Evaluation and application of a fast module in a PLC based interlock and control system
NASA Astrophysics Data System (ADS)
Zaera-Sanz, M.
2009-08-01
The LHC Beam Interlock system requires a controller performing a simple matrix function to collect the different beam dump requests. To satisfy the expected safety level of the Interlock, the system should be robust and reliable. The PLC is a promising candidate to fulfil both aspects but too slow to meet the expected response time which is of the order of μseconds. Siemens has introduced a ``so called'' fast module (FM352-5 Boolean Processor). It provides independent and extremely fast control of a process within a larger control system using an onboard processor, a Field Programmable Gate Array (FPGA), to execute code in parallel which results in extremely fast scan times. It is interesting to investigate its features and to evaluate it as a possible candidate for the beam interlock system. This paper publishes the results of this study. As well, this paper could be useful for other applications requiring fast processing using a PLC.
Ground and Flight Testing for Aircraft Guidance and Control,
1984-12-01
almost rigid structure (Figure 3). It is equipped with control surfa- - S ces (inner flaps, outer flaps, elevator) which are driven by fast acting...extremely fast -response actuators com- bined with a full fly-by-wire/light system is envisaged. The technology for doing this is not yet available today...6.6 late S Standard deviation 23.7 (77.8) 6.5 12.0 *Maximum error 51.5 (169) high 12.9 fast 29.0 late *The values of these errors were judged by the
Fully-reversible optical sensor for hydrogen peroxide with fast response.
Ding, Longjiang; Chen, Siyu; Zhang, Wei; Zhang, Yinglu; Wang, Xu-Dong
2018-05-09
A fully reversible optical sensor for hydrogen peroxide with fast response is presented. The sensor was fabricated by in-situ growing ultra-small platinum nanoparticles (PtNPs) inside the pores of fibrous silica particles (KCC-1). The nanocomposite was then embedded into a hydrogel matrix and form a sensor layer, the immobilized PtNPs can catalytically convert hydrogen peroxide into molecular oxygen, which is measured via luminescent quenching based oxygen sensor underneath. Owing to the high porosity and permeability of KCC-1 and high local concentration of PtNPs, the sensor exhibits fast response (less than 1 min) and full reversibility. The measurement range of the sensor covers 1.0 μM to 10.0 mM, and very small amount of sample is required during measurement (200 μL). Because of its high stability, excellent reversibility and selectivity, and extremely fast response, the sensor could fulfill all industry requirements for real-time measurement, and fill market vacancy.
ERIC Educational Resources Information Center
Sewell, Alexandra; Hulusi, Halit
2016-01-01
Over the last five years the radicalisation of children and young people to extreme ideologies is fast developing as a new and important safeguarding issue for Local Authorities. Despite many high profile cases, there has yet to be a response from the educational psychology profession. This article seeks to explore the possible role for…
Yan, G J; He, X K; Cao, Z D; Fu, S J
2015-01-21
This study investigated the effects of fasting and feeding on the fast-start escape swimming performance of juvenile southern catfish Silurus meridionalis, a sit-and-wait forager that encounters extreme fasting and famine frequently during its lifespan. Ten to 30 days of fasting resulted in no significant change in most of the variables measured in the fast-start response except a 20-30% decrease in the escape distance during the first 120 ms (D 120ms ) relative to the control group (48 h after feeding). The ratio of the single-bend (SB) response (lower energetic expenditure) to the double-bend (DB) response increased significantly from 0% in the control group to 75 and 82·5% in the 20 and 30 day fasting groups, respectively. Satiated feeding (25% of body mass) resulted in a significantly lower (36·6%) maximum linear velocity (V max ) and a significantly lower (43·3%) D 120ms than in non-fed fish (control group, 48 h after feeding). Half-satiated feeding (12·5% of body mass), however, showed no significant effects on any of the measured variables of the fast-start response relative to control fish. It is suggested that the increase in the ratio of SB:DB responses with fasting in S. meridionalis may reflect a trade-off between energy conservation and maintaining high V max , while variables of fast-start performance were more sensitive to feeding than fasting might be an adaptive strategy to their foraging mode and food availability in their habitat. © 2015 The Fisheries Society of the British Isles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chorpening, Benjamin T.; Kamler, Jonathan
The Raman Gas Analyzer (RGA) has been demonstrated to have an extremely fast response (<1 second), pressurized, multi-gas analysis capability. All but the noble gases are Raman active, although the Raman interaction is weak. The RGA uses a reflectively lined capillary as the optical cell, providing both a small sample volume for fast gas exchange, and a much greater Raman signal collection than traditional instrument configurations.
Cho, Nakwon
1980-01-01
A fast-acting valve actuator utilizes a spring driven pneumatically loaded piston to drive a valve gate. Rapid exhaust of pressurized gas from the pneumatically loaded side of the piston facilitates an extremely rapid piston stroke. A flexible selector diaphragm opens and closes an exhaust port in response to pressure differentials created by energizing and de-energizing a solenoid which controls the pneumatic input to the actuator as well as selectively providing a venting action to one side of the selector diaphragm.
Verrier, Delphine; Groscolas, René; Guinet, Christophe; Arnould, John P Y
2009-11-01
Surviving prolonged fasting requires various metabolic adaptations, such as energy and protein sparing, notably when animals are simultaneously engaged in energy-demanding processes such as growth. Due to the intermittent pattern of maternal attendance, subantarctic fur seal pups have to repeatedly endure exceptionally long fasting episodes throughout the 10-mo rearing period while preparing for nutritional independence. Their metabolic responses to natural prolonged fasting (33.4 +/- 3.3 days) were investigated at 7 mo of age. Within 4-6 fasting days, pups shifted into a stage of metabolic economy characterized by a minimal rate of body mass loss (0.7%/day) and decreased resting metabolic rate (5.9 +/- 0.1 ml O(2)xkg(-1)xday(-1)) that was only 10% above the level predicted for adult terrestrial mammals. Field metabolic rate (289 +/- 10 kJxkg(-1)xday(-1)) and water influx (7.9 +/- 0.9 mlxkg(-1)xday(-1)) were also among the lowest reported for any young otariid, suggesting minimized energy allocation to behavioral activity and thermoregulation. Furthermore, lean tissue degradation was dramatically reduced. High initial adiposity (>48%) and predominant reliance on lipid catabolism likely contributed to the exceptional degree of protein sparing attained. Blood chemistry supported these findings and suggested utilization of alternative fuels, such as beta-hydroxybutyrate and de novo synthesized glucose from fat-released glycerol. Regardless of sex and body condition, pups tended to adopt a convergent strategy of extreme energy and lean body mass conservation that appears highly adaptive for it allows some tissue growth during the repeated episodes of prolonged fasting they experience throughout their development.
Huxel Bliven, Kellie C; Snyder Valier, Alison R; Bay, R Curtis; Sauers, Eric L
2017-04-01
The Functional Arm Scale for Throwers (FAST) is an upper extremity (UE) region-specific and population-specific patient-reported outcome (PRO) scale developed to measure health-related quality of life in throwers with UE injuries. Stages I and II, described in a companion paper, of FAST development produced a 22-item scale and a 9-item pitcher module. Stage III of scale development, establishing reliability and validity of the FAST, is reported herein. To describe stage III of scale development: reliability and validity of the FAST. Cohort study (diagnosis); Level of evidence, 2. Data from throwing athletes collected over 5 studies were pooled to assess reliability and validity of the FAST. Reliability was estimated using FAST scores from 162 throwing athletes who were injured (n = 23) and uninjured (n = 139). Concurrent validity was estimated using FAST scores and Disabilities of the Arm, Shoulder, and Hand (DASH) and Kerlan-Jobe Orthopaedic Clinic (KJOC) scores from 106 healthy, uninjured throwing athletes. Known-groups validity was estimated using FAST scores from 557 throwing athletes who were injured (n = 142) and uninjured (n = 415). Reliability and validity were assessed using intraclass correlation coefficients (ICCs), and measurement error was assessed using standard error of measurement (SEM) and minimum detectable change (MDC). Receiver operating characteristic curves and sensitivity/specificity values were estimated for known-groups validity. Data from a separate group (n = 18) of postsurgical and nonoperative/conservative rehabilitation patients were analyzed to report responsiveness of the FAST. The FAST total, subscales, and pitcher module scores demonstrated excellent test-retest reliability (ICC, 0.91-0.98). The SEM 95 and MDC 95 for the FAST total score were 3.8 and 10.5 points, respectively. The SEM 95 and MDC 95 for the pitcher module score were 5.7 and 15.7 points, respectively. The FAST scores showed acceptable correlation with DASH (ICC, 0.49-0.82) and KJOC (ICC, 0.62-0.81) scores. The FAST total score classified 85.1% of players into the correct injury group. For predicting UE injury status, a FAST total cutoff score of 10.0 out of 100.0 was 91% sensitive and 75% specific, and a pitcher module score of 10.0 out of 100.0 was 87% sensitive and 78% specific. The FAST total score demonstrated responsiveness on several indices between intake and discharge time points. The FAST is a reliable, valid, and responsive UE region-specific and population-specific PRO scale for measuring patient-reported health care outcomes in throwing athletes with injury.
Huxel Bliven, Kellie C.; Snyder Valier, Alison R.; Bay, R. Curtis; Sauers, Eric L.
2017-01-01
Background: The Functional Arm Scale for Throwers (FAST) is an upper extremity (UE) region-specific and population-specific patient-reported outcome (PRO) scale developed to measure health-related quality of life in throwers with UE injuries. Stages I and II, described in a companion paper, of FAST development produced a 22-item scale and a 9-item pitcher module. Stage III of scale development, establishing reliability and validity of the FAST, is reported herein. Purpose: To describe stage III of scale development: reliability and validity of the FAST. Study Design: Cohort study (diagnosis); Level of evidence, 2. Methods: Data from throwing athletes collected over 5 studies were pooled to assess reliability and validity of the FAST. Reliability was estimated using FAST scores from 162 throwing athletes who were injured (n = 23) and uninjured (n = 139). Concurrent validity was estimated using FAST scores and Disabilities of the Arm, Shoulder, and Hand (DASH) and Kerlan-Jobe Orthopaedic Clinic (KJOC) scores from 106 healthy, uninjured throwing athletes. Known-groups validity was estimated using FAST scores from 557 throwing athletes who were injured (n = 142) and uninjured (n = 415). Reliability and validity were assessed using intraclass correlation coefficients (ICCs), and measurement error was assessed using standard error of measurement (SEM) and minimum detectable change (MDC). Receiver operating characteristic curves and sensitivity/specificity values were estimated for known-groups validity. Data from a separate group (n = 18) of postsurgical and nonoperative/conservative rehabilitation patients were analyzed to report responsiveness of the FAST. Results: The FAST total, subscales, and pitcher module scores demonstrated excellent test-retest reliability (ICC, 0.91-0.98). The SEM95 and MDC95 for the FAST total score were 3.8 and 10.5 points, respectively. The SEM95 and MDC95 for the pitcher module score were 5.7 and 15.7 points, respectively. The FAST scores showed acceptable correlation with DASH (ICC, 0.49-0.82) and KJOC (ICC, 0.62-0.81) scores. The FAST total score classified 85.1% of players into the correct injury group. For predicting UE injury status, a FAST total cutoff score of 10.0 out of 100.0 was 91% sensitive and 75% specific, and a pitcher module score of 10.0 out of 100.0 was 87% sensitive and 78% specific. The FAST total score demonstrated responsiveness on several indices between intake and discharge time points. Conclusion: The FAST is a reliable, valid, and responsive UE region-specific and population-specific PRO scale for measuring patient-reported health care outcomes in throwing athletes with injury. PMID:28451614
Bismuth molybdate thick films as ethanol sensor
NASA Astrophysics Data System (ADS)
Jain, Kiran; Kumar, Vipin; Gupta, H. P.; Rastogi, A. C.
2003-10-01
Ethanol sensitivity of bismuth molybdate thick films and sintered pellets were investigated. Sintered pellets were prepared by traditional ceramic processing. Thick films were prepared by metallorganic decomposition process. Ethanol gas sensitivity was measured at various temperatures and concentrations. Thick films of alpha phase bismuth molybdate prepared by spray pyrolysis showed a very fast response to ethanol detection. The response time for the bulk samples is about 40 sec which decreased to about 6 sec for thick films at an operating temperature of 300°C. An extremely low level approximately 10 ppm detection and fast response makes this technique ideal for sensor element fabrication for detection and estimation of alcohol in breath-analyzer. Unlike SnO2, the resistance of these sensors is not affected by humidity at the operating temperature.
FastID: Extremely Fast Forensic DNA Comparisons
2017-05-19
FastID: Extremely Fast Forensic DNA Comparisons Darrell O. Ricke, PhD Bioengineering Systems & Technologies Massachusetts Institute of...Technology Lincoln Laboratory Lexington, MA USA Darrell.Ricke@ll.mit.edu Abstract—Rapid analysis of DNA forensic samples can have a critical impact on...time sensitive investigations. Analysis of forensic DNA samples by massively parallel sequencing is creating the next gold standard for DNA
Effects of fast walking on tibiofemoral bone water content in middle-aged adults.
Ho, Kai-Yu; Standerfer, Alexa; Ngo, Suzenna; Daun, Karen; Lee, Szu-Ping
2016-08-01
Although it is believed that genu varum increases loading on the medial knee during locomotion, the acute effect of increased loading on bone stress has not been determined. This study aimed to examine the effects of locomotion and lower extremity alignment on bone water content in middle-aged adults without knee osteoarthritis. Five males and 5 females participated. Lower extremity alignment was defined as the angle between the midpoint of the anterior mid-thigh and the midpoint of the patellar tendon using the center of the patella as the fulcrum. A chemical-shift-encoded water-fat magnetic resonance imaging protocol was used to assess bone water content before and after a 30-minute fast walking session. Bone stress response was determined by quantifying water content within the weight-bearing regions of the medial and lateral compartments of the tibiofemoral joint. Paired t-tests were used to compare bone water content before and after fast walking. Pearson correlation coefficients were used to determine the associations between lower extremity alignment and changes in water content post-walking. The paired t-tests revealed no changes in water content after fast walking within medial and lateral femur/tibia (P>0.05). Pearson correlation analyses revealed a significant moderate correlation between increased bone water content of the medial femur and increased varus alignment (R=0.688, P=0.028). Although there was no significant change in bone water content following locomotion, knee varus was associated with signs of bone stress in the medial femur. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Peleg, Nadav; Blumensaat, Frank; Molnar, Peter; Fatichi, Simone; Burlando, Paolo
2016-04-01
Urban drainage response is highly dependent on the spatial and temporal structure of rainfall. Therefore, measuring and simulating rainfall at a high spatial and temporal resolution is a fundamental step to fully assess urban drainage system reliability and related uncertainties. This is even more relevant when considering extreme rainfall events. However, the current space-time rainfall models have limitations in capturing extreme rainfall intensity statistics for short durations. Here, we use the STREAP (Space-Time Realizations of Areal Precipitation) model, which is a novel stochastic rainfall generator for simulating high-resolution rainfall fields that preserve the spatio-temporal structure of rainfall and its statistical characteristics. The model enables a generation of rain fields at 102 m and minute scales in a fast and computer-efficient way matching the requirements for hydrological analysis of urban drainage systems. The STREAP model was applied successfully in the past to generate high-resolution extreme rainfall intensities over a small domain. A sub-catchment in the city of Luzern (Switzerland) was chosen as a case study to: (i) evaluate the ability of STREAP to disaggregate extreme rainfall intensities for urban drainage applications; (ii) assessing the role of stochastic climate variability of rainfall in flow response and (iii) evaluate the degree of non-linearity between extreme rainfall intensity and system response (i.e. flow) for a small urban catchment. The channel flow at the catchment outlet is simulated by means of a calibrated hydrodynamic sewer model.
2000-06-23
conductivity ( NDC ) effects in double barrier resonant tunneling structures (DBRTS) prove the extremely fast frequency response of charge transport (less...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP013131 TITLE: Multiple-Barrier Resonant Tunneling Structures for...Institute Multiple-barrier resonant tunneling structures for application in a microwave generator stabilized by microstrip resonator S. V. Evstigneev, A. L
Demirel, Gokcen Birlik; Daglar, Bihter; Bayindir, Mehmet
2013-07-14
A novel sensing material based on pyrene doped polyethersulfone worm-like structured thin film is developed using a facile technique for detection of nitroaromatic explosive vapours. The formation of π-π stacking in the thin fluorescent film allows a highly sensitive fluorescence quenching which is detectable by the naked eye in a response time of a few seconds.
Mooshammer, Maria; Hofhansl, Florian; Frank, Alexander H.; Wanek, Wolfgang; Hämmerle, Ieda; Leitner, Sonja; Schnecker, Jörg; Wild, Birgit; Watzka, Margarete; Keiblinger, Katharina M.; Zechmeister-Boltenstern, Sophie; Richter, Andreas
2017-01-01
Predicted changes in the intensity and frequency of climate extremes urge a better mechanistic understanding of the stress response of microbially mediated carbon (C) and nutrient cycling processes. We analyzed the resistance and resilience of microbial C, nitrogen (N), and phosphorus (P) cycling processes and microbial community composition in decomposing plant litter to transient, but severe, temperature disturbances, namely, freeze-thaw and heat. Disturbances led temporarily to a more rapid cycling of C and N but caused a down-regulation of P cycling. In contrast to the fast recovery of the initially stimulated C and N processes, we found a slow recovery of P mineralization rates, which was not accompanied by significant changes in community composition. The functional and structural responses to the two distinct temperature disturbances were markedly similar, suggesting that direct negative physical effects and costs associated with the stress response were comparable. Moreover, the stress response of extracellular enzyme activities, but not that of intracellular microbial processes (for example, respiration or N mineralization), was dependent on the nutrient content of the resource through its effect on microbial physiology and community composition. Our laboratory study provides novel insights into the mechanisms of microbial functional stress responses that can serve as a basis for field studies and, in particular, illustrates the need for a closer integration of microbial C-N-P interactions into climate extremes research. PMID:28508070
Heller, Klaus-Gerhard; Korsunovskaya, Olga; Massa, Bruno; Iorgu, Ionuț Ștefan
2018-01-01
To find a mate, male and female bush-crickets of the family Phaneropteridae typically engage in duets. The male sings and the female responds. For mutual recognition, the amplitude pattern of the male song and the species-specific timing of the female response have been shown to be very important. In the seven studied species, belonging to the genera Leptophyes and Andreiniimon , these duets are extremely fast and nearly completely in the ultrasonic range. The females produce very short sounds by fast closing movements of the tegmina. They respond with species-specific delays of 20 to 150 ms after the beginning of the male song. The different latency times are probably not important for species recognition, since in sympatric species they are quite similar.
Fast novel nonlinear optical NLC system with local response
NASA Astrophysics Data System (ADS)
Iljin, Andrey; Residori, Stefania; Bortolozzo, Umberto
2017-06-01
Nonlinear optical performance of a novel liquid crystalline (LC) cell has been studied in two-wave mixing experiments revealing high diffraction efficiency within extremely wide intensity range, fast recording times and spatial resolution. Photo-induced modulation of the LC order parameter resulting from trans-cis isomerisation of dye molecules causes consequent changes of refractive indices of the medium (Light-Induced Order Modification, LIOM-mechanism) and is proved to be the main mechanism of optical nonlinearity. The proposed arrangement of the electric-field-stabilised homeotropic alignment hinders the LC director reorientation, prevents appearance of surface effects and ensures the optical cell quality. The LIOM-type nonlinearity, characterised with the substantially local nonlinear optical response, could also be extended for the recording of arbitrary phase profiles as requested in several applications for light-beam manipulation, recording of dynamic volume holograms and photonic lattices.
Heller, Klaus-Gerhard; Korsunovskaya, Olga; Massa, Bruno; Iorgu, Ionuț Ștefan
2018-01-01
Abstract To find a mate, male and female bush-crickets of the family Phaneropteridae typically engage in duets. The male sings and the female responds. For mutual recognition, the amplitude pattern of the male song and the species-specific timing of the female response have been shown to be very important. In the seven studied species, belonging to the genera Leptophyes and Andreiniimon, these duets are extremely fast and nearly completely in the ultrasonic range. The females produce very short sounds by fast closing movements of the tegmina. They respond with species-specific delays of 20 to 150 ms after the beginning of the male song. The different latency times are probably not important for species recognition, since in sympatric species they are quite similar. PMID:29692644
The effect of dietary fiber and other factors on insulin response: role in obesity.
Ullrich, I H; Albrink, M J
1985-07-01
Epidemiologic evidence favors the hypothesis that obesity may result from the fiber-depleted diet of industrialized societies. Since hyperinsulinemia is a universal characteristic and perhaps causal of obesity, the possibility is considered that dietary factors causing excess insulin secretion might lead to obesity. Dietary glucose causes a slightly greater insulin rise than cooked starch containing an equal amount of carbohydrate, and high fiber starchy foods cause a much lesser insulin response than does glucose in solution. Doubling the dose of carbohydrate in a meal causes only a small increase in glucose response but a large increase in insulin response. Dietary fiber could act by displacing some of the carbohydrate that would normally be absorbable in the small intestine, or could translocate the carbohydrate to a point lower in the intestinal tract where less effect on insulin secretion would be observed. Evidence is presented that a higher fiber diet is associated with a higher concentration of fasting circulating free fatty acids, a lesser post-cibal decrease in circulating free fatty acids and triglycerides and less chronic increase in fasting triglycerides than a low fiber diet. These differences are associated with a lesser insulin response to high fiber meals. The extreme fluctuations between the fed and fasted states seen with low fiber diets are thus dampened by high fiber diets. The less complete inhibition of lipolysis during the fed state, and more intense lipolysis during fasting, suggested by the above data, might tend to prevent obesity. The mechanisms of the lesser insulin response to high rather than low fiber meals are not known, but the possibility that dietary fiber decreases the GIP response is considered.
Gaoua, Nadia; de Oliveira, Rita F; Hunter, Steve
2017-01-01
Different professional domains require high levels of physical performance alongside fast and accurate decision-making. Construction workers, police officers, firefighters, elite sports men and women, the military and emergency medical professionals are often exposed to hostile environments with limited options for behavioral coping strategies. In this (mini) review we use football refereeing as an example to discuss the combined effect of intense physical activity and extreme temperatures on decision-making and suggest an explicative model. In professional football competitions can be played in temperatures ranging from -5°C in Norway to 30°C in Spain for example. Despite these conditions, the referee's responsibility is to consistently apply the laws fairly and uniformly, and to ensure the rules are followed without waning or adversely influencing the competitiveness of the play. However, strenuous exercise in extreme environments imposes increased physiological and psychological stress that can affect decision-making. Therefore, the physical exertion required to follow the game and the thermal strain from the extreme temperatures may hinder the ability of referees to make fast and accurate decisions. Here, we review literature on the physical and cognitive requirements of football refereeing and how extreme temperatures may affect referees' decisions. Research suggests that both hot and cold environments have a negative impact on decision-making but data specific to decision-making is still lacking. A theoretical model of decision-making under the constraint of intense physical activity and thermal stress is suggested. Future naturalistic studies are needed to validate this model and provide clear recommendations for mitigating strategies.
Gaoua, Nadia; de Oliveira, Rita F.; Hunter, Steve
2017-01-01
Different professional domains require high levels of physical performance alongside fast and accurate decision-making. Construction workers, police officers, firefighters, elite sports men and women, the military and emergency medical professionals are often exposed to hostile environments with limited options for behavioral coping strategies. In this (mini) review we use football refereeing as an example to discuss the combined effect of intense physical activity and extreme temperatures on decision-making and suggest an explicative model. In professional football competitions can be played in temperatures ranging from -5°C in Norway to 30°C in Spain for example. Despite these conditions, the referee’s responsibility is to consistently apply the laws fairly and uniformly, and to ensure the rules are followed without waning or adversely influencing the competitiveness of the play. However, strenuous exercise in extreme environments imposes increased physiological and psychological stress that can affect decision-making. Therefore, the physical exertion required to follow the game and the thermal strain from the extreme temperatures may hinder the ability of referees to make fast and accurate decisions. Here, we review literature on the physical and cognitive requirements of football refereeing and how extreme temperatures may affect referees’ decisions. Research suggests that both hot and cold environments have a negative impact on decision-making but data specific to decision-making is still lacking. A theoretical model of decision-making under the constraint of intense physical activity and thermal stress is suggested. Future naturalistic studies are needed to validate this model and provide clear recommendations for mitigating strategies. PMID:28912742
Enabling fast charging - Battery thermal considerations
NASA Astrophysics Data System (ADS)
Keyser, Matthew; Pesaran, Ahmad; Li, Qibo; Santhanagopalan, Shriram; Smith, Kandler; Wood, Eric; Ahmed, Shabbir; Bloom, Ira; Dufek, Eric; Shirk, Matthew; Meintz, Andrew; Kreuzer, Cory; Michelbacher, Christopher; Burnham, Andrew; Stephens, Thomas; Francfort, James; Carlson, Barney; Zhang, Jiucai; Vijayagopal, Ram; Hardy, Keith; Dias, Fernando; Mohanpurkar, Manish; Scoffield, Don; Jansen, Andrew N.; Tanim, Tanvir; Markel, Anthony
2017-11-01
Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell, the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today's market. Thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.
Wall, Christopher E; Cozza, Steven; Riquelme, Cecilia A; McCombie, W Richard; Heimiller, Joseph K; Marr, Thomas G; Leinwand, Leslie A
2011-01-01
The infrequently feeding Burmese python (Python molurus) experiences significant and rapid postprandial cardiac hypertrophy followed by regression as digestion is completed. To begin to explore the molecular mechanisms of this response, we have sequenced and assembled the fasted and postfed Burmese python heart transcriptomes with Illumina technology using the chicken (Gallus gallus) genome as a reference. In addition, we have used RNA-seq analysis to identify differences in the expression of biological processes and signaling pathways between fasted, 1 day postfed (DPF), and 3 DPF hearts. Out of a combined transcriptome of ∼2,800 mRNAs, 464 genes were differentially expressed. Genes showing differential expression at 1 DPF compared with fasted were enriched for biological processes involved in metabolism and energetics, while genes showing differential expression at 3 DPF compared with fasted were enriched for processes involved in biogenesis, structural remodeling, and organization. Moreover, we present evidence for the activation of physiological and not pathological signaling pathways in this rapid, novel model of cardiac growth in pythons. Together, our data provide the first comprehensive gene expression profile for a reptile heart.
Soñanez-Organis, José G.; Viscarra, Jose A.; Jaques, John T.; MacKenzie, Duncan S.; Crocker, Daniel E.; Ortiz, Rudy M.
2016-01-01
Prolonged food deprivation in mammals typically reduces glucose, insulin, and thyroid hormone (TH) concentrations, as well as tissue deiodinase (DI) content and activity, which, collectively, suppress metabolism. However, in elephant seal pups, prolonged fasting does not suppress TH levels; it is associated with upregulation of adipose TH-mediated cellular mechanisms and adipose-specific insulin resistance. The functional relevance of this apparent paradox and the effects of glucose and insulin on TH-mediated signaling in an insulin-resistant tissue are not well defined. To address our hypothesis that insulin increases adipose TH signaling in pups during extended fasting, we assessed the changes in TH-associated genes in response to an insulin infusion in early- and late-fasted pups. In late fasting, insulin increased DI1, DI2, and THrβ-1 mRNA expression by 566%, 44%, and 267% at 60 min postinfusion, respectively, with levels decreasing by 120 min. Additionally, we performed a glucose challenge in late-fasted pups to differentiate between insulin- and glucose-mediated effects on TH signaling. In contrast to the insulin-induced effects, glucose infusion did not increase the expressions of DI1, DI2, and THrβ-1 until 120 min, suggesting that glucose delays the onset of the insulin-induced effects. The data also suggest that fasting duration increases the sensitivity of adipose TH-mediated mechanisms to insulin, some of which may be mediated by increased glucose. These responses appear to be unique among mammals and to have evolved in elephant seals to facilitate their adaptation to tolerate an extreme physiological condition. PMID:26739649
FastChem: An ultra-fast equilibrium chemistry
NASA Astrophysics Data System (ADS)
Kitzmann, Daniel; Stock, Joachim
2018-04-01
FastChem is an equilibrium chemistry code that calculates the chemical composition of the gas phase for given temperatures and pressures. Written in C++, it is based on a semi-analytic approach, and is optimized for extremely fast and accurate calculations.
Pucci, Andrea; Cheung, Wui Hang; Jones, Jenny; Manning, Sean; Kingett, Helen; Adamo, Marco; Elkalaawy, Mohamed; Jenkinson, Andrew; Finer, Nicholas; Doyle, Jacqueline; Hashemi, Majid; Batterham, Rachel L
2015-01-01
Sleeve gastrectomy (SG) is the second most commonly performed bariatric procedure worldwide. Altered circulating gut hormones have been suggested to contribute post-operatively to appetite suppression, decreased caloric intake and weight reduction. In the present study, we report a 22-year-old woman who underwent laparoscopic SG for obesity (BMI 46 kg/m(2)). Post-operatively, she reported marked appetite reduction, which resulted in excessive weight loss (1-year post-SG: BMI 22 kg/m(2), weight loss 52%, >99th centile of 1-year percentage of weight loss from 453 SG patients). Gastrointestinal (GI) imaging, GI physiology/motility studies and endoscopy revealed no anatomical cause for her symptoms, and psychological assessments excluded an eating disorder. Despite nutritional supplements and anti-emetics, her weight loss continued (BMI 19 kg/m(2)), and she required nasogastric feeding. A random gut hormone assessment revealed high plasma peptide YY (PYY) levels. She underwent a 3 h meal study following an overnight fast to assess her subjective appetite and circulating gut hormone levels. Her fasted nausea scores were high, with low hunger, and these worsened with nutrient ingestion. Compared to ten other post-SG female patients, her fasted circulating PYY and nutrient-stimulated PYY and active glucagon-like peptide 1 (GLP1) levels were markedly elevated. Octreotide treatment was associated with suppressed circulating PYY and GLP1 levels, increased appetite, increased caloric intake and weight gain (BMI 22 kg/m(2) after 6 months). The present case highlights the value of measuring gut hormones in patients following bariatric surgery who present with anorexia and excessive weight loss and suggests that octreotide treatment can produce symptomatic relief and weight regain in this setting. Roux-en-Y gastric bypass and SG produce marked sustained weight reduction. However, there is a marked individual variability in this reduction, and post-operative weight loss follows a normal distribution with extremes of 'good' and 'poor' response.Profound anorexia and excessive weight loss post-SG may be associated with markedly elevated circulating fasted PYY and post-meal PYY and GLP1 levels.Octreotide treatment can produce symptomatic relief and weight regain for post-SG patients that have an extreme anorectic and weight loss response.The present case highlights the value of measuring circulating gut hormone levels in patients with post-operative anorexia and extreme weight loss.
Research on vacuum utraviolet calibration technology
NASA Astrophysics Data System (ADS)
Wang, Jiapeng; Gao, Shumin; Sun, Hongsheng; Chen, Yinghang; Wei, Jianqiang
2014-11-01
Importance of extreme ultraviolet (EUV) and far ultraviolet (FUV) calibration is growing fast as vacuum ultraviolet payloads are wildly used in national space plan. A calibration device is established especially for the requirement of EUV and FUV metrology and measurement. Spectral radiation and detector relative spectral response at EUV and FUV wavelengths can be calibrated with accuracy of 26% and 20%, respectively. The setup of the device, theoretical model and value retroactive method are introduced and measurement of detector relative spectral response from 30 nm to 200 nm is presented in this paper. The calibration device plays an important role in national space research.
The role of transcriptome resilience in resistance of corals to bleaching.
Seneca, Francois O; Palumbi, Stephen R
2015-04-01
Wild populations increasingly experience extreme conditions as climate change amplifies environmental variability. How individuals respond to environmental extremes determines the impact of climate change overall. The variability of response from individual to individual can represent the opportunity for natural selection to occur as a result of extreme conditions. Here, we experimentally replicated the natural exposure to extreme temperatures of the reef lagoon at Ofu Island (American Samoa), where corals can experience severe heat stress during midday low tide. We investigated the bleaching and transcriptome response of 20 Acropora hyacinthus colonies 5 and 20 h after exposure to control (29 °C) or heated (35 °C) conditions. We found a highly dynamic transcriptome response: 27% of the coral transcriptome was significantly regulated 1 h postheat exposure. Yet 15 h later, when heat-induced coral bleaching became apparent, only 12% of the transcriptome was differentially regulated. A large proportion of responsive genes at the first time point returned to control levels, others remained differentially expressed over time, while an entirely different subset of genes was successively regulated at the second time point. However, a noteworthy variability in gene expression was observed among individual coral colonies. Among the genes of which expression lingered over time, fast return to normal levels was associated with low bleaching. Colonies that maintained higher expression levels of these genes bleached severely. Return to normal levels of gene expression after stress has been termed transcriptome resilience, and in the case of some specific genes may signal the physiological health and response ability of individuals to environmental stress. © 2015 John Wiley & Sons Ltd.
Enabling fast charging – Battery thermal considerations
Keyser, Matthew; Pesaran, Ahmad; Li, Qibo; ...
2017-10-23
Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell,more » the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today’s market. Here, thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.« less
Enabling fast charging – Battery thermal considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keyser, Matthew; Pesaran, Ahmad; Li, Qibo
Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell,more » the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today’s market. Here, thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.« less
Electric-field effects in the twist-bend nematic phase
NASA Astrophysics Data System (ADS)
Meyer, Claire; Dozov, Ivan; Davidson, Patrick; Luckhurst, Geoffrey R.; Dokli, Irena; Knezevic, Anamarija; Lesac, Andreja
2018-02-01
In the recently discovered Twist-Bend Nematic (NTB) phase, the nematic director is spontaneously distorted and twisted along a conical helix with an extremely short pitch, 10 nm. We have investigated the behavior of the NTB phase subject to an electric-field. We show that, due to the periodic NTB structure, the electro-optic effects are not nematic-like but are close analogs to those in the smectic and cholesteric phases. In particular, we have studied the fast (sub-microsecond) flexoelectrically-induced rotation of the optic axis, which is similar to the electroclinic effect in the SmA* phase and the flexoelectric response of short-pitch cholesterics. We discuss the possible applications of the fast NTB electro-optic effects.
Moving in extreme environments: open water swimming in cold and warm water
2014-01-01
Open water swimming (OWS), either ‘wild’ such as river swimming or competitive, is a fast growing pastime as well as a part of events such as triathlons. Little evidence is available on which to base high and low water temperature limits. Also, due to factors such as acclimatisation, which disassociates thermal sensation and comfort from thermal state, individuals cannot be left to monitor their own physical condition during swims. Deaths have occurred during OWS; these have been due to not only thermal responses but also cardiac problems. This paper, which is part of a series on ‘Moving in Extreme Environments’, briefly reviews current understanding in pertinent topics associated with OWS. Guidelines are presented for the organisation of open water events to minimise risk, and it is concluded that more information on the responses to immersion in cold and warm water, the causes of the individual variation in these responses and the precursors to the cardiac events that appear to be the primary cause of death in OWS events will help make this enjoyable sport even safer. PMID:24921042
Using resistive readout to probe ultrafast dynamics of a plasmonic sensor
NASA Astrophysics Data System (ADS)
Cheney, Alec; Chen, Borui; Cartwright, Alexander; Thomay, Tim
2018-02-01
Surface plasmons in a DC current lead to an increase in scattering processes, resulting in a measurable increase in electrical resistance of a plasmonic nano-grating. This enables a purely electronic readout of plasmonically mediated optical absorption. We show that there is a time-dependence in these resistance changes on the order of 100ps that we attribute to electron-phonon and phonon-phonon scattering processes in the metal of the nano-gratings. Since plasmonic responses are strongly structurally dependent, an appropriately designed plasmoelectronic detector could potentially offer an extremely fast response at communication wavelengths in a fully CMOS compatible system.
Capturing the dynamics of response variability in the brain in ADHD.
van Belle, Janna; van Raalten, Tamar; Bos, Dienke J; Zandbelt, Bram B; Oranje, Bob; Durston, Sarah
2015-01-01
ADHD is characterized by increased intra-individual variability in response times during the performance of cognitive tasks. However, little is known about developmental changes in intra-individual variability, and how these changes relate to cognitive performance. Twenty subjects with ADHD aged 7-24 years and 20 age-matched, typically developing controls participated in an fMRI-scan while they performed a go-no-go task. We fit an ex-Gaussian distribution on the response distribution to objectively separate extremely slow responses, related to lapses of attention, from variability on fast responses. We assessed developmental changes in these intra-individual variability measures, and investigated their relation to no-go performance. Results show that the ex-Gaussian measures were better predictors of no-go performance than traditional measures of reaction time. Furthermore, we found between-group differences in the change in ex-Gaussian parameters with age, and their relation to task performance: subjects with ADHD showed age-related decreases in their variability on fast responses (sigma), but not in lapses of attention (tau), whereas control subjects showed a decrease in both measures of variability. For control subjects, but not subjects with ADHD, this age-related reduction in variability was predictive of task performance. This group difference was reflected in neural activation: for typically developing subjects, the age-related decrease in intra-individual variability on fast responses (sigma) predicted activity in the dorsal anterior cingulate gyrus (dACG), whereas for subjects with ADHD, activity in this region was related to improved no-go performance with age, but not to intra-individual variability. These data show that using more sophisticated measures of intra-individual variability allows the capturing of the dynamics of task performance and associated neural changes not permitted by more traditional measures.
Capturing the dynamics of response variability in the brain in ADHD
van Belle, Janna; van Raalten, Tamar; Bos, Dienke J.; Zandbelt, Bram B.; Oranje, Bob; Durston, Sarah
2014-01-01
ADHD is characterized by increased intra-individual variability in response times during the performance of cognitive tasks. However, little is known about developmental changes in intra-individual variability, and how these changes relate to cognitive performance. Twenty subjects with ADHD aged 7–24 years and 20 age-matched, typically developing controls participated in an fMRI-scan while they performed a go-no-go task. We fit an ex-Gaussian distribution on the response distribution to objectively separate extremely slow responses, related to lapses of attention, from variability on fast responses. We assessed developmental changes in these intra-individual variability measures, and investigated their relation to no-go performance. Results show that the ex-Gaussian measures were better predictors of no-go performance than traditional measures of reaction time. Furthermore, we found between-group differences in the change in ex-Gaussian parameters with age, and their relation to task performance: subjects with ADHD showed age-related decreases in their variability on fast responses (sigma), but not in lapses of attention (tau), whereas control subjects showed a decrease in both measures of variability. For control subjects, but not subjects with ADHD, this age-related reduction in variability was predictive of task performance. This group difference was reflected in neural activation: for typically developing subjects, the age-related decrease in intra-individual variability on fast responses (sigma) predicted activity in the dorsal anterior cingulate gyrus (dACG), whereas for subjects with ADHD, activity in this region was related to improved no-go performance with age, but not to intra-individual variability. These data show that using more sophisticated measures of intra-individual variability allows the capturing of the dynamics of task performance and associated neural changes not permitted by more traditional measures. PMID:25610775
Simulating Turbulent Wind Fields for Offshore Turbines in Hurricane-Prone Regions (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Y.; Damiani, R.; Musial, W.
Extreme wind load cases are one of the most important external conditions in the design of offshore wind turbines in hurricane prone regions. Furthermore, in these areas, the increase in load with storm return-period is higher than in extra-tropical regions. However, current standards have limited information on the appropriate models to simulate wind loads from hurricanes. This study investigates turbulent wind models for load analysis of offshore wind turbines subjected to hurricane conditions. Suggested extreme wind models in IEC 61400-3 and API/ABS (a widely-used standard in oil and gas industry) are investigated. The present study further examines the wind turbinemore » response subjected to Hurricane wind loads. Three-dimensional wind simulator, TurbSim, is modified to include the API wind model. Wind fields simulated using IEC and API wind models are used for an offshore wind turbine model established in FAST to calculate turbine loads and response.« less
Extreme Magnetic Storms: Their Characteristics and Possible Consequences for Humanity
NASA Astrophysics Data System (ADS)
Falkowski, B. J.; Tsurutani, B.; Lakhina, G. S.; Deng, Y.; Mannucci, A. J.
2015-12-01
The solar and interplanetary conditions necessary to create an extreme magnetic storm will be discussed. The Carrington 1859 event was not the largest possible. It will be shown that different facets of fast ICMEs/extreme magnetic storms will have different limitations. Some possible adverse effects of such extreme space weather events on society will be addressed.
Extreme ultra-violet movie camera for imaging microsecond time scale magnetic reconnection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chai, Kil-Byoung; Bellan, Paul M.
2013-12-15
An ultra-fast extreme ultra-violet (EUV) movie camera has been developed for imaging magnetic reconnection in the Caltech spheromak/astrophysical jet experiment. The camera consists of a broadband Mo:Si multilayer mirror, a fast decaying YAG:Ce scintillator, a visible light block, and a high-speed visible light CCD camera. The camera can capture EUV images as fast as 3.3 × 10{sup 6} frames per second with 0.5 cm spatial resolution. The spectral range is from 20 eV to 60 eV. EUV images reveal strong, transient, highly localized bursts of EUV radiation when magnetic reconnection occurs.
Proliferating Myositis: An Inflammatory Lesion often Misdiagnosed as A Malignant Tumor.
Binesh, Fariba; Sobhanardekani, Mohammad; Zabihi, Somayeh; Behniafard, Nasim
2016-12-01
Proliferative myositis (PM) is a rare inflammatory disease. Most commonly, the lesion occurs in the extremities. Regarding its fast growth and bizarre shape of the cellular components this entity commonly misdiagnosed and the patients undergo improper therapeutic approaches. In other words, it is often misdiagnosed as sarcoma. The diagnosis can only be made by the microscopic examination, so biopsy is mandatory. Here the authors report a patient with PM who was initially misdiagnosed as pleomorphic sarcoma of the lower extremity and explain this rare entity. Proliferative myositis should be taken into account if a fast growing, intramuscular mass occurs in the extremities.
Optical and Nonlinear Optical Response of Light Sensor Thin Films
Liu, Huimin; Rua, Armando; Vasquez, Omar; Vikhnin, Valentin S.; Fernandez, Felix E.; Fonseca, Luis F.; Resto, Oscar; Weisz, Svi Z.
2005-01-01
For potential ultrafast optical sensor application, both VO2 thin films and nanocomposite crystal-Si enriched SiO2 thin films grown on fused quartz substrates were successfully prepared using pulsed laser deposition (PLD) and RF co-sputtering techniques. In photoluminescence (PL) measurement c-Si/SiO2 film contains nanoparticles of crystal Si exhibits strong red emission with the band maximum ranging from 580 to 750 nm. With ultrashort pulsed laser excitation all films show extremely intense and ultrafast nonlinear optical (NLO) response. The recorded holography from all these thin films in a degenerate-four-wave-mixing configuration shows extremely large third-order response. For VO2 thin films, an optically induced semiconductor-to-metal phase transition (PT) immediately occurred upon laser excitation. it accompanied. It turns out that the fast excited state dynamics was responsible to the induced PT. For c-Si/SiO2 film, its NLO response comes from the contribution of charge carriers created by laser excitation in conduction band of the c-Si nanoparticles. It was verified by introducing Eu3+ which is often used as a probe sensing the environment variations. It turns out that the entire excited state dynamical process associated with the creation, movement and trapping of the charge carriers has a characteristic 500 ps duration.
Renal responses to plasma volume expansion and hyperosmolality in fasting seal pups
NASA Technical Reports Server (NTRS)
Ortiz, Rudy M.; Wade, Charles E.; Costa, Daniel P.; Ortiz, C. Leo
2002-01-01
Renal responses were quantified in northern elephant seal (Mirounga angustirostris) pups during their postweaning fast to examine their excretory capabilities. Pups were infused with either isotonic (0.9%; n = 8; Iso) or hypertonic (16.7%; n = 7; Hyper) saline via an indwelling catheter such that each pup received 3 mmol NaCl/kg. Diuresis after the infusions was similar in magnitude between the two treatments. Osmotic clearance increased by 37% in Iso and 252% in Hyper. Free water clearance was reduced 3.4-fold in Hyper but was not significantly altered in Iso. Glomerular filtration rate increased 71% in the 24-h period after Hyper, but no net change occurred during the same time after Iso. Natriuresis increased 3.6-fold in Iso and 5.3-fold in Hyper. Iso decreased plasma arginine vasopressin (AVP) and cortisol acutely, whereas Hyper increased plasma and excreted AVP and cortisol. Iso was accompanied by the retention of water and electrolytes, whereas the Hyper load was excreted within 24 h. Natriuresis is attributed to increased filtration and is independent of an increase in atrial natriuretic peptide and decreases in ANG II and aldosterone. Fasting pups appear to have well-developed kidneys capable of both extreme conservation and excretion of Na(+).
Observation of extremely strong shock waves in solids launched by petawatt laser heating
Lancaster, K. L.; Robinson, A. P. L.; Pasley, J.; ...
2017-08-25
Understanding hydrodynamic phenomena driven by fast electron heating is important for a range of applications including fast electron collimation schemes for fast ignition and the production and study of hot, dense matter. In this work, detailed numerical simulations modelling the heating, hydrodynamic evolution, and extreme ultra-violet (XUV) emission in combination with experimental XUV images indicate shock waves of exceptional strength (200 Mbar) launched due to rapid heating of materials via a petawatt laser. In conclusion, we discuss in detail the production of synthetic XUV images and how they assist us in interpreting experimental XUV images captured at 256 eV usingmore » a multi-layer spherical mirror.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyers, Carol A.
This study provides a modern take on an age-old need: busy parents need extremely fast, high quality home-cooked dinners that their kids will eat. In the past decade, the number of choices that parents have for filling this need have proliferated, largely due to technological advances. Our study proposes to leverage this technology in building a system geared toward decreasing whining in kids and increasing the sanity of their parents.
Extremely Fast Numerical Integration of Ocean Surface Wave Dynamics
2007-09-30
sub-processor must be added as shown in the blue box of Fig. 1. We first consider the Kadomtsev - Petviashvili (KP) equation ηt + coηx +αηηx + βη ...analytic integration of the so-called “soliton equations ,” I have discovered how the GFT can be used to solved higher order equations for which study...analytical study and extremely fast numerical integration of the extended nonlinear Schroedinger equation for fully three dimensional wave motion
Simulated heat waves affected alpine grassland only in combination with drought.
De Boeck, Hans J; Bassin, Seraina; Verlinden, Maya; Zeiter, Michaela; Hiltbrunner, Erika
2016-01-01
The Alpine region is warming fast, and concurrently, the frequency and intensity of climate extremes are increasing. It is currently unclear whether alpine ecosystems are sensitive or resistant to such extremes. We subjected Swiss alpine grassland communities to heat waves with varying intensity by transplanting monoliths to four different elevations (2440-660 m above sea level) for 17 d. Half of these were regularly irrigated while the other half were deprived of irrigation to additionally induce a drought at each site. Heat waves had no significant impacts on fluorescence (Fv /Fm , a stress indicator), senescence and aboveground productivity if irrigation was provided. However, when heat waves coincided with drought, the plants showed clear signs of stress, resulting in vegetation browning and reduced phytomass production. This likely resulted from direct drought effects, but also, as measurements of stomatal conductance and canopy temperatures suggest, from increased high-temperature stress as water scarcity decreased heat mitigation through transpiration. The immediate responses to heat waves (with or without droughts) recorded in these alpine grasslands were similar to those observed in the more extensively studied grasslands from temperate climates. Responses following climate extremes may differ in alpine environments, however, because the short growing season likely constrains recovery. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Response of ice caves to weather extremes in the southeastern Alps, Europe
NASA Astrophysics Data System (ADS)
Colucci, R. R.; Fontana, D.; Forte, E.; Potleca, M.; Guglielmin, M.
2016-05-01
High altitude karstic environments often preserve permanent ice deposits within caves, representing the lesser-known portion of the cryosphere. Despite being not so widespread and easily reachable as mountain glaciers and ice caps, ice caves preserve much information about past environmental changes and climatic evolution. We selected 1111 ice caves from the existing cave inventory, predominantly but not exclusively located in the periglacial domain where permafrost is not dominant (i.e., with mean annual air temperature < 3 °C but not in a permafrost environment). The influence of climate and topography on ice cave distribution is also investigated. In order to assess the thickness and the inner structure of the deposits, we selected two exemplary ice caves in the Canin massif (Julian Alps) performing several multifrequency GPR surveys. A strong influence of global and local climate change in the evolution of the ice deposits has been particularly highlighted in the dynamic ice cave type, especially in regard to the role of weather extremes. The natural response of ice caves to a warming climate could lead to a fast reduction of such ice masses. The increased occurrence of weather extremes, especially warmer and more intense precipitation caused by higher mean 0 °C-isotherms, could in fact be crucial in the future mass balance evolution of such permanent ice deposits.
NASA Astrophysics Data System (ADS)
Ngwira, Chigomezyo M.; Pulkkinen, Antti; Kuznetsova, Maria M.; Glocer, Alex
2018-02-01
In this response, we address the three main comments by Tsurutani et al. (2018, http://doi.org/10.1002/2017JA024779) namely, unusually high plasma density, interplanetary magnetic field intensity, and fast storm recovery phase. The authors agree that there is room to improve the modeling by taking into account these comments and other aspects that were not fully explored during our initial work. We are already in the process of undertaking a more comprehensive modeling project.
Lower Extremity Muscle Activity During a Women’s Overhand Lacrosse Shot
Millard, Brianna M.; Mercer, John A.
2014-01-01
The purpose of this study was to describe lower extremity muscle activity during the lacrosse shot. Participants (n=5 females, age 22±2 years, body height 162.6±15.2 cm, body mass 63.7±23.6 kg) were free from injury and had at least one year of lacrosse experience. The lead leg was instrumented with electromyography (EMG) leads to measure muscle activity of the rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA), and medial gastrocnemius (GA). Participants completed five trials of a warm-up speed shot (Slow) and a game speed shot (Fast). Video analysis was used to identify the discrete events defining specific movement phases. Full-wave rectified data were averaged per muscle per phase (Crank Back Minor, Crank Back Major, Stick Acceleration, Stick Deceleration). Average EMG per muscle was analyzed using a 4 (Phase) × 2 (Speed) ANOVA. BF was greater during Fast vs. Slow for all phases (p<0.05), while TA was not influenced by either Phase or Speed (p>0.05). RF and GA were each influenced by the interaction of Phase and Speed (p<0.05) with GA being greater during Fast vs. Slow shots during all phases and RF greater during Crank Back Minor and Major as well as Stick Deceleration (p<0.05) but only tended to be greater during Stick Acceleration (p=0.076) for Fast vs. Slow. The greater muscle activity (BF, RF, GA) during Fast vs. Slow shots may have been related to a faster approach speed and/or need to create a stiff lower extremity to allow for faster upper extremity movements. PMID:25114727
Gubner, N R; McKinnon, C S; Reed, C; Phillips, T J
2013-01-01
Co-morbid use of nicotine-containing tobacco products and alcohol is prevalent in alcohol dependent individuals. Common genetic factors could influence initial sensitivity to the independent or interactive effects of these drugs and play a role in their co-abuse. Locomotor sensitivity to nicotine and ethanol, alone and in combination, was assessed in mice bred for high (FAST) and low (SLOW) sensitivity to the locomotor stimulant effects of ethanol and in an inbred strain of mouse (DBA/2J) that has been shown to have extreme sensitivity to ethanol-induced stimulation in comparison to other strains. The effects of nicotine and ethanol, alone and in combination, were dependent on genotype. In FAST and DBA/2J mice that show high sensitivity to ethanol-induced stimulation, nicotine accentuated the locomotor stimulant response to ethanol. This effect was not found in SLOW mice that are not stimulated by ethanol alone. These data indicate that genes underlying differential sensitivity to the stimulant effects of ethanol alone also influence sensitivity to nicotine in combination with ethanol. Sensitivity to the stimulant effects of nicotine alone does not appear to predict the response to the drug combination, as FAST mice are sensitive to nicotine-induced stimulation, whereas SLOW and DBA/2J mice are not. The combination of nicotine and ethanol may have genotype-dependent effects that could impact co-abuse liability. Published by Elsevier Ireland Ltd.
NASA Astrophysics Data System (ADS)
Zarrella, Andrew; Yennello, Sherry
2017-09-01
Pionic fusion is the process by which two nuclei fuse and then deexcite by the exclusive emission of a pion. These reactions represent the most extreme examples of deep subthreshold pion production and provide evidence for an unknown, collective mechanism for pion production. An experiment was performed at the Texas A&M University Cyclotron Institute to measure the cross section of the 4He +12 C -> 16N +π+ reaction. The Momentum Achromat Recoil Spectrometer (MARS) was used to separate and identify the 16N fusion residues and the newly constructed Partial Truncated Icosahedron (ParTI) phoswich array was used to identify charged pions. The detector responses for each phoswich unit were recorded using fast-sampling ADCs which allow all light charged particles in the ParTI phoswiches to be identified using ``fast vs. slow'' pulse shape discrimination. By writing the waveform responses, pions can also be identified by the presence of a characteristic muon decay pulse. The combination of the residue-pion coincidence and the two independent pion identification techniques represent a highly sensitive experimental design for studying pionic fusion reactions.
Saeed, Sadia; Bech, Paul R; Hafeez, Tayyaba; Alam, Rabail; Falchi, Mario; Ghatei, Mohammad A; Bloom, Stephen R; Arslan, Muhammad; Froguel, Philippe
2014-04-01
Congenital leptin deficiency, a rare genetic disorder due to a homozygous mutation in the leptin gene (LEP), is accompanied by extreme obesity and hyperphagia. A number of gastrointestinal hormones have been shown to critically regulate food intake but their physiological role in hyperphagic response in congenital leptin deficiency has not been elucidated. This study is the first to evaluate the fasting and postprandial profiles of gut-derived hormones in homozygous and heterozygous carriers of LEP mutation. The study subjects from two consanguineous families consisted of five homozygous and eight heterozygous carriers of LEP mutation, c.398delG. Ten wild-type normal-weight subjects served as controls. Fasting and 1-h postprandial plasma ghrelin, glucagon-like peptide (GLP) 1, peptide YY (PYY), leptin and insulin levels were measured by immunoassays. Fasting plasma ghrelin levels in homozygotes remained remarkably unchanged following food consumption (P = 0.33) in contrast to a significant decline in heterozygous (P < 0.03) and normal (P < 0.02) subjects. A significant postprandial increase in PYY was observed in heterozygous (P < 0.02) and control subjects (P < 0.01), but not in the homozygous group (P = 0.22). A postprandial rise in GLP-1 levels was significant (P < 0.02) in all groups. Interestingly, fasting leptin levels in heterozygotes were not significantly different from controls and did not change significantly following meal. Our results demonstrate that gut hormones play little or no physiological role in driving the hyperphagic response of leptin-deficient subjects. In contrast, fasting and postprandial levels of gut hormones in heterozygous mutation carriers were comparable to those of normal-weight controls.
CASTOR: Widely Distributed Scalable Infospaces
2008-11-01
1 i Progress against Planned Objectives Enable nimble apps that react fast as...generation of scalable, reliable, ultra- fast event notification in Linux data centers. • Maelstrom, a spin-off from Ricochet, offers a powerful new option...out potential enhancements to WS-EVENTING and WS-NOTIFICATION based on our work. Potential impact for the warflighter. QSM achieves extremely fast
Shatokhina, Iuliia; Obereder, Andreas; Rosensteiner, Matthias; Ramlau, Ronny
2013-04-20
We present a fast method for the wavefront reconstruction from pyramid wavefront sensor (P-WFS) measurements. The method is based on an analytical relation between pyramid and Shack-Hartmann sensor (SH-WFS) data. The algorithm consists of two steps--a transformation of the P-WFS data to SH data, followed by the application of cumulative reconstructor with domain decomposition, a wavefront reconstructor from SH-WFS measurements. The closed loop simulations confirm that our method provides the same quality as the standard matrix vector multiplication method. A complexity analysis as well as speed tests confirm that the method is very fast. Thus, the method can be used on extremely large telescopes, e.g., for eXtreme adaptive optics systems.
Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy
NASA Astrophysics Data System (ADS)
Klots, A. R.; Newaz, A. K. M.; Wang, Bin; Prasai, D.; Krzyzanowska, H.; Lin, Junhao; Caudel, D.; Ghimire, N. J.; Yan, J.; Ivanov, B. L.; Velizhanin, K. A.; Burger, A.; Mandrus, D. G.; Tolk, N. H.; Pantelides, S. T.; Bolotin, K. I.
2014-10-01
The optical response of semiconducting monolayer transition-metal dichalcogenides (TMDCs) is dominated by strongly bound excitons that are stable even at room temperature. However, substrate-related effects such as screening and disorder in currently available specimens mask many anticipated physical phenomena and limit device applications of TMDCs. Here, we demonstrate that that these undesirable effects are strongly suppressed in suspended devices. Extremely robust (photogain > 1,000) and fast (response time < 1 ms) photoresponse allow us to study, for the first time, the formation, binding energies, and dissociation mechanisms of excitons in TMDCs through photocurrent spectroscopy. By analyzing the spectral positions of peaks in the photocurrent and by comparing them with first-principles calculations, we obtain binding energies, band gaps and spin-orbit splitting in monolayer TMDCs. For monolayer MoS2, in particular, we obtain an extremely large binding energy for band-edge excitons, Ebind >= 570 meV. Along with band-edge excitons, we observe excitons associated with a van Hove singularity of rather unique nature. The analysis of the source-drain voltage dependence of photocurrent spectra reveals exciton dissociation and photoconversion mechanisms in TMDCs.
Comparison of Reconstruction and Control algorithms on the ESO end-to-end simulator OCTOPUS
NASA Astrophysics Data System (ADS)
Montilla, I.; Béchet, C.; Lelouarn, M.; Correia, C.; Tallon, M.; Reyes, M.; Thiébaut, É.
Extremely Large Telescopes are very challenging concerning their Adaptive Optics requirements. Their diameters, the specifications demanded by the science for which they are being designed for, and the planned use of Extreme Adaptive Optics systems, imply a huge increment in the number of degrees of freedom in the deformable mirrors. It is necessary to study new reconstruction algorithms to implement the real time control in Adaptive Optics at the required speed. We have studied the performance, applied to the case of the European ELT, of three different algorithms: the matrix-vector multiplication (MVM) algorithm, considered as a reference; the Fractal Iterative Method (FrIM); and the Fourier Transform Reconstructor (FTR). The algorithms have been tested on ESO's OCTOPUS software, which simulates the atmosphere, the deformable mirror, the sensor and the closed-loop control. The MVM is the default reconstruction and control method implemented in OCTOPUS, but it scales in O(N2) operations per loop so it is not considered as a fast algorithm for wave-front reconstruction and control on an Extremely Large Telescope. The two other methods are the fast algorithms studied in the E-ELT Design Study. The performance, as well as their response in the presence of noise and with various atmospheric conditions, has been compared using a Single Conjugate Adaptive Optics configuration for a 42 m diameter ELT, with a total amount of 5402 actuators. Those comparisons made on a common simulator allow to enhance the pros and cons of the various methods, and give us a better understanding of the type of reconstruction algorithm that an ELT demands.
Novel gas sensor with dual response under CO(g) exposure: Optical and electrical stimuli
NASA Astrophysics Data System (ADS)
Rocha, L. S. R.; Cilense, M.; Ponce, M. A.; Aldao, C. M.; Oliveira, L. L.; Longo, E.; Simoes, A. Z.
2018-05-01
In this work, a lanthanum (La) doped ceria (CeO2) film, which depicted a dual gas sensing response (electric and optical) for CO(g) detection, was obtained by the microwave-assisted hydrothermal (HAM) synthesis and deposited by the screen-printing technique, in order to prevent deaths by intoxication with this life-threatening gas. An electric response under CO(g) exposure was obtained, along with an extremely fast optical response for a temperature of 380 °C, associated with Ce+4 reduction and vacancy generation. A direct optical gap was found to be around 2.31 eV from UV-Vis results, which corresponds to a transition from valence band to 4f states. Due to the anomalous electron configuration of cerium atoms with 4f electrons in its reduced state, they are likely to present an electric conduction based on the small polaron theory with a hopping mechanism responsible for its dual sensing response with a complete reversible behaviour.
Hindle, Allyson G.; Grabek, Katharine R.; Epperson, L. Elaine; Karimpour-Fard, Anis
2014-01-01
Small-bodied hibernators partition the year between active homeothermy and hibernating heterothermy accompanied by fasting. To define molecular events underlying hibernation that are both dependent and independent of fasting, we analyzed the liver proteome among two active and four hibernation states in 13-lined ground squirrels. We also examined fall animals transitioning between fed homeothermy and fasting heterothermy. Significantly enriched pathways differing between activity and hibernation were biased toward metabolic enzymes, concordant with the fuel shifts accompanying fasting physiology. Although metabolic reprogramming to support fasting dominated these data, arousing (rewarming) animals had the most distinct proteome among the hibernation states. Instead of a dominant metabolic enzyme signature, torpor-arousal cycles featured differences in plasma proteins and intracellular membrane traffic and its regulation. Phosphorylated NSFL1C, a membrane regulator, exhibited this torpor-arousal cycle pattern; its role in autophagosome formation may promote utilization of local substrates upon metabolic reactivation in arousal. Fall animals transitioning to hibernation lagged in their proteomic adjustment, indicating that the liver is more responsive than preparatory to the metabolic reprogramming of hibernation. Specifically, torpor use had little impact on the fall liver proteome, consistent with a dominant role of nutritional status. In contrast to our prediction of reprogramming the transition between activity and hibernation by gene expression and then within-hibernation transitions by posttranslational modification (PTM), we found extremely limited evidence of reversible PTMs within torpor-arousal cycles. Rather, acetylation contributed to seasonal differences, being highest in winter (specifically in torpor), consistent with fasting physiology and decreased abundance of the mitochondrial deacetylase, SIRT3. PMID:24642758
Capabilities of a Global 3D MHD Model for Monitoring Extremely Fast CMEs
NASA Astrophysics Data System (ADS)
Wu, C. C.; Plunkett, S. P.; Liou, K.; Socker, D. G.; Wu, S. T.; Wang, Y. M.
2015-12-01
Since the start of the space era, spacecraft have recorded many extremely fast coronal mass ejections (CMEs) which have resulted in severe geomagnetic storms. Accurate and timely forecasting of the space weather effects of these events is important for protecting expensive space assets and astronauts and avoiding communications interruptions. Here, we will introduce a newly developed global, three-dimensional (3D) magnetohydrodynamic (MHD) model (G3DMHD). The model takes the solar magnetic field maps at 2.5 solar radii (Rs) and intepolates the solar wind plasma and field out to 18 Rs using the algorithm of Wang and Sheeley (1990, JGR). The output is used as the inner boundary condition for a 3D MHD model. The G3DMHD model is capable of simulating (i) extremely fast CME events with propagation speeds faster than 2500 km/s; and (ii) multiple CME events in sequence or simultaneously. We will demonstrate the simulation results (and comparison with in-situ observation) for the fastest CME in record on 23 July 2012, the shortest transit time in March 1976, and the well-known historic Carrington 1859 event.
Segmental Dynamics of Forward Fall Arrests: System Identification Approach
Kim, Kyu-Jung; Ashton-Miller, James A.
2009-01-01
Background Fall-related injuries are multifaceted problems, necessitating thorough biodynamic simulation to identify critical biomechanical factors. Methods A 2-degree-of-freedom discrete impact model was constructed through system identification and validation processes using the experimental data to understand dynamic interactions of various biomechanical parameters in bimanual forward fall arrests. Findings The bimodal reaction force response from the identified models had small identification errors for the first and second force peaks less than 3.5% and high coherence between the measured and identified model responses (R2=0.95). Model validation with separate experimental data also demonstrated excellent validation accuracy and coherence, less than 7% errors and R2=0.87, respectively. The first force peak was usually greater than the second force peak and strongly correlated with the impact velocity of the upper extremity, while the second force peak was associated with the impact velocity of the body. The impact velocity of the upper extremity relative to the body could be a major risk factor to fall-related injuries as observed from model simulations that a 75% faster arm movement relative to the falling speed of the body alone could double the first force peak from soft landing, thereby readily exceeding the fracture strength of the distal radius. Interpretation Considering that the time-critical nature of falling often calls for a fast arm movement, the use of the upper extremity in forward fall arrests is not biomechanically justified unless sufficient reaction time and coordinated protective motion of the upper extremity are available. PMID:19250726
Differential staining of bacteria: acid fast stain.
Reynolds, Jackie; Moyes, Rita B; Breakwell, Donald P
2009-11-01
Acid-fastness is an uncommon characteristic shared by the genera Mycobacterium (Section 10A) and Nocardia. Because of this feature, this stain is extremely helpful in identification of these bacteria. Although Gram positive, acid-fast bacteria do not take the crystal violet into the wall well, appearing very light purple rather than the deep purple of normal Gram-positive bacteria. (c) 2009 by John Wiley & Sons, Inc.
The Muslim football player and Ramadan: current challenges.
Zerguini, Yacine; Ahmed, Qanta A; Dvorak, Jiri
2012-01-01
Islam is a monotheistic Abrahamic faith characterised by devotional orthopraxy. The actions expected of followers of Islam are closely prescribed in the Qur'an. Muslims understand Ramadan as a mandatory requirement, excused only in the event of illness, infirmity or extremes of age. Due to the increasing popularity of football among Muslims, more and more Muslim football players of all levels make the decision to follow the Ramadan fast while they need to practise and compete. Sports medicine clinicians and scientists have the responsibility to provide them with the knowledge and evidence on how exactly Ramadan fasting impacts on their performance and how to optimise their eating, drinking and sleeping in order to minimise negative effects of their religious practice, should any have been demonstrated. The first International Federation of Football Associations (FIFA) Medical Assessment and Research Centre (F-MARC) study concluded that biochemical, nutritional, subjective well-being and performance variables were not adversely affected in young male national level players who followed Ramadan fasting in a controlled environment. Match performance was however not measured and the study did not include elite level players, leading to the Ramadan consensus meeting in order to answer the remaining questions. The conclusions and recommendations published in this supplement suggest that the best coping strategies will remain individual - as is the choice to fast.
Fast Coherent Differential Imaging for Exoplanet Imaging
NASA Astrophysics Data System (ADS)
Gerard, Benjamin; Marois, Christian; Galicher, Raphael; Veran, Jean-Pierre; Macintosh, B.; Guyon, O.; Lozi, J.; Pathak, P.; Sahoo, A.
2018-06-01
Direct detection and detailed characterization of exoplanets using extreme adaptive optics (ExAO) is a key science goal of future extremely large telescopes and space observatories. However, quasi-static wavefront errors will limit the sensitivity of this endeavor. Additional limitations for ground-based telescopes arise from residual AO-corrected atmospheric wavefront errors, generating short-lived aberrations that will average into a halo over a long exposure, also limiting the sensitivity of exoplanet detection. We develop the framework for a solution to both of these problems using the self-coherent camera (SCC), to be applied to ground-based telescopes, called Fast Atmospheric SCC Technique (FAST). Simulations show that for typical ExAO targets the FAST approach can reach ~100 times better in raw contrast than what is currently achieved with ExAO instruments if we extrapolate for an hour of observing time, illustrating that the sensitivity improvement from this method could play an essential role in the future ground-based detection and characterization of lower mass/colder exoplanets.
On the dimension of complex responses in nonlinear structural vibrations
NASA Astrophysics Data System (ADS)
Wiebe, R.; Spottswood, S. M.
2016-07-01
The ability to accurately model engineering systems under extreme dynamic loads would prove a major breakthrough in many aspects of aerospace, mechanical, and civil engineering. Extreme loads frequently induce both nonlinearities and coupling which increase the complexity of the response and the computational cost of finite element models. Dimension reduction has recently gained traction and promises the ability to distill dynamic responses down to a minimal dimension without sacrificing accuracy. In this context, the dimensionality of a response is related to the number of modes needed in a reduced order model to accurately simulate the response. Thus, an important step is characterizing the dimensionality of complex nonlinear responses of structures. In this work, the dimensionality of the nonlinear response of a post-buckled beam is investigated. Significant detail is dedicated to carefully introducing the experiment, the verification of a finite element model, and the dimensionality estimation algorithm as it is hoped that this system may help serve as a benchmark test case. It is shown that with minor modifications, the method of false nearest neighbors can quantitatively distinguish between the response dimension of various snap-through, non-snap-through, random, and deterministic loads. The state-space dimension of the nonlinear system in question increased from 2-to-10 as the system response moved from simple, low-level harmonic to chaotic snap-through. Beyond the problem studied herein, the techniques developed will serve as a prescriptive guide in developing fast and accurate dimensionally reduced models of nonlinear systems, and eventually as a tool for adaptive dimension-reduction in numerical modeling. The results are especially relevant in the aerospace industry for the design of thin structures such as beams, panels, and shells, which are all capable of spatio-temporally complex dynamic responses that are difficult and computationally expensive to model.
Quantitative Imaging in Laboratory: Fast Kinetics and Fluorescence Quenching
ERIC Educational Resources Information Center
Cumberbatch, Tanya; Hanley, Quentin S.
2007-01-01
The process of quantitative imaging, which is very commonly used in laboratory, is shown to be very useful for studying the fast kinetics and fluorescence quenching of many experiments. The imaging technique is extremely cheap and hence can be used in many absorption and luminescence experiments.
Funding of community-based interventions for HIV prevention.
Poku, Nana K; Bonnel, René
2016-07-01
Since the start of the HIV epidemic, community responses have been at the forefront of the response. Following the extraordinary expansion of global resources, the funding of community responses rose to reach at least US$690 million per year in the period 2005-2009. Since then, many civil society organisations (CSOs) have reported a drop in funding. Yet, the need for strong community responses is even more urgent, as shown by their role in reaching the Joint United Nations Programme on HIV/AIDS (UNAIDS) Fast-Track targets. In the case of antiretroviral treatment, interventions need to be adopted by most people at risk of HIV in order to have a substantial effect on the prevention of HIV at the population level. This paper reviews the published literature on community responses, funding and effectiveness. Additional funding is certainly needed to increase the coverage of community-based interventions (CBIs), but current evidence on their effectiveness is extremely mixed, which does not provide clear guidance to policy makers. This is especially an issue for adolescent girls and young women in Eastern and Southern Africa, who face extremely high infection risk, but the biomedical prevention tools that have been proven effective for the general population still remain pilot projects for this group. Research is especially needed to isolate the factors affecting the likelihood that interventions targeting this group are consistently successful. Such work could be focused on the community organisations that are currently involved in delivering gender-sensitive interventions.
Lower extremity sagittal joint moment production during split-belt treadmill walking
Roemmich, Ryan T.; Stegemöller, Elizabeth L.; Hass, Chris J.
2012-01-01
The split-belt treadmill (SBT) has recently been used to rehabilitate locomotor asymmetries in clinical populations. However, the joint mechanics produced while walking on a SBT are not well-understood. The purpose of this study was to investigate the lower extremity sagittal joint moments produced by each limb during SBT walking and provide insight as to how these joint moment patterns may be useful in rehabilitating unilateral gait deficits. Thirteen healthy young volunteers walked on the SBT with the belts tied and in a “SPLIT” session in which one belt moved twice as fast as the other. Sagittal lower extremity joint moment and ground reaction force impulses were then calculated over the braking and propulsive phases of the gait cycle. Paired t-tests were performed to analyze magnitude differences between conditions (i.e. the fast and slow limbs during SPLIT vs. the same limb during tied-belt walking) and between the fast and slow limbs during SPLIT. During the SPLIT session, the fast limb produced higher ground reaction force and ankle moment impulses during the propulsive and braking phases, and lower knee moment impulses during the propulsive phase when compared to the slow limb. The knee moment impulse was also significantly higher during braking in the slow limb than in the fast limb. The mechanics of each limb during the SPLIT session also differed from the mechanics observed when the belt speeds were tied. Based on these findings, we suggest that each belt may have intrinsic value in rehabilitating specific unilateral locomotor deficits. PMID:22985473
Comparative Analyses of Two Extremely Fast CMEs Induced Shocks using A H3DMHD Model
NASA Astrophysics Data System (ADS)
Wu, S. T.; Wu, C. C.; Liou, K.; Dryer, Ph D., M.; Plunkett, S. P.
2015-12-01
During the last two decades, spacecraft recorded several extremely fast Coronal Mass Ejections (CMEs) which have resulted in severe geomagnetic storms. Here, we will report results from a comparative study of two extremely fast CME events: one on 29 October 2003 (Halloween 2003 epoch) and the other on 23 July 2012. Both shock events reached 1 AU within ~20 hours. We employed a global three-dimensional (3D) magnetohydrodynamics (MHD) simulation model (H3DMHD, Wu et al. 2007, JGR) to study these two events and compared the results with observations (e.g., 1 AU in-situ data, and coronal images from SOHO/LASCO or STEREO/ SECCHI). It was found that: (i) The peak temperature, velocity, and density of the solar wind for the shock/ICME event are 2 x 107 K, 2500 km s-1, and 35 cm-3, respectively. (ii) The peaks of magnetic field (B) are ~60 and 110 nT for the event on 29 October 2003 and 23 July 2012, respectively. Solar wind densities behind the shocks are extremely low which are due to rarefaction of the interplanetary shocks' propagation. We will discuss this issue in the presentation. Simulations are vastly improved and forecasting arrival times should be done as noted in real time by Zhou and Dryer (Space Weather Quarterly, 2014) review, but CME and B therein is still a major challenge for storm prediction.
Simulating the Thermal Response of High Explosives on Time Scales of Days to Microseconds
NASA Astrophysics Data System (ADS)
Yoh, Jack J.; McClelland, Matthew A.
2004-07-01
We present an overview of computational techniques for simulating the thermal cookoff of high explosives using a multi-physics hydrodynamics code, ALE3D. Recent improvements to the code have aided our computational capability in modeling the response of energetic materials systems exposed to extreme thermal environments, such as fires. We consider an idealized model process for a confined explosive involving the transition from slow heating to rapid deflagration in which the time scale changes from days to hundreds of microseconds. The heating stage involves thermal expansion and decomposition according to an Arrhenius kinetics model while a pressure-dependent burn model is employed during the explosive phase. We describe and demonstrate the numerical strategies employed to make the transition from slow to fast dynamics.
Fiber optic distributed chemical sensor for the real time detection of hydrocarbon fuel leaks
NASA Astrophysics Data System (ADS)
Mendoza, Edgar; Kempen, C.; Esterkin, Yan; Sun, Sunjian
2015-09-01
With the increase worldwide demand for hydrocarbon fuels and the vast development of new fuel production and delivery infrastructure installations around the world, there is a growing need for reliable hydrocarbon fuel leak detection technologies to provide safety and reduce environmental risks. Hydrocarbon leaks (gas or liquid) pose an extreme danger and need to be detected very quickly to avoid potential disasters. Gas leaks have the greatest potential for causing damage due to the explosion risk from the dispersion of gas clouds. This paper describes progress towards the development of a fast response, high sensitivity, distributed fiber optic fuel leak detection (HySense™) system based on the use of an optical fiber that uses a hydrocarbon sensitive fluorescent coating to detect the presence of fuel leaks present in close proximity along the length of the sensor fiber. The HySense™ system operates in two modes, leak detection and leak localization, and will trigger an alarm within seconds of exposure contact. The fast and accurate response of the sensor provides reliable fluid leak detection for pipelines, storage tanks, airports, pumps, and valves to detect and minimize any potential catastrophic damage.
Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy
Klots, A. R.; Newaz, A. K. M.; Wang, Bin; ...
2014-10-16
The optical response of semiconducting monolayer transition-metal dichalcogenides (TMDCs) is dominated by strongly bound excitons that are stable even at room temperature. However, substrate-related effects such as screening and disorder in currently available specimens mask many anticipated physical phenomena and limit device applications of TMDCs. Here, we demonstrate that that these undesirable effects are strongly suppressed in suspended devices. Extremely robust (photogain > 1,000) and fast (response time < 1 ms) photoresponse allow us to study, for the first time, the formation, binding energies, and dissociation mechanisms of excitons in TMDCs through photocurrent spectroscopy. By analyzing the spectral positions ofmore » peaks in the photocurrent and by comparing them with first-principles calculations, we obtain binding energies, band gaps and spin-orbit splitting in monolayer TMDCs. For monolayer MoS2, in particular, we obtain an extremely large binding energy for band-edge excitons, Ebind ≥ 570 meV. Along with band-edge excitons, we observe excitons associated with a van Hove singularity of rather unique nature. In conclusion, the analysis of the source-drain voltage dependence of photocurrent spectra reveals exciton dissociation and photoconversion mechanisms in TMDCs.« less
Xiao, Shengwei; Zhang, Mingzhen; He, Xiaomin; Huang, Lei; Zhang, Yanxian; Ren, Baiping; Zhong, Mingqiang; Chang, Yung; Yang, Jintao; Zheng, Jie
2018-06-07
Development of smart soft actuators is highly important for fundamental research and industrial applications, but has proved to be extremely challenging. In this work, we present a facile, one-pot, one-step method to prepare dual-responsive bilayer hydrogels, consisting of a thermos-responsive poly(N-isopropyl acrylamide) (polyNIPAM) layer and a salt-responsive poly(3-(1-(4-vinylbenzyl)-1H-imidazol-3-ium-3-yl)propane-1-sulfonat) (polyVBIPS) layer. Both polyNIPAM and polyVBIPs layers exhibit a completely opposite swelling/shrinking behavior, where polyNIPAM shrinks (swells) but polyVBIPS swells (shrinks) in salt solution (water) or at high (low) temperatures. By tuning NIPAM:VBIPS ratios, the resulting polyNIPAM/polyVBIPS bilayer hydrogels enable to achieve fast and large-amplitude bidirectional bending in response to temperatures, salt concentrations, and salt types. Such bidirectional bending, bending orientation and degree can be reversibly, repeatedly, and precisely controlled by salt- or temperature-induced cooperative, swelling-shrinking properties from both layers. Based on their fast, reversible, bidirectional bending behavior, we further design two conceptual hybrid hydrogel actuators, serving as a six-arm gripper to capture, transport, and release an object and an electrical circuit switch to turn on-and-off a lamp. Different from the conventional two or multi-step methods for preparation of bilayer hydrogels, our simple, one-pot, one-step method and a new bilayer hydrogel system provide an innovative concept to explore new hydrogel-based actuators through combining different responsive materials that allow to program different stimulus for soft and intelligent materials applications.
Distributions of nerve and muscle fibre types in locust jumping muscle.
Hoyle, G
1978-04-01
Muscle fibres of the locust extensor tibiae (jumping muscle) were examined by interference microscopy and by electron microscopy. The electrical responses of single fibres and the mechanical responses of bundles or selected regions to the nerve fibres were examined. Four axons innervate the muscle: fast (FETi), slow (SETi), common inhibitor (CI) and dorsal unpaired median (DUMETi). Their distributions were examined by combined electrophysiological tracing and EM sectioning. The mean diameter of muscle fibres in different regions varies from 40 to 140 micrometer and is related to the local leg thickness rather than muscle fibre type. The fine structure of a fibre is related to its innervation. Fibres innervated by FETi but not SETi are of fast type ultrastructurally. Fibres innervated by SETi but not by FETi are of slow type ultrastructurally. Fibres innervated by both axons are generally intermediate between the extremes though more nearly of fast type than slow. Distal slow muscle fibres have much slower relaxation rates than do proximal ones. The most proximal bundles are of mixed muscle fibre type. There is an abrupt transition from a mixed population to homogeneous fast type, in the muscle units immediately distal to the most proximal bundles. This transition is associated with the presence of DUMETi terminals on some of the fibres distal to the transition point. There are no SETi endings on these same fibres. Fibres innervated by both SETi and FETi are scattered throughout the leg, but are commonest in the dorsal bundles. The percentage of these increases progressively passing distally. The most distal muscle fibres are innervated by SETi but not by FETi. It is concluded that different regions of the muscle will play different roles functionally since they are differentially sensitive to the pattern of SETi discharge.
High-temperature catalyst for catalytic combustion and decomposition
NASA Technical Reports Server (NTRS)
Mays, Jeffrey A. (Inventor); Lohner, Kevin A. (Inventor); Sevener, Kathleen M. (Inventor); Jensen, Jeff J. (Inventor)
2005-01-01
A robust, high temperature mixed metal oxide catalyst for propellant composition, including high concentration hydrogen peroxide, and catalytic combustion, including methane air mixtures. The uses include target, space, and on-orbit propulsion systems and low-emission terrestrial power and gas generation. The catalyst system requires no special preheat apparatus or special sequencing to meet start-up requirements, enabling a fast overall response time. Start-up transients of less than 1 second have been demonstrated with catalyst bed and propellant temperatures as low as 50 degrees Fahrenheit. The catalyst system has consistently demonstrated high decomposition effeciency, extremely low decomposition roughness, and long operating life on multiple test particles.
Feasibility of the Precise Energy Calibration for Fast Neutron Spectrometers
NASA Astrophysics Data System (ADS)
Gaganov, V. V.; Usenko, P. L.; Kryzhanovskaja, M. A.
2017-12-01
Computational studies aimed at improving the accuracy of measurements performed using neutron generators with a tritium target were performed. A measurement design yielding an extremely narrow peak in the energy spectrum of DT neutrons was found. The presence of such a peak establishes the conditions for precise energy calibration of fast-neutron spectrometers.
Purposeful Variable Selection and Stratification to Impute Missing FAST Data in Trauma Research
Fuchs, Paul A.; del Junco, Deborah J.; Fox, Erin E.; Holcomb, John B.; Rahbar, Mohammad H.; Wade, Charles A.; Alarcon, Louis H.; Brasel, Karen J.; Bulger, Eileen M.; Cohen, Mitchell J.; Myers, John G.; Muskat, Peter; Phelan, Herb A.; Schreiber, Martin A.; Cotton, Bryan A.
2013-01-01
Background The Focused Assessment with Sonography for Trauma (FAST) exam is an important variable in many retrospective trauma studies. The purpose of this study was to devise an imputation method to overcome missing data for the FAST exam. Due to variability in patients’ injuries and trauma care, these data are unlikely to be missing completely at random (MCAR), raising concern for validity when analyses exclude patients with missing values. Methods Imputation was conducted under a less restrictive, more plausible missing at random (MAR) assumption. Patients with missing FAST exams had available data on alternate, clinically relevant elements that were strongly associated with FAST results in complete cases, especially when considered jointly. Subjects with missing data (32.7%) were divided into eight mutually exclusive groups based on selected variables that both described the injury and were associated with missing FAST values. Additional variables were selected within each group to classify missing FAST values as positive or negative, and correct FAST exam classification based on these variables was determined for patients with non-missing FAST values. Results Severe head/neck injury (odds ratio, OR=2.04), severe extremity injury (OR=4.03), severe abdominal injury (OR=1.94), no injury (OR=1.94), other abdominal injury (OR=0.47), other head/neck injury (OR=0.57) and other extremity injury (OR=0.45) groups had significant ORs for missing data; the other group odds ratio was not significant (OR=0.84). All 407 missing FAST values were imputed, with 109 classified as positive. Correct classification of non-missing FAST results using the alternate variables was 87.2%. Conclusions Purposeful imputation for missing FAST exams based on interactions among selected variables assessed by simple stratification may be a useful adjunct to sensitivity analysis in the evaluation of imputation strategies under different missing data mechanisms. This approach has the potential for widespread application in clinical and translational research and validation is warranted. Level of Evidence Level II Prognostic or Epidemiological PMID:23778515
Comparison between extreme learning machine and wavelet neural networks in data classification
NASA Astrophysics Data System (ADS)
Yahia, Siwar; Said, Salwa; Jemai, Olfa; Zaied, Mourad; Ben Amar, Chokri
2017-03-01
Extreme learning Machine is a well known learning algorithm in the field of machine learning. It's about a feed forward neural network with a single-hidden layer. It is an extremely fast learning algorithm with good generalization performance. In this paper, we aim to compare the Extreme learning Machine with wavelet neural networks, which is a very used algorithm. We have used six benchmark data sets to evaluate each technique. These datasets Including Wisconsin Breast Cancer, Glass Identification, Ionosphere, Pima Indians Diabetes, Wine Recognition and Iris Plant. Experimental results have shown that both extreme learning machine and wavelet neural networks have reached good results.
Fast neutron measurement at Soudan Mine using a large liquid scintillation detector
NASA Astrophysics Data System (ADS)
Zhang, Chao; Mei, Dongming
2014-03-01
Characterizing neutron background is extremely important to the success of rare-event physics searching for neutrinoless double-beta decay and dark matter searches. Measuring the energy spectrum of fast neutrons for an underground laboratory is difficult and it requires intensive R&D for a given technology. EJ-301 liquid scintillator(known also as NE-213) is implemented as the target for a 12 liter neutron detector fabricated at the University of South Dakota. The light output response to atmospheric neutrons from a few MeV up to ~ 70 MeV has been calibrated for this detector. The detector has been taking data at Soudan Mine for over two years. We report the measured muon-induced neutrons in this paper. This work is supported in part by NSF PHY-0758120, PHYS-0919278, PHYS-0758120, PHYS-1242640, DOE grant DE-FG02-10ER46709, the Office of Research at the University of South Dakota and a 2010 research center support by the State of South Dakota.
NASA Astrophysics Data System (ADS)
Janiuk, Agnieszka; Moscibrodzka, Monika
Gamma Ray Bursts (GRB) are the extremely energetic transient events, visible from the most distant parts of the Universe. They are most likely powered by accretion on the hyper-Eddington rates that proceeds onto a newly born stellar mass black hole. This central engine gives rise to the most powerful, high Lorentz factor jets that are responsible for energetic gamma ray emission. We investigate the accretion flow evolution in GRB central engine, using the 2D MHD simulations in General Relativity. We compute the structure and evolution of the extremely hot and dense torus accreting onto the fast spinning black hole, which launches the magnetized jets. We calculate the chemical structure of the disk and account for neutrino cooling. Our preliminary runs apply to the short GRB case (remnant torus accreted after NS-NS or NS-BH merger). We estimate the neutrino luminosity of such an event for chosen disk and central BH mass.
A New Approximate Chimera Donor Cell Search Algorithm
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Nixon, David (Technical Monitor)
1998-01-01
The objectives of this study were to develop chimera-based full potential methodology which is compatible with overflow (Euler/Navier-Stokes) chimera flow solver and to develop a fast donor cell search algorithm that is compatible with the chimera full potential approach. Results of this work included presenting a new donor cell search algorithm suitable for use with a chimera-based full potential solver. This algorithm was found to be extremely fast and simple producing donor cells as fast as 60,000 per second.
NASA Astrophysics Data System (ADS)
Haustein, Karsten; Otto, Friederike; Uhe, Peter; Allen, Myles; Cullen, Heidi
2016-04-01
Within the last decade, extreme weather event attribution has emerged as a new field of science and garnered increasing attention from the wider scientific community and the public. Numerous methods have been put forward to determine the contribution of anthropogenic climate change to individual extreme weather events. So far nearly all such analyses were done months after an event has happened. First, we present our newly established method which can assess the fraction of attributable risk (FAR) of a severe weather event due to an external driver in real-time. The method builds on a large ensemble of atmosphere-only GCM/RCM simulations forced by seasonal forecast sea surface temperatures (SSTs). Taking the UK 2013/14 winter floods as an example, we demonstrate that the change in risk for heavy rainfall during the England floods due to anthropogenic climate change is of similar magnitude using either observed or seasonal forecast SSTs. While FAR is assumed to be independent from event-specific dynamic contributions due to anomalous circulation patterns as a first approximation, the risk of an event to occur under current conditions is clearly a function of the state of the atmosphere. The shorter the event, the more it is a result of chaotic internal weather variability. Hence we are interested to (1) attribute the event to thermodynamic and dynamic causes and to (2) establish a sensible time-scale for which we can make a useful and potentially robust attribution statement with regard to event-specific dynamics. Having tested the dynamic response of our model to SST conditions in January 2014, we find that observed SSTs are required to establish a discernible link between anomalous ocean temperatures and the atmospheric circulation over the North Atlantic in general and the UK in particular. However, for extreme events occurring under strongly anomalous SST patterns, associated with known low-frequency climate modes such as El Nino or La Nina, forecast SSTs can provide sufficient guidance to determine the dynamic contribution to the event on the basis of monthly mean values. No such link can be made (North Atlantic/Western Europe region) for shorter time-scales, unless the observed state of the circulation is taken as reference for the model analysis (e.g. Christidis et al. 2014). We present results from our most recent attribution analysis for the December 2015 UK floods (Storm Desmond and Eva), during which we find a robust teleconnection link between Pacific SSTs and North Atlantic Jetstream anomalies. This is true for both experiments, with forecast and observed SSTs. We propose a fast and simple analysis method based on the comparison of current climatological circulation patterns with actual and natural conditions. Alternative methods are discussed and analysed regarding their potential for fast-track attribution of the role of dynamics. Also, we briefly revisit the issue of internal vs forced dynamic contributions.
NASA Astrophysics Data System (ADS)
Parhi, P.; Giannini, A.; Lall, U.; Gentine, P.
2016-12-01
Assessing and managing risks posed by climate variability and change is challenging in the tropics, from both a socio-economic and a scientific perspective. Most of the vulnerable countries with a limited climate adaptation capability are in the tropics. However, climate projections, particularly of extreme precipitation, are highly uncertain there. The CMIP5 (Coupled Model Inter- comparison Project - Phase 5) inter-model range of extreme precipitation sensitivity to the global temperature under climate change is much larger in the tropics as compared to the extra-tropics. It ranges from nearly 0% to greater than 30% across models (O'Gorman 2012). The uncertainty is also large in historical gauge or satellite based observational records. These large uncertainties in the sensitivity of tropical precipitation extremes highlight the need to better understand how tropical precipitation extremes respond to warming. We hypothesize that one of the factors explaining the large uncertainty is due to differing sensitivities during different phases of warming. We consider the `growth' and `mature' phases of warming under climate variability case- typically associated with an El Niño event. In the remote tropics (away from tropical Pacific Ocean), the response of the precipitation extremes during the two phases can be through different pathways: i) a direct and fast changing radiative forcing in an atmospheric column, acting top-down due to the tropospheric warming, and/or ii) an indirect effect via changes in surface temperatures, acting bottom-up through surface water and energy fluxes. We also speculate that the insights gained here might be useful in interpreting the large sensitivity under climate change scenarios, since the physical mechanisms during the two warming phases under climate variability case, have some correspondence with an increasing and stabilized green house gas emission scenarios.
Quantifying variability in fast and slow solar wind: From turbulence to extremes
NASA Astrophysics Data System (ADS)
Tindale, E.; Chapman, S. C.; Moloney, N.; Watkins, N. W.
2017-12-01
Fast and slow solar wind exhibit variability across a wide range of spatiotemporal scales, with evolving turbulence producing fluctuations on sub-hour timescales and the irregular solar cycle modulating the system over many years. Here, we apply the data quantile-quantile (DQQ) method [Tindale and Chapman 2016, 2017] to over 20 years of Wind data, to study the time evolution of the statistical distribution of plasma parameters in fast and slow solar wind. This model-independent method allows us to simultaneously explore the evolution of fluctuations across all scales. We find a two-part functional form for the statistical distributions of the interplanetary magnetic field (IMF) magnitude and its components, with each region of the distribution evolving separately over the solar cycle. Up to a value of 8nT, turbulent fluctuations dominate the distribution of the IMF, generating the approximately lognormal shape found by Burlaga [2001]. The mean of this core-turbulence region tracks solar cycle activity, while its variance remains constant, independent of the fast or slow state of the solar wind. However, when we test the lognormality of this core-turbulence component over time, we find the model provides a poor description of the data at solar maximum, where sharp peaks in the distribution dominate over the lognormal shape. At IMF values higher than 8nT, we find a separate, extremal distribution component, whose moments are sensitive to solar cycle phase, the peak activity of the cycle and the solar wind state. We further investigate these `extremal' values using burst analysis, where a burst is defined as a continuous period of exceedance over a predefined threshold. This form of extreme value statistics allows us to study the stochastic process underlying the time series, potentially supporting a probabilistic forecast of high-energy events. Tindale, E., and S.C. Chapman (2016), Geophys. Res. Lett., 43(11) Tindale, E., and S.C. Chapman (2017), submitted Burlaga, L.F. (2001), J. Geophys. Res., 106(A8)
Spectroscopic Measurements of the Ion Velocity Distribution at the Base of the Fast Solar Wind
NASA Astrophysics Data System (ADS)
Jeffrey, Natasha L. S.; Hahn, Michael; Savin, Daniel W.; Fletcher, Lyndsay
2018-03-01
In situ measurements of the fast solar wind reveal non-thermal distributions of electrons, protons, and minor ions extending from 0.3 au to the heliopause. The physical mechanisms responsible for these non-thermal properties and the location where these properties originate remain open questions. Here, we present spectroscopic evidence, from extreme ultraviolet spectroscopy, that the velocity distribution functions (VDFs) of minor ions are already non-Gaussian at the base of the fast solar wind in a coronal hole, at altitudes of <1.1 R ⊙. Analysis of Fe, Si, and Mg spectral lines reveals a peaked line-shape core and broad wings that can be characterized by a kappa VDF. A kappa distribution fit gives very small kappa indices off-limb of κ ≈ 1.9–2.5, indicating either (a) ion populations far from thermal equilibrium, (b) fluid motions such as non-Gaussian turbulent fluctuations or non-uniform wave motions, or (c) some combination of both. These observations provide important empirical constraints for the source region of the fast solar wind and for the theoretical models of the different acceleration, heating, and energy deposition processes therein. To the best of our knowledge, this is the first time that the ion VDF in the fast solar wind has been probed so close to its source region. The findings are also a timely precursor to the upcoming 2018 launch of the Parker Solar Probe, which will provide the closest in situ measurements of the solar wind at approximately 0.04 au (8.5 solar radii).
Bromothymol blue coated fiber optic Fabry-Perot interferometer for ammonia gas sensor
NASA Astrophysics Data System (ADS)
Pawar, Dnyandeo; Mane, S. A.; Kale, S. N.
2017-04-01
A single mode fiber is used in this study, in a Y-coupler mode; the mirror tip of which is coated with bromothymol blue (BTB), homogeneously mixed in polyvinyl alcohol (PVA) matrix. The setup operated at 1550 nm, and was used to sense extremely small quantities of ammonia gas, at room temperature. The sensor is able to detect ammonia in the range of 1.5 ppm to 150 ppm; with observed sensitivity in terms of wavelength shift of 0.7 nm. The sensor showed excellent reversibility with fast response and recovery time of the order of few seconds. The possible interaction of dye with ammonia was studied and compared with chloroform.
Effective Detection of Mycotoxins by a Highly Luminescent Metal–Organic Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Zhichao; Lustig, William P.; Zhang, Jingming
In this paper, we designed and synthesized a new luminescent metal–organic framework (LMOF). LMOF-241 is highly porous and emits strong blue light with high efficiency. We demonstrate for the first time that very fast and extremely sensitive optical detection can be achieved, making use of the fluorescence quenching of an LMOF material. The compound is responsive to Aflatoxin B1 at parts per billion level, which makes it the best performing luminescence-based chemical sensor to date. We studied the electronic properties of LMOF-241 and selected mycotoxins, as well as the extent of mycotoxin–LMOF interactions, employing theoretical methods. Finally, possible electron andmore » energy transfer mechanisms are discussed.« less
Effective Detection of Mycotoxins by a Highly Luminescent Metal–Organic Framework
Hu, Zhichao; Lustig, William P.; Zhang, Jingming; ...
2015-12-11
In this paper, we designed and synthesized a new luminescent metal–organic framework (LMOF). LMOF-241 is highly porous and emits strong blue light with high efficiency. We demonstrate for the first time that very fast and extremely sensitive optical detection can be achieved, making use of the fluorescence quenching of an LMOF material. The compound is responsive to Aflatoxin B1 at parts per billion level, which makes it the best performing luminescence-based chemical sensor to date. We studied the electronic properties of LMOF-241 and selected mycotoxins, as well as the extent of mycotoxin–LMOF interactions, employing theoretical methods. Finally, possible electron andmore » energy transfer mechanisms are discussed.« less
An Efficient Pipeline Wavefront Phase Recovery for the CAFADIS Camera for Extremely Large Telescopes
Magdaleno, Eduardo; Rodríguez, Manuel; Rodríguez-Ramos, José Manuel
2010-01-01
In this paper we show a fast, specialized hardware implementation of the wavefront phase recovery algorithm using the CAFADIS camera. The CAFADIS camera is a new plenoptic sensor patented by the Universidad de La Laguna (Canary Islands, Spain): international patent PCT/ES2007/000046 (WIPO publication number WO/2007/082975). It can simultaneously measure the wavefront phase and the distance to the light source in a real-time process. The pipeline algorithm is implemented using Field Programmable Gate Arrays (FPGA). These devices present architecture capable of handling the sensor output stream using a massively parallel approach and they are efficient enough to resolve several Adaptive Optics (AO) problems in Extremely Large Telescopes (ELTs) in terms of processing time requirements. The FPGA implementation of the wavefront phase recovery algorithm using the CAFADIS camera is based on the very fast computation of two dimensional fast Fourier Transforms (FFTs). Thus we have carried out a comparison between our very novel FPGA 2D-FFTa and other implementations. PMID:22315523
Magdaleno, Eduardo; Rodríguez, Manuel; Rodríguez-Ramos, José Manuel
2010-01-01
In this paper we show a fast, specialized hardware implementation of the wavefront phase recovery algorithm using the CAFADIS camera. The CAFADIS camera is a new plenoptic sensor patented by the Universidad de La Laguna (Canary Islands, Spain): international patent PCT/ES2007/000046 (WIPO publication number WO/2007/082975). It can simultaneously measure the wavefront phase and the distance to the light source in a real-time process. The pipeline algorithm is implemented using Field Programmable Gate Arrays (FPGA). These devices present architecture capable of handling the sensor output stream using a massively parallel approach and they are efficient enough to resolve several Adaptive Optics (AO) problems in Extremely Large Telescopes (ELTs) in terms of processing time requirements. The FPGA implementation of the wavefront phase recovery algorithm using the CAFADIS camera is based on the very fast computation of two dimensional fast Fourier Transforms (FFTs). Thus we have carried out a comparison between our very novel FPGA 2D-FFTa and other implementations.
Sun, Haoxuan; Lei, Tianyu; Tian, Wei; Cao, Fengren; Xiong, Jie; Li, Liang
2017-07-01
Flexible perovskite photodetectors are usually constructed on indium-tin-oxide-coated polymer substrates, which are expensive, fragile, and not resistant to high temperature. Herein, for the first time, a high-performance flexible perovskite photodetector is fabricated based on low-cost carbon cloth via a facile solution processable strategy. In this device, perovskite microcrystal and Spiro-OMeTAD (hole transporting material) blended film act as active materials for light detection, and carbon cloth serves as both a flexible substrate and a conductive electrode. The as-fabricated photodetector shows a broad spectrum response from ultraviolet to near-infrared light, high responsivity, fast response speed, long-term stability, and self-powered capability. Flexible devices show negligible degradation after several tens of bending cycles and at the extremely bending angle of 180°. This work promises a new technique to construct flexible, high-performance photodetectors with low cost and self-powered capability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jitter Reduces Response-Time Variability in ADHD: An Ex-Gaussian Analysis.
Lee, Ryan W Y; Jacobson, Lisa A; Pritchard, Alison E; Ryan, Matthew S; Yu, Qilu; Denckla, Martha B; Mostofsky, Stewart; Mahone, E Mark
2015-09-01
"Jitter" involves randomization of intervals between stimulus events. Compared with controls, individuals with ADHD demonstrate greater intrasubject variability (ISV) performing tasks with fixed interstimulus intervals (ISIs). Because Gaussian curves mask the effect of extremely slow or fast response times (RTs), ex-Gaussian approaches have been applied to study ISV. This study applied ex-Gaussian analysis to examine the effects of jitter on RT variability in children with and without ADHD. A total of 75 children, aged 9 to 14 years (44 ADHD, 31 controls), completed a go/no-go test with two conditions: fixed ISI and jittered ISI. ADHD children showed greater variability, driven by elevations in exponential (tau), but not normal (sigma) components of the RT distribution. Jitter decreased tau in ADHD to levels not statistically different than controls, reducing lapses in performance characteristic of impaired response control. Jitter may provide a nonpharmacologic mechanism to facilitate readiness to respond and reduce lapses from sustained (controlled) performance. © 2012 SAGE Publications.
NASA Astrophysics Data System (ADS)
Delefortrie, Samuël; Saey, Timothy; Van De Vijver, Ellen; De Smedt, Philippe; Missiaen, Tine; Demerre, Ine; Van Meirvenne, Marc
2014-01-01
Subsurface investigation in the Belgian intertidal zone is severely complicated due to high heterogeneity and tides. Near-surface geophysical techniques can offer assistance since they allow fast surveying and collection of high spatial density data and frequency domain electromagnetic induction (EMI) was chosen for archaeological prospection on the Belgian shore. However, in the intertidal zone the effects of extreme salinity compromise validity of low-induction-number (LIN) approximated EMI data. In this paper, the effects of incursion of seawater on multi-receiver EMI data are investigated by means of survey results, field observations, cone penetration tests and in-situ electrical conductivity measurements. The consequences of LIN approximation breakdown were researched. Reduced depth of investigation of the quadrature-phase (Qu) response and a complex interpretation of the in-phase response were confirmed. Nonetheless, a high signal-to-noise ratio of the Qu response and viable data with regard to shallow subsurface investigation were also evidenced, allowing subsurface investigation in the intertidal zone.
Sussarellu, Rossana; Dudognon, Tony; Fabioux, Caroline; Soudant, Philippe; Moraga, Dario; Kraffe, Edouard
2013-05-01
As oxygen concentrations in marine coastal habitats can fluctuate rapidly and drastically, sessile marine organisms such as the oyster Crassostrea gigas can experience marked and rapid oxygen variations. In this study, we investigated the responses of oyster gill mitochondria to short-term hypoxia (3 and 12 h, at 1.7 mg O2 l(-1)) and subsequent re-oxygenation. Mitochondrial respiratory rates (states 3 and 4 stimulated by glutamate) and phosphorylation efficiency [respiratory control ratio (RCR) and the relationship between ADP and oxygen consumption (ADP/O)] were measured. Cytochrome c oxidase (CCO) activity and cytochrome concentrations (a, b, c1 and c) were measured to investigate the rearrangements of respiratory chain subunits. The potential implication of an alternative oxidase (AOX) was investigated using an inhibitor of the respiratory chain (antimycin A) and through gene expression analysis in gills and digestive gland. Results indicate a downregulation of mitochondrial capacity, with 60% inhibition of respiratory rates after 12 h of hypoxia. RCR remained stable, while ADP/O increased after 12 h of hypoxia and 1 h of re-oxygenation, suggesting increased phosphorylation efficiency. CCO showed a fast and remarkable increase of its catalytic activity only after 3 h of hypoxia. AOX mRNA levels showed similar patterns in gills and digestive gland, and were upregulated after 12 and 24 h of hypoxia and during re-oxygenation. Results suggest a set of controls regulating mitochondrial functions in response to oxygen fluctuations, and demonstrate the fast and extreme plasticity of oyster mitochondria in response to oxygen variations.
Following the dynamics of matter with femtosecond precision using the X-ray streaking method
David, C.; Karvinen, P.; Sikorski, M.; ...
2015-01-06
X-ray Free Electron Lasers (FELs) can produce extremely intense and very short pulses, down to below 10 femtoseconds (fs). Among the key applications are ultrafast time-resolved studies of dynamics of matter by observing responses to fast excitation pulses in a pump-probe manner. Detectors with sufficient time resolution for observing these processes are not available. Therefore, such experiments typically measure a sample's full dynamics by repeating multiple pump-probe cycles at different delay times. This conventional method assumes that the sample returns to an identical or very similar state after each cycle. Here we describe a novel approach that can provide amore » time trace of responses following a single excitation pulse, jitter-free, with fs timing precision. We demonstrate, in an X-ray diffraction experiment, how it can be applied to the investigation of ultrafast irreversible processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Sudipta; Nelson, Austin; Hoke, Anderson
2016-12-12
Traditional testing methods fall short in evaluating interactions between multiple smart inverters providing advanced grid support functions due to the fact that such interactions largely depend on their placements on the electric distribution systems with impedances between them. Even though significant concerns have been raised by the utilities on the effects of such interactions, little effort has been made to evaluate them. In this paper, power hardware-in-the-loop (PHIL) based testing was utilized to evaluate autonomous volt-var operations of multiple smart photovoltaic (PV) inverters connected to a simple distribution feeder model. The results provided in this paper show that depending onmore » volt-var control (VVC) parameters and grid parameters, interaction between inverters and between the inverter and the grid is possible in some extreme cases with very high VVC slopes, fast response times and large VVC response delays.« less
Evans, Anthony M; Dillon, Kyle D; Rand, David G
2015-10-01
When people have the chance to help others at a cost to themselves, are cooperative decisions driven by intuition or reflection? To answer this question, recent studies have tested the relationship between reaction times (RTs) and cooperation, reporting both positive and negative correlations. To reconcile this apparent contradiction, we argue that decision conflict (rather than the use of intuition vs. reflection) drives response times, leading to an inverted-U shaped relationship between RT and cooperation. Studies 1 through 3 show that intermediate decisions take longer than both extremely selfish and extremely cooperative decisions. Studies 4 and 5 find that the conflict between self-interested and cooperative motives explains individual differences in RTs. Manipulating conflictedness causes longer RTs and more intermediate decisions, and RTs mediate the relationship between conflict and intermediate decisions. Finally, Studies 6 and 7 demonstrate that conflict is distinct from reflection by manipulating the use of intuition (vs. reflection). Experimentally promoting reliance on intuition increases cooperation, but has no effects on decision extremity or feelings of conflictedness. In sum, we provide evidence that RTs should not be interpreted as a direct proxy for the use of intuitive or reflective processes, and dissociate the effects of conflict and reflection in social decision making. (c) 2015 APA, all rights reserved).
The coastal ocean response to the global warming acceleration and hiatus
Liao, Enhui; Lu, Wenfang; Yan, Xiao-Hai; Jiang, Yuwu; Kidwell, Autumn
2015-01-01
Coastlines are fundamental to humans for habitation, commerce, and natural resources. Many coastal ecosystem disasters, caused by extreme sea surface temperature (SST), were reported when the global climate shifted from global warming to global surface warming hiatus after 1998. The task of understanding the coastal SST variations within the global context is an urgent matter. Our study on the global coastal SST from 1982 to 2013 revealed a significant cooling trend in the low and mid latitudes (31.4% of the global coastlines) after 1998, while 17.9% of the global coastlines changed from a cooling trend to a warming trend concurrently. The trend reversals in the Northern Pacific and Atlantic coincided with the phase shift of Pacific Decadal Oscillation and North Atlantic Oscillation, respectively. These coastal SST changes are larger than the changes of the global mean and open ocean, resulting in a fast increase of extremely hot/cold days, and thus extremely hot/cold events. Meanwhile, a continuous increase of SST was detected for a considerable portion of coastlines (46.7%) with a strengthened warming along the coastlines in the high northern latitudes. This suggests the warming still continued and strengthened in some regions after 1998, but with a weaker pattern in the low and mid latitudes. PMID:26568024
Enhanced Cumulative Sum Charts for Monitoring Process Dispersion
Abujiya, Mu’azu Ramat; Riaz, Muhammad; Lee, Muhammad Hisyam
2015-01-01
The cumulative sum (CUSUM) control chart is widely used in industry for the detection of small and moderate shifts in process location and dispersion. For efficient monitoring of process variability, we present several CUSUM control charts for monitoring changes in standard deviation of a normal process. The newly developed control charts based on well-structured sampling techniques - extreme ranked set sampling, extreme double ranked set sampling and double extreme ranked set sampling, have significantly enhanced CUSUM chart ability to detect a wide range of shifts in process variability. The relative performances of the proposed CUSUM scale charts are evaluated in terms of the average run length (ARL) and standard deviation of run length, for point shift in variability. Moreover, for overall performance, we implore the use of the average ratio ARL and average extra quadratic loss. A comparison of the proposed CUSUM control charts with the classical CUSUM R chart, the classical CUSUM S chart, the fast initial response (FIR) CUSUM R chart, the FIR CUSUM S chart, the ranked set sampling (RSS) based CUSUM R chart and the RSS based CUSUM S chart, among others, are presented. An illustrative example using real dataset is given to demonstrate the practicability of the application of the proposed schemes. PMID:25901356
Hume, Benjamin C C; Voolstra, Christian R; Arif, Chatchanit; D'Angelo, Cecilia; Burt, John A; Eyal, Gal; Loya, Yossi; Wiedenmann, Jörg
2016-04-19
Coral communities in the Persian/Arabian Gulf (PAG) withstand unusually high salinity levels and regular summer temperature maxima of up to ∼35 °C that kill conspecifics elsewhere. Due to the recent formation of the PAG and its subsequent shift to a hot climate, these corals have had only <6,000 y to adapt to these extreme conditions and can therefore inform on how coral reefs may respond to global warming. One key to coral survival in the world's warmest reefs are symbioses with a newly discovered alga,Symbiodinium thermophilum Currently, it is unknown whether this symbiont originated elsewhere or emerged from unexpectedly fast evolution catalyzed by the extreme environment. Analyzing genetic diversity of symbiotic algae across >5,000 km of the PAG, the Gulf of Oman, and the Red Sea coastline, we show thatS. thermophilumis a member of a highly diverse, ancient group of symbionts cryptically distributed outside the PAG. We argue that the adjustment to temperature extremes by PAG corals was facilitated by the positive selection of preadapted symbionts. Our findings suggest that maintaining the largest possible pool of potentially stress-tolerant genotypes by protecting existing biodiversity is crucial to promote rapid adaptation to present-day climate change, not only for coral reefs, but for ecosystems in general.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graf, Peter; Damiani, Rick R.; Dykes, Katherine
2017-01-09
A new adaptive stratified importance sampling (ASIS) method is proposed as an alternative approach for the calculation of the 50 year extreme load under operational conditions, as in design load case 1.1 of the the International Electrotechnical Commission design standard. ASIS combines elements of the binning and extrapolation technique, currently described by the standard, and of the importance sampling (IS) method to estimate load probability of exceedances (POEs). Whereas a Monte Carlo (MC) approach would lead to the sought level of POE with a daunting number of simulations, IS-based techniques are promising as they target the sampling of the inputmore » parameters on the parts of the distributions that are most responsible for the extreme loads, thus reducing the number of runs required. We compared the various methods on select load channels as output from FAST, an aero-hydro-servo-elastic tool for the design and analysis of wind turbines developed by the National Renewable Energy Laboratory (NREL). Our newly devised method, although still in its infancy in terms of tuning of the subparameters, is comparable to the others in terms of load estimation and its variance versus computational cost, and offers great promise going forward due to the incorporation of adaptivity into the already powerful importance sampling concept.« less
The coastal ocean response to the global warming acceleration and hiatus.
Liao, Enhui; Lu, Wenfang; Yan, Xiao-Hai; Jiang, Yuwu; Kidwell, Autumn
2015-11-16
Coastlines are fundamental to humans for habitation, commerce, and natural resources. Many coastal ecosystem disasters, caused by extreme sea surface temperature (SST), were reported when the global climate shifted from global warming to global surface warming hiatus after 1998. The task of understanding the coastal SST variations within the global context is an urgent matter. Our study on the global coastal SST from 1982 to 2013 revealed a significant cooling trend in the low and mid latitudes (31.4% of the global coastlines) after 1998, while 17.9% of the global coastlines changed from a cooling trend to a warming trend concurrently. The trend reversals in the Northern Pacific and Atlantic coincided with the phase shift of Pacific Decadal Oscillation and North Atlantic Oscillation, respectively. These coastal SST changes are larger than the changes of the global mean and open ocean, resulting in a fast increase of extremely hot/cold days, and thus extremely hot/cold events. Meanwhile, a continuous increase of SST was detected for a considerable portion of coastlines (46.7%) with a strengthened warming along the coastlines in the high northern latitudes. This suggests the warming still continued and strengthened in some regions after 1998, but with a weaker pattern in the low and mid latitudes.
NASA Astrophysics Data System (ADS)
Stock, Joachim W.; Kitzmann, Daniel; Patzer, A. Beate C.; Sedlmayr, Erwin
2018-06-01
For the calculation of complex neutral/ionized gas phase chemical equilibria, we present a semi-analytical versatile and efficient computer program, called FastChem. The applied method is based on the solution of a system of coupled nonlinear (and linear) algebraic equations, namely the law of mass action and the element conservation equations including charge balance, in many variables. Specifically, the system of equations is decomposed into a set of coupled nonlinear equations in one variable each, which are solved analytically whenever feasible to reduce computation time. Notably, the electron density is determined by using the method of Nelder and Mead at low temperatures. The program is written in object-oriented C++ which makes it easy to couple the code with other programs, although a stand-alone version is provided. FastChem can be used in parallel or sequentially and is available under the GNU General Public License version 3 at https://github.com/exoclime/FastChem together with several sample applications. The code has been successfully validated against previous studies and its convergence behavior has been tested even for extreme physical parameter ranges down to 100 K and up to 1000 bar. FastChem converges stable and robust in even most demanding chemical situations, which posed sometimes extreme challenges for previous algorithms.
Enabling fast charging - A battery technology gap assessment
NASA Astrophysics Data System (ADS)
Ahmed, Shabbir; Bloom, Ira; Jansen, Andrew N.; Tanim, Tanvir; Dufek, Eric J.; Pesaran, Ahmad; Burnham, Andrew; Carlson, Richard B.; Dias, Fernando; Hardy, Keith; Keyser, Matthew; Kreuzer, Cory; Markel, Anthony; Meintz, Andrew; Michelbacher, Christopher; Mohanpurkar, Manish; Nelson, Paul A.; Robertson, David C.; Scoffield, Don; Shirk, Matthew; Stephens, Thomas; Vijayagopal, Ram; Zhang, Jiucai
2017-11-01
The battery technology literature is reviewed, with an emphasis on key elements that limit extreme fast charging. Key gaps in existing elements of the technology are presented as well as developmental needs. Among these needs are advanced models and methods to detect and prevent lithium plating; new positive-electrode materials which are less prone to stress-induced failure; better electrode designs to accommodate very rapid diffusion in and out of the electrode; measure temperature distributions during fast charge to enable/validate models; and develop thermal management and pack designs to accommodate the higher operating voltage.
van der Merwe, Rudolph; Leen, Todd K; Lu, Zhengdong; Frolov, Sergey; Baptista, Antonio M
2007-05-01
We present neural network surrogates that provide extremely fast and accurate emulation of a large-scale circulation model for the coupled Columbia River, its estuary and near ocean regions. The circulation model has O(10(7)) degrees of freedom, is highly nonlinear and is driven by ocean, atmospheric and river influences at its boundaries. The surrogates provide accurate emulation of the full circulation code and run over 1000 times faster. Such fast dynamic surrogates will enable significant advances in ensemble forecasts in oceanography and weather.
La Fountaine, Michael F; Cirnigliaro, Christopher M; Azarelo, Frank; Hobson, Joshua C; Tascione, Oriana; Swonger, Kirsten N; Dyson-Hudson, Trevor; Bauman, William A
2017-09-01
What is the central question of this study? What impact does insulin resistance have on cutaneous perfusion responses to insulin iontophoresis in vascular beds with markedly reduced or functionally ablated sympathetic nervous system vasomotor function resulting from spinal cord injury? What is the main finding and its importance? Persons with spinal cord injury have sublesional microvascular endothelial dysfunction, as indicated by a blunted cutaneous perfusion response to acetylcholine iontophoresis, and the presence of insulin resistance has a further confounding effect on endothelium-mediated changes to cutaneous perfusion in the lower extremities. Endothelium-mediated mechanisms that regulate skin blood flow might play an integral role in optimizing skin perfusion in vascular beds with sympathetic nervous system vasomotor impairment, such as in spinal cord injury (SCI). Insulin is a vasoactive hormone and second messenger of nitric oxide that facilitates endothelium-mediated dilatation. The effects of insulin resistance (IR) on sublesional cutaneous perfusion responses to insulin provocation have yet to be described in persons with SCI. Persons with SCI and an able-bodied (AB) cohort were divided into subgroups based upon fasting plasma insulin concentration cut-offs for IR (≥13.13 mIU ml -1 ) or insulin sensitivity (IS; <13.13 mIU ml -1 ), as follows: AB, IS (ABIS, n = 21); SCI, IS (SCIS, n = 21); AB, IR (ABIR, n = 9); and SCI, IR (SCIR, n = 11). Laser Doppler flowmetry characterized peak blood perfusion unit (BPU) responses (percentage change from baseline) to insulin, acetylcholine or placebo iontophoresis in the lower extremities; BPU responses were log 10 transformed to facilitate comparisons, and the net insulin response (NetIns) BPU response was calculated (insulin minus placebo BPU response). The NetIns was significantly greater in both IS groups compared with their corresponding IR group. The acetylcholine-mediated BPU responses in the SCI subgroups were significantly lower than those in the ABIS group. The proportional BPU responses of NetIns to acetylcholine in the IS cohorts (i.e. ABIS and SCIS) were significantly greater (P < 0.05) than that of each IR subgroup. The presence of IR has a confounding effect on sublesional microvascular endothelium-mediated cutaneous perfusion responses to provocation. Preservation of endothelial sensitivity to its agonists appears to be an important modifiable risk factor to optimize cutaneous perfusion in the lower extremities of persons with SCI. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Research progress of extreme climate and its vegetation response
NASA Astrophysics Data System (ADS)
Cui, Xiaolin; Wei, Xiaoqing; Wang, Tao
2017-08-01
The IPCC’s fifth assessment report indicates that climate warming is unquestionable, the frequency and intensity of extreme weather events may increase, and extreme weather events can destroy the growth conditions of vegetation that is otherwise in a stable condition. Therefore, it is essential to research the formation of extreme weather events and its ecological response, both in terms scientific development and the needs of societal development. This paper mainly examines these issues from the following aspects: (1) the definition of extreme climate events and the methods of studying the associated response of vegetation; (2) the research progress on extreme climate events and their vegetation response; and (3) the future direction of research on extreme climate and its vegetation response.
SU-E-J-191: Motion Prediction Using Extreme Learning Machine in Image Guided Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, J; Cao, R; Pei, X
Purpose: Real-time motion tracking is a critical issue in image guided radiotherapy due to the time latency caused by image processing and system response. It is of great necessity to fast and accurately predict the future position of the respiratory motion and the tumor location. Methods: The prediction of respiratory position was done based on the positioning and tracking module in ARTS-IGRT system which was developed by FDS Team (www.fds.org.cn). An approach involving with the extreme learning machine (ELM) was adopted to predict the future respiratory position as well as the tumor’s location by training the past trajectories. For themore » training process, a feed-forward neural network with one single hidden layer was used for the learning. First, the number of hidden nodes was figured out for the single layered feed forward network (SLFN). Then the input weights and hidden layer biases of the SLFN were randomly assigned to calculate the hidden neuron output matrix. Finally, the predicted movement were obtained by applying the output weights and compared with the actual movement. Breathing movement acquired from the external infrared markers was used to test the prediction accuracy. And the implanted marker movement for the prostate cancer was used to test the implementation of the tumor motion prediction. Results: The accuracy of the predicted motion and the actual motion was tested. Five volunteers with different breathing patterns were tested. The average prediction time was 0.281s. And the standard deviation of prediction accuracy was 0.002 for the respiratory motion and 0.001 for the tumor motion. Conclusion: The extreme learning machine method can provide an accurate and fast prediction of the respiratory motion and the tumor location and therefore can meet the requirements of real-time tumor-tracking in image guided radiotherapy.« less
Kinematic Mechanisms of How Power Training Improves Healthy Old Adults' Gait Velocity.
Beijersbergen, Chantal M I; Granacher, Urs; Gäbler, Martijn; Devita, Paul; Hortobágyi, Tibor
2017-01-01
Slow gait predicts many adverse clinical outcomes in old adults, but the mechanisms of how power training can minimize the age-related loss of gait velocity is unclear. We examined the effects of 10 wk of lower extremity power training and detraining on healthy old adults' lower extremity muscle power and gait kinematics. As part of the Potsdam Gait Study, participants started with 10 wk of power training followed by 10 wk of detraining (n = 16), and participants started with a 10-wk control period followed by 10 wk of power training (n = 16). We measured gait kinematics (stride characteristic and joint kinematics) and isokinetic power of the ankle plantarflexor (20°·s, 40°·s, and 60°·s) and knee extensor and flexor (60°·s, 120°·s, and 180°·s) muscles at weeks 0, 10, and 20. Power training improved isokinetic muscle power by ~30% (P ≤ 0.001) and fast (5.9%, P < 0.05) but not habitual gait velocity. Ankle plantarflexor velocity measured during gait at fast pace decreased by 7.9% (P < 0.05). The changes isokinetic muscle power and joint kinematics did not correlate with increases in fast gait velocity. The mechanisms that increased fast gait velocity involved higher cadence (r = 0.86, P ≤ 0.001) rather than longer strides (r = 0.49, P = 0.066). Detraining did not reverse the training-induced increases in muscle power and fast gait velocity. Because increases in muscle power and modifications in joint kinematics did not correlate with increases in fast gait velocity, kinematic mechanisms seem to play a minor role in improving healthy old adults' fast gait velocity after power training.
Gravitational Waves From the Kerr/CFT Correspondence
NASA Astrophysics Data System (ADS)
Porfyriadis, Achilleas
Astronomical observation suggests the existence of near-extreme Kerr black holes in the sky. Properties of diffeomorphisms imply that dynamics of the near-horizon region of near-extreme Kerr are governed by an infinite-dimensional conformal symmetry. This symmetry may be exploited to analytically, rather than numerically, compute a variety of potentially observable processes. In this thesis we compute the gravitational radiation emitted by a small compact object that orbits in the near-horizon region and plunges into the horizon of a large rapidly rotating black hole. We study the holographically dual processes in the context of the Kerr/CFT correspondence and find our conformal field theory (CFT) computations in perfect agreement with the gravity results. We compute the radiation emitted by a particle on the innermost stable circular orbit (ISCO) of a rapidly spinning black hole. We confirm previous estimates of the overall scaling of the power radiated, but show that there are also small oscillations all the way to extremality. Furthermore, we reveal an intricate mode-by-mode structure in the flux to infinity, with only certain modes having the dominant scaling. The scaling of each mode is controlled by its conformal weight. Massive objects in adiabatic quasi-circular inspiral towards a near-extreme Kerr black hole quickly plunge into the horizon after passing the ISCO. The post-ISCO plunge trajectory is shown to be related by a conformal map to a circular orbit. Conformal symmetry of the near-horizon region is then used to compute analytically the gravitational radiation produced during the plunge phase. Most extreme-mass-ratio-inspirals of small compact objects into supermassive black holes end with a fast plunge from an eccentric last stable orbit. We use conformal transformations to analytically solve for the radiation emitted from various fast plunges into extreme and near-extreme Kerr black holes.
Decreased insulin response in dairy cows following a four-day fast to induce hepatic lipidosis.
Oikawa, S; Oetzel, G R
2006-08-01
Negative energy balance has been implicated in the development of fatty liver, insulin resistance, and impaired health in dairy cows. A 4-d fasting model previously was reported to increase liver triglycerides more than 2.5-fold. The purpose of the present study was to evaluate insulin response in this fasting model. Nonlactating, nonpregnant Holstein cows were fasted for 4 d (6 cows) or fed continuously as control cows (4 cows). Samples were collected 5 d before fasting, during fasting, and immediately after the 4-d fast, 8 d after the fast, and 16 d after the fast. Fasted cows had greater liver triglyceride content (49.4 vs. 16.2 mg/g, wet-weight basis) at the end of the fasting period compared with control cows. Fasted cows also had increased plasma nonesterified fatty acid (NEFA) concentrations (1.24 vs. 0.21 mmol/L) and increased plasma beta-hydroxybutyrate (BHBA) concentrations at the end of the fasting period. Liver triglyceride, plasma NEFA, and plasma BHBA in fasted cows returned to prefasting concentrations by the end of the experiment. Plasma glucose concentrations were not affected by fasting. Plasma insulin concentrations were decreased (6.3 vs. 14.1 microU/mL) and insulin-stimulated blood glucose reduction was decreased (24.9 vs. 48.6%) in the fasted cows compared with control cows at the end of the fast, indicating reduced insulin response. Insulin response was negatively correlated with plasma NEFA and liver triglycerides. Decreased insulin response may be an important complication of negative energy balance and hepatic lipidosis.
... difficulty thinking of words or trouble speaking difficulty thinking or concentrating lack of coordination difficulty walking severe weakness severe muscle pain extreme tiredness loss of appetite fast, shallow breathing irregular heartbeat loss of consciousness Zonisamide ...
Fast detection of the fuzzy communities based on leader-driven algorithm
NASA Astrophysics Data System (ADS)
Fang, Changjian; Mu, Dejun; Deng, Zhenghong; Hu, Jun; Yi, Chen-He
2018-03-01
In this paper, we present the leader-driven algorithm (LDA) for learning community structure in networks. The algorithm allows one to find overlapping clusters in a network, an important aspect of real networks, especially social networks. The algorithm requires no input parameters and learns the number of clusters naturally from the network. It accomplishes this using leadership centrality in a clever manner. It identifies local minima of leadership centrality as followers which belong only to one cluster, and the remaining nodes are leaders which connect clusters. In this way, the number of clusters can be learned using only the network structure. The LDA is also an extremely fast algorithm, having runtime linear in the network size. Thus, this algorithm can be used to efficiently cluster extremely large networks.
Telescience - Concepts and contributions to the Extreme Ultraviolet Explorer mission
NASA Technical Reports Server (NTRS)
Marchant, Will; Dobson, Carl; Chakrabarti, Supriya; Malina, Roger F.
1987-01-01
It is shown how the contradictory goals of low-cost and fast data turnaround characterizing the Extreme Ultraviolet Explorer (EUVE) mission can be achieved via the early use of telescience style transparent tools and simulations. The use of transparent tools reduces the parallel development of capability while ensuring that valuable prelaunch experience is not lost in the operations phase. Efforts made to upgrade the 'EUVE electronics' simulator are described.
NASA Technical Reports Server (NTRS)
Lohner, Kevin A. (Inventor); Mays, Jeffrey A. (Inventor); Sevener, Kathleen M. (Inventor)
2004-01-01
A method for designing and assembling a high performance catalyst bed gas generator for use in decomposing propellants, particularly hydrogen peroxide propellants, for use in target, space, and on-orbit propulsion systems and low-emission terrestrial power and gas generation. The gas generator utilizes a sectioned catalyst bed system, and incorporates a robust, high temperature mixed metal oxide catalyst. The gas generator requires no special preheat apparatus or special sequencing to meet start-up requirements, enabling a fast overall response time. The high performance catalyst bed gas generator system has consistently demonstrated high decomposition efficiency, extremely low decomposition roughness, and long operating life on multiple test articles.
Right or wrong? The brain's fast response to morally objectionable statements.
Van Berkum, Jos J A; Holleman, Bregje; Nieuwland, Mante; Otten, Marte; Murre, Jaap
2009-09-01
How does the brain respond to statements that clash with a person's value system? We recorded event-related brain potentials while respondents from contrasting political-ethical backgrounds completed an attitude survey on drugs, medical ethics, social conduct, and other issues. Our results show that value-based disagreement is unlocked by language extremely rapidly, within 200 to 250 ms after the first word that indicates a clash with the reader's value system (e.g., "I think euthanasia is an acceptable/unacceptable..."). Furthermore, strong disagreement rapidly influences the ongoing analysis of meaning, which indicates that even very early processes in language comprehension are sensitive to a person's value system. Our results testify to rapid reciprocal links between neural systems for language and for valuation.
FAST-PT: a novel algorithm to calculate convolution integrals in cosmological perturbation theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
McEwen, Joseph E.; Fang, Xiao; Hirata, Christopher M.
2016-09-01
We present a novel algorithm, FAST-PT, for performing convolution or mode-coupling integrals that appear in nonlinear cosmological perturbation theory. The algorithm uses several properties of gravitational structure formation—the locality of the dark matter equations and the scale invariance of the problem—as well as Fast Fourier Transforms to describe the input power spectrum as a superposition of power laws. This yields extremely fast performance, enabling mode-coupling integral computations fast enough to embed in Monte Carlo Markov Chain parameter estimation. We describe the algorithm and demonstrate its application to calculating nonlinear corrections to the matter power spectrum, including one-loop standard perturbation theorymore » and the renormalization group approach. We also describe our public code (in Python) to implement this algorithm. The code, along with a user manual and example implementations, is available at https://github.com/JoeMcEwen/FAST-PT.« less
Wan, Shulin; Zheng, Yang; Shen, Jie; Yang, Wantai; Yin, Meizhen
2014-11-26
A novel spiropyran that responds to both extreme acid and extreme alkali and has an "on-off-on" switch is reported. Benzoic acid at the indole N-position and carboxyl group at the indole 6-position contribute to the extreme acid response. The ionizations of carboxyl and phenolic hydroxyl groups cause the extreme alkali response. Moreover, the fluorescent imaging in bacterial cells under extreme pH conditions supports the mechanism of pH response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malony, Allen D; Shende, Sameer
This is the final progress report for the FastOS (Phase 2) (FastOS-2) project with Argonne National Laboratory and the University of Oregon (UO). The project started at UO on July 1, 2008 and ran until April 30, 2010, at which time a six-month no-cost extension began. The FastOS-2 work at UO delivered excellent results in all research work areas: * scalable parallel monitoring * kernel-level performance measurement * parallel I/0 system measurement * large-scale and hybrid application performance measurement * onlne scalable performance data reduction and analysis * binary instrumentation
Enabling fast charging – A battery technology gap assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Shabbir; Bloom, Ira; Jansen, Andrew N.
The battery technology literature is reviewed, with an emphasis on key elements that limit extreme fast charging. Key gaps in existing elements of the technology are presented as well as developmental needs. Among these needs are advanced models and methods to detect and prevent lithium plating; new positive-electrode materials which are less prone to stress-induced failure; better electrode designs to accommodate very rapid diffusion in and out of the electrode; measure temperature distributions during fast charge to enable/validate models; and develop thermal management and pack designs to accommodate the higher operating voltage.
Enabling fast charging – A battery technology gap assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Shabbir; Bloom, Ira; Jansen, Andrew N.
The battery technology literature is reviewed, with an emphasis on key elements that limit extreme fast charging. Key gaps in existing elements of the technology are presented as well as developmental needs. Among these needs are advanced models and methods to detect and prevent lithium plating; new positive-electrode materials which are less prone to stress-induced failure; better electrode designs to accommodate very rapid diffusion in and out of the electrode; measure temperature distributions during fast charge to enable / validate models; and develop thermal management and pack designs to accommodate the higher operating voltage.
A FAST PROPAGATING EXTREME-ULTRAVIOLET WAVE ASSOCIATED WITH A MINI-FILAMENT ERUPTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng Ruisheng; Jiang Yunchun; Yang Jiayan
The fast extreme-ultraviolet (EUV) waves (>1000 km s{sup -1}) in the solar corona were very rare in the past. Taking advantage of the high temporal and spatial resolution of the Solar Dynamics Observatory observations, we present a fast EUV wave associated with a mini-filament eruption, a C1.0 flare, and a coronal mass ejection (CME) on 2011 September 30. The event took place at the periphery between two active regions (ARs). The mini-filament rapidly erupted as a blowout jet associated with a flare and a CME. The CME front was likely developed from the large-scale overlying loops. The wave onset wasmore » nearly simultaneous with the start of the jet and the flare. The wave departed far from the flare center and showed a close location relative to the rapid jet. The wave had an initial speed of about 1100 km s{sup -1} and a slight deceleration in the last phase, and the velocity decreased to about 500 km s{sup -1}. The wave propagated in a narrow angle extent, likely to avoid the ARs on both sides. All the results provide evidence that the fast EUV wave was a fast-mode MHD wave. The wave resisted being driven by the CME, because it opened up the large-scale loops and its front likely formed later than the wave. The wave was most likely triggered by the jet, due to their close timing and location relations.« less
Fast temporal correlation between hard X-ray and ultraviolet continuum brightenings
NASA Technical Reports Server (NTRS)
Machado, Marcos E.; Mauas, Pablo J.
1986-01-01
Recent Solar Maximum Mission (SMM) observations have shown fast and simultaneous increases in hard X-rays (HXR, E25 keV) and ultraviolet continuum (UVC, lambda lambda approx. equals 1600 and 1388 A) radiation. A simple and natural explanation is given for this phenomenon to happen, which does not involve extreme conditions for energy transport processes, and confirms earlier results on the effect of XUV photoionization in the solar atmosphere.
Development of a High-Throughput Microwave Imaging System for Concealed Weapons Detection
2016-07-15
hardware. Index Terms—Microwave imaging, multistatic radar, Fast Fourier Transform (FFT). I. INTRODUCTION Near-field microwave imaging is a non-ionizing...configuration, but its computational demands are extreme. Fast Fourier Transform (FFT) imaging has long been used to efficiently construct images sampled with...Simulated image of 25 point scatterers imaged at range 1.5m, with array layout depicted in Fig. 3. Left: image formed with Equation (5) ( Fourier
NASA Technical Reports Server (NTRS)
Coffey, V. N.; Chandler, M. O.
2017-01-01
The scientific target of NASA's Magnetospheric Multiscale (MMS) mission is to study the fundamentally important phenomenon of magnetic reconnection. Theoretical models of this process predict a small size, on the order of hundred kilometers, for the ion diffusion region where ions are demagnetized at the dayside magnetopause. This region may typically sweep over the spacecraft at relatively high speeds of 50 km/s, requiring the fast plasma investigation (FPI) instrument suite to have an extremely high time resolution for measurements of the 3D particle distribution functions. As part of the FPI on MMS, the 16 dual ion spectrometers (DIS) will provide fast (150 ms) 3D ion velocity distributions, from 10 to 30,000 eV/q, by combining the measurements from four dual spectrometers on each of four MMS spacecraft. For any multispacecraft mission, the response uniformity among the spectrometer set assumes an enhanced importance. Due to these demanding instrument requirements and the effort of calibrating more than 32 sensors (16 × 2) within a tight schedule, a highly systematic and precise calibration was required for measurement repeatability. To illustrate how this challenge was met, a brief overview of the FPI DIS was presented with a detailed discussion of the calibration method of approach and implementation. Finally, a discussion of DIS performance results, their unit-to-unit variation, and the lessons learned from this calibration effort are presented.
Fast-slow continuum and reproductive strategies structure plant life-history variation worldwide.
Salguero-Gómez, Roberto; Jones, Owen R; Jongejans, Eelke; Blomberg, Simon P; Hodgson, David J; Mbeau-Ache, Cyril; Zuidema, Pieter A; de Kroon, Hans; Buckley, Yvonne M
2016-01-05
The identification of patterns in life-history strategies across the tree of life is essential to our prediction of population persistence, extinction, and diversification. Plants exhibit a wide range of patterns of longevity, growth, and reproduction, but the general determinants of this enormous variation in life history are poorly understood. We use demographic data from 418 plant species in the wild, from annual herbs to supercentennial trees, to examine how growth form, habitat, and phylogenetic relationships structure plant life histories and to develop a framework to predict population performance. We show that 55% of the variation in plant life-history strategies is adequately characterized using two independent axes: the fast-slow continuum, including fast-growing, short-lived plant species at one end and slow-growing, long-lived species at the other, and a reproductive strategy axis, with highly reproductive, iteroparous species at one extreme and poorly reproductive, semelparous plants with frequent shrinkage at the other. Our findings remain consistent across major habitats and are minimally affected by plant growth form and phylogenetic ancestry, suggesting that the relative independence of the fast-slow and reproduction strategy axes is general in the plant kingdom. Our findings have similarities with how life-history strategies are structured in mammals, birds, and reptiles. The position of plant species populations in the 2D space produced by both axes predicts their rate of recovery from disturbances and population growth rate. This life-history framework may complement trait-based frameworks on leaf and wood economics; together these frameworks may allow prediction of responses of plants to anthropogenic disturbances and changing environments.
Hume, Benjamin C. C.; Voolstra, Christian R.; Arif, Chatchanit; D’Angelo, Cecilia; Burt, John A.; Eyal, Gal; Loya, Yossi; Wiedenmann, Jörg
2016-01-01
Coral communities in the Persian/Arabian Gulf (PAG) withstand unusually high salinity levels and regular summer temperature maxima of up to ∼35 °C that kill conspecifics elsewhere. Due to the recent formation of the PAG and its subsequent shift to a hot climate, these corals have had only <6,000 y to adapt to these extreme conditions and can therefore inform on how coral reefs may respond to global warming. One key to coral survival in the world’s warmest reefs are symbioses with a newly discovered alga, Symbiodinium thermophilum. Currently, it is unknown whether this symbiont originated elsewhere or emerged from unexpectedly fast evolution catalyzed by the extreme environment. Analyzing genetic diversity of symbiotic algae across >5,000 km of the PAG, the Gulf of Oman, and the Red Sea coastline, we show that S. thermophilum is a member of a highly diverse, ancient group of symbionts cryptically distributed outside the PAG. We argue that the adjustment to temperature extremes by PAG corals was facilitated by the positive selection of preadapted symbionts. Our findings suggest that maintaining the largest possible pool of potentially stress-tolerant genotypes by protecting existing biodiversity is crucial to promote rapid adaptation to present-day climate change, not only for coral reefs, but for ecosystems in general. PMID:27044109
Transcriptome analysis of the response of Burmese python to digestion
Sanggaard, Kristian Wejse; Schauser, Leif; Lauridsen, Sanne Enok; Enghild, Jan J.
2017-01-01
Abstract Exceptional and extreme feeding behaviour makes the Burmese python (Python bivittatus) an interesting model to study physiological remodelling and metabolic adaptation in response to refeeding after prolonged starvation. In this study, we used transcriptome sequencing of 5 visceral organs during fasting as well as 24 hours and 48 hours after ingestion of a large meal to unravel the postprandial changes in Burmese pythons. We first used the pooled data to perform a de novo assembly of the transcriptome and supplemented this with a proteomic survey of enzymes in the plasma and gastric fluid. We constructed a high-quality transcriptome with 34 423 transcripts, of which 19 713 (57%) were annotated. Among highly expressed genes (fragments per kilo base per million sequenced reads > 100 in 1 tissue), we found that the transition from fasting to digestion was associated with differential expression of 43 genes in the heart, 206 genes in the liver, 114 genes in the stomach, 89 genes in the pancreas, and 158 genes in the intestine. We interrogated the function of these genes to test previous hypotheses on the response to feeding. We also used the transcriptome to identify 314 secreted proteins in the gastric fluid of the python. Digestion was associated with an upregulation of genes related to metabolic processes, and translational changes therefore appear to support the postprandial rise in metabolism. We identify stomach-related proteins from a digesting individual and demonstrate that the sensitivity of modern liquid chromatography/tandem mass spectrometry equipment allows the identification of gastric juice proteins that are present during digestion. PMID:28873961
Transcriptome analysis of the response of Burmese python to digestion.
Duan, Jinjie; Sanggaard, Kristian Wejse; Schauser, Leif; Lauridsen, Sanne Enok; Enghild, Jan J; Schierup, Mikkel Heide; Wang, Tobias
2017-08-01
Exceptional and extreme feeding behaviour makes the Burmese python (Python bivittatus) an interesting model to study physiological remodelling and metabolic adaptation in response to refeeding after prolonged starvation. In this study, we used transcriptome sequencing of 5 visceral organs during fasting as well as 24 hours and 48 hours after ingestion of a large meal to unravel the postprandial changes in Burmese pythons. We first used the pooled data to perform a de novo assembly of the transcriptome and supplemented this with a proteomic survey of enzymes in the plasma and gastric fluid. We constructed a high-quality transcriptome with 34 423 transcripts, of which 19 713 (57%) were annotated. Among highly expressed genes (fragments per kilo base per million sequenced reads > 100 in 1 tissue), we found that the transition from fasting to digestion was associated with differential expression of 43 genes in the heart, 206 genes in the liver, 114 genes in the stomach, 89 genes in the pancreas, and 158 genes in the intestine. We interrogated the function of these genes to test previous hypotheses on the response to feeding. We also used the transcriptome to identify 314 secreted proteins in the gastric fluid of the python. Digestion was associated with an upregulation of genes related to metabolic processes, and translational changes therefore appear to support the postprandial rise in metabolism. We identify stomach-related proteins from a digesting individual and demonstrate that the sensitivity of modern liquid chromatography/tandem mass spectrometry equipment allows the identification of gastric juice proteins that are present during digestion. © The Authors 2017. Published by Oxford University Press.
Cross-bridge elasticity in single smooth muscle cells
1983-01-01
In smooth muscle, a cross-bridge mechanism is believed to be responsible for active force generation and fiber shortening. In the present studies, the viscoelastic and kinetic properties of the cross- bridge were probed by eliciting tension transients in response to small, rapid, step length changes (delta L = 0.3-1.0% Lcell in 2 ms). Tension transients were obtained in a single smooth muscle cell isolated from the toad (Bufo marinus) stomach muscularis, which was tied between a force transducer and a displacement device. To record the transients, which were of extremely small magnitude (0.1 microN), a high-frequency (400 Hz), ultrasensitive force transducer (18 mV/microN) was designed and built. The transients obtained during maximal force generation (Fmax = 2.26 microN) were characterized by a linear elastic response (Emax = 1.26 X 10(4) mN/mm2) coincident with the length step, which was followed by a biphasic tension recovery made up of two exponentials (tau fast = 5-20 ms, tau slow = 50-300 ms). During the development of force upon activation, transients were elicited. The relationship between stiffness and force was linear, which suggests that the transients originate within the cross-bridge and reflect the cross-bridge's viscoelastic and kinetic properties. The observed fiber elasticity suggests that the smooth muscle cross-bridge is considerably more compliant than in fast striated muscle. A thermodynamic model is presented that allows for an analysis of the factors contributing to the increased compliance of the smooth muscle cross-bridge. PMID:6413640
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-29
...; Submission to the Office of Management and Budget for Review and Approval; Comment Request; Fast Response... in response to this notice will be considered public records. Title of Collection: Fast Response... (QRIS) (OMB 1850-0733) to conduct data collection for the Fast Response Survey System (FRSS) survey 105...
Characterization of morphological response of red cells in a sucrose solution.
Rudenko, Sergey V
2009-01-01
The dynamics of red cell shape changes following transfer into sucrose media having a low chloride content was studied. Based on a large number of measurements, six types of morphological response (MR), differing both in the degree of shape changes and the time course of the process, were identified. The most prominent type of response is a triphasic sequence of shape changes consisting of a fast transformation into a sphere (phase 1), followed by restoration of the discoid shape (phase 2) and final transformation into spherostomatocytes (phase 3), with individual parameters which could vary significantly. It was found that individual morphological response exhibited day to day variations, depending on the initial state of the red blood cells and the donor, but to a larger extent depended on the composition of the sucrose solution, such as concentration and type of buffers, the presence of EDTA, calcium, as well as very small amounts of extracellular hemoglobin. MR shows strong pH and ionic strength dependence. Low pH inhibited phase 1 and high pH changed dramatically the time course of the response. Increasing ionic strength inhibited all phases of MR, and at concentrations above 10-20 mM NaCl it was fully suppressed. Tris and phosphate were also inhibitory whereas HEPES, MOPS and Tricine were less effective. MR occurred also in hypertonic or hypotonic sucrose solutions, with exception of extreme hypotonicity due to volume restrictions. It is concluded that strong membrane depolarization per se is not a causal factor leading to MR, and its different phases could be regulated independently. For some types of morphological response the fast shape transformation from sphere to disc and back to sphere occurs within a 10 s time interval and could be accelerated several fold in the presence of a small amount of hemoglobin. It is suggested that MR represents a type of general cell reaction that occurs upon exposure to low ionic strength.
Response statistics of rotating shaft with non-linear elastic restoring forces by path integration
NASA Astrophysics Data System (ADS)
Gaidai, Oleg; Naess, Arvid; Dimentberg, Michael
2017-07-01
Extreme statistics of random vibrations is studied for a Jeffcott rotor under uniaxial white noise excitation. Restoring force is modelled as elastic non-linear; comparison is done with linearized restoring force to see the force non-linearity effect on the response statistics. While for the linear model analytical solutions and stability conditions are available, it is not generally the case for non-linear system except for some special cases. The statistics of non-linear case is studied by applying path integration (PI) method, which is based on the Markov property of the coupled dynamic system. The Jeffcott rotor response statistics can be obtained by solving the Fokker-Planck (FP) equation of the 4D dynamic system. An efficient implementation of PI algorithm is applied, namely fast Fourier transform (FFT) is used to simulate dynamic system additive noise. The latter allows significantly reduce computational time, compared to the classical PI. Excitation is modelled as Gaussian white noise, however any kind distributed white noise can be implemented with the same PI technique. Also multidirectional Markov noise can be modelled with PI in the same way as unidirectional. PI is accelerated by using Monte Carlo (MC) estimated joint probability density function (PDF) as initial input. Symmetry of dynamic system was utilized to afford higher mesh resolution. Both internal (rotating) and external damping are included in mechanical model of the rotor. The main advantage of using PI rather than MC is that PI offers high accuracy in the probability distribution tail. The latter is of critical importance for e.g. extreme value statistics, system reliability, and first passage probability.
Deactivation kinetics of acid-sensing ion channel 1a are strongly pH-sensitive.
MacLean, David M; Jayaraman, Vasanthi
2017-03-21
Acid-sensing ion channels (ASICs) are trimeric cation-selective ion channels activated by protons in the physiological range. Recent reports have revealed that postsynaptically localized ASICs contribute to the excitatory postsynaptic current by responding to the transient acidification of the synaptic cleft that accompanies neurotransmission. In response to such brief acidic transients, both recombinant and native ASICs show extremely rapid deactivation in outside-out patches when jumping from a pH 5 stimulus to a single resting pH of 8. Given that the resting pH of the synaptic cleft is highly dynamic and depends on recent synaptic activity, we explored the kinetics of ASIC1a and 1a/2a heteromers to such brief pH transients over a wider [H + ] range to approximate neuronal conditions better. Surprisingly, the deactivation of ASICs was steeply dependent on the pH, spanning nearly three orders of magnitude from extremely fast (<1 ms) at pH 8 to very slow (>300 ms) at pH 7. This study provides an example of a ligand-gated ion channel whose deactivation is sensitive to agonist concentrations that do not directly activate the receptor. Kinetic simulations and further mutagenesis provide evidence that ASICs show such steeply agonist-dependent deactivation because of strong cooperativity in proton binding. This capacity to signal across such a large synaptically relevant bandwidth enhances the response to small-amplitude acidifications likely to occur at the cleft and may provide ASICs with the ability to shape activity in response to the recent history of the synapse.
Grassland responses to precipitation extremes
USDA-ARS?s Scientific Manuscript database
Grassland ecosystems are naturally subjected to periods of prolonged drought and sequences of wet years. Climate change is expected to enhance the magnitude and frequency of extreme events at the intraannual and multiyear scales. Are grassland responses to extreme precipitation simply a response to ...
Eberhardt, Mirjam; Nakajima, Julika; Klinger, Alexandra B; Neacsu, Cristian; Hühne, Kathrin; O'Reilly, Andrias O; Kist, Andreas M; Lampe, Anne K; Fischer, Kerstin; Gibson, Jane; Nau, Carla; Winterpacht, Andreas; Lampert, Angelika
2014-01-24
Inherited erythromelalgia (IEM) causes debilitating episodic neuropathic pain characterized by burning in the extremities. Inherited "paroxysmal extreme pain disorder" (PEPD) differs in its clinical picture and affects proximal body areas like the rectal, ocular, or jaw regions. Both pain syndromes have been linked to mutations in the voltage-gated sodium channel Nav1.7. Electrophysiological characterization shows that IEM-causing mutations generally enhance activation, whereas mutations leading to PEPD alter fast inactivation. Previously, an A1632E mutation of a patient with overlapping symptoms of IEM and PEPD was reported (Estacion, M., Dib-Hajj, S. D., Benke, P. J., Te Morsche, R. H., Eastman, E. M., Macala, L. J., Drenth, J. P., and Waxman, S. G. (2008) NaV1.7 Gain-of-function mutations as a continuum. A1632E displays physiological changes associated with erythromelalgia and paroxysmal extreme pain disorder mutations and produces symptoms of both disorders. J. Neurosci. 28, 11079-11088), displaying a shift of both activation and fast inactivation. Here, we characterize a new mutation of Nav1.7, A1632T, found in a patient suffering from IEM. Although transfection of A1632T in sensory neurons resulted in hyperexcitability and spontaneous firing of dorsal root ganglia (DRG) neurons, whole-cell patch clamp of transfected HEK cells revealed that Nav1.7 activation was unaltered by the A1632T mutation but that steady-state fast inactivation was shifted to more depolarized potentials. This is a characteristic normally attributed to PEPD-causing mutations. In contrast to the IEM/PEPD crossover mutation A1632E, A1632T failed to slow current decay (i.e. open-state inactivation) and did not increase resurgent currents, which have been suggested to contribute to high-frequency firing in physiological and pathological conditions. Reduced fast inactivation without increased resurgent currents induces symptoms of IEM, not PEPD, in the new Nav1.7 mutation, A1632T. Therefore, persistent and resurgent currents are likely to determine whether a mutation in Nav1.7 leads to IEM or PEPD.
Thermomechanical analysis of fast-burst reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, J.D.
1994-08-01
Fast-burst reactors are designed to provide intense, short-duration pulses of neutrons. The fission reaction also produces extreme time-dependent heating of the nuclear fuel. An existing transient-dynamic finite element code was modified specifically to compute the time-dependent stresses and displacements due to thermal shock loads of reactors. Thermomechanical analysis was then applied to determine structural feasibility of various concepts for an EDNA-type reactor and to optimize the mechanical design of the new SPR III-M reactor.
Fast Fourier transformation results from gamma-ray burst profiles
NASA Technical Reports Server (NTRS)
Kouveliotou, Chryssa; Norris, Jay P.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.; Paciesas, W. S.
1992-01-01
Several gamma-ray bursts in the BATSE data have sufficiently long durations and complex temporal structures with pulses that appear to be spaced quasi-periodically. In order to test and quantify these periods we have applied fast Fourier transformations (FFT) to all these events. We have also performed cross spectral analyses of the FFT of the two extreme (high-low) energy bands in each case to determine the lead/lag of the pulses in different energies.
2008-10-01
the standard model characterization procedure is based on creep and recovery tests, where loading and unloading occurs at a fast rate of 1.0 MPa/s...σ − g[ǫ] and on d̊g[ǫ] dǫ = E, where g̊ is defined as the equilibrium stress g[ ] for extremely fast loading. For this case, the stress-strain curves...Strain S tr es s Strain Rate Slow Strain Rate Medium Strain Rate Fast Plastic Flow Fully Established Figure 2.10: Stress Strain Curve Schematic
Adherence evaluation of vented chest seals in a swine skin model.
Arnaud, Françoise; Maudlin-Jeronimo, Eric; Higgins, Adam; Kheirabadi, Bijan; McCarron, Richard; Kennedy, Daniel; Housler, Greggory
2016-10-01
Perforation of the chest (open pneumothorax) with and without lung injury can cause air accumulation in the chest, positive intrapleural pressure and lead to tension pneumothorax if untreated. The performance of chest seals to prevent tension physiology depends partially on their ability to adhere to the skin and seal the chest wound. Novel non-occlusive vented chest seals were assessed for their adhesiveness on skin of live swine under normal and extreme environmental conditions to simulate austere battlefield conditions. Chest seals were applied on the back of the swine on skin that was soiled by various environmental contaminants to represent battlefield situations. A peeling (horizontal rim peeling) and detachment and breaching (vertical pulling) techniques were used to quantify the adhesive performance of vented chest seals. Among eight initially selected vented seals, five (Bolin, Russell, Fast breathe, Hyfin and SAM) were further down-selected based on their superior adherence scores at ambient temperatures. The adherence of these seals was then assessed after approximately 17h storage at extreme cold (-19.5°C) and hot (71.5°C) temperatures. Adherence scores for peeling (above 90%) and detachment scores (less than 25%) were comparable for four vented chest seals when tested at ambient temperature, except for the Bolin seal which had higher breaching. Under extreme storage temperatures, adherence peeling scores were comparable to those at ambient temperatures for four chest seals. Scores were significantly lower for the Bolin seal at extreme temperatures. This seal also had the highest detachment and breaching scores. In contrast, the Russell, Fast breathe, Hyfin and SAM seals showed similar ability to stay air tight without breaching after hot storage. No significant difference was found in skin adherence of the five vented chest seals at ambient temperature and the four seals (Russell, Fast breathe, Hyfin and SAM) maintained superior adherence even after exposure to extreme temperatures compared to the Bolin. To select the most effective product from the 5 selected vented chest seals, further functional evaluation of the valve of these chest seals on a chest wound with the potential for tension in the pneumothorax or hemopneumothorax is warranted. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Takeya, J.
2008-10-01
The environment of surface electrons at 'solid-to-liquid' interfaces is somewhat extreme, subjected to intense local electric fields or harsh chemical pressures that high-density ionic charge or polarization of mobile molecules create. In this proceedings, we argue functions of electronic carriers generated at the surface of organic semiconductor crystals in response to the local electric fields in the very vicinity of the interface to ionic liquid. The ionic liquids (ILs), or room temperature molten salts, are gaining considerable interest in the recent decade at the prospect of nonvolatile 'green solvents', with the development of chemically stable and nontoxic compounds. Moreover, such materials are also applied to electrolytes for lithium ion batteries and electric double-layer (EDL) capacitors. Our present solid-to-liquid interfaces of rubrene single crystals and ionic liquids work as fast-switching organic field-effect transistors (OFETs) with the highest transconductance, i.e. the most efficient response of the output current to the input voltage, among the OFETs ever built.
A maximally stable extremal region based scene text localization method
NASA Astrophysics Data System (ADS)
Xiao, Chengqiu; Ji, Lixin; Gao, Chao; Li, Shaomei
2015-07-01
Text localization in natural scene images is an important prerequisite for many content-based image analysis tasks. This paper proposes a novel text localization algorithm. Firstly, a fast pruning algorithm is designed to extract Maximally Stable Extremal Regions (MSER) as basic character candidates. Secondly, these candidates are filtered by using the properties of fitting ellipse and the distribution properties of characters to exclude most non-characters. Finally, a new extremal regions projection merging algorithm is designed to group character candidates into words. Experimental results show that the proposed method has an advantage in speed and achieve relatively high precision and recall rates than the latest published algorithms.
Extreme fluctuations of active Brownian motion
NASA Astrophysics Data System (ADS)
Pietzonka, Patrick; Kleinbeck, Kevin; Seifert, Udo
2016-05-01
In active Brownian motion, an internal propulsion mechanism interacts with translational and rotational thermal noise and other internal fluctuations to produce directed motion. We derive the distribution of its extreme fluctuations and identify its universal properties using large deviation theory. The limits of slow and fast internal dynamics give rise to a kink-like and parabolic behavior of the corresponding rate functions, respectively. For dipolar Janus particles in two- and three-dimensions interacting with a field, we predict a novel symmetry akin to, but different from, the one related to entropy production. Measurements of these extreme fluctuations could thus be used to infer properties of the underlying, often hidden, network of states.
Managing a case of extensively drug-resistant (XDR) pulmonary tuberculosis in Singapore.
Phua, Chee Kiang; Chee, Cynthia B E; Chua, Angeline P G; Gan, Suay Hong; Ahmed, Aneez D B; Wang, Yee Tang
2011-03-01
Extensively drug-resistant tuberculosis (XDR-TB) is an emerging global health risk. We present the first case report of XDR-TB in Singapore. A 41-year-old Indonesian lady with previously treated pulmonary tuberculosis presented with chronic cough. Her sputum was strongly acid-fast bacilli positive and grew Mycobacterium tuberculosis complex resistant to first and second-line TB medications. She received 5 months of intensive multidrug treatment without sputum smear conversion. She then underwent resection of the diseased lung. The total cost incurred amounted to over S$100,000. She achieved sputum smear/culture conversion post-surgery, but will require further medical therapy for at least 18 months. XDRTB is poorly responsive to therapy and extremely expensive to manage. Its prevention by strict compliance to therapy is paramount.
High-Performance Sensors Based on Resistance Fluctuations of Single-Layer-Graphene Transistors.
Amin, Kazi Rafsanjani; Bid, Aveek
2015-09-09
One of the most interesting predicted applications of graphene-monolayer-based devices is as high-quality sensors. In this article, we show, through systematic experiments, a chemical vapor sensor based on the measurement of low-frequency resistance fluctuations of single-layer-graphene field-effect-transistor devices. The sensor has extremely high sensitivity, very high specificity, high fidelity, and fast response times. The performance of the device using this scheme of measurement (which uses resistance fluctuations as the detection parameter) is more than 2 orders of magnitude better than a detection scheme in which changes in the average value of the resistance is monitored. We propose a number-density-fluctuation-based model to explain the superior characteristics of a noise-measurement-based detection scheme presented in this article.
Micromechanical ``Trampoline'' Magnetometers for Use in Pulsed Magnetic Fields Exceeding 60 Tesla
NASA Astrophysics Data System (ADS)
Balakirev, F. F.; Boebinger, G. S.; Aksyuk, V.; Gammel, P. L.; Haddon, R. C.; Bishop, D. J.
1998-03-01
We present the design, construction, and operation of a novel magnetometer for use in intense pulsed magnetic fields. The magnetometer consists of a silicon micromachined "trampoline" to which the sample is attached. The small size of the device (typically 400 microns on a side) gives a fast mechanical response (10,000 to 50,000 Hz) and extremely high sensitivity (10-11 Am^2, corresponding to 10-13 Am^2/Hz^(1/2)). The device is robust against electrical and mechanical noise and requires no special vibration isolation from the pulsed magnet. As a demonstration, we present data taken in a 60 tesla pulsed magnetic field which show clear de Haas-van Alphen oscillations in a one microgram sample of the organic superconductor K-(BEDT-TTF)_2Cu(NCS)_2.
Code of Federal Regulations, 2013 CFR
2013-07-01
... in decibels. (10) Highway means the streets, roads, and public ways in any State. (11) Fast Meter Response means that the fast dynamic response of the sound level meter shall be used. The fast dynamic...
Code of Federal Regulations, 2011 CFR
2011-07-01
... in decibels. (10) Highway means the streets, roads, and public ways in any State. (11) Fast Meter Response means that the fast dynamic response of the sound level meter shall be used. The fast dynamic...
Code of Federal Regulations, 2010 CFR
2010-07-01
... in decibels. (10) Highway means the streets, roads, and public ways in any State. (11) Fast Meter Response means that the fast dynamic response of the sound level meter shall be used. The fast dynamic...
Code of Federal Regulations, 2012 CFR
2012-07-01
... in decibels. (10) Highway means the streets, roads, and public ways in any State. (11) Fast Meter Response means that the fast dynamic response of the sound level meter shall be used. The fast dynamic...
Fast track in hip arthroplasty
Hansen, Torben Bæk
2017-01-01
‘Fast-track’ surgery was introduced more than 20 years ago and may be defined as a co-ordinated peri-operative approach aimed at reducing surgical stress and facilitating post-operative recovery.The fast-track programmes have now been introduced into total hip arthroplasty (THA) surgery with reduction in post-operative length of stay, shorter convalescence and rapid functional recovery without increased morbidity and mortality. This has been achieved by focusing on a multidisciplinary collaboration and establishing ‘fast-track’ units, with a well-defined organisational set-up tailored to deliver an accelerated peri-operative course of fast-track surgical THA procedures.Fast-track THA surgery now works extremely well in the standard THA patient. However, all patients are different and fine-tuning of the multiple areas in fast-track pathways to get patients with special needs or high co-morbidity burden through a safe and effective fast-track THA pathway is important.In this narrative review, the principles of fast-track THA surgery are presented together with the present status of implementation and perspectives for further improvements. Cite this article: EFORT Open Rev 2017;2. DOI: 10.1302/2058-5241.2.160060. Originally published online at www.efortopenreviews.org PMID:28630756
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keyser, Matthew A
Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell, the efficiencies of power and energy cells, and what type ofmore » battery thermal management solutions are available in today's market. Thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.« less
Supramolecular water oxidation with Ru-bda-based catalysts.
Richmond, Craig J; Matheu, Roc; Poater, Albert; Falivene, Laura; Benet-Buchholz, Jordi; Sala, Xavier; Cavallo, Luigi; Llobet, Antoni
2014-12-22
Extremely slow and extremely fast new water oxidation catalysts based on the Ru-bda (bda=2,2'-bipyridine-6,6'-dicarboxylate) systems are reported with turnover frequencies in the range of 1 and 900 cycles s(-1) , respectively. Detailed analyses of the main factors involved in the water oxidation reaction have been carried out and are based on a combination of reactivity tests, electrochemical experiments, and DFT calculations. These analyses give a convergent interpretation that generates a solid understanding of the main factors involved in the water oxidation reaction, which in turn allows the design of catalysts with very low energy barriers in all the steps involved in the water oxidation catalytic cycle. We show that for this type of system π-stacking interactions are the key factors that influence reactivity and by adequately controlling them we can generate exceptionally fast water oxidation catalysts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A k-Vector Approach to Sampling, Interpolation, and Approximation
NASA Astrophysics Data System (ADS)
Mortari, Daniele; Rogers, Jonathan
2013-12-01
The k-vector search technique is a method designed to perform extremely fast range searching of large databases at computational cost independent of the size of the database. k-vector search algorithms have historically found application in satellite star-tracker navigation systems which index very large star catalogues repeatedly in the process of attitude estimation. Recently, the k-vector search algorithm has been applied to numerous other problem areas including non-uniform random variate sampling, interpolation of 1-D or 2-D tables, nonlinear function inversion, and solution of systems of nonlinear equations. This paper presents algorithms in which the k-vector search technique is used to solve each of these problems in a computationally-efficient manner. In instances where these tasks must be performed repeatedly on a static (or nearly-static) data set, the proposed k-vector-based algorithms offer an extremely fast solution technique that outperforms standard methods.
Jo, Javier A.; Fang, Qiyin; Marcu, Laura
2007-01-01
We report a new deconvolution method for fluorescence lifetime imaging microscopy (FLIM) based on the Laguerre expansion technique. The performance of this method was tested on synthetic and real FLIM images. The following interesting properties of this technique were demonstrated. 1) The fluorescence intensity decay can be estimated simultaneously for all pixels, without a priori assumption of the decay functional form. 2) The computation speed is extremely fast, performing at least two orders of magnitude faster than current algorithms. 3) The estimated maps of Laguerre expansion coefficients provide a new domain for representing FLIM information. 4) The number of images required for the analysis is relatively small, allowing reduction of the acquisition time. These findings indicate that the developed Laguerre expansion technique for FLIM analysis represents a robust and extremely fast deconvolution method that enables practical applications of FLIM in medicine, biology, biochemistry, and chemistry. PMID:19444338
Very fast optical flaring from a possible new Galactic magnetar.
Stefanescu, A; Kanbach, G; Słowikowska, A; Greiner, J; McBreen, S; Sala, G
2008-09-25
Highly luminous rapid flares are characteristic of processes around compact objects like white dwarfs, neutron stars and black holes. In the high-energy regime of X-rays and gamma-rays, outbursts with variabilities on timescales of seconds or less are routinely observed, for example in gamma-ray bursts or soft gamma-ray repeaters. At optical wavelengths, flaring activity on such timescales has not been observed, other than from the prompt phase of one exceptional gamma-ray burst. This is mostly due to the fact that outbursts with strong, fast flaring are usually discovered in the high-energy regime; most optical follow-up observations of such transients use instruments with integration times exceeding tens of seconds, which are therefore unable to resolve fast variability. Here we show the observation of extremely bright and rapid optical flaring in the Galactic transient SWIFT J195509.6+261406. Our optical light curves are phenomenologically similar to high-energy light curves of soft gamma-ray repeaters and anomalous X-ray pulsars, which are thought to be neutron stars with extremely high magnetic fields (magnetars). This suggests that similar processes are in operation, but with strong emission in the optical, unlike in the case of other known magnetars.
Mode Conversion of a Solar Extreme-ultraviolet Wave over a Coronal Cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zong, Weiguo; Dai, Yu, E-mail: ydai@nju.edu.cn
2017-01-10
We report on observations of an extreme-ultraviolet (EUV) wave event in the Sun on 2011 January 13 by Solar Terrestrial Relations Observatory and Solar Dynamics Observatory in quadrature. Both the trailing edge and the leading edge of the EUV wave front in the north direction are reliably traced, revealing generally compatible propagation velocities in both perspectives and a velocity ratio of about 1/3. When the wave front encounters a coronal cavity near the northern polar coronal hole, the trailing edge of the front stops while its leading edge just shows a small gap and extends over the cavity, meanwhile gettingmore » significantly decelerated but intensified. We propose that the trailing edge and the leading edge of the northward propagating wave front correspond to a non-wave coronal mass ejection component and a fast-mode magnetohydrodynamic wave component, respectively. The interaction of the fast-mode wave and the coronal cavity may involve a mode conversion process, through which part of the fast-mode wave is converted to a slow-mode wave that is trapped along the magnetic field lines. This scenario can reasonably account for the unusual behavior of the wave front over the coronal cavity.« less
Phenotypic disparity of the elbow joint in domestic dogs and wild carnivores.
Figueirido, Borja
2018-05-16
In this article, I use geometric morphometrics in 2D from a sample of 366 elbow joints to quantify phenotypic disparity in domestic dog breeds, in wild canids, and across the order Carnivora. The elbow joint is a well-established morphological indicator of forearm motion and, by extension, of functional adaptations towards locomotor or predatory behavior in living carnivores. The study of the elbow joint in domestic dogs allows the exploration of potential convergences between (i) pursuit predators and fast-running dogs, and (ii) ambush predators and fighting breeds. The results indicate that elbow shape disparity among domestic dogs exceeds that in wolves; it is comparable to the disparity of wild Caninae, but is significantly lower than the one observed throughout Canidae and Carnivora. Moreover, fast-running and fighting breeds are not convergent in elbow joint shape with extreme pursuit and ambush wild carnivores, respectively. The role of artificial selection and developmental constraints in shaping limb phenotypic disparity through the extremely fast evolution of the domestic dog is discussed in the light of this new evidence. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Representing Extremes in Agricultural Models
NASA Technical Reports Server (NTRS)
Ruane, Alex
2015-01-01
AgMIP and related projects are conducting several activities to understand and improve crop model response to extreme events. This involves crop model studies as well as the generation of climate datasets and scenarios more capable of capturing extremes. Models are typically less responsive to extreme events than we observe, and miss several forms of extreme events. Models also can capture interactive effects between climate change and climate extremes. Additional work is needed to understand response of markets and economic systems to food shocks. AgMIP is planning a Coordinated Global and Regional Assessment of Climate Change Impacts on Agricultural Production and Food Security with an aim to inform the IPCC Sixth Assessment Report.
Are temporal characteristics of fast repetitive oscillating movement invariant?
Gutnik, B J; Nicholson, J; Go, W; Gale, D; Nash, D
2003-06-01
Validation of the proportional duration model was attempted using very fast single-joint repetitive horizontal abductive-adductive movements of the stretched upper extremity with minimal cognitive input. Participants drew oscillating horizontal lines during 20 sec. over relatively short distances as quickly as possible without visual feedback. Spatial, temporal, and kinetic parameters were analysed. The amplitude and the time spent accelerating, decelerating, and reversing in both directions of each experimental line were recorded and related to the centre of gravity of the upper extremity. The accelerations of the centre of mass of the upper extremity were calculated and used to calculate the forces involved. The ratios of durations were compared and intercorrelated for the two fastest, two average, and two slowest cycles from each participant. Results exhibited significant standard deviations and variability of temporal and kinetic parameters within individual trials. The number of significant coefficients of correlation within individual trials was small despite the controlling influence of the same generalised motor program. The proportional duration model did not hold for our data. Peripheral factors (probably the length-tension relationship rule for skeletal muscles and viscosity of muscle) may be important in this type of action.
Fast word reading in pure alexia: "fast, yet serial".
Bormann, Tobias; Wolfer, Sascha; Hachmann, Wibke; Neubauer, Claudia; Konieczny, Lars
2015-01-01
Pure alexia is a severe impairment of word reading in which individuals process letters serially with a pronounced length effect. Yet, there is considerable variation in the performance of alexic readers with generally very slow, but also occasionally fast responses, an observation addressed rarely in previous reports. It has been suggested that "fast" responses in pure alexia reflect residual parallel letter processing or that they may even be subserved by an independent reading system. Four experiments assessed fast and slow reading in a participant (DN) with pure alexia. Two behavioral experiments investigated frequency, neighborhood, and length effects in forced fast reading. Two further experiments measured eye movements when DN was forced to read quickly, or could respond faster because words were easier to process. Taken together, there was little support for the proposal that "qualitatively different" mechanisms or reading strategies underlie both types of responses in DN. Instead, fast responses are argued to be generated by the same serial-reading strategy.
The Effect of Social Integration on Outcomes after Major Lower Extremity Amputation
Hawkins, Alexander T.; Pallangyo, Anthony J.; Herman, Ayesiga M.; Schaumeier, Maria J.; Smith, Ann D.; Hevelone, Nathanael D.; Crandell, David M.; Nguyen, Louis
2016-01-01
Objective Major lower extremity amputation is a common procedure that results in a profound change in a patient's life. We sought to determine the association between social support and outcomes after amputation. We hypothesized that patients with greater social support will have better post amputation outcomes. Methods From November 2011 to May 2013, we conducted a cross-sectional, observational, multicenter study. Social integration was measured by the social integration subset of the Short Form (Craig Handicap Assessment and Reporting Technique (CHART). Systemic social support was assessed by comparing a US and Tanzanian population. Walking function was measured using the 6MWT and quality of life (QoL) was measured using the EQ-5D. Results 102 major lower extremity amputees were recruited. 63 patients were enrolled in the US with a mean age of 58.0. Forty-two (67%) were male. Patients with low social integration were more likely to be unable to ambulate (no walk 39% vs. slow walk 23% vs. fast walk 10%; P=.01) and those with high social integration were more likely to be fast walkers (no walk 10% vs. slow walk 59% vs. fast walk 74%; P=.01). This relationship persisted in a multivariable analysis. Increasing social integration scores were also positively associated with increasing quality of life scores in a multivariable analysis (β .002; SE .0008; P = .02). In comparing the US population with the Tanzanian cohort (39 subjects), there were no significant differences between functional or quality of life outcomes in the systemic social support analysis. Conclusions In the US population, increased social integration is associated with both improved function and quality of life outcomes among major lower extremity amputees. Systemic social support, as measured by comparing the US population with a Tanzanian population, was not associated with improved function or quality of life outcomes. In the US, steps should be taken to identify and aid amputees with poor social integration. PMID:26474508
Mucci, Viviana
2018-01-01
Chest ultrasonography (CU) is a noninvasive imaging technique able to provide an immediate diagnosis of the underlying aetiology of acute respiratory failure and traumatic chest injuries. Given the great technologies, it is now possible to perform accurate CU in remote and adverse environments including the combat field, extreme sport settings, and environmental disasters, as well as during space missions. Today, the usage of CU in the extreme emergency setting is more likely to occur, as this technique proved to be a fast diagnostic tool to assist resuscitation manoeuvres and interventional procedures in many cases. A scientific literature review is presented here. This was based on a systematic search of published literature, on the following online databases: PubMed and Scopus. The following words were used: “chest sonography,” “ thoracic ultrasound,” and “lung sonography,” in different combinations with “extreme sport,” “extreme environment,” “wilderness,” “catastrophe,” and “extreme conditions.” This manuscript reports the most relevant usages of CU in the extreme setting as well as technological improvements and current limitations. CU application in the extreme setting is further encouraged here. PMID:29736195
Liu, Ying D; Luhmann, Janet G; Kajdič, Primož; Kilpua, Emilia K J; Lugaz, Noé; Nitta, Nariaki V; Möstl, Christian; Lavraud, Benoit; Bale, Stuart D; Farrugia, Charles J; Galvin, Antoinette B
2014-03-18
Space weather refers to dynamic conditions on the Sun and in the space environment of the Earth, which are often driven by solar eruptions and their subsequent interplanetary disturbances. It has been unclear how an extreme space weather storm forms and how severe it can be. Here we report and investigate an extreme event with multi-point remote-sensing and in situ observations. The formation of the extreme storm showed striking novel features. We suggest that the in-transit interaction between two closely launched coronal mass ejections resulted in the extreme enhancement of the ejecta magnetic field observed near 1 AU at STEREO A. The fast transit to STEREO A (in only 18.6 h), or the unusually weak deceleration of the event, was caused by the preconditioning of the upstream solar wind by an earlier solar eruption. These results provide a new view crucial to solar physics and space weather as to how an extreme space weather event can arise from a combination of solar eruptions.
Generalized IRT Models for Extreme Response Style
ERIC Educational Resources Information Center
Jin, Kuan-Yu; Wang, Wen-Chung
2014-01-01
Extreme response style (ERS) is a systematic tendency for a person to endorse extreme options (e.g., strongly disagree, strongly agree) on Likert-type or rating-scale items. In this study, we develop a new class of item response theory (IRT) models to account for ERS so that the target latent trait is free from the response style and the tendency…
Transcriptional and chromatin regulation during fasting – The genomic era
Goldstein, Ido; Hager, Gordon L.
2015-01-01
An elaborate metabolic response to fasting is orchestrated by the liver and is heavily reliant upon transcriptional regulation. In response to hormones (glucagon, glucocorticoids) many transcription factors (TFs) are activated and regulate various genes involved in metabolic pathways aimed at restoring homeostasis: gluconeogenesis, fatty acid oxidation, ketogenesis and amino acid shuttling. We summarize the recent discoveries regarding fasting-related TFs with an emphasis on genome-wide binding patterns. Collectively, the summarized findings reveal a large degree of co-operation between TFs during fasting which occurs at motif-rich DNA sites bound by a combination of TFs. These new findings implicate transcriptional and chromatin regulation as major determinants of the response to fasting and unravels the complex, multi-TF nature of this response. PMID:26520657
Rao, Ameya; Long, Hu; Harley-Trochimczyk, Anna; Pham, Thang; Zettl, Alex; Carraro, Carlo; Maboudian, Roya
2017-01-25
A simple and versatile strategy is presented for the localized on-chip synthesis of an ordered metal oxide hollow sphere array directly on a low power microheater platform to form a closely integrated miniaturized gas sensor. Selective microheater surface modification through fluorinated monolayer self-assembly and its subsequent microheater-induced thermal decomposition enables the position-controlled deposition of an ordered two-dimensional colloidal sphere array, which serves as a sacrificial template for metal oxide growth via homogeneous chemical precipitation; this strategy ensures control in both the morphology and placement of the sensing material on only the active heated area of the microheater platform, providing a major advantage over other methods of presynthesized nanomaterial integration via suspension coating or printing. A fabricated tin oxide hollow sphere-based sensor shows high sensitivity (6.5 ppb detection limit) and selectivity toward formaldehyde, and extremely fast response (1.8 s) and recovery (5.4 s) times. This flexible and scalable method can be used to fabricate high performance miniaturized gas sensors with a variety of hollow nanostructured metal oxides for a range of applications, including combining multiple metal oxides for superior sensitivity and tunable selectivity.
Highly energetic phenomena in water electrolysis
NASA Astrophysics Data System (ADS)
Postnikov, A. V.; Uvarov, I. V.; Lokhanin, M. V.; Svetovoy, V. B.
2016-12-01
Water electrolysis performed in microsystems with a fast change of voltage polarity produces optically invisible nanobubbles containing H2 and O2 gases. In this form the gases are able to the reverse reaction of water formation. Here we report extreme phenomena observed in a millimeter-sized open system. Under a frequency of driving pulses above 100 kHz the process is accompanied by clicking sounds repeated every 50 ms or so. Fast video reveals that synchronously with the click a bubble is growing between the electrodes which reaches a size of 300 μm in 50 μs. Detailed dynamics of the system is monitored by means of a vibrometer by observing a piece of silicon floating above the electrodes. The energy of a single event is estimated as 0.3 μJ and a significant part of this energy is transformed into mechanical work moving the piece. The observations are explained by the combustion of hydrogen and oxygen mixture in the initial bubble with a diameter of about 40 μm. Unusual combustion mechanism supporting spontaneous ignition at room temperature is responsible for the process. The observed effect demonstrates a principal possibility to build a microscopic internal combustion engine.
Fast versus slow larval growth in an invasive marine mollusc: does paternity matter?
Le Cam, Sabrina; Pechenik, Jan A; Cagnon, Mathilde; Viard, Frédérique
2009-01-01
Reproductive strategies and parental effects play a major role in shaping early life-history traits. Although polyandry is a common reproductive strategy, its role is still poorly documented in relation to paternal effects. Here, we used as a case study the invasive sessile marine gastropod Crepidula fornicata, a mollusc with polyandry and extreme larval growth variation among sibling larvae. Based on paternity analyses, the relationships between paternal identity and the variations in a major early life-history trait in marine organisms, that is, larval growth, were investigated. Using microsatellite markers, paternities of 437 fast- and slow-growing larvae from 6 broods were reliably assigned to a set of 20 fathers. No particular fathers were found responsible for the specific growth performances of their offspring. However, the range of larval growth rates within a brood was significantly correlated to 1) an index of sire diversity and 2) the degree of larvae relatedness within broods. Multiple paternity could thus play an important role in determining the extent of pelagic larval duration and consequently the range of dispersal distances achieved during larval life. This study also highlighted the usefulness of using indices based on fathers' relative contribution to the progeny in paternity studies.
Metin, Baris; Wiersema, Jan R; Verguts, Tom; Gasthuys, Roos; van Der Meere, Jacob J; Roeyers, Herbert; Sonuga-Barke, Edmund
2016-01-01
According to the state regulation deficit (SRD) account, ADHD is associated with a problem using effort to maintain an optimal activation state under demanding task settings such as very fast or very slow event rates. This leads to a prediction of disrupted performance at event rate extremes reflected in higher Gaussian response variability that is a putative marker of activation during motor preparation. In the current study, we tested this hypothesis using ex-Gaussian modeling, which distinguishes Gaussian from non-Gaussian variability. Twenty-five children with ADHD and 29 typically developing controls performed a simple Go/No-Go task under four different event-rate conditions. There was an accentuated quadratic relationship between event rate and Gaussian variability in the ADHD group compared to the controls. The children with ADHD had greater Gaussian variability at very fast and very slow event rates but not at moderate event rates. The results provide evidence for the SRD account of ADHD. However, given that this effect did not explain all group differences (some of which were independent of event rate) other cognitive and/or motivational processes are also likely implicated in ADHD performance deficits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkisov, G. S.; Rosenthal, S. E.; Struve, K. W.
For nanosecond electrical explosion of fine metal wires in vacuum generates calibrated, radially expanded gas cylinders of metal atoms are surrounded by low-density fast expanding plasma corona. Here, a novel integrated-phase technique, based on laser interferometry, provides the dynamic dipole polarizability of metal atoms. This data was previously unavailable for tungsten atoms. Furthermore, an extremely high melting temperature and significant pre-melt electronic emission make these measurements particularly complicated for this refractory metal.
Sarkisov, G. S.; Rosenthal, S. E.; Struve, K. W.
2016-10-12
For nanosecond electrical explosion of fine metal wires in vacuum generates calibrated, radially expanded gas cylinders of metal atoms are surrounded by low-density fast expanding plasma corona. Here, a novel integrated-phase technique, based on laser interferometry, provides the dynamic dipole polarizability of metal atoms. This data was previously unavailable for tungsten atoms. Furthermore, an extremely high melting temperature and significant pre-melt electronic emission make these measurements particularly complicated for this refractory metal.
Large Area Field of View for Fast Temporal Resolution Astronomy
NASA Astrophysics Data System (ADS)
Covarrubias, Ricardo A.
2018-01-01
Scientific CMOS (sCMOS) technology is especially relevant for high temporal resolution astronomy combining high resolution, large field of view with very fast frame rates, without sacrificing ultra-low noise performance. Solar Astronomy, Near Earth Object detections, Space Debris Tracking, Transient Observations or Wavefront Sensing are among the many applications this technology can be utilized. Andor Technology is currently developing the next-generation, very large area sCMOS camera with an extremely low noise, rapid frame rates, high resolution and wide dynamic range.
Enabling fast charging – A battery technology gap assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Shabbir; Bloom, Ira; Jansen, Andrew N.
The battery technology literature is reviewed, with an emphasis on key elements that limit extreme fast charging. Key gaps in existing elements of the technology are presented as well as developmental needs. Among these needs are advanced models and methods to detect and prevent lithium plating; new positive-electrode materials which are less prone to stress-induced failure; better electrode designs to accommodate very rapid diffusion in and out of the electrode; and thermal management and pack designs to accommodate the higher operating voltage.
Enabling fast charging – A battery technology gap assessment
Ahmed, Shabbir; Bloom, Ira; Jansen, Andrew N.; ...
2017-10-23
The battery technology literature is reviewed, with an emphasis on key elements that limit extreme fast charging. Key gaps in existing elements of the technology are presented as well as developmental needs. Among these needs are advanced models and methods to detect and prevent lithium plating; new positive-electrode materials which are less prone to stress-induced failure; better electrode designs to accommodate very rapid diffusion in and out of the electrode; and thermal management and pack designs to accommodate the higher operating voltage.
Chase, R.L.
1963-05-01
An electronic fast multiplier circuit utilizing a transistor controlled voltage divider network is presented. The multiplier includes a stepped potentiometer in which solid state or transistor switches are substituted for mechanical wipers in order to obtain electronic switching that is extremely fast as compared to the usual servo-driven mechanical wipers. While this multiplier circuit operates as an approximation and in steps to obtain a voltage that is the product of two input voltages, any desired degree of accuracy can be obtained with the proper number of increments and adjustment of parameters. (AEC)
NASA Astrophysics Data System (ADS)
Felton, A. J.; Smith, M. D.
2016-12-01
Heightened climatic variability due to atmospheric warming is forecast to increase the frequency and severity of climate extremes. In particular, changes to interannual variability in precipitation, characterized by increases in extreme wet and dry years, are likely to impact virtually all terrestrial ecosystem processes. However, to date experimental approaches have yet to explicitly test how ecosystem processes respond to multiple levels of climatic extremity, limiting our understanding of how ecosystems will respond to forecast increases in the magnitude of climate extremes. Here we report the results of a replicated regression experimental approach, in which we imposed 9 and 11 levels of growing season precipitation amount and extremity in mesic grassland during 2015 and 2016, respectively. Each level corresponded to a specific percentile of the long-term record, which produced a large gradient of soil moisture conditions that ranged from extreme wet to extreme dry. In both 2015 and 2016, asymptotic responses to water availability were observed for soil respiration. This asymmetry was driven in part by transitions between soil moisture versus temperature constraints on respiration as conditions became increasingly dry versus increasingly wet. In 2015, aboveground net primary production (ANPP) exhibited asymmetric responses to precipitation that largely mirrored those of soil respiration. In total, our results suggest that in this mesic ecosystem, these two carbon cycle processes were more sensitive to extreme drought than to extreme wet years. Future work will assess ANPP responses for 2016, soil nutrient supply and physiological responses of the dominant plant species. Future efforts are needed to compare our findings across a diverse array of ecosystem types, and in particular how the timing and magnitude of precipitation events may modify the response of ecosystem processes to increasing magnitudes of precipitation extremes.
FAST Simulation Tool Containing Methods for Predicting the Dynamic Response of Wind Turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jonkman, Jason
2015-08-12
FAST is a simulation tool (computer software) for modeling tlie dynamic response of horizontal-axis wind turbines. FAST employs a combined modal and multibody structural-dynamics formulation in the time domain.
Digital implementation of the TF30-P-3 turbofan engine control
NASA Technical Reports Server (NTRS)
Cwynar, D. S.; Batterton, P. G.
1975-01-01
The standard hydromechanical control modes for TF30-P-3 engine were implemented on a digital process control computer. Programming methods are described, and a method is presented to solve stability problems associated with fast response dynamic loops contained within the exhaust nozzle control. A modification of the exhaust nozzle control to provide for either velocity or position servoactuation systems is discussed. Transient response of the digital control was evaluated by tests on a real time hybrid simulation of the TF30-P-3 engine. It is shown that the deadtime produced by the calculation time delay between sampling and final output is more significant to transient response than the effects associated with sampling rate alone. For the main fuel control, extended update and calculation times resulted in a lengthened transient response to throttle bursts from idle to intermediate with an increase in high pressure compressor stall margin. Extremely long update intervals of 250 msec could be achieved without instability. Update extension for the exhaust nozzle control resulted in a delayed response of the afterburner light-off detector and exhaust nozzle overshoot with resulting fan oversuppression. Long update times of 150 msec caused failure of the control due to a false indication by the blowout detector.
Ocean dynamics during the passage of Xynthia storm recorded by GPS
NASA Astrophysics Data System (ADS)
Nicolas, Joëlle; Ferenc, Marcell; Li, Zhao; van Dam, Tonie; Polidori, Laurent
2014-05-01
When computing the effect of atmospheric loading on geodetic coordinates, we must assign the response of the ocean to pressure loading. A pure inverted barometer and a solid Earth ocean response to pressure loading define the extremes of the response. At periods longer than a few days, the inverted barometer response is sufficient (Wunsch and Stammer, 1997). However, how does the ocean respond to fast moving storms? In this study we investigate the effect of a violent storm that progressed over Western Europe between the 27th of February and the 1st of March 2010 on sub-daily vertical GPS (Global Positioning System) position time series of the French GNSS permanent network (RGP). Xynthia was a huge low-pressure system (pressure drop of 40 mbar and a storm surge of 1.4 m (at La Rochelle tide gauge)) that crossed France from the southwest to the northeast over the course of about 20 hours. We study the different behaviour of the coastal and inland sites based on the comparison of the estimated 6-hourly stand-alone GPS position time series (GINS-PC software) with the local pressure and the predicted atmospheric pressure loading time series derived from the high resolution Modern-Era Retrospective Analysis for Research and Applications (NASA MERRA) and also the European Centre for Medium-Range Weather Forecasts (ECMWF) global dataset. We model the predicted displacements using the inverse barometer (IB) and the non-IB ocean response cases as endpoints. Predicted loading effects due to the atmospheric pressure and IB ocean reach up to 1.0, 1.3 and 13.7 mm for the east, north and up components, respectively. Then we attempt to use the GPS vertical surface displacements, the surface pressure, and tide gauge data (SONEL) to identify the true ocean dynamics on the continental shelf during the passage of this fast moving system. Keywords: GPS, GINS-PC, Xynthia, ocean dynamics, atmospheric pressure loading, deformation
2016-06-14
Very Fast Response Concentration Detector EUGENE YEE Defence Research Establishment Suffield, Medicine Hat, Alberta, Canada R. CHAN AND P. R...hazards posed by the release of highly toxic or flammable gases to an un- derstanding of fast nonlinear physicochemical pro- cesses required for the...e.g., Gifford 1959; Csanady 1967; Chatwin 1982), fast -response concentration sensors required for the measurement and characterization of the
Fast or slow? Compressions (or not) in number-to-line mappings.
Candia, Victor; Deprez, Paola; Wernery, Jannis; Núñez, Rafael
2015-01-01
We investigated, in a university student population, spontaneous (non-speeded) fast and slow number-to-line mapping responses using non-symbolic (dots) and symbolic (words) stimuli. Seeking for less conventionalized responses, we used anchors 0-130, rather than the standard 0-100. Slow responses to both types of stimuli only produced linear mappings with no evidence of non-linear compression. In contrast, fast responses revealed distinct patterns of non-linear compression for dots and words. A predicted logarithmic compression was observed in fast responses to dots in the 0-130 range, but not in the reduced 0-100 range, indicating compression in proximity of the upper anchor 130, not the standard 100. Moreover, fast responses to words revealed an unexpected significant negative compression in the reduced 0-100 range, but not in the 0-130 range, indicating compression in proximity to the lower anchor 0. Results show that fast responses help revealing the fundamentally distinct nature of symbolic and non-symbolic quantity representation. Whole number words, being intrinsically mediated by cultural phenomena such as language and education, emphasize the invariance of magnitude between them—essential for linear mappings, and therefore, unlike non-symbolic (psychophysical) stimuli, yield spatial mappings that don't seem to be influenced by the Weber-Fechner law of psychophysics. However, high levels of education (when combined with an absence of standard upper anchors) may lead fast responses to overestimate magnitude invariance on the lower end of word numerals.
Can Fast and Slow Intelligence Be Differentiated?
ERIC Educational Resources Information Center
Partchev, Ivailo; De Boeck, Paul
2012-01-01
Responses to items from an intelligence test may be fast or slow. The research issue dealt with in this paper is whether the intelligence involved in fast correct responses differs in nature from the intelligence involved in slow correct responses. There are two questions related to this issue: 1. Are the processes involved different? 2. Are the…
Yang, Huiying; Wang, Tong; Tian, Guang; Zhang, Qingwen; Wu, Xiaohong; Xin, Youqian; Yan, Yanfeng; Tan, Yafang; Cao, Shiyang; Liu, Wanbing; Cui, Yujun; Yang, Ruifu; Du, Zongmin
2017-01-01
Pneumonic plague is the most deadly form of infection caused by Yersinia pestis and can progress extremely fast. However, our understanding on the host transcriptomic response to pneumonic plague is insufficient. Here, we used RNA-sequencing technology to analyze transcriptomic responses in mice infected with fully virulent strain 201 or EV76, a live attenuated vaccine strain lacking the pigmentation locus. Approximately 600 differentially expressed genes (DEGs) were detected in lungs from both 201- and EV76-infected mice at 12h post-infection (hpi). DEGs in lungs of 201-infected mice exceeded 2000 at 48hpi, accompanied by sustained large numbers of DEGs in the liver and spleen; however, limited numbers of DEGs were detected in those organs of EV-infected mice. Remarkably, DEGs in lungs were significantly enriched in critical immune responses pathways in EV76-infected but not 201-infected mice, including antigen processing and presentation, T cell receptor signaling among others. Pathological and bacterial load analyses confirmed the rapid systemic dissemination of 201-infection and the confined EV76-infection in lungs. Our results suggest that fully virulent Y. pestis inhibits both the innate and adaptive immune responses that are substantially stimulated in a self-limited infection, which update our holistic views on the transcriptomic response to pneumonic plague. Copyright © 2016 Elsevier GmbH. All rights reserved.
Conservation at a slow pace: terrestrial gastropods facing fast-changing climate
Ansart, Armelle
2017-01-01
Abstract The climate is changing rapidly, and terrestrial ectotherms are expected to be particularly vulnerable to changes in temperature and water regime, but also to an increase in extreme weather events in temperate regions. Physiological responses of terrestrial gastropods to climate change are poorly studied. This is surprising, because they are of biodiversity significance among litter-dwelling species, playing important roles in ecosystem function, with numerous species being listed as endangered and requiring efficient conservation management. Through a summary of our ecophysiological work on snail and slug species, we gained some insights into physiological and behavioural responses to climate change that we can organize into the following four threat categories. (i) Winter temperature and snow cover. Terrestrial gastropods use different strategies to survive sub-zero temperatures in buffered refuges, such as the litter or the soil. Absence of the insulating snow cover exposes species to high variability in temperature. The extent of specific cold tolerance might influence the potential of local extinction, but also of invasion. (ii) Drought and high temperature. Physiological responses involve high-cost processes that protect against heat and dehydration. Some species decrease activity periods, thereby reducing foraging and reproduction time. Related costs and physiological limits are expected to increase mortality. (iii) Extreme events. Although some terrestrial gastropod communities can have a good resilience to fire, storms and flooding, an increase in the frequency of those events might lead to community impoverishment. (iv) Habitat loss and fragmentation. Given that terrestrial gastropods are poorly mobile, landscape alteration generally results in an increased risk of local extinction, but responses are highly variable between species, requiring studies at the population level. There is a great need for studies involving non-invasive methods on the plasticity of physiological and behavioural responses and the ability for local adaptation, considering the spatiotemporally heterogeneous climatic landscape, to allow efficient management of ecosystems and conservation of biodiversity. PMID:28852510
Conservation at a slow pace: terrestrial gastropods facing fast-changing climate.
Nicolai, Annegret; Ansart, Armelle
2017-01-01
The climate is changing rapidly, and terrestrial ectotherms are expected to be particularly vulnerable to changes in temperature and water regime, but also to an increase in extreme weather events in temperate regions. Physiological responses of terrestrial gastropods to climate change are poorly studied. This is surprising, because they are of biodiversity significance among litter-dwelling species, playing important roles in ecosystem function, with numerous species being listed as endangered and requiring efficient conservation management. Through a summary of our ecophysiological work on snail and slug species, we gained some insights into physiological and behavioural responses to climate change that we can organize into the following four threat categories. (i) Winter temperature and snow cover. Terrestrial gastropods use different strategies to survive sub-zero temperatures in buffered refuges, such as the litter or the soil. Absence of the insulating snow cover exposes species to high variability in temperature. The extent of specific cold tolerance might influence the potential of local extinction, but also of invasion. (ii) Drought and high temperature. Physiological responses involve high-cost processes that protect against heat and dehydration. Some species decrease activity periods, thereby reducing foraging and reproduction time. Related costs and physiological limits are expected to increase mortality. (iii) Extreme events. Although some terrestrial gastropod communities can have a good resilience to fire, storms and flooding, an increase in the frequency of those events might lead to community impoverishment. (iv) Habitat loss and fragmentation. Given that terrestrial gastropods are poorly mobile, landscape alteration generally results in an increased risk of local extinction, but responses are highly variable between species, requiring studies at the population level. There is a great need for studies involving non-invasive methods on the plasticity of physiological and behavioural responses and the ability for local adaptation, considering the spatiotemporally heterogeneous climatic landscape, to allow efficient management of ecosystems and conservation of biodiversity.
Kruppel-like factor 15 is required for the cardiac adaptive response to fasting.
Sugi, Keiki; Hsieh, Paishiun N; Ilkayeva, Olga; Shelkay, Shamanthika; Moroney, Bridget; Baadh, Palvir; Haynes, Browning; Pophal, Megan; Fan, Liyan; Newgard, Christopher B; Prosdocimo, Domenick A; Jain, Mukesh K
2018-01-01
Cardiac metabolism is highly adaptive in response to changes in substrate availability, as occur during fasting. This metabolic flexibility is essential to the maintenance of contractile function and is under the control of a group of select transcriptional regulators, notably the nuclear receptor family of factors member PPARα. However, the diversity of physiologic and pathologic states through which the heart must sustain function suggests the possible existence of additional transcriptional regulators that play a role in matching cardiac metabolism to energetic demand. Here we show that cardiac KLF15 is required for the normal cardiac response to fasting. Specifically, we find that cardiac function is impaired upon fasting in systemic and cardiac specific Klf15-null mice. Further, cardiac specific Klf15-null mice display a fasting-dependent accumulation of long chain acylcarnitine species along with a decrease in expression of the carnitine translocase Slc25a20. Treatment with a diet high in short chain fatty acids relieves the KLF15-dependent long chain acylcarnitine accumulation and impaired cardiac function in response to fasting. Our observations establish KLF15 as a critical mediator of the cardiac adaptive response to fasting through its regulation of myocardial lipid utilization.
Never Say No … How the Brain Interprets the Pregnant Pause in Conversation
Bögels, Sara; Kendrick, Kobin H.; Levinson, Stephen C.
2015-01-01
In conversation, negative responses to invitations, requests, offers, and the like are more likely to occur with a delay–conversation analysts talk of them as dispreferred. Here we examine the contrastive cognitive load ‘yes’ and ‘no’ responses make, either when relatively fast (300 ms after question offset) or delayed (1000 ms). Participants heard short dialogues contrasting in speed and valence of response while having their EEG recorded. We found that a fast ‘no’ evokes an N400-effect relative to a fast ‘yes’; however, this contrast disappeared in the delayed responses. 'No' responses, however, elicited a late frontal positivity both if they were fast and if they were delayed. We interpret these results as follows: a fast ‘no’ evoked an N400 because an immediate response is expected to be positive–this effect disappears as the response time lengthens because now in ordinary conversation the probability of a ‘no’ has increased. However, regardless of the latency of response, a ‘no’ response is associated with a late positivity, since a negative response is always dispreferred. Together these results show that negative responses to social actions exact a higher cognitive load, but especially when least expected, in immediate response. PMID:26699335
Bertin, F R; Taylor, S D; Bianco, A W; Sojka-Kritchevsky, J E
2016-09-01
Published descriptions of the oral sugar test (OST) and insulin response test (IRT) have been inconsistent when specifying the protocol for fasting horses before testing. The purpose of our study was to examine the effect of fasting duration on blood glucose concentration, blood insulin concentration, glucose/insulin ratio, OST, and IRT results in horses. Ten healthy adult horses. Both OST and IRT were performed on horses without fasting and after fasting for 3, 6, and 12 hours. Thus, 8 tests were performed per horse in a randomized order. Blood collected at the initial time point of the OST was analysed for both blood glucose and serum insulin concentrations so that baseline concentrations and the glucose/insulin ratio could be determined. Unless fasted, horses had free-choice access to grass hay. There was no effect of fasting and fasting duration on blood glucose concentration, serum insulin concentration, glucose/insulin ratio, or the OST. Response to insulin in the IRT was decreased in fasted horses. The effect increased with fasting duration, with the least response to insulin administration after a 12-hour fast. These data indicate that insulin sensitivity is not a fixed trait in horses. Fasting a horse is not recommended for a glucose/insulin ratio or IRT, and fasting a horse for 3 hours is recommended for the OST. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.
Fast algorithm for wavefront reconstruction in XAO/SCAO with pyramid wavefront sensor
NASA Astrophysics Data System (ADS)
Shatokhina, Iuliia; Obereder, Andreas; Ramlau, Ronny
2014-08-01
We present a fast wavefront reconstruction algorithm developed for an extreme adaptive optics system equipped with a pyramid wavefront sensor on a 42m telescope. The method is called the Preprocessed Cumulative Reconstructor with domain decomposition (P-CuReD). The algorithm is based on the theoretical relationship between pyramid and Shack-Hartmann wavefront sensor data. The algorithm consists of two consecutive steps - a data preprocessing, and an application of the CuReD algorithm, which is a fast method for wavefront reconstruction from Shack-Hartmann sensor data. The closed loop simulation results show that the P-CuReD method provides the same reconstruction quality and is significantly faster than an MVM.
Power of performance of the thumb adductor muscles: effect of laterality and gender.
Gutnik, Boris; Nash, Derek; Ricacho, Norberto; Hudson, Grant; Skirius, Jonas
2006-01-01
The aim of this work was to originally measure mechanical power output of the thumb adductor muscles during fast adduction of the thumb in the horizontal plane. This information will contribute to biomechanical guidelines to help clinicians, sport medicine and rehabilitation specialists in the objective functional evaluation of abnormalities of thumb adductors. Participants performed 20 fast adductions in response to audio signals. Maximum and average angular velocity and angular acceleration were measured. Tangential components of these parameters were then derived. The force of adduction was obtained from the tangential acceleration and the mass of the rotational system. The power was then calculated as the product of the force of adduction and average tangential velocity during the acceleration phase of adduction. All young and untrained males and females were strictly right handed. There was no significant difference in power between dominant and nondominant muscles for either males or females, but males developed significantly more power than females. Because adduction was performed at maximal speed, these data may be explained by the influence of parallel and series elastic elements in the muscle, as well as by influence of fast twitch fibers. Power may be used as a clinical index of the effectiveness of muscle contraction. The similarity of power outputs from dominant and nondominant thumb adductor muscles of right-handers can suggest a classical Bernstein approach. This theoretical approach purports that peripheral factors can distort central commands projected to dominant and nondominant extremities.
Tropical precipitation extremes: Response to SST-induced warming in aquaplanet simulations
NASA Astrophysics Data System (ADS)
Bhattacharya, Ritthik; Bordoni, Simona; Teixeira, João.
2017-04-01
Scaling of tropical precipitation extremes in response to warming is studied in aquaplanet experiments using the global Weather Research and Forecasting (WRF) model. We show how the scaling of precipitation extremes is highly sensitive to spatial and temporal averaging: while instantaneous grid point extreme precipitation scales more strongly than the percentage increase (˜7% K-1) predicted by the Clausius-Clapeyron (CC) relationship, extremes for zonally and temporally averaged precipitation follow a slight sub-CC scaling, in agreement with results from Climate Model Intercomparison Project (CMIP) models. The scaling depends crucially on the employed convection parameterization. This is particularly true when grid point instantaneous extremes are considered. These results highlight how understanding the response of precipitation extremes to warming requires consideration of dynamic changes in addition to the thermodynamic response. Changes in grid-scale precipitation, unlike those in convective-scale precipitation, scale linearly with the resolved flow. Hence, dynamic changes include changes in both large-scale and convective-scale motions.
Coast Guard Cutter Procurement: Background and Issues for Congress
2016-04-04
and 58 Fast Response Cutters (FRCs) as replacements for 90 aging Coast Guard cutters and patrol craft. The Coast Guard’s proposed FY2017 budget...Offshore Patrol Cutter (Generic Conceptual Rendering) ................................................. 5 Figure 3. Fast Response Cutter...National Security Cutters (NSCs), 25 Offshore Patrol Cutters (OPCs), and 58 Fast Response Cutters (FRCs). These 91 planned cutters are intended as
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Y.; Ding, M. D.; Chen, P. F., E-mail: guoyang@nju.edu.cn
2015-08-15
Using the high spatiotemporal resolution extreme ultraviolet (EUV) observations of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we conduct a statistical study of the observational properties of the coronal EUV propagating fronts. We find that it might be a universal phenomenon for two types of fronts to coexist in a large solar eruptive event. It is consistent with the hybrid model of EUV propagating fronts, which predicts that coronal EUV propagating fronts consist of both a fast magneto-acoustic wave and a nonwave component. We find that the morphologies, propagation behaviors, and kinematic features of the two EUVmore » propagating fronts are completely different from each other. The fast magneto-acoustic wave fronts are almost isotropic. They travel continuously from the flaring region across multiple magnetic polarities to global distances. On the other hand, the slow nonwave fronts appear as anisotropic and sequential patches of EUV brightening. Each patch propagates locally in the magnetic domains where the magnetic field lines connect to the bottom boundary and stops at the magnetic domain boundaries. Within each magnetic domain, the velocities of the slow patchy nonwave component are an order of magnitude lower than that of the fast-wave component. However, the patches of the slow EUV propagating front can jump from one magnetic domain to a remote one. The velocities of such a transit between different magnetic domains are about one-third to one-half of those of the fast-wave component. The results show that the velocities of the nonwave component, both within one magnetic domain and between different magnetic domains, are highly nonuniform due to the inhomogeneity of the magnetic field in the lower atmosphere.« less
Integrating plant ecological responses to climate extremes from individual to ecosystem levels.
Felton, Andrew J; Smith, Melinda D
2017-06-19
Climate extremes will elicit responses from the individual to the ecosystem level. However, only recently have ecologists begun to synthetically assess responses to climate extremes across multiple levels of ecological organization. We review the literature to examine how plant responses vary and interact across levels of organization, focusing on how individual, population and community responses may inform ecosystem-level responses in herbaceous and forest plant communities. We report a high degree of variability at the individual level, and a consequential inconsistency in the translation of individual or population responses to directional changes in community- or ecosystem-level processes. The scaling of individual or population responses to community or ecosystem responses is often predicated upon the functional identity of the species in the community, in particular, the dominant species. Furthermore, the reported stability in plant community composition and functioning with respect to extremes is often driven by processes that operate at the community level, such as species niche partitioning and compensatory responses during or after the event. Future research efforts would benefit from assessing ecological responses across multiple levels of organization, as this will provide both a holistic and mechanistic understanding of ecosystem responses to increasing climatic variability.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).
Sauers, Eric L; Bay, R Curtis; Snyder Valier, Alison R; Ellery, Traci; Huxel Bliven, Kellie C
2017-03-01
Upper extremity (UE) region-specific, patient-reported outcome (PRO) scales assess injuries to the UE but do not account for the demands of overhead throwing athletes or measure patient-oriented domains of health-related quality of life (HRQOL). To develop the Functional Arm Scale for Throwers (FAST), a UE region-specific and population-specific PRO scale that assesses multiple domains of disablement in throwing athletes with UE injuries. In stage I, a beta version of the scale was developed for subsequent factor identification, final item reduction, and construct validity analysis during stage II. Descriptive laboratory study. Three-stage scale development was utilized: Stage I (item generation and initial item reduction) and stage II (factor analysis, final item reduction, and construct validity) are reported herein, and stage III (establishment of measurement properties [reliability and validity]) will be reported in a companion paper. In stage I, a beta version was developed, incorporating National Center for Medical Rehabilitation Research disablement domains and ensuring a blend of sport-related and non-sport-related items. An expert panel and focus group assessed importance and interpretability of each item. During stage II, the FAST was reduced, preserving variance characteristics and factor structure of the beta version and construct validity of the final FAST scale. During stage I, a 54-item beta version and a separate 9-item pitcher module were developed. During stage II, a 22-item FAST and 9-item pitcher module were finalized. The factor solution for FAST scale items included pain (n = 6), throwing (n = 10), activities of daily living (n = 5), psychological impact (n = 4), and advancement (n = 3). The 6-item pain subscale crossed factors. The remaining subscales and pitcher module are distinctive, correlated, and internally consistent and may be interpreted individually or combined. This article describes the development of the FAST, which assesses clinical outcomes and HRQOL of throwing athletes after UE injury. The FAST encompasses multiple domains of disability and demonstrates excellent construct validity. The FAST provides a single UE region-specific and population-specific PRO scale for high-demand throwers to facilitate measurement of impact of UE injuries on HRQOL and clinical outcomes while quantifying recovery for comparative effectiveness studies.
NASA Astrophysics Data System (ADS)
Casey, Andrew R.; Schlaufman, Kevin C.
2017-12-01
The rapid neutron-capture or r-process is thought to produce the majority of the heavy elements (Z> 30) in extremely metal-poor stars. The same process is also responsible for a significant fraction of the heavy elements in the Sun. This universality of the r-process is one of its characteristic features, as well as one of the most important clues to its astrophysical origin. We report the discovery of an extremely metal-poor field giant with [{Sr},{Ba}/{{H}}]≈ -6.0 and [{Sr},{Ba}/{Fe}]≈ -3.0, the lowest abundances of strontium and barium relative to iron ever observed. Despite its low abundances, the star 2MASS J151113.24-213003.0 has [{Sr}/{Ba}]=-0.11+/- 0.14, therefore its neutron-capture abundances are consistent with the main solar r-process pattern that has [{Sr}/{Ba}]=-0.25. It has been suggested that extremely low neutron-capture abundances are a characteristic of dwarf galaxies, and we find that this star is on a highly eccentric orbit with an apocenter ≳100 kpc that lies in the disk of satellites in the halo of the Milky Way. We show that other extremely metal-poor stars with low [Sr, Ba/H] and [Sr, Ba/Fe] plus solar [Sr/Ba] tend to have orbits with large apocenters, consistent with a dwarf galaxy origin for this class of object. The nucleosynthesis event that produced the neutron-capture elements in 2MASS J151113.24-213003.0 must produce both strontium and barium together in the solar ratio. We exclude contributions from the s-process in intermediate-mass asymptotic giant branch or fast-rotating massive metal-poor stars, pair-instability supernovae, the weak r-process, and neutron-star mergers. We argue that the event was a Pop III or extreme Pop II core-collapse supernova explosion. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.
Li, Guolin; Brocker, Chad N; Yan, Tingting; Xie, Cen; Krausz, Kristopher W; Xiang, Rong; Gonzalez, Frank J
2018-01-01
Peroxisome proliferator-activated receptor alpha (PPARA) is a major regulator of fatty acid oxidation and severe hepatic steatosis occurs during acute fasting in Ppara-null mice. Thus, PPARA is considered an important mediator of the fasting response; however, its role in other fasting regiments such as every-other-day fasting (EODF) has not been investigated. Mice were pre-conditioned using either a diet containing the potent PPARA agonist Wy-14643 or an EODF regimen prior to acute fasting. Ppara-null mice were used to assess the contribution of PPARA activation during the metabolic response to EODF. Livers were collected for histological, biochemical, qRT-PCR, and Western blot analysis. Acute fasting activated PPARA and led to steatosis, whereas EODF protected against fasting-induced hepatic steatosis without affecting PPARA signaling. In contrast, pretreatment with Wy-14,643 did activate PPARA signaling but did not ameliorate acute fasting-induced steatosis and unexpectedly promoted liver injury. Ppara ablation exacerbated acute fasting-induced hypoglycemia, hepatic steatosis, and liver injury in mice, whereas these detrimental effects were absent in response to EODF, which promoted PPARA-independent fatty acid metabolism and normalized serum lipids. These findings indicate that PPARA activation prior to acute fasting cannot ameliorate fasting-induced hepatic steatosis, whereas EODF induced metabolic adaptations to protect against fasting-induced steatosis without altering PPARA signaling. Therefore, PPARA activation does not mediate the metabolic adaptation to fasting, at least in preventing acute fasting-induced steatosis. Published by Elsevier GmbH.
Meyr, Andrew J; Spiess, Kerianne E
Although the effect of lower extremity pathology and surgical intervention on automobile driving function has been a topic of contemporary interest, we are unaware of any analysis of the effect of lower extremity diabetic sensorimotor neuropathy on driving performance. The objective of the present case-control investigation was to assess the mean brake response time in diabetic drivers with lower extremity neuropathy compared with that of a control group and a brake response safety threshold. The driving performances of participants were evaluated using a computerized driving simulator with specific measurement of the mean brake response time and frequency of abnormally delayed brake responses. We analyzed a control group of 25 active drivers with neither diabetes nor lower extremity neuropathy and an experimental group of 25 active drivers with type 2 diabetes and lower extremity neuropathy. The experimental group demonstrated a 37.89% slower mean brake response time (0.757 ± 0.180 versus 0.549 ± 0.076 second; p < .001), with abnormally delayed responses occurring at a greater frequency (57.5% versus 3.5%; p < .001). Independent of a comparative statistical analysis, the observed mean brake response time in the experimental group was slower than the reported safety brake response threshold of 0.70 second. The results of the present investigation provide original data with respect to abnormally delayed brake responses in diabetic patients with lower extremity neuropathy and might raise the potential for impaired driving function in this population. Copyright © 2017 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
VO2 Off Transient Kinetics in Extreme Intensity Swimming.
Sousa, Ana; Figueiredo, Pedro; Keskinen, Kari L; Rodríguez, Ferran A; Machado, Leandro; Vilas-Boas, João P; Fernandes, Ricardo J
2011-01-01
Inconsistencies about dynamic asymmetry between the on- and off- transient responses in oxygen uptake are found in the literature. Therefore, the purpose of this study was to characterize the oxygen uptake off-transient kinetics during a maximal 200-m front crawl effort, as examining the degree to which the on/off regularity of the oxygen uptake kinetics response was preserved. Eight high level male swimmers performed a 200-m front crawl at maximal speed during which oxygen uptake was directly measured through breath-by-breath oxymetry (averaged every 5 s). This apparatus was connected to the swimmer by a low hydrodynamic resistance respiratory snorkel and valve system. The on- and off-transient phases were symmetrical in shape (mirror image) once they were adequately fitted by a single-exponential regression models, and no slow component for the oxygen uptake response was developed. Mean (± SD) peak oxygen uptake was 69.0 (± 6.3) mL·kg(-1)·min(-1), significantly correlated with time constant of the off- transient period (r = 0.76, p < 0.05) but not with any of the other oxygen off-transient kinetic parameters studied. A direct relationship between time constant of the off-transient period and mean swimming speed of the 200-m (r = 0.77, p < 0.05), and with the amplitude of the fast component of the effort period (r = 0.72, p < 0.05) were observed. The mean amplitude and time constant of the off-transient period values were significantly greater than the respective on- transient. In conclusion, although an asymmetry between the on- and off kinetic parameters was verified, both the 200-m effort and the respectively recovery period were better characterized by a single exponential regression model. Key pointsThe VO2 slow component was not observed in the recovery period of swimming extreme efforts;The on and off transient periods were better fitted by a single exponential function, and so, these effort and recovery periods of swimming extreme efforts are symmetrical;The rate of VO2 decline during the recovery period may be due to not only the magnitude of oxygen debt but also the VO2peak obtained during the effort period.
Mezzarobba, V; Torrent, A; Leydier, I; Alles, S; Brajon, B; Mignon, M; Attaix, D; Meynial-Denis, D
2003-12-01
During fasting, skeletal muscle exports increased amounts of glutamine (Gln) while increasing the production of this amino acid by glutamine synthetase (GS) in order to maintain the intramuscular Gln pool. Glucocorticoid hormones are believed to be the principal mediators of GS induction during stress conditions. The aim of this study was to evaluate (1) the effect of fasting on GS activity and expression in skeletal muscle during aging and consequently, (2) the role of glucocorticoids in fasting-induced GS activity. Male Wistar rats (6-, 22-month old) were fasted for 5 days and both the activity and expression of GS were measured in tibialis anterior muscle. To better demonstrate the role of glucocorticoids in the response of GS to fasting, we suppressed their action by RU38486 administration (a potent glucocorticoid antagonist) and their production by adrenalectomy in fed and fasted rats. An increase in fasting-induced GS activity was observed in skeletal muscles from both adult and aged rats. Adrenalectomy, but surprisingly not RU38486, suppressed the fasting-induced increase in GS activity and expression. The data clearly show that the GS responsiveness to fasting was not modified by aging in skeletal muscle.
NASA Astrophysics Data System (ADS)
Sometani, Mitsuru; Okamoto, Mitsuo; Hatakeyama, Tetsuo; Iwahashi, Yohei; Hayashi, Mariko; Okamoto, Dai; Yano, Hiroshi; Harada, Shinsuke; Yonezawa, Yoshiyuki; Okumura, Hajime
2018-04-01
We investigated methods of measuring the threshold voltage (V th) shift of 4H-silicon carbide (SiC) metal–oxide–semiconductor field-effect transistors (MOSFETs) under positive DC, negative DC, and AC gate bias stresses. A fast measurement method for V th shift under both positive and negative DC stresses revealed the existence of an extremely large V th shift in the short-stress-time region. We then examined the effect of fast V th shifts on drain current (I d) changes within a pulse under AC operation. The fast V th shifts were suppressed by nitridation. However, the I d change within one pulse occurred even in commercially available SiC MOSFETs. The correlation between I d changes within one pulse and V th shifts measured by a conventional method is weak. Thus, a fast and in situ measurement method is indispensable for the accurate evaluation of I d changes under AC operation.
Advanced Ultrasonic Diagnosis of Extremity Trauma: The Faster Exam
NASA Technical Reports Server (NTRS)
Dulchavsky, S. A.; Henry, S. E.; Moed, B. R.; Diebel, L. N.; Marshburn, T.; Hamilton, D. R.; Logan, J.; Kirkpatrick, A. W.; Williams, D. R.
2002-01-01
Ultrasound is of prO)len accuracy in abdominal and thoracic trauma and may be useful to diagnose extremity injury in situations where radiography is not available such as military and space applications. We prospectively evaluated the utility of extremity , ultrasound performed by trained, non-physician personnel in patients with extremity trauma, to simulate remote aerospace or military applications . Methods: Patients with extremity trauma were identified by history, physical examination, and radiographic studies. Ultrasound examination was performed bilaterally by nonphysician personnel with a portable ultrasound device using a 10-5 MHz linear probe, Images were video-recorded for later analysis against radiography by Fisher's exact test. The average time of examination was 4 minutes. Ultrasound accurately diagnosed extremity, injury in 94% of patients with no false positive exams; accuracy was greater in mid-shaft locations and least in the metacarpa/metatarsals. Soft tissue/tendon injury was readily visualized . Extremity ultrasound can be performed quickly and accurately by nonphysician personnel with excellent accuracy. Blinded verification of the utility of ultrasound in patients with extremity injury should be done to determine if Extremity and Respiratory evaluation should be added to the FAST examination (the FASTER exam) and verify the technique in remote locations such as military and aerospace applications.
Whisker Contact Detection of Rodents Based on Slow and Fast Mechanical Inputs
Claverie, Laure N.; Boubenec, Yves; Debrégeas, Georges; Prevost, Alexis M.; Wandersman, Elie
2017-01-01
Rodents use their whiskers to locate nearby objects with an extreme precision. To perform such tasks, they need to detect whisker/object contacts with a high temporal accuracy. This contact detection is conveyed by classes of mechanoreceptors whose neural activity is sensitive to either slow or fast time varying mechanical stresses acting at the base of the whiskers. We developed a biomimetic approach to separate and characterize slow quasi-static and fast vibrational stress signals acting on a whisker base in realistic exploratory phases, using experiments on both real and artificial whiskers. Both slow and fast mechanical inputs are successfully captured using a mechanical model of the whisker. We present and discuss consequences of the whisking process in purely mechanical terms and hypothesize that free whisking in air sets a mechanical threshold for contact detection. The time resolution and robustness of the contact detection strategies based on either slow or fast stress signals are determined. Contact detection based on the vibrational signal is faster and more robust to exploratory conditions than the slow quasi-static component, although both slow/fast components allow localizing the object. PMID:28119582
NON-INVASIVE EVALUATION OF NERVE CONDUCTION IN SMALL DIAMETER FIBERS IN THE RAT.
Zotova, Elena G; Arezzo, Joseph C
2013-01-01
A novel non-invasive technique was applied to measure velocity within slow conducting axons in the distal extreme of the sciatic nerve (i.e., digital nerve) in a rat model. The technique is based on the extraction of rectified multiple unit activity (MUA) from in vivo whole nerve compound responses. This method reliably identifies compound action potentials in thinly myelinated fibers conducting at a range of 9-18 m/s (Aδ axons), as well as in a subgroup of unmylinated C fibers conducting at approximately 1-2 m/s. The sensitivity of the method to C-fiber conduction was confirmed by the progressive decrement of the responses in the 1-2 m/s range over a 20-day period following the topical application of capsaicin (ANOVA p <0.03). Increasing the frequency of applied repetitive stimulation over a range of 0.75 Hz to 6.0 Hz produced slowing of conduction and a significant decrease in the magnitude of the compound C-fiber response (ANOVA p <0.01). This technique offers a unique opportunity for the non-invasive, repeatable, and quantitative assessment of velocity in the subsets of Aδ and C fibers in parallel with evaluation of fast nerve conduction.
Lee, Youngoh; Park, Jonghwa; Cho, Soowon; Shin, Young-Eun; Lee, Hochan; Kim, Jinyoung; Myoung, Jinyoung; Cho, Seungse; Kang, Saewon; Baig, Chunggi; Ko, Hyunhyub
2018-04-24
Flexible pressure sensors with a high sensitivity over a broad linear range can simplify wearable sensing systems without additional signal processing for the linear output, enabling device miniaturization and low power consumption. Here, we demonstrate a flexible ferroelectric sensor with ultrahigh pressure sensitivity and linear response over an exceptionally broad pressure range based on the material and structural design of ferroelectric composites with a multilayer interlocked microdome geometry. Due to the stress concentration between interlocked microdome arrays and increased contact area in the multilayer design, the flexible ferroelectric sensors could perceive static/dynamic pressure with high sensitivity (47.7 kPa -1 , 1.3 Pa minimum detection). In addition, efficient stress distribution between stacked multilayers enables linear sensing over exceptionally broad pressure range (0.0013-353 kPa) with fast response time (20 ms) and high reliability over 5000 repetitive cycles even at an extremely high pressure of 272 kPa. Our sensor can be used to monitor diverse stimuli from a low to a high pressure range including weak gas flow, acoustic sound, wrist pulse pressure, respiration, and foot pressure with a single device.
A High Sensitivity IDC-Electronic Tongue Using Dielectric/Sensing Membranes with Solvatochromic Dyes
Khan, Md. Rajibur Rahaman; Khalilian, Alireza; Kang, Shin-Won
2016-01-01
In this paper, an electronic tongue/taste sensor array containing different interdigitated capacitor (IDC) sensing elements to detect different types of tastes, such as sweetness (glucose), saltiness (NaCl), sourness (HCl), bitterness (quinine-HCl), and umami (monosodium glutamate) is proposed. We present for the first time an IDC electronic tongue using sensing membranes containing solvatochromic dyes. The proposed highly sensitive (30.64 mV/decade sensitivity) IDC electronic tongue has fast response and recovery times of about 6 s and 5 s, respectively, with extremely stable responses, and is capable of linear sensing performance (R2 ≈ 0.985 correlation coefficient) over the wide dynamic range of 1 µM to 1 M. The designed IDC electronic tongue offers excellent reproducibility, with a relative standard deviation (RSD) of about 0.029. The proposed device was found to have better sensing performance than potentiometric-, cascoded compatible lateral bipolar transistor (C-CLBT)-, Electronic Tongue (SA402)-, and fiber-optic-based taste sensing systems in what concerns dynamic range width, response time, sensitivity, and linearity. Finally, we applied principal component analysis (PCA) to distinguish between various kinds of taste in mixed taste compounds. PMID:27171095
Khan, Md Rajibur Rahaman; Khalilian, Alireza; Kang, Shin-Won
2016-05-10
In this paper, an electronic tongue/taste sensor array containing different interdigitated capacitor (IDC) sensing elements to detect different types of tastes, such as sweetness (glucose), saltiness (NaCl), sourness (HCl), bitterness (quinine-HCl), and umami (monosodium glutamate) is proposed. We present for the first time an IDC electronic tongue using sensing membranes containing solvatochromic dyes. The proposed highly sensitive (30.64 mV/decade sensitivity) IDC electronic tongue has fast response and recovery times of about 6 s and 5 s, respectively, with extremely stable responses, and is capable of linear sensing performance (R² ≈ 0.985 correlation coefficient) over the wide dynamic range of 1 µM to 1 M. The designed IDC electronic tongue offers excellent reproducibility, with a relative standard deviation (RSD) of about 0.029. The proposed device was found to have better sensing performance than potentiometric-, cascoded compatible lateral bipolar transistor (C-CLBT)-, Electronic Tongue (SA402)-, and fiber-optic-based taste sensing systems in what concerns dynamic range width, response time, sensitivity, and linearity. Finally, we applied principal component analysis (PCA) to distinguish between various kinds of taste in mixed taste compounds.
A Fast SVD-Hidden-nodes based Extreme Learning Machine for Large-Scale Data Analytics.
Deng, Wan-Yu; Bai, Zuo; Huang, Guang-Bin; Zheng, Qing-Hua
2016-05-01
Big dimensional data is a growing trend that is emerging in many real world contexts, extending from web mining, gene expression analysis, protein-protein interaction to high-frequency financial data. Nowadays, there is a growing consensus that the increasing dimensionality poses impeding effects on the performances of classifiers, which is termed as the "peaking phenomenon" in the field of machine intelligence. To address the issue, dimensionality reduction is commonly employed as a preprocessing step on the Big dimensional data before building the classifiers. In this paper, we propose an Extreme Learning Machine (ELM) approach for large-scale data analytic. In contrast to existing approaches, we embed hidden nodes that are designed using singular value decomposition (SVD) into the classical ELM. These SVD nodes in the hidden layer are shown to capture the underlying characteristics of the Big dimensional data well, exhibiting excellent generalization performances. The drawback of using SVD on the entire dataset, however, is the high computational complexity involved. To address this, a fast divide and conquer approximation scheme is introduced to maintain computational tractability on high volume data. The resultant algorithm proposed is labeled here as Fast Singular Value Decomposition-Hidden-nodes based Extreme Learning Machine or FSVD-H-ELM in short. In FSVD-H-ELM, instead of identifying the SVD hidden nodes directly from the entire dataset, SVD hidden nodes are derived from multiple random subsets of data sampled from the original dataset. Comprehensive experiments and comparisons are conducted to assess the FSVD-H-ELM against other state-of-the-art algorithms. The results obtained demonstrated the superior generalization performance and efficiency of the FSVD-H-ELM. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua
2015-01-15
Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics.
Ear Deformations Give Bats a Physical Mechanism for Fast Adaptation of Ultrasonic Beam Patterns
NASA Astrophysics Data System (ADS)
Gao, Li; Balakrishnan, Sreenath; He, Weikai; Yan, Zhen; Müller, Rolf
2011-11-01
A large number of mammals, including humans, have intricate outer ear shapes that diffract incoming sound in a direction- and frequency-specific manner. Through this physical process, the outer ear shapes encode sound-source information into the sensory signals from each ear. Our results show that horseshoe bats could dynamically control these diffraction processes through fast nonrigid ear deformations. The bats’ ear shapes can alter between extreme configurations in about 100 ms and thereby change their acoustic properties in ways that would suit different acoustic sensing tasks.
The fastest disk wind in APM 08279+5255 and its acceleration mechanism
NASA Astrophysics Data System (ADS)
Hagino, K.; Done, C.; Odaka, H.; Watanabe, S.; Takahashi, T.
2017-10-01
The luminous high-z quasar APM 08279+5255 has the most powerful ultra-fast outflow (UFO), which is claimed as the fastest disk wind with velocity of 0.7c. This extreme velocity is very important for constraining the physical mechanism to launch the UFOs because only magnetic driving mechanism can accelerate the winds up to velocities above 0.3c, at which radiation drag effects prevent radiation driving. We reanalyze all the observed data of this source with our spectral model of highly ionized disk winds constructed by 3D Monte Carlo radiation transfer simulation. This was applied to an archetypal disk wind in PDS 456, and successfully reproduced all the spectra observed with Suzaku in spite of their strong spectral variability. By applying our spectral model to APM 08279+5255, all the spectra observed with XMM-Newton, Chandra and Suzaku are explained with less extreme outflow velocities of 0.1-0.2c. In our analysis, the high energy absorption features, which were previously interpreted as absorption lines with extremely fast velocities, are produced by iron-K absorption edges from moderately ionized clumps embedded in the highly ionized wind. We also investigate the broadband SED, and find that it is X-ray weak and UV bright, which prefers the radiation driving.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deptuch, Gregory; Hoff, James; Jindariani, Sergo
Extremely fast pattern recognition capabilities are necessary to find and fit billions of tracks at the hardware trigger level produced every second anticipated at high luminosity LHC (HL-LHC) running conditions. Associative Memory (AM) based approaches for fast pattern recognition have been proposed as a potential solution to the tracking trigger. However, at the HL-LHC, there is much less time available and speed performance must be improved over previous systems while maintaining a comparable number of patterns. The Vertically Integrated Pattern Recognition Associative Memory (VIPRAM) Project aims to achieve the target pattern density and performance goal using 3DIC technology. The firstmore » step taken in the VIPRAM work was the development of a 2D prototype (protoVIPRAM00) in which the associative memory building blocks were designed to be compatible with the 3D integration. In this paper, we present the results from extensive performance studies of the protoVIPRAM00 chip in both realistic HL-LHC and extreme conditions. Results indicate that the chip operates at the design frequency of 100 MHz with perfect correctness in realistic conditions and conclude that the building blocks are ready for 3D stacking. We also present performance boundary characterization of the chip under extreme conditions.« less
NASA Astrophysics Data System (ADS)
Iwayama, H.; Sugishima, A.; Nagaya, K.; Yao, M.; Fukuzawa, H.; Motomura, K.; Liu, X.-J.; Yamada, A.; Wang, C.; Ueda, K.; Saito, N.; Nagasono, M.; Tono, K.; Yabashi, M.; Ishikawa, T.; Ohashi, H.; Kimura, H.; Togashi, T.
2010-08-01
The emission of highly charged ions from Xe clusters exposed to intense extreme ultraviolet laser pulses (λ ~ 52 nm) from the free electron laser in Japan was investigated using ion momentum spectroscopy. With increasing average cluster size, we observed multiply charged ions Xez + up to z = 3. From kinetic energy distributions, we found that multiply charged ions were generated near the cluster surface. Our results suggest that charges are inhomogeneously redistributed in the cluster to lower the total energy stored in the clusters.
Increased sensitivity of thyroid hormone-mediated signaling despite prolonged fasting.
Martinez, Bridget; Scheibner, Michael; Soñanez-Organis, José G; Jaques, John T; Crocker, Daniel E; Ortiz, Rudy M
2017-10-01
Thyroid hormones (TH) can increase cellular metabolism. Food deprivation in mammals is typically associated with reduced thyroid gland responsiveness, in an effort to suppress cellular metabolism and abate starvation. However, in prolonged-fasted, elephant seal pups, cellular TH-mediated proteins are up-regulated and TH levels are maintained with fasting duration. The function and contribution of the thyroid gland to this apparent paradox is unknown and physiologically perplexing. Here we show that the thyroid gland remains responsive during prolonged food deprivation, and that its function and production of TH increase with fasting duration in elephant seals. We discovered that our modeled plasma TH data in response to exogenous thyroid stimulating hormone predicted cellular signaling, which was corroborated independently by the enzyme expression data. The data suggest that the regulation and function of the thyroid gland in the northern elephant seal is atypical for a fasted animal, and can be better described as, "adaptive fasting". Furthermore, the modeling data help substantiate the in vivo responses measured, providing unique insight on hormone clearance, production rates, and thyroid gland responsiveness. Because these unique endocrine responses occur simultaneously with a nearly strict reliance on the oxidation of lipid, these findings provide an intriguing model to better understand the TH-mediated reliance on lipid metabolism that is not otherwise present in morbidly obese humans. When coupled with cellular, tissue-specific responses, these data provide a more integrated assessment of thyroidal status that can be extrapolated for many fasting/food deprived mammals. Copyright © 2017 Elsevier Inc. All rights reserved.
The whistle and the rattle: the design of sound producing muscles.
Rome, L C; Syme, D A; Hollingworth, S; Lindstedt, S L; Baylor, S M
1996-01-01
Vertebrate sound producing muscles often operate at frequencies exceeding 100 Hz, making them the fastest vertebrate muscles. Like other vertebrate muscle, these sonic muscles are "synchronous," necessitating that calcium be released and resequestered by the sarcoplasmic reticulum during each contraction cycle. Thus to operate at such high frequencies, vertebrate sonic muscles require extreme adaptations. We have found that to generate the "boatwhistle" mating call (approximately 200 Hz), the swimbladder muscle fibers of toadfish have evolved (i) a large and very fast calcium transient, (ii) a fast crossbridge detachment rate, and (iii) probably a fast kinetic off-rate of Ca2+ from troponin. The fibers of the shaker muscle of rattlesnakes have independently evolved similar traits, permitting tail rattling at approximately 90 Hz. PMID:8755609
Stability properties and fast ion confinement of hybrid tokamak plasma configurations
NASA Astrophysics Data System (ADS)
Graves, J. P.; Brunetti, D.; Pfefferle, D.; Faustin, J. M. P.; Cooper, W. A.; Kleiner, A.; Lanthaler, S.; Patten, H. W.; Raghunathan, M.
2015-11-01
In hybrid scenarios with flat q just above unity, extremely fast growing tearing modes are born from toroidal sidebands of the near resonant ideal internal kink mode. New scalings of the growth rate with the magnetic Reynolds number arise from two fluid effects and sheared toroidal flow. Non-linear saturated 1/1 dominant modes obtained from initial value stability calculation agree with the amplitude of the 1/1 component of a 3D VMEC equilibrium calculation. Viable and realistic equilibrium representation of such internal kink modes allow fast ion studies to be accurately established. Calculations of MAST neutral beam ion distributions using the VENUS-LEVIS code show very good agreement of observed impaired core fast ion confinement when long lived modes occur. The 3D ICRH code SCENIC also enables the establishment of minority RF distributions in hybrid plasmas susceptible to saturated near resonant internal kink modes.
Perforated peptic ulcer (PPU) in pregnancy during Ramadan fasting.
Gali, B M; Ibrahim, A G; Chama, C M; Mshelia, H B; Abubakar, A; Takai, I U; Takie, U; Bwala, S
2011-01-01
Perforated Peptic Ulcer (PPU) is extremely rare in pregnancy. We report a case of perforated peptic ulcer in pregnancy during Ramadan fasting. The patient is a 16 years old primigravida who presented with features of peritonitis at 28weeks of gestation while fasting during Ramadan. Ultrasound scan reported a singleton live fetus at 28 weeks gestation. At laparotomy via upper midline incision; a 1 cm roundish perforation located on the duodenum anteriorly was found with about a litre of gastric juice mixed with blood and food particles in the peritoneal cavity. The perforation was close transversely with omental patch (Modified Graham's patch) and peritoneal lavage done with warm saline. She had a preterm delivery of a 1 kg baby 3 days post-operatively by a spontaneous vaginal delivery, but the baby died 3 days later. Perforated Peptic Ulcer(PPU) though rare in pregnancy can occur and fasting can be a risk factor.
Fast-response cup anemometer features cosine response
NASA Technical Reports Server (NTRS)
Frenzen, P.
1968-01-01
Six-cup, low-inertia anemometer combines high resolution and fast response with a unique ability to sense only the horizontal component of the winds fluctuating rapidly in three dimensions. Cup assemblies are fabricated of expanded polystyrene plastic.
Noble Gases in Dust Returned by Hayabusa — Clues to Asteroid Itokawa's History?
NASA Astrophysics Data System (ADS)
Busemann, H.; Alwmark, C.; Bajt, S.; Böttger, U.; Crowther, S. A.; Gilmour, J. D.; Heitmann, U.; Hübers, H.-W.; Meier, M. M. M.; Pavlov, S.; Schade, U.; Spring, N. H.; Weber, I.
2014-09-01
We discuss the first detection of Xe in asteroid Itokawa dust, the uniformly short exposure of the dust to cosmic rays, possibly resulting from the extremely fast erosion present on small asteroids, and potential implications for Itokawa’s history.
Desrochers, Étienne; Thibaudier, Yann; Hurteau, Marie‐France; Dambreville, Charline
2016-01-01
Key points Coordination between the left and right sides is essential for dynamic stability during locomotion.The immature or neonatal mammalian spinal cord can adjust to differences in speed between the left and right sides during split‐belt locomotion by taking more steps on the fast side.We show that the adult mammalian spinal cord can also adjust its output so that the fast side can take more steps.During split‐belt locomotion, only certain parts of the cycle are modified to adjust left–right coordination, primarily those associated with swing onset.When the fast limb takes more steps than the slow limb, strong left–right interactions persist.Therefore, the adult mammalian spinal cord has a remarkable adaptive capacity for left–right coordination, from simple to extreme conditions. Abstract Although left–right coordination is essential for locomotion, its control is poorly understood, particularly in adult mammals. To investigate the spinal control of left–right coordination, a spinal transection was performed in six adult cats that were then trained to recover hindlimb locomotion. Spinal cats performed tied‐belt locomotion from 0.1 to 1.0 m s−1 and split‐belt locomotion with low to high (1:1.25–10) slow/fast speed ratios. With the left hindlimb stepping at 0.1 m s−1 and the right hindlimb stepping from 0.2 to 1.0 m s−1, 1:1, 1:2, 1:3, 1:4 and 1:5 left–right step relationships could appear. The appearance of 1:2+ relationships was not linearly dependent on the difference in speed between the slow and fast belts. The last step taken by the fast hindlimb displayed longer cycle, stance and swing durations and increased extensor activity, as the slow limb transitioned to swing. During split‐belt locomotion with 1:1, 1:2 and 1:3 relationships, the timing of stance onset of the fast limb relative to the slow limb and placement of both limbs at contact were invariant with increasing slow/fast speed ratios. In contrast, the timing of stance onset of the slow limb relative to the fast limb and the placement of both limbs at swing onset were modulated with slow/fast speed ratios. Thus, left–right coordination is adjusted by modifying specific parts of the cycle. Results highlight the remarkable adaptive capacity of the adult mammalian spinal cord, providing insight into spinal mechanisms and sensory signals regulating left–right coordination. PMID:27426732
The subdwarf B star SB 290 - A fast rotator on the extreme horizontal branch
NASA Astrophysics Data System (ADS)
Geier, S.; Heber, U.; Heuser, C.; Classen, L.; O'Toole, S. J.; Edelmann, H.
2013-03-01
Hot subdwarf B stars (sdBs) are evolved core helium-burning stars with very thin hydrogen envelopes. To form an sdB, the progenitor has to lose almost all of its hydrogen envelope right at the tip of the red giant branch. In close binary systems, mass transfer to the companion provides the extraordinary mass loss required for their formation. However, apparently single sdBs exist as well, and their formation has been unclear for decades. The merger of helium white dwarfs leading to an ignition of core helium-burning or the merger of a helium core and a low-mass star during the common envelope phase have been proposed. Here we report the discovery of SB 290 as the first apparently single, fast-rotating sdB star located on the extreme horizontal branch, indicating that those stars may form from mergers. Appendix A is available in electronic form at http://www.aanda.org
Kantsyrev, V L; Safronova, A S; Williamson, K M; Wilcox, P; Ouart, N D; Yilmaz, M F; Struve, K W; Voronov, D L; Feshchenko, R M; Artyukov, I A; Vinogradov, A V
2008-10-01
New extreme ultraviolet (EUV) spectroscopic diagnostics of relatively low-temperature plasmas based on the application of an EUV spectrometer and fast EUV diodes combined with glass capillary optics is described. An advanced high resolution dispersive element sliced multilayer grating was used in the compact EUV spectrometer. For monitoring of the time history of radiation, filtered fast EUV diodes were used in the same spectral region (>13 nm) as the EUV spectrometer. The radiation from the plasma was captured by using a single inexpensive glass capillary that was transported onto the spectrometer entrance slit and EUV diode. The use of glass capillary optics allowed placement of the spectrometer and diodes behind the thick radiation shield outside the direction of a possible hard x-ray radiation beam and debris from the plasma source. The results of the testing and application of this diagnostic for a compact laser plasma source are presented. Examples of modeling with parameters of plasmas are discussed.
The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes
Lehmann, Jascha; Coumou, Dim
2015-01-01
Changes in mid-latitude circulation can strongly affect the number and intensity of extreme weather events. In particular, high-amplitude quasi-stationary planetary waves have been linked to prolonged weather extremes at the surface. In contrast, analyses of fast-traveling synoptic-scale waves and their direct influence on heat and cold extremes are scarce though changes in such waves have been detected and are projected for the 21st century. Here we apply regression analyses of synoptic activity with surface temperature and precipitation in monthly gridded observational data. We show that over large parts of mid-latitude continental regions, summer heat extremes are associated with low storm track activity. In winter, the occurrence of cold spells is related to low storm track activity over parts of eastern North America, Europe, and central- to eastern Asia. Storm tracks thus have a moderating effect on continental temperatures. Pronounced storm track activity favors monthly rainfall extremes throughout the year, whereas dry spells are associated with a lack thereof. Trend analyses reveal significant regional changes in recent decades favoring the occurrence of cold spells in the eastern US, droughts in California and heat extremes over Eurasia. PMID:26657163
A modified estimation distribution algorithm based on extreme elitism.
Gao, Shujun; de Silva, Clarence W
2016-12-01
An existing estimation distribution algorithm (EDA) with univariate marginal Gaussian model was improved by designing and incorporating an extreme elitism selection method. This selection method highlighted the effect of a few top best solutions in the evolution and advanced EDA to form a primary evolution direction and obtain a fast convergence rate. Simultaneously, this selection can also keep the population diversity to make EDA avoid premature convergence. Then the modified EDA was tested by means of benchmark low-dimensional and high-dimensional optimization problems to illustrate the gains in using this extreme elitism selection. Besides, no-free-lunch theorem was implemented in the analysis of the effect of this new selection on EDAs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Public Health System Response to Extreme Weather Events.
Hunter, Mark D; Hunter, Jennifer C; Yang, Jane E; Crawley, Adam W; Aragón, Tomás J
2016-01-01
Extreme weather events, unpredictable and often far-reaching, constitute a persistent challenge for public health preparedness. The goal of this research is to inform public health systems improvement through examination of extreme weather events, comparing across cases to identify recurring patterns in event and response characteristics. Structured telephone-based interviews were conducted with representatives from health departments to assess characteristics of recent extreme weather events and agencies' responses. Response activities were assessed using the Centers for Disease Control and Prevention Public Health Emergency Preparedness Capabilities framework. Challenges that are typical of this response environment are reported. Forty-five local health departments in 20 US states. Respondents described public health system responses to 45 events involving tornadoes, flooding, wildfires, winter weather, hurricanes, and other storms. Events of similar scale were infrequent for a majority (62%) of the communities involved; disruption to critical infrastructure was universal. Public Health Emergency Preparedness Capabilities considered most essential involved environmental health investigations, mass care and sheltering, surveillance and epidemiology, information sharing, and public information and warning. Unanticipated response activities or operational constraints were common. We characterize extreme weather events as a "quadruple threat" because (1) direct threats to population health are accompanied by damage to public health protective and community infrastructure, (2) event characteristics often impose novel and pervasive burdens on communities, (3) responses rely on critical infrastructures whose failure both creates new burdens and diminishes response capacity, and (4) their infrequency and scale further compromise response capacity. Given the challenges associated with extreme weather events, we suggest opportunities for organizational learning and preparedness improvements.
NASA Astrophysics Data System (ADS)
Khani, Rouhollah; Ghiamati, Ebrahim; Boroujerdi, Ramin; Rezaeifard, Abdolreza; Zaryabi, Mohadeseh Hosseinpour
2016-06-01
Cadmium (Cd) which is an extremely toxic could be found in many products like plastics, fossil fuel combustion, cosmetics, water resources, and wastewaters. It is capable of causing serious environmental and health problems such as lung, prostate, renal cancers and the other disorders. So, the development of a sensor to continually monitor cadmium is considerably demanding. Tetrakis(4-nitrophenyl)porphyrin, T(4-NO2-P)P, was synthesized and used as a new and highly selective fluorescent probe for monitoring cadmium ions in the "turn-on" mode. There was a linear relationship between fluorescence intensity and the concentration of Cd(II) in the range of 1.0 × 10- 6 to 1.0 × 10- 5 mol L- 1 with a detection limit of 0.276 μM. To examine the most important parameters involved and their interactions in the sensor optimization procedure, a four-factor central composite design (CCD) combined with response surface modeling (RSM) was implemented. The practical applicability of the developed sensor was investigated using real cosmetic, and personal care samples.
Adaptation to Low Temperature Exposure Increases Metabolic Rates Independently of Growth Rates
Williams, Caroline M.; Szejner-Sigal, Andre; Morgan, Theodore J.; Edison, Arthur S.; Allison, David B.; Hahn, Daniel A.
2016-01-01
Metabolic cold adaptation is a pattern where ectotherms from cold, high-latitude, or -altitude habitats have higher metabolic rates than ectotherms from warmer habitats. When found, metabolic cold adaptation is often attributed to countergradient selection, wherein short, cool growing seasons select for a compensatory increase in growth rates and development times of ectotherms. Yet, ectotherms in high-latitude and -altitude environments face many challenges in addition to thermal and time constraints on lifecycles. In addition to short, cool growing seasons, high-latitude and - altitude environments are characterized by regular exposure to extreme low temperatures, which cause ectotherms to enter a transient state of immobility termed chill coma. The ability to resume activity quickly after chill coma increases with latitude and altitude in patterns consistent with local adaptation to cold conditions. We show that artificial selection for fast and slow chill coma recovery among lines of the fly Drosophila melanogaster also affects rates of respiratory metabolism. Cold-hardy fly lines, with fast recovery from chill coma, had higher respiratory metabolic rates than control lines, with cold-susceptible slow-recovering lines having the lowest metabolic rates. Fast chill coma recovery was also associated with higher respiratory metabolism in a set of lines derived from a natural population. Although their metabolic rates were higher than control lines, fast-recovering cold-hardy lines did not have faster growth rates or development times than control lines. This suggests that raised metabolic rates in high-latitude and -altitude species may be driven by adaptation to extreme low temperatures, illustrating the importance of moving “Beyond the Mean”. PMID:27103615
NASA Astrophysics Data System (ADS)
Doerr, Stefan H.; Shakesby, Richard A.; Sheridan, Gary J.; Lane, Patrick Nj; Smith, Hugh G.; Bell, Tina; Blake, William H.
2010-05-01
The recent catastrophic wildfires near Melbourne, which peaked on Feb. 7 2009, burned ca 400,000 ha and caused the tragic loss of 173 people. They occurred during unprecedented extreme fire weather where dry northerly winds gusting up to 100 km/h coincided with the highest temperatures ever recorded in this region. These conditions, combined with the very high biomass of mature eucalypt forests, very low fuel moisture conditions and steep slopes, generated extreme burning conditions. A rapid response project was launched under the NERC Urgency Scheme aimed at determining the effects of this extreme event on soil properties. Three replicate sites each were sampled for extremely high burn severity, high burn severity and unburnt control terrain, within mature mixed-species eucalypt forests near Marysville in April 2009. Ash and surface soil (0-2.5 cm and 2.5-5 cm) were collected at 20 sample grid points at each site. Here we report on outcomes from Water Drop Penetration Time (WDPT) tests carried out on soil samples to determine the impact of this extreme event on the wettability of a naturally highly water repellent soil. Field assessment suggested that the impact of this extreme wildfire on the soil was less than might be supposed given the extreme burn severity (indicated by the complete elimination of the ground vegetation). This was confirmed by the laboratory results. No major difference in WDPT was detected between (i) burned and control samples, and (ii) between surface and subsurface WDPT patterns, indicating that soil temperatures in the top 0-2.5 cm did not exceed ~200° C. Seedling germination in burned soil was reduced by at least 2/3 compared to the control samples, however, this reduction is indicative an only modest heat input into the soil. The limited heat input into the soil stands in stark contrast to the extreme burn severity (based on vegetation destruction parameters). We speculate that limited soil heating resulted perhaps from the unusually fast-moving fire front and the resultant short fire residence time during this event. Thick ash layers were present at the time of sampling despite some significant earlier pre-sampling rainfall events. This suggests that the wettable ash (up to 15 cm thick) was able to store substantial amounts of water, which would otherwise have formed overland flow moving over the highly water repellent underlying mineral soil. Once this hydrological ‘sponge' is removed, the lack of ground cover is expected to lead to the underlying soil being susceptible to erosion until the ground cover becomes re-established. This ‘erosion window‘ is likely to be relatively brief over much of the burnt area as the vegetation is already showing a comparatively rapid regrowth response. This is supported by initial results from laboratory germination experiments, which showed seedling emergence from even the most severely burnt sites. The factors contributing to the fire impacts determined here are explored in conjunction with predictions for future burn severity under a changing climate. The soil samples collected represent a reference soil sample collection, which are available to the scientific community for further investigation.
On the frequency response of a Wenglor particle-counting system for aeolian transport measurements
NASA Astrophysics Data System (ADS)
Bauer, Bernard O.; Davidson-Arnott, Robin G. D.; Hilton, Michael J.; Fraser, Douglas
2018-06-01
A commonly deployed particle-counting system for aeolian saltation flux, consisting of a Wenglor fork sensor and an Onset Hobo Pulse Input Adapter linked to an Onset Hobo Energy Logger Pro data logger, was tested for frequency response. The Wenglor fork sensor is an optical gate device that has very fast switching capacity that can accommodate the time of flight of saltating sand particles through the sensing volume with the exception of very fine sand or silt and very quickly moving particles. The Pulse Input Adapter, in contrast, imposes limitations on the frequency response of the system. The manufacturer of the pulse adapter specifies an upper limit of 120 Hz, although bench tests with an electronic pulse generator indicate that the frequency response of the Pulse Input Adapter, in isolation, is excellent up to 3000 Hz, with only small error (less than 1.6%) due to under-counting during data transfer intervals. A mechanical test of the integrated system (fork sensor, pulse input adapter, and data logger) demonstrates excellent performance up to about 700 Hz (less than 2% error), but significant under-counting above 1000 Hz for unknown reasons. This specific particle-counting system therefore has a frequency response that is well suited for investigation of the dynamics of aeolian saltation as typically encountered in most field conditions on coastal beaches with the exception of extreme wind events and very small particle sizes.
Viscarra, Jose A; Rodriguez, Ruben; Vazquez-Medina, Jose Pablo; Lee, Andrew; Tift, Michael S; Tavoni, Stephen K; Crocker, Daniel E; Ortiz, Rudy M
2013-08-01
Prolonged food deprivation increases lipid oxidation and utilization, which may contribute to the onset of the insulin resistance associated with fasting. Because insulin resistance promotes the preservation of glucose and oxidation of fat, it has been suggested to be an adaptive response to food deprivation. However, fasting mammals exhibit hypoinsulinemia, suggesting that the insulin resistance-like conditions they experience may actually result from reduced pancreatic sensitivity to glucose/capacity to secrete insulin. To determine whether fasting results in insulin resistance or in pancreatic dysfunction, we infused early- and late-fasted seals (naturally adapted to prolonged fasting) with insulin (0.065 U/kg), and a separate group of late-fasted seals with low (10 pM/kg) or high (100 pM/kg) dosages of glucagon-like peptide-1 (GLP-1) immediately following a glucose bolus (0.5g/kg), and measured the systemic and cellular responses. Because GLP-1 facilitates glucose-stimulated insulin secretion, these infusions provide a method to assess pancreatic insulin-secreting capacity. Insulin infusions increased the phosphorylation of insulin receptor and Akt in adipose and muscle of early and late fasted seals; however the timing of the signaling response was blunted in adipose of late fasted seals. Despite the dose-dependent increases in insulin and increased glucose clearance (high dose), both GLP-1 dosages produced increases in plasma cortisol and glucagon, which may have contributed to the glucogenic role of GLP-1. Results suggest that fasting induces adipose-specific insulin resistance in elephant seal pups, while maintaining skeletal muscle insulin sensitivity, and therefore suggests that the onset of insulin resistance in fasting mammals is an evolved response to cope with prolonged food deprivation.
Temporal partitioning of adaptive responses of the murine heart to fasting.
Brewer, Rachel A; Collins, Helen E; Berry, Ryan D; Brahma, Manoja K; Tirado, Brian A; Peliciari-Garcia, Rodrigo A; Stanley, Haley L; Wende, Adam R; Taegtmeyer, Heinrich; Rajasekaran, Namakkal Soorappan; Darley-Usmar, Victor; Zhang, Jianhua; Frank, Stuart J; Chatham, John C; Young, Martin E
2018-03-15
Recent studies suggest that the time of day at which food is consumed dramatically influences clinically-relevant cardiometabolic parameters (e.g., adiposity, insulin sensitivity, and cardiac function). Meal feeding benefits may be the result of daily periods of feeding and/or fasting, highlighting the need for improved understanding of the temporal adaptation of cardiometabolic tissues (e.g., heart) to fasting. Such studies may provide mechanistic insight regarding how time-of-day-dependent feeding/fasting cycles influence cardiac function. We hypothesized that fasting during the sleep period elicits beneficial adaptation of the heart at transcriptional, translational, and metabolic levels. To test this hypothesis, temporal adaptation was investigated in wild-type mice fasted for 24-h, or for either the 12-h light/sleep phase or the 12-h dark/awake phase. Fasting maximally induced fatty acid responsive genes (e.g., Pdk4) during the dark/active phase; transcriptional changes were mirrored at translational (e.g., PDK4) and metabolic flux (e.g., glucose/oleate oxidation) levels. Similarly, maximal repression of myocardial p-mTOR and protein synthesis rates occurred during the dark phase; both parameters remained elevated in the heart of fasted mice during the light phase. In contrast, markers of autophagy (e.g., LC3II) exhibited peak responses to fasting during the light phase. Collectively, these data show that responsiveness of the heart to fasting is temporally partitioned. Autophagy peaks during the light/sleep phase, while repression of glucose utilization and protein synthesis is maximized during the dark/active phase. We speculate that sleep phase fasting may benefit cardiac function through augmentation of protein/cellular constituent turnover. Copyright © 2018 Elsevier Inc. All rights reserved.
Growth of Acousto-Optic Crystals for Applications in Infrared Region of Spectrum
2005-04-30
Acousto - optic (AO) modulators, deflectors, filters offer convenience, reliability, compact size and fast speed in regulation of optical beams. So far...extremely low acousto - optic figure of merit, which automatically results in high requirements on driving electric power and poor diffraction efficiency. It
The Individual Consistency of Acquiescence and Extreme Response Style in Self-Report Questionnaires
ERIC Educational Resources Information Center
Weijters, Bert; Geuens, Maggie; Schillewaert, Niels
2010-01-01
The severity of bias in respondents' self-reports due to acquiescence response style (ARS) and extreme response style (ERS) depends strongly on how consistent these response styles are over the course of a questionnaire. In the literature, different alternative hypotheses on response style (in)consistency circulate. Therefore, nine alternative…
Fast logic?: Examining the time course assumption of dual process theory.
Bago, Bence; De Neys, Wim
2017-01-01
Influential dual process models of human thinking posit that reasoners typically produce a fast, intuitive heuristic (i.e., Type-1) response which might subsequently be overridden and corrected by slower, deliberative processing (i.e., Type-2). In this study we directly tested this time course assumption. We used a two response paradigm in which participants have to give an immediate answer and afterwards are allowed extra time before giving a final response. In four experiments we used a range of procedures (e.g., challenging response deadline, concurrent load) to knock out Type 2 processing and make sure that the initial response was intuitive in nature. Our key finding is that we frequently observe correct, logical responses as the first, immediate response. Response confidence and latency analyses indicate that these initial correct responses are given fast, with high confidence, and in the face of conflicting heuristic responses. Findings suggest that fast and automatic Type 1 processing also cues a correct logical response from the start. We sketch a revised dual process model in which the relative strength of different types of intuitions determines reasoning performance. Copyright © 2016 Elsevier B.V. All rights reserved.
The disease that caused weight loss in King David the Great.
Ben-Noun, Liubov Louba
2004-02-01
Older people have suffered from loss of weight since the dawn of history. This research is unique in character, as it combines contemporary medical knowledge with the presentation of a case taken from Ancient History. To analyze from a modern perspective the biblical description of a geriatric patient who suffered from weight loss. Biblical texts associated with the aged were examined and passages relating to geriatric patients who suffered from loss of weight were closely studied. This study is based on the evaluation of the biblical passages, and not on the interpretations of various rabbis and scholars. Passages such as: ". I forget to eat my bread" and "My knees are weak through fasting; and my flesh failed of fatness" and ". my bones cleave to my skin" indicate anorexia, fasting, extreme loss of weight, and subsequent cachexia. Among the numerous causes associated with weight loss, malignancy, social problems such as loneliness, social isolation and neglect by others, and psychological causes including depressed mood were most likely responsible. With regard to malignancy, it seems that the King was affected by primary carcinoma of the prostate or kidney with subsequent metastases to bones. This report demonstrates that the roots of geriatric medicine can be traced to biblical times.
NASA Astrophysics Data System (ADS)
Chen, Ling; Ye, Jia-Wen; Wang, Hai-Ping; Pan, Mei; Yin, Shao-Yun; Wei, Zhang-Wen; Zhang, Lu-Yin; Wu, Kai; Fan, Ya-Nan; Su, Cheng-Yong
2017-06-01
A convenient, fast and selective water analysis method is highly desirable in industrial and detection processes. Here a robust microporous Zn-MOF (metal-organic framework, Zn(hpi2cf)(DMF)(H2O)) is assembled from a dual-emissive H2hpi2cf (5-(2-(5-fluoro-2-hydroxyphenyl)-4,5-bis(4-fluorophenyl)-1H-imidazol-1-yl)isophthalic acid) ligand that exhibits characteristic excited state intramolecular proton transfer (ESIPT). This Zn-MOF contains amphipathic micropores (<3 Å) and undergoes extremely facile single-crystal-to-single-crystal transformation driven by reversible removal/uptake of coordinating water molecules simply stimulated by dry gas blowing or gentle heating at 70 °C, manifesting an excellent example of dynamic reversible coordination behaviour. The interconversion between the hydrated and dehydrated phases can turn the ligand ESIPT process on or off, resulting in sensitive two-colour photoluminescence switching over cycles. Therefore, this Zn-MOF represents an excellent PL water-sensing material, showing a fast (on the order of seconds) and highly selective response to water on a molecular level. Furthermore, paper or in situ grown ZnO-based sensing films have been fabricated and applied in humidity sensing (RH<1%), detection of traces of water (<0.05% v/v) in various organic solvents, thermal imaging and as a thermometer.
SANSparallel: interactive homology search against Uniprot
Somervuo, Panu; Holm, Liisa
2015-01-01
Proteins evolve by mutations and natural selection. The network of sequence similarities is a rich source for mining homologous relationships that inform on protein structure and function. There are many servers available to browse the network of homology relationships but one has to wait up to a minute for results. The SANSparallel webserver provides protein sequence database searches with immediate response and professional alignment visualization by third-party software. The output is a list, pairwise alignment or stacked alignment of sequence-similar proteins from Uniprot, UniRef90/50, Swissprot or Protein Data Bank. The stacked alignments are viewed in Jalview or as sequence logos. The database search uses the suffix array neighborhood search (SANS) method, which has been re-implemented as a client-server, improved and parallelized. The method is extremely fast and as sensitive as BLAST above 50% sequence identity. Benchmarks show that the method is highly competitive compared to previously published fast database search programs: UBLAST, DIAMOND, LAST, LAMBDA, RAPSEARCH2 and BLAT. The web server can be accessed interactively or programmatically at http://ekhidna2.biocenter.helsinki.fi/cgi-bin/sans/sans.cgi. It can be used to make protein functional annotation pipelines more efficient, and it is useful in interactive exploration of the detailed evidence supporting the annotation of particular proteins of interest. PMID:25855811
Diffusion reaction of oxygen in HfO2/SiO2/Si stacks.
Ferrari, S; Fanciulli, M
2006-08-03
We study the oxidation mechanism of silicon in the presence of a thin HfO2 layer. We performed a set of annealing in 18O2 atmosphere on HfO2/SiO2/Si stacks observing the 18O distribution in the SiO2 layer with time-of-flight secondary ion mass spectrometry (ToF-SIMS). The 18O distribution in HfO2/SiO2/Si stacks upon 18O2 annealing suggests that what is responsible for SiO2 growth is the molecular O2, whereas no contribution is found of the atomic oxygen to the oxidation. By studying the dependence of the oxidation velocity from oxygen partial pressure and annealing temperature, we demonstrate that the rate-determining step of the oxidation is the oxygen exchange at the HfO2/SiO2 interface. When moisture is chemisorbed in HfO2 films, the oxidation of the underlying silicon substrate becomes extremely fast and its kinetics can be described as a wet silicon oxidation process. The silicon oxidation during O2 annealing of the atomic layer deposited HfO2/Si is fast in its early stage due to chemisorbed moisture and becomes slow after the first 10 s.
Experimental investigation of multi-scale non-equilibrium plasma dynamics
NASA Astrophysics Data System (ADS)
Bellan, Paul
2013-10-01
Lab experiments at Caltech resolve complex, detailed MHD dynamics spatially and temporally. Unbalanced forces drive fast plasma flows which tend to self-collimate via self-pinching. Collimation results from flow stagnation compressing embedded magnetic flux and so amplifying the magnetic field responsible for pinching. Measurements show that the collimated flow is essentially a dense plasma jet with embedded axial and azimuthal magnetic fields, i.e., a magnetic flux tube (flux rope). The measured jet velocity is in good agreement with an MHD acceleration model. Depending on how flux tube radius varies with axial position, jets flow into a flux tube from both ends or from just one end. Jets kink when the flux tube in which they are embedded breaches the Kruskal-Shafranov stability limit. The lateral acceleration of a sufficiently strong kink can produce an enormous effective gravity which provides the environment for an observed fine-scale, extremely fast Rayleigh-Taylor (RT) instability. The RT can erode the jet current channel to be smaller than the ion skin depth so there is a cascade from the ideal MHD scale of the kink to the non-MHD ion skin depth scale. This process can result in a magnetic reconnection whereby the jet and its embedded flux tube break. Supported by USDOE.
Novel Scalable 3-D MT Inverse Solver
NASA Astrophysics Data System (ADS)
Kuvshinov, A. V.; Kruglyakov, M.; Geraskin, A.
2016-12-01
We present a new, robust and fast, three-dimensional (3-D) magnetotelluric (MT) inverse solver. As a forward modelling engine a highly-scalable solver extrEMe [1] is used. The (regularized) inversion is based on an iterative gradient-type optimization (quasi-Newton method) and exploits adjoint sources approach for fast calculation of the gradient of the misfit. The inverse solver is able to deal with highly detailed and contrasting models, allows for working (separately or jointly) with any type of MT (single-site and/or inter-site) responses, and supports massive parallelization. Different parallelization strategies implemented in the code allow for optimal usage of available computational resources for a given problem set up. To parameterize an inverse domain a mask approach is implemented, which means that one can merge any subset of forward modelling cells in order to account for (usually) irregular distribution of observation sites. We report results of 3-D numerical experiments aimed at analysing the robustness, performance and scalability of the code. In particular, our computational experiments carried out at different platforms ranging from modern laptops to high-performance clusters demonstrate practically linear scalability of the code up to thousands of nodes. 1. Kruglyakov, M., A. Geraskin, A. Kuvshinov, 2016. Novel accurate and scalable 3-D MT forward solver based on a contracting integral equation method, Computers and Geosciences, in press.
Miao, Junfeng; Huo, Yingying; Liu, Qian; Li, Zhe; Shi, Heping; Shi, Yawei; Guo, Wei
2016-11-01
Peroxynitrite (ONOO(-)) is an extremely powerful oxidant in biological systems, and can react with a wide variety of molecular targets including proteins, lipids, and nucleic acids, eventually resulting in a series of disease states such as diabetes, Alzheimer's disease, cancer, arthritis, autoimmune, and other disorders. In this work, we present a new class of ONOO(-) fluorescent probes by exploiting the ONOO(-)-triggered N-oxidation and N-nitrosation reactions of aromatic tertiary amine for the first time. The as-obtained fluorescent probe A2 could detect ONOO(-) with quite fast fluorescence off-on response (within seconds), ultrasensitivity (detection limit: <2 nM), and excellent selectivity over a series of biologically relevant reactive oxygen species as well as metal cations. With the probe, the endogenous ONOO(-) in activated RAW264.7 murine macrophage, EA.hy926 endothelial cells after oxygen glucose deprivation and reoxygenation (OGD/RO), and kidney tissue of diabetic rats has been successfully visualized. Based on the molecular platform of A2, we further develop its mitochondria- and lysosome-targetable fluorescent probes Mito-A2 and Lyso-A2 by installing the corresponding targeting groups to alkoxy unit of A2, and confirm their abilities to image ONOO(-) in mitochondria and lysosomes, respectively, by co-localization assays. It is greatly expected that these probes can serve as useful imaging tools for clarifying the distribution and pathophysiological functions of ONOO(-) in cells, subcellular organelles, and animal tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nishimura, F; Nishihara, M; Torii, K; Takahashi, M
1996-07-01
The effects of food deprivation on responsiveness of neurons in the ventromedial nucleus of the hypothalamus (VMH) to serotonin (5-HT), norepinephrine (NE), gamma-aminobutyric acid (GABA), and neuropeptide Y (NPY) were investigated using brain slices in vitro along with behavioral changes in vivo during fasting. Adult male rats were fasted for 48 h starting at the beginning of the dark phase (lights on: 0700-1900 h). The animals showed a significant loss of body weight on the second day of fasting and an increase in food consumption on the first day of refeeding. During fasting, voluntary locomotor activity was significantly increased in the light phase but not during the dark phase. Plasma catecholamine levels were not affected by fasting. In vitro electrophysiological study showed that, in normally fed rats, 5-HT and NE induced both excitatory and inhibitory responses, while GABA and NPY intensively suppressed unit activity in the VMH. Food deprivation for 48 h significantly changed the responsiveness of VMH neurons to 5-HT, for instance, the ratio of neurons whose activity was facilitated by 5-HT was significantly decreased. The responsiveness of VMH neurons to NE, GABA, and NPY was not affected by food deprivation. These results suggest that food deprivation decreases the facilitatory response of VMH neurons to 5-HT, and that this change in responsiveness to 5-HT is at least partially involved in the increase in food intake motivation and locomotor activity during fasting.
3-D Displays Perceptual Research and Applications to Military Systems
1982-09-30
physical button on the corresponding face of the response cube as fast as possible, while minimizing errors. Each observer served for six sessions...orientation, and this resulted in the fast flat reaction time function. The Rotat±nal Strategy: As can be seen from Figure 3, the 24 stimulus cube...instead of the TOP key, these two responses should show the fast , flat response time functions associated with use of the spatial strategy, whereas the
Extreme Response Style: Which Model Is Best?
ERIC Educational Resources Information Center
Leventhal, Brian
2017-01-01
More robust and rigorous psychometric models, such as multidimensional Item Response Theory models, have been advocated for survey applications. However, item responses may be influenced by construct-irrelevant variance factors such as preferences for extreme response options. Through empirical and simulation methods, this study evaluates the use…
Greater reward-related neuronal response to hedonic foods in women compared to men
Legget, Kristina T.; Cornier, Marc-Andre; Bessesen, Daniel H.; Mohl, Brianne; Thomas, Elizabeth A.; Tregellas, Jason R.
2017-01-01
Objective The current study aimed to identify how sex influences neurobiological responses to food cues, particularly those related to hedonic eating, and how this relates to obesity propensity, using functional magnetic resonance imaging (fMRI). Methods Adult men and women who were either obesity-resistant (OR) or obesity-prone (OP) underwent fMRI while viewing visual food cues (hedonic foods, neutral foods, and non-food objects) in both fasted and fed states. Results When fasted, a significant sex effect on the response to hedonic vs. neutral foods was observed, with greater responses in women than men in the nucleus accumbens (p=0.0002) and insula (p=0.010). Sex-based differences were not observed in the fed state. No significant group effects (OP vs. OR) or group by sex interactions were observed in fasted or fed states. Conclusions Greater fasted responses to hedonic food cues in reward-related brain regions were observed in women compared to men, suggesting that women may be more sensitive to reward value of hedonic foods than men when fasted. This may indicate sex-dependent neurophysiology underlying eating behaviors. PMID:29239138
A Multi-Environment Thermal Control System With Freeze-Tolerant Radiator
NASA Technical Reports Server (NTRS)
Chen, Weibo; Fogg, David; Mancini, Nick; Steele, John; Quinn, Gregory; Bue, Grant; Littibridge, Sean
2013-01-01
Future space exploration missions require advanced thermal control systems (TCS) to dissipate heat from spacecraft, rovers, or habitats operating in environments that can vary from extremely hot to extremely cold. A lightweight, reliable TCS is being developed to effectively control cabin and equipment temperatures under widely varying heat loads and ambient temperatures. The system uses freeze-tolerant radiators, which eliminate the need for a secondary circulation loop or heat pipe systems. Each radiator has a self-regulating variable thermal conductance to its ambient environment. The TCS uses a nontoxic, water-based working fluid that is compatible with existing lightweight aluminum heat exchangers. The TCS is lightweight, compact, and requires very little pumping power. The critical characteristics of the core enabling technologies were demonstrated. Functional testing with condenser tubes demonstrated the key operating characteristics required for a reliable, freeze-tolerant TCS, namely (1) self-regulating thermal conductance with short transient responses to varying thermal loads, (2) repeatable performance through freeze-thaw cycles, and (3) fast start-up from a fully frozen state. Preliminary coolant tests demonstrated that the corrosion inhibitor in the water-based coolant can reduce the corrosion rate on aluminum by an order of magnitude. Performance comparison with state-of-the-art designs shows significant mass and power saving benefits of this technology.
Wound treatment and selective help in a termite-hunting ant.
Frank, Erik T; Wehrhahn, Marten; Linsenmair, K Eduard
2018-02-14
Open wounds are a major health risk in animals, with species prone to injuries likely developing means to reduce these risks. We therefore analysed the behavioural response towards open wounds on the social and individual level in the termite group-hunting ant Megaponera analis During termite raids, some ants get injured by termite soldiers (biting off extremities), after the fight injured ants get carried back to the nest by nest-mates. We observed treatment of the injury by nest-mates inside the nest through intense allogrooming at the wound. Lack of treatment increased mortality from 10% to 80% within 24 h, most likely due to infections. Wound clotting occurred extraordinarily fast in untreated injured individuals, within 10 min. Furthermore, heavily injured ants (loss of five extremities) were not rescued or treated; this was regulated not by the helper but by the unresponsiveness of the injured ant. Interestingly, lightly injured ants behaved 'more injured' near nest-mates. We show organized social wound treatment in insects through a multifaceted help system focused on injured individuals. This was not only limited to selective rescuing of lightly injured individuals by carrying them back (thus reducing predation risk), but, moreover, included a differentiated treatment inside the nest. © 2018 The Author(s).
Berglund, Lars; Garmo, Hans; Lindbäck, Johan; Svärdsudd, Kurt; Zethelius, Björn
2008-09-30
The least-squares estimator of the slope in a simple linear regression model is biased towards zero when the predictor is measured with random error. A corrected slope may be estimated by adding data from a reliability study, which comprises a subset of subjects from the main study. The precision of this corrected slope depends on the design of the reliability study and estimator choice. Previous work has assumed that the reliability study constitutes a random sample from the main study. A more efficient design is to use subjects with extreme values on their first measurement. Previously, we published a variance formula for the corrected slope, when the correction factor is the slope in the regression of the second measurement on the first. In this paper we show that both designs improve by maximum likelihood estimation (MLE). The precision gain is explained by the inclusion of data from all subjects for estimation of the predictor's variance and by the use of the second measurement for estimation of the covariance between response and predictor. The gain of MLE enhances with stronger true relationship between response and predictor and with lower precision in the predictor measurements. We present a real data example on the relationship between fasting insulin, a surrogate marker, and true insulin sensitivity measured by a gold-standard euglycaemic insulin clamp, and simulations, where the behavior of profile-likelihood-based confidence intervals is examined. MLE was shown to be a robust estimator for non-normal distributions and efficient for small sample situations. Copyright (c) 2008 John Wiley & Sons, Ltd.
Materić, Dušan; Lanza, Matteo; Sulzer, Philipp; Herbig, Jens; Bruhn, Dan; Turner, Claire; Mason, Nigel; Gauci, Vincent
2015-10-01
Proton transfer reaction mass spectrometry (PTR-MS) is a well-established technique for real-time analysis of volatile organic compounds (VOCs). Although it is extremely sensitive (with sensitivities of up to 4500 cps/ppbv, limits of detection <1 pptv and the response times of approximately 100 ms), the selectivity of PTR-MS is still somewhat limited, as isomers cannot be separated. Recently, selectivity-enhancing measures, such as manipulation of drift tube parameters (reduced electric field strength) and using primary ions other than H3O(+), such as NO(+) and O2 (+), have been introduced. However, monoterpenes, which belong to the most important plant VOCs, still cannot be distinguished so more traditional technologies, such as gas chromatography mass spectrometry (GC-MS), have to be utilised. GC-MS is very time consuming (up to 1 h) and cannot be used for real-time analysis. Here, we introduce a sensitive, near-to-real-time method for plant monoterpene research-PTR-MS coupled with fastGC. We successfully separated and identified six of the most abundant monoterpenes in plant studies (α- and β-pinenes, limonene, 3-carene, camphene and myrcene) in less than 80 s, using both standards and conifer branch enclosures (Norway spruce, Scots pine and black pine). Five monoterpenes usually present in Norway spruce samples with a high abundance were separated even when the compound concentrations were diluted to 20 ppbv. Thus, fastGC-PTR-ToF-MS was shown to be an adequate one-instrument solution for plant monoterpene research.
Induction of the Metabolic Regulator Txnip in Fasting-Induced and Natural Torpor
Hand, Laura E.; Saer, Ben R. C.; Hui, Simon T.; Jinnah, Hyder A.; Steinlechner, Stephan
2013-01-01
Torpor is a physiological state characterized by controlled lowering of metabolic rate and core body temperature, allowing substantial energy savings during periods of reduced food availability or harsh environmental conditions. The hypothalamus coordinates energy homeostasis and thermoregulation and plays a key role in directing torpor. We recently showed that mice lacking the orphan G protein-coupled receptor Gpr50 readily enter torpor in response to fasting and have now used these mice to conduct a microarray analysis of hypothalamic gene expression changes related to the torpor state. This revealed a strong induction of thioredoxin-interacting protein (Txnip) in the hypothalamus of torpid mice, which was confirmed by quantitative RT-PCR and Western blot analyses. In situ hybridization identified the ependyma lining the third ventricle as the principal site of torpor-related expression of Txnip. To characterize further the relationship between Txnip and torpor, we profiled Txnip expression in mice during prolonged fasting, cold exposure, and 2-deoxyglucose-induced hypometabolism, as well as in naturally occurring torpor bouts in the Siberian hamster. Strikingly, pronounced up-regulation of Txnip expression was only observed in wild-type mice when driven into torpor and during torpor in the Siberian hamster. Increase of Txnip was not limited to the hypothalamus, with exaggerated expression in white adipose tissue, brown adipose tissue, and liver also demonstrated in torpid mice. Given the recent identification of Txnip as a molecular nutrient sensor important in the regulation of energy metabolism, our data suggest that elevated Txnip expression is critical to regulating energy expenditure and fuel use during the extreme hypometabolic state of torpor. PMID:23584857
Elasticity and Anelasticity of Materials from Time-Resolved X-ray Diffraction
NASA Astrophysics Data System (ADS)
Sinogeikin, S. V.; Smith, J.; Lin, C.; Bai, L.; Rod, E.; Shen, G.
2014-12-01
Recent advances in synchrotron sources, x-ray optics, area detectors, and sample environment control have enabled many time-resolved experimental techniques for studying materials at extreme pressure and temperature conditions. The High Pressure Collaborative Access Team (HPCAT) at the Advanced Photon Source has made a sustained effort to develop and assemble a powerful collection of high-pressure apparatus for time-resolved research, and considerable time has been invested in developing techniques for collecting high-quality time-resolved x-ray scattering data. In this talk we will outline recently developed capabilities at HPCAT for studying elasticity and anelasticity of minerals using fast compression and cyclic compression-decompression. A few recent studies will be highlighted. For example, with fast x-ray area detectors having millisecond time resolution, accurate thermal equations of state of materials at temperatures up to 1000K and megabar pressures can be collected in a matter of seconds using membrane-driven diamond anvil cells (DAC), yielding unprecedented time and pressure resolution of true isotherms. Short duration of the experiments eliminates temperature variation during the experiments and in general allows volume measurements at higher pressures and temperatures. Alternatively, high-frequency (kilohertz range) radial diffraction measurements in a panoramic DAC combined with fast, precise cyclic loading/unloading by piezo drive could provide the short time scale necessary for studying rheology of minerals from the elastic response and lattice relaxation as a function of pressure, temperature and strain rate. Finally, we consider some possible future applications for time-resolved high-pressure, high-temperature research of mantle minerals.
A nectar-feeding mammal avoids body fluid disturbances by varying renal function.
Hartman Bakken, Bradley; Herrera M, L Gerardo; Carroll, Robert M; Ayala-Berdón, Jorge; Schondube, Jorge E; Martínez Del Rio, Carlos
2008-12-01
To maintain water and electrolyte balance, nectar-feeding vertebrates oscillate between two extremes: avoiding overhydration when feeding and preventing dehydration during fasts. Several studies have examined how birds resolve this osmoregulatory dilemma, but no data are available for nectar-feeding mammals. In this article, we 1) estimated the ability of Pallas's long-tongued bats (Glossophaga soricina; Phyllostomidae) to dilute and concentrate urine and 2) examined how water intake affected the processes that these bats use to maintain water balance. Total urine osmolality in water- and salt-loaded bats ranged between 31 +/- 37 mosmol/kgH(2)O (n = 6) and 578 +/- 56 mosmol/kgH(2)O (n = 2), respectively. Fractional water absorption in the gastrointestinal tract was not affected by water intake rate. As a result, water flux, body water turnover, and renal water load all increased with increasing water intake. Despite these relationships, glomerular filtration rate (GFR) was not responsive to water loading. To eliminate excess water, Pallas's long-tongued bats increased water excretion rate by reducing fractional renal water reabsorption. We also found that rates of total evaporative water loss increased with increasing water intake. During their natural daytime fast, mean GFR in Pallas's long-tongued bats was 0.37 ml/h (n = 10). This is approximately 90% lower than the GFR we measured in fed bats. Our findings 1) suggest that Pallas's long-tongued bats do not have an exceptional urine-diluting or -concentrating ability and 2) demonstrate that the bats eliminate excess ingested water by reducing renal water reabsorption and limit urinary water loss during fasting periods by reducing GFR.
Induction of the metabolic regulator Txnip in fasting-induced and natural torpor.
Hand, Laura E; Saer, Ben R C; Hui, Simon T; Jinnah, Hyder A; Steinlechner, Stephan; Loudon, Andrew S I; Bechtold, David A
2013-06-01
Torpor is a physiological state characterized by controlled lowering of metabolic rate and core body temperature, allowing substantial energy savings during periods of reduced food availability or harsh environmental conditions. The hypothalamus coordinates energy homeostasis and thermoregulation and plays a key role in directing torpor. We recently showed that mice lacking the orphan G protein-coupled receptor Gpr50 readily enter torpor in response to fasting and have now used these mice to conduct a microarray analysis of hypothalamic gene expression changes related to the torpor state. This revealed a strong induction of thioredoxin-interacting protein (Txnip) in the hypothalamus of torpid mice, which was confirmed by quantitative RT-PCR and Western blot analyses. In situ hybridization identified the ependyma lining the third ventricle as the principal site of torpor-related expression of Txnip. To characterize further the relationship between Txnip and torpor, we profiled Txnip expression in mice during prolonged fasting, cold exposure, and 2-deoxyglucose-induced hypometabolism, as well as in naturally occurring torpor bouts in the Siberian hamster. Strikingly, pronounced up-regulation of Txnip expression was only observed in wild-type mice when driven into torpor and during torpor in the Siberian hamster. Increase of Txnip was not limited to the hypothalamus, with exaggerated expression in white adipose tissue, brown adipose tissue, and liver also demonstrated in torpid mice. Given the recent identification of Txnip as a molecular nutrient sensor important in the regulation of energy metabolism, our data suggest that elevated Txnip expression is critical to regulating energy expenditure and fuel use during the extreme hypometabolic state of torpor.
On the calibration and use of Dual Electron Sensors for NASA's Magnetospheric MultiScale mission
NASA Astrophysics Data System (ADS)
Avanov, L. A.; Gliese, U.; Pollock, C. J.; Barrie, A.; Mariano, A. J.; Tucker, C. J.; Jacques, A. D.; Zeuch, M.; Shields, N.; Christian, K. D.
2013-12-01
The scientific target of NASA's Magnetospheric MultiScale (MMS) mission is to study the fundamentally important phenomenon of magnetic reconnection. Theoretical models of this process predict a small (order of ten kilometers) size for the diffusion region where electrons are demagnetized at the dayside magnetopause. Yet, the region may typically sweep over the spacecraft at relatively high speeds of 50km/s. That is why Fast Plasma Investigation (FPI) instrument suite must have extremely high time resolution for measurements of the 3D particle distribution functions. The Dual Electron Spectrometers (DESs) provide fast (30ms) 3D electron velocity distributions, from 10eV to 30,000 eV, as part of the Fast Plasma Investigation (FPI) on NASA's Magnetospheric MultiScale (MMS) mission. This is accomplished by combining the measurements from eight different spectrometers (packaged in four dual sets) on each MMS spacecraft to produce each full distribution. This approach presents a new and challenging aspect to the calibration and operation of these instruments. The response uniformity among the spectrometer set, the consistency and reliability of their calibration in both sensitivity and their phase space selectivity (energy and angle), and the approach to handling any temporal evolution of these calibrated characteristics all assume enhanced importance in this application. In this paper, we will present brief descriptions of the spectrometers and our approach their ground calibration, trended results of those calibrations, and our plans to detect, track, and respond to any temporal evolution in instrument performance through the life of the mission.
Fed, but not Fasted, Adrenalectomized Rats Survive the Stress of Hemorrhage and Hypovolemia
NASA Technical Reports Server (NTRS)
Darlington, Daniel N.; Neves, Robert B.; Ha, Taryn; Chew, Gordon; Dallman, Mary F.
1990-01-01
We have recently shown that conscious adrenalectomized rats exhibit nearly normal recovery of arterial blood pressure during the 5 h after hemorrhage. In those experiments, it appeared that a previous reduction in food intake might have compromised the recovery of blood pressure and increased mortality. These experiments were designed to test in conscious sham-adrenalectomized (control) and adrenalectomized rats prepared with indwelling arterial and venous cannulae: 1. The effects of a 20- to 24-h fast (compared to rats fed ab libitum) on the mobilization of plasma substrates and recovery of arterial blood pressure after a 15 ml/kg - 5 min hemorrhage, and 2. Vascular responsivity to pressor agents in fed or fasted groups before or 2 h after hemorrhage. In all rats hemorrhage resulted in decreased arterial pressure and heart rate. Arterial pressure recovered to near normal in both fed and fasted control groups and in the led adrenalectomized rats, and all of these rats survived for 24 h after stress. By contrast, in the fasted adrenalectomized rats, arterial pressure recovered only during the first 1.5 - 2 h and then failed, resulting in 100% mortality by 3-5 h. Compared to the other three groups, in which substrate levels either increased or remained fairly stable, plasma glucose and beta-hydoxybutyrate concentrations fell steadily, from 1.5-2 h after hemorrhage until death occurred in the fasted adrenalectomized rats. Basal ACTH concentrations were elevated cormpared to control values in both adrenalectomized groups (fed and fasted). Hemorrhage caused increases in plasma ACTH in all groups; the magnitude of the responses did not differ among the groups. The dilution of Evans' blue dve after hemorrhage (used as an index of fluid movement into the vascular space) was not different in contol and adrenalectomized rats (either fed or fasted). There were no differences in pressor responses to phenylephrine, vasopressin, or angiotensin-II between the fed and fasted condition in the control rats either before or after hemorrhage. There was a fasting-associated decrease in vascular responsivity, to vasopressin, but normal responsivity to phenylephrine and angiotensin-II, in the adrenal-ectomized rats both before and after hemorrhage. We conclude that: (1) since fed adrenalectomized rats all survived the stress, adrenal hormones are not required for survival unless fasting is a prior condition; (2) vascular responsiveness to phenylephrine and angiotensin-II is not altered by fasting and is, therefore, probably not the proximate cause of cardiovascular svstem failure; and (3) from these data we cannot distinguish between a failure in substrate supply and a failure in some component of the cardiovascular svstem, other than vascular responsivity, that results in death after hemorrhage in fasted adrenalectomized rats.
Henderson, Julie; Coveney, John; Ward, Paul; Taylor, Anne
2009-11-01
Childhood obesity is widely constructed as reaching epidemic proportions with consumption of fast food viewed as a contributing factor. This paper analyses media reporting of the regulation of fast food consumption to children. A media search of five Australian newspapers for the period January 2006 to June 2008 elicited 100 articles relating to the regulation of fast food advertising to children. Content and thematic analysis of the articles reveal conflicting perspectives on the role of the state; the level of accountability of the food and advertising industries; and responsibilities of parents for regulating fast food consumption in children. The Federal Government, food and advertising industries and free to air broadcasters favour industry self-regulation and personal responsibility for fast food consumption while the proponents of government regulation include consumer groups, state government health ministers, nutrition and public health academics and medical and health foundations. The regulation of fast food advertising to children is discussed in relation to ideas about governance and the public health strategies which follow from these ideas. The paper argues that all proposed solutions are indicative of a neoliberal approach to the governance of health insofar as the responsibility for regulation of food marketing is viewed as lying with industry and the regulation of lifestyle risk is viewed as an individual responsibility.
Warmest extreme year in U.S. history alters thermal requirements for tree phenology.
Carter, Jacob M; Orive, Maria E; Gerhart, Laci M; Stern, Jennifer H; Marchin, Renée M; Nagel, Joane; Ward, Joy K
2017-04-01
The frequency of extreme warm years is increasing across the majority of the planet. Shifts in plant phenology in response to extreme years can influence plant survival, productivity, and synchrony with pollinators/herbivores. Despite extensive work on plant phenological responses to climate change, little is known about responses to extreme warm years, particularly at the intraspecific level. Here we investigate 43 populations of white ash trees (Fraxinus americana) from throughout the species range that were all grown in a common garden. We compared the timing of leaf emergence during the warmest year in U.S. history (2012) with relatively non-extreme years. We show that (a) leaf emergence among white ash populations was accelerated by 21 days on average during the extreme warm year of 2012 relative to non-extreme years; (b) rank order for the timing of leaf emergence was maintained among populations across extreme and non-extreme years, with southern populations emerging earlier than northern populations; (c) greater amounts of warming units accumulated prior to leaf emergence during the extreme warm year relative to non-extreme years, and this constrained the potential for even earlier leaf emergence by an average of 9 days among populations; and (d) the extreme warm year reduced the reliability of a relevant phenological model for white ash by producing a consistent bias toward earlier predicted leaf emergence relative to observations. These results demonstrate a critical need to better understand how extreme warm years will impact tree phenology, particularly at the intraspecific level.
The Mercury System: Embedding Computation into Disk Drives
2004-08-20
enabling technologies to build extremely fast data search engines . We do this by moving the search closer to the data, and performing it in hardware...engine searches in parallel across a disk or disk surface 2. System Parallelism: Searching is off-loaded to search engines and main processor can
When Food Consumes You: Taking Eating to Extremes
... to weight gain and can be associated with obesity. When binge-eating is followed by “purging,” it’s called bulimia nervosa. People with bulimia nervosa may follow binge-eating by vomiting or taking laxatives to purge, over-exercising, or fasting. They’re often able to maintain a normal ...
Mindful Organizing as a Paradigm to Develop Managers
ERIC Educational Resources Information Center
Gebauer, Annette
2013-01-01
How can managers prepare for extreme but exceptional events and for the challenge of managing complexity and uncertainty in their daily business? Confronted with the challenge of achieving high and reliable performance in risk-prone, fast-paced, and unpredictable environments, managers and management scholars can learn a lot from the organizing…
NASA Astrophysics Data System (ADS)
Oslowsk, S.; Shannon, R. M..; Jameson, Andrew; Sarkissian, J. M..; Bailes, M.; Andreoni, I.; Bhat, N. D. R..; Coles, W. A.; Dai, S.; Dempsey, J.; Hobbs, G.; Keith, M. J.; Kerr, M.; Manchester, R. N.; Lasky, P. D.; Levin, Y.; Parthasarathy, A.; Ravi, V.; Reardon, D. J.; Rosado, P. A.; Russell, C. J.; Spiewak, R.; Van Straten, W.; Toomey, L.; Wang, J. B.; Wen, L.; You, X.-P.; Zhang, L.; Zhang, S.; Zhu, X.-J.
2018-03-01
The Parkes Pulsar Timing Array (Manchester et al. 2013) project monitors pulse times of arrival for 24 millisecond pulsars in the Galaxy on a fortnightly cadence using the multibeam receiver on the CSIRO 64-m Parkes Telescope.
Gastric bypass surgery for treatment of hypothalamic obesity after craniopharyngioma therapy.
Inge, Thomas H; Pfluger, Paul; Zeller, Meg; Rose, Susan R; Burget, Lukas; Sundararajan, Sumana; Daniels, Stephen R; Tschöp, Matthias H
2007-08-01
A 14-year-old boy presented with daytime somnolence, intermittent emesis and hypothyroidism. Neuroimaging revealed a calcified suprasellar intracranial mass, suspected to be a craniopharyngioma. Subtotal resection of the tumor confirmed the diagnosis. Extreme obesity (BMI >60 kg/m(2)) and hyperinsulinemia followed tumor resection and cranial irradiation. Dietary interventions were unsuccessful, and pharmacologic intervention (i.e. octreotide) only slowed the rate of weight gain. Radiography documented the suprasellar mass. Following surgical resection and radiotherapy, hypothalamic-pituitary deficiencies were found. Preprandial and postprandial excursions of insulin, active ghrelin and leptin were measured before and after gastric bypass surgery. Panhypopituitarism, hypothalamic obesity and hyperinsulinemia following craniopharyngioma therapy. Severe caloric restriction, octreotide, and pituitary hormone replacement did not produce weight loss. Gastric bypass surgery led to reduced food cravings, significant weight loss, and amelioration of obesity-related comorbidities. Correction of fasting hyperinsulinemia, normalization of postprandial insulin responses, and reductions in active ghrelin and leptin concentrations were also observed.
A portable fluorescence detector for fast ultra trace detection of explosive vapors
NASA Astrophysics Data System (ADS)
Xin, Yunhong; He, Gang; Wang, Qi; Fang, Yu
2011-10-01
This paper developed a portable detector based on a specific material-based fluorescent sensing film for an ultra trace detection of explosives, such as 2,4,6-trinitrotoluene (TNT) or its derivate 2,4-dinitrotoluene (DNT), in ambient air or on objects tainted by explosives. The fluorescent sensing films are based on single-layer chemistry and the signal amplification effect of conjugated polymers, which exhibited higher sensitivity and shorter response time to TNT or DNT at their vapor pressures. Due to application of the light emitting diode and the solid state photomultiplier and the cross-correlation-based circuit design technology, the device has the advantages of low-power, low-cost, small size, and an improved signal to noise ratio. The results of the experiments showed that the detector can real-time detect and identify of explosive vapors at extremely low levels; it is suitable for the identification of suspect luggage, forensic analyses, or battlefields clearing.
Avalanche photodiode based time-of-flight mass spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogasawara, Keiichi, E-mail: kogasawara@swri.edu; Livi, Stefano A.; Desai, Mihir I.
2015-08-15
This study reports on the performance of Avalanche Photodiodes (APDs) as a timing detector for ion Time-of-Flight (TOF) mass spectroscopy. We found that the fast signal carrier speed in a reach-through type APD enables an extremely short timescale response with a mass or energy independent <2 ns rise time for <200 keV ions (1−40 AMU) under proper bias voltage operations. When combined with a microchannel plate to detect start electron signals from an ultra-thin carbon foil, the APD comprises a novel TOF system that successfully operates with a <0.8 ns intrinsic timing resolution even using commercial off-the-shelf constant-fraction discriminators. Bymore » replacing conventional total-energy detectors in the TOF-Energy system, APDs offer significant power and mass savings or an anti-coincidence background rejection capability in future space instrumentation.« less
Infrasonic Influence of Volcanos
NASA Astrophysics Data System (ADS)
Hosman, Ashley
2014-03-01
My presentation will consist of a poster on the use of ring laser interferometers to detect infrasound. The research was performed during the summer of 2013 and it focused on the finding infrasound emissions created by volcanic activity. I will explain how a ring laser works and discuss how I analyze the collected data using Fast Fourier Transforms. Due to the extreme distances over which infrasound can travel, I will also stress the need to compare the detected responses to specific volcanic eruptions. Finally, I will purpose practical applications of my research. One of the more promising applications is to use ring lasers to detect volcanic activity in remote areas such as parts of the Aleutian Islands. There is considerable air traffic over the Aleutian Islands. Volcanic plumes are a significant aviation hazard and can damage jet engines to the extent that they will no longer operate. Thank you to the NSF ans NASA foundations for providing funding for this reseach.
Rapid Growth of Acetylated Aβ(16-20) into Macroscopic Crystals.
Bortolini, Christian; Klausen, Lasse Hyldgaard; Hoffmann, Søren Vrønning; Jones, Nykola C; Saadeh, Daniela; Wang, Zegao; Knowles, Tuomas P J; Dong, Mingdong
2018-05-22
Aberrant assembly of the amyloid-β (Aβ) is responsible for the development of Alzheimer's disease, but can also be exploited to obtain highly functional biomaterials. The short Aβ fragment, KLVFF (Aβ 16-20 ), is crucial for Aβ assembly and considered to be an Aβ aggregation inhibitor. Here, we show that acetylation of KLVFF turns it into an extremely fast self-assembling molecule, reaching macroscopic ( i.e., mm) size in seconds. We show that KLVFF is metastable and that the self-assembly can be directed toward a crystalline or fibrillar phase simply through chemical modification, via acetylation or amidation of the peptide. Amidated KLVFF can form amyloid fibrils; we observed folding events of such fibrils occurring in as little as 60 ms. The ability of single KLVFF molecules to rapidly assemble as highly ordered macroscopic structures makes it a promising candidate for applications as a rapid-forming templating material.
Self-amplified photo-induced gap quenching in a correlated electron material
Mathias, S.; Eich, S.; Urbancic, J.; Michael, S.; Carr, A. V.; Emmerich, S.; Stange, A.; Popmintchev, T.; Rohwer, T.; Wiesenmayer, M.; Ruffing, A.; Jakobs, S.; Hellmann, S.; Matyba, P.; Chen, C.; Kipp, L.; Bauer, M.; Kapteyn, H. C.; Schneider, H. C.; Rossnagel, K.; Murnane, M. M.; Aeschlimann, M.
2016-01-01
Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equilibrium excited states are instantaneously populated. Here, we elucidate a general relation between ultrafast non-equilibrium electron dynamics and the size of the characteristic energy gap in a correlated electron material. We show that carrier multiplication via impact ionization can be one of the most important processes in a gapped material, and that the speed of carrier multiplication critically depends on the size of the energy gap. In the case of the charge-density wave material 1T-TiSe2, our data indicate that carrier multiplication and gap dynamics mutually amplify each other, which explains—on a microscopic level—the extremely fast response of this material to ultrafast optical excitation. PMID:27698341
A portable fluorescence detector for fast ultra trace detection of explosive vapors.
Xin, Yunhong; He, Gang; Wang, Qi; Fang, Yu
2011-10-01
This paper developed a portable detector based on a specific material-based fluorescent sensing film for an ultra trace detection of explosives, such as 2,4,6-trinitrotoluene (TNT) or its derivate 2,4-dinitrotoluene (DNT), in ambient air or on objects tainted by explosives. The fluorescent sensing films are based on single-layer chemistry and the signal amplification effect of conjugated polymers, which exhibited higher sensitivity and shorter response time to TNT or DNT at their vapor pressures. Due to application of the light emitting diode and the solid state photomultiplier and the cross-correlation-based circuit design technology, the device has the advantages of low-power, low-cost, small size, and an improved signal to noise ratio. The results of the experiments showed that the detector can real-time detect and identify of explosive vapors at extremely low levels; it is suitable for the identification of suspect luggage, forensic analyses, or battlefields clearing.
Waugh, Courtney A; Huston, Wilhelmina M; Noad, Michael J; Bengtson Nash, Susan
2011-04-01
Large mysticete whales represent a unique challenge for chemical risk assessment. Few epidemiological investigations are possible due to the low incidence of adult stranding events. Similarly their often extreme life-history adaptations of prolonged migration and fasting challenge exposure assumptions. Molecular biomarkers offer the potential to complement information yielded through tissue chemical analysis, as well as providing evidence of a molecular response to chemical exposure. In this study we confirm the presence of cytochrome P450 reductase (CPR) and cytochrome P450 isoenzyme 1A1 (CYP1A1) in epidermal tissue of southern hemisphere humpback whales (Megaptera novaeangliae). The detection of CYP1A1 in the integument of the humpback whale affords the opportunity for further quantitative non-destructive investigations of enzyme activity as a function of chemical stress. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kumar, Deepak; Englesbe, Alexander; Parman, Matthew; ...
2015-11-05
Tabletop reflex discharges in a Penning geometry have many applications including ion sources and eXtreme Ultra-Violet (XUV) sources. The presence of primary electrons accelerated across the cathode sheaths is responsible for the distribution of ion charge states and of the unusually high XUV brightness of these plasmas. Absolutely calibrated space resolved XUV spectra from a table top reflex discharge operating with Al cathodes and Ne gas are presented. The spectra are analyzed with a new and complete model for ion charge distribution in similar reflex discharges. The plasma in the discharge was found to have a density of ~10 18mmore » –3 with a significant fraction >0.01 of fast primary electrons. As a result, the implications of the new model on the ion states achievable in a tabletop reflex plasma discharge are also discussed.« less
Spiess, Kerianne E; Sansosti, Laura E; Meyr, Andrew J
We have previously demonstrated an abnormally delayed mean brake response time and an increased frequency of abnormally delayed brake responses in a group of neuropathic drivers with diabetes compared with a control group of drivers with neither diabetes nor lower extremity neuropathy. The objective of the present case-control study was to compare the mean brake response time between 2 groups of drivers with diabetes with and without lower extremity sensorimotor neuropathy. The braking performances of the participants were evaluated using a computerized driving simulator with specific measurement of the mean brake response time and the frequency of the abnormally delayed brake responses. We compared a control group of 25 active drivers with type 2 diabetes without lower extremity neuropathy and an experimental group of 25 active drivers with type 2 diabetes and lower extremity neuropathy from an urban U.S. podiatric medical clinic. The experimental group demonstrated an 11.49% slower mean brake response time (0.757 ± 0.180 versus 0.679 ± 0.120 second; p < .001), with abnormally delayed reactions occurring at a greater frequency (57.5% versus 35.0%; p < .001). Independent of a comparative statistical analysis, diabetic drivers with neuropathy demonstrated a mean brake response time slower than a suggested safety threshold of 0.70 second, and diabetic drivers without neuropathy demonstrated a mean brake response time faster than this threshold. The results of the present investigation provide evidence that the specific onset of lower extremity sensorimotor neuropathy associated with diabetes appears to impart a negative effect on automobile brake responses. Copyright © 2017 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Rosen, David A S; Trites, Andrew W
2002-06-01
Many animals lower their resting metabolism (metabolic depression) when fasting or consuming inadequate food. We sought to document this response by subjecting five Steller sea lions to periods of: (1) complete fasting; or (2) restricting them to 50% of their normal herring diet. The sea lions lost an average of 1.5% of their initial body mass per day (2.30 kg/d) during the 9-14-day fast, and their resting metabolic rates decreased 31%, which is typical of a "fasting response". However, metabolic depression did not occur during the 28-day food restriction trials, despite the loss of 0.30% of body mass per day (0.42 kg/d). This difference in response suggests that undernutrition caused by reduced food intake may stimulate a "hunger response", which in turn might lead to increased foraging effort. The progressive changes in metabolism we observed during the fasts were related to, but were not directly caused by, changes in body mass from control levels. Combining these results with data collected from experiments when Steller sea lions were losing mass on low energy squid and pollock diets reveals a strong relationship between relative changes in body mass and relative changes in resting metabolism across experimental conditions. While metabolic depression caused by fasting or consuming large amounts of low energy food reduced the direct costs from resting metabolism, it was insufficient to completely overcome the incurred energy deficit.
NASA Astrophysics Data System (ADS)
Blackman, Jonathan; Field, Scott; Galley, Chad; Scheel, Mark; Szilagyi, Bela; Tiglio, Manuel
2015-04-01
With the advanced detector era just around the corner, there is a strong need for fast and accurate models of gravitational waveforms from compact binary coalescence. Fast surrogate models can be built out of an accurate but slow waveform model with minimal to no loss in accuracy, but may require a large number of evaluations of the underlying model. This may be prohibitively expensive if the underlying is extremely slow, for example if we wish to build a surrogate for numerical relativity. We examine alternate choices to building surrogate models which allow for a more sparse set of input waveforms. Research supported in part by NSERC.
The Need for Optical Means as an Alternative for Electronic Computing
NASA Technical Reports Server (NTRS)
Adbeldayem, Hossin; Frazier, Donald; Witherow, William; Paley, Steve; Penn, Benjamin; Bank, Curtis; Whitaker, Ann F. (Technical Monitor)
2001-01-01
An increasing demand for faster computers is rapidly growing to encounter the fast growing rate of Internet, space communication, and robotic industry. Unfortunately, the Very Large Scale Integration technology is approaching its fundamental limits beyond which the device will be unreliable. Optical interconnections and optical integrated circuits are strongly believed to provide the way out of the extreme limitations imposed on the growth of speed and complexity of nowadays computations by conventional electronics. This paper demonstrates two ultra-fast, all-optical logic gates and a high-density storage medium, which are essential components in building the future optical computer.
Evaluation of Fast Switching Diode 1N4448 Over a Wide Temperature Range
NASA Technical Reports Server (NTRS)
Boomer, Kristen; Damron, James; Gray, Josh; Hammoud, Ahmad
2017-01-01
Electronic parts used in the design of power systems geared for space applications are often exposed to extreme temperatures and thermal cycling. Limited data exist on the performance and reliability of commercial-off-the-shelf (COTS) electronic parts at temperatures beyond the manufacturers specified operating temperature range. This report summarizes preliminary results obtained on the evaluation of automotive-grade, fast switching diodes over a wide temperature range and thermal cycling. The investigations were carried out to establish a baseline on functionality of these diodes and to determine suitability for use outside their recommended temperature limits.
Fast and accurate modeling of nonlinear pulse propagation in graded-index multimode fibers.
Conforti, Matteo; Mas Arabi, Carlos; Mussot, Arnaud; Kudlinski, Alexandre
2017-10-01
We develop a model for the description of nonlinear pulse propagation in multimode optical fibers with a parabolic refractive index profile. It consists of a 1+1D generalized nonlinear Schrödinger equation with a periodic nonlinear coefficient, which can be solved in an extremely fast and efficient way. The model is able to quantitatively reproduce recently observed phenomena like geometric parametric instability and broadband dispersive wave emission. We envisage that our equation will represent a valuable tool for the study of spatiotemporal nonlinear dynamics in the growing field of multimode fiber optics.
A fast isogeometric BEM for the three dimensional Laplace- and Helmholtz problems
NASA Astrophysics Data System (ADS)
Dölz, Jürgen; Harbrecht, Helmut; Kurz, Stefan; Schöps, Sebastian; Wolf, Felix
2018-03-01
We present an indirect higher order boundary element method utilising NURBS mappings for exact geometry representation and an interpolation-based fast multipole method for compression and reduction of computational complexity, to counteract the problems arising due to the dense matrices produced by boundary element methods. By solving Laplace and Helmholtz problems via a single layer approach we show, through a series of numerical examples suitable for easy comparison with other numerical schemes, that one can indeed achieve extremely high rates of convergence of the pointwise potential through the utilisation of higher order B-spline-based ansatz functions.
Pette, Dirk; Sketelj, Janez; Skorjanc, Dejan; Leisner, Elmi; Traub, Irmtrud; Bajrović, Fajko
2002-01-01
Chronic low-frequency stimulation (CLFS) of rat fast-twitch muscles induces sequential transitions in myosin heavy chain (MHC) expression from MHCIIb --> MHCIId/x --> MHCIIa. However, the 'final' step of the fast-to-slow transition, i.e., the upregulation of MHCI, has been observed only after extremely long stimulation periods. Assuming that fibre degeneration/regeneration might be involved in the upregulation of slow myosin, we investigated the effects of CLFS on extensor digitorum longus (EDL) muscles regenerating after bupivacaine-induced fibre necrosis. Normal, non-regenerating muscles responded to both 30- and 60-day CLFS with fast MHC isoform transitions (MHCIIb --> MHCIId --> MHCIIa) and only slight increases in MHCI. CLFS of regenerating EDL muscles caused similar transitions among the fast isoforms but, in addition, caused significant increases in MHCI (to approximately 30% relative concentration). Stimulation periods of 30 and 60 days induced similar changes in the regenerating bupivacaine-treated muscles, indicating that the upregulation of slow myosin was restricted to regenerating fibres, but only during an early stage of regeneration. These results suggest that satellite cells and/or regenerating fast rat muscle fibres are capable of switching directly to a slow program under the influence of CLFS and, therefore, appear to be more malleable than adult fibres.
Fast charging of lithium-ion batteries at all temperatures.
Yang, Xiao-Guang; Zhang, Guangsheng; Ge, Shanhai; Wang, Chao-Yang
2018-06-25
Fast charging is a key enabler of mainstream adoption of electric vehicles (EVs). None of today's EVs can withstand fast charging in cold or even cool temperatures due to the risk of lithium plating. Efforts to enable fast charging are hampered by the trade-off nature of a lithium-ion battery: Improving low-temperature fast charging capability usually comes with sacrificing cell durability. Here, we present a controllable cell structure to break this trade-off and enable lithium plating-free (LPF) fast charging. Further, the LPF cell gives rise to a unified charging practice independent of ambient temperature, offering a platform for the development of battery materials without temperature restrictions. We demonstrate a 9.5 Ah 170 Wh/kg LPF cell that can be charged to 80% state of charge in 15 min even at -50 °C (beyond cell operation limit). Further, the LPF cell sustains 4,500 cycles of 3.5-C charging in 0 °C with <20% capacity loss, which is a 90× boost of life compared with a baseline conventional cell, and equivalent to >12 y and >280,000 miles of EV lifetime under this extreme usage condition, i.e., 3.5-C or 15-min fast charging at freezing temperatures.
2017-08-20
UNCLASSIFIED Effect of Extreme Cold Treatment on Morphology and Behavior of Hydrogels and Microgels BACKGROUND • Stimuli responsive hydrogel systems...particularly for cold weather and Arctic uniforms, • The effect of extreme cold on gel responsiveness however is not well studied • This project seeks...to understand the effect of cold temperature ( down to -80 ° C) on hydrogel and microgel particles properties and response to thermal stimuli • We
Wilcox, Kevin R.; Shi, Zheng; Gherardi, Laureano A.; ...
2017-04-02
Climatic changes are altering Earth's hydrological cycle, resulting in altered precipitation amounts, increased interannual variability of precipitation, and more frequent extreme precipitation events. These trends will likely continue into the future, having substantial impacts on net primary productivity (NPP) and associated ecosystem services such as food production and carbon sequestration. Frequently, experimental manipulations of precipitation have linked altered precipitation regimes to changes in NPP. Yet, findings have been diverse and substantial uncertainty still surrounds generalities describing patterns of ecosystem sensitivity to altered precipitation. Additionally, we do not know whether previously observed correlations between NPP and precipitation remain accurate when precipitationmore » changes become extreme. We synthesized results from 83 case studies of experimental precipitation manipulations in grasslands worldwide. Here, we used meta-analytical techniques to search for generalities and asymmetries of aboveground NPP (ANPP) and belowground NPP (BNPP) responses to both the direction and magnitude of precipitation change. Sensitivity (i.e., productivity response standardized by the amount of precipitation change) of BNPP was similar under precipitation additions and reductions, but ANPP was more sensitive to precipitation additions than reductions; this was especially evident in drier ecosystems. Additionally, overall relationships between the magnitude of productivity responses and the magnitude of precipitation change were saturating in form. The saturating form of this relationship was likely driven by ANPP responses to very extreme precipitation increases, although there were limited studies imposing extreme precipitation change, and there was considerable variation among experiments. Finally, this highlights the importance of incorporating gradients of manipulations, ranging from extreme drought to extreme precipitation increases into future climate change experiments. Additionally, policy and land management decisions related to global change scenarios should consider how ANPP and BNPP responses may differ, and that ecosystem responses to extreme events might not be predicted from relationships found under moderate environmental changes.« less
Wilcox, Kevin R; Shi, Zheng; Gherardi, Laureano A; Lemoine, Nathan P; Koerner, Sally E; Hoover, David L; Bork, Edward; Byrne, Kerry M; Cahill, James; Collins, Scott L; Evans, Sarah; Gilgen, Anna K; Holub, Petr; Jiang, Lifen; Knapp, Alan K; LeCain, Daniel; Liang, Junyi; Garcia-Palacios, Pablo; Peñuelas, Josep; Pockman, William T; Smith, Melinda D; Sun, Shanghua; White, Shannon R; Yahdjian, Laura; Zhu, Kai; Luo, Yiqi
2017-10-01
Climatic changes are altering Earth's hydrological cycle, resulting in altered precipitation amounts, increased interannual variability of precipitation, and more frequent extreme precipitation events. These trends will likely continue into the future, having substantial impacts on net primary productivity (NPP) and associated ecosystem services such as food production and carbon sequestration. Frequently, experimental manipulations of precipitation have linked altered precipitation regimes to changes in NPP. Yet, findings have been diverse and substantial uncertainty still surrounds generalities describing patterns of ecosystem sensitivity to altered precipitation. Additionally, we do not know whether previously observed correlations between NPP and precipitation remain accurate when precipitation changes become extreme. We synthesized results from 83 case studies of experimental precipitation manipulations in grasslands worldwide. We used meta-analytical techniques to search for generalities and asymmetries of aboveground NPP (ANPP) and belowground NPP (BNPP) responses to both the direction and magnitude of precipitation change. Sensitivity (i.e., productivity response standardized by the amount of precipitation change) of BNPP was similar under precipitation additions and reductions, but ANPP was more sensitive to precipitation additions than reductions; this was especially evident in drier ecosystems. Additionally, overall relationships between the magnitude of productivity responses and the magnitude of precipitation change were saturating in form. The saturating form of this relationship was likely driven by ANPP responses to very extreme precipitation increases, although there were limited studies imposing extreme precipitation change, and there was considerable variation among experiments. This highlights the importance of incorporating gradients of manipulations, ranging from extreme drought to extreme precipitation increases into future climate change experiments. Additionally, policy and land management decisions related to global change scenarios should consider how ANPP and BNPP responses may differ, and that ecosystem responses to extreme events might not be predicted from relationships found under moderate environmental changes. © 2017 John Wiley & Sons Ltd.
Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua
2015-01-01
Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics. PMID:25599427
A Fast Monte Carlo Simulation for the International Linear Collider Detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furse, D.; /Georgia Tech
2005-12-15
The following paper contains details concerning the motivation for, implementation and performance of a Java-based fast Monte Carlo simulation for a detector designed to be used in the International Linear Collider. This simulation, presently included in the SLAC ILC group's org.lcsim package, reads in standard model or SUSY events in STDHEP file format, stochastically simulates the blurring in physics measurements caused by intrinsic detector error, and writes out an LCIO format file containing a set of final particles statistically similar to those that would have found by a full Monte Carlo simulation. In addition to the reconstructed particles themselves, descriptionsmore » of the calorimeter hit clusters and tracks that these particles would have produced are also included in the LCIO output. These output files can then be put through various analysis codes in order to characterize the effectiveness of a hypothetical detector at extracting relevant physical information about an event. Such a tool is extremely useful in preliminary detector research and development, as full simulations are extremely cumbersome and taxing on processor resources; a fast, efficient Monte Carlo can facilitate and even make possible detector physics studies that would be very impractical with the full simulation by sacrificing what is in many cases inappropriate attention to detail for valuable gains in time required for results.« less
Kaether, Christoph; Skehel, Paul; Dotti, Carlos G.
2000-01-01
Neurons transport newly synthesized membrane proteins along axons by microtubule-mediated fast axonal transport. Membrane proteins destined for different axonal subdomains are thought to be transported in different transport carriers. To analyze this differential transport in living neurons, we tagged the amyloid precursor protein (APP) and synaptophysin (p38) with green fluorescent protein (GFP) variants. The resulting fusion proteins, APP-yellow fluorescent protein (YFP), p38-enhanced GFP, and p38-enhanced cyan fluorescent protein, were expressed in hippocampal neurons, and the cells were imaged by video microscopy. APP-YFP was transported in elongated tubules that moved extremely fast (on average 4.5 μm/s) and over long distances. In contrast, p38-enhanced GFP-transporting structures were more vesicular and moved four times slower (0.9 μm/s) and over shorter distances only. Two-color video microscopy showed that the two proteins were sorted to different carriers that moved with different characteristics along axons of doubly transfected neurons. Antisense treatment using oligonucleotides against the kinesin heavy chain slowed down the long, continuous movement of APP-YFP tubules and increased frequency of directional changes. These results demonstrate for the first time directly the sorting and transport of two axonal membrane proteins into different carriers. Moreover, the extremely fast-moving tubules represent a previously unidentified type of axonal carrier. PMID:10749925
The new ATLAS Fast Calorimeter Simulation
NASA Astrophysics Data System (ADS)
Schaarschmidt, J.; ATLAS Collaboration
2017-10-01
Current and future need for large scale simulated samples motivate the development of reliable fast simulation techniques. The new Fast Calorimeter Simulation is an improved parameterized response of single particles in the ATLAS calorimeter that aims to accurately emulate the key features of the detailed calorimeter response as simulated with Geant4, yet approximately ten times faster. Principal component analysis and machine learning techniques are used to improve the performance and decrease the memory need compared to the current version of the ATLAS Fast Calorimeter Simulation. A prototype of this new Fast Calorimeter Simulation is in development and its integration into the ATLAS simulation infrastructure is ongoing.
Monolithic Teflon membrane valves and pumps for harsh chemical and low-temperature use.
Willis, Peter A; Hunt, Brian D; White, Victor E; Lee, Michael C; Ikeda, Michael; Bae, Sam; Pelletier, Michael J; Grunthaner, Frank J
2007-11-01
Microfluidic diaphragm valves and pumps capable of surviving conditions required for unmanned spaceflight applications have been developed. The Pasteur payload of the European ExoMars Rover is expected to experience temperatures ranging between -100 degrees C and +50 degrees C during its transit to Mars and on the Martian surface. As such, the Urey instrument package, which contains at its core a lab-on-a-chip capillary electrophoresis analysis system first demonstrated by Mathies et al., requires valving and pumping systems that are robust under these conditions before and after exposure to liquid samples, which are to be analyzed for chemical signatures of past or present living processes. The microfluidic system developed to meet this requirement uses membranes consisting of Teflon and Teflon AF as a deformable material in the valve seat region between etched Borofloat glass wafers. Pneumatic pressure and vacuum, delivered via off-chip solenoid valves, are used to actuate individual on-chip valves. Valve sealing properties of Teflon diaphragm valves, as well as pumping properties from collections of valves, are characterized. Secondary processing for embossing the membrane against the valve seats after fabrication is performed to optimize single valve sealing characteristics. A variety of different material solutions are found to produce robust devices. The optimal valve system utilizes a membrane of mechanically cut Teflon sandwiched between two thin spun films of Teflon AF-1600 as a composite "laminated" diaphragm. Pump rates up to 1600 nL s(-1) are achieved with pumps of this kind. These high pumping rates are possible because of the very fast response of the membranes to applied pressure, enabling extremely fast pump cycling with relatively small liquid volumes, compared to analogous diaphragm pumps. The developed technologies are robust over extremes of temperature cycling and are applicable in a wide range of chemical environments.
Changes in the probability of co-occurring extreme climate events
NASA Astrophysics Data System (ADS)
Diffenbaugh, N. S.
2017-12-01
Extreme climate events such as floods, droughts, heatwaves, and severe storms exert acute stresses on natural and human systems. When multiple extreme events co-occur, either in space or time, the impacts can be substantially compounded. A diverse set of human interests - including supply chains, agricultural commodities markets, reinsurance, and deployment of humanitarian aid - have historically relied on the rarity of extreme events to provide a geographic hedge against the compounded impacts of co-occuring extremes. However, changes in the frequency of extreme events in recent decades imply that the probability of co-occuring extremes is also changing, and is likely to continue to change in the future in response to additional global warming. This presentation will review the evidence for historical changes in extreme climate events and the response of extreme events to continued global warming, and will provide some perspective on methods for quantifying changes in the probability of co-occurring extremes in the past and future.
Evolution caused by extreme events.
Grant, Peter R; Grant, B Rosemary; Huey, Raymond B; Johnson, Marc T J; Knoll, Andrew H; Schmitt, Johanna
2017-06-19
Extreme events can be a major driver of evolutionary change over geological and contemporary timescales. Outstanding examples are evolutionary diversification following mass extinctions caused by extreme volcanism or asteroid impact. The evolution of organisms in contemporary time is typically viewed as a gradual and incremental process that results from genetic change, environmental perturbation or both. However, contemporary environments occasionally experience strong perturbations such as heat waves, floods, hurricanes, droughts and pest outbreaks. These extreme events set up strong selection pressures on organisms, and are small-scale analogues of the dramatic changes documented in the fossil record. Because extreme events are rare, almost by definition, they are difficult to study. So far most attention has been given to their ecological rather than to their evolutionary consequences. We review several case studies of contemporary evolution in response to two types of extreme environmental perturbations, episodic (pulse) or prolonged (press). Evolution is most likely to occur when extreme events alter community composition. We encourage investigators to be prepared for evolutionary change in response to rare events during long-term field studies.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Yadav, P.; Straus, D. M.
2017-12-01
The Madden-Julian Oscillation (MJO) is a potential source of predictability in the extratropics in extended range weather forecasting. The nature of MJO is sporadic and therefore, the mid-latitude response may depend on the nature of the MJO event, in particular the phase speed. We discuss the results of our observational and modeling study of mid-latitude circulation response to Fast and Slow MJO episodes using wintertime ERA-Interim reanalysis data and the CFSv2 coupled model of NOAA. The observational study shows that the mid-latitude response to different propagating speeds is not the same. The propagation speed is defined by the time the OLR takes to propagate from phase 3 to phase 6. The mid-latitude response is assessed in terms of composite maps and frequency of occurrence of robust circulation regimes. Fast episode composite anomalies of 500hPa height show a developing Rossby wave in the mid-Pacific with downstream propagation through MJO phases 2- 4. Development of NAO+ teleconnection pattern is stronger in Slow that in Fast MJO episodes, and occurs with a greater time lag after MJO heating is in the Indian Ocean (phase 3). Previous results find an increase in occurrence of NAO- regime following phase 6. We have found that much of this behavior is due to the slow episodes. Based on these observational results, intervention experiments using CFSv2 are designed to better understand the impact of heating/cooling and to estimate mid-latitude response to Fast and Slow MJO episodes. The added heating experiments consist of 31 year reforecasts for December 1 initial conditions from CFS reanalysis (1980-2011) in which the identical MJO evolution of three-dimensional diabatic heating has been added, thus producing fast and slow MJO episodes with well-defined phase speeds. We will discuss the results of these experiments with a focus on understanding the role of phase speed and interference in setting up the response, and to understand the mechanisms that distinguish fast and slow types of response We will also discuss the diagnostics using Predictable Component Analysis to distinguish the signal forced by common diabatic heating signal from noise, and weather regime response to fast and slow MJO using cluster analysis.
Investigation of Response Amplitude Operators for Floating Offshore Wind Turbines: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramachandran, G. K. V.; Robertson, A.; Jonkman, J. M.
This paper examines the consistency between response amplitude operators (RAOs) computed from WAMIT, a linear frequency-domain tool, to RAOs derived from time-domain computations based on white-noise wave excitation using FAST, a nonlinear aero-hydro-servo-elastic tool. The RAO comparison is first made for a rigid floating wind turbine without wind excitation. The investigation is further extended to examine how these RAOs change for a flexible and operational wind turbine. The RAOs are computed for below-rated, rated, and above-rated wind conditions. The method is applied to a floating wind system composed of the OC3-Hywind spar buoy and NREL 5-MW wind turbine. The responsesmore » are compared between FAST and WAMIT to verify the FAST model and to understand the influence of structural flexibility, aerodynamic damping, control actions, and waves on the system responses. The results show that based on the RAO computation procedure implemented, the WAMIT- and FAST-computed RAOs are similar (as expected) for a rigid turbine subjected to waves only. However, WAMIT is unable to model the excitation from a flexible turbine. Further, the presence of aerodynamic damping decreased the platform surge and pitch responses, as computed by both WAMIT and FAST when wind was included. Additionally, the influence of gyroscopic excitation increased the yaw response, which was captured by both WAMIT and FAST.« less
A critical role of fatty acid binding protein 4 and 5 (FABP4/5) in the systemic response to fasting.
Syamsunarno, Mas Rizky A A; Iso, Tatsuya; Hanaoka, Hirofumi; Yamaguchi, Aiko; Obokata, Masaru; Koitabashi, Norimichi; Goto, Kosaku; Hishiki, Takako; Nagahata, Yoshiko; Matsui, Hiroki; Sano, Motoaki; Kobayashi, Masaki; Kikuchi, Osamu; Sasaki, Tsutomu; Maeda, Kazuhisa; Murakami, Masami; Kitamura, Tadahiro; Suematsu, Makoto; Tsushima, Yoshito; Endo, Keigo; Hotamisligil, Gökhan S; Kurabayashi, Masahiko
2013-01-01
During prolonged fasting, fatty acid (FA) released from adipose tissue is a major energy source for peripheral tissues, including the heart, skeletal muscle and liver. We recently showed that FA binding protein 4 (FABP4) and FABP5, which are abundantly expressed in adipocytes and macrophages, are prominently expressed in capillary endothelial cells in the heart and skeletal muscle. In addition, mice deficient for both FABP4 and FABP5 (FABP4/5 DKO mice) exhibited defective uptake of FA with compensatory up-regulation of glucose consumption in these tissues during fasting. Here we showed that deletion of FABP4/5 resulted in a marked perturbation of metabolism in response to prolonged fasting, including hyperketotic hypoglycemia and hepatic steatosis. Blood glucose levels were reduced, whereas the levels of non-esterified FA (NEFA) and ketone bodies were markedly increased during fasting. In addition, the uptake of the (125)I-BMIPP FA analogue in the DKO livers was markedly increased after fasting. Consistent with an increased influx of NEFA into the liver, DKO mice showed marked hepatic steatosis after a 48-hr fast. Although gluconeogenesis was observed shortly after fasting, the substrates for gluconeogenesis were reduced during prolonged fasting, resulting in insufficient gluconeogenesis and enhanced hypoglycemia. These metabolic responses to prolonged fasting in DKO mice were readily reversed by re-feeding. Taken together, these data strongly suggested that a maladaptive response to fasting in DKO mice occurred as a result of an increased influx of NEFA into the liver and pronounced hypoglycemia. Together with our previous study, the metabolic consequence found in the present study is likely to be attributed to an impairment of FA uptake in the heart and skeletal muscle. Thus, our data provided evidence that peripheral uptake of FA via capillary endothelial FABP4/5 is crucial for systemic metabolism and may establish FABP4/5 as potentially novel targets for the modulation of energy homeostasis.
A Critical Role of Fatty Acid Binding Protein 4 and 5 (FABP4/5) in the Systemic Response to Fasting
Syamsunarno, Mas Rizky A. A.; Iso, Tatsuya; Hanaoka, Hirofumi; Yamaguchi, Aiko; Obokata, Masaru; Koitabashi, Norimichi; Goto, Kosaku; Hishiki, Takako; Nagahata, Yoshiko; Matsui, Hiroki; Sano, Motoaki; Kobayashi, Masaki; Kikuchi, Osamu; Sasaki, Tsutomu; Maeda, Kazuhisa; Murakami, Masami; Kitamura, Tadahiro; Suematsu, Makoto; YoshitoTsushima; Endo, Keigo; Hotamisligil, Gökhan S.; Kurabayashi, Masahiko
2013-01-01
During prolonged fasting, fatty acid (FA) released from adipose tissue is a major energy source for peripheral tissues, including the heart, skeletal muscle and liver. We recently showed that FA binding protein 4 (FABP4) and FABP5, which are abundantly expressed in adipocytes and macrophages, are prominently expressed in capillary endothelial cells in the heart and skeletal muscle. In addition, mice deficient for both FABP4 and FABP5 (FABP4/5 DKO mice) exhibited defective uptake of FA with compensatory up-regulation of glucose consumption in these tissues during fasting. Here we showed that deletion of FABP4/5 resulted in a marked perturbation of metabolism in response to prolonged fasting, including hyperketotic hypoglycemia and hepatic steatosis. Blood glucose levels were reduced, whereas the levels of non-esterified FA (NEFA) and ketone bodies were markedly increased during fasting. In addition, the uptake of the 125I-BMIPP FA analogue in the DKO livers was markedly increased after fasting. Consistent with an increased influx of NEFA into the liver, DKO mice showed marked hepatic steatosis after a 48-hr fast. Although gluconeogenesis was observed shortly after fasting, the substrates for gluconeogenesis were reduced during prolonged fasting, resulting in insufficient gluconeogenesis and enhanced hypoglycemia. These metabolic responses to prolonged fasting in DKO mice were readily reversed by re-feeding. Taken together, these data strongly suggested that a maladaptive response to fasting in DKO mice occurred as a result of an increased influx of NEFA into the liver and pronounced hypoglycemia. Together with our previous study, the metabolic consequence found in the present study is likely to be attributed to an impairment of FA uptake in the heart and skeletal muscle. Thus, our data provided evidence that peripheral uptake of FA via capillary endothelial FABP4/5 is crucial for systemic metabolism and may establish FABP4/5 as potentially novel targets for the modulation of energy homeostasis. PMID:24244493
The fast food and obesity link: consumption patterns and severity of obesity.
Garcia, Ginny; Sunil, Thankam S; Hinojosa, Pedro
2012-05-01
Rates of extreme forms of obesity are rapidly rising, as is the use of bariatric surgery for its treatment. The aim of the present study was to examine selected behavioral factors associated with severity of obesity among preoperative bariatric surgery patients in the San Antonio area, focusing specifically on the effects of fast food consumption. We used ordered logistic regression to model behavioral and attitudinal effects on obesity outcomes among 270 patients. These outcomes were based on the severity of obesity and were measured on the basis of body mass index. Our results indicated that, among the behavioral factors, fast food consumption exerted the largest influence on higher levels of obesity. These remained after controlling for several social and demographic characteristics. Our findings suggest that higher rates of fast food consumption are connected to the increasing rates of severe obesity. Given that morbid and super morbid obesity rates are growing at a more advanced pace than moderate obesity, it is necessary to explore the behavioral characteristics associated with these trends.
40 CFR 202.20 - Standards for highway operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) measured on an open site with fast meter response at 50 feet from the centerline of lane of travel on highways with speed limits of 35 MPH or less; or 90 dB(A) measured on an open site with fast meter response..., acceleration or deceleration generates a sound level in excess of 83 dB(A) measured on an open site with fast...
40 CFR 202.20 - Standards for highway operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) measured on an open site with fast meter response at 50 feet from the centerline of lane of travel on highways with speed limits of 35 MPH or less; or 90 dB(A) measured on an open site with fast meter response..., acceleration or deceleration generates a sound level in excess of 83 dB(A) measured on an open site with fast...
40 CFR 202.20 - Standards for highway operations.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) measured on an open site with fast meter response at 50 feet from the centerline of lane of travel on highways with speed limits of 35 MPH or less; or 90 dB(A) measured on an open site with fast meter response..., acceleration or deceleration generates a sound level in excess of 83 dB(A) measured on an open site with fast...
40 CFR 202.20 - Standards for highway operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) measured on an open site with fast meter response at 50 feet from the centerline of lane of travel on highways with speed limits of 35 MPH or less; or 90 dB(A) measured on an open site with fast meter response..., acceleration or deceleration generates a sound level in excess of 83 dB(A) measured on an open site with fast...
40 CFR 202.20 - Standards for highway operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) measured on an open site with fast meter response at 50 feet from the centerline of lane of travel on highways with speed limits of 35 MPH or less; or 90 dB(A) measured on an open site with fast meter response..., acceleration or deceleration generates a sound level in excess of 83 dB(A) measured on an open site with fast...
Abe, Y; Hosoda, H; Arikawa, Y; Nagai, T; Kojima, S; Sakata, S; Inoue, H; Iwasa, Y; Iwano, K; Yamanoi, K; Fujioka, S; Nakai, M; Sarukura, N; Shiraga, H; Norimatsu, T; Azechi, H
2014-11-01
The characteristics of oxygen-enriched liquid scintillators with very low afterglow are investigated and optimized for application to a single-hit neutron spectrometer for fast ignition experiments. It is found that 1,2,4-trimethylbenzene has better characteristics as a liquid scintillator solvent than the conventional solvent, p-xylene. In addition, a benzophenon-doped BBQ liquid scintillator is shown to demonstrate very rapid time response, and therefore has potential for further use in neutron diagnostics with fast time resolution.
Radiation sensors based on GaN microwires
NASA Astrophysics Data System (ADS)
Verheij, D.; Peres, M.; Cardoso, S.; Alves, L. C.; Alves, E.; Durand, C.; Eymery, J.; Lorenz, K.
2018-05-01
GaN microwires were shown to possess promising characteristics as building blocks for radiation resistant particle detectors. They were grown by metal organic vapour phase epitaxy with diameters between 1 and 2 μm and lengths around 20 μm. Devices were fabricated by depositing gold contacts at the extremities of the wires using photolithography. The response of these single wire radiation sensors was then studied under irradiation with 2 MeV protons. Severe degradation of the majority of devices only sets in for fluences above protons cm‑2 revealing good radiation resistance. During proton irradiation, a clear albeit small current gain was observed with a corresponding decay time below 1 s. Photoconductivity measurements upon irradiation with UV light were carried out before and after the proton irradiation. Despite a relatively low gain, attributed to significant dark currents caused by a high dopant concentration, fast response times of a few seconds were achieved comparable to state-of-the-art GaN nanowire photodetectors. Irradiation and subsequent annealing resulted in an overall improvement of the devices regarding their response to UV radiation. The photocurrent gain increased compared to the values that were obtained prior to the irradiation, without compromising the decay times. The results indicate the possibility of using GaN microwires not only as UV detectors, but also as particle detectors.
Xu, Guochuang; Zhang, Miao; Zhou, Qinqin; Chen, Hongwu; Gao, Tiantian; Li, Chun; Shi, Gaoquan
2017-11-16
A high-performance actuator should be able to deliver large-shape deformations, fast actuations and sensitive responses to multiple stimuli. Here, we report such an actuator constructed from one layer of polyvinylidene fluoride (PVDF) with a high coefficient of thermal expansion (CTE), and another layer of small sheets of graphene oxide (SGO) with a negative CTE. The opposite deformations of both actuation layers make the SGO/PVDF bilayer actuator highly sensitive to the temperature stimulus with a large bending sensitivity of 1.5 cm -1 °C -1 . Upon irradiation with 60 mW cm -2 infrared light, this SGO/PVDF bilayer actuator displayed an extremely rapid tip displacement rate of 140 mm s -1 . Furthermore, this actuator can also sensitively respond to moisture because of its SGO layer, showing a curvature change from -22 to 13 cm -1 upon changing the relative humidity (RH) from 11% to 86%. This actuator can generate a contractile or relaxed stress 18 times that of mammalian skeletal muscle, under light irradiation or moisture with a response time as short as 1 s, being capable of lifting an object with a weight 80 times that of itself. Furthermore, it also showed excellent stability and repeatability.
Kaneko, Keizo; Satake, Chihiro; Yamamoto, Junpei; Takahashi, Hironori; Sawada, Shojiro; Imai, Junta; Yamada, Tetsuya; Katagiri, Hideki
2017-03-31
Fulminant type 1 diabetes is characterized by remarkably rapid and complete β-cell destruction. The established diagnostic criteria include the occurrence of diabetic ketosis soon after the onset of hyperglycemic symptoms, elevated plasma glucose with relatively low HbA1c at the first visit, and extremely low C-peptide. Serum C-peptide levels remain extremely low over a prolonged period. A 26-year-old-man with diabetic ketosis was admitted to our hospital. His relatively low HbA1c (7.6%), despite marked hyperglycemia (593 mg/dL) with marked ketosis, indicated abrupt onset. Islet-related autoantibodies were all negative. His data at onset, including extremely low serum C-peptide (0.11 ng/mL), fulfilled the diagnostic criteria for fulminant type 1 diabetes. However, his fasting serum C-peptide levels subsequently showed substantial recovery. While fasting C-peptide stayed below 0.30 ng/mL during the first two months post onset, the levels gradually increased and thereafter fluctuated between 0.60 ng/mL and 0.90 ng/mL until 24 months post onset. By means of multiple daily insulin injection therapy, his glycemic control has been well maintained (HbA1c approximately 6.0%), with relatively small glycemic fluctuations evaluated by continuous glucose monitoring. This clinical course suggests that, despite the abrupt diabetes onset with extremely low C-peptide levels, substantial numbers of β-cells had been spared destruction and their function later showed gradual recovery. Diabetes has come to be considered a much more heterogeneous disease than the present subdivisions suggest. This case does not fit into the existing concepts of either fulminant type 1 or ketosis-prone diabetes, thereby further highlighting the heterogeneity of idiopathic type 1 diabetes.
The frequency response of a coupled ice sheet-ice shelf-ocean system to climate forcing variability
NASA Astrophysics Data System (ADS)
Goldberg, D.; Snow, K.; Jordan, J. R.; Holland, P.; Arthern, R. J.
2017-12-01
Changes at the West Antarctic ice-ocean boundary in recent decades has triggered significant increases in the regions contribution to global sea-level rise, coincident with large scale, and in some cases potentially unstable, grounding line retreat. Much of the induced change is thought to be driven by fluctuations in the oceanic heat available at the ice-ocean boundary, transported on-shelf via warm Circumpolar Deep Water (CDW). However, the processes in which ocean heat drives ice-sheet loss remains poorly understood, with observational studies routinely hindered by the extreme environment notorious to the Antarctic region. In this study we apply a novel synchronous coupled ice-ocean model, developed within the MITgcm, and are thus able to provide detailed insight into the impacts of short time scale (interannual to decadal) climate variability and feedbacks within the ice-ocean system. Feedbacks and response are assessed in an idealised ice-sheet/ocean-cavity configuration in which the far field ocean condition is adjusted to emulate periodic climate variability patterns. We reveal a non-linear response of the ice-sheet to periodic variations in thermocline depth. These non-linearities illustrate the heightened sensitivity of fast flowing ice-shelves to periodic perturbations in heat fluxes occurring at interannual and decadal time scales. The results thus highlight how small perturbations in variable climate forcing, like that of ENSO, may trigger large changes in ice-sheet response.
ERIC Educational Resources Information Center
Soldo, Beth J.; Agree, Emily M.
1988-01-01
The older population in the United States grew twice as fast as the rest of the population in the last 20 years. This growth is expected to accelerate early in the next century as the large baby-boom cohorts move through middle age and become elderly. Substantial improvements in life expectancy at all ages, particularly at extreme old age, mean…
ERIC Educational Resources Information Center
Dierke, James S.
2012-01-01
The author's 40 years as an educator have led him to an important insight: stress is crippling the schools. On top of other extreme conditions in schools and on students, there is the pressure to achieve and succeed in a fast-paced, chaotic world. This pervasive stress compromises the physical health, and in turn the cognitive and psychological…
Ready, Aim, Perform! Targeted Micro-Training for Performance Intervention
ERIC Educational Resources Information Center
Carpenter, Julia; Forde, Dahlia S.; Stevens, Denise R.; Flango, Vincent; Babcock, Lisa K.
2016-01-01
The Department of Veterans Affairs has an immediate problem at hand. Tens of thousands of employees are working in a high-stress work environment where fast-paced daily production requirements are critical. Employees are faced with a tremendous backlog of veterans' claims. Unfortunately, not only are the claims extremely complex, but there is…
A model of spreading of sudden events on social networks
NASA Astrophysics Data System (ADS)
Wu, Jiao; Zheng, Muhua; Zhang, Zi-Ke; Wang, Wei; Gu, Changgui; Liu, Zonghua
2018-03-01
Information spreading has been studied for decades, but its underlying mechanism is still under debate, especially for those ones spreading extremely fast through the Internet. By focusing on the information spreading data of six typical events on Sina Weibo, we surprisingly find that the spreading of modern information shows some new features, i.e., either extremely fast or slow, depending on the individual events. To understand its mechanism, we present a susceptible-accepted-recovered model with both information sensitivity and social reinforcement. Numerical simulations show that the model can reproduce the main spreading patterns of the six typical events. By this model, we further reveal that the spreading can be speeded up by increasing either the strength of information sensitivity or social reinforcement. Depending on the transmission probability and information sensitivity, the final accepted size can change from continuous to discontinuous transition when the strength of the social reinforcement is large. Moreover, an edge-based compartmental theory is presented to explain the numerical results. These findings may be of significance on the control of information spreading in modern society.
A Fast Reduced Kernel Extreme Learning Machine.
Deng, Wan-Yu; Ong, Yew-Soon; Zheng, Qing-Hua
2016-04-01
In this paper, we present a fast and accurate kernel-based supervised algorithm referred to as the Reduced Kernel Extreme Learning Machine (RKELM). In contrast to the work on Support Vector Machine (SVM) or Least Square SVM (LS-SVM), which identifies the support vectors or weight vectors iteratively, the proposed RKELM randomly selects a subset of the available data samples as support vectors (or mapping samples). By avoiding the iterative steps of SVM, significant cost savings in the training process can be readily attained, especially on Big datasets. RKELM is established based on the rigorous proof of universal learning involving reduced kernel-based SLFN. In particular, we prove that RKELM can approximate any nonlinear functions accurately under the condition of support vectors sufficiency. Experimental results on a wide variety of real world small instance size and large instance size applications in the context of binary classification, multi-class problem and regression are then reported to show that RKELM can perform at competitive level of generalized performance as the SVM/LS-SVM at only a fraction of the computational effort incurred. Copyright © 2015 Elsevier Ltd. All rights reserved.
Breves, Jason P.; Phipps-Costin, Silas K.; Fujimoto, Chelsea K.; Einarsdottir, Ingibjörg E.; Regish, Amy M.; Björnsson, Björn Thrandur; McCormick, Stephen
2016-01-01
The growth hormone (Gh)/insulin-like growth-factor (Igf) system plays a central role in the regulation of growth in fishes. However, the roles of Igf binding proteins (Igfbps) in coordinating responses to food availability are unresolved, especially in anadromous fishes preparing for seaward migration. We assayed plasma Gh, Igf1, thyroid hormones and cortisol along with igfbp mRNA levels in fasted and fed Atlantic salmon ( Salmo salar ). Fish were fasted for 3 or 10 days near the peak of smoltification (late April to early May). Fasting reduced plasma glucose by 3 days and condition factor by 10 days. Plasma Gh, cortisol, and thyroxine (T 4 ) were not altered in response to fasting, whereas Igf1 and 3,5,3′-triiodo- l -thyronine (T 3 ) were slightly higher and lower than controls, respectively. Hepatic igfbp1b1 , - 1b2 , - 2a , - 2b1 and - 2b2 mRNA levels were not responsive to fasting, but there were marked increases in igfbp1a1 following 3 and 10 days of fasting. Fasting did not alter hepatic igf1or igf2 ; however, muscle igf1 was diminished by 10 days of fasting. There were no signs that fasting compromised branchial ionoregulatory functions, as indicated by unchanged Na + /K + -ATPase activity and ion pump/transporter mRNA levels. We conclude that dynamic hepatic igfbp1a1 and muscle igf1 expression participate in the modulation of Gh/Igf signaling in smolts undergoing catabolism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roduner, C.; Koeppel, P.; Kupferschmied, P.
1999-07-01
The main goal of these investigations was the refined measurement of unsteady high speed flow in a centrifugal compressor using the advanced FRAP{reg_sign} fast-response aerodynamic probe system. The present contribution focuses on the impeller exit region and shows critical comparisons between fast-response (time-resolving) and conventional pneumatic probe measurement results. Three probes of identical geometry (one fast and two pneumatic) were used to perform wall-to-wall traverses close to impeller exit. The data shown refer to a single running condition near the best point of the stage. The mass flow obtained from different probe measurements and from the standard orifice measurement weremore » compared. Stage work obtained from temperature rise measured with a FRAP{reg_sign} probe and from impeller outlet velocity vectors fields by using Euler`s turbine equation are presented. The comparison in terms of velocity magnitude and angle distribution is quite satisfactory, indicating the superior DC measurement capabilities of the fast-response probe system.« less
Assigning historic responsibility for extreme weather events
NASA Astrophysics Data System (ADS)
Otto, Friederike E. L.; Skeie, Ragnhild B.; Fuglestvedt, Jan S.; Berntsen, Terje; Allen, Myles R.
2017-11-01
Recent scientific advances make it possible to assign extreme events to human-induced climate change and historical emissions. These developments allow losses and damage associated with such events to be assigned country-level responsibility.
Fast and Slow Responses of the South Asian Monsoon System to Anthropogenic Aerosols
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganguly, Dilip; Rasch, Philip J.; Wang, Hailong
2012-09-25
Using a global climate model with fully predictive aerosol life cycle, we investigate the fast and slow responses of the South Asian monsoon system to anthropogenic aerosol forcing. Our results show that the feedbacks associated with sea surface temperature (SST) change caused by aerosols play a more important role than the aerosol's direct impact on radiation, clouds and land surface (rapid adjustments) in shaping the total equilibrium climate response of the monsoon system to aerosol forcing. Inhomogeneous SST cooling caused by anthropogenic aerosols eventually reduces the meridional tropospheric temperature gradient and the easterly shear of zonal winds over the region,more » slowing down the local Hadley cell circulation, decreasing the northward moisture transport, and causing a reduction in precipitation over South Asia. Although total responses in precipitation are closer to the slow responses in general, the fast component dominates over land areas north of 25°N. Our results also show an east-west asymmetry in the fast responses to anthropogenic aerosols causing increases in precipitation west of 80°E but decreases east of it.« less
Weight loss practices of college wrestlers.
Oppliger, Robert A; Steen, Suzanne A Nelson; Scott, James R
2003-03-01
The purpose of this investigation was to examine the weight management (WM) behaviors of collegiate wrestlers after the implementation of the NCAA's new weight control rules. In the fall of 1999, a survey was distributed to 47 college wrestling teams stratified by collegiate division (i.e., I, II, III) and competitive quality. Forty-three teams returned surveys for a total of 741 responses. Comparisons were made using the collegiate division, weight class, and the wrestler's competitive winning percentage. The most weight lost during the season was 5.3 kg +/- 2.8 kg (mean +/- SD) or 6.9% +/- 4.7% of the wrestler's weight; weekly weight lost averaged 2.9 kg +/- 1.3 kg or 4.3% +/- 2.3% of the wrestler's weight; post-season, the average wrestler regained 5.5 kg +/- 3.6 kg or 8.6% +/- 5.4% of their weight. Coaches and fellow wrestlers were the primary influence on weight loss methods; however, 40.2% indicated that the new NCAA rules deterred extreme weight loss behaviors. The primary methods of weight loss reported were gradual dieting (79.4%) and increased exercise (75.2%). However, 54.8% fasted, 27.6% used saunas, and 26.7% used rubber/plastic suits at least once a month. Cathartics and vomiting were seldom used to lose weight, and only 5 met three or more of the criteria for bulimia nervosa. WM behaviors were more extreme among freshmen, lighter weight classes, and Division II wrestlers. Compared to previous surveys of high school wrestlers, this cohort of wrestlers reported more extreme WM behaviors. However, compared to college wrestlers in the 1980s, weight loss behaviors were less extreme. The WM practices of college wrestlers appeared to have improved compared to wrestlers sampled previously. Forty percent of the wrestlers were influenced by the new NCAA rules and curbed their weight loss practices. Education is still needed, as some wrestlers are still engaging in dangerous WM methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilcox, Kevin R.; Shi, Zheng; Gherardi, Laureano A.
Climatic changes are altering Earth's hydrological cycle, resulting in altered precipitation amounts, increased interannual variability of precipitation, and more frequent extreme precipitation events. These trends will likely continue into the future, having substantial impacts on net primary productivity (NPP) and associated ecosystem services such as food production and carbon sequestration. Frequently, experimental manipulations of precipitation have linked altered precipitation regimes to changes in NPP. Yet, findings have been diverse and substantial uncertainty still surrounds generalities describing patterns of ecosystem sensitivity to altered precipitation. Additionally, we do not know whether previously observed correlations between NPP and precipitation remain accurate when precipitationmore » changes become extreme. We synthesized results from 83 case studies of experimental precipitation manipulations in grasslands worldwide. Here, we used meta-analytical techniques to search for generalities and asymmetries of aboveground NPP (ANPP) and belowground NPP (BNPP) responses to both the direction and magnitude of precipitation change. Sensitivity (i.e., productivity response standardized by the amount of precipitation change) of BNPP was similar under precipitation additions and reductions, but ANPP was more sensitive to precipitation additions than reductions; this was especially evident in drier ecosystems. Additionally, overall relationships between the magnitude of productivity responses and the magnitude of precipitation change were saturating in form. The saturating form of this relationship was likely driven by ANPP responses to very extreme precipitation increases, although there were limited studies imposing extreme precipitation change, and there was considerable variation among experiments. Finally, this highlights the importance of incorporating gradients of manipulations, ranging from extreme drought to extreme precipitation increases into future climate change experiments. Additionally, policy and land management decisions related to global change scenarios should consider how ANPP and BNPP responses may differ, and that ecosystem responses to extreme events might not be predicted from relationships found under moderate environmental changes.« less
Multiscale Measurement of Extreme Response Style
ERIC Educational Resources Information Center
Bolt, Daniel M.; Newton, Joseph R.
2011-01-01
This article extends a methodological approach considered by Bolt and Johnson for the measurement and control of extreme response style (ERS) to the analysis of rating data from multiple scales. Specifically, it is shown how the simultaneous analysis of item responses across scales allows for more accurate identification of ERS, and more effective…
A Simulation Study on Methods of Correcting for the Effects of Extreme Response Style
ERIC Educational Resources Information Center
Wetzel, Eunike; Böhnke, Jan R.; Rose, Norman
2016-01-01
The impact of response styles such as extreme response style (ERS) on trait estimation has long been a matter of concern to researchers and practitioners. This simulation study investigated three methods that have been proposed for the correction of trait estimates for ERS effects: (a) mixed Rasch models, (b) multidimensional item response models,…
Fasting mediated increase in p-BAD(ser155) and p-AKT(ser473) in the prefrontal cortex of mice.
Pitchaimani, Vigneshwaran; Arumugam, Somasundaram; Thandavarayan, Rajarajan Amirthalingam; Karuppagounder, Vengadeshprabhu; Sreedhar, Remya; Afrin, Rejina; Harima, Meilei; Suzuki, Hiroshi; Miyashita, Shizuka; Nomoto, Mayumi; Sone, Hirohito; Suzuki, Kenji; Watanabe, Kenichi
2014-09-05
BAD-deficient mice and fasting have several common functional roles in seizures, beta-hydroxybutyrate (BHB) uptake in brain and alteration in counterregulatory hormonal regulation during hypoglycemia. Neuronal specific insulin receptor knockout (NIRKO) mice display impaired counterregulatory hormonal responses during hypoglycemia. In this study we investigated the fasting mediated expression of p-BAD(ser155) and p-AKT(ser473) in different regions of brain (prefrontal cortex, hippocampus, midbrain and hypothalamus). Fasting specifically increases p-BAD(ser155) and p-AKT(ser473) in prefrontal cortex and decreases in other regions of brain. Our results suggest that fasting may increase the uptake BHB by decreasing p-BAD(ser155) in the brain during hypoglycemia except prefrontal cortex and it uncovers specific functional area of p-BAD(ser155) and p-AKT(ser473) that may regulates counter regulatory hormonal response. Overall in support with previous findings, fasting mediated hypoglycemia activates prefrontal cortex insulin signaling which influences the hypothalamic paraventricular nucleus mediated activation of sympathoadrenal hormonal responses. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Israel, Richard G.
A study determined the effects of fatigue produced in the upper extremities on the reaction time, movement time, and response time of the lower extremities in 30 male subjects, 19-25 years old. Each subject participated in a 10 trial practice session one day prior to the experiment and immediately preceding the pre-test. The pre-test consisted of…
Flexible displays as key for high-value and unique automotive design
NASA Astrophysics Data System (ADS)
Isele, Robert
2011-03-01
Within the last few years' car industry changed very fast. Information and Communication became more important and displays are now standard in nearly every car. But this is not the only trend which could be recognized in this industry. CO2 emission, fuel price as well as the increasing traffic inside the Mega Cities initialized a big change in the behavior of the customers. The big battle for the car industry will enter the interior extremely fast, and the premium cars need ore innovative design icons. Flexible Displays are one big step that enables totally different designs and a new value of the driver experience.
Itter, Malcolm S; Finley, Andrew O; D'Amato, Anthony W; Foster, Jane R; Bradford, John B
2017-06-01
Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics-changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly sensitive to climate extremes during periods of high stem density following major regeneration events when average inter-tree competition was high. Results suggest the resistance and resilience of forest growth to climate extremes can be increased through management steps such as thinning to reduce competition during early stages of stand development and small-group selection harvests to maintain forest structures characteristic of older, mature stands. © 2017 by the Ecological Society of America.
Itter, Malcolm S.; Finley, Andrew O.; D'Amato, Anthony W.; Foster, Jane R.; Bradford, John B.
2017-01-01
Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics—changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly sensitive to climate extremes during periods of high stem density following major regeneration events when average inter-tree competition was high. Results suggest the resistance and resilience of forest growth to climate extremes can be increased through management steps such as thinning to reduce competition during early stages of stand development and small-group selection harvests to maintain forest structures characteristic of older, mature stands.
Mitochondrial divergence between slow- and fast-aging garter snakes.
Schwartz, Tonia S; Arendsee, Zebulun W; Bronikowski, Anne M
2015-11-01
Mitochondrial function has long been hypothesized to be intimately involved in aging processes--either directly through declining efficiency of mitochondrial respiration and ATP production with advancing age, or indirectly, e.g., through increased mitochondrial production of damaging free radicals with age. Yet we lack a comprehensive understanding of the evolution of mitochondrial genotypes and phenotypes across diverse animal models, particularly in species that have extremely labile physiology. Here, we measure mitochondrial genome-types and transcription in ecotypes of garter snakes (Thamnophis elegans) that are adapted to disparate habitats and have diverged in aging rates and lifespans despite residing in close proximity. Using two RNA-seq datasets, we (1) reconstruct the garter snake mitochondrial genome sequence and bioinformatically identify regulatory elements, (2) test for divergence of mitochondrial gene expression between the ecotypes and in response to heat stress, and (3) test for sequence divergence in mitochondrial protein-coding regions in these slow-aging (SA) and fast-aging (FA) naturally occurring ecotypes. At the nucleotide sequence level, we confirmed two (duplicated) mitochondrial control regions one of which contains a glucocorticoid response element (GRE). Gene expression of protein-coding genes was higher in FA snakes relative to SA snakes for most genes, but was neither affected by heat stress nor an interaction between heat stress and ecotype. SA and FA ecotypes had unique mitochondrial haplotypes with amino acid substitutions in both CYTB and ND5. The CYTB amino acid change (Isoleucine → Threonine) was highly segregated between ecotypes. This divergence of mitochondrial haplotypes between SA and FA snakes contrasts with nuclear gene-flow estimates, but correlates with previously reported divergence in mitochondrial function (mitochondrial oxygen consumption, ATP production, and reactive oxygen species consequences). Copyright © 2015 Elsevier Inc. All rights reserved.
Challenges Facing Design and Analysis Tools
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Broduer, Steve (Technical Monitor)
2001-01-01
The design and analysis of future aerospace systems will strongly rely on advanced engineering analysis tools used in combination with risk mitigation procedures. The implications of such a trend place increased demands on these tools to assess off-nominal conditions, residual strength, damage propagation, and extreme loading conditions in order to understand and quantify these effects as they affect mission success. Advances in computer hardware such as CPU processing speed, memory, secondary storage, and visualization provide significant resources for the engineer to exploit in engineering design. The challenges facing design and analysis tools fall into three primary areas. The first area involves mechanics needs such as constitutive modeling, contact and penetration simulation, crack growth prediction, damage initiation and progression prediction, transient dynamics and deployment simulations, and solution algorithms. The second area involves computational needs such as fast, robust solvers, adaptivity for model and solution strategies, control processes for concurrent, distributed computing for uncertainty assessments, and immersive technology. Traditional finite element codes still require fast direct solvers which when coupled to current CPU power enables new insight as a result of high-fidelity modeling. The third area involves decision making by the analyst. This area involves the integration and interrogation of vast amounts of information - some global in character while local details are critical and often drive the design. The proposed presentation will describe and illustrate these areas using composite structures, energy-absorbing structures, and inflatable space structures. While certain engineering approximations within the finite element model may be adequate for global response prediction, they generally are inadequate in a design setting or when local response prediction is critical. Pitfalls to be avoided and trends for emerging analysis tools will be described.
Goldstone, Anthony P; Prechtl, Christina G; Scholtz, Samantha; Miras, Alexander D; Chhina, Navpreet; Durighel, Giuliana; Deliran, Seyedeh S; Beckmann, Christian; Ghatei, Mohammad A; Ashby, Damien R; Waldman, Adam D; Gaylinn, Bruce D; Thorner, Michael O; Frost, Gary S; Bloom, Stephen R; Bell, Jimmy D
2014-06-01
Ghrelin, which is a stomach-derived hormone, increases with fasting and energy restriction and may influence eating behaviors through brain hedonic reward-cognitive systems. Therefore, changes in plasma ghrelin might mediate counter-regulatory responses to a negative energy balance through changes in food hedonics. We investigated whether ghrelin administration (exogenous hyperghrelinemia) mimics effects of fasting (endogenous hyperghrelinemia) on the hedonic response and activation of brain-reward systems to food. In a crossover design, 22 healthy, nonobese adults (17 men) underwent a functional magnetic resonance imaging (fMRI) food-picture evaluation task after a 16-h overnight fast (Fasted-Saline) or after eating breakfast 95 min before scanning (730 kcal, 14% protein, 31% fat, and 55% carbohydrate) and receiving a saline (Fed-Saline) or acyl ghrelin (Fed-Ghrelin) subcutaneous injection before scanning. One male subject was excluded from the fMRI analysis because of excess head motion, which left 21 subjects with brain-activation data. Compared with the Fed-Saline visit, both ghrelin administration to fed subjects (Fed-Ghrelin) and fasting (Fasted-Saline) significantly increased the appeal of high-energy foods and associated orbitofrontal cortex activation. Both fasting and ghrelin administration also increased hippocampus activation to high-energy- and low-energy-food pictures. These similar effects of endogenous and exogenous hyperghrelinemia were not explicable by consistent changes in glucose, insulin, peptide YY, and glucagon-like peptide-1. Neither ghrelin administration nor fasting had any significant effect on nucleus accumbens, caudate, anterior insula, or amygdala activation during the food-evaluation task or on auditory, motor, or visual cortex activation during a control task. Ghrelin administration and fasting have similar acute stimulatory effects on hedonic responses and the activation of corticolimbic reward-cognitive systems during food evaluations. Similar effects of recurrent or chronic hyperghrelinemia on an anticipatory food reward may contribute to the negative impact of skipping breakfast on dietary habits and body weight and the long-term failure of energy restriction for weight loss. © 2014 American Society for Nutrition.
Orozco, Zenith Gaye A; Soma, Satoshi; Kaneko, Toyoji; Watanabe, Soichi
2017-01-01
The tissue distribution of slc15a1a, a gene that encodes an oligopeptide transporter, PepT1, and its response to fasting and refeeding were investigated in the intestinal epithelium of Mozambique tilapia for a better understanding of its role on nutrient absorption. The slc15a1a was predominantly expressed in the absorptive epithelia of the anterior part of the intestine, suggesting that digested oligopeptides are primarily absorbed in the anterior intestine. The response of slc15a1a to fasting was evaluated at 1, 2, 4, 7 and 14days after the last feeding. Fasting revealed a biphasic effect, where short-term fasting significantly upregulated slc15a1a expression and long-term fasting resulted in downregulation. The expression level continued to decrease and fell below the pre-fasted level from day 4 to 14. Proximal (the hepatic loop, HL) and distal parts (the proximal major coil, PMC) of the anterior intestine showed different magnitudes of responses to fasting; slc15a1a expression in the PMC showed greater upregulation and downregulation than that in the HL. Refeeding significantly stimulated slc15a1a expression at day 3, although the expression did not exceed the pre-fasted level. Observed responses of slc15a1a to fasting and refeeding suggest that the expression level of this gene can serve as a sensitive indicator of the changes that may occur in altering nutritional conditions. These findings contribute to a better understanding of the role of PepT1 in nutrition and of the complex mechanisms underlying the absorption of oligopeptides and amino acids in the intestine, and may lead to development of possible means to manipulate the absorption processes for the improvement of growth and other metabolic and physiological conditions in fish. Copyright © 2016. Published by Elsevier Inc.
Li, Chenying; Ostermann, Thomas; Hardt, Monika; Lüdtke, Rainer; Broecker-Preuss, Martina; Dobos, Gustav; Michalsen, Andreas
2013-01-01
Extended modified fasting is a frequently practiced tradition in Europe. It is claimed to improve the cardiometabolic state and physical and psychological well-being by an evolutionary co-developed adaptation response. We aimed to investigate the cardiometabolic and psychological effects of a 7-day fast and differences of these responses between patients with or without metabolic syndrome (MetS). We investigated 30 female subjects (49.0 ± 8.1 years, BMI 30.4 ± 6.7 kg/m(2)) with (n = 12) and without (n = 18) MetS. All subjects participated in a 7-day fast according to Buchinger with a nutritional energy intake of 300 kcal/day and stepwise reintroduction of solid food thereafter. Outcomes were assessed baseline and after fasting and included measures of metabolic and glucoregulatory control, adipokines as well as psychological well-being as assessed by Profile of Mood States (POMS) and Hospital Anxiety and Depression Scale (HADS). Mean weight decreased from 85.4 ± 18.8 kg to 79.7 ± 18.2 kg accompanied by systolic/diastolic blood pressure (BP) reduction of -16.2 mm Hg (95% CI: -9.1; -23.3 mm Hg) and -6.0 mm Hg (95% CI: -1.8; -10.3 mm Hg), each p < 0.001 and p = 0.005. Fasting led to marked decreases of levels of LDL-cholesterol, leptin, and insulin and increases of levels of adiponectin, leptin receptors, and resistin. Fasting-induced mood enhancement was reflected by decreased anxiety, depression, fatigue, and improved vigor. Patients with MetS showed some greater changes in B P, LDL-cholesterol, triglycerides, adiponectin, leptin, and sleep quality. Fasting was well-tolerated. Our results point to marked beneficial responses to 7-day modified fasting and a potential role in the prevention of the MetS. Randomized trials with longer observation periods should test the clinical effectiveness of fasting in metabolic diseases. © 2014 S. Karger GmbH, Freiburg.
NASA Astrophysics Data System (ADS)
Gu, Shu-Ying; Jin, Sheng-Peng; Gao, Xie-Feng; Mu, Jian
2016-05-01
Polylactide-based polyurethane shape memory nanocomposites (Fe3O4/PLAUs) with fast magnetic responsiveness are presented. For the purpose of fast response and homogeneous dispersion of magnetic nanoparticles, oleic acid was used to improve the dispersibility of Fe3O4 nanoparticles in a polymer matrix. A homogeneous distribution of Fe3O4 nanoparticles in the polymer matrix was obtained for nanocomposites with low Fe3O4 loading content. A small agglomeration was observed for nanocomposites with 6 wt% and 9 wt% loading content, leading to a small decline in the mechanical properties. PLAU and its nanocomposites have glass transition around 52 °C, which can be used as the triggering temperature. PLAU and its nanocomposites have shape fixity ratios above 99%, shape recovery ratios above 82% for the first cycle and shape recovery ratios above 91% for the second cycle. PLAU and its nanocomposites also exhibit a fast water bath or magnetic responsiveness. The magnetic recovery time decreases with an increase in the loading content of Fe3O4 nanoparticles due to an improvement in heating performance for increased weight percentage of fillers. The nanocomposites have fast responses in an alternating magnetic field and have potential application in biomedical areas such as intravascular stent.
NASA Astrophysics Data System (ADS)
McMartin, Dena W.; Sammel, Alison J.; Arbuthnott, Katherine
2018-01-01
Technology alone cannot address the challenges of how societies, communities, and individuals understand water accessibility, water management, and water consumption, particularly under extreme conditions like floods and droughts. At the community level, people are increasingly aware challenges related to responses to and impacts of extreme water events. This research begins with an assessment of social and political capacities of communities in two Commonwealth jurisdictions, Queensland, Australia and Saskatchewan, Canada, in response to major flooding events. The research further reviews how such capacities impact community engagement to address and mitigate risks associated with extreme water events and provides evidence of key gaps in skills, understanding, and agency for addressing impacts at the community level. Secondary data were collected using template analysis to elucidate challenges associated with education (formal and informal), social and political capacity, community ability to respond appropriately, and formal government responses to extreme water events in these two jurisdictions. The results indicate that enhanced community engagement alongside elements of an empowerment model can provide avenues for identifying and addressing community vulnerability to negative impacts of flood and drought.
NASA Astrophysics Data System (ADS)
Brunsell, N. A.; Nippert, J. B.
2011-12-01
As the climate warms, it is generally acknowledged that the number and magnitude of extreme weather events will increase. We examined an ecophysiological model's responses to precipitation and temperature anomalies in relation to the mean and variance of annual precipitation along a pronounced precipitation gradient from eastern to western Kansas. This natural gradient creates a template of potential responses for both the mean and variance of annual precipitation to compare the timescales of carbon and water fluxes. Using data from several Ameriflux sites (KZU and KFS) and a third eddy covariance tower (K4B) along the gradient, BIOME-BGC was used to characterize water and carbon cycle responses to extreme weather events. Changes in the extreme value distributions were based on SRES A1B and A2 scenarios using an ensemble mean of 21 GCMs for the region, downscaled using a stochastic weather generator. We focused on changing the timing and magnitude of precipitation and altering the diurnal and seasonal temperature ranges. Biome-BGC was then forced with daily output from the stochastic weather generator, and we examined how potential changes in these extreme value distributions impact carbon and water cycling at the sites across the Kansas precipitation gradient at time scales ranging from daily to interannual. To decompose the time scales of response, we applied a wavelet based information theory analysis approach. Results indicate impacts in soil moisture memory and carbon allocation processes, which vary in response to both the mean and variance of precipitation along the precipitation gradient. These results suggest a more pronounced focus ecosystem responses to extreme events across a range of temporal scales in order to fully characterize the water and carbon cycle responses to global climate change.
Walker, S C; Helm, P A; Lavery, L A
1997-08-01
To evaluate the ability of diabetic and nondiabetic individuals to learn to use a lower extremity sensory substitution device to cue gait pattern changes. Case-control study. Gait laboratory. Thirty diabetic persons and 20 age- and education-matched nondiabetic controls responded to advertisements for study participation. Participants walked on a treadmill at three speeds (1, 2, and 2.5mph) with auditory sensory feedback to cue ground contact greater than 80% duration of baseline. The variables measured included gait cycle (steps per minute) and number of times per minute that any step during a trial exceeded 80% duration of ground contacted compared with a measured baseline step length for each speed. Persons in both groups were able to rapidly and significantly alter their gait patterns in response to signals from the sensory substitution device, by changing their gait cycles (nondiabetic group, F(17,124) = 5.27, p < .001; diabetic group, F(5,172) = 3.45, p < .001). Post hoc analyses showed early gait cycle modification and error reduction among both groups. The nondiabetic group learned to use the device significantly more quickly than the diabetic group during the slow (1mph, t = 3.57, p < .001) and average (2mph, t = 2.97, p < .05) trials. By the fast (2.5mph) ambulation trial, both groups were performing equally, suggesting a rapid rate of adjustment to the device. No technical failures from gait trainer malfunction occurred during the study. Diabetic persons with neuropathy effectively used lower extremity sensory substitution, and the technology is now available to manufacture a durable, effective lower extremity sensory substitution system.
Chen, Ling; Ye, Jia-Wen; Wang, Hai-Ping; Pan, Mei; Yin, Shao-Yun; Wei, Zhang-Wen; Zhang, Lu-Yin; Wu, Kai; Fan, Ya-Nan; Su, Cheng-Yong
2017-01-01
A convenient, fast and selective water analysis method is highly desirable in industrial and detection processes. Here a robust microporous Zn-MOF (metal–organic framework, Zn(hpi2cf)(DMF)(H2O)) is assembled from a dual-emissive H2hpi2cf (5-(2-(5-fluoro-2-hydroxyphenyl)-4,5-bis(4-fluorophenyl)-1H-imidazol-1-yl)isophthalic acid) ligand that exhibits characteristic excited state intramolecular proton transfer (ESIPT). This Zn-MOF contains amphipathic micropores (<3 Å) and undergoes extremely facile single-crystal-to-single-crystal transformation driven by reversible removal/uptake of coordinating water molecules simply stimulated by dry gas blowing or gentle heating at 70 °C, manifesting an excellent example of dynamic reversible coordination behaviour. The interconversion between the hydrated and dehydrated phases can turn the ligand ESIPT process on or off, resulting in sensitive two-colour photoluminescence switching over cycles. Therefore, this Zn-MOF represents an excellent PL water-sensing material, showing a fast (on the order of seconds) and highly selective response to water on a molecular level. Furthermore, paper or in situ grown ZnO-based sensing films have been fabricated and applied in humidity sensing (RH<1%), detection of traces of water (<0.05% v/v) in various organic solvents, thermal imaging and as a thermometer. PMID:28665406
SANSparallel: interactive homology search against Uniprot.
Somervuo, Panu; Holm, Liisa
2015-07-01
Proteins evolve by mutations and natural selection. The network of sequence similarities is a rich source for mining homologous relationships that inform on protein structure and function. There are many servers available to browse the network of homology relationships but one has to wait up to a minute for results. The SANSparallel webserver provides protein sequence database searches with immediate response and professional alignment visualization by third-party software. The output is a list, pairwise alignment or stacked alignment of sequence-similar proteins from Uniprot, UniRef90/50, Swissprot or Protein Data Bank. The stacked alignments are viewed in Jalview or as sequence logos. The database search uses the suffix array neighborhood search (SANS) method, which has been re-implemented as a client-server, improved and parallelized. The method is extremely fast and as sensitive as BLAST above 50% sequence identity. Benchmarks show that the method is highly competitive compared to previously published fast database search programs: UBLAST, DIAMOND, LAST, LAMBDA, RAPSEARCH2 and BLAT. The web server can be accessed interactively or programmatically at http://ekhidna2.biocenter.helsinki.fi/cgi-bin/sans/sans.cgi. It can be used to make protein functional annotation pipelines more efficient, and it is useful in interactive exploration of the detailed evidence supporting the annotation of particular proteins of interest. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Zampieri, Ricardo Andrade; Laranjeira-Silva, Maria Fernanda; Muxel, Sandra Marcia; Stocco de Lima, Ana Carolina; Shaw, Jeffrey Jon; Floeter-Winter, Lucile Maria
2016-02-01
Protozoan parasites of the genus Leishmania cause a large spectrum of clinical manifestations known as Leishmaniases. These diseases are increasingly important public health problems in many countries both within and outside endemic regions. Thus, an accurate differential diagnosis is extremely relevant for understanding epidemiological profiles and for the administration of the best therapeutic protocol. Exploring the High Resolution Melting (HRM) dissociation profiles of two amplicons using real time polymerase chain reaction (real-time PCR) targeting heat-shock protein 70 coding gene (hsp70) revealed differences that allowed the discrimination of genomic DNA samples of eight Leishmania species found in the Americas, including Leishmania (Leishmania) infantum chagasi, L. (L.) amazonensis, L. (L.) mexicana, L. (Viannia) lainsoni, L. (V.) braziliensis, L. (V.) guyanensis, L. (V.) naiffi and L. (V.) shawi, and three species found in Eurasia and Africa, including L. (L.) tropica, L. (L.) donovani and L. (L.) major. In addition, we tested DNA samples obtained from standard promastigote culture, naturally infected phlebotomines, experimentally infected mice and clinical human samples to validate the proposed protocol. HRM analysis of hsp70 amplicons is a fast and robust strategy that allowed for the detection and discrimination of all Leishmania species responsible for the Leishmaniases in Brazil and Eurasia/Africa with high sensitivity and accuracy. This method could detect less than one parasite per reaction, even in the presence of host DNA.
Silva, Michelli Massaroli da; Andrade, Moacir Dos Santos; Bauermeister, Anelize; Merfa, Marcus Vinícius; Forim, Moacir Rossi; Fernandes, João Batista; Vieira, Paulo Cezar; Silva, Maria Fátima das Graças Fernandes da; Lopes, Norberto Peporine; Machado, Marcos Antônio; Souza, Alessandra Alves de
2017-06-13
Diketopiperazines can be generated by non-enzymatic cyclization of linear dipeptides at extreme temperature or pH, and the complex medium used to culture bacteria and fungi including phytone peptone and trypticase peptone, can also produce cyclic peptides by heat sterilization. As a result, it is not always clear if many diketopiperazines reported in the literature are artifacts formed by the different complex media used in microorganism growth. An ideal method for analysis of these compounds should identify whether they are either synthesized de novo from the products of primary metabolism and deliver true diketopiperazines. A simple defined medium ( X. fastidiosa medium or XFM) containing a single carbon source and no preformed amino acids has emerged as a method with a particularly high potential for the grown of X. fastidiosa and to produce genuine natural products. In this work, we identified a range of diketopiperazines from X. fastidiosa 9a5c growth in XFM, using Ultra-Fast Liquid Chromatography coupled with mass spectrometry. Diketopiperazines are reported for the first time from X. fastidiosa , which is responsible for citrus variegated chlorosis. We also report here fatty acids from X. fastidiosa , which were not biologically active as diffusible signals, and the role of diketopiperazines in signal transduction still remains unknown.
Well-observed dynamics of flaring and peripheral coronal magnetic loops during an M-class limb flare
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Jinhua; Zhou, Tuanhui; Ji, Haisheng
2014-08-20
In this paper, we present a variety of well-observed dynamic behaviors for the flaring and peripheral magnetic loops of the M6.6 class extreme limb flare that occurred on 2011 February 24 (SOL2011-02-24T07:20) from EUV observations by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory and X-ray observations by RHESSI. The flaring loop motion confirms the earlier contraction-expansion picture. We find that the U-shaped trajectory delineated by the X-ray corona source of the flare roughly follows the direction of a filament eruption associated with the flare. Different temperature structures of the coronal source during the contraction and expansion phases stronglymore » suggest different kinds of magnetic reconnection processes. For some peripheral loops, we discover that their dynamics are closely correlated with the filament eruption. During the slow rising to abrupt, fast rising of the filament, overlying peripheral magnetic loops display different responses. Two magnetic loops on the elbow of the active region had a slow descending motion followed by an abrupt successive fast contraction, while magnetic loops on the top of the filament were pushed outward, slowly being inflated for a while and then erupting as a moving front. We show that the filament activation and eruption play a dominant role in determining the dynamics of the overlying peripheral coronal magnetic loops.« less
Catastrophic cooling and cessation of heating in the solar corona
NASA Astrophysics Data System (ADS)
Peter, H.; Bingert, S.; Kamio, S.
2012-01-01
Context. Condensations in the more than 106 K hot corona of the Sun are commonly observed in the extreme ultraviolet (EUV). While their contribution to the total solar EUV radiation is still a matter of debate, these condensations certainly provide a valuable tool for studying the dynamic response of the corona to the heating processes. Aims: We investigate different distributions of energy input in time and space to investigate which process is most relevant for understanding these coronal condensations. Methods: For a comparison to observations we synthesize EUV emission from a time-dependent, one-dimensional model for coronal loops, where we employ two heating scenarios: simply shutting down the heating and a model where the heating is very concentrated at the loop footpoints, while keeping the total heat input constant. Results: The heating off/on model does not lead to significant EUV count rates that one observes with SDO/AIA. In contrast, the concentration of the heating near the footpoints leads to thermal non-equilibrium near the loop top resulting in the well-known catastrophic cooling. This process gives a good match to observations of coronal condensations. Conclusions: This shows that the corona needs a steady supply of energy to support the coronal plasma, even during coronal condensations. Otherwise the corona would drain very fast, too fast to even form a condensation. Movies are available in electronic form at http://www.aanda.org
fastBMA: scalable network inference and transitive reduction.
Hung, Ling-Hong; Shi, Kaiyuan; Wu, Migao; Young, William Chad; Raftery, Adrian E; Yeung, Ka Yee
2017-10-01
Inferring genetic networks from genome-wide expression data is extremely demanding computationally. We have developed fastBMA, a distributed, parallel, and scalable implementation of Bayesian model averaging (BMA) for this purpose. fastBMA also includes a computationally efficient module for eliminating redundant indirect edges in the network by mapping the transitive reduction to an easily solved shortest-path problem. We evaluated the performance of fastBMA on synthetic data and experimental genome-wide time series yeast and human datasets. When using a single CPU core, fastBMA is up to 100 times faster than the next fastest method, LASSO, with increased accuracy. It is a memory-efficient, parallel, and distributed application that scales to human genome-wide expression data. A 10 000-gene regulation network can be obtained in a matter of hours using a 32-core cloud cluster (2 nodes of 16 cores). fastBMA is a significant improvement over its predecessor ScanBMA. It is more accurate and orders of magnitude faster than other fast network inference methods such as the 1 based on LASSO. The improved scalability allows it to calculate networks from genome scale data in a reasonable time frame. The transitive reduction method can improve accuracy in denser networks. fastBMA is available as code (M.I.T. license) from GitHub (https://github.com/lhhunghimself/fastBMA), as part of the updated networkBMA Bioconductor package (https://www.bioconductor.org/packages/release/bioc/html/networkBMA.html) and as ready-to-deploy Docker images (https://hub.docker.com/r/biodepot/fastbma/). © The Authors 2017. Published by Oxford University Press.
An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102
NASA Astrophysics Data System (ADS)
Michilli, D.; Seymour, A.; Hessels, J. W. T.; Spitler, L. G.; Gajjar, V.; Archibald, A. M.; Bower, G. C.; Chatterjee, S.; Cordes, J. M.; Gourdji, K.; Heald, G. H.; Kaspi, V. M.; Law, C. J.; Sobey, C.; Adams, E. A. K.; Bassa, C. G.; Bogdanov, S.; Brinkman, C.; Demorest, P.; Fernandez, F.; Hellbourg, G.; Lazio, T. J. W.; Lynch, R. S.; Maddox, N.; Marcote, B.; McLaughlin, M. A.; Paragi, Z.; Ransom, S. M.; Scholz, P.; Siemion, A. P. V.; Tendulkar, S. P.; van Rooy, P.; Wharton, R. S.; Whitlow, D.
2018-01-01
Fast radio bursts are millisecond-duration, extragalactic radio flashes of unknown physical origin. The only known repeating fast radio burst source—FRB 121102—has been localized to a star-forming region in a dwarf galaxy at redshift 0.193 and is spatially coincident with a compact, persistent radio source. The origin of the bursts, the nature of the persistent source and the properties of the local environment are still unclear. Here we report observations of FRB 121102 that show almost 100 per cent linearly polarized emission at a very high and variable Faraday rotation measure in the source frame (varying from +1.46 × 105 radians per square metre to +1.33 × 105 radians per square metre at epochs separated by seven months) and narrow (below 30 microseconds) temporal structure. The large and variable rotation measure demonstrates that FRB 121102 is in an extreme and dynamic magneto-ionic environment, and the short durations of the bursts suggest a neutron star origin. Such large rotation measures have hitherto been observed only in the vicinities of massive black holes (larger than about 10,000 solar masses). Indeed, the properties of the persistent radio source are compatible with those of a low-luminosity, accreting massive black hole. The bursts may therefore come from a neutron star in such an environment or could be explained by other models, such as a highly magnetized wind nebula or supernova remnant surrounding a young neutron star.
Yair, R; Uni, Z; Shahar, R
2012-10-01
The development of broilers is an extreme example of rapid growth, increasing in weight from 40 g at hatch to 2,000 g 5 to 6 wk later. Such rapid growth requires a correspondingly fast development of the skeleton. Bone development is a genetically programmed process that is modified by epigenetic factors, mainly muscle-induced stresses and strains. In this study, we describe the temporal changes in bone morphology and material properties during the prehatch period [embryonic day (E) 14, E17, E19, E21] and posthatch d 3 and 7. The bones were examined for their weight, length, ash content, mechanical properties, and cortical structure. We show that the cross-sectional shape of the tibia and femur changes during the examination period from circular to elliptical. Additionally, the changes in bone properties are time-dependent and nonuniform: from E14 to E17 and from d 3 to 7, fast bone growth was noted, with major increases in both mechanical properties (stiffness, ultimate load, and energy to fracture) and geometric properties (cross-sectional area and thickness, medullary area, and moment of inertia). On the other hand, during the last days of incubation, most mechanical and geometric properties remain unchanged or even decrease. The reasons for this finding may relate to the hatching process but also to mineral shortage during the last days of incubation. This study leads to better understanding of bone development in ovo and posthatch in fast-growing broilers.
An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102.
Michilli, D; Seymour, A; Hessels, J W T; Spitler, L G; Gajjar, V; Archibald, A M; Bower, G C; Chatterjee, S; Cordes, J M; Gourdji, K; Heald, G H; Kaspi, V M; Law, C J; Sobey, C; Adams, E A K; Bassa, C G; Bogdanov, S; Brinkman, C; Demorest, P; Fernandez, F; Hellbourg, G; Lazio, T J W; Lynch, R S; Maddox, N; Marcote, B; McLaughlin, M A; Paragi, Z; Ransom, S M; Scholz, P; Siemion, A P V; Tendulkar, S P; Van Rooy, P; Wharton, R S; Whitlow, D
2018-01-10
Fast radio bursts are millisecond-duration, extragalactic radio flashes of unknown physical origin. The only known repeating fast radio burst source-FRB 121102-has been localized to a star-forming region in a dwarf galaxy at redshift 0.193 and is spatially coincident with a compact, persistent radio source. The origin of the bursts, the nature of the persistent source and the properties of the local environment are still unclear. Here we report observations of FRB 121102 that show almost 100 per cent linearly polarized emission at a very high and variable Faraday rotation measure in the source frame (varying from +1.46 × 10 5 radians per square metre to +1.33 × 10 5 radians per square metre at epochs separated by seven months) and narrow (below 30 microseconds) temporal structure. The large and variable rotation measure demonstrates that FRB 121102 is in an extreme and dynamic magneto-ionic environment, and the short durations of the bursts suggest a neutron star origin. Such large rotation measures have hitherto been observed only in the vicinities of massive black holes (larger than about 10,000 solar masses). Indeed, the properties of the persistent radio source are compatible with those of a low-luminosity, accreting massive black hole. The bursts may therefore come from a neutron star in such an environment or could be explained by other models, such as a highly magnetized wind nebula or supernova remnant surrounding a young neutron star.
[Applications and connected objects, new perspectives].
Trudelle, Pierre
2017-11-01
Applications and connected objects appear promising in the world of wellbeing and health. Often cheap, they offer numerous perspectives for health promotion, in targeted fields or to fulfil 'niche' needs. This growth, extremely fast over the last five years, has also given rise to potential defiance on the part of users. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
USDA-ARS?s Scientific Manuscript database
In the spring of 2012, extremely high temperatures were recorded in the upper Midwest during the month of March. This sustained heat wave not only made March the warmest on record, but also induced remarkably fast development of arthropods and plants. In terms of degree-days, however, the arthropod ...
USDA-ARS?s Scientific Manuscript database
In the spring of 2012, extremely high temperatures were recorded in the upper Midwest during the month of March. This sustained heat wave not only made March the warmest on record, but also induced remarkably fast development of arthropods and plants. In terms of degree-days, however, the arthropod ...
Koopman, A D M; Rutters, F; Rauh, S P; Nijpels, G; Holst, J J; Beulens, J W; Alssema, M; Dekker, J M
2018-01-01
We conducted the first prospective observational study in which we examined the association between incretin responses to an oral glucose tolerance test (OGTT) and mixed meal test (MMT) at baseline and changes in fasting glucose levels 7 years later, in individuals who were non-diabetic at baseline. We used data from the Hoorn Meal Study; a population-based cohort study among 121 subjects, aged 61.0±6.7y. GIP and GLP-1 responses were determined at baseline and expressed as total and incremental area under the curve (tAUC and iAUC). The association between incretin response at baseline and changes in fasting glucose levels was assessed using linear regression. The average change in glucose over 7 years was 0.43 ± 0.5 mmol/l. For GIP, no significant associations were observed with changes in fasting glucose levels. In contrast, participants within the middle and highest tertile of GLP-1 iAUC responses to OGTT had significantly smaller increases (actually decreases) in fasting glucose levels; -0.28 (95% confidence interval: -0.54;-0.01) mmol/l and -0.39 (-0.67;-0.10) mmol/l, respectively, compared to those in the lowest tertile. The same trend was observed for tAUC GLP-1 following OGTT (highest tertile: -0.32 (0.61;-0.04) mmol/l as compared to the lowest tertile). No significant associations were observed for GLP-1 responses following MMT. In conclusion, within our non-diabetic population-based cohort, a low GLP-1 response to OGTT was associated with a steeper increase in fasting glucose levels during 7 years of follow-up. This suggests that a reduced GLP-1 response precedes glucose deterioration and may play a role in the etiology of type 2 diabetes mellitus.
Rutters, F.; Rauh, S. P.; Nijpels, G.; Holst, J. J.; Beulens, J. W.; Alssema, M.; Dekker, J. M.
2018-01-01
We conducted the first prospective observational study in which we examined the association between incretin responses to an oral glucose tolerance test (OGTT) and mixed meal test (MMT) at baseline and changes in fasting glucose levels 7 years later, in individuals who were non-diabetic at baseline. We used data from the Hoorn Meal Study; a population-based cohort study among 121 subjects, aged 61.0±6.7y. GIP and GLP-1 responses were determined at baseline and expressed as total and incremental area under the curve (tAUC and iAUC). The association between incretin response at baseline and changes in fasting glucose levels was assessed using linear regression. The average change in glucose over 7 years was 0.43 ± 0.5 mmol/l. For GIP, no significant associations were observed with changes in fasting glucose levels. In contrast, participants within the middle and highest tertile of GLP-1 iAUC responses to OGTT had significantly smaller increases (actually decreases) in fasting glucose levels; -0.28 (95% confidence interval: -0.54;-0.01) mmol/l and -0.39 (-0.67;-0.10) mmol/l, respectively, compared to those in the lowest tertile. The same trend was observed for tAUC GLP-1 following OGTT (highest tertile: -0.32 (0.61;-0.04) mmol/l as compared to the lowest tertile). No significant associations were observed for GLP-1 responses following MMT. In conclusion, within our non-diabetic population-based cohort, a low GLP-1 response to OGTT was associated with a steeper increase in fasting glucose levels during 7 years of follow-up. This suggests that a reduced GLP-1 response precedes glucose deterioration and may play a role in the etiology of type 2 diabetes mellitus. PMID:29324870
Khani, Rouhollah; Ghiamati, Ebrahim; Boroujerdi, Ramin; Rezaeifard, Abdolreza; Zaryabi, Mohadeseh Hosseinpour
2016-06-15
Cadmium (Cd) which is an extremely toxic could be found in many products like plastics, fossil fuel combustion, cosmetics, water resources, and wastewaters. It is capable of causing serious environmental and health problems such as lung, prostate, renal cancers and the other disorders. So, the development of a sensor to continually monitor cadmium is considerably demanding. Tetrakis(4-nitrophenyl)porphyrin, T(4-NO2-P)P, was synthesized and used as a new and highly selective fluorescent probe for monitoring cadmium ions in the "turn-on" mode. There was a linear relationship between fluorescence intensity and the concentration of Cd(II) in the range of 1.0×10(-6) to 1.0×10(-5)molL(-1) with a detection limit of 0.276μM. To examine the most important parameters involved and their interactions in the sensor optimization procedure, a four-factor central composite design (CCD) combined with response surface modeling (RSM) was implemented. The practical applicability of the developed sensor was investigated using real cosmetic, and personal care samples. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marian, Jaime; Becquart, Charlotte S.; Domain, Christophe
2017-06-09
Under the anticipated operating conditions for demonstration magnetic fusion reactors beyond ITER, structural materials will be exposed to unprecedented conditions of irradiation, heat flux, and temperature. While such extreme environments remain inaccessible experimentally, computational modeling and simulation can provide qualitative and quantitative insights into materials response and complement the available experimental measurements with carefully validated predictions. For plasma facing components such as the first wall and the divertor, tungsten (W) has been selected as the best candidate material due to its superior high-temperature and irradiation properties. In this paper we provide a review of recent efforts in computational modeling ofmore » W both as a plasma-facing material exposed to He deposition as well as a bulk structural material subjected to fast neutron irradiation. We use a multiscale modeling approach –commonly used as the materials modeling paradigm– to define the outline of the paper and highlight recent advances using several classes of techniques and their interconnection. We highlight several of the most salient findings obtained via computational modeling and point out a number of remaining challenges and future research directions« less
Irmak, Nurbay
2015-08-01
Hunger strikes potentially present a serious challenge for attending physicians. Though rare, in certain cases, a conflict can occur between the obligations of beneficence and autonomy. On the one hand, physicians have a duty to preserve life, which entails intervening in a hunger strike before the hunger striker loses his life. On the other hand, physicians' duty to respect autonomy implies that attending physicians have to respect hunger strikers' decisions to refuse nutrition. International medical guidelines state that physicians should follow the strikers' unpressured advance directives. When physicians encounter an unconscious striker, in the absence of reliable advance directives, the guidelines advise physicians to make a decision on the basis of the patient's values, previously expressed wishes, and best interests. I argue that if there are no advance directives and the striker has already lost his competence, the physician has the responsibility to resuscitate the striker. Once the striker regains his decision-making capacity, he should be asked about his decision. If he is determined to continue fasting and refuses treatment, the physician has a moral obligation to respect this decisions and follow his advance directives.
Christen, Tim; de Mutsert, Renée; Gast, Karin B; Rensen, Patrick C N; de Koning, Eelco; Rosendaal, Frits R; Trompet, Stella; Jukema, J Wouter
People are in a postprandial state for the majority of the day, postprandial triglyceride (TG) response may be more important in the etiology of atherosclerosis than fasting TGs. The objective of the study was to investigate the associations of fasting TG concentration (TGc) and postprandial TG response after a meal challenge with subclinical atherosclerosis, measured by intima-media thickness (IMT) in a middle-aged population. A total of 5574 participants (57% women) with a mean (standard deviation [SD]) age of 56 (6) years were included in this cross-sectional analysis of baseline measurements of The Netherlands Epidemiology of Obesity study. Serum TGc was measured fasting and 30 and 150 minutes after a liquid mixed meal, and the incremental area under the curve (TGiAUC) was calculated. With linear regression analyses, we calculated the differences in IMT with 95% confidence intervals, adjusted for confounding factors, and additionally for TGc or TGiAUC. Per SD of TGc (0.82 mmol/L), IMT was 8.5 μm (2.1, 14.9) greater after adjustment for TGiAUC and confounding factors. Per SD of TGiAUC (24.0 mmol/L × min), the difference in IMT was -1.7 μm (-8.5, 5.0) after adjustment for fasting TG and confounding factors. The association between TG response after a mixed meal and IMT disappeared after adjusting for TGc. The association between fasting TG concentration and IMT persisted after adjustment for postprandial TG response. These findings imply that it is not useful to perform a meal challenge in cardiovascular risk stratification. Our results support use of fasting TGc instead of postprandial TG responses for cardiovascular risk stratification in clinical practice. Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.
40 CFR 202.21 - Standard for operation under stationary test.
Code of Federal Regulations, 2014 CFR
2014-07-01
... generates a sound level in excess of 88 dB(A) measured on an open site with fast meter response at 50 feet... site with fast meter response at 50 feet from the longitudinal centerline of the vehicle when its...
40 CFR 202.21 - Standard for operation under stationary test.
Code of Federal Regulations, 2010 CFR
2010-07-01
... generates a sound level in excess of 88 dB(A) measured on an open site with fast meter response at 50 feet... site with fast meter response at 50 feet from the longitudinal centerline of the vehicle when its...
40 CFR 202.21 - Standard for operation under stationary test.
Code of Federal Regulations, 2013 CFR
2013-07-01
... generates a sound level in excess of 88 dB(A) measured on an open site with fast meter response at 50 feet... site with fast meter response at 50 feet from the longitudinal centerline of the vehicle when its...
40 CFR 202.21 - Standard for operation under stationary test.
Code of Federal Regulations, 2011 CFR
2011-07-01
... generates a sound level in excess of 88 dB(A) measured on an open site with fast meter response at 50 feet... site with fast meter response at 50 feet from the longitudinal centerline of the vehicle when its...
Simundic, A M; Cornes, M; Grankvist, K; Lippi, G; Nybo, M
2014-05-15
Standardized protocols for patient preparation for laboratory testing are currently lacking. Moreover, a great heterogeneity exists in the definitions of "fasting" currently being used among healthcare workers and in the literature. Marked metabolic and hormonal changes occur after food ingestion, mainly due to the absorption of fluids, lipids, proteins, carbohydrates and other food constituents. This postprandial response varies markedly in response to numerous factors, such as eating behavior, food composition, fasting duration, time of the day, chronic and acute smoking, coffee and alcohol consumption. It is therefore crucial to minimize the total variability by controlling as many of these modifying factors as possible. Control of the abovementioned effects on postprandial response can only be achieved by standardizing the way patients are prepared for laboratory testing, i.e. by defining the fasting duration, as well as what is and what is not allowed (e.g., coffee, tea, smoking, water) during the period of fasting prior to sample collection. The aim of this article is to describe the range of effects of different approaches to fasting on laboratory tests, and to provide a framework for the harmonization of definitions for fasting requirements for laboratory tests. Copyright © 2013 Elsevier B.V. All rights reserved.
Wahab, Fazal; Aziz, Farzana; Irfan, Shahzad; Zaman, Waheed-Uz; Shahab, Muhammad
2008-11-07
In primates, changes in nutritional status affect the hypothalamic-pituitary-gonadal (HPG) axis by still poorly understood mechanisms. Recently, hypothalamic kisspeptin-GPR54 signaling has emerged as a significant regulator of this neuroendocrine axis. The present study was designed to examine whether suppression of the reproductive function by acute food-restriction in a non-human primate is mediated by decreased responsiveness of the HPG axis to endogenous kisspeptin drive. Five intact adult male rhesus monkeys habituated to chair-restraint, received intravenous boli of human kisspeptin-10 (KP10, 50 microg), hCG (50 IU), and vehicle (1 ml) in both fed and 48-h fasting conditions. Plasma concentrations of glucose, cortisol and testosterone (T) were measured by using enzymatic and specific RIAs, respectively. The acute 48-h fasting decreased plasma glucose (P<0.01) and T (P<0.005) levels, and increased cortisol levels (P<0.05). KP10 administration caused a robust stimulation of T secretion in both fed and fasted monkeys. However, mean T concentration and T AUC after KP10 administration were significantly (P<0.01-0.005) reduced in fasted monkeys. Likewise, the time of the first significant increase in post-KP10 T levels was also significantly (P<0.01) delayed. T response to hCG stimulation was similar in fed and fasted monkeys. The present results indicate that under fasting conditions the KP10 induced T response is delayed and suppressed. These data support the notion that fasting-induced suppression of the HPG axis in the adult male rhesus monkey may involve, at least in part, a reduction in the sensitivity of the GnRH neuronal network to endogenous kisspeptin stimulation.
Jackson, Kim G; Walden, Charlotte M; Murray, Peter; Smith, Adrian M; Minihane, Anne M; Lovegrove, Julie A; Williams, Christine M
2013-08-01
Studies have started to question whether a specific component or combinations of metabolic syndrome (MetS) components may be more important in relation to cardiovascular disease risk. Our aim was to examine the impact of the presence of raised fasting glucose as a MetS component on postprandial lipaemia. Men classified with the MetS underwent a sequential test meal investigation, in which blood samples were taken at regular intervals after a test breakfast (t=0 min) and lunch (t=330 min). Lipids, glucose and insulin were measured in the fasting and postprandial samples. MetS subjects with 3 or 4 components were subdivided into those without (n=34) and with (n=23) fasting hyperglycaemia (≥5.6 mmol/l), irrespective of the combination of components. Fasting lipids and insulin were similar in the two groups, with glucose significantly higher in the men with glucose as a MetS component (P<0.001). Following the test meals, there were higher maximum concentration (maxC), area under the curve (AUC) and incremental AUC (P ≤0.016) for the postprandial triacylglycerol (TAG) response in men with fasting hyperglycaemia. Greater glucose AUC (P<0.001) and insulin maxC (P=0.010) were also observed in these individuals after the test meals. Multiple regression analysis revealed fasting glucose to be an important predictor of the postprandial TAG and glucose response. Our data analysis has revealed a greater impairment of postprandial TAG than glucose response in MetS subjects with raised fasting glucose. The worsening of postprandial lipaemic control may contribute to the greater CVD risk reported in individuals with MetS component combinations which include hyperglycaemia. Copyright © 2013 Elsevier Inc. All rights reserved.
Prescott, Susan L; Logan, Alan C
2017-11-01
Advances in omics and microbiome technology have transformed the ways in which the biological consequences of life in the 'ecological theatre' can be visualized. Exposome science examines the total accumulated environmental exposures (both detrimental and beneficial) as a means to understand the response of the 'total organism to the total environment' over time. The repetitive stimulation of compensatory physiological responses (immune, cardiovascular, neuroendocrine) in response to stress - including sources of stress highly relevant to socioeconomic disadvantage - may lead to metabolic dysregulation and cellular damage, ultimately influencing behavior and disease. The collective toll of physiological wear and tear, known as allostatic load, is not paid equally throughout developed societies. It is paid in excess by the disadvantaged. In the context of fast-food, human and experimental research demonstrates that the biological response to a single fast-food-style meal - especially as mediated by the microbiome- is a product of the person's total lived experience, including the ability to buffer the fast-food meal-induced promotion of inflammation and oxidative stress. Emerging research indicates that each meal and its nutritional context matters. As we discuss, equal weekly visits to major fast-food outlets by the affluent and deprived do not translate into biological equivalency. Hence, debate concerning reducing fast-food outlets through policy - especially in disadvantaged neighborhoods where they are prevalent - requires a biological context. The fast-food establishment and fast-food meal - as they represent matters of food justice and press upon non-communicable disease risk - are far more than physical structures and collections of carbohydrate, fat, sugar and sodium. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Kooren, Joel A.; Parker, Sarah J.; Tucker, Kyle C.; Ravindran, Nandini; Ito, Bruce R.; Huang, Chengqun; Venkatraman, Vidya; Van Eyk, Jennifer E.; Gottlieb, Roberta A.; Mentzer, Robert M.
2016-01-01
Autophagy is regulated by nutrient and energy status and plays an adaptive role during nutrient deprivation and ischemic stress. Metabolic syndrome (MetS) is a hypernutritive state characterized by obesity, dyslipidemia, elevated fasting blood glucose levels, and insulin resistance. It has also been associated with impaired autophagic flux and larger-sized infarcts. We hypothesized that diet-induced obesity (DIO) affects nutrient sensing, explaining the observed cardiac impaired autophagy. We subjected male friend virus B NIH (FVBN) mice to a high-fat diet, which resulted in increased weight gain, fat deposition, hyperglycemia, insulin resistance, and larger infarcts after myocardial ischemia-reperfusion. Autophagic flux was impaired after 4 wk on a high-fat diet. To interrogate nutrient-sensing pathways, DIO mice were subjected to overnight fasting, and hearts were processed for biochemical and proteomic analysis. Obese mice failed to upregulate LC3-II or to clear p62/SQSTM1 after fasting, although mRNA for LC3B and p62/SQSTM1 were appropriately upregulated in both groups, demonstrating an intact transcriptional response to fasting. Energy- and nutrient-sensing signal transduction pathways [AMPK and mammalian target of rapamycin (mTOR)] also responded appropriately to fasting, although mTOR was more profoundly suppressed in obese mice. Proteomic quantitative analysis of the hearts under fed and fasted conditions revealed broad changes in protein networks involved in oxidative phosphorylation, autophagy, oxidative stress, protein homeostasis, and contractile machinery. In many instances, the fasting response was quite discordant between lean and DIO mice. Network analysis implicated the peroxisome proliferator-activated receptor and mTOR regulatory nodes. Hearts of obese mice exhibited impaired autophagy, altered proteome, and discordant response to nutrient deprivation. PMID:27199111
Andres, Allen M; Kooren, Joel A; Parker, Sarah J; Tucker, Kyle C; Ravindran, Nandini; Ito, Bruce R; Huang, Chengqun; Venkatraman, Vidya; Van Eyk, Jennifer E; Gottlieb, Roberta A; Mentzer, Robert M
2016-07-01
Autophagy is regulated by nutrient and energy status and plays an adaptive role during nutrient deprivation and ischemic stress. Metabolic syndrome (MetS) is a hypernutritive state characterized by obesity, dyslipidemia, elevated fasting blood glucose levels, and insulin resistance. It has also been associated with impaired autophagic flux and larger-sized infarcts. We hypothesized that diet-induced obesity (DIO) affects nutrient sensing, explaining the observed cardiac impaired autophagy. We subjected male friend virus B NIH (FVBN) mice to a high-fat diet, which resulted in increased weight gain, fat deposition, hyperglycemia, insulin resistance, and larger infarcts after myocardial ischemia-reperfusion. Autophagic flux was impaired after 4 wk on a high-fat diet. To interrogate nutrient-sensing pathways, DIO mice were subjected to overnight fasting, and hearts were processed for biochemical and proteomic analysis. Obese mice failed to upregulate LC3-II or to clear p62/SQSTM1 after fasting, although mRNA for LC3B and p62/SQSTM1 were appropriately upregulated in both groups, demonstrating an intact transcriptional response to fasting. Energy- and nutrient-sensing signal transduction pathways [AMPK and mammalian target of rapamycin (mTOR)] also responded appropriately to fasting, although mTOR was more profoundly suppressed in obese mice. Proteomic quantitative analysis of the hearts under fed and fasted conditions revealed broad changes in protein networks involved in oxidative phosphorylation, autophagy, oxidative stress, protein homeostasis, and contractile machinery. In many instances, the fasting response was quite discordant between lean and DIO mice. Network analysis implicated the peroxisome proliferator-activated receptor and mTOR regulatory nodes. Hearts of obese mice exhibited impaired autophagy, altered proteome, and discordant response to nutrient deprivation. Copyright © 2016 the American Physiological Society.
Andrew, Audra L; Perry, Blair W; Card, Daren C; Schield, Drew R; Ruggiero, Robert P; McGaugh, Suzanne E; Choudhary, Amit; Secor, Stephen M; Castoe, Todd A
2017-05-02
Previous studies examining post-feeding organ regeneration in the Burmese python (Python molurus bivittatus) have identified thousands of genes that are significantly differentially regulated during this process. However, substantial gaps remain in our understanding of coherent mechanisms and specific growth pathways that underlie these rapid and extensive shifts in organ form and function. Here we addressed these gaps by comparing gene expression in the Burmese python heart, liver, kidney, and small intestine across pre- and post-feeding time points (fasted, one day post-feeding, and four days post-feeding), and by conducting detailed analyses of molecular pathways and predictions of upstream regulatory molecules across these organ systems. Identified enriched canonical pathways and upstream regulators indicate that while downstream transcriptional responses are fairly tissue specific, a suite of core pathways and upstream regulator molecules are shared among responsive tissues. Pathways such as mTOR signaling, PPAR/LXR/RXR signaling, and NRF2-mediated oxidative stress response are significantly differentially regulated in multiple tissues, indicative of cell growth and proliferation along with coordinated cell-protective stress responses. Upstream regulatory molecule analyses identify multiple growth factors, kinase receptors, and transmembrane receptors, both within individual organs and across separate tissues. Downstream transcription factors MYC and SREBF are induced in all tissues. These results suggest that largely divergent patterns of post-feeding gene regulation across tissues are mediated by a core set of higher-level signaling molecules. Consistent enrichment of the NRF2-mediated oxidative stress response indicates this pathway may be particularly important in mediating cellular stress during such extreme regenerative growth.
Drew Sayer, R; Tamer, Gregory G; Chen, Ningning; Tregellas, Jason R; Cornier, Marc-Andre; Kareken, David A; Talavage, Thomas M; McCrory, Megan A; Campbell, Wayne W
2016-10-01
The brain's reward system influences ingestive behavior and subsequently obesity risk. Functional magnetic resonance imaging (fMRI) is a common method for investigating brain reward function. This study sought to assess the reproducibility of fasting-state brain responses to visual food stimuli using BOLD fMRI. A priori brain regions of interest included bilateral insula, amygdala, orbitofrontal cortex, caudate, and putamen. Fasting-state fMRI and appetite assessments were completed by 28 women (n = 16) and men (n = 12) with overweight or obesity on 2 days. Reproducibility was assessed by comparing mean fasting-state brain responses and measuring test-retest reliability of these responses on the two testing days. Mean fasting-state brain responses on day 2 were reduced compared with day 1 in the left insula and right amygdala, but mean day 1 and day 2 responses were not different in the other regions of interest. With the exception of the left orbitofrontal cortex response (fair reliability), test-retest reliabilities of brain responses were poor or unreliable. fMRI-measured responses to visual food cues in adults with overweight or obesity show relatively good mean-level reproducibility but considerable within-subject variability. Poor test-retest reliability reduces the likelihood of observing true correlations and increases the necessary sample sizes for studies. © 2016 The Obesity Society.
Sayer, R Drew; Tamer, Gregory G; Chen, Ningning; Tregellas, Jason R; Cornier, Marc-Andre; Kareken, David A; Talavage, Thomas M; McCrory, Megan A; Campbell, Wayne W
2016-01-01
Objective The brain’s reward system influences ingestive behavior and subsequently, obesity risk. Functional magnetic resonance imaging (fMRI) is a common method for investigating brain reward function. We sought to assess the reproducibility of fasting-state brain responses to visual food stimuli using BOLD fMRI. Methods A priori brain regions of interest included bilateral insula, amygdala, orbitofrontal cortex, caudate, and putamen. Fasting-state fMRI and appetite assessments were completed by 28 women (n=16) and men (n=12) with overweight or obesity on 2 days. Reproducibility was assessed by comparing mean fasting-state brain responses and measuring test-retest reliability of these responses on the 2 testing days. Results Mean fasting-state brain responses on Day 2 were reduced compared to Day 1 in the left insula and right amygdala, but mean Day 1 and Day 2 responses were not different in the other regions of interest. With the exception of the left orbitofrontal cortex response (fair reliability), test-retest reliabilities of brain responses were poor or unreliable. Conclusion fMRI-measured responses to visual food cues in adults with overweight or obesity show relatively good mean-level reproducibility, but considerable within-subject variability. Poor test-retest reliability reduces the likelihood of observing true correlations and increases the necessary sample sizes for studies. PMID:27542906
High Performance Computing Multicast
2012-02-01
responsiveness, first-tier applications often implement replicated in- memory key-value stores , using them to store state or to cache data from services...alternative that replicates data , combines agreement on update ordering with amnesia freedom, and supports both good scalability and fast response. A...alternative that replicates data , combines agreement on update ordering with amnesia freedom, and supports both good scalability and fast response
Pan, Shin-Liang; Liang, Huey-Wen; Hou, Wen-Hsuan; Yeh, Tian-Shin
2014-11-01
To assess the responsiveness of one generic questionnaire, Medical Outcomes Study Short Form-36 (SF-36), and one region-specific outcome measure, Lower Extremity Functional Scale (LEFS), in patients with traumatic injuries of lower extremities. A prospective and observational study of patients after traumatic injuries of lower extremities. Assessments were performed at baseline and 3 months later. In-patients and out-patients in two university hospitals in Taiwan. A convenience sample of 109 subjects were evaluated and 94 (86%) were followed. Not applicable. Assessments of responsiveness with distribution-based approach (effect size, standardized response mean [SRM], minimal detectable change) and anchor-based approach (receiver's operating curve analysis, ROC analysis). LEFS and physical component score (PCS) of SF-36 were all responsive to global improvement, with fair-to-good accuracy in discriminating between participants with and without improvement. The area under curve gained by ROC analysis for LEFS and SF-36 PCS was similar (0.65 vs. 0.70, p=0.26). Our findings revealed comparable responsiveness of LEFS and PCS of SF-36 in a sample of subjects with traumatic injuries of lower limbs. Either type of functional measure would be suitable for use in clinical trials where improvement in function was an endpoint of interest. Copyright © 2014 Elsevier Ltd. All rights reserved.
A fast, preconditioned conjugate gradient Toeplitz solver
NASA Technical Reports Server (NTRS)
Pan, Victor; Schrieber, Robert
1989-01-01
A simple factorization is given of an arbitrary hermitian, positive definite matrix in which the factors are well-conditioned, hermitian, and positive definite. In fact, given knowledge of the extreme eigenvalues of the original matrix A, an optimal improvement can be achieved, making the condition numbers of each of the two factors equal to the square root of the condition number of A. This technique is to applied to the solution of hermitian, positive definite Toeplitz systems. Large linear systems with hermitian, positive definite Toeplitz matrices arise in some signal processing applications. A stable fast algorithm is given for solving these systems that is based on the preconditioned conjugate gradient method. The algorithm exploits Toeplitz structure to reduce the cost of an iteration to O(n log n) by applying the fast Fourier Transform to compute matrix-vector products. Matrix factorization is used as a preconditioner.
Cheong, Fook Chiong; Wong, Chui Ching; Gao, YunFeng; Nai, Mui Hoon; Cui, Yidan; Park, Sungsu; Kenney, Linda J.; Lim, Chwee Teck
2015-01-01
Tracking fast-swimming bacteria in three dimensions can be extremely challenging with current optical techniques and a microscopic approach that can rapidly acquire volumetric information is required. Here, we introduce phase-contrast holographic video microscopy as a solution for the simultaneous tracking of multiple fast moving cells in three dimensions. This technique uses interference patterns formed between the scattered and the incident field to infer the three-dimensional (3D) position and size of bacteria. Using this optical approach, motility dynamics of multiple bacteria in three dimensions, such as speed and turn angles, can be obtained within minutes. We demonstrated the feasibility of this method by effectively tracking multiple bacteria species, including Escherichia coli, Agrobacterium tumefaciens, and Pseudomonas aeruginosa. In addition, we combined our fast 3D imaging technique with a microfluidic device to present an example of a drug/chemical assay to study effects on bacterial motility. PMID:25762336
Fast, Deep-Record-Length, Fiber-Coupled Photodiode Imaging Array for Plasma Diagnostics
NASA Astrophysics Data System (ADS)
Brockington, Samuel; Case, Andrew; Witherspoon, F. Douglas
2014-10-01
HyperV Technologies has been developing an imaging diagnostic comprised of an array of fast, low-cost, long-record-length, fiber-optically-coupled photodiode channels to investigate plasma dynamics and other fast, bright events. By coupling an imaging fiber bundle to a bank of amplified photodiode channels, imagers and streak imagers of 100 to 1000 pixels can be constructed. By interfacing analog photodiode systems directly to commercial analog-to-digital converters and modern memory chips, a prototype 100 pixel array with an extremely deep record length (128 k points at 20 Msamples/s) and 10 bit pixel resolution has already been achieved. HyperV now seeks to extend these techniques to construct a prototype 1000 Pixel framing camera with up to 100 Msamples/sec rate and 10 to 12 bit depth. Preliminary experimental results as well as Phase 2 plans will be discussed. Work supported by USDOE Phase 2 SBIR Grant DE-SC0009492.
Response of six neutron survey meters in mixed fields of fast and thermal neutrons.
Kim, S I; Kim, B H; Chang, I; Lee, J I; Kim, J L; Pradhan, A S
2013-10-01
Calibration neutron fields have been developed at KAERI (Korea Atomic Energy Research Institute) to study the responses of commonly used neutron survey meters in the presence of fast neutrons of energy around 10 MeV. The neutron fields were produced by using neutrons from the (241)Am-Be sources held in a graphite pile and a DT neutron generator. The spectral details and the ambient dose equivalent rates of the calibration fields were established, and the responses of six neutron survey meters were evaluated. Four single-moderator-based survey meters exhibited an under-responses ranging from ∼9 to 55 %. DINEUTRUN, commonly used in fields around nuclear reactors, exhibited an over-response by a factor of three in the thermal neutron field and an under-response of ∼85 % in the mixed fields. REM-500 (tissue-equivalent proportional counter) exhibited a response close to 1.0 in the fast neutron fields and an under-response of ∼50 % in the thermal neutron field.
Fast and Slow Precipitation Responses to Individual Climate Forcers: A PDRMIP Multimodel Study
NASA Technical Reports Server (NTRS)
Samset, B. H.; Myhre, G.; Forster, P.M.; Hodnebrog, O.; Andrews, T.; Faluvegi, G.; Flaschner, D.; Kasoar, M.; Kharin, V.; Kirkevag, A.;
2016-01-01
Precipitation is expected to respond differently to various drivers of anthropogenic climate change. We present the first results from the Precipitation Driver and Response Model Intercomparison Project (PDRMIP), where nine global climate models have perturbed CO2, CH4, black carbon, sulfate, and solar insolation. We divide the resulting changes to global mean and regional precipitation into fast responses that scale with changes in atmospheric absorption and slow responses scaling with surface temperature change. While the overall features are broadly similar between models, we find significant regional intermodel variability, especially over land. Black carbon stands out as a component that may cause significant model diversity in predicted precipitation change. Processes linked to atmospheric absorption are less consistently modeled than those linked to top-of-atmosphere radiative forcing. We identify a number of land regions where the model ensemble consistently predicts that fast precipitation responses to climate perturbations dominate over the slow, temperature-driven responses.
Maternal Responses and Development of Communication Skills in Extremely Preterm Infants
ERIC Educational Resources Information Center
Benassi, Erika; Guarini, Annalisa; Savini, Silvia; Iverson, Jana Marie; Caselli, Maria Cristina; Alessandroni, Rosina; Faldella, Giacomo; Sansavini, Alessandra
2018-01-01
The present study examined maternal responses to infants' spontaneous communicative behaviors in a sample of 20 extremely-low-gestational-age (ELGA) infants and 20 full-term (FT) infants during 30 minutes of play interaction when infants were 12 months of age. Relations between maternal responses and infants' communication skills at 12 and 24…
Belinova, Lenka; Kahleova, Hana; Oliyarnyk, Olena; Kazdova, Ludmila; Hill, Martin; Pelikanova, Terezie
2017-01-01
Background Appetite and gastrointestinal hormones (GIHs) participate in energy homeostasis, feeding behavior and regulation of body weight. We demonstrated previously the superior effect of a hypocaloric diet regimen with lower meal frequency (B2) on body weight, hepatic fat content, insulin sensitivity and feelings of hunger compared to the same diet divided into six smaller meals a day (A6). Studies with isoenergetic diet regimens indicate that lower meal frequency should also have an effect on fasting and postprandial responses of GIHs. The aim of this secondary analysis was to explore the effect of two hypocaloric diet regimens on fasting levels of appetite and GIHs and on their postprandial responses after a standard meal. It was hypothesized that lower meal frequency in a reduced-energy regimen leading to greater body weight reduction and reduced hunger would be associated with decreased plasma concentrations of GIHs: gastric inhibitory peptide (GIP), glucagon-like peptide-1(GLP-1), peptide YY(PYY), pancreatic polypeptide (PP) and leptin and increased plasma concentration of ghrelin. The postprandial response of satiety hormones (GLP-1, PYY and PP) and postprandial suppression of ghrelin will be improved. Methods In a randomized crossover study, 54 patients suffering from type 2 diabetes (T2D) underwent both regimens. The concentrations of GLP-1, GIP, PP, PYY, amylin, leptin and ghrelin were determined using multiplex immunoanalyses. Results Fasting leptin and GIP decreased in response to both regimens with no difference between the treatments (p = 0.37 and p = 0.83, respectively). Fasting ghrelin decreased in A6 and increased in B2 (with difference between regimens p = 0.023). Fasting PP increased in B2with no significant difference between regimens (p = 0.17). Neither GLP-1 nor PYY did change in either regimen. The decrease in body weight correlated negatively with changes in fasting ghrelin (r = -0.4, p<0.043) and the postprandial reduction of ghrelin correlated positively with its fasting level (r = 0.9, p<0.001). The postprandial responses of GIHs and appetite hormones were similar after both diet regimens. Conclusions Both hypocaloric diet regimens reduced fasting leptin and GIP and postprandial response of GIP comparably. The postprandial responses of GIHs and appetite hormones were similar after both diet regimens. Eating only breakfast and lunch increased fasting plasma ghrelin more than the same caloric restriction split into six meals. The changes in fasting ghrelin correlated negatively with the decrease in body weight. These results suggest that for type 2 diabetic patients on a hypocaloric diet, eating larger breakfast and lunch may be more efficient than six smaller meals during the day. PMID:28369078
Portion sizes and obesity: responses of fast-food companies.
Young, Lisa R; Nestle, Marion
2007-07-01
Because the sizes of food portions, especially of fast food, have increased in parallel with rising rates of overweight, health authorities have called on fast-food chains to decrease the sizes of menu items. From 2002 to 2006, we examined responses of fast-food chains to such calls by determining the current sizes of sodas, French fries, and hamburgers at three leading chains and comparing them to sizes observed in 1998 and 2002. Although McDonald's recently phased out its largest offerings, current items are similar to 1998 sizes and greatly exceed those offered when the company opened in 1955. Burger King and Wendy's have increased portion sizes, even while health authorities are calling for portion size reductions. Fast-food portions in the United States are larger than in Europe. These observations suggest that voluntary efforts by fast-food companies to reduce portion sizes are unlikely to be effective, and that policy approaches are needed to reduce energy intake from fast food.
WEC Design Response Toolbox v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coe, Ryan; Michelen, Carlos; Eckert-Gallup, Aubrey
2016-03-30
The WEC Design Response Toolbox (WDRT) is a numerical toolbox for design-response analysis of wave energy converters (WECs). The WDRT was developed during a series of efforts to better understand WEC survival design. The WDRT has been designed as a tool for researchers and developers, enabling the straightforward application of statistical and engineering methods. The toolbox includes methods for short-term extreme response, environmental characterization, long-term extreme response and risk analysis, fatigue, and design wave composition.
Fast by Nature - How Stress Patterns Define Human Experience and Performance in Dexterous Tasks
Pavlidis, I.; Tsiamyrtzis, P.; Shastri, D.; Wesley, A.; Zhou, Y.; Lindner, P.; Buddharaju, P.; Joseph, R.; Mandapati, A.; Dunkin, B.; Bass, B.
2012-01-01
In the present study we quantify stress by measuring transient perspiratory responses on the perinasal area through thermal imaging. These responses prove to be sympathetically driven and hence, a likely indicator of stress processes in the brain. Armed with the unobtrusive measurement methodology we developed, we were able to monitor stress responses in the context of surgical training, the quintessence of human dexterity. We show that in dexterous tasking under critical conditions, novices attempt to perform a task's step equally fast with experienced individuals. We further show that while fast behavior in experienced individuals is afforded by skill, fast behavior in novices is likely instigated by high stress levels, at the expense of accuracy. Humans avoid adjusting speed to skill and rather grow their skill to a predetermined speed level, likely defined by neurophysiological latency. PMID:22396852
Rich, Paul M; Breshears, David D; White, Amanda B
2008-02-01
Ecosystem responses to key climate drivers are reflected in phenological dynamics such as the timing and degree of "green-up" that integrate responses over spatial scales from individual plants to ecosystems. This integration is clearest in ecosystems dominated by a single species or life form, such as seasonally dynamic grasslands or more temporally constant evergreen forests. Yet many ecosystems have substantial contribution of cover from both herbaceous and woody evergreen plants. Responses of mixed woody-herbaceous ecosystems to climate are of increasing concern due to their extensive nature, the potential for such systems to yield more complex responses than those dominated by a single life form, and projections that extreme climate and weather events will increase in frequency and intensity with global warming. We present responses of a mixed woody-herbaceous ecosystem type to an extreme event: regional-scale piñon pine mortality following an extended drought and the subsequent herbaceous green-up following the first wet period after the drought. This example highlights how reductions in greenness of the slower, more stable evergreen woody component can rapidly be offset by increases associated with resources made available to the relatively more responsive herbaceous component. We hypothesize that such two-phase phenological responses to extreme events are characteristic of many mixed woody-herbaceous ecosystems.
NASA Astrophysics Data System (ADS)
Aziz, Nur Liyana Afiqah Abdul; Siah Yap, Keem; Afif Bunyamin, Muhammad
2013-06-01
This paper presents a new approach of the fault detection for improving efficiency of circulating water system (CWS) in a power generation plant using a hybrid Fuzzy Logic System (FLS) and Extreme Learning Machine (ELM) neural network. The FLS is a mathematical tool for calculating the uncertainties where precision and significance are applied in the real world. It is based on natural language which has the ability of "computing the word". The ELM is an extremely fast learning algorithm for neural network that can completed the training cycle in a very short time. By combining the FLS and ELM, new hybrid model, i.e., FLS-ELM is developed. The applicability of this proposed hybrid model is validated in fault detection in CWS which may help to improve overall efficiency of power generation plant, hence, consuming less natural recourses and producing less pollutions.
Food cues do not modulate the neuroendocrine response to a prolonged fast in healthy men.
Snel, Marieke; Wijngaarden, Marjolein A; Bizino, Maurice B; van der Grond, Jeroen; Teeuwisse, Wouter M; van Buchem, Mark A; Jazet, Ingrid M; Pijl, Hanno
2012-01-01
Dietary restriction benefits health and increases lifespan in several species. Food odorants restrain the beneficial effects of dietary restriction in Drosophila melanogaster. We hypothesized that the presence of visual and odorous food stimuli during a prolonged fast modifies the neuroendocrine and metabolic response to fasting in humans. In this randomized, crossover intervention study, healthy young men (n = 12) fasted twice for 60 h; once in the presence and once in the absence of food-related visual and odorous stimuli. At baseline and on the last morning of each intervention, an oral glucose tolerance test (OGTT) was performed. During the OGTT, blood was sampled and a functional MRI scan was made. The main effects of prolonged fasting were: (1) decreased plasma thyroid stimulating hormone and triiodothyronine levels; (2) downregulation of the pituitary-gonadal axis; (3) reduced plasma glucose and insulin concentrations, but increased glucose and insulin responses to glucose ingestion; (4) altered hypothalamic blood oxygenation level-dependent (BOLD) signal in response to the glucose load (particularly during the first 20 min after ingestion); (5) increased resting energy expenditure. Exposure to food cues did not affect these parameters. This study shows that 60 h of fasting in young men (1) decreases the hypothalamic BOLD signal in response to glucose ingestion; (2) induces glucose intolerance; (3) increases resting energy expenditure, and (4) downregulates the pituitary-thyroid and pituitary-gonadal axes. Exposure to visual and odorous food cues did not alter these metabolic and neuroendocrine adaptations to nutrient deprivation. Copyright © 2012 S. Karger AG, Basel.
Cordoba-Chacón, José; Gahete, Manuel D; Pozo-Salas, Ana I; de Lecea, Luis; Castaño, Justo P; Luque, Raúl M
2016-07-01
Cortistatin (CORT) shares high structural and functional similarities with somatostatin (SST) but displays unique sex-dependent pituitary actions. Indeed, although female CORT-knockout (CORT-KO) mice exhibit enhanced GH expression/secretion, Proopiomelanocortin expression, and circulating ACTH/corticosterone/ghrelin levels, male CORT-KO mice only display increased plasma GH/corticosterone levels. Changes in peripheral ghrelin and SST (rather than hypothalamic levels) seem to regulate GH/ACTH axes in CORT-KOs under fed conditions. Because changes in GH/ACTH axes during fasting provide important adaptive mechanisms, we sought to determine whether CORT absence influences GH/ACTH axes during fasting. Accordingly, fed and fasted male/female CORT-KO were compared with littermate controls. Fasting increased circulating GH levels in male/female controls but not in CORT-KO, suggesting that CORT can be a relevant regulator of GH secretion during fasting. However, GH levels were already higher in CORT-KO than in controls in fed state, which might preclude a further elevation in GH levels. Interestingly, although fasting-induced pituitary GH expression was elevated in both male/female controls, GH expression only increased in fasted female CORT-KOs, likely owing to specific changes observed in key factors controlling somatotrope responsiveness (ie, circulating ghrelin and IGF-1, and pituitary GHRH and ghrelin receptor expression). Fasting increased corticosterone levels in control and, most prominently, in CORT-KO mice, which might be associated with a desensitization to SST signaling and to an augmentation in CRH and ghrelin-signaling regulating corticotrope function. Altogether, these results provide compelling evidence that CORT plays a key, sex-dependent role in the regulation of the GH/ACTH axes in response to fasting.
Fasting induces a biphasic adaptive metabolic response in murine small intestine
Sokolović, Milka; Wehkamp, Diederik; Sokolović, Aleksandar; Vermeulen, Jacqueline; Gilhuijs-Pederson, Lisa A; van Haaften, Rachel IM; Nikolsky, Yuri; Evelo, Chris TA; van Kampen, Antoine HC; Hakvoort, Theodorus BM; Lamers, Wouter H
2007-01-01
Background The gut is a major energy consumer, but a comprehensive overview of the adaptive response to fasting is lacking. Gene-expression profiling, pathway analysis, and immunohistochemistry were therefore carried out on mouse small intestine after 0, 12, 24, and 72 hours of fasting. Results Intestinal weight declined to 50% of control, but this loss of tissue mass was distributed proportionally among the gut's structural components, so that the microarrays' tissue base remained unaffected. Unsupervised hierarchical clustering of the microarrays revealed that the successive time points separated into distinct branches. Pathway analysis depicted a pronounced, but transient early response that peaked at 12 hours, and a late response that became progressively more pronounced with continued fasting. Early changes in gene expression were compatible with a cellular deficiency in glutamine, and metabolic adaptations directed at glutamine conservation, inhibition of pyruvate oxidation, stimulation of glutamate catabolism via aspartate and phosphoenolpyruvate to lactate, and enhanced fatty-acid oxidation and ketone-body synthesis. In addition, the expression of key genes involved in cell cycling and apoptosis was suppressed. At 24 hours of fasting, many of the early adaptive changes abated. Major changes upon continued fasting implied the production of glucose rather than lactate from carbohydrate backbones, a downregulation of fatty-acid oxidation and a very strong downregulation of the electron-transport chain. Cell cycling and apoptosis remained suppressed. Conclusion The changes in gene expression indicate that the small intestine rapidly looses mass during fasting to generate lactate or glucose and ketone bodies. Meanwhile, intestinal architecture is maintained by downregulation of cell turnover. PMID:17925015
Nuttall, Frank Q; Almokayyad, Rami M; Gannon, Mary C
2015-02-01
Hyperglycemia improves when patients with type 2 diabetes are placed on a weight-loss diet. Improvement typically occurs soon after diet implementation. This rapid response could result from low fuel supply (calories), lower carbohydrate content of the weight-loss diet, and/or weight loss per se. To differentiate these effects, glucose, insulin, C-peptide and glucagon were determined during the last 24 h of a 3-day period without food (severe calorie restriction) and a calorie-sufficient, carbohydrate-free diet. Seven subjects with untreated type 2 diabetes were studied. A randomized-crossover design with a 4-week washout period between arms was used. Results from both the calorie-sufficient, carbohydrate-free diet and the 3-day fast were compared with the initial standard diet consisting of 55% carbohydrate, 15% protein and 30% fat. The overnight fasting glucose concentration decreased from 196 (standard diet) to 160 (carbohydrate-free diet) to 127 mg/dl (fasting). The 24 h glucose and insulin area responses decreased by 35% and 48% on day 3 of the carbohydrate-free diet, and by 49% and 69% after fasting. Overnight basal insulin and glucagon remained unchanged. Short-term fasting dramatically lowered overnight fasting and 24 h integrated glucose concentrations. Carbohydrate restriction per se could account for 71% of the reduction. Insulin could not entirely explain the glucose responses. In the absence of carbohydrate, the net insulin response was 28% of the standard diet. Glucagon did not contribute to the metabolic adaptations observed. Published by Elsevier Inc.
Transcription factor assisted loading and enhancer dynamics dictate the hepatic fasting response
Goldstein, Ido; Baek, Songjoon; Presman, Diego M.; Paakinaho, Ville; Swinstead, Erin E.; Hager, Gordon L.
2017-01-01
Fasting elicits transcriptional programs in hepatocytes leading to glucose and ketone production. This transcriptional program is regulated by many transcription factors (TFs). To understand how this complex network regulates the metabolic response to fasting, we aimed at isolating the enhancers and TFs dictating it. Measuring chromatin accessibility revealed that fasting massively reorganizes liver chromatin, exposing numerous fasting-induced enhancers. By utilizing computational methods in combination with dissecting enhancer features and TF cistromes, we implicated four key TFs regulating the fasting response: glucocorticoid receptor (GR), cAMP responsive element binding protein 1 (CREB1), peroxisome proliferator activated receptor alpha (PPARA), and CCAAT/enhancer binding protein beta (CEBPB). These TFs regulate fuel production by two distinctly operating modules, each controlling a separate metabolic pathway. The gluconeogenic module operates through assisted loading, whereby GR doubles the number of sites occupied by CREB1 as well as enhances CREB1 binding intensity and increases accessibility of CREB1 binding sites. Importantly, this GR-assisted CREB1 binding was enhancer-selective and did not affect all CREB1-bound enhancers. Single-molecule tracking revealed that GR increases the number and DNA residence time of a portion of chromatin-bound CREB1 molecules. These events collectively result in rapid synergistic gene expression and higher hepatic glucose production. Conversely, the ketogenic module operates via a GR-induced TF cascade, whereby PPARA levels are increased following GR activation, facilitating gradual enhancer maturation next to PPARA target genes and delayed ketogenic gene expression. Our findings reveal a complex network of enhancers and TFs that dynamically cooperate to restore homeostasis upon fasting. PMID:28031249
Fasting induces a biphasic adaptive metabolic response in murine small intestine.
Sokolović, Milka; Wehkamp, Diederik; Sokolović, Aleksandar; Vermeulen, Jacqueline; Gilhuijs-Pederson, Lisa A; van Haaften, Rachel I M; Nikolsky, Yuri; Evelo, Chris T A; van Kampen, Antoine H C; Hakvoort, Theodorus B M; Lamers, Wouter H
2007-10-09
The gut is a major energy consumer, but a comprehensive overview of the adaptive response to fasting is lacking. Gene-expression profiling, pathway analysis, and immunohistochemistry were therefore carried out on mouse small intestine after 0, 12, 24, and 72 hours of fasting. Intestinal weight declined to 50% of control, but this loss of tissue mass was distributed proportionally among the gut's structural components, so that the microarrays' tissue base remained unaffected. Unsupervised hierarchical clustering of the microarrays revealed that the successive time points separated into distinct branches. Pathway analysis depicted a pronounced, but transient early response that peaked at 12 hours, and a late response that became progressively more pronounced with continued fasting. Early changes in gene expression were compatible with a cellular deficiency in glutamine, and metabolic adaptations directed at glutamine conservation, inhibition of pyruvate oxidation, stimulation of glutamate catabolism via aspartate and phosphoenolpyruvate to lactate, and enhanced fatty-acid oxidation and ketone-body synthesis. In addition, the expression of key genes involved in cell cycling and apoptosis was suppressed. At 24 hours of fasting, many of the early adaptive changes abated. Major changes upon continued fasting implied the production of glucose rather than lactate from carbohydrate backbones, a downregulation of fatty-acid oxidation and a very strong downregulation of the electron-transport chain. Cell cycling and apoptosis remained suppressed. The changes in gene expression indicate that the small intestine rapidly looses mass during fasting to generate lactate or glucose and ketone bodies. Meanwhile, intestinal architecture is maintained by downregulation of cell turnover.
Micro-machined thermo-conductivity detector
Yu, Conrad
2003-01-01
A micro-machined thermal conductivity detector for a portable gas chromatograph. The detector is highly sensitive and has fast response time to enable detection of the small size gas samples in a portable gas chromatograph which are in the order of nanoliters. The high sensitivity and fast response time are achieved through micro-machined devices composed of a nickel wire, for example, on a silicon nitride window formed in a silicon member and about a millimeter square in size. In addition to operating as a thermal conductivity detector, the silicon nitride window with a micro-machined wire therein of the device can be utilized for a fast response heater for PCR applications.
Misra, Madhusmita; Katzman, Debra K; Cord, Jennalee; Manning, Stephanie J; Mickley, Diane; Herzog, David B; Miller, Karen K; Klibanski, Anne
2013-01-01
Background Anorexia nervosa (AN) is a condition of severe undernutrition associated with altered regional fat distribution in females. Although primarily a disease of females, AN is increasingly being recognized in males and is associated with hypogonadism. Testosterone is a major regulator of body composition in males, and testosterone administration in adults decreases visceral fat. However, the effect of low testosterone and other hormonal alterations on body composition in boys with AN is not known. Objective We hypothesized that testosterone deficiency in boys with AN is associated with higher trunk fat, as opposed to extremity fat, compared with control subjects. Design We assessed body composition using dual-energy X-ray absorptiometry and measured fasting testosterone, estradiol, insulin-like growth factor-1, leptin, and active ghrelin concentrations in 15 boys with AN and in 15 control subjects of comparable maturity aged 12–19 y. Results Fat and lean mass in AN boys was 69% and 86% of that in control subjects. Percentage extremity fat and extremity lean mass were lower in boys with AN (P = 0.003 and 0.0008); however, percentage trunk fat and the trunk to extremity fat ratio were higher after weight was adjusted for (P = 0.005 and 0.003). Testosterone concentrations were lower in boys with AN, and, on regression modeling, positively predicted percentage extremity lean mass and inversely predicted percentage trunk fat and trunk to extremity fat ratio. Other independent predictors of regional body composition were bone age and weight. Conclusions In adolescent boys with AN, higher percentage trunk fat, higher trunk to extremity fat ratio, lower percentage extremity fat, and lower extremity lean mass (adjusted for weight) are related to the hypogonadal state. PMID:19064506
Faust, Thomas W.; Assous, Maxime; Shah, Fulva; Tepper, James M.; Koós, Tibor
2015-01-01
Previous work suggests that neostriatal cholinergic interneurons control the activity of several classes of GABAergic interneurons through fast nicotinic receptor mediated synaptic inputs. Although indirect evidence has suggested the existence of several classes of interneurons controlled by this mechanism only one such cell type, the neuropeptide-Y expressing neurogliaform neuron, has been identified to date. Here we tested the hypothesis that in addition to the neurogliaform neurons that elicit slow GABAergic inhibitory responses, another interneuron type exists in the striatum that receives strong nicotinic cholinergic input and elicits conventional fast GABAergic synaptic responses in projection neurons. We obtained in vitro slice recordings from double transgenic mice in which Channelrhodopsin-2 was natively expressed in cholinergic neurons and a population of serotonin receptor-3a-Cre expressing GABAergic interneurons were visualized with tdTomato. We show that among the targeted GABAergic interneurons a novel type of interneuron, termed the fast-adapting interneuron, can be identified that is distinct from previously known interneurons based on immunocytochemical and electrophysiological criteria. We show using optogenetic activation of cholinergic inputs that fast-adapting interneurons receive a powerful supra-threshold nicotinic cholinergic input in vitro. Moreover, fast adapting neurons are densely connected to projection neurons and elicit fast, GABAA receptor mediated inhibitory postsynaptic responses. The nicotinic receptor mediated activation of fast-adapting interneurons may constitute an important mechanism through which cholinergic interneurons control the activity of projection neurons and perhaps the plasticity of their synaptic inputs when animals encounter reinforcing or otherwise salient stimuli. PMID:25865337
Modeling of fast neutral-beam-generated ions and rotation effects on RWM stability in DIII-D plasmas
Turco, Francesca; Turnbull, Alan D.; Hanson, Jeremy M.; ...
2015-10-15
Here, validation results for the MARS-K code for DIII-D equilibria, predict that the absence of fast Neutral Beam (NB) generated ions leads to a plasma response ~40–60% higher than in NB-sustained H-mode plasmas when the no-wall β N limit is reached. In a β N scan, the MARS-K model with thermal and fast-ions, reproduces the experimental measurements above the no-wall limit, except at the highest β N where the phase of the plasma response is overestimated. The dependencies extrapolate unfavorably to machines such as ITER with smaller fast ion fractions since elevated responses in the absence of fast ions indicatemore » the potential onset of a resistive wall mode (RWM). The model was also tested for the effects of rotation at high β N, and recovers the measured response even when fast-ions are neglected, reversing the effect found in lower β N cases, but consistent with the higher β N results above the no-wall limit. The agreement in the response amplitude and phase for the rotation scan is not as good, and additional work will be needed to reproduce the experimental trends. In the case of current-driven instabilities, the magnetohydrodynamic spectroscopy system used to measure the plasma response reacts differently from that for pressure driven instabilities: the response amplitude remains low up to ~93% of the current limit, showing an abrupt increase only in the last ~5% of the current ramp. This makes it much less effective as a diagnostic for the approach to an ideal limit. However, the mode structure of the current driven RWM extends radially inwards, consistent with that in the pressure driven case for plasmas with q edge~2. This suggests that previously developed RWM feedback techniques together with the additional optimizations that enabled q edge~2 operation, can be applied to control of both current-driven and pressure-driven modes at high β N.« less
ERIC Educational Resources Information Center
Tutz, Gerhard; Berger, Moritz
2016-01-01
Heterogeneity in response styles can affect the conclusions drawn from rating scale data. In particular, biased estimates can be expected if one ignores a tendency to middle categories or to extreme categories. An adjacent categories model is proposed that simultaneously models the content-related effects and the heterogeneity in response styles.…
Inverse lithography using sparse mask representations
NASA Astrophysics Data System (ADS)
Ionescu, Radu C.; Hurley, Paul; Apostol, Stefan
2015-03-01
We present a novel optimisation algorithm for inverse lithography, based on optimization of the mask derivative, a domain inherently sparse, and for rectilinear polygons, invertible. The method is first developed assuming a point light source, and then extended to general incoherent sources. What results is a fast algorithm, producing manufacturable masks (the search space is constrained to rectilinear polygons), and flexible (specific constraints such as minimal line widths can be imposed). One inherent trick is to treat polygons as continuous entities, thus making aerial image calculation extremely fast and accurate. Requirements for mask manufacturability can be integrated in the optimization without too much added complexity. We also explain how to extend the scheme for phase-changing mask optimization.
Classification of large-sized hyperspectral imagery using fast machine learning algorithms
NASA Astrophysics Data System (ADS)
Xia, Junshi; Yokoya, Naoto; Iwasaki, Akira
2017-07-01
We present a framework of fast machine learning algorithms in the context of large-sized hyperspectral images classification from the theoretical to a practical viewpoint. In particular, we assess the performance of random forest (RF), rotation forest (RoF), and extreme learning machine (ELM) and the ensembles of RF and ELM. These classifiers are applied to two large-sized hyperspectral images and compared to the support vector machines. To give the quantitative analysis, we pay attention to comparing these methods when working with high input dimensions and a limited/sufficient training set. Moreover, other important issues such as the computational cost and robustness against the noise are also discussed.
[The 18F-FDG myocardial metabolic imaging in twenty seven pilots with regular aerobic training].
Fang, Ting-Zheng; Zhu, Jia-Rui; Chuan, Ling; Zhao, Wen-Rui; Xu, Gen-Xiang; Yang, Min-Fu; He, Zuo-Xiang
2009-02-01
To evaluate the characteristics of myocardial (18)F-FDG imaging in pilots with regular aerobic exercise training. Twenty seven healthy male pilots with regular aerobic exercise training were included in this study. The subjects were divided into fasting (n = 17) or non-fasting group (n = 10). Fluorine-18-labeled deoxyglucose and Tc-99m-sestamibi dual-nuclide myocardial imaging were obtained at rest and at target heart rate during bicycle ergometer test. The exercise and rest myocardial perfusion imaging were analyzed for myocardial ischemia presence. The myocardial metabolism imaging was analyzed with the visual semi-quantitative analyses model of seventeen segments. The secondary-extreme heart rate (195-age) was achieved in all subjects. There was no myocardial ischemia in all perfusion imaging. In the visual qualitative analyses, four myocardial metabolism imaging failed in the fasting group while one failed in the non-fasting group (P > 0.05). In the visual semi-quantitative analyses, myocardial metabolism imaging scores at rest or exercise in all segments were similar between two groups (P > 0.05). In the fasting group, the myocardial metabolism imaging scores during exercise were significantly higher than those at rest in 6 segments (P < 0.05). In the non-fasting group, the scores of 3 exercise myocardial metabolism imaging were significantly higher than those at rest (P < 0.05). Satisfactory high-quality myocardial metabolism imaging could be obtained at fasting and exercise situations in subjects with regular aerobic exercise.
Steven G. McNulty; Johnny L. Boggs; Ge Sun
2014-01-01
Anthropogenic climate change is a relatively new phenomenon, largely occurring over the past 150 years, and much of the discussion on climate change impacts to forests has focused on long-term shifts in temperature and precipitation. However, individual trees respond to the much shorter impacts of climate variability. Historically, fast growing, fully canopied, non-...
Childhood Obesity: A Heavy Problem
ERIC Educational Resources Information Center
Costley, Kevin C.; Leggett, Timothy
2010-01-01
The youth of today are faced with a big problem; they are becoming more obese every day. The time of children playing outside all day and being extremely active has been overtaken by the television and video games. The days of sitting down as a family and eating a good healthy meal has been replaced by the rush to the nearest fast food…
ERIC Educational Resources Information Center
Weeks, Sophie
2012-01-01
Children are fascinated by the fact that polar scientists do research in extremely cold and dangerous places. In the Arctic they might be viewed as lunch by a polar bear. In the Antarctic, they could lose toes and fingers to frostbite and the wind is so fast it can rip skin off. They camp on ice in continuous daylight, weeks from any form of…
NPY/AgRP neurons are not essential for feeding responses to glucoprivation.
Luquet, Serge; Phillips, Colin T; Palmiter, Richard D
2007-02-01
Animals respond to hypoglycemia by eating and by stimulating gluconeogenesis. These responses to glucose deprivation are initiated by glucose-sensing neurons in the brain, but the neural circuits that control feeding behavior are not well established. Neurons in the arcuate region of the hypothalamus that express neuropeptide Y (NPY) and agouti-related protein (AgRP) have been implicated in mediating the feeding response to glucoprivation. We devised a method to selectively ablate these neurons in neonatal mice and then tested adult mice for their feeding responses to fasting, mild hypoglycemia, 2-deoxy-d-glucose and a ghrelin receptor agonist. Whereas the feeding response to the ghrelin receptor agonist was completely abrogated, the feeding response to glucoprivation was normal. The feeding response after a fast was attenuated when standard chow was available but normal with more palatable solid or liquid diet. We conclude that NPY/AgRP neurons are not necessary for generating or mediating the orexigenic response to glucose deficiency, but they are essential for the feeding response to ghrelin and refeeding on standard chow after a fast.
Chekol, Solomon Amsalu; Yoo, Jongmyung; Park, Jaehyuk; Song, Jeonghwan; Sung, Changhyuck; Hwang, Hyunsang
2018-08-24
In this letter, we demonstrate a new binary ovonic threshold switching (OTS) selector device scalable down to ø30 nm based on C-Te. Our proposed selector device exhibits outstanding performance such as a high switching ratio (I on /I off > 10 5 ), an extremely low off-current (∼1 nA), an extremely fast operating speed of <10 ns (transition time of <2 ns and delay time of <8 ns), high endurance (10 9 ), and high thermal stability (>450 °C). The observed high thermal stability is caused by the relatively small atomic size of C, compared to Te, which can effectively suppress the segregation and crystallization of Te in the OTS film. Furthermore, to confirm the functionality of the selector in a crossbar array, we evaluated a 1S-1R device by integrating our OTS device with a ReRAM (resistive random access memory) device. The 1S-1R integrated device exhibits a successful suppression of leakage current at the half-selected cell and shows an excellent read-out margin (>2 12 word lines) in a fast read operation.
Intracellular Adenosine Triphosphate Delivery Enhanced Skin Wound Healing in Rabbits
Wang, Jianpu; Zhang, Qunwei; Wan, Rong; Mo, Yiqun; Li, Ming; Tseng, Michael T.; Chien, Sufan
2016-01-01
Small unilamellar lipid vesicles were used to encapsulate adenosine triphosphate (ATP-vesicles) for intracellular energy delivery. This technique was tested in full-thickness skin wounds in 16 adult rabbits. One ear was rendered ischemic by using a minimally invasive surgery. The other ear served as a normal control. Four circular full-thickness wounds were created on the ventral side of each ear. ATP-vesicles or saline was used and the wounds were covered with Tegaderm (3M, St. Paul, MN). Dressing was changed and digital photos were taken daily until all the wounds were healed. The mean healing times of ATP-vesicles–treated wounds were significantly shorter than that of saline-treated wounds on ischemic and nonischemic ears. Histologic study indicated better-developed granular tissue and reepithelial-ization in the ATP-vesicles–treated wounds. The wounds treated by ATP-vesicles exhibited extremely fast granular tissue growth. More CD31 positive cells were seen in the ATP-vesicles–treated wounds. This preliminary study shows that direct intracellular delivery of ATP can accelerate the healing process of skin wounds on ischemic and nonischemic rabbit ears. The extremely fast granular tissue growth was something never seen or reported in the past. PMID:19158531
Secrets of virtuoso: neuromuscular attributes of motor virtuosity in expert musicians
Furuya, Shinichi; Oku, Takanori; Miyazaki, Fumio; Kinoshita, Hiroshi
2015-01-01
Musical performance requires extremely fast and dexterous limb movements. The underlying biological mechanisms have been an object of interest among scientists and non-scientists for centuries. Numerous studies of musicians and non-musicians have demonstrated that neuroplastic adaptations through early and deliberate musical training endowed superior motor skill. However, little has been unveiled about what makes inter-individual differences in motor skills among musicians. Here we determined the attributes of inter-individual differences in the maximum rate of repetitive piano keystrokes in twenty-four pianists. Among various representative factors of neuromuscular functions, anatomical characteristics, and training history, a stepwise multiple regression analysis and generalized linear model identified two predominant predictors of the maximum rate of repetitive piano keystrokes; finger tapping rate and muscular strength of the elbow extensor. These results suggest a non-uniform role of individual limb muscles in the production of extremely fast repetitive multi-joint movements. Neither age of musical training initiation nor the amount of extensive musical training before age twenty was a predictor. Power grip strength was negatively related to the maximum rate of piano keystrokes only during the smallest tone production. These findings highlight the importance of innate biological nature and explicit training for motor virtuosity. PMID:26502770
Application of a fast skyline computation algorithm for serendipitous searching problems
NASA Astrophysics Data System (ADS)
Koizumi, Kenichi; Hiraki, Kei; Inaba, Mary
2018-02-01
Skyline computation is a method of extracting interesting entries from a large population with multiple attributes. These entries, called skyline or Pareto optimal entries, are known to have extreme characteristics that cannot be found by outlier detection methods. Skyline computation is an important task for characterizing large amounts of data and selecting interesting entries with extreme features. When the population changes dynamically, the task of calculating a sequence of skyline sets is called continuous skyline computation. This task is known to be difficult to perform for the following reasons: (1) information of non-skyline entries must be stored since they may join the skyline in the future; (2) the appearance or disappearance of even a single entry can change the skyline drastically; (3) it is difficult to adopt a geometric acceleration algorithm for skyline computation tasks with high-dimensional datasets. Our new algorithm called jointed rooted-tree (JR-tree) manages entries using a rooted tree structure. JR-tree delays extend the tree to deep levels to accelerate tree construction and traversal. In this study, we presented the difficulties in extracting entries tagged with a rare label in high-dimensional space and the potential of fast skyline computation in low-latency cell identification technology.
Secrets of virtuoso: neuromuscular attributes of motor virtuosity in expert musicians
NASA Astrophysics Data System (ADS)
Furuya, Shinichi; Oku, Takanori; Miyazaki, Fumio; Kinoshita, Hiroshi
2015-10-01
Musical performance requires extremely fast and dexterous limb movements. The underlying biological mechanisms have been an object of interest among scientists and non-scientists for centuries. Numerous studies of musicians and non-musicians have demonstrated that neuroplastic adaptations through early and deliberate musical training endowed superior motor skill. However, little has been unveiled about what makes inter-individual differences in motor skills among musicians. Here we determined the attributes of inter-individual differences in the maximum rate of repetitive piano keystrokes in twenty-four pianists. Among various representative factors of neuromuscular functions, anatomical characteristics, and training history, a stepwise multiple regression analysis and generalized linear model identified two predominant predictors of the maximum rate of repetitive piano keystrokes; finger tapping rate and muscular strength of the elbow extensor. These results suggest a non-uniform role of individual limb muscles in the production of extremely fast repetitive multi-joint movements. Neither age of musical training initiation nor the amount of extensive musical training before age twenty was a predictor. Power grip strength was negatively related to the maximum rate of piano keystrokes only during the smallest tone production. These findings highlight the importance of innate biological nature and explicit training for motor virtuosity.
Suction is kid's play: extremely fast suction in newborn seahorses.
Van Wassenbergh, Sam; Roos, Gert; Genbrugge, Annelies; Leysen, Heleen; Aerts, Peter; Adriaens, Dominique; Herrel, Anthony
2009-04-23
Ongoing anatomical development typically results in a gradual maturation of the feeding movements from larval to adult fishes. Adult seahorses are known to capture prey by rotating their long-snouted head extremely quickly towards prey, followed by powerful suction. This type of suction is powered by elastic recoil and requires very precise coordination of the movements of the associated feeding structures, making it an all-or-none phenomenon. Here, we show that newborn Hippocampus reidi are able to successfully feed using an extremely rapid and powerful snout rotation combined with a high-volume suction, surpassing that observed in adult seahorses. An inverse dynamic analysis shows that an elastic recoil mechanism is also used to power head rotation in newborn H. reidi. This illustrates how extreme levels of performance in highly complex musculoskeletal systems can be present at birth given a delayed birth and rapid development of functionally important structures. The fact that the head skeleton of newborn seahorses is still largely cartilaginous may not be problematic because the hydrodynamic stress on the rotating snout appeared considerably lower than in adult syngnathids.
Suction is kid's play: extremely fast suction in newborn seahorses
Van Wassenbergh, Sam; Roos, Gert; Genbrugge, Annelies; Leysen, Heleen; Aerts, Peter; Adriaens, Dominique; Herrel, Anthony
2009-01-01
Ongoing anatomical development typically results in a gradual maturation of the feeding movements from larval to adult fishes. Adult seahorses are known to capture prey by rotating their long-snouted head extremely quickly towards prey, followed by powerful suction. This type of suction is powered by elastic recoil and requires very precise coordination of the movements of the associated feeding structures, making it an all-or-none phenomenon. Here, we show that newborn Hippocampus reidi are able to successfully feed using an extremely rapid and powerful snout rotation combined with a high-volume suction, surpassing that observed in adult seahorses. An inverse dynamic analysis shows that an elastic recoil mechanism is also used to power head rotation in newborn H. reidi. This illustrates how extreme levels of performance in highly complex musculoskeletal systems can be present at birth given a delayed birth and rapid development of functionally important structures. The fact that the head skeleton of newborn seahorses is still largely cartilaginous may not be problematic because the hydrodynamic stress on the rotating snout appeared considerably lower than in adult syngnathids. PMID:19324657
We have performed a series of experiments to determine the tradeoff in detection sensitivity for implementing design features for an Open-Path Fourier Transform Infrared (OP-FTIR) chemical analyzer that would be quick to deploy under emergency response conditions. The fast-deplo...
Paddock, Michael T; Bailitz, John; Horowitz, Russ; Khishfe, Basem; Cosby, Karen; Sergel, Michelle J
2015-03-01
Pre-hospital focused assessment with sonography in trauma (FAST) has been effectively used to improve patient care in multiple mass casualty events throughout the world. Although requisite FAST knowledge may now be learned remotely by disaster response team members, traditional live instructor and model hands-on FAST skills training remains logistically challenging. The objective of this pilot study was to compare the effectiveness of a novel portable ultrasound (US) simulator with traditional FAST skills training for a deployed mixed provider disaster response team. We randomized participants into one of three training groups stratified by provider role: Group A. Traditional Skills Training, Group B. US Simulator Skills Training, and Group C. Traditional Skills Training Plus US Simulator Skills Training. After skills training, we measured participants' FAST image acquisition and interpretation skills using a standardized direct observation tool (SDOT) with healthy models and review of FAST patient images. Pre- and post-course US and FAST knowledge were also assessed using a previously validated multiple-choice evaluation. We used the ANOVA procedure to determine the statistical significance of differences between the means of each group's skills scores. Paired sample t-tests were used to determine the statistical significance of pre- and post-course mean knowledge scores within groups. We enrolled 36 participants, 12 randomized to each training group. Randomization resulted in similar distribution of participants between training groups with respect to provider role, age, sex, and prior US training. For the FAST SDOT image acquisition and interpretation mean skills scores, there was no statistically significant difference between training groups. For US and FAST mean knowledge scores, there was a statistically significant improvement between pre- and post-course scores within each group, but again there was not a statistically significant difference between training groups. This pilot study of a deployed mixed-provider disaster response team suggests that a novel portable US simulator may provide equivalent skills training in comparison to traditional live instructor and model training. Further studies with a larger sample size and other measures of short- and long-term clinical performance are warranted.
NASA Astrophysics Data System (ADS)
Zhang, Tian-Yu; Wang, Qian; Deng, Ning-Qin; Zhao, Hai-Ming; Wang, Dan-Yang; Yang, Zhen; Liu, Ying; Yang, Yi; Ren, Tian-Ling
2017-09-01
In this paper, we have developed a high-performance graphene electrothermal actuator (ETA). The fabrication method is easy, fast, environmentally friendly, and suitable for preparing both large-size and miniature graphene ETAs. When applied with the driving voltage of 65 V, the graphene ETA achieves a large bending angle of 270° with a fast response of 8 s and the recovery process costs 19 s. The large bending deformation is reversible and can be precisely controlled by the driving voltage. A simple robotic hand prepared by using a single graphene ETA can hold the object, which is more than ten times the weight of itself. By virtue of its large-strain, fast response, and easy-to-manufacture, we believe that the graphene ETA has tremendous potential in extensive applications involving biomimetic robotics, artificial muscles, switches, and microsensors in both macroscopic and microscopic fields.
Robust fast controller design via nonlinear fractional differential equations.
Zhou, Xi; Wei, Yiheng; Liang, Shu; Wang, Yong
2017-07-01
A new method for linear system controller design is proposed whereby the closed-loop system achieves both robustness and fast response. The robustness performance considered here means the damping ratio of closed-loop system can keep its desired value under system parameter perturbation, while the fast response, represented by rise time of system output, can be improved by tuning the controller parameter. We exploit techniques from both the nonlinear systems control and the fractional order systems control to derive a novel nonlinear fractional order controller. For theoretical analysis of the closed-loop system performance, two comparison theorems are developed for a class of fractional differential equations. Moreover, the rise time of the closed-loop system can be estimated, which facilitates our controller design to satisfy the fast response performance and maintain the robustness. Finally, numerical examples are given to illustrate the effectiveness of our methods. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
How cracks are hot and cool: a burning issue for paper.
Toussaint, Renaud; Lengliné, Olivier; Santucci, Stéphane; Vincent-Dospital, Tom; Naert-Guillot, Muriel; Måløy, Knut Jørgen
2016-07-07
Material failure is accompanied by important heat exchange, with extremely high temperature - thousands of degrees - reached at crack tips. Such a temperature may subsequently alter the mechanical properties of stressed solids, and finally facilitate their rupture. Thermal runaway weakening processes could indeed explain stick-slip motions and even be responsible for deep earthquakes. Therefore, to better understand catastrophic rupture events, it appears crucial to establish an accurate energy budget of fracture propagation from a clear measure of various energy dissipation sources. In this work, combining analytical calculations and numerical simulations, we directly relate the temperature field around a moving crack tip to the part α of mechanical energy converted into heat. By monitoring the slow crack growth in paper sheets using an infrared camera, we measure a significant fraction α = 12% ± 4%. Besides, we show that (self-generated) heat accumulation could weaken our samples by microfiber combustion, and lead to a fast crack/dynamic failure/regime.
Self-amplified photo-induced gap quenching in a correlated electron material
Mathias, S.; Eich, S.; Urbancic, J.; ...
2016-10-04
Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equilibrium excited states are instantaneously populated. Here, we elucidate a general relation between ultrafast non-equilibrium electron dynamics and the size of the characteristic energy gap in a correlated electron material. Here, we show that carrier multiplication via impact ionization can be one of the most important processes in a gapped material, and that the speed of carrier multiplication critically dependsmore » on the size of the energy gap. In the case of the charge-density wave material 1T-TiSe 2, our data indicate that carrier multiplication and gap dynamics mutually amplify each other, which explains—on a microscopic level—the extremely fast response of this material to ultrafast optical excitation.« less
USE OF NEUTRON IRRADIATIONS IN THE BROOKHAVEN MUTATIONS PROGRAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miksche, J.P.; Shapiro, S.
1963-01-01
Many plant species were irradiated with x rays, thermal and fast neutrons, andd gamma radiation during the past 10 yr of the cooperative mutations program and adjunct mutation breeding program. Four major concepts and/ or approaches related to the use of mutagenic agents in plant breeding that have evolved are discussed. It was concluded that outcrossing between treated and nontreated populations must be reckoned with, and consequently the two populations should be separated before a true measure of mutation induction can be ascertained; chromosome rearrangement studies are useful, with particular emphasis on inducing disease resistance; work concerned with tissue reorgandizationmore » and rearrangement as related to chimera production and basic understanding of tissue ontogeny, particularly with fruit crops andd horticultural crops is promising; and the effectiveness of responses of plant tissues to neutrons and other mutagenic agents is extremely variable and more basic work is needed before the full potentialities of mutation breeding as a tool in crop improvement can be appreciated. (auth)« less
New insights on equid locomotor evolution from the lumbar region of fossil horses
Jones, Katrina Elizabeth
2016-01-01
The specialization of equid limbs for cursoriality is a classic case of adaptive evolution, but the role of the axial skeleton in this famous transition is not well understood. Extant horses are extremely fast and efficient runners, which use a stiff-backed gallop with reduced bending of the lumbar region relative to other mammals. This study tests the hypothesis that stiff-backed running in horses evolved in response to evolutionary increases in body size by examining lumbar joint shape from a broad sample of fossil equids in a phylogenetic context. Lumbar joint shape scaling suggests that stability of the lumbar region does correlate with size through equid evolution. However, scaling effects were dampened in the posterior lumbar region, near the sacrum, which suggests strong selection for sagittal mobility in association with locomotor–respiratory coupling near the lumbosacral joint. I hypothesize that small-bodied fossil horses may have used a speed-dependent running gait, switching between stiff-backed and flex-backed galloping as speed increased. PMID:27122554
Artificial O3 formation during fireworks
NASA Astrophysics Data System (ADS)
Fiedrich, M.; Kurtenbach, R.; Wiesen, P.; Kleffmann, J.
2017-09-01
In several previous studies emission of ozone (O3) during fireworks has been reported, which was attributed to either photolysis of molecular oxygen (O2) or nitrogen dioxide (NO2) by short/near UV radiation emitted during the high-temperature combustion of fireworks. In contrast, in the present study no O3 formation was observed using a selective O3-LOPAP instrument during the combustion of pyrotechnical material in the laboratory, while a standard O3 monitor using UV absorption showed extremely high O3 signals. The artificial O3 response of the standard O3 monitor was caused by known interferences associated with high levels of co-emitted VOCs and could also be confirmed in field measurements during New Year's Eve in the city of Wuppertal, Germany. The present results help to explain unreasonably high ozone levels documented during ambient fireworks, which are in contradiction to the fast titration of O3 by nitrogen monoxide (NO) in the night-time atmosphere.
A Thermally Insulating Textile Inspired by Polar Bear Hair.
Cui, Ying; Gong, Huaxin; Wang, Yujie; Li, Dewen; Bai, Hao
2018-04-01
Animals living in the extremely cold environment, such as polar bears, have shown amazing capability to keep warm, benefiting from their hollow hairs. Mimicking such a strategy in synthetic fibers would stimulate smart textiles for efficient personal thermal management, which plays an important role in preventing heat loss and improving efficiency in house warming energy consumption. Here, a "freeze-spinning" technique is used to realize continuous and large-scale fabrication of fibers with aligned porous structure, mimicking polar bear hairs, which is difficult to achieve by other methods. A textile woven with such biomimetic fibers shows an excellent thermal insulation property as well as good breathability and wearability. In addition to passively insulating heat loss, the textile can also function as a wearable heater, when doped with electroheating materials such as carbon nanotubes, to induce fast thermal response and uniform electroheating while maintaining its soft and porous nature for comfortable wearing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Physiological acclimation of the green tidal alga Ulva prolifera to a fast-changing environment.
Wu, Hailong; Gao, Guang; Zhong, Zhihai; Li, Xinshu; Xu, Juntian
2018-06-01
To aid early warning and prevent the outbreak of green tides in the Yellow Sea, both the growth and photosynthetic performance of Ulva prolifera were studied after culture in different temperatures (18, 22, and 26 °C) and light intensities (44, 160, and 280 μmol m -2 ·s -1 ). Furthermore, their instantaneous net photosynthetic performance (INPP) was studied to determine the resulting environmental acclimation. The relative growth rates of U. prolifera significantly decreased in response to increasing temperature, while they increased with increasing light intensity. Culture at higher light intensities significantly increased INPP, while higher temperatures decreased the INPP. Culture at lower temperatures lowered INPP, while increased growth temperature increased the effect. These results suggest that high temperatures during the cold season inhibited U. prolifera growth. However, low temperatures during the warm season increase biomass and may cause a large-scale green tide. These results help to understand the correlation between U. prolifera blooms and extreme weather. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mechanistic aspects of fracture and R-curve behavior in elk antler bone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Launey, Maximilien E.; Chen, Po-Yu; McKittrick, Joanna
Bone is an adaptative material that is designed for different functional requirements; indeed, bones have a variety of properties depending on their role in the body. To understand the mechanical response of bone requires the elucidation of its structure-function relationships. Here, we examine the fracture toughness of compact bone of elk antler which is an extremely fast growing primary bone designed for a totally different function than human (secondary) bone. We find that antler in the transverse (breaking) orientation is one of the toughest biological materials known. Its resistance to fracture is achieved during crack growth (extrinsically) by a combinationmore » of gross crack deflection/twisting and crack bridging via uncracked 'ligaments' in the crack wake, both mechanisms activated by microcracking primarily at lamellar boundaries. We present an assessment of the toughening mechanisms acting in antler as compared to human cortical bone, and identify an enhanced role of inelastic deformation in antler which further contributes to its (intrinsic) toughness.« less
Longitudinal excitations in Mg-Al-O refractory oxide melts studied by inelastic x-ray scattering.
Pozdnyakova, I; Hennet, L; Brun, J-F; Zanghi, D; Brassamin, S; Cristiglio, V; Price, D L; Albergamo, F; Bytchkov, A; Jahn, S; Saboungi, M-L
2007-03-21
The dynamic structure factor S(Q,omega) of the refractory oxide melts MgAl2O4 and MgAl4O7 is studied by inelastic x-ray scattering with aerodynamic levitation and laser heating. This technique allows the authors to measure simultaneously the elastic response and transport properties of melts under extreme temperatures. Over the wave vector Q range of 1-8 nm-1 the data can be fitted with a generalized hydrodynamic model that incorporates a slow component described by a single relaxation time and an effectively instantaneous fast component. Their study provides estimates of high-frequency sound velocities and viscosities of the Mg-Al-O melts. In contrast to liquid metals, the dispersion of the high-frequency sound mode is found to be linear, and the generalized viscosity to be Q independent. Both experiment and simulation show a weak viscosity maximum around the MgAl4O7 composition.
Longitudinal excitations in Mg-Al-O refractory oxide melts studied by inelastic x-ray scattering
NASA Astrophysics Data System (ADS)
Pozdnyakova, I.; Hennet, L.; Brun, J.-F.; Zanghi, D.; Brassamin, S.; Cristiglio, V.; Price, D. L.; Albergamo, F.; Bytchkov, A.; Jahn, S.; Saboungi, M.-L.
2007-03-01
The dynamic structure factor S(Q,ω) of the refractory oxide melts MgAl2O4 and MgAl4O7 is studied by inelastic x-ray scattering with aerodynamic levitation and laser heating. This technique allows the authors to measure simultaneously the elastic response and transport properties of melts under extreme temperatures. Over the wave vector Q range of 1-8nm-1 the data can be fitted with a generalized hydrodynamic model that incorporates a slow component described by a single relaxation time and an effectively instantaneous fast component. Their study provides estimates of high-frequency sound velocities and viscosities of the Mg-Al-O melts. In contrast to liquid metals, the dispersion of the high-frequency sound mode is found to be linear, and the generalized viscosity to be Q independent. Both experiment and simulation show a weak viscosity maximum around the MgAl4O7 composition.
Earthquake detection through computationally efficient similarity search
Yoon, Clara E.; O’Reilly, Ossian; Bergen, Karianne J.; Beroza, Gregory C.
2015-01-01
Seismology is experiencing rapid growth in the quantity of data, which has outpaced the development of processing algorithms. Earthquake detection—identification of seismic events in continuous data—is a fundamental operation for observational seismology. We developed an efficient method to detect earthquakes using waveform similarity that overcomes the disadvantages of existing detection methods. Our method, called Fingerprint And Similarity Thresholding (FAST), can analyze a week of continuous seismic waveform data in less than 2 hours, or 140 times faster than autocorrelation. FAST adapts a data mining algorithm, originally designed to identify similar audio clips within large databases; it first creates compact “fingerprints” of waveforms by extracting key discriminative features, then groups similar fingerprints together within a database to facilitate fast, scalable search for similar fingerprint pairs, and finally generates a list of earthquake detections. FAST detected most (21 of 24) cataloged earthquakes and 68 uncataloged earthquakes in 1 week of continuous data from a station located near the Calaveras Fault in central California, achieving detection performance comparable to that of autocorrelation, with some additional false detections. FAST is expected to realize its full potential when applied to extremely long duration data sets over a distributed network of seismic stations. The widespread application of FAST has the potential to aid in the discovery of unexpected seismic signals, improve seismic monitoring, and promote a greater understanding of a variety of earthquake processes. PMID:26665176
A study of adaptation mechanisms based on ABR recorded at high stimulation rate.
Valderrama, Joaquin T; de la Torre, Angel; Alvarez, Isaac; Segura, Jose Carlos; Thornton, A Roger D; Sainz, Manuel; Vargas, Jose Luis
2014-04-01
This paper analyzes the fast and slow mechanisms of adaptation through a study of latencies and amplitudes on ABR recorded at high stimulation rates using the randomized stimulation and averaging (RSA) technique. The RSA technique allows a separate processing of auditory responses, and is used, in this study, to categorize responses according to the interstimulus interval (ISI) of their preceding stimulus. The fast and slow mechanisms of adaptation are analyzed by the separated responses methodology, whose underlying principles and mathematical basis are described in detail. The morphology of the ABR is influenced by both fast and slow mechanisms of adaptation. These results are consistent with previous animal studies based on spike rate. Both fast and slow mechanisms of adaptation are present in all subjects. In addition, the distribution of the jitter and the sequencing of the stimuli may be critical parameters when obtaining reliable ABRs. The separated responses methodology enables for the first time the analysis of the fast and slow mechanisms of adaptation in ABR obtained at stimulation rates greater than 100 Hz. The non-invasive nature of this methodology is appropriate for its use in humans. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Causing Factors for Extreme Precipitation in the Western Saudi-Arabian Peninsula
NASA Astrophysics Data System (ADS)
Alharbi, M. M.; Leckebusch, G. C.
2015-12-01
In the western coast of Saudi Arabia the climate is in general semi-arid but extreme precipitation events occur on a regular basis: e.g., on 26th November 2009, when 122 people were killed and 350 reported missing in Jeddah following more than 90mm in just four hours. Our investigation will a) analyse major drivers of the generation of extremes and b) investigate major responsible modes of variability for the occurrence of extremes. Firstly, we present a systematic analysis of station based observations of the most relevant extreme events (1985-2013) for 5 stations (Gizan, Makkah, Jeddah, Yenbo and Wejh). Secondly, we investigate the responsible mechanism on the synoptic to large-scale leading to the generation of extremes and will analyse factors for the time variability of extreme event occurrence. Extreme events for each station are identified in the wet season (Nov-Jan): 122 events show intensity above the respective 90th percentile. The most extreme events are systematically investigated with respect to the responsible forcing conditions which we can identify as: The influence of the Soudan Low, active Red-Sea-Trough situations established via interactions with mid-latitude tropospheric wave activity, low pressure systems over the Mediterranean, the influence of the North Africa High, the Arabian Anticyclone and the influence of the Indian monsoon trough. We investigate the role of dynamical forcing factors like the STJ and the upper-troposphere geopotential conditions and the relation to smaller local low-pressure systems. By means of an empirical orthogonal function (EOF) analysis based on MSLP we investigate the possibility to objectively quantify the influence of existing major variability modes and their role for the generation of extreme precipitation events.
Ely, Alice V; Childress, Anna Rose; Jagannathan, Kanchana; Lowe, Michael R
2015-12-01
Normal weight historical dieters (HDs) are prone to future weight gain, and show higher levels of brain activation in reward-related regions after having eaten than nondieters (NDs) in response to food stimuli (Ely, Childress, Jagannathan, & Lowe, 2014), a similar pattern to that seen in obesity. We hypothesized that HDs are differentially sensitive after eating to rewards in general, and thus extended prior findings by comparing the same groups' brain activation when viewing romantic pictures compared to neutral stimuli while being scanned in a blood oxygenation level-dependent (BOLD) fMRI paradigm in a fasted and fed state. Results show that 1) in fed relative to fasted conditions, both HDs and NDs were more responsive in areas related to reward and 2) in HDs, greater fed versus fasted activation extended to areas linked to perception and goal-directed behavior. HDs relative to NDs were more responsive to romantic cues in the superior frontal gyrus when fasted and the middle temporal gyrus when fed. This pattern of response is similar to HDs' activation when viewing highly palatable food cues, and is consistent with research showing overlapping brain-based responses to sex, drugs and food. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fründ, Ingo; Busch, Niko A; Schadow, Jeanette; Körner, Ursula; Herrmann, Christoph S
2007-01-01
Background Phase-locked gamma oscillations have so far mainly been described in relation to perceptual processes such as sensation, attention or memory matching. Due to its very short latency (≈90 ms) such oscillations are a plausible candidate for very rapid integration of sensory and motor processes. Results We measured EEG in 13 healthy participants in a speeded reaction task. Participants had to press a button as fast as possible whenever a visual stimulus was presented. The stimulus was always identical and did not have to be discriminated from other possible stimuli. In trials in which the participants showed a fast response, a slow negative potential over central electrodes starting approximately 800 ms before the response and highly phase-locked gamma oscillations over central and posterior electrodes between 90 and 140 ms after the stimulus were observed. In trials in which the participants showed a slow response, no slow negative potential was observed and phase-locked gamma oscillations were significantly reduced. Furthermore, for slow response trials the phase-locked gamma oscillations were significantly delayed with respect to fast response trials. Conclusion These results indicate the relevance of phase-locked gamma oscillations for very fast (not necessarily detailed) integration processes. PMID:17439642
Extreme Response Style and the Measurement of Intra-Individual Variability
ERIC Educational Resources Information Center
Deng, Sien
2017-01-01
Psychologists have become increasingly interested in the intra-individual variability of psychological measures as a meaningful distinguishing characteristic of persons. Assessments of intra-individual variability are frequently based on the repeated administration of self-report rating scale instruments, and extreme response style (ERS) has the…
Chowdhury, Enhad A; Richardson, Judith D; Tsintzas, Kostas; Thompson, Dylan; Betts, James A
2018-01-01
It remains unknown whether sustained daily feeding-fasting patterns modify the acute response to specific feedings on a given day. We conducted a randomized controlled trial to establish if daily breakfast consumption or fasting until noon modifies the acute metabolic and appetitive responses to a fixed breakfast and ad libitum lunch. With the use of a parallel group design, we randomly assigned 31 healthy, lean men and women (22-56 y) to 6 wk of either consuming ≥700 kcal of self-selected items before 1100 or fasting (0 kcal) until 1200 daily. Following 48 h of diet and physical activity standardization, we examined metabolic and appetite responses to a standardized breakfast and ad libitum lunch before and after the intervention. Data were analyzed using 3- and 2-way ANCOVA. Systemic concentrations of energy balance regulatory hormones total and acylated ghrelin, leptin, and peptide tyrosine-tyrosine) responded similarly to breakfast and lunch before and after 6 wk of either morning fasting or regular breakfast, with the exception of a tendency for increased glucagon-like peptide-1 concentrations from baseline to follow-up in the Breakfast Group compared with a decrease over that period in the Fasting Group [P = 0.06, partial eta squared value (ƞ2) = 0.16]. Subjective appetite sensations also did not differ over the course of the day, and ad libitum energy intake at lunch was not systematically affected by either intervention, decreasing by 27 kcal (95% CI: -203, 149 kcal) with fasting and by 77 kcal (95% CI: -210, 56 kcal) with breakfast. Similarly, glycemic, insulinemic, lipemic, and thermogenic responses to breakfast and lunch were very stable at baseline and follow-up and, thus, did not differ between treatment groups. Our results indicate that a sustained period of either extended morning fasting or eating a daily breakfast has minimal effect upon acute metabolic and appetite responses in lean adults. This trial was registered at www.isrctn.org as ISRCTN31521726. © 2018 American Society for Nutrition.
Transcription factor assisted loading and enhancer dynamics dictate the hepatic fasting response.
Goldstein, Ido; Baek, Songjoon; Presman, Diego M; Paakinaho, Ville; Swinstead, Erin E; Hager, Gordon L
2017-03-01
Fasting elicits transcriptional programs in hepatocytes leading to glucose and ketone production. This transcriptional program is regulated by many transcription factors (TFs). To understand how this complex network regulates the metabolic response to fasting, we aimed at isolating the enhancers and TFs dictating it. Measuring chromatin accessibility revealed that fasting massively reorganizes liver chromatin, exposing numerous fasting-induced enhancers. By utilizing computational methods in combination with dissecting enhancer features and TF cistromes, we implicated four key TFs regulating the fasting response: glucocorticoid receptor (GR), cAMP responsive element binding protein 1 (CREB1), peroxisome proliferator activated receptor alpha (PPARA), and CCAAT/enhancer binding protein beta (CEBPB). These TFs regulate fuel production by two distinctly operating modules, each controlling a separate metabolic pathway. The gluconeogenic module operates through assisted loading, whereby GR doubles the number of sites occupied by CREB1 as well as enhances CREB1 binding intensity and increases accessibility of CREB1 binding sites. Importantly, this GR-assisted CREB1 binding was enhancer-selective and did not affect all CREB1-bound enhancers. Single-molecule tracking revealed that GR increases the number and DNA residence time of a portion of chromatin-bound CREB1 molecules. These events collectively result in rapid synergistic gene expression and higher hepatic glucose production. Conversely, the ketogenic module operates via a GR-induced TF cascade, whereby PPARA levels are increased following GR activation, facilitating gradual enhancer maturation next to PPARA target genes and delayed ketogenic gene expression. Our findings reveal a complex network of enhancers and TFs that dynamically cooperate to restore homeostasis upon fasting. Published by Cold Spring Harbor Laboratory Press.
Perez-Martinez, Pablo; Corella, Dolores; Shen, Jian; Arnett, Donna K; Yiannakouris, Nikos; Tai, E Syong; Orho-Melander, Marju; Tucker, Katherine L; Tsai, Michael; Straka, Robert J; Province, Michael; Kai, Chew Suok; Perez-Jimenez, Francisco; Lai, Chao-Qiang; Lopez-Miranda, Jose; Guillen, Marisa; Parnell, Laurence D; Borecki, Ingrid; Kathiresan, Sekar; Ordovas, Jose M
2009-01-01
Hypertriglyceridemia is a risk factor for cardiovascular disease. Variation in the apolipoprotein A5 (APOA5) and glucokinase regulatory protein (GCKR) genes has been associated with fasting plasma triacylglycerol. We investigated the combined effects of the GCKR rs780094C-->T, APOA5 -1131T-->C, and APOA5 56C-->G single nucleotide polymorphisms (SNPs) on fasting triacylglycerol in several independent populations and the response to a high-fat meal and fenofibrate interventions. We used a cross-sectional design to investigate the association with fasting triacylglycerol in 8 populations from America, Asia, and Europe (n = 7,730 men and women) and 2 intervention studies in US whites (n = 1,061) to examine postprandial triacylglycerol after a high-fat meal and the response to fenofibrate. We defined 3 combined genotype groups: 1) protective (homozygous for the wild-type allele for all 3 SNPs); 2) intermediate (any mixed genotype not included in groups 1 and 3); and 3) risk (carriers of the variant alleles at both genes). Subjects within the risk group had significantly higher fasting triacylglycerol and a higher prevalence of hypertriglyceridemia than did subjects in the protective group across all populations. Moreover, subjects in the risk group had a greater postprandial triacylglycerol response to a high-fat meal and greater fenofibrate-induced reduction of fasting triacylglycerol than did the other groups, especially among persons with hypertriglyceridemia. Subjects with the intermediate genotype had intermediate values (P for trend <0.001). SNPs in GCKR and APOA5 have an additive effect on both fasting and postprandial triacylglycerol and contribute to the interindividual variability in response to fenofibrate treatment.
Perez-Martinez, Pablo; Corella, Dolores; Shen, Jian; Arnett, Donna K; Yiannakouris, Nikos; Tai, E Syong; Orho-Melander, Marju; Tucker, Katherine L; Tsai, Michael; Straka, Robert J; Province, Michael; Kai, Chew Suok; Perez-Jimenez, Francisco; Lai, Chao-Qiang; Lopez-Miranda, Jose; Guillen, Marisa; Parnell, Laurence D; Borecki, Ingrid; Kathiresan, Sekar; Ordovas, Jose M
2009-01-01
Background: Hypertriglyceridemia is a risk factor for cardiovascular disease. Variation in the apolipoprotein A5 (APOA5) and glucokinase regulatory protein (GCKR) genes has been associated with fasting plasma triacylglycerol. Objective: We investigated the combined effects of the GCKR rs780094C→T, APOA5 −1131T→C, and APOA5 56C→G single nucleotide polymorphisms (SNPs) on fasting triacylglycerol in several independent populations and the response to a high-fat meal and fenofibrate interventions. Design: We used a cross-sectional design to investigate the association with fasting triacylglycerol in 8 populations from America, Asia, and Europe (n = 7730 men and women) and 2 intervention studies in US whites (n = 1061) to examine postprandial triacylglycerol after a high-fat meal and the response to fenofibrate. We defined 3 combined genotype groups: 1) protective (homozygous for the wild-type allele for all 3 SNPs); 2) intermediate (any mixed genotype not included in groups 1 and 3); and 3) risk (carriers of the variant alleles at both genes). Results: Subjects within the risk group had significantly higher fasting triacylglycerol and a higher prevalence of hypertriglyceridemia than did subjects in the protective group across all populations. Moreover, subjects in the risk group had a greater postprandial triacylglycerol response to a high-fat meal and greater fenofibrate-induced reduction of fasting triacylglycerol than did the other groups, especially among persons with hypertriglyceridemia. Subjects with the intermediate genotype had intermediate values (P for trend <0.001). Conclusions: SNPs in GCKR and APOA5 have an additive effect on both fasting and postprandial triacylglycerol and contribute to the interindividual variability in response to fenofibrate treatment. PMID:19056598
Frequency tagging to track the neural processing of contrast in fast, continuous sound sequences.
Nozaradan, Sylvie; Mouraux, André; Cousineau, Marion
2017-07-01
The human auditory system presents a remarkable ability to detect rapid changes in fast, continuous acoustic sequences, as best illustrated in speech and music. However, the neural processing of rapid auditory contrast remains largely unclear, probably due to the lack of methods to objectively dissociate the response components specifically related to the contrast from the other components in response to the sequence of fast continuous sounds. To overcome this issue, we tested a novel use of the frequency-tagging approach allowing contrast-specific neural responses to be tracked based on their expected frequencies. The EEG was recorded while participants listened to 40-s sequences of sounds presented at 8Hz. A tone or interaural time contrast was embedded every fifth sound (AAAAB), such that a response observed in the EEG at exactly 8 Hz/5 (1.6 Hz) or harmonics should be the signature of contrast processing by neural populations. Contrast-related responses were successfully identified, even in the case of very fine contrasts. Moreover, analysis of the time course of the responses revealed a stable amplitude over repetitions of the AAAAB patterns in the sequence, except for the response to perceptually salient contrasts that showed a buildup and decay across repetitions of the sounds. Overall, this new combination of frequency-tagging with an oddball design provides a valuable complement to the classic, transient, evoked potentials approach, especially in the context of rapid auditory information. Specifically, we provide objective evidence on the neural processing of contrast embedded in fast, continuous sound sequences. NEW & NOTEWORTHY Recent theories suggest that the basis of neurodevelopmental auditory disorders such as dyslexia might be an impaired processing of fast auditory changes, highlighting how the encoding of rapid acoustic information is critical for auditory communication. Here, we present a novel electrophysiological approach to capture in humans neural markers of contrasts in fast continuous tone sequences. Contrast-specific responses were successfully identified, even for very fine contrasts, providing direct insight on the encoding of rapid auditory information. Copyright © 2017 the American Physiological Society.
Rat psychomotor vigilance task with fast response times using a conditioned lick behavior
Walker, Jennifer L.; Walker, Brendan M.; Fuentes, Fernanda Monjaraz; Rector, David M.
2010-01-01
Investigations into the physiological mechanisms of sleep control require an animal psychomotor vigilance task (PVT) with fast response times (<300ms). Rats provide a good PVT model since whisker stimulation produces a rapid and robust cortical evoked response, and animals can be trained to lick following stimulation. Our prior experiments used deprivation-based approaches to maximize motivation for operant conditioned responses. However, deprivation can influence physiological and neurobehavioral effects. In order to maintain motivation without water deprivation, we conditioned rats for immobilization and head restraint, then trained them to lick for a 10% sucrose solution in response to whisker stimulation. After approximately 8 training sessions, animals produced greater than 80% correct hits to the stimulus. Over the course of training, reaction times became faster and correct hits increased. Performance in the PVT was examined after 3, 6 and 12 hours of sleep deprivation achieved by gentle handling. A significant decrease in percent correct hits occurred following 6 and 12 hours of sleep deprivation and reaction times increased significantly following 12 hours of sleep deprivation. While behaviorally the animals appeared to be awake, we observed significant increases in EEG delta power prior to misses. The rat PVT with fast response times allows investigation of sleep deprivation effects, time on task and pharmacological agents. Fast response times also allow closer parallel studies to ongoing human protocols. PMID:20696188
Fasting suppresses T cell-mediated immunity in female Mongolian gerbils (Meriones unguiculatus).
Xu, De-Li; Wang, De-Hua
2010-01-01
Immune defense is important for organisms' survival and fitness. Small mammals in temperate zone often face seasonal food shortages. Generally fasting can suppress immune function in laboratory rodents and little information is available for wild rodents. The present study tested the hypothesis that Mongolian gerbils (Meriones unguiculatus) could inhibit T cell-mediated immunity to adapt to acute fasting. Forty-two females were divided into the fed and fasted groups, in which the latter was deprived of food for 3days. After 66h fasting, half of the gerbils in each group were injected with phosphate buffered saline or phytohaemagglutinin (PHA) solution. T cell-mediated immunity assessed by PHA response was suppressed in the fasted gerbils compared with the fed gerbils. The fasted gerbils had lower body fat mass, wet and dry thymus mass, dry spleen mass, white blood cells, serum leptin and blood glucose concentrations, but higher corticosterone concentrations than those of the controls. Moreover, PHA response was positively correlated with body fat mass and serum leptin levels in the immunochallenged groups. Taken together, acute fasting leads to immunosuppression, which might be caused by low body fat mass and low serum leptin concentrations in female Mongolian gerbils.
FGF21 is dispensable for hypothermia induced by fasting in mice.
Oishi, Katsutaka; Sakamoto, Katsuhiko; Konishi, Morichika; Murata, Yusuke; Itoh, Nobuyuki; Sei, Hiroyoshi
2010-01-01
Fibroblast growth factor 21 (FGF21) is a key metabolic regulator that is induced by peroxisome proliferator-activated receptor alpha (PPARalpha) activation in response to fasting. We recently reported that bezafibrate, a pan-agonist of PPARs, decreases body temperature late at night through hypothalamic neuropeptide Y (NPY) activation and others have shown that mice overexpressing FGF21 are prone to torpor. We examined whether FGF21 is essential for fasting-induced hypothermia using FGF21 knockout (KO) mice. Acute fasting decreased body temperature late at night accompanied by the induction of hepatic FGF21 and hypothalamic NPY expression in wild-type mice. A deficiency of FGF21 affected neither fasting-induced hypothermia nor hypothalamic NPY induction. Fasting enhanced locomotor activity in both genotypes. On the other hand, a deficiency of FGF21 significantly attenuated chronic hypothermia and hypoactivity induced by a ketogenic diet (KD). Our findings suggest that FGF21 is not essential for the hypothermia that is associated with the early stages of fasting, although it might be involved in the adaptive response of body temperature to chronic starvation.
Marteinson, Sarah C; Drouillard, Ken G; Verreault, Jonathan
2016-04-01
Many species are adapted for fasting during parts of their life cycle. For species undergoing extreme fasts, lipid stores are mobilized and accumulated contaminants can be released to exert toxicological effects. However, it is unknown if short-term fasting events may have a similar effect. The objective of this study was to determine if short successive fasts are related to contaminant levels in liver and plasma of birds. In ring-billed gulls (Larus delawarensis), both members of the pair alternate between incubating the nest for several hours (during which they fast) and foraging, making them a useful model for examining this question. Birds were equipped with miniature data loggers recording time and GPS position for two days to determine the proportion and duration of time birds spent in these two activities. Liver and plasma samples were collected, and halogenated flame retardants (HFRs) (PBDEs and dechlorane plus) and organochlorines (OCs) (PCBs, DDTs, and chlordane-related compounds) were determined. Most birds (79%) exhibited plasma lipid content below 1%, indicating a likely fasted state, and plasma lipid percent declined with the number of hours spent at the nest site. The more time birds spent at their nest site, the higher were their plasma and liver concentrations of HFRs. However, body condition indices were unrelated to either the amount of time birds fasted at the nest site or contaminant levels, suggesting that lipid mobilization might not have been severe enough to affect overall body condition of birds and to explain the relationship between fasting and HFR concentrations. A similar relationship between fasting and OC levels was not observed, suggesting that different factors are affecting short-term temporal variations in concentrations of these two classes of contaminants. This study demonstrates that short fasts can be related to increased internal contaminant exposure in birds and that this may be a confounding factor in research and monitoring involving tissue concentrations of HFRs in wild birds. Copyright © 2015 Elsevier Inc. All rights reserved.
Lidocaine reduces the transition to slow inactivation in Nav1.7 voltage-gated sodium channels
Sheets, Patrick L; Jarecki, Brian W; Cummins, Theodore R
2011-01-01
BACKGROUND AND PURPOSE The primary use of local anaesthetics is to prevent or relieve pain by reversibly preventing action potential propagation through the inhibition of voltage-gated sodium channels. The tetrodotoxin-sensitive voltage-gated sodium channel subtype Nav1.7, abundantly expressed in pain-sensing neurons, plays a crucial role in perception and transmission of painful stimuli and in inherited chronic pain syndromes. Understanding the interaction of lidocaine with Nav1.7 channels could provide valuable insight into the drug's action in alleviating pain in distinct patient populations. The aim of this study was to determine how lidocaine interacts with multiple inactivated conformations of Nav1.7 channels. EXPERIMENTAL APPROACH We investigated the interactions of lidocaine with wild-type Nav1.7 channels and a paroxysmal extreme pain disorder mutation (I1461T) that destabilizes fast inactivation. Whole cell patch clamp recordings were used to examine the activity of channels expressed in human embryonic kidney 293 cells. KEY RESULTS Depolarizing pulses that increased slow inactivation of Nav1.7 channels also reduced lidocaine inhibition. Lidocaine enhanced recovery of Nav1.7 channels from prolonged depolarizing pulses by decreasing slow inactivation. A paroxysmal extreme pain disorder mutation that destabilizes fast inactivation of Nav1.7 channels decreased lidocaine inhibition. CONCLUSIONS AND IMPLICATIONS Lidocaine decreased the transition of Nav1.7 channels to the slow inactivated state. The fast inactivation gate (domain III–IV linker) is important for potentiating the interaction of lidocaine with the Nav1.7 channel. PMID:21232038
An Extreme-ultraviolet Wave Generating Upward Secondary Waves in a Streamer-like Solar Structure
NASA Astrophysics Data System (ADS)
Zheng, Ruisheng; Chen, Yao; Feng, Shiwei; Wang, Bing; Song, Hongqiang
2018-05-01
Extreme-ultraviolet (EUV) waves, spectacular horizontally propagating disturbances in the low solar corona, always trigger horizontal secondary waves (SWs) when they encounter the ambient coronal structure. We present the first example of upward SWs in a streamer-like structure after the passing of an EUV wave. This event occurred on 2017 June 1. The EUV wave happened during a typical solar eruption including a filament eruption, a coronal mass ejection (CME), and a C6.6 flare. The EUV wave was associated with quasi-periodic fast propagating (QFP) wave trains and a type II radio burst that represented the existence of a coronal shock. The EUV wave had a fast initial velocity of ∼1000 km s‑1, comparable to high speeds of the shock and the QFP wave trains. Intriguingly, upward SWs rose slowly (∼80 km s‑1) in the streamer-like structure after the sweeping of the EUV wave. The upward SWs seemed to originate from limb brightenings that were caused by the EUV wave. All of the results show that the EUV wave is a fast-mode magnetohydrodynamic (MHD) shock wave, likely triggered by the flare impulses. We suggest that part of the EUV wave was probably trapped in the closed magnetic fields of the streamer-like structure, and upward SWs possibly resulted from the release of slow-mode trapped waves. It is believed that the interplay of the strong compression of the coronal shock and the configuration of the streamer-like structure is crucial for the formation of upward SWs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Ryun-Young; Ofman, Leon; Kramar, Maxim
2013-03-20
We report white-light observations of a fast magnetosonic wave associated with a coronal mass ejection observed by STEREO/SECCHI/COR1 inner coronagraphs on 2011 August 4. The wave front is observed in the form of density compression passing through various coronal regions such as quiet/active corona, coronal holes, and streamers. Together with measured electron densities determined with STEREO COR1 and Extreme UltraViolet Imager (EUVI) data, we use our kinematic measurements of the wave front to calculate coronal magnetic fields and find that the measured speeds are consistent with characteristic fast magnetosonic speeds in the corona. In addition, the wave front turns outmore » to be the upper coronal counterpart of the EIT wave observed by STEREO EUVI traveling against the solar coronal disk; moreover, stationary fronts of the EIT wave are found to be located at the footpoints of deflected streamers and boundaries of coronal holes, after the wave front in the upper solar corona passes through open magnetic field lines in the streamers. Our findings suggest that the observed EIT wave should be in fact a fast magnetosonic shock/wave traveling in the inhomogeneous solar corona, as part of the fast magnetosonic wave propagating in the extended solar corona.« less
Fast-sausage oscillations in coronal loops with smooth boundary
NASA Astrophysics Data System (ADS)
Lopin, I.; Nagorny, I.
2014-12-01
Aims: The effect of the transition layer (shell) in nonuniform coronal loops with a continuous radial density profile on the properties of fast-sausage modes are studied analytically and numerically. Methods: We modeled the coronal waveguide as a structured tube consisting of a cord and a transition region (shell) embedded within a magnetic uniform environment. The derived general dispersion relation was investigated analytically and numerically in the context of frequency, cut-off wave number, and the damping rate of fast-sausage oscillations for various values of loop parameters. Results: The frequency of the global fast-sausage mode in the loops with a diffuse (or smooth) boundary is determined mainly by the external Alfvén speed and longitudinal wave number. The damping rate of such a mode can be relatively low. The model of coronal loop with diffuse boundary can support a comparatively low-frequency, global fast-sausage mode of detectable quality without involving extremely low values of the density contrast. The effect of thin transition layer (corresponds to the loops with steep boundary) is negligible and produces small reductions of oscillation frequency and relative damping rate in comparison with the case of step-function density profile. Seismological application of obtained results gives the estimated Alfvén speed outside the flaring loop about 3.25 Mm/s.
Interplanetary Propagation Behavior of the Fast Coronal Mass Ejection on 23 July 2012
NASA Astrophysics Data System (ADS)
Temmer, M.; Nitta, N. V.
2015-03-01
The fast coronal mass ejection (CME) on 23 July 2012 caused attention because of its extremely short transit time from the Sun to 1 AU, which was shorter than 21 h. In situ data from STEREO-A revealed the arrival of a fast forward shock with a speed of more than 2200 km s-1 followed by a magnetic structure moving with almost 1900 km s-1. We investigate the propagation behavior of the CME shock and magnetic structure with the aim to reproduce the short transit time and high impact speed as derived from in situ data. We carefully measured the 3D kinematics of the CME using the graduated cylindrical shell model and obtained a maximum speed of 2580±280 km s-1 for the CME shock and 2270±420 km s-1 for its magnetic structure. Based on the 3D kinematics, the drag-based model (DBM) reproduces the observational data reasonably well. To successfully simulate the CME shock, the ambient flow speed needs to have an average value close to the slow solar wind speed (450 km s-1), and the initial shock speed at a distance of 30 R ⊙ should not exceed ≈ 2300 km s-1, otherwise it would arrive much too early at STEREO-A. The model results indicate that an extremely small aerodynamic drag force is exerted on the shock, smaller by one order of magnitude than average. As a consequence, the CME hardly decelerates in interplanetary space and maintains its high initial speed. The low aerodynamic drag can only be reproduced when the density of the ambient solar wind flow, in which the fast CME propagates, is decreased to ρ sw=1 - 2 cm-3 at the distance of 1 AU. This result is consistent with the preconditioning of interplanetary space by a previous CME.
Age-related change in fast adaptation mechanisms measured with the scotopic full-field ERG.
Tillman, Megan A; Panorgias, Athanasios; Werner, John S
2016-06-01
To quantify the response dynamics of fast adaptation mechanisms of the scotopic ERG in younger and older adults using full-field m-sequence flash stimulation. Scotopic ERGs were measured for a series of flashes separated by 65 ms over a range of 260 ms in 16 younger (20-26, 22.2 ± 2.1; range mean ±1 SD) and 16 older (65-85, 71.2 ± 7) observers without retinal pathology. A short-wavelength (λ peak = 442 nm) LED was used for scotopic stimulation, and the flashes ranged from 0.0001 to 0.01 cd s m(-2). The complete binary kernel series was derived from the responses to the m-sequence flash stimulation, and the first- and second-order kernel responses were analyzed. The first-order kernel represented the response to a single, isolated flash, while the second-order kernels reflected the adapted flash responses that followed a single flash by one or more base intervals. B-wave amplitudes of the adapted flash responses were measured and plotted as a function of interstimulus interval to describe the recovery of the scotopic ERG. A linear function was fitted to the linear portion of the recovery curve, and the slope of the line was used to estimate the rate of fast adaptation recovery. The amplitudes of the isolated flash responses and rates of scotopic fast adaptation recovery were compared between the younger and older participants using a two-way ANOVA. The isolated flash responses and rates of recovery were found to be significantly lower in the older adults. However, there was no difference between the two age groups in response amplitude or recovery rate after correcting for age-related changes in the density of the ocular media. These results demonstrated that the rate of scotopic fast adaptation recovery of normal younger and older adults is similar when stimuli are equated for retinal illuminance.
Westneat; Hale; Mchenry; Long
1998-11-01
The fast-start escape response is a rapid, powerful body motion used to generate high accelerations of the body in virtually all fishes. Although the neurobiology and behavior of the fast-start are often studied, the patterns of muscle activity and muscle force production during escape are less well understood. We studied the fast-starts of two basal actinopterygian fishes (Amia calva and Polypterus palmas) to investigate the functional morphology of the fast-start and the role of intramuscular pressure (IMP) in escape behavior. Our goals were to determine whether IMP increases during fast starts, to look for associations between muscle activity and elevated IMP, and to determine the functional role of IMP in the mechanics of the escape response. We simultaneously recorded the kinematics, muscle activity patterns and IMP of four A. calva and three P. palmas during the escape response. Both species generated high IMPs of up to 90 kPa (nearly 1 atmosphere) above ambient during the fast-start. The two species showed similar pressure magnitudes but had significantly different motor patterns and escape performance. Stage 1 of the fast-start was generated by simultaneous contraction of locomotor muscle on both sides of the body, although electromyogram amplitudes on the contralateral (convex) side of the fish were significantly lower than on the ipsilateral (concave) side. Simultaneous recordings of IMP, escape motion and muscle activity suggest that pressure change is caused by the contraction and radial swelling of cone-shaped myomeres. We develop a model of IMP production that incorporates myomere geometry, the concept of constant-volume muscular hydrostats, the relationship between fiber angle and muscle force, and the forces that muscle fibers produce. The timing profile of pressure change, behavior and muscle action indicates that elevated muscle pressure is a mechanism of stiffening the body and functions in force transmission during the escape response.
Ferguson, Eamonn; Maltby, John; Bibby, Peter A; Lawrence, Claire
2014-01-01
Evolutionary accounts have difficulty explaining why people cooperate with anonymous strangers they will never meet. Recently models, focusing on emotional processing, have been proposed as a potential explanation, with attention focusing on a dual systems approach based on system 1 (fast, intuitive, automatic, effortless, and emotional) and system 2 (slow, reflective, effortful, proactive and unemotional). Evidence shows that when cooperation is salient, people are fast (system 1) to cooperate, but with longer delays (system 2) they show greed. This is interpreted within the framework of the social heuristic hypothesis (SHH), whereby people overgeneralize potentially advantageous intuitively learnt and internalization social norms to 'atypical' situations. We extend this to explore intuitive reactions to unfairness by integrating the SHH with the 'fast to forgive, slow to anger' (FFSA) heuristic. This suggests that it is advantageous to be prosocial when facing uncertainty. We propose that whether or not someone intuitively shows prosociality (cooperation) or retaliation is moderated by the degree (certainty) of unfairness. People should intuitively cooperate when facing mild levels of unfairness (fast to forgive) but when given longer to decide about another's mild level of unfairness should retaliate (slow to anger). However, when facing severe levels of unfairness, the intuitive response is always retaliation. We test this using a series of one-shot ultimatum games and manipulate level of offer unfairness (50:50 60:40, 70:30, 80:20, 90:10) and enforced time delays prior to responding (1s, 2s, 8s, 15s). We also measure decision times to make responses after the time delays. The results show that when facing mildly unfair offers (60:40) people are fast (intuitive) to cooperate but with longer delays reject these mildly unfair offers: 'fast to forgive, and slow to retaliate'. However, for severely unfair offers (90:10) the intuitive and fast response is to always reject.
Ferguson, Eamonn; Maltby, John; Bibby, Peter A.; Lawrence, Claire
2014-01-01
Evolutionary accounts have difficulty explaining why people cooperate with anonymous strangers they will never meet. Recently models, focusing on emotional processing, have been proposed as a potential explanation, with attention focusing on a dual systems approach based on system 1 (fast, intuitive, automatic, effortless, and emotional) and system 2 (slow, reflective, effortful, proactive and unemotional). Evidence shows that when cooperation is salient, people are fast (system 1) to cooperate, but with longer delays (system 2) they show greed. This is interpreted within the framework of the social heuristic hypothesis (SHH), whereby people overgeneralize potentially advantageous intuitively learnt and internalization social norms to ‘atypical’ situations. We extend this to explore intuitive reactions to unfairness by integrating the SHH with the ‘fast to forgive, slow to anger’ (FFSA) heuristic. This suggests that it is advantageous to be prosocial when facing uncertainty. We propose that whether or not someone intuitively shows prosociality (cooperation) or retaliation is moderated by the degree (certainty) of unfairness. People should intuitively cooperate when facing mild levels of unfairness (fast to forgive) but when given longer to decide about another's mild level of unfairness should retaliate (slow to anger). However, when facing severe levels of unfairness, the intuitive response is always retaliation. We test this using a series of one-shot ultimatum games and manipulate level of offer unfairness (50:50 60:40, 70:30, 80:20, 90:10) and enforced time delays prior to responding (1s, 2s, 8s, 15s). We also measure decision times to make responses after the time delays. The results show that when facing mildly unfair offers (60:40) people are fast (intuitive) to cooperate but with longer delays reject these mildly unfair offers: ‘fast to forgive, and slow to retaliate’. However, for severely unfair offers (90:10) the intuitive and fast response is to always reject. PMID:24820479
Vascular anomalies and the growth of limbs: a review.
Enjolras, Odile; Chapot, René; Merland, Jean Jacques
2004-11-01
Growth of the limb in a child can be impaired, with the coexistence of a vascular malformation. In these vascular bone syndromes, altered growth is manifest as overgrowth or hypotrophy. The vascular malformation is usually complex and gets progressively worse with time. The two types of vascular anomalies in limbs, fast-flow and slow-flow, can be associated with limb length discrepancies. The fast-flow vascular malformations together with arteriovenous fistulae are part of Parkes Weber syndrome, characterized by congenital red cutaneous staining, hypertrophy in girth and increasing of limb length, lymphedema, increasing skin alterations due to a distal vascular steal, and pain, all of which develop during childhood. Treatment is generally conservative. An affected lower extremity can be complicated by pelvic tilting and scoliosis because leg length discrepancy may reach 10 cm. To avoid such a course, stapling epiphysiodesis of the knee cartilages is often performed, but this orthopedic procedure may augment the worsening of the arterial venous malformation in the limb. Therefore, less aggressive orthopedic management is preferable. Slow-flow vascular anomalies associated with limb growth alteration include (1) a diffuse capillary malformation (port-wine stain) with congenital hypertrophy of the involved extremity which is non-progressive; (2) purely venous malformations invading skin, muscles and joints, with pain, functional impairment, a chronic localized intravascular coagulopathy requiring distinctive management, and usually a slight undergrowth of the affected extremity and progressing amyotrophy; (3) the triad of a port-wine stain, anomalous veins and overgrowth of the limb, often known as Klippel-Trenaunay syndrome, which requires orthopedic management to decide the optimal timing for epiphysiodesis (i.e. when leg length discrepancy is >2.5 cm). Varicose veins are sometimes surgically removed after ultrasonographic and Doppler evaluation has confirmed a normal deep venous system. Capillary malformations can be effectively treated with pulsed dye laser, but results are usually poor in distal extremities.
Intermittent fasting: A “new” historical strategy for controlling seizures?
Hartman, Adam L.; Rubenstein, James E.; Kossoff, Eric H.
2013-01-01
Summary In antiquity, fasting was a treatment for epilepsy and a rationale for the ketogenic diet (KD). Preclinical data indicate the KD and intermittent fasting do not share identical anticonvulsant mechanisms. We implemented an intermittent fasting regimen in six children with an incomplete response to a KD. Three patients adhered to the combined intermittent fasting/KD regimen for 2 months and four had transient improvement in seizure control, albeit with some hunger-related adverse reactions. PMID:23206889
Suzuki, Miwa; Lee, Andrew Y; Vázquez-Medina, José Pablo; Viscarra, Jose A; Crocker, Daniel E; Ortiz, Rudy M
2015-05-15
Fibroblast growth factor (FGF)-21 is secreted from the liver, pancreas, and adipose in response to prolonged fasting/starvation to facilitate lipid and glucose metabolism. Northern elephant seals naturally fast for several months, maintaining a relatively elevated metabolic rate to satisfy their energetic requirements. Thus, to better understand the impact of prolonged food deprivation on FGF21-associated changes, we analyzed the expression of FGF21, FGF receptor-1 (FGFR1), β-klotho (KLB; a co-activator of FGFR) in adipose, and plasma FGF21, glucose and 3-hydroxybutyrate in fasted elephant seal pups. Expression of FGFR1 and KLB mRNA decreased 98% and 43%, respectively, with fasting duration. While the 80% decrease in mean adipose FGF21 mRNA expression with fasting did not reach statistical significance, it paralleled the 39% decrease in plasma FGF21 concentrations suggesting that FGF21 is suppressed with fasting in elephant seals. Data demonstrate an atypical response of FGF21 to prolonged fasting in a mammal suggesting that FGF21-mediated mechanisms have evolved differentially in elephant seals. Furthermore, the typical fasting-induced, FGF21-mediated actions such as the inhibition of lipolysis in adipose may not be required in elephant seals as part of a naturally adapted mechanism to support their unique metabolic demands during prolonged fasting. Copyright © 2015 Elsevier Inc. All rights reserved.
Suzuki, Miwa; Lee, Andrew; Vázquez-Medina, Jose Pablo; Viscarra, Jose A.; Crocker, Daniel E.; Ortiz, Rudy M.
2015-01-01
Fibroblast growth factor (FGF)-21 is secreted from the liver, pancreas, and adipose in response to prolonged fasting/starvation to facilitate lipid and glucose metabolism. Northern elephant seals naturally fast for several months, maintaining a relatively elevated metabolic rate to satisfy their energetic requirements. Thus, to better understand the impact of prolonged food deprivation on FGF21-associated changes, we analyzed the expression of FGF21, FGF receptor-1 (FGFR1), β-klotho (KLB; a co-activator of FGFR) in adipose, and plasma FGF21, glucose and 3-hydroxybutyrate in fasted elephant seal pups. Expression of FGFR1 and KLB mRNA decreased 98% and 43%, respectively, with fasting duration. While the 80% decrease in mean adipose FGF21 mRNA expression with fasting did not reach statistical significance, it paralleled the 39% decrease in plasma FGF21 concentrations suggesting that FGF21 is suppressed with fasting in elephant seals. Data demonstrate an atypical response of FGF21 to prolonged fasting in a mammal suggesting that FGF21-mediated mechanisms have evolved differentially in elephant seals. Furthermore, the typical fasting-induced, FGF21-mediated actions such as the inhibition of lipolysis in adipose may not be required in elephant seals as part of a naturally adapted mechanism to support their unique metabolic demands during prolonged fasting. PMID:25857751
Turco, Francesca; Turnbull, Alan D.; Hanson, Jeremy M.; ...
2015-02-03
Experiments conducted at DIII-D investigate the role of drift kinetic damping and fast neutral beam injection (NBI)-ions in the approach to the no-wall β N limit. Modelling results show that the drift kinetic effects are significant and necessary to reproduce the measured plasma response at the ideal no-wall limit. Fast neutral-beam ions and rotation play important roles and are crucial to quantitatively match the experiment. In this paper, we report on the model validation of a series of plasmas with increasing β N, where the plasma stability is probed by active magnetohydrodynamic (MHD) spectroscopy. The response of the plasma tomore » an externally applied field is used to probe the stable side of the resistive wall mode and obtain an indication of the proximity of the equilibrium to an instability limit. We describe the comparison between the measured plasma response and that calculated by means of the drift kinetic MARS-K code, which includes the toroidal rotation, the electron and ion drift-kinetic resonances, and the presence of fast particles for the modelled plasmas. The inclusion of kinetic effects allows the code to reproduce the experimental results within ~13% for both the amplitude and phase of the plasma response, which is a significant improvement with respect to the undamped MHD-only model. The presence of fast NBI-generated ions is necessary to obtain the low response at the highest β N levels (~90% of the ideal no-wall limit). Finally, the toroidal rotation has an impact on the results, and a sensitivity study shows that a large variation in the predicted response is caused by the details of the rotation profiles at high β N.« less
A surface ice module for wind turbine dynamic response simulation using FAST
Yu, Bingbin; Karr, Dale G.; Song, Huimin; ...
2016-06-03
It is a fact that developing offshore wind energy has become more and more serious worldwide in recent years. Many of the promising offshore wind farm locations are in cold regions that may have ice cover during wintertime. The challenge of possible ice loads on offshore wind turbines raises the demand of modeling capacity of dynamic wind turbine response under the joint action of ice, wind, wave, and current. The simulation software FAST is an open source computer-aided engineering (CAE) package maintained by the National Renewable Energy Laboratory. In this paper, a new module of FAST for assessing the dynamicmore » response of offshore wind turbines subjected to ice forcing is presented. In the ice module, several models are presented which involve both prescribed forcing and coupled response. For conditions in which the ice forcing is essentially decoupled from the structural response, ice forces are established from existing models for brittle and ductile ice failure. For conditions in which the ice failure and the structural response are coupled, such as lock-in conditions, a rate-dependent ice model is described, which is developed in conjunction with a new modularization framework for FAST. In this paper, analytical ice mechanics models are presented that incorporate ice floe forcing, deformation, and failure. For lower speeds, forces slowly build until the ice strength is reached and ice fails resulting in a quasi-static condition. For intermediate speeds, the ice failure can be coupled with the structural response and resulting in coinciding periods of the ice failure and the structural response. A third regime occurs at high speeds of encounter in which brittle fracturing of the ice feature occurs in a random pattern, which results in a random vibration excitation of the structure. An example wind turbine response is simulated under ice loading of each of the presented models. This module adds to FAST the capabilities for analyzing the response of wind turbines subjected to forces resulting from ice impact on the turbine support structure. The conditions considered in this module are specifically addressed in the International Organization for Standardization (ISO) standard 19906:2010 for arctic offshore structures design consideration. Special consideration of lock-in vibrations is required due to the detrimental effects of such response with regard to fatigue and foundation/soil response. Finally, the use of FAST for transient, time domain simulation with the new ice module is well suited for such analyses.« less
Cultivating the Social, Emotional, and Inner Lives of Children and Teachers
ERIC Educational Resources Information Center
Lantieri, Linda
2012-01-01
Adults often feel the pressures of today's fast-paced world and think back longingly to a time when their daily lives were a lot less hectic. One third of the respondents in one study report that they are living with "extreme stress" and almost half feel that the level of stress in their lives has increased over the past five years. Children are…
The effect of a 48 h fast on the thermoregulatory responses to graded cooling in man.
Macdonald, I A; Bennett, T; Sainsbury, R
1984-10-01
The thermoregulatory responses to graded cooling were measured in 11 healthy male subjects after a 12 h fast and after a 48 h fast. The cooling stimulus was produced by changing the temperature of the skin of the trunk and legs with a water-perfused suit. Five levels of skin temperature from 35.5 to 24 degrees C were applied on each occasion. After a 12 h fast, core temperature was maintained during cooling. This maintenance of core temperature was associated with an increase in metabolic rate and a reduction in blood flow to the hand and to the forearm. After 48 h of fasting, the subjects could not maintain core temperature during cooling, and a decrease of 0.36 +/- 0.05 degrees C occurred as the suit temperature was reduced from 35.9 to 24 degrees C. Metabolic rate was slightly higher after the 48 h fast than after the 12 h fast, but similar increases in metabolic rate were observed during cooling. Vasoconstriction in the hand was initially less after a 48 h fast than after a 12 h fast, but at the lowest suit temperature, hand blood flow was similar, and low, on both occasions. After 48 h of fasting, forearm blood flow was elevated at all suit temperatures, being approximately twice the level recorded after the 12 h fast. Venous plasma noradrenaline levels did not change during cooling after the 12 h fast, whilst after 48 h of fasting a significant increase in noradrenaline level was observed at the lowest suit temperature. The results of this study provide further evidence that fasting induces an impairment of autonomic reflex mechanisms, but it is not clear whether this is due to a suppression of sympathetic nervous activity.
NASA Astrophysics Data System (ADS)
Bréda, Nathalie; Badeau, Vincent
2008-09-01
The aim of this paper is to illustrate how some extreme events could affect forest ecosystems. Forest tree response can be analysed using dendroecological methods, as tree-ring widths are strongly controlled by climatic or biotic events. Years with such events induce similar tree responses and are called pointer years. They can result from extreme climatic events like frost, a heat wave, spring water logging, drought or insect damage… Forest tree species showed contrasting responses to climatic hazards, depending on their sensitivity to water shortage or temperature hardening, as illustrated from our dendrochronological database. For foresters, a drought or a pest disease is an extreme event if visible and durable symptoms are induced (leaf discolouration, leaf loss, perennial organs mortality, tree dieback and mortality). These symptoms here are shown, lagging one or several years behind a climatic or biotic event, from forest decline cases in progress since the 2003 drought or attributed to previous severe droughts or defoliations in France. Tree growth or vitality recovery is illustrated, and the functional interpretation of the long lasting memory of trees is discussed. A coupled approach linking dendrochronology and ecophysiology helps in discussing vulnerability of forest stands, and suggests management advices in order to mitigate extreme drought and cope with selective mortality.
Biological Extreme Events - Past, Present, and Future
NASA Astrophysics Data System (ADS)
Gutschick, V. P.
2010-12-01
Biological extreme events span wide ranges temporally and spatially and in type - population dieoffs, extinctions, ecological reorganizations, changes in biogeochemical fluxes, and more. Driving variables consist in meteorology, tectonics, orbital changes, anthropogenic changes (land-use change, species introductions, reactive N injection into the biosphere), and evolution (esp. of diseases). However, the mapping of extremes in the drivers onto biological extremes as organismal responses is complex, as laid out originally in the theoretical framework of Gutschick and BassiriRad (New Phytologist [2003] 100:21-42). Responses are nonlinear and dependent on (mostly unknown and) complex temporal sequences - often of multiple environmental variables. The responses are species- and genotype specific. I review extreme events over from past to present over wide temporal scales, while noting that they are not wholly informative of responses to the current and near-future drivers for at least two reasons: 1) the current combination of numerous environmental extremes - changes in CO2, temperature, precipitation, reactive N, land fragmentation, O3, etc. -is unprecedented in scope, and 2) adaptive genetic variation for organismal responses is constrained by poorly-characterized genetic structures (in organisms and populations) and by loss of genetic variation by genetic drift over long periods. We may expect radical reorganizations of ecosystem and biogeochemical functions. These changes include many ecosystem services in flood control, crop pollination and insect/disease control, C-water-mineral cycling, and more, as well as direct effects on human health. Predictions of such changes will necessarily be very weak in the critical next few decades, given the great deal of observation, experimentation, and theory construction that will be necessary, on both organisms and drivers. To make the research efforts most effective will require extensive, insightful planning, beginning immediately. Massive dieoff of conifers in the US Southwest, an extreme event driven by a remarkably uncommon co-occurrence of high temperature, drought, and long active season for insects
The influence of feeding and fasting on plasma metabolites in the dogfish shark (Squalus acanthias).
Wood, Chris M; Walsh, Patrick J; Kajimura, Makiko; McClelland, Grant B; Chew, Shit F
2010-04-01
Dogfish sharks are opportunistic predators, eating large meals at irregular intervals. Here we present a synthesis of data from several previous studies on responses in plasma metabolites after natural feeding and during prolonged fasting (up to 56days), together with new data on changes in plasma concentrations of amino acids and non-esterified fatty acids. Post-prandial and long-term fasting responses were compared to control sharks fasted for 7days, a typical inter-meal interval. A feeding frenzy was created in which dogfish were allowed to feed naturally on dead teleosts at two consumed ration levels, 2.6% and 5.5% of body weight. Most responses were more pronounced at the higher ration level. These included increases in urea and TMAO concentrations at 20h, followed by stability through to 56days of fasting. Ammonia levels were low and exhibited little short-term response to feeding, but declined to very low values during the extended fast. Glucose and beta-hydroxybutyrate both fell after feeding, the latter to a greater and more prolonged extent (up to 60h), whereas acetoacetate did not change. During prolonged fasting, glucose concentrations were well regulated, but beta-hydroxybutyrate increased to 2-3-fold control levels. Total plasma amino acid concentrations increased in a biphasic fashion, with peaks at 6-20h, and 48-60h after the meal, followed by homeostasis during the extended fast. Essential and non-essential amino acids generally followed this same pattern, though some exhibited different trends after feeding: taurine, beta-alanine, and glycine (decreases or stability), alanine and glutamine (modest prolonged increases), and threonine, serine, asparagine, and valine (much larger short-term increases). Plasma non-esterified fatty acid concentrations declined markedly through 48h after the 2.6% meal. These data are interpreted in light of companion studies showing elevations in aerobic metabolic rate, urea production, rectal gland function, metabolic base excretion, and activation of ornithine-urea cycle and aerobic enzymes after the meal, and muscle N-depletion but maintenance of osmolality and urea production during long-term fasting.
NASA Technical Reports Server (NTRS)
Misulis, K. E.; Dettbarn, W. D.
1985-01-01
An investigation was conducted as to whether the predominantly slow SOL, which is low in AChE activity, is initially reinnervated by axons that originally innervated fast muscle fibers with high AChE activity, such as those of the EDL. Local denervation of the SOL in the guinea pig was performed because this muscle is composed solely of slow (type I) fibers; thereby virtually eliminating the possibility of homologous muscle fast fiber innervation. The overshoot in this preparation was qualitatively similar to that seen with distal denervation in the guinea pig and local and distal denervation in the rat. Thus, initial fast fiber innvervation is not responsible for the patterns of change in AChE activity seen with reinnervation in the SOL. It is concluded that the neural control of AChe is different in these two muscles and may reflect specific differences in the characteristics of AChE regulation in fast and slow muscle.
Chaouachi, Anis; Leiper, John B; Chtourou, Hamdi; Aziz, Abdul Rashid; Chamari, Karim
2012-01-01
The behavioural modifications that accompany Ramadan intermittent fasting (RIF) are usually associated with some alterations in the metabolic, physiological, and psychological responses of athletes that may affect sport performance. Muslim athletes who are required to train and/or compete during the month-long, diurnal fast must adopt coping strategies that allow them to maintain physical fitness and motivation if they are to perform at the highest level. This updated review aims to present the current state of knowledge of the effects of RIF on training and performance, focusing on key-factors that contribute to the effects of Ramadan on exercise performance: energy restriction, sleep deprivation, circadian rhythm perturbation, dehydration, and alterations in the training load. The available literature contain few studies that have examined the effects of RIF on physical performance in athletes and, to date, the results are inconclusive, so the effects of RIF on competition outcomes are not at present wholly understood. The diverse findings probably indicate individual differences in the adaptability and self-generated coping strategies of athletes during fasting and training. However, the results of the small number of well-controlled studies that have examined the effects of Ramadan on athletic performance suggest that few aspects of physical fitness are negatively affected, and where decrements are observed these are usually modest. Subjective feelings of fatigue and other mood indicators are often cited as implying additional stress on the athlete throughout Ramadan, but most studies show that these factors may not result in decreases in performance and that perceived exercise intensity is unlikely to increase to any significant degree. Current evidence from good, well-controlled research supports the conclusion that athletes who maintain their total energy and macronutrient intake, training load, body composition, and sleep length and quality are unlikely to suffer any substantial decrements in performance during Ramadan. Further research is required to determine the effect of RIF on the most challenging events or exercise protocols and on elite athletes competing in extreme environments.
Regulation of the renin-angiotensin-aldosterone system in fibromyalgia.
Maliszewski, Anne M; Goldenberg, Don L; Hurwitz, Shelley; Adler, Gail K
2002-07-01
To assess the function of the renin-angiotensin-aldosterone (RAA) system in women with fibromyalgia (FM) compared to healthy women. Women with FM [n = 14, age 41.0+/-7.2 yrs, body mass index (BMI) 26.4+/-5.4 kg/m2] and healthy women (n = 13, age 40.0+/-7.7 yrs, BMI 25.0+/-5.0 kg/m2) were placed on a low sodium diet (10 mEq sodium/day) for 5 days. After being supine and fasting overnight, subjects received an intravenous infusion of angiotensin II at successive doses of 1, 3, and 10 ng/kg/min for 45 min per dose. Blood pressure (BP), plasma renin activity (PRA), aldosterone, and cortisol were measured at baseline and after each dose of angiotensin II. Prior to sodium restriction, women with FM completed the Hopkins Symptom Checklist-90, which included a question grading the extent of dizziness/faintness on a scale of 0 (none) to 4 (extremely). After dietary sodium restriction, baseline PRA, aldosterone, and supine BP were similar in healthy women and women with FM. Aldosterone and BP rose in response to infused angiotensin II; these responses did not differ significantly between healthy women and women with FM. In women with FM, symptoms of dizziness correlated inversely with BMI (r = -0.81, p < 0.001) and the systolic BP response to 10 ng/kg/min angiotensin II (r = -0.81, p < 0.001). The functioning of the RAA system, including the vascular response to angiotensin II, was intact in women with FM compared to healthy women. However, women with FM who complained of dizziness had a blunted vascular response to angiotensin II. This blunted vascular response may indicate intravascular volume depletion in women with symptoms of dizziness.
Albano, Christine M.; Cox, Dale A.; Dettinger, Michael; Shaller, Kevin; Welborn, Toby L.; McCarthy, Maureen
2014-01-01
Atmospheric rivers (ARs) are strongly linked to extreme winter precipitation events in the Western U.S., accounting for 80 percent of extreme floods in the Sierra Nevada and surrounding lowlands. In 2010, the U.S. Geological Survey developed the ARkStorm extreme storm scenario for California to quantify risks from extreme winter storms and to allow stakeholders to better explore and mitigate potential impacts. To explore impacts on natural resources and communities in montane and adjacent environments, we downscaled the scenario to the greater Lake Tahoe, Reno and Carson City region of northern Nevada and California. This ArkStorm@Tahoe scenario was presented at six stakeholder meetings, each with a different geographic and subject matter focus. Discussions were facilitated by the ARkStorm@Tahoe team to identify social and ecological vulnerabilities to extreme winter storms, science and information needs, and proactive measures that might minimize impacts from this type of event. Information collected in these meetings was used to develop a tabletop emergency response exercise and set of recommendations for increasing resilience to extreme winter storm events in both Tahoe and the downstream communities of Northern Nevada.Over 300 individuals participated in ARkStorm@Tahoe stakeholder meetings and the emergency response exercise, including representatives from emergency response, natural resource and ecosystem management, health and human services, public utilities, and businesses. Interruption of transportation, communications, and lack of power and backup fuel supplies were identified as the most likely and primary points of failure across multiple sectors and geographies, as these interruptions have cascading effects on natural and human systems by impeding emergency response efforts. Other key issues that arose in discussions included contamination risks to water supplies and aquatic ecosystems, especially in the Tahoe Basin and Pyramid Lake, interagency coordination, credentialing, flood management, and coordination of health and human services during such an event. Mitigation options were identified for each of the key issues. Several science needs were identified, particularly the need for improved flood inundation maps. Finally, key lessons learned were identified and may help to increase preparedness, response and recovery from extreme storms in the future.
Fay, Andre P; de Velasco, Guillermo; Ho, Thai H; Van Allen, Eliezer M; Murray, Bradley; Albiges, Laurence; Signoretti, Sabina; Hakimi, A Ari; Stanton, Melissa L; Bellmunt, Joaquim; McDermott, David F; Atkins, Michael B; Garraway, Levi A; Kwiatkowski, David J; Choueiri, Toni K
2016-07-01
Advances in next-generation sequencing have provided a unique opportunity to understand the biology of disease and mechanisms of sensitivity or resistance to specific agents. Renal cell carcinoma (RCC) is a heterogeneous disease and highly variable clinical responses have been observed with vascular endothelial growth factor (VEGF)-targeted therapy (VEGF-TT). We hypothesized that whole-exome sequencing analysis might identify genotypes associated with extreme response or resistance to VEGF-TT in metastatic (mRCC). Patients with mRCC who had received first-line sunitinib or pazopanib and were in 2 extreme phenotypes of response were identified. Extreme responders (ERs) were defined as those with partial response or complete response for 3 or more years (n=13) and primary refractory patients (PRPs) were defined as those with progressive disease within the first 3 months of therapy (n=14). International Metastatic RCC Database Consortium prognostic scores were not significantly different between the groups (P=.67). Considering the genes known to be mutated in RCC at significant frequency, PBRM1 mutations were identified in 7 ERs (54%) versus 1 PRP (7%) (P=.01). In addition, mutations in TP53 (n=4) were found only in PRPs (P=.09). Our data suggest that mutations in some genes in RCC may impact response to VEGF-TT. Copyright © 2016 by the National Comprehensive Cancer Network.
Response of Simple, Model Systems to Extreme Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ewing, Rodney C.; Lang, Maik
2015-07-30
The focus of the research was on the application of high-pressure/high-temperature techniques, together with intense energetic ion beams, to the study of the behavior of simple oxide systems (e.g., SiO 2, GeO 2, CeO 2, TiO 2, HfO 2, SnO 2, ZnO and ZrO 2) under extreme conditions. These simple stoichiometries provide unique model systems for the analysis of structural responses to pressure up to and above 1 Mbar, temperatures of up to several thousands of kelvin, and the extreme energy density generated by energetic heavy ions (tens of keV/atom). The investigations included systematic studies of radiation- and pressure-induced amorphizationmore » of high P-T polymorphs. By studying the response of simple stoichiometries that have multiple structural “outcomes”, we have established the basic knowledge required for the prediction of the response of more complex structures to extreme conditions. We especially focused on the amorphous state and characterized the different non-crystalline structure-types that result from the interplay of radiation and pressure. For such experiments, we made use of recent technological developments, such as the perforated diamond-anvil cell and in situ investigation using synchrotron x-ray sources. We have been particularly interested in using extreme pressures to alter the electronic structure of a solid prior to irradiation. We expected that the effects of modified band structure would be evident in the track structure and morphology, information which is much needed to describe theoretically the fundamental physics of track-formation. Finally, we investigated the behavior of different simple-oxide, composite nanomaterials (e.g., uncoated nanoparticles vs. core/shell systems) under coupled, extreme conditions. This provided insight into surface and boundary effects on phase stability under extreme conditions.« less
Welch, Andreanna J; Bedoya-Reina, Oscar C; Carretero-Paulet, Lorenzo; Miller, Webb; Rode, Karyn D; Lindqvist, Charlotte
2014-02-01
Polar bears (Ursus maritimus) face extremely cold temperatures and periods of fasting, which might result in more severe energetic challenges than those experienced by their sister species, the brown bear (U. arctos). We have examined the mitochondrial and nuclear genomes of polar and brown bears to investigate whether polar bears demonstrate lineage-specific signals of molecular adaptation in genes associated with cellular respiration/energy production. We observed increased evolutionary rates in the mitochondrial cytochrome c oxidase I gene in polar but not brown bears. An amino acid substitution occurred near the interaction site with a nuclear-encoded subunit of the cytochrome c oxidase complex and was predicted to lead to a functional change, although the significance of this remains unclear. The nuclear genomes of brown and polar bears demonstrate different adaptations related to cellular respiration. Analyses of the genomes of brown bears exhibited substitutions that may alter the function of proteins that regulate glucose uptake, which could be beneficial when feeding on carbohydrate-dominated diets during hyperphagia, followed by fasting during hibernation. In polar bears, genes demonstrating signatures of functional divergence and those potentially under positive selection were enriched in functions related to production of nitric oxide (NO), which can regulate energy production in several different ways. This suggests that polar bears may be able to fine-tune intracellular levels of NO as an adaptive response to control trade-offs between energy production in the form of adenosine triphosphate versus generation of heat (thermogenesis).
Geberl, Cornelia; Brinkløv, Signe; Wiegrebe, Lutz; Surlykke, Annemarie
2015-01-01
Echolocation is an active sense enabling bats and toothed whales to orient in darkness through echo returns from their ultrasonic signals. Immediately before prey capture, both bats and whales emit a buzz with such high emission rates (≥180 Hz) and overall duration so short that its functional significance remains an enigma. To investigate sensory–motor control during the buzz of the insectivorous bat Myotis daubentonii, we removed prey, suspended in air or on water, before expected capture. The bats responded by shortening their echolocation buzz gradually; the earlier prey was removed down to approximately 100 ms (30 cm) before expected capture, after which the full buzz sequence was emitted both in air and over water. Bats trawling over water also performed the full capture behavior, but in-air capture motions were aborted, even at very late prey removals (<20 ms = 6 cm before expected contact). Thus, neither the buzz nor capture movements are stereotypical, but dynamically adapted based on sensory feedback. The results indicate that echolocation is controlled mainly by acoustic feedback, whereas capture movements are adjusted according to both acoustic and somatosensory feedback, suggesting separate (but coordinated) central motor control of the two behaviors based on multimodal input. Bat echolocation, especially the terminal buzz, provides a unique window to extremely fast decision processes in response to sensory feedback and modulation through attention in a naturally behaving animal. PMID:25775538
Welch, Andreanna J.; Carretero-Paulet, Lorenzo; Miller, Webb; Rode, Karyn D.; Lindqvist, Charlotte
2014-01-01
Polar bears (Ursus maritimus) face extremely cold temperatures and periods of fasting, which might result in more severe energetic challenges than those experienced by their sister species, the brown bear (U. arctos). We have examined the mitochondrial and nuclear genomes of polar and brown bears to investigate whether polar bears demonstrate lineage-specific signals of molecular adaptation in genes associated with cellular respiration/energy production. We observed increased evolutionary rates in the mitochondrial cytochrome c oxidase I gene in polar but not brown bears. An amino acid substitution occurred near the interaction site with a nuclear-encoded subunit of the cytochrome c oxidase complex and was predicted to lead to a functional change, although the significance of this remains unclear. The nuclear genomes of brown and polar bears demonstrate different adaptations related to cellular respiration. Analyses of the genomes of brown bears exhibited substitutions that may alter the function of proteins that regulate glucose uptake, which could be beneficial when feeding on carbohydrate-dominated diets during hyperphagia, followed by fasting during hibernation. In polar bears, genes demonstrating signatures of functional divergence and those potentially under positive selection were enriched in functions related to production of nitric oxide (NO), which can regulate energy production in several different ways. This suggests that polar bears may be able to fine-tune intracellular levels of NO as an adaptive response to control trade-offs between energy production in the form of adenosine triphosphate versus generation of heat (thermogenesis). PMID:24504087
Welch, Andreanna J.; Bedoya-Reina, Oscar C.; Carretero-Paulet, Lorenzo; Miller, Webb; Rode, Karyn D.; Lindqvist, Charlotte
2014-01-01
Polar bears (Ursus maritimus) face extremely cold temperatures and periods of fasting, which might result in more severe energetic challenges than those experienced by their sister species, the brown bear (U. arctos). We have examined the mitochondrial and nuclear genomes of polar and brown bears to investigate if polar bears demonstrate lineage-specific signals of molecular adaptation in genes associated with cellular respiration/energy production. We observed increased evolutionary rates in the mitochondrial cytochrome c oxidase I gene in polar but not brown bears. An amino acid substitution occurred near the interaction site with a nuclear-encoded subunit of the cytochrome c oxidase complex, and was predicted to lead to a functional change, although the significance of this remains unclear. The nuclear genomes of brown and polar bears demonstrate different adaptations related to cellular respiration. Analyses of the genomes of brown bears exhibited substitutions that may alter the function of proteins that regulate glucose uptake, which could be beneficial when feeding on carbohydrate-dominated diets during hyperphagia, followed by fasting during hibernation. In polar bears, genes demonstrating signatures of functional divergence and those potentially under positive selection were enriched in functions related to production of nitric oxide, which can regulate energy production in several different ways. This suggests that polar bears may be able to fine-tune intracellular levels of nitric oxide as an adaptive response to control trade-offs between energy production in the form of ATP versus generation of heat (thermogenesis).
NASA Astrophysics Data System (ADS)
Ajayakumar, J.; Shook, E.; Turner, V. K.
2017-10-01
With social media becoming increasingly location-based, there has been a greater push from researchers across various domains including social science, public health, and disaster management, to tap in the spatial, temporal, and textual data available from these sources to analyze public response during extreme events such as an epidemic outbreak or a natural disaster. Studies based on demographics and other socio-economic factors suggests that social media data could be highly skewed based on the variations of population density with respect to place. To capture the spatio-temporal variations in public response during extreme events we have developed the Socio-Environmental Data Explorer (SEDE). SEDE collects and integrates social media, news and environmental data to support exploration and assessment of public response to extreme events. For this study, using SEDE, we conduct spatio-temporal social media response analysis on four major extreme events in the United States including the "North American storm complex" in December 2015, the "snowstorm Jonas" in January 2016, the "West Virginia floods" in June 2016, and the "Hurricane Matthew" in October 2016. Analysis is conducted on geo-tagged social media data from Twitter and warnings from the storm events database provided by National Centers For Environmental Information (NCEI) for analysis. Results demonstrate that, to support complex social media analyses, spatial and population-based normalization and filtering is necessary. The implications of these results suggests that, while developing software solutions to support analysis of non-conventional data sources such as social media, it is quintessential to identify the inherent biases associated with the data sources, and adapt techniques and enhance capabilities to mitigate the bias. The normalization strategies that we have developed and incorporated to SEDE will be helpful in reducing the population bias associated with social media data and will be useful for researchers and decision makers to enhance their analysis on spatio-temporal social media responses during extreme events.
Lithium-containing scintillators for thermal neutron, fast neutron, and gamma detection
Zaitseva, Natalia P.; Carman, M. Leslie; Faust, Michelle A.
2016-03-01
In one embodiment, a scintillator includes a scintillator material; a primary fluor, and a Li-containing compound, where the Li-containing compound is soluble in the primary fluor, and where the scintillator exhibits an optical response signature for thermal neutrons that is different than an optical response signature for fast neutrons and gamma rays.
Intermittent fasting: a "new" historical strategy for controlling seizures?
Hartman, Adam L; Rubenstein, James E; Kossoff, Eric H
2013-05-01
In antiquity, fasting was a treatment for epilepsy and a rationale for the ketogenic diet (KD). Preclinical data indicate the KD and intermittent fasting do not share identical anticonvulsant mechanisms. We implemented an intermittent fasting regimen in six children with an incomplete response to a KD. Three patients adhered to the combined intermittent fasting/KD regimen for 2 months and four had transient improvement in seizure control, albeit with some hunger-related adverse reactions. Copyright © 2012 Elsevier B.V. All rights reserved.
Inoue, Wataru; Luheshi, Giamal N
2010-12-01
A decrease in leptin levels with the onset of starvation triggers a myriad of physiological responses including immunosuppression and hypometabolism/hypothermia, both of which can counteract the fever response to pathogens. Here we examined the role of leptin in LPS-induced fever in rats that were fasted for 48 h prior to inflammation with or without leptin replacement (12 μg/day). The preinflammation fasting alone caused a progressive hypothermia that was almost completely reversed by leptin replacement. The LPS (100 μg/kg)-induced elevation in core body temperature (T(core)) was attenuated in the fasted animals at 2-6 h after the injection, an effect that was not reversed by leptin replacement. Increasing the LPS dose to 1,000 μg/kg caused a long-lasting fever that remained unabated for up to 36 h after the injection in the fed rats. This sustained response was strongly attenuated in the fasted rats whose T(core) started to decrease by 18 h after the injection. Leptin replacement almost completely restored the prolonged fever. The attenuation of the prolonged fever in the fasted animals was accompanied by the diminution of proinflammatory PGE(2) in the cerebrospinal fluid and mRNA of proopiomelanocortin (POMC) in the hypothalamus. Leptin replacement prevented the fasting-induced reduction of POMC but not PGE(2). Moreover, the leptin-dependent fever maintenance correlated closely with hypothalamic POMC levels (r = 0.77, P < 0.001). These results suggest that reduced leptin levels during starvation attenuate the sustained fever response by lowering hypothalamic POMC tone but not PGE(2) synthesis.
NASA Astrophysics Data System (ADS)
Mowlawi, Ali Asghar; Yazdani, Majed
The detection of landmines using available technologies is a time consuming, expensive, and extremely dangerous job, so that there is a need for technological breakthroughs in this field. One of the safest and most effective technologies to landmine and explosive detection is the neutron backscattering technique. The slowing-down of fast neutrons to the thermal energy is a direct measure of the concentration of hydrogen, one of the main elements present in explosive materials. The elastic scattering of fast neutrons is affected by the strong resonances in the cross-section of the three other elements of explosives: nitrogen, oxygen, and carbon. In this work, Monte Carlo estimations of the soil moisture effects on landmine detection are presented.
Development of Pulsar Detection Methods for a Galactic Center Search
NASA Astrophysics Data System (ADS)
Thornton, Stephen; Wharton, Robert; Cordes, James; Chatterjee, Shami
2018-01-01
Finding pulsars within the inner parsec of the galactic center would be incredibly beneficial: for pulsars sufficiently close to Sagittarius A*, extremely precise tests of general relativity in the strong field regime could be performed through measurement of post-Keplerian parameters. Binary pulsar systems with sufficiently short orbital periods could provide the same laboratories with which to test existing theories. Fast and efficient methods are needed to parse large sets of time-domain data from different telescopes to search for periodicity in signals and differentiate radio frequency interference (RFI) from pulsar signals. Here we demonstrate several techniques to reduce red noise (low-frequency interference), generate signals from pulsars in binary orbits, and create plots that allow for fast detection of both RFI and pulsars.
Reichel, Valeska A; Schneider, Nora; Grünewald, Barbara; Kienast, Thorsten; Pfeiffer, Ernst; Lehmkuhl, Ulrike; Korte, Alexander
2014-02-01
In this study, we investigated the emotional processing of extremely emaciated body cues in adolescents and young adults with (n = 36) and without (n = 36) anorexia nervosa (AN), introducing a new picture type, which was taken from websites that promote extreme thinness and is targeted specifically at adolescents interested in extreme thinness. A startle reflex paradigm was used for implicit reactions, while a self-assessment instrument was used for subjective responses. We found a significant group difference with a startle inhibition (appetitive response) among the patients and a startle potentiation (aversive response) among the controls, whereas no such difference for subjective measures was found. The results are in contrast to previous studies, which proposed a general failure to activate the appetitive motivational system in AN, but in keeping with findings from other addictions, where the same response pattern has been found. Implications for prevention and therapy are discussed. Copyright © 2013 Society for Psychophysiological Research.
NASA Astrophysics Data System (ADS)
Toda, M.; Knohl, A.; Herbst, M.; Keenan, T. F.; Yokozawa, M.
2016-12-01
The increase in extreme climate events associated with ongoing global warming may create severe damage to terrestrial ecosystems, changing plant structure and the eco-physiological functions that regulate ecosystem carbon exchange. However, most damage is usually due to moderate, rather than catastrophic, disturbances. The nature of plant functional responses to such disturbances, and the resulting effects on the terrestrial carbon cycle, remain poorly understood. To unravel the scientific question, tower-based eddy covariance data in the cool-temperate forests were used to constrain plant eco-physiological parameters in a persimoneous ecosystem model that may have affected carbon dynamics following extreme climate events using the statistic Bayesian inversion approach. In the present study, we raised two types of extreme events relevant for cool-temperate regions, i.e. a typhoon with mechanistic foliage destraction and a heat wave with severe drought. With appropriate evaluation of parameter and predictive uncertainties, the inversion analysis shows annual trajectory of activated photosynthetic responses following climate extremes compared the pre-disturbance state in each forest. We address that forests with moderate disturbance show substantial and rapid photosynthetic recovery, enhanced productivity, and, thus, ecosystem carbon exchange, although the effect of extreme climatic events varies depending on the stand successional phase and the type, intensity, timing and legacy of the disturbance.
Distributed neural control of a hexapod walking vehicle
NASA Technical Reports Server (NTRS)
Beer, R. D.; Sterling, L. S.; Quinn, R. D.; Chiel, H. J.; Ritzmann, R.
1989-01-01
There has been a long standing interest in the design of controllers for multilegged vehicles. The approach is to apply distributed control to this problem, rather than using parallel computing of a centralized algorithm. Researchers describe a distributed neural network controller for hexapod locomotion which is based on the neural control of locomotion in insects. The model considers the simplified kinematics with two degrees of freedom per leg, but the model includes the static stability constraint. Through simulation, it is demonstrated that this controller can generate a continuous range of statically stable gaits at different speeds by varying a single control parameter. In addition, the controller is extremely robust, and can continue the function even after several of its elements have been disabled. Researchers are building a small hexapod robot whose locomotion will be controlled by this network. Researchers intend to extend their model to the dynamic control of legs with more than two degrees of freedom by using data on the control of multisegmented insect legs. Another immediate application of this neural control approach is also exhibited in biology: the escape reflex. Advanced robots are being equipped with tactile sensing and machine vision so that the sensory inputs to the robot controller are vast and complex. Neural networks are ideal for a lower level safety reflex controller because of their extremely fast response time. The combination of robotics, computer modeling, and neurobiology has been remarkably fruitful, and is likely to lead to deeper insights into the problems of real time sensorimotor control.
Extreme Windstorms and Related Impacts on Iberia
NASA Astrophysics Data System (ADS)
Liberato, Margarida L. R.; Ordóñez, Paulina; Pinto, Joaquim G.; Ramos, Alexandre M.; Karremann, Melanie K.; Trigo, Isabel F.
2014-05-01
Extreme windstorms are one of the major natural catastrophes in the mid latitudes, one of the most costly natural hazards in Europe and are responsible for substantial economic damages and even fatalities. During the recent winters, the Iberian Peninsula was hit by severe (wind) storms such as Klaus (January 2009), Xynthia (February 2010) and Gong (January 2013) which exhibited uncommon characteristics. They were all explosive extratropical cyclones formed over the mid-Atlantic, travelling then eastwards at lower latitudes than usual along the edge of the dominant North Atlantic storm track. In this work we present a windstorm catalogue for the Iberian Peninsula, where the characteristics of the potentially more destructive windstorms for the 1979-2012 period are identified. For this purpose, the potential impact of high winds over the Iberian Peninsula is assessed by using a daily damage index based on maximum wind speeds that exceeds the local 98th percentile threshold. Then, the characteristics of extratropical cyclones associated with these events are analyzed. Results indicate that these are fast moving, intense cyclones, typically located near the northwestern tip of the Iberian Peninsula. This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project STORMEx FCOMP-01-0124-FEDER- 019524 (PTDC/AAC-CLI/121339/2010). A. M. Ramos was also supported by a FCT postdoctoral Grant (FCT/DFRH/SFRH/BPD/84328/2012).
2014-01-01
High-throughput screening techniques that analyze the metabolic endpoints of biological processes can identify the contributions of genetic predisposition and environmental factors to the development of common diseases. Studies applying controlled physiological challenges can reveal dysregulation in metabolic responses that may be predictive for or associated with these diseases. However, large-scale epidemiological studies with well controlled physiological challenge conditions, such as extended fasting periods and defined food intake, pose logistic challenges. Culturally and religiously motivated behavioral patterns of life style changes provide a natural setting that can be used to enroll a large number of study volunteers. Here we report a proof of principle study conducted within a Muslim community, showing that a metabolomics study during the Holy Month of Ramadan can provide a unique opportunity to explore the pre-prandial and postprandial response of human metabolism to nutritional challenges. Up to five blood samples were obtained from eleven healthy male volunteers, taken directly before and two hours after consumption of a controlled meal in the evening on days 7 and 26 of Ramadan, and after an over-night fast several weeks after Ramadan. The observed increases in glucose, insulin and lactate levels at the postprandial time point confirm the expected physiological response to food intake. Targeted metabolomics further revealed significant and physiologically plausible responses to food intake by an increase in bile acid and amino acid levels and a decrease in long-chain acyl-carnitine and polyamine levels. A decrease in the concentrations of a number of phospholipids between samples taken on days 7 and 26 of Ramadan shows that the long-term response to extended fasting may differ from the response to short-term fasting. The present study design is scalable to larger populations and may be extended to the study of the metabolic response in defined patient groups such as individuals with type 2 diabetes. PMID:24906381
Mathew, Sweety; Krug, Susanne; Skurk, Thomas; Halama, Anna; Stank, Antonia; Artati, Anna; Prehn, Cornelia; Malek, Joel A; Kastenmüller, Gabi; Römisch-Margl, Werner; Adamski, Jerzy; Hauner, Hans; Suhre, Karsten
2014-06-06
High-throughput screening techniques that analyze the metabolic endpoints of biological processes can identify the contributions of genetic predisposition and environmental factors to the development of common diseases. Studies applying controlled physiological challenges can reveal dysregulation in metabolic responses that may be predictive for or associated with these diseases. However, large-scale epidemiological studies with well controlled physiological challenge conditions, such as extended fasting periods and defined food intake, pose logistic challenges. Culturally and religiously motivated behavioral patterns of life style changes provide a natural setting that can be used to enroll a large number of study volunteers. Here we report a proof of principle study conducted within a Muslim community, showing that a metabolomics study during the Holy Month of Ramadan can provide a unique opportunity to explore the pre-prandial and postprandial response of human metabolism to nutritional challenges. Up to five blood samples were obtained from eleven healthy male volunteers, taken directly before and two hours after consumption of a controlled meal in the evening on days 7 and 26 of Ramadan, and after an over-night fast several weeks after Ramadan. The observed increases in glucose, insulin and lactate levels at the postprandial time point confirm the expected physiological response to food intake. Targeted metabolomics further revealed significant and physiologically plausible responses to food intake by an increase in bile acid and amino acid levels and a decrease in long-chain acyl-carnitine and polyamine levels. A decrease in the concentrations of a number of phospholipids between samples taken on days 7 and 26 of Ramadan shows that the long-term response to extended fasting may differ from the response to short-term fasting. The present study design is scalable to larger populations and may be extended to the study of the metabolic response in defined patient groups such as individuals with type 2 diabetes.
NASA Astrophysics Data System (ADS)
Ricciuto, D. M.; Warren, J.; Guha, A.
2017-12-01
While carbon and energy fluxes in current Earth system models generally have reasonable instantaneous responses to extreme temperature and precipitation events, they often do not adequately represent the long-term impacts of these events. For example, simulated net primary productivity (NPP) may decrease during an extreme heat wave or drought, but may recover rapidly to pre-event levels following the conclusion of the extreme event. However, field measurements indicate that long-lasting damage to leaves and other plant components often occur, potentially affecting the carbon and energy balance for months after the extreme event. The duration and frequency of such extreme conditions is likely to shift in the future, and therefore it is critical for Earth system models to better represent these processes for more accurate predictions of future vegetation productivity and land-atmosphere feedbacks. Here we modify the structure of the Accelerated Climate Model for Energy (ACME) land surface model to represent long-term impacts and test the improved model against observations from experiments that applied extreme conditions in growth chambers. Additionally, we test the model against eddy covariance measurements that followed extreme conditions at selected locations in North America, and against satellite-measured vegetation indices following regional extreme events.
NASA Astrophysics Data System (ADS)
House, B. M.; Norris, R. D.
2017-12-01
The Early Eocene Climatic Optimum (EECO) around 50 Ma was a sustained period of extreme global warmth with ocean bottom water temperatures of up to 12° C. The marine biologic response to such climatic extremes is unclear, however, in part because proxies that integrate ecosystem-wide productivity signals are scarce. While the accumulation of marine barite (BaSO4) is one such proxy, its applicability has remained limited due to the difficulty in reliably quantifying barite. Discrete measurements of barite content in marine sediments are laborious, and indirect estimates provide unclear results. We have developed a fast, high-throughput method for reliable measurement of barite content that relies on selective extraction of barite rather than sample digestion and quantification of remaining barite. Tests of the new method reveal that it gives the expected results for a wide variety of sediment types and can quantitatively extract 10-100 times the amount of barite typically encountered in natural sediments. Altogether, our method provides an estimated ten-fold increase in analysis efficiency over current sample digestion methods and also works reliably on small ( 1 g or less) sediment samples. Furthermore, the instrumentation requirements of this method are minor, so samples can be analyzed in shipboard labs to generate real-time paleoproductivity records during coring expeditions. Because of the magnitude of throughput improvement, this new technique will permit the generation of large datasets needed to address previously intractable paleoclimate and paleoceanographic questions. One such question is how export productivity changes during climatic extremes. We used our new method to analyze globally distributed sediment cores to determine if the EECO represented a period of anomalous export productivity either due to higher rates of primary production or more vigorous heterotrophic metabolisms. An increase in export productivity could provide a mechanism for exiting periods of extreme warmth, and understanding the interplay between temperature, atmospheric CO2 levels, and export productivity during the EECO will help clarify how the marine biologic system functions as a whole.
A geostatistical extreme-value framework for fast simulation of natural hazard events
Stephenson, David B.
2016-01-01
We develop a statistical framework for simulating natural hazard events that combines extreme value theory and geostatistics. Robust generalized additive model forms represent generalized Pareto marginal distribution parameters while a Student’s t-process captures spatial dependence and gives a continuous-space framework for natural hazard event simulations. Efficiency of the simulation method allows many years of data (typically over 10 000) to be obtained at relatively little computational cost. This makes the model viable for forming the hazard module of a catastrophe model. We illustrate the framework by simulating maximum wind gusts for European windstorms, which are found to have realistic marginal and spatial properties, and validate well against wind gust measurements. PMID:27279768
XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Mid-year report FY17 Q2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreland, Kenneth D.; Pugmire, David; Rogers, David
The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressingmore » four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.« less
XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Year-end report FY17.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreland, Kenneth D.; Pugmire, David; Rogers, David
The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressingmore » four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.« less
XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem. Mid-year report FY16 Q2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreland, Kenneth D.; Sewell, Christopher; Childs, Hank
The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressingmore » four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geveci, Berk; Maynard, Robert
The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. The XVis project brought together collaborators from predominant DOE projects for visualization on accelerators and combining their respectivemore » features into a new visualization toolkit called VTK-m.« less
XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Year-end report FY15 Q4.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreland, Kenneth D.; Sewell, Christopher; Childs, Hank
The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressingmore » four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.« less
Prolonged preoperative fasting in elective surgical patients: why should we reduce it?
Pimenta, Gunther Peres; de Aguilar-Nascimento, José Eduardo
2014-02-01
Despite the abundance of evidence to the contrary, 6-8 hours of total preoperative fasting is still considered essential by many surgeons and anesthesiologists, based on the strength of old concepts. Patients frequently end up fasting for 12 hours or more because of delays and changes in operating room schedules. The metabolic response to long fasting leads to intensification of the organic response occurring after trauma, which is mainly manifested as increased insulin resistance, an acute-phase response, and loss of lean body mass. In fact, there has not been any evidence indicating that a shorter fast of 2-3 hours, which includes oral clear or carbohydrate (CHO)-rich (12.5% carbohydrates, 50 kcal/100 mL) fluids, results in an increased risk of aspiration, regurgitation, or related morbidity compared with the standard policy of "nil by mouth after midnight." In addition, preoperative treatment with CHO-rich fluids may reduce postoperative discomfort and, for patients undergoing major abdominal surgery, may decrease the duration of postoperative hospitalization. New formulas for preoperative oral fluids containing amino acid or protein such as glutamine or whey protein are also potential candidates for early preoperative treatment and merit further study.
Morin, Jean-François; Botton, Eléonore; Jacquemard, François; Richard-Gireme, Anouk
2013-01-01
The Fetal medicine foundation (FMF) has developed a new algorithm called Prenatal Risk Calculation (PRC) to evaluate Down syndrome screening based on free hCGβ, PAPP-A and nuchal translucency. The peculiarity of this algorithm is to use the degree of extremeness (DoE) instead of the multiple of the median (MoM). The biologists measuring maternal seric markers on Kryptor™ machines (Thermo Fisher Scientific) use Fast Screen pre I plus software for the prenatal risk calculation. This software integrates the PRC algorithm. Our study evaluates the data of 2.092 patient files of which 19 show a fœtal abnormality. These files have been first evaluated with the ViewPoint software based on MoM. The link between DoE and MoM has been analyzed and the different calculated risks compared. The study shows that Fast Screen pre I plus software gives the same risk results as ViewPoint software, but yields significantly fewer false positive results.
NASA Astrophysics Data System (ADS)
Lu, Shan; Zhang, Hanmo
2016-01-01
To meet the requirement of autonomous orbit determination, this paper proposes a fast curve fitting method based on earth ultraviolet features to obtain accurate earth vector direction, in order to achieve the high precision autonomous navigation. Firstly, combining the stable characters of earth ultraviolet radiance and the use of transmission model software of atmospheric radiation, the paper simulates earth ultraviolet radiation model on different time and chooses the proper observation band. Then the fast improved edge extracting method combined Sobel operator and local binary pattern (LBP) is utilized, which can both eliminate noises efficiently and extract earth ultraviolet limb features accurately. And earth's centroid locations on simulated images are estimated via the least square fitting method using part of the limb edges. Taken advantage of the estimated earth vector direction and earth distance, Extended Kalman Filter (EKF) is applied to realize the autonomous navigation finally. Experiment results indicate the proposed method can achieve a sub-pixel earth centroid location estimation and extremely enhance autonomous celestial navigation precision.
Understanding the Physical Nature of Coronal "EIT Waves"
NASA Astrophysics Data System (ADS)
Long, D. M.; Bloomfield, D. S.; Chen, P.-F.; Downs, C.; Gallagher, P. T.; Kwon, R.-Y.; Vanninathan, K.; Veronig, A.; Vourlidas, A.; Vrsnak, B.; Warmuth, A.; Zic, T.
2016-10-01
For almost 20 years the physical nature of globally-propagating waves in the solar corona (commonly called "EIT waves") has been controversial and subject to debate. Additional theories have been proposed throughout the years to explain observations that did not fit with the originally proposed fast-mode wave interpretation. However, the incompatibility of observations made using the Extreme-ultraviolet Imaging Telescope (EIT) on the Solar and Heliospheric Observatory with the fast-mode wave interpretation have been challenged by differing viewpoints from the Solar Terrestrial Relations Observatory spacecraft and higher spatial/temporal resolution data from the Solar Dynamics Observatory. In this paper, we reexamine the theories proposed to explain "EIT waves" to identify measurable properties and behaviours that can be compared to current and future observations. Most of us conclude that "EIT waves" are best described as fast-mode large-amplitude waves/shocks, which are initially driven by the impulsive expansion of an erupting coronal mass ejection in the low corona.
Fast and Epsilon-Optimal Discretized Pursuit Learning Automata.
Zhang, JunQi; Wang, Cheng; Zhou, MengChu
2015-10-01
Learning automata (LA) are powerful tools for reinforcement learning. A discretized pursuit LA is the most popular one among them. During an iteration its operation consists of three basic phases: 1) selecting the next action; 2) finding the optimal estimated action; and 3) updating the state probability. However, when the number of actions is large, the learning becomes extremely slow because there are too many updates to be made at each iteration. The increased updates are mostly from phases 1 and 3. A new fast discretized pursuit LA with assured ε -optimality is proposed to perform both phases 1 and 3 with the computational complexity independent of the number of actions. Apart from its low computational complexity, it achieves faster convergence speed than the classical one when operating in stationary environments. This paper can promote the applications of LA toward the large-scale-action oriented area that requires efficient reinforcement learning tools with assured ε -optimality, fast convergence speed, and low computational complexity for each iteration.
Understanding the Physical Nature of Coronal "EIT Waves".
Long, D M; Bloomfield, D S; Chen, P F; Downs, C; Gallagher, P T; Kwon, R-Y; Vanninathan, K; Veronig, A M; Vourlidas, A; Vršnak, B; Warmuth, A; Žic, T
2017-01-01
For almost 20 years the physical nature of globally propagating waves in the solar corona (commonly called "EIT waves") has been controversial and subject to debate. Additional theories have been proposed over the years to explain observations that did not agree with the originally proposed fast-mode wave interpretation. However, the incompatibility of observations made using the Extreme-ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory with the fast-mode wave interpretation was challenged by differing viewpoints from the twin Solar Terrestrial Relations Observatory spacecraft and data with higher spatial and temporal resolution from the Solar Dynamics Observatory . In this article, we reexamine the theories proposed to explain EIT waves to identify measurable properties and behaviours that can be compared to current and future observations. Most of us conclude that the so-called EIT waves are best described as fast-mode large-amplitude waves or shocks that are initially driven by the impulsive expansion of an erupting coronal mass ejection in the low corona.
Adaptive responses of GLUT-4 and citrate synthase in fast-twitch muscle of voluntary running rats
NASA Technical Reports Server (NTRS)
Henriksen, E. J.; Halseth, A. E.
1995-01-01
Glucose transporter (GLUT-4) protein, hexokinase, and citrate synthase (proteins involved in oxidative energy production from blood glucose catabolism) increase in response to chronically elevated neuromuscular activity. It is currently unclear whether these proteins increase in a coordinated manner in response to this stimulus. Therefore, voluntary wheel running (WR) was used to chronically overload the fast-twitch rat plantaris muscle and the myocardium, and the early time courses of adaptative responses of GLUT-4 protein and the activities of hexokinase and citrate synthase were characterized and compared. Plantaris hexokinase activity increased 51% after just 1 wk of WR, whereas GLUT-4 and citrate synthase were increased by 51 and 40%, respectively, only after 2 wk of WR. All three variables remained comparably elevated (+50-64%) through 4 wk of WR. Despite the overload of the myocardium with this protocol, no substantial elevations in these variables were observed. These findings are consistent with a coordinated upregulation of GLUT-4 and citrate synthase in the fast-twitch plantaris, but not in the myocardium, in response to this increased neuromuscular activity. Regulation of hexokinase in fast-twitch muscle appears to be uncoupled from regulation of GLUT-4 and citrate synthase, as increases in the former are detectable well before increases in the latter.
Johnstone, A M
2007-05-01
Adult humans often undertake acute fasts for cosmetic, religious or medical reasons. For example, an estimated 14% of US adults have reported using fasting as a means to control body weight and this approach has long been advocated as an intermittent treatment for gross refractory obesity. There are unique historical data sets on extreme forms of food restriction that give insight into the consequences of starvation or semi-starvation in previously healthy, but usually non-obese subjects. These include documented medical reports on victims of hunger strike, famine and prisoners of war. Such data provide a detailed account on how the body adapts to prolonged starvation. It has previously been shown that fasting for the biblical period of 40 days and 40 nights is well within the overall physiological capabilities of a healthy adult. However, the specific effects on the human body and mind are less clearly documented, either in the short term (hours) or in the longer term (days). This review asks the following three questions, pertinent to any weight-loss therapy, (i) how effective is the regime in achieving weight loss, (ii) what impact does it have on psychology? and finally, (iii) does it work long-term?
Scalloping minimization in deep Si etching on Unaxis DSE tools
NASA Astrophysics Data System (ADS)
Lai, Shouliang; Johnson, Dave J.; Westerman, Russ J.; Nolan, John J.; Purser, David; Devre, Mike
2003-01-01
Sidewall smoothness is often a critical requirement for many MEMS devices, such as microfludic devices, chemical, biological and optical transducers, while fast silicon etch rate is another. For such applications, the time division multiplex (TDM) etch processes, so-called "Bosch" processes are widely employed. However, in the conventional TDM processes, rough sidewalls result due to scallop formation. To date, the amplitude of the scalloping has been directly linked to the silicon etch rate. At Unaxis USA Inc., we have developed a proprietary fast gas switching technique that is effective for scalloping minimization in deep silicon etching processes. In this technique, process cycle times can be reduced from several seconds to as little as a fraction of second. Scallop amplitudes can be reduced with shorter process cycles. More importantly, as the scallop amplitude is progressively reduced, the silicon etch rate can be maintained relatively constant at high values. An optimized experiment has shown that at etch rate in excess of 7 μm/min, scallops with length of 116 nm and depth of 35 nm were obtained. The fast gas switching approach offers an ideal manufacturing solution for MEMS applications where extremely smooth sidewall and fast etch rate are crucial.
Development of UO2/PuO2 dispersed in uranium matrix CERMET fuel system for fast reactors
NASA Astrophysics Data System (ADS)
Sinha, V. P.; Hegde, P. V.; Prasad, G. J.; Pal, S.; Mishra, G. P.
2012-08-01
CERMET fuel with either PuO2 or enriched UO2 dispersed in uranium metal matrix has a strong potential of becoming a fuel for the liquid metal cooled fast breeder reactors (LMR's). In fact it may act as a bridge between the advantages and disadvantages associated with the two extremes of fuel systems (i.e. ceramic fuel and metallic fuel) for fast reactors. At Bhabha Atomic Research Centre (BARC), R & D efforts are on to develop this CERMET fuel by powder metallurgy route. This paper describes the development of flow sheet for preparation of UO2 dispersed in uranium metal matrix pellets for three different compositions i.e. U-20 wt%UO2, U-25 wt%UO2 and U-30 wt%UO2. It was found that the sintered pellets were having excellent integrity and their linear mass was higher than that of carbide fuel pellets used in Fast Breeder Test Reactor programme (FBTR) in India. The pellets were characterized by X-ray diffraction (XRD) technique for phase analysis and lattice parameter determination. The optical microstructures were developed and reported for all the three different U-UO2 compositions.
Evolution of brain region volumes during artificial selection for relative brain size.
Kotrschal, Alexander; Zeng, Hong-Li; van der Bijl, Wouter; Öhman-Mägi, Caroline; Kotrschal, Kurt; Pelckmans, Kristiaan; Kolm, Niclas
2017-12-01
The vertebrate brain shows an extremely conserved layout across taxa. Still, the relative sizes of separate brain regions vary markedly between species. One interesting pattern is that larger brains seem associated with increased relative sizes only of certain brain regions, for instance telencephalon and cerebellum. Till now, the evolutionary association between separate brain regions and overall brain size is based on comparative evidence and remains experimentally untested. Here, we test the evolutionary response of brain regions to directional selection on brain size in guppies (Poecilia reticulata) selected for large and small relative brain size. In these animals, artificial selection led to a fast response in relative brain size, while body size remained unchanged. We use microcomputer tomography to investigate how the volumes of 11 main brain regions respond to selection for larger versus smaller brains. We found no differences in relative brain region volumes between large- and small-brained animals and only minor sex-specific variation. Also, selection did not change allometric scaling between brain and brain region sizes. Our results suggest that brain regions respond similarly to strong directional selection on relative brain size, which indicates that brain anatomy variation in contemporary species most likely stem from direct selection on key regions. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Research of the BWS system for lower extremity rehabilitation robot.
Zhang, Xiao; Li, Weida; Li, Juan; Cai, Xiaowei
2017-07-01
Body weight support (BWS) system is increasingly used in conjunction with treadmills to assist the patients with neurological impairments. Owing to lower limbs of the patients unable to bear the whole weight during the rehabilitation training, some weight can be removed to help the patients recover the basic walking ability gradually. Therefore, considering the man-machine relationship and the effects of the rehabilitation, a wire-driven BWS system is designed. The main unit of the system is an active closed-loop controlled drive to generate the exact desired force. The force acted on the body is through the adjustment of the length of the rope which is connected to the harness worn by the patient. The structure designed in the research is easy to operate to realize the goal of the rehabilitation. To verify the effectiveness and practicability of the BWS system, some experiments have been curried out. From the results, not only the constant unloading force can be realized, but also the response time is limited in a small range which can bring a positive effect on correcting gait, improving balance and reducing muscle spasms. Also, compared to the traditional body weight support system, such as static system or passive elastic system, it has the advantages of the fast response, small errors and constant unloading force.
Chowdhury, Enhad A; Richardson, Judith D; Tsintzas, Kostas; Thompson, Dylan; Betts, James A
2015-07-14
Breakfast omission is associated with obesity and CVD/diabetes, but the acute effects of extended morning fasting upon subsequent energy intake and metabolic/hormonal responses have received less attention. In a randomised cross-over design, thirty-five lean men (n 14) and women (n 21) extended their overnight fast or ingested a typical carbohydrate-rich breakfast in quantities relative to RMR (i.e. 1963 (sd 238) kJ), before an ad libitum lunch 3 h later. Blood samples were obtained hourly throughout the day until 3 h post-lunch, with subjective appetite measures assessed. Lunch intake was greater following extended fasting (640 (sd 1042) kJ, P< 0.01) but incompletely compensated for the omitted breakfast, with total intake lower than the breakfast trial (3887 (sd 1326) v. 5213 (sd 1590) kJ, P< 0.001). Systemic concentrations of peptide tyrosine-tyrosine and leptin were greater during the afternoon following breakfast (both P< 0.05) but neither acylated/total ghrelin concentrations were suppressed by the ad libitum lunch in the breakfast trial, remaining greater than the morning fasting trial throughout the afternoon (all P< 0.05). Insulin concentrations were greater during the afternoon in the morning fasting trial (all P< 0.01). There were no differences between trials in subjective appetite during the afternoon. In conclusion, morning fasting caused incomplete energy compensation at an ad libitum lunch. Breakfast increased some anorectic hormones during the afternoon but paradoxically abolished ghrelin suppression by the second meal. Extending morning fasting until lunch altered subsequent metabolic and hormonal responses but without greater appetite during the afternoon. The present study clarifies the impact of acute breakfast omission and adds novel insights into second-meal metabolism.
General purpose algorithms for characterization of slow and fast phase nystagmus
NASA Technical Reports Server (NTRS)
Lessard, Charles S.
1987-01-01
In the overall aim for a better understanding of the vestibular and optokinetic systems and their roles in space motion sickness, the eye movement responses to various dynamic stimuli are measured. The vestibulo-ocular reflex (VOR) and the optokinetic response, as the eye movement responses are known, consist of slow phase and fast phase nystagmus. The specific objective is to develop software programs necessary to characterize the vestibulo-ocular and optokinetic responses by distinguishing between the two phases of nystagmus. The overall program is to handle large volumes of highly variable data with minimum operator interaction. The programs include digital filters, differentiation, identification of fast phases, and reconstruction of the slow phase with a least squares fit such that sinusoidal or psuedorandom data may be processed with accurate results. The resultant waveform, slow phase velocity eye movements, serves as input data to the spectral analysis programs previously developed for NASA to analyze nystagmus responses to pseudorandom angular velocity inputs.
Analysis of fast and slow responses in AC conductance curves for p-type SiC MOS capacitors
NASA Astrophysics Data System (ADS)
Karamoto, Yuki; Zhang, Xufang; Okamoto, Dai; Sometani, Mitsuru; Hatakeyama, Tetsuo; Harada, Shinsuke; Iwamuro, Noriyuki; Yano, Hiroshi
2018-06-01
We used a conductance method to investigate the interface characteristics of a SiO2/p-type 4H-SiC MOS structure fabricated by dry oxidation. It was found that the measured equivalent parallel conductance–frequency (G p/ω–f) curves were not symmetric, showing that there existed both high- and low-frequency signals. We attributed high-frequency responses to fast interface states and low-frequency responses to near-interface oxide traps. To analyze the fast interface states, Nicollian’s standard conductance method was applied in the high-frequency range. By extracting the high-frequency responses from the measured G p/ω–f curves, the characteristics of the low-frequency responses were reproduced by Cooper’s model, which considers the effect of near-interface traps on the G p/ω–f curves. The corresponding density distribution of slow traps as a function of energy level was estimated.
Tattersall, Glenn J; Roussel, Damien; Voituron, Yann; Teulier, Loïc
2016-09-28
This study aimed to examine thermoregulatory responses in birds facing two commonly experienced stressors, cold and fasting. Logging devices allowing long-term and precise access to internal body temperature were placed within the gizzards of ducklings acclimated to cold (CA) (5°C) or thermoneutrality (TN) (25°C). The animals were then examined under three equal 4-day periods: ad libitum feeding, fasting and re-feeding. Through the analysis of daily as well as short-term, or ultradian, variations of body temperature, we showed that while ducklings at TN show only a modest decline in daily thermoregulatory parameters when fasted, they exhibit reduced surface temperatures from key sites of vascular heat exchange during fasting. The CA birds, on the other hand, significantly reduced their short-term variations of body temperature while increasing long-term variability when fasting. This phenomenon would allow the CA birds to reduce the energetic cost of body temperature maintenance under fasting. By analysing ultradian regulation of body temperature, we describe a means by which an endotherm appears to lower thermoregulatory costs in response to the combined stressors of cold and fasting. © 2016 The Author(s).
Gravitational unloading effects on muscle fiber size, phenotype and myonuclear number
NASA Technical Reports Server (NTRS)
Ohira, Y.; Yoshinaga, T.; Nomura, T.; Kawano, F.; Ishihara, A.; Nonaka, I.; Roy, R. R.; Edgerton, V. R.
2002-01-01
The effects of gravitational unloading with or without intact neural activity and/or tension development on myosin heavy chain (MHC) composition, cross-sectional area (CSA), number of myonuclei, and myonuclear domain (cytoplasmic volume per myonucleus ratio) in single fibers of both slow and fast muscles of rat hindlimbs are reviewed briefly. The atrophic response to unloading is generally graded as follows: slow extensors > fast extensors > fast flexors. Reduction of CSA is usually greater in the most predominant fiber type of that muscle. The percentage of fibers expressing fast MHC isoforms increases in unloaded slow but not fast muscles. Myonuclear number per mm of fiber length and myonuclear domain is decreased in the fibers of the unloaded predominantly slow soleus muscle, but not in the predominantly fast plantaris. Decreases in myonuclear number and domain, however, are observed in plantaris fibers when tenotomy, denervation, or both are combined with hindlimb unloading. All of these results are consistent with the view that a major factor for fiber atrophy is an inhibition or reduction of loading of the hindlimbs. These data also indicate that predominantly slow muscles are more responsive to unloading than predominantly fast muscles. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
2016-01-01
This study aimed to examine thermoregulatory responses in birds facing two commonly experienced stressors, cold and fasting. Logging devices allowing long-term and precise access to internal body temperature were placed within the gizzards of ducklings acclimated to cold (CA) (5°C) or thermoneutrality (TN) (25°C). The animals were then examined under three equal 4-day periods: ad libitum feeding, fasting and re-feeding. Through the analysis of daily as well as short-term, or ultradian, variations of body temperature, we showed that while ducklings at TN show only a modest decline in daily thermoregulatory parameters when fasted, they exhibit reduced surface temperatures from key sites of vascular heat exchange during fasting. The CA birds, on the other hand, significantly reduced their short-term variations of body temperature while increasing long-term variability when fasting. This phenomenon would allow the CA birds to reduce the energetic cost of body temperature maintenance under fasting. By analysing ultradian regulation of body temperature, we describe a means by which an endotherm appears to lower thermoregulatory costs in response to the combined stressors of cold and fasting. PMID:27655770