to global circulation patterns in oceans and atmosphere. This concept is then applied to Monsoon data; in particular, we develop a general framework to predict extreme events by combining a non-linear synchronization technique with complex networks. Applying this method, we uncover a new mechanism of extreme floods in the eastern Central Andes which could be used for operational forecasts. Moreover, we analyze the Indian Summer Monsoon (ISM) and identify two regions of high importance. By estimating an underlying critical point, this leads to an improved prediction of the onset of the ISM; this scheme was successful in 2016 and 2017.
Grassland responses to precipitation extremes
USDA-ARS?s Scientific Manuscript database
Grassland ecosystems are naturally subjected to periods of prolonged drought and sequences of wet years. Climate change is expected to enhance the magnitude and frequency of extreme events at the intraannual and multiyear scales. Are grassland responses to extreme precipitation simply a response to ...
Post-disturbance sediment recovery: Implications for watershed resilience
NASA Astrophysics Data System (ADS)
Rathburn, Sara L.; Shahverdian, Scott M.; Ryan, Sandra E.
2018-03-01
Sediment recovery following disturbances is a measure of the time required to attain pre-disturbance sediment fluxes. Insight into the controls on recovery processes and pathways builds understanding of geomorphic resilience. We assess post-disturbance sediment recovery in three small (1.5-100 km2), largely unaltered watersheds within the northern Colorado Rocky Mountains affected by wildfires, floods, and debris flows. Disturbance regimes span 102 (floods, debris flows) to 103 years (wildfires). For all case studies, event sediment recovery followed a nonlinear pattern: initial high sediment flux during single precipitation events or high annual snowmelt runoff followed by decreasing sediment fluxes over time. Disturbance interactions were evaluated after a high-severity fire within the South Fork Cache la Poudre basin was followed by an extreme flood one year post-fire. This compound disturbance hastened suspended sediment recovery to pre-fire concentrations 3 years after the fire. Wildfires over the last 1900 YBP in the South Fork basin indicate fire recurrence intervals of 600 years. Debris flows within the upper Colorado River basin over the last two centuries have shifted the baseline of sediment recovery caused by anthropogenic activities that increased debris flow frequency. An extreme flood on North St. Vrain Creek with an impounding reservoir resulted in extreme sedimentation that led to a physical state change. We introduce an index of resilience as sediment recovery/disturbance recurrence interval, providing a relative comparison between sites. Sediment recovery and channel form resilience may be inversely related because of high or low physical complexity in streams. We propose management guidelines to enhance geomorphic resilience by promoting natural processes that maintain physical complexity. Finally, sediment connectivity within watersheds is an additional factor to consider when establishing restoration treatment priorities.
Genetics of Rapid and Extreme Size Evolution in Island Mice
Gray, Melissa M.; Parmenter, Michelle D.; Hogan, Caley A.; Ford, Irene; Cuthbert, Richard J.; Ryan, Peter G.; Broman, Karl W.; Payseur, Bret A.
2015-01-01
Organisms on islands provide a revealing window into the process of adaptation. Populations that colonize islands often evolve substantial differences in body size from their mainland relatives. Although the ecological drivers of this phenomenon have received considerable attention, its genetic basis remains poorly understood. We use house mice (subspecies: Mus musculus domesticus) from remote Gough Island to provide a genetic portrait of rapid and extreme size evolution. In just a few hundred generations, Gough Island mice evolved the largest body size among wild house mice from around the world. Through comparisons with a smaller-bodied wild-derived strain from the same subspecies (WSB/EiJ), we demonstrate that Gough Island mice achieve their exceptional body weight primarily by growing faster during the 6 weeks after birth. We use genetic mapping in large F2 intercrosses between Gough Island mice and WSB/EiJ to identify 19 quantitative trait loci (QTL) responsible for the evolution of 16-week weight trajectories: 8 QTL for body weight and 11 QTL for growth rate. QTL exhibit modest effects that are mostly additive. We conclude that body size evolution on islands can be genetically complex, even when substantial size changes occur rapidly. In comparisons to published studies of laboratory strains of mice that were artificially selected for divergent body sizes, we discover that the overall genetic profile of size evolution in nature and in the laboratory is similar, but many contributing loci are distinct. Our results underscore the power of genetically characterizing the entire growth trajectory in wild populations and lay the foundation necessary for identifying the mutations responsible for extreme body size evolution in nature. PMID:26199233
Genetics of Rapid and Extreme Size Evolution in Island Mice.
Gray, Melissa M; Parmenter, Michelle D; Hogan, Caley A; Ford, Irene; Cuthbert, Richard J; Ryan, Peter G; Broman, Karl W; Payseur, Bret A
2015-09-01
Organisms on islands provide a revealing window into the process of adaptation. Populations that colonize islands often evolve substantial differences in body size from their mainland relatives. Although the ecological drivers of this phenomenon have received considerable attention, its genetic basis remains poorly understood. We use house mice (subspecies: Mus musculus domesticus) from remote Gough Island to provide a genetic portrait of rapid and extreme size evolution. In just a few hundred generations, Gough Island mice evolved the largest body size among wild house mice from around the world. Through comparisons with a smaller-bodied wild-derived strain from the same subspecies (WSB/EiJ), we demonstrate that Gough Island mice achieve their exceptional body weight primarily by growing faster during the 6 weeks after birth. We use genetic mapping in large F(2) intercrosses between Gough Island mice and WSB/EiJ to identify 19 quantitative trait loci (QTL) responsible for the evolution of 16-week weight trajectories: 8 QTL for body weight and 11 QTL for growth rate. QTL exhibit modest effects that are mostly additive. We conclude that body size evolution on islands can be genetically complex, even when substantial size changes occur rapidly. In comparisons to published studies of laboratory strains of mice that were artificially selected for divergent body sizes, we discover that the overall genetic profile of size evolution in nature and in the laboratory is similar, but many contributing loci are distinct. Our results underscore the power of genetically characterizing the entire growth trajectory in wild populations and lay the foundation necessary for identifying the mutations responsible for extreme body size evolution in nature. Copyright © 2015 by the Genetics Society of America.
Understanding the human health effects of chemical mixtures.
Carpenter, David O; Arcaro, Kathleen; Spink, David C
2002-01-01
Most research on the effects of chemicals on biologic systems is conducted on one chemical at a time. However, in the real world people are exposed to mixtures, not single chemicals. Although various substances may have totally independent actions, in many cases two substances may act at the same site in ways that can be either additive or nonadditive. Many even more complex interactions may occur if two chemicals act at different but related targets. In the extreme case there may be synergistic effects, in which case the effects of two substances together are greater than the sum of either effect alone. In reality, most persons are exposed to many chemicals, not just one or two, and therefore the effects of a chemical mixture are extremely complex and may differ for each mixture depending on the chemical composition. This complexity is a major reason why mixtures have not been well studied. In this review we attempt to illustrate some of the principles and approaches that can be used to study effects of mixtures. By the nature of the state of the science, this discussion is more a presentation of what we do not know than of what we do know about mixtures. We approach the study of mixtures at three levels, using specific examples. First, we discuss several human diseases in relation to a variety of environmental agents believed to influence the development and progression of the disease. We present results of selected cellular and animal studies in which simple mixtures have been investigated. Finally, we discuss some of the effects of mixtures at a molecular level. PMID:11834461
Complexity Science Framework for Big Data: Data-enabled Science
NASA Astrophysics Data System (ADS)
Surjalal Sharma, A.
2016-07-01
The ubiquity of Big Data has stimulated the development of analytic tools to harness the potential for timely and improved modeling and prediction. While much of the data is available near-real time and can be compiled to specify the current state of the system, the capability to make predictions is lacking. The main reason is the basic nature of Big Data - the traditional techniques are challenged in their ability to cope with its velocity, volume and variability to make optimum use of the available information. Another aspect is the absence of an effective description of the time evolution or dynamics of the specific system, derived from the data. Once such dynamical models are developed predictions can be made readily. This approach of " letting the data speak for itself " is distinct from the first-principles models based on the understanding of the fundamentals of the system. The predictive capability comes from the data-derived dynamical model, with no modeling assumptions, and can address many issues such as causality and correlation. This approach provides a framework for addressing the challenges in Big Data, especially in the case of spatio-temporal time series data. The reconstruction of dynamics from time series data is based on recognition that in most systems the different variables or degrees of freedom are coupled nonlinearly and in the presence of dissipation the state space contracts, effectively reducing the number of variables, thus enabling a description of its dynamical evolution and consequently prediction of future states. The predictability is analysed from the intrinsic characteristics of the distribution functions, such as Hurst exponents and Hill estimators. In most systems the distributions have heavy tails, which imply higher likelihood for extreme events. The characterization of the probabilities of extreme events are critical in many cases e. g., natural hazards, for proper assessment of risk and mitigation strategies. Big Data with such new analytics can yield improved risk estimates. The challenges of scientific inference from complex and massive data are addressed by data-enabled science, also referred as the Fourth paradigm, after experiment, theory and simulation. An example of this approach is the modelling of dynamical and statistical features of natural systems, without assumptions of specific processes. An effective use of the techniques of complexity science to yield the inherent features of a system from extensive data from observations and large scale numerical simulations is evident in the case of Earth's magnetosphere. The multiscale nature of the magnetosphere makes the numerical simulations a challenge, requiring very large computing resources. The reconstruction of dynamics from observational data can however yield the inherent characteristics using typical desktop computers. Such studies for other systems are in progress. Data-enabled approach using the framework of complexity science provides new techniques for modelling and prediction using Big Data. The studies of Earth's magnetosphere, provide an example of the potential for a new approach to the development of quantitative analytic tools.
The complex hybrid origins of the root knot nematodes revealed through comparative genomics
Kumar, Sujai; Koutsovoulos, Georgios; Blaxter, Mark L.
2014-01-01
Root knot nematodes (RKN) can infect most of the world’s agricultural crop species and are among the most important of all plant pathogens. As yet however we have little understanding of their origins or the genomic basis of their extreme polyphagy. The most damaging pathogens reproduce by obligatory mitotic parthenogenesis and it has been suggested that these species originated from interspecific hybridizations between unknown parental taxa. We have sequenced the genome of the diploid meiotic parthenogen Meloidogyne floridensis, and use a comparative genomic approach to test the hypothesis that this species was involved in the hybrid origin of the tropical mitotic parthenogen Meloidogyne incognita. Phylogenomic analysis of gene families from M. floridensis, M. incognita and an outgroup species Meloidogyne hapla was carried out to trace the evolutionary history of these species’ genomes, and we demonstrate that M. floridensis was one of the parental species in the hybrid origins of M. incognita. Analysis of the M. floridensis genome itself revealed many gene loci present in divergent copies, as they are in M. incognita, indicating that it too had a hybrid origin. The triploid M. incognita is shown to be a complex double-hybrid between M. floridensis and a third, unidentified, parent. The agriculturally important RKN have very complex origins involving the mixing of several parental genomes by hybridization and their extreme polyphagy and success in agricultural environments may be related to this hybridization, producing transgressive variation on which natural selection can act. It is now clear that studying RKN variation via individual marker loci may fail due to the species’ convoluted origins, and multi-species population genomics is essential to understand the hybrid diversity and adaptive variation of this important species complex. This comparative genomic analysis provides a compelling example of the importance and complexity of hybridization in generating animal species diversity more generally. PMID:24860695
NASA Astrophysics Data System (ADS)
Bastidas, L. A.; Pande, S.
2009-12-01
Pattern analysis deals with the automatic detection of patterns in the data and there are a variety of algorithms available for the purpose. These algorithms are commonly called Artificial Intelligence (AI) or data driven algorithms, and have been applied lately to a variety of problems in hydrology and are becoming extremely popular. When confronting such a range of algorithms, the question of which one is the “best” arises. Some algorithms may be preferred because of the lower computational complexity; others take into account prior knowledge of the form and the amount of the data; others are chosen based on a version of the Occam’s razor principle that a simple classifier performs better. Popper has argued, however, that Occam’s razor is without operational value because there is no clear measure or criterion for simplicity. An example of measures that can be used for this purpose are: the so called algorithmic complexity - also known as Kolmogorov complexity or Kolmogorov (algorithmic) entropy; the Bayesian information criterion; or the Vapnik-Chervonenkis dimension. On the other hand, the No Free Lunch Theorem states that there is no best general algorithm, and that specific algorithms are superior only for specific problems. It should be noted also that the appropriate algorithm and the appropriate complexity are constrained by the finiteness of the available data and the uncertainties associated with it. Thus, there is compromise between the complexity of the algorithm, the data properties, and the robustness of the predictions. We discuss the above topics; briefly review the historical development of applications with particular emphasis on statistical learning theory (SLT), also known as machine learning (ML) of which support vector machines and relevant vector machines are the most commonly known algorithms. We present some applications of such algorithms for distributed hydrologic modeling; and introduce an example of how the complexity measure can be applied for appropriate model choice within the context of applications in hydrologic modeling intended for use in studies about water resources and water resources management and their direct relation to extreme conditions or natural hazards.
Molecular modeling studies of substrate binding by penicillin acylase.
Chilov, G G; Stroganov, O V; Svedas, V K
2008-01-01
Molecular modeling has revealed intimate details of the mechanism of binding of natural substrate, penicillin G (PG), in the penicillin acylase active center and solved questions raised by analysis of available X-ray structures, mimicking Michaelis complex, which substantially differ in the binding pattern of the PG leaving group. Three MD trajectories were launched, starting from PDB complexes of the inactive mutant enzyme with PG (1FXV) and native penicillin acylase with sluggishly hydrolyzed substrate analog penicillin G sulfoxide (1GM9), or from the complex obtained by PG docking. All trajectories converged to a similar PG binding mode, which represented the near-to-attack conformation, consistent with chemical criteria of how reactive Michaelis complex should look. Simulated dynamic structure of the enzyme-substrate complex differed significantly from 1FXV, resembling rather 1GM9; however, additional contacts with residues bG385, bS386, and bN388 have been found, which were missing in X-ray structures. Combination of molecular docking and molecular dynamics also clarified the nature of extremely effective phenol binding in the hydrophobic pocket of penicillin acylase, which lacked proper explanation from crystallographic experiments. Alternative binding modes of phenol were probed, and corresponding trajectories converged to a single binding pattern characterized by a hydrogen bond between the phenol hydroxyl and the main chain oxygen of bS67, which was not evident from the crystal structure. Observation of the trajectory, in which phenol moved from its steady bound to pre-dissociation state, mapped the consequence of molecular events governing the conformational transitions in a coil region a143-a146 coupled to substrate binding and release of the reaction products. The current investigation provided information on dynamics of the conformational transitions accompanying substrate binding and significance of poorly structured and flexible regions in maintaining catalytic framework.
Li, Dan; Wang, Xia; Dey, Dipak K
2016-09-01
Our present work proposes a new survival model in a Bayesian context to analyze right-censored survival data for populations with a surviving fraction, assuming that the log failure time follows a generalized extreme value distribution. Many applications require a more flexible modeling of covariate information than a simple linear or parametric form for all covariate effects. It is also necessary to include the spatial variation in the model, since it is sometimes unexplained by the covariates considered in the analysis. Therefore, the nonlinear covariate effects and the spatial effects are incorporated into the systematic component of our model. Gaussian processes (GPs) provide a natural framework for modeling potentially nonlinear relationship and have recently become extremely powerful in nonlinear regression. Our proposed model adopts a semiparametric Bayesian approach by imposing a GP prior on the nonlinear structure of continuous covariate. With the consideration of data availability and computational complexity, the conditionally autoregressive distribution is placed on the region-specific frailties to handle spatial correlation. The flexibility and gains of our proposed model are illustrated through analyses of simulated data examples as well as a dataset involving a colon cancer clinical trial from the state of Iowa. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Forecasts and Warnings of Extreme Solar Storms at the Sun
NASA Astrophysics Data System (ADS)
Lundstedt, H.
2015-12-01
The most pressing space weather forecasts and warnings are those of the most intense solar flares and coronal mass ejections. However, in trying to develop these forecasts and warnings, we are confronted to many fundamental questions. Some of those are: How to define an observable measure for an extreme solar storm? How extreme can a solar storm become and how long is the build up time? How to make forecasts and warnings? Many have contributed to clarifying these general questions. In his presentation we will describe our latest results on the topological complexity of magnetic fields and the use of SDO SHARP parameters. The complexity concept will then be used to discuss the second question. Finally we will describe probability estimates of extreme solar storms.
Haas, Isabelle; Dietel, Thomas; Press, Konstantin; Kol, Moshe; Kempe, Rhett
2013-10-11
Based on two well-established ligand systems, the aminopyridinato (Ap) and the phenoxyimine (FI) ligand systems, new Ap-FI hybrid ligands were developed. Four different Ap-FI hybrid ligands were synthesized through a simple condensation reaction and fully characterized. The reaction of hafnium tetrabenzyl with all four Ap-FI hybrid ligands exclusively led to mono(Ap-FI) complexes of the type [(Ap-FI)HfBn2 ]. The ligands acted as tetradentate dianionic chelates. Upon activation with tris(pentafluorophenyl)borane, the hafnium-dibenzyl complexes led to highly active catalysts for the polymerization of 1-hexene. Ultrahigh molecular weights and extremely narrow polydispersities support the living nature of this polymerization process. A possible deactivation product of the hafnium catalysts was characterized by single-crystal X-ray analysis and is discussed. The coordination modes of these new ligands were studied with the help of model titanium complexes. The reaction of titanium(IV) isopropoxide with ligand 1 led to a mono(Ap-FI) complex, which showed the desired fac-mer coordination mode. Titanium (IV) isopropoxide reacted with ligand 4 to give a complex of the type [(ApH-FI)2 Ti(OiPr)2 ], which featured the ligand in its monoanionic form. The two titanium complexes were characterized by X-ray crystal-structure analysis. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Apennine Front revisited - Diversity of Apollo 15 highland rock types
NASA Technical Reports Server (NTRS)
Lindstrom, Marilyn M.; Marvin, Ursula B.; Vetter, Scott K.; Shervais, John W.
1988-01-01
The Apollo 15 landing site is geologically the most complex of the Apollo sites, situated at a mare-highland interface within the rings of two of the last major basin-forming impacts. Few of the Apollo 15 samples are ancient highland rocks derived from the early differentiation of the moon, or impact melts from major basin impacts. Most of the samples are regolith breccias containing abundant clasts of younger volcanic mare and KREEP basalts. The early geologic evolution of the region can be understood only by examining the small fragments of highland rocks found in regolith breccias and soils. Geochemical and petrologic studies of clasts and matrices of three impact melt breccias and four regolith breccias are presented. Twelve igneous and metamorphic rocks show extreme diversity and include a new type of ferroan norite. Twenty-five samples of highland impact melt are divided into groups based on composition. These impact melts form nearly a continuum over more than an order of magnitude in REE concentrations. This continuum may result from both major basin impacts and younger local events. Highland rocks from the Apennine Front include most of the highland rock types found at all of the other sites. An extreme diversity of highland rocks is a fundamental characteristic of the Apennine Front and is a natural result of its complex geologic evolution.
NASA Astrophysics Data System (ADS)
Ye, Qian
2014-10-01
In the past three decades, the electric energy industry made great contribution to support rapid social and economic development in China, and meanwhile has been grown at the highest rate in the human history owing to the economic reform. In its new national development plan, more investment has been put into installation of both electricity generating capacity and transmitting capacity in order to meet fast growing demand of electric energy. However, energy resources, both fossil fuel and renewable types, and energy consumption and load centers in China are not evenly distributed in both spatial and temporal dimensions. Moreover, dominated by coal as its primary energy source, the whole eastern China is now entering an environmental crisis in which pollutants emitted by coal power plants contribute a large part. To balance the regional differences in energy sources and energy consumption while meeting the steadily increasing demands for electric energy for the whole country, in addition to increase electric generating capacity, building large-scale, long-distance ultra high voltage power grids is the top priority for next five years. China is a country prone to almost all kinds of natural disasters due to its vast, complex geographical and climatic conditions. In recent years, frequent natural disasters, especially extreme weather and climate events, have threatened the safety, reliability and stability of electric energy system in China. Unfortunately, with fast growth rate but lacking of risk assessing and prevention mechanism, many infrastructure constructions, including national power grids, are facing integrated and complex economic, social, institutional and ecological risks. In this paper, based on a case analysis of the Great Ice Storm in southern China in January 2008, risks of building a resilient power grid to deal with increasing threats from extreme weathers are discussed. The paper recommends that a systematic approach based on the social-ecological system framework should be applied to assess the risk factors associated with the power grid, and the tools to deal with complex dynamic systems need to be applied to deal with constant changes in the whole social-ecological system.
NASA Astrophysics Data System (ADS)
Paquier, A. E.; Haddad, J.; Lawler, S.; Garzon Hervas, J. L.; Ferreira, C.
2015-12-01
Hurricane Sandy (2012) demonstrated the vulnerability of the US East Coast to extreme events, and motivated the exploration of resilient coastal defenses that incorporate both hard engineering and natural strategies such as the restoration, creation and enhancement of coastal wetlands and marshes. Past laboratory and numerical studies have indicated the potential of wetlands to attenuate storm surge, and have demonstrated the complexity of the surge hydrodynamic interactions with wetlands. Many factors control the propagation of surge in these natural systems including storm characteristics, storm-induced hydrodynamics, landscape complexity, vegetation biomechanical properties and the interactions of these different factors. While previous field studies have largely focused on the impact of vegetation characteristics on attenuation processes, few have been undertaken with holistic consideration of these factors and their interactions. To bridge this gap of in-situ field data and to support the calibration of storm surge and wave numerical models such that wetlands can be correctly parametrized on a regional scale, we are carrying out high resolution surveys of hydrodynamics (pressure, current intensity and direction), morphology (topo-bathymetry, micro-topography) and vegetation (e.g. stem density, height, vegetation frontal area) in 4 marshes along the Chesapeake Bay. These areas are representative of the ecosystems and morphodynamic functions present in this region, from the tidal Potomac marshes to the barrier-island back-bays of the Delmarva Peninsula. The field monitoring program supports the investigation of the influence of different types of vegetation on water level, swell and wind wave attenuation and morphological evolution during storm surges. This dataset is also used to calibrate and validate numerical simulations of hurricane storm surge propagation at regional and local scales and to support extreme weather coastal resilience planning in the region. Figure 1 shows an area prone to storm surge impact within one of the 4 study sites: the Dameron Marsh Natural Area Preserve, located on the shoreline of the Northern Peninsula of Virginia, along the Chesapeake Bay.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ying; Bylaska, Eric J.; Weare, John H.
Reactions in the mineral surface/reservoir fluid interface control many geochemical processes such as the dissolution and growth of minerals (Yanina and Rosso 2008), heterogeneous oxidation/reduction (Hochella 1990, Brown 2001, Hochella, Lower et al. 2008, Navrotsky, Mazeina et al. 2008), and inorganic respiration (Newman 2010). Key minerals involved in these processes are the transition metal oxides and oxyhydroxides (e.g., hematite, Fe2O3, and goethite, FeOOH)(Brown, Henrich et al. 1999, Brown 2001, Hochella, Lower et al. 2008, Navrotsky, Mazeina et al. 2008). To interpret and predict these processes, it is necessary to have a high level of understanding of the interactions between themore » formations containing these minerals and their reservoir fluids. However, these are complicated chemical events occurring under a wide range of T, P, and X conditions and the interpretation is complicated by the highly heterogeneous nature of natural environments (Hochella 1990, Hochella, Lower et al. 2008, Navrotsky, Mazeina et al. 2008) and the electronic and structural complexity of the oxide materials involved(Cox 1992, Kotliar and Vollhardt 2004, Navrotsky, Mazeina et al. 2008). In addition, also because of the complexity of the minerals involved and the heterogeneous nature of natural systems, the direct observation of these reactions at the atomic level is experimentally extremely difficult. Theoretical simulations will provide important support for analysis of the geochemistry of the mineral surface/fluid region as well as provide essential tools to extrapolate laboratory measurements to the field environment.« less
The evolution of resistance genes in multi-protein plant resistance systems.
Friedman, Aaron R; Baker, Barbara J
2007-12-01
The genomic perspective aids in integrating the analysis of single resistance (R-) genes into a higher order model of complex plant resistance systems. The majority of R-genes encode a class of proteins with nucleotide binding (NB) and leucine-rich repeat (LRR) domains. Several R-proteins act in multi-protein R-complexes that mediate interaction with pathogen effectors to induce resistance signaling. The complexity of these systems seems to have resulted from multiple rounds of plant-pathogen co-evolution. R-gene evolution is thought to be facilitated by the formation of R-gene clusters, which permit sequence exchanges via recombinatorial mispairing and generate high haplotypic diversity. This pattern of evolution may also generate diversity at other loci that contribute to the R-complex. The rate of recombination at R-clusters is not necessarily homogeneous or consistent over evolutionary time: recent evidence suggests that recombination at R-clusters is increased following pathogen infection, suggesting a mechanism that induces temporary genome instability in response to extreme stress. DNA methylation and chromatin modifications may allow this instability to be conditionally regulated and targeted to specific genome regions. Knowledge of natural R-gene evolution may contribute to strategies for artificial evolution of novel resistance specificities.
3D Numerical simulation of bed morphological responses to complex in-streamstructures
NASA Astrophysics Data System (ADS)
Xu, Y.; Liu, X.
2017-12-01
In-stream structures are widely used in stream restoration for both hydraulic and ecologicalpurposes. The geometries of the structures are usually designed to be extremely complex andirregular, so as to provide nature-like physical habitat. The aim of this study is to develop anumerical model to accurately predict the bed-load transport and the morphological changescaused by the complex in-stream structures. This model is developed in the platform ofOpenFOAM. In the hydrodynamics part, it utilizes different turbulence models to capture thedetailed turbulence information near the in-stream structures. The technique of immersedboundary method (IBM) is efficiently implemented in the model to describe the movable bendand the rigid solid body of in-stream structures. With IBM, the difficulty of mesh generation onthe complex geometry is greatly alleviated, and the bed surface deformation is able to becoupled in to flow system. This morphodynamics model is firstly validated by simple structures,such as the morphology of the scour in log-vane structure. Then it is applied in a more complexstructure, engineered log jams (ELJ), which consists of multiple logs piled together. Thenumerical results including turbulence flow information and bed morphological responses areevaluated against the experimental measurement within the exact same flow condition.
Hysteresis in DNA compaction by Dps is described by an Ising model
Vtyurina, Natalia N.; Dulin, David; Docter, Margreet W.; Meyer, Anne S.; Dekker, Nynke H.; Abbondanzieri, Elio A.
2016-01-01
In all organisms, DNA molecules are tightly compacted into a dynamic 3D nucleoprotein complex. In bacteria, this compaction is governed by the family of nucleoid-associated proteins (NAPs). Under conditions of stress and starvation, an NAP called Dps (DNA-binding protein from starved cells) becomes highly up-regulated and can massively reorganize the bacterial chromosome. Although static structures of Dps–DNA complexes have been documented, little is known about the dynamics of their assembly. Here, we use fluorescence microscopy and magnetic-tweezers measurements to resolve the process of DNA compaction by Dps. Real-time in vitro studies demonstrated a highly cooperative process of Dps binding characterized by an abrupt collapse of the DNA extension, even under applied tension. Surprisingly, we also discovered a reproducible hysteresis in the process of compaction and decompaction of the Dps–DNA complex. This hysteresis is extremely stable over hour-long timescales despite the rapid binding and dissociation rates of Dps. A modified Ising model is successfully applied to fit these kinetic features. We find that long-lived hysteresis arises naturally as a consequence of protein cooperativity in large complexes and provides a useful mechanism for cells to adopt unique epigenetic states. PMID:27091987
Gender, Education, Extremism and Security
ERIC Educational Resources Information Center
Davies, Lynn
2008-01-01
This paper examines the complex relationships between gender, education, extremism and security. After defining extremism and fundamentalism, it looks first at the relationship of gender to violence generally, before looking specifically at how this plays out in more extremist violence and terrorism. Religious fundamentalism is also shown to have…
Greenough, G; McGeehin, M; Bernard, S M; Trtanj, J; Riad, J; Engelberg, D
2001-01-01
Extreme weather events such as precipitation extremes and severe storms cause hundreds of deaths and injuries annually in the United States. Climate change may alter the frequency, timing, intensity, and duration of these events. Increases in heavy precipitation have occurred over the past century. Future climate scenarios show likely increases in the frequency of extreme precipitation events, including precipitation during hurricanes, raising the risk of floods. Frequencies of tornadoes and hurricanes cannot reliably be projected. Injury and death are the direct health impacts most often associated with natural disasters. Secondary effects, mediated by changes in ecologic systems and public health infrastructure, also occur. The health impacts of extreme weather events hinge on the vulnerabilities and recovery capacities of the natural environment and the local population. Relevant variables include building codes, warning systems, disaster policies, evacuation plans, and relief efforts. There are many federal, state, and local government agencies and nongovernmental organizations involved in planning for and responding to natural disasters in the United States. Future research on health impacts of extreme weather events should focus on improving climate models to project any trends in regional extreme events and as a result improve public health preparedness and mitigation. Epidemiologic studies of health effects beyond the direct impacts of disaster will provide a more accurate measure of the full health impacts and will assist in planning and resource allocation. PMID:11359686
Fast Identification of Methane and Other Atmospheric Contaminant Sources in Complex Urban Settings
NASA Astrophysics Data System (ADS)
Jacobson, G. A.; Crosson, E.; Tan, S. M.
2012-12-01
The identification and quantification of greenhouse gas emissions (fluxes) from urban centers have become of increasing interest over the last few years. This interest is driven by recent measurements indicating that urban emissions are a significant source of methane (CH4) and in fact may be substantially higher than current inventory estimates(1). Urban CH4 emissions could contribute 7-15% to the global anthropogenic budget of methane. Although it is known that the per capita carbon footprint of compact cities, such as New York City, Boston, and San Francisco, are smaller than sprawling cities, such as Houston, the strengths of individual sources within these cities are not well known. Such information is of use to policy makers because it can be used to incentivize changes in transportation and land use patterns. The work discussed here will highlight a vehicle-based methodology for characterizing urban emissions that enables extremely fast identification of methane sources in complex urban settings. Measurements were taken while driving at speeds from 20 to 40 miles per hour in stop and go traffic and were able to not only identify methane plumes but in addition, provide information about the location of the sources generating these methane plumes. Results showed that a large number of highly localized methane sources were found in Boston and San Francisco. For example, leaks from natural gas production, transmission and distribution lines were found in both cities. Flux chamber measurements of these leaks indicate that the methane flux ranged from 40 to 300 standard cubic feet of natural gas per day. For reference, the average American home uses approximately 200-300 cubic feet of natural gas per day. These leaks increase cost to natural gas suppliers, add to greenhouse gas concentrations, and in extreme cases pose a safety hazard. In this work, results showing the identification, location, and quantifying methane sources in urban settings will be presented. We will also present how these techniques could be extended for use in further identification of urban emissions, for example, by measuring H2S produced by sewage, landfills or industrial processes. (1) Wunch, D., P.O. Wennberg, G.C. Toon, G. Keppel-Aleks, and Y.G. Yavin, Emissions of Greenhouse Gases from a North American Megacity, Geophysical Research Letters, Vol. 36, L15810, doi:10.1029/2009GL)39825, 2009.; Mobile methane survey results showing how plume signatures can be used to identify natural gas leaks as a source of methane.
Wierzchos, Jacek; DiRuggiero, Jocelyne; Vítek, Petr; Artieda, Octavio; Souza-Egipsy, Virginia; Škaloud, Pavel; Tisza, Michel; Davila, Alfonso F.; Vílchez, Carlos; Garbayo, Inés; Ascaso, Carmen
2015-01-01
The Atacama Desert, northern Chile, is one of the driest deserts on Earth and, as such, a natural laboratory to explore the limits of life and the strategies evolved by microorganisms to adapt to extreme environments. Here we report the exceptional adaptation strategies of chlorophototrophic and eukaryotic algae, and chlorophototrophic and prokaryotic cyanobacteria to the hyperarid and extremely high solar radiation conditions occurring in this desert. Our approach combined several microscopy techniques, spectroscopic analytical methods, and molecular analyses. We found that the major adaptation strategy was to avoid the extreme environmental conditions by colonizing cryptoendolithic, as well as, hypoendolithic habitats within gypsum deposits. The cryptoendolithic colonization occurred a few millimeters beneath the gypsum surface and showed a succession of organized horizons of algae and cyanobacteria, which has never been reported for endolithic microbial communities. The presence of cyanobacteria beneath the algal layer, in close contact with sepiolite inclusions, and their hypoendolithic colonization suggest that occasional liquid water might persist within these sub-microhabitats. We also identified the presence of abundant carotenoids in the upper cryptoendolithic algal habitat and scytonemin in the cyanobacteria hypoendolithic habitat. This study illustrates that successful lithobiontic microbial colonization at the limit for microbial life is the result of a combination of adaptive strategies to avoid excess solar irradiance and extreme evapotranspiration rates, taking advantage of the complex structural and mineralogical characteristics of gypsum deposits—conceptually called “rock's habitable architecture.” Additionally, self-protection by synthesis and accumulation of secondary metabolites likely produces a shielding effect that prevents photoinhibition and lethal photooxidative damage to the chlorophototrophs, representing another level of adaptation. PMID:26441871
Wierzchos, Jacek; DiRuggiero, Jocelyne; Vítek, Petr; Artieda, Octavio; Souza-Egipsy, Virginia; Škaloud, Pavel; Tisza, Michel; Davila, Alfonso F; Vílchez, Carlos; Garbayo, Inés; Ascaso, Carmen
2015-01-01
The Atacama Desert, northern Chile, is one of the driest deserts on Earth and, as such, a natural laboratory to explore the limits of life and the strategies evolved by microorganisms to adapt to extreme environments. Here we report the exceptional adaptation strategies of chlorophototrophic and eukaryotic algae, and chlorophototrophic and prokaryotic cyanobacteria to the hyperarid and extremely high solar radiation conditions occurring in this desert. Our approach combined several microscopy techniques, spectroscopic analytical methods, and molecular analyses. We found that the major adaptation strategy was to avoid the extreme environmental conditions by colonizing cryptoendolithic, as well as, hypoendolithic habitats within gypsum deposits. The cryptoendolithic colonization occurred a few millimeters beneath the gypsum surface and showed a succession of organized horizons of algae and cyanobacteria, which has never been reported for endolithic microbial communities. The presence of cyanobacteria beneath the algal layer, in close contact with sepiolite inclusions, and their hypoendolithic colonization suggest that occasional liquid water might persist within these sub-microhabitats. We also identified the presence of abundant carotenoids in the upper cryptoendolithic algal habitat and scytonemin in the cyanobacteria hypoendolithic habitat. This study illustrates that successful lithobiontic microbial colonization at the limit for microbial life is the result of a combination of adaptive strategies to avoid excess solar irradiance and extreme evapotranspiration rates, taking advantage of the complex structural and mineralogical characteristics of gypsum deposits-conceptually called "rock's habitable architecture." Additionally, self-protection by synthesis and accumulation of secondary metabolites likely produces a shielding effect that prevents photoinhibition and lethal photooxidative damage to the chlorophototrophs, representing another level of adaptation.
Deciphering landscape complexity to predict (non)linear responses to extreme climatic events
USDA-ARS?s Scientific Manuscript database
Extreme events are increasing in frequency and magnitude for many landscapes globally. Ecologically, most of the focus on extreme climatic events has been on effects of either short-term pulses (floods, freezes) or long-term drought. Multi-year increases in precipitation are also occurring with litt...
Oral bioavailability of curcumin: problems and advancements.
Liu, Weidong; Zhai, Yingjie; Heng, Xueyuan; Che, Feng Yuan; Chen, Wenjun; Sun, Dezhong; Zhai, Guangxi
2016-09-01
Curcumin is a natural compound of Curcuma longa L. and has shown many pharmacological activities such as anti-inflammatory, anti-oxidant in both preclinical and clinical studies. Moreover, curcumin has hepatoprotective, neuroprotective activities and protects against myocardial infarction. Particularly, curcumin has also demonstrated favorite anticancer efficacy. But limiting factors such as its extremely low oral bioavailability hampers its application as therapeutic agent. Therefore, many technologies have been developed and applied to overcome this limitation. This review described the main physicochemical properties of curcumin and summarized the recent studies in the design and development of oral delivery systems for curcumin to enhance the solubility and oral bioavailability, including liposomes, nanoparticles and polymeric micelles, phospholipid complexes, and microemulsions.
Raheem, Azhr A.; Wilke, Martin; Borgwardt, Mario; Engel, Nicholas; Bokarev, Sergey I.; Grell, Gilbert; Aziz, Saadullah G.; Kühn, Oliver; Kiyan, Igor Yu.; Merschjann, Christoph; Aziz, Emad F.
2017-01-01
The kinetics of ultrafast photoinduced structural changes in linkage isomers is investigated using Na2[Fe(CN)5NO] as a model complex. The buildup of the metastable side-on configuration of the NO ligand, as well as the electronic energy levels of ground, excited, and metastable states, has been revealed by means of time-resolved extreme UV (XUV) photoelectron spectroscopy in aqueous solution, aided by theoretical calculations. Evidence of a short-lived intermediate state in the isomerization process and its nature are discussed, finding that the complete isomerization process occurs in less than 240 fs after photoexcitation. PMID:28713840
Esterhuyse, Surina; Avenant, Marinda; Redelinghuys, Nola; Kijko, Andrzej; Glazewski, Jan; Plit, Lisa; Kemp, Marthie; Smit, Ansie; Vos, A Tascha; Williamson, Richard
2016-12-15
The impacts associated with unconventional oil and gas (UOG) extraction will be cumulative in nature and will most likely occur on a regional scale, highlighting the importance of using strategic decision-making and management tools. Managing possible impacts responsibly is extremely important in a water scarce country such as South Africa, versus countries where more water may be available for UOG extraction activities. This review article explains the possible biophysical and socio-economic impacts associated with UOG extraction within the South African context and how these complex impacts interlink. Relevant policy and governance frameworks to manage these impacts are also highlighted. Copyright © 2016 Elsevier Ltd. All rights reserved.
Assessing Regional Scale Variability in Extreme Value Statistics Under Altered Climate Scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunsell, Nathaniel; Mechem, David; Ma, Chunsheng
Recent studies have suggested that low-frequency modes of climate variability can significantly influence regional climate. The climatology associated with extreme events has been shown to be particularly sensitive. This has profound implications for droughts, heat waves, and food production. We propose to examine regional climate simulations conducted over the continental United States by applying a recently developed technique which combines wavelet multi–resolution analysis with information theory metrics. This research is motivated by two fundamental questions concerning the spatial and temporal structure of extreme events. These questions are 1) what temporal scales of the extreme value distributions are most sensitive tomore » alteration by low-frequency climate forcings and 2) what is the nature of the spatial structure of variation in these timescales? The primary objective is to assess to what extent information theory metrics can be useful in characterizing the nature of extreme weather phenomena. Specifically, we hypothesize that (1) changes in the nature of extreme events will impact the temporal probability density functions and that information theory metrics will be sensitive these changes and (2) via a wavelet multi–resolution analysis, we will be able to characterize the relative contribution of different timescales on the stochastic nature of extreme events. In order to address these hypotheses, we propose a unique combination of an established regional climate modeling approach and advanced statistical techniques to assess the effects of low-frequency modes on climate extremes over North America. The behavior of climate extremes in RCM simulations for the 20th century will be compared with statistics calculated from the United States Historical Climatology Network (USHCN) and simulations from the North American Regional Climate Change Assessment Program (NARCCAP). This effort will serve to establish the baseline behavior of climate extremes, the validity of an innovative multi–resolution information theory approach, and the ability of the RCM modeling framework to represent the low-frequency modulation of extreme climate events. Once the skill of the modeling and analysis methodology has been established, we will apply the same approach for the AR5 (IPCC Fifth Assessment Report) climate change scenarios in order to assess how climate extremes and the the influence of lowfrequency variability on climate extremes might vary under changing climate. The research specifically addresses the DOE focus area 2. Simulation of climate extremes under a changing climate. Specific results will include (1) a better understanding of the spatial and temporal structure of extreme events, (2) a thorough quantification of how extreme values are impacted by low-frequency climate teleconnections, (3) increased knowledge of current regional climate models ability to ascertain these influences, and (4) a detailed examination of the how the distribution of extreme events are likely to change under different climate change scenarios. In addition, this research will assess the ability of the innovative wavelet information theory approach to characterize extreme events. Any and all of these results will greatly enhance society’s ability to understand and mitigate the regional ramifications of future global climate change.« less
Extreme seismicity and disaster risks: Hazard versus vulnerability (Invited)
NASA Astrophysics Data System (ADS)
Ismail-Zadeh, A.
2013-12-01
Although the extreme nature of earthquakes has been known for millennia due to the resultant devastation from many of them, the vulnerability of our civilization to extreme seismic events is still growing. It is partly because of the increase in the number of high-risk objects and clustering of populations and infrastructure in the areas prone to seismic hazards. Today an earthquake may affect several hundreds thousand lives and cause significant damage up to hundred billion dollars; it can trigger an ecological catastrophe if occurs in close vicinity to a nuclear power plant. Two types of extreme natural events can be distinguished: (i) large magnitude low probability events, and (ii) the events leading to disasters. Although the first-type events may affect earthquake-prone countries directly or indirectly (as tsunamis, landslides etc.), the second-type events occur mainly in economically less-developed countries where the vulnerability is high and the resilience is low. Although earthquake hazards cannot be reduced, vulnerability to extreme events can be diminished by monitoring human systems and by relevant laws preventing an increase in vulnerability. Significant new knowledge should be gained on extreme seismicity through observations, monitoring, analysis, modeling, comprehensive hazard assessment, prediction, and interpretations to assist in disaster risk analysis. The advanced disaster risk communication skill should be developed to link scientists, emergency management authorities, and the public. Natural, social, economic, and political reasons leading to disasters due to earthquakes will be discussed.
NASA Astrophysics Data System (ADS)
Lader, R.; Walsh, J. E.
2016-12-01
Alaska is projected to experience major changes in extreme climate during the 21st century, due to greenhouse warming and exacerbated by polar amplification, wherein the Arctic is warming at twice the rate compared to the Northern Hemisphere. Given its complex topography, Alaska displays extreme gradients of temperature and precipitation. However, global climate models (GCMs), which typically have a spatial resolution on the order of 100km, struggle to replicate these extremes. To help resolve this issue, this study employs dynamically downscaled regional climate simulations and quantile-mapping methodologies to provide a full suite of daily model variables at 20 km spatial resolution for Alaska, from 1970 to 2100. These data include downscaled products of the: ERA-Interim reanalysis from 1979 to 2015, GFDL-CM3 historical from 1970 to 2005, and GFDL-CM3 RCP 8.5 from 2006 to 2100. Due to the limited nature of long-term observations and high-resolution modeling in Alaska, these data enable a broad expansion of extremes analysis. This study uses these data to highlight a subset of the 27 climate extremes indices, previously defined by the Expert Team on Climate Change Detection and Indices, as they pertain to climate change in Alaska. These indices are based on the statistical distributions of daily surface temperature and precipitation and focus on threshold exceedance, and percentiles. For example, the annual number of days with a daily maximum temperature greater than 25°C is anticipated to triple in many locations in Alaska by the end of the century. Climate extremes can also refer to long duration events, such as the record-setting warmth that defined the 2015-16 cold season in Alaska. The downscaled climate model simulations indicate that this past winter will be considered normal by as early as the mid-2040s, if we continue to warm according to the business-as-usual RCP 8.5 emissions scenario. This represents an accelerated warming as compared to projections form the coarse scale GCMs, and this greater rate of change in the downscaled products is noted with other extremes indices as well.
PANORAMA: An approach to performance modeling and diagnosis of extreme-scale workflows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deelman, Ewa; Carothers, Christopher; Mandal, Anirban
Here we report that computational science is well established as the third pillar of scientific discovery and is on par with experimentation and theory. However, as we move closer toward the ability to execute exascale calculations and process the ensuing extreme-scale amounts of data produced by both experiments and computations alike, the complexity of managing the compute and data analysis tasks has grown beyond the capabilities of domain scientists. Therefore, workflow management systems are absolutely necessary to ensure current and future scientific discoveries. A key research question for these workflow management systems concerns the performance optimization of complex calculation andmore » data analysis tasks. The central contribution of this article is a description of the PANORAMA approach for modeling and diagnosing the run-time performance of complex scientific workflows. This approach integrates extreme-scale systems testbed experimentation, structured analytical modeling, and parallel systems simulation into a comprehensive workflow framework called Pegasus for understanding and improving the overall performance of complex scientific workflows.« less
PANORAMA: An approach to performance modeling and diagnosis of extreme-scale workflows
Deelman, Ewa; Carothers, Christopher; Mandal, Anirban; ...
2015-07-14
Here we report that computational science is well established as the third pillar of scientific discovery and is on par with experimentation and theory. However, as we move closer toward the ability to execute exascale calculations and process the ensuing extreme-scale amounts of data produced by both experiments and computations alike, the complexity of managing the compute and data analysis tasks has grown beyond the capabilities of domain scientists. Therefore, workflow management systems are absolutely necessary to ensure current and future scientific discoveries. A key research question for these workflow management systems concerns the performance optimization of complex calculation andmore » data analysis tasks. The central contribution of this article is a description of the PANORAMA approach for modeling and diagnosing the run-time performance of complex scientific workflows. This approach integrates extreme-scale systems testbed experimentation, structured analytical modeling, and parallel systems simulation into a comprehensive workflow framework called Pegasus for understanding and improving the overall performance of complex scientific workflows.« less
NASA Astrophysics Data System (ADS)
von Trentini, F.; Schmid, F. J.; Braun, M.; Brisette, F.; Frigon, A.; Leduc, M.; Martel, J. L.; Willkofer, F.; Wood, R. R.; Ludwig, R.
2017-12-01
Meteorological extreme events seem to become more frequent in the present and future, and a seperation of natural climate variability and a clear climate change effect on these extreme events gains more and more interest. Since there is only one realisation of historical events, natural variability in terms of very long timeseries for a robust statistical analysis is not possible with observation data. A new single model large ensemble (SMLE), developed for the ClimEx project (Climate change and hydrological extreme events - risks and perspectives for water management in Bavaria and Québec) is supposed to overcome this lack of data by downscaling 50 members of the CanESM2 (RCP 8.5) with the Canadian CRCM5 regional model (using the EURO-CORDEX grid specifications) for timeseries of 1950-2099 each, resulting in 7500 years of simulated climate. This allows for a better probabilistic analysis of rare and extreme events than any preceding dataset. Besides seasonal sums, several extreme indicators like R95pTOT, RX5day and others are calculated for the ClimEx ensemble and several EURO-CORDEX runs. This enables us to investigate the interaction between natural variability (as it appears in the CanESM2-CRCM5 members) and a climate change signal of those members for past, present and future conditions. Adding the EURO-CORDEX results to this, we can also assess the role of internal model variability (or natural variability) in climate change simulations. A first comparison shows similar magnitudes of variability of climate change signals between the ClimEx large ensemble and the CORDEX runs for some indicators, while for most indicators the spread of the SMLE is smaller than the spread of different CORDEX models.
Kythreotis, A P; Mercer, T G; Frostick, L E
2013-09-03
In recent years there has been an increase in extreme events related to natural variability (such as earthquakes, tsunamis and hurricanes) and climate change (such as flooding and more extreme weather). Developing innovative technologies is crucial in making society more resilient to such events. However, little emphasis has been placed on the role of human decision-making in maximizing the positive impacts of technological developments. This is exacerbated by the lack of appropriate adaptation options and the privatization of existing infrastructure, which can leave people exposed to increasing risk. This work examines the need for more robust government regulation and legislation to complement developments and innovations in technology in order to protect communities against such extreme events.
Methane Leaks from Natural Gas Systems Follow Extreme Distributions.
Brandt, Adam R; Heath, Garvin A; Cooley, Daniel
2016-11-15
Future energy systems may rely on natural gas as a low-cost fuel to support variable renewable power. However, leaking natural gas causes climate damage because methane (CH 4 ) has a high global warming potential. In this study, we use extreme-value theory to explore the distribution of natural gas leak sizes. By analyzing ∼15 000 measurements from 18 prior studies, we show that all available natural gas leakage data sets are statistically heavy-tailed, and that gas leaks are more extremely distributed than other natural and social phenomena. A unifying result is that the largest 5% of leaks typically contribute over 50% of the total leakage volume. While prior studies used log-normal model distributions, we show that log-normal functions poorly represent tail behavior. Our results suggest that published uncertainty ranges of CH 4 emissions are too narrow, and that larger sample sizes are required in future studies to achieve targeted confidence intervals. Additionally, we find that cross-study aggregation of data sets to increase sample size is not recommended due to apparent deviation between sampled populations. Understanding the nature of leak distributions can improve emission estimates, better illustrate their uncertainty, allow prioritization of source categories, and improve sampling design. Also, these data can be used for more effective design of leak detection technologies.
Methane Leaks from Natural Gas Systems Follow Extreme Distributions
Brandt, Adam R.; Heath, Garvin A.; Cooley, Daniel
2016-10-14
Future energy systems may rely on natural gas as a low-cost fuel to support variable renewable power. However, leaking natural gas causes climate damage because methane (CH 4) has a high global warming potential. In this study, we use extreme-value theory to explore the distribution of natural gas leak sizes. By analyzing ~15,000 measurements from 18 prior studies, we show that all available natural gas leakage datasets are statistically heavy-tailed, and that gas leaks are more extremely distributed than other natural and social phenomena. A unifying result is that the largest 5% of leaks typically contribute over 50% of themore » total leakage volume. While prior studies used lognormal model distributions, we show that lognormal functions poorly represent tail behavior. Our results suggest that published uncertainty ranges of CH 4 emissions are too narrow, and that larger sample sizes are required in future studies to achieve targeted confidence intervals. Additionally, we find that cross-study aggregation of datasets to increase sample size is not recommended due to apparent deviation between sampled populations. Finally, understanding the nature of leak distributions can improve emission estimates, better illustrate their uncertainty, allow prioritization of source categories, and improve sampling design. Also, these data can be used for more effective design of leak detection technologies.« less
Methane Leaks from Natural Gas Systems Follow Extreme Distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandt, Adam R.; Heath, Garvin A.; Cooley, Daniel
Future energy systems may rely on natural gas as a low-cost fuel to support variable renewable power. However, leaking natural gas causes climate damage because methane (CH 4) has a high global warming potential. In this study, we use extreme-value theory to explore the distribution of natural gas leak sizes. By analyzing ~15,000 measurements from 18 prior studies, we show that all available natural gas leakage datasets are statistically heavy-tailed, and that gas leaks are more extremely distributed than other natural and social phenomena. A unifying result is that the largest 5% of leaks typically contribute over 50% of themore » total leakage volume. While prior studies used lognormal model distributions, we show that lognormal functions poorly represent tail behavior. Our results suggest that published uncertainty ranges of CH 4 emissions are too narrow, and that larger sample sizes are required in future studies to achieve targeted confidence intervals. Additionally, we find that cross-study aggregation of datasets to increase sample size is not recommended due to apparent deviation between sampled populations. Finally, understanding the nature of leak distributions can improve emission estimates, better illustrate their uncertainty, allow prioritization of source categories, and improve sampling design. Also, these data can be used for more effective design of leak detection technologies.« less
Lallias, Delphine; Hiddink, Jan G; Fonseca, Vera G; Gaspar, John M; Sung, Way; Neill, Simon P; Barnes, Natalie; Ferrero, Tim; Hall, Neil; Lambshead, P John D; Packer, Margaret; Thomas, W Kelley; Creer, Simon
2015-01-01
Assessing how natural environmental drivers affect biodiversity underpins our understanding of the relationships between complex biotic and ecological factors in natural ecosystems. Of all ecosystems, anthropogenically important estuaries represent a ‘melting pot' of environmental stressors, typified by extreme salinity variations and associated biological complexity. Although existing models attempt to predict macroorganismal diversity over estuarine salinity gradients, attempts to model microbial biodiversity are limited for eukaryotes. Although diatoms commonly feature as bioindicator species, additional microbial eukaryotes represent a huge resource for assessing ecosystem health. Of these, meiofaunal communities may represent the optimal compromise between functional diversity that can be assessed using morphology and phenotype–environment interactions as compared with smaller life fractions. Here, using 454 Roche sequencing of the 18S nSSU barcode we investigate which of the local natural drivers are most strongly associated with microbial metazoan and sampled protist diversity across the full salinity gradient of the estuarine ecosystem. In order to investigate potential variation at the ecosystem scale, we compare two geographically proximate estuaries (Thames and Mersey, UK) with contrasting histories of anthropogenic stress. The data show that although community turnover is likely to be predictable, taxa are likely to respond to different environmental drivers and, in particular, hydrodynamics, salinity range and granulometry, according to varied life-history characteristics. At the ecosystem level, communities exhibited patterns of estuary-specific similarity within different salinity range habitats, highlighting the environmental sequencing biomonitoring potential of meiofauna, dispersal effects or both. PMID:25423027
Smolka, Anselm
2006-08-15
Loss statistics for natural disasters demonstrate, also after correction for inflation, a dramatic increase of the loss burden since 1950. This increase is driven by a concentration of population and values in urban areas, the development of highly exposed coastal and valley regions, the complexity of modern societies and technologies and probably, also by the beginning consequences of global warming. This process will continue unless remedial action will be taken. Managing the risk from natural disasters starts with identification of the hazards. The next step is the evaluation of the risk, where risk is a function of hazard, exposed values or human lives and the vulnerability of the exposed objects. Probabilistic computer models have been developed for the proper assessment of risks since the late 1980s. The final steps are controlling and financing future losses. Natural disaster insurance plays a key role in this context, but also private parties and governments have to share a part of the risk. A main responsibility of governments is to formulate regulations for building construction and land use. The insurance sector and the state have to act together in order to create incentives for building and business owners to take loss prevention measures. A further challenge for the insurance sector is to transfer a portion of the risk to the capital markets, and to serve better the needs of the poor. Catastrophe bonds and microinsurance are the answer to such challenges. The mechanisms described above have been developed to cope with well-known disasters like earthquakes, windstorms and floods. They can be applied, in principle, also to less well investigated and less frequent extreme disasters: submarine slides, great volcanic eruptions, meteorite impacts and tsunamis which may arise from all these hazards. But there is an urgent need to improve the state of knowledge on these more exotic hazards in order to reduce the high uncertainty in actual risk evaluation to an acceptable level. Due to the rarity of such extreme events, specific risk prevention measures are hardly justified with exception of attempts to divert earth-orbit crossing meteorites from their dangerous path. For the industry it is particularly important to achieve full transparency as regards covered and non-covered risks and to define in a systematic manner the limits of insurability for super-disasters.
Natural disasters and the challenge of extreme events: risk management from an insurance perspective
NASA Astrophysics Data System (ADS)
Smolka, Anselm
2006-08-01
Loss statistics for natural disasters demonstrate, also after correction for inflation, a dramatic increase of the loss burden since 1950. This increase is driven by a concentration of population and values in urban areas, the development of highly exposed coastal and valley regions, the complexity of modern societies and technologies and probably, also by the beginning consequences of global warming. This process will continue unless remedial action will be taken. Managing the risk from natural disasters starts with identification of the hazards. The next step is the evaluation of the risk, where risk is a function of hazard, exposed values or human lives and the vulnerability of the exposed objects. Probabilistic computer models have been developed for the proper assessment of risks since the late 1980s. The final steps are controlling and financing future losses. Natural disaster insurance plays a key role in this context, but also private parties and governments have to share a part of the risk. A main responsibility of governments is to formulate regulations for building construction and land use. The insurance sector and the state have to act together in order to create incentives for building and business owners to take loss prevention measures. A further challenge for the insurance sector is to transfer a portion of the risk to the capital markets, and to serve better the needs of the poor. Catastrophe bonds and microinsurance are the answer to such challenges. The mechanisms described above have been developed to cope with well-known disasters like earthquakes, windstorms and floods. They can be applied, in principle, also to less well investigated and less frequent extreme disasters: submarine slides, great volcanic eruptions, meteorite impacts and tsunamis which may arise from all these hazards. But there is an urgent need to improve the state of knowledge on these more exotic hazards in order to reduce the high uncertainty in actual risk evaluation to an acceptable level. Due to the rarity of such extreme events, specific risk prevention measures are hardly justified with exception of attempts to divert earth-orbit crossing meteorites from their dangerous path. For the industry it is particularly important to achieve full transparency as regards covered and non-covered risks and to define in a systematic manner the limits of insurability for super-disasters.
A review of droughts on the African continent: a geospatial and long-term perspective
NASA Astrophysics Data System (ADS)
Masih, I.; Maskey, S.; Mussá, F. E. F.; Trambauer, P.
2014-09-01
This paper presents a comprehensive review and analysis of the available literature and information on droughts to build a continental, regional and country level perspective on geospatial and temporal variation of droughts in Africa. The study is based on the review and analysis of droughts occurred during 1900-2013, as well as evidence available from past centuries based on studies on the lake sediment analysis, tree-ring chronologies and written and oral histories and future predictions from the global climate change models. Most of the studies based on instrumental records indicate that droughts have become more frequent, intense and widespread during the last 50 years. The extreme droughts of 1972-1973, 1983-1984 and 1991-1992 were continental in nature and stand unique in the available records. Additionally, many severe and prolonged droughts were recorded in the recent past such as the 1999-2002 drought in northwest Africa, 1970s and 1980s droughts in western Africa (Sahel), 2010-2011 drought in eastern Africa (Horn of Africa) and 2001-2003 drought in southern and southeastern Africa, to name a few. The available (though limited) evidence before the 20th century confirms the occurrence of several extreme and multi-year droughts during each century, with the most prolonged and intense droughts that occurred in Sahel and equatorial eastern Africa. The complex and highly variant nature of many physical mechanisms such as El Niño-Southern Oscillation (ENSO), sea surface temperature (SST) and land-atmosphere feedback adds to the daunting challenge of drought monitoring and forecasting. The future predictions of droughts based on global climate models indicate increased droughts and aridity at the continental scale but large differences exist due to model limitations and complexity of the processes especially for Sahel and northern Africa. However, the available evidence from the past clearly shows that the African continent is likely to face extreme and widespread droughts in future. This evident challenge is likely to aggravate due to slow progress in drought risk management, increased population and demand for water and degradation of land and environment. Thus, there is a clear need for increased and integrated efforts in drought mitigation to reduce the negative impacts of droughts anticipated in the future.
A review of droughts in the African continent: a geospatial and long-term perspective
NASA Astrophysics Data System (ADS)
Masih, I.; Maskey, S.; Mussá, F. E. F.; Trambauer, P.
2014-03-01
This paper presents a comprehensive review and analysis of the available literature and information on droughts to build a continental, regional and country level perspective on geospatial and temporal variation of droughts in Africa. The study is based on the review and analysis of droughts occurred during 1900-2013 as well as evidence available from past centuries based on studies on the lake sediment analysis, tree-ring chronologies and written and oral histories and future predictions from the global climate change models. Most of the studies based on instrumental records indicate that droughts have become more frequent, intense and widespread during the last 50 yr. The extreme droughts of 1972-1973, 1983-1984 and 1991-1992 were continental in nature and stand unique in the available records. Additionally, many severe and prolonged droughts were recorded in the recent past such as the 1999-2002 drought in Northwest Africa, 1970s and 1980s droughts in West Africa (Sahel), 2010-2011 drought in East Africa (Horn of Africa) and 2001-2003 drought in Southern and Southeast Africa, to name a few. The available (though limited) evidence before the 20th century confirms the occurrence of several extreme and multi-year droughts during each century, with the most prolonged and intense droughts that occurred in Sahel and Equatorial East Africa regions. Complex and highly variant nature of many physical mechanisms such as El Niño-Southern Oscillation (ENSO), Sea Surface Temperature (SST) and land-atmosphere feedback adds to the daunting challenge of drought monitoring and forecasting. The future predictions of droughts based on global climate models indicate increased droughts and aridity at the continental scale but large differences exist due to model limitations and complexity of the processes especially for Sahel and North Africa regions. However, the available evidence from the past clearly shows that the African continent is likely to face extreme and widespread droughts in future. This evident challenge is likely to aggravate due to slow progress in drought risk management, increased population and demand for water and degradation of land and environment. Thus, there is a clear need for increased and integrated efforts in drought mitigation to reduce the negative impacts of droughts anticipated in future.
From lepton protoplasm to the genesis of hadrons
NASA Astrophysics Data System (ADS)
Eliseev, S. M.; Kosmachev, O. S.
2016-01-01
Theory of matter under extreme conditions opens a new stage in particle physics. It is necessary here to combine Dirac's elementary particle physics with Prigogine's dynamics of nonequilibrium systems. In the article we discuss the problem of the hierarchy of complexity. What can be considered as the lowest level of the organization of extreme matter on the basis of which the self-organization of the complex form occur?
Capturing rogue waves by multi-point statistics
NASA Astrophysics Data System (ADS)
Hadjihosseini, A.; Wächter, Matthias; Hoffmann, N. P.; Peinke, J.
2016-01-01
As an example of a complex system with extreme events, we investigate ocean wave states exhibiting rogue waves. We present a statistical method of data analysis based on multi-point statistics which for the first time allows the grasping of extreme rogue wave events in a highly satisfactory statistical manner. The key to the success of the approach is mapping the complexity of multi-point data onto the statistics of hierarchically ordered height increments for different time scales, for which we can show that a stochastic cascade process with Markov properties is governed by a Fokker-Planck equation. Conditional probabilities as well as the Fokker-Planck equation itself can be estimated directly from the available observational data. With this stochastic description surrogate data sets can in turn be generated, which makes it possible to work out arbitrary statistical features of the complex sea state in general, and extreme rogue wave events in particular. The results also open up new perspectives for forecasting the occurrence probability of extreme rogue wave events, and even for forecasting the occurrence of individual rogue waves based on precursory dynamics.
Rogue Waves and Extreme Events in Optics - Challenges and Questions
NASA Astrophysics Data System (ADS)
Dudley, John; Lacourt, Pierre-Ambroise; Genty, Goery; Dias, Frederic; Akhmediev, Nail
2010-05-01
A central challenge in understanding extreme events in physics is to develop rigorous models linking the complex generation dynamics and the associated statistical behavior. Quantitative studies of extreme phenomena, however, are often hampered in two ways: (i) the intrinsic scarcity of the events under study and (ii) the fact that such events often appear in environments where measurements are difficult. A particular case of interest concerns the infamous oceanic rogue waves that have been associated with many catastrophic maritime disasters. Studying rogue waves under controlled conditions is problematic, and the phenomenon remains a subject of intensive research. On the other hand, there are many qualitative and quantitative links between wave propagation in optics and in hydrodynamics, and it is thus natural to consider to what degree (if any) insights from studying instability phenomena in optics can be applied to other systems. In this context, significant experiments were reported by Solli et al. in late 2007 ["Optical rogue waves," Nature 450, 1054 (2007)], where a wavelength-to-time detection technique allowed the direct characterization of shot-to-shot instabilities in the extreme nonlinear optical spectral broadening process of supercontinuum generation. Specifically, although the process of supercontinuum generation is well-known to exhibit fluctuations in both the time and frequency domains, Solli et al. have shown that these fluctuations contain a small number of statistically-rare "rogue" events associated with a greatly enhanced spectral bandwidth and the generation of localized temporal solitons with greatly increased intensity. Crucially, because these experiments were performed in a regime where modulation instability (MI) plays a key role in the dynamics, an analogy was drawn with hydrodynamic rogue waves, whose origin and dynamics has also been discussed in terms of MI or, as it often referred to in hydrodynamics, the Benjamin-Feir instability. The analogy between the appearance of localized structures in optics and the rogue waves on the ocean's surface is both intriguing and attractive, as it opens up possibilities to explore the extreme value dynamics in a convenient benchtop optical environment. In addition to the proposed links with solitons suggested by Solli et al., other recent studies motivated from an optical context have experimentally demonstrated links with nonlinear breather propagation. The purpose of this paper will be to discuss these results that have been obtained in optics, and to consider possible similarities and differences with oceanic rogue wave counterparts.
Wildlife as valuable natural resources vs. intolerable pests: A suburban wildlife management model
DeStefano, S.; Deblinger, R.D.
2005-01-01
Management of wildlife in suburban environments involves a complex set of interactions between both human and wildlife populations. Managers need additional tools, such as models, that can help them assess the status of wildlife populations, devise and apply management programs, and convey this information to other professionals and the public. We present a model that conceptualizes how some wildlife populations can fluctuate between extremely low (rare, threatened, or endangered status) and extremely high (overabundant) numbers over time. Changes in wildlife abundance can induce changes in human perceptions, which continually redefine species as a valuable resource to be protected versus a pest to be controlled. Management programs thatincorporate a number of approaches and promote more stable populations of wildlife avoid the problems of the resource versus pest transformation, are less costly to society, and encourage more positive and less negative interactions between humans and wildlife. We presenta case example of the beaver Castor canadensis in Massachusetts to illustrate how this model functions and can be applied. ?? 2005 Springer Science + Business Media, Inc.
Si, Yifan; Guo, Zhiguang; Liu, Weimin
2016-06-29
Superhydrophobic coating has extremely high application value and practicability. However, some difficult problems such as weak mechanical strength, the need for expensive toxic reagents, and a complex preparation process are all hard to avoid, and these problems have impeded the superhydrophobic coating's real-life application for a long time. Here, we demonstrate one kind of omnipotent epoxy resins @ stearic acid-Mg(OH)2 superhydrophobic coating via a simple antideposition route and one-step superhydrophobization process. The whole preparation process is facile, and expensive toxic reagents needed. This omnipotent coating can be applied on any solid substrate with great waterproof ability, excellent mechanical stability, and chemical durability, which can be stored in a realistic environment for more than 1 month. More significantly, this superhydrophobic coating also has four protective abilities, antifouling, anticorrosion, anti-icing, and flame-retardancy, to cope with a variety of possible extreme natural environments. Therefore, this omnipotent epoxy resins @ stearic acid-Mg(OH)2 superhydrophobic coating not only satisfies real-life need but also has great application potential in many respects.
In-vehicle extremity injuries from improvised explosive devices: current and future foci
Ramasamy, Arul; Masouros, Spyros D.; Newell, Nicolas; Hill, Adam M.; Proud, William G.; Brown, Katherine A.; Bull, Anthony M. J.; Clasper, Jon C.
2011-01-01
The conflicts in Iraq and Afghanistan have been epitomized by the insurgents' use of the improvised explosive device against vehicle-borne security forces. These weapons, capable of causing multiple severely injured casualties in a single incident, pose the most prevalent single threat to Coalition troops operating in the region. Improvements in personal protection and medical care have resulted in increasing numbers of casualties surviving with complex lower limb injuries, often leading to long-term disability. Thus, there exists an urgent requirement to investigate and mitigate against the mechanism of extremity injury caused by these devices. This will necessitate an ontological approach, linking molecular, cellular and tissue interaction to physiological dysfunction. This can only be achieved via a collaborative approach between clinicians, natural scientists and engineers, combining physical and numerical modelling tools with clinical data from the battlefield. In this article, we compile existing knowledge on the effects of explosions on skeletal injury, review and critique relevant experimental and computational research related to lower limb injury and damage and propose research foci required to drive the development of future mitigation technologies. PMID:21149353
Plumlee, Geoffrey S.; Alpers, Charles N.; Morman, Suzette A.; San Juan, Carma A.
2016-01-01
The ARkStorm Scenario predicts that a prolonged winter storm event across California would cause extreme precipitation, flooding, winds, physical damages, and economic impacts. This study uses a literature review and geographic information system-based analysis of national and state databases to infer how and where ARkStorm could cause environmental damages, release contamination from diverse natural and anthropogenic sources, affect ecosystem and human health, and cause economic impacts from environmental-remediation, liability, and health-care costs. Examples of plausible ARkStorm environmental and health concerns include complex mixtures of contaminants such as petroleum, mercury, asbestos, persistent organic pollutants, molds, and pathogens; adverse physical and contamination impacts on riverine and coastal marine ecosystems; and increased incidences of mold-related health concerns, some vector-borne diseases, and valley fever. Coastal cities, the San Francisco Bay area, the Sacramento-San Joaquin River Delta, parts of the Central Valley, and some mountainous areas would likely be most affected. This type of screening analysis, coupled with follow-up local assessments, can help stakeholders in California and disaster-prone areas elsewhere better plan for, mitigate, and respond to future environmental disasters.
NASA Astrophysics Data System (ADS)
Maduna, Karolina; Tomašić, Vesna
2017-11-01
Air pollution is an environmental and a social problem which leads to a multitude of adverse effects on human health and standard of human life, state of the ecosystems and global change of climate. Air pollutants are emitted from natural, but mostly from anthropogenic sources and may be transported over long distances. Some air pollutants are extremely stable in the atmosphere and may accumulate in the environment and in the food chain, affecting human beings, animals and natural biodiversity. Obviously, air pollution is a complex problem that poses multiple challenges in terms of management and abatements of the pollutants emission. Effective approach to the problems of air pollution requires a good understanding of the sources that cause it, knowledge of air quality status and future trends as well as its impact on humans and ecosystems. This chapter deals with the complexities of the air pollution and presents an overview of different technical processes and equipment for air pollution control, as well as basic principles of their work. The problems of air protection as well as protection of other ecosystems can be solved only by the coordinated endeavors of various scientific and engineering disciplines, such as chemistry, physics, biology, medicine, chemical engineering and social sciences. The most important engineering contribution is mostly focused on development, design and operation of equipment for the abatement of harmful emissions into environment.
NDE standards for high temperature materials
NASA Technical Reports Server (NTRS)
Vary, Alex
1991-01-01
High temperature materials include monolithic ceramics for automotive gas turbine engines and also metallic/intermetallic and ceramic matrix composites for a range of aerospace applications. These are materials that can withstand extreme operating temperatures that will prevail in advanced high-efficiency gas turbine engines. High temperature engine components are very likely to consist of complex composite structures with three-dimensionality interwoven and various intermixed ceramic fibers. The thermomechanical properties of components made of these materials are actually created in-place during processing and fabrication stages. The complex nature of these new materials creates strong incentives for exact standards for unambiguous evaluations of defects and microstructural characteristics. NDE techniques and standards that will ultimately be applicable to production and quality control of high temperature materials and structures are still emerging. The needs range from flaw detection to below 100 micron levels in monolithic ceramics to global imaging of fiber architecture and matrix densification anomalies in composites. The needs are different depending on the processing stage, fabrication method, and nature of the finished product. The standards are discussed that must be developed in concert with advances in NDE technology, materials processing research, and fabrication development. High temperature materials and structures that fail to meet stringent specifications and standards are unlikely to compete successfully either technologically or in international markets.
Zhou, Jing-Min; Zhou, De-Min; Takagi, Yasuomi; Kasai, Yasuhiro; Inoue, Atsushi; Baba, Tadashi; Taira, Kazunari
2002-01-01
The hammerhead ribozyme is generally accepted as a well characterized metalloenzyme. However, the precise nature of the interactions of the RNA with metal ions remains to be fully defined. Examination of metal ion-catalyzed hammerhead reactions at limited concentrations of metal ions is useful for evaluation of the role of metal ions, as demonstrated in this study. At concentrations of Mn2+ ions from 0.3 to 3 mM, addition of the ribozyme to the reaction mixture under single-turnover conditions enhances the reaction with the product reaching a fixed maximum level. Further addition of the ribozyme inhibits the reaction, demonstrating that a certain number of divalent metal ions is required for proper folding and also for catalysis. At extremely high concentrations, monovalent ions, such as Na+ ions, can also serve as cofactors in hammerhead ribozyme-catalyzed reactions. However, the catalytic efficiency of monovalent ions is extremely low and, thus, high concentrations are required. Furthermore, addition of monovalent ions to divalent metal ion-catalyzed hammerhead reactions inhibits the divalent metal ion-catalyzed reactions, suggesting that the more desirable divalent metal ion–ribozyme complexes are converted to less desirable monovalent metal ion–ribozyme complexes via removal of divalent metal ions, which serve as a structural support in the ribozyme complex. Even though two channels appear to exist, namely an efficient divalent metal ion-catalyzed channel and an inefficient monovalent metal ion-catalyzed channel, it is clear that, under physiological conditions, hammerhead ribozymes are metalloenzymes that act via the significantly more efficient divalent metal ion-dependent channel. Moreover, the observed kinetic data are consistent with Lilley’s and DeRose’s two-phase folding model that was based on ground state structure analyses. PMID:12034824
Narrowing the Insurance Protection Gap: The important role of Natural Hazards Research
NASA Astrophysics Data System (ADS)
Manghnani, V.
2016-12-01
The Insurance industry is a key component of the economic engine. It allows businesses to reduce uncertainty in their operations, and individuals to rebound from unanticipated events. A thriving insurance industry efficiently transfers risk from individuals and businesses to the capital markets. It allows society to function smoothly and fosters growth. In areas where the private insurance is not a viable option, the outcome is suboptimal - the society ends up carrying the burden. Higher insurance penetration increases disaster resiliency. The long term viability of an insurance product depends on the ability of the insurance provider to accurately assess risks, which is critical to pricing insurance and risk monitoring. Insurance payouts are typically incurred during extreme events, therefore the industry is very interested in extreme events research. There are several examples where the insurance industry has stepped away from a market or severely limited its appetite because of lack of data or proper understanding of the underlying risks - such as, flood. Further, the insurance Industry has seen a rising trend of natural hazard related losses over the past few decades. The trends have been particularly strong in hydro meteorological hazards. While a good part of this increasing trend can been explained by increase in exposures, there is also concern that underlying hazard landscape may be evolving. The industry would really benefit from research that identifies secular and long term trends in hydro-meteorological hazards, particularly in the extremes. Insight into non-stationarity in the climate system at a regional level would be very informative of risk management decisions. One can envision a scenario where in the industry stops insuring certain risk (such as storm surge), because of a lack of understanding of the trends in the underlying risk and a consequent poor performance record. In sum, the ability of the industry to assess complex and emerging natural risks is a key determinant to supporting a thriving insurance marketplace. This will ensure that the industry can confidently and creatively offer insurance to perils and hazards in both developed and developing economies and continue to narrow the protection gap.
Vasudeva, R; Deeming, D C; Eady, P E
2014-09-01
The outcome of post-copulatory sexual selection is determined by a complex set of interactions between the primary reproductive traits of two or more males and their interactions with the reproductive traits of the female. Recently, a number of studies have shown the primary reproductive traits of both males and females express phenotypic plasticity in response to the thermal environment experienced during ontogeny. However, how plasticity in these traits affects the dynamics of sperm competition remains largely unknown. Here, we demonstrate plasticity in testes size, sperm size and sperm number in response to developmental temperature in the bruchid beetle Callosobruchus maculatus. Males reared at the highest temperature eclosed at the smallest body size and had the smallest absolute and relative testes size. Males reared at both the high- and low-temperature extremes produced both fewer and smaller sperm than males reared at intermediate temperatures. In the absence of sperm competition, developmental temperature had no effect on male fertility. However, under conditions of sperm competition, males reared at either temperature extreme were less competitive in terms of sperm offence (P(2)), whereas those reared at the lowest temperature were less competitive in terms of sperm defence (P(1)). This suggests the developmental pathways that regulate the phenotypic expression of these ejaculatory traits are subject to both natural and sexual selection: natural selection in the pre-ejaculatory environment and sexual selection in the post-ejaculatory environment. In nature, thermal heterogeneity during development is commonplace. Therefore, we suggest the interplay between ecology and development represents an important, yet hitherto underestimated component of male fitness via post-copulatory sexual selection. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
2017-01-01
Why do some individuals need more sleep than others? Forward mutagenesis screens in flies using engineered mutations have established a clear genetic component to sleep duration, revealing mutants that convey very long or short sleep. Whether such extreme long or short sleep could exist in natural populations was unknown. We applied artificial selection for high and low night sleep duration to an outbred population of Drosophila melanogaster for 13 generations. At the end of the selection procedure, night sleep duration diverged by 9.97 hours in the long and short sleeper populations, and 24-hour sleep was reduced to 3.3 hours in the short sleepers. Neither long nor short sleeper lifespan differed appreciably from controls, suggesting little physiological consequences to being an extreme long or short sleeper. Whole genome sequence data from seven generations of selection revealed several hundred thousand changes in allele frequencies at polymorphic loci across the genome. Combining the data from long and short sleeper populations across generations in a logistic regression implicated 126 polymorphisms in 80 candidate genes, and we confirmed three of these genes and a larger genomic region with mutant and chromosomal deficiency tests, respectively. Many of these genes could be connected in a single network based on previously known physical and genetic interactions. Candidate genes have known roles in several classic, highly conserved developmental and signaling pathways—EGFR, Wnt, Hippo, and MAPK. The involvement of highly pleiotropic pathway genes suggests that sleep duration in natural populations can be influenced by a wide variety of biological processes, which may be why the purpose of sleep has been so elusive. PMID:29240764
Harbison, Susan T; Serrano Negron, Yazmin L; Hansen, Nancy F; Lobell, Amanda S
2017-12-01
Why do some individuals need more sleep than others? Forward mutagenesis screens in flies using engineered mutations have established a clear genetic component to sleep duration, revealing mutants that convey very long or short sleep. Whether such extreme long or short sleep could exist in natural populations was unknown. We applied artificial selection for high and low night sleep duration to an outbred population of Drosophila melanogaster for 13 generations. At the end of the selection procedure, night sleep duration diverged by 9.97 hours in the long and short sleeper populations, and 24-hour sleep was reduced to 3.3 hours in the short sleepers. Neither long nor short sleeper lifespan differed appreciably from controls, suggesting little physiological consequences to being an extreme long or short sleeper. Whole genome sequence data from seven generations of selection revealed several hundred thousand changes in allele frequencies at polymorphic loci across the genome. Combining the data from long and short sleeper populations across generations in a logistic regression implicated 126 polymorphisms in 80 candidate genes, and we confirmed three of these genes and a larger genomic region with mutant and chromosomal deficiency tests, respectively. Many of these genes could be connected in a single network based on previously known physical and genetic interactions. Candidate genes have known roles in several classic, highly conserved developmental and signaling pathways-EGFR, Wnt, Hippo, and MAPK. The involvement of highly pleiotropic pathway genes suggests that sleep duration in natural populations can be influenced by a wide variety of biological processes, which may be why the purpose of sleep has been so elusive.
Exact simulation of max-stable processes.
Dombry, Clément; Engelke, Sebastian; Oesting, Marco
2016-06-01
Max-stable processes play an important role as models for spatial extreme events. Their complex structure as the pointwise maximum over an infinite number of random functions makes their simulation difficult. Algorithms based on finite approximations are often inexact and computationally inefficient. We present a new algorithm for exact simulation of a max-stable process at a finite number of locations. It relies on the idea of simulating only the extremal functions, that is, those functions in the construction of a max-stable process that effectively contribute to the pointwise maximum. We further generalize the algorithm by Dieker & Mikosch (2015) for Brown-Resnick processes and use it for exact simulation via the spectral measure. We study the complexity of both algorithms, prove that our new approach via extremal functions is always more efficient, and provide closed-form expressions for their implementation that cover most popular models for max-stable processes and multivariate extreme value distributions. For simulation on dense grids, an adaptive design of the extremal function algorithm is proposed.
Walston, Zachary; Hernandez, Luis; Yake, Dale
2018-06-06
Conservative therapies for complex regional pain syndrome (CRPS) have traditionally focused on exercise and desensitization techniques targeted at the involved extremity. The primary purpose of this case series is to report on the potential benefit of utilizing manual therapy to the lumbar spine in conjunction with traditional conservative care when treating patients with lower extremity CRPS. Two patients with the diagnosis of lower extremity CRPS were treated with manual therapy to the lumbar spine in conjunction with education, exercise, desensitization, and soft tissue techniques for the extremity. Patient 1 received 13 sessions over 6 weeks resulting in a 34-point improvement in oswestry disability index (ODI) and 35-point improvement in lower extremity functional scale (LEFS). Patient 2 received 21 sessions over 12 weeks resulting in a 28-point improvement in ODI and a 41-point improvement in LEFS. Both patients exhibited reductions in pain and clinically meaningful improvements in function. Manual therapies when applied to the lumbar spine in these patients as part of a comprehensive treatment plan resulted in improved spinal mobility, decreased pain, and reduction is distal referred symptoms. Although one cannot infer a cause and effect relationship from a case series, this report identifies meaningful clinical outcomes potentially associated with manual physical therapy to the lumbar spine for two patients with complex regional pain syndrome type 1.
NASA Astrophysics Data System (ADS)
Nunes, Ana
2015-04-01
Extreme meteorological events played an important role in catastrophic occurrences observed in the past over densely populated areas in Brazil. This motived the proposal of an integrated system for analysis and assessment of vulnerability and risk caused by extreme events in urban areas that are particularly affected by complex topography. That requires a multi-scale approach, which is centered on a regional modeling system, consisting of a regional (spectral) climate model coupled to a land-surface scheme. This regional modeling system employs a boundary forcing method based on scale-selective bias correction and assimilation of satellite-based precipitation estimates. Scale-selective bias correction is a method similar to the spectral nudging technique for dynamical downscaling that allows internal modes to develop in agreement with the large-scale features, while the precipitation assimilation procedure improves the modeled deep-convection and drives the land-surface scheme variables. Here, the scale-selective bias correction acts only on the rotational part of the wind field, letting the precipitation assimilation procedure to correct moisture convergence, in order to reconstruct South American current climate within the South American Hydroclimate Reconstruction Project. The hydroclimate reconstruction outputs might eventually produce improved initial conditions for high-resolution numerical integrations in metropolitan regions, generating more reliable short-term precipitation predictions, and providing accurate hidrometeorological variables to higher resolution geomorphological models. Better representation of deep-convection from intermediate scales is relevant when the resolution of the regional modeling system is refined by any method to meet the scale of geomorphological dynamic models of stability and mass movement, assisting in the assessment of risk areas and estimation of terrain stability over complex topography. The reconstruction of past extreme events also helps the development of a system for decision-making, regarding natural and social disasters, and reducing impacts. Numerical experiments using this regional modeling system successfully modeled severe weather events in Brazil. Comparisons with the NCEP Climate Forecast System Reanalysis outputs were made at resolutions of about 40- and 25-km of the regional climate model.
Dynamical properties and extremes of Northern Hemisphere climate fields over the past 60 years
NASA Astrophysics Data System (ADS)
Faranda, Davide; Messori, Gabriele; Alvarez-Castro, M. Carmen; Yiou, Pascal
2017-12-01
Atmospheric dynamics are described by a set of partial differential equations yielding an infinite-dimensional phase space. However, the actual trajectories followed by the system appear to be constrained to a finite-dimensional phase space, i.e. a strange attractor. The dynamical properties of this attractor are difficult to determine due to the complex nature of atmospheric motions. A first step to simplify the problem is to focus on observables which affect - or are linked to phenomena which affect - human welfare and activities, such as sea-level pressure, 2 m temperature, and precipitation frequency. We make use of recent advances in dynamical systems theory to estimate two instantaneous dynamical properties of the above fields for the Northern Hemisphere: local dimension and persistence. We then use these metrics to characterize the seasonality of the different fields and their interplay. We further analyse the large-scale anomaly patterns corresponding to phase-space extremes - namely time steps at which the fields display extremes in their instantaneous dynamical properties. The analysis is based on the NCEP/NCAR reanalysis data, over the period 1948-2013. The results show that (i) despite the high dimensionality of atmospheric dynamics, the Northern Hemisphere sea-level pressure and temperature fields can on average be described by roughly 20 degrees of freedom; (ii) the precipitation field has a higher dimensionality; and (iii) the seasonal forcing modulates the variability of the dynamical indicators and affects the occurrence of phase-space extremes. We further identify a number of robust correlations between the dynamical properties of the different variables.
Kumar, Sunny; Kesharwani, Siddharth S; Mathur, Himanshi; Tyagi, Mohit; Bhat, G Jayarama; Tummala, Hemachand
2016-01-20
Curcumin is a natural dietary compound with demonstrated potential in preventing/treating several chronic diseases in animal models. However, this success is yet to be translated to humans mainly because of its poor oral bioavailability caused by extremely low water solubility. This manuscript demonstrates that water insoluble curcumin (~1μg/ml) forms highly aqueous soluble complexes (>2mg/ml) with a safe pH sensitive polymer, poly(butyl-methacrylate-co-(2-dimethylaminoethyl) methacrylate-co-methyl-methacrylate) when precipitated together in water. The complexation process was optimized to enhance curcumin loading by varying several formulation factors. Acetone as a solvent and polyvinyl alcohol as a stabilizer with 1:2 ratio of drug to polymer yielded complexes with relatively high loading (~280μg/ml) and enhanced solubility (>2mg/ml). The complexes were amorphous in solid and were soluble only in buffers with pHs less than 5.0. Hydrogen bond formation and hydrophobic interactions between curcumin and the polymer were recorded by infrared spectroscopy and nuclear magnetic resonance spectroscopy, respectively. Molecular complexes of curcumin were more stable at various pHs compared to unformulated curcumin. In mice, these complexes increased peak plasma concentration of curcumin by 6 times and oral bioavailability by ~20 times. This is a simple, economic and safer strategy of enhancing the oral bioavailability of curcumin. Copyright © 2015 Elsevier B.V. All rights reserved.
Slama-Schwok, A; Zakrzewska, K; Léger, G; Leroux, Y; Takahashi, M; Käs, E; Debey, P
2000-01-01
Using spectroscopic methods, we have studied the structural changes induced in both protein and DNA upon binding of the High-Mobility Group I (HMG-I) protein to a 21-bp sequence derived from mouse satellite DNA. We show that these structural changes depend on the stoichiometry of the protein/DNA complexes formed, as determined by Job plots derived from experiments using pyrene-labeled duplexes. Circular dichroism and melting temperature experiments extended in the far ultraviolet range show that while native HMG-I is mainly random coiled in solution, it adopts a beta-turn conformation upon forming a 1:1 complex in which the protein first binds to one of two dA.dT stretches present in the duplex. HMG-I structure in the 1:1 complex is dependent on the sequence of its DNA target. A 3:1 HMG-I/DNA complex can also form and is characterized by a small increase in the DNA natural bend and/or compaction coupled to a change in the protein conformation, as determined from fluorescence resonance energy transfer (FRET) experiments. In addition, a peptide corresponding to an extended DNA-binding domain of HMG-I induces an ordered condensation of DNA duplexes. Based on the constraints derived from pyrene excimer measurements, we present a model of these nucleated structures. Our results illustrate an extreme case of protein structure induced by DNA conformation that may bear on the evolutionary conservation of the DNA-binding motifs of HMG-I. We discuss the functional relevance of the structural flexibility of HMG-I associated with the nature of its DNA targets and the implications of the binding stoichiometry for several aspects of chromatin structure and gene regulation. PMID:10777751
NASA Astrophysics Data System (ADS)
Han, Ruimei; Zou, Youfeng; Ma, Chao; Liu, Pei
2014-11-01
Ordos area is the desert-wind erosion desertification steppe transition zone and the complex ecological zone. As the research area, Ordos City has the similar natural geographic environment to ShenDong coalfield. To research its ecological patterns and natural evolution law, it has instructive to reveal temporal and spatial changes of ecological environment with artificial disturbance in western mining. In this paper, a time series of AVHRR-NDVI(Normalized Difference Vegetation Index) data was used to monitor the change of vegetation temporal and spatial dynamics from 1981 to 2006 in Ordos City and ShenDong coalfield, where were as the research area. The MVC (Maximum Value Composites) method, average operation, linear regression, and gradation for NDVI change trend were used to obtained some results, as follows: ¬vegetation coverage had obvious characteristics with periodic change in research area for 26 years, and vegetation growth peak appeared on August, while the lowest appeared on January. The extreme values in Ordos City were 0.2351 and 0.1176, while they were 0.2657 and 0.1272 in ShenDong coalfield. The NDVI value fluctuation was a modest rise trend overall in research area. The extreme values were 0.3071 and 0.1861 in Ordos City, while they were 0.3454 and 0.1904 in ShenDong coalfield. In spatial distribution, slight improvement area and slight degradation area were accounting for 42.49% and 8.37% in Ordos City, while slight improvement area moderate improvement area were accounting for 70.59% and 29.41% in ShenDong coalfield. Above of results indicated there was less vegetation coverage in research area, which reflected the characteristics of fragile natural geographical environment. In addition, vegetation coverage was with a modest rise on the whole, which reflected the natural environment change.
Inter-model variability in hydrological extremes projections for Amazonian sub-basins
NASA Astrophysics Data System (ADS)
Andres Rodriguez, Daniel; Garofolo, Lucas; Lázaro de Siqueira Júnior, José; Samprogna Mohor, Guilherme; Tomasella, Javier
2014-05-01
Irreducible uncertainties due to knowledge's limitations, chaotic nature of climate system and human decision-making process drive uncertainties in Climate Change projections. Such uncertainties affect the impact studies, mainly when associated to extreme events, and difficult the decision-making process aimed at mitigation and adaptation. However, these uncertainties allow the possibility to develop exploratory analyses on system's vulnerability to different sceneries. The use of different climate model's projections allows to aboard uncertainties issues allowing the use of multiple runs to explore a wide range of potential impacts and its implications for potential vulnerabilities. Statistical approaches for analyses of extreme values are usually based on stationarity assumptions. However, nonstationarity is relevant at the time scales considered for extreme value analyses and could have great implications in dynamic complex systems, mainly under climate change transformations. Because this, it is required to consider the nonstationarity in the statistical distribution parameters. We carried out a study of the dispersion in hydrological extremes projections using climate change projections from several climate models to feed the Distributed Hydrological Model of the National Institute for Spatial Research, MHD-INPE, applied in Amazonian sub-basins. This model is a large-scale hydrological model that uses a TopModel approach to solve runoff generation processes at the grid-cell scale. MHD-INPE model was calibrated for 1970-1990 using observed meteorological data and comparing observed and simulated discharges by using several performance coeficients. Hydrological Model integrations were performed for present historical time (1970-1990) and for future period (2010-2100). Because climate models simulate the variability of the climate system in statistical terms rather than reproduce the historical behavior of climate variables, the performances of the model's runs during the historical period, when feed with climate model data, were tested using descriptors of the Flow Duration Curves. The analyses of projected extreme values were carried out considering the nonstationarity of the GEV distribution parameters and compared with extremes events in present time. Results show inter-model variability in a broad dispersion on projected extreme's values. Such dispersion implies different degrees of socio-economic impacts associated to extreme hydrological events. Despite the no existence of one optimum result, this variability allows the analyses of adaptation strategies and its potential vulnerabilities.
Complex multifractal nature in Mycobacterium tuberculosis genome
Mandal, Saurav; Roychowdhury, Tanmoy; Chirom, Keilash; Bhattacharya, Alok; Brojen Singh, R. K.
2017-01-01
The mutifractal and long range correlation (C(r)) properties of strings, such as nucleotide sequence can be a useful parameter for identification of underlying patterns and variations. In this study C(r) and multifractal singularity function f(α) have been used to study variations in the genomes of a pathogenic bacteria Mycobacterium tuberculosis. Genomic sequences of M. tuberculosis isolates displayed significant variations in C(r) and f(α) reflecting inherent differences in sequences among isolates. M. tuberculosis isolates can be categorised into different subgroups based on sensitivity to drugs, these are DS (drug sensitive isolates), MDR (multi-drug resistant isolates) and XDR (extremely drug resistant isolates). C(r) follows significantly different scaling rules in different subgroups of isolates, but all the isolates follow one parameter scaling law. The richness in complexity of each subgroup can be quantified by the measures of multifractal parameters displaying a pattern in which XDR isolates have highest value and lowest for drug sensitive isolates. Therefore C(r) and multifractal functions can be useful parameters for analysis of genomic sequences. PMID:28440326
The Nature and Evolution of Genomic Diversity in the Mycobacterium tuberculosis Complex.
Brites, Daniela; Gagneux, Sebastien
2017-01-01
The Mycobacterium tuberculosis Complex (MTBC) consists of a clonal group of several mycobacterial lineages pathogenic to a range of different mammalian hosts. In this chapter, we discuss the origins and the evolutionary forces shaping the genomic diversity of the human-adapted MTBC. Advances in whole-genome sequencing have brought invaluable insights into the macro-evolution of the MTBC, and the biogeographical distribution of the different MTBC lineages, the phylogenetic relationships between these lineages. Moreover, micro-evolutionary processes start to be better understood, including those influencing bacterial mutation rates and those governing the fate of new mutations emerging within patients during treatment. Current genomic and epidemiological evidence reflect the fact that, through ecological specialization, the MTBC affecting humans became an obligate and extremely well-adapted human pathogen. Identifying the adaptive traits of human-adapted MTBC and unraveling the bacterial loci that interact with human genomic variation might help identify new targets for developing better vaccines and designing more effective treatments.
Qiu, Chao; Chang, Ranran; Yang, Jie; Ge, Shengju; Xiong, Liu; Zhao, Mei; Li, Man; Sun, Qingjie
2017-04-15
Essential oils (EOs), including menthone, oregano, cinnamon, lavender, and citral, are natural products that have antimicrobial and antioxidant activities. However, extremely low water solubility, and easy degradation by heat, restrict their application. The aim of this work was to evaluate the enhancement in antioxidative and antimicrobial activities of EOs encapsulated in starch nanoparticles (SNPs) prepared by short glucan chains. For the first time, we have successfully fabricated menthone-loaded SNPs (SNPs-M) at different complexation temperatures (30, 60, and 90°C) by an in situ nanoprecipitation method. The SNPs-M displayed spherical shapes, and the particle sizes ranged from 93 to 113nm. The encapsulation efficiency (EE) of SNPs-M increased significantly with an increase in complexation temperature, and the maximum EE was 86.6%. The SNPs-M formed at 90°C had high crystallization and thermal stability. The durations of the antioxidant and antimicrobial activities of EOs was extended by their encapsulation in the SNPs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Biofilms in Endodontics-Current Status and Future Directions.
Neelakantan, Prasanna; Romero, Monica; Vera, Jorge; Daood, Umer; Khan, Asad U; Yan, Aixin; Cheung, Gary Shun Pan
2017-08-11
Microbiota are found in highly organized and complex entities, known as biofilms, the characteristics of which are fundamentally different from microbes in planktonic suspensions. Root canal infections are biofilm mediated. The complexity and variability of the root canal system, together with the multi-species nature of biofilms, make disinfection of this system extremely challenging. Microbial persistence appears to be the most important factor for failure of root canal treatment and this could further have an impact on pain and quality of life. Biofilm removal is accomplished by a chemo-mechanical process, using specific instruments and disinfecting chemicals in the form of irrigants and/or intracanal medicaments. Endodontic research has focused on the characterization of root canal biofilms and the clinical methods to disrupt the biofilms in addition to achieving microbial killing. In this narrative review, we discuss the role of microbial biofilms in endodontics and review the literature on the role of root canal disinfectants and disinfectant-activating methods on biofilm removal.
Complex multifractal nature in Mycobacterium tuberculosis genome
NASA Astrophysics Data System (ADS)
Mandal, Saurav; Roychowdhury, Tanmoy; Chirom, Keilash; Bhattacharya, Alok; Brojen Singh, R. K.
2017-04-01
The mutifractal and long range correlation (C(r)) properties of strings, such as nucleotide sequence can be a useful parameter for identification of underlying patterns and variations. In this study C(r) and multifractal singularity function f(α) have been used to study variations in the genomes of a pathogenic bacteria Mycobacterium tuberculosis. Genomic sequences of M. tuberculosis isolates displayed significant variations in C(r) and f(α) reflecting inherent differences in sequences among isolates. M. tuberculosis isolates can be categorised into different subgroups based on sensitivity to drugs, these are DS (drug sensitive isolates), MDR (multi-drug resistant isolates) and XDR (extremely drug resistant isolates). C(r) follows significantly different scaling rules in different subgroups of isolates, but all the isolates follow one parameter scaling law. The richness in complexity of each subgroup can be quantified by the measures of multifractal parameters displaying a pattern in which XDR isolates have highest value and lowest for drug sensitive isolates. Therefore C(r) and multifractal functions can be useful parameters for analysis of genomic sequences.
World currency exchange rate cross-correlations
NASA Astrophysics Data System (ADS)
Droå¼dż, S.; Górski, A. Z.; Kwapień, J.
2007-08-01
World currency network constitutes one of the most complex structures that is associated with the contemporary civilization. On a way towards quantifying its characteristics we study the cross correlations in changes of the daily foreign exchange rates within the basket of 60 currencies in the period December 1998 May 2005. Such a dynamics turns out to predominantly involve one outstanding eigenvalue of the correlation matrix. The magnitude of this eigenvalue depends however crucially on which currency is used as a base currency for the remaining ones. Most prominent it looks from the perspective of a peripheral currency. This largest eigenvalue is seen to systematically decrease and thus the structure of correlations becomes more heterogeneous, when more significant currencies are used as reference. An extreme case in this later respect is the USD in the period considered. Besides providing further insight into subtle nature of complexity, these observations point to a formal procedure that in general can be used for practical purposes of measuring the relative currencies significance on various time horizons.
Biofilms in Endodontics—Current Status and Future Directions
Neelakantan, Prasanna; Romero, Monica; Vera, Jorge; Daood, Umer; Khan, Asad U.; Yan, Aixin; Cheung, Gary Shun Pan
2017-01-01
Microbiota are found in highly organized and complex entities, known as biofilms, the characteristics of which are fundamentally different from microbes in planktonic suspensions. Root canal infections are biofilm mediated. The complexity and variability of the root canal system, together with the multi-species nature of biofilms, make disinfection of this system extremely challenging. Microbial persistence appears to be the most important factor for failure of root canal treatment and this could further have an impact on pain and quality of life. Biofilm removal is accomplished by a chemo-mechanical process, using specific instruments and disinfecting chemicals in the form of irrigants and/or intracanal medicaments. Endodontic research has focused on the characterization of root canal biofilms and the clinical methods to disrupt the biofilms in addition to achieving microbial killing. In this narrative review, we discuss the role of microbial biofilms in endodontics and review the literature on the role of root canal disinfectants and disinfectant-activating methods on biofilm removal. PMID:28800075
Optimized Materials From First Principles Simulations: Are We There Yet?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galli, G; Gygi, F
2005-07-26
In the past thirty years, the use of scientific computing has become pervasive in all disciplines: collection and interpretation of most experimental data is carried out using computers, and physical models in computable form, with various degrees of complexity and sophistication, are utilized in all fields of science. However, full prediction of physical and chemical phenomena based on the basic laws of Nature, using computer simulations, is a revolution still in the making, and it involves some formidable theoretical and computational challenges. We illustrate the progress and successes obtained in recent years in predicting fundamental properties of materials in condensedmore » phases and at the nanoscale, using ab-initio, quantum simulations. We also discuss open issues related to the validation of the approximate, first principles theories used in large scale simulations, and the resulting complex interplay between computation and experiment. Finally, we describe some applications, with focus on nanostructures and liquids, both at ambient and under extreme conditions.« less
Coherent transport and energy flow patterns in photosynthesis under incoherent excitation.
Pelzer, Kenley M; Can, Tankut; Gray, Stephen K; Morr, Dirk K; Engel, Gregory S
2014-03-13
Long-lived coherences have been observed in photosynthetic complexes after laser excitation, inspiring new theories regarding the extreme quantum efficiency of photosynthetic energy transfer. Whether coherent (ballistic) transport occurs in nature and whether it improves photosynthetic efficiency remain topics of debate. Here, we use a nonequilibrium Green's function analysis to model exciton transport after excitation from an incoherent source (as opposed to coherent laser excitation). We find that even with an incoherent source, the rate of environmental dephasing strongly affects exciton transport efficiency, suggesting that the relationship between dephasing and efficiency is not an artifact of coherent excitation. The Green's function analysis provides a clear view of both the pattern of excitonic fluxes among chromophores and the multidirectionality of energy transfer that is a feature of coherent transport. We see that even in the presence of an incoherent source, transport occurs by qualitatively different mechanisms as dephasing increases. Our approach can be generalized to complex synthetic systems and may provide a new tool for optimizing synthetic light harvesting materials.
Huang, Rao; Lo, Li-Ta; Wen, Yuhua; Voter, Arthur F; Perez, Danny
2017-10-21
Modern molecular-dynamics-based techniques are extremely powerful to investigate the dynamical evolution of materials. With the increase in sophistication of the simulation techniques and the ubiquity of massively parallel computing platforms, atomistic simulations now generate very large amounts of data, which have to be carefully analyzed in order to reveal key features of the underlying trajectories, including the nature and characteristics of the relevant reaction pathways. We show that clustering algorithms, such as the Perron Cluster Cluster Analysis, can provide reduced representations that greatly facilitate the interpretation of complex trajectories. To illustrate this point, clustering tools are used to identify the key kinetic steps in complex accelerated molecular dynamics trajectories exhibiting shape fluctuations in Pt nanoclusters. This analysis provides an easily interpretable coarse representation of the reaction pathways in terms of a handful of clusters, in contrast to the raw trajectory that contains thousands of unique states and tens of thousands of transitions.
NASA Astrophysics Data System (ADS)
Huang, Rao; Lo, Li-Ta; Wen, Yuhua; Voter, Arthur F.; Perez, Danny
2017-10-01
Modern molecular-dynamics-based techniques are extremely powerful to investigate the dynamical evolution of materials. With the increase in sophistication of the simulation techniques and the ubiquity of massively parallel computing platforms, atomistic simulations now generate very large amounts of data, which have to be carefully analyzed in order to reveal key features of the underlying trajectories, including the nature and characteristics of the relevant reaction pathways. We show that clustering algorithms, such as the Perron Cluster Cluster Analysis, can provide reduced representations that greatly facilitate the interpretation of complex trajectories. To illustrate this point, clustering tools are used to identify the key kinetic steps in complex accelerated molecular dynamics trajectories exhibiting shape fluctuations in Pt nanoclusters. This analysis provides an easily interpretable coarse representation of the reaction pathways in terms of a handful of clusters, in contrast to the raw trajectory that contains thousands of unique states and tens of thousands of transitions.
Acoustic fine structure may encode biologically relevant information for zebra finches.
Prior, Nora H; Smith, Edward; Lawson, Shelby; Ball, Gregory F; Dooling, Robert J
2018-04-18
The ability to discriminate changes in the fine structure of complex sounds is well developed in birds. However, the precise limit of this discrimination ability and how it is used in the context of natural communication remains unclear. Here we describe natural variability in acoustic fine structure of male and female zebra finch calls. Results from psychoacoustic experiments demonstrate that zebra finches are able to discriminate extremely small differences in fine structure, which are on the order of the variation in acoustic fine structure that is present in their vocal signals. Results from signal analysis methods also suggest that acoustic fine structure may carry information that distinguishes between biologically relevant categories including sex, call type and individual identity. Combined, our results are consistent with the hypothesis that zebra finches can encode biologically relevant information within the fine structure of their calls. This study provides a foundation for our understanding of how acoustic fine structure may be involved in animal communication.
French, Susannah S.; Brodie, Edmund D.
2017-01-01
To accurately predict the impact of environmental change, it is necessary to assay effects of key interacting stressors on vulnerable organisms, and the potential resiliency of their populations. Yet, for the most part, these critical data are missing. We examined the effects of two common abiotic stressors predicted to interact with climate change, salinity and temperature, on the embryonic survival and development of a model freshwater vertebrate, the rough-skinned newt (Taricha granulosa) from different populations. We found that salinity and temperature significantly interacted to affect newt embryonic survival and development, with the negative effects of salinity most pronounced at temperature extremes. We also found significant variation among, and especially within, populations, with different females varying in the performance of their eggs at different salinity–temperature combinations, possibly providing the raw material for future natural selection. Our results highlight the complex nature of predicting responses to climate change in space and time, and provide critical data towards that aim. PMID:28680662
Butts, Daniel A; Weng, Chong; Jin, Jianzhong; Alonso, Jose-Manuel; Paninski, Liam
2011-08-03
Visual neurons can respond with extremely precise temporal patterning to visual stimuli that change on much slower time scales. Here, we investigate how the precise timing of cat thalamic spike trains-which can have timing as precise as 1 ms-is related to the stimulus, in the context of both artificial noise and natural visual stimuli. Using a nonlinear modeling framework applied to extracellular data, we demonstrate that the precise timing of thalamic spike trains can be explained by the interplay between an excitatory input and a delayed suppressive input that resembles inhibition, such that neuronal responses only occur in brief windows where excitation exceeds suppression. The resulting description of thalamic computation resembles earlier models of contrast adaptation, suggesting a more general role for mechanisms of contrast adaptation in visual processing. Thus, we describe a more complex computation underlying thalamic responses to artificial and natural stimuli that has implications for understanding how visual information is represented in the early stages of visual processing.
Trophic interactions induce spatial self-organization of microbial consortia on rough surfaces.
Wang, Gang; Or, Dani
2014-10-24
The spatial context of microbial interactions common in natural systems is largely absent in traditional pure culture-based microbiology. The understanding of how interdependent microbial communities assemble and coexist in limited spatial domains remains sketchy. A mechanistic model of cell-level interactions among multispecies microbial populations grown on hydrated rough surfaces facilitated systematic evaluation of how trophic dependencies shape spatial self-organization of microbial consortia in complex diffusion fields. The emerging patterns were persistent irrespective of initial conditions and resilient to spatial and temporal perturbations. Surprisingly, the hydration conditions conducive for self-assembly are extremely narrow and last only while microbial cells remain motile within thin aqueous films. The resulting self-organized microbial consortia patterns could represent optimal ecological templates for the architecture that underlie sessile microbial colonies on natural surfaces. Understanding microbial spatial self-organization offers new insights into mechanisms that sustain small-scale soil microbial diversity; and may guide the engineering of functional artificial microbial consortia.
Effect of molding conditions on fracture mechanisms and stiffness of a composite of grid structure
NASA Astrophysics Data System (ADS)
Nikolaev, V. P.; Pichugin, V. S.; Korobeinikov, A. G.
1999-01-01
Methods of determining a complex of stiffness and deformability characteristics of a composite with rhomb-type grid structure were elaborated. Rhomb-type specimens were used for testing the ribs of the structure in tension, compression, and bending and the nodal points in shear in the plane of the ribs. The effect of additional tensioning of the ribs preceding the curing of the binder was investigated (ten tensioning levels ranging from 8 to 70 N/bundle with a linear density of 390 tex were applied). In testing epoxy-carbon specimens (UKN-5000+EHD-MK) in compression and tension, the failure mode changed depending on the tensioning level, i.e., the presence or absence of delamination and the appearance of "dry" fibers were detected. Dependences of the mechanical properties on tensioning were of a markedly pronounced extreme nature. The methods elaborated allow us to investigate the effect of other molding parameters, as well as the conditions and nature of loading, on the mechanical characteristics of composites.
Costanza, Robert; Graumlich, Lisa; Steffen, Will; Crumley, Carole; Dearing, John; Hibbard, Kathy; Leemans, Rik; Redman, Charles; Schimel, David
2007-11-01
Understanding the history of how humans have interacted with the rest of nature can help clarify the options for managing our increasingly interconnected global system. Simple, deterministic relationships between environmental stress and social change are inadequate. Extreme drought, for instance, triggered both social collapse and ingenious management of water through irrigation. Human responses to change, in turn, feed into climate and ecological systems, producing a complex web of multidirectional connections in time and space. Integrated records of the co-evolving human-environment system over millennia are needed to provide a basis for a deeper understanding of the present and for forecasting the future. This requires the major task of assembling and integrating regional and global historical, archaeological, and paleoenvironmental records. Humans cannot predict the future. But, if we can adequately understand the past, we can use that understanding to influence our decisions and to create a better, more sustainable and desirable future.
The Nature and Characteristics of Youthful Extremism
ERIC Educational Resources Information Center
Zubok, Iu. A.; Chuprov, V. I.
2010-01-01
Extremism is an acute problem of the present day. Moods of extremism are manifested in all spheres of the life and activities of young people--in education, work, business, political life, and leisure activity. They can be found in both individual and group social self-determination and are influenced by the immediate social environment as well as…
Interfacing DNA nanodevices with biology: challenges, solutions and perspectives
NASA Astrophysics Data System (ADS)
Vinther, Mathias; Kjems, Jørgen
2016-08-01
The cellular machinery performs millions of complex reactions with extreme precision at nanoscale. From studying these reactions, scientists have become inspired to build artificial nanosized molecular devices with programmed functions. One of the fundamental tools in designing and creating these nanodevices is molecular self-assembly. In nature, deoxyribonucleic acid (DNA) is inarguably one of the most remarkable self-assembling molecules. Governed by the Watson-Crick base-pairing rules, DNA assembles with a structural reliability and predictability based on sequence composition unlike any other complex biological polymer. This consistency has enabled rational design of hundreds of two- and three-dimensional shapes with a molecular precision and homogeneity not preceded by any other known technology at the nanometer scale. During the last two decades, DNA nanotechnology has undergone a rapid evolution pioneered by the work of Nadrian Seeman (Kallenbach et al 1983 Nature 205 829-31). Especially the introduction of the versatile DNA Origami technique by Rothemund (2006 Nature 440 297-302) led to an efflorescence of new DNA-based self-assembled nanostructures (Andersen et al 2009 Nature 459 73-6, Douglas et al 2009 Nature 459 414-8, Dietz et al 2009 Science 325 725-30, Han et al 2011 Science 332 342-6, Iinuma et al 2014 Science 344 65-9), and variations of this technique have contributed to an increasing repertoire of DNA nanostructures (Wei et al 2012 Nature 485 623-6, Ke et al 2012 Science 338 1177-83, Benson et al 2015 Nature 523 441-4, Zhang et al 2015 Nat. Nanotechnol. 10 779-84, Scheible et al 2015 Small 11 5200-5). These advances have naturally triggered the question: What can these DNA nanostructures be used for? One of the leading proposals of use for DNA nanotechnology has been in biology and biomedicine acting as a molecular ‘nanorobot’ or smart drug interacting with the cellular machinery. In this review, we will explore and examine the perspective of DNA nanotechnology for such use. We summarize which requirements DNA nanostructures must fulfil to function in cellular environments and inside living organisms. In addition, we highlight recent advances in interfacing DNA nanostructures with biology.
Extreme-scale Algorithms and Solver Resilience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dongarra, Jack
A widening gap exists between the peak performance of high-performance computers and the performance achieved by complex applications running on these platforms. Over the next decade, extreme-scale systems will present major new challenges to algorithm development that could amplify this mismatch in such a way that it prevents the productive use of future DOE Leadership computers due to the following; Extreme levels of parallelism due to multicore processors; An increase in system fault rates requiring algorithms to be resilient beyond just checkpoint/restart; Complex memory hierarchies and costly data movement in both energy and performance; Heterogeneous system architectures (mixing CPUs, GPUs,more » etc.); and Conflicting goals of performance, resilience, and power requirements.« less
[Injury mechanisms in extreme violence settings].
Arcaute-Velazquez, Fernando Federico; García-Núñez, Luis Manuel; Noyola-Vilallobos, Héctor Faustino; Espinoza-Mercado, Fernando; Rodríguez-Vega, Carlos Eynar
2016-01-01
Extreme violence events are consequence of current world-wide economic, political and social conditions. Injury patterns found among victims of extreme violence events are very complex, obeying several high-energy injury mechanisms. In this article, we present the basic concepts of trauma kinematics that regulate the clinical approach to victims of extreme violence events, in the hope that clinicians increase their theoretical armamentarium, and reflecting on obtaining better outcomes. Copyright © 2016. Published by Masson Doyma México S.A.
Pharmacological evidence is consistent with a prominent role of spatial memory in complex navigation
2016-01-01
The ability to learn about the spatial environment plays an important role in navigation, migration, dispersal, and foraging. However, our understanding of both the role of cognition in the development of navigation strategies and the mechanisms underlying these strategies is limited. We tested the hypothesis that complex navigation is facilitated by spatial memory in a population of Chrysemys picta that navigate with extreme precision (±3.5 m) using specific routes that must be learned prior to age three. We used scopolamine, a muscarinic acetylcholine receptor antagonist, to manipulate the cognitive spatial abilities of free-living turtles during naturally occurring overland movements. Experienced adults treated with scopolamine diverted markedly from their precise navigation routes. Naive juveniles lacking experience (and memory) were not affected by scopolamine, and thereby served as controls for perceptual or non-spatial cognitive processes associated with navigation. Further, neither adult nor juvenile movement was affected by methylscopolamine, a form of scopolamine that does not cross the blood–brain barrier, a control for the peripheral effects of scopolamine. Together, these results are consistent with a role of spatial cognition in complex navigation and highlight a cellular mechanism that might underlie spatial cognition. Overall, our findings expand our understanding of the development of complex cognitive abilities of vertebrates and the neurological mechanisms of navigation. PMID:26865305
Complex networks: Effect of subtle changes in nature of randomness
NASA Astrophysics Data System (ADS)
Goswami, Sanchari; Biswas, Soham; Sen, Parongama
2011-03-01
In two different classes of network models, namely, the Watts Strogatz type and the Euclidean type, subtle changes have been introduced in the randomness. In the Watts Strogatz type network, rewiring has been done in different ways and although the qualitative results remain the same, finite differences in the exponents are observed. In the Euclidean type networks, where at least one finite phase transition occurs, two models differing in a similar way have been considered. The results show a possible shift in one of the phase transition points but no change in the values of the exponents. The WS and Euclidean type models are equivalent for extreme values of the parameters; we compare their behaviour for intermediate values.
Microanalysis study on ancient Wiangkalong Pottery
NASA Astrophysics Data System (ADS)
Won-in, K.; Tancharakorn, S.; Dararutana, P.
2017-09-01
Wiangkalong is one of major ceramic production cities in northern of Thailand, once colonized by the ancient Lanna Kingdom (1290 A.D.). Ancient Wiangkalong potteries were produced with shapes and designs as similar as those of the Chinese Yuan and Ming Dynasties. Due to the complex nature of materials and objects, extremely sensitive, spatially resolved, multi-elemental and versatile analytical instruments using non-destructive and non-sampling methods to analyze theirs composition are need. In this work, micro-beam X-ray fluorescence spectroscopy based on synchrotron radiation was firstly used to characterize the elemental composition of the ancient Wiangkalong pottery. The results showed the variations in elemental composition of the body matrix, the glaze and the underglaze painting, such as K, Ca, Ti, V, Cr, Mn and Fe.
Learning Human Aspects of Collaborative Software Development
ERIC Educational Resources Information Center
Hadar, Irit; Sherman, Sofia; Hazzan, Orit
2008-01-01
Collaboration has become increasingly widespread in the software industry as systems have become larger and more complex, adding human complexity to the technological complexity already involved in developing software systems. To deal with this complexity, human-centric software development methods, such as Extreme Programming and other agile…
Study of Environmental Data Complexity using Extreme Learning Machine
NASA Astrophysics Data System (ADS)
Leuenberger, Michael; Kanevski, Mikhail
2017-04-01
The main goals of environmental data science using machine learning algorithm deal, in a broad sense, around the calibration, the prediction and the visualization of hidden relationship between input and output variables. In order to optimize the models and to understand the phenomenon under study, the characterization of the complexity (at different levels) should be taken into account. Therefore, the identification of the linear or non-linear behavior between input and output variables adds valuable information for the knowledge of the phenomenon complexity. The present research highlights and investigates the different issues that can occur when identifying the complexity (linear/non-linear) of environmental data using machine learning algorithm. In particular, the main attention is paid to the description of a self-consistent methodology for the use of Extreme Learning Machines (ELM, Huang et al., 2006), which recently gained a great popularity. By applying two ELM models (with linear and non-linear activation functions) and by comparing their efficiency, quantification of the linearity can be evaluated. The considered approach is accompanied by simulated and real high dimensional and multivariate data case studies. In conclusion, the current challenges and future development in complexity quantification using environmental data mining are discussed. References - Huang, G.-B., Zhu, Q.-Y., Siew, C.-K., 2006. Extreme learning machine: theory and applications. Neurocomputing 70 (1-3), 489-501. - Kanevski, M., Pozdnoukhov, A., Timonin, V., 2009. Machine Learning for Spatial Environmental Data. EPFL Press; Lausanne, Switzerland, p.392. - Leuenberger, M., Kanevski, M., 2015. Extreme Learning Machines for spatial environmental data. Computers and Geosciences 85, 64-73.
Contributions of natural climate changes and human activities to the trend of extreme precipitation
NASA Astrophysics Data System (ADS)
Gao, Lu; Huang, Jie; Chen, Xingwei; Chen, Ying; Liu, Meibing
2018-06-01
This study focuses on the analysis of the nonstationarity characteristics of extreme precipitation and their attributions in the southeastern coastal region of China. The maximum daily precipitation (MDP) series is extracted from observations at 79 meteorological stations in the study area during the first flood season (April-June) from 1960 to 2012. The trends of the mean (Mn) and variance (Var) of MDP are detected using the Generalized Additive Models for Location, Scale, and Shape parameters (GAMLSS) and Mann-Kendall test. The contributions of natural climate change and human activities to the Mn and Var changes of MDP are investigated using six large-scale circulation variables and emissions of four greenhouse gases based on GAMLSS and a contribution analysis method. The results demonstrate that the nonstationarity of extreme precipitation on local scales is significant. The Mn and Var of extreme precipitation increase in the north of Zhejiang, the middle of Fujian, and the south of Guangdong. In general, natural climate change contributes more to Mn from 1960 to 2012 than to Var. However, human activities cause a greater Var in the rapid socioeconomic development period (1986-2012) than in the slow socioeconomic development period (1960-1985), especially in Zhejiang and Guangdong. The community should pay more attention to the possibility of extreme precipitation events and associated disasters triggered by human activities.
A dependence modelling study of extreme rainfall in Madeira Island
NASA Astrophysics Data System (ADS)
Gouveia-Reis, Délia; Guerreiro Lopes, Luiz; Mendonça, Sandra
2016-08-01
The dependence between variables plays a central role in multivariate extremes. In this paper, spatial dependence of Madeira Island's rainfall data is addressed within an extreme value copula approach through an analysis of maximum annual data. The impact of altitude, slope orientation, distance between rain gauge stations and distance from the stations to the sea are investigated for two different periods of time. The results obtained highlight the influence of the island's complex topography on the spatial distribution of extreme rainfall in Madeira Island.
1987-09-21
objectives of our program are to isolate and characterize a fully active DNA dependent RNA polymerase from the extremely halophilic archaebacteria of the genus...operons in II. Marismortui. The halobacteriaceae are extreme halophiles . They require 3.5 M NaCI for optimal growth an(l no growth is observed below 2...was difficutlt to perform due to the extreme genetic instability in this strain (6). In contrast, the genoine of the extreme halophilic and prototrophic
Towards a Framework for Evolvable Network Design
NASA Astrophysics Data System (ADS)
Hassan, Hoda; Eltarras, Ramy; Eltoweissy, Mohamed
The layered Internet architecture that had long guided network design and protocol engineering was an “interconnection architecture” defining a framework for interconnecting networks rather than a model for generic network structuring and engineering. We claim that the approach of abstracting the network in terms of an internetwork hinders the thorough understanding of the network salient characteristics and emergent behavior resulting in impeding design evolution required to address extreme scale, heterogeneity, and complexity. This paper reports on our work in progress that aims to: 1) Investigate the problem space in terms of the factors and decisions that influenced the design and development of computer networks; 2) Sketch the core principles for designing complex computer networks; and 3) Propose a model and related framework for building evolvable, adaptable and self organizing networks We will adopt a bottom up strategy primarily focusing on the building unit of the network model, which we call the “network cell”. The model is inspired by natural complex systems. A network cell is intrinsically capable of specialization, adaptation and evolution. Subsequently, we propose CellNet; a framework for evolvable network design. We outline scenarios for using the CellNet framework to enhance legacy Internet protocol stack.
Natural Hazards Education in the Himalayan Region of Ladakh, India
NASA Astrophysics Data System (ADS)
Gill, Joel; Tostevin, Rosalie
2015-04-01
Here we present a review of a geohazards education and engagement project in the Indian region of Ladakh. Located in the Indian Himalaya, Ladakh is home to historically-disadvantaged and endangered indigenous groups. It is also an area of extreme topography, climate and vulnerability, with a growing tourist industry. This combination of factors makes it an important region to improve geohazards understanding and observe the complex interactions between nature, society, and culture. This project: (i) delivered a geoscience education programme, in conjunction with a range of local and international partners, to multiple schools in the region; (ii) utilised interactive demonstrations to teach students about the key physical dynamics of landslides and earthquakes; and (iii) integrated aspects of physical and social science within the teaching, to give students a holistic understanding of natural hazards and disaster risk reduction. In total three programmes were delivered, to a range of different ethnic and socio-economic backgrounds. This presentation will particularly highlight (i) the importance of delivering material in a culturally appropriate way, (ii) challenges regarding the sustainability of delivering high quality geoscience education projects, and (iii) ways in which geoscience education outreach can be mainstreamed into overseas research visits.
Recent advances in environmental data mining
NASA Astrophysics Data System (ADS)
Leuenberger, Michael; Kanevski, Mikhail
2016-04-01
Due to the large amount and complexity of data available nowadays in geo- and environmental sciences, we face the need to develop and incorporate more robust and efficient methods for their analysis, modelling and visualization. An important part of these developments deals with an elaboration and application of a contemporary and coherent methodology following the process from data collection to the justification and communication of the results. Recent fundamental progress in machine learning (ML) can considerably contribute to the development of the emerging field - environmental data science. The present research highlights and investigates the different issues that can occur when dealing with environmental data mining using cutting-edge machine learning algorithms. In particular, the main attention is paid to the description of the self-consistent methodology and two efficient algorithms - Random Forest (RF, Breiman, 2001) and Extreme Learning Machines (ELM, Huang et al., 2006), which recently gained a great popularity. Despite the fact that they are based on two different concepts, i.e. decision trees vs artificial neural networks, they both propose promising results for complex, high dimensional and non-linear data modelling. In addition, the study discusses several important issues of data driven modelling, including feature selection and uncertainties. The approach considered is accompanied by simulated and real data case studies from renewable resources assessment and natural hazards tasks. In conclusion, the current challenges and future developments in statistical environmental data learning are discussed. References - Breiman, L., 2001. Random Forests. Machine Learning 45 (1), 5-32. - Huang, G.-B., Zhu, Q.-Y., Siew, C.-K., 2006. Extreme learning machine: theory and applications. Neurocomputing 70 (1-3), 489-501. - Kanevski, M., Pozdnoukhov, A., Timonin, V., 2009. Machine Learning for Spatial Environmental Data. EPFL Press; Lausanne, Switzerland, p.392. - Leuenberger, M., Kanevski, M., 2015. Extreme Learning Machines for spatial environmental data. Computers and Geosciences 85, 64-73.
NASA Astrophysics Data System (ADS)
Akin, B. H.; Van Stan, J. T., II; Cote, J. F.; Jarvis, M. T.; Underwood, J.; Friesen, J.; Hildebrandt, A.; Maldonado, G.
2017-12-01
Trees' partitioning of rainfall is an important first process along the rainfall-to-runoff pathway that has economically significant influences on urban stormwater management. However, important knowledge gaps exist regarding (1) its role during extreme storms and (2) how this role changes as forest structure is altered by urbanization. Little research has been conducted on canopy rainfall partitioning during large, intense storms, likely because canopy water storage is rapidly overwhelmed (i.e., 1-3 mm) by short duration events exceeding, for example, 80 mm of rainfall. However, canopy structure controls more than just storage; it also affects the time for rain to drain to the surface (becoming throughfall) and the micrometeorological conditions that drive wet canopy evaporation. In fact, observations from an example extreme ( 100 mm with maximum 5-minute intensities exceeding 55 mm/h) storm across a urban-to-natural gradient in pine forests in southeast Georgia (USA), show that storm intensities were differentially dampened by 33% (tree row), 28% (forest fragment), and 17% (natural forests). In addition, maximum wet canopy evaporation rates were higher for the exposed tree row (0.18 mm/h) than for the partially-enclosed fragment canopy (0.14 mm/h) and the closed canopy natural forest site (0.11). This resulted in interception percentages decreasing from urban-to-natural stand structures (25% to 16%). A synoptic analysis of the extreme storm in this case study also shows that the mesoscale meteorological conditions that developed the heavy rainfall is expected to occur more often with projected climate changes.
A new approach to evaluate natural zeolite ability to sorb lead (Pb) from aqueous solutions
NASA Astrophysics Data System (ADS)
Drosos, Evangelos I. P.; Karapanagioti, Hrissi K.
2013-04-01
Lead (Pb) is a hazardous pollutant commonly found in aquatic ecosystems. Among several methods available, the addition of sorbent amendments to soils or sediments is attractive, since its application is relatively simple, while it can also be cost effective when a low cost and re-usable sorbent is used; e.g. natural zeolites. Zeolites are crystalline aluminosilicates with a three-dimensional structure composed of a set of cavities occupied by large ions and water molecules. Zeolites can accommodate a wide variety of cations, such as Na+, K+, Ca2+, Mg2+, which are rather loosely held and can readily be exchanged for others in an aqueous solution. Natural zeolites are capable of removing cations, such as lead, from aqueous solutions by ion exchange. There is a wide variation in the cation exchange capacity (CEC) of natural zeolites because of the different nature of various zeolites cage structures, natural structural defects, adsorbed ions, and their associated gangue minerals. Naturally occurring zeolites are rarely pure and are contaminated to varying degrees by other minerals, such as clays and feldspars, metals, quartz, or other zeolites as well. These impurities affect the CEC even for samples originated from the same region but from a different source. CEC of the material increases with decreasing impurity content. Potentially exchangeable ions in such impurities do not necessarily participate in ion exchange mechanism, while, in some cases, impurities may additionally block the access to active sites. For zeoliferous rocks having the same percentage of a zeolitic phase, the CEC increases with decreasing Si/Al ratio, as the more Si ions are substituted by Al ions, the more negative the valence of the matrix becomes. Sodium seems to be the most effective exchangeable ion for lead. On the contrary, it is unlikely that the potassium content of the zeolite would be substituted. A pretreatment with high concentration solutions of Na, such as 2 M NaCl, can significantly improve zeolite CEC by bringing the material to near homoionic form. pH and temperature are the critical parameters for using natural zeolites as sorbents. Zeolites should not be used in extremely acidic, neither in extremely basic pH conditions, except for very short times. The exchange of Pb, requires low solution pH, to avoid precipitation but not too low because the H+ are competitive ions for ion exchange; as a result the zeolite CEC related to Pb removal may be downgraded. If pH enters the basic range (e.g. pH>8), more aquatic complexes with lower positive valence than those prevailing in lower pH are produced; these complexes are less attracted by the negative charged zeolitic matrix. Pb uptake is favored at higher temperatures as ion exchange (including the diffusion of exchangeable ions inside the material and the medium, and vice versa) is an endothermic process. With the increase of temperature there is a decrease in hydration of all available exchangeable cations that eases the movement within the channels of the solid matrix. Additionally, the mobility of the potassium ions, present in the zeolitic material, also increases with the temperature resulting in enhanced CEC.
Thinning of heterogeneous lithosphere: insights from field observations and numerical modelling
NASA Astrophysics Data System (ADS)
Petri, B.; Duretz, T.; Mohn, G.; Schmalholz, S. M.
2017-12-01
The nature and mechanisms of formation of extremely thinned continental crust (< 10 km) and lithosphere during rifting remain debated. Observations from present-day and fossil continental passive margins document the heterogeneous nature of the lithosphere characterized, among others, by lithological variations and structural inheritance. This contribution aims at investigating the mechanisms of extreme lithospheric thinning by exploring in particular the role of initial heterogeneities by coupling field observations from fossil passive margins and numerical models of lithospheric extension. Two field examples from the Alpine Tethys margins outcropping in the Eastern Alps (E Switzerland and N Italy) and in the Southern Alps (N Italy) were selected for their exceptional level of preservation of rift-related structures. This situation enables us to characterize (1) the pre-rift architecture of the continental lithosphere, (2) the localization of rift-related deformation in distinct portion of the lithosphere and (3) the interaction between initial heterogeneities of the lithosphere and rift-related structures. In a second stage, these observations are integrated in high-resolution, two-dimensional thermo-mechanical models taking into account various patterns of initial mechanical heterogeneities. Our results show the importance of initial pre-rift architecture of the continental lithosphere during rifting. Key roles are given to high-angle and low-angle normal faults, anastomosing shear-zones and decoupling horizons. We propose that during the first stages of thinning, deformation is strongly controlled by the complex pre-rift architecture of the lithosphere, localized along major structures responsible for the lateral extrusion of mid to lower crustal levels. This extrusion juxtaposes mechanically stronger levels in the hyper-thinned continental crust, being exhumed by subsequent low-angle normal faults. Altogether, these results highlight the critical role of the extraction of mechanically strong layers of the lithosphere during the extreme thinning of the continental lithosphere and allows to propose a new model for the formation of continental passive margins.
NASA Astrophysics Data System (ADS)
Meng, Hao; Ren, Fei; Gu, Gao-Feng; Xiong, Xiong; Zhang, Yong-Jie; Zhou, Wei-Xing; Zhang, Wei
2012-05-01
Understanding the statistical properties of recurrence intervals (also termed return intervals in econophysics literature) of extreme events is crucial to risk assessment and management of complex systems. The probability distributions and correlations of recurrence intervals for many systems have been extensively investigated. However, the impacts of microscopic rules of a complex system on the macroscopic properties of its recurrence intervals are less studied. In this letter, we adopt an order-driven stock model to address this issue for stock returns. We find that the distributions of the scaled recurrence intervals of simulated returns have a power-law scaling with stretched exponential cutoff and the intervals possess multifractal nature, which are consistent with empirical results. We further investigate the effects of long memory in the directions (or signs) and relative prices of the order flow on the characteristic quantities of these properties. It is found that the long memory in the order directions (Hurst index Hs) has a negligible effect on the interval distributions and the multifractal nature. In contrast, the power-law exponent of the interval distribution increases linearly with respect to the Hurst index Hx of the relative prices, and the singularity width of the multifractal nature fluctuates around a constant value when Hx<0.7 and then increases with Hx. No evident effects of Hs and Hx are found on the long memory of the recurrence intervals. Our results indicate that the nontrivial properties of the recurrence intervals of returns are mainly caused by traders' behaviors of persistently placing new orders around the best bid and ask prices.
Raines, Timothy H.
1998-01-01
The potential extreme peak-discharge curves as related to contributing drainage area were estimated for each of the three hydrologic regions from measured extreme peaks of record at 186 sites with streamflow-gaging stations and from measured extreme peaks at 37 sites without streamflow-gaging stations in and near the Brazos River Basin. The potential extreme peak-discharge curves generally are similar for hydrologic regions 1 and 2, and the curve for region 3 consistently is below the curves for regions 1 and 2, which indicates smaller peak discharges.
Changes in extreme events and the potential impacts on human health.
Bell, Jesse E; Brown, Claudia Langford; Conlon, Kathryn; Herring, Stephanie; Kunkel, Kenneth E; Lawrimore, Jay; Luber, George; Schreck, Carl; Smith, Adam; Uejio, Christopher
2018-04-01
Extreme weather and climate-related events affect human health by causing death, injury, and illness, as well as having large socioeconomic impacts. Climate change has caused changes in extreme event frequency, intensity, and geographic distribution, and will continue to be a driver for change in the future. Some of these events include heat waves, droughts, wildfires, dust storms, flooding rains, coastal flooding, storm surges, and hurricanes. The pathways connecting extreme events to health outcomes and economic losses can be diverse and complex. The difficulty in predicting these relationships comes from the local societal and environmental factors that affect disease burden. More information is needed about the impacts of climate change on public health and economies to effectively plan for and adapt to climate change. This paper describes some of the ways extreme events are changing and provides examples of the potential impacts on human health and infrastructure. It also identifies key research gaps to be addressed to improve the resilience of public health to extreme events in the future. Extreme weather and climate events affect human health by causing death, injury, and illness, as well as having large socioeconomic impacts. Climate change has caused changes in extreme event frequency, intensity, and geographic distribution, and will continue to be a driver for change in the future. Some of these events include heat waves, droughts, wildfires, flooding rains, coastal flooding, surges, and hurricanes. The pathways connecting extreme events to health outcomes and economic losses can be diverse and complex. The difficulty in predicting these relationships comes from the local societal and environmental factors that affect disease burden.
Commentary on: Addiction in extreme sports: An exploration of withdrawal states in rock climbers.
Buckley, Ralf C
2016-12-01
Individuals can display characteristics of behavioral addictions to nature and the outdoors as well as adventure activities. Research on mental health effects of nature exposure is relevant to research on nature and adventure addictions.
Global Warming Denial: The Human Brain on Extremes
NASA Astrophysics Data System (ADS)
Marrouch, N.; Johnson, B. T.; Slawinska, J. M.
2016-12-01
Future assessments of climate change rely on multi-model intercomparisons, and projections of the extreme events frequency are of particular interest as associated with significant economic costs and social threats. Notably, systematically simulated increases in the number of extreme weather events agree well with observational data over the last decade. At the same time, as the climate grows more volatile, widespread denial of climate change and its anthropocentric causes continues to proliferate (based on nationally representative U.S. polls). Simultaneous increases in both high-impact exposure and its denial is in stark contrast with our knowledge of socio-natural dynamics and its models. Disentangling this paradox requires an understanding of the origins of global warming denial at an individual level, and how subsequently it propagates across social networks of many scales, shaping global policies. However, as the real world and its dynamical models are complex (high-dimensional and coupled), separating the particular feedback of interest remains a challenge. Here, we demonstrate this feedback in a controlled experiment, where increasing unpredictability using helplessness-training paradigms induces changes in global warming denial, and the endorsement of conservative ideology. We explain these results in the context of evolutionary theory framing self-deception and denial as remnants of evolutionary processes that shaped and facilitated the survival of the human species. Further we link these findings to changes in neural and higher-level cognitive processes in response to unpredictable stimuli. We argue that climate change denial is an example of an extreme belief system that carries the potential to threaten the wellbeing of both humans and other species alike. It is therefore crucial to better quantify climate denial using social informatics tools that provide the means to improve its representations in coupled socio-geophysical models to mitigate its effects on global and local policies.
Bayesian hierarchical modelling of North Atlantic windiness
NASA Astrophysics Data System (ADS)
Vanem, E.; Breivik, O. N.
2013-03-01
Extreme weather conditions represent serious natural hazards to ship operations and may be the direct cause or contributing factor to maritime accidents. Such severe environmental conditions can be taken into account in ship design and operational windows can be defined that limits hazardous operations to less extreme conditions. Nevertheless, possible changes in the statistics of extreme weather conditions, possibly due to anthropogenic climate change, represent an additional hazard to ship operations that is less straightforward to account for in a consistent way. Obviously, there are large uncertainties as to how future climate change will affect the extreme weather conditions at sea and there is a need for stochastic models that can describe the variability in both space and time at various scales of the environmental conditions. Previously, Bayesian hierarchical space-time models have been developed to describe the variability and complex dependence structures of significant wave height in space and time. These models were found to perform reasonably well and provided some interesting results, in particular, pertaining to long-term trends in the wave climate. In this paper, a similar framework is applied to oceanic windiness and the spatial and temporal variability of the 10-m wind speed over an area in the North Atlantic ocean is investigated. When the results from the model for North Atlantic windiness is compared to the results for significant wave height over the same area, it is interesting to observe that whereas an increasing trend in significant wave height was identified, no statistically significant long-term trend was estimated in windiness. This may indicate that the increase in significant wave height is not due to an increase in locally generated wind waves, but rather to increased swell. This observation is also consistent with studies that have suggested a poleward shift of the main storm tracks.
Future Projection of Summer Extreme Precipitation from High Resolution Multi-RCMs over East Asia
NASA Astrophysics Data System (ADS)
Kim, Gayoung; Park, Changyong; Cha, Dong-Hyun; Lee, Dong-Kyou; Suh, Myoung-Seok; Ahn, Joong-Bae; Min, Seung-Ki; Hong, Song-You; Kang, Hyun-Suk
2017-04-01
Recently, the frequency and intensity of natural hazards have been increasing due to human-induced climate change. Because most damages of natural hazards over East Asia have been related to extreme precipitation events, it is important to estimate future change in extreme precipitation characteristics caused by climate change. We investigate future changes in extremal values of summer precipitation simulated by five regional climate models participating in the CORDEX-East Asia project (i.e., HadGEM3-RA, RegCM4, MM5, WRF, and GRIMs) over East Asia. 100-year return value calculated from the generalized extreme value (GEV) parameters is analysed as an indicator of extreme intensity. In the future climate, the mean values as well as the extreme values of daily precipitation tend to increase over land region. The increase of 100-year return value can be significantly associated with the changes in the location (intensity) and scale (variability) GEV parameters for extreme precipitation. It is expected that the results of this study can be used as fruitful references when making the policy of disaster management. Acknowledgements The research was supported by the Ministry of Public Safety and Security of Korean government and Development program under grant MPSS-NH-2013-63 and the National Research Foundation of Korea Grant funded by the Ministry of Science, ICT and Future Planning of Korea (NRF-2016M3C4A7952637) for its support and assistant in completion of the study.
NASA Astrophysics Data System (ADS)
Zhao, Jian; Chen, Yu; Yao, Ying; Tong, Zong-Rui; Li, Pu-Wang; Yang, Zi-Ming; Jin, Shao-Hua
2018-02-01
Hydrogels have drawn many attentions as the solid-state electrolytes in flexible solid-state supercapacitors (SCs) recently. Among them, the polyelectrolyte complex hydrogel (PECH) electrolytes of natural polymers are more competitive because of their environmentally friendly property and low cost. However, while mixing two biopolymer solutions with opposite charges, the strong electrostatic interactions between the cationic and anionic biopolymers may result in precipitates instead of hydrogels. Here we report a novel method, semi-dissolution acidification sol-gel transition (SD-A-SGT), for the preparation of the PECH of chitosan (CTS) and sodium alginate (SA), with the controllable sol-gel transition and uniform composition and successfully apply it as the hydrogel electrolyte of solid-state supercapacitors (SCs). The CTS-SA PECH exhibits an extremely high ionic conductivity of 0.051 S·cm-1 and reasonable mechanical properties with a tensile strength of 0.29 MPa and elongation at break of 109.5%. The solid-state SC fabricated with the CTS-SA PECH and conventional polyaniline (PANI) nanowire electrodes provided a high specific capacitance of 234.6 F·g-1 at 5 mV·s-1 and exhibited excellent cycling stability with 95.3% capacitance retention after 1000 cycles. Our work may pave a novel avenue to the preparation of biodegradable PECHs of full natural polymers, and promote the development of environmentally friendly electronic devices.
Depletion of the Complex Multiple Aquifer System of Jordan
NASA Astrophysics Data System (ADS)
Rödiger, T.; Siebert, C.; Geyer, S.; Merz, R.
2017-12-01
In many countries worldwide water scarcity pose a significant risk to the environment and the socio-economy. Particularly in countries where the available water resources are strongly limited by climatic conditions an accurate determination of the available water resources is of high priority, especially when water supply predominantly rely oon groundwater resources and their recharge. If groundwater abstraction exceeds the natural groundwater recharge in heavily used well field areas, overexploitation or persistent groundwater depletion occurs. This is the case in the Kingdom of Jordan, where a multi-layer aquifer complex forms the eastern subsurface catchment of the Dead Sea basin. Since the begin of the industrial and agricultural development of the country, dramatically falling groundwater levels, the disappearance of springs and saltwater intrusions from deeper aquifers is documented nation-wide. The total water budget is influenced by (i) a high climatic gradient from hyperarid to semiarid and (ii) the intnese anthropogenic abstraction. For this multi-layered aquifer system we developed a methodology to evaluate groundwater depletion by linking a hydrological and a numerical flow model including estimates of groundwater abstraction. Hence, we define groundwater depletion as the rate of groundwater abstraction in excess of natural recharge rate. Restricting our analysis, we calculated a range of groundwater depletion from 0% in the eastern Hamad basin to around 40% in the central part of Jordan and to extreme values of 100% of depletion in the Azraq and Disi basin.
Mechanisms of Pb(II) sorption on a biogenic manganese oxide.
Villalobos, Mario; Bargar, John; Sposito, Garrison
2005-01-15
Macroscopic Pb(II) uptake experiments and Pb L3-edge extended X-ray absorption fine structure (EXAFS) spectroscopy were combined to examine the mechanisms of Pb(II) sequestration by a biogenic manganese oxide and its synthetic analogues, all of which are layer-type manganese oxides (phyllomanganates). Relatively fast Pb(II) sorption was observed, as well as extremely high sorption capacities, suggesting Pb incorporation into the structure of the oxides. EXAFS analysis revealed similar uptake mechanisms regardless of the specific nature of the phyllomanganate, electrolyte background, total Pb(II) loading, or equilibration time. One Pb-O and two Pb-Mn shells at distances of 2.30, 3.53, and 3.74 A, respectively, were found, as well as a linear relationship between Brunauer-Emmett-Teller (BET; i.e., external) specific surface area and maximum Pb(II) sorption that also encompassed data from previous work. Both observations support the existence of two bonding mechanisms in Pb(II) sorption: a triple-corner-sharing complex in the interlayers above/ below cationic sheet vacancies (N theoretical = 6), and a double-corner-sharing complex on particle edges at exposed singly coordinated -O(H) bonds (N theoretical = 2). General prevalence of external over internal sorption is predicted, but the two simultaneous sorption mechanisms can account for the widely noted high affinity of manganese oxides for Pb(ll) in natural environments.
A craniometric perspective on the transition to agriculture in Europe.
Pinhasi, Ron; von Cramon-Taubadel, Noreen
2012-02-01
Debates surrounding the nature of the Neolithic demographic transition in Europe have historically centered on two opposing models: a "demic" diffusion model whereby incoming farmers from the Near East and Anatolia effectively replaced or completely assimilated indigenous Mesolithic foraging communities, and an "indigenist" model resting on the assumption that ideas relating to agriculture and animal domestication diffused from the Near East but with little or no gene flow. The extreme versions of these dichotomous models were heavily contested primarily on the basis of archeological and modern genetic data. However, in recent years a growing acceptance has arisen of the likelihood that both processes were ongoing throughout the Neolithic transition and that a more complex, regional approach is required to fully understand the change from a foraging to a primarily agricultural mode of subsistence in Europe. Craniometric data were particularly useful for testing these more complex scenarios, as they can reliably be employed as a proxy for the genetic relationships among Mesolithic and Neolithic populations. In contrast, modern genetic data assume that modern European populations accurately reflect the genetic structure of Europe at the time of the Neolithic transition, while ancient DNA data are still not geographically or temporally detailed enough to test continent-wide processes. Here, with particular emphasis on the role of craniometric analyses, we review the current state of knowledge regarding the cultural and biological nature of the Neolithic transition in Europe.
Gordya, Natalia; Yakovlev, Andrey; Kruglikova, Anastasia; Tulin, Dmitry; Potolitsina, Evdokia; Suborova, Tatyana; Bordo, Domenico; Rosano, Camillo; Chernysh, Sergey
2017-01-01
Biofilms, sedimented microbial communities embedded in a biopolymer matrix cause vast majority of human bacterial infections and many severe complications such as chronic inflammatory diseases and cancer. Biofilms’ resistance to the host immunity and antibiotics makes this kind of infection particularly intractable. Antimicrobial peptides (AMPs) are a ubiquitous facet of innate immunity in animals. However, AMPs activity was studied mainly on planktonic bacteria and little is known about their effects on biofilms. We studied structure and anti-biofilm activity of AMP complex produced by the maggots of blowfly Calliphora vicina living in environments extremely contaminated by biofilm-forming germs. The complex exhibits strong cell killing and matrix destroying activity against human pathogenic antibiotic resistant Escherichia coli, Staphylococcus aureus and Acinetobacter baumannii biofilms as well as non-toxicity to human immune cells. The complex was found to contain AMPs from defensin, cecropin, diptericin and proline-rich peptide families simultaneously expressed in response to bacterial infection and encoded by hundreds mRNA isoforms. All the families combine cell killing and matrix destruction mechanisms, but the ratio of these effects and antibacterial activity spectrum are specific to each family. These molecules dramatically extend the list of known anti-biofilm AMPs. However, pharmacological development of the complex as a whole can provide significant advantages compared with a conventional one-component approach. In particular, a similar level of activity against biofilm and planktonic bacteria (MBEC/MIC ratio) provides the complex advantage over conventional antibiotics. Available methods of the complex in situ and in vitro biosynthesis make this idea practicable. PMID:28278280
Gordya, Natalia; Yakovlev, Andrey; Kruglikova, Anastasia; Tulin, Dmitry; Potolitsina, Evdokia; Suborova, Tatyana; Bordo, Domenico; Rosano, Camillo; Chernysh, Sergey
2017-01-01
Biofilms, sedimented microbial communities embedded in a biopolymer matrix cause vast majority of human bacterial infections and many severe complications such as chronic inflammatory diseases and cancer. Biofilms' resistance to the host immunity and antibiotics makes this kind of infection particularly intractable. Antimicrobial peptides (AMPs) are a ubiquitous facet of innate immunity in animals. However, AMPs activity was studied mainly on planktonic bacteria and little is known about their effects on biofilms. We studied structure and anti-biofilm activity of AMP complex produced by the maggots of blowfly Calliphora vicina living in environments extremely contaminated by biofilm-forming germs. The complex exhibits strong cell killing and matrix destroying activity against human pathogenic antibiotic resistant Escherichia coli, Staphylococcus aureus and Acinetobacter baumannii biofilms as well as non-toxicity to human immune cells. The complex was found to contain AMPs from defensin, cecropin, diptericin and proline-rich peptide families simultaneously expressed in response to bacterial infection and encoded by hundreds mRNA isoforms. All the families combine cell killing and matrix destruction mechanisms, but the ratio of these effects and antibacterial activity spectrum are specific to each family. These molecules dramatically extend the list of known anti-biofilm AMPs. However, pharmacological development of the complex as a whole can provide significant advantages compared with a conventional one-component approach. In particular, a similar level of activity against biofilm and planktonic bacteria (MBEC/MIC ratio) provides the complex advantage over conventional antibiotics. Available methods of the complex in situ and in vitro biosynthesis make this idea practicable.
An observational and modeling study of the August 2017 Florida climate extreme event.
NASA Astrophysics Data System (ADS)
Konduru, R.; Singh, V.; Routray, A.
2017-12-01
A special report on the climate extremes by the Intergovernmental Panel on Climate Change (IPCC) elucidates that the sole cause of disasters is due to the exposure and vulnerability of the human and natural system to the climate extremes. The cause of such a climate extreme could be anthropogenic or non-anthropogenic. Therefore, it is challenging to discern the critical factor of influence for a particular climate extreme. Such kind of perceptive study with reasonable confidence on climate extreme events is possible only if there exist any past case studies. A similar rarest climate extreme problem encountered in the case of Houston floods and extreme rainfall over Florida in August 2017. A continuum of hurricanes like Harvey and Irma targeted the Florida region and caused catastrophe. Due to the rarity of August 2017 Florida climate extreme event, it requires the in-depth study on this case. To understand the multi-faceted nature of the event, a study on the development of the Harvey hurricane and its progression and dynamics is significant. Current article focus on the observational and modeling study on the Harvey hurricane. A global model named as NCUM (The global UK Met office Unified Model (UM) operational at National Center for Medium Range Weather Forecasting, India, was utilized to simulate the Harvey hurricane. The simulated rainfall and wind fields were compared with the observational datasets like Tropical Rainfall Measuring Mission rainfall datasets and Era-Interim wind fields. The National Centre for Environmental Prediction (NCEP) automated tracking system was utilized to track the Harvey hurricane, and the tracks were analyzed statistically for different forecasts concerning the Harvey hurricane track of Joint Typhon Warning Centre. Further, the current study will be continued to investigate the atmospheric processes involved in the August 2017 Florida climate extreme event.
Studying Weather and Climate Extremes in a Non-stationary Framework
NASA Astrophysics Data System (ADS)
Wu, Z.
2010-12-01
The study of weather and climate extremes often uses the theory of extreme values. Such a detection method has a major problem: to obtain the probability distribution of extremes, one has to implicitly assume the Earth’s climate is stationary over a long period within which the climatology is defined. While such detection makes some sense in a purely statistical view of stationary processes, it can lead to misleading statistical properties of weather and climate extremes caused by long term climate variability and change, and may also cause enormous difficulty in attributing and predicting these extremes. To alleviate this problem, here we report a novel non-stationary framework for studying weather and climate extremes in a non-stationary framework. In this new framework, the weather and climate extremes will be defined as timescale-dependent quantities derived from the anomalies with respect to non-stationary climatologies of different timescales. With this non-stationary framework, the non-stationary and nonlinear nature of climate system will be taken into account; and the attribution and the prediction of weather and climate extremes can then be separated into 1) the change of the statistical properties of the weather and climate extremes themselves and 2) the background climate variability and change. The new non-stationary framework will use the ensemble empirical mode decomposition (EEMD) method, which is a recent major improvement of the Hilbert-Huang Transform for time-frequency analysis. Using this tool, we will adaptively decompose various weather and climate data from observation and climate models in terms of the components of the various natural timescales contained in the data. With such decompositions, the non-stationary statistical properties (both spatial and temporal) of weather and climate anomalies and of their corresponding climatologies will be analyzed and documented.
Liu, Yang; Zhang, Mingqing; Fang, Xiuqi
2018-03-20
By merging reconstructed phenological series from published articles and observations of China Phenology Observation Network (CPON), the first blooming date of Amygdalus davidiana (FBA) in Beijing between 1741 and 2000 is reconstructed. The Butterworth method is used to remove the multi-year variations for generating the phenological series of annual variations in the first blooming date of A. davidiana. The extreme delay years in the phenological series are identified using the percentage threshold method. The characteristics of the extreme delays and the correspondence of these events with natural forcings are analysed. The main results are as follows. In annual phenological series, the extreme delays appeared in single year as main feature, only A.D.1800-1801, 1816-1817 and 1983-1984 were the events of two consecutively extreme years. Approximately 85% of the extreme delays occurred during 1-2 years after the large volcanic eruptions (VEI ≥ 4) in the eastern rim or the western rim of the Pacific Ocean, as the same proportion of the extreme delays followed El Niño events. About 73% years of the extreme delays fall in the valleys of sunspot cycles or the Dalton minimum period in the year or the previous year. According to the certainty factor (CF), the large eruptions have the greatest influence to the extreme delays; sunspot activity is the second, and ENSO is the last one. The extreme phenological delayed year is most likely to occur after a large eruption, which particularly occurs during El Niño year and its previous several years were in the descending portion or valley of sunspot phase.
NASA Astrophysics Data System (ADS)
Liu, Yang; Zhang, Mingqing; Fang, Xiuqi
2018-03-01
By merging reconstructed phenological series from published articles and observations of China Phenology Observation Network (CPON), the first blooming date of Amygdalus davidiana (FBA) in Beijing between 1741 and 2000 is reconstructed. The Butterworth method is used to remove the multi-year variations for generating the phenological series of annual variations in the first blooming date of A. davidiana. The extreme delay years in the phenological series are identified using the percentage threshold method. The characteristics of the extreme delays and the correspondence of these events with natural forcings are analysed. The main results are as follows. In annual phenological series, the extreme delays appeared in single year as main feature, only A.D.1800-1801, 1816-1817 and 1983-1984 were the events of two consecutively extreme years. Approximately 85% of the extreme delays occurred during 1-2 years after the large volcanic eruptions (VEI ≥ 4) in the eastern rim or the western rim of the Pacific Ocean, as the same proportion of the extreme delays followed El Niño events. About 73% years of the extreme delays fall in the valleys of sunspot cycles or the Dalton minimum period in the year or the previous year. According to the certainty factor (CF), the large eruptions have the greatest influence to the extreme delays; sunspot activity is the second, and ENSO is the last one. The extreme phenological delayed year is most likely to occur after a large eruption, which particularly occurs during El Niño year and its previous several years were in the descending portion or valley of sunspot phase.
Robust representation and recognition of facial emotions using extreme sparse learning.
Shojaeilangari, Seyedehsamaneh; Yau, Wei-Yun; Nandakumar, Karthik; Li, Jun; Teoh, Eam Khwang
2015-07-01
Recognition of natural emotions from human faces is an interesting topic with a wide range of potential applications, such as human-computer interaction, automated tutoring systems, image and video retrieval, smart environments, and driver warning systems. Traditionally, facial emotion recognition systems have been evaluated on laboratory controlled data, which is not representative of the environment faced in real-world applications. To robustly recognize the facial emotions in real-world natural situations, this paper proposes an approach called extreme sparse learning, which has the ability to jointly learn a dictionary (set of basis) and a nonlinear classification model. The proposed approach combines the discriminative power of extreme learning machine with the reconstruction property of sparse representation to enable accurate classification when presented with noisy signals and imperfect data recorded in natural settings. In addition, this paper presents a new local spatio-temporal descriptor that is distinctive and pose-invariant. The proposed framework is able to achieve the state-of-the-art recognition accuracy on both acted and spontaneous facial emotion databases.
Bronstert, Axel; Agarwal, Ankit; Boessenkool, Berry; Crisologo, Irene; Fischer, Madlen; Heistermann, Maik; Köhn-Reich, Lisei; López-Tarazón, José Andrés; Moran, Thomas; Ozturk, Ugur; Reinhardt-Imjela, Christian; Wendi, Dadiyorto
2018-07-15
The flash-flood in Braunsbach in the north-eastern part of Baden-Wuerttemberg/Germany was a particularly strong and concise event which took place during the floods in southern Germany at the end of May/early June 2016. This article presents a detailed analysis of the hydro-meteorological forcing and the hydrological consequences of this event. A specific approach, the "forensic hydrological analysis" was followed in order to include and combine retrospectively a variety of data from different disciplines. Such an approach investigates the origins, mechanisms and course of such natural events if possible in a "near real time" mode, in order to follow the most recent traces of the event. The results show that it was a very rare rainfall event with extreme intensities which, in combination with catchment properties, led to extreme runoff plus severe geomorphological hazards, i.e. great debris flows, which together resulted in immense damage in this small rural town Braunsbach. It was definitely a record-breaking event and greatly exceeded existing design guidelines for extreme flood discharge for this region, i.e. by a factor of about 10. Being such a rare or even unique event, it is not reliably feasible to put it into a crisp probabilistic context. However, one can conclude that a return period clearly above 100years can be assigned for all event components: rainfall, peak discharge and sediment transport. Due to the complex and interacting processes, no single flood cause or reason for the very high damage can be identified, since only the interplay and the cascading characteristics of those led to such an event. The roles of different human activities on the origin and/or intensification of such an extreme event are finally discussed. Copyright © 2018. Published by Elsevier B.V.
Natural enemies govern ecosystem resilience in the face of extreme droughts.
He, Qiang; Silliman, Brian R; Liu, Zezheng; Cui, Baoshan
2017-02-01
Severe droughts are on the rise in many regions. But thus far, attempts to predict when drought will cause a major regime shift or when ecosystems are resilient, often using plant drought tolerance models, have been frustrated. Here, we show that pressure from natural enemies regulates an ecosystem's resilience to severe droughts. Field experiments revealed that in protected salt marshes experiencing a severe drought, plant-eating grazers eliminated drought-stressed vegetation that could otherwise survive and recover from the climate extreme, transforming once lush marshes into persistent salt barrens. These results provide an explicit experimental demonstration for the obligatory role of natural enemies across the initiation, expansion and recovery stages of a natural ecosystem's collapse. Our study highlights that natural enemies can hasten an ecosystem's resilience to drought to much lower levels than currently predicted, calling for integration into climate change predictions and conservation strategies. © 2017 John Wiley & Sons Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Ryazanova, A. A.; Okladnikov, I. G.; Gordov, E. P.
2017-11-01
The frequency of occurrence and magnitude of precipitation and temperature extreme events show positive trends in several geographical regions. These events must be analyzed and studied in order to better understand their impact on the environment, predict their occurrences, and mitigate their effects. For this purpose, we augmented web-GIS called “CLIMATE” to include a dedicated statistical package developed in the R language. The web-GIS “CLIMATE” is a software platform for cloud storage processing and visualization of distributed archives of spatial datasets. It is based on a combined use of web and GIS technologies with reliable procedures for searching, extracting, processing, and visualizing the spatial data archives. The system provides a set of thematic online tools for the complex analysis of current and future climate changes and their effects on the environment. The package includes new powerful methods of time-dependent statistics of extremes, quantile regression and copula approach for the detailed analysis of various climate extreme events. Specifically, the very promising copula approach allows obtaining the structural connections between the extremes and the various environmental characteristics. The new statistical methods integrated into the web-GIS “CLIMATE” can significantly facilitate and accelerate the complex analysis of climate extremes using only a desktop PC connected to the Internet.
Interim Status Report for Risk Management for SFRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jankovsky, Zachary Kyle; Denman, Matthew R.; Groth, Katrina
2015-10-01
Accident management is an important component to maintaining risk at acceptable levels for all complex systems, such as nuclear power plants. With the introduction of passive, or inherently safe, reactor designs the focus has shifted from management by operators to allowing the system's design to take advantage of natural phenomena to manage the accident. Inherently and passively safe designs are laudable, but nonetheless extreme boundary conditions can interfere with the design attributes which facilitate inherent safety, thus resulting in unanticipated and undesirable end states. This report examines an inherently safe and small sodium fast reactor experiencing a variety of beyondmore » design basis events with the intent of exploring the utility of a Dynamic Bayesian Network to infer the state of the reactor to inform the operator's corrective actions. These inferences also serve to identify the instruments most critical to informing an operator's actions as candidates for hardening against radiation and other extreme environmental conditions that may exist in an accident. This reduction in uncertainty serves to inform ongoing discussions of how small sodium reactors would be licensed and may serve to reduce regulatory risk and cost for such reactors.« less
Personat, José-María; Tejedor-Cano, Javier; Lindahl, Marika; Diaz-Espejo, Antonio; Jordano, Juan
2012-01-01
A genetic program that in sunflower seeds is activated by Heat Shock transcription Factor A9 (HaHSFA9) has been analyzed in transgenic tobacco seedlings. The ectopic overexpression of the HSFA9 program protected photosynthetic membranes, which resisted extreme dehydration and oxidative stress conditions. In contrast, heat acclimation of seedlings induced thermotolerance but not resistance to the harsh stress conditions employed. The HSFA9 program was found to include the expression of plastidial small Heat Shock Proteins that accumulate only at lower abundance in heat-stressed vegetative organs. Photosystem II (PSII) maximum quantum yield was higher for transgenic seedlings than for non-transgenic seedlings, after either stress treatment. Furthermore, protection of both PSII and Photosystem I (PSI) membrane protein complexes was observed in the transgenic seedlings, leading to their survival after the stress treatments. It was also shown that the plastidial D1 protein, a labile component of the PSII reaction center, and the PSI core protein PsaB were shielded from oxidative damage and degradation. We infer that natural expression of the HSFA9 program during embryogenesis may protect seed pro-plastids from developmental desiccation. PMID:23227265
Simulating transitional hydrodynamics of the cerebrospinal fluid at extreme scale
NASA Astrophysics Data System (ADS)
Jain, Kartik; Roller, Sabine; Mardal, Kent-Andre
Chiari malformation type I is a disorder characterized by the herniation of cerebellar tonsils into the spinal canal through the foramen magnum resulting in obstruction to cerebrospinal fluid (CSF) outflow. The flow of pulsating bidirectional CSF is of acutely complex nature due to the anatomy of the conduit containing it - the subarachnoid space. We report lattice Boltzmann method based direct numerical simulations on patient specific cases with spatial resolution of 24 μm amounting meshes of up to 2 billion cells conducted on 50000 cores of the Hazelhen supercomputer in Stuttgart. The goal is to characterize intricate dynamics of the CSF at resolutions that are of the order of Kolmogorov microscales. Results unfold velocity fluctuations up to ~ 10 KHz , turbulent kinetic energy ~ 2 times of the mean flow energy in Chiari patients whereas the flow remains laminar in a control subject. The fluctuations confine near the cranio-vertebral junction and are commensurate with the extremeness of pathology and the extent of herniation. The results advocate that the manifestation of pathological conditions like Chiari malformation may lead to transitional hydrodynamics of the CSF, and a prudent calibration of numerical approach is necessary to avoid overlook of such phenomena.
Extreme precipitation patterns reduced terrestrial ecosystem production across biomass
USDA-ARS?s Scientific Manuscript database
Precipitation regimes are predicted to shift to more extreme patterns that are characterized by more intense rainfall events and longer dry intervals, yet their ecological impacts on vegetation production remain uncertain across biomes in natural climatic conditions. This in situ study investigated ...
Operational early warning platform for extreme meteorological events
NASA Astrophysics Data System (ADS)
Mühr, Bernhard; Kunz, Michael
2015-04-01
Operational early warning platform for extreme meteorological events Most natural disasters are related to extreme weather events (e.g. typhoons); weather conditions, however, are also highly relevant for humanitarian and disaster relief operations during and after other natural disaster like earthquakes. The internet service "Wettergefahren-Frühwarnung" (WF) provides various information on extreme weather events, especially when these events are associated with a high potential for large damage. The main focus of the platform is on Central Europe, but major events are also monitored worldwide on a daily routine. WF provides high-resolution forecast maps for many weather parameters which allow detailed and reliable predictions about weather conditions during the next days in the affected areas. The WF service became operational in February 2004 and is part of the Center for Disaster Management and Risk Reduction Technology (CEDIM) since 2007. At the end of 2011, CEDIM embarked a new type of interdisciplinary disaster research termed as forensic disaster analysis (FDA) in near real time. In case of an imminent extreme weather event WF plays an important role in CEDIM's FDA group. It provides early and precise information which are always available and updated several times during a day and gives advice and assists with articles and reports on extreme events.
Estimating the extreme low-temperature event using nonparametric methods
NASA Astrophysics Data System (ADS)
D'Silva, Anisha
This thesis presents a new method of estimating the one-in-N low temperature threshold using a non-parametric statistical method called kernel density estimation applied to daily average wind-adjusted temperatures. We apply our One-in-N Algorithm to local gas distribution companies (LDCs), as they have to forecast the daily natural gas needs of their consumers. In winter, demand for natural gas is high. Extreme low temperature events are not directly related to an LDCs gas demand forecasting, but knowledge of extreme low temperatures is important to ensure that an LDC has enough capacity to meet customer demands when extreme low temperatures are experienced. We present a detailed explanation of our One-in-N Algorithm and compare it to the methods using the generalized extreme value distribution, the normal distribution, and the variance-weighted composite distribution. We show that our One-in-N Algorithm estimates the one-in- N low temperature threshold more accurately than the methods using the generalized extreme value distribution, the normal distribution, and the variance-weighted composite distribution according to root mean square error (RMSE) measure at a 5% level of significance. The One-in- N Algorithm is tested by counting the number of times the daily average wind-adjusted temperature is less than or equal to the one-in- N low temperature threshold.
Atmospheric rivers and the mass mortality of wild oysters: insight into an extreme future?
Chang, Andrew L.; Deck, Anna; Ferner, Matthew C.
2016-01-01
Climate change is predicted to increase the frequency and severity of extreme events. However, the biological consequences of extremes remain poorly resolved owing to their unpredictable nature and difficulty in quantifying their mechanisms and impacts. One key feature delivering precipitation extremes is an atmospheric river (AR), a long and narrow filament of enhanced water vapour transport. Despite recent attention, the biological impacts of ARs remain undocumented. Here, we use biological data coupled with remotely sensed and in situ environmental data to describe the role of ARs in the near 100% mass mortality of wild oysters in northern San Francisco Bay. In March 2011, a series of ARs made landfall within California, contributing an estimated 69.3% of the precipitation within the watershed and driving an extreme freshwater discharge into San Francisco Bay. This discharge caused sustained low salinities (less than 6.3) that almost perfectly matched the known oyster critical salinity tolerance and was coincident with a mass mortality of one of the most abundant populations throughout this species' range. This is a concern, because wild oysters remain a fraction of their historical abundance and have yet to recover. This study highlights a novel mechanism by which precipitation extremes may affect natural systems and the persistence of sensitive species in the face of environmental change. PMID:27974516
Core stability: implications for dance injuries.
Rickman, Ashley M; Ambegaonkar, Jatin P; Cortes, Nelson
2012-09-01
Dancers experience a high incidence of injury due to the extreme physical demands of dancing. The majority of dance injuries are chronic in nature and occur in the lower extremities and low back. Researchers have indicated decreased core stability (CS) as a risk factor for these injuries. Although decreased CS is suggested to negatively affect lower extremity joint motion and lumbar control during activity, this relationship has not been extensively discussed in previous dance literature. Understanding the relationship between CS and injury risk is important to help reduce dance injury incidence and improve performance. The purposes of this review were to discuss: 1. the core and components of CS, 2. the relationship between CS and injury, 3. CS assessment techniques, and 4. future dance CS research areas. CS is the integration of passive (non-contractile), active (contractile), and neural structures to minimize the effects of external forces and maintain stability. CS is maintained by a combination of muscle power, strength, endurance, and sensory-motor control of the lumbopelvic-hip complex. CS assessments include measuring muscle strength and power using maximal voluntary isometric and isokinetic contractions and measuring endurance using the Biering-Sorensen, plank, and lateral plank tests. Measuring sensory-motor control requires specialized equipment (e.g., balance platforms). Overall, limited research has comprehensively examined all components of CS together and their relationships to injury. Rather, previous researchers have separately examined core power, strength, endurance, or sensory-motor control. Future researchers should explore the multifactorial role of CS in reducing injury risk and enhancing performance in dancers.
Three-dimensional Navier-Stokes simulations of turbine rotor-stator interaction
NASA Technical Reports Server (NTRS)
Rai, Man Mohan
1988-01-01
Fluid flows within turbomachinery tend to be extremely complex in nature. Understanding such flows is crucial to improving current designs of turbomachinery. The computational approach can be used to great advantage in understanding flows in turbomachinery. A finite difference, unsteady, thin layer, Navier-Stokes approach to calculating the flow within an axial turbine stage is presented. The relative motion between the stator and rotor airfoils is made possible with the use of patched grids that move relative to each other. The calculation includes endwall and tip leakage effects. An introduction to the rotor-stator problem and sample results in the form of time averaged surface pressures are presented. The numerical data are compared with experimental data and the agreement between the two is found to be good.
NM-Scale Anatomy of an Entire Stardust Carrot Track
NASA Technical Reports Server (NTRS)
Nakamura-Messenger, K.; Keller, L. P.; Clemett, S. J.; Messenger, S.
2009-01-01
Comet Wild-2 samples collected by NASA s Stardust mission are extremely complex, heterogeneous, and have experienced wide ranges of alteration during the capture process. There are two major types of track morphologies: "carrot" and "bulbous," that reflect different structural/compositional properties of the impactors. Carrot type tracks are typically produced by compact or single mineral grains which survive essentially intact as a single large terminal particle. Bulbous tracks are likely produced by fine-grained or organic-rich impactors [1]. Owing to their challenging nature and especially high value of Stardust samples, we have invested considerable effort in developing both sample preparation and analytical techniques tailored for Stardust sample analyses. Our report focuses on our systematic disassembly and coordinated analysis of Stardust carrot track #112 from the mm to nm-scale.
Exploring the therapeutic family intervention of commendations: insights from research.
Limacher, Lori Houger; Wright, Lorraine M
2006-08-01
Offered in this article are interpretations that emerged in a qualitative, interpretive study focused on the family intervention called a "commendation." The tradition of philosophical hermeneutics informs and shapes the analysis of the data. Research participants include a heterosexual couple and a nurse who engaged in therapeutic conversations focused on difficulties with Internet pornography. Data sources include videotapes of clinical sessions, documentation, and research interviews. Isolated segments of clinical videotape are shared with the couple to prompt their memory of commending practices that emerged in clinical sessions. Commendations are not experienced by this couple as gentle and warm but instead as extremely provocative, albeit constructive. This study illuminates the complex, contextual nature of commending practice and suggests that the noticing of strengths and resources contains much more than the spoken word.
Craniofacial resection and its role in the management of sinonasal malignancies.
Taghi, Ali; Ali, Ahmed; Clarke, Peter
2012-09-01
Sinonasal malignancy is rare, and its presentation is commonly late. There is a wide variety of pathologies with varying natural histories and survival rates. Anatomy of the skull base is extremely complex and tumors are closely related to orbits, frontal lobes and cavernous sinus. Anatomical detail and the late presentation render surgical management a challenging task. A thorough understanding of anatomy and pathology combined with modern neuroimaging and reliable reconstruction within a multidisciplinary team is imperative to carry out skull base surgery effectively. While endoscopic approaches are gaining credibility, clearly, it will be some time before meaningful comparisons with craniofacial resection can be made. Until then, craniofacial resection will remain the gold standard for managing the sinonasal malignancies of the anterior skull base, as it has proved to be safe and effective.
Forensic analysis of dyed textile fibers.
Goodpaster, John V; Liszewski, Elisa A
2009-08-01
Textile fibers are a key form of trace evidence, and the ability to reliably associate or discriminate them is crucial for forensic scientists worldwide. While microscopic and instrumental analysis can be used to determine the composition of the fiber itself, additional specificity is gained by examining fiber color. This is particularly important when the bulk composition of the fiber is relatively uninformative, as it is with cotton, wool, or other natural fibers. Such analyses pose several problems, including extremely small sample sizes, the desire for nondestructive techniques, and the vast complexity of modern dye compositions. This review will focus on more recent methods for comparing fiber color by using chromatography, spectroscopy, and mass spectrometry. The increasing use of multivariate statistics and other data analysis techniques for the differentiation of spectra from dyed fibers will also be discussed.
Challenges estimating the return period of extreme floods for reinsurance applications
NASA Astrophysics Data System (ADS)
Raven, Emma; Busby, Kathryn; Liu, Ye
2013-04-01
Mapping and modelling extreme natural events is fundamental within the insurance and reinsurance industry for assessing risk. For example, insurers might use a 1 in 100-year flood hazard map to set the annual premium of a property, whilst a reinsurer might assess the national scale loss associated with the 1 in 200-year return period for capital and regulatory requirements. Using examples from a range of international flood projects, we focus on exploring how to define what the n-year flood looks like for predictive uses in re/insurance applications, whilst considering challenges posed by short historical flow records and the spatial and temporal complexities of flood. First, we shall explore the use of extreme value theory (EVT) statistics for extrapolating data beyond the range of observations in a marginal analysis. In particular, we discuss how to estimate the return period of historical flood events and explore the impact that a range of statistical decisions have on these estimates. Decisions include: (1) selecting which distribution type to apply (e.g. generalised Pareto distribution (GPD) vs. generalised extreme value distribution (GEV)); (2) if former, the choice of the threshold above which the GPD is fitted to the data; and (3) the necessity to perform a cluster analysis to group flow peaks to temporally represent individual flood events. Second, we summarise a specialised multivariate extreme value model, which combines the marginal analysis above with dependence modelling to generate industry standard event sets containing thousands of simulated, equi-probable floods across a region/country. These events represent the typical range of anticipated flooding across a region and can be used to estimate the largest or most widespread events that are expected to occur. Finally, we summarise how a reinsurance catastrophe model combines the event set with detailed flood hazard maps to estimate the financial cost of floods; both the full event set and also individual extreme events. Since the predicted loss estimates, typically in the form of a curve plotting return period against modelled loss, are used in the pricing of reinsurance, we demonstrate the importance of the estimated return period and understanding the uncertainties associated with it.
A Data-Driven Assessment of the Sensitivity of Global Ecosystems to Climate Anomalies
NASA Astrophysics Data System (ADS)
Miralles, D. G.; Papagiannopoulou, C.; Demuzere, M.; Decubber, S.; Waegeman, W.; Verhoest, N.; Dorigo, W.
2017-12-01
Vegetation is a central player in the climate system, constraining atmospheric conditions through a series of feedbacks. This fundamental role highlights the importance of understanding regional drivers of ecological sensitivity and the response of vegetation to climatic changes. While nutrient availability and short-term disturbances can be crucial for vegetation at various spatiotemporal scales, natural vegetation dynamics are overall driven by climate. At monthly scales, the interactions between vegetation and climate become complex: some vegetation types react preferentially to specific climatic changes, with different levels of intensity, resilience and lagged response. For our current Earth System Models (ESMs) being able to capture this complexity is crucial but extremely challenging. This adds uncertainty to our projections of future climate and the fate of global ecosystems. Here, following a Granger causality framework based on a non-linear random forest predictive model, we exploit the current wealth of satellite data records to uncover the main climatic drivers of monthly vegetation variability globally. Results based on three decades of satellite data indicate that water availability is the most dominant factor driving vegetation in over 60% of the vegetated land. This overall dependency of ecosystems on water availability is larger than previously reported, partly owed to the ability of our machine-learning framework to disentangle the co-linearites between climatic drivers, and to quantify non-linear impacts of climate on vegetation. Our observation-based results are then used to benchmark ESMs on their representation of vegetation sensitivity to climate and climatic extremes. Our findings indicate that the sensitivity of vegetation to climatic anomalies is ill-reproduced by some widely-used ESMs.
Dialogue-Based Research in Man-Machine Communication
1975-11-01
This paper first surveys current knowledge of human communication from a point of view which seeks to find or develop knowledge that will be useful...complexity is explored. Building a useful knowledge of human communication is an extremely complex task. Controlling this complexity and its effects, without
Statistical complexity without explicit reference to underlying probabilities
NASA Astrophysics Data System (ADS)
Pennini, F.; Plastino, A.
2018-06-01
We show that extremely simple systems of a not too large number of particles can be simultaneously thermally stable and complex. To such an end, we extend the statistical complexity's notion to simple configurations of non-interacting particles, without appeal to probabilities, and discuss configurational properties.
Winter storms drive rapid phenotypic, regulatory, and genomic shifts in the green anole lizard.
Campbell-Staton, Shane C; Cheviron, Zachary A; Rochette, Nicholas; Catchen, Julian; Losos, Jonathan B; Edwards, Scott V
2017-08-04
Extreme environmental perturbations offer opportunities to observe the effects of natural selection in wild populations. During the winter of 2013-2014, the southeastern United States endured an extreme cold event. We used thermal performance, transcriptomics, and genome scans to measure responses of lizard populations to storm-induced selection. We found significant increases in cold tolerance at the species' southern limit. Gene expression in southern survivors shifted toward patterns characteristic of northern populations. Comparing samples before and after the extreme winter, 14 genomic regions were differentiated in the surviving southern population; four also exhibited signatures of local adaptation across the latitudinal gradient and implicate genes involved in nervous system function. Together, our results suggest that extreme winter events can rapidly produce strong selection on natural populations at multiple biological levels that recapitulate geographic patterns of local adaptation. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Duarte-Delgado, Diana; Ñústez-López, Carlos-Eduardo; Narváez-Cuenca, Carlos-Eduardo; Restrepo-Sánchez, Luz-Patricia; Melo, Sandra E; Sarmiento, Felipe; Kushalappa, Ajjamada C; Mosquera-Vásquez, Teresa
2016-09-01
Potato frying quality is a complex trait influenced by sugar content in tubers. Good frying quality requires low content of reducing sugars to avoid the formation of dark pigments. Solanum tuberosum Group Phureja is a valuable genetic resource for breeding and for genetic studies. The sugar content after harvest was analyzed in a germplasm collection of Group Phureja to contribute to the understanding of the natural variation of this trait. Sucrose, glucose and fructose genotypic mean values ranged from 6.39 to 29.48 g kg(-1) tuber dry weight (DW), from 0.46 to 28.04 g kg(-1) tuber DW and from 0.29 to 27.23 g kg(-1) tuber DW, respectively. Glucose/fructose and sucrose/reducing sugars ratios ranged from 1.01 to 6.67 mol mol(-1) and from 0.15 to 7.78 mol mol(-1) , respectively. Five clusters of genotypes were recognized, three of them with few genotypes and extreme phenotypic values. Sugar content showed a wide variation, representing the available variability useful for potato breeding. The results provide a quantitative approach to analyze the frying quality trait and are consistent with frying color. The analyzed germplasm presents extreme phenotypes, which will contribute to the understanding of the genetic basis of this trait. © 2016 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2016 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
KIM, H.; Lee, D. K.; Yoo, S.
2014-12-01
As regional torrential rains become frequent due to climate change, urban flooding happens very often. That is why it is necessary to prepare for integrated measures against a wide range of rainfall. This study proposes introduction of effective rainwater management facilities to maximize the rainwater runoff reductions and recover natural water circulation for unpredictable extreme rainfall in apartment complex scale. The study site is new apartment complex in Hanam located in east of Seoul, Korea. It has an area of 7.28ha and is analysed using the EPA-SWMM and STORM model. First, it is analyzed that green infrastructure(GI) had efficiency of flood reduction at the various rainfall events and soil characteristics, and then the most effective value of variables are derived. In case of rainfall event, Last 10 years data of 15 minutes were used for analysis. A comparison between A(686mm rainfall during 22days) and B(661mm/4days) knew that soil infiltration of A is 17.08% and B is 5.48% of the rainfall. Reduction of runoff after introduction of the GI of A is 24.76% and B is 6.56%. These results mean that GI is effective to small rainfall intensity, and artificial rainwater retarding reservoir is needed at extreme rainfall. Second, set of target year is conducted for the recovery of hydrological cycle at the predevelopment. And an amount of infiltration, evaporation, surface runoff of the target year and now is analysed on the basis of land coverage, and an arrangement of LID facilities. Third, rainwater management scenarios are established and simulated by the SWMM-LID. Rainwater management facilities include GI(green roof, porous pavement, vegetative swale, ecological pond, and raingarden), and artificial rainwater. Design scenarios are categorized five type: 1)no GI, 2)conventional GI design(current design), 3)intensive GI design, 4)GI design+rainwater retarding reservoir 5)maximized rainwater retarding reservoir. Intensive GI design is to have attribute value to obtain the maximum efficiency for each GI facility with in-depth experts interviews. Climate change scenario is also used to set the capacity of the rainwater management facilities considering the extreme precipitation. These all scenarios are not only simulated for calculating the hydrological balance but analysed the cost for each scenarios effect.
Combining local search with co-evolution in a remarkably simple way
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boettcher, S.; Percus, A.
2000-05-01
The authors explore a new general-purpose heuristic for finding high-quality solutions to hard optimization problem. The method, called extremal optimization, is inspired by self-organized criticality, a concept introduced to describe emergent complexity in physical systems. In contrast to genetic algorithms, which operate on an entire gene-pool of possible solutions, extremal optimization successively replaces extremely undesirable elements of a single sub-optimal solution with new, random ones. Large fluctuations, or avalanches, ensue that efficiently explore many local optima. Drawing upon models used to simulate far-from-equilibrium dynamics, extremal optimization complements heuristics inspired by equilibrium statistical physics, such as simulated annealing. With only onemore » adjustable parameter, its performance has proved competitive with more elaborate methods, especially near phase transitions. Phase transitions are found in many combinatorial optimization problems, and have been conjectured to occur in the region of parameter space containing the hardest instances. We demonstrate how extremal optimization can be implemented for a variety of hard optimization problems. We believe that this will be a useful tool in the investigation of phase transitions in combinatorial optimization, thereby helping to elucidate the origin of computational complexity.« less
Changes in the probability of co-occurring extreme climate events
NASA Astrophysics Data System (ADS)
Diffenbaugh, N. S.
2017-12-01
Extreme climate events such as floods, droughts, heatwaves, and severe storms exert acute stresses on natural and human systems. When multiple extreme events co-occur, either in space or time, the impacts can be substantially compounded. A diverse set of human interests - including supply chains, agricultural commodities markets, reinsurance, and deployment of humanitarian aid - have historically relied on the rarity of extreme events to provide a geographic hedge against the compounded impacts of co-occuring extremes. However, changes in the frequency of extreme events in recent decades imply that the probability of co-occuring extremes is also changing, and is likely to continue to change in the future in response to additional global warming. This presentation will review the evidence for historical changes in extreme climate events and the response of extreme events to continued global warming, and will provide some perspective on methods for quantifying changes in the probability of co-occurring extremes in the past and future.
Choi, Jae Min; Jeong, Daham; Piao, Jinglan; Kim, Kyoungtea; Nguyen, Andrew Bao Loc; Kwon, Nak-Jung; Lee, Mi-Kyung; Lee, Im Soon; Yu, Jae-Hyuk; Jung, Seunho
2015-01-12
The removal of polycyclic aromatic hydrocarbons by soil washing using water is extremely difficult due to their intrinsic hydrophobic nature. In this study, the effective aqueous solubility enhancements of seven polycyclic aromatic hydrocarbons by chemically modified hydroxypropyl rhizobial cyclic β-(1 → 2)-D-glucans and epichlorohydrin β-cyclodextrin dimer have been investigated for the first time. In the presence of hydroxypropyl cyclic β-(1 → 2)-D-glucans, the solubility of benzo[a]pyrene is increased up to 38 fold of its native solubility. The solubility of pyrene and phenanthrene dramatically increased up to 160 and 359. Coronene, chrysene, perylene, and fluoranthene also show an increase of 11, 23, 23, and 97 fold, respectively, of enhanced solubility by complexation with synthetic epichlorohydrin β-cyclodextrin dimer. The physicochemical properties of the complex are characterized by Fourier-transform infrared spectra and differential scanning calorimetry. Utilizing a scanning electron microscopy, the morphological structures of native benzo[a]pyrene, pyrene, phenanthrene, coronene, chrysene, perylene, fluoranthene and their complex with novel carbohydrate-solubilizers are studied. These results elucidate that polycyclic aromatic hydrocarbons are able to form an efficient complex with hydroxypropyl cyclic β-(1 → 2)-D-glucans and β-cyclodextrin dimer, suggesting the potential usage of chemically modified novel carbohydrate-solubilizers. Copyright © 2014 Elsevier Ltd. All rights reserved.
Min-Max Spaces and Complexity Reduction in Min-Max Expansions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaubert, Stephane, E-mail: Stephane.Gaubert@inria.fr; McEneaney, William M., E-mail: wmceneaney@ucsd.edu
2012-06-15
Idempotent methods have been found to be extremely helpful in the numerical solution of certain classes of nonlinear control problems. In those methods, one uses the fact that the value function lies in the space of semiconvex functions (in the case of maximizing controllers), and approximates this value using a truncated max-plus basis expansion. In some classes, the value function is actually convex, and then one specifically approximates with suprema (i.e., max-plus sums) of affine functions. Note that the space of convex functions is a max-plus linear space, or moduloid. In extending those concepts to game problems, one finds amore » different function space, and different algebra, to be appropriate. Here we consider functions which may be represented using infima (i.e., min-max sums) of max-plus affine functions. It is natural to refer to the class of functions so represented as the min-max linear space (or moduloid) of max-plus hypo-convex functions. We examine this space, the associated notion of duality and min-max basis expansions. In using these methods for solution of control problems, and now games, a critical step is complexity-reduction. In particular, one needs to find reduced-complexity expansions which approximate the function as well as possible. We obtain a solution to this complexity-reduction problem in the case of min-max expansions.« less
Catastrophe Finance: An Emerging Discipline
NASA Astrophysics Data System (ADS)
Elsner, James B.; Burch, R. King; Jagger, Thomas H.
2009-08-01
While the recent disasters in the world's financial markets demonstrate that finance theory remains far from perfected, science also faces steep challenges in the quest to predict and manage the effects of natural disasters. Worldwide, as many as half a million people have died in disasters such as earthquakes, tsunamis, and tropical cyclones since the turn of the 21st century [Wirtz, 2008]. Further, natural disasters can lead to extreme financial losses, and independent financial collapses can be exacerbated by natural disasters. In financial cost, 2008 was the second most expensive year on record for such catastrophes and for financial market declines. These extreme events in the natural and financial realms push the issue of risk management to the fore, expose the deficiencies of existing knowledge and practice, and suggest that progress requires further research and training at the graduate level.
Natural hazards in a changing world: a case for ecosystem-based management.
Nel, Jeanne L; Le Maitre, David C; Nel, Deon C; Reyers, Belinda; Archibald, Sally; van Wilgen, Brian W; Forsyth, Greg G; Theron, Andre K; O'Farrell, Patrick J; Kahinda, Jean-Marc Mwenge; Engelbrecht, Francois A; Kapangaziwiri, Evison; van Niekerk, Lara; Barwell, Laurie
2014-01-01
Communities worldwide are increasingly affected by natural hazards such as floods, droughts, wildfires and storm-waves. However, the causes of these increases remain underexplored, often attributed to climate changes or changes in the patterns of human exposure. This paper aims to quantify the effect of climate change, as well as land cover change, on a suite of natural hazards. Changes to four natural hazards (floods, droughts, wildfires and storm-waves) were investigated through scenario-based models using land cover and climate change drivers as inputs. Findings showed that human-induced land cover changes are likely to increase natural hazards, in some cases quite substantially. Of the drivers explored, the uncontrolled spread of invasive alien trees was estimated to halve the monthly flows experienced during extremely dry periods, and also to double fire intensities. Changes to plantation forestry management shifted the 1:100 year flood event to a 1:80 year return period in the most extreme scenario. Severe 1:100 year storm-waves were estimated to occur on an annual basis with only modest human-induced coastal hardening, predominantly from removal of coastal foredunes and infrastructure development. This study suggests that through appropriate land use management (e.g. clearing invasive alien trees, re-vegetating clear-felled forests, and restoring coastal foredunes), it would be possible to reduce the impacts of natural hazards to a large degree. It also highlights the value of intact and well-managed landscapes and their role in reducing the probabilities and impacts of extreme climate events.
Defining the nature of human γδ T cells: a biographical sketch of the highly empathetic.
Kalyan, Shirin; Kabelitz, Dieter
2013-01-01
The elusive task of defining the character of γδ T cells has been an evolving process for immunologists since stumbling upon their existence during the molecular characterization of the α and β T cell receptor genes of their better understood brethren. Defying the categorical rules used to distinctly characterize lymphocytes as either innate or adaptive in nature, γδ T cells inhabit a hybrid world of their own. At opposing ends of the simplified spectrum of modes of antigen recognition used by lymphocytes, natural killer and αβ T cells are particularly well equipped to respond to the 'missing self' and the 'dangerous non-self', respectively. However, between these two reductive extremes, we are chronically faced with the challenge of making peace with the 'safe non-self' and dealing with the inevitable 'distressed self', and it is within this more complex realm γδ T cells excel thanks to their highly empathetic nature. This review gives an overview of the latest insights revealing the unfolding story of human γδ T cells, providing a biographical sketch of these unique lymphocytes in an attempt to capture the essence of their fundamental nature and events that influence their life trajectory. What hangs in their balance is their nuanced ability to differentiate the friends from the foe and the pathological from the benign to help us adapt swiftly and efficiently to life's many stresses.
Farashi, Sajjad
2017-01-01
Interaction between biological systems and environmental electric or magnetic fields has gained attention during the past few decades. Although there are a lot of studies that have been conducted for investigating such interaction, the reported results are considerably inconsistent. Besides the complexity of biological systems, the important reason for such inconsistent results may arise due to different excitation protocols that have been applied in different experiments. In order to investigate carefully the way that external electric or magnetic fields interact with a biological system, the parameters of excitation, such as intensity or frequency, should be selected purposefully due to the influence of these parameters on the system response. In this study, pancreatic β cell, the main player of blood glucose regulating system, is considered and the study is focused on finding the natural frequency spectrum of the system using modeling approach. Natural frequencies of a system are important characteristics of the system when external excitation is applied. The result of this study can help researchers to select proper frequency parameter for electrical excitation of β cell system. The results show that there are two distinct frequency ranges for natural frequency of β cell system, which consist of extremely low (or near zero) and 100-750 kHz frequency ranges. There are experimental works on β cell exposure to electromagnetic fields that support such finding.
Albano, Christine M.; Cox, Dale A.; Dettinger, Michael; Shaller, Kevin; Welborn, Toby L.; McCarthy, Maureen
2014-01-01
Atmospheric rivers (ARs) are strongly linked to extreme winter precipitation events in the Western U.S., accounting for 80 percent of extreme floods in the Sierra Nevada and surrounding lowlands. In 2010, the U.S. Geological Survey developed the ARkStorm extreme storm scenario for California to quantify risks from extreme winter storms and to allow stakeholders to better explore and mitigate potential impacts. To explore impacts on natural resources and communities in montane and adjacent environments, we downscaled the scenario to the greater Lake Tahoe, Reno and Carson City region of northern Nevada and California. This ArkStorm@Tahoe scenario was presented at six stakeholder meetings, each with a different geographic and subject matter focus. Discussions were facilitated by the ARkStorm@Tahoe team to identify social and ecological vulnerabilities to extreme winter storms, science and information needs, and proactive measures that might minimize impacts from this type of event. Information collected in these meetings was used to develop a tabletop emergency response exercise and set of recommendations for increasing resilience to extreme winter storm events in both Tahoe and the downstream communities of Northern Nevada.Over 300 individuals participated in ARkStorm@Tahoe stakeholder meetings and the emergency response exercise, including representatives from emergency response, natural resource and ecosystem management, health and human services, public utilities, and businesses. Interruption of transportation, communications, and lack of power and backup fuel supplies were identified as the most likely and primary points of failure across multiple sectors and geographies, as these interruptions have cascading effects on natural and human systems by impeding emergency response efforts. Other key issues that arose in discussions included contamination risks to water supplies and aquatic ecosystems, especially in the Tahoe Basin and Pyramid Lake, interagency coordination, credentialing, flood management, and coordination of health and human services during such an event. Mitigation options were identified for each of the key issues. Several science needs were identified, particularly the need for improved flood inundation maps. Finally, key lessons learned were identified and may help to increase preparedness, response and recovery from extreme storms in the future.
Rural livelihoods and household adaptation to extreme flooding in the Okavango Delta, Botswana
NASA Astrophysics Data System (ADS)
Motsholapheko, M. R.; Kgathi, D. L.; Vanderpost, C.
Adaptation to flooding is now widely adopted as an appropriate policy option since flood mitigation measures largely exceed the capability of most developing countries. In wetlands, such as the Okavango Delta, adaptation is more appropriate as these systems serve as natural flood control mechanisms. The Okavango Delta system is subject to annual variability in flooding with extreme floods resulting in adverse impacts on rural livelihoods. This study therefore seeks to improve the general understanding of rural household livelihood adaptation to extreme flooding in the Okavango Delta. Specific objectives are: (1) to assess household access to forms of capital necessary for enhanced capacity to adapt, (2) to assess the impacts of extreme flooding on household livelihoods, and (3) to identify and assess household livelihood responses to extreme flooding. The study uses the sustainable livelihood and the socio-ecological frameworks to analyse the livelihood patterns and resilience to extreme flooding. Results from a survey of 623 households in five villages, key informant interviews, focus group discussions and review of literature, indicate that access to natural capital was generally high, but low for financial, physical, human and social capital. Households mainly relied on farm-based livelihood activities, some non-farm activities, limited rural trade and public transfers. In 2004 and 2009, extreme flooding resulted in livelihood disruptions in the study areas. The main impacts included crop damage, household displacement, destruction of household property, livestock drowning and mud-trapping, the destruction of public infrastructure and disruption of services. The main household coping strategies were labour switching to other livelihood activities, temporary relocation to less affected areas, use of canoes for early harvesting or evacuation and government assistance, particularly for the most vulnerable households. Household adaptive strategies included livelihood diversification, long-term mobility and training in non-agricultural skills. The study concludes that household capacity to adapt to extreme flooding in the study villages largely depends on access to natural capital. This is threatened by population growth, land use changes, policy shifts, upstream developments, global economic changes and flood variations due to climate variability and change.
Application of data on climate extremes for the southwestern United States
NASA Astrophysics Data System (ADS)
Redmond, K. T.; Fleishman, E.; Cayan, D. R.; Daudert, B.; Gershunov, A.
2015-12-01
We are improving the scientific capacity to evaluate responses of natural resources to climate extremes. We also are enhancing a platform for derivation of and access to customized climate information for the full extent or any subset of the southwestern United States. Extreme climate can have substantial effects on species, ecological and evolutionary processes, and the health of visitors to public lands. We are working with federal and state managers and with researchers who collaborate with decision-makers to use data on climate extremes to inform resource management. Current applications include sudden oak death, estuarine management, and fine-resolution manipulation of montane vegetation. To facilitate practical use of data on climate extremes, we are screening global climate models on the basis of their realism in representing natural regional patterns and extremes of temperature and precipitation, including those driven by El Niño and La Niña. We are assessing how well each model represents different climate elements. We also are delivering point and gridded observations and downscaled model projections, all at daily and 6 km resolution, on past and future climate extremes. Additionally, we are using the downscaled outputs to drive a hydrologic model and derive multiple probabilistic measures of water availability, flood, and drought. Moreover, we are extending the capacity of the Southwest Climate and Environmental Information Collaborative (SCENIC; wrcc.dri.edu/csc/scenic), a product developed by the Western Regional Climate Center, to provide access to diverse observed and simulated data on regional weather and climate, particularly on extremes.
34 CFR 32.9 - Written decision.
Code of Federal Regulations, 2011 CFR
2011-07-01
... stating the facts supporting the nature and origin of the debt and the hearing official's analysis... determination of the existence and the amount of the overpayment or the extreme financial hardship caused by the... decides the issue of extreme financial hardship caused by the involuntary repayment schedule only where...
Plastic Surgery Challenges in War Wounded I: Flap-Based Extremity Reconstruction
Sabino, Jennifer M.; Slater, Julia; Valerio, Ian L.
2016-01-01
Scope and Significance: Reconstruction of traumatic injuries requiring tissue transfer begins with aggressive resuscitation and stabilization. Systematic advances in acute casualty care at the point of injury have improved survival and allowed for increasingly complex treatment before definitive reconstruction at tertiary medical facilities outside the combat zone. As a result, the complexity of the limb salvage algorithm has increased over 14 years of combat activities in Iraq and Afghanistan. Problem: Severe poly-extremity trauma in combat casualties has led to a large number of extremity salvage cases. Advanced reconstructive techniques coupled with regenerative medicine applications have played a critical role in the restoration, recovery, and rehabilitation of functional limb salvage. Translational Relevance: The past 14 years of war trauma have increased our understanding of tissue transfer for extremity reconstruction in the treatment of combat casualties. Injury patterns, flap choice, and reconstruction timing are critical variables to consider for optimal outcomes. Clinical Relevance: Subacute reconstruction with specifically chosen flap tissue and donor site location based on individual injuries result in successful tissue transfer, even in critically injured patients. These considerations can be combined with regenerative therapies to optimize massive wound coverage and limb salvage form and function in previously active patients. Summary: Traditional soft tissue reconstruction is integral in the treatment of war extremity trauma. Pedicle and free flaps are a critically important part of the reconstructive ladder for salvaging extreme extremity injuries that are seen as a result of the current practice of war. PMID:27679751
Knapp, Alan K.; Avolio, Meghan L.; Beier, Claus; Carroll, Charles J.W.; Collins, Scott L.; Dukes, Jeffrey S.; Fraser, Lauchlan H.; Griffin-Nolan, Robert J.; Hoover, David L.; Jentsch, Anke; Loik, Michael E.; Phillips, Richard P.; Post, Alison K.; Sala, Osvaldo E.; Slette, Ingrid J.; Yahdjian, Laura; Smith, Melinda D.
2017-01-01
Intensification of the global hydrological cycle, ranging from larger individual precipitation events to more extreme multiyear droughts, has the potential to cause widespread alterations in ecosystem structure and function. With evidence that the incidence of extreme precipitation years (defined statistically from historical precipitation records) is increasing, there is a clear need to identify ecosystems that are most vulnerable to these changes and understand why some ecosystems are more sensitive to extremes than others. To date, opportunistic studies of naturally occurring extreme precipitation years, combined with results from a relatively small number of experiments, have provided limited mechanistic understanding of differences in ecosystem sensitivity, suggesting that new approaches are needed. Coordinated distributed experiments (CDEs) arrayed across multiple ecosystem types and focused on water can enhance our understanding of differential ecosystem sensitivity to precipitation extremes, but there are many design challenges to overcome (e.g., cost, comparability, standardization). Here, we evaluate contemporary experimental approaches for manipulating precipitation under field conditions to inform the design of ‘Drought-Net’, a relatively low-cost CDE that simulates extreme precipitation years. A common method for imposing both dry and wet years is to alter each ambient precipitation event. We endorse this approach for imposing extreme precipitation years because it simultaneously alters other precipitation characteristics (i.e., event size) consistent with natural precipitation patterns. However, we do not advocate applying identical treatment levels at all sites – a common approach to standardization in CDEs. This is because precipitation variability varies >fivefold globally resulting in a wide range of ecosystem-specific thresholds for defining extreme precipitation years. For CDEs focused on precipitation extremes, treatments should be based on each site's past climatic characteristics. This approach, though not often used by ecologists, allows ecological responses to be directly compared across disparate ecosystems and climates, facilitating process-level understanding of ecosystem sensitivity to precipitation extremes.
Knapp, Alan K; Avolio, Meghan L; Beier, Claus; Carroll, Charles J W; Collins, Scott L; Dukes, Jeffrey S; Fraser, Lauchlan H; Griffin-Nolan, Robert J; Hoover, David L; Jentsch, Anke; Loik, Michael E; Phillips, Richard P; Post, Alison K; Sala, Osvaldo E; Slette, Ingrid J; Yahdjian, Laura; Smith, Melinda D
2017-05-01
Intensification of the global hydrological cycle, ranging from larger individual precipitation events to more extreme multiyear droughts, has the potential to cause widespread alterations in ecosystem structure and function. With evidence that the incidence of extreme precipitation years (defined statistically from historical precipitation records) is increasing, there is a clear need to identify ecosystems that are most vulnerable to these changes and understand why some ecosystems are more sensitive to extremes than others. To date, opportunistic studies of naturally occurring extreme precipitation years, combined with results from a relatively small number of experiments, have provided limited mechanistic understanding of differences in ecosystem sensitivity, suggesting that new approaches are needed. Coordinated distributed experiments (CDEs) arrayed across multiple ecosystem types and focused on water can enhance our understanding of differential ecosystem sensitivity to precipitation extremes, but there are many design challenges to overcome (e.g., cost, comparability, standardization). Here, we evaluate contemporary experimental approaches for manipulating precipitation under field conditions to inform the design of 'Drought-Net', a relatively low-cost CDE that simulates extreme precipitation years. A common method for imposing both dry and wet years is to alter each ambient precipitation event. We endorse this approach for imposing extreme precipitation years because it simultaneously alters other precipitation characteristics (i.e., event size) consistent with natural precipitation patterns. However, we do not advocate applying identical treatment levels at all sites - a common approach to standardization in CDEs. This is because precipitation variability varies >fivefold globally resulting in a wide range of ecosystem-specific thresholds for defining extreme precipitation years. For CDEs focused on precipitation extremes, treatments should be based on each site's past climatic characteristics. This approach, though not often used by ecologists, allows ecological responses to be directly compared across disparate ecosystems and climates, facilitating process-level understanding of ecosystem sensitivity to precipitation extremes. © 2016 John Wiley & Sons Ltd.
Complex Regional Pain Syndrome
Complex regional pain syndrome (CRPS) is a chronic pain condition. It causes intense pain, usually in the arms, hands, legs, or feet. ... in skin temperature, color, or texture Intense burning pain Extreme skin sensitivity Swelling and stiffness in affected ...
2012-01-01
Background The critical role of Major Histocompatibility Complex (Mhc) genes in disease resistance and their highly polymorphic nature make them exceptional candidates for studies investigating genetic effects on survival, mate choice and conservation. Species that harbor many Mhc loci and high allelic diversity are particularly intriguing as they are potentially under strong selection and studies of such species provide valuable information as to the mechanisms maintaining Mhc diversity. However comprehensive genotyping of complex multilocus systems has been a major challenge to date with the result that little is known about the consequences of this complexity in terms of fitness effects and disease resistance. Results In this study, we genotyped the Mhc class I exon 3 of the great tit (Parus major) from two nest-box breeding populations near Oxford, UK that have been monitored for decades. Characterization of Mhc class I exon 3 was adopted and bidirectional sequencing was carried using the 454 sequencing platform. Full analysis of sequences through a stepwise variant validation procedure allowed reliable typing of more than 800 great tits based on 214,357 reads; from duplicates we estimated the repeatability of typing as 0.94. A total of 862 alleles were detected, and the presence of at least 16 functional loci was shown - the highest number characterized in a wild bird species. Finally, the functional alleles were grouped into 17 supertypes based on their antigen binding affinities. Conclusions We found extreme complexity at the Mhc class I of the great tit both in terms of allelic diversity and gene number. The presence of many functional loci was shown, together with a pseudogene family and putatively non-functional alleles; there was clear evidence that functional alleles were under strong balancing selection. This study is the first step towards an in-depth analysis of this gene complex in this species, which will help understanding how parasite-mediated and sexual selection shape and maintain host genetic variation in nature. We believe that study systems like ours can make important contributions to the field of evolutionary biology and emphasize the necessity of integrating long-term field-based studies with detailed genetic analysis to unravel complex evolutionary processes. PMID:22587557
The discrete and localized nature of the variable emission from active regions
NASA Technical Reports Server (NTRS)
Arndt, Martina Belz; Habbal, Shadia Rifai; Karovska, Margarita
1994-01-01
Using data from the Extreme Ultraviolet (EUV) Spectroheliometer on Skylab, we study the empirical characteristics of the variable emission in active regions. These simultaneous multi-wavelength observations clearly confirm that active regions consist of a complex of loops at different temperatures. The variable emission from this complex has very well-defined properties that can be quantitatively summarized as follows: (1) It is localized predominantly around the footpoints where it occurs at discrete locations. (2) The strongest variability does not necessarily coincide with the most intense emission. (3) The fraction of the area of the footpoints, (delta n)/N, that exhibits variable emission, varies by +/- 15% as a function of time, at any of the wavelengths measured. It also varies very little from footpoint to footpoint. (4) This fractional variation is temperature dependent with a maximum around 10(exp 5) K. (5) The ratio of the intensity of the variable to the average background emission, (delta I)/(bar-I), also changes with temperature. In addition, we find that these distinctive characteristics persist even when flares occur within the active region.
Zhang, Xinglei; Jia, Bin; Huang, Keke; Hu, Bin; Chen, Rong; Chen, Huanwen
2010-10-01
A novel strategy to trace the origins of commercial pharmaceutical products has been developed based on the direct chemical profiling of the pharmaceutical products by surface desorption atmospheric pressure chemical ionization mass spectrometry (DAPCI-MS). Besides the unambiguous identification of active drug components, various compounds present in the matrixes are simultaneously detected without sample pretreatment, providing valuable information for drug quality control and origin differentiation. Four sources of commercial amoxicillin products made by different manufacturers have been successfully differentiated. This strategy has been extended to secerning six sources of Liuwei Dihuang Teapills, which are herbal medicine preparations with extremely complex matrixes. The photolysis status of chemical drug products and the inferior natural herd medicine products prepared with different processes (e.g., extra heating) were also screened using the method reported here. The limit of detection achieved in the MS/MS experiments was estimated to be 1 ng/g for amoxicillin inside the capsule product. Our experimental data demonstrate that DAPCI-MS is a useful tool for rapid pharmaceutical analysis, showing promising perspectives for tracking the entire pharmaceutical supply chain to prevent counterfeit intrusions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Synthetic Biology Research Program, National University of Singapore, Singapore
Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fattymore » acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes.« less
Mesenchymal Stem Cells as Therapeutics Agents: Quality and Environmental Regulatory Aspects
Sabata, Roger; Verges, Josep; Zugaza, José L.; Ruiz, Adolfina; Clares, Beatriz
2016-01-01
Mesenchymal stem cells (MSCs) are one of the main stem cells that have been used for advanced therapies and regenerative medicine. To carry out the translational clinical application of MSCs, their manufacturing and administration in human must be controlled; therefore they should be considered as medicine: stem cell-based medicinal products (SCMPs). The development of MSCs as SCMPs represents complicated therapeutics due to their extreme complex nature and rigorous regulatory oversights. The manufacturing process of MSCs needs to be addressed in clean environments in compliance with requirements of Good Manufacturing Practice (GMP). Facilities should maintain these GMP conditions according to international and national medicinal regulatory frameworks that introduce a number of specifications in order to produce MSCs as safe SCMPs. One of these important and complex requirements is the environmental monitoring. Although a number of environmental requirements are clearly defined, some others are provided as recommendations. In this review we aim to outline the current issues with regard to international guidelines which impact environmental monitoring in cleanrooms and clean areas for the manufacturing of MSCs. PMID:27999600
Molecular hyperdiversity and evolution in very large populations.
Cutter, Asher D; Jovelin, Richard; Dey, Alivia
2013-04-01
The genomic density of sequence polymorphisms critically affects the sensitivity of inferences about ongoing sequence evolution, function and demographic history. Most animal and plant genomes have relatively low densities of polymorphisms, but some species are hyperdiverse with neutral nucleotide heterozygosity exceeding 5%. Eukaryotes with extremely large populations, mimicking bacterial and viral populations, present novel opportunities for studying molecular evolution in sexually reproducing taxa with complex development. In particular, hyperdiverse species can help answer controversial questions about the evolution of genome complexity, the limits of natural selection, modes of adaptation and subtleties of the mutation process. However, such systems have some inherent complications and here we identify topics in need of theoretical developments. Close relatives of the model organisms Caenorhabditis elegans and Drosophila melanogaster provide known examples of hyperdiverse eukaryotes, encouraging functional dissection of resulting molecular evolutionary patterns. We recommend how best to exploit hyperdiverse populations for analysis, for example, in quantifying the impact of noncrossover recombination in genomes and for determining the identity and micro-evolutionary selective pressures on noncoding regulatory elements. © 2013 Blackwell Publishing Ltd.
Inoue, Shigeyoshi; Bag, Prasenjit; Weetman, Catherine
2018-05-23
Synthesis and isolation of stable main group compounds featuring multiple bonds has been of keen interest for the last several decades. Multiply bonded complexes were obtained using sterically demanding substituents that provide kinetic and thermodynamic stability. Many of these compounds have unusual structural and electronic properties that challenges the classical concept of covalent multiple bonding. In contrast, analogous aluminium compounds are scarce in spite of its high natural abundance. The parent dialumene (Al2H2) has been calculated to be extremely weak, thus making Al multiple bonds a challenging synthetic target. This review provides an overview of these recent advances in the cutting edge synthetic approaches used to obtain aluminium homo- and heterodiatomic multiply bonded complexes. Additionally, the reactivity of these novel compounds towards various small molecules and reagents will be discussed herein. This review provides an overview on the current progress in aluminium multiple bond chemistry and the careful ligand design required to stabilise these reactive species. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Views of the Sea Floor in Northern Monterey Bay, California
Storlazzi, Curt D.; Golden, Nadine E.; Finlayson, David P.
2008-01-01
A sonar survey that produced unprecedented high-resolution images of the sea floor in northern Monterey Bay was conducted in 2005 and 2006. The survey, performed over 14 days by the U.S. Geological Survey (USGS), consisted of 172 tracklines and over 300 million soundings and covered an area of 12.2 km2 (4.7 mi2). The goals of this survey were to collect high-resolution bathymetry (depth to the sea floor) and acoustic backscatter data (amount of sound energy bounced back from the sea floor, which provides information on sea-floor hardness and texture) from the inner continental shelf. These data will provide a baseline for future change analyses, geologic mapping, sediment- and contaminant-transport studies, benthic-habitat delineation, and numerical modeling efforts. The survey shows that the inner shelf in this area is extremely varied in nature, encompassing flat sandy areas, faults, boulder fields, and complex bedrock ridges that support rich marine ecosystems. Furthermore, many of these complex bedrock ridges form the ?reefs? that result in a number of California?s classic surf breaks.
Yacubian, Elza Márcia Targas
2003-06-01
Colonel Antônio Moreira César, the Commander of the third Expedition against Canudos (1896-1897), nicknamed "head-chopper", was considered an implacable military man, a synonym of ferocity and extreme brutality against his adversaries. Therefore, he was nominated the Commander of an expedition considered almost invincible. Since his 30's he presented epileptic seizures, which increased in frequency and severity on his way to Canudos. After several well-documented episodes and probably considering himself the winner in anticipation, he ordered a premature and almost ingenuous attack against Canudos. His misjudging is attributed to the effect of successive seizures. He was shot and killed on the very first day of that battle and his expedition had a horrible and unexpected end. Based on the descriptions of his biographer we discuss the nature of his disease probably characterized by focal seizures with elementary and complex visual hallucinations followed by language deficits and episodes of complex partial seizures and secondary generalization and its role in this episode of Brazilian history.
Production of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes
Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Leong, Susanna Su Jan; Chang, Matthew Wook
2014-01-01
Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes. PMID:25566540
Genome hypermethylation in Pinus silvestris of Chernobyl--a mechanism for radiation adaptation?
Kovalchuk, Olga; Burke, Paula; Arkhipov, Andrey; Kuchma, Nikolaj; James, S Jill; Kovalchuk, Igor; Pogribny, Igor
2003-08-28
Adaptation is a complex process by which populations of organisms respond to long-term environmental stresses by permanent genetic change. Here we present data from the natural "open-field" radiation adaptation experiment after the Chernobyl accident and provide the first evidence of the involvement of epigenetic changes in adaptation of a eukaryote-Scots pine (Pinus silvestris), to chronic radiation exposure. We have evaluated global genome methylation of control and radiation-exposed pine trees using a method based on cleavage by a methylation-sensitive HpaII restriction endonuclease that leaves a 5' guanine overhang and subsequent single nucleotide extension with labeled [3H] dCTP. We have found that genomic DNA of exposed pine trees was considerably hypermethylated. Moreover, hypermethylation appeared to be dependent upon the radiation dose absorbed by the trees. Such hypermethylation may be viewed as a defense strategy of plants that prevents genome instability and reshuffling of the hereditary material, allowing survival in an extreme environment. Further studies are clearly needed to analyze in detail the involvement of DNA methylation and other epigenetic mechanisms in the complex process of radiation stress and adaptive response.
Underestimating extreme events in power-law behavior due to machine-dependent cutoffs
NASA Astrophysics Data System (ADS)
Radicchi, Filippo
2014-11-01
Power-law distributions are typical macroscopic features occurring in almost all complex systems observable in nature. As a result, researchers in quantitative analyses must often generate random synthetic variates obeying power-law distributions. The task is usually performed through standard methods that map uniform random variates into the desired probability space. Whereas all these algorithms are theoretically solid, in this paper we show that they are subject to severe machine-dependent limitations. As a result, two dramatic consequences arise: (i) the sampling in the tail of the distribution is not random but deterministic; (ii) the moments of the sample distribution, which are theoretically expected to diverge as functions of the sample sizes, converge instead to finite values. We provide quantitative indications for the range of distribution parameters that can be safely handled by standard libraries used in computational analyses. Whereas our findings indicate possible reinterpretations of numerical results obtained through flawed sampling methodologies, they also pave the way for the search for a concrete solution to this central issue shared by all quantitative sciences dealing with complexity.
Evolution of evaluation criteria in the College of American Pathologists Surveys.
Ross, J W
1988-04-01
This review of the evolution of evaluation criteria in the College of American Pathologists Survey and of theoretical grounds proposed for evaluation criteria explores the complex nature of the evaluation process. Survey professionals balance multiple variables to seek relevant and meaningful evaluations. These include the state of the art, the reliability of target values, the nature of available control materials, the perceived medical "nonusefulness" of the extremes of performance (good or poor), this extent of laboratory services provided, and the availability of scientific data and theory by which clinically relevant criteria of medical usefulness may be established. The evaluation process has consistently sought peer concensus, to stimulate improvement in state of the art, to increase medical usefulness, and to monitor the state of the art. Recent factors that are likely to promote change from peer group evaluation to fixed criteria evaluation are the high degree of proficiency in the state of the art for many analytes, accurate target values, increased knowledge of biologic variation, and the availability of statistical modeling techniques simulating biologic and diagnostic processes as well as analytic processes.
Strychnine as Target, Samarium Diiodide as Tool: A Personal Story.
Beemelmanns, Christine; Reissig, Hans-Ulrich
2015-10-01
Strychnine stands out from the group of classical natural products as one of the first complex compounds to be isolated in pure form and an extreme challenge to be structurally characterized. It has played a central role in natural product total syntheses and the surge in the development of innovative synthetic methods for many decades. Recently, we have accomplished one of the shortest formal total syntheses of strychnine (in ten steps and 14% overall yield or even shorter in eight steps and 10% overall yield). The evolution of a productive synthetic strategy, as well as the synthetic challenges tackled, are described here in detail, including examples of related transformations. The successful synthetic strategy was inspired by the premise that the core structure could be derived from simple aromatic indole precursors by a reductive SmI2 -induced ketyl-aryl coupling. Other key reactions included a diastereoselective reduction and a regioselective elimination protocol. Altogether one of the shortest syntheses of iso-strychnine and hence of strychnine was established. Copyright © 2015 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Catalogue of Diptera of Colombia: an introduction.
Wolff, Marta; Nihei, Silvio S; Carvalho, Claudio J B De
2016-06-14
Colombia has an imposing natural wealth due to its topography has many unique characteristics as a consequence of having Caribbean and Pacific shores, as well as sharing part of the Amazon basin and northern Andes mountains. Thus, many natural and biological features are due to the convergence of three biogeographical regions: Pacific, Andes and Amazonia. The Andean uplift created a complex mosaic of mountains and isolated valleys, including eleven biogeographical provinces (Morrone 2006). The Andes dominate the Colombian topography and cross the country south to north. There are three mountain ranges (Western, Central, and Eastern) with a maximum elevation of 5,775 m, and an average elevation of 2,000 m. The Magdalena and Cauca River valleys separate these ranges, that along with the Putumayo and Caquetá Rivers, the Catatumbo watershed, the Darién, Pique Hill, the Orinoquia Region (with its savannas), the Amazon region (with tropical rainforests), and some lower mountain ranges (Macarena and Chiribiquete), have generated the conditions for very high levels of endemism. This variety of conditions has resulted in an extremely diverse plant and animal biota, and in which 48% of the nation remains unexplored.
Ohgo, Yoshiki; Chiba, Yuya; Hashizume, Daisuke; Uekusa, Hidehiro; Ozeki, Tomoji; Nakamura, Mikio
2006-05-14
A novel spin transition between S = 5/2 and S = 3/2 has been observed for the first time in five-coordinate, highly saddled iron(III) porphyrinates by EPR and SQUID measurements at extremely low temperatures.
Both the moderately halophilic bacterium, Halomonas elongata, and the extremely halophilic archaea, Halobacterium salinarum, can be found in hypersaline environments (e.g., salterns). On complex media, H. elongata grows over a salt range of 0.05-5.2 M, whereas, H. salinarum multi...
NASA Astrophysics Data System (ADS)
Menz, Christoph
2016-04-01
Climate change interferes with various aspects of the socio-economic system. One important aspect is its influence on animal husbandry, especially dairy faming. Dairy cows are usually kept in naturally ventilated barns (NVBs) which are particular vulnerable to extreme events due to their low adaptation capabilities. An effective adaptation to high outdoor temperatures for example, is only possible under certain wind and humidity conditions. High temperature extremes are expected to increase in number and strength under climate change. To assess the impact of this change on NVBs and dairy cows also the changes in wind and humidity needs to be considered. Hence we need to consider the multivariate structure of future temperature extremes. The OptiBarn project aims to develop sustainable adaptation strategies for dairy housings under climate change for Europe, by considering the multivariate structure of high temperature extremes. In a first step we identify various multivariate high temperature extremes for three core regions in Europe. With respect to dairy cows in NVBs we will focus on the wind and humidity field during high temperature events. In a second step we will use the CORDEX-EUR-11 ensemble to evaluate the capability of the RCMs to model such events and assess their future change potential. By transferring the outdoor conditions to indoor climate and animal wellbeing the results of this assessment can be used to develop technical, architectural and animal specific adaptation strategies for high temperature extremes.
NASA Astrophysics Data System (ADS)
Serafin, K.; Ruggiero, P.; Stockdon, H. F.; Barnard, P.; Long, J.
2014-12-01
Many coastal communities worldwide are vulnerable to flooding and erosion driven by extreme total water levels (TWL), potentially dangerous events produced by the combination of large waves, high tides, and high non-tidal residuals. The West coast of the United States provides an especially challenging environment to model these processes due to its complex geological setting combined with uncertain forecasts for sea level rise (SLR), changes in storminess, and possible changes in the frequency of major El Niños. Our research therefore aims to develop an appropriate methodology to assess present-day and future storm-induced coastal hazards along the entire U.S. West coast, filling this information gap. We present the application of this framework in a pilot study at Ocean Beach, California, a National Park site within the Golden Gate National Recreation Area where existing event-scale coastal change data can be used for model calibration and verification. We use a probabilistic, full simulation TWL model (TWL-FSM; Serafin and Ruggiero, in press) that captures the seasonal and interannual climatic variability in extremes using functions of regional climate indices, such as the Multivariate ENSO index (MEI), to represent atmospheric patterns related to the El Niño-Southern Oscillation (ENSO). In order to characterize the effect of climate variability on TWL components, we refine the TWL-FSM by splitting non-tidal residuals into low (monthly mean sea level anomalies) and high frequency (storm surge) components. We also develop synthetic climate indices using Markov sequences to reproduce the autocorrelated nature of ENSO behavior. With the refined TWL-FSM, we simulate each TWL component, resulting in synthetic TWL records providing robust estimates of extreme return level events (e.g., the 100-yr event) and the ability to examine the relative contribution of each TWL component to these extreme events. Extreme return levels are then used to drive storm impact models to examine the probability of coastal change (Stockdon et al., 2013) and thus, the vulnerability to storm-induced coastal hazards that Ocean Beach faces. Future climate variability is easily incorporated into this framework, allowing us to quantify how an evolving climate will alter future extreme TWLs and their related coastal impacts.
The interplay between climate change, forests, and disturbances
Virginia H. Dale; Linda A. Joyce; Steve McNulty; Ronald P. Neilson
2000-01-01
Climate change affects forests both directly and indirectly through disturbances. Disturbances are a natural and integral part of forest ecosystems, and climate change can alter these natural interactions. When disturbances exceed their natural range of variation, the change in forest structure and function may be extreme. Each disturbance affects forests differently....
NASA Astrophysics Data System (ADS)
Viola, Giulio
2017-04-01
Faulting accommodates momentous deformation and its style reflects the complex interplay of often transient processes such as friction, fluid flow and rheological changes within generally dilatant systems. Brittle faults are thus unique archives of the stress state and the physical and chemical conditions at the time of both initial strain localization and subsequent slip(s) during structural reactivation. Opening those archives, however, may be challenging due to the commonly convoluted (if not even chaotic) nature of brittle fault architectures and fault rocks. This is because, once formed, faults are extremely sensitive to variations in stress field and environmental conditions and are prone to readily slip in a variety of conditions, also in regions affected by only weak, far-field stresses. The detailed, multi-scalar structural analysis of faults and of fault rocks has to be the starting point for any study aiming at reconstructing the complex framework of brittle deformation. However, considering that present-day exposures of faults only represent the end result of the faults' often protracted and heterogeneous histories, the obtained structural and mechanical results have to be integrated over the life span of the studied fault system. Dating of synkinematic illite/muscovite to constrain the time-integrated evolution of faults is therefore the natural addition to detailed structural studies. By means of selected examples it will be demonstrated how careful structural analysis integrated with illite characterization and K-Ar dating allows the high-resolution reconstruction of brittle deformation histories and, in turn, multiple constraints to be placed on strain localization, deformation mechanisms, fluid flow, mineral alteration and authigenesis within actively deforming brittle fault rocks. Complex and long brittle histories can thus be reconstructed and untangled in any tectonic setting.
On the nature of the extremely fast optical rebrightening of the afterglow of GRB 081029
NASA Astrophysics Data System (ADS)
Nardini, M.; Greiner, J.; Krühler, T.; Filgas, R.; Klose, S.; Afonso, P.; Clemens, C.; Guelbenzu, A. N.; Olivares E., F.; Rau, A.; Rossi, A.; Updike, A.; Küpcü Yoldaş, A.; Yoldaş, A.; Burlon, D.; Elliott, J.; Kann, D. A.
2011-07-01
Context. After the launch of the Swift satellite, the gamma-ray burst (GRB) optical light-curve smoothness paradigm has been questioned thanks to the faster and better sampled optical follow-up, which has unveiled a very complex behaviour. This complexity is triggering the interest of the whole GRB community. The GROND multi-channel imager is used to study optical and near-infrared (NIR) afterglows of GRBs with unprecedented optical and near-infrared temporal and spectral resolution. The GRB 081029 has a very prominent optical rebrightening event and is an outstanding example of the application of the multi-channel imager to GRB afterglows. Aims: Here we exploit the rich GROND multi-colour follow-up of GRB 081029 combined with XRT observations to study the nature of late-time rebrightenings that appear in the optical-NIR light-curves of some GRB afterglows. Methods: We analyse the optical and NIR observations obtained with the seven-channel Gamma-Ray burst Optical and Near-infrared Detector (GROND) at the 2.2 m MPI/ESO telescope and the X-ray data obtained with the XRT telescope on board the Swift observatory. The multi-wavelength temporal and spectral evolution is discussed in the framework of different physical models. Results: The extremely steep optical and NIR rebrightening observed in GRB 081029 cannot be explained in the framework of the standard forward shock afterglow model. The absence of a contemporaneous X-ray rebrightening and the evidence of a strong spectral evolution in the optical-NIR bands during the rise suggest two separate components that dominate in the early and late-time light-curves, respectively. The steepness of the optical rise cannot be explained even in the framework of the alternative scenarios proposed in the literature unless a late-time activity of the central engine is assumed. Full GROND photometry of GRB 081029 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/531/A39
Mochizuki, Junko; Mechler, Reinhard; Hochrainer-Stigler, Stefan; Keating, Adriana; Williges, Keith
2014-01-01
Debate regarding the relationship between socioeconomic development and natural disasters remains at the fore of global discussions, as the potential risk from climate extremes and uncertainty pose an increasing threat to developmental prospects. This study reviews statistical investigations of disaster and development linkages, across topics of macroeconomic growth, public governance and others to identify key challenges to the current approach to macro-level statistical investigation. Both theoretically and qualitatively, disaster is known to affect development through a number of channels: haphazard development, weak institutions, lack of social safety nets and short-termism of our decision-making practices are some of the factors that drive natural disaster risk. Developmental potentials, including the prospects for sustainable and equitable growth, are in turn threatened by such accumulation of disaster risks. However, quantitative evidence regarding these complex causality chains remains contested due to several reasons. A number of theoretical and methodological limitations have been identified, including the use of GDP as a proxy measurement of welfare, issues with natural disaster damage reporting and the adoption of ad hoc model specifications and variables, which render interpretation and cross-comparison of statistical analysis difficult. Additionally, while greater attention is paid to economic and institutional parameters such as GDP, remittance, corruption and public expenditure as opposed to hard-to-quantify yet critical factors such as environmental conditions and social vulnerabilities. These are gaps in our approach that hamper our comprehensive understanding of the disaster-development nexus. Important areas for further research are identified, including recognizing and addressing the data constraints, incorporating sustainability and equity concerns through alternatives to GDP, and finding novel approaches to examining the complex and dynamic relationships between risk, vulnerability, resilience, adaptive capacity and development.
Self-Organization in the Manifestations of Youth Extremism
ERIC Educational Resources Information Center
Zubok, Iu. A.; Chuprov, V. I.
2011-01-01
The analysis of the nature of youth extremism has shown that there is a connection between the extremist tendency ["ekstremal'nost'"] that is an essential property of young people, on the one hand, and extremist manifestations that come about in that community under certain conditions. These conditions include external ones (the…
DOT National Transportation Integrated Search
2018-05-01
Recent federal legislation and the Federal Highway Administration (FHWA) have directed state transportation agencies to identify potential vulnerabilities associated with extreme weather events and climate change, develop a risk-based asset managemen...
USDA-ARS?s Scientific Manuscript database
From 2011 to 2013, Texas experienced its worst drought in recorded history. This event provided a unique natural experiment to assess species-specific responses to extreme drought and mortality of four co-occurring woody species: Quercus fusiformis, Diospyros texana, Prosopis glandulosa and Juniper...
A geostatistical extreme-value framework for fast simulation of natural hazard events
Stephenson, David B.
2016-01-01
We develop a statistical framework for simulating natural hazard events that combines extreme value theory and geostatistics. Robust generalized additive model forms represent generalized Pareto marginal distribution parameters while a Student’s t-process captures spatial dependence and gives a continuous-space framework for natural hazard event simulations. Efficiency of the simulation method allows many years of data (typically over 10 000) to be obtained at relatively little computational cost. This makes the model viable for forming the hazard module of a catastrophe model. We illustrate the framework by simulating maximum wind gusts for European windstorms, which are found to have realistic marginal and spatial properties, and validate well against wind gust measurements. PMID:27279768
Doing molecular biophysics: finding, naming, and picturing signal within complexity.
Richardson, Jane S; Richardson, David C
2013-01-01
A macromolecular structure, as measured data or as a list of coordinates or even on-screen as a full atomic model, is an extremely complex and confusing object. The underlying rules of how it folds, moves, and interacts as a biological entity are even less evident or intuitive to the human mind. To do science on such molecules, or to relate them usefully to higher levels of biology, we need to start with a natural history that names their features in meaningful ways and with multiple representations (visual or algebraic) that show some aspect of their organizing principles. The two of us have jointly enjoyed a highly varied and engrossing career in biophysical research over nearly 50 years. Our frequent changes of emphasis are tied together by two threads: first, by finding the right names, visualizations, and methods to help both ourselves and others to better understand the 3D structures of protein and RNA molecules, and second, by redefining the boundary between signal and noise for complex data, in both directions-sometimes identifying and promoting real signal up out of what seemed just noise, and sometimes demoting apparent signal into noise or systematic error. Here we relate parts of our scientific and personal lives, including ups and downs, influences, anecdotes, and guiding principles such as the title theme.
Ligand effects on the ferro- to antiferromagnetic exchange ratio in bis(o-semiquinonato)copper(II).
Ovcharenko, Victor I; Gorelik, Elena V; Fokin, Sergey V; Romanenko, Galina V; Ikorskii, Vladimir N; Krashilina, Anna V; Cherkasov, Vladimir K; Abakumov, Gleb A
2007-08-29
Heterospin complexes [Cu(SQ)2Py].C7H8, Cu(SQ)2DABCO, and [Cu(SQ)2NIT-mPy].C6H6, where Cu(SQ)2 is bis(3,6-di-tert-butyl-o-benzosemiquinonato)copper(II), DABCO is 1,4-diazabicyclo(2,2,2)octane, and NIT-mPy is the nitronyl nitroxide 2-(pyridin-3-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl, have been synthesized. The molecules of these complexes have a specific combination of the intramolecular ferro- and antiferromagnetic exchange interactions between the odd electrons of Cu(II) and SQ ligands, characterized by large exchange coupling parameters |J| approximately 100-300 cm(-1). X-ray and magnetochemical studies of a series of mixed-ligand compounds revealed that an extra ligand (Py, NIT-mPy, or DABCO) coordinated to the metal atom produces a dramatic effect on the magnetic properties of the complex, changing the multiplicity of the ground state. Quantum chemical analysis of magnetostructural correlations showed that the energy of the antiferromagnetic exchange interaction between the odd electrons of the SQ ligands in the Cu(SQ)2 bischelate is extremely sensitive to both the nature of the extra ligand and structural distortions of the coordination unit, arising from extra ligand coordination.
Nuclear and chloroplast DNA phylogeny reveals complex evolutionary history of Elymus pendulinus.
Yan, Chi; Hu, Qianni; Sun, Genlou
2014-02-01
Evidence accumulated over the last decade has shown that allopolyploid genomes may undergo complex reticulate evolution. In this study, 13 accessions of tetraploid Elymus pendulinus were analyzed using two low-copy nuclear genes (RPB2 and PepC) and two regions of chloroplast genome (Rps16 and trnD-trnT). Previous studies suggested that Pseudoroegneria (St) and an unknown diploid (Y) were genome donors to E. pendulinus, and that Pseudoroegneria was the maternal donor. Our results revealed an extreme reticulate pattern, with at least four distinct gene lineages coexisting within this species that might be acquired through a possible combination of allotetraploidization and introgression from both within and outside the tribe Hordeeae. Chloroplast DNA data identified two potential maternal genome donors (Pseudoroegneria and an unknown species outside Hordeeae) to E. pendulinus. Nuclear gene data indicated that both Pseudoroegneria and an unknown Y diploid have contributed to the nuclear genome of E. pendulinus, in agreement with cytogenetic data. However, unexpected contributions from Hordeum and unknown aliens from within or outside Hordeeae to E. pendulinus without genome duplication were observed. Elymus pendulinus provides a remarkable instance of the previously unsuspected chimerical nature of some plant genomes and the resulting phylogenetic complexity produced by multiple historical reticulation events.
Atmospheric rivers and the mass mortality of wild oysters: insight into an extreme future?
Cheng, Brian S; Chang, Andrew L; Deck, Anna; Ferner, Matthew C
2016-12-14
Climate change is predicted to increase the frequency and severity of extreme events. However, the biological consequences of extremes remain poorly resolved owing to their unpredictable nature and difficulty in quantifying their mechanisms and impacts. One key feature delivering precipitation extremes is an atmospheric river (AR), a long and narrow filament of enhanced water vapour transport. Despite recent attention, the biological impacts of ARs remain undocumented. Here, we use biological data coupled with remotely sensed and in situ environmental data to describe the role of ARs in the near 100% mass mortality of wild oysters in northern San Francisco Bay. In March 2011, a series of ARs made landfall within California, contributing an estimated 69.3% of the precipitation within the watershed and driving an extreme freshwater discharge into San Francisco Bay. This discharge caused sustained low salinities (less than 6.3) that almost perfectly matched the known oyster critical salinity tolerance and was coincident with a mass mortality of one of the most abundant populations throughout this species' range. This is a concern, because wild oysters remain a fraction of their historical abundance and have yet to recover. This study highlights a novel mechanism by which precipitation extremes may affect natural systems and the persistence of sensitive species in the face of environmental change. © 2016 The Author(s).
Robustness and Recovery of Lifeline Infrastructure and Ecosystem Networks
NASA Astrophysics Data System (ADS)
Bhatia, U.; Ganguly, A. R.
2015-12-01
Disruptive events, both natural and man-made, can have widespread impacts on both natural systems and lifeline infrastructure networks leading to the loss of biodiversity and essential functionality, respectively. Projected sea-level rise and climate change can further increase the frequency and severity of large-scale floods on urban-coastal megacities. Nevertheless, Failure in infrastructure systems can trigger cascading impacts on dependent ecosystems, and vice-versa. An important consideration in the behavior of the isolated networks and inter-connected networks following disruptive events is their resilience, or the ability of the network to "bounce back" to a pre-disaster state. Conventional risk analysis and subsequent risk management frameworks have focused on identifying the components' vulnerability and strengthening of the isolated components to withstand these disruptions. But high interconnectedness of these systems, and evolving nature of hazards, particularly in the context of climate extremes, make the component level analysis unrealistic. In this study, we discuss the complex network-based resilience framework to understand fragility and recovery strategies for infrastructure systems impacted by climate-related hazards. We extend the proposed framework to assess the response of ecological networks to multiple species loss and design the restoration management framework to identify the most efficient restoration sequence of species, which can potentially lead to disproportionate gains in biodiversity.
NASA Astrophysics Data System (ADS)
Gill, Joel; Tostevin, Rosalie
2014-05-01
Here we present a geohazards education and engagement project in the Indian region of Ladakh, used as an opportunity to train geoscience students in a number of important ethical, cultural and professional considerations. Located in the Indian Himalaya, Ladakh is home to historically-disadvantaged and endangered indigenous groups. It is also an area of extreme topography, climate and vulnerability, with a growing tourist industry. This combination of factors makes it an important region to improve geohazards understanding and observe the complex interactions between nature, society, and culture. Specific aims of this project are to (i) support community education through an interactive natural hazards programme (delivered in conjunction with a range of partners), training school-aged students from multiple socio-economic backgrounds; and (ii) increase the effectiveness of disaster risk reduction programmes, through research into the perception of natural hazards and environmental change. At all stages of this work, we are seeking to engage young geoscientists, helping them to better understand the skills and knowledge-base required to make a long-term, effective contribution to interdisciplinary research and professional practice. Through presenting an overview of this project and associated opportunities, we seek to emphasise the importance of developing practical opportunities for students to consider aspects of geoethics, social responsibility and cross-cultural understanding.
Social energy: mining energy from the society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jun Jason; Gao, David Wenzhong; Zhang, Yingchen
The inherent nature of energy, i.e., physicality, sociality and informatization, implies the inevitable and intensive interaction between energy systems and social systems. From this perspective, we define 'social energy' as a complex sociotechnical system of energy systems, social systems and the derived artificial virtual systems which characterize the intense intersystem and intra-system interactions. The recent advancement in intelligent technology, including artificial intelligence and machine learning technologies, sensing and communication in Internet of Things technologies, and massive high performance computing and extreme-scale data analytics technologies, enables the possibility of substantial advancement in socio-technical system optimization, scheduling, control and management. In thismore » paper, we provide a discussion on the nature of energy, and then propose the concept and intention of social energy systems for electrical power. A general methodology of establishing and investigating social energy is proposed, which is based on the ACP approach, i.e., 'artificial systems' (A), 'computational experiments' (C) and 'parallel execution' (P), and parallel system methodology. A case study on the University of Denver (DU) campus grid is provided and studied to demonstrate the social energy concept. In the concluding remarks, we discuss the technical pathway, in both social and nature sciences, to social energy, and our vision on its future.« less
48 CFR 52.246-18 - Warranty of Supplies of a Complex Nature.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Complex Nature. 52.246-18 Section 52.246-18 Federal Acquisition Regulations System FEDERAL ACQUISITION... Clauses 52.246-18 Warranty of Supplies of a Complex Nature. As prescribed in 46.710(b)(1), insert a clause substantially as follows: Warranty of Supplies of a Complex Nature (MAY 2001) (a) Definitions. As used in this...
48 CFR 52.246-18 - Warranty of Supplies of a Complex Nature.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Complex Nature. 52.246-18 Section 52.246-18 Federal Acquisition Regulations System FEDERAL ACQUISITION... Clauses 52.246-18 Warranty of Supplies of a Complex Nature. As prescribed in 46.710(b)(1), insert a clause substantially as follows: Warranty of Supplies of a Complex Nature (MAY 2001) (a) Definitions. As used in this...
48 CFR 52.246-18 - Warranty of Supplies of a Complex Nature.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Complex Nature. 52.246-18 Section 52.246-18 Federal Acquisition Regulations System FEDERAL ACQUISITION... Clauses 52.246-18 Warranty of Supplies of a Complex Nature. As prescribed in 46.710(b)(1), insert a clause substantially as follows: Warranty of Supplies of a Complex Nature (MAY 2001) (a) Definitions. As used in this...
48 CFR 52.246-18 - Warranty of Supplies of a Complex Nature.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Complex Nature. 52.246-18 Section 52.246-18 Federal Acquisition Regulations System FEDERAL ACQUISITION... Clauses 52.246-18 Warranty of Supplies of a Complex Nature. As prescribed in 46.710(b)(1), insert a clause substantially as follows: Warranty of Supplies of a Complex Nature (MAY 2001) (a) Definitions. As used in this...
48 CFR 52.246-18 - Warranty of Supplies of a Complex Nature.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Complex Nature. 52.246-18 Section 52.246-18 Federal Acquisition Regulations System FEDERAL ACQUISITION... Clauses 52.246-18 Warranty of Supplies of a Complex Nature. As prescribed in 46.710(b)(1), insert a clause substantially as follows: Warranty of Supplies of a Complex Nature (MAY 2001) (a) Definitions. As used in this...
Dismounted Complex Blast Injury.
Andersen, Romney C; Fleming, Mark; Forsberg, Jonathan A; Gordon, Wade T; Nanos, George P; Charlton, Michael T; Ficke, James R
2012-01-01
The severe Dismounted Complex Blast Injury (DCBI) is characterized by high-energy injuries to the bilateral lower extremities (usually proximal transfemoral amputations) and/or upper extremity (usually involving the non-dominant side), in addition to open pelvic injuries, genitourinary, and abdominal trauma. Initial resuscitation and multidisciplinary surgical management appear to be the keys to survival. Definitive treatment follows general principals of open wound management and includes decontamination through aggressive and frequent debridement, hemorrhage control, viable tissue preservation, and appropriate timing of wound closure. These devastating injuries are associated with paradoxically favorable survival rates, but associated injuries and higher amputation levels lead to more difficult reconstructive challenges.
Ion exchangers in radioactive waste management: natural Iranian zeolites.
Nilchi, A; Maalek, B; Khanchi, A; Ghanadi Maragheh, M; Bagheri, A; Savoji, K
2006-01-01
Five samples of natural zeolites from different parts of Iran were chosen for this study. In order to characterize and determine their structures, X-ray diffraction and infrared spectrometry were carried out for each sample. The selective absorption properties of each zeolite were found by calculating the distribution coefficient (K(d)) of various simulated wastes which were prepared by spiking the radionuclides with (131)I, (99)Mo, (153)Sm, (140)La and (147)Nd. All the zeolite samples used in this study had extremely high absorption value towards (140)La; clinoptolite from Mianeh and analsite from Ghalehkhargoshi showed good absorption for (147)Nd; clinoptolite from Semnan and clinoptolite from Firozkoh showed high absorption for (153)Sm; mesolite from Arababad Tabas showed good absorption for (99)Mo; and finally mesolite from Arababad Tabas, clinoptolite from Semnan and clinoptolite from Firozkoh could be used to selectively absorb (131)I from the stimulated waste which was prepared. The natural zeolites chosen for these studies show a similar pattern to those synthetic ion exchangers in the literature and in some cases an extremely high selectivity towards certain radioactive elements. Hence the binary separation of radioactive elements could easily be carried out. Furthermore, these zeolites, which are naturally occurring ion exchangers, are viable economically and extremely useful alternatives in this industry.
Impact of possible climate changes on river runoff under different natural conditions
NASA Astrophysics Data System (ADS)
Gusev, Yeugeniy M.; Nasonova, Olga N.; Kovalev, Evgeny E.; Ayzel, Georgy V.
2018-06-01
The present study was carried out within the framework of the International Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) for 11 large river basins located in different continents of the globe under a wide variety of natural conditions. The aim of the study was to investigate possible changes in various characteristics of annual river runoff (mean values, standard deviations, frequency of extreme annual runoff) up to 2100 on the basis of application of the land surface model SWAP and meteorological projections simulated by five General Circulation Models (GCMs) according to four RCP scenarios. Analysis of the obtained results has shown that changes in climatic runoff are different (both in magnitude and sign) for the river basins located in different regions of the planet due to differences in natural (primarily climatic) conditions. The climatic elasticities of river runoff to changes in air temperature and precipitation were estimated that makes it possible, as the first approximation, to project changes in climatic values of annual runoff, using the projected changes in mean annual air temperature and annual precipitation for the river basins. It was found that for most rivers under study, the frequency of occurrence of extreme runoff values increases. This is true both for extremely high runoff (when the projected climatic runoff increases) and for extremely low values (when the projected climatic runoff decreases).
Schoepf, Verena; Stat, Michael; Falter, James L.; McCulloch, Malcolm T.
2015-01-01
Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events. PMID:26627576
Schoepf, Verena; Stat, Michael; Falter, James L; McCulloch, Malcolm T
2015-12-02
Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events.
Insertion sequences enrichment in extreme Red sea brine pool vent.
Elbehery, Ali H A; Aziz, Ramy K; Siam, Rania
2017-03-01
Mobile genetic elements are major agents of genome diversification and evolution. Limited studies addressed their characteristics, including abundance, and role in extreme habitats. One of the rare natural habitats exposed to multiple-extreme conditions, including high temperature, salinity and concentration of heavy metals, are the Red Sea brine pools. We assessed the abundance and distribution of different mobile genetic elements in four Red Sea brine pools including the world's largest known multiple-extreme deep-sea environment, the Red Sea Atlantis II Deep. We report a gradient in the abundance of mobile genetic elements, dramatically increasing in the harshest environment of the pool. Additionally, we identified a strong association between the abundance of insertion sequences and extreme conditions, being highest in the harshest and deepest layer of the Red Sea Atlantis II Deep. Our comparative analyses of mobile genetic elements in secluded, extreme and relatively non-extreme environments, suggest that insertion sequences predominantly contribute to polyextremophiles genome plasticity.
Possible future changes in extreme events over Northern Eurasia
NASA Astrophysics Data System (ADS)
Monier, Erwan; Sokolov, Andrei; Scott, Jeffery
2013-04-01
In this study, we investigate possible future climate change over Northern Eurasia and its impact on extreme events. Northern Eurasia is a major player in the global carbon budget because of boreal forests and peatlands. Circumpolar boreal forests alone contain more than five times the amount of carbon of temperate forests and almost double the amount of carbon of the world's tropical forests. Furthermore, severe permafrost degradation associated with climate change could result in peatlands releasing large amounts of carbon dioxide and methane. Meanwhile, changes in the frequency and magnitude of extreme events, such as extreme precipitation, heat waves or frost days are likely to have substantial impacts on Northern Eurasia ecosystems. For this reason, it is very important to quantify the possible climate change over Northern Eurasia under different emissions scenarios, while accounting for the uncertainty in the climate response and changes in extreme events. For several decades, the Massachusetts Institute of Technology (MIT) Joint Program on the Science and Policy of Global Change has been investigating uncertainty in climate change using the MIT Integrated Global System Model (IGSM) framework, an integrated assessment model that couples an earth system model of intermediate complexity (with a 2D zonal-mean atmosphere) to a human activity model. In this study, regional change is investigated using the MIT IGSM-CAM framework that links the IGSM to the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM). New modules were developed and implemented in CAM to allow climate parameters to be changed to match those of the IGSM. The simulations presented in this paper were carried out for two emission scenarios, a "business as usual" scenario and a 660 ppm of CO2-equivalent stabilization, which are similar to, respectively, the Representative Concentration Pathways RCP8.5 and RCP4.5 scenarios. Values of climate sensitivity and net aerosol forcing used in the simulations within the IGSM-CAM framework provide a good approximation for the median, and the lower and upper bound of 90% probability distribution of 21st century climate change. Five member ensembles were carried out for each choice of parameters using different initial conditions. With these simulations, we investigate the role of emissions scenarios (climate policies), the global climate response (climate sensitivity) and natural variability (initial conditions) on the uncertainty in future climate changes over Northern Eurasia. A particular emphasis is made on future changes in extreme events, including frost days, extreme summer temperature and extreme summer and winter precipitation.
The 2010 Pakistan Flood and the Russia Heat Wave: Teleconnection of Extremes
NASA Technical Reports Server (NTRS)
Lau, William K.; Kim, K. M.
2010-01-01
The Pakistan flood and the Russia heat wave/Vvild fires of the summer of2010 were two of the most extreme, and catastrophic events in the histories of the two countries occurring at about the same time. To a casual observer, the timing may just be a random coincidence of nature, because the two events were separated by long distances, and represented opposite forces of nature, i.e., flood vs. drought, and water vs. fire. In this paper, using NASA satellite and NOAA reanalysis data, we presented observation evidences that that the two events were indeed physically connected.
How the Reinsurance Industry views the current and future risk landscape
NASA Astrophysics Data System (ADS)
Castaldi, A.
2012-12-01
The last decade has witnessed some of the most devastating and expensive natural disasters within the last century. Regardless of where the event occurred and what the hazard might have been, the global insurance and reinsurance industry were active participants in evaluating the events' characteristics as well as providing the financial means for rebuilding the communities affected by these events. The concept of risk transfer from one to many (spreading the risk) is at the very core of the insurers and reinsurers' business. Reinsurers' focus most of their attention on the extreme events including those caused by natural disasters. As such the reinsurance industry must be expert in understanding and quantifying the potential economic and social impact of extreme natural hazard events throughout the world whether they be in the present or possible future. To understand the global risk the reinsurance industry has invested a substantial amount of time and resources into analyzing natural hazard events on a global scale. This requires a firm understanding of the hazard (frequency and severity) and what exposure lies in harm's way (vulnerability). Through the development and use of natural hazard models, claims loss reviews, and research and development the reinsurance industry has an excellent view of the global risks. In this session we will describe how the reinsurance industry models the natural hazard risk and how we view natural hazards in the modern world and our concerns for the future. We will discuss some of the reasons why these events have become increasingly more expensive as well as discussing how we can help reduce our economic susceptibility to these extreme and unpleasant events.
Novel Natural Products from Extremophilic Fungi.
Zhang, Xuan; Li, Shou-Jie; Li, Jin-Jie; Liang, Zi-Zhen; Zhao, Chang-Qi
2018-06-04
Extremophilic fungi have been found to develop unique defences to survive extremes of pressure, temperature, salinity, desiccation, and pH, leading to the biosynthesis of novel natural products with diverse biological activities. The present review focuses on new extremophilic fungal natural products published from 2005 to 2017, highlighting the chemical structures and their biological potential.
Impacts of The Future Changes in Extreme Events on Migration in The Middle East
NASA Astrophysics Data System (ADS)
An, Nazan; Turp, M. Tufan; Ozturk, Tugba; Kurnaz, M. Levent
2016-04-01
Natural hazards are defined as extreme events that threat people, their homes and their neighborhoods. They damage housing, food production system and other infrastructures. The frequency of natural hazards namely drought, floods can influence the residential decision-making and can cause substantial residential mobility by affecting relatively greater numbers of people in the region. Developing countries are more vulnerable to the impacts of natural hazards. Therefore, environmental migration can be associated with natural hazards especially in the developing countries. Limited water resources and demographic dynamics of the Middle East make the region one of the most affected domains from the impacts of natural hazards. In this study, we consider the relationship between migration as a demographic process and the frequency of natural hazards in the Middle East for the period of 2020 - 2045 with respect to 1980 - 2005 by performing the projection according to the scenario of IPCC, namely RCP8.5 through the RegCM4.4 and combining them with an econometric analysis. This research has been supported by Boǧaziçi University Research Fund Grant Number 10421.
Natural Hazards in a Changing World: A Case for Ecosystem-Based Management
Nel, Jeanne L.; Le Maitre, David C.; Nel, Deon C.; Reyers, Belinda; Archibald, Sally; van Wilgen, Brian W.; Forsyth, Greg G.; Theron, Andre K.; O’Farrell, Patrick J.; Kahinda, Jean-Marc Mwenge; Engelbrecht, Francois A.; Kapangaziwiri, Evison; van Niekerk, Lara; Barwell, Laurie
2014-01-01
Communities worldwide are increasingly affected by natural hazards such as floods, droughts, wildfires and storm-waves. However, the causes of these increases remain underexplored, often attributed to climate changes or changes in the patterns of human exposure. This paper aims to quantify the effect of climate change, as well as land cover change, on a suite of natural hazards. Changes to four natural hazards (floods, droughts, wildfires and storm-waves) were investigated through scenario-based models using land cover and climate change drivers as inputs. Findings showed that human-induced land cover changes are likely to increase natural hazards, in some cases quite substantially. Of the drivers explored, the uncontrolled spread of invasive alien trees was estimated to halve the monthly flows experienced during extremely dry periods, and also to double fire intensities. Changes to plantation forestry management shifted the 1∶100 year flood event to a 1∶80 year return period in the most extreme scenario. Severe 1∶100 year storm-waves were estimated to occur on an annual basis with only modest human-induced coastal hardening, predominantly from removal of coastal foredunes and infrastructure development. This study suggests that through appropriate land use management (e.g. clearing invasive alien trees, re-vegetating clear-felled forests, and restoring coastal foredunes), it would be possible to reduce the impacts of natural hazards to a large degree. It also highlights the value of intact and well-managed landscapes and their role in reducing the probabilities and impacts of extreme climate events. PMID:24806527
Hierarchies in Quantum Gravity: Large Numbers, Small Numbers, and Axions
NASA Astrophysics Data System (ADS)
Stout, John Eldon
Our knowledge of the physical world is mediated by relatively simple, effective descriptions of complex processes. By their very nature, these effective theories obscure any phenomena outside their finite range of validity, discarding information crucial to understanding the full, quantum gravitational theory. However, we may gain enormous insight into the full theory by understanding how effective theories with extreme characteristics--for example, those which realize large-field inflation or have disparate hierarchies of scales--can be naturally realized in consistent theories of quantum gravity. The work in this dissertation focuses on understanding the quantum gravitational constraints on these "extreme" theories in well-controlled corners of string theory. Axion monodromy provides one mechanism for realizing large-field inflation in quantum gravity. These models spontaneously break an axion's discrete shift symmetry and, assuming that the corrections induced by this breaking remain small throughout the excursion, create a long, quasi-flat direction in field space. This weakly-broken shift symmetry has been used to construct a dynamical solution to the Higgs hierarchy problem, dubbed the "relaxion." We study this relaxion mechanism and show that--without major modifications--it can not be naturally embedded within string theory. In particular, we find corrections to the relaxion potential--due to the ten-dimensional backreaction of monodromy charge--that conflict with naive notions of technical naturalness and render the mechanism ineffective. The super-Planckian field displacements necessary for large-field inflation may also be realized via the collective motion of many aligned axions. However, it is not clear that string theory provides the structures necessary for this to occur. We search for these structures by explicitly constructing the leading order potential for C4 axions and computing the maximum possible field displacement in all compactifications of type IIB string theory on toric Calabi-Yau hypersurfaces with h1,1 ≤ 4 in the Kreuzer-Skarke database. While none of these examples can sustain a super-Planckian displacement--the largest possible is 0.3 Mpl--we find an alignment mechanism responsible for large displacements in random matrix models at large h 1,1 >> 1, indicating that large-field inflation may be feasible in compactifications with tens or hundreds of axions. These results represent a modest step toward a complete understanding of large hierarchies and naturalness in quantum gravity.
Green infrastructure and low energy architecture for eco-tourism in Asinara island
NASA Astrophysics Data System (ADS)
Trombadore, Antonella; Rolovic, Dusan; Congiatu, Pier Paolo
2018-05-01
The paper will present the sustainable and low energy architecture approach that has been developed for a small island in Sardinia, Italy. The island has hosted several prison complexes in the past two centuries, now converted into a National Park, since its creation as a national park its architectural and urban patrimony have been completely abandoned. Its few built-up areas and/or urban developments do have an enormous potential, but past administrations failed in the attempt to offer a commercially attractive model. The project focuses mainly on the development of a Strategic Plan for the regeneration of the island: the main goal is to create completely new activities and functions which are both compatible with its touristic potential and especially with the natural fragility of the ecosystem. These functions have been planned in order to give life and continuous activity to the island, but with extreme care towards its cohesion with the environment and the biodiversity. Results consist in various minor agricultural activities that have been reinstated based on the past activities, and different touristic functions focused on a specific and Eco-responsible market niche. These activities are supported by a complex network of structures and services dedicated to maintaining the balance of the ecosystem intact, while this increases the quality of its offer, thus allowing the creation of a model of sustainable management of natural resources and commercial exploitation without risk for the environment.
Technical Parameters Modeling of a Gas Probe Foaming Using an Active Experimental Type Research
NASA Astrophysics Data System (ADS)
Tîtu, A. M.; Sandu, A. V.; Pop, A. B.; Ceocea, C.; Tîtu, S.
2018-06-01
The present paper deals with a current and complex topic, namely - a technical problem solving regarding the modeling and then optimization of some technical parameters related to the natural gas extraction process. The study subject is to optimize the gas probe sputtering using experimental research methods and data processing by regular probe intervention with different sputtering agents. This procedure makes that the hydrostatic pressure to be reduced by the foam formation from the water deposit and the scrubbing agent which can be removed from the surface by the produced gas flow. The probe production data was analyzed and the so-called candidate for the research itself emerged. This is an extremely complex study and it was carried out on the field works, finding that due to the severe gas field depletion the wells flow decreases and the start of their loading with deposit water, was registered. It was required the regular wells foaming, to optimize the daily production flow and the disposal of the wellbore accumulated water. In order to analyze the process of natural gas production, the factorial experiment and other methods were used. The reason of this choice is that the method can offer very good research results with a small number of experimental data. Finally, through this study the extraction process problems were identified by analyzing and optimizing the technical parameters, which led to a quality improvement of the extraction process.
[Noncovalent cation-π interactions--their role in nature].
Fink, Krzysztof; Boratyński, Janusz
2014-11-07
Non-covalent interactions play an extremely important role in organisms. The main non-covalent interactions in nature are: ion-ion interactions, dipole-dipole interactions, hydrogen bonds, and van der Waals interactions. A new kind of intermolecular interactions--cation-π interactions--is gaining increasing attention. These interactions occur between a cation and a π system. The main contributors to cation-π interactions are electrostatic, polarization and, to a lesser extent, dispersion interactions. At first, cation-π interactions were studied in a gas phase, with metal cation-aromatic system complexes. The characteristics of these complexes are as follows: an increase of cation atomic number leads to a decrease of interaction energy, and an increase of cation charge leads to an increase of interaction energy. Aromatic amino acids bind with metal cations mainly through interactions with their main chain. Nevertheless, cation-π interaction with a hydrophobic side chain significantly enhances binding energy. In water solutions most cations preferentially interact with water molecules rather than aromatic systems. Cation-π interactions occur in environments with lower accessibility to a polar solvent. Cation-π interactions can have a stabilizing role on the secondary, tertiary and quaternary structure of proteins. These interactions play an important role in substrate or ligand binding sites in many proteins, which should be taken into consideration when the screening of effective inhibitors for these proteins is carried out. Cation-π interactions are abundant and play an important role in many biological processes.
Logit-normal mixed model for Indian monsoon precipitation
NASA Astrophysics Data System (ADS)
Dietz, L. R.; Chatterjee, S.
2014-09-01
Describing the nature and variability of Indian monsoon precipitation is a topic of much debate in the current literature. We suggest the use of a generalized linear mixed model (GLMM), specifically, the logit-normal mixed model, to describe the underlying structure of this complex climatic event. Four GLMM algorithms are described and simulations are performed to vet these algorithms before applying them to the Indian precipitation data. The logit-normal model was applied to light, moderate, and extreme rainfall. Findings indicated that physical constructs were preserved by the models, and random effects were significant in many cases. We also found GLMM estimation methods were sensitive to tuning parameters and assumptions and therefore, recommend use of multiple methods in applications. This work provides a novel use of GLMM and promotes its addition to the gamut of tools for analysis in studying climate phenomena.
Experience with synthetic fluorinated fluid lubricants
NASA Technical Reports Server (NTRS)
Conley, Peter L.; Bohner, John J.
1990-01-01
Since the late 1970's, the wet lubricant of choice for space mechanisms has been one of the family of synthetic perfluoro polyalkylether (PFPE) compounds, namely Fomblin Z-25 (Bray-815Z) or DuPont's Krytox 143xx series. While offering the advantages of extremely low vapor pressures and wide temperature ranges, these oils and derived greases have a complex chemistry compared to the more familiar natural and synthetic hydrocarbons. Many aerospace companies have conducted test programs to characterize the behavior of these compounds in a space environment, resulting in a large body of hard knowledge as well as considerable space lore concerning the suitability of the lubricants for particular applications and techniques for successful application. The facts are summarized and a few myths about the compounds are dispelled, and some performance guidelines for the mechanism design engineer are provided.
The evolutionary basis of human social learning
Morgan, T. J. H.; Rendell, L. E.; Ehn, M.; Hoppitt, W.; Laland, K. N.
2012-01-01
Humans are characterized by an extreme dependence on culturally transmitted information. Such dependence requires the complex integration of social and asocial information to generate effective learning and decision making. Recent formal theory predicts that natural selection should favour adaptive learning strategies, but relevant empirical work is scarce and rarely examines multiple strategies or tasks. We tested nine hypotheses derived from theoretical models, running a series of experiments investigating factors affecting when and how humans use social information, and whether such behaviour is adaptive, across several computer-based tasks. The number of demonstrators, consensus among demonstrators, confidence of subjects, task difficulty, number of sessions, cost of asocial learning, subject performance and demonstrator performance all influenced subjects' use of social information, and did so adaptively. Our analysis provides strong support for the hypothesis that human social learning is regulated by adaptive learning rules. PMID:21795267
The evolutionary basis of human social learning.
Morgan, T J H; Rendell, L E; Ehn, M; Hoppitt, W; Laland, K N
2012-02-22
Humans are characterized by an extreme dependence on culturally transmitted information. Such dependence requires the complex integration of social and asocial information to generate effective learning and decision making. Recent formal theory predicts that natural selection should favour adaptive learning strategies, but relevant empirical work is scarce and rarely examines multiple strategies or tasks. We tested nine hypotheses derived from theoretical models, running a series of experiments investigating factors affecting when and how humans use social information, and whether such behaviour is adaptive, across several computer-based tasks. The number of demonstrators, consensus among demonstrators, confidence of subjects, task difficulty, number of sessions, cost of asocial learning, subject performance and demonstrator performance all influenced subjects' use of social information, and did so adaptively. Our analysis provides strong support for the hypothesis that human social learning is regulated by adaptive learning rules.
Harari, Yaniv; Romano, Gal-Hagit; Ungar, Lior; Kupiec, Martin
2013-11-15
Telomeres are nucleoprotein structures that cap the ends of the linear eukaryotic chromosomes, thus protecting their stability and integrity. They play important roles in DNA replication and repair and are central to our understanding of aging and cancer development. In rapidly dividing cells, telomere length is maintained by the activity of telomerase. About 400 TLM (telomere length maintenance) genes have been identified in yeast, as participants of an intricate homeostasis network that keeps telomere length constant. Two papers have recently shown that despite this extremely complex control, telomere length can be manipulated by external stimuli. These results have profound implications for our understanding of cellular homeostatic systems in general and of telomere length maintenance in particular. In addition, they point to the possibility of developing aging and cancer therapies based on telomere length manipulation.
Extreme precipitation patterns and reductions of terrestrial ecosystem production across biomes
Yongguang Zhang; M. Susan Moran; Mark A. Nearing; Guillermo E. Ponce Campos; Alfredo R. Huete; Anthony R. Buda; David D. Bosch; Stacey A. Gunter; Stanley G. Kitchen; W. Henry McNab; Jack A. Morgan; Mitchel P. McClaran; Diane S. Montoya; Debra P.C. Peters; Patrick J. Starks
2013-01-01
Precipitation regimes are predicted to shift to more extreme patterns that are characterized by more heavy rainfall events and longer dry intervals, yet their ecological impacts on vegetation production remain uncertain across biomes in natural climatic conditions. This in situ study investigated the effects of these climatic conditions on aboveground net primary...
Changes in Extreme Events and the Potential Impacts on National Security
NASA Astrophysics Data System (ADS)
Bell, J.
2017-12-01
Extreme weather and climate events affect human health by causing death, injury, and illness, as well as having large socio-economic impacts. Climate change has caused changes in extreme event frequency, intensity and geographic distribution, and will continue to be a driver for changes in the future. Some of the extreme events that have already changed are heat waves, droughts, wildfires, flooding rains, coastal flooding, storm surge, and hurricanes. The pathways connecting extreme events to health outcomes and economic losses can be diverse and complex. The difficulty in predicting these relationships comes from the local intricacies of societal and environmental factors that influences the level of exposure. The goal of this presentation is to discuss the national security implications of changes in extreme weather events and demonstrate how changes in extremes can lead to a host cascading issues. To illustrate this point, this presentation will provide examples of the various pathways that extreme events can increase disease burden and cause economic stress.
Holographic entanglement entropy conjecture for general spacetimes
NASA Astrophysics Data System (ADS)
Sanches, Fabio; Weinberg, Sean J.
2016-10-01
We present a natural generalization of holographic entanglement entropy proposals beyond the scope of AdS /CFT by anchoring extremal surfaces to holographic screens. Holographic screens are a natural extension of the AdS boundary to arbitrary spacetimes and are preferred codimension-1 surfaces from the viewpoint of the covariant entropy bound. A broad class of screens have a unique preferred foliation into codimension-2 surfaces called leaves. Our proposal is to find the areas of extremal surfaces anchored to the boundaries of regions in leaves. We show that the properties of holographic screens are sufficient to prove, under generic conditions, that extremal surfaces anchored in this way always lie within a causal region associated with a given leaf. Within this causal region, a maximin construction similar to that of Wall proves that our proposed quantity satisfies standard properties of entanglement entropy like strong subadditivity. We conjecture that our prescription computes entanglement entropies in quantum states that holographically define arbitrary spacetimes, including those in a cosmological setting with no obvious boundary on which to anchor extremal surfaces.
NASA Astrophysics Data System (ADS)
Santos, Monica; Fragoso, Marcelo
2010-05-01
Extreme precipitation events are one of the causes of natural hazards, such as floods and landslides, making its investigation so important, and this research aims to contribute to the study of the extreme rainfall patterns in a Portuguese mountainous area. The study area is centred on the Arcos de Valdevez county, located in the northwest region of Portugal, the rainiest of the country, with more than 3000 mm of annual rainfall at the Peneda-Gerês mountain system. This work focus on two main subjects related with the precipitation variability on the study area. First, a statistical analysis of several precipitation parameters is carried out, using daily data from 17 rain-gauges with a complete record for the 1960-1995 period. This approach aims to evaluate the main spatial contrasts regarding different aspects of the rainfall regime, described by ten parameters and indices of precipitation extremes (e.g. mean annual precipitation, the annual frequency of precipitation days, wet spells durations, maximum daily precipitation, maximum of precipitation in 30 days, number of days with rainfall exceeding 100 mm and estimated maximum daily rainfall for a return period of 100 years). The results show that the highest precipitation amounts (from annual to daily scales) and the higher frequency of very abundant rainfall events occur in the Serra da Peneda and Gerês mountains, opposing to the valleys of the Lima, Minho and Vez rivers, with lower precipitation amounts and less frequent heavy storms. The second purpose of this work is to find a method of mapping extreme rainfall in this mountainous region, investigating the complex influence of the relief (e.g. elevation, topography) on the precipitation patterns, as well others geographical variables (e.g. distance from coast, latitude), applying tested geo-statistical techniques (Goovaerts, 2000; Diodato, 2005). Models of linear regression were applied to evaluate the influence of different geographical variables (altitude, latitude, distance from sea and distance to the highest orographic barrier) on the rainfall behaviours described by the studied variables. The techniques of spatial interpolation evaluated include univariate and multivariate methods: cokriging, kriging, IDW (inverse distance weighted) and multiple linear regression. Validation procedures were used, assessing the estimated errors in the analysis of descriptive statistics of the models. Multiple linear regression models produced satisfactory results in relation to 70% of the rainfall parameters, suggested by lower average percentage of error. However, the results also demonstrates that there is no an unique and ideal model, depending on the rainfall parameter in consideration. Probably, the unsatisfactory results obtained in relation to some rainfall parameters was motivated by constraints as the spatial complexity of the precipitation patterns, as well as to the deficient spatial coverage of the territory by the rain-gauges network. References Diodato, N. (2005). The influence of topographic co-variables on the spatial variability of precipitation over small regions of complex terrain. Internacional Journal of Climatology, 25(3), 351-363. Goovaerts, P. (2000). Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 228, 113 - 129.
Data-assisted reduced-order modeling of extreme events in complex dynamical systems
Koumoutsakos, Petros
2018-01-01
The prediction of extreme events, from avalanches and droughts to tsunamis and epidemics, depends on the formulation and analysis of relevant, complex dynamical systems. Such dynamical systems are characterized by high intrinsic dimensionality with extreme events having the form of rare transitions that are several standard deviations away from the mean. Such systems are not amenable to classical order-reduction methods through projection of the governing equations due to the large intrinsic dimensionality of the underlying attractor as well as the complexity of the transient events. Alternatively, data-driven techniques aim to quantify the dynamics of specific, critical modes by utilizing data-streams and by expanding the dimensionality of the reduced-order model using delayed coordinates. In turn, these methods have major limitations in regions of the phase space with sparse data, which is the case for extreme events. In this work, we develop a novel hybrid framework that complements an imperfect reduced order model, with data-streams that are integrated though a recurrent neural network (RNN) architecture. The reduced order model has the form of projected equations into a low-dimensional subspace that still contains important dynamical information about the system and it is expanded by a long short-term memory (LSTM) regularization. The LSTM-RNN is trained by analyzing the mismatch between the imperfect model and the data-streams, projected to the reduced-order space. The data-driven model assists the imperfect model in regions where data is available, while for locations where data is sparse the imperfect model still provides a baseline for the prediction of the system state. We assess the developed framework on two challenging prototype systems exhibiting extreme events. We show that the blended approach has improved performance compared with methods that use either data streams or the imperfect model alone. Notably the improvement is more significant in regions associated with extreme events, where data is sparse. PMID:29795631
Data-assisted reduced-order modeling of extreme events in complex dynamical systems.
Wan, Zhong Yi; Vlachas, Pantelis; Koumoutsakos, Petros; Sapsis, Themistoklis
2018-01-01
The prediction of extreme events, from avalanches and droughts to tsunamis and epidemics, depends on the formulation and analysis of relevant, complex dynamical systems. Such dynamical systems are characterized by high intrinsic dimensionality with extreme events having the form of rare transitions that are several standard deviations away from the mean. Such systems are not amenable to classical order-reduction methods through projection of the governing equations due to the large intrinsic dimensionality of the underlying attractor as well as the complexity of the transient events. Alternatively, data-driven techniques aim to quantify the dynamics of specific, critical modes by utilizing data-streams and by expanding the dimensionality of the reduced-order model using delayed coordinates. In turn, these methods have major limitations in regions of the phase space with sparse data, which is the case for extreme events. In this work, we develop a novel hybrid framework that complements an imperfect reduced order model, with data-streams that are integrated though a recurrent neural network (RNN) architecture. The reduced order model has the form of projected equations into a low-dimensional subspace that still contains important dynamical information about the system and it is expanded by a long short-term memory (LSTM) regularization. The LSTM-RNN is trained by analyzing the mismatch between the imperfect model and the data-streams, projected to the reduced-order space. The data-driven model assists the imperfect model in regions where data is available, while for locations where data is sparse the imperfect model still provides a baseline for the prediction of the system state. We assess the developed framework on two challenging prototype systems exhibiting extreme events. We show that the blended approach has improved performance compared with methods that use either data streams or the imperfect model alone. Notably the improvement is more significant in regions associated with extreme events, where data is sparse.
The Worldviews Network: Digital Planetariums for Engaging Public Audiences in Global Change Issues
NASA Astrophysics Data System (ADS)
Wyatt, R. J.; Koontz, K.; Yu, K.; Gardiner, N.; Connolly, R.; Mcconville, D.
2013-12-01
Utilizing the capabilities of digital planetariums, the Denver Museum of Nature & Science, the California Academy of Sciences, NOVA/WGBH, The Elumenati, and affiliates of the National Oceanic & Atmospheric Administration formed the Worldviews Network. The network's mission is to place Earth in its cosmic context to encourage participants to explore connections between social & ecological issues in their backyards. Worldviews launched with informal science institution partners: the American Museum of Natural History, the Perot Museum of Nature & Science, the Journey Museum, the Bell Museum of Natural History, the University of Michigan Natural History Museum, and the National Environmental Modeling & Analysis Center. Worldviews uses immersive visualization technology to engage public audiences on issues of global environmental change at a bioregional level. An immersive planetarium show and dialogue deepens public engagement and awareness of complex human-natural system interactions. People have altered the global climate system. Our communities are increasingly vulnerable to extreme weather events. Land use decisions that people make every day put both human lives and biodiversity at risk through direct and indirect effects. The Worldviews programs demonstrate the complex linkages between Earth's physical and biological systems and their relationship to human health, agriculture, infrastructure, water resources, and energy. We have focused on critical thresholds, such as freshwater use, biodiversity loss, land use change, and anthropogenic changes to the nitrogen and phosphorus cycles. We have been guided by environmental literacy principles to help our audiences understand that humans drive current trends in coupled human-natural systems--and that humans could choose to play an important role in reversing these trends. Museum and planetarium staff members join the Worldviews Network team and external advisers to produce programs that span cosmic, global, and bioregional scales. Each presentation employs a 'See, Know, Do' transformative learning model. 'Seeing' involves the creation, presentation, and experience of viewing immersive visualizations within the planetarium to engage visitors' visual-spatial intelligence. For 'Knowing,' the narratives are constructed to help visitors understand the web of physical-ecological-social systems that interact on Earth. The 'Doing' component emerges from interaction among participants: for example, researchers and non-governmental organizations help audience members conceive of their own relationship to the highlighted issue and ways they may remain involved in systemically addressing problems the audience identifies.
Mathematical aspects of assessing extreme events for the safety of nuclear plants
NASA Astrophysics Data System (ADS)
Potempski, Slawomir; Borysiewicz, Mieczyslaw
2015-04-01
In the paper the review of mathematical methodologies applied for assessing low frequencies of rare natural events like earthquakes, tsunamis, hurricanes or tornadoes, floods (in particular flash floods and surge storms), lightning, solar flares, etc., will be given in the perspective of the safety assessment of nuclear plants. The statistical methods are usually based on the extreme value theory, which deals with the analysis of extreme deviation from the median (or the mean). In this respect application of various mathematical tools can be useful, like: the extreme value theorem of Fisher-Tippett-Gnedenko leading to possible choices of general extreme value distributions, or the Pickands-Balkema-de Haan theorem for tail fitting, or the methods related to large deviation theory. In the paper the most important stochastic distributions relevant for performing rare events statistical analysis will be presented. This concerns, for example, the analysis of the data with the annual extreme values (maxima - "Annual Maxima Series" or minima), or the peak values, exceeding given thresholds at some periods of interest ("Peak Over Threshold"), or the estimation of the size of exceedance. Despite of the fact that there is a lack of sufficient statistical data directly containing rare events, in some cases it is still possible to extract useful information from existing larger data sets. As an example one can consider some data sets available from the web sites for floods, earthquakes or generally natural hazards. Some aspects of such data sets will be also presented taking into account their usefulness for the practical assessment of risk for nuclear power plants coming from extreme weather conditions.
Extreme Facial Expressions Classification Based on Reality Parameters
NASA Astrophysics Data System (ADS)
Rahim, Mohd Shafry Mohd; Rad, Abdolvahab Ehsani; Rehman, Amjad; Altameem, Ayman
2014-09-01
Extreme expressions are really type of emotional expressions that are basically stimulated through the strong emotion. An example of those extreme expression is satisfied through tears. So to be able to provide these types of features; additional elements like fluid mechanism (particle system) plus some of physics techniques like (SPH) are introduced. The fusion of facile animation with SPH exhibits promising results. Accordingly, proposed fluid technique using facial animation is the real tenor for this research to get the complex expression, like laugh, smile, cry (tears emergence) or the sadness until cry strongly, as an extreme expression classification that's happens on the human face in some cases.
Johnson, Samantha; Strauss, Victoria; Gilmore, Camilla; Jaekel, Julia; Marlow, Neil; Wolke, Dieter
2016-12-01
Children born extremely preterm are at high risk for intellectual disability, learning disabilities, executive dysfunction and special educational needs, but little is understood about the comorbidity of intellectual and learning disabilities in this population. This study explored comorbidity in intellectual disability (ID) and learning disabilities (LD) in children born extremely preterm (EP; <26 +0 weeks' gestation). A UK national cohort of 161 EP children and 153 term-born controls without neurosensory impairments was assessed at 11years of age (the EPICure Study). IQ, mathematics and reading attainment, executive function, visuospatial processing and sensorimotor skills were assessed using standardised tests, and curriculum-based attainment and special educational needs (SEN) using teacher reports. Overall, 75 (47%) EP children and 7 (4.6%) controls had ID or LD (RR 10.12; 95% CI 4.81, 21.27). Comorbidity in ID/LD was more common among EP children than controls (24% vs. 0%). EP children with comorbid ID/LD had significantly poorer neuropsychological abilities and curriculum-based attainment than EP children with an isolated disability or no disabilities. LD were associated with a 3 times increased risk for SEN. However, EP children with ID alone had poorer neuropsychological abilities and curriculum-based attainment than children with no disabilities, yet there was no increase in SEN provision among this group. EP children are at high risk for comorbid intellectual and learning disabilities. Education professionals should be aware of the complex nature of EP children's difficulties and the need for multi-domain assessments to guide intervention. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Seneviratne, S. I.; Nicholls, N.; Easterling, D.; Goodess, C. M.; Kanae, S.; Kossin, J.; Luo, Y.; Marengo, J.; McInnes, K.; Rahimi, M.; Reichstein, M.; Sorteberg, A.; Vera, C.; Zhang, X.
2012-04-01
In April 2009, the Intergovernmental Panel on Climate Change (IPCC) decided to prepare a new special report with involvement of the UN International Strategy for Disaster Reduction (ISDR) on the topic "Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation" (SREX, http://ipcc-wg2.gov/SREX/). This special report reviews the scientific literature on past and projected changes in weather and climate extremes, and the relevance of such changes to disaster risk reduction and climate change adaptation. The SREX Summary for Policymakers was approved at an IPCC Plenary session on November 14-18, 2011, and the full report is planned for release in February 2012. This presentation will provide an overview on the structure and contents of the SREX, focusing on Chapter 3: "Changes in climate extremes and their impacts on the natural physical environment" [1]. It will in particular present the main findings of the chapter, including differences between the SREX's conclusions and those of the IPCC Fourth Assessment of 2007, and the implications of this new assessment for disaster risk reduction. Finally, aspects relevant to impacts on the biogeochemical cycles will also be addressed. [1] Seneviratne, S.I., N. Nicholls, D. Easterling, C.M. Goodess, S. Kanae, J. Kossin, Y. Luo, J. Marengo, K. McInnes, M. Rahimi, M. Reichstein, A. Sorteberg, C. Vera, and X. Zhang, 2012: Changes in climate extremes and their impacts on the natural physical environment. In: Intergovernmental Panel on Climate Change Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation [Field, C. B., Barros, V., Stocker, T.F., Qin, D., Dokken, D., Ebi, K.L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M. and P. M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
NASA Astrophysics Data System (ADS)
Aziz, Nur Liyana Afiqah Abdul; Siah Yap, Keem; Afif Bunyamin, Muhammad
2013-06-01
This paper presents a new approach of the fault detection for improving efficiency of circulating water system (CWS) in a power generation plant using a hybrid Fuzzy Logic System (FLS) and Extreme Learning Machine (ELM) neural network. The FLS is a mathematical tool for calculating the uncertainties where precision and significance are applied in the real world. It is based on natural language which has the ability of "computing the word". The ELM is an extremely fast learning algorithm for neural network that can completed the training cycle in a very short time. By combining the FLS and ELM, new hybrid model, i.e., FLS-ELM is developed. The applicability of this proposed hybrid model is validated in fault detection in CWS which may help to improve overall efficiency of power generation plant, hence, consuming less natural recourses and producing less pollutions.
Evidence for Reflected Light from the Most Eccentric Known Exoplanet
NASA Astrophysics Data System (ADS)
Kane, Stephen
2015-12-01
Planets in highly eccentric orbits form a class of objects not seen within our Solar System. The most extreme case known amongst these objects is the planet orbiting HD 20782, with an orbital period of 597 days and an eccentricity of 0.96. Here we present new data and analysis for this system as part of the Transit Ephemeris Refinement and Monitoring Survey (TERMS). New radial velocities acquired during periastron provide incredible accuracy for the planetary orbit and astrometric results that show the companion is indeed planetary in nature. We obtained MOST photometry during a predicted periastron passage that shows evidence of phase variations due to reflected light from the planet. The extreme nature of this planet presents an ideal case from which to test theories regarding the formation of eccentric orbits and the response of atmospheres to extreme changes in flux.
Complex layered dental restorations: Are they recognizable and do they survive extreme conditions?
Soon, Alistair S; Bush, Mary A; Bush, Peter J
2015-09-01
Recent research has shown that restorative dental materials can be recognized by microscopy and elemental analysis (scanning electron microscopy/energy dispersive X-ray spectroscopy and X-ray fluorescence; SEM/EDS and XRF) and that this is possible even in extreme conditions, such as cremation. These analytical methods and databases of dental materials properties have proven useful in DVI (disaster victim identification) of a commercial plane crash in 2009, and in a number of other victim identification cases. Dental materials appear on the market with ever expanding frequency. With their advent, newer methods of restoration have been proposed and adopted in the dental office. Methods might include placing multiple layers of dental materials, where they have different properties including adhesion, viscosity, or working time. These different dental materials include filled adhesives, flowable resins, glass ionomer cements, composite resins, liners and sealants. With possible combinations of different materials in these restorations, the forensic odontologist is now confronted with a new difficulty; how to recognize each individual material. The question might be posed if it is even possible to perform this task. Furthermore, an odontologist might be called upon to identify a victim under difficult circumstances, such as when presented with fragmented or incinerated remains. In these circumstances the ability to identify specific dental materials could assist in the identification of the deceased. Key to use of this information is whether these new materials and methods are detailed in the dental chart. Visual or radiographic inspection may not reveal the presence of a restoration, let alone the possible complex nature of that restoration. This study demonstrates another scientific method in forensic dental identification. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Seasonality of semi-arid and savanna-type ecosystems in an Earth system model
NASA Astrophysics Data System (ADS)
Dahlin, K.; Swenson, S. C.; Lombardozzi, D.; Kamoske, A.
2016-12-01
Recent work has identified semi-arid and savanna-type (SAST) ecosystems as a critical component of interannual variability in the Earth system (Poulter et al. 2014, Ahlström et al. 2015), yet our understanding of the spatial and temporal patterns present in these systems remains limited. There are three major factors that contribute to the complex behavior of SAST ecosystems, globally. First is leaf phenology, the timing of the appearance, presence, and senescence of plant leaves. Plants grow and drop their leaves in response to a variety of cues, including soil moisture, rainfall, day length, and relative humidity, and alternative phenological strategies might often co-exist in the same location. The second major factor in savannas is soil moisture. The complex nature of soil behavior under extremely dry, then extremely wet conditions is critical to our understanding of how savannas function. The third factor is fire. Globally, virtually all savanna-type ecosystems operate with some non-zero fire return interval. Here we compare model output from the Community Land Model (CLM5-BGC) in SAST regions to remotely sensed data on these three variables - phenology (MODIS LAI), soil moisture (SMAP), and fire (GFED4) - assessing both annual spatial patterns and intra-annual variability, which is critical in these highly variable systems. We present new SAST-specific first- and second-order benchmarks, including numbers of annual LAI peaks (often >1 in SAST systems) and correlations between soil moisture, LAI, and fire. Developing a better understanding of how plants respond to seasonal patterns is a critical first step in understanding how SAST ecosystems will respond to and influence climate under future scenarios.
Long, Yi; Du, Zhi-Jiang; Chen, Chao-Feng; Dong, Wei; Wang, Wei-Dong
2017-07-01
The most important step for lower extremity exoskeleton is to infer human motion intent (HMI), which contributes to achieve human exoskeleton collaboration. Since the user is in the control loop, the relationship between human robot interaction (HRI) information and HMI is nonlinear and complicated, which is difficult to be modeled by using mathematical approaches. The nonlinear approximation can be learned by using machine learning approaches. Gaussian Process (GP) regression is suitable for high-dimensional and small-sample nonlinear regression problems. GP regression is restrictive for large data sets due to its computation complexity. In this paper, an online sparse GP algorithm is constructed to learn the HMI. The original training dataset is collected when the user wears the exoskeleton system with friction compensation to perform unconstrained movement as far as possible. The dataset has two kinds of data, i.e., (1) physical HRI, which is collected by torque sensors placed at the interaction cuffs for the active joints, i.e., knee joints; (2) joint angular position, which is measured by optical position sensors. To reduce the computation complexity of GP, grey relational analysis (GRA) is utilized to specify the original dataset and provide the final training dataset. Those hyper-parameters are optimized offline by maximizing marginal likelihood and will be applied into online GP regression algorithm. The HMI, i.e., angular position of human joints, will be regarded as the reference trajectory for the mechanical legs. To verify the effectiveness of the proposed algorithm, experiments are performed on a subject at a natural speed. The experimental results show the HMI can be obtained in real time, which can be extended and employed in the similar exoskeleton systems.
Tools used by the insurance industry to assess risk from hydroclimatic extremes
NASA Astrophysics Data System (ADS)
Higgs, Stephanie; McMullan, Caroline
2016-04-01
Probabilistic catastrophe models are widely used within the insurance industry to assess and price the risk of natural hazards to individual residences through to portfolios of millions of properties. Over the relatively short period that catastrophe models have been available (almost 30 years), the insurance industry has built up a financial resilience to key natural hazards in certain areas (e.g. US tropical cyclone, European extra-tropical cyclone and flood). However, due the rapidly expanding global population and increase in wealth, together with uncertainties in the behaviour of meteorological phenomena introduced by climate change, the domain in which natural hazards impact society is growing. As a result, the insurance industry faces new challenges in assessing the risk and uncertainty from natural hazards. As a catastrophe modelling company, AIR Worldwide has a toolbox of options available to help the insurance industry assess extreme climatic events and their associated uncertainty. Here we discuss several of these tools: from helping analysts understand how uncertainty is inherently built in to probabilistic catastrophe models, to understanding alternative stochastic catalogs for tropical cyclone based on climate conditioning. Through the use of stochastic extreme disaster events such as those provided through AIR's catalogs or through the Lloyds of London marketplace (RDS's) to provide useful benchmarks for the loss probability exceedence and tail-at-risk metrics outputted from catastrophe models; to the visualisation of 1000+ year event footprints and hazard intensity maps. Ultimately the increased transparency of catastrophe models and flexibility of a software platform that allows for customisation of modelled and non-modelled risks will drive a greater understanding of extreme hydroclimatic events within the insurance industry.
Attribution of the 1995 and 2006 storm surge events in the southern Baltic Sea
NASA Astrophysics Data System (ADS)
Klehmet, K.; Rockel, B.; von Storch, H.
2016-12-01
In November 1995 and 2006, the German Baltic Sea coast experienced severe storm surge conditions. Exceptional water level heights of about 1.8m above mean sea level were measured at German tide gauges. Extreme event attribution poses unique challenges trying to distinguish the role of anthropogenic influence, as e.g. greenhouse gas emissions or land-use changes, from natural variability. This study, which is part of the EUCLEIA project (EUropean CLimate and weather Events: Interpretation and Attribution, www. eucleia.eu), aims to estimate how the contribution of anthropogenic drivers has altered the probability of single extreme events such as the 1995 and 2006 storm surge events. We explore these aspects using two 7-member ensembles of Hadley Centre Global Environmental Model version 3-A (HadGEM3-A), the atmosphere only component of the HadGEM3, provided by the Met Office Hadley Centre. The ensemble of HadGEM3-A consists of two multi-decadal experiments from 1960-2013 - one with anthropogenic forcing factors and natural forcings representing the actual climate. The second experiment represents the natural climate including only natural forcing factors. These two 7-member ensembles of about 60km spatial resolution are used as atmospheric forcing data to drive the regional ocean model TRIM-NP in order to calculate water level in the Baltic Sea in 12.8km spatial resolution. Findings indicate some limitations of the regional model ensemble to reproduce the magnitude of extreme water levels well. It is tested whether increased spatial resolution of atmospheric forcing fields can improve the representation of Baltic Sea extreme water levels along the coast and thus add value in the attribution analysis.
Sato, Hiroshi; Nakasone, Kaoru; Yoshida, Takao; Kato, Chiaki; Maruyama, Tadashi
2015-07-01
When non-extremophiles encounter extreme environmental conditions, which are natural for the extremophiles, stress reactions, e.g., expression of heat shock proteins (HSPs), are thought to be induced for survival. To understand how the extremophiles live in such extreme environments, we studied the effects of high hydrostatic pressure on cellular contents of HSPs and their mRNAs during growth in a piezophilic bacterium, Shewanella violacea. HSPs increased at high hydrostatic pressures even when optimal for growth. The mRNAs and proteins of these HSPs significantly increased at higher hydrostatic pressure in S. violacea. In the non-piezophilic Escherichia coli, however, their mRNAs decreased, while their proteins did not change. Several transcriptional start sites (TSSs) for HSP genes were determined by the primer extension method and some of them showed hydrostatic pressure-dependent increase of the mRNAs. A major refolding target of one of the HSPs, chaperonin, at high hydrostatic pressure was shown to be RplB, a subunit of the 50S ribosome. These results suggested that in S. violacea, HSPs play essential roles, e.g., maintaining protein complex machinery including ribosomes, in the growth and viability at high hydrostatic pressure, and that, in their expression, the transcription is under the control of σ(32).
Multiobjective generalized extremal optimization algorithm for simulation of daylight illuminants
NASA Astrophysics Data System (ADS)
Kumar, Srividya Ravindra; Kurian, Ciji Pearl; Gomes-Borges, Marcos Eduardo
2017-10-01
Daylight illuminants are widely used as references for color quality testing and optical vision testing applications. Presently used daylight simulators make use of fluorescent bulbs that are not tunable and occupy more space inside the quality testing chambers. By designing a spectrally tunable LED light source with an optimal number of LEDs, cost, space, and energy can be saved. This paper describes an application of the generalized extremal optimization (GEO) algorithm for selection of the appropriate quantity and quality of LEDs that compose the light source. The multiobjective approach of this algorithm tries to get the best spectral simulation with minimum fitness error toward the target spectrum, correlated color temperature (CCT) the same as the target spectrum, high color rendering index (CRI), and luminous flux as required for testing applications. GEO is a global search algorithm based on phenomena of natural evolution and is especially designed to be used in complex optimization problems. Several simulations have been conducted to validate the performance of the algorithm. The methodology applied to model the LEDs, together with the theoretical basis for CCT and CRI calculation, is presented in this paper. A comparative result analysis of M-GEO evolutionary algorithm with the Levenberg-Marquardt conventional deterministic algorithm is also presented.
NASA Astrophysics Data System (ADS)
He, Zhonghua; Liang, Hong; Yang, Chaohui; Huang, Fasu; Zeng, Xinbo
2018-02-01
Hydrologic drought, as a typical natural phenomenon in the context of global climate change, is the extension and development of meteorological and agricultural droughts, and it is an eventual and extreme drought. This study selects 55 hydrological control basins in Southern China as research areas. The study analyzes features, such as intensity and occurrence frequency of hydrologic droughts, and explores the spatial-temporal evolution patterns in the karst drainage basins in Southern China by virtue of Streamflow Drought Index. Results show that (1) the general hydrologic droughts from 1970s to 2010s exhibited ;an upward trend after having experienced a previous decline; in the karst drainage basins in Southern China; the trend was mainly represented by the gradual alleviation of hydrologic droughts from 1970s to 1990s and the gradual aggravation from 2000s to 2010s. (2) The spatial-temporal evolution pattern of occurrence frequency in the karst drainage basins in Southern China was consistent with the intensity of hydrologic droughts. The periods of 1970s and 2010s exhibited the highest occurrence frequency. (3) The karst drainage basins in Southern China experienced extremely complex variability of hydrologic droughts from 1970s to 2010s. Drought intensity and occurrence frequency significantly vary for different types of hydrology.
Exploiting induced variation to dissect quantitative traits in barley.
Druka, Arnis; Franckowiak, Jerome; Lundqvist, Udda; Bonar, Nicola; Alexander, Jill; Guzy-Wrobelska, Justyna; Ramsay, Luke; Druka, Ilze; Grant, Iain; Macaulay, Malcolm; Vendramin, Vera; Shahinnia, Fahimeh; Radovic, Slobodanka; Houston, Kelly; Harrap, David; Cardle, Linda; Marshall, David; Morgante, Michele; Stein, Nils; Waugh, Robbie
2010-04-01
The identification of genes underlying complex quantitative traits such as grain yield by means of conventional genetic analysis (positional cloning) requires the development of several large mapping populations. However, it is possible that phenotypically related, but more extreme, allelic variants generated by mutational studies could provide a means for more efficient cloning of QTLs (quantitative trait loci). In barley (Hordeum vulgare), with the development of high-throughput genome analysis tools, efficient genome-wide identification of genetic loci harbouring mutant alleles has recently become possible. Genotypic data from NILs (near-isogenic lines) that carry induced or natural variants of genes that control aspects of plant development can be compared with the location of QTLs to potentially identify candidate genes for development--related traits such as grain yield. As yield itself can be divided into a number of allometric component traits such as tillers per plant, kernels per spike and kernel size, mutant alleles that both affect these traits and are located within the confidence intervals for major yield QTLs may represent extreme variants of the underlying genes. In addition, the development of detailed comparative genomic models based on the alignment of a high-density barley gene map with the rice and sorghum physical maps, has enabled an informed prioritization of 'known function' genes as candidates for both QTLs and induced mutant genes.
Applying complex networks to evaluate precipitation patterns over South America
NASA Astrophysics Data System (ADS)
Ciemer, Catrin; Boers, Niklas; Barbosa, Henrique; Kurths, Jürgen; Rammig, Anja
2016-04-01
The climate of South America exhibits pronounced differences between the wet- and the dry-season, which are accompanied by specific synoptic events like changes in the location of the South American Low Level Jet (SALLJ) and the establishment of the South American Convergence Zone (SACZ). The onset of these events can be related to the presence of typical large-scale precipitation patterns over South America, as previous studies have shown[1,2]. The application of complex network methods to precipitation data recently received increased scientific attention for the special case of extreme events, as it is possible with such methods to analyze the spatiotemporal correlation structure as well as possible teleconnections of these events[3,4]. In these approaches the correlation between precipitation datasets is calculated by means of Event Synchronization which restricts their applicability to extreme precipitation events. In this work, we propose a method which is able to consider not only extreme precipitation but complete time series. A direct application of standard similarity measures in order to correlate precipitation time series is impossible due to their intricate statistical properties as the large amount of zeros. Therefore, we introduced and evaluated a suitable modification of Pearson's correlation coefficient to construct spatial correlation networks of precipitation. By analyzing the characteristics of spatial correlation networks constructed on the basis of this new measure, we are able to determine coherent areas of similar precipitation patterns, spot teleconnections of correlated areas, and detect central regions for precipitation correlation. By analyzing the change of the network over the year[5], we are also able to determine local and global changes in precipitation correlation patterns. Additionally, global network characteristics as the network connectivity yield indications for beginning and end of wet- and dry season. In order to identify large-scale synoptic events like the SACZ and SALLJ onset, detecting the changes of correlation over time between certain regions is of significant relevance. [1] Nieto-Ferreira et al. Quarterly Journal of the Royal Meteorological Society (2011) [2] Vera et al. Bulletin of the American Meteorological Society (2006) [3] Quiroga et al. Physical review E (2002) [4] Boers et al. nature communications (2014) [5] Radebach et al. Physical review E (2013)
Actionable Science for Sea Level Rise and Coastal Flooding to Help Avoid Maladaptation
NASA Astrophysics Data System (ADS)
Buchanan, M. K.
2017-12-01
Rising sea levels increase the frequency of flooding at all levels, from nuisance to extreme, along coastlines across the world. Although recent flooding has increased the saliency of sea level rise (SLR) and the risks it presents to governments and communities, the effect of SLR on coastal hazards is complex and filled with uncertainty that is often uncomfortable for decision-makers. Although it is certain that SLR is occurring and will continue, its rate remains ambiguous. Because extreme flooding is by definition rare, there is also uncertainty in the effect of natural variability on flood frequency. These uncertainties pose methodological obstacles for integrating SLR into flood hazard projections and risk management. A major challenge is how to distill this complexity into information geared towards public sectors to help inform adaptation decision-making. Because policy windows are limited, budgets are tight, and decisions may have long-term consequences, it is especially important that this information accounts for uncertainty to help avoid damage and maladaptation. The U.S. Global Research Program, and others, describe this type of science—data and tools that help decision-makers plan for climate change impacts—as actionable [1]. We produce actionable science to support decision-making for adaptation to coastal impacts, despite uncertainty in projections of SLR and flood frequency. We found that SLR will boost the occurrence of minor rather than severe flooding in some regions of the U.S., while in other regions the reverse is true. For many cities, the current ten-year flood level will become a regular occurrence as the century progresses and by 2100 will occur every few days for some cities. This creates a mismatch with current planning in some cases. For example, a costly storm surge barrier may be built to protect parts of New York City from extreme flood levels but these are not often used because they are expensive to operate and obstructive to navigation and ecological systems. The current 10-yr flood will become a nuisance flood in the future and large episodic protection may not be especially helpful. [1] Beier, Paul, et al. "A How-to Guide for Coproduction of Actionable Science." Conservation Letters (2016).
NASA Astrophysics Data System (ADS)
Terando, A. J.; Reich, B. J.; Pacifici, K.
2013-12-01
Fire is an important disturbance process in many coupled natural-human systems. Changes in the frequency and severity of fires due to anthropogenic climate change could have significant costs to society and the plant and animal communities that are adapted to a particular fire regime Planning for these changes requires a robust model of the relationship between climate and fire that accounts for multiple sources of uncertainty that are present when simulating ecological and climatological processes. Here we model how anthropogenic climate change could affect the wildfire regime for a region in the Southeast US whose natural ecosystems are dependent on frequent, low-intensity fires while humans are at risk from large catastrophic fires. We develop a modeling framework that incorporates three major sources of uncertainty: (1) uncertainty in the ecological drivers of expected monthly area burned, (2) uncertainty in the environmental drivers influencing the probability of an extreme fire event, and (3) structural uncertainty in different downscaled climate models. In addition we use two policy-relevant emission scenarios (climate stabilization and 'business-as-usual') to characterize the uncertainty in future greenhouse gas forcings. We use a Bayesian framework to incorporate different sources of uncertainty including simulation of predictive errors and Stochastic Search Variable Selection. Our results suggest that although the mean process remains stationary, the probability of extreme fires declines through time, owing to the persistence of high atmospheric moisture content during the peak fire season that dampens the effect of increasing temperatures. Including multiple sources of uncertainty leads to wide prediction intervals, but is potentially more useful for decision-makers that will require adaptation strategies that are robust to rapid but uncertain climate and ecological change.
Temporal pattern and memory in sediment transport in an experimental step-pool channel
NASA Astrophysics Data System (ADS)
Saletti, Matteo; Molnar, Peter; Zimmermann, André; Hassan, Marwan A.; Church, Michael; Burlando, Paolo
2015-04-01
In this work we study the complex dynamics of sediment transport and bed morphology in steep streams, using a dataset of experiments performed in a steep flume with natural sediment. High-resolution (1 sec) time series of sediment transport were measured for individual size classes at the outlet of the flume for different combinations of sediment input rates, discharges, and flume slopes. The data show that the relation between instantaneous discharge and sediment transport exhibits large variability on different levels. After dividing the time series into segments of constant water discharge, we quantify the statistical properties of transport rates by fitting the data with a Generalized Extreme Value distribution, whose 3 parameters are related to the average sediment flux. We analyze separately extreme events of transport rate in terms of their fractional composition; if only events of high magnitude are considered, coarse grains become the predominant component of the total sediment yield. We quantify the memory in grain size dependent sediment transport with variance scaling and autocorrelation analyses; more specifically, we study how the variance changes with different aggregation scales and how the autocorrelation coefficient changes with different time lags. Our results show that there is a tendency to an infinite memory regime in transport rate signals, which is limited by the intermittency of the largest fractions. Moreover, the structure of memory is both grain size-dependent and magnitude-dependent: temporal autocorrelation is stronger for small grain size fractions and when the average sediment transport rate is large. The short-term memory in coarse grain transport increases with temporal aggregation and this reveals the importance of the sampling frequency of bedload transport rates in natural streams, especially for large fractions.
Gaythorpe, Katy; Adams, Ben
2016-05-21
Epidemics of water-borne infections often follow natural disasters and extreme weather events that disrupt water management processes. The impact of such epidemics may be reduced by deployment of transmission control facilities such as clinics or decontamination plants. Here we use a relatively simple mathematical model to examine how demographic and environmental heterogeneities, population behaviour, and behavioural change in response to the provision of facilities, combine to determine the optimal configurations of limited numbers of facilities to reduce epidemic size, and endemic prevalence. We show that, if the presence of control facilities does not affect behaviour, a good general rule for responsive deployment to minimise epidemic size is to place them in exactly the locations where they will directly benefit the most people. However, if infected people change their behaviour to seek out treatment then the deployment of facilities offering treatment can lead to complex effects that are difficult to foresee. So careful mathematical analysis is the only way to get a handle on the optimal deployment. Behavioural changes in response to control facilities can also lead to critical facility numbers at which there is a radical change in the optimal configuration. So sequential improvement of a control strategy by adding facilities to an existing optimal configuration does not always produce another optimal configuration. We also show that the pre-emptive deployment of control facilities has conflicting effects. The configurations that minimise endemic prevalence are very different to those that minimise epidemic size. So cost-benefit analysis of strategies to manage endemic prevalence must factor in the frequency of extreme weather events and natural disasters. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hansel, C. M.; Buchwald, C.; Diaz, J. M.; Dyhrman, S.; Van Mooy, B. A. S.
2014-12-01
Reactive oxygen species (ROS) are key players in the biogeochemistry of the ocean, where they serve a critical role in the cycling of carbon and metals. Research in the past decade has introduced phytoplankton and, most recently, heterotrophic bacteria as significant sources of ROS, including superoxide, within both photic and aphotic regions of the ocean. ROS are both beneficial and detrimental to life. For instance, superoxide is a vital inter- and intra-cellular signaling molecule, yet at high concentrations it induces lipid peroxidation and initiates programmed cell death (PCD). In fact, superoxide has been implicated in PCD in the nitrogen-fixing diazotroph Trichodesmium, presumably leading to the demise of blooms within oligotrophic marine systems. Here, we explore the rates of superoxide production and decay by natural Trichodesmium populations obtained from various surface waters in the Sargasso Sea. We investigate also the role of light and colony density and morphology (puff v. raft) on superoxide fluxes. We find that Trichodesmium colonies produce extracellular superoxide at extremely high rates in the dark that are on par with those of the toxic raphidophyte Chattonella. The rates of superoxide production, however, rapidly decline with increasing cell density pointing to a role for superoxide in cell signaling in these organisms. We also find extremely rapid extracellular superoxide degradation by Trichodesmium. Together, this likely reflects a need for these organisms to maintain ROS at levels that will support signaling but below the threshold level that triggers PCD or oxidative damage. We also show differences in the effect of light on superoxide fluxes as a function of Trichodesmium colony morphology, suggesting differences in either colony physiology or associated bacterial symbionts. These findings point to complex physiological, ecological, and physical influences on ROS dynamics in phytoplankton that require further exploration.
Science-Driven Approach to Disaster Risk and Crisis Management
NASA Astrophysics Data System (ADS)
Ismail-Zadeh, A.
2014-12-01
Disasters due to natural extreme events continue to grow in number and intensity. Disaster risk and crisis management requires long-term planning, and to undertake that planning, a science-driven approach is needed to understand and assess disaster risks and to help in impact assessment and in recovery processes after a disaster. Science is used in assessments and rapid modeling of the disaster impact, in forecasting triggered hazards and risk (e.g., a tsunami or a landslide after a large earthquake), in contacts with and medical treatment of the affected population, and in some other actions. At the stage of response to disaster, science helps to analyze routinely the disaster happened (e.g., the physical processes led to this extreme event; hidden vulnerabilities; etc.) At the stage of recovery, natural scientists improve the existing regional hazard assessments; engineers try to use new science to produce new materials and technologies to make safer houses and infrastructure. At the stage of disaster risk mitigation new scientific methods and approaches are being developed to study natural extreme events; vulnerability of society is periodically investigated, and the measures for increasing the resilience of society to extremes are developed; existing disaster management regulations are improved. At the stage of preparedness, integrated research on disaster risks should be developed to understand the roots of potential disasters. Enhanced forecasting and early warning systems are to be developed reducing predictive uncertainties, and comprehensive disaster risk assessment is to be undertaken at local, regional, national and global levels. Science education should be improved by introducing trans-disciplinary approach to disaster risks. Science can help society by improving awareness about extreme events, enhancing risk communication with policy makers, media and society, and assisting disaster risk management authorities in organization of local and regional training and exercises.
The attitudes of neonatal nurses towards extremely preterm infants.
Gallagher, Katie; Marlow, Neil; Edgley, Alison; Porock, Davina
2012-08-01
The paper is a report of a study of the attitudes of neonatal nurses towards extremely preterm infants. Alongside advancing survival at extremely preterm gestational ages, ethical debates concerning the provision of invasive care have proliferated in light of the high morbidity. Despite nurses being the healthcare professionals who work closest with the infant and their family, their potential influence is usually ignored when determining how parents come to decisions about future care for their extremely premature infant. A Q methodology was employed to explore the attitudes of neonatal nurses towards caring for extremely preterm infants. Data were collected between 2007 and 2008 and analysed using PQMethod and Card Content Analysis. Thirty-six nurses from six neonatal units in the United Kingdom participated. Although there was consensus around the professional role of the nurse, when faced with the complexities of neonatal nursing three distinguishing factors emerged: the importance of parental choice in decision-making, the belief that technology should be used to assess response to treatment, and the belief that healthcare professionals should undertake difficult decisions. Neonatal nurses report unexpected difficulties in upholding their professionally defined role through highly complex and ever varied decision-making processes. Recognition of individual attitudes to the care of extremely preterm infants and the role of the family in the face of difficult decisions should facilitate more open communication between the nurse and the parents and improve the experience of both the nurse and the family during these emotional situations. © 2011 Blackwell Publishing Ltd.
A compliant mechanism for inspecting extremely confined spaces
NASA Astrophysics Data System (ADS)
Mascareñas, David; Moreu, Fernando; Cantu, Precious; Shields, Daniel; Wadden, Jack; El Hadedy, Mohamed; Farrar, Charles
2017-11-01
We present a novel, compliant mechanism that provides the capability to navigate extremely confined spaces for the purpose of infrastructure inspection. Extremely confined spaces are commonly encountered during infrastructure inspection. Examples of such spaces can include pipes, conduits, and ventilation ducts. Often these infrastructure features go uninspected simply because there is no viable way to access their interior. In addition, it is not uncommon for extremely confined spaces to possess a maze-like architecture that must be selectively navigated in order to properly perform an inspection. Efforts by the imaging sensor community have resulted in the development of imaging sensors on the millimeter length scale. Due to their compact size, they are able to inspect many extremely confined spaces of interest, however, the means to deliver these sensors to the proper location to obtain the desired images are lacking. To address this problem, we draw inspiration from the field of endoscopic surgery. Specifically we consider the work that has already been done to create long flexible needles that are capable of being steered through the human body. These devices are typically referred to as ‘steerable needles.’ Steerable needle technology is not directly applicable to the problem of navigating maze-like arrangements of extremely confined spaces, but it does provide guidance on how this problem should be approached. Specifically, the super-elastic nitinol tubing material that allows steerable needles to operate is also appropriate for the problem of navigating maze-like arrangements of extremely confined spaces. Furthermore, the portion of the mechanism that enters the extremely confined space is completely mechanical in nature. The mechanical nature of the device is an advantage when the extremely confined space features environmental hazards such as radiation that could degrade an electromechanically operated mechanism. Here, we present a compliant mechanism developed to navigate maze-like arrangements of extremely confined spaces. The mechanism is shown to be able to selectively navigate past three 90° bends. The ability to selectively navigate extremely confined spaces opens up new possibilities to use emerging miniature imaging technology for infrastructure inspection.
Impacts of Climate Change On The Occurrence of Extreme Events: The Mice Project
NASA Astrophysics Data System (ADS)
Palutikof, J. P.; Mice Team
It is widely accepted that climate change due to global warming will have substan- tial impacts on the natural environment, and on human activities. Furthermore, it is increasingly recognized that changes in the severity and frequency of extreme events, such as windstorm and flood, are likely to be more important than changes in the average climate. The EU-funded project MICE (Modelling the Impacts of Climate Extremes) commenced in January 2002. It seeks to identify the likely changes in the occurrence of extremes of rainfall, temperature and windstorm due to global warm- ing, using information from climate models as a basis, and to study the impacts of these changes in selected European environments. The objectives are: a) to evaluate, by comparison with gridded and station observations, the ability of climate models to successfully reproduce the occurrence of extremes at the required spatial and temporal scales. b) to analyse model output with respect to future changes in the occurrence of extremes. Statistical analyses will determine changes in (i) the return periods of ex- tremes, (ii) the joint probability of extremes (combinations of damaging events such as windstorm followed by heavy rain), (iii) the sequential behaviour of extremes (whether events are well-separated or clustered) and (iv) the spatial patterns of extreme event occurrence across Europe. The range of uncertainty in model predictions will be ex- plored by analysing changes in model experiments with different spatial resolutions and forcing scenarios. c) to determine the impacts of the predicted changes in extremes occurrence on selected activity sectors: agriculture (Mediterranean drought), commer- cial forestry and natural forest ecosystems (windstorm and flood in northern Europe, fire in the Mediterranean), energy use (temperature extremes), tourism (heat stress and Mediterranean beach holidays, changes in the snow pack and winter sports ) and civil protection/insurance (windstorm and flood). Impacts will be evaluated through a combination of techniques ranging from quantitative analyses through to expert judge- ment. Throughout the project, a continuing dialogue with stakeholders and end-users will be maintained.
Karin Riley; Matthew Thompson; Peter Webley; Kevin D. Hyde
2017-01-01
Modeling has been used to characterize and map natural hazards and hazard susceptibility for decades. Uncertainties are pervasive in natural hazards analysis, including a limited ability to predict where and when extreme events will occur, with what consequences, and driven by what contributing factors. Modeling efforts are challenged by the intrinsic...
The role of activity complexes in the distribution of solar magnetic fields.
NASA Astrophysics Data System (ADS)
García de La Rosa, J. I.; Reyes, R. C.
Using published data on the large-scale distribution of solar activity, the authors conclude that the longlived coronal holes are formed and maintained by the unbalanced magnetic flux which developes at both extremes of the complexes of activity.
Advancing the adaptive capacity of social-ecological systems to absorb climate extremes
NASA Astrophysics Data System (ADS)
Thonicke, Kirsten; Bahn, Michael; Bardgett, Richard; Bloemen, Jasper; Chabay, Ilan; Erb, Karlheinz; Giamberini, Mariasilvia; Gingrich, Simone; Lavorel, Sandra; Liehr, Stefan; Rammig, Anja
2017-04-01
The recent and projected increases in climate variability and the frequency of climate extremes are posing a profound challenge to society and the biosphere (IPCC 2012, IPCC 2013). Climate extremes can affect natural and managed ecosystems more severely than gradual warming. The ability of ecosystems to resist and recover from climate extremes is therefore of fundamental importance for society, which strongly relies on their ability to supply provisioning, regulating, supporting and cultural services. Society in turn triggers land-use and management decisions that affect ecosystem properties. Thus, ecological and socio-economic conditions are tightly coupled in what has been referred to as the social-ecological system. For ensuring human well-being in the light of climate extremes it is crucial to enhance the resilience of the social-ecological system (SES) across spatial, temporal and institutional scales. Stakeholders, such as resource managers, urban, landscape and conservation planners, decision-makers in agriculture and forestry, as well as natural hazards managers, require an improved knowledge base for better-informed decision making. To date the vulnerability and adaptive capacity of SESs to climate extremes is not well understood and large uncertainties exist as to the legacies of climate extremes on ecosystems and on related societal structures and processes. Moreover, we lack empirical evidence and incorporation of simulated future ecosystem and societal responses to support pro-active management and enhance social-ecological resilience. In our presentation, we outline the major research gaps and challenges to be addressed for understanding and enhancing the adaptive capacity of SES to absorb and adapt to climate extremes, including acquisition and elaboration of long-term monitoring data and improvement of ecological models to better project climate extreme effects and provide model uncertainties. We highlight scientific challenges and discuss conceptual and observational gaps that need to be overcome to advance this inter- and transdisciplinary topic.
HackAttack: Game-Theoretic Analysis of Realistic Cyber Conflicts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferragut, Erik M; Brady, Andrew C; Brady, Ethan J
Game theory is appropriate for studying cyber conflict because it allows for an intelligent and goal-driven adversary. Applications of game theory have led to a number of results regarding optimal attack and defense strategies. However, the overwhelming majority of applications explore overly simplistic games, often ones in which each participant s actions are visible to every other participant. These simplifications strip away the fundamental properties of real cyber conflicts: probabilistic alerting, hidden actions, unknown opponent capabilities. In this paper, we demonstrate that it is possible to analyze a more realistic game, one in which different resources have different weaknesses, playersmore » have different exploits, and moves occur in secrecy, but they can be detected. Certainly, more advanced and complex games are possible, but the game presented here is more realistic than any other game we know of in the scientific literature. While optimal strategies can be found for simpler games using calculus, case-by-case analysis, or, for stochastic games, Q-learning, our more complex game is more naturally analyzed using the same methods used to study other complex games, such as checkers and chess. We define a simple evaluation function and employ multi-step searches to create strategies. We show that such scenarios can be analyzed, and find that in cases of extreme uncertainty, it is often better to ignore one s opponent s possible moves. Furthermore, we show that a simple evaluation function in a complex game can lead to interesting and nuanced strategies.« less
NASA Astrophysics Data System (ADS)
Nurhandoko, Bagus Endar B.; Sukmana, Indriani; Mubarok, Syahrul; Deny, Agus; Widowati, Sri; Kurniadi, Rizal
2012-06-01
Migration is important issue for seismic imaging in complex structure. In this decade, depth imaging becomes important tools for producing accurate image in depth imaging instead of time domain imaging. The challenge of depth migration method, however, is in revealing the complex structure of subsurface. There are many methods of depth migration with their advantages and weaknesses. In this paper, we show our propose method of pre-stack depth migration based on time domain inverse scattering wave equation. Hopefully this method can be as solution for imaging complex structure in Indonesia, especially in rich thrusting fault zones. In this research, we develop a recent advance wave equation migration based on time domain inverse scattering wave which use more natural wave propagation using scattering wave. This wave equation pre-stack depth migration use time domain inverse scattering wave equation based on Helmholtz equation. To provide true amplitude recovery, an inverse of divergence procedure and recovering transmission loss are considered of pre-stack migration. Benchmarking the propose inverse scattering pre-stack depth migration with the other migration methods are also presented, i.e.: wave equation pre-stack depth migration, waveequation depth migration, and pre-stack time migration method. This inverse scattering pre-stack depth migration could image successfully the rich fault zone which consist extremely dip and resulting superior quality of seismic image. The image quality of inverse scattering migration is much better than the others migration methods.
Taylor, Cliff D.; Marsh, Erin; Anderson, Eric D.
2015-01-01
PRISM-I summary documents mention the presence of mafic-ultramafic igneous intrusive rocks in several areas of Mauritania and a number of chromium (Cr) and copper-nickel (Cu-Ni (±Co, Au)) occurrences associated with them. Permissive geologic settings generally include greenstone belts of any age, layered mafic-ultramafic and unlayered gabbro-anorthosite intrusive complexes in cratonic settings, ophiolite complexes, flood basalt provinces, and fluid-rich shear zones cutting accumulations of mafic-ultramafic rocks. Regions of Mauritania having these characteristics that are discussed in PRISM-I texts include the Mesoarchean greenstone belts of the TasiastTijirit terrane in the southwestern Rgueïbat Shield, two separate layered ultramafic complexes in the Amsaga Complex west of Atar, serpentinized metadunites in Mesoarchean rocks of the Rgueïbat Shield in the Zednes map sheet, several lateritized annular mafic-ultramafic complexes in the Paleoproterozoic northwestern portion of the Rgueïbat Shield, and the serpentinized ophiolitic segments of the Gorgol Noir Complex in the axial portion of the southern Mauritanides. Bureau de Recherches Géologiques et Minières (BRGM) work in the “Extreme Sud” zone also suggests that small copper occurrences associated with the extensive Jurassic microgabbroic intrusive rocks in the Taoudeni Basin of southeastern Mauritania could have potential for magmatic Cu-Ni (PGE, Co, Au) sulfide mineralization. Similarly, Jurassic mafic intrusive rocks in the northeastern Taoudeni Basin may be permissive. Known magmatic Cu-Ni deposits of these types in Mauritania are few in number and some uncertainty exists as to the nature of several of the more important ones.
NASA Astrophysics Data System (ADS)
Ghosh, Shreya; Lawless, Matthew J.; Rule, Gordon S.; Saxena, Sunil
2018-01-01
Site-directed spin labeling using two strategically placed natural histidine residues allows for the rigid attachment of paramagnetic Cu2+. This double histidine (dHis) motif enables extremely precise, narrow distance distributions resolved by Cu2+-based pulsed ESR. Furthermore, the distance measurements are easily relatable to the protein backbone-structure. The Cu2+ ion has, till now, been introduced as a complex with the chelating agent iminodiacetic acid (IDA) to prevent unspecific binding. Recently, this method was found to have two limiting concerns that include poor selectivity towards α-helices and incomplete Cu2+-IDA complexation. Herein, we introduce an alternative method of dHis-Cu2+ loading using the nitrilotriacetic acid (NTA)-Cu2+ complex. We find that the Cu2+-NTA complex shows a four-fold increase in selectivity toward α-helical dHis sites. Furthermore, we show that 100% Cu2+-NTA complexation is achievable, enabling precise dHis loading and resulting in no free Cu2+ in solution. We analyze the optimum dHis loading conditions using both continuous wave and pulsed ESR. We implement these findings to show increased sensitivity of the Double Electron-Electron Resonance (DEER) experiment in two different protein systems. The DEER signal is increased within the immunoglobulin binding domain of protein G (called GB1). We measure distances between a dHis site on an α-helix and dHis site either on a mid-strand or a non-hydrogen bonded edge-strand β-sheet. Finally, the DEER signal is increased twofold within two α-helix dHis sites in the enzymatic dimer glutathione S-transferase exemplifying the enhanced α-helical selectivity of Cu2+-NTA.
ERIC Educational Resources Information Center
Kulik, Anastasia; Neyaskina, Yuliya; Frizen, Marina; Shiryaeva, Olga; Surikova, Yana
2016-01-01
This article presents the results of a detailed empirical research, aimed at studying the quality of life in the context of extreme climatic, geographical and specific sociocultural living conditions. Our research is based on the methodological approach including social, economical, ecological and psychological characteristics and reflecting…
USDA-ARS?s Scientific Manuscript database
Understanding naturally evolved adaptation to arid climates may be a key factor in developing crops that can thrive during extreme climate fluctuations. Malus sieversii (Ledeb.) M. Roem. is a wild apple species that has adapted to harsh environments in Kazakhstan, including extreme cold and dry reg...
Aftershocks of Chile's Earthquake for an Ongoing, Large-Scale Experimental Evaluation
ERIC Educational Resources Information Center
Moreno, Lorenzo; Trevino, Ernesto; Yoshikawa, Hirokazu; Mendive, Susana; Reyes, Joaquin; Godoy, Felipe; Del Rio, Francisca; Snow, Catherine; Leyva, Diana; Barata, Clara; Arbour, MaryCatherine; Rolla, Andrea
2011-01-01
Evaluation designs for social programs are developed assuming minimal or no disruption from external shocks, such as natural disasters. This is because extremely rare shocks may not make it worthwhile to account for them in the design. Among extreme shocks is the 2010 Chile earthquake. Un Buen Comienzo (UBC), an ongoing early childhood program in…
NASA Astrophysics Data System (ADS)
Ferrero, Elena; Magagna, Alessandra; Giardino, Marco
2014-05-01
Starting from the assumption that Earth Sciences education is fundamental to improve people's consciousness on proper management of natural hazards and georesources, to develop resilience's capacity in the population and the effectiveness of protection measures, we analyze different strategies adopted in the educational system of the Piemonte Region (NW Italy). Experiences refer to primary and secondary schools, to universities courses of Natural Sciences and Geological Sciences Degrees, to Preparatory courses for teachers of primary and secondary level. In addition to this formal educational context, experiences were performed in informal situation, like field trips and seminars promoted by other agencies and associations, such as for instance the National Association of Natural Sciences Teachers (ANISN), Natural History Museums, Natural Parks of the Region. Another particular case study included cooperation projects based on partnerships between students of different countries, cultures and languages. This type of educational activities is quite challenging for the teachers to organize, but it is very stimulating for the students and extremely fruitful: it allows students to experience complex situations with open mind, to learn and understand cross relationships between different disciplines and between different and faraway countries. In all cases a common starting point consisted in stressing the attention of the educational project on the motivation and the personal involvement of the participants, both from the emotional point of view and the operative and cognitive point of view. Case studies will be presented for showing the way students consider georesources and their sustainable exploitation and perceive natural hazards and risks, not only the major and catastrophic ones, but also the minor, hidden and silent ones.
Game theory and extremal optimization for community detection in complex dynamic networks.
Lung, Rodica Ioana; Chira, Camelia; Andreica, Anca
2014-01-01
The detection of evolving communities in dynamic complex networks is a challenging problem that recently received attention from the research community. Dynamics clearly add another complexity dimension to the difficult task of community detection. Methods should be able to detect changes in the network structure and produce a set of community structures corresponding to different timestamps and reflecting the evolution in time of network data. We propose a novel approach based on game theory elements and extremal optimization to address dynamic communities detection. Thus, the problem is formulated as a mathematical game in which nodes take the role of players that seek to choose a community that maximizes their profit viewed as a fitness function. Numerical results obtained for both synthetic and real-world networks illustrate the competitive performance of this game theoretical approach.
NASA Astrophysics Data System (ADS)
Ji, P.; Yuan, X.
2017-12-01
Located in the northern Tibetan Plateau, Sanjiangyuan is the headwater region of the Yellow River, Yangtze River and Mekong River. Besides climate change, natural and human-induced land cover change (e.g., Graze for Grass Project) is also influencing the regional hydro-climate and hydrological extremes significantly. To quantify their impacts, a land surface model (LSM) with consideration of soil moisture-lateral surface flow interaction and quasi-three-dimensional subsurface flow, is used to conduct long-term high resolution simulations driven by China Meteorological Administration Land Data Assimilation System forcing data and different land cover scenarios. In particular, the role of surface and subsurface lateral flows is also analyzed by comparing with typical one-dimensional models. Lateral flows help to simulate soil moisture variability caused by topography at hyper-resolution (e.g., 100m), which is also essential for simulating hydrological extremes including soil moisture dryness/wetness and high/low flows. The LSM will also be coupled with a regional climate model to simulate the effect of natural and anthropogenic land cover change on regional climate, with particular focus on the land-atmosphere coupling at different resolutions with different configurations in modeling land surface hydrology.
Bhagat, Stuti; Srikanth Vallabani, NV; Shutthanandan, Vaithiyalingam; ...
2017-12-02
Catalytically active individual gold (Au) and cerium oxide (CeO 2) nanoparticles (NPs) are well known to exhibit specific enzyme-like activities, such as natural catalase, oxidase, superoxide dismutase, and peroxidase enzymes. Our activities have been maneuvered to design several biological applications such as immunoassays, glucose detection, radiation and free radical protection and tissue engineering. In biological systems, multienzyme complexes are involved in catalyzing important reactions of essential metabolic processes such as respiration, biomolecule synthesis, and photosynthesis. It is well known that metabolic processes linked with multienzyme complexes offer several advantages over reactions catalyzed by individual enzymes. A functional nanozyme depicting multienzymemore » like properties has eluded the researchers in the nanoscience community for the past few decades. Here, we have designed a functional multienzyme in the form of Gold (core)-CeO 2 (shell) nanoparticles (Au/CeO 2 CSNPs) exhibiting excellent peroxidase, catalase, and superoxide dismutase enzyme-like activities that are controlled simply by tuning the pH. The reaction kinetic parameters reveal that the peroxidase-like activity of this core-shell nanozyme is comparable to natural horseradish peroxidase (HRP) enzyme. Unlike peroxidase-like activity exhibited by other nanomaterials, Au/CeO 2 CSNPs showed a decrease in hydroxyl radical formation, suggesting that the biocatalytic reactions are performed by efficient electron transfers. A significant enzyme-like activity of this core-shell nanoparticle was conserved at extreme pH (2 – 11) and temperatures (up to 90 °C), clearly suggesting the superiority over natural enzymes. Further, the utility of peroxidase-like activity of this core-shell nanoparticles was extended for the detection of glucose, which showed a linear range of detection between (100 µM – 1 mM). It is hypothesized that the proximity of the redox potentials of Au+/Au and Ce (III)/Ce (IV) may result in a redox couple promoting the multienzyme activity of core-shell nanoparticles. Au/CeO 2 CSNPs may open new directions for development of single platform sensors in multiple biosensing applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhagat, Stuti; Srikanth Vallabani, NV; Shutthanandan, Vaithiyalingam
Catalytically active individual gold (Au) and cerium oxide (CeO 2) nanoparticles (NPs) are well known to exhibit specific enzyme-like activities, such as natural catalase, oxidase, superoxide dismutase, and peroxidase enzymes. Our activities have been maneuvered to design several biological applications such as immunoassays, glucose detection, radiation and free radical protection and tissue engineering. In biological systems, multienzyme complexes are involved in catalyzing important reactions of essential metabolic processes such as respiration, biomolecule synthesis, and photosynthesis. It is well known that metabolic processes linked with multienzyme complexes offer several advantages over reactions catalyzed by individual enzymes. A functional nanozyme depicting multienzymemore » like properties has eluded the researchers in the nanoscience community for the past few decades. Here, we have designed a functional multienzyme in the form of Gold (core)-CeO 2 (shell) nanoparticles (Au/CeO 2 CSNPs) exhibiting excellent peroxidase, catalase, and superoxide dismutase enzyme-like activities that are controlled simply by tuning the pH. The reaction kinetic parameters reveal that the peroxidase-like activity of this core-shell nanozyme is comparable to natural horseradish peroxidase (HRP) enzyme. Unlike peroxidase-like activity exhibited by other nanomaterials, Au/CeO 2 CSNPs showed a decrease in hydroxyl radical formation, suggesting that the biocatalytic reactions are performed by efficient electron transfers. A significant enzyme-like activity of this core-shell nanoparticle was conserved at extreme pH (2 – 11) and temperatures (up to 90 °C), clearly suggesting the superiority over natural enzymes. Further, the utility of peroxidase-like activity of this core-shell nanoparticles was extended for the detection of glucose, which showed a linear range of detection between (100 µM – 1 mM). It is hypothesized that the proximity of the redox potentials of Au+/Au and Ce (III)/Ce (IV) may result in a redox couple promoting the multienzyme activity of core-shell nanoparticles. Au/CeO 2 CSNPs may open new directions for development of single platform sensors in multiple biosensing applications.« less
Assaf, Zoe June; Tilk, Susanne; Park, Jane; Siegal, Mark L; Petrov, Dmitri A
2017-12-01
Mutations provide the raw material of evolution, and thus our ability to study evolution depends fundamentally on having precise measurements of mutational rates and patterns. We generate a data set for this purpose using (1) de novo mutations from mutation accumulation experiments and (2) extremely rare polymorphisms from natural populations. The first, mutation accumulation (MA) lines are the product of maintaining flies in tiny populations for many generations, therefore rendering natural selection ineffective and allowing new mutations to accrue in the genome. The second, rare genetic variation from natural populations allows the study of mutation because extremely rare polymorphisms are relatively unaffected by the filter of natural selection. We use both methods in Drosophila melanogaster , first generating our own novel data set of sequenced MA lines and performing a meta-analysis of all published MA mutations (∼2000 events) and then identifying a high quality set of ∼70,000 extremely rare (≤0.1%) polymorphisms that are fully validated with resequencing. We use these data sets to precisely measure mutational rates and patterns. Highlights of our results include: a high rate of multinucleotide mutation events at both short (∼5 bp) and long (∼1 kb) genomic distances, showing that mutation drives GC content lower in already GC-poor regions, and using our precise context-dependent mutation rates to predict long-term evolutionary patterns at synonymous sites. We also show that de novo mutations from independent MA experiments display similar patterns of single nucleotide mutation and well match the patterns of mutation found in natural populations. © 2017 Assaf et al.; Published by Cold Spring Harbor Laboratory Press.
Revisiting the Quantum Brain Hypothesis: Toward Quantum (Neuro)biology?
Jedlicka, Peter
2017-01-01
The nervous system is a non-linear dynamical complex system with many feedback loops. A conventional wisdom is that in the brain the quantum fluctuations are self-averaging and thus functionally negligible. However, this intuition might be misleading in the case of non-linear complex systems. Because of an extreme sensitivity to initial conditions, in complex systems the microscopic fluctuations may be amplified and thereby affect the system’s behavior. In this way quantum dynamics might influence neuronal computations. Accumulating evidence in non-neuronal systems indicates that biological evolution is able to exploit quantum stochasticity. The recent rise of quantum biology as an emerging field at the border between quantum physics and the life sciences suggests that quantum events could play a non-trivial role also in neuronal cells. Direct experimental evidence for this is still missing but future research should address the possibility that quantum events contribute to an extremely high complexity, variability and computational power of neuronal dynamics. PMID:29163041
NASA Astrophysics Data System (ADS)
Lima, Aranildo R.; Hsieh, William W.; Cannon, Alex J.
2017-12-01
In situations where new data arrive continually, online learning algorithms are computationally much less costly than batch learning ones in maintaining the model up-to-date. The extreme learning machine (ELM), a single hidden layer artificial neural network with random weights in the hidden layer, is solved by linear least squares, and has an online learning version, the online sequential ELM (OSELM). As more data become available during online learning, information on the longer time scale becomes available, so ideally the model complexity should be allowed to change, but the number of hidden nodes (HN) remains fixed in OSELM. A variable complexity VC-OSELM algorithm is proposed to dynamically add or remove HN in the OSELM, allowing the model complexity to vary automatically as online learning proceeds. The performance of VC-OSELM was compared with OSELM in daily streamflow predictions at two hydrological stations in British Columbia, Canada, with VC-OSELM significantly outperforming OSELM in mean absolute error, root mean squared error and Nash-Sutcliffe efficiency at both stations.
NASA Astrophysics Data System (ADS)
Munoz-Esparza, D.; Sauer, J.; Linn, R.
2015-12-01
Anomalous and unexpected fire behavior in complex terrain continues to result in substantial loss of property and extremely dangerous conditions for firefighting field personnel. We briefly discuss proposed hypotheses of fire interactions with atmospheric flows over complex terrain that can lead to poorly-understood and potentially catastrophic scenarios. Then, our recent results of numerical investigations via large-eddy simulation of coupled atmosphere-topography-fire phenomenology with the Los Alamos National Laboratory, HiGrad-Firetec model are presented as an example of the potential for increased understanding of these complex processes. This investigation focuses on the influence of downslope surface wind enhancement through stably stratified flow over an isolated hill, and the resulting dramatic changes in fire behavior including spread rate, and intensity. Implications with respect to counter-intuitive fire behavior and extreme fire events are discussed. This work demonstrates a tremendous opportunity to immediately create safer and more effective policy for field personnel through improved predictability of atmospheric conditions over complex terrain
Revisiting the Quantum Brain Hypothesis: Toward Quantum (Neuro)biology?
Jedlicka, Peter
2017-01-01
The nervous system is a non-linear dynamical complex system with many feedback loops. A conventional wisdom is that in the brain the quantum fluctuations are self-averaging and thus functionally negligible. However, this intuition might be misleading in the case of non-linear complex systems. Because of an extreme sensitivity to initial conditions, in complex systems the microscopic fluctuations may be amplified and thereby affect the system's behavior. In this way quantum dynamics might influence neuronal computations. Accumulating evidence in non-neuronal systems indicates that biological evolution is able to exploit quantum stochasticity. The recent rise of quantum biology as an emerging field at the border between quantum physics and the life sciences suggests that quantum events could play a non-trivial role also in neuronal cells. Direct experimental evidence for this is still missing but future research should address the possibility that quantum events contribute to an extremely high complexity, variability and computational power of neuronal dynamics.
Call of the wild: the negative tendency in the nature religions of American youth.
Kramp, Joseph M
2015-02-01
The author argues that the paucity of options for sanctioned rebellion in contemporary American society drive an ever-increasing number of idealistic youth in search of isolation in nature, where they construct what the author here calls "nature religions." These worldviews focus on purification of falsehood, ritualized through enduring extreme physical pain, social isolation, and extreme weather conditions in hopes of experiencing reality more authentically. The author argues that unemployment, limited vocational options, and the homogenization of American society are among the major catalysts for this ever-expanding breed of seekers, each of whom struggles with a negative tendency (a theoretical term created by Erik Erikson). Furthermore, the author argues that the emphasis in the nature religions on connection to nature is constructed to compensate for the lack of community and sense of human connectedness in contemporary American society. A representative case study from Jon Krakauer's (Into the wild; Doubleday, New York, 1996) Into the Wild is presented to illuminate and justify the argument made by the author for more institutionally housed options for sanctioned, licit rebellion to manage the negative tendency.
NASA Astrophysics Data System (ADS)
Büntgen, Ulf; Brázdil, Rudolf; Heussner, Karl-Uwe; Hofmann, Jutta; Kontic, Raymond; Kyncl, Tomáš; Pfister, Christian; Chromá, Kateřina; Tegel, Willy
2011-12-01
A predicted rise in anthropogenic greenhouse gas emissions and associated effects on the Earth's climate system likely imply more frequent and severe weather extremes with alternations in hydroclimatic parameters expected to be most critical for ecosystem functioning, agricultural yield, and human health. Evaluating the return period and amplitude of modern climatic extremes in light of pre-industrial natural changes is, however, limited by generally too short instrumental meteorological observations. Here we introduce and analyze 11,873 annually resolved and absolutely dated ring width measurement series from living and historical fir ( Abies alba Mill.) trees sampled across France, Switzerland, Germany, and the Czech Republic, which continuously span the AD 962-2007 period. Even though a dominant climatic driver of European fir growth was not found, ring width extremes were evidently triggered by anomalous variations in Central European April-June precipitation. Wet conditions were associated with dynamic low-pressure cells, whereas continental-scale droughts coincided with persistent high-pressure between 35 and 55°N. Documentary evidence independently confirms many of the dendro signals over the past millennium, and further provides insight on causes and consequences of ambient weather conditions related to the reconstructed extremes. A fairly uniform distribution of hydroclimatic extremes throughout the Medieval Climate Anomaly, Little Ice Age and Recent Global Warming may question the common believe that frequency and severity of such events closely relates to climate mean stages. This joint dendro-documentary approach not only allows extreme climate conditions of the industrial era to be placed against the backdrop of natural variations, but also probably helps to constrain climate model simulations over exceptional long timescales.
Heirene, Robert M; Shearer, David; Mellalieu, Stephen D; Roderique-Davies, Gareth
2016-12-01
Buckley's commentary on our study of rock climber's withdrawal experiences raises a number of important questions surrounding the concept of extreme or adventure sports addiction. Drawing on the few available investigations of this topic, we respond to Buckley's questions here, though emphasize the need for further studies of extreme sports addiction in order to provide more empirically informed answers.
M.A. Eisenbies; W.M. Aust; J.A. Burger; M.B. Adams
2007-01-01
The connection between forests and water resources is well established, but the relationships among controlling factors are only partly understood. Concern over the effects of forestry operations, particularly harvesting, on extreme flooding events is a recurrent issue in forest and watershed management. Due to the complexity of the system, and the cost of installing...
Microbial communities and their predicted metabolic functions in a desiccating acid salt lake.
Zaikova, Elena; Benison, Kathleen C; Mormile, Melanie R; Johnson, Sarah Stewart
2018-05-01
The waters of Lake Magic in Western Australia are among the most geochemically extreme on Earth. This ephemeral saline lake is characterized by pH as low as 1.6 salinity as high as 32% total dissolved solids, and unusually complex geochemistry, including extremely high concentrations of aluminum, silica, and iron. We examined the microbial composition and putative function in this extreme acid brine environment by analyzing lake water, groundwater, and sediment samples collected during the austral summer near peak evapoconcentration. Our results reveal that the lake water metagenome, surprisingly, was comprised of mostly eukaryote sequences, particularly fungi and to a lesser extent, green algae. Groundwater and sediment samples were dominated by acidophilic Firmicutes, with eukaryotic community members only detected at low abundances. The lake water bacterial community was less diverse than that in groundwater and sediment, and was overwhelmingly represented by a single OTU affiliated with Salinisphaera. Pathways associated with halotolerance were found in the metagenomes, as were genes associated with biosynthesis of protective carotenoids. During periods of complete desiccation of the lake, we hypothesize that dormancy and entrapment in fluid inclusions in halite crystals may increase long-term survival, leading to the resilience of complex eukaryotes in this extreme environment.
DOT National Transportation Integrated Search
2016-09-01
This researchs objective is to assist the Kentucky Transportation Cabinet (KYTC) in its efforts to : develop strategies to address natural hazard vulnerabilities and improve the resiliency of : Kentuckys transportation infrastructure. Recent fe...
Spatial variation of statistical properties of extreme water levels along the eastern Baltic Sea
NASA Astrophysics Data System (ADS)
Pindsoo, Katri; Soomere, Tarmo; Rocha, Eugénio
2016-04-01
Most of existing projections of future extreme water levels rely on the use of classic generalised extreme value distributions. The choice to use a particular distribution is often made based on the absolute value of the shape parameter of the Generalise Extreme Value distribution. If this parameter is small, the Gumbel distribution is most appropriate while in the opposite case the Weibull or Frechet distribution could be used. We demonstrate that the alongshore variation in the statistical properties of numerically simulated high water levels along the eastern coast of the Baltic Sea is so large that the use of a single distribution for projections of extreme water levels is highly questionable. The analysis is based on two simulated data sets produced in the Swedish Meteorological and Hydrological Institute. The output of the Rossby Centre Ocean model is sampled with a resolution of 6 h and the output of the circulation model NEMO with a resolution of 1 h. As the maxima of water levels of subsequent years may be correlated in the Baltic Sea, we also employ maxima for stormy seasons. We provide a detailed analysis of spatial variation of the parameters of the family of extreme value distributions along an approximately 600 km long coastal section from the north-western shore of Latvia in the Baltic Proper until the eastern Gulf of Finland. The parameters are evaluated using maximum likelihood method and method of moments. The analysis also covers the entire Gulf of Riga. The core parameter of this family of distributions, the shape parameter of the Generalised Extreme Value distribution, exhibits extensive variation in the study area. Its values evaluated using the Hydrognomon software and maximum likelihood method, vary from about -0.1 near the north-western coast of Latvia in the Baltic Proper up to about 0.05 in the eastern Gulf of Finland. This parameter is very close to zero near Tallinn in the western Gulf of Finland. Thus, it is natural that the Gumbel distribution gives adequate projections of extreme water levels for the vicinity of Tallinn. More importantly, this feature indicates that the use of a single distribution for the projections of extreme water levels and their return periods for the entire Baltic Sea coast is inappropriate. The physical reason is the interplay of the complex shape of large subbasins (such as the Gulf of Riga and Gulf of Finland) of the sea and highly anisotropic wind regime. The 'impact' of this anisotropy on the statistics of water level is amplified by the overall anisotropy of the distributions of the frequency of occurrence of high and low water levels. The most important conjecture is that long-term behaviour of water level extremes in different coastal sections of the Baltic Sea may be fundamentally different.
Geckili, Onur; Bilhan, Hakan; Ceylan, Gulsum; Cilingir, Altug
2013-02-01
The prosthetic treatment of patients with an edentulous maxilla opposing mandibular natural teeth is one of the most challenging endeavors that face clinicians. Occlusal forces from the opposing natural teeth may cause fractures in the maxillary prosthesis and also result in advanced bone loss of the edentulous maxilla. With the presence of extreme gagging reflex, the treatment may become more complicated. This article describes and illustrates the 2-stage surgical and prosthetic treatment of a patient with an edentulous maxilla opposing natural teeth. In the beginning, the patient was treated with 4 implants and a maxillary implant-supported overdenture. The extreme gagging reflex and the occlusal forces from the mandibular natural teeth obligated the team a second stage surgical and prosthetic treatment, which included increasing the number of implants after bilateral sinus lifting in the posterior maxilla and fabricating a maxillary fixed hybrid prosthesis made of micro-ceramic composite that yielded a satisfactory result.
Pest control of aphids depends on landscape complexity and natural enemy interactions
Reineking, Björn; Seo, Bumsuk; Steffan-Dewenter, Ingolf
2015-01-01
Aphids are a major concern in agricultural crops worldwide, and control by natural enemies is an essential component of the ecological intensification of agriculture. Although the complexity of agricultural landscapes is known to influence natural enemies of pests, few studies have measured the degree of pest control by different enemy guilds across gradients in landscape complexity. Here, we use multiple natural-enemy exclosures replicated in 18 fields across a gradient in landscape complexity to investigate (1) the strength of natural pest control across landscapes, measured as the difference between pest pressure in the presence and in the absence of natural enemies; (2) the differential contributions of natural enemy guilds to pest control, and the nature of their interactions across landscapes. We show that natural pest control of aphids increased up to six-fold from simple to complex landscapes. In the absence of pest control, aphid population growth was higher in complex than simple landscapes, but was reduced by natural enemies to similar growth rates across all landscapes. The effects of enemy guilds were landscape-dependent. Particularly in complex landscapes, total pest control was supplied by the combined contribution of flying insects and ground-dwellers. Birds had little overall impact on aphid control. Despite evidence for intraguild predation of flying insects by ground-dwellers and birds, the overall effect of enemy guilds on aphid control was complementary. Understanding pest control services at large spatial scales is critical to increase the success of ecological intensification schemes. Our results suggest that, where aphids are the main pest of concern, interactions between natural enemies are largely complementary and lead to a strongly positive effect of landscape complexity on pest control. Increasing the availability of seminatural habitats in agricultural landscapes may thus benefit not only natural enemies, but also the effectiveness of aphid natural pest control. PMID:26734497
Pest control of aphids depends on landscape complexity and natural enemy interactions.
Martin, Emily A; Reineking, Björn; Seo, Bumsuk; Steffan-Dewenter, Ingolf
2015-01-01
Aphids are a major concern in agricultural crops worldwide, and control by natural enemies is an essential component of the ecological intensification of agriculture. Although the complexity of agricultural landscapes is known to influence natural enemies of pests, few studies have measured the degree of pest control by different enemy guilds across gradients in landscape complexity. Here, we use multiple natural-enemy exclosures replicated in 18 fields across a gradient in landscape complexity to investigate (1) the strength of natural pest control across landscapes, measured as the difference between pest pressure in the presence and in the absence of natural enemies; (2) the differential contributions of natural enemy guilds to pest control, and the nature of their interactions across landscapes. We show that natural pest control of aphids increased up to six-fold from simple to complex landscapes. In the absence of pest control, aphid population growth was higher in complex than simple landscapes, but was reduced by natural enemies to similar growth rates across all landscapes. The effects of enemy guilds were landscape-dependent. Particularly in complex landscapes, total pest control was supplied by the combined contribution of flying insects and ground-dwellers. Birds had little overall impact on aphid control. Despite evidence for intraguild predation of flying insects by ground-dwellers and birds, the overall effect of enemy guilds on aphid control was complementary. Understanding pest control services at large spatial scales is critical to increase the success of ecological intensification schemes. Our results suggest that, where aphids are the main pest of concern, interactions between natural enemies are largely complementary and lead to a strongly positive effect of landscape complexity on pest control. Increasing the availability of seminatural habitats in agricultural landscapes may thus benefit not only natural enemies, but also the effectiveness of aphid natural pest control.
Towards a Unified Framework in Hydroclimate Extremes Prediction in Changing Climate
NASA Astrophysics Data System (ADS)
Moradkhani, H.; Yan, H.; Zarekarizi, M.; Bracken, C.
2016-12-01
Spatio-temporal analysis and prediction of hydroclimate extremes are of paramount importance in disaster mitigation and emergency management. The IPCC special report on managing the risks of extreme events and disasters emphasizes that the global warming would change the frequency, severity, and spatial pattern of extremes. In addition to climate change, land use and land cover changes also influence the extreme characteristics at regional scale. Therefore, natural variability and anthropogenic changes to the hydroclimate system result in nonstationarity in hydroclimate variables. In this presentation recent advancements in developing and using Bayesian approaches to account for non-stationarity in hydroclimate extremes are discussed. Also, implications of these approaches in flood frequency analysis, treatment of spatial dependence, the impact of large-scale climate variability, the selection of cause-effect covariates, with quantification of model errors in extreme prediction is explained. Within this framework, the applicability and usefulness of the ensemble data assimilation for extreme flood predictions is also introduced. Finally, a practical and easy to use approach for better communication with decision-makers and emergency managers is presented.
NASA Astrophysics Data System (ADS)
Hasan, Husna; Salleh, Nur Hanim Mohd
2015-10-01
Extreme temperature events affect many human and natural systems. Changes in extreme temperature events can be detected and monitored by developing the indices based on the extreme temperature data. As an effort to provide the understanding of these changes to the public, a study of extreme temperature indices is conducted at five meteorological stations in Peninsular Malaysia. In this study, changes in the means and extreme events of temperature are assessed and compared using the daily maximum and minimum temperature data for the period of 2004 to 2013. The absolute extreme temperature indices; TXx, TXn, TXn and TNn provided by Expert Team on Climate Change Detection and Indices (ETCCDI) are utilized and linear trends of each index are extracted using least square likelihood method. The results indicate that there exist significant decreasing trend in the TXx index for Kota Bharu station and increasing trend in TNn index for Chuping and Kota Kinabalu stations. The comparison between the trend in mean and extreme temperatures show the same significant tendency for Kota Bharu and Kuala Terengganu stations.
The natural flow regime of Hawaíi streams
NASA Astrophysics Data System (ADS)
Tsang, Y. P.; Strauch, A. M.; Clilverd, H. M.
2016-12-01
Freshwater is a critical, but limited natural resource on tropical islands; sustaining agriculture, industry, hydropower, urban development, and domestic water supply. The hydrology of Hawaíi islands is largely influenced by the health of mountain forests, which capture and absorb rain and fog drip, recharging aquifers and sustaining stream flow. Forests in Hawaíi are being degraded through the replacement of native vegetation with introduced species or conversion to another land use. Streams in the tropics frequently experience flash flooding due to extreme rainfall-runoff events and low flows due to seasonal drought. These patterns drive habitat availability for freshwater fauna, as well as sediment and nutrient export to near-shore ecosystems. Flow regimes can be used to characterize the frequency and magnitude of extreme high and low flows and are influenced by watershed climate, geology, land cover and soil composition. We examined the effect of climate extremes on stream flow from Hawaiian forests using historical flow data to characterize the spatial and temporal patterns in surface water resources. By defining flow regimes from forests we can improve our understanding of climate extremes on water resource availability across tropical island landscapes.
Incardona, N L; Blonski, R; Feeney, W
1972-01-01
Bacteriophage phiX174 undergoes a conformational change during viral eclipse when virus-host cell complexes are incubated briefly at 37 C in a complex starvation buffer at pH 8. In this report, basically the same transition is demonstrated in vitro. Incubation of phiX alone for 2 to 3 hr at 35 C in 0.1 m CaCl(2) (pH 7.2) results in an irreversible decrease in S(20,w) because of an increase in the frictional coefficient that occurs during the change in conformation. The slower sedimenting conformation is noninfectious. These properties are remarkably similar to those of the eclipsed particles characterized by Newbold and Sinsheimer. Therefore, the key structural requirements for the molecular mechanism must reside within the architecture of the virus itself. This extremely simplified system uncovered the calcium ion requirement and pronounced dependence on pH between 6 and 7, both inherent properties of adsorption. This and the more than 10-fold greater rate of the in vivo conformational transition allude to the cooperative nature of attachment and eclipse for phiX.
The Impact of Heterogeneous Thresholds on Social Contagion with Multiple Initiators
Karampourniotis, Panagiotis D.; Sreenivasan, Sameet; Szymanski, Boleslaw K.; Korniss, Gyorgy
2015-01-01
The threshold model is a simple but classic model of contagion spreading in complex social systems. To capture the complex nature of social influencing we investigate numerically and analytically the transition in the behavior of threshold-limited cascades in the presence of multiple initiators as the distribution of thresholds is varied between the two extreme cases of identical thresholds and a uniform distribution. We accomplish this by employing a truncated normal distribution of the nodes’ thresholds and observe a non-monotonic change in the cascade size as we vary the standard deviation. Further, for a sufficiently large spread in the threshold distribution, the tipping-point behavior of the social influencing process disappears and is replaced by a smooth crossover governed by the size of initiator set. We demonstrate that for a given size of the initiator set, there is a specific variance of the threshold distribution for which an opinion spreads optimally. Furthermore, in the case of synthetic graphs we show that the spread asymptotically becomes independent of the system size, and that global cascades can arise just by the addition of a single node to the initiator set. PMID:26571486
Impacts of Climate Change on the Collapse of Lowland Maya Civilization
NASA Astrophysics Data System (ADS)
Douglas, Peter M. J.; Demarest, Arthur A.; Brenner, Mark; Canuto, Marcello A.
2016-06-01
Paleoclimatologists have discovered abundant evidence that droughts coincided with collapse of the Lowland Classic Maya civilization, and some argue that climate change contributed to societal disintegration. Many archaeologists, however, maintain that drought cannot explain the timing or complex nature of societal changes at the end of the Classic Period, between the eighth and eleventh centuries ce. This review presents a compilation of climate proxy data indicating that droughts in the ninth to eleventh century were the most severe and frequent in Maya prehistory. Comparison with recent archaeological evidence, however, indicates an earlier beginning for complex economic and political processes that led to the disintegration of states in the southern region of the Maya lowlands that precedes major droughts. Nonetheless, drought clearly contributed to the unusual severity of the Classic Maya collapse, and helped to inhibit the type of recovery seen in earlier periods of Maya prehistory. In the drier northern Maya Lowlands, a later political collapse at ca. 1000 ce appears to be related to ongoing extreme drought. Future interdisciplinary research should use more refined climatological and archaeological data to examine the relationship between climate and social processes throughout the entirety of Maya prehistory.
Biocharts: a visual formalism for complex biological systems
Kugler, Hillel; Larjo, Antti; Harel, David
2010-01-01
We address one of the central issues in devising languages, methods and tools for the modelling and analysis of complex biological systems, that of linking high-level (e.g. intercellular) information with lower-level (e.g. intracellular) information. Adequate ways of dealing with this issue are crucial for understanding biological networks and pathways, which typically contain huge amounts of data that continue to grow as our knowledge and understanding of a system increases. Trying to comprehend such data using the standard methods currently in use is often virtually impossible. We propose a two-tier compound visual language, which we call Biocharts, that is geared towards building fully executable models of biological systems. One of the main goals of our approach is to enable biologists to actively participate in the computational modelling effort, in a natural way. The high-level part of our language is a version of statecharts, which have been shown to be extremely successful in software and systems engineering. The statecharts can be combined with any appropriately well-defined language (preferably a diagrammatic one) for specifying the low-level dynamics of the pathways and networks. We illustrate the language and our general modelling approach using the well-studied process of bacterial chemotaxis. PMID:20022895
The Transcriptome of Exophiala dermatitidis during Ex-vivo Skin Model Infection
Poyntner, Caroline; Blasi, Barbara; Arcalis, Elsa; Mirastschijski, Ursula; Sterflinger, Katja; Tafer, Hakim
2016-01-01
The black yeast Exophiala dermatitidis is a widespread polyextremophile and human pathogen, that is found in extreme natural habitats and man-made environments such as dishwashers. It can cause various diseases ranging from phaeohyphomycosis and systemic infections, with fatality rates reaching 40%. While the number of cases in immunocompromised patients are increasing, knowledge of the infections, virulence factors and host response is still scarce. In this study, for the first time, an artificial infection of an ex-vivo skin model with Exophiala dermatitidis was monitored microscopically and transcriptomically. Results show that Exophiala dermatitidis is able to actively grow and penetrate the skin. The analysis of the genomic and RNA-sequencing data delivers a rich and complex transcriptome where circular RNAs, fusion transcripts, long non-coding RNAs and antisense transcripts are found. Changes in transcription strongly affect pathways related to nutrients acquisition, energy metabolism, cell wall, morphological switch, and known virulence factors. The L-Tyrosine melanin pathway is specifically upregulated during infection. Moreover the production of secondary metabolites, especially alkaloids, is increased. Our study is the first that gives an insight into the complexity of the transcriptome of Exophiala dermatitidis during artificial skin infections and reveals new virulence factors. PMID:27822460
Remote Sensing of Coastal and Inland Waters
NASA Astrophysics Data System (ADS)
De Keukelaere, L.; Sterckx, S.; Adriaensen, S.; Knaeps, E.
2016-02-01
The new generation of satellites (e.g. Landsat 8, HyspIRI, Sentinel 2 and Sentinel 3 …) contain sensors that enable monitoring at increased spatial and/or spectral resolution. This opens a wide range of new opportunities, amongst others improved observation of coastal and inland waters. Algorithms for the pre-processing of these images and the derivation of Level 2 products for these waters need to take into account the specific nature of these environments, with adjacency effects of the nearby land and complex interactions of the optially active substances with varying degrees of turbidity. Here a new atmospheric correction algorithm, OPERA, is presented which can deal with these highly complex environments and which is sensor generic. OPERA accounts for the contribution of adjacency effects and provides surface reflectances for both land and water targets. OPERA is extended with a level 2 water algorithm providing TSM and turbidity estimates for a wide variety of water types. The algorithm is based on a multi wavelength switching approach using shorter wavelengths in low turbid waters and long NIR and SWIR wavelengths for highly and extremely turbid waters. Results are shown for Landsat-8, Sentinel-2 and MERIS for a variety of scenes, validated with field aeronet and turbidity data.
Antarctic climate change: extreme events disrupt plastic phenotypic response in Adélie penguins.
Lescroël, Amélie; Ballard, Grant; Grémillet, David; Authier, Matthieu; Ainley, David G
2014-01-01
In the context of predicted alteration of sea ice cover and increased frequency of extreme events, it is especially timely to investigate plasticity within Antarctic species responding to a key environmental aspect of their ecology: sea ice variability. Using 13 years of longitudinal data, we investigated the effect of sea ice concentration (SIC) on the foraging efficiency of Adélie penguins (Pygoscelis adeliae) breeding in the Ross Sea. A 'natural experiment' brought by the exceptional presence of giant icebergs during 5 consecutive years provided unprecedented habitat variation for testing the effects of extreme events on the relationship between SIC and foraging efficiency in this sea-ice dependent species. Significant levels of phenotypic plasticity were evident in response to changes in SIC in normal environmental conditions. Maximum foraging efficiency occurred at relatively low SIC, peaking at 6.1% and decreasing with higher SIC. The 'natural experiment' uncoupled efficiency levels from SIC variations. Our study suggests that lower summer SIC than currently observed would benefit the foraging performance of Adélie penguins in their southernmost breeding area. Importantly, it also provides evidence that extreme climatic events can disrupt response plasticity in a wild seabird population. This questions the predictive power of relationships built on past observations, when not only the average climatic conditions are changing but the frequency of extreme climatic anomalies is also on the rise.
Antarctic Climate Change: Extreme Events Disrupt Plastic Phenotypic Response in Adélie Penguins
Lescroël, Amélie; Ballard, Grant; Grémillet, David; Authier, Matthieu; Ainley, David G.
2014-01-01
In the context of predicted alteration of sea ice cover and increased frequency of extreme events, it is especially timely to investigate plasticity within Antarctic species responding to a key environmental aspect of their ecology: sea ice variability. Using 13 years of longitudinal data, we investigated the effect of sea ice concentration (SIC) on the foraging efficiency of Adélie penguins (Pygoscelis adeliae) breeding in the Ross Sea. A ‘natural experiment’ brought by the exceptional presence of giant icebergs during 5 consecutive years provided unprecedented habitat variation for testing the effects of extreme events on the relationship between SIC and foraging efficiency in this sea-ice dependent species. Significant levels of phenotypic plasticity were evident in response to changes in SIC in normal environmental conditions. Maximum foraging efficiency occurred at relatively low SIC, peaking at 6.1% and decreasing with higher SIC. The ‘natural experiment’ uncoupled efficiency levels from SIC variations. Our study suggests that lower summer SIC than currently observed would benefit the foraging performance of Adélie penguins in their southernmost breeding area. Importantly, it also provides evidence that extreme climatic events can disrupt response plasticity in a wild seabird population. This questions the predictive power of relationships built on past observations, when not only the average climatic conditions are changing but the frequency of extreme climatic anomalies is also on the rise. PMID:24489657
On the performance of infrared sensors in earth observations
NASA Technical Reports Server (NTRS)
Johnson, L. F.
1972-01-01
The performance of infrared sensing systems is dependent upon the radiative properties of targets in addition to constraints imposed by system components. The unclassified state-of-the-art of infrared system performance figures is reviewed to indicate the relevance to system performance of target radiative properties. A theory of rough surface scattering is developed which allows the formulation of the reflective characteristics of extended targets. The thermal radiation emission from extended targets is formulated on the basis of internal radiation characteristics of natural materials and the transmissive scattering effects at the surface. Finally, the total radiative characteristics may be expressed as functions of material properties and incident and received directions, although the expressions are extremely complex functions and do not account for the effects of shadowing or multiple scattering. It is believed that the theory may be extended to include these effects and to incorporate the local radii of curvature of the surface.
Geometric method for forming periodic orbits in the Lorenz system
NASA Astrophysics Data System (ADS)
Nicholson, S. B.; Kim, Eun-jin
2016-04-01
Many systems in nature are out of equilibrium and irreversible. The non-detailed balance observable representation (NOR) provides a useful methodology for understanding the evolution of such non-equilibrium complex systems, by mapping out the correlation between two states to a metric space where a small distance represents a strong correlation [1]. In this paper, we present the first application of the NOR to a continuous system and demonstrate its utility in controlling chaos. Specifically, we consider the evolution of a continuous system governed by the Lorenz equation and calculate the NOR by following a sufficient number of trajectories. We then show how to control chaos by converting chaotic orbits to periodic orbits by utilizing the NOR. We further discuss the implications of our method for potential applications given the key advantage that this method makes no assumptions of the underlying equations of motion and is thus extremely general.
NASA Astrophysics Data System (ADS)
Lotout, Caroline; Pitra, Pavel; Poujol, Marc; Van Den Driessche, Jean
2017-03-01
New U-Pb dating on zircon yielded ca. 470 Ma ages for the granitoids from the Lévézou massif in the southern French Massif Central. These new ages do not support the previous interpretation of these granitoids as syn-tectonic intrusions emplaced during the Late Devonian-Early Carboniferous thrusting. The geochemical and isotopic nature of this magmatism is linked to a major magmatic Ordovician event recorded throughout the European Variscan belt and related to extreme thinning of continental margins during a rifting event or a back-arc extension. The comparable isotopic signatures of these granitoids on each side of the eclogite-bearing leptyno-amphibolitic complex in the Lévézou massif, together with the fact that they were emplaced at the same time, strongly suggest that these granitoids were originally part of a single unit, tectonically duplicated by either isoclinal folding or thrusting during the Variscan tectonics.
Enlightenment from ancient Chinese urban and rural stormwater management practices.
Wu, Che; Qiao, Mengxi; Wang, Sisi
2013-01-01
Hundreds of years ago, the ancient Chinese implemented several outstanding projects to cope with the changing climate and violent floods. Some of these projects are still in use today. These projects evolved from the experience and knowledge accumulated through the long coexistence of people with nature. The concepts behind these ancient stormwater management practices, such as low-impact development and sustainable drainage systems, are similar to the technology applied in modern stormwater management. This paper presents the cases of the Hani Terrace in Yunnan and the Fushou drainage system of Ganzhou in Jiangxi. The ancient Chinese knowledge behind these cases is seen in the design concepts and the features of these projects. These features help us to understand better their applications in the contemporary environment. In today's more complex environment, integrating traditional and advanced philosophy with modern technologies is extremely useful in building urban and rural stormwater management systems in China.
Advanced Simulation of Coupled Earthquake and Tsunami Events
NASA Astrophysics Data System (ADS)
Behrens, Joern
2013-04-01
Tsunami-Earthquakes represent natural catastrophes threatening lives and well-being of societies in a solitary and unexpected extreme event as tragically demonstrated in Sumatra (2004), Samoa (2009), Chile (2010), or Japan (2011). Both phenomena are consequences of the complex system of interactions of tectonic stress, fracture mechanics, rock friction, rupture dynamics, fault geometry, ocean bathymetry, and coastline geometry. The ASCETE project forms an interdisciplinary research consortium that couples the most advanced simulation technologies for earthquake rupture dynamics and tsunami propagation to understand the fundamental conditions of tsunami generation. We report on the latest research results in physics-based dynamic rupture and tsunami wave propagation simulation, using unstructured and adaptive meshes with continuous and discontinuous Galerkin discretization approaches. Coupling both simulation tools - the physics-based dynamic rupture simulation and the hydrodynamic tsunami wave propagation - will give us the possibility to conduct highly realistic studies of the interaction of rupture dynamics and tsunami impact characteristics.
Drake, Phillip
2016-04-01
The Lapindo mudflow is one of the most controversial disasters in Indonesian history. Despite its unique biophysical features, most consider the mudflow a social disaster as scientific conflicts about its main trigger have evolved into legal disputes over accountability and rights. This paper examines this 'trigger debate', the stakes of scientific contention and the broader social and natural dynamics that shape the terms of this debate. A Latourian impulse drives this analysis, which aims to improve both understandings of--and responses to--complex disasters. This paper also notes that the stakes of representation extend to constructions of its stakeholders, especially to victims. As socionatural disasters become an increasingly common feature of the contemporary world, from mud volcanoes to extreme weather events caused by global warming, it is more important than ever to understand the dynamics of representing disasters and stakeholders. © 2016 The Author(s). Disasters © Overseas Development Institute, 2016.
Validity of Molecular Tagging Velocimetry in a Cavitating Flow for Turbopump Analysis
NASA Astrophysics Data System (ADS)
Kuzmich, Kayla; Bohl, Doug
2012-11-01
This research establishes multi-phase molecular tagging velocimetry (MTV) use and explores its limitations. The flow conditions and geometry in the inducer of an upper stage liquid Oxygen (LOX)/LH2 engine frequently cause cavitation which decreases turbopump performance. Complications arise in performing experiments in liquid hydrogen and oxygen due to high costs, high pressures, extremely low fluid temperatures, the presence of cavitation, and associated safety risks. Due to the complex geometry and hazardous nature of the fluids, a simplified throat geometry with water as a simulant fluid is used. Flow characteristics are measured using MTV, a noninvasive flow diagnostic technique. MTV is found to be an applicable tool in cases of low cavitation. Highly cavitating flows reflect and scatter most of the laser beam disallowing penetration into the cavitation cloud. However, data can be obtained in high cavitation cases near the cloud boundary layer. Distribution A: Public Release, Public Affairs Clearance Number: 12654
NASA Astrophysics Data System (ADS)
Matsumoto, Daichi; Fukudome, Koji; Wada, Hirofumi
2016-10-01
Understanding the hydrodynamic properties of fluid flow in a curving pipe and channel is important for controlling the flow behavior in technologies and biomechanics. The nature of the resulting flow in a bent pipe is extremely complicated because of the presence of a cross-stream secondary flow. In an attempt to disentangle this complexity, we investigate the fluid dynamics in a bent channel via the direct numerical simulation of the Navier-Stokes equation in two spatial dimensions. We exploit the absence of secondary flow from our model and systematically investigate the flow structure along the channel as a function of both the bend angle and Reynolds number of the laminar-to-turbulent regime. We numerically suggest a scaling relation between the shape of the separation bubble and the flow conductance, and construct an integrated phase diagram.
The value and validation of broad spectrum biosensors for diagnosis and biodefense
Metzgar, David; Sampath, Rangarajan; Rounds, Megan A; Ecker, David J
2013-01-01
Broad spectrum biosensors capable of identifying diverse organisms are transitioning from the realm of research into the clinic. These technologies simultaneously capture signals from a wide variety of biological entities using universal processes. Specific organisms are then identified through bioinformatic signature-matching processes. This is in contrast to currently accepted molecular diagnostic technologies, which utilize unique reagents and processes to detect each organism of interest. This paradigm shift greatly increases the breadth of molecular diagnostic tools with little increase in biochemical complexity, enabling simultaneous diagnostic, epidemiologic, and biothreat surveillance capabilities at the point of care. This, in turn, offers the promise of increased biosecurity and better antimicrobial stewardship. Efficient realization of these potential gains will require novel regulatory paradigms reflective of the generalized, information-based nature of these assays, allowing extension of empirical data obtained from readily available organisms to support broader reporting of rare, difficult to culture, or extremely hazardous organisms. PMID:24128433
Long-term evaluation of the fate of sulfur mustard on dry and humid soils, asphalt, and concrete.
Mizrahi, Dana M; Goldvaser, Michael; Columbus, Ishay
2011-04-15
The long-term fate of the blister agent sulfur mustard (HD, bis(2-chloroethyl)sulfide) was determined in a variety of commercial and natural matrices. HD was found to be extremely stable in dry matrices for over a year. The addition of 5% water to the matrices induced slow degradation of HD, which lasted several months. The major degradation product in sands and asphalt was found to be a sulfonium salt, S[CH(2)CH(2)S(+)(CH(2)CH(2)OH)(2)](2) (H-2TG). Red loam soil, which has not been examined before, exhibited strong interaction with HD, both in dry form and in the presence of water. Humid red loam soil gave rise to unique oxidative degradation products. On humid concrete HD degraded to a complex mixture of products, including vinyls. This may be attributed to the basic sites incorporated in concrete.
Isolation and biochemical characterization of underwater adhesives from diatoms.
Poulsen, Nicole; Kröger, Nils; Harrington, Matthew J; Brunner, Eike; Paasch, Silvia; Buhmann, Matthias T
2014-01-01
Many aquatic organisms are able to colonize surfaces through the secretion of underwater adhesives. Diatoms are unicellular algae that have the capability to colonize any natural and man-made submerged surfaces. There is great technological interest in both mimicking and preventing diatom adhesion, yet the biomolecules responsible have so far remained unidentified. A new method for the isolation of diatom adhesive material is described and its amino acid and carbohydrate composition determined. The adhesive materials from two model diatoms show differences in their amino acid and carbohydrate compositions, but also share characteristic features including a high content of uronic acids, the predominance of hydrophilic amino acid residues, and the presence of 3,4-dihydroxyproline, an extremely rare amino acid. Proteins containing dihydroxyphenylalanine, which mediate underwater adhesion of mussels, are absent. The data on the composition of diatom adhesives are consistent with an adhesion mechanism based on complex coacervation of polyelectrolyte-like biomolecules.
Comparing an FPGA to a Cell for an Image Processing Application
NASA Astrophysics Data System (ADS)
Rakvic, Ryan N.; Ngo, Hau; Broussard, Randy P.; Ives, Robert W.
2010-12-01
Modern advancements in configurable hardware, most notably Field-Programmable Gate Arrays (FPGAs), have provided an exciting opportunity to discover the parallel nature of modern image processing algorithms. On the other hand, PlayStation3 (PS3) game consoles contain a multicore heterogeneous processor known as the Cell, which is designed to perform complex image processing algorithms at a high performance. In this research project, our aim is to study the differences in performance of a modern image processing algorithm on these two hardware platforms. In particular, Iris Recognition Systems have recently become an attractive identification method because of their extremely high accuracy. Iris matching, a repeatedly executed portion of a modern iris recognition algorithm, is parallelized on an FPGA system and a Cell processor. We demonstrate a 2.5 times speedup of the parallelized algorithm on the FPGA system when compared to a Cell processor-based version.
Mackey, Tim K; Kohler, Jillian Clare; Savedoff, William D; Vogl, Frank; Lewis, Maureen; Sale, James; Michaud, Joshua; Vian, Taryn
2016-09-29
Corruption has been described as a disease. When corruption infiltrates global health, it can be particularly devastating, threatening hard gained improvements in human and economic development, international security, and population health. Yet, the multifaceted and complex nature of global health corruption makes it extremely difficult to tackle, despite its enormous costs, which have been estimated in the billions of dollars. In this forum article, we asked anti-corruption experts to identify key priority areas that urgently need global attention in order to advance the fight against global health corruption. The views shared by this multidisciplinary group of contributors reveal several fundamental challenges and allow us to explore potential solutions to address the unique risks posed by health-related corruption. Collectively, these perspectives also provide a roadmap that can be used in support of global health anti-corruption efforts in the post-2015 development agenda.
Founder effects initiated rapid species radiation in Hawaiian cave planthoppers
Wessel, Andreas; Hoch, Hannelore; Asche, Manfred; von Rintelen, Thomas; Stelbrink, Björn; Heck, Volker; Stone, Fred D.; Howarth, Francis G.
2013-01-01
The Hawaiian Islands provide the venue of one of nature’s grand experiments in evolution. Here, we present morphological, behavioral, genetic, and geologic data from a young subterranean insect lineage in lava tube caves on Hawai‘i Island. The Oliarus polyphemus species complex has the potential to become a model for studying rapid speciation by stochastic events. All species in this lineage live in extremely similar environments but show strong differentiation in behavioral and morphometric characters, which are random with respect to cave age and geographic distribution. Our observation that phenotypic variability within populations decreases with increasing cave age challenges traditional views on founder effects. Furthermore, these cave populations are natural replicates that can be used to test the contradictory hypotheses. Moreover, Hawaiian cave planthoppers exhibit one of the highest speciation rates among animals and, thus, radically shift our perception on the evolutionary potential of obligate cavernicoles. PMID:23696661
Review of FD-TD numerical modeling of electromagnetic wave scattering and radar cross section
NASA Technical Reports Server (NTRS)
Taflove, Allen; Umashankar, Korada R.
1989-01-01
Applications of the finite-difference time-domain (FD-TD) method for numerical modeling of electromagnetic wave interactions with structures are reviewed, concentrating on scattering and radar cross section (RCS). A number of two- and three-dimensional examples of FD-TD modeling of scattering and penetration are provided. The objects modeled range in nature from simple geometric shapes to extremely complex aerospace and biological systems. Rigorous analytical or experimental validatons are provided for the canonical shapes, and it is shown that FD-TD predictive data for near fields and RCS are in excellent agreement with the benchmark data. It is concluded that with continuing advances in FD-TD modeling theory for target features relevant to the RCS problems and in vector and concurrent supercomputer technology, it is likely that FD-TD numerical modeling will occupy an important place in RCS technology in the 1990s and beyond.
Biomorphic architectures for autonomous Nanosat designs
NASA Technical Reports Server (NTRS)
Hasslacher, Brosl; Tilden, Mark W.
1995-01-01
Modern space tool design is the science of making a machine both massively complex while at the same time extremely robust and dependable. We propose a novel nonlinear control technique that produces capable, self-organizing, micron-scale space machines at low cost and in large numbers by parallel silicon assembly. Experiments using biomorphic architectures (with ideal space attributes) have produced a wide spectrum of survival-oriented machines that are reliably domesticated for work applications in specific environments. In particular, several one-chip satellite prototypes show interesting control properties that can be turned into numerous application-specific machines for autonomous, disposable space tasks. We believe that the real power of these architectures lies in their potential to self-assemble into larger, robust, loosely coupled structures. Assembly takes place at hierarchical space scales, with different attendant properties, allowing for inexpensive solutions to many daunting work tasks. The nature of biomorphic control, design, engineering options, and applications are discussed.
RX J1856.5-3754: A Strange Star with Solid Quark Surface?
NASA Technical Reports Server (NTRS)
Zhang, Xiaoling; Xu, Renxin; Zhang, Shuangnan
2003-01-01
The featureless spectra of isolated 'neutron stars' may indicate that they are actually bare strange stars but a definitive conclusion on the nature of the compact objects cannot be reached until accurate and theoretically calculated spectra of the bare quark surface are known. However due to the complex nonlinearity of quantum chromodynamics it is almost impossible to present a definitive and accurate calculation of the density-dominated quark-gluon plasma from the first principles. Nevertheless it was suggested that cold quark matter with extremely high baryon density could be in a solid state. Within the realms of this possibility we have fitted the 500ks Chandra LETG/HRC data for the brightest isolated neutron star RX 51856.5-3754 with a phenomenological spectral model and found that electric conductivity of quark matter on the stellar surface is about 1.5 x 10(exp 16)/s.
Uncertainty in macroeconomic policy-making: art or science?
Aikman, David; Barrett, Philip; Kapadia, Sujit; King, Mervyn; Proudman, James; Taylor, Tim; de Weymarn, Iain; Yates, Tony
2011-12-13
Uncertainty is pervasive in economic policy-making. Modern economies share similarities with other complex systems in their unpredictability. But economic systems also differ from those in the natural sciences because outcomes are affected by the state of beliefs of the systems' participants. The dynamics of beliefs and how they interact with economic outcomes can be rich and unpredictable. This paper relates these ideas to the recent crisis, which has reminded us that we need a financial system that is resilient in the face of the unpredictable and extreme. It also highlights how such uncertainty puts a premium on sound communication strategies by policy-makers. This creates challenges in informing others about the uncertainties in the economy, and how policy is set in the face of those uncertainties. We show how the Bank of England tries to deal with some of these challenges in its communications about monetary policy.
Inferring the distribution of mutational effects on fitness in Drosophila.
Loewe, Laurence; Charlesworth, Brian
2006-09-22
The properties of the distribution of deleterious mutational effects on fitness (DDME) are of fundamental importance for evolutionary genetics. Since it is extremely difficult to determine the nature of this distribution, several methods using various assumptions about the DDME have been developed, for the purpose of parameter estimation. We apply a newly developed method to DNA sequence polymorphism data from two Drosophila species and compare estimates of the parameters of the distribution of the heterozygous fitness effects of amino acid mutations for several different distribution functions. The results exclude normal and gamma distributions, since these predict too few effectively lethal mutations and power-law distributions as a result of predicting too many lethals. Only the lognormal distribution appears to fit both the diversity data and the frequency of lethals. This DDME arises naturally in complex systems when independent factors contribute multiplicatively to an increase in fitness-reducing damage. Several important parameters, such as the fraction of effectively neutral non-synonymous mutations and the harmonic mean of non-neutral selection coefficients, are robust to the form of the DDME. Our results suggest that the majority of non-synonymous mutations in Drosophila are under effective purifying selection.
The green roof dilemma - discussion of Francis and Lorimer (2011).
Henry, Alexandre; Frascaria-Lacoste, Nathalie
2012-08-15
Urban ecosystems are the most complex mosaics of vegetative land cover that can be found. In a recent paper, Francis and Lorimer (2011) evaluated the reconciliation potential of living roofs and walls. For these authors, these two techniques for habitat improvement have strong potential for urban reconciliation ecology. However they have some ecological and societal limitations such as the physical extreme environmental characteristics, the monetary investment and the cultural perceptions of urban nature. We are interested in their results and support their conclusions. However, for a considerable time, green roofs have been designed to provide urban greenery for buildings and the green roof market has only focused on extensive roof at a restricted scale within cities. Thus, we have strong doubts about the relevance of their use as possible integrated elements of the network. Furthermore, without dynamic progress in research and the implementation of well-thought-out policies, what will be the real capital gain from green roofs with respect to land-use complementation in cities? If we agree with Francis and Lorimer (2011) considering that urban reconciliation ecology between nature and citizens is a current major challenge, then "adaptive collaborative management" is a fundamental requirement. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Vallianatos, Filippos; Kouli, Maria
2013-08-01
The Digital Elevation Model (DEM) for the Crete Island with a resolution of approximately 20 meters was used in order to delineate watersheds by computing the flow direction and using it in the Watershed function. The Watershed function uses a raster of flow direction to determine contributing area. The Geographic Information Systems routine procedure was applied and the watersheds as well as the streams network (using a threshold of 2000 cells, i.e. the minimum number of cells that constitute a stream) were extracted from the hydrologically corrected (free of sinks) DEM. A number of a few thousand watersheds were delineated, and their areal extent was calculated. From these watersheds a number of 300 was finally selected for further analysis as the watersheds of extremely small area were excluded in order to avoid possible artifacts. Our analysis approach is based on the basic principles of Complexity theory and Tsallis Entropy introduces in the frame of non-extensive statistical physics. This concept has been successfully used for the analysis of a variety of complex dynamic systems including natural hazards, where fractality and long-range interactions are important. The analysis indicates that the statistical distribution of watersheds can be successfully described with the theoretical estimations of non-extensive statistical physics implying the complexity that characterizes the occurrences of them.
Identifying Changes of Complex Flood Dynamics with Recurrence Analysis
NASA Astrophysics Data System (ADS)
Wendi, D.; Merz, B.; Marwan, N.
2016-12-01
Temporal changes in flood hazard system are known to be difficult to detect and attribute due to multiple drivers that include complex processes that are non-stationary and highly variable. These drivers, such as human-induced climate change, natural climate variability, implementation of flood defense, river training, or land use change, could impact variably on space-time scales and influence or mask each other. Flood time series may show complex behavior that vary at a range of time scales and may cluster in time. Moreover hydrological time series (i.e. discharge) are often subject to measurement errors, such as rating curve error especially in the case of extremes where observation are actually derived through extrapolation. This study focuses on the application of recurrence based data analysis techniques (recurrence plot) for understanding and quantifying spatio-temporal changes in flood hazard in Germany. The recurrence plot is known as an effective tool to visualize the dynamics of phase space trajectories i.e. constructed from a time series by using an embedding dimension and a time delay, and it is known to be effective in analyzing non-stationary and non-linear time series. Sensitivity of the common measurement errors and noise on recurrence analysis will also be analyzed and evaluated against conventional methods. The emphasis will be on the identification of characteristic recurrence properties that could associate typical dynamic to certain flood events.
Mechanisms of complex network growth: Synthesis of the preferential attachment and fitness models
NASA Astrophysics Data System (ADS)
Golosovsky, Michael
2018-06-01
We analyze growth mechanisms of complex networks and focus on their validation by measurements. To this end we consider the equation Δ K =A (t ) (K +K0) Δ t , where K is the node's degree, Δ K is its increment, A (t ) is the aging constant, and K0 is the initial attractivity. This equation has been commonly used to validate the preferential attachment mechanism. We show that this equation is undiscriminating and holds for the fitness model [Caldarelli et al., Phys. Rev. Lett. 89, 258702 (2002), 10.1103/PhysRevLett.89.258702] as well. In other words, accepted method of the validation of the microscopic mechanism of network growth does not discriminate between "rich-gets-richer" and "good-gets-richer" scenarios. This means that the growth mechanism of many natural complex networks can be based on the fitness model rather than on the preferential attachment, as it was believed so far. The fitness model yields the long-sought explanation for the initial attractivity K0, an elusive parameter which was left unexplained within the framework of the preferential attachment model. We show that the initial attractivity is determined by the width of the fitness distribution. We also present the network growth model based on recursive search with memory and show that this model contains both the preferential attachment and the fitness models as extreme cases.
Luria, Shai; Rivkin, Gurion; Avitzour, Malka; Liebergall, Meir; Mintz, Yoav; Mosheiff, Ram
2013-03-01
Explosion injuries to the upper extremity have specific clinical characteristics that differ from injuries due to other mechanisms. To evaluate the upper extremity injury pattern of attacks on civilian targets, comparing bomb explosion injuries to gunshot injuries and their functional recovery using standard outcome measures. Of 157 patients admitted to the hospital between 2000 and 2004, 72 (46%) sustained explosion injuries and 85 (54%) gunshot injuries. The trauma registry files were reviewed and the patients completed the DASH Questionnaire (Disabilities of Arm, Shoulder and Hand) and SF-12 (Short Form-12) after a minimum period of 1 year. Of the 157 patients, 72 (46%) had blast injuries and 85 (54%) had shooting injuries. The blast casualties had higher Injury Severity Scores (47% vs. 22% with a score of > 16, P = 0.02) and higher percent of patients treated in intensive care units (47% vs. 28%, P = 0.02). Although the Abbreviated Injury Scale score of the upper extremity injury was similar in the two groups, the blast casualties were found to have more bilateral and complex soft tissue injuries and were treated surgically more often. No difference was found in the SF-12 or DASH scores between the groups at follow up. The casualties with upper extremity blast injuries were more severely injured and sustained more bilateral and complex soft tissue injuries to the upper extremity. However, the rating of the local injury to the isolated limb is similar, as was the subjective functional recovery.
An Energetic Concept of Habitability for the Deep Subsurface
NASA Technical Reports Server (NTRS)
Hoehler, Tori M.
2006-01-01
Universally, life must be characterized by a characteristic level of order and complexity. In the most general sense, habitability could then be defined as the set of factors required to allow the creation and maintenance of molecular complexity. These factors are: chemical raw materials; energy with which to assemble those materials into complex molecules and sustain the resultant state of complexity; a solvent that allows the interaction of complex molecules, promotes tertiary structure, and permits compartmentalization; and environmental conditions that permit the assembly and maintenance of complex molecules. On Earth, these general requirements correspond to the major biogenic elements C, H, O, N, P, S; chemical or light energy; the solvent water; and specific ranges of temperature, pH, radiation, ionic strength, and so forth, which have thus far been determined on and exclusively empirical basis. Importantly, while the complete absence of any of these factors ensures uninhabitable conditions, the mere presence of all four does not guarantee habitability. In each case - even that of water - it is a question of degree. This question can be couched in quantitative terms by considering the impact of each of these factors on cellular energy balance. More "extreme" conditions (e.g., high temperature, high or low pH, etc.), lower water activity, and low concentrations of nutrients incur or have potential to be addressed by increased investment of energy on the part of the cell. This must be balanced by energy conservation in the cell, noting that biochemical, mass transport, and abiotic chemical limitations intervene between environmental energy availability and biological energy capture. Similarly, lower boundary conditions are emplaced on useful environmental energy yields by the "quantized" nature of biological energy conservation, and upper boundary conditions are emplaced by energy levels or fluxes that are destructive with respect to complexity. This energetic framework, with boundary conditions supplied by the specifics of the biochemistry in question, offers a generalized, yet quantitative means of assessing the habitability of any system with respect to complex life.
Computational Study of Scenarios Regarding Explosion Risk Mitigation
NASA Astrophysics Data System (ADS)
Vlasin, Nicolae-Ioan; Mihai Pasculescu, Vlad; Florea, Gheorghe-Daniel; Cornel Suvar, Marius
2016-10-01
Exploration in order to discover new deposits of natural gas, upgrading techniques to exploit these resources and new ways to convert the heat capacity of these gases into industrial usable energy is the research areas of great interest around the globe. But all activities involving the handling of natural gas (exploitation, transport, combustion) are subjected to the same type of risk: the risk to explosion. Experiments carried out physical scenarios to determine ways to reduce this risk can be extremely costly, requiring suitable premises, equipment and apparatus, manpower, time and, not least, presenting the risk of personnel injury. Taking in account the above mentioned, the present paper deals with the possibility of studying the scenarios of gas explosion type events in virtual domain, exemplifying by performing a computer simulation of a stoichiometric air - methane explosion (methane is the main component of natural gas). The advantages of computer-assisted imply are the possibility of using complex virtual geometries of any form as the area of deployment phenomenon, the use of the same geometry for an infinite number of settings of initial parameters as input, total elimination the risk of personnel injury, decrease the execution time etc. Although computer simulations are hardware resources consuming and require specialized personnel to use the CFD (Computational Fluid Dynamics) techniques, the costs and risks associated with these methods are greatly diminished, presenting, in the same time, a major benefit in terms of execution time.
The crooked timber of identity: Integrating discursive, critical, and psychosocial analysis.
Kaposi, David
2013-06-01
This paper seeks to contribute to the growing band of constructionist approaches within the field of identity studies (Wetherell & Moharty, 2010). First, it will review the developments that have taken place since the emergence of these approaches in the 1980s, identifying a state of fragmentation into local discursive, political-moral, and psychosocial levels of analysis. Second, and in order to challenge this fragmentation, it will present a rhetorical psychological (Billig, 1987, 1999a) analysis of the classic exchange of public letters between Israeli historian of Judaism Gershom Scholem and American political theorist Hannah Arendt in the wake of the latter's book Eichmann in Jerusalem (Arendt, 1994a). The analysis will proceed from local discursive action, through political-moral frameworks, to the nature of the writers' investment in these constructions. It will show that while the participants' implicitly occasioning of extreme identity categories (such as the 'Jewish anti-Semite' and the totalitarian-style religious Zionist ideologue) is a function of apparently incommensurable political-moral discourses, the nature of investment into such constructions may be understood in a mutual commitment to the absolute inalienability of Jewishness. Third, therefore, the paper will conclude that, rather than constituting separate 'levels', local discursive action, political-moral intelligibilities, and psychosocial qualities are mutually constitutive of each other. It is only through recognizing their inter-dependent nature that the complexity of identity may properly be addressed. ©2011 The British Psychological Society.
NASA Astrophysics Data System (ADS)
Phalkey, R. K.; Louis, V. R.
2016-05-01
Climate change is one of the major challenges we face today. There is recognition alongside evidence that the health impacts of both climate change and natural disasters are significant and rising. The impacts of both are also complex and span well beyond health to include environmental, social, demographic, cultural, and economic aspects of human lives. Nonetheless integrated impact assessments are rare and so are system level approaches or systematic preparedness and adaptation strategies to brace the two simultaneously particularly in low and middle-income countries. Ironically the impacts of both climate change as well as natural disasters will be disproportionately borne by low emitters. Sufficiently large and long-term data from comprehensive weather, socio-economic, demographic and health observational systems are currently unavailable to guide adaptation strategies with the necessary precision. In the absence of these and given the uncertainties around the health impact projections alongside the geographic disparities even within the countries, the main question is how can countries then prepare to brace the unknown? We certainly cannot wait to obtain answers to all the questions before we plan solutions. Strengthening health systems is therefore a pragmatic "zero regrets" strategy and should be adopted hastily before the parallel impacts from climate change and associated extreme weather events (disasters thereof) become too hot to handle.
McCleskey, R. Blaine; Nordstrom, D. Kirk; Maest, A.S.
2004-01-01
Published literature on preservation procedures for stabilizing aqueous inorganic As(III/V) redox species contains discrepancies. This study critically evaluates published reports on As redox preservation and explains discrepancies in the literature. Synthetic laboratory preservation experiments and time stability experiments were conducted for natural water samples from several field sites. Any field collection procedure that filters out microorganisms, adds a reagent that prevents dissolved Fe and Mn oxidation and precipitation, and isolates the sample from solar radiation will preserve the As(III/V) ratio. Reagents that prevent Fe and Mn oxidation and precipitation include HCl, H 2SO4, and EDTA, although extremely high concentrations of EDTA are necessary for some water samples high in Fe. Photo-catalyzed Fe(III) reduction causes As(III) oxidation; however, storing the sample in the dark prevents photochemical reactions. Furthermore, the presence of Fe(II) or SO 4 inhibits the oxidation of As(III) by Fe(III) because of complexation reactions and competing reactions with free radicals. Consequently, fast abiotic As(III) oxidation reactions observed in the laboratory are not observed in natural water samples for one or more of the following reasons: (1) the As redox species have already stabilized, (2) most natural waters contain very low dissolved Fe(III) concentrations, (3) the As(III) oxidation caused by Fe(III) photoreduction is inhibited by Fe(II) or SO4.
Natural products with health benefits from marine biological resources
USDA-ARS?s Scientific Manuscript database
The ocean is the cradle of lives, which provides a diverse array of intriguing natural products that has captured scientists’ attention in the past few decades due to their significant and extremely potent biological activities. In addition to being rich sources for pharmaceutical drugs, marine nat...
The Nature of Science in a Multicultural Context.
ERIC Educational Resources Information Center
Vira, Shashank
1997-01-01
Proposes an alternative view of the nature of science that strikes a balance between extremely relativist views that see no difference between science and pseudoscience and current views that are inappropriate in a multicultural society. Implications for science teaching in the British schools are discussed. (SLD)
NASA Astrophysics Data System (ADS)
von Trentini, F.; Willkofer, F.; Wood, R. R.; Schmid, F. J.; Ludwig, R.
2017-12-01
The ClimEx project (Climate change and hydrological extreme events - risks and perspectives for water management in Bavaria and Québec) focuses on the effects of climate change on hydro-meteorological extreme events and their implications for water management in Bavaria and Québec. Therefore, a hydro-meteorological model chain is applied. It employs high performance computing capacity of the Leibniz Supercomputing Centre facility SuperMUC to dynamically downscale 50 members of the Global Circulation Model CanESM2 over European and Eastern North American domains using the Canadian Regional Climate Model (RCM) CRCM5. Over Europe, the unique single model ensemble is conjointly analyzed with the latest information provided through the CORDEX-initiative, to better assess the influence of natural climate variability and climatic change in the dynamics of extreme events. Furthermore, these 50 members of a single RCM will enhance extreme value statistics (extreme return periods) by exploiting the available 1500 model years for the reference period from 1981 to 2010. Hence, the RCM output is applied to drive the process based, fully distributed, and deterministic hydrological model WaSiM in high temporal (3h) and spatial (500m) resolution. WaSiM and the large ensemble are further used to derive a variety of hydro-meteorological patterns leading to severe flood events. A tool for virtual perfect prediction shall provide a combination of optimal lead time and management strategy to mitigate certain flood events following these patterns.
Mucci, Viviana
2018-01-01
Chest ultrasonography (CU) is a noninvasive imaging technique able to provide an immediate diagnosis of the underlying aetiology of acute respiratory failure and traumatic chest injuries. Given the great technologies, it is now possible to perform accurate CU in remote and adverse environments including the combat field, extreme sport settings, and environmental disasters, as well as during space missions. Today, the usage of CU in the extreme emergency setting is more likely to occur, as this technique proved to be a fast diagnostic tool to assist resuscitation manoeuvres and interventional procedures in many cases. A scientific literature review is presented here. This was based on a systematic search of published literature, on the following online databases: PubMed and Scopus. The following words were used: “chest sonography,” “ thoracic ultrasound,” and “lung sonography,” in different combinations with “extreme sport,” “extreme environment,” “wilderness,” “catastrophe,” and “extreme conditions.” This manuscript reports the most relevant usages of CU in the extreme setting as well as technological improvements and current limitations. CU application in the extreme setting is further encouraged here. PMID:29736195
Complexity-aware simple modeling.
Gómez-Schiavon, Mariana; El-Samad, Hana
2018-02-26
Mathematical models continue to be essential for deepening our understanding of biology. On one extreme, simple or small-scale models help delineate general biological principles. However, the parsimony of detail in these models as well as their assumption of modularity and insulation make them inaccurate for describing quantitative features. On the other extreme, large-scale and detailed models can quantitatively recapitulate a phenotype of interest, but have to rely on many unknown parameters, making them often difficult to parse mechanistically and to use for extracting general principles. We discuss some examples of a new approach-complexity-aware simple modeling-that can bridge the gap between the small-scale and large-scale approaches. Copyright © 2018 Elsevier Ltd. All rights reserved.
Progress on high-performance rapid prototype aluminum mirrors
NASA Astrophysics Data System (ADS)
Woodard, Kenneth S.; Myrick, Bruce H.
2017-05-01
Near net shape parts can be produced using some very old processes (investment casting) and the relatively new direct metal laser sintering (DMLS) process. These processes have significant advantages for complex blank lightweighting and costs but are not inherently suited for producing high performance mirrors. The DMLS process can provide extremely complex lightweight structures but the high residual stresses left in the material results in unstable mirror figure retention. Although not to the extreme intricacy of DMLS, investment casting can also provide complex lightweight structures at considerably lower costs than DMLS and even conventional wrought mirror blanks but the less than 100% density for casting (and also DMLS) limits finishing quality. This paper will cover the progress that has been made to make both the DMLS and investment casting processes into viable near net shape blank options for high performance aluminum mirrors. Finish and figure results will be presented to show performance commensurate with existing conventional processes.
Difficult Decisions Made Easier
NASA Technical Reports Server (NTRS)
2006-01-01
NASA missions are extremely complex and prone to sudden, catastrophic failure if equipment falters or if an unforeseen event occurs. For these reasons, NASA trains to expect the unexpected. It tests its equipment and systems in extreme conditions, and it develops risk-analysis tests to foresee any possible problems. The Space Agency recently worked with an industry partner to develop reliability analysis software capable of modeling complex, highly dynamic systems, taking into account variations in input parameters and the evolution of the system over the course of a mission. The goal of this research was multifold. It included performance and risk analyses of complex, multiphase missions, like the insertion of the Mars Reconnaissance Orbiter; reliability analyses of systems with redundant and/or repairable components; optimization analyses of system configurations with respect to cost and reliability; and sensitivity analyses to identify optimal areas for uncertainty reduction or performance enhancement.
Educating Against Extremism: Towards a Critical Politicisation of Young People
NASA Astrophysics Data System (ADS)
Davies, Lynn
2009-05-01
This paper is based on a recently published book, Educating Against Extremism (Davies, Educating Against Extremism, 2008), which explores the potential role of schools in averting the more negative and violent forms of extremism in a country. It examines the nature of extremism; identity formation and radicalisation; religious belief, faith schools and the myth of equal value; justice, revenge and honour; and free speech, humour and satire. The paper argues that religious fundamentalism, as well as state terrorism, needs to be addressed in schools. The argument in the book is for a greater politicisation of young people through the forging of critical (dis)respect and the use of a secular basis of human rights. Specific forms of citizenship education are needed, which provide skills to analyse the media and political or religious messages, but also enable critical idealism to be fostered.
Guidelines to Support Professional Copyright Practice
ERIC Educational Resources Information Center
Dryden, Jean
2012-01-01
Copyright is extremely complex, and it is difficult to convey its complexities in a clear and concise form. Through decades of experience, archivists developed informal best practices for dealing with copyright in the analog world; however the application of copyright in the digital environment is evolving in response to rapidly changing…
NASA Astrophysics Data System (ADS)
Ban, Chung-Hyun; Park, Eun-Sang; Park, Jae-Hun; Oh, Hye-Keun
2018-06-01
Thermal and structural deformation of extreme-ultraviolet lithography (EUVL) masks during the exposure process may become important issues as these masks are subject to rigorous image placement and flatness requirements. The reflective masks used for EUVL absorb energy during exposure, and the temperature of the masks rises as a result. This can cause thermomechanical deformation that can reduce the pattern quality. The use of very thick low-thermal-expansion substrate materials (LTEMs) may reduce energy absorption, but they do not completely eliminate mask deformation. Therefore, it is necessary to predict and optimize the effects of energy transferred from the extreme-ultraviolet (EUV) light source and the resultant patterns of structured EUV masks with complex multilayers. Our study shows that heat accumulates in the masks as exposure progresses. It has been found that a higher absorber ratio (pattern density) applied to the patterning of EUV masks exacerbates the problem, especially in masks with more complex patterns.
Zheng, Wei; Yan, Xiaoyong; Zhao, Wei; Qian, Chengshan
2017-12-20
A novel large-scale multi-hop localization algorithm based on regularized extreme learning is proposed in this paper. The large-scale multi-hop localization problem is formulated as a learning problem. Unlike other similar localization algorithms, the proposed algorithm overcomes the shortcoming of the traditional algorithms which are only applicable to an isotropic network, therefore has a strong adaptability to the complex deployment environment. The proposed algorithm is composed of three stages: data acquisition, modeling and location estimation. In data acquisition stage, the training information between nodes of the given network is collected. In modeling stage, the model among the hop-counts and the physical distances between nodes is constructed using regularized extreme learning. In location estimation stage, each node finds its specific location in a distributed manner. Theoretical analysis and several experiments show that the proposed algorithm can adapt to the different topological environments with low computational cost. Furthermore, high accuracy can be achieved by this method without setting complex parameters.
Setchell, Joanna M; Abbott, Kristin M; Gonzalez, Jean-Paul; Knapp, Leslie A
2013-10-01
A large body of evidence suggests that major histocompatibility complex (MHC) genotype influences mate choice. However, few studies have investigated MHC-mediated post-copulatory mate choice under natural, or even semi-natural, conditions. We set out to explore this question in a large semi-free-ranging population of mandrills (Mandrillus sphinx) using MHC-DRB genotypes for 127 parent-offspring triads. First, we showed that offspring MHC heterozygosity correlates positively with parental MHC dissimilarity suggesting that mating among MHC dissimilar mates is efficient in increasing offspring MHC diversity. Second, we compared the haplotypes of the parental dyad with those of the offspring to test whether post-copulatory sexual selection favored offspring with two different MHC haplotypes, more diverse gamete combinations, or greater within-haplotype diversity. Limited statistical power meant that we could only detect medium or large effect sizes. Nevertheless, we found no evidence for selection for heterozygous offspring when parents share a haplotype (large effect size), genetic dissimilarity between parental haplotypes (we could detect an odds ratio of ≥1.86), or within-haplotype diversity (medium-large effect). These findings suggest that comparing parental and offspring haplotypes may be a useful approach to test for post-copulatory selection when matings cannot be observed, as is the case in many study systems. However, it will be extremely difficult to determine conclusively whether post-copulatory selection mechanisms for MHC genotype exist, particularly if the effect sizes are small, due to the difficulty in obtaining a sufficiently large sample. © 2013 Wiley Periodicals, Inc.