Bae, Young-Hyeon; Ko, Mansoo; Lee, Suk Min
2016-04-29
Revised high-heeled shoes (HHSs) were designed to improve the shortcomings of standard HHSs. This study was conducted to compare revised and standard HHSs with regard to joint angles and electromyographic (EMG) activity of the lower extremities during standing. The participants were five healthy young women. Data regarding joint angles and EMG activity of the lower extremities were obtained under three conditions: barefoot, when wearing revised HHSs, and when wearing standard HHSs. Lower extremity joint angles in the three dimensional plane were confirmed using a VICON motion capture system. EMG activity of the lower extremities was measured using active bipolar surface EMG. Kruskal-Wallis one-way analysis of variance by rank applied to analyze differences during three standing conditions. Compared with the barefoot condition, the standard HHSs condition was more different than the revised HHSs condition with regard to lower extremity joint angles during standing. EMG activity of the lower extremities was different for the revised HHSs condition, but the differences among the three conditions were not significant. Wearing revised HHSs may positively impact joint angles and EMG activity of the lower extremities by improving body alignment while standing.
Lower extremity muscle activation during baseball pitching.
Campbell, Brian M; Stodden, David F; Nixon, Megan K
2010-04-01
The purpose of this study was to investigate muscle activation levels of select lower extremity muscles during the pitching motion. Bilateral surface electromyography data on 5 lower extremity muscles (biceps femoris, rectus femoris, gluteus maximus, vastus medialis, and gastrocnemius) were collected on 11 highly skilled baseball pitchers and compared with individual maximal voluntary isometric contraction (MVIC) data. The pitching motion was divided into 4 distinct phases: phase 1, initiation of pitching motion to maximum stride leg knee height; phase 2, maximum stride leg knee height to stride foot contact (SFC); phase 3, SFC to ball release; and phase 4, ball release to 0.5 seconds after ball release (follow-through). Results indicated that trail leg musculature elicited moderate to high activity levels during phases 2 and 3 (38-172% of MVIC). Muscle activity levels of the stride leg were moderate to high during phases 2-4 (23-170% of MVIC). These data indicate a high demand for lower extremity strength and endurance. Specifically, coaches should incorporate unilateral and bilateral lower extremity exercises for strength improvement or maintenance and to facilitate dynamic stabilization of the lower extremities during the pitching motion.
Kelly, Rebecca E; Mansell, Warren; Wood, Alex M; Alatiq, Yousra; Dodd, Alyson; Searson, Ruth
2011-11-01
This research aimed to test whether positive, negative, or conflicting appraisals about activated mood states (e.g., energetic and high states) predicted bipolar disorder. A sample of individuals from clinical and control groups (171 with bipolar disorder, 42 with unipolar depression, and 64 controls) completed a measure of appraisals of internal states. High negative appraisals related to a higher likelihood of bipolar disorder irrespective of positive appraisals. High positive appraisals related to a higher likelihood of bipolar disorder only when negative appraisals were also high. Individuals were most likely to have bipolar disorder, as opposed to unipolar depression or no diagnosis, when they endorsed both extremely positive and extremely negative appraisals of the same, activated states. Appraisals of internal states were based on self-report. The results indicate that individuals with bipolar disorder tend to appraise activated, energetic internal states in opposing or conflicting ways, interpreting these states as both extremely positive and extremely negative. This may lead to contradictory attempts to regulate these states, which may in turn contribute to mood swing symptoms. Psychological therapy for mood swings and bipolar disorder should address extreme and conflicting appraisals of mood states. Copyright © 2011 Elsevier B.V. All rights reserved.
Gelen, Ertugrul; Dede, Muhittin; Bingul, Bergun Meric; Bulgan, Cigdem; Aydin, Mensure
2012-01-01
The purpose of this study was to compare the acute effects of static stretching; dynamic exercises and high volume upper extremity plyometric activity on tennis serve performance. Twenty-six elite young tennis players (15.1 ± 4.2 years, 167.9 ± 5.8 cm and 61.6 ± 8.1 kg) performed 4 different warm-up (WU) routines in a random order on non-consecutive days. The WU methods consisted of traditional WU (jogging, rally and serve practice) (TRAD); traditional WU and static stretching (TRSS); traditional WU and dynamic exercise (TRDE); and traditional WU and high volume upper extremity plyometric activity (TRPLYP). Following each WU session, subjects were tested on a tennis serve ball speed test. TRAD, TRSS, TRDE and TRPLYO were compared by repeated measurement analyses of variance and post-hoc comparisons. In this study a 1 to 3 percent increase in tennis serve ball speed was recorded in TRDE and TRPLYO when compared to TRAD (p< 0.05). However, no significant change in ball speed performance between TRSS and TRAD. (p> 0.05). ICCs for ball speed showed strong reliability (0.82 to 0.93) for the ball speed measurements.The results of this study indicate that dynamic and high volume upper extremity plyometric WU activities are likely beneficial to serve speed of elite junior tennis players. Key points After the traditional warm up in tennis, static stretching has no effect on serve speed. Tennis players should perform dynamic exercises and/or high volume upper extremity plyometric activities to improve their athletic performance. PMID:24150068
Metronidazole as a protector of cells from electromagnetic radiation of extremely high frequencies
NASA Astrophysics Data System (ADS)
Kuznetsov, Pavel E.; Malinina, Ulia A.; Popyhova, Era B.; Rogacheva, Svetlana M.; Somov, Alexander U.
2006-08-01
It is well known that weak electromagnetic fields of extremely high frequencies cause significant modification of the functional status of biological objects of different levels of organization. The aim of the work was to study the combinatory effect of metronidazole - the drug form of 1-(2'hydroxiethil)-2-methil-5-nitroimidazole - and electromagnetic radiation of extremely high frequencies (52...75 GHz) on the hemolytic stability of erythrocytes and hemotaxis activity of Infusoria Paramecium caudatum.
2014-01-01
Background The built environment in which older people live plays an important role in promoting or inhibiting physical activity. Most work on this complex relationship between physical activity and the environment has excluded people with reduced physical function or ignored the difference between groups with different levels of physical function. This study aims to explore the role of neighbourhood green space in determining levels of participation in physical activity among elderly men with different levels of lower extremity physical function. Method Using data collected from the Caerphilly Prospective Study (CaPS) and green space data collected from high resolution Landmap true colour aerial photography, we first investigated the effect of the quantity of neighbourhood green space and the variation in neighbourhood vegetation on participation in physical activity for 1,010 men aged 66 and over in Caerphilly county borough, Wales, UK. Second, we explored whether neighbourhood green space affects groups with different levels of lower extremity physical function in different ways. Results Increasing percentage of green space within a 400 meters radius buffer around the home was significantly associated with more participation in physical activity after adjusting for lower extremity physical function, psychological distress, general health, car ownership, age group, marital status, social class, education level and other environmental factors (OR = 1.21, 95% CI 1.05, 1.41). A statistically significant interaction between the variation in neighbourhood vegetation and lower extremity physical function was observed (OR = 1.92, 95% CI 1.12, 3.28). Conclusion Elderly men living in neighbourhoods with more green space have higher levels of participation in regular physical activity. The association between variation in neighbourhood vegetation and regular physical activity varied according to lower extremity physical function. Subjects reporting poor lower extremity physical function living in neighbourhoods with more homogeneous vegetation (i.e. low variation) were more likely to participate in regular physical activity than those living in neighbourhoods with less homogeneous vegetation (i.e. high variation). Good lower extremity physical function reduced the adverse effect of high variation vegetation on participation in regular physical activity. This provides a basis for the future development of novel interventions that aim to increase levels of physical activity in later life, and has implications for planning policy to design, preserve, facilitate and encourage the use of green space near home. PMID:24646136
Gong, Yi; Gallacher, John; Palmer, Stephen; Fone, David
2014-03-19
The built environment in which older people live plays an important role in promoting or inhibiting physical activity. Most work on this complex relationship between physical activity and the environment has excluded people with reduced physical function or ignored the difference between groups with different levels of physical function. This study aims to explore the role of neighbourhood green space in determining levels of participation in physical activity among elderly men with different levels of lower extremity physical function. Using data collected from the Caerphilly Prospective Study (CaPS) and green space data collected from high resolution Landmap true colour aerial photography, we first investigated the effect of the quantity of neighbourhood green space and the variation in neighbourhood vegetation on participation in physical activity for 1,010 men aged 66 and over in Caerphilly county borough, Wales, UK. Second, we explored whether neighbourhood green space affects groups with different levels of lower extremity physical function in different ways. Increasing percentage of green space within a 400 meters radius buffer around the home was significantly associated with more participation in physical activity after adjusting for lower extremity physical function, psychological distress, general health, car ownership, age group, marital status, social class, education level and other environmental factors (OR = 1.21, 95% CI 1.05, 1.41). A statistically significant interaction between the variation in neighbourhood vegetation and lower extremity physical function was observed (OR = 1.92, 95% CI 1.12, 3.28). Elderly men living in neighbourhoods with more green space have higher levels of participation in regular physical activity. The association between variation in neighbourhood vegetation and regular physical activity varied according to lower extremity physical function. Subjects reporting poor lower extremity physical function living in neighbourhoods with more homogeneous vegetation (i.e. low variation) were more likely to participate in regular physical activity than those living in neighbourhoods with less homogeneous vegetation (i.e. high variation). Good lower extremity physical function reduced the adverse effect of high variation vegetation on participation in regular physical activity. This provides a basis for the future development of novel interventions that aim to increase levels of physical activity in later life, and has implications for planning policy to design, preserve, facilitate and encourage the use of green space near home.
Intra-seasonal Characteristics of Wintertime Extreme Cold Events over South Korea
NASA Astrophysics Data System (ADS)
Park, Taewon; Jeong, Jeehoon; Choi, Jahyun
2017-04-01
The present study reveals the changes in the characteristics of extreme cold events over South Korea for boreal winter (November to March) in terms of the intra-seasonal variability of frequency, duration, and atmospheric circulation pattern. Influences of large-scale variabilities such as the Siberian High activity, the Arctic Oscillation (AO), and the Madden-Julian Oscillation (MJO) on extreme cold events are also investigated. In the early and the late of the winter during November and March, the upper-tropospheric wave-train for a life-cycle of the extreme cold events tends to pass quickly over East Asia. In addition, compared with the other months, the intensity of the Siberian High is weaker and the occurrences of strong negative AO are less frequent. It lead to events with weak amplitude and short duration. On the other hand, the amplified Siberian High and the strong negative AO occur more frequently in the mid of the winter from December to February. The extreme cold events are mainly characterized by a well-organized anticyclonic blocking around the Ural Mountain and the Subarctic. These large-scale circulation makes the extreme cold events for the midwinter last long with strong amplitude. The MJO phases 2-3 which provide a suitable condition for the amplification of extreme cold events occur frequently for November to January when the frequencies are more than twice those for February and March. While the extreme cold events during March have the least frequency, the weakest amplitude, and the shortest duration due to weak impacts of the abovementioned factors, the strong activities of the factors for January force the extreme cold events to be the most frequent, the strongest, and the longest among the boreal winter. Keywords extreme cold event, wave-train, blocking, Siberian High, AO, MJO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Edmund Kar-Man
The goals of the project are: 1) To develop and assess subseasonal to seasonal prediction products for storm track activity derived from NMME data; 2) Assess how much of the predictable signal can be associated with ENSO and other modes of large scale low frequency atmosphere-ocean variability; and 3) Further explore the link between storm track variations and extreme weather statistics. Significant findings of this project include the followings: 1) Our assessment of NMME reforecasts of storm track variability has demonstrated that NMME models have substantial skill in predicting storm track activity in the vicinity of North America - Subseasonalmore » skill is high only for leads of less than 1 month. However, seasonal (winter) prediction skill near North America is high even out to 4 to 5 months lead - Much of the skill for leads of 1 month or longer is related to the influence of ENSO - Nevertheless, lead 0 NMME predictions are significantly more skillful than those based on ENSO influence 2) Our results have demonstrated that storm track variations highly modulate the frequency of occurrence of weather extremes - Extreme cold, high wind, and extreme precipitation events in winter - Extreme heat events in summer - These results suggest that NMME storm track predictions can be developed to serve as a useful guidance to assist the formulation of monthly/seasonal outlooks« less
Mechanisms of Stability of Robust Chaperones from Hyperthermophiles
2009-02-03
basis for high temperature stability is still under active study. Activity and stability of enzymes at high temperature is an obvious and critically...important adaptation for the survival of thermophiles at the extremes of their temperature ranges. One of the novel aspects of our project is that we...with optimal growth at 100°C, with homologous proteins from Methanococcus jannaschii, an 88°C extreme thermophile . We have previously shown that
The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes
Lehmann, Jascha; Coumou, Dim
2015-01-01
Changes in mid-latitude circulation can strongly affect the number and intensity of extreme weather events. In particular, high-amplitude quasi-stationary planetary waves have been linked to prolonged weather extremes at the surface. In contrast, analyses of fast-traveling synoptic-scale waves and their direct influence on heat and cold extremes are scarce though changes in such waves have been detected and are projected for the 21st century. Here we apply regression analyses of synoptic activity with surface temperature and precipitation in monthly gridded observational data. We show that over large parts of mid-latitude continental regions, summer heat extremes are associated with low storm track activity. In winter, the occurrence of cold spells is related to low storm track activity over parts of eastern North America, Europe, and central- to eastern Asia. Storm tracks thus have a moderating effect on continental temperatures. Pronounced storm track activity favors monthly rainfall extremes throughout the year, whereas dry spells are associated with a lack thereof. Trend analyses reveal significant regional changes in recent decades favoring the occurrence of cold spells in the eastern US, droughts in California and heat extremes over Eurasia. PMID:26657163
Eukaryotic Organisms in Extreme Acidic Environments, the Río Tinto Case
NASA Astrophysics Data System (ADS)
Angeles Aguilera, Angeles
2013-07-01
A major issue in microbial ecology is to identify the limits of life for growth and survival, and to understand the molecular mechanisms that define these limits. Thus, interest in the biodiversity and ecology of extreme environments has grown in recent years for several reasons. Some are basic and revolve around the idea that extreme environments are believed to reflect early Earth conditions. Others are related to the biotechnological potential of extremophiles. In this regard, the study of extremely acidic environments has become increasingly important since environmental acidity is often caused by microbial activity. Highly acidic environments are relatively scarce worldwide and are generally associated with volcanic activity or mining operations. For most acidic environments, low pH facilitates metal solubility, and therefore acidic waters tend to have high concentrations of heavy metals. However, highly acidic environments are usually inhabited by acidophilic and acidotolerant eukaryotic microorganisms such as algae, amoebas, ciliates, heliozoan and rotifers, not to mention filamentous fungi and yeasts. Here, we review the general trends concerning the diversity and ecophysiology of eukaryotic acidophilic microorganims, as well as summarize our latest results on this topic in one of the largest extreme acidic rivers, Río Tinto (SW, Spain).
NASA Astrophysics Data System (ADS)
Cadoni, Ezio
2018-03-01
The aim of this paper is the description of the mechanical characterization of alloys under extreme conditions of temperature and loading. In fact, in the frame of the Cost Action CA15102 “Solutions for Critical Raw Materials Under Extreme Conditions (CRM-EXTREME)” this aspect is crucial and many industrial applications have to consider the dynamic response of materials. Indeed, for a reduction and substitution of CRMs in alloys is necessary to design the materials and understand if the new materials behave better or if the substitution or reduction badly affect their performance. For this reason, a deep knowledge of the mechanical behaviour at high strain-rates of considered materials is required. In general, machinery manufacturing industry or transport industry as well as energy industry have important dynamic phenomena that are simultaneously affected by extended strain, high strain-rate, damage and pressure, as well as conspicuous temperature gradients. The experimental results in extreme conditions of high strain rate and high temperature of an austenitic stainless steel as well as a high-chromium tempered martensitic reduced activation steel Eurofer97 are presented.
Lin, Jane-Ming; Chen, Wen-Lu; Chiang, Chun-Chi; Tsai, Yi-Yu
2008-04-01
To evaluate ablation centration of flying-spot LASIK, investigate the effect of patient- and surgeon-related factors on centration, and compare flying-spot and broad-beam laser results. This retrospective study comprised 173 eyes of 94 patients who underwent LASIK with the Alcon LADARVision4000 with an active eye-tracking system. The effective tracking rate of the system is 100 Hz. The amount of decentration was analyzed by corneal topography. Patient- (low, high, and extreme myopia; effect of learning) and surgeon-related (learning curve) factors influencing centration were identified. Centration was compared to the SCHWIND Multiscan broad-beam laser with a 50-Hz tracker from a previous study. Mean decentration was 0.36+/-0.18 mm (range: 0 to 0.9 mm). Centration did not differ in low, high, and extreme myopia or in patients' first and second eyes. There were no significant differences in centration between the first 50 LASIK procedures and the last 50 procedures. Comparing flying-spot and broad-beam laser results, there were no differences in centration in low myopia. However, the LADARVision4000 yielded better centration results in high and extreme myopia. The Alcon LADARVision4000 active eye tracking system provides good centration for all levels of myopic correction and better centration than the Schwind broad-beam Multiscan in eyes with high and extreme myopia.
Vosselman, Maarten J.; Vijgen, Guy H. E. J.; Kingma, Boris R. M.; Brans, Boudewijn; van Marken Lichtenbelt, Wouter D.
2014-01-01
Introduction Mild cold acclimation is known to increase brown adipose tissue (BAT) activity and cold-induced thermogenesis (CIT) in humans. We here tested the effect of a lifestyle with frequent exposure to extreme cold on BAT and CIT in a Dutch man known as ‘the Iceman’, who has multiple world records in withstanding extreme cold challenges. Furthermore, his monozygotic twin brother who has a ‘normal’ sedentary lifestyle without extreme cold exposures was measured. Methods The Iceman (subject A) and his brother (subject B) were studied during mild cold (13°C) and thermoneutral conditions (31°C). Measurements included BAT activity and respiratory muscle activity by [18F]FDG-PET/CT imaging and energy expenditure through indirect calorimetry. In addition, body temperatures, cardiovascular parameters, skin perfusion, and thermal sensation and comfort were measured. Finally, we determined polymorphisms for uncoupling protein-1 and β3-adrenergic receptor. Results Subjects had comparable BAT activity (A: 1144 SUVtotal and B: 1325 SUVtotal), within the range previously observed in young adult men. They were genotyped with the polymorphism for uncoupling protein-1 (G/G). CIT was relatively high (A: 40.1% and B: 41.9%), but unlike during our previous cold exposure tests in young adult men, here both subjects practiced a g-Tummo like breathing technique, which involves vigorous respiratory muscle activity. This was confirmed by high [18F]FDG-uptake in respiratory muscle. Conclusion No significant differences were found between the two subjects, indicating that a lifestyle with frequent exposures to extreme cold does not seem to affect BAT activity and CIT. In both subjects, BAT was not higher compared to earlier observations, whereas CIT was very high, suggesting that g-Tummo like breathing during cold exposure may cause additional heat production by vigorous isometric respiratory muscle contraction. The results must be interpreted with caution given the low subject number and the fact that both participants practised the g-Tummo like breathing technique. PMID:25014028
Dougados, Maxime; Logeart, Isabelle; Szumski, Annette; Coindreau, Javier; Jones, Heather
2017-01-01
Differentiating between pain from spondyloarthritis (SpA) and pain from fibromyalgia is challenging. We evaluated patients with non-radiographic axial SpA (nr-axSpA) to determine the percentage of patients with extremely high enthesitis and/or Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) scores, the relationship between extreme scores and depression, and the effect of extreme scores on treatment outcomes with etanercept. Patients with nr-axSpA received double-blind etanercept 50 mg or placebo weekly and were divided into those who did vs did not have extreme scores at baseline. Extreme scores were defined as the highest quintile for enthesitis score (≥6), and/or scores ≥8 on three of five BASDAI items (excluding morning stiffness duration). Depression was assessed with the Hospital Anxiety and Depression Scale, depression subscale (HADS-D) and medication use. Week 12 outcomes included Assessment of SpondyloArthritis (ASAS) 40 and ASAS partial remission. At baseline, 35/213 (16.4%) patients met extreme enthesitis criteria, 31 (14.6%) met extreme BASDAI criteria, 12 (5.6%) met both, and 135 (63.4%) met neither. More patients with extreme scores than without met the HADS-D definition of depression: 35/68 (51.5%) vs. 27/118 (22.9%), p<0.0001. For patients with vs. without extreme scores who received etanercept, no significant difference existed in week 12 ASAS 40: 13/41 (31.7%) vs. 21/60 (35.0%), respectively, or ASAS partial remission: 8/41 (19.5%) vs. 19/60 (31.7%). Extreme enthesitis and/or BASDAI scores were associated with measurements of depression, but did not affect week 12 ASAS 40 or ASAS partial remission.
Kloos, Karin; Schloter, Michael; Meyer, Ortwin
2006-11-01
Acid resins are residues produced in a recycling process for used oils that was in use in the forties and fifties of the last century. The resin-like material is highly contaminated with mineral oil hydrocarbons, extremely acidic and co-contaminated with substituted and aromatic hydrocarbons, and heavy metals. To determine the potential for microbial biodegradation the acid resin deposit and its surroundings were screened for microbial activity by soil respiration measurements. No microbial activity was found in the core deposit. However, biodegradation of hydrocarbons was possible in zones with a lower degree of contamination surrounding the deposit. An extreme acidophilic microbial community was detected close to the core deposit. With a simple ecotoxicological approach it could be shown that the pure acid resin that formed the major part of the core deposit, was toxic to the indigenous microflora due to its extremely low pH of 0-1.
NASA Astrophysics Data System (ADS)
Buemi, C. S.; Leto, P.; Trigilio, C.; Umana, G.; Giroletti, M.; Orienti, M.; Raiteri, C. M.; Villata, M.; Bach, U.
2013-04-01
We report on extremely high radio flux of BL Lacertae at 43 and 8 GHz. Observations at 43 GHz with the 32 m radio telescope in Noto (Italy) revealed a flux density of 10.5 +/- 0.2 Jy on 2013 April 10.65, while observations at 8 GHz with the 32 m radio telescope in Medicina (Italy) detected a flux density of 8.2 +/- 0.7 Jy on April 12.22. These extremely high radio fluxes show that the radio activity likely correlated to the strong optical, near-infrared, and gamma-ray activity of 2011-2012 (see ATels #4028, #4031, #4155, #4271, #4277, #4349, #4565, #4600), and X-ray activity of late 2012 (ATels #4557, #4627), is far to be exhausted.
AgMIP Regional Activities in a Global Framework: The Brazil Experience
NASA Technical Reports Server (NTRS)
Assad, Eduardo D.; Marin, Fabio R.; Valdivia, Roberto O.; Rosenzweig, Cynthia E.
2012-01-01
Climate variability and change are projected to increate the frequency of extreme high-temperature events, floods, and droughts, which can lead to subsequent changes in soil moister in many locations (Alexandrov and Hoogenboom, 2000). In Brazil, observations reveal a tendency for increasing frequency of extreme rainfall events particularly in south Brazil (Alexander et al., 2006; Carvalho et al., 2014; Groissman et al., 2005), as well as projections for increasing extremes in both maximum and minimum temperatures and high spatial variability for rainfall under the IPCC SRES A2 and B2 scenarios (Marengo et al., 2009).
2014-06-28
constructed from inexpensive semiconductor lasers could lead to the development of novel neuro-inspired optical computing devices (threshold detectors ...optical computing devices (threshold detectors , logic gates, signal recognition, etc.). Other topics of research included the analysis of extreme events in...Extreme events is nowadays a highly active field of research. Rogue waves, earthquakes of high magnitude and financial crises are all rare and
Enzyme Activity Dynamics in Response to Climate Change: 2011 Drought-Heat Wave
USDA-ARS?s Scientific Manuscript database
Extreme weather events such as severe droughts and heat waves may have permanent consequences on soil quality and functioning in agroecosystems. The Southern High Plains (SHP) region of Texas, U.S., a large cotton producing area, experienced a historically extreme drought and heat wave during 2011,...
A trauma-like model of political extremism: psycho-political fault lines in Israel.
Laor, Nathaniel; Yanay-Shani, Alma; Wolmer, Leo; Khoury, Oula
2010-10-01
This study examines a trauma-like model of potentially violent political extremism among Jewish Israelis. We study the psychosocial characteristics of political extremists that may lie at the root of sociopolitical instability and assess personal (gender, stressful life events, Holocaust family background, and political activism) and psychological parameters (self- and political transcendence, perceived political threats, in/out-group identification ratio) that may predict readiness to engage in destructive political behavior. We examine the ideological zeal of various political groups, the relationship between the latter and perceived political threats, and the predictors of extreme political activism. Results showed that the extreme political poles displayed high level of ideological and morbid transcendence. Right extremists displayed higher perceived threats to physical existence and national identity. Left extremists scored highest on perceived moral integrity threat. Higher perceived threats to national identity and moral integrity, risk, and self-transcendence statistically explain morbid transcendence. When fear conjures up extremely skewed sociopolitical identifications across political boundaries, morbid transcendence may manifest itself in destructive political activity. © 2010 Association for Research in Nervous and Mental Disease.
Tadevosian, A; Trchunian, A
2009-01-01
It has been shown that the exposure of wild-type Escherichia coli K12 bacteria grown in anaerobic conditions upon fermentation of glucose to coherent extremely high-frequency (51.8 and 53 GHz) electromagnetic radiation (EMR) or millimeter waves (wavelength 5.8 to 6.7 mm) of low intensity (flux capacity 0.06 mW/cm2) caused a marked decrease in energy-dependent and N,N'-dicyclohexylcarbodiimide- or azide-sensitive proton and potassium ions transport fluxes through the membrane, including proton fluxes via proton F0F1-ATPase and through the potassium uptake Trk system, correspondingly. K+ uptake was less for the E. coli mutant Trk 1110. The rate of molecular hydrogen production by formate hydrogen lyase 2 is strongly inhibited. The results indicate that the bacterial effect of coherent extremely high-frequency EMR includes changes in the activity of membrane transport and enzymatic systems in which the F0F1-ATPase plays a key role.
Chen, Haifei; Zhang, Quan; Cai, Hongmei; Xu, Fangsen
2017-01-01
pH is an important factor regulating plant growth. Here, we found that rice was better adapted to low pH than alkaline conditions, as its growth was severely inhibited at high pH, with shorter root length and an extreme biomass reduction. Under alkaline stress, the expression of genes for ethylene biosynthesis enzymes in rice roots was strongly induced by high pH and exogenous ethylene precursor ACC and ethylene overproduction in etol1-1 mutant aggravated the alkaline stress-mediated inhibition of rice growth, especially for the root elongation with decreased cell length in root apical regions. Conversely, the ethylene perception antagonist silver (Ag+) and ein2-1 mutants could partly alleviate the alkaline-induced root elongation inhibition. The H+-ATPase activity was extremely inhibited by alkaline stress and exogenous ACC. However, the H+-ATPase-mediated rhizosphere acidification was enhanced by exogenous Ag+, while H+ efflux on the root surface was extremely inhibited by exogenous ACC, suggesting that ethylene negatively regulated H+-ATPase activity under high-pH stress. Our results demonstrate that H+-ATPase is involved in ethylene-mediated inhibition of rice growth under alkaline stress. PMID:29114258
Embedded I&C for Extreme Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisner, Roger A.
2016-04-01
This project uses embedded instrumentation and control (I&C) technologies to demonstrate potential performance gains of nuclear power plant components in extreme environments. Extreme environments include high temperature, radiation, high pressure, high vibration, and high EMI conditions. For extreme environments, performance gains arise from moment-to-moment sensing of local variables and immediate application of local feedback control. Planning for embedding I&C during early system design phases contrasts with the traditional, serial design approach that incorporates minimal I&C after mechanical and electrical design is complete. The demonstration application involves the development and control of a novel, proof-of-concept motor/pump design. The motor and pumpmore » combination operate within the fluid environment, eliminating the need for rotating seals. Actively controlled magnetic bearings also replace failure-prone mechanical contact bearings that typically suspend rotating components. Such as design has the potential to significantly enhance the reliability and life of the pumping system and would not be possible without embedded I&C.« less
Gutefeldt, Kerstin; Hedman, Christina A; Thyberg, Ingrid S M; Bachrach-Lindström, Margareta; Arnqvist, Hans J; Spångeus, Anna
2017-11-05
To investigate the prevalence, activity limitations and potential risk factors of upper extremity impairments in type 1 diabetes in comparison to controls. In a cross-sectional population-based study in the southeast of Sweden, patients with type 1 diabetes <35 years at onset, duration ≥20 years, <67 years old and matched controls were invited to answer a questionnaire on upper extremity impairments and activity limitations and to take blood samples. Seven hundred and seventy-three patients (ages 50 ± 10 years, diabetes duration 35 ± 10 years) and 708 controls (ages 54 ± 9 years) were included. Shoulder pain and stiffness, hand paraesthesia and finger impairments were common in patients with a prevalence of 28-48%, which was 2-4-folds higher than in controls. Compared to controls, the patients had more bilateral impairments, often had coexistence of several upper extremity impairments, and in the presence of impairments, reported more pronounced activity limitations. Female gender (1.72 (1.066-2.272), p = 0.014), longer duration (1.046 (1.015-1.077), p = 0.003), higher body mass index (1.08 (1.017-1.147), p = 0.013) and HbA1c (1.029 (1.008-1.05), p = 0.007) were associated with upper extremity impairments. Compared to controls, patients with type 1 diabetes have a high prevalence of upper extremity impairments, often bilateral, which are strongly associated with activity limitations. Recognising these in clinical practise is crucial, and improved preventative, therapeutic and rehabilitative interventions are needed. Implications for rehabilitation Upper extremity impairments affecting the shoulder, hand and fingers are common in patients with type 1 diabetes, the prevalence being 2-4-fold higher compared to non-diabetic persons. Patients with diabetes type 1 with upper extremity impairments have more pronounced limitations in daily activities compared to controls with similar impairments. Recognising upper extremity impairments and activity limitations are important and improved preventive, therapeutic and rehabilitation methods are needed.
First characterization of extremely halophilic 2-deoxy-D-ribose-5-phosphate aldolase.
Ohshida, Tatsuya; Hayashi, Junji; Satomura, Takenori; Kawakami, Ryushi; Ohshima, Toshihisa; Sakuraba, Haruhiko
2016-10-01
2-Deoxy-d-ribose-5-phosphate aldolase (DERA) catalyzes the aldol reaction between two aldehydes and is thought to be a potential biocatalyst for the production of a variety of stereo-specific materials. A gene encoding DERA from the extreme halophilic archaeon, Haloarcula japonica, was overexpressed in Escherichia coli. The gene product was successfully purified, using procedures based on the protein's halophilicity, and characterized. The expressed enzyme was stable in a buffer containing 2 M NaCl and exhibited high thermostability, retaining more than 90% of its activity after heating at 70 °C for 10 min. The enzyme was also tolerant to high concentrations of organic solvents, such as acetonitrile and dimethylsulfoxide. Moreover, H. japonica DERA was highly resistant to a high concentration of acetaldehyde and retained about 35% of its initial activity after 5-h' exposure to 300 mM acetaldehyde at 25 °C, the conditions under which E. coli DERA is completely inactivated. The enzyme exhibited much higher activity at 25 °C than the previously characterized hyperthermophilic DERAs (Sakuraba et al., 2007). Our results suggest that the extremely halophilic DERA has high potential to serve as a biocatalyst in organic syntheses. This is the first description of the biochemical characterization of a halophilic DERA. Copyright © 2016 Elsevier Inc. All rights reserved.
Psychiatric Aspects of Extreme Sports: Three Case Studies
Tofler, Ian R; Hyatt, Brandon M; Tofler, David S
2018-01-01
Extreme sports, defined as sporting or adventure activities involving a high degree of risk, have boomed since the 1990s. These types of sports attract men and women who can experience a life-affirming transcendence or “flow” as they participate in dangerous activities. Extreme sports also may attract people with a genetic predisposition for risk, risk-seeking personality traits, or underlying psychiatric disorders in which impulsivity and risk taking are integral to the underlying problem. In this report, we attempt to illustrate through case histories the motivations that lead people to repeatedly risk their lives and explore psychiatry’s role in extreme sports. A sports psychiatrist can help with therapeutic management, neuromodulation of any comorbid psychiatric diagnosis, and performance enhancement (eg, risk minimization) to cultivate improved judgment which could include identifying alternative safer recreational options. Because flirting with death is critical to the extreme sports ethos, practitioners must gain further understanding of this field and its at-risk participants. PMID:29401052
The High Plains: Land of Extremes.
ERIC Educational Resources Information Center
Capron, Ranel Stephenson; And Others
1996-01-01
Provides rich background information about unique High Plains ecosystems. Focuses on water, plant, animal, and energy resources. Describes hands-on activities related to ground water movement and energy resources. Contains 18 references. (DDR)
Bipolar vulnerability and extreme appraisals of internal states: a computerized ratings study.
Dodd, Alyson L; Mansell, Warren; Morrison, Anthony P; Tai, Sara
2011-01-01
A recent integrative cognitive model proposed that multiple, extreme, personalized, positive and negative appraisals of internal states predispose to maintain and exacerbate bipolar symptoms. This study aimed to directly assess conviction in a range of positive and negative appraisals of internal states suggested by the model, by using a laboratory-based computerized task. In a student sample (n = 68), a history of hypomania was associated with more positive and less negative appraisals of internal states, and a history of depression was associated with more negative appraisals and less positive appraisals of internal states. The sample was then split into three groups for comparison: bipolar risk (n = 18), depression risk (n = 20) and controls (n = 30). Relative to controls, the bipolar risk group made more extreme ratings of catastrophic appraisals of low activation states and tended to make more extreme ratings of appraisals of high activation states. The depression risk group scored higher on a range of negative appraisals of low activation states. These findings provide tentative support for the role of both positive and negative, extreme, personalized appraisals of internal states in hypomania and depression. Copyright © 2011 John Wiley & Sons, Ltd.
USDA-ARS?s Scientific Manuscript database
Lipases with abnormal functionalities such as high thermostability and optimal activity at extreme conditions gain special attentions because of their applicability in the restricted reaction conditions. In particular, cold-active lipases have gained special attentions in various industrial fields s...
On the possible relations between solar activities and global seismicity in the solar cycle 20 to 23
NASA Astrophysics Data System (ADS)
Herdiwijaya, Dhani; Arif, Johan; Nurzaman, Muhamad Zamzam; Astuti, Isna Kusuma Dewi
2015-09-01
Solar activities consist of high energetic particle streams, electromagnetic radiation, magnetic and orbital gravitational forces. The well-know solar activity main indicator is the existence of sunspot which has mean variation in 11 years, named by solar cycle, allow for the above fluctuations. Solar activities are also related to the space weather affecting all planetary atmospheric variability, moreover to the Earth's climate variability. Large extreme space and geophysical events (high magnitude earthquakes, explosive volcanic eruptions, magnetic storms, etc.) are hazards for humankind, infrastructure, economies, technology and the activities of civilization. With a growing world population, and with modern reliance on delicate technological systems, human society is becoming increasingly vulnerable to natural hazardous events. The big question arises to the relation between solar forcing energy to the Earth's global seismic activities. Estimates are needed for the long term occurrence-rate probabilities of these extreme natural hazardous events. We studied connectivity from yearly seismic activities that refer to and sunspot number within the solar cycle 20 to 23 of year 1960 to 2013 (53 years). We found clear evidences that in general high magnitude earthquake events and their depth were related to the low solar activity.
USDA-ARS?s Scientific Manuscript database
Osteopenia and rickets are common among extremely low birth weight infants (ELBW, <1000 g birth weight) despite current practices of vitamin and mineral supplementation. Few data are available evaluating the usual course of markers of mineral status in this population. Our objectives in this study w...
USDA-ARS?s Scientific Manuscript database
Extreme weather events such as severe droughts and heat waves may have permanent consequences on soil quality and functioning in agroecosystems. The Southern High Plains (SHP) region of Texas, U.S., a large cotton producing area, experienced a historically extreme drought and heat wave during 2011,...
Jung, Jaemin; Lee, Sang-yeol
2014-01-01
[Purpose] The purpose of this study was to determine the effects of wearing high heels while driving on lower extremity muscle activation. [Subjects] The subjects of this experimental study were 14 healthy women in their 20s who normally wear shoes with high heels. [Methods] The subjects were asked to place their shoes on an accelerator pedal with the heel touching the floor and then asked to press the pedal with as much pressure as possible for 3 seconds before removing their feet from the pedal. A total of 3 measurements were taken for each heel height (flat, 5 cm, 7 cm), and the heel height was randomly selected. [Results] The levels of muscle activity, indicated as the percentage of reference voluntary contraction, for gastrocnemius muscle in the flat, 5 cm, and 7 cm shoes were 180.8±61.8%, 285.4±122.3%, and 366.2±193.7%, respectively, and there were significant differences between groups. Those for the soleus muscle were 477.3±209.2%, 718.8±380.5%, and 882.4±509.9%, and there were significant differences between groups. [Conclusion] To summarize the results of this study, it was found that female drivers require greater lower extremity muscle activation when wearing high heels than when wearing low heels. Furthermore, instability and muscle fatigue of the ankle joint, which results from wearing high heels on a daily basis, could also occur while driving. PMID:25435684
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herdiwijaya, Dhani, E-mail: dhani@as.itb.ac.id; Arif, Johan; Nurzaman, Muhamad Zamzam
Solar activities consist of high energetic particle streams, electromagnetic radiation, magnetic and orbital gravitational forces. The well-know solar activity main indicator is the existence of sunspot which has mean variation in 11 years, named by solar cycle, allow for the above fluctuations. Solar activities are also related to the space weather affecting all planetary atmospheric variability, moreover to the Earth’s climate variability. Large extreme space and geophysical events (high magnitude earthquakes, explosive volcanic eruptions, magnetic storms, etc.) are hazards for humankind, infrastructure, economies, technology and the activities of civilization. With a growing world population, and with modern reliance on delicatemore » technological systems, human society is becoming increasingly vulnerable to natural hazardous events. The big question arises to the relation between solar forcing energy to the Earth’s global seismic activities. Estimates are needed for the long term occurrence-rate probabilities of these extreme natural hazardous events. We studied connectivity from yearly seismic activities that refer to and sunspot number within the solar cycle 20 to 23 of year 1960 to 2013 (53 years). We found clear evidences that in general high magnitude earthquake events and their depth were related to the low solar activity.« less
Microbial Diversity-Based Novel Crop Protection Products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pioneer Hi-Bred International Inc.; DuPont Experimental Station; Yalpani, Ronald Flannagan, Rafael Herrmann, James Presnail, Tamas Torok, and Nasser
Extremophilic microorganisms are adapted to survive in ecological niches with high temperatures, extremes of pH, high salt concentrations, high pressure, radiation, etc. Extremophiles produce unique biocatalysts and natural products that function under extreme conditions comparab le to those prevailing in various industrial processes. Therefore, there is burgeoning interest in bioprospecting for extremophiles with potential immediate use in agriculture, the food, chemical, and pharm aceutical industries, and environmental biotechnology. Over the years, several thousand extremophilic bacteria, archaea, and filamentous fungi were collected at extreme environmental sites in the USA, the Chernobyl Exclusion Zone surrounding the faeild nuclear power plant in Ukraine,more » in and around Lake Baikal in Siberia, and at geothermal sites on the Kamchatka peninsula in Russia. These organisms were cultured under proprietary conditions, and the cell- free supernatants were screened for biological activities against plant pathogenic fungi and major crop damaging insects. Promising peptide lead molecules were isolated, characterized, and sequenced. Relatively high hit rates characterized the tested fermentation broths. Of the 26,000 samples screened, over thousand contained biological activity of interest. A fair number of microorganisms expressed broad- spectrum antifungal or insecticidal activity. Two- dozen broadly antifungal peptides (AFPs) are alr eady patent protected, and many more tens are under further investigation. Tapping the gene pool of extremophilic microorganisms to provide novel ways of crop protection proved a successful strategy.« less
Flower morphology and floral sequence in Artemisia annua (Asteraceae)
USDA-ARS?s Scientific Manuscript database
Premise of the study: Artemisia annua produces phytochemicals possessing antimalarial, antitumor, anti-inflammatory, and anthelmintic activities. The main active ingredient, artemisinin, is extremely effective against malaria. Breeding to develop cultivars producing high levels of artemisinin can he...
Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction.
Yang, Liu; Cheng, Daojian; Xu, Haoxiang; Zeng, Xiaofei; Wan, Xin; Shui, Jianglan; Xiang, Zhonghua; Cao, Dapeng
2018-06-26
It is still a grand challenge to develop a highly efficient nonprecious-metal electrocatalyst to replace the Pt-based catalysts for oxygen reduction reaction (ORR). Here, we propose a surfactant-assisted method to synthesize single-atom iron catalysts (SA-Fe/NG). The half-wave potential of SA-Fe/NG is only 30 mV less than 20% Pt/C in acidic medium, while it is 30 mV superior to 20% Pt/C in alkaline medium. Moreover, SA-Fe/NG shows extremely high stability with only 12 mV and 15 mV negative shifts after 5,000 cycles in acidic and alkaline media, respectively. Impressively, the SA-Fe/NG-based acidic proton exchange membrane fuel cell (PEMFC) exhibits a high power density of 823 mW cm -2 Combining experimental results and density-functional theory (DFT) calculations, we further reveal that the origin of high-ORR activity of SA-Fe/NG is from the Fe-pyrrolic-N species, because such molecular incorporation is the key, leading to the active site increase in an order of magnitude which successfully clarifies the bottleneck puzzle of why a small amount of iron in the SA-Fe catalysts can exhibit extremely superior ORR activity.
Extreme delta brush evolving into status epilepticus in a patient with anti-NMDA encephalitis.
Herlopian, Aline; Rosenthal, Eric S; Chu, Catherine J; Cole, Andrew J; Struck, Aaron F
2017-01-01
Extreme delta brush (EDB) is an EEG pattern unique to anti-NMDA encephalitis. It is correlated with seizures and status epilepticus in patients who have a prolonged course of illness. The etiology of the underlying association between EDB and seizures is not understood. We present a patient with anti-NMDA encephalitis who developed status epilepticus evolving from the high frequency activity of the extreme delta brush. This case demonstrates that EDB is not only a marker for a greater propensity for seizures but also directly implicated in seizure generation.
NASA Astrophysics Data System (ADS)
Cheng, L.; Du, J.
2015-12-01
The Xiang River, a main tributary of the Yangtze River, is subjected to high floods frequently in recent twenty years. Climate change, including abrupt shifts and fluctuations in precipitation is an important factor influencing hydrological extreme conditions. In addition, human activities are widely recognized as another reasons leading to high flood risk. With the effects of climate change and human interventions on hydrological cycle, there are several questions that need to be addressed. Are floods in the Xiang River basin getting worse? Whether the extreme streamflow shows an increasing tendency? If so, is it because the extreme rainfall events have predominant effect on floods? To answer these questions, the article detected existing trends in extreme precipitation and discharge using Mann-Kendall test. Continuous wavelet transform method was employed to identify the consistency of changes in extreme precipitation and discharge. The Pearson correlation analysis was applied to investigate how much degree of variations in extreme discharge can be explained by climate change. The results indicate that slightly upward trends can be detected in both extreme rainfalls and discharge in the upper region of Xiang River basin. For the most area of middle and lower river basin, the extreme rainfalls show significant positive trends, but the extreme discharge displays slightly upward trends with no significance at 90% confidence level. Wavelet transform analysis results illustrate that highly similar patterns of signal changes can be seen between extreme precipitation and discharge in upper section of the basin, while the changes in extreme precipitation for the middle and lower reaches do not always coincide with the extreme streamflow. The correlation coefficients of the wavelet transforms for the precipitation and discharge signals in most area of the basin pass the significance test. The conclusion may be drawn that floods in recent years are not getting worse in Xiang River basin. The similar signal patterns and positive correlation between extreme discharge and precipitation indicate that the variability of extreme precipitation has an important effect on extreme discharge of flood, although the intensity of human impacts in lower section of Xiang River basin has increased markedly.
Ajtić, J; Brattich, E; Sarvan, D; Djurdjevic, V; Hernández-Ceballos, M A
2018-05-01
Relationships between the beryllium-7 activity concentrations in surface air and meteorological parameters (temperature, atmospheric pressure, and precipitation), teleconnection indices (Arctic Oscillation, North Atlantic Oscillation, and Scandinavian pattern) and number of sunspots are investigated using two multivariate statistical techniques: hierarchical cluster and factor analysis. The beryllium-7 surface measurements over 1995-2011, at four sampling sites located in the Scandinavian Peninsula, are obtained from the Radioactivity Environmental Monitoring Database. In all sites, the statistical analyses show that the beryllium-7 concentrations are strongly linked to temperature. Although the beryllium-7 surface concentration exhibits the well-characterised spring/summer maximum, our study shows that extremely high beryllium-7 concentrations, defined as the values exceeding the 90 th percentile in the data records for each site, also occur over the October-March period. Two types of autumn/winter extremes are distinguished: type-1 when the number of extremes in a given month is less than three, and type-2 when at least three extremes occur in a month. Factor analysis performed for these autumn/winter events shows a weaker effect of temperature and a stronger impact of the transport and production signal on the beryllium-7 concentrations. Further, the majority of the type-2 extremes are associated with a very high monthly Scandinavian teleconnection index. The type-2 extremes that occurred in January, February and March are also linked to sudden stratospheric warmings of the Arctic vortex. Our results indicate that the Scandinavian teleconnection index might be a good indicator of the meteorological conditions facilitating extremely high beryllium-7 surface concentrations over Scandinavia during autumn and winter. Copyright © 2018 Elsevier Ltd. All rights reserved.
A Modeling Study of the Spring 2011 Extreme US Weather Activity
NASA Technical Reports Server (NTRS)
Schubert, S.; Suarez, M.; Chang, Y.
2012-01-01
The spring of 2011 was characterized by record-breaking tornadic activity with substantial loss of life and destruction of property. While a waning La Nina and other atmospheric teleconnections have been implicated in the development of these extreme weather events, a quantitative assessment of their causes is still lacking. This study uses high resolution (1/4 lat/lon) GEOS-5 AGCM experiments to quantify the role of SSTs and soil moisture in the development of the extreme weather activity with a focus on April - the month of peak tornadic activity. The simulations, consisting of 22-member ensembles of three-month long simulations (initialized March 1st) reproduce the main features of the observed large-scale changes including the below-normal temperature and above-normal precipitation in the Central US, and the hot and dry conditions to the south. Various sensitivity experiments are conducted to separate the roles of the SST, soil moisture and the initial atmospheric conditions in the development and predictability of the atmospheric conditions (wind shear, moisture, etc.) favoring the severe weather activity and flooding.
NASA Astrophysics Data System (ADS)
Farnham, D. J.; Doss-Gollin, J.; Lall, U.
2016-12-01
In this study we identify the atmospheric conditions that precede and accompany regional extreme precipitation events with the potential to cause flooding. We begin by identifying a coherent space-time structure in the record of extreme precipitation within the Ohio River Basin through both a Hidden Markov Model and a composite analysis. The transition probabilities associated with the Hidden Markov Model illustrate a tendency for west to east migration of extreme precipitation events (> 99th percentile) at individual stations within the Ohio River Basin. We compute a record of regional extreme precipitation days by requiring that > p% of the basin's stations simultaneously experience extreme precipitation days. A composite analysis of low-level geopotential heights and column integrated precipitable water content for all non-summer seasons confirms a west to east migration and intensification of 1) a low (high) pressure center to the west (east) of the basin, and 2) enhanced precipitable water vapor content that stretches from the Gulf of Mexico to the Northeast US region in the days leading up to regional extreme precipitation days. We define a daily dipole index to summarize the strength of the paired cylonic and aniticyclonic systems to the west and east of the basin and analyze its temporal characteristics and its relationship to the regional extreme precipitation events. Lastly, we investigate and discuss the subseasonal predictability of individual extreme precipitation events and the seasonal predictability of active and inactive seasons, where the activity level is defined by the expected frequency of regional extreme precipitation events.
FAME: freeform active mirror experiment
NASA Astrophysics Data System (ADS)
Aitink-Kroes, Gabby; Agócs, Tibor; Miller, Chris; Black, Martin; Farkas, Szigfrid; Lemared, Sabri; Bettonvil, Felix; Montgomery, David; Marcos, Michel; Jaskó, Attila; van Duffelen, Farian; Challita, Zalpha; Fok, Sandy; Kiaeerad, Fatemeh; Hugot, Emmanuel; Schnetler, Hermine; Venema, Lars
2016-07-01
FAME is a four-year project and part of the OPTICON/FP7 program that is aimed at providing a breakthrough component for future compact, wide field, high resolution imagers or spectrographs, based on both Freeform technology, and the flexibility and versatility of active systems. Due to the opening of a new parameter space in optical design, Freeform Optics are a revolution in imaging systems for a broad range of applications from high tech cameras to astronomy, via earth observation systems, drones and defense. Freeform mirrors are defined by a non-rotational symmetry of the surface shape, and the fact that the surface shape cannot be simply described by conicoids extensions, or off-axis conicoids. An extreme freeform surface is a significantly challenging optical surface, especially for UV/VIS/NIR diffraction limited instruments. The aim of the FAME effort is to use an extreme freeform mirror with standard optics in order to propose an integrated system solution for use in future instruments. The work done so far concentrated on identification of compact, fast, widefield optical designs working in the visible, with diffraction limited performance; optimization of the number of required actuators and their layout; the design of an active array to manipulate the face sheet, as well as the actuator design. In this paper we present the status of the demonstrator development, with focus on the different building blocks: an extreme freeform thin face sheet, the active array, a highly controllable thermal actuator array, and the metrology and control system.
170 GHz Uni-Traveling Carrier Photodiodes for InP-based photonic integrated circuits.
Rouvalis, E; Chtioui, M; van Dijk, F; Lelarge, F; Fice, M J; Renaud, C C; Carpintero, G; Seeds, A J
2012-08-27
We demonstrate the capability of fabricating extremely high-bandwidth Uni-Traveling Carrier Photodiodes (UTC-PDs) using techniques that are suitable for active-passive monolithic integration with Multiple Quantum Well (MQW)-based photonic devices. The devices achieved a responsivity of 0.27 A/W, a 3-dB bandwidth of 170 GHz, and an output power of -9 dBm at 200 GHz. We anticipate that this work will deliver Photonic Integrated Circuits with extremely high bandwidth for optical communications and millimetre-wave applications.
ERIC Educational Resources Information Center
KINSELLA, PAUL J.
THE MOTION PICTURE, RADIO, AND TELEVISION ACTIVITIES AND INTERESTS OF JUNIOR HIGH SCHOOL STUDENTS WERE ASCERTAINED TO DETERMINE POSSIBILITIES FOR BETTER EDUCATIONAL UTILIZATION OF THESE MEDIA. THIS PROJECT WAS CONDUCTED AS A SUPPLEMENTARY ACTIVITY TO COOPERATIVE RESEARCH PROJECT 367, "A STUDY OF INTERESTS OF CHILDREN AND YOUTH" (ED 002…
Guddal, Maren Hjelle; Stensland, Synne Øien; Småstuen, Milada Cvancarova; Johnsen, Marianne Bakke; Zwart, John-Anker; Storheim, Kjersti
2017-01-01
Background: Prevalence of musculoskeletal pain among adolescents is high, and pain in adolescence increases the risk of chronic pain in adulthood. Studies have shown conflicting evidence regarding associations between physical activity and musculoskeletal pain, and few have evaluated the potential impact of sport participation on musculoskeletal pain in adolescent population samples. Purpose: To examine the associations between physical activity level, sport participation, and musculoskeletal pain in the neck and shoulders, low back, and lower extremities in a population-based sample of adolescents. Study Design: Cross-sectional study; Level of evidence 4. Methods: Data from the Nord-Trøndelag Health Study (Young-HUNT3) were used. All 10,464 adolescents in the Nord-Trøndelag county of Norway were invited, of whom 74% participated. Participants were asked how often they had experienced pain, unrelated to any known disease or acute injury, in the neck and shoulders, low back, and lower extremities in the past 3 months. The associations between (1) physical activity level (low [reference], medium or high) or (2) sport participation (weekly compared with no/infrequent participation) and pain were evaluated using logistic regression analyses, stratified by sex, and adjusted for age, socioeconomic status, and psychological distress. Results: The analyses included 7596 adolescents (mean age, 15.8 years; SD, 1.7). Neck and shoulder pain was most prevalent (17%). A moderate level of physical activity was associated with reduced odds of neck and shoulder pain (OR = 0.79 [95% CI, 0.66-0.94]) and low back pain (OR = 0.75 [95% CI, 0.62-0.91]), whereas a high level of activity increased the odds of lower extremity pain (OR = 1.60 [95% CI, 1.29-1.99]). Participation in endurance sports was associated with lower odds of neck and shoulder pain (OR = 0.79 [95% CI, 0.68-0.92]) and low back pain (OR = 0.77 [95% CI, 0.65-0.92]), especially among girls. Participation in technical sports was associated with increased odds of low back pain, whereas team sports were associated with increased odds of lower extremity pain. Strength and extreme sports were related to pain in all regions. Conclusion: We found that a moderate physical activity level was associated with less neck and shoulder pain and low back pain, and that participation in endurance sports may be particularly beneficial. Our findings highlight the need for health care professionals to consider the types of sports adolescents participate in when evaluating their musculoskeletal pain. PMID:28203603
Lee, Su-Hyun; Kim, Yu-Mi; Lee, Byoung-Hee
2015-07-01
[Purpose] This study investigated the therapeutic effects of virtual reality-based bilateral upper-extremity training on brain activity in patients with stroke. [Subjects and Methods] Eighteen chronic stroke patients were divided into two groups: the virtual reality-based bilateral upper-extremity training group (n = 10) and the bilateral upper-limb training group (n = 8). The virtual reality-based bilateral upper-extremity training group performed bilateral upper-extremity exercises in a virtual reality environment, while the bilateral upper-limb training group performed only bilateral upper-extremity exercise. All training was conducted 30 minutes per day, three times per week for six weeks, followed by brain activity evaluation. [Results] Electroencephalography showed significant increases in concentration in the frontopolar 2 and frontal 4 areas, and significant increases in brain activity in the frontopolar 1 and frontal 3 areas in the virtual reality-based bilateral upper-extremity training group. [Conclusion] Virtual reality-based bilateral upper-extremity training can improve the brain activity of stroke patients. Thus, virtual reality-based bilateral upper-extremity training is feasible and beneficial for improving brain activation in stroke patients.
Discovery of extreme [O III] λ5007 Å outflows in high-redshift red quasars
NASA Astrophysics Data System (ADS)
Zakamska, Nadia L.; Hamann, Fred; Pâris, Isabelle; Brandt, W. N.; Greene, Jenny E.; Strauss, Michael A.; Villforth, Carolin; Wylezalek, Dominika; Alexandroff, Rachael M.; Ross, Nicholas P.
2016-07-01
Black hole feedback is now a standard component of galaxy formation models. These models predict that the impact of black hole activity on its host galaxy likely peaked at z = 2-3, the epoch of strongest star formation activity and black hole accretion activity in the Universe. We used XSHOOTER on the Very Large Telescope to measure rest-frame optical spectra of four z ˜ 2.5 extremely red quasars with infrared luminosities ˜1047 erg s-1. We present the discovery of very broad (full width at half max = 2600-5000 km s-1), strongly blueshifted (by up to 1500 km s-1) [O III] λ5007 Å emission lines in these objects. In a large sample of type 2 and red quasars, [O III] kinematics are positively correlated with infrared luminosity, and the four objects in our sample are on the extreme end in both [O III] kinematics and infrared luminosity. We estimate that at least 3 per cent of the bolometric luminosity in these objects is being converted into the kinetic power of the observed wind. Photo-ionization estimates suggest that the [O III] emission might be extended on a few kpc scales, which would suggest that the extreme outflow is affecting the entire host galaxy of the quasar. These sources may be the signposts of the most extreme form of quasar feedback at the peak epoch of galaxy formation, and may represent an active `blow-out' phase of quasar evolution.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-26
... such as: The attacks of September 11, 2001; natural disasters such as Hurricanes Katrina and Rita of... UHF SONAR technology during times of extreme weather, such as hurricanes, could be required for...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-27
... such as: The attacks of September 11, 2001; natural disasters such as Hurricanes Katrina and Rita of... technology during times of extreme weather, such as hurricanes, could be required for onshore areas that...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., wood and other biomass fuels, coal, wind and solar energy. Fuels used for subsistence activities in... ASSISTANCE TO HIGH ENERGY COST COMMUNITIES General Requirements § 1709.3 Definitions. Administrator means the... so identified in USDA regulations. Extremely high energy costs means community average residential...
Code of Federal Regulations, 2010 CFR
2010-01-01
..., wood and other biomass fuels, coal, wind and solar energy. Fuels used for subsistence activities in... ASSISTANCE TO HIGH ENERGY COST COMMUNITIES General Requirements § 1709.3 Definitions. Administrator means the... so identified in USDA regulations. Extremely high energy costs means community average residential...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., wood and other biomass fuels, coal, wind and solar energy. Fuels used for subsistence activities in... ASSISTANCE TO HIGH ENERGY COST COMMUNITIES General Requirements § 1709.3 Definitions. Administrator means the... so identified in USDA regulations. Extremely high energy costs means community average residential...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., wood and other biomass fuels, coal, wind and solar energy. Fuels used for subsistence activities in... ASSISTANCE TO HIGH ENERGY COST COMMUNITIES General Requirements § 1709.3 Definitions. Administrator means the... so identified in USDA regulations. Extremely high energy costs means community average residential...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., wood and other biomass fuels, coal, wind and solar energy. Fuels used for subsistence activities in... ASSISTANCE TO HIGH ENERGY COST COMMUNITIES General Requirements § 1709.3 Definitions. Administrator means the... so identified in USDA regulations. Extremely high energy costs means community average residential...
NASA Astrophysics Data System (ADS)
Fielder, Robert S.; Palmer, Matthew E.; Davis, Matthew A.; Engelbrecht, Gordon P.
2006-01-01
Luna Innovations has developed a novel, fiber optic, hybrid pressure-temperature sensor system for extremely high-temperature environments that is capable of reliable operation up to 1050 °C. This system is based on the extremely high-temperature fiber optic sensors already demonstrated during previous work. The novelty of the sensors presented here lies in the fact that pressure and temperature are measured simultaneously with a single fiber and a single transducer. This hybrid approach will enable highly accurate active temperature compensation and sensor self-diagnostics not possible with other platforms. Hybrid pressure and temperature sensors were calibrated by varying both pressure and temperature. Implementing active temperature compensation resulted in a ten-fold reduction in the temperature-dependence of the pressure measurement. Sensors were tested for operability in a relatively high neutron dose environment up to 6.9×1017 n/cm2. In addition to harsh environment survivability, fiber optic sensors offer a number of intrinsic advantages for space nuclear power applications including extremely low mass, immunity to electromagnetic interference, self diagnostics / prognostics, and smart sensor capability. Deploying fiber optic sensors on future space exploration missions would provide a substantial improvement in spacecraft instrumentation. Additional development is needed, however, before these advantages can be realized. This paper will highlight recent demonstrations of fiber optic sensors in environments relevant to space nuclear applications. Successes and lessons learned will be highlighted. Additionally, development needs will be covered which will suggest a framework for a coherent plan to continue work in this area.
NASA Technical Reports Server (NTRS)
Rubin, C.; Xu, G.; Judex, S.
2001-01-01
It is generally believed that mechanical signals must be large in order to be anabolic to bone tissue. Recent evidence indicates, however, that extremely low-magnitude (<10 microstrain) mechanical signals readily stimulate bone formation if induced at a high frequency. We examined the ability of extremely low-magnitude, high-frequency mechanical signals to restore anabolic bone cell activity inhibited by disuse. Adult female rats were randomly assigned to six groups: baseline control, age-matched control, mechanically stimulated for 10 min/day, disuse (hind limb suspension), disuse interrupted by 10 min/day of weight bearing, and disuse interrupted by 10 min/day of mechanical stimulation. After a 28 day protocol, bone formation rates (BFR) in the proximal tibia of mechanically stimulated rats increased compared with age-matched control (+97%). Disuse alone reduced BFR (-92%), a suppression only slightly curbed when disuse was interrupted by 10 min of weight bearing (-61%). In contrast, disuse interrupted by 10 min per day of low-level mechanical intervention normalized BFR to values seen in age-matched controls. This work indicates that this noninvasive, extremely low-level stimulus may provide an effective biomechanical intervention for the bone loss that plagues long-term space flight, bed rest, or immobilization caused by paralysis.
Gomez, Andrew Thomas; Rao, Ashwin
2016-03-01
Adventure and extreme sports often involve unpredictable and inhospitable environments, high velocities, and stunts. These activities vary widely and include sports like BASE jumping, snowboarding, kayaking, and surfing. Increasing interest and participation in adventure and extreme sports warrants understanding by clinicians to facilitate prevention, identification, and treatment of injuries unique to each sport. This article covers alpine skiing and snowboarding, skateboarding, surfing, bungee jumping, BASE jumping, and whitewater sports with emphasis on epidemiology, demographics, general injury mechanisms, specific injuries, chronic injuries, fatality data, and prevention. Overall, most injuries are related to overuse, trauma, and environmental or microbial exposure. Copyright © 2016 Elsevier Inc. All rights reserved.
A regressive storm model for extreme space weather
NASA Astrophysics Data System (ADS)
Terkildsen, Michael; Steward, Graham; Neudegg, Dave; Marshall, Richard
2012-07-01
Extreme space weather events, while rare, pose significant risk to society in the form of impacts on critical infrastructure such as power grids, and the disruption of high end technological systems such as satellites and precision navigation and timing systems. There has been an increased focus on modelling the effects of extreme space weather, as well as improving the ability of space weather forecast centres to identify, with sufficient lead time, solar activity with the potential to produce extreme events. This paper describes the development of a data-based model for predicting the occurrence of extreme space weather events from solar observation. The motivation for this work was to develop a tool to assist space weather forecasters in early identification of solar activity conditions with the potential to produce extreme space weather, and with sufficient lead time to notify relevant customer groups. Data-based modelling techniques were used to construct the model, and an extensive archive of solar observation data used to train, optimise and test the model. The optimisation of the base model aimed to eliminate false negatives (missed events) at the expense of a tolerable increase in false positives, under the assumption of an iterative improvement in forecast accuracy during progression of the solar disturbance, as subsequent data becomes available.
Individual muscle contributions to push and recovery subtasks during wheelchair propulsion.
Rankin, Jeffery W; Richter, W Mark; Neptune, Richard R
2011-04-29
Manual wheelchair propulsion places considerable physical demand on the upper extremity and is one of the primary activities associated with the high prevalence of upper extremity overuse injuries and pain among wheelchair users. As a result, recent effort has focused on determining how various propulsion techniques influence upper extremity demand during wheelchair propulsion. However, an important prerequisite for identifying the relationships between propulsion techniques and upper extremity demand is to understand how individual muscles contribute to the mechanical energetics of wheelchair propulsion. The purpose of this study was to use a forward dynamics simulation of wheelchair propulsion to quantify how individual muscles deliver, absorb and/or transfer mechanical power during propulsion. The analysis showed that muscles contribute to either push (i.e., deliver mechanical power to the handrim) or recovery (i.e., reposition the arm) subtasks, with the shoulder flexors being the primary contributors to the push and the shoulder extensors being the primary contributors to the recovery. In addition, significant activity from the shoulder muscles was required during the transition between push and recovery, which resulted in increased co-contraction and upper extremity demand. Thus, strengthening the shoulder flexors and promoting propulsion techniques that improve transition mechanics have much potential to reduce upper extremity demand and improve rehabilitation outcomes. Copyright © 2011 Elsevier Ltd. All rights reserved.
Feasibility of High-Repetition, Task-Specific Training for Individuals With Upper-Extremity Paresis
Waddell, Kimberly J.; Birkenmeier, Rebecca L.; Moore, Jennifer L.; Hornby, T. George
2014-01-01
OBJECTIVE. We investigated the feasibility of delivering an individualized, progressive, high-repetition upper-extremity (UE) task-specific training protocol for people with stroke in the inpatient rehabilitation setting. METHOD. Fifteen patients with UE paresis participated in this study. Task-specific UE training was scheduled for 60 min/day, 4 days/wk, during occupational therapy for the duration of a participant’s inpatient stay. During each session, participants were challenged to complete ≥300 repetitions of various tasks. RESULTS. Participants averaged 289 repetitions/session, spending 47 of 60 min in active training. Participants improved on impairment and activity level outcome measures. CONCLUSION. People with stroke in an inpatient setting can achieve hundreds of repetitions of task-specific training in 1-hr sessions. As expected, all participants improved on functional outcome measures. Future studies are needed to determine whether this high-repetition training program results in better outcomes than current UE interventions. PMID:25005508
Assessment of cellulolytic microorganisms in soils of Nevados Park, Colombia.
Avellaneda-Torres, Lizeth Manuela; Pulido, Claudia Patricia Guevara; Rojas, Esperanza Torres
2014-01-01
A systematized survey was conducted to find soil-borne microbes that degrade cellulose in soils from unique ecosystems, such as the Superpáramo, Páramo, and the High Andean Forest in the Nevados National Natural Park (NNNP), Colombia. These high mountain ecosystems represent extreme environments, such as high levels of solar radiation, low atmospheric pressure, and extreme daily changes in temperature. Cellulolytic activity of the microorganisms was evaluated using qualitative tests, such as growth in selective media followed by staining with congo red and iodine, and quantitative tests to determine the activity of endoglucanase, β-glucosidase, exoglucanase, and total cellulase. Microorganisms were identified using molecular markers, such as the 16S rRNA gene for bacteria and the internal transcribed spacer region (ITS) of ribosomal DNA for fungi. Multivariate statistical analysis (MVA) was used to select microorganisms with high cellulolytic capacity. A total of 108 microorganisms were isolated from the soils and, in general, the enzymatic activities of fungi were higher than those of bacteria. Our results also found that none of the organisms studied were able to degrade all the components of the cellulose and it is therefore suggested that a combination of bacteria and/or fungi with various enzymatic activities be used to obtain high total cellulolytic activity. This study gives an overview of the potential microorganism that could be used for cellulose degradation in various biotechnological applications and for sustainable agricultural waste treatment.
NASA Technical Reports Server (NTRS)
Ngwira, Chigomezyo M.; Pulkkinen, Antti A.
2018-01-01
Vulnerability of man-made infrastructure to Earth-directed space weather events is a serious concern for today's technology-dependent society. Space weather-driven geomagnetically induced currents (GICs) can disrupt operation of extended electrically conducting technological systems. The threat of adverse impacts on critical technological infrastructure, like power grids, oil and gas pipelines, and communication networks, has sparked renewed interest in extreme space weather. Because extreme space weather events have low occurrence rate but potentially high impact, this presents a major challenge for our understanding of extreme GIC activity. In this chapter, we discuss some of the key science challenges pertaining to our understanding of extreme events. In addition, we present an overview of GICs including highlights of severe impacts over the last 80 years and recent U.S. Federal actions relevant to this community.
A newly high alkaline lipase: an ideal choice for application in detergent formulations
2011-01-01
Background Bacterial lipases received much attention for their substrate specificity and their ability to function in extreme environments (pH, temperature...). Many staphylococci produced lipases which were released into the culture medium. Reports of thermostable lipases from Staphylococcus sp. and active in alkaline conditions are not previously described. Results A newly soil-isolated Staphylococcus sp. strain ESW secretes an induced lipase in the culture medium. The effects of temperature, pH and various components in a detergent on the activity and stability of Staphylococcus sp. lipase (SL1) were studied in a preliminary evaluation for use in detergent formulation solutions. The enzyme was highly active over a wide range of pH from 9.0 to 13.0, with an optimum at pH 12.0. The relative activity at pH 13.0 was about 60% of that obtained at pH 12.0. It exhibited maximal activity at 60°C. This novel lipase, showed extreme stability towards non-ionic and anionic surfactants after pre-incubation for 1 h at 40°C, and relative stability towards oxidizing agents. Additionally, the crude enzyme showed excellent stability and compatibility with various commercial solid and liquid detergents. Conclusions These properties added to the high activity in high alkaline pH make this novel lipase an ideal choice for application in detergent formulations. PMID:22123072
Causing Factors for Extreme Precipitation in the Western Saudi-Arabian Peninsula
NASA Astrophysics Data System (ADS)
Alharbi, M. M.; Leckebusch, G. C.
2015-12-01
In the western coast of Saudi Arabia the climate is in general semi-arid but extreme precipitation events occur on a regular basis: e.g., on 26th November 2009, when 122 people were killed and 350 reported missing in Jeddah following more than 90mm in just four hours. Our investigation will a) analyse major drivers of the generation of extremes and b) investigate major responsible modes of variability for the occurrence of extremes. Firstly, we present a systematic analysis of station based observations of the most relevant extreme events (1985-2013) for 5 stations (Gizan, Makkah, Jeddah, Yenbo and Wejh). Secondly, we investigate the responsible mechanism on the synoptic to large-scale leading to the generation of extremes and will analyse factors for the time variability of extreme event occurrence. Extreme events for each station are identified in the wet season (Nov-Jan): 122 events show intensity above the respective 90th percentile. The most extreme events are systematically investigated with respect to the responsible forcing conditions which we can identify as: The influence of the Soudan Low, active Red-Sea-Trough situations established via interactions with mid-latitude tropospheric wave activity, low pressure systems over the Mediterranean, the influence of the North Africa High, the Arabian Anticyclone and the influence of the Indian monsoon trough. We investigate the role of dynamical forcing factors like the STJ and the upper-troposphere geopotential conditions and the relation to smaller local low-pressure systems. By means of an empirical orthogonal function (EOF) analysis based on MSLP we investigate the possibility to objectively quantify the influence of existing major variability modes and their role for the generation of extreme precipitation events.
Rajagopal, Thangavel; Archunan, Govindaraju; Sekar, Mahadevan
2011-01-01
This study investigated behavioral activities (resting, moving, aggressive, social, and reproductive behavior) and fecal cortisol levels in 8 individually identified adult male blackbucks during periods of varying levels of zoo visitors (zero, low, high, and extremely high zoo visitor density). This study also elucidated whether zoo visitor density could disturb nonhuman animal welfare. This study analyzed fecal cortisol from the samples of blackbuck by radioimmunoassay and found significant differences (p < .05) for time the animals devoted to moving, resting, aggressive, reproductive, and social behavior on days with high and extremely high levels of zoo visitors. The ANOVA with Duncan's Multiple Range Test test showed that the fecal cortisol concentration was higher (p < .05) during the extremely high (137.30 ± 5.88 ng/g dry feces) and high (113.51 ± 3.70 ng/g dry feces) levels of zoo visitor density. The results of the study suggest that zoo visitor density affected behavior and adrenocortical secretion in Indian Blackbuck, and this may indicate an animal welfare problem.
Nyland, John; Wera, Jeff; Klein, Scott; Caborn, David N M
2014-12-01
This study compared lower extremity EMG activation and sagittal plane kinematics of subjects at a minimum of 2 years post-successful ACL reconstruction and rehabilitation during instrumented single leg hop testing. Comparisons were made based on subject responses to the following question, "compared to prior to your knee injury how capable are you now in performing sports activities"? Group 1=very capable, Group 2=capable, and Group 3=not capable. In addition to EMG (1000 Hz) and kinematic (60 Hz) data, subjective knee function, internal health locus of control, sports activity characteristics (intensity, frequency) pre-knee injury, and at follow-up were also compared. Group 3 had lower perceived knee function, decreased perceived sports intensity, and more subjects with decreased sports activity intensity by two levels compared to pre-injury values. Perceived function scores, anterior laxity measurements and grades were similar between groups. During single leg hop propulsion and landing Group 1 (very capable) had greater involved lower extremity gluteus maximus and medial hamstring activation amplitudes than Group 3 (not capable). Perceived sports capability was related to better subjective knee function, and higher perceived sports activity intensity. Neuromuscular compensations suggesting a hip bias with increased gluteus maximus and medial hamstring activation were identified at the involved lower extremity among most subjects who perceived high perceived sports capability compared to pre-injury status. These compensations may be related to a permanent neurosensory deficit, and its influence on afferent pathway changes that influence CNS sensorimotor re-organization. Copyright © 2014 Elsevier B.V. All rights reserved.
78 FR 69366 - Information Collection Activity; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-19
..., including through the use of appropriate automated, electronic, mechanical, or other technological...: (202) 720-8435 or email [email protected] . Title: Assistance to High Energy Cost Rural... 2000 to create a new program to help rural communities with extremely high energy costs (Pub. L. 106...
Influence of hurricane-related activity on North American extreme precipitation
NASA Astrophysics Data System (ADS)
Barlow, Mathew
2010-05-01
Individual hurricanes and their remnants can produce exceptionally intense rainfall, and the associated flooding, even independent of storm surge, is one of the leading causes of hurricane-related death in the U.S. Despite the catastrophic societal costs of hurricanes and the considerable recent attention to possible trends in strength and number, little is known about the general contribution of hurricane-related activity to extreme precipitation over North America and the underlying dynamical mechanisms. Here we show, based on a 25-year observational analysis, that there are important contributions to the occurrence of extreme precipitation events over more than half of North America, including a pronounced signal over northern and inland areas, associated with an average span of influence that extends to several hundred kilometers. Large-scale vertical velocity, maximum wind speed, and tropical/extratropical character are important factors in the strength and range of influence, and the pattern of influence depends on whether an absolute or relative measure of precipitation is considered. Associated changes in stability, moisture, and vertical motion are analyzed to investigate the dynamics of the influence: the largest changes are in vertical motion, with the hurricane-related activity bringing deep tropical values even to inland and high latitude areas, consistent with the occurrence of very heavy, tropical-like precipitation. While the maximum contribution of hurricane-related activity to mean precipitation is generally less than 25% even for the most-affected coastal regions, the contribution to extreme events is much larger: well over 50% for several regions and exceeding 25% for large swaths of the continent. Typical track density plots do not capture the activity's influence on extreme precipitation.
Ionic Strength Is a Barrier to the Habitability of Mars.
Fox-Powell, Mark G; Hallsworth, John E; Cousins, Claire R; Cockell, Charles S
2016-06-01
The thermodynamic availability of water (water activity) strictly limits microbial propagation on Earth, particularly in hypersaline environments. A considerable body of evidence indicates the existence of hypersaline surface waters throughout the history of Mars; therefore it is assumed that, as on Earth, water activity is a major limiting factor for martian habitability. However, the differing geological histories of Earth and Mars have driven variations in their respective aqueous geochemistry, with as-yet-unknown implications for habitability. Using a microbial community enrichment approach, we investigated microbial habitability for a suite of simulated martian brines. While the habitability of some martian brines was consistent with predictions made from water activity, others were uninhabitable even when the water activity was biologically permissive. We demonstrate experimentally that high ionic strength, driven to extremes on Mars by the ubiquitous occurrence of multivalent ions, renders these environments uninhabitable despite the presence of biologically available water. These findings show how the respective geological histories of Earth and Mars, which have produced differences in the planets' dominant water chemistries, have resulted in different physicochemical extremes which define the boundary space for microbial habitability. Habitability-Mars-Salts-Water activity-Life in extreme environments. Astrobiology 16, 427-442.
Solar Power Generation in Extreme Space Environments
NASA Technical Reports Server (NTRS)
Elliott, Frederick W.; Piszczor, Michael F.
2016-01-01
The exploration of space requires power for guidance, navigation, and control; instrumentation; thermal control; communications and data handling; and many subsystems and activities. Generating sufficient and reliable power in deep space through the use of solar arrays becomes even more challenging as solar intensity decreases and high radiation levels begin to degrade the performance of photovoltaic devices. The Extreme Environments Solar Power (EESP) project goal is to develop advanced photovoltaic technology to address these challenges.
The NuSTAR Serendipitous Survey: Hunting for the Most Extreme Obscured AGN at >10 keV
NASA Astrophysics Data System (ADS)
Lansbury, G. B.; Alexander, D. M.; Aird, J.; Gandhi, P.; Stern, D.; Koss, M.; Lamperti, I.; Ajello, M.; Annuar, A.; Assef, R. J.; Ballantyne, D. R.; Baloković, M.; Bauer, F. E.; Brandt, W. N.; Brightman, M.; Chen, C.-T. J.; Civano, F.; Comastri, A.; Del Moro, A.; Fuentes, C.; Harrison, F. A.; Marchesi, S.; Masini, A.; Mullaney, J. R.; Ricci, C.; Saez, C.; Tomsick, J. A.; Treister, E.; Walton, D. J.; Zappacosta, L.
2017-09-01
We identify sources with extremely hard X-ray spectra (I.e., with photon indices of {{Γ }}≲ 0.6) in the 13 deg2 NuSTAR serendipitous survey, to search for the most highly obscured active galactic nuclei (AGNs) detected at > 10 {keV}. Eight extreme NuSTAR sources are identified, and we use the NuSTAR data in combination with lower-energy X-ray observations (from Chandra, Swift XRT, and XMM-Newton) to characterize the broadband (0.5-24 keV) X-ray spectra. We find that all of the extreme sources are highly obscured AGNs, including three robust Compton-thick (CT; {N}{{H}}> 1.5× {10}24 cm-2) AGNs at low redshift (z< 0.1) and a likely CT AGN at higher redshift (z = 0.16). Most of the extreme sources would not have been identified as highly obscured based on the low-energy (< 10 keV) X-ray coverage alone. The multiwavelength properties (e.g., optical spectra and X-ray-mid-IR luminosity ratios) provide further support for the eight sources being significantly obscured. Correcting for absorption, the intrinsic rest-frame 10-40 keV luminosities of the extreme sources cover a broad range, from ≈ 5× {10}42 to 1045 erg s-1. The estimated number counts of CT AGNs in the NuSTAR serendipitous survey are in broad agreement with model expectations based on previous X-ray surveys, except for the lowest redshifts (z< 0.07), where we measure a high CT fraction of {f}{CT}{obs}={30}-12+16 % . For the small sample of CT AGNs, we find a high fraction of galaxy major mergers (50% ± 33%) compared to control samples of “normal” AGNs.
V474 Car: A RARE HALO RS CVn BINARY IN RETROGRADE GALACTIC ORBIT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bubar, Eric J.; Mamajek, Eric E.; Jensen, Eric L. N.
We report the discovery that the star V474 Car is an extremely active, high velocity halo RS CVn system. The star was originally identified as a possible pre-main-sequence star in Carina, given its enhanced stellar activity, rapid rotation (10.3 days), enhanced Li, and absolute magnitude which places it above the main sequence (MS). However, its extreme radial velocity (264 km s{sup -1}) suggested that this system was unlike any previously known pre-MS system. Our detailed spectroscopic analysis of echelle spectra taken with the CTIO 4 m finds that V474 Car is both a spectroscopic binary with an orbital period similarmore » to the photometric rotation period and metal-poor ([Fe/H] {approx_equal}-0.99). The star's Galactic orbit is extremely eccentric (e {approx_equal} 0.93) with a perigalacticon of only {approx}0.3 kpc of the Galactic center-and the eccentricity and smallness of its perigalacticon are surpassed by only {approx}0.05% of local F/G-type field stars. The observed characteristics are consistent with V474 Car being a high-velocity, metal-poor, tidally locked, chromospherically active binary, i.e., a halo RS CVn binary, and one of only a few such specimens known.« less
Puzzlingly High Correlations in fMRI Studies of Emotion, Personality, and Social Cognition
ERIC Educational Resources Information Center
Vul, Edward; Harris, Christine; Winkielman, Piotr; Pashler, Harold
2009-01-01
Functional Magnetic Resonance Imaging (fMRI) studies of emotion, personality, and social cognition have drawn much attention in recent years, with high-profile studies frequently reporting extremely high (e.g., > 8) correlations between behavioral and self-report measures of personality or emotion and measures of brain activation. We show…
Long-term reactions of plants and macroinvertebrates to extreme floods in floodplain grasslands.
Ilg, Christiane; Dziock, Frank; Foeckler, Francis; Follner, Klaus; Gerisch, Michael; Glaeser, Judith; Rink, Anke; Schanowski, Arno; Scholz, Mathias; Deichner, Oskar; Henle, Klaus
2008-09-01
Extreme summertime flood events are expected to become more frequent in European rivers due to climate change. In temperate areas, where winter floods are common, extreme floods occurring in summer, a period of high physiological activity, may seriously impact floodplain ecosystems. Here we report on the effects of the 2002 extreme summer flood on flora and fauna of the riverine grasslands of the Middle Elbe (Germany), comparing pre- and post-flooding data collected by identical methods. Plants, mollusks, and carabid beetles differed considerably in their response in terms of abundance and diversity. Plants and mollusks, displaying morphological and behavioral adaptations to flooding, showed higher survival rates than the carabid beetles, the adaptation strategies of which were mainly linked to life history. Our results illustrate the complexity of responses of floodplain organisms to extreme flood events. They demonstrate that the efficiency of resistance and resilience strategies is widely dependent on the mode of adaptation.
Haddas, Ram; Hooper, Troy; James, C Roger; Sizer, Phillip S
2016-12-01
Volitional preemptive abdominal contraction (VPAC) during dynamic activities may alter trunk motion, but the role of the core musculature in positioning the trunk during landing tasks is unclear. To determine whether volitional core-muscle activation incorporated during a drop vertical jump alters lower extremity kinematics and kinetics, as well as trunk and lower extremity muscle activity at different landing heights. Controlled laboratory study. Clinical biomechanics laboratory. Thirty-two young healthy adults, consisting of 17 men (age = 25.24 ± 2.88 years, height = 1.85 ± 0.06 m, mass = 89.68 ± 16.80 kg) and 15 women (age = 23.93 ± 1.33 years, height = 1.67 ± 0.08 m, mass = 89.68 ± 5.28 kg). Core-muscle activation using VPAC. We collected 3-dimensional ankle, knee, and hip motions, moments, and powers; ground reaction forces; and trunk and lower extremity muscle activity during 0.30- and 0.50-m drop vertical-jump landings. During landing from a 0.30-m height, VPAC performance increased external oblique and semitendinosis activity, knee flexion, and knee internal rotation and decreased knee-abduction moment and knee-energy absorption. During the 0.50-m landing, the VPAC increased external oblique and semitendinosis activity, knee flexion, and hip flexion and decreased ankle inversion and hip-energy absorption. The VPAC performance during landing may protect the anterior cruciate ligament during different landing phases from different heights, creating a protective advantage just before ground contact and after the impact phase. Incorporating VPAC during high injury-risk activities may enhance pelvic stability, improve lower extremity positioning and sensorimotor control, and reduce anterior cruciate ligament injury risk while protecting the lumbar spine.
EUNIS; Extreme-Ultraviolet Normal-Incidence Spectrometer
NASA Technical Reports Server (NTRS)
Thomas, Roger J.; Davila, Joseph M.; Fisher, Richard R. (Technical Monitor)
2001-01-01
GSFC is in the process of assembling an Extreme-Ultraviolet Normal Incidence Spectrometer called EUNIS, to be flown as a sounding rocket payload. The instrument builds on the many technical innovations pioneered by our highly successful SERTS experiment, which has now flown a total of ten times, most recently last summer. The new design will have somewhat improved spatial and spectral resolutions, as well as two orders of magnitude greater sensitivity, permitting high signal/noise EUV spectroscopy with a temporal resolution near 1 second for the first time ever. In order to achieve such high time cadence, a novel detector system is being developed, based on Active-Pixel-Sensor electronics, a key component of our design.
NASA Astrophysics Data System (ADS)
Satyapal, Shobita; Abel, Nicholas P.; Secrest, Nathan J.
2018-05-01
We conduct for the first time a theoretical investigation of the mid-infrared spectral energy distribution (SED) produced by dust heated by an active galactic nucleus (AGN) and an extreme starburst. These models employ an integrated modeling approach using photoionization and stellar population synthesis models in which both the line and emergent continuum is predicted from gas exposed to the ionizing radiation from a young starburst and an AGN. In this work, we focus on the infrared colors from the Wide-field Infrared Survey Explorer, predicting the dependence of the colors on the input radiation field, the interstellar medium conditions, the obscuring column, and the metallicity. We find that an extreme starburst can mimic an AGN in two band mid-infrared color cuts employed in the literature. However, the three-band color cuts employed in the literature require starbursts with extremely high ionization parameters or gas densities. We show that the extreme mid-infrared colors seen in some blue compact dwarf galaxies are not due to metallicity but rather a combination of high ionization parameters and high column densities. Based on our theoretical calculations, we present a theoretical mid-infrared color cut that will exclude even the most extreme starburst that we have modeled in this work. The theoretical AGN demarcation region presented here can be used to identify elusive AGN candidates for future follow-up studies with the James Webb Space Telescope. The full suite of simulated SEDs are available online.
The Effect of the Weight of Equipment on Muscle Activity of the Lower Extremity in Soldiers
Lindner, Tobias; Schulze, Christoph; Woitge, Sandra; Finze, Susanne; Mittelmeier, Wolfram; Bader, Rainer
2012-01-01
Due to their profession and the tasks it entails, soldiers are exposed to high levels of physical activity and strain. This can result in overexertion and pain in the locomotor system, partly caused by carrying items of equipment. The aim of this study was to analyse the extent of muscle activity in the lower extremities caused by carrying specific items of equipment. For this purpose, the activity of selected groups of muscles caused by different items of equipment (helmet, carrying strap, backpack, and rifle) in the upper and lower leg was measured by recording dynamic surface electromyograms. Electrogoniometers were also used to measure the angle of the knee over the entire gait cycle. In addition to measuring muscle activity, the study also aimed to determine out what influence increasing weight load has on the range of motion (ROM) of the knee joint during walking. The activity of recorded muscles of the lower extremity, that is, the tibialis anterior, peroneus longus, gastrocnemius lateralis, gastrocnemius medialis, rectus femoris, and biceps femoris, was found to depend on the weight of the items of equipment. There was no evidence, however, that items of equipment weighing a maximum of 34% of their carrier's body weight had an effect on the ROM of the knee joint. PMID:22973179
Merkel, P A; Cuthbertson, D D; Hellmich, B; Hoffman, G S; Jayne, D R W; Kallenberg, C G M; Krischer, J P; Luqmani, R; Mahr, A D; Matteson, E L; Specks, U; Stone, J H
2009-01-01
Currently, several different instruments are used to measure disease activity and extent in clinical trials of anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis, leading to division among investigative groups and difficulty comparing study results. An exercise comparing six different vasculitis instruments was performed. A total of 10 experienced vasculitis investigators from 5 countries scored 20 cases in the literature of Wegener granulomatosis or microscopic polyangiitis using 6 disease assessment tools: the Birmingham Vasculitis Activity Score (BVAS), The BVAS for Wegener granulomatosis (BVAS/WG), BVAS 2003, a Physician Global Assessment (PGA), the Disease Extent Index (DEI) and the Five Factor Score (FFS). Five cases were rescored by all raters. Reliability of the measures was extremely high (intraclass correlations for the six measures all = 0.98). Within each instrument, there were no significant differences or outliers among the scores from the 10 investigators. Test/retest reliability was high for each measure: range = 0.77 to 0.95. The scores of the five acute activity measures correlated extremely well with one another. Currently available tools for measuring disease extent and activity in ANCA-associated vasculitis are highly correlated and reliable. These results provide investigators with confidence to compare different clinical trial data and helps form common ground as international research groups develop new, improved and universally accepted vasculitis disease assessment instruments.
Soghomonyan, Diana; Trchounian, Karen; Trchounian, Armen
2016-06-01
Millimeter waves (MMW) or electromagnetic fields of extremely high frequencies at low intensity is a new environmental factor, the level of which is increased as technology advance. It is of interest that bacteria and other cells might communicate with each other by electromagnetic field of sub-extremely high frequency range. These MMW affected Escherichia coli and many other bacteria, mainly depressing their growth and changing properties and activity. These effects were non-thermal and depended on different factors. The significant cellular targets for MMW effects could be water, cell plasma membrane, and genome. The model for the MMW interaction with bacteria is suggested; a role of the membrane-associated proton FOF1-ATPase, key enzyme of bioenergetic relevance, is proposed. The consequences of MMW interaction with bacteria are the changes in their sensitivity to different biologically active chemicals, including antibiotics. Novel data on MMW effects on bacteria and their sensitivity to different antibiotics are presented and discussed; the combined action of MMW and antibiotics resulted with more strong effects. These effects are of significance for understanding changed metabolic pathways and distinguish role of bacteria in environment; they might be leading to antibiotic resistance in bacteria. The effects might have applications in the development of technique, therapeutic practices, and food protection technology.
Griffiths, Silja Torvik; Aukland, Stein Magnus; Markestad, Trond; Eide, Geir Egil; Elgen, Irene; Craven, Alexander R; Hugdahl, Kenneth
2014-10-01
The purpose of the study was to investigate a possible association between brain activation in functional magnetic resonance imaging scans, cognition and school performance in extremely preterm children and term born controls. Twenty eight preterm and 28 term born children were scanned while performing a working memory/selective attention task, and school results from national standardized tests were collected. Brain activation maps reflected difference in cognitive skills but not in school performance. Differences in brain activation were found between children born preterm and at term, and between high and low performers in cognitive tests. However, the differences were located in different brain areas. The implication may be that lack of cognitive skills does not alone explain low performance due to prematurity. © 2014 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
Extremely Luminous Far-infrared Sources (ELFS)
NASA Technical Reports Server (NTRS)
Harwit, Martin; Houck, James R.; Soifer, B. Thomas; Palumbo, Giorgio G. C.
1987-01-01
The Infrared Astronomical Satellite (IRAS) survey uncovered a class of Extremely Luminous Far Infrared Sources (ELFS), exhibiting luminosities up to and occasionally exceeding 10 to the 12th power L sub 0. Arguments are presented to show that sources with luminosities L equal to or greater than 3 x 10 to the 10th power L sub 0 may represent gas rich galaxies in collision. The more conventional explanation of these sources as sites of extremely active star formation fails to explain the observed low optical luminosities of ELFS as well as their high infrared excess. In contrast, a collisional model heats gas to a temperature of approx. 10 to the 6th power K where cooling takes place in the extreme ultraviolet. The UV is absorbed by dust and converted into far infrared radiation (FIR) without generation of appreciable optical luminosity. Gas recombination as it cools generates a Lyman alpha photon only once for every two extreme ultraviolet approx. 50eV photons emitted by the 10 to the 6th power gas. That accounts for the high infrared excess. Finally, the model also is able to explain the observed luminosity distribution of ELFS as well as many other traits.
Hamurcu, Mehmet; Hakki, Erdogan E; Demiral Sert, Tijen; Özdemir, Canan; Minareci, Ersin; Avsaroglu, Zuhal Z; Gezgin, Sait; Ali Kayis, Seyit; Bell, Richard W
Recent studies indicate an extremely high level of tolerance to boron (B) toxicity in Puccinellia distans (Jacq.) Parl. but the mechanistic basis is not known. Puccinellia distans was exposed to B concentrations of up to 1000 mg B L-1 and root B uptake, growth parameters, B and N contents, H2O2 accumulation and ·OH-scavenging activity were measured. Antioxidant enzyme activities including superoxide dismutase (SOD), ascorbate peroxidase, catalase, peroxidase and glutathione reductase, and lipid peroxidation products were determined. B appears to be actively excluded from roots. Excess B supply caused structural deformations in roots and leaves, H2O2 accumulation and simultaneous up-regulation of the antioxidative system, which prevented lipid peroxidation even at the highest B concentrations. Thus, P. distans has an efficient root B-exclusion capability and, in addition, B tolerance in shoots is achieved by a well-regulated antioxidant defense system.
Assessment of cellulolytic microorganisms in soils of Nevados Park, Colombia
Avellaneda-Torres, Lizeth Manuela; Pulido, Claudia Patricia Guevara; Rojas, Esperanza Torres
2014-01-01
A systematized survey was conducted to find soil-borne microbes that degrade cellulose in soils from unique ecosystems, such as the Superpáramo, Páramo, and the High Andean Forest in the Nevados National Natural Park (NNNP), Colombia. These high mountain ecosystems represent extreme environments, such as high levels of solar radiation, low atmospheric pressure, and extreme daily changes in temperature. Cellulolytic activity of the microorganisms was evaluated using qualitative tests, such as growth in selective media followed by staining with congo red and iodine, and quantitative tests to determine the activity of endoglucanase, β-glucosidase, exoglucanase, and total cellulase. Microorganisms were identified using molecular markers, such as the 16S rRNA gene for bacteria and the internal transcribed spacer region (ITS) of ribosomal DNA for fungi. Multivariate statistical analysis (MVA) was used to select microorganisms with high cellulolytic capacity. A total of 108 microorganisms were isolated from the soils and, in general, the enzymatic activities of fungi were higher than those of bacteria. Our results also found that none of the organisms studied were able to degrade all the components of the cellulose and it is therefore suggested that a combination of bacteria and/or fungi with various enzymatic activities be used to obtain high total cellulolytic activity. This study gives an overview of the potential microorganism that could be used for cellulose degradation in various biotechnological applications and for sustainable agricultural waste treatment. PMID:25763024
Hobusch, Gerhard Martin; Lang, Nikolaus; Schuh, Reinhard; Windhager, Reinhard; Hofstaetter, Jochen Gerhard
2015-03-01
Limb salvage surgery has evolved to become the standard method of treating sarcomas of the extremities with acceptable oncologic results. However, little information exists relative to the activity level or ability to participate in sports after tumor reconstructions. The aims of the study were to answer the following questions: (1) Which sports activity levels and what types of sports can be expected in the long term after tumor reconstruction? (2) Which frequency durations are patients with Ewing's sarcoma able to perform in long-term followup after local control? (3) Do surgical complications affect sports activity level? Thirty patients (13 females, 17 males; mean age, 18 ± 8 years; range, 2-36 years at diagnosis; mean followup 16 ± 6 years [minimum, 5 years]) were included. Tumors were located in the pelvis, femur, tibia, and fibula. Surgical procedures included surgical resections alone (n = 8), surgical resection with biological reconstruction (n = 9), or endoprosthetic reconstruction (n = 13). We assessed UCLA sports activity levels, kinds of sports as well as the frequency per week and the duration of each training unit at long term (minimum followup, 5 years). In long-term followup 83% patients (25 of 30) were performing athletic activity regularly. The hours/week of sports depended on type of surgery and were highest after resections in the pelvis and femur (5.8) and were lowest after megaprosthetic reconstruction of the pelvis (1.0). Patients undergoing biologic reconstructions were able to perform high-impact sports. UCLA sports activity levels were high after joint-preserving vascularized fibula for tibia reconstruction (7.4) and after megaprosthetic reconstruction of the lower extremity (6.3-6.4) and were low after tumors located in the fibula (4.2). Complications during followup did not significantly influence sports activity in long-term survivors. Long-term survivors can achieve high levels of sports activity in many instances. Tumor sites are associated with the postoperative sports activity levels. This information can help surgeons counsel patients in terms of athletic expectations after limb salvage reconstruction for patients with Ewing's sarcoma. Level III, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.
75 FR 17368 - Information Collection Activity; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-06
..., mechanical, or other technological collection techniques or other forms of information technology. Comments...., Washington, DC 20250- 1522. FAX: (202) 720-8435. Title: Assistance to High Energy Cost Rural Communities. OMB... 2000 to create a new program to help rural communities with extremely high energy costs (Pub. L. 106...
NASA Astrophysics Data System (ADS)
Pántano, V. C.; Penalba, O. C.
2013-05-01
Extreme events of temperature and rainfall have a socio-economic impact in the rainfed agriculture production region in Argentina. The magnitude of the impact can be analyzed through the water balance which integrates the characteristics of the soil and climate conditions. Changes observed in climate variables during the last decades affected the components of the water balance. As a result, a displacement of the agriculture border towards the west was produced, improving the agricultural production of the region. The objective of this work is to analyze how the variability of rainfall and temperature leads the hydric condition of the soil, with special focus on extreme events. The hydric conditions of the soil (HC= Excess- Deficit) were estimated from the monthly water balance (Thornthwaite and Mather method, 1957), using monthly potential evapotranspiration (PET) and monthly accumulated rainfall (R) for 33 stations (period 1970-2006). Information of temperature and rainfall was provided by National Weather Service and the effective capacity of soil water was considered from Forte Lay and Spescha (2001). An agricultural extreme condition occurs when soil moisture and rainfall are inadequate or excessive for the development of the crops. In this study, we define an extreme event when the variable is less (greater) than its 20% and 10% (80% and 90%) percentile. In order to evaluate how sensitive is the HC to water and heat stress in the region, different conditional probabilities were evaluated. There is a weaker response of HC to extreme low PET while extreme low R leads high values of HC. However, this behavior is not always observed, especially in the western region where extreme high and low PET show a stronger influence over the HC. Finally, to analyze the temporal variability of extreme PET and R, leading hydric condition of the soil, the number of stations presenting extreme conditions was computed for each month. As an example, interesting results were observed for April. During this month, the water recharge of the soil is crucial to let the winter crops manage with the scarce rainfalls occurring in the following months. In 1970, 1974, 1977, 1978 and 1997 more than 50% of the stations were under extreme high PET; while 1970, 1974, 1978 and 1988 presented more than 40% under extreme low R. Thus, the 70s was the more threatened decade of the period. Since the 80s (except for 1997), extreme dry events due to one variable or the other are mostly presented separately, over smaller areas. The response of the spatial distribution of HC is stronger when both variables present extreme conditions. In particular, during 1997 the region presents extreme low values of HC as a consequence of extreme low R and high PET. Communities dependent on agriculture are highly sensitive to climate variability and its extremes. In the studied region, it was shown that scarce water and heat stress contribute to the resulting hydric condition, producing strong impact over different productive activities. Extreme temperature seems to have a stronger influence over extreme unfavorable hydric conditions.
Solar Dynamics Observatory Lessons Learned
NASA Technical Reports Server (NTRS)
Rivera, Rachel; Uhl, Andrew; Secunda, Mark
2010-01-01
Mission is to study how solar activity is created and how space weather results from that activity. Atmospheric Imaging Assembly (AIA): High Resolution Images of 10 wavelengths every 10 seconds. Extreme Ultraviolet Variability Experiment (EVE): Measure Sun's brightness in EUV. Helioseismic and Magnetic Imager (HMI): Measures Doppler shift to study waves of the Sun. Launched February 11, 2010.
Upper Extremity Deep Vein Thromboses: The Bowler and the Barista.
Stake, Seth; du Breuil, Anne L; Close, Jeremy
2016-01-01
Effort thrombosis of the upper extremity refers to a deep venous thrombosis of the upper extremity resulting from repetitive activity of the upper limb. Most cases of effort thrombosis occur in young elite athletes with strenuous upper extremity activity. This article reports two cases who both developed upper extremity deep vein thromboses, the first being a 67-year-old bowler and the second a 25-year-old barista, and illustrates that effort thrombosis should be included in the differential diagnosis in any patient with symptoms concerning DVT associated with repetitive activity. A literature review explores the recommended therapies for upper extremity deep vein thromboses.
Upper Extremity Deep Vein Thromboses: The Bowler and the Barista
du Breuil, Anne L.; Close, Jeremy
2016-01-01
Effort thrombosis of the upper extremity refers to a deep venous thrombosis of the upper extremity resulting from repetitive activity of the upper limb. Most cases of effort thrombosis occur in young elite athletes with strenuous upper extremity activity. This article reports two cases who both developed upper extremity deep vein thromboses, the first being a 67-year-old bowler and the second a 25-year-old barista, and illustrates that effort thrombosis should be included in the differential diagnosis in any patient with symptoms concerning DVT associated with repetitive activity. A literature review explores the recommended therapies for upper extremity deep vein thromboses. PMID:27800207
NASA Astrophysics Data System (ADS)
Balasis, Georgios; Potirakis, Stelios M.; Papadimitriou, Constantinos; Zitis, Pavlos I.; Eftaxias, Konstantinos
2015-04-01
The field of study of complex systems considers that the dynamics of complex systems are founded on universal principles that may be used to describe a great variety of scientific and technological approaches of different types of natural, artificial, and social systems. We apply concepts of the nonextensive statistical physics, on time-series data of observable manifestations of the underlying complex processes ending up to different extreme events, in order to support the suggestion that a dynamical analogy characterizes the generation of a single magnetic storm, solar flare, earthquake (in terms of pre-seismic electromagnetic signals) , epileptic seizure, and economic crisis. The analysis reveals that all the above mentioned different extreme events can be analyzed within similar mathematical framework. More precisely, we show that the populations of magnitudes of fluctuations included in all the above mentioned pulse-like-type time series follow the traditional Gutenberg-Richter law as well as a nonextensive model for earthquake dynamics, with similar nonextensive q-parameter values. Moreover, based on a multidisciplinary statistical analysis we show that the extreme events are characterized by crucial common symptoms, namely: (i) high organization, high compressibility, low complexity, high information content; (ii) strong persistency; and (iii) existence of clear preferred direction of emerged activities. These symptoms clearly discriminate the appearance of the extreme events under study from the corresponding background noise.
Protein Adaptations in Archaeal Extremophiles
Reed, Christopher J.; Lewis, Hunter; Trejo, Eric; Winston, Vern; Evilia, Caryn
2013-01-01
Extremophiles, especially those in Archaea, have a myriad of adaptations that keep their cellular proteins stable and active under the extreme conditions in which they live. Rather than having one basic set of adaptations that works for all environments, Archaea have evolved separate protein features that are customized for each environment. We categorized the Archaea into three general groups to describe what is known about their protein adaptations: thermophilic, psychrophilic, and halophilic. Thermophilic proteins tend to have a prominent hydrophobic core and increased electrostatic interactions to maintain activity at high temperatures. Psychrophilic proteins have a reduced hydrophobic core and a less charged protein surface to maintain flexibility and activity under cold temperatures. Halophilic proteins are characterized by increased negative surface charge due to increased acidic amino acid content and peptide insertions, which compensates for the extreme ionic conditions. While acidophiles, alkaliphiles, and piezophiles are their own class of Archaea, their protein adaptations toward pH and pressure are less discernible. By understanding the protein adaptations used by archaeal extremophiles, we hope to be able to engineer and utilize proteins for industrial, environmental, and biotechnological applications where function in extreme conditions is required for activity. PMID:24151449
Shim, Je-Myung; Kwon, Hae-Yeon; Kim, Ha-Roo; Kim, Bo-In; Jung, Ju-Hyeon
2013-12-01
[Purpose] The aim of this study was to assess the effect of Nordic pole walking on the electromyographic activities of upper extremity and lower extremity muscles. [Subjects and Methods] The subjects were randomly divided into two groups as follows: without Nordic pole walking group (n=13) and with Nordic pole walking group (n=13). The EMG data were collected by measurement while the subjects walking on a treadmill for 30 minutes by measuring from one heel strike to the next. [Results] Both the average values and maximum values of the muscle activity of the upper extremity increased in both the group that used Nordic poles and the group that did not use Nordic poles, and the values showed statistically significant differences. There was an increase in the average value for muscle activity of the latissimus dorsi, but the difference was not statistically significant, although there was a statistically significant increase in its maximum value. The average and maximum values for muscle activity of the lower extremity did not show large differences in either group, and the values did not show any statistically significant differences. [Conclusion] The use of Nordic poles by increased muscle activity of the upper extremity compared with regular walking but did not affect the lower extremity.
Shim, Je-myung; Kwon, Hae-yeon; Kim, Ha-roo; Kim, Bo-in; Jung, Ju-hyeon
2014-01-01
[Purpose] The aim of this study was to assess the effect of Nordic pole walking on the electromyographic activities of upper extremity and lower extremity muscles. [Subjects and Methods] The subjects were randomly divided into two groups as follows: without Nordic pole walking group (n=13) and with Nordic pole walking group (n=13). The EMG data were collected by measurement while the subjects walking on a treadmill for 30 minutes by measuring from one heel strike to the next. [Results] Both the average values and maximum values of the muscle activity of the upper extremity increased in both the group that used Nordic poles and the group that did not use Nordic poles, and the values showed statistically significant differences. There was an increase in the average value for muscle activity of the latissimus dorsi, but the difference was not statistically significant, although there was a statistically significant increase in its maximum value. The average and maximum values for muscle activity of the lower extremity did not show large differences in either group, and the values did not show any statistically significant differences. [Conclusion] The use of Nordic poles by increased muscle activity of the upper extremity compared with regular walking but did not affect the lower extremity. PMID:24409018
Tempest: Tools for Addressing the Needs of Next-Generation Climate Models
NASA Astrophysics Data System (ADS)
Ullrich, P. A.; Guerra, J. E.; Pinheiro, M. C.; Fong, J.
2015-12-01
Tempest is a comprehensive simulation-to-science infrastructure that tackles the needs of next-generation, high-resolution, data intensive climate modeling activities. This project incorporates three key components: TempestDynamics, a global modeling framework for experimental numerical methods and high-performance computing; TempestRemap, a toolset for arbitrary-order conservative and consistent remapping between unstructured grids; and TempestExtremes, a suite of detection and characterization tools for identifying weather extremes in large climate datasets. In this presentation, the latest advances with the implementation of this framework will be discussed, and a number of projects now utilizing these tools will be featured.
Shock-activated electrochemical power supplies
Benedick, William B.; Graham, Robert A.; Morosin, Bruno
1988-01-01
A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolytes rendering the electrolyte electrochemically active.
Shock-activated electrochemical power supplies
Benedick, W.B.; Graham, R.A.; Morosin, B.
1988-11-08
A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolytes rendering the electrolyte electrochemically active. 2 figs.
Copahue Geothermal System: A Volcanic Environment with Rich Extreme Prokaryotic Biodiversity
Urbieta, María Sofía; Willis Porati, Graciana; Segretín, Ana Belén; González-Toril, Elena; Giaveno, María Alejandra; Donati, Edgardo Rubén
2015-01-01
The Copahue geothermal system is a natural extreme environment located at the northern end of the Cordillera de los Andes in Neuquén province in Argentina. The geochemistry and consequently the biodiversity of the area are dominated by the activity of the Copahue volcano. The main characteristic of Copahue is the extreme acidity of its aquatic environments; ponds and hot springs of moderate and high temperature as well as Río Agrio. In spite of being an apparently hostile location, the prokaryotic biodiversity detected by molecular ecology techniques as well as cultivation shows a rich and diverse environment dominated by acidophilic, sulphur oxidising bacteria or archaea, depending on the conditions of the particular niche studied. In microbial biofilms, found in the borders of the ponds where thermal activity is less intense, the species found are completely different, with a high presence of cyanobacteria and other photosynthetic species. Our results, collected during more than 10 years of work in Copahue, have enabled us to outline geomicrobiological models for the different environments found in the ponds and Río Agrio. Besides, Copahue seems to be the habitat of novel, not yet characterised autochthonous species, especially in the domain Archaea. PMID:27682093
Copahue Geothermal System: A Volcanic Environment with Rich Extreme Prokaryotic Biodiversity.
Urbieta, María Sofía; Porati, Graciana Willis; Segretín, Ana Belén; González-Toril, Elena; Giaveno, María Alejandra; Donati, Edgardo Rubén
2015-07-08
The Copahue geothermal system is a natural extreme environment located at the northern end of the Cordillera de los Andes in Neuquén province in Argentina. The geochemistry and consequently the biodiversity of the area are dominated by the activity of the Copahue volcano. The main characteristic of Copahue is the extreme acidity of its aquatic environments; ponds and hot springs of moderate and high temperature as well as Río Agrio. In spite of being an apparently hostile location, the prokaryotic biodiversity detected by molecular ecology techniques as well as cultivation shows a rich and diverse environment dominated by acidophilic, sulphur oxidising bacteria or archaea, depending on the conditions of the particular niche studied. In microbial biofilms, found in the borders of the ponds where thermal activity is less intense, the species found are completely different, with a high presence of cyanobacteria and other photosynthetic species. Our results, collected during more than 10 years of work in Copahue, have enabled us to outline geomicrobiological models for the different environments found in the ponds and Río Agrio. Besides, Copahue seems to be the habitat of novel, not yet characterised autochthonous species, especially in the domain Archaea.
Peters, S E; Johnston, V; Ross, M; Coppieters, M W
2017-02-01
This Delphi study aimed to reach consensus on important facilitators and barriers for return-to-work following surgery for non-traumatic upper extremity conditions. In Round 1, experts ( n = 42) listed 134 factors, which were appraised in Rounds 2 and 3. Consensus (⩾85% agreement) was achieved for 13 facilitators (high motivation to return-to-work; high self-efficacy for return-to-work and recovery; availability of modified/alternative duties; flexible return-to-work arrangements; positive coping skills; limited heavy work exertion; supportive return-to-work policies; supportive supervisor/management; no catastrophic thinking; no fear avoidance to return-to-work; no fear avoidance to pain/activity; return to meaningful work duties; high job satisfaction) and six barriers (mood disorder diagnosis; pain/symptoms at more than one musculoskeletal site; heavy upper extremity exertions at work; lack of flexible return-to-work arrangements; lack of support from supervisor/management; high level of pain catastrophizing). Future prognostic studies are required to validate these biopsychosocial factors to further improve return-to-work outcomes. V.
Subsurface geomicrobiology of the Iberian Pyritic Belt, a terrestrial analogue of Mars
NASA Astrophysics Data System (ADS)
Amils, Ricardo
Terrestrial subsurface geomicrobiology is a matter of growing interest on many levels. From a fundamental point of view, it seeks to determine whether life can be sustained in the absence of radiation. From an astrobiological point of view, it is an interesting model for early life on Earth, as well as a representation of life as it could occur in other planetary bodies, e.g., Mars. Ŕ Tinto is an unusual extreme acidic environment due to its size, constant acidic pH, high ıo concentration of heavy metals and high level of microbial diversity. Ŕ Tinto rises in the core of ıo the Iberian Pyritic Belt (IPB), one of the biggest sulfidic ore deposits in the world. Today it is clear that the extreme characteristics of Ŕ Tinto are not due to acid mine drainage resulting ıo from mining activity. To explore the hypothesis that a continuous underground reactor of chemolithotrophic microorganisms thriving in the rich sulfidic minerals of the IPB is responsible for the extreme conditions found in the river, a drilling project has been developed to detect evidence of subsurface microbial activity and potential resources to support these microbial communities in situ from retrieved cores (MARTE project). Preliminary results clearly show that there is an active subsurface geomicrobiology in the Iberian Pyritic Belt associated to places were ground waters intersects the sulfidic ore body.
Neutron scattering reveals the dynamic basis of protein adaptation to extreme temperature.
Tehei, Moeava; Madern, Dominique; Franzetti, Bruno; Zaccai, Giuseppe
2005-12-09
To explore protein adaptation to extremely high temperatures, two parameters related to macromolecular dynamics, the mean square atomic fluctuation and structural resilience, expressed as a mean force constant, were measured by neutron scattering for hyperthermophilic malate dehydrogenase from Methanococcus jannaschii and a mesophilic homologue, lactate dehydrogenase from Oryctolagus cunniculus (rabbit) muscle. The root mean square fluctuations, defining flexibility, were found to be similar for both enzymes (1.5 A) at their optimal activity temperature. Resilience values, defining structural rigidity, are higher by an order of magnitude for the high temperature-adapted protein (0.15 Newtons/meter for O. cunniculus lactate dehydrogenase and 1.5 Newtons/meter for M. jannaschii malate dehydrogenase). Thermoadaptation appears to have been achieved by evolution through selection of appropriate structural rigidity in order to preserve specific protein structure while allowing the conformational flexibility required for activity.
The biological roots of political extremism.
Keene, Justin Robert; Shoenberger, Heather; Berke, Collin K; Bolls, Paul D
2017-01-01
Recent research has revealed the complex origins of political identification and the possible effects of this identification on social and political behavior. This article reports the results of a structural equation analysis of national survey data that attempts to replicate the finding that an individual's negativity bias predicts conservative ideology. The analysis employs the Motivational Activation Measure (MAM) as an index of an individual's positivity offset and negativity bias. In addition, information-seeking behavior is assessed in relation to traditional and interactive media sources of political information. Results show that although MAM does not consistently predict political identification, it can be used to predict extremeness of political views. Specifically, high negativity bias was associated with extreme conservatism, whereas low negativity bias was associated with extreme liberalism. In addition, political identification was found to moderate the relationship between motivational traits and information-seeking behavior.
NASA Astrophysics Data System (ADS)
Park, In-Hong; Min, Seung-Ki; Yeh, Sang-Wook; Weller, Evan; Kim, Seon Tae
2017-04-01
This study assessed the anthropogenic contribution to the 2015 record-breaking high sea surface temperatures (SSTs) observed in the central equatorial Pacific and tropical Indian Ocean. Considering a close link between extreme warm events in these regions, we conducted a joint attribution analysis using a fraction of attributable risk approach. Probability of occurrence of such extreme anomalies and long-term trends for the two oceanic regions were compared between CMIP5 multi-model simulations with and without anthropogenic forcing. Results show that the excessive warming in both regions is well beyond the range of natural variability and robustly attributable to human activities due to greenhouse gas increase. We further explored associated mechanisms including the Bjerknes feedback and background anthropogenic warming. It is concluded that background warming was the main contribution to the 2015 extreme SST event over the central equatorial Pacific Ocean on a developing El Niño condition, which in turn induced the extreme SST event over the tropical Indian Ocean through the atmospheric bridge effect.
NASA Astrophysics Data System (ADS)
Tian, Pengfei; Althumali, Ahmad; Gu, Erdan; Watson, Ian M.; Dawson, Martin D.; Liu, Ran
2016-04-01
The aging characteristics of blue InGaN micro-light emitting diodes (micro-LEDs) with different sizes have been studied at an extremely high current density 3.5 kA cm-2 for emerging micro-LED applications including visible light communication (VLC), micro-LED pumped organic lasers and optogenetics. The light output power of micro-LEDs first increases and then decreases due to the competition of Mg activation in p-GaN layer and defect generation in the active region. The smaller micro-LEDs show less light output power degradation compared with larger micro-LEDs, which is attributed to the lower junction temperature of smaller micro-LEDs. It is found that the high current density without additional junction temperature cannot induce significant micro-LED degradation at room temperature but the combination of the high current density and high junction temperature leads to strong degradation. Furthermore, the cluster LEDs, composed of a micro-LED array, have been developed with both high light output power and less light output degradation for micro-LED applications in solid state lighting and VLC.
Exploring the Extreme: High Performance Learning Activities in Mathematics, Science and Technology.
ERIC Educational Resources Information Center
2003
This educator guide for grades K-4 and 5-8 presents the basic science of aeronautics by emphasizing hands-on involvement, prediction, data collections and interpretation, teamwork, and problem solving. Activities include: (1) Finding the Center of Gravity Using Rulers; (2) Finding the Center of Gravity Using Plumb Lines; (3) Changing the Center of…
ERIC Educational Resources Information Center
Dana, Judi; Kock, Meri; Lewis, Mike; Peterson, Bruce; Stowe, Steve
2010-01-01
The many activities contained in this teaching guide emphasize hands-on involvement, prediction, data collection and interpretation, teamwork, and problem solving. The guide also contains background information about aeronautical research that can help students learn how airplanes fly. Following the background sections are a series of activities…
The Young Astrophysicist: A Very Inexpensive Activity to Discuss Spectroscopy
ERIC Educational Resources Information Center
Brockington, Guilherme; Testoni, Leonardo André; Pietrocola, Maurício
2015-01-01
The continuing fascination of young people with celestial bodies leads them to pose challenging questions to their science teachers, such as how was the universe born? How were the stars formed? In this paper we present an extremely inexpensive but highly engaging activity to teach the basics of spectroscopy. Guided by the question "how do…
NASA Astrophysics Data System (ADS)
Guo, Huarong; Yin, Licheng; Zhang, Shicui; Feng, Wenrong
2010-09-01
The toxic mechanism of herbicide butachlor to induce extremely high lethality in marine flatfish flounder, Paralichthys Olivaceus, was analyzed by histopathological examination, antioxidant enzymes activities and ATP content assay. Histopathological examination of gill, liver and kidney of exposed fishes showed that gill was a target organ of butachlor. The butachlor seriously impaired the respiration of gills by a series of lesions such as edema, lifting and detachment of lamellar epithelium, breakdown of pillar cells, and blood congestion. The dysfunction of gill respiration caused suffocation to the exposed flounder with extremely high acute lethality. Antioxidant enzyme activity assay of the in vitro cultured flounder gill (FG) cells exposed to butachlor indicated that butachlor markedly inhibited the antioxidant enzyme activities of Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX). Furthermore, along with the decline of antioxidant enzyme activities, ATP content in the exposed FG cells decreased, too. This infers that the oxidative stress induced by butachlor can inhibit the production of cellular ATP. Similar decrease of ATP content was also observed in the exposed flounder gill tissues. Taken together, as in FG cells, butachlor possibly induced a short supply of ATP in pillar cells by inhibiting the antioxidant enzyme activities and then affecting the contractibility of the pillar cells, which in turn resulted in the blood congestion and suffocation of exposed flounder.
Mineral Losses During Extreme Environmental Conditions
USDA-ARS?s Scientific Manuscript database
Advisory groups that make recommendations for mineral intakes continue to identify accurate determinations of sweat mineral losses during physical activity as a critical void in their deliberations. Although estimates of sweat mineral concentrations are available, they are highly variable. Practica...
Compound summer temperature and precipitation extremes over central Europe
NASA Astrophysics Data System (ADS)
Sedlmeier, Katrin; Feldmann, H.; Schädler, G.
2018-02-01
Reliable knowledge of the near-future climate change signal of extremes is important for adaptation and mitigation strategies. Especially compound extremes, like heat and drought occurring simultaneously, may have a greater impact on society than their univariate counterparts and have recently become an active field of study. In this paper, we use a 12-member ensemble of high-resolution (7 km) regional climate simulations with the regional climate model COSMO-CLM over central Europe to analyze the climate change signal and its uncertainty for compound heat and drought extremes in summer by two different measures: one describing absolute (i.e., number of exceedances of absolute thresholds like hot days), the other relative (i.e., number of exceedances of time series intrinsic thresholds) compound extreme events. Changes are assessed between a reference period (1971-2000) and a projection period (2021-2050). Our findings show an increase in the number of absolute compound events for the whole investigation area. The change signal of relative extremes is more region-dependent, but there is a strong signal change in the southern and eastern parts of Germany and the neighboring countries. Especially the Czech Republic shows strong change in absolute and relative extreme events.
NASA Astrophysics Data System (ADS)
Kaul, T.; Erbert, G.; Maaßdorf, A.; Martin, D.; Crump, P.
2018-02-01
Broad area lasers that are tailored to be most efficient at the highest achievable optical output power are sought by industry to decrease operation costs and improve system performance. Devices using Extreme-Double-ASymmetric (EDAS) epitaxial designs are promising candidates for improved efficiency at high optical output powers due to low series resistance, low optical loss and low carrier leakage. However, EDAS designs leverage ultra-thin p-side waveguides, meaning that the optical mode is shifted into the n-side waveguide, resulting in a low optical confinement in the active region, low gain and hence high threshold current, limiting peak performance. We introduce here explicit design considerations that enable EDAS-based devices to be developed with increased optical confinement in the active layer without changing the p-side layer thicknesses. Specifically, this is realized by introducing a third asymmetric component in the vicinity of the quantum well. We call this approach Extreme-Triple-ASymmetric (ETAS) design. A series of ETAS-based vertical designs were fabricated into broad area lasers that deliver up to 63% power conversion efficiency at 14 W CW optical output power from a 100 μm stripe laser, which corresponds to the operation point of a kW optical output power in a laser bar. The design process, the impact of structural changes on power saturation mechanisms and finally devices with improved performance will be presented.
Extreme Events in the tropics - Hurricane Manuel and La Pintada Landslide
NASA Astrophysics Data System (ADS)
Ramirez-Herrera, M. T.; Gaidzik, K.
2016-12-01
Extreme events in regions of humid-warm tropical climate are repeatedly causing loss of life and economic devastation. Deadly landslides are commonly triggered by extreme storms. Many of them originate on mountain slopes along river systems in areas often populated, increasing the risk to human settlements, theirs activities, and the local envrionment. Frequently hit by hurricanes and tropical cyclones the mountainous areas of Guerrero in southern Mexico are particularly prone to landslide hazard. On 16 September 2013 a huge landslide caused 71 fatalities and destroyed a large part of the La Pintada village. The landslide initiated after extreme rainfall caused by Hurricane Manuel. We performed a post-landslide field survey, applied remote sensing techniques using LIDAR DEM and images, digital models derived from Structure from Motion (SfM), satellite images, orthophotomaps, eyewitness accounts, geotechnical laboratory tests of slope material, and slope stability analysis to examine physical characteristics and processes that influenced the failure of La Pintada landslide. Our results indicate that anomalous precipitation producing oversaturation of soil was the direct factor that initiated the deep-sited La Pintada landslide, in an area where big landslides have occurred in the past. We hypothesized that climate change has contributed to the short recurrence period of extreme meteorological events that trigger great landslides in this tropical area. The lack of high and dense vegetation on La Pintada slope, resulting in increased soil erosion, acted as a preparatory causal factor for landsliding, making the slope more prone to mass wasting. It is likely that human activity (including deforestation activities) also contributed to the decrease of slope stability by cutting the toe of the slope to build houses. Seismic activity, even if did not contribute directly to the initiation of the La Pintada landslide, might have promoted the decrease in slope stability in this tectonically active region.
Risk factors associated with PICC-related upper extremity venous thrombosis in cancer patients.
Yi, Xiao-lei; Chen, Jie; Li, Jia; Feng, Liang; Wang, Yan; Zhu, Jia-An; Shen, E; Hu, Bing
2014-03-01
To investigate the incidence and risk factors for peripherally inserted central venous catheters-related upper extremity venous thrombosis in patients with cancer. With the widespread use of peripherally inserted central venous catheters, peripherally inserted central venous catheters-related upper extremity venous thrombosis in patients with cancer leads to increasing morbidity and mortality. It is very important to further explore the incidence and risk factors for peripherally inserted central venous catheters-related venous thrombosis. Consecutive patients with cancer who were scheduled to receive peripherally inserted central venous catheters, between September 2009 and May 2012, were prospectively studied in our centre. They were investigated for venous thrombosis by Doppler sonography three times a day within 30 days after catheter insertion. Univariable and multivariable logistic regressions' analyses were performed to identify the risk factors for peripherally inserted central venous catheters-related thrombosis. A total of 89 patients with cancer were studied in our research. Of these, 81 patients were followed up within one month. The mean interval between catheter insertion and the onset of thrombosis was 12.45 ± 6.17 days. The multivariable analyses showed that chemotherapy history, less activities and diabetes were the key risk factors for thrombosis. Peripherally inserted central venous catheters-related upper extremity venous thrombosis had high incidence rate, and most cases had no significant symptoms. The history of chemotherapy, less activities and diabetes were found to be the key risk factors. It should be routinely scanned in high-risk patients every 3-5 days after catheter insertion, which would then find blood clots in time and reduce the incidence of pulmonary embolism. Risk factors associated with peripherally inserted central venous catheters-related upper extremity venous thrombosis are of critical importance in improving the quality of patients' life. It is very important to grasp the indications to reduce the incidence rate of peripherally inserted central venous catheters-related upper extremity venous thrombosis. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Yucel, Ismail; Onen, Alper
2013-04-01
Evidence is showing that global warming or climate change has a direct influence on changes in precipitation and the hydrological cycle. Extreme weather events such as heavy rainfall and flooding are projected to become much more frequent as climate warms. Regional hydrometeorological system model which couples the atmosphere with physical and gridded based surface hydrology provide efficient predictions for extreme hydrological events. This modeling system can be used for flood forecasting and warning issues as they provide continuous monitoring of precipitation over large areas at high spatial resolution. This study examines the performance of the Weather Research and Forecasting (WRF-Hydro) model that performs the terrain, sub-terrain, and channel routing in producing streamflow from WRF-derived forcing of extreme precipitation events. The capability of the system with different options such as data assimilation is tested for number of flood events observed in basins of western Black Sea Region in Turkey. Rainfall event structures and associated flood responses are evaluated with gauge and satellite-derived precipitation and measured streamflow values. The modeling system shows skills in capturing the spatial and temporal structure of extreme rainfall events and resulted flood hydrographs. High-resolution routing modules activated in the model enhance the simulated discharges.
Exploration of the aftermath of a large collision in an extreme debris disk
NASA Astrophysics Data System (ADS)
Moor, Attila; Abraham, Peter; Cataldi, Gianni; Kospal, Agnes; Pal, Andras; Vida, Krisztian
2018-05-01
Warm debris disks with extremely high fractional luminosities are exceptional, rare systems. Not explainable by steady-state evolutionary models, these extreme debris disks are believed to stem from a recent large collision of planetary embryos in the terrestrial zone. Our team recently discovered a new extreme debris disk around TYC 4209-1322-1, whose WISE W1/W2 band photometry showed a significant brightening probably related to a giant collision in the inner disk. In Cycle 13 we monitor the system by Spitzer, revealing a fading trend with an e-folding time of 1500 days with hints for a quasi-periodic modulation and a possible second smaller amplitude collision event. Here we propose to continue the monitoring campaign until the end of Cycle 14 to explore the evolution of the current long fading trend and of the second collision, and characterize the hinted modulation. Thanks to a better sampled Spitzer light curve and the unique opportunity that NASA's TESS satellite will obtain high-precision optical photometry in the same period, a new dimension will be opened in Cycle 14 in the study of one of the most spectacular extreme debris disk, scrutinizing for the first time the possible influence of stellar activity on a debris disk.
Shaw, Colin N; Stock, Jay T
2013-04-01
Descriptions of Pleistocene activity patterns often derive from comparisons of long bone diaphyseal robusticity across contemporaneous fossilized hominins. The purpose of this study is to augment existing understanding of Pleistocene hominin mobility patterns by interpreting fossil variation through comparisons with a) living human athletes with known activity patterns, and b) Holocene foragers where descriptions of group-level activity patterns are available. Relative tibial rigidity (midshaft tibial rigidity (J)/midshaft humeral rigidity (J)) was compared amongst Levantine and European Neandertals, Levantine and Upper Palaeolithic Homo sapiens, Holocene foragers and living human athletes and controls. Cross-country runners exhibit significantly (p<0.05) greater relative tibial rigidity compared with swimmers, and higher values compared with controls. In contrast, swimmers displayed significantly (p<0.05) lower relative tibial rigidity than both runners and controls. While variation exists among all Holocene H. sapiens, highly terrestrially mobile Later Stone Age (LSA) southern Africans and cross-country runners display the highest relative tibial rigidity, while maritime Andaman Islanders and swimmers display the lowest, with controls falling between. All fossil hominins displayed relative tibial rigidity that exceeded, or was similar to, the highly terrestrially mobile Later Stone Age southern Africans and modern human cross-country runners. The more extreme skeletal structure of most Neandertals and Levantine H. sapiens, as well as the odd Upper Palaeolithic individual, appears to reflect adaptation to intense and/or highly repetitive lower limb (relative to upper limb) loading. This loading may have been associated with bipedal travel, and appears to have been more strenuous than that encountered by even university varsity runners, and Holocene foragers with hunting grounds 2000-3000 square miles in size. Skeletal variation among the athletes and foraging groups is consistent with known or inferred activity profiles, which support the position that the Pleistocene remains reflect adaptation to extremely active and mobile lives. Copyright © 2013 Elsevier Ltd. All rights reserved.
Rural livelihoods and household adaptation to extreme flooding in the Okavango Delta, Botswana
NASA Astrophysics Data System (ADS)
Motsholapheko, M. R.; Kgathi, D. L.; Vanderpost, C.
Adaptation to flooding is now widely adopted as an appropriate policy option since flood mitigation measures largely exceed the capability of most developing countries. In wetlands, such as the Okavango Delta, adaptation is more appropriate as these systems serve as natural flood control mechanisms. The Okavango Delta system is subject to annual variability in flooding with extreme floods resulting in adverse impacts on rural livelihoods. This study therefore seeks to improve the general understanding of rural household livelihood adaptation to extreme flooding in the Okavango Delta. Specific objectives are: (1) to assess household access to forms of capital necessary for enhanced capacity to adapt, (2) to assess the impacts of extreme flooding on household livelihoods, and (3) to identify and assess household livelihood responses to extreme flooding. The study uses the sustainable livelihood and the socio-ecological frameworks to analyse the livelihood patterns and resilience to extreme flooding. Results from a survey of 623 households in five villages, key informant interviews, focus group discussions and review of literature, indicate that access to natural capital was generally high, but low for financial, physical, human and social capital. Households mainly relied on farm-based livelihood activities, some non-farm activities, limited rural trade and public transfers. In 2004 and 2009, extreme flooding resulted in livelihood disruptions in the study areas. The main impacts included crop damage, household displacement, destruction of household property, livestock drowning and mud-trapping, the destruction of public infrastructure and disruption of services. The main household coping strategies were labour switching to other livelihood activities, temporary relocation to less affected areas, use of canoes for early harvesting or evacuation and government assistance, particularly for the most vulnerable households. Household adaptive strategies included livelihood diversification, long-term mobility and training in non-agricultural skills. The study concludes that household capacity to adapt to extreme flooding in the study villages largely depends on access to natural capital. This is threatened by population growth, land use changes, policy shifts, upstream developments, global economic changes and flood variations due to climate variability and change.
Extreme air-sea surface turbulent fluxes in mid latitudes - estimation, origins and mechanisms
NASA Astrophysics Data System (ADS)
Gulev, Sergey; Natalia, Tilinina
2014-05-01
Extreme turbulent heat fluxes in the North Atlantic and North Pacific mid latitudes were estimated from the modern era and first generation reanalyses (NCEP-DOE, ERA-Interim, MERRA NCEP-CFSR, JRA-25) for the period from 1979 onwards. We used direct surface turbulent flux output as well as reanalysis state variables from which fluxes have been computed using COARE-3 bulk algorithm. For estimation of extreme flux values we analyzed surface flux probability density distribution which was approximated by Modified Fisher-Tippett distribution. In all reanalyses extreme turbulent heat fluxes amount to 1500-2000 W/m2 (for the 99th percentile) and can exceed 2000 W/m2 for higher percentiles in the western boundary current extension (WBCE) regions. Different reanalyses show significantly different shape of MFT distribution, implying considerable differences in the estimates of extreme fluxes. The highest extreme turbulent latent heat fluxes are diagnosed in NCEP-DOE, ERA-Interim and NCEP-CFSR reanalyses with the smallest being in MERRA. These differences may not necessarily reflect the differences in mean values. Analysis shows that differences in statistical properties of the state variables are the major source of differences in the shape of PDF of fluxes and in the estimates of extreme fluxes while the contribution of computational schemes used in different reanalyses is minor. The strongest differences in the characteristics of probability distributions of surface fluxes and extreme surface flux values between different reanalyses are found in the WBCE extension regions and high latitudes. In the next instance we analyzed the mechanisms responsible for forming surface turbulent fluxes and their potential role in changes of midlatitudinal heat balance. Midlatitudinal cyclones were considered as the major mechanism responsible for extreme turbulent fluxes which are typically occur during the cold air outbreaks in the rear parts of cyclones when atmospheric conditions provide locally high winds and air-sea temperature gradients. For this purpose we linked characteristics of cyclone activity over the midlatitudinal oceans with the extreme surface turbulent heat fluxes. Cyclone tracks and parameters of cyclone life cycle (deepening rates, propagation velocities, life time and clustering) were derived from the same reanalyses using state of the art numerical tracking algorithm. The main questions addressed in this study are (i) through which mechanisms extreme surface fluxes are associated with cyclone activity? and (ii) which types of cyclones are responsible for forming extreme turbulent fluxes? Our analysis shows that extreme surface fluxes are typically associated not with cyclones themselves but rather with cyclone-anticyclone interaction zones. This implies that North Atlantic and North Pacific series of intense cyclones do not result in the anomalous surface fluxes. Alternatively, extreme fluxes are most frequently associated with blocking situations, particularly with the intensification of the Siberian and North American Anticyclones providing cold-air outbreaks over WBC regions.
Improving practice with integration of patient directed activity during inpatient rehabilitation.
Trammell, Molly; Kapoor, Priyanka; Swank, Chad; Driver, Simon
2017-01-01
Early initiation of rehabilitation following stroke promotes better long-term outcomes than delayed onset, emphasizing the importance of inpatient therapy. However, literature indicates that following stroke individuals in inpatient rehabilitation spend the majority of their day in their bedroom and inactive. Consequently, since amount of functional activity is posited to relate to outcomes, the current rehabilitation model needs to be challenged with innovative solutions to maximize recovery. In an attempt to promote greater activity and higher doses of therapy during inpatient rehabilitation, we implemented the "Patient Directed Activity Program" to facilitate specific movement and improve outcomes for patients post stroke. Our interdisciplinary activity program was conceptualized on a theoretical model for stroke recovery and principles of experience-dependent neural plasticity. The "Patient Directed Activity Program" includes distinct activity stations designed to increase repetition, stimulation, attention, and activity of the affected upper extremities, lower extremities, and trunk. Each task-specific activity was easily graded to achieve moderate- to high-intensity. The activity program prescribed individuals up to three additional 30-minute bouts of activities daily that were to be completed independently, and in addition to standard of care. Clinical application: After implementing this program in our facility for one year as a quality improvement project, the intervention has been delivered as an Institutional Review Board approved randomized controlled trial (Clinical Trial #NCT02446197). Challenges with people and facilities have been overcome, resulting in a feasible program that can be delivered in an inpatient setting. High satisfaction has been reported by patients and clinicians.
Zhang, Mi; Wen, Xue Fa; Zhang, Lei Ming; Wang, Hui Min; Guo, Yi Wen; Yu, Gui Rui
2018-02-01
Extreme high temperature is one of important extreme weathers that impact forest ecosystem carbon cycle. In this study, applying CO 2 flux and routine meteorological data measured during 2003-2012, we examined the impacts of extreme high temperature and extreme high temperature event on net carbon uptake of subtropical coniferous plantation in Qianyanzhou. Combining with wavelet analysis, we analyzed environmental controls on net carbon uptake at different temporal scales, when the extreme high temperature and extreme high temperature event happened. The results showed that mean daily cumulative NEE decreased by 51% in the days with daily maximum air temperature range between 35 ℃ and 40 ℃, compared with that in the days with the range between 30 ℃ and 34 ℃. The effects of the extreme high temperature and extreme high temperature event on monthly NEE and annual NEE related to the strength and duration of extreme high tempe-rature event. In 2003, when strong extreme high temperature event happened, the sum of monthly cumulative NEE in July and August was only -11.64 g C·m -2 ·(2 month) -1 . The value decreased by 90%, compared with multi-year average value. At the same time, the relative variation of annual NEE reached -6.7%. In July and August, when the extreme high temperature and extreme high temperature event occurred, air temperature (T a ) and vapor press deficit (VPD) were the dominant controller for the daily variation of NEE. The coherency between NEE T a and NEE VPD was 0.97 and 0.95, respectively. At 8-, 16-, and 32-day periods, T a , VPD, soil water content at 5 cm depth (SWC), and precipitation (P) controlled NEE. The coherency between NEE SWC and NEE P was higher than 0.8 at monthly scale. The results indicated that atmospheric water deficit impacted NEE at short temporal scale, when the extreme high temperature and extreme high temperature event occurred, both of atmospheric water deficit and soil drought stress impacted NEE at long temporal scales in this ecosystem.
Feletar, Marie; Hall, Stephen; Bird, Paul
2016-01-01
To assess the responsiveness of high- and low-field extremity magnetic resonance imaging (MRI) variables at multiple timepoints in the first 12 weeks post-antitumor necrosis factor (anti-TNF) therapy initiation in patients with psoriatic arthritis (PsA) and active dactylitis. Twelve patients with active PsA and clinical evidence of dactylitis involving at least 1 digit were recruited. Patients underwent sequential high-field conventional (1.5 Tesla) and extremity low-field MRI (0.2 Tesla) of the affected hand or foot, pre- and postgadolinium at baseline (pre-TNF), 2 weeks (post-TNF), 6 weeks, and 12 weeks. A blinded observer scored all images on 2 occasions using the PsA MRI scoring system. Eleven patients completed the study, but only 6 patients completed all high-field and low-field MRI assessments. MRI scores demonstrated rapid response to TNF inhibition with score reduction in tenosynovitis, synovitis, and osteitis at 2 weeks. Intraobserver reliability was good to excellent for all variables. High-field MRI demonstrated greater sensitivity to tenosynovitis, synovitis, and osteitis and greater responsiveness to change posttreatment. Treatment responses were maintained to 12 weeks. This study demonstrates the use of MRI in detecting early response to biologic therapy. MRI variables of tenosynovitis, synovitis, and osteitis demonstrated responsiveness posttherapy with high-field scores more responsive to change than low-field scores.
Predictors of Upper-Extremity Physical Function in Older Adults.
Hermanussen, Hugo H; Menendez, Mariano E; Chen, Neal C; Ring, David; Vranceanu, Ana-Maria
2016-10-01
Little is known about the influence of habitual participation in physical exercise and diet on upper-extremity physical function in older adults. To assess the relationship of general physical exercise and diet to upper-extremity physical function and pain intensity in older adults. A cohort of 111 patients 50 or older completed a sociodemographic survey, the Rapid Assessment of Physical Activity (RAPA), an 11-point ordinal pain intensity scale, a Mediterranean diet questionnaire, and three Patient- Reported Outcomes Measurement Information System (PROMIS) based questionnaires: Pain Interference to measure inability to engage in activities due to pain, Upper-Extremity Physical Function, and Depression. Multivariable linear regression modeling was used to characterize the association of physical activity, diet, depression, and pain interference to pain intensity and upper-extremity function. Higher general physical activity was associated with higher PROMIS Upper-Extremity Physical Function and lower pain intensity in bivariate analyses. Adherence to the Mediterranean diet did not correlate with PROMIS Upper-Extremity Physical Function or pain intensity in bivariate analysis. In multivariable analyses factors associated with higher PROMIS Upper-Extremity Physical Function were male sex, non-traumatic diagnosis and PROMIS Pain Interference, with the latter accounting for most of the observed variability (37%). Factors associated with greater pain intensity in multivariable analyses included fewer years of education and higher PROMIS Pain Interference. General physical activity and diet do not seem to be as strongly or directly associated with upper-extremity physical function as pain interference.
Ionospheric effects of the extreme solar activity of February 1986
NASA Technical Reports Server (NTRS)
Boska, J.; Pancheva, D.
1989-01-01
During February 1986, near the minimum of the 11 year Solar sunspot cycle, after a long period of totally quiet solar activity (R sub z = 0 on most days in January) a period of a suddenly enhanced solar activity occurred in the minimum between solar cycles 21 and 22. Two proton flares were observed during this period. A few other flares, various phenomena accompanying proton flares, an extremely severe geomagnetic storm and strong disturbances in the Earth's ionosphere were observed in this period of enhanced solar activity. Two active regions appeared on the solar disc. The flares in both active regions were associated with enhancement of solar high energy proton flux which started on 4 February of 0900 UT. Associated with the flares, the magnetic storm with sudden commencement had its onset on 6 February 1312 UT and attained its maximum on 8 February (Kp = 9). The sudden enhancement in solar activity in February 1986 was accompanied by strong disturbances in the Earth's ionosphere, SIDs and ionospheric storm. These events and their effects on the ionosphere are discussed.
Durrieu, Gilles; Pham, Quang-Khoai; Foltête, Anne-Sophie; Maxime, Valérie; Grama, Ion; Tilly, Véronique Le; Duval, Hélène; Tricot, Jean-Marie; Naceur, Chiraz Ben; Sire, Olivier
2016-07-01
Water quality can be evaluated using biomarkers such as tissular enzymatic activities of endemic species. Measurement of molluscs bivalves activity at high frequency (e.g., valvometry) during a long time period is another way to record the animal behavior and to evaluate perturbations of the water quality in real time. As the pollution affects the activity of oysters, we consider the valves opening and closing velocities to monitor the water quality assessment. We propose to model the huge volume of velocity data collected in the framework of valvometry using a new nonparametric extreme values statistical model. The objective is to estimate the tail probabilities and the extreme quantiles of the distribution of valve closing velocity. The tail of the distribution function of valve closing velocity is modeled by a Pareto distribution with parameter t,τ , beyond a threshold τ according to the time t of the experiment. Our modeling approach reveals the dependence between the specific activity of two enzymatic biomarkers (Glutathione-S-transferase and acetylcholinesterase) and the continuous recording of oyster valve velocity, proving the suitability of this tool for water quality assessment. Thus, valvometry allows in real-time in situ analysis of the bivalves behavior and appears as an effective early warning tool in ecological risk assessment and marine environment monitoring.
Spatial patterns of frequent floods in Switzerland
NASA Astrophysics Data System (ADS)
Schneeberger, Klaus; Rössler, Ole; Weingartner, Rolf
2017-04-01
Information about the spatial characteristics of high and extreme streamflow is often needed for an accurate analysis of flood risk and effective co-ordination of flood related activities, such as flood defence planning. In this study we analyse the spatial dependence of frequent floods in Switzerland across different scales. Firstly, we determine the average length of high and extreme flow events for 56 runoff time series of Swiss rivers. Secondly, a dependence measure expressing the probability that streamflow peaks are as high as peaks at a conditional site is used to describe and map the spatial extend of joint occurrence of frequent floods across Switzerland. Thirdly, we apply a cluster analysis to identify groups of sites that are likely to react similarly in terms of joint occurrence of high flow events. The results indicate that a time interval with a length of 3 days seems to be most appropriate to characterise the average length of high streamflow events across spatial scales. In the main Swiss basins, high and extreme streamflows were found to be asymptotically independent. In contrast, at the meso-scale distinct flood regions, which react similarly in terms of occurrence of frequent flood, were found. The knowledge about these regions can help to optimise flood defence planning or to estimate regional flood risk properly.
Stress fracture of ulna due to excessive push-ups.
Meena, Sanjay; Rastogi, Devarshi; Solanki, Bipin; Chowdhury, Buddhadev
2014-01-01
Stress fractures are most common in the weight-bearing bones of the lower extremities and spine, but are rarely found in non-weight-bearing bones of the body. Stress fracture of the ulna is extremely rare. We report a case of complete stress fracture of ulna caused due to excessive push ups in a young athlete. Conservative management was successful in healing of fracture and returning this patient back to his previous activity level. Physician should have high index of suspicion, whenever they encounter a young athlete complaining of forearm pain.
Aszalós, Júlia Margit; Krett, Gergely; Anda, Dóra; Márialigeti, Károly; Nagy, Balázs; Borsodi, Andrea K
2016-09-01
Ojos del Salado, the highest volcano on Earth is surrounded by a special mountain desert with extreme aridity, great daily temperature range, intense solar radiation, and permafrost from 5000 meters above sea level. Several saline lakes and permafrost derived high-altitude lakes can be found in this area, often surrounded by fumaroles and hot springs. The aim of this study was to gain information about the bacterial communities inhabiting the sediment of high-altitude lakes of the Ojos del Salado region located between 3770 and 6500 m. Altogether 11 sediment samples from 4 different altitudes were examined with 16S rRNA gene based denaturing gradient gel electrophoresis and clone libraries. Members of 17 phyla or candidate divisions were detected with the dominance of Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes. The bacterial community composition was determined mainly by the altitude of the sampling sites; nevertheless, the extreme aridity and the active volcanism had a strong influence on it. Most of the sequences showed the highest relation to bacterial species or uncultured clones from similar extreme environments.
Phosphatase activities as biosignatures of extant life
NASA Astrophysics Data System (ADS)
Kobayashi, K.; Itoh, Y.; Edazawa, Y.; Moroi, A.; Takano, Y.
It has been recognized that terrestrial biosphere expands to such extreme environments as deep subsurface lithosphere high temperature hot springs and stratosphere Possible extraterrestrial biospheres in Mars Europa and Titan are being discussed Many biosignatures or biomarkers have been proposed to detect microbial activities in such extreme environments Phosphate esters are essential for the terrestrial life since they are constituents of nucleic acids and cell mebranes Thus all the terrestrial organisms have phosphatases that are enzymes catalyzing hydrolysis of phosphate esters We analyzed phosphatase activities in the samples obtained in extreme environments such as submarine hydrothermal systems and discussed whether they can be used as biosignatures for extant life Core samples and chimney samples were collected at the Suiyo Seamount Izu-Bonin Arc the Pacific Ocean in 2001 and 2002 and in South Mariana hydrothermal systems the Pacific Oceanas in 2003 both in a part of the Archaean Park Project Phosphatase activity in solid rock samples was measured spectrometrically by using 25 mM p-nitrophenyl phosphate pH 8 0 or pH 6 5 as a substrate as follows Pulverized samples were incuvated with substrate solution for an hour and then production rate of p-nitrophenol was calculated with absorbance at 410 nm Phosphatase activity in extracts was measured fluorometrically by using 4-methylumberyferryl phosphate as a substrate Concentration of amino acids and their enantiomeric ratio were determined by HPLC after HF digestion of the
NASA Astrophysics Data System (ADS)
Soomere, T.
2010-07-01
Most of the processes resulting in the formation of unexpectedly high surface waves in deep water (such as dispersive and geometrical focusing, interactions with currents and internal waves, reflection from caustic areas, etc.) are active also in shallow areas. Only the mechanism of modulational instability is not active in finite depth conditions. Instead, wave amplification along certain coastal profiles and the drastic dependence of the run-up height on the incident wave shape may substantially contribute to the formation of rogue waves in the nearshore. A unique source of long-living rogue waves (that has no analogues in the deep ocean) is the nonlinear interaction of obliquely propagating solitary shallow-water waves and an equivalent mechanism of Mach reflection of waves from the coast. The characteristic features of these processes are (i) extreme amplification of the steepness of the wave fronts, (ii) change in the orientation of the largest wave crests compared with that of the counterparts and (iii) rapid displacement of the location of the extreme wave humps along the crests of the interacting waves. The presence of coasts raises a number of related questions such as the possibility of conversion of rogue waves into sneaker waves with extremely high run-up. Also, the reaction of bottom sediments and the entire coastal zone to the rogue waves may be drastic.
Park, Jihong; Denning, W Matt; Pitt, Jordan D; Francom, Devin; Hopkins, J Ty; Seeley, Matthew K
2017-01-01
Although knee pain is common, some facets of this pain are unclear. The independent effects (ie, independent from other knee injury or pathology) of knee pain on neural activation of lower-extremity muscles during landing and jumping have not been observed. To investigate the independent effects of knee pain on lower-extremity muscle (gastrocnemius, vastus medialis, medial hamstrings, gluteus medius, and gluteus maximus) activation amplitude during landing and jumping, performed at 2 different intensities. Laboratory-based, pretest, posttest, repeated-measures design, where all subjects performed both data-collection sessions. Thirteen able-bodied subjects performed 2 different land and jump tasks (forward and lateral) under 2 different conditions (control and pain), at 2 different intensities (high and low). For the pain condition, experimental knee pain was induced via a hypertonic saline injection into the right infrapatellar fat pad. Functional linear models were used to evaluate the influence of experimental knee pain on muscle-activation amplitude throughout the 2 land and jump tasks. Experimental knee pain independently altered activation for all of the observed muscles during various parts of the 2 different land and jump tasks. These activation alterations were not consistently influenced by task intensity. Experimental knee pain alters activation amplitude of various lower-extremity muscles during landing and jumping. The nature of the alteration varies between muscles, intensities, and phases of the movement (ie, landing and jumping). Generally, experimental knee pain inhibits the gastrocnemius, medial hamstring, and gluteus medius during landing while independently increasing activation of the same muscles during jumping.
Ceramic Strain Gages for Use at Temperatures up to 1500 Celsius
NASA Technical Reports Server (NTRS)
Gregory, Otto; Fralick, Gustave (Technical Monitor)
2003-01-01
Indium-tin-oxide (ITO) thin film strain gages were successfully demonstrated at temperatures beyond 1500 C. High temperature static strain tests revealed that the piezoresistive response and electrical stability of the ceramic sensors depended on the thickness of the ITO films comprising the active strain elements. When 2.5 microns-thick ITO films were employed as the active strain elements, the piezoresistive response became unstable at temperatures above 1225 C. In contrast to this, ceramic sensors prepared with 5 microns-thick ITO were stable beyond 1430 C and sensors prepared with 8 microns-thick ITO survived more than 20 hr of operation at 1481 C. Very thick (10 microns) ITo strain gages were extremely stable and responsive at 1528 C. ESCA depth profiles confirmed that an interfacial reaction between the ITO strain gage and alumina substrate was responsible for the high temperature electrical stability observed. Similar improvements in high temperature stability were achieved by doping the active ITO strain elements with aluminum. Several Sic-Sic CMC constant strain beams were instrumented with ITO strain gages and delivered to NASA for testing. Due to the extreme surface roughness of the CMC substrates, new lithography techniques and surface preparation methods were developed. These techniques relied heavily on a combination of Sic and A12O3 cement layers to provide the necessary surface finish for efficient pattern transfer. Micro-contact printing using soft lithography and PDMS stamps was also used to successfully transfer the thin film strain gage patterns to the resist coated CMC substrates. This latter approach has considerable potential for transferring the thin film strain gage patterns to the extremely rough surfaces associated with the CMC's.
Assessment of choke valve erosion in a high-pressure, high-temperature gas condensate well using TLA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birchenough, P.M.; Cornally, D.; Dawson, S.G.B.
1994-12-31
Many planned new developments in the North Sea will involve the exploitation of hostile high pressure, high temperature gas condensate reserves. The extremely high pressure letdown over the wellhead choke leads to very high flow velocities, and consequent risks of erosion damage occurring to the choke internals. In a recent study, measurements of erosion have been performed during an offshore well test under flowing conditions using advanced Thin Layer Activation techniques and scaled Laboratory tests.
A novel, extremely alkaliphilic and cold-active esterase from Antarctic desert soil.
Hu, Xiao Ping; Heath, Caroline; Taylor, Mark Paul; Tuffin, Marla; Cowan, Don
2012-01-01
A novel, cold-active and highly alkaliphilic esterase was isolated from an Antarctic desert soil metagenomic library by functional screening. The 1,044 bp gene sequence contained several conserved regions common to lipases/esterases, but lacked clear classification based on sequence analysis alone. Moderate (<40%) amino acid sequence similarity to known esterases was apparent (the closest neighbour being a hypothetical protein from Chitinophaga pinensis), despite phylogenetic distance to many of the lipolytic "families". The enzyme functionally demonstrated activity towards shorter chain p-nitrophenyl esters with the optimal activity recorded towards p-nitrophenyl propionate (C3). The enzyme possessed an apparent T(opt) at 20°C and a pH optimum at pH 11. Esterases possessing such extreme alkaliphily are rare and so this enzyme represents an intriguing novel locus in protein sequence space. A metagenomic approach has been shown, in this case, to yield an enzyme with quite different sequential/structural properties to known lipases. It serves as an excellent candidate for analysis of the molecular mechanisms responsible for both cold and alkaline activity and novel structure-function relationships of esterase activity.
Lang, Catherine E.; Birkenmeier, Rebecca; Holm, Margo; Rubinstein, Elaine; Van Swearingen, Jessie; Skidmore, Elizabeth R.
2016-01-01
OBJECTIVE. We examined the feasibility, tolerability, and preliminary efficacy of repetitive task-specific practice for people with unilateral spatial neglect (USN). METHOD. People with USN ≥6 mo poststroke participated in a single-group, repeated-measures study. Attendance, total repetitions, and satisfaction indicated feasibility and pain indicated tolerability. Paired t tests and effect sizes were used to estimate changes in upper-extremity use (Motor Activity Log), function (Action Research Arm Test), and attention (Catherine Bergego Scale). RESULTS. Twenty participants attended 99.4% of sessions and completed a high number of repetitions. Participants reported high satisfaction and low pain, and they demonstrated small, significant improvements in upper-extremity use (before Bonferroni corrections; t = –2.1, p = .04, d = .30), function (t = –3.0, p < .01, d = .20), and attention (t = –3.4, p < .01, d = –.44). CONCLUSION. Repetitive task-specific practice is feasible and tolerable for people with USN. Improvements in upper-extremity use, function, and attention may be attainable. PMID:27294994
Yang, Anqi; Zhang, Guangming; Meng, Fan; Lu, Pei; Wang, Xintian; Peng, Meng
2017-12-01
This work proposed a novel approach to achieve an extremely high protein content in photosynthetic bacteria (PSB) using biogas slurry as a culturing medium. The results showed the protein content of PSB could be enhanced strongly to 90% in the biogas slurry, which was much higher than reported microbial protein contents. The slurry was partially purified at the same time. Dark-aerobic was more beneficial than light-anaerobic condition for protein accumulation. High salinity and high ammonia of the biogas slurry were the main causes for protein enhancement. In addition, the biogas slurry provided a good buffer system for PSB to grow. The biosynthesis mechanism of protein in PSB was explored according to theoretical analysis. During biogas slurry treatment, the activities of glutamate synthase and glutamine synthetase were increased by 26.55%, 46.95% respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Cochran, Brent
Hyponatremia (severe sodium depletion) has symptoms similar to heat exhaustion and heat stroke and can easily be misdiagnosed. The number of wilderness users and extreme adventure activities has increased in recent years, and more cases are being diagnosed. Given that a 1993 study found that 1 in 10 cases of heat-related illnesses were…
NASA Astrophysics Data System (ADS)
Maldonado, T.; Alfaro, E.; Fallas-López, B.; Alvarado, L.
2013-04-01
High mountains divide Costa Rica, Central America, into two main climate regions, the Pacific and Caribbean slopes, which are lee and windward, respectively, according to the North Atlantic trade winds - the dominant wind regime. The rain over the Pacific slope has a bimodal annual cycle, having two maxima, one in May-June and the other in August-September-October (ASO), separated by the mid-summer drought in July. A first maximum of deep convection activity, and hence a first maximum of precipitation, is reached when sea surface temperature (SST) exceeds 29 °C (around May). Then, the SST decreases to around 1 °C due to diminished downwelling solar radiation and stronger easterly winds (during July and August), resulting in a decrease in deep convection activity. Such a reduction in deep convection activity allows an increase in down welling solar radiation and a slight increase in SST (about 28.5 °C) by the end of August and early September, resulting once again in an enhanced deep convection activity, and, consequently, in a second maximum of precipitation. Most of the extreme events are found during ASO. Central American National Meteorological and Hydrological Services (NMHS) have periodic Regional Climate Outlook Fora (RCOF) to elaborate seasonal predictions. Recently, meetings after RCOF with different socioeconomic stakeholders took place to translate the probable climate impacts from predictions. From the feedback processes of these meetings has emerged that extreme event and rainy days seasonal predictions are necessary for different sectors. As is shown in this work, these predictions can be tailored using Canonical Correlation Analysis for rain during ASO, showing that extreme events and rainy days in Central America are influenced by interannual variability related to El Niño-Southern Oscillation and decadal variability associated mainly with Atlantic Multidecadal Oscillation. Analyzing the geographical distribution of the ASO-2010 disaster reports, we noticed that they did not necessarily agree with the geographical extreme precipitation event distribution, meaning that social variables, like population vulnerability, should be included in the extreme events impact analysis.
NASA Technical Reports Server (NTRS)
Kirschbaum, Dalia; Adler, Robert; Adler, David; Peters-Lidard, Christa; Huffman, George
2012-01-01
It is well known that extreme or prolonged rainfall is the dominant trigger of landslides worldwide. While research has evaluated the spatiotemporal distribution of extreme rainfall and landslides at local or regional scales using in situ data, few studies have mapped rainfall-triggered landslide distribution globally due to the dearth of landslide data and consistent precipitation information. This study uses a newly developed Global Landslide Catalog (GLC) and a 13-year satellite-based precipitation record from TRMM data. For the first time, these two unique products provide the foundation to quantitatively evaluate the co-occurrence of precipitation and landslides globally. Evaluation of the GLC indicates that 2010 had a large number of high-impact landslide events relative to previous years. This study considers how variations in extreme and prolonged satellite-based rainfall are related to the distribution of landslides over the same time scales for three active landslide areas: Central America, the Himalayan Arc, and central-eastern China. Several test statistics confirm that TRMM rainfall generally scales with the observed increase in landslide reports and fatal events for 2010 and previous years over each region. These findings suggest that the co-occurrence of satellite precipitation and landslide reports may serve as a valuable indicator for characterizing the spatiotemporal distribution of landslide-prone areas in order to establish a global rainfall-triggered landslide climatology. This study characterizes the variability of satellite precipitation data and reported landslide activity at the globally scale in order to improve landslide cataloging, forecasting and quantify potential triggering sources at daily, monthly and yearly time scales.
NASA Astrophysics Data System (ADS)
Amor, T. A.; Russo, R.; Diez, I.; Bharath, P.; Zirovich, M.; Stramaglia, S.; Cortes, J. M.; de Arcangelis, L.; Chialvo, D. R.
2015-09-01
The brain exhibits a wide variety of spatiotemporal patterns of neuronal activity recorded using functional magnetic resonance imaging as the so-called blood-oxygenated-level-dependent (BOLD) signal. An active area of work includes efforts to best describe the plethora of these patterns evolving continuously in the brain. Here we explore the third-moment statistics of the brain BOLD signals in the resting state as a proxy to capture extreme BOLD events. We find that the brain signal exhibits typically nonzero skewness, with positive values for cortical regions and negative values for subcortical regions. Furthermore, the combined analysis of structural and functional connectivity demonstrates that relatively more connected regions exhibit activity with high negative skewness. Overall, these results highlight the relevance of recent results emphasizing that the spatiotemporal location of the relatively large-amplitude events in the BOLD time series contains relevant information to reproduce a number of features of the brain dynamics during resting state in health and disease.
Extreme X-ray Behaviour of Mrk 421
NASA Astrophysics Data System (ADS)
Kapanadze, Bidzina
2013-03-01
In ATel #4864 (B. Kapanadze, M4k 421 Still Active through X-rays), we reported the flaring activity in the high-energy peaked BL Lacertae source Mrk 421 (z=0.031) detected via the observations performed during March 1-5, 2013, by the X-ray Telescope (XRT) onboard the Swift satellite. The recent observations, performed by this telescope, show increasing X-ray activity of this source. The data, allocated at the webpage http://www.swift.psu.edu/monitoring/ , show that the source was extremely active on hours timescale during the March 17 pointing: the 0.3-10 keV flux dropped from 16.83+0.17 cts/s (Orbit 1) to 12.46+0.24 cts/s (Orbit 5) in about 4.2 hr; it increased then to 24.60+0.14 cts/s for next orbit (in 1.45 hr) and afterwards drooped again to 16.01+0.15 cts/s in the case of next orbit (in 1.7 hr).
Byers, Chad P.; Zhang, Hui; Swearer, Dayne F.; Yorulmaz, Mustafa; Hoener, Benjamin S.; Huang, Da; Hoggard, Anneli; Chang, Wei-Shun; Mulvaney, Paul; Ringe, Emilie; Halas, Naomi J.; Nordlander, Peter; Link, Stephan; Landes, Christy F.
2015-01-01
The optical properties of metallic nanoparticles are highly sensitive to interparticle distance, giving rise to dramatic but frequently irreversible color changes. By electrochemical modification of individual nanoparticles and nanoparticle pairs, we induced equally dramatic, yet reversible, changes in their optical properties. We achieved plasmon tuning by oxidation-reduction chemistry of Ag-AgCl shells on the surfaces of both individual and strongly coupled Au nanoparticle pairs, resulting in extreme but reversible changes in scattering line shape. We demonstrated reversible formation of the charge transfer plasmon mode by switching between capacitive and conductive electronic coupling mechanisms. Dynamic single-particle spectroelectrochemistry also gave an insight into the reaction kinetics and evolution of the charge transfer plasmon mode in an electrochemically tunable structure. Our study represents a highly useful approach to the precise tuning of the morphology of narrow interparticle gaps and will be of value for controlling and activating a range of properties such as extreme plasmon modulation, nanoscopic plasmon switching, and subnanometer tunable gap applications. PMID:26665175
2011-01-01
Background The prevalence and predictors of functional status and disability of elderly people have been studied in several European countries including Spain. However, there has been no population-based study incorporating the International Classification of Functioning, Disability and Health (ICF) framework as the basis for assessing disability. The present study reports prevalence rates for mild, moderate, and severe/extreme disability by the domains of activities and participation of the ICF. Methods Nine populations surveyed in previous prevalence studies contributed probabilistic and geographically defined samples in June 2005. The study sample was composed of 503 subjects aged ≥75 years. We implemented a two-phase screening design using the MMSE and the World Health Organization-Disability Assessment Schedule 2nd edition (WHO-DAS II, 12 items) as cognitive and disability screening tools, respectively. Participants scoring within the positive range of the disability screening were administered the full WHO-DAS II (36 items; score range: 0-100) assessing the following areas: Understanding and communication, Getting along with people, Life activities, Getting around, Participation in society, and Self-care. Each disability area assessed by WHO-DAS II (36 items) was reported according to the ICF severity ranges (No problem, 0-4; Mild disability, 5-24; Moderate disability, 25-49; Severe/Extreme disability, 50-100). Results The age-adjusted disability prevalence figures were: 39.17 ± 2.18%, 15.31 ± 1.61%, and 10.14 ± 1.35% for mild, moderate, and severe/extreme disability, respectively. Severe and extreme disability prevalence in mobility and life activities was three times higher than the average, and highest among women. Sex variations were minimal, although life activities for women of 85 years and over had more severe/extreme disability as compared to men (OR = 5.15 95% CI 3.19-8.32). Conclusions Disability is highly prevalent among the Spanish elderly. Sex- and age-specific variations of disability are associated with particular disability domains. PMID:21429194
Economic Geology of the Moon: Some Considerations
NASA Technical Reports Server (NTRS)
Gillett, Stephen L.
1992-01-01
Supporting any but the smallest lunar facility will require indigenous resources due to the extremely high cost of bringing material from Earth. The Moon has also attracted interest as a resource base to help support near-Earth space activities, because of the potential lower cost once the necessary infrastructure has been amortized. Obviously, initial lunar products will be high-volume, bulk commodities, as they are the only ones for which the economics of lunar production are conceivably attractive. Certain rarer elements, such as the halogens, C, and H, would also be extremely useful (for propellant, life support, and/or reagents), and indeed local sources of such elements would vastly improve the economics of lunar resource extraction. The economic geology of the Moon is discussed.
Park, Jin-Young; Chang, Moonyoung; Kim, Kyeong-Mi; Kim, Hee-Jung
2015-06-01
The purpose of this study was to examine the effects of mirror therapy on upper-extremity function and activities of daily living in chronic stroke patients. [Subjects and Methods] Fifteen subjects were each assigned to a mirror therapy group and a sham therapy group. The Fugl-Meyer Motor Function Assessment and the Box and Block Test were performed to compare paretic upper-extremity function and hand coordination abilities. The functional independence measurement was conducted to compare abilities to perform activities of daily living. [Results] Paretic upper-extremity function and hand coordination abilities were significantly different between the mirror therapy and sham therapy groups. Intervention in the mirror therapy group was more effective than in the sham therapy group for improving the ability to perform activities of daily living. Self-care showed statistically significant differences between the two groups. [Conclusion] Mirror therapy is effective in improving paretic upper-extremity function and activities of daily living in chronic stroke patients.
Park, Jin-Young; Chang, Moonyoung; Kim, Kyeong-Mi; Kim, Hee-Jung
2015-01-01
The purpose of this study was to examine the effects of mirror therapy on upper-extremity function and activities of daily living in chronic stroke patients. [Subjects and Methods] Fifteen subjects were each assigned to a mirror therapy group and a sham therapy group. The Fugl-Meyer Motor Function Assessment and the Box and Block Test were performed to compare paretic upper-extremity function and hand coordination abilities. The functional independence measurement was conducted to compare abilities to perform activities of daily living. [Results] Paretic upper-extremity function and hand coordination abilities were significantly different between the mirror therapy and sham therapy groups. Intervention in the mirror therapy group was more effective than in the sham therapy group for improving the ability to perform activities of daily living. Self-care showed statistically significant differences between the two groups. [Conclusion] Mirror therapy is effective in improving paretic upper-extremity function and activities of daily living in chronic stroke patients. PMID:26180297
Sun, Weimin; Xiao, Enzong; Dong, Yiran; Tang, Song; Krumins, Valdis; Ning, Zengping; Sun, Min; Zhao, Yanlong; Wu, Shiliang; Xiao, Tangfu
2016-04-15
Located in Southwest China, the Chahe watershed has been severely contaminated by upstream active antimony (Sb) mines. The extremely high concentrations of Sb make the Chahe watershed an excellent model to elucidate the response of indigenous microbial activities within a severe Sb-contaminated environment. In this study, water and surface sediments from six locations in the Chahe watershed with different levels of Sb contamination were analyzed. Illumina sequencing of 16S rRNA amplicons revealed more than 40 phyla from the domain Bacteria and 2 phyla from the domain Archaea. Sequences assigned to the genera Flavobacterium, Sulfuricurvum, Halomonas, Shewanella, Lactobacillus, Acinetobacter, and Geobacter demonstrated high relative abundances in all sequencing libraries. Spearman's rank correlations indicated that a number of microbial phylotypes were positively correlated with different speciation of Sb, suggesting potential roles of these phylotypes in microbial Sb cycling. Canonical correspondence analysis further demonstrated that geochemical parameters, including water temperature, pH, total Fe, sulfate, aqueous Sb, and Eh, significantly structured the overall microbial community in Chahe watershed samples. Our findings offer a direct and reliable reference to the diversity of microbial communities in the presence of extremely high Sb concentrations, and may have potential implications for in situ bioremediation strategies of Sb contaminated sites. Copyright © 2016 Elsevier B.V. All rights reserved.
Cold and Hot Extremozymes: Industrial Relevance and Current Trends
Sarmiento, Felipe; Peralta, Rocío; Blamey, Jenny M.
2015-01-01
The development of enzymes for industrial applications relies heavily on the use of microorganisms. The intrinsic properties of microbial enzymes, e.g., consistency, reproducibility, and high yields along with many others, have pushed their introduction into a wide range of products and industrial processes. Extremophilic microorganisms represent an underutilized and innovative source of novel enzymes. These microorganisms have developed unique mechanisms and molecular means to cope with extreme temperatures, acidic and basic pH, high salinity, high radiation, low water activity, and high metal concentrations among other environmental conditions. Extremophile-derived enzymes, or extremozymes, are able to catalyze chemical reactions under harsh conditions, like those found in industrial processes, which were previously not thought to be conducive for enzymatic activity. Due to their optimal activity and stability under extreme conditions, extremozymes offer new catalytic alternatives for current industrial applications. These extremozymes also represent the cornerstone for the development of environmentally friendly, efficient, and sustainable industrial technologies. Many advances in industrial biocatalysis have been achieved in recent years; however, the potential of biocatalysis through the use of extremozymes is far from being fully realized. In this article, the adaptations and significance of psychrophilic, thermophilic, and hyperthermophilic enzymes, and their applications in selected industrial markets will be reviewed. Also, the current challenges in the development and mass production of extremozymes as well as future prospects and trends for their biotechnological application will be discussed. PMID:26539430
Lightweight Modular Instrumentation for Planetary Applications
NASA Technical Reports Server (NTRS)
Joshi, P. B.
1993-01-01
An instrumentation, called Space Active Modular Materials ExperimentS (SAMMES), is developed for monitoring the spacecraft environment and for accurately measuring the degradation of space materials in low earth orbit (LEO). The SAMMES architecture concept can be extended to instrumentation for planetary exploration, both on spacecraft and in situ. The operating environment for planetary application will be substantially different, with temperature extremes and harsh solar wind and cosmic ray flux on lunar surfaces and temperature extremes and high winds on venusian and Martian surfaces. Moreover, instruments for surface deployment, which will be packaged in a small lander/rover (as in MESUR, for example), must be extremely compact with ultralow power and weight. With these requirements in mind, the SAMMES concept was extended to a sensor/instrumentation scheme for the lunar and Martian surface environment.
Nonbehavioral Selection for Pawns, Mutants of PARAMECIUM AURELIA with Decreased Excitability
Schein, Stanley J.
1976-01-01
The reversal response in Paramecium aurelia is mediated by calcium which carries the inward current during excitation. Electrophysiological studies indicate that strontium and barium can also carry the inward current. Exposure to high concentrations of barium rapidly paralyzes and later kills wild-type paramecia. Following mutagenesis with nitrosoguanidine, seven mutants which continued to swim in the `high-barium' solution were selected. All of the mutants show decreased reversal behavior, with phenotypes ranging from extremely non-reversing (`extreme' pawns) to nearly wild-type reversal behavior (`partial' pawns). The mutations fall into three complementation groups, identical to the pwA, pwB, and pwC genes of Kung et al. (1975). All of the pwA and pwB mutants withstand longer exposure to barium, the pwB mutants surviving longer than the pwA mutants. Among mutants of each gene, survival is correlated with loss of reversal behavior. Double mutants (A–B, A–C, B–C), identified in the exautogamous progeny of crosses between `partial' mutants, exhibited a more extreme non-reversing phenotype than either of their single-mutant (`partial' pawn) parents.———Inability to reverse could be expected from an alteration in the calcium-activated reversal mechanism or in excitation. A normal calcium-activated structure was demonstrated in all pawns by chlorpromazine treatment. In a separate report (Schein, Bennett and Katz 1976) the results of electrophysiological investigations directly demonstrate decreased excitability in all of the mutants, a decrease due to an altered calcium activation. The studies of the genetics, the survival in barium and the electro-physiology of the pawns demonstrate that the pwA and pwB genes have different effects on calcium activation. PMID:1001878
A rocket spectroscopic payload in support of the Apollo Telescope Mount experiments
NASA Technical Reports Server (NTRS)
Rugge, H. R.
1974-01-01
The scientific instrumentation and other payload systems of a solar rocket experiment are described in detail. The objectives of the rocket payload were: (1) to carry out high-spectral-resolution measurements of a coronal active region in the X-ray and extreme ultraviolet regions at the same time as high-spatial-resolution measurements were being made of the same active region by the Apollo Telescope Mount experiments flown on Skylab; and (2) to derive a physical model of the conditions in the coronal active regions, which dominate the X-ray spectrum of the nonflaring active sun, on the basis of data obtained from both the rocket instrumentation and several of the Apollo Telescope Mount experiments.
Synchronous fire activity in the tropical high Andes: an indication of regional climate forcing.
Román-Cuesta, R M; Carmona-Moreno, C; Lizcano, G; New, M; Silman, M; Knoke, T; Malhi, Y; Oliveras, I; Asbjornsen, H; Vuille, M
2014-06-01
Global climate models suggest enhanced warming of the tropical mid and upper troposphere, with larger temperature rise rates at higher elevations. Changes in fire activity are amongst the most significant ecological consequences of rising temperatures and changing hydrological properties in mountainous ecosystems, and there is a global evidence of increased fire activity with elevation. Whilst fire research has become popular in the tropical lowlands, much less is known of the tropical high Andean region (>2000 masl, from Colombia to Bolivia). This study examines fire trends in the high Andes for three ecosystems, the Puna, the Paramo and the Yungas, for the period 1982-2006. We pose three questions: (i) is there an increased fire response with elevation? (ii) does the El Niño- Southern Oscillation control fire activity in this region? (iii) are the observed fire trends human driven (e.g., human practices and their effects on fuel build-up) or climate driven? We did not find evidence of increased fire activity with elevation but, instead, a quasicyclic and synchronous fire response in Ecuador, Peru and Bolivia, suggesting the influence of high-frequency climate forcing on fire responses on a subcontinental scale, in the high Andes. ENSO variability did not show a significant relation to fire activity for these three countries, partly because ENSO variability did not significantly relate to precipitation extremes, although it strongly did to temperature extremes. Whilst ENSO did not individually lead the observed regional fire trends, our results suggest a climate influence on fire activity, mainly through a sawtooth pattern of precipitation (increased rainfall before fire-peak seasons (t-1) followed by drought spells and unusual low temperatures (t0), which is particularly common where fire is carried by low fuel loads (e.g., grasslands and fine fuel). This climatic sawtooth appeared as the main driver of fire trends, above local human influences and fuel build-up cyclicity. © 2014 John Wiley & Sons Ltd.
Lowes, Linda P; Alfano, Lindsay N; Yetter, Brent A; Worthen-Chaudhari, Lise; Hinchman, William; Savage, Jordan; Samona, Patrick; Flanigan, Kevin M; Mendell, Jerry R
2013-03-14
Individuals with dystrophinopathy lose upper extremity strength in proximal muscles followed by those more distal. Current upper extremity evaluation tools fail to fully capture changes in upper extremity strength and function across the disease spectrum as they tend to focus solely on distal ability. The Kinect by Microsoft is a gaming interface that can gather positional information about an individual's upper extremity movement which can be used to determine functional reaching volume, velocity of movement, and rate of fatigue while playing an engaging video game. The purpose of this study was to determine the feasibility of using the Kinect platform to assess upper extremity function in individuals with dystrophinopathy across the spectrum of abilities. Investigators developed a proof-of-concept device, ACTIVE (Abilities Captured Through Interactive Video Evaluation), to measure functional reaching volume, movement velocity, and rate of fatigue. Five subjects with dystrophinopathy and 5 normal controls were tested using ACTIVE during one testing session. A single subject with dystrophinopathy was simultaneously tested with ACTIVE and a marker-based motion analysis system to establish preliminary validity of measurements. ACTIVE proof-of-concept ranked the upper extremity abilities of subjects with dystrophinopathy by Brooke score, and also differentiated them from performance of normal controls for the functional reaching volume and velocity tests. Preliminary test-retest reliability of the ACTIVE for 2 sequential trials was excellent for functional reaching volume (ICC=0.986, p<0.001) and velocity trials (ICC=0.963, p<0.001). The data from our pilot study with ACTIVE proof-of-concept demonstrates that newly available gaming technology has potential to be used to create a low-cost, widely-accessible and functional upper extremity outcome measure for use with children and adults with dystrophinopathy.
Schoennagel, Tania; Veblen, Thomas T.; Negron, José F.; Smith, Jeremy M.
2012-01-01
In Colorado and southern Wyoming, mountain pine beetle (MPB) has affected over 1.6 million ha of predominantly lodgepole pine forests, raising concerns about effects of MPB-caused mortality on subsequent wildfire risk and behavior. Using empirical data we modeled potential fire behavior across a gradient of wind speeds and moisture scenarios in Green stands compared three stages since MPB attack (Red [1–3 yrs], Grey [4–10 yrs], and Old-MPB [∼30 yrs]). MPB killed 50% of the trees and 70% of the basal area in Red and Grey stages. Across moisture scenarios, canopy fuel moisture was one-third lower in Red and Grey stages compared to the Green stage, making active crown fire possible at lower wind speeds and less extreme moisture conditions. More-open canopies and high loads of large surface fuels due to treefall in Grey and Old-MPB stages significantly increased surface fireline intensities, facilitating active crown fire at lower wind speeds (>30–55 km/hr) across all moisture scenarios. Not accounting for low foliar moistures in Red and Grey stages, and large surface fuels in Grey and Old-MPB stages, underestimates the occurrence of active crown fire. Under extreme burning conditions, minimum wind speeds for active crown fire were 25–35 km/hr lower for Red, Grey and Old-MPB stands compared to Green. However, if transition to crown fire occurs (outside the stand, or within the stand via ladder fuels or wind gusts >65 km/hr), active crown fire would be sustained at similar wind speeds, suggesting observed fire behavior may not be qualitatively different among MPB stages under extreme burning conditions. Overall, the risk (probability) of active crown fire appears elevated in MPB-affected stands, but the predominant fire hazard (crown fire) is similar across MPB stages and is characteristic of lodgepole pine forests where extremely dry, gusty weather conditions are key factors in determining fire behavior. PMID:22272268
Yeast activities involved in carbon and nitrogen cycles in Antarctica
USDA-ARS?s Scientific Manuscript database
Antarctica and sub Antarctic regions are characterized by extreme conditions for life such as low temperatures and nutrient availability, high solar radiation and dryness, however, microorganisms from the three domains of life have been found as common inhabitants of soils and waters from those zone...
NASA Technical Reports Server (NTRS)
Dong, Xiquan; Xi, Baike; Kennedy, Aaron; Feng, Zhe; Entin, Jared K.; Houser, Paul R.; Schiffer, Robert A.; LEucyer, Tristan; Olson, William S.; Hsu, Kuo-lin;
2010-01-01
Hydrological years 2006 (HY06, 10/2005-09/2006) and 2007 (HY07, 10/2006-09/2007) provide a unique opportunity to examine hydrological extremes in the central US because there are no other examples of two such highly contrasting precipitation extremes occurring in consecutive years at the Southern Great Plains (SGP) in recorded history. The HY06 annual precipitation in the state of Oklahoma, as observed by the Oklahoma Mesonet, is around 61% of the normal (92.84 cm, based on the 1921-2008 climatology), which results in HY06 the second-driest year in the record. In particular, the total precipitation during the winter of 2005-06 is only 27% of the normal, and this winter ranks as the driest season. On the other hand, the HY07 annual precipitation amount is 121% of the normal and HY07 ranks as the seventh-wettest year for the entire state and the wettest year for the central region of the state. Summer 2007 is the second-wettest season for the state. Large-scale dynamics play a key role in these extreme events. During the extreme dry period (10/2005-02/2006), a dipole pattern in the 500-hPa GH anomaly existed where an anomalous high was over the southwestern U.S. region and an anomalous low was over the Great Lakes. This pattern is associated with inhibited moisture transport from the Gulf of Mexico and strong sinking motion over the SGP, both contributing to the extreme dryness. The precipitation deficit over the SGP during the extreme dry period is clearly linked to significantly suppressed cyclonic activity over the southwestern U.S., which shows robust relationship with the Western Pacific (WP) teleconnection pattern. The precipitation events during the extreme wet period (May-July 2007) were initially generated by active synoptic weather patterns, linked with moisture transport from the Gulf of Mexico by the northward low level jet, and enhanced by the mesoscale convective systems. Although the drought and pluvial conditions are dominated by large-scale dynamic patterns, we have demonstrated that the two positive feedback processes during the extreme dry and wet periods found in this study play a key role to maintain and reinforce the length and severity of existing drought and flood events. For example, during the extreme dry period, with less clouds, LWP, PWV, precipitation, and thinner Cu cloud thickness, more net radiation was absorbed and used to evaporate water from the ground. The evaporated moisture, however, was removed by low-level divergence. Thus, with less precipitation and removed atmospheric moisture, more absorbed incoming solar radiation was used to increase surface temperature and to make the ground drier.
Understanding extreme quasar optical variability with CRTS - I. Major AGN flares
NASA Astrophysics Data System (ADS)
Graham, Matthew J.; Djorgovski, S. G.; Drake, Andrew J.; Stern, Daniel; Mahabal, Ashish A.; Glikman, Eilat; Larson, Steve; Christensen, Eric
2017-10-01
There is a large degree of variety in the optical variability of quasars and it is unclear whether this is all attributable to a single (set of) physical mechanism(s). We present the results of a systematic search for major flares in active galactic nucleus (AGN) in the Catalina Real-time Transient Survey as part of a broader study into extreme quasar variability. Such flares are defined in a quantitative manner as being atop of the normal, stochastic variability of quasars. We have identified 51 events from over 900 000 known quasars and high-probability quasar candidates, typically lasting 900 d and with a median peak amplitude of Δm = 1.25 mag. Characterizing the flare profile with a Weibull distribution, we find that nine of the sources are well described by a single-point single-lens model. This supports the proposal by Lawrence et al. that microlensing is a plausible physical mechanism for extreme variability. However, we attribute the majority of our events to explosive stellar-related activity in the accretion disc: superluminous supernovae, tidal disruption events and mergers of stellar mass black holes.
Overview of Key Results from SDO Extreme ultraviolet Variability Experiment (EVE)
NASA Astrophysics Data System (ADS)
Woods, Tom; Eparvier, Frank; Jones, Andrew; Mason, James; Didkovsky, Leonid; Chamberlin, Phil
2016-10-01
The SDO Extreme ultraviolet Variability Experiment (EVE) includes several channels to observe the solar extreme ultraviolet (EUV) spectral irradiance from 1 to 106 nm. These channels include the Multiple EUV Grating Spectrograph (MEGS) A, B, and P channels from the University of Colorado (CU) and the EUV SpectroPhometer (ESP) channels from the University of Southern California (USC). The solar EUV spectrum is rich in many different emission lines from the corona, transition region, and chromosphere. The EVE full-disk irradiance spectra are important for studying the solar impacts in Earth's ionosphere and thermosphere and are useful for space weather operations. In addition, the EVE observations, with its high spectral resolution of 0.1 nm and in collaboration with AIA solar EUV images, have proven valuable for studying active region evolution and explosive energy release during flares and coronal eruptions. These SDO measurements have revealed interesting results such as understanding the flare variability over all wavelengths, discovering and classifying different flare phases, using coronal dimming measurements to predict CME properties of mass and velocity, and exploring the role of nano-flares in continual heating of active regions.
Shifting patterns of mild weather in response to projected radiative forcing
NASA Astrophysics Data System (ADS)
van der Wiel, Karin; Kapnick, Sarah; Vecchi, Gabriel
2017-04-01
Traditionally, climate change research has focused on changes in mean climate (e.g. global mean temperature, sea level rise, glacier melt) or change in extreme events (e.g. hurricanes, extreme precipitation, droughts, heat waves, wild fires). Though extreme events have the potential to disrupt society, extreme conditions are rare by definition. In contrast, mild weather occurs frequently and many human activities are built around it. Examples of such activities include football games, dog walks, bike rides, and outdoor weddings, but also activities of direct economic impact, e.g. construction work, infrastructure projects, road or rail transportation, air travel, and landscaping projects. Absence of mild weather impacts society in various way, understanding current and future mild weather is therefore of high scientific interest. We present a global analysis of mild weather based on simple and relatable criteria and we explore changes in mild weather occurrence in response to radiative forcing. A high-resolution global climate model, GFDL HiFLOR, is used to allow for investigation of local features and changes. In response to RCP4.5, we find a slight global mean decrease in the annual number of mild days projected both in the near future (-4 d/yr, 2016-2035) and at the end of this century (-10 d/yr, 2081-2100). Projected regional and seasonal redistributions of mild days are substantially greater. Tropical regions are projected to see large decreases, in the mid-latitudes small increases in the number of mild days are projected. Mediterranean climates are projected to see a shift of mild weather away from the local summer to the shoulder seasons. These changes are larger than the interannual variability of mild weather caused by El Niño-Southern Oscillation. Finally, we use reanalysis data to show an observed global decrease in the recent past, and we verify that these observed regional changes in mild weather resemble the projections.
Design and Control of a Closed-Loop Brushless Torque Activator
1990-05-01
AD-A270 760 Technical Report 1244 Design and Control of a Closed-Loop Brushless Torque Activator Michael Dean Levi MIT Artificial Intelligence... Brushless N00014-86-K-0685 Torque Actuator 6. AUTHOR(S) Michael Dean Levin 7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) B. PERFORMING...200 words) This’report explores the design and control issues associated with a brushless actuator capable of achieving extremely high torque
Río Tinto: A Geochemical and Mineralogical Terrestrial Analogue of Mars
NASA Astrophysics Data System (ADS)
Amils, Ricardo; Fernández-Remolar, David
2014-09-01
The geomicrobiological characterization of the water column and sediments of Río Tinto (Huelva, Southwestern Spain) have proven the importance of the iron and the sulfur cycles, not only in generating the extreme conditions of the habitat (low pH, high concentration of toxic heavy metals), but also in maintaining the high level of microbial diversity detected in the basin. It has been proven that the extreme acidic conditions of Río Tinto basin are not the product of 5000 years of mining activity in the area, but the consequence of an active underground bioreactor that obtains its energy from the massive sulfidic minerals existing in the Iberian Pyrite Belt. Two drilling projects, MARTE (Mars Astrobiology Research and Technology Experiment) (2003-2006) and IPBSL (Iberian Pyrite Belt Subsurface Life Detection) (2011-2015), were developed and carried out to provide evidence of subsurface microbial activity and the potential resources that support these activities. The reduced substrates and the oxidants that drive the system appear to come from the rock matrix. These resources need only groundwater to launch diverse microbial metabolisms. The similarities between the vast sulfate and iron oxide deposits on Mars and the main sulfide bioleaching products found in the Tinto basin have given Río Tinto the status of a geochemical and mineralogical Mars terrestrial analogue.
NASA Astrophysics Data System (ADS)
Hughes, Nikki J.
The optimal combination of Whole body vibration (WBV) amplitude and frequency has not been established. Purpose. To determine optimal combination of WBV amplitude and frequency that will enhance acute mean and peak power (MP and PP) output EMG activity in the lower extremity muscles. Methods. Resistance trained males (n = 13) completed the following testing sessions: On day 1, power spectrum testing of bilateral leg press (BLP) movement was performed on the OMNI. Days 2 and 3 consisted of WBV testing with either average (5.8 mm) or high (9.8 mm) amplitude combined with either 0 (sham control), 10, 20, 30, 40 and 50 Hz frequency. Bipolar surface electrodes were placed on the rectus femoris (RF), vastus lateralis (VL), bicep femoris (BF) and gastrocnemius (GA) muscles for EMG analysis. MP and PP output and EMG activity of the lower extremity were assessed pre-, post-WBV treatments and after sham-controls on the OMNI while participants performed one set of five repetitions of BLP at the optimal resistance determined on Day 1. Results. No significant differences were found between pre- and sham-control on MP and PP output and on EMG activity in RF, VL, BF and GA. Completely randomized one-way ANOVA with repeated measures demonstrated no significant interaction of WBV amplitude and frequency on MP and PP output and peak and mean EMGrms amplitude and EMG rms area under the curve. RF and VL EMGrms area under the curve significantly decreased (p < 0.05) with high WBV amplitude, whereas low amplitude significantly decreased GA mean and peak EMGrms amplitude and EMGrms area under the curve. VL mean EMGrms amplitude and BF mean and peak EMGrms amplitudes were significantly decreased (p < 0.05) with high WBV amplitude when compared to sham-control. WBV frequency significantly decreased (p < 0.05) VL mean and peak EMGrms amplitude. WBV frequency at 30 and 40 Hz significantly decreased (p < 0.05) GA mean EMGrms amplitude and 20 and 30 Hz significantly decreased GA peak EMGrms amplitude. MP and PP output was not significantly effected by either treatment. Conclusions. It is concluded that WBV combined with plyometric exercise does not induce alterations in subsequent MP and PP output and EMGrms activity of the lower extremity. Future studies need to address the time of WBV exposure and magnitude of external loads that will maximize strength and/or power output.
NASA Astrophysics Data System (ADS)
Peterson, D. A.; Hyer, E. J.; Campbell, J. R.; Fromm, M. D.; Hair, J. W.; Butler, C. F.; Fenn, M. A.
2014-12-01
A variety of regional smoke forecasting applications are currently available to identify air quality, visibility, and societal impacts during large fire events. However, these systems typically assume persistent fire activity, and therefore can have large errors before, during, and after short-term periods of extreme fire behavior. This study employs a wide variety of ground, airborne, and satellite observations, including data collected during a major NASA airborne and field campaign, to examine the conditions required for both extreme spread and pyrocumulonimbus (pyroCb) development. Results highlight the importance of upper-level and nocturnal meteorology, as well as the limitations of traditional fire weather indices. Increasing values of fire radiative power (FRP) at the pixel and sub-pixel level are shown to systematically correspond to higher altitude smoke plumes, and an increased probability of injection above the boundary layer. Lidar data collected during the 2013 Rim Fire, one of the most severe fire events in California's history, show that high FRP observed during extreme spread can facilitate long-distance smoke transport, but fails to loft smoke to the altitude of a large pyroCb. The most extreme fire spread was also observed on days without pyroCb activity or significant regional convection. By incorporating additional fire events across North America, conflicting hypotheses surrounding the primary source of moisture during pyroCb development are examined. The majority of large pyroCbs, and therefore the highest direct injection altitude of smoke particles, is shown to occur with conditions very similar to those that produce dry thunderstorms. The current suite of automated forecasting applications predict only general trends in fire behavior, and specifically do not predict (1) extreme fire spread events and (2) injection of smoke to high altitudes. While (1) and (2) are related, results show that they are not predicted by the same set of conditions and variables. The combination of meteorology from numerical forecast models and satellite observations exhibits great potential for improving regional forecasts of fire behavior and smoke production in automated systems, especially in remote areas where detailed observations are unavailable
NASA Astrophysics Data System (ADS)
Mentaschi, Lorenzo; Vousdoukas, Michalis I.; Voukouvalas, Evangelos; Dosio, Alessandro; Feyen, Luc
2017-03-01
In this study we conducted a comprehensive modeling analysis to identify global trends in extreme wave energy flux (WEF) along coastlines in the 21st century under a high emission pathway (Representative Concentration Pathways 8.5). For the end of the century, results show a significant increase up to 30% in 100 year return level WEF for the majority of the coastal areas of the southern temperate zone, while in the Northern Hemisphere large coastal areas are characterized by a significant negative trend. We show that the most significant long-term trends of extreme WEF can be explained by intensification of teleconnection patterns such as the Antarctic Oscillation, El Niño-Southern Oscillation, and North Atlantic Oscillation. The projected changes will have broad implications for ocean engineering applications and disaster risk management. Especially low-lying coastal countries in the Southern Hemisphere will be particularly vulnerable due to the combined effects of projected relative sea level rise and more extreme wave activities.
Allami, Mostafa; Mousavi, Batool; Masoumi, Mehdi; Modirian, Ehsan; Shojaei, Hadi; Mirsalimi, Fatemeh; Hosseini, Maryam; Pirouzi, Pirouz
2016-01-01
Upper limb amputations are one of the unpleasant war injuries that armed forces are exposed to frequently. The present study aimed to assess the musculoskeletal and peripheral nervous systems in Iraq-Iran war veterans with bilateral upper extremity amputation. The study consisted of taking a history and clinical examinations including demographic data, presence and location of pain, level of amputation, passive and active ranges of movement of the joints across the upper and lower extremities and spine, manual palpation, neurological examination, blood circulation pulses and issues related to a prosthetic limb. In this study, 103 Iranian bilateral upper extremity amputees (206 amputations) from the Iran-Iraq war were evaluated, and a detailed questionnaire was also administered. The most common level of amputation was the finger or wrist level (108, 52.4 %). Based on clinical examination, we found high frequencies of limited active and passive joint range of movement across the scapula, shoulder, elbow, wrist and metacarpophalangeal, interphalangeal and thumb joints. Based on muscle strength testing, we found varying degrees of weakness across the upper limbs. Musculoskeletal disorders included epicondylitis (65, 31.6 %), rotator cuff injury (24, 11.7 %), bicipital tendonitis (69, 33.5 %), shoulder drop (42, 20.4 %) and muscle atrophy (19, 9.2 %). Peripheral nerve disorders included carpal tunnel syndrome in 13 (6.3 %) and unilateral brachial plexus injury in 1 (1 %). Fifty-three (51.5 %) were diagnosed with facet joint syndrome at the level of the cervical spine (the most frequent site). Using a prosthesis was reported by 65 (63.1 %), both left and right sides. The back was the most common site of pain (71.8 %). The high prevalence of neuro-musculoskeletal disorders among bilateral upper extremity amputees indicates that they need regular rehabilitation care.
Extreme Precipitation and High-Impact Landslides
NASA Technical Reports Server (NTRS)
Kirschbaum, Dalia; Adler, Robert; Huffman, George; Peters-Lidard, Christa
2012-01-01
It is well known that extreme or prolonged rainfall is the dominant trigger of landslides; however, there remain large uncertainties in characterizing the distribution of these hazards and meteorological triggers at the global scale. Researchers have evaluated the spatiotemporal distribution of extreme rainfall and landslides at local and regional scale primarily using in situ data, yet few studies have mapped rainfall-triggered landslide distribution globally due to the dearth of landslide data and consistent precipitation information. This research uses a newly developed Global Landslide Catalog (GLC) and a 13-year satellite-based precipitation record from Tropical Rainfall Measuring Mission (TRMM) data. For the first time, these two unique products provide the foundation to quantitatively evaluate the co-occurence of precipitation and rainfall-triggered landslides globally. The GLC, available from 2007 to the present, contains information on reported rainfall-triggered landslide events around the world using online media reports, disaster databases, etc. When evaluating this database, we observed that 2010 had a large number of high-impact landslide events relative to previous years. This study considers how variations in extreme and prolonged satellite-based rainfall are related to the distribution of landslides over the same time scales for three active landslide areas: Central America, the Himalayan Arc, and central-eastern China. Several test statistics confirm that TRMM rainfall generally scales with the observed increase in landslide reports and fatal events for 2010 and previous years over each region. These findings suggest that the co-occurrence of satellite precipitation and landslide reports may serve as a valuable indicator for characterizing the spatiotemporal distribution of landslide-prone areas in order to establish a global rainfall-triggered landslide climatology. This research also considers the sources for this extreme rainfall, citing teleconnections from ENSO as likely contributors to regional precipitation variability. This work demonstrates the potential for using satellite-based precipitation estimates to identify potentially active landslide areas at the global scale in order to improve landslide cataloging and quantify landslide triggering at daily, monthly and yearly time scales.
Kim, Dae-Hyeong; Song, Jizhou; Choi, Won Mook; Kim, Hoon-Sik; Kim, Rak-Hwan; Liu, Zhuangjian; Huang, Yonggang Y; Hwang, Keh-Chih; Zhang, Yong-wei; Rogers, John A
2008-12-02
Electronic systems that offer elastic mechanical responses to high-strain deformations are of growing interest because of their ability to enable new biomedical devices and other applications whose requirements are impossible to satisfy with conventional wafer-based technologies or even with those that offer simple bendability. This article introduces materials and mechanical design strategies for classes of electronic circuits that offer extremely high stretchability, enabling them to accommodate even demanding configurations such as corkscrew twists with tight pitch (e.g., 90 degrees in approximately 1 cm) and linear stretching to "rubber-band" levels of strain (e.g., up to approximately 140%). The use of single crystalline silicon nanomaterials for the semiconductor provides performance in stretchable complementary metal-oxide-semiconductor (CMOS) integrated circuits approaching that of conventional devices with comparable feature sizes formed on silicon wafers. Comprehensive theoretical studies of the mechanics reveal the way in which the structural designs enable these extreme mechanical properties without fracturing the intrinsically brittle active materials or even inducing significant changes in their electrical properties. The results, as demonstrated through electrical measurements of arrays of transistors, CMOS inverters, ring oscillators, and differential amplifiers, suggest a valuable route to high-performance stretchable electronics.
Aneides ferreus (clouded salamander): arboreal activity
William W. Price; Clinton P. Landon; Eric D. Forsman
2010-01-01
Aneides ferreus (clouded salamander) inhabits the forests of western Oregon and extreme northwestern California. Although thought to be primarily terrestrial, A. ferreus has occasionally been found as high as 60 m up in trees and two recent reports suggest that it may be more arboreal than previously believed. However, it is...
Adventure Racing for the Rest of Us
ERIC Educational Resources Information Center
Moorman, Marta K.; English, Kathleen A.
2015-01-01
Adventure racing got started in the 1990s. The Eco-Challenge and Primal Quest races were multi-day events that included challenging physical activities and extreme conditions. Today, highly publicized adventure races like the Eco-Challenge and Amazing Race usually feature elite athletes or celebrities completing exotic tasks or globe-hopping to…
1993-07-01
Industrial applications of modified sulfur concrete (MSC) have been extremely successful in areas of high corrosive activity such as load-bearing...The ductility of MSC in the postyield regime, however, has not been determined in these tests. Bond strength, Modified sulfur concrete, Strength
High-speed cinematography of muscle contraction.
HAUPT, R E; WALL, D M
1962-07-13
Motion pictures of the "twitch" of an excised frog gastrocnemius muscle taken at rates of 6000 frames per second provide a means of very accurately timing the phases. The extreme "slow motion" reveals surface phenomena not observable by other techniques. Evidence of "active relaxation" is suggested by results of frame-by-frame analysis.
The Nature and Characteristics of Youthful Extremism
ERIC Educational Resources Information Center
Zubok, Iu. A.; Chuprov, V. I.
2010-01-01
Extremism is an acute problem of the present day. Moods of extremism are manifested in all spheres of the life and activities of young people--in education, work, business, political life, and leisure activity. They can be found in both individual and group social self-determination and are influenced by the immediate social environment as well as…
Extreme Trust Region Policy Optimization for Active Object Recognition.
Liu, Huaping; Wu, Yupei; Sun, Fuchun; Huaping Liu; Yupei Wu; Fuchun Sun; Sun, Fuchun; Liu, Huaping; Wu, Yupei
2018-06-01
In this brief, we develop a deep reinforcement learning method to actively recognize objects by choosing a sequence of actions for an active camera that helps to discriminate between the objects. The method is realized using trust region policy optimization, in which the policy is realized by an extreme learning machine and, therefore, leads to efficient optimization algorithm. The experimental results on the publicly available data set show the advantages of the developed extreme trust region optimization method.
Kim, Sang Eun; Park, Hye-Jin; Jeong, Hye Kyoung; Kim, Mi-Jung; Kim, Minyeong; Bae, Ok-Nam; Baek, Seung-Hoon
2015-07-31
Pancreatic ductal adenocarcinomas are an extremely aggressive and devastating type of cancer with high mortality. Given the dense stroma and poor vascularization, accessibility to nutrients is limited in the tumor microenvironment. Here, we aimed to elucidate the role of autophagy in promoting the survival of human pancreatic cancer PANC-1 cells exposed to nutrient-deprived media (NDM) lacking glucose, amino acids, and serum. NDM inhibited Akt activity and phosphorylation of p70 S6K, and induced AMPK activation and mitochondrial depolarization. NDM also time-dependently increased LC3-II accumulation, number of GFP-LC3 puncta, and colocalization between GFP-LC3 and lysosomes. These results suggested that autophagy was progressively activated through Akt- and AMPK-mTOR pathway in nutrient-deficient PANC-1 cells. Autophagy inhibitors (chloroquine and wortmannin) or silencing of Atg5 augmented PANC-1 cell death in NDM. In cells exposed to NDM, chloroquine and wortmannin induced apoptosis and Z-VAD-fmk inhibited cytotoxicity of these inhibitors. These data demonstrate that autophagy is anti-apoptotic and sustains the survival of PANC-1 cells following extreme nutrient deprivation. Autophagy modulation may be a viable therapeutic option for cancer cells located in the core of solid tumors with a nutrient-deficient microenvironment. Copyright © 2015 Elsevier Inc. All rights reserved.
Electronics for Extreme Environments
NASA Astrophysics Data System (ADS)
Patel, J. U.; Cressler, J.; Li, Y.; Niu, G.
2001-01-01
Most of the NASA missions involve extreme environments comprising radiation and low or high temperatures. Current practice of providing friendly ambient operating environment to electronics costs considerable power and mass (for shielding). Immediate missions such as the Europa orbiter and lander and Mars landers require the electronics to perform reliably in extreme conditions during the most critical part of the mission. Some other missions planned in the future also involve substantial surface activity in terms of measurements, sample collection, penetration through ice and crust and the analysis of samples. Thus it is extremely critical to develop electronics that could reliably operate under extreme space environments. Silicon On Insulator (SOI) technology is an extremely attractive candidate for NASA's future low power and high speed electronic systems because it offers increased transconductance, decreased sub-threshold slope, reduced short channel effects, elimination of kink effect, enhanced low field mobility, and immunity from radiation induced latch-up. A common belief that semiconductor devices function better at low temperatures is generally true for bulk devices but it does not hold true for deep sub-micron SOI CMOS devices with microscopic device features of 0.25 micrometers and smaller. Various temperature sensitive device parameters and device characteristics have recently been reported in the literature. Behavior of state of the art technology devices under such conditions needs to be evaluated in order to determine possible modifications in the device design for better performance and survivability under extreme environments. Here, we present a unique approach of developing electronics for extreme environments to benefit future NASA missions as described above. This will also benefit other long transit/life time missions such as the solar sail and planetary outposts in which electronics is out open in the unshielded space at the ambient space temperatures and always exposed to radiation. Additional information is contained in the original extended abstract.
Opelt, Katja; Chobot, Vladimir; Hadacek, Franz; Schönmann, Susan; Eberl, Leo; Berg, Gabriele
2007-11-01
High acidity, low temperature and extremely low concentration of nutrients form Sphagnum bogs into extreme habitats for organisms. Little is known about the bacteria associated with living Sphagnum plantlets, especially about their function for the host. Therefore, we analysed the endo- and ectophytic bacterial populations associated with two widely distributed Sphagnum species, Sphagnum magellanicum and Sphagnum fallax, by a multiphasic approach. The screening of 1222 isolates for antagonistic activity resulted in 326 active isolates. The bacterial communities harboured a high proportion of antifungal (26%) but a low proportion of antibacterial isolates (0.4%). Members of the genus Burkholderia (38%) were found to be the most dominant group of antagonistic bacteria. The finding that a large proportion (89%) of the antagonistic bacteria produced antifungal compounds may provide an explanation for the well-known antimicrobial activity of certain Sphagnum species. The secondary metabolites of the Sphagnum species themselves were analysed by HPLC-PDA. The different spectra of detected compounds may not only explain the antifungal activity but also the species specificity of the microbial communities. The latter was analysed using cultivation-independent single-stranded conformation polymorphism (SSCP) analysis. Using Burkholderia-specific primers we found a high diversity of Burkholderia isolates in the endophytic and ectophytic habitats of Sphagnum. Furthermore, a high diversity of nitrogen-fixing bacteria was detected by using nifH-specific primers, especially inside Sphagnum mosses. In conclusion, this study provides evidence that both Sphagnum species were colonized by characteristic bacterial populations, which appear to be important for pathogen defence and nitrogen fixation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forbrich, Jan; Reid, Mark J.; Wolk, Scott J.
Young stellar objects are known to exhibit strong radio variability on timescales of weeks to months, and a few reports have documented extreme radio flares with at least an order of magnitude change in flux density on timescales of hours to days. However, there have been few constraints on the occurrence rate of such radio flares or on the correlation with pre-main sequence X-ray flares, although such correlations are known for the Sun and nearby active stars. Here we report simultaneous deep VLA radio and Chandra X-ray observations of the Orion Nebula Cluster, targeting hundreds of sources to look formore » the occurrence rate of extreme radio variability and potential correlation with the most extreme X-ray variability. We identify 13 radio sources with extreme radio variability, with some showing an order of magnitude change in flux density in less than 30 minutes. All of these sources show X-ray emission and variability, but we find clear correlations with extreme radio flaring only on timescales <1 hr. Strong X-ray variability does not predict the extreme radio sources and vice versa. Radio flares thus provide us with a new perspective on high-energy processes in YSOs and the irradiation of their protoplanetary disks. Finally, our results highlight implications for interferometric imaging of sources violating the constant-sky assumption.« less
NASA Astrophysics Data System (ADS)
Munoz-Arriola, F.; Torres-Alavez, J.; Mohamad Abadi, A.; Walko, R. L.
2014-12-01
Our goal is to investigate possible sources of predictability of hydrometeorological extreme events in the Northern High Plains. Hydrometeorological extreme events are considered the most costly natural phenomena. Water deficits and surpluses highlight how the water-climate interdependence becomes crucial in areas where single activities drive economies such as Agriculture in the NHP. Nonetheless we recognize the Water-Climate interdependence and the regulatory role that human activities play, we still grapple to identify what sources of predictability could be added to flood and drought forecasts. To identify the benefit of multi-scale climate modeling and the role of initial conditions on flood and drought predictability on the NHP, we use the Ocean Land Atmospheric Model (OLAM). OLAM is characterized by a dynamic core with a global geodesic grid with hexagonal (and variably refined) mesh cells and a finite volume discretization of the full compressible Navier Stokes equations, a cut-grid cell method for topography (that reduces error in computational gradient computation and anomalous vertical dispersion). Our hypothesis is that wet conditions will drive OLAM's simulations of precipitation to wetter conditions affecting both flood forecast and drought forecast. To test this hypothesis we simulate precipitation during identified historical flood events followed by drought events in the NHP (i.e. 2011-2012 years). We initialized OLAM with CFS-data 1-10 days previous to a flooding event (as initial conditions) to explore (1) short-term and high-resolution and (2) long-term and coarse-resolution simulations of flood and drought events, respectively. While floods are assessed during a maximum of 15-days refined-mesh simulations, drought is evaluated during the following 15 months. Simulated precipitation will be compared with the Sub-continental Observation Dataset, a gridded 1/16th degree resolution data obtained from climatological stations in Canada, US, and Mexico. This in-progress research will ultimately contribute to integrate OLAM and VIC models and improve predictability of extreme hydrometeorological events.
An assessment of the hardness of miniature vacuum tubes to high-voltage transients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orvis, W.J.
1990-03-01
Miniature vacuum tubes are vacuum switching and control devices fabricated on a silicon wafer, using the same technology as is used to make integrated circuits. They operate in much the same manner as conventional vacuum tubes, but with two important differences: they are micron sized devices, and they employ field emission instead of thermionic emission as the electron source. As these devices have a vacuum as their active region, they will be extremely hard to nuclear radiation and relatively insensitive to temperature effects, they are also expected to be extremely fast devices. We have estimated here that their hardness tomore » high-voltage transients will be at least as good as existing semiconductor devices and possibly better. 5 figs.« less
Use of computer games as an intervention for stroke.
Proffitt, Rachel M; Alankus, Gazihan; Kelleher, Caitlin L; Engsberg, Jack R
2011-01-01
Current rehabilitation for persons with hemiparesis after stroke requires high numbers of repetitions to be in accordance with contemporary motor learning principles. The motivational characteristics of computer games can be harnessed to create engaging interventions for persons with hemiparesis after stroke that incorporate this high number of repetitions. The purpose of this case report was to test the feasibility of using computer games as a 6-week home therapy intervention to improve upper extremity function for a person with stroke. One person with left upper extremity hemiparesis after stroke participated in a 6-week home therapy computer game intervention. The games were customized to her preferences and abilities and modified weekly. Her performance was tracked and analyzed. Data from pre-, mid-, and postintervention testing using standard upper extremity measures and the Reaching Performance Scale (RPS) were analyzed. After 3 weeks, the participant demonstrated increased upper extremity range of motion at the shoulder and decreased compensatory trunk movements during reaching tasks. After 6 weeks, she showed functional gains in activities of daily living (ADLs) and instrumental ADLs despite no further improvements on the RPS. Results indicate that computer games have the potential to be a useful intervention for people with stroke. Future work will add additional support to quantify the effectiveness of the games as a home therapy intervention for persons with stroke.
Exopolysaccharides from extremophiles: from fundamentals to biotechnology.
Nicolaus, Barbara; Kambourova, Margarita; Oner, Ebru Toksoy
2010-09-01
Exopolysaccharides (EPSs) make up a substantial component of the extracellular polymers surrounding most microbial cells in extreme environments like Antarctic ecosystems, saline lakes, geothermal springs or deep sea hydrothermal vents. The extremophiles have developed various adaptations, enabling them to compensate for the deleterious effects of extreme conditions, e.g. high temperatures, salt, low pH or temperature, high radiation. Among these adaptation strategies, EPS biosynthesis is one of the most common protective mechanisms. The unusual metabolic pathways revealed in some extremophiles raised interest in extremophilic microorganisms as potential producers of EPSs with novel and unusual characteristics and functional activities under extreme conditions. Even though the accumulated knowledge on the structural and theological properties of EPSs from extremophiles is still very limited, it reveals a variety in properties, which may not be found in more traditional polymers. Both extremophilic microorganisms and their EPSs suggest several biotechnological advantages, like short fermentation processes for thermophiles and easily formed and stable emulsions of EPSs from psychrophiles. Unlike mesophilic producers of EPSs, many of them being pathogenic, extremophilic microorganisms provide non-pathogenic products, appropriate for applications in the food, pharmaceutical and cosmetics industries as emulsifiers, stabilizers, gel agents, coagulants, thickeners and suspending agents. The commercial value of EPSs synthesized by microorganisms from extreme habitats has been established recently.
NASA Technical Reports Server (NTRS)
Ngwira, Chigomezyo M.; Pulkkinen, Antti; Mays, M. Leila; Kuznetsova, Maria M.; Galvin, A. B.; Simunac, Kristin; Baker, Daniel N.; Li, Xinlin; Zheng, Yihua; Glocer, Alex
2013-01-01
Extreme space weather events are known to cause adverse impacts on critical modern day technological infrastructure such as high-voltage electric power transmission grids. On 23 July 2012, NASA's Solar Terrestrial Relations Observatory-Ahead (STEREO-A) spacecraft observed in situ an extremely fast coronal mass ejection (CME) that traveled 0.96 astronomical units (approx. 1 AU) in about 19 h. Here we use the SpaceWeather Modeling Framework (SWMF) to perform a simulation of this rare CME.We consider STEREO-A in situ observations to represent the upstream L1 solar wind boundary conditions. The goal of this study is to examine what would have happened if this Rare-type CME was Earth-bound. Global SWMF-generated ground geomagnetic field perturbations are used to compute the simulated induced geoelectric field at specific ground-based active INTERMAGNET magnetometer sites. Simulation results show that while modeled global SYM-H index, a high-resolution equivalent of the Dst index, was comparable to previously observed severe geomagnetic storms such as the Halloween 2003 storm, the 23 July CME would have produced some of the largest geomagnetically induced electric fields, making it very geoeffective. These results have important practical applications for risk management of electrical power grids.
NASA Astrophysics Data System (ADS)
Lazar, Boaz; Erez, Jonathan
1990-12-01
Extreme depletions in the 13C content of the total dissolved inorganic carbon (CT) were found in brines overlying microbial mat communities. Total alkalinity (AT) and CT in the brines suggest that intense photosynthetic activity of the microbial mat communities depletes the CT from the brine. We suggest that this depletion drives a large, kinetic, negative fractionation of carbon isotopes similar to that observed in highly alkaline solutions. In brines of extreme salinity where microbial mat communities no longer exist, the 13C content of the CT increases, probably because photosynthesis no longer dominates the gas-exchange processes. This mechanism explains light carbon-isotope compositions of carbonate rocks from evaporitic sections and bears on the interpretation of δ13C values in bedded stromatolitic limestones that are ca. 3.5 b.y. old.
Diagnosis, treatment, and rehabilitation of stress fractures in the lower extremity in runners
Kahanov, Leamor; Eberman, Lindsey E; Games, Kenneth E; Wasik, Mitch
2015-01-01
Stress fractures account for between 1% and 20% of athletic injuries, with 80% of stress fractures in the lower extremity. Stress fractures of the lower extremity are common injuries among individuals who participate in endurance, high load-bearing activities such as running, military and aerobic exercise and therefore require practitioner expertise in diagnosis and management. Accurate diagnosis for stress fractures is dependent on the anatomical area. Anatomical regions such as the pelvis, sacrum, and metatarsals offer challenges due to difficulty differentiating pathologies with common symptoms. Special tests and treatment regimes, however, are similar among most stress fractures with resolution between 4 weeks to a year. The most difficult aspect of stress fracture treatment entails mitigating internal and external risk factors. Practitioners should address ongoing risk factors to minimize recurrence. PMID:25848327
Extreme geomagnetically induced currents
NASA Astrophysics Data System (ADS)
Kataoka, Ryuho; Ngwira, Chigomezyo
2016-12-01
We propose an emergency alert framework for geomagnetically induced currents (GICs), based on the empirically extreme values and theoretical upper limits of the solar wind parameters and of d B/d t, the time derivative of magnetic field variations at ground. We expect this framework to be useful for preparing against extreme events. Our analysis is based on a review of various papers, including those presented during Extreme Space Weather Workshops held in Japan in 2011, 2012, 2013, and 2014. Large-amplitude d B/d t values are the major cause of hazards associated with three different types of GICs: (1) slow d B/d t with ring current evolution (RC-type), (2) fast d B/d t associated with auroral electrojet activity (AE-type), and (3) transient d B/d t of sudden commencements (SC-type). We set "caution," "warning," and "emergency" alert levels during the main phase of superstorms with the peak Dst index of less than -300 nT (once per 10 years), -600 nT (once per 60 years), or -900 nT (once per 100 years), respectively. The extreme d B/d t values of the AE-type GICs are 2000, 4000, and 6000 nT/min at caution, warning, and emergency levels, respectively. For the SC-type GICs, a "transient alert" is also proposed for d B/d t values of 40 nT/s at low latitudes and 110 nT/s at high latitudes, especially when the solar energetic particle flux is unusually high.
NASA Astrophysics Data System (ADS)
Rizzi, Jonathan; Torresan, Silvia; Gallina, Valentina; Critto, Andrea; Marcomini, Antonio
2013-04-01
Europe's coast faces a variety of climate change threats from extreme high tides, storm surges and rising sea levels. In particular, it is very likely that mean sea level rise will contribute to upward trends in extreme coastal high water levels, thus posing higher risks to coastal locations currently experiencing coastal erosion and inundation processes. In 2007 the European Commission approved the Flood Directive (2007/60/EC), which has the main purpose to establish a framework for the assessment and management of flood risks for inland and coastal areas, thus reducing the adverse consequences for human health, the environment, cultural heritage and economic activities. Improvements in scientific understanding are thus needed to inform decision-making about the best strategies for mitigating and managing storm surge risks in coastal areas. The CLIMDAT project is aimed at improving the understanding of the risks related to extreme storm surge events in the coastal area of the North Adriatic Sea (Italy), considering potential climate change scenarios. The project implements a Regional Risk Assessment (RRA) methodology developed in the FP7 KULTURisk project for the assessment of physical/environmental impacts posed by flood hazards and employs the DEcision support SYstem for Coastal climate change impact assessment (DESYCO) for the application of the methodology to the case study area. The proposed RRA methodology is aimed at the identification and prioritization of targets and areas at risk from water-related natural hazards in the considered region at the meso-scale. To this aim, it integrates information about extreme storm surges with bio-geophysical and socio-economic information (e.g. vegetation cover, slope, soil type, population density) of the analyzed receptors (i.e. people, economic activities, cultural heritages, natural and semi-natural systems). Extreme storm surge hazard scenarios are defined using tide gauge time series coming from 28 tide gauge stations located in the North Adriatic coastal areas from 1989 to 2011. These data, together with the sea-level rise scenarios for the considered future timeframe, represent the input for the application of the Joint Probability method (Pugh and Vassie, 1979), which allows the evaluation of the maximum height of extreme storm surge events with different return period and the number of extreme events per year. The methodology uses Geographic Information Systems to manage, process, analyse, and visualize data and employs Multi-Criteria Decision Analysis to integrate stakeholders preferences and experts judgments into the analysis in order to obtain a total risk index in the considered region. The final outputs are represented by GIS-based risk maps which allow the communication of the potential consequences of extreme storm surge to decision makers and stakeholders. Moreover, they can support the establishment of relative priorities for intervention through the identification of suitable areas for human settlements, infrastructures and economic activities. Finally the produced output can represent a basis for definition of storm surge hazard and storm surge risk management plans according to the Floods Directive. The preliminary results of the RRA application in the CLIMDAT project will be here presented and discussed.
Ion plated electronic tube device
Meek, T.T.
1983-10-18
An electronic tube and associated circuitry which is produced by ion plating techniques. The process is carried out in an automated process whereby both active and passive devices are produced at very low cost. The circuitry is extremely reliable and is capable of functioning in both high radiation and high temperature environments. The size of the electronic tubes produced are more than an order of magnitude smaller than conventional electronic tubes.
[Increased glucose uptake by seborrheic keratosis on PET scan].
Merklen-Djafri, C; Truntzer, P; Hassler, S; Cribier, B
2017-05-01
Positron emission tomography (PET) is an examination based upon the uptake of a radioactive tracer by hypermetabolic cells. It is primarily used in tandem with tomodensitometry (PET-TDM) for cancer staging because of its high sensitivity and specificity for the detection of metastases. However, unusually high uptake may occur with benign tumours, including skin tumours. Herein, we report an extremely rare case of pathological uptake levels resulting from seborrhoeic keratosis. A 55-year-old male patient with oesophageal squamous-cell carcinoma was referred to us following the discovery of an area of high marker uptake following PET-TDM and corresponding to a pigmented skin lesion. No other areas of suspect high uptake were seen. The lesion was surgically excised and histological examination indicated seborrhoeic keratosis. The histological appearance was that of standard seborrhoeic keratosis without any notable mitotic activity. PET-TDM is an examination that enables diagnosis of malignancy. However, rare cases have been described of increased marker uptake by benign cutaneous tumours such as histiocytofibroma, pilomatricoma and condyloma. To date, there have only been only very few cases of increased uptake due to seborrhoeic keratosis. This extremely unusual case of increased glucose uptake in PET-TDM due to seborrhoeic keratosis confirms that the hypermetabolic activity detected by this examination is not necessarily synonymous with malignancy and that confirmation by clinical and histological findings is essential. The reasons for increased metabolic activity within such benign tumours are not known. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Wang, Xiaochen; Zhou, Yu; Guo, Zengjing; Chen, Guojian; Li, Jing; Shi, Yuming; Liu, Yangqing
2015-01-01
Meso-macroporous hierarchical poly(ionic liquid)s (MPILs) with extremely high ionic site densities and tunable pore structures were ionothermally synthesized through the free radical self-polymerization of our newly designed rigid bis-vinylimidazolium salt monomer. The synthesis avoided the use of any templates, gave a high yield (>99%) and allowed recycling of the IL solvent; thus it is facile, atom-efficient, environmentally friendly and sustainable. The synthesized MPILs possessed distinctive features of polycation matrices, abundant halogen anions, and large surface areas. They not only presented enhanced CO2 capture, but led to breakthroughs in the heterogeneous catalytic conversion of CO2 into cyclic carbonates: (1) unprecedented high activity at atmospheric pressure and low temperature; (2) good substrate compatibility, even being active towards the extremely inert aliphatic long carbon-chain alkyl epoxides. This result renders the first occasion of a metal–solvent–additive free recyclable heterogeneous cycloaddition of CO2 at such mild conditions. PMID:29861930
Boukhris, Ines; Farhat-Khemakhem, Ameny; Blibech, Monia; Bouchaala, Kameleddine; Chouayekh, Hichem
2015-09-01
The extracellular phytase produced by the Bacillus amyloliquefaciens US573 strain, isolated from geothermal soil located in Southern Tunisia was purified and characterized. This calcium-dependent and bile-stable enzyme (PHY US573) was optimally active at pH 7.5 and 70 °C. It showed a good stability at pH ranging from 4 to 10, and especially, an exceptional thermostability as it recovered 50 and 62% of activity after heating for 10 min at 100 and 90 °C, respectively. In addition, PHY US573 was found to be extremely salt-tolerant since it preserved 80 and 95% of activity in the presence of 20 g/l of NaCl and LiCl, respectively. The gene corresponding to PHY US573 was cloned. It encodes a 383 amino acids polypeptide exhibiting 99% identity with the highly thermostable phytases from Bacillus sp. MD2 and B. amyloliquefaciens DS11 (3 and 5 residues difference, respectively), suggesting the existence of common molecular determinants responsible for their remarkable heat stability. Overall, our findings illustrated that in addition to its high potential for application in feed industry, the salt tolerance of the PHY US573 phytase, may represent an exciting new avenue for improvement of phosphorus-use efficiency of salt-tolerant plants in soils with high salt and phytate content. Copyright © 2015 Elsevier B.V. All rights reserved.
Gaoua, Nadia; de Oliveira, Rita F; Hunter, Steve
2017-01-01
Different professional domains require high levels of physical performance alongside fast and accurate decision-making. Construction workers, police officers, firefighters, elite sports men and women, the military and emergency medical professionals are often exposed to hostile environments with limited options for behavioral coping strategies. In this (mini) review we use football refereeing as an example to discuss the combined effect of intense physical activity and extreme temperatures on decision-making and suggest an explicative model. In professional football competitions can be played in temperatures ranging from -5°C in Norway to 30°C in Spain for example. Despite these conditions, the referee's responsibility is to consistently apply the laws fairly and uniformly, and to ensure the rules are followed without waning or adversely influencing the competitiveness of the play. However, strenuous exercise in extreme environments imposes increased physiological and psychological stress that can affect decision-making. Therefore, the physical exertion required to follow the game and the thermal strain from the extreme temperatures may hinder the ability of referees to make fast and accurate decisions. Here, we review literature on the physical and cognitive requirements of football refereeing and how extreme temperatures may affect referees' decisions. Research suggests that both hot and cold environments have a negative impact on decision-making but data specific to decision-making is still lacking. A theoretical model of decision-making under the constraint of intense physical activity and thermal stress is suggested. Future naturalistic studies are needed to validate this model and provide clear recommendations for mitigating strategies.
Gaoua, Nadia; de Oliveira, Rita F.; Hunter, Steve
2017-01-01
Different professional domains require high levels of physical performance alongside fast and accurate decision-making. Construction workers, police officers, firefighters, elite sports men and women, the military and emergency medical professionals are often exposed to hostile environments with limited options for behavioral coping strategies. In this (mini) review we use football refereeing as an example to discuss the combined effect of intense physical activity and extreme temperatures on decision-making and suggest an explicative model. In professional football competitions can be played in temperatures ranging from -5°C in Norway to 30°C in Spain for example. Despite these conditions, the referee’s responsibility is to consistently apply the laws fairly and uniformly, and to ensure the rules are followed without waning or adversely influencing the competitiveness of the play. However, strenuous exercise in extreme environments imposes increased physiological and psychological stress that can affect decision-making. Therefore, the physical exertion required to follow the game and the thermal strain from the extreme temperatures may hinder the ability of referees to make fast and accurate decisions. Here, we review literature on the physical and cognitive requirements of football refereeing and how extreme temperatures may affect referees’ decisions. Research suggests that both hot and cold environments have a negative impact on decision-making but data specific to decision-making is still lacking. A theoretical model of decision-making under the constraint of intense physical activity and thermal stress is suggested. Future naturalistic studies are needed to validate this model and provide clear recommendations for mitigating strategies. PMID:28912742
Vincent, Joshua I; MacDermid, Joy C; Michlovitz, Susan L; Rafuse, Richard; Wells-Rowsell, Christina; Wong, Owen; Bisbee, Leslie
2014-01-01
Longitudinal clinical measurement study. The push-off test (POT) is a novel and simple measure of upper extremity weight-bearing that can be measured with a grip dynamometer. There are no published studies on the validity and reliability of the POT. The relationship between upper extremity self-report activity/participation and impairment measures remain an unexplored realm. The primary purpose of this study is to estimate the intra and inter-rater reliability and construct validity of the POT. The secondary purpose is to estimate the relationship between upper extremity self-report activity/participation questionnaires and impairment measures. A convenience sample of 22 patients with wrist or elbow injuries were tested for POT, wrist/elbow range of motion (ROM), isometric wrist extension strength (WES) and grip strength; and completed two self-report activity/participation questionnaires: Disability of the Arm, Shoulder and the Hand (DASH) and Work Limitations Questionnaire (WLQ-26). POT's inter and intra-rater reliability and construct validity was tested. Pearson's correlations were run between the impairment measures and self-report questionnaires to look into the relationship amongst them. The POT demonstrated high inter-rater reliability (ICC affected = 0.97; 95% C.I. 0.93-0.99; ICC unaffected = 0.85; 95% C.I. 0.68-0.94) and intra-rater reliability (ICC affected = 0.96; 95% C.I. 0.92-0.97; ICC unaffected = 0.92; 95% C.I. 0.85-0.97). The POT was correlated moderately with the DASH (r = -0.47; p = 0.03). While examining the relationship between upper extremity self-reported activity/participation questionnaires and impairment measures the strongest correlation was between the DASH and the POT (r = -0.47; p = 0.03) and none of the correlations with the other physical impairment measures reached significance. At-work disability demonstrated insignificant correlations with physical impairments. The POT test provides a reliable and easily administered quantitative measure of ability to bear the load through an injured arm. Preliminary evidence supports a moderate relationship between loading bearing measured by the POT and upper extremity function measured by the DASH. 1b. Copyright © 2014 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.
Extreme Pregnancy: Maternal Physical Activity at Everest Base Camp.
Davenport, Margie H; Steinback, Craig D; Borle, Kennedy J; Matenchuk, Brittany A; Vanden Berg, Emily R; de Freitas, Emily M; Linares, Andrea M; O'Halloran, Ken D; Sherpa, Mingma T; Day, Trevor A
2018-05-10
High altitude natives employ numerous physiological strategies to survive and reproduce. However, the concomitant influence of altitude and physical activity during pregnancy has not been studied above 3,700m. We report a case of physical activity, sleep behavior and physiological measurements on a 28-year-old third-trimester pregnant native highlander (Sherpa) during ascent from 3440m to Everest base camp (~5,300m) over eight days in the Nepal Himalaya, and again ~10-months postpartum during a similar ascent profile. The participant engaged in 250-300 minutes of moderate-to-vigorous physical activity (MVPA) per day during ascent to altitude while pregnant, with similar volumes of MVPA while postpartum. There were no apparent maternal, fetal or neonatal complications related to the superimposition of the large volumes of physical activity at altitude. This report demonstrates a rare description of physical activity and ascent to high altitude during pregnancy and points to novel questions regarding the superimposition of pregnancy, altitude and physical activity in high altitude natives.
Stress fractures of the ribs and upper extremities: causation, evaluation, and management.
Miller, Timothy L; Harris, Joshua D; Kaeding, Christopher C
2013-08-01
Stress fractures are common troublesome injuries in athletes and non-athletes. Historically, stress fractures have been thought to predominate in the lower extremities secondary to the repetitive stresses of impact loading. Stress injuries of the ribs and upper extremities are much less common and often unrecognized. Consequently, these injuries are often omitted from the differential diagnosis of rib or upper extremity pain. Given the infrequency of this diagnosis, few case reports or case series have reported on their precipitating activities and common locations. Appropriate evaluation for these injuries requires a thorough history and physical examination. Radiographs may be negative early, requiring bone scintigraphy or MRI to confirm the diagnosis. Nonoperative and operative treatment recommendations are made based on location, injury classification, and causative activity. An understanding of the most common locations of upper extremity stress fractures and their associated causative activities is essential for prompt diagnosis and optimal treatment.
To the fringe and back: Violent extremism and the psychology of deviance.
Kruglanski, Arie W; Jasko, Katarzyna; Chernikova, Marina; Dugas, Michelle; Webber, David
2017-04-01
We outline a general psychological theory of extremism and apply it to the special case of violent extremism (VE). Extremism is defined as motivated deviance from general behavioral norms and is assumed to stem from a shift from a balanced satisfaction of basic human needs afforded by moderation to a motivational imbalance wherein a given need dominates the others. Because motivational imbalance is difficult to sustain, only few individuals do, rendering extreme behavior relatively rare, hence deviant. Thus, individual dynamics translate into social patterns wherein majorities of individuals practice moderation, whereas extremism is the province of the few. Both extremism and moderation require the ability to successfully carry out the activities that these demand. Ability is partially determined by the activities' difficulty, controllable in part by external agents who promote or oppose extremism. Application of this general framework to VE identifies the specific need that animates it and offers broad guidelines for addressing this pernicious phenomenon. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
High-throughput screening of filamentous fungi using nanoliter-range droplet-based microfluidics
NASA Astrophysics Data System (ADS)
Beneyton, Thomas; Wijaya, I. Putu Mahendra; Postros, Prexilia; Najah, Majdi; Leblond, Pascal; Couvent, Angélique; Mayot, Estelle; Griffiths, Andrew D.; Drevelle, Antoine
2016-06-01
Filamentous fungi are an extremely important source of industrial enzymes because of their capacity to secrete large quantities of proteins. Currently, functional screening of fungi is associated with low throughput and high costs, which severely limits the discovery of novel enzymatic activities and better production strains. Here, we describe a nanoliter-range droplet-based microfluidic system specially adapted for the high-throughput sceening (HTS) of large filamentous fungi libraries for secreted enzyme activities. The platform allowed (i) compartmentalization of single spores in ~10 nl droplets, (ii) germination and mycelium growth and (iii) high-throughput sorting of fungi based on enzymatic activity. A 104 clone UV-mutated library of Aspergillus niger was screened based on α-amylase activity in just 90 minutes. Active clones were enriched 196-fold after a single round of microfluidic HTS. The platform is a powerful tool for the development of new production strains with low cost, space and time footprint and should bring enormous benefit for improving the viability of biotechnological processes.
Khan, Inayat Ali; Qian, Yuhong; Badshah, Amin; Zhao, Dan; Nadeem, Muhammad Arif
2016-08-17
Boosting the durability of Pt nanoparticles by controlling the composition and morphology is extremely important for fuel cells commercialization. We deposit the Pt-Cu alloy nanoparticles over high surface area carbon in different metallic molar ratios and optimize the conditions to achieve desired material. The novel bimetallic electro-catalyst {Pt-Cu/PC-950 (15:15%)} offers exceptional electrocatalytic activity when tested for both oxygen reduction reaction and methanol oxidation reactions. A high mass activity of 0.043 mA/μgPt (based on Pt mass) is recorded for ORR. An outstanding longevity of this electro-catalyst is noticed when compared to 20 wt % Pt loaded either on PC-950 or commercial carbon. The high surface area carbon support offers enhanced activity and prevents the nanoparticles from agglomeration, migration, and dissolution as evident by TEM analysis.
Materials @ LANL: Solutions for National Security Challenges
NASA Astrophysics Data System (ADS)
Teter, David
2012-10-01
Materials science activities impact many programmatic missions at LANL including nuclear weapons, nuclear energy, renewable energy, global security and nonproliferation. An overview of the LANL materials science strategy and examples of materials science programs will be presented. Major materials leadership areas are in materials dynamics, actinides and correlated electron materials, materials in radiation extremes, energetic materials, integrated nanomaterials and complex functional materials. Los Alamos is also planning a large-scale, signature science facility called MaRIE (Matter Radiation Interactions in Extremes) to address in-situ characterization of materials in dynamic and radiation environments using multiple high energy probes. An overview of this facility will also be presented.
Screening for Cellulase Encoding Clones in Metagenomic Libraries.
Ilmberger, Nele; Streit, Wolfgang R
2017-01-01
For modern biotechnology there is a steady need to identify novel enzymes. In biotechnological applications, however, enzymes often must function under extreme and nonnatural conditions (i.e., in the presence of solvents, high temperature and/or at extreme pH values). Cellulases have many industrial applications from the generation of bioethanol, a realistic long-term energy source, to the finishing of textiles. These industrial processes require cellulolytic activity under a wide range of pH, temperature, and ionic conditions, and they are usually carried out by mixtures of cellulases. Investigation of the broad diversity of cellulolytic enzymes involved in the natural degradation of cellulose is necessary for optimizing these processes.
USDA-ARS?s Scientific Manuscript database
Identification of microbial assemblages predominant under natural extreme climatic events will aid in our understanding of the resilience and resistance of microbial communities to climate change. From November 2010 to August 2011, the Southern High Plains (SHP) of Texas, U.S., received only 39.6 mm...
The Balancing of Parental Support and Pressure in Fostering Collegiate Athletes
ERIC Educational Resources Information Center
Coles, Jon
2017-01-01
Enrolling children in youth sport is an American tradition to keep children active while learning life lessons such as teamwork, commitment, and work ethic. However, youth sport is becoming extremely expensive and demanding, resulting in high parental involvement. Research shows over-involved parents cause stress, anxiety, and even burnout. The…
Metal resistance in acidophilic microorganisms and its significance for biotechnologies.
Dopson, Mark; Holmes, David S
2014-10-01
Extremely acidophilic microorganisms have an optimal pH of <3 and are found in all three domains of life. As metals are more soluble at acid pH, acidophiles are often challenged by very high metal concentrations. Acidophiles are metal-tolerant by both intrinsic, passive mechanisms as well as active systems. Passive mechanisms include an internal positive membrane potential that creates a chemiosmotic gradient against which metal cations must move, as well as the formation of metal sulfate complexes reducing the concentration of the free metal ion. Active systems include efflux proteins that pump metals out of the cytoplasm and conversion of the metal to a less toxic form. Acidophiles are exploited in a number of biotechnologies including biomining for sulfide mineral dissolution, biosulfidogenesis to produce sulfide that can selectively precipitate metals from process streams, treatment of acid mine drainage, and bioremediation of acidic metal-contaminated milieux. This review describes how acidophilic microorganisms tolerate extremely high metal concentrations in biotechnological processes and identifies areas of future work that hold promise for improving the efficiency of these applications.
Solar-pumped fiber laser with transverse-excitation geometry
NASA Astrophysics Data System (ADS)
Masuda, Taizo; Iyoda, Mitsuhiro; Yasumatu, Yuta; Yamashita, Tomohiro; Sasaki, Kiyoto; Endo, Masamori
2018-02-01
In this paper, we demonstrate an extremely low-concentrated solar-pumped laser (SPL) that uses a transversely excited fiber laser geometry. To eliminate the need for precise solar tracking with an aggressive cooling system and to considerably increase the number of laser applications, low-concentration factors in SPLs are highly desired. We investigate the intrinsic low-loss property of SiO2 optical fibers; this property can be used to compensate for the extremely low gain coefficient of the weakly-pumped active medium by sunlight. As part of the experimental setup, a 40-m long Nd3+-doped SiO2 fiber coil was packed in a ring-shaped chamber filled with a sensitizer solution; this solution functioned as a down-shifter. The dichroic top window of the chamber transmitted a wide range of sunlight and reflected the down-shifted photons, confining them to the highly-reflective chamber until they were absorbed by the Nd3+ ions in the active fiber. We demonstrated a lasing threshold that is 10 times the concentration of natural sunlight and two orders of magnitude smaller than that of conventional SPLs.
Astrobiology as a tool for getting high school students interested in science
NASA Astrophysics Data System (ADS)
Van der Meer, B. W.; Alletto, James J.; Bryant, Dudley; Carini, Mike; Elliott, Larry; Gelderman, Richard; Mason, Wayne; McDaniel, Kerrie; McGruder, Charles H.; Rinehart, Claire; Tyler, Rico; Walker, Linda
2000-12-01
A workshop was held (10/99) for high school students and teachers on astrobiology. NASA provided support through an IDEAS grant. Out of 63 qualified applicants, 29 were accepted: 22 students (11 minorities) and 7 teachers. The worship was held on 2 successive weekends. Activities included: culturing microbes from human skin, discussing 'what is life?', building and using a 2-inch refractive telescope and a van-Leeuwenhoek- type microscope (each participant built and kept them), listening to lectures by Dr. Richard Gelderman on detecting extra solar planets and by Dr. Richard Hoover on life in extreme environments. Other activities included: collecting samples and isolating micro-organisms from the lost river cave, studying microbial life from extreme environments in the laboratory, using the internet as a research tool and debating the logistics and feasibility of a lunar colony. Written evaluations of the workshop led to the following conclusions: 48% of the students considered a possible career in the biological and/or astrophysical sciences, and half of these stated they were spurred on by the workshop itself.
Ekstrand, Elisabeth; Rylander, Lars; Lexell, Jan; Brogårdh, Christina
2016-11-02
Despite that disability of the upper extremity is common after stroke, there is limited knowledge how it influences self-perceived ability to perform daily hand activities. The aim of this study was to describe which daily hand activities that persons with mild to moderate impairments of the upper extremity after stroke perceive difficult to perform and to evaluate how several potential factors are associated with the self-perceived performance. Seventy-five persons (72 % male) with mild to moderate impairments of the upper extremity after stroke (4 to 116 months) participated. Self-perceived ability to perform daily hand activities was rated with the ABILHAND Questionnaire. The perceived ability to perform daily hand activities and the potentially associated factors (age, gender, social and vocational situation, affected hand, upper extremity pain, spasticity, grip strength, somatosensation of the hand, manual dexterity, perceived participation and life satisfaction) were evaluated by linear regression models. The activities that were perceived difficult or impossible for a majority of the participants were bimanual tasks that required fine manual dexterity of the more affected hand. The factor that had the strongest association with perceived ability to perform daily hand activities was dexterity (p < 0.001), which together with perceived participation (p = 0.002) explained 48 % of the variance in the final multivariate model. Persons with mild to moderate impairments of the upper extremity after stroke perceive that bimanual activities requiring fine manual dexterity are the most difficult to perform. Dexterity and perceived participation are factors specifically important to consider in the rehabilitation of the upper extremity after stroke in order to improve the ability to use the hands in daily life.
NASA Technical Reports Server (NTRS)
Munasinghe, L.; Jun, T.; Rind, D. H.
2012-01-01
Consensus on global warming is the result of multiple and varying lines of evidence, and one key ramification is the increase in frequency of extreme climate events including record high temperatures. Here we develop a metric- called "record equivalent draws" (RED)-based on record high (low) temperature observations, and show that changes in RED approximate changes in the likelihood of extreme high (low) temperatures. Since we also show that this metric is independent of the specifics of the underlying temperature distributions, RED estimates can be aggregated across different climates to provide a genuinely global assessment of climate change. Using data on monthly average temperatures across the global landmass we find that the frequency of extreme high temperatures increased 10-fold between the first three decades of the last century (1900-1929) and the most recent decade (1999-2008). A more disaggregated analysis shows that the increase in frequency of extreme high temperatures is greater in the tropics than in higher latitudes, a pattern that is not indicated by changes in mean temperature. Our RED estimates also suggest concurrent increases in the frequency of both extreme high and extreme low temperatures during 2002-2008, a period when we observe a plateauing of global mean temperature. Using daily extreme temperature observations, we find that the frequency of extreme high temperatures is greater in the daily minimum temperature time-series compared to the daily maximum temperature time-series. There is no such observable difference in the frequency of extreme low temperatures between the daily minimum and daily maximum.
Naumann, S; Lange, S; Polak, G; Kalhoelfer, V; Motlagh, L; Goebel, A; Wohlrab, J; Neubert, R H H
2014-01-01
The effect of the lipophilicity of a carrier on human skin penetration of an extremely lipophilic active model substance was evaluated by using Franz type diffusion cells. Oil-in-water model emulsions containing different amounts of the oily phase were prepared, and Myritol® PC (M-PC) was selected as lipophilic marker component of the oily phase. The penetrated amounts of the lipophilic model substance salicyloyl phytosphingosine (SP) were determined by high-performance liquid chromatography with ultraviolet detection, while M-PC was detected using gas chromatography coupled with mass spectrometry. It has been ascertained that the amount of the lipid phase within the emulsion influenced the penetration profile of the active ingredient SP. The emulsion containing the lowest proportion of the lipid phase provides the best conditions for SP penetration. Surprisingly, the penetration behavior of M-PC was influenced by the oily phase in the same way. Regarding the M-PC and the SP penetration profiles from each emulsion, a solvent drag mechanism can be assumed whereby M-PC acts as penetration enhancer. In conclusion, the penetration rate of the active ingredient SP and the marker component M-PC are in reverse proportion to the oil content of the formulations. The lipophilicity of SP and M-PC, their solubility and their thermodynamic activity within the vehicle could have an effect on their penetration behavior. Additionally, M-PC has the property to enhance the penetration rates of extremely lipophilic substances even at low concentrations.
Goordial, Jacqueline; Davila, Alfonso; Greer, Charles W; Cannam, Rebecca; DiRuggiero, Jocelyne; McKay, Christopher P; Whyte, Lyle G
2017-02-01
Permafrost in the high elevation McMurdo Dry Valleys of Antarctica ranks among the driest and coldest on Earth. Permafrost soils appear to be largely inhospitable to active microbial life, but sandstone lithic microhabitats contain a trophically simple but functional cryptoendolithic community. We used metagenomic sequencing and activity assays to examine the functional capacity of permafrost soils and cryptoendolithic communities in University Valley, one of the most extreme regions in the Dry Valleys. We found metagenomic evidence that cryptoendolithic microorganisms are adapted to the harsh environment and capable of metabolic activity at in situ temperatures, possessing a suite of stress response and nutrient cycling genes to fix carbon under the fluctuating conditions that the sandstone rock would experience during the summer months. We additionally identified genes involved in microbial competition and cooperation within the cryptoendolithic habitat. In contrast, permafrost soils have a lower richness of stress response genes, and instead the metagenome is enriched in genes involved with dormancy and sporulation. The permafrost soils also have a large presence of phage genes and genes involved in the recycling of cellular material. Our results underlie two different habitability conditions under extreme cold and dryness: the permafrost soil which is enriched in traits which emphasize survival and dormancy, rather than growth and activity; and the cryptoendolithic environment that selects for organisms capable of growth under extremely oligotrophic, arid and cold conditions. This study represents the first metagenomic interrogation of Antarctic permafrost and polar cryptoendolithic microbial communities. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
The Age of Terrestrial Carbon Export and Rainfall Intensity in a Temperate River Headwater System
NASA Astrophysics Data System (ADS)
Tittel, J.; Büttner, O.; Freier, K.; Heiser, A.; Sudbrack, R.; Ollesch, G.
2013-12-01
Riverine dissolved organic carbon (DOC) supports the production of estuaries and coastal ecosystems, constituting one of the most actively recycled pools of the global carbon cycle. A substantial proportion of DOC entering oceans is highly aged, but its origins remain unclear. Significant fluxes of old DOC have never been observed in temperate headwaters where terrestrial imports take place. Here, we studied the radiocarbon age of DOC in three streams draining forested headwater catchments of the river Mulde (Ore Mountains, Germany). We found modern DOC at moderately dry and moderately wet conditions as well as at high discharges during snowmelt. Old groundwater carbon contributed to stream DOC during the summer drought, although the yield was negligible. However, in a four-week summer precipitation event DOC aged at between 160 and 270 years was delivered into the watershed. In one stream, the DOC was modern but depleted in radiocarbon compared to other hydrological conditions. The yield was substantial and corresponded to 20 to 52% of the annual DOC yields in wet and dry years, respectively. Time-integrating samples of a downstream reservoir also revealed modern DOC ages under moderate conditions and old DOC from the rainfall event. Earlier studies suggested that increasing precipitation escalates the contribution of modern DOC from topsoil layers to surface runoff. Our results demonstrate a step change occurring if rainfall intensities increase and become extreme; then the consequences lead to the mobilization of old carbon in exceptionally high concentrations. The runoff/precipitation ratios of rainfall events indicated that during extreme events upland areas of the catchments were hydrologically connected to the stream and upland DOC was activated. Furthermore, the analysis of long-term data suggested that the DOC export in extreme precipitation events added to the annual yield and was not compensated for by lower exports in remaining periods. We conclude that climate change, along with additional processes associated with human activities, channels old soil carbon into more rapidly cycled carbon pools of the hydrosphere.
Mulroy, Sara J; Klassen, Tara; Gronley, JoAnne K; Eberly, Valerie J; Brown, David A; Sullivan, Katherine J
2010-02-01
Task-specific training programs after stroke improve walking function, but it is not clear which biomechanical parameters of gait are most associated with improved walking speed. The purpose of this study was to identify gait parameters associated with improved walking speed after a locomotor training program that included body-weight-supported treadmill training (BWSTT). A prospective, between-subjects design was used. Fifteen people, ranging from approximately 9 months to 5 years after stroke, completed 1 of 3 different 6-week training regimens. These regimens consisted of 12 sessions of BWSTT alternated with 12 sessions of: lower-extremity resistive cycling; lower-extremity progressive, resistive strengthening; or a sham condition of arm ergometry. Gait analysis was conducted before and after the 6-week intervention program. Kinematics, kinetics, and electromyographic (EMG) activity were recorded from the hemiparetic lower extremity while participants walked at a self-selected pace. Changes in gait parameters were compared in participants who showed an increase in self-selected walking speed of greater than 0.08 m/s (high-response group) and in those with less improvement (low-response group). Compared with participants in the low-response group, those in the high-response group displayed greater increases in terminal stance hip extension angle and hip flexion power (product of net joint moment and angular velocity) after the intervention. The intensity of soleus muscle EMG activity during walking also was significantly higher in participants in the high-response group after the intervention. Only sagittal-plane parameters were assessed, and the sample size was small. Task-specific locomotor training alternated with strength training resulted in kinematic, kinetic, and muscle activation adaptations that were strongly associated with improved walking speed. Changes in both hip and ankle biomechanics during late stance were associated with greater increases in gait speed.
Very high energy observations of the Galactic Centre: recent results and perspectives with CTA
NASA Astrophysics Data System (ADS)
Terrier, Regis
2016-07-01
The central 300 pc of our Galaxy are a major laboratory for high energy astrophysics. They harbor the closest supermassive black hole (SMBH) and are the site of a sustained star formation activity. The energy released by the supernovae on the ambient medium must be very strong. Similarly, albeit extremely faint nowadays, the SMBH must have experienced episodes of intense activity in the past which can influence significantly the central regions and beyond, e.g. powering the Fermi bubbles. I review observational results at very high energies from the central region and discuss their implications and the questions they leave open. I discuss the perspectives CTA offers for Galactic Centre astrophysics.
High-energy variability of the Pulsar binary PSR J1311-3430
NASA Astrophysics Data System (ADS)
An, Hongjun; Fermi-LAT Collaboration
2018-01-01
We present analysis results of high-energy observations of the extreme mass-ratio black-widow millisecond pulsar binary PSR J1311-3430. Our studies in the UV, X-ray, and gamma-ray bands confirm the orbital modulation in the gamma-ray band as suggested previously. In addition, we find that the modulation is stronger in the high-energy band. In the lower-energy UV and X-ray bands, we detect flares which were observed previously and attributed to magnetic activities. We find that the optical flares are associated with the X-ray flares, suggesting common origin. We explore possible connections of the variabilities with the intrabinary shock (IBS) and magnetic activity on the low mass companion.
Sun, Xu; Dai, Daoxin; Thylén, Lars; Wosinski, Lech
2015-10-05
A Mach-Zehnder Interferometer (MZI) liquid sensor, employing ultra-compact double-slot hybrid plasmonic (DSHP) waveguide as active sensing arm, is developed. Numerical results show that extremely large optical confinement factor of the tested analytes (as high as 88%) can be obtained by DSHP waveguide with optimized geometrical parameters, which is larger than both, conventional SOI waveguides and plasmonic slot waveguides with same widths. As for MZI sensor with 40μm long DSHP active sensing area, the sensitivity can reach as high value as 1061nm/RIU (refractive index unit). The total loss, excluding the coupling loss of the grating coupler, is around 4.5dB.
Río Tinto: A Geochemical and Mineralogical Terrestrial Analogue of Mars
Amils, Ricardo; Fernández-Remolar, David
2014-01-01
The geomicrobiological characterization of the water column and sediments of Río Tinto (Huelva, Southwestern Spain) have proven the importance of the iron and the sulfur cycles, not only in generating the extreme conditions of the habitat (low pH, high concentration of toxic heavy metals), but also in maintaining the high level of microbial diversity detected in the basin. It has been proven that the extreme acidic conditions of Río Tinto basin are not the product of 5000 years of mining activity in the area, but the consequence of an active underground bioreactor that obtains its energy from the massive sulfidic minerals existing in the Iberian Pyrite Belt. Two drilling projects, MARTE (Mars Astrobiology Research and Technology Experiment) (2003–2006) and IPBSL (Iberian Pyrite Belt Subsurface Life Detection) (2011–2015), were developed and carried out to provide evidence of subsurface microbial activity and the potential resources that support these activities. The reduced substrates and the oxidants that drive the system appear to come from the rock matrix. These resources need only groundwater to launch diverse microbial metabolisms. The similarities between the vast sulfate and iron oxide deposits on Mars and the main sulfide bioleaching products found in the Tinto basin have given Río Tinto the status of a geochemical and mineralogical Mars terrestrial analogue. PMID:25370383
Application of RFID technology-upper extremity rehabilitation training.
Chen, Chih-Chen; Chen, Yu-Luen; Chen, Shih-Ching
2016-01-01
[Purpose] Upper extremity rehabilitation after an injury is very important. This study proposes radio frequency identification (RFID) technology to improve and enhance the effectiveness of the upper extremity rehabilitation. [Subjects and Methods] People use their upper extremities to conduct daily activities. When recovering from injuries, many patients neglect the importance of rehabilitation, which results in degraded function. This study recorded the training process using the traditional rehabilitation hand gliding cart with a RFID reader, RFID tags in the panel, and a servo host computer. [Results] Clinical evidence, time taken to achieve a full score, counts of missing the specified spots, and Brunnstrom stage of aided recovery, the proximal part of the upper extremity show that the RFID-based upper extremity training significantly and reduce negative impacts of the disability in daily life and activities. [Conclusion] This study combined a hand-gliding cart with an RFID reader, and when patients moved the cart, the movement could be observed via the activated RFID tags. The training data was collected and quantified for a better understanding of the recovery status of the patients. Each of the participating patients made progress as expected.
Relationship of psychological and physiological parameters during an arctic ski expedition
NASA Astrophysics Data System (ADS)
Bishop, Sheryl L.; Grobler, Lukas C.; SchjØll, Olaf
2001-08-01
Considerable data (primarily physiological) have been collected during expeditions in extreme environments over the last century. Physiological measurements have only recently been examined in association with the emotional or behavioral state of the subject. Establishing this psychophysiological relationship is essential to understanding fully the adaptation of humans to the stresses of extreme environments. This pilot study investigated the simultaneous collection of physiological, psychological and behavioral data from a two-man Greenland expedition in order to model how specific relationships between physiological and psychological adaptation to a polar environment may be identified. The data collected describes changes in adrenal and other hormonal activity and psychological functioning. Levels of cortisol and testosterone were calculated. Factors influencing the plasma profiles of the aforementioned included 24-hour sunlight, high calorific intake of more than 28 000 kJ/day and extreme physical exercise. There was a difference between individual psychological profiles as well as self-report stress and physiological stress.
System Characterization of MAHI EXO-II: A Robotic Exoskeleton for Upper Extremity Rehabilitation
French, James A.; Rose, Chad G.; O'Malley, Marcia K.
2015-01-01
This paper presents the performance characterization of the MAHI Exo-II, an upper extremity exoskeleton for stroke and spinal cord injury (SCI) rehabilitation, as a means to validate its clinical implementation and to provide depth to the literature on the performance characteristics of upper extremity exoskeletons. Individuals with disabilities arising from stroke and SCI need rehabilitation of the elbow, forearm, and wrist to restore the ability to independently perform activities of daily living (ADL). Robotic rehabilitation has been proposed to address the need for high intensity, long duration therapy and has shown promising results for upper limb proximal joints. However, upper limb distal joints have historically not benefitted from the same focus. The MAHI Exo-II, designed to address this shortcoming, has undergone a static and dynamic performance characterization, which shows that it exhibits the requisite qualities for a rehabilitation robot and is comparable to other state-of-the-art designs. PMID:25984380
System Characterization of MAHI EXO-II: A Robotic Exoskeleton for Upper Extremity Rehabilitation.
French, James A; Rose, Chad G; O'Malley, Marcia K
2014-10-01
This paper presents the performance characterization of the MAHI Exo-II, an upper extremity exoskeleton for stroke and spinal cord injury (SCI) rehabilitation, as a means to validate its clinical implementation and to provide depth to the literature on the performance characteristics of upper extremity exoskeletons. Individuals with disabilities arising from stroke and SCI need rehabilitation of the elbow, forearm, and wrist to restore the ability to independently perform activities of daily living (ADL). Robotic rehabilitation has been proposed to address the need for high intensity, long duration therapy and has shown promising results for upper limb proximal joints. However, upper limb distal joints have historically not benefitted from the same focus. The MAHI Exo-II, designed to address this shortcoming, has undergone a static and dynamic performance characterization, which shows that it exhibits the requisite qualities for a rehabilitation robot and is comparable to other state-of-the-art designs.
Schmidt, Michael D; Cleland, Verity J; Thomson, Russell J; Dwyer, Terence; Venn, Alison J
2008-05-01
To compare the ability of alternative measures of physical activity and fitness to quantify associations with health outcomes. Associations between a range of subjective and objective physical activity and fitness measures and cardiometabolic risk factors were examined using data from 1,631 Australians aged 26-36 years. Anthropometry, fitness, blood pressure, and fasting blood glucose, insulin, and lipids were measured at study clinics. Participants completed the International Physical Activity Questionnaire (IPAQ) and 7-day pedometer diaries; they also reported sedentary behavior (sitting, television viewing). In men and women, associations were strongest for fitness, with those in the highest (vs. lowest) fitness quarter having a 75% to 80% lower prevalence of two or more primary risk factors (waist circumference, high-density lipoprotein cholesterol, and insulin resistance). In men, a 60% to 70% reduced prevalence of two or more risk factors was observed across extreme quarters of IPAQ leisure, IPAQ vigorous, sitting duration, and pedometer measures. Similar reductions in prevalence were observed only across extreme quarters of pedometer activity and television viewing in women. Associations between alternative measures and cardiometabolic risk were relatively independent, suggesting that a range of physical activity and fitness measures may be needed to most accurately quantify associations between physical activity and health.
NASA Technical Reports Server (NTRS)
Haisch, B. M.
1986-01-01
Three lines of evidence are noted to point to a flare heating source for stellar coronae: a strong correlation between time-averaged flare energy release and coronal X-ray luminosity, the high temperature flare-like component of the spectral signature of coronal X-ray emission, and the observed short time scale variability that indicates continuous flare activity. It is presently suggested that flares may represent only the extreme high energy tail of a continuous distribution of coronal energy release events.
dc-plasma-sprayed electronic-tube device
Meek, T.T.
1982-01-29
An electronic tube and associated circuitry which is produced by dc plasma arc spraying techniques is described. The process is carried out in a single step automated process whereby both active and passive devices are produced at very low cost. The circuitry is extremely reliable and is capable of functioning in both high radiation and high temperature environments. The size of the electronic tubes produced are more than an order of magnitude smaller than conventional electronic tubes.
Hwang, Chueh-Lung; Yoo, Jeung-Ki; Kim, Han-Kyul; Hwang, Moon-Hyon; Handberg, Eileen M.; Petersen, John W.; Christou, Demetra D.
2016-01-01
Aging is associated with decreased aerobic fitness and cardiac remodeling leading to increased risk for cardiovascular disease. High-intensity interval training (HIIT) on the treadmill has been reported to be more effective in ameliorating these risk factors compared with moderate-intensity continuous training (MICT) in patients with cardiometabolic disease. In older adults, however, weight-bearing activities are frequently limited due to musculoskeletal and balance problems. The purpose of this study was to examine the feasibility and safety of non-weight-bearing all-extremity HIIT in older adults. In addition, we tested the hypothesis that all-extremity HIIT will be more effective in improving aerobic fitness, cardiac function, and metabolic risk factors compared with all-extremity MICT. Fifty-one healthy sedentary older adults (age: 65±1 years) were randomized to HIIT (n=17), MICT (n=18) or non-exercise control (CONT; n=16). HIIT (4×4 minutes 90% of peak heart rate; HRpeak) and isocaloric MICT (70% of HRpeak) were performed on a non-weight-bearing all-extremity ergometer, 4x/week for 8 weeks under supervision. All-extremity HIIT was feasible in older adults and resulted in no adverse events. Aerobic fitness (peak oxygen consumption; VO2peak) and ejection fraction (echocardiography) improved by 11% (P<0.0001) and 4% (P=0.001) respectively in HIIT, while no changes were observed in MICT and CONT (P≥0.1). Greater improvements in ejection fraction were associated with greater improvements in VO2peak (r=0.57; P<0.0001). Insulin resistance (homeostatic model assessment) decreased only in HIIT by 26% (P=0.016). Diastolic function, body composition, glucose and lipids were unaffected (P≥0.1). In conclusion, all-extremity HIIT is feasible and safe in older adults. HIIT, but not MICT, improved aerobic fitness, ejection fraction, and insulin resistance. PMID:27346646
Hwang, Chueh-Lung; Yoo, Jeung-Ki; Kim, Han-Kyul; Hwang, Moon-Hyon; Handberg, Eileen M; Petersen, John W; Christou, Demetra D
2016-09-01
Aging is associated with decreased aerobic fitness and cardiac remodeling leading to increased risk for cardiovascular disease. High-intensity interval training (HIIT) on the treadmill has been reported to be more effective in ameliorating these risk factors compared with moderate-intensity continuous training (MICT) in patients with cardiometabolic disease. In older adults, however, weight-bearing activities are frequently limited due to musculoskeletal and balance problems. The purpose of this study was to examine the feasibility and safety of non-weight-bearing all-extremity HIIT in older adults. In addition, we tested the hypothesis that all-extremity HIIT will be more effective in improving aerobic fitness, cardiac function, and metabolic risk factors compared with all-extremity MICT. Fifty-one healthy sedentary older adults (age: 65±1years) were randomized to HIIT (n=17), MICT (n=18) or non-exercise control (CONT; n=16). HIIT (4×4min 90% of peak heart rate; HRpeak) and isocaloric MICT (70% of HRpeak) were performed on a non-weight-bearing all-extremity ergometer, 4×/week for 8weeks under supervision. All-extremity HIIT was feasible in older adults and resulted in no adverse events. Aerobic fitness (peak oxygen consumption; VO2peak) and ejection fraction (echocardiography) improved by 11% (P<0.0001) and 4% (P=0.001), respectively in HIIT, while no changes were observed in MICT and CONT (P≥0.1). Greater improvements in ejection fraction were associated with greater improvements in VO2peak (r=0.57; P<0.0001). Insulin resistance (homeostatic model assessment) decreased only in HIIT by 26% (P=0.016). Diastolic function, body composition, glucose and lipids were unaffected (P≥0.1). In conclusion, all-extremity HIIT is feasible and safe in older adults. HIIT, but not MICT, improved aerobic fitness, ejection fraction, and insulin resistance. Copyright © 2016 Elsevier Inc. All rights reserved.
Exploring "Extreme" Physics with an Inexpensive Plastic Toy Popper
ERIC Educational Resources Information Center
Lapp, David R.
2008-01-01
This article describes an activity that can be performed with an inexpensive plastic toy popper. The activity builds skill at analysing motion and results in the calculation of a surprisingly extreme acceleration. (Contains 1 figure.)
Planetary Habitability over Cosmic-Time Based on Cosmic-Ray Levels
NASA Astrophysics Data System (ADS)
Mason, Paul A.; Biermann, Peter L.
2016-01-01
Extreme cosmic-ray (CR) fluxes have a negative effect on life when flux densities are high enough to cause excessive biological, especially DNA, damage. The CR history of a planet plays an important role in its potential surface habitation. Both global and local CR conditions determine the ability of life to survive for astrobiologically relevant time periods. We highlight two CR life-limiting factors: 1) General galactic activity, starburst and AGN, was up by about a factor of 30 at redshift 1 - 2, per comoving frame, averaged over all galaxies. And 2) AGN activity is highly intermittent, so extreme brief but powerful bursts (Her A for example) can be detrimental at great distances. This means that during such brief bursts of AGN activity the extragalactic CRs might even overpower the local galactic CRs. But as shown by the starburst galaxy M82, the local CRs in a starburst can also be quite high. Moreover, in our cosmic neighborhood we have several super-massive black holes. These are in M31, M32, M81, NGC5128 (Cen A), and in our own Galaxy, all within about 4 Mpc today. Within about 20 Mpc today there are many more super-massive black holes. Cen A is of course the most famous one now, since it may be a major source of the ultra-high-energy CRs (UHECRs). Folding in what redshift means in terms of cosmic time, this implies that there may have been little chance for life to survive much earlier than Earth's starting epoch. We speculate, on whether the very slow start oflife on Earth is connected to the decay of disturbing CR activity.
NASA Astrophysics Data System (ADS)
Veldkamp, Ted; Ward, Philip; de Moel, Hans; Aerts, Jeroen; Muller Schmied, Hannes; Portmann, Felix; Zhao, Fang; Gerten, Dieter; Masaki, Yoshimitsu; Pokhrel, Yadu; Satoh, Yusuke; Gosling, Simon; Zaherpour, Jamal; Wada, Yoshihide
2017-04-01
Human impacts on freshwater resources and hydrological features form the core of present-day water related hazards, like flooding, droughts, water scarcity, and water quality issues. Driven by the societal and scientific needs to correctly model such water related hazards a fair amount of resources has been invested over the past decades to represent human activities and their interactions with the hydrological cycle in global hydrological models (GHMs). Use of these GHMs - including the human dimension - is widespread, especially in water resources research. Evaluation or comparative assessments of the ability of such GHMs to represent real-world hydrological conditions are, unfortunately, however often limited to (near-)natural river basins. Such studies are, therefore, not able to test the model representation of human activities and its associated impact on estimates of freshwater resources or assessments of hydrological extremes. Studies that did perform a validation exercise - including the human dimension and looking into managed catchments - either focused only on one hydrological model, and/or incorporated only a few data points (i.e. river basins) for validation. To date, a comprehensive comparative analysis that evaluates whether and where incorporating the human dimension actually improves the performance of different GHMs with respect to their representation of real-world hydrological conditions and extremes is missing. The absence of such study limits the potential benchmarking of GHMs and their outcomes in hydrological hazard and risk assessments significantly, potentially hampering incorporation of GHMs and their modelling results in actual policy making and decision support with respect to water resources management. To address this issue, we evaluate in this study the performance of five state-of-the-art GHMs that include anthropogenic activities in their modelling scheme, with respect to their representation of monthly discharges and hydrological extremes. To this end, we compared their monthly discharge simulations under a naturalized and a time-dependent human impact simulation, with monthly GRDC river discharge observations of 2,412 stations over the period 1971-2010. Evaluation metrics that were used to assess the performance of the GHMs included the modified Kling-Gupta Efficiency index, and its individual parameters describing the linear correlation coefficient, the bias ratio, and the variability ratio, as well as indicators for hydrological extremes (Q90, Q10). Our results show that inclusion of anthropogenic activities in the modelling framework generally enhances the overall performance of the GHMs studied, mainly driven by bias-improvements, and to a lesser extent due to changes in modelled hydrological variability. Whilst the inclusion of anthropogenic activities takes mainly effect in the managed catchments, a significant share of the (near-)natural catchments is influenced as well. To get estimates of hydrological extremes right, especially when looking at low-flows, inclusion of human activities is paramount. Whilst high-flow estimates are mainly decreased, impact of human activities on low-flows is ambiguous, i.e. due to the relative importance of the timing of return flows and reservoir operations. Even with inclusion of the human dimension we find, nevertheless, a persistent overestimation of hydrological extremes across all models, which should be accounted for in future assessments.
Factors that impact expectations before total knee arthroplasty.
Hepinstall, Matthew S; Rutledge, John R; Bornstein, Lindsey J; Mazumdar, Madhu; Westrich, Geoffrey H
2011-09-01
This study examined the effect of patient attributes on expectations before total knee arthroplasty (TKA). A total of 1943 patients completed an Expectations Survey before TKA. Demographics, surgical history, baseline Medical Outcomes Study Short Form 36 (SF-36) score, Knee injury and Osteoarthritis Outcome Score (KOOS), and Lower Extremity Activity Scale score were obtained. On univariate analysis, expectations (mean score, 77.6) correlated with SF-36 General Health, age, SF-36 Vitality, KOOS Quality-of-Life, and Lower Extremity Activity Scale. Living alone and history of joint arthroplasty were associated with significantly lower expectations, whereas male sex and white race were associated with higher expectations. On multivariate regression analysis, age, living situation, history of joint arthroplasty, SF-36 General Health, and KOOS Quality-of-Life remained significant predictors of expectations. Our results suggest that high, possibly unrealistic, expectations of TKA are common and should be moderated to maintain patient satisfaction. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sawyer, Derek E.; Reece, Robert S.; Gulick, Sean P. S.; Lenz, Brandi L.
2017-08-01
The southern Alaskan offshore margin is prone to submarine landslides and tsunami hazards due to seismically active plate boundaries and extreme sedimentation rates from glacially enhanced mountain erosion. We examine the submarine landslide potential with new shear strength measurements acquired by Integrated Ocean Drilling Program Expedition 341 on the continental slope and Surveyor Fan. These data reveal lower than expected sediment strength. Contrary to other active margins where seismic strengthening enhances slope stability, the high-sedimentation margin offshore southern Alaska behaves like a passive margin from a shear strength perspective. We interpret that seismic strengthening occurs but is offset by high sedimentation rates and overpressure. This conclusion is supported by shear strength outside of the fan that follow an active margin trend. More broadly, seismically active margins with wet-based glaciers are susceptible to submarine landslide hazards because of the combination of high sedimentation rates and earthquake shaking.
NASA Astrophysics Data System (ADS)
King, G.
2015-12-01
Carbon monoxide, which is ubiquitous on Earth, is the 2nd most abundant molecule in the universe. Members of the domain Bacteria have long been known to oxidize it, and activities of CO oxidizers in soils have been known for several decades to contribute to tropospheric CO regulation. Nonetheless, the diversity of CO oxidizers and their evolutionary history remain largely unknown. A molybdenum-dependent dehydrogenase (Mo-CODH) couples CO oxidation by most terrestrial and marine bacteria to either O2 or nitrate. Molybdenum dependence, the requirement for O2 and previous phylogenetic inferences have all supported a relatively late evolution for "aerobic" CO oxidation, presumably after the Great Oxidation Event (GOE) about 2.3 Gya. Although conundrums remain, recent discoveries suggest that Mo-CODH might have evolved before the GOE, and prior to the Bacteria-Archaea split. New phylogenetic analyses incorporating sequences from extremely halophilic CO-oxidizing Euryarchaeota isolated from salterns in the Atacama Desert, brines on Hawai`i and from the Bonneville Salt Flat suggest that Mo-CODH was present in an ancestor shared by Bacteria and Archaea. This observation is consistent with results of phylogenetic histories of genes involved in Mo-cofactor synthesis, and findings by others that Mo-nitrogenase was likely active > 3 Gya. Thus, analyses of Mo-dependent CO oxidizers provide a window on the past by raising questions about the availability of Mo and non-O2 electron acceptors. Extremely halophilic CO oxidizers also provide insights relevant for understanding the potential for extraterrestrial life. CO likely occurred at high concentrations in Mars' early atmosphere, and it occurs presently at about 800 ppm. At such high concentrations, CO represents one of the most abundant energy sources available for near-surface regolith. However, use of CO by an extant or transplanted Mars microbiota would require tolerance of low water potentials and high salt concentrations. Assays with both novel isolates and a variety of saline brines, sediments and soils show that extreme halophiles use CO in solutions of saturated NaCl (5.4 M) and at water potentials as low as -118 MPa. The latter observations are consistent with metabolic activity for conditions inferred for the recurrent slope lineae on Mars.
NASA Astrophysics Data System (ADS)
Didkovsky, Leonid; Wieman, Seth; Woods, Thomas
2016-10-01
The Extreme ultraviolet Spectrophotometer (ESP), one of the channels of SDO's Extreme ultraviolet Variability Experiment (EVE), measures solar irradiance in several EUV and soft x-ray (SXR) bands isolated using thin-film filters and a transmission diffraction grating, and includes a quad-diode detector positioned at the grating zeroth-order to observe in a wavelength band from about 0.1 to 7.0 nm. The quad diode signal also includes some contribution from shorter wavelength in the grating's first-order and the ratio of zeroth-order to first-order signal depends on both source geometry, and spectral distribution. For example, radiometric calibration of the ESP zeroth-order at the NIST SURF BL-2 with a near-parallel beam provides a different zeroth-to-first-order ratio than modeled for solar observations. The relative influence of "uncalibrated" first-order irradiance during solar observations is a function of the solar spectral irradiance and the locations of large Active Regions or solar flares. We discuss how the "uncalibrated" first-order "solar" component and the use of variable solar reference spectra affect determination of absolute SXR irradiance which currently may be significantly overestimated during high solar activity.
Chen, Lin-xing; Hu, Min; Huang, Li-nan; Hua, Zheng-shuang; Kuang, Jia-liang; Li, Sheng-jin; Shu, Wen-sheng
2015-07-01
The microbial communities in acid mine drainage have been extensively studied to reveal their roles in acid generation and adaption to this environment. Lacking, however, are integrated community- and organism-wide comparative gene transcriptional analyses that could reveal the response and adaptation mechanisms of these extraordinary microorganisms to different environmental conditions. In this study, comparative metagenomics and metatranscriptomics were performed on microbial assemblages collected from four geochemically distinct acid mine drainage (AMD) sites. Taxonomic analysis uncovered unexpectedly high microbial biodiversity of these extremely acidophilic communities, and the abundant taxa of Acidithiobacillus, Leptospirillum and Acidiphilium exhibited high transcriptional activities. Community-wide comparative analyses clearly showed that the AMD microorganisms adapted to the different environmental conditions via regulating the expression of genes involved in multiple in situ functional activities, including low-pH adaptation, carbon, nitrogen and phosphate assimilation, energy generation, environmental stress resistance, and other functions. Organism-wide comparative analyses of the active taxa revealed environment-dependent gene transcriptional profiles, especially the distinct strategies used by Acidithiobacillus ferrivorans and Leptospirillum ferrodiazotrophum in nutrients assimilation and energy generation for survival under different conditions. Overall, these findings demonstrate that the gene transcriptional profiles of AMD microorganisms are closely related to the site physiochemical characteristics, providing clues into the microbial response and adaptation mechanisms in the oligotrophic, extremely acidic environments.
Brink, Yolandi; Crous, Lynette Christine; Louw, Quinette Abigail; Grimmer-Somers, Karen; Schreve, Kristiaan
2009-12-01
Prolonged sitting and psychosocial factors have been associated with musculoskeletal symptoms among adolescents. However, the impact of prolonged static sitting on musculoskeletal pain among South African high school students is uncertain. A prospective observational study was performed to determine whether sitting postural alignment and psychosocial factors contribute to the development of upper quadrant musculoskeletal pain (UQMP) in grade ten high school students working on desktop computers. The sitting postural alignment, depression, anxiety and computer use of 104 asymptomatic students were measured at baseline. At three and six months post baseline, the prevalence of UQMP was determined. Twenty-seven students developed UQMP due to seated or computer-related activities. An extreme cervical angle (<34.75 degrees or >43.95 degrees; OR 2.8; 95% CI: 1.1-7.3) and a combination of extreme cervical and thoracic angles (<63.1 degrees or >71.1 degrees; OR 2.2; 95% CI: 1.1-5.6) were significant postural risk factors for the development of UQMP. Boys with any extreme angle were more likely to suffer pain compared with boys with all middle range angles (OR 4.9; 95% CI: 1.0-24.5). No similar effect was found for girls. There was no strong relationship between depression, anxiety, computer exposure and UQMP among South African high school students.
Adam, Garret; Wang, Kevin; Demaree, Christopher J.; Jiang, Jenny S.; Cheung, Mathew; Bechara, Carlos F.
2018-01-01
Thoracic outlet syndrome (TOS) is a neurovascular condition involving the upper extremity, which is known to occur in individuals who perform chronic repetitive upper extremity activities. We prospectively evaluate the incidence of TOS in high-performance musicians who played bowed string musicians. Sixty-four high-performance string instrument musicians from orchestras and professional musical bands were included in the study. Fifty-two healthy volunteers formed an age-matched control group. Bilateral upper extremity duplex scanning for subclavian vessel compression was performed in all subjects. Provocative maneuvers including Elevated Arm Stress Test (EAST) and Upper Limb Tension Test (ULTT) were performed. Abnormal ultrasound finding is defined by greater than 50% subclavian vessel compression with arm abduction, diminished venous waveforms, or arterial photoplethysmography (PPG) tracing with arm abduction. Bowed string instruments performed by musicians in our study included violin (41%), viola (33%), and cello (27%). Positive EAST or ULTT test in the musician group and control group were 44%, and 3%, respectively (p = 0.03). Abnormal ultrasound scan with vascular compression was detected in 69% of musicians, in contrast to 15% of control subjects (p = 0.03). TOS is a common phenomenon among high-performance bowed string instrumentalists. Musicians who perform bowed string instruments should be aware of this condition and its associated musculoskeletal symptoms. PMID:29370085
Apostoli, P; Sala, Emma
2009-01-01
in some sequences of the film "Modern Times" Chaplin is clearly involved in activities at high risk for work-related musculo-skeletal disorders of the upper extremities (UEWMSDs), but evidence and perception of any complaint are not evident. To evaluate the extent of the biomechanical risk using current risk assessment methods and discuss the possible reasons for lack of complaints. we made an analysis using six of the current methods for ergonomic risk assessment (State of Washington, check list OCRA, HAL by ACGIH, RULA Strain Index, OREGE). All the methods applied demonstrated high-to-very high levels of biomechanical risk for the upper extremities, with evident psychic effects but without apparent musculo-skeletal disorders. The discrepancy between evident psychological disorders ad apparent absence of UEWMSDs are discussed as being due to either: an artistic choice by Charlie Chaplin who focused on the aspects thought to be more immediately and easily comic; the short duration of the physical load exertion; or because of a different perception of muscular work and fatigue that was also typical until the 1970's and 1980's, which also confirmed the principles and practices of our preventive and medical disciplines at that time.
Torgomyan, Heghine; Trchounian, Armen
2013-02-01
Low-intensity electromagnetic field (EMF) of extremely high frequencies is a widespread environmental factor. This field is used in telecommunication systems, therapeutic practices and food protection. Particularly, in medicine and food industries EMF is used for its bactericidal effects. The significant targets of cellular mechanisms for EMF effects at resonant frequencies in bacteria could be water (H(2)O), cell membrane and genome. The changes in H(2)O cluster structure and properties might be leading to increase of chemical activity or hydration of proteins and other cellular structures. These effects are likely to be specific and long-term. Moreover, cell membrane with its surface characteristics, substance transport and energy-conversing processes is also altered. Then, the genome is affected because the conformational changes in DNA and the transition of bacterial pro-phages from lysogenic to lytic state have been detected. The consequences for EMF interaction with bacteria are the changes in their sensitivity to different chemicals, including antibiotics. These effects are important to understand distinguishing role of bacteria in environment, leading to changed metabolic pathways in bacteria and their antibiotic resistance. This EMF may also affect the cell-to-cell interactions in bacterial populations, since bacteria might interact with each other through EMF of sub-extremely high frequency range.
Kim, Dae-Hyeong; Song, Jizhou; Choi, Won Mook; Kim, Hoon-Sik; Kim, Rak-Hwan; Liu, Zhuangjian; Huang, Yonggang Y.; Hwang, Keh-Chih; Zhang, Yong-wei; Rogers, John A.
2008-01-01
Electronic systems that offer elastic mechanical responses to high-strain deformations are of growing interest because of their ability to enable new biomedical devices and other applications whose requirements are impossible to satisfy with conventional wafer-based technologies or even with those that offer simple bendability. This article introduces materials and mechanical design strategies for classes of electronic circuits that offer extremely high stretchability, enabling them to accommodate even demanding configurations such as corkscrew twists with tight pitch (e.g., 90° in ≈1 cm) and linear stretching to “rubber-band” levels of strain (e.g., up to ≈140%). The use of single crystalline silicon nanomaterials for the semiconductor provides performance in stretchable complementary metal-oxide-semiconductor (CMOS) integrated circuits approaching that of conventional devices with comparable feature sizes formed on silicon wafers. Comprehensive theoretical studies of the mechanics reveal the way in which the structural designs enable these extreme mechanical properties without fracturing the intrinsically brittle active materials or even inducing significant changes in their electrical properties. The results, as demonstrated through electrical measurements of arrays of transistors, CMOS inverters, ring oscillators, and differential amplifiers, suggest a valuable route to high-performance stretchable electronics. PMID:19015528
Peters, Denise M; McPherson, Aaron K; Fletcher, Blake; McClenaghan, Bruce A; Fritz, Stacy L
2013-09-01
The use of video gaming as a therapeutic intervention has increased in popularity; however, the number of repetitions in comparison with traditional therapy methods has yet to be investigated. The primary purpose of this study was to document and compare the number of repetitions performed while playing 1 of 2 video gaming systems for a time frame similar to that of a traditional therapy session in individuals with chronic stroke. Twelve participants with chronic stroke (mean age, 66.8 ± 8.2 years; time poststroke, 19.2 ± 15.4 months) completed video game play sessions, using either the Nintendo Wii or the Playstation 2 EyeToy. A total of 203 sessions were captured on video record; of these, 50 sessions for each gaming system were randomly selected for analysis. For each selected record, active upper and lower extremity repetitions were counted for a 36-minute segment of the recorded session. The Playstation 2 EyeToy group produced an average of 302.5 (228.1) upper extremity active movements and 189.3 (98.3) weight shifts, significantly higher than the Nintendo Wii group, which produced an average of 61.9 (65.7) upper extremity active movements and 109.7 (78.5) weight shifts. No significant differences were found in steps and other lower extremity active movements between the 2 systems. The Playstation 2 EyeToy group produced more upper extremity active movements and weight shifting movements than the Nintendo Wii group; the number and type of repetitions varied across games. Active gaming (specifically Playstation 2 EyeToy) provided more upper extremity repetitions than those reported in the literature by using traditional therapy, suggesting that it may be a modality to promote increased active movements in individuals poststroke.
Molina, Verónica; Hernández, Klaudia; Dorador, Cristina; Eissler, Yoanna; Hengst, Martha; Pérez, Vilma; Harrod, Chris
2016-01-01
Microbial communities inhabiting high-altitude spring ecosystems are subjected to extreme changes in solar irradiance and temperature throughout the diel cycle. Here, using 16S rRNA gene tag pyrosequencing (cDNA) we determined the composition of actively transcribing bacteria from spring waters experimentally exposed through the day (morning, noon, and afternoon) to variable levels of solar radiation and light quality, and evaluated their influence on nutrient recycling. Solar irradiance, temperature, and changes in nutrient dynamics were associated with changes in the active bacterial community structure, predominantly by Cyanobacteria, Verrucomicrobia, Proteobacteria, and 35 other Phyla, including the recently described Candidate Phyla Radiation (e.g., Parcubacteria, Gracilibacteria, OP3, TM6, SR1). Diversity increased at noon, when the highest irradiances were measured (3.3-3.9 H', 1125 W m -2 ) compared to morning and afternoon (0.6-2.8 H'). This shift was associated with a decrease in the contribution to pyrolibraries by Cyanobacteria and an increase of Proteobacteria and other initially low frequently and rare bacteria phyla (< 0.5%) in the pyrolibraries. A potential increase in the activity of Cyanobacteria and other phototrophic groups, e.g., Rhodobacterales, was observed and associated with UVR, suggesting the presence of photo-activated repair mechanisms to resist high levels of solar radiation. In addition, the percentage contribution of cyanobacterial sequences in the afternoon was similar to those recorded in the morning. The shifts in the contribution by Cyanobacteria also influenced the rate of change in nitrate, nitrite, and phosphate, highlighted by a high level of nitrate accumulation during hours of high radiation and temperature associated with nitrifying bacteria activity. We did not detect ammonia or nitrite oxidizing bacteria in situ , but both functional groups ( Nitrosomona and Nitrospira ) appeared mainly in pyrolibraries generated from dark incubations. In total, our results reveal that both the structure and the diversity of the active bacteria community was extremely dynamic through the day, and showed marked shifts in composition that influenced nutrient recycling, highlighting how abiotic variation affects potential ecosystem functioning.
Molina, Verónica; Hernández, Klaudia; Dorador, Cristina; Eissler, Yoanna; Hengst, Martha; Pérez, Vilma; Harrod, Chris
2016-01-01
Microbial communities inhabiting high-altitude spring ecosystems are subjected to extreme changes in solar irradiance and temperature throughout the diel cycle. Here, using 16S rRNA gene tag pyrosequencing (cDNA) we determined the composition of actively transcribing bacteria from spring waters experimentally exposed through the day (morning, noon, and afternoon) to variable levels of solar radiation and light quality, and evaluated their influence on nutrient recycling. Solar irradiance, temperature, and changes in nutrient dynamics were associated with changes in the active bacterial community structure, predominantly by Cyanobacteria, Verrucomicrobia, Proteobacteria, and 35 other Phyla, including the recently described Candidate Phyla Radiation (e.g., Parcubacteria, Gracilibacteria, OP3, TM6, SR1). Diversity increased at noon, when the highest irradiances were measured (3.3–3.9 H′, 1125 W m-2) compared to morning and afternoon (0.6–2.8 H′). This shift was associated with a decrease in the contribution to pyrolibraries by Cyanobacteria and an increase of Proteobacteria and other initially low frequently and rare bacteria phyla (< 0.5%) in the pyrolibraries. A potential increase in the activity of Cyanobacteria and other phototrophic groups, e.g., Rhodobacterales, was observed and associated with UVR, suggesting the presence of photo-activated repair mechanisms to resist high levels of solar radiation. In addition, the percentage contribution of cyanobacterial sequences in the afternoon was similar to those recorded in the morning. The shifts in the contribution by Cyanobacteria also influenced the rate of change in nitrate, nitrite, and phosphate, highlighted by a high level of nitrate accumulation during hours of high radiation and temperature associated with nitrifying bacteria activity. We did not detect ammonia or nitrite oxidizing bacteria in situ, but both functional groups (Nitrosomona and Nitrospira) appeared mainly in pyrolibraries generated from dark incubations. In total, our results reveal that both the structure and the diversity of the active bacteria community was extremely dynamic through the day, and showed marked shifts in composition that influenced nutrient recycling, highlighting how abiotic variation affects potential ecosystem functioning. PMID:27909430
Hirata, Aya; Sugiyama, Daisuke; Watanabe, Makoto; Tamakoshi, Akiko; Iso, Hiroyasu; Kotani, Kazuhiko; Kiyama, Masahiko; Yamada, Michiko; Ishikawa, Shizukiyo; Murakami, Yoshitaka; Miura, Katsuyuki; Ueshima, Hirotsugu; Okamura, Tomonori
2018-02-08
The effect of very high or extremely high levels of high-density lipoprotein cholesterol (HDL-C) on cardiovascular disease (CVD) is not well described. Although a few recent studies have reported the adverse effects of extremely high levels of HDL-C on CVD events, these did not show a statistically significant association between extremely high levels of HDL-C and cause-specific CVD mortality. In addition, Asian populations have not been studied. We examine the impact of extremely high levels of HDL-C on cause-specific CVD mortality using pooled data of Japanese cohort studies. We performed a large-scale pooled analysis of 9 Japanese cohorts including 43,407 participants aged 40-89 years, dividing the participants into 5 groups by HDL-C levels, including extremely high levels of HDL-C ≥2.33 mmol/L (≥90 mg/dL). We estimated the adjusted hazard ratio of each HDL-C category for all-cause death and cause-specific deaths compared with HDL-C 1.04-1.55 mmol/L (40-59 mg/dL) using a cohort-stratified Cox proportional hazards model. During a 12.1-year follow-up, 4995 all-cause deaths and 1280 deaths due to overall CVD were identified. Extremely high levels of HDL-C were significantly associated with increased risk of atherosclerotic CVD mortality (hazard ratio = 2.37, 95% confidence interval: 1.37-4.09 for total) and increased risk for coronary heart disease and ischemic stroke. In addition, the risk for extremely high HDL-C was more evident among current drinkers. We showed extremely high levels of HDL-C had an adverse effect on atherosclerotic CVD mortality in a pooled analysis of Japanese cohorts. Copyright © 2018 National Lipid Association. Published by Elsevier Inc. All rights reserved.
Spontaneous Coronary Artery Dissection
... blood vessels. Fibromuscular dysplasia occurs more often in women than it does in men. Extreme physical exercise. People who recently participated in extreme or intense exercises, such as extreme aerobic activities, may be at higher risk of SCAD. Severe ...
Is there a common water-activity limit for the three domains of life?
Stevenson, Andrew; Cray, Jonathan A; Williams, Jim P; Santos, Ricardo; Sahay, Richa; Neuenkirchen, Nils; McClure, Colin D; Grant, Irene R; Houghton, Jonathan DR; Quinn, John P; Timson, David J; Patil, Satish V; Singhal, Rekha S; Antón, Josefa; Dijksterhuis, Jan; Hocking, Ailsa D; Lievens, Bart; Rangel, Drauzio E N; Voytek, Mary A; Gunde-Cimerman, Nina; Oren, Aharon; Timmis, Kenneth N; McGenity, Terry J; Hallsworth, John E
2015-01-01
Archaea and Bacteria constitute a majority of life systems on Earth but have long been considered inferior to Eukarya in terms of solute tolerance. Whereas the most halophilic prokaryotes are known for an ability to multiply at saturated NaCl (water activity (aw) 0.755) some xerophilic fungi can germinate, usually at high-sugar concentrations, at values as low as 0.650–0.605 aw. Here, we present evidence that halophilic prokayotes can grow down to water activities of <0.755 for Halanaerobium lacusrosei (0.748), Halobacterium strain 004.1 (0.728), Halobacterium sp. NRC-1 and Halococcus morrhuae (0.717), Haloquadratum walsbyi (0.709), Halococcus salifodinae (0.693), Halobacterium noricense (0.687), Natrinema pallidum (0.681) and haloarchaeal strains GN-2 and GN-5 (0.635 aw). Furthermore, extrapolation of growth curves (prone to giving conservative estimates) indicated theoretical minima down to 0.611 aw for extreme, obligately halophilic Archaea and Bacteria. These were compared with minima for the most solute-tolerant Bacteria in high-sugar (or other non-saline) media (Mycobacterium spp., Tetragenococcus halophilus, Saccharibacter floricola, Staphylococcus aureus and so on) and eukaryotic microbes in saline (Wallemia spp., Basipetospora halophila, Dunaliella spp. and so on) and high-sugar substrates (for example, Xeromyces bisporus, Zygosaccharomyces rouxii, Aspergillus and Eurotium spp.). We also manipulated the balance of chaotropic and kosmotropic stressors for the extreme, xerophilic fungi Aspergillus penicilloides and X. bisporus and, via this approach, their established water-activity limits for mycelial growth (∼0.65) were reduced to 0.640. Furthermore, extrapolations indicated theoretical limits of 0.632 and 0.636 aw for A. penicilloides and X. bisporus, respectively. Collectively, these findings suggest that there is a common water-activity limit that is determined by physicochemical constraints for the three domains of life. PMID:25500507
Inomata, Y; Aoyama, M; Tsubono, T; Tsumune, D; Hirose, K
2016-01-01
Optimal interpolation (OI) analysis was used to investigate the oceanic distributions of (134)Cs and (137)Cs released from the Tokyo Electric Power Company Fukushima Daiichi Nuclear Power Plant (FNPP1) accident. From the end of March to early April 2011, extremely high activities were observed in the coastal surface seawater near the FNPP1. The high activities spread to a region near 165°E in the western North Pacific Ocean, with a latitudinal center of 40°N. Atmospheric deposition also caused high activities in the region between 180° and 130°W in the North Pacific Ocean. The inventory of FNPP1-released (134)Cs in the North Pacific Ocean was estimated to be 15.3 ± 2.6 PBq. About half of this activity (8.4 ± 2.6 PBq) was found in the coastal region near the FNPP1. After 6 April 2011, when major direct releases ceased, the FNPP1-released (134)Cs in the coastal region decreased exponentially with an apparent half-time of about 4.2 ± 0.5 days and declined to about 2 ± 0.4 PBq by the middle of May 2011. Taking into account that the (134)Cs/(137)Cs activity ratio was about 1 just after release and was extremely uniform during the first month after the accident, the amount of (137)Cs released by the FNPP1 accident increased the North Pacific inventory of (137)Cs due to bomb testing during the 1950s and early 1960s by 20%.
NASA Astrophysics Data System (ADS)
Love, J. J.
2016-12-01
Magnetic-storm induction of geoelectric fields in the Earth's electrically conducting crust, lithosphere, mantle, and ocean can interfere with the operations of electric-power grid systems. The future occurrence of an extremely intense magnetic storm might even result in continental-scale failure of electric-power distribution. Such an event would entail significant deleterious consequence for the economy and international security. Building on a project established by the President's National Science and Technology Council and the Office of Science and Technology Policy for assessing space-weather induction hazards, we develop a series of geoelectric hazard maps. These are constructed using an empirical parameterization of induction: local estimates of Earth-surface impedance, obtained from EarthScope and USGS magnetotelluric survey data, are convolved with latitude-dependent statistical maps of extreme-value geomagnetic activity, obtained from decades magnetic observatory data. Geoelectric hazard maps are constructed for both north-south and east-west geomagnetic variation, and for both 240-s and 1200-s sinusoidal variation -- periods of interest to the power-grid industry. The maps cover about half of the continental United States. They depict the threshold level that geoelectric amplitude can be expected to exceed, on average, once per century at discrete geographic sites in response to extreme-intensity geomagnetic activity. Of the regions where magnetotelluric data are available, the greatest induction hazards are found in Minnesota, Wisconsin, and Iowa - this being the result of both high-latitude geomagntic activity and complex subsurface conductivity structure. At some sites in the continental United States, once-per-century geoelectric amplitudes can exceed the 1.7 V/km realized in Quebec during the March 1989 storm. This work highlights the importance of geophysical surveys and ground-level monitoring data for assessing space-weather induction hazards.
Sowers, Daniel; Liu, Yingzi; Mostafaei, Farshad; Blake, Scott; Nie, Linda H
2015-12-01
A neutron irradiation cavity for in vivo neutron activation analysis (IVNAA) to detect manganese, aluminum, and other potentially toxic elements in human hand bone has been designed and its dosimetric specifications measured. The neutron source is a customized deuterium-deuterium neutron generator that produces neutrons at 2.45 MeV by the fusion reaction 2H(d, n)3He at a calculated flux of 7 × 10(8) ± 30% s(-1). A moderator/reflector/shielding [5 cm high density polyethylene (HDPE), 5.3 cm graphite and 5.7 cm borated (HDPE)] assembly has been designed and built to maximize the thermal neutron flux inside the hand irradiation cavity and to reduce the extremity dose and effective dose to the human subject. Lead sheets are used to attenuate bremsstrahlung x rays and activation gammas. A Monte Carlo simulation (MCNP6) was used to model the system and calculate extremity dose. The extremity dose was measured with neutron and photon sensitive film badges and Fuji electronic pocket dosimeters (EPD). The neutron ambient dose outside the shielding was measured by Fuji NSN3, and the photon dose was measured by a Bicron MicroREM scintillator. Neutron extremity dose was calculated to be 32.3 mSv using MCNP6 simulations given a 10-min IVNAA measurement of manganese. Measurements by EPD and film badge indicate hand dose to be 31.7 ± 0.8 mSv for neutrons and 4.2 ± 0.2 mSv for photons for 10 min; whole body effective dose was calculated conservatively to be 0.052 mSv. Experimental values closely match values obtained from MCNP6 simulations. These are acceptable doses to apply the technology for a manganese toxicity study in a human population.
Transient phenomena in cosmic ray intensity during extreme events
NASA Astrophysics Data System (ADS)
Agarwal, Rekha; Mishra, Rajesh K.
2008-04-01
In the present work an analysis has been made of the extreme events occurring during July 2005. Specifically, a rather intense Forbush decrease was observed at different neutron monitors all over the world during 16 July 2005. An effort has been made to study the effect of this unusual event on cosmic ray intensity as well as various solar and interplanetary plasma parameters. It is noteworthy that during 11 to 18 July 2005 the solar activity ranged from low to very active. Especially low levels occurred on 11, 15, and 17 July whereas high levels took place on 14 and 16 July 2005. The Sun is observed to be active during 11 to 18 July 2005, the interplanetary magnetic field intensity lies within 15 nT, and solar wind velocity was limited to ˜500 kms-1. The geomagnetic activity during this period remains very quiet, the Kp index did not exceed 5, the disturbance storm time Dst index remains ˜-70 nT and no sudden storm commencement has been detected during this period. It is noted that for the majority of the hours, the north/south component of the interplanetary magnetic field, Bz, remains negative, and the cosmic ray intensity increases and shows good/high correlation with Bz, as the polarity of Bz tends to shift from negative to positive values, the intensity decreases and shows good/high anti-correlation with Bz. The cosmic ray intensity tends to decrease with increase of interplanetary magnetic field strength (B) and shows anti-correlation for the majority of the days.
NASA Astrophysics Data System (ADS)
Pántano, Vanesa C.; Penalba, Olga C.
2017-12-01
Projected changes were estimated considering the main variables which take part in soil-atmosphere interaction. The analysis was focused on the potential impact of these changes on soil hydric condition under extreme precipitation and evapotranspiration, using the combination of Global Climate Models (GCMs) and observational data. The region of study is the southern La Plata Basin that covers part of Argentine territory, where rainfed agriculture production is one of the most important economic activities. Monthly precipitation and maximum and minimum temperatures were used from high quality-controlled observed data from 46 meteorological stations and the ensemble of seven CMIP5 GCMs in two periods: 1970-2005 and 2065-2100. Projected changes in monthly effective temperature and precipitation were analysed. These changes were combined with observed series for each probabilistic interval. The result was used as input variables for the water balance model in order to obtain consequent soil hydric condition (deficit or excess). Effective temperature and precipitation are expected to increase according to the projections of GCMs, with few exceptions. The analysis revealed increase (decrease) in the prevalence of evapotranspiration over precipitation, during spring (winter). Projections for autumn months show precipitation higher than potential evapotranspiration more frequently. Under dry extremes, the analysis revealed higher projected deficit conditions, impacting on crop development. On the other hand, under wet extremes, excess would reach higher values only in particular months. During December, projected increase in temperatures reduces the impact of extreme high precipitation but favours deficit conditions, affecting flower-fructification stage of summer crops.
MESSENGER Observations of Extreme Space Weather in Mercury's Magnetosphere
NASA Astrophysics Data System (ADS)
Slavin, J. A.
2013-09-01
Increasing activity on the Sun is allowing MESSENGER to make its first observations of Mercury's magnetosphere under extreme solar wind conditions. At Earth interplanetary shock waves and coronal mass ejections produce severe "space weather" in the form of large geomagnetic storms that affect telecommunications, space systems, and ground-based power grids. In the case of Mercury the primary effect of extreme space weather in on the degree to which this it's weak global magnetic field can shield the planet from the solar wind. Direct impact of the solar wind on the surface of airless bodies like Mercury results in space weathering of the regolith and the sputtering of atomic species like sodium and calcium to high altitudes where they contribute to a tenuous, but highly dynamic exosphere. MESSENGER observations indicate that during extreme interplanetary conditions the solar wind plasma gains access to the surface of Mercury through three main regions: 1. The magnetospheric cusps, which fill with energized solar wind and planetary ions; 2. The subsolar magnetopause, which is compressed and eroded by reconnection to very low altitudes where the natural gyro-motion of solar wind protons may result in their impact on the surface; 3. The magnetotail where hot plasma sheet ions rapidly convect sunward to impact the surface on the nightside of Mercury. The possible implications of these new MESSENGER observations for our ability to predict space weather at Earth and other planets will be described.
Bimetallic Ag-Pt Sub-nanometer Supported Clusters as Highly Efficient and Robust Oxidation Catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Negreiros, Fabio R.; Halder, Avik; Yin, Chunrong
A combined experimental and theoretical investigation of Ag-Pt sub-nanometer clusters as heterogeneous catalysts in the CO -> CO2 reaction (COox) is presented. Ag9Pt2 and Ag9Pt3 clusters are size-selected in the gas phase, deposited on an ultrathin amorphous alumina support, and tested as catalysts experimentally under realistic conditions and by first-principles simulations at realistic coverage. Insitu GISAXS/TPRx demonstrates that the clusters do not sinter or deactivate even after prolonged exposure to reactants at high temperature, and present comparable, extremely high COox catalytic efficiency. Such high activity and stability are ascribed to a synergic role of Ag and Pt in ultranano-aggregates, inmore » which Pt anchors the clusters to the support and binds and activates two CO molecules, while Ag binds and activates O-2, and Ag/Pt surface proximity disfavors poisoning by CO or oxidized species.« less
NASA Astrophysics Data System (ADS)
Müller, Rolf; Grooß, Jens-Uwe; Mannan Zafar, Abdul; Robrecht, Sabine; Lehmann, Ralph
2018-03-01
The Antarctic ozone hole arises from ozone destruction driven by elevated levels of ozone destroying (active
) chlorine in Antarctic spring. These elevated levels of active chlorine have to be formed first and then maintained throughout the period of ozone destruction. It is a matter of debate how this maintenance of active chlorine is brought about in Antarctic spring, when the rate of formation of HCl (considered to be the main chlorine deactivation mechanism in Antarctica) is extremely high. Here we show that in the heart of the ozone hole (16-18 km or 85-55 hPa, in the core of the vortex), high levels of active chlorine are maintained by effective chemical cycles (referred to as HCl null cycles hereafter). In these cycles, the formation of HCl is balanced by immediate reactivation, i.e. by immediate reformation of active chlorine. Under these conditions, polar stratospheric clouds sequester HNO3 and thereby cause NO2 concentrations to be low. These HCl null cycles allow active chlorine levels to be maintained in the Antarctic lower stratosphere and thus rapid ozone destruction to occur. For the observed almost complete activation of stratospheric chlorine in the lower stratosphere, the heterogeneous reaction HCl + HOCl is essential; the production of HOCl occurs via HO2 + ClO, with the HO2 resulting from CH2O photolysis. These results are important for assessing the impact of changes of the future stratospheric composition on the recovery of the ozone hole. Our simulations indicate that, in the lower stratosphere, future increased methane concentrations will not lead to enhanced chlorine deactivation (through the reaction CH4 + Cl → HCl + CH3) and that extreme ozone destruction to levels below ≈ 0.1 ppm will occur until mid-century.
NASA Astrophysics Data System (ADS)
Ansari, T. A.; Singh, T. N., Sr.
2017-12-01
The world famous Shri Kedarnath Temple in Uttarakhand state of India is located in the western extremity of the young and dynamically active Central Himalaya. As Indian plate is moving towards Eurasian plate which has steep slopes, highly variable altitudes and uncertain climatic conditions. Due to high seismic activity Himalayan rock mass is highly fractured, shattered and inherently weakness pose threat for landslide. On 16th and 17th June 2013, was witness an extreme climatic events of century in the history of the region, the high intensity rainfall, (> 400mm) caused number of landslide which have adverse economic and societal impacts, including the potential for heavy loss of human and widespread devastation of natural resources, infrastructures. The study region is at high altitude around 3583 meters, which is affected from impact of glacial melt due to climate change and future increase in rainfall subjected to high level uncertainty of landslides. Aerial and field survey has been done of the region and most vulnerable landslide locations of hill slope and road cut slope are studied for future prospect of safety. SLIDE 6.0, PHASE27 (numerical software) for slope stability, geomechanical profile of rock and kinematics analysis to know the type of failures. Rock quality tunneling index (Q), Geological strength (GSI), Slope mass Rating (SMR) and factor of safety were determined to know the slope instability. Our finding provides an important aspect for future safety as provide the information for landslide warning system and engineering countermeasures.
Expression of Active Human Tissue-Type Plasminogen Activator in Escherichia coli
Qiu, Ji; Swartz, James R.; Georgiou, George
1998-01-01
The formation of native disulfide bonds in complex eukaryotic proteins expressed in Escherichia coli is extremely inefficient. Tissue plasminogen activator (tPA) is a very important thrombolytic agent with 17 disulfides, and despite numerous attempts, its expression in an active form in bacteria has not been reported. To achieve the production of active tPA in E. coli, we have investigated the effect of cooverexpressing native (DsbA and DsbC) or heterologous (rat and yeast protein disulfide isomerases) cysteine oxidoreductases in the bacterial periplasm. Coexpression of DsbC, an enzyme which catalyzes disulfide bond isomerization in the periplasm, was found to dramatically increase the formation of active tPA both in shake flasks and in fermentors. The active protein was purified with an overall yield of 25% by using three affinity steps with, in sequence, lysine-Sepharose, immobilized Erythrina caffra inhibitor, and Zn-Sepharose resins. After purification, approximately 180 μg of tPA with a specific activity nearly identical to that of the authentic protein can be obtained per liter of culture in a high-cell-density fermentation. Thus, heterologous proteins as complex as tPA may be produced in an active form in bacteria in amounts suitable for structure-function studies. In addition, these results suggest the feasibility of commercial production of extremely complex proteins in E. coli without the need for in vitro refolding. PMID:9835579
Koenig, M J; Torp-Pedersen, S; Boesen, M I; Holm, C C; Bliddal, H
2010-02-01
Anterior knee tendon problems are seldom reported in badminton players although the game is obviously stressful to the lower extremities. Painful anterior knee tendons are common among elite badminton players. The anterior knee tendons exhibit colour Doppler activity. This activity increases after a match. Painful tendons have more Doppler activity than tendons without pain. Cohort study. 72 elite badminton players were interviewed about training, pain and injuries. The participants were scanned with high-end ultrasound equipment. Colour Doppler was used to examine the tendons of 64 players before a match and 46 players after a match. Intratendinous colour Doppler flow was measured as colour fraction (CF). The tendon complex was divided into three loci: the quadriceps tendon, the proximal patellar tendon and the insertion on the tibial tuberosity. Interview: Of the 72 players, 62 players had problems with 86 tendons in the lower extremity. Of these 86 tendons, 48 were the anterior knee tendons. Ultrasound: At baseline, the majority of players (87%) had colour Doppler flow in at least one scanning position. After a match, the percentage of the knee complexes involved did not change. CF increased significantly in the dominant leg at the tibial tuberosity; single players had a significantly higher CF after a match at the tibial tuberosity and in the patellar tendon both before and after a match. Painful tendons had the highest colour Doppler activity. Most elite badminton players had pain in the anterior knee tendons and intratendinous Doppler activity both before and after match. High levels of Doppler activity were associated with self-reported ongoing pain.
USDA-ARS?s Scientific Manuscript database
The Southern High Plains region of Texas experienced a significant reduction in 2011 crop production due a record drought as it experienced the hottest summer since 1911 (> 48 days of temperatures above 37.7oC and only 37.8 mm precipitation). Soil microbial communities and their associated enzymatic...
USDA-ARS?s Scientific Manuscript database
The Southern High Plains region of Texas experienced a significant reduction in 2011 crop production due a record drought as it experienced the hottest summer since 1911 (> 48 days of temperatures above 37.7oC and only 37.8 mm precipitation). Soil microbial communities and their associated enzymati...
Goerger, Benjamin M; Marshall, Stephen W; Beutler, Anthony I; Blackburn, J Troy; Wilckens, John H; Padua, Darin A
2015-02-01
Information as to how anterior cruciate ligament (ACL) injury and reconstructive surgery (ACLR) alter lower extremity biomechanics may improve rehabilitation and return to play guidelines, reducing the risk for repeat ACL injury. To compare lower extremity biomechanics before ACL injury and after subsequent ACLR for the injured and uninjured leg. Baseline unilateral lower extremity biomechanics were collected on the dominant leg of participants without ACL injury when they entered the Joint Undertaking to Monitor and Prevent ACL (JUMP-ACL) study. Thirty-one participants with subsequent ACL injury, reconstructive surgery and full return to physical activity completed repeat, follow-up biomechanical testing, as did 39 uninjured, matched controls. Not all injured participants suffered injury to the dominant leg, requiring separation of those with ACL injury into two groups: ACLR-injured leg group (n=12) and ACLR-uninjured leg group (n=19). We compared the landing biomechanics of these three groups (ACLR-injured leg, ACLR-uninjured leg, control) before ACL injury (baseline) with biomechanics after ACL injury, surgery and return to physical activity (follow-up). ACL injury and ACLR altered lower extremity biomechanics, as both ACLR groups demonstrated increases in frontal plane movement (increased hip adduction and knee valgus). The ACLR-injured leg group also exhibited decreased sagittal plane loading (decreased anterior tibial shear force, knee extension moment and hip flexion moment). No high-risk biomechanical changes were observed in control group participants. ACL injury and ACLR caused movement pattern alterations of the injured and uninjured leg that have previously shown to increase the risk for future non-contact ACL injury. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Rouse, Adam G.
2016-01-01
In reaching to grasp an object, proximal muscles that act on the shoulder and elbow classically have been viewed as transporting the hand to the intended location, while distal muscles that act on the fingers simultaneously shape the hand to grasp the object. Prior studies of electromyographic (EMG) activity in upper extremity muscles therefore have focused, by and large, either on proximal muscle activity during reaching to different locations or on distal muscle activity as the subject grasps various objects. Here, we examined the EMG activity of muscles from the shoulder to the hand, as monkeys reached and grasped in a task that dissociated location and object. We quantified the extent to which variation in the EMG activity of each muscle depended on location, on object, and on their interaction—all as a function of time. Although EMG variation depended on both location and object beginning early in the movement, an early phase of substantial location effects in muscles from proximal to distal was followed by a later phase in which object effects predominated throughout the extremity. Interaction effects remained relatively small. Our findings indicate that neural control of reach-to-grasp may occur largely in two sequential phases: the first, serving to project the entire upper extremity toward the intended location, and the second, acting predominantly to shape the entire extremity for grasping the object. PMID:27009156
NASA Astrophysics Data System (ADS)
Farrah, Duncan
2017-08-01
Luminous starbursts, systems with SFRs exceeding 1000Msun yr-1, are predicted to be extremely rare at z>3. However, recent observations find such systems at rates of tens to hundreds above predictions. This discrepancy is extremely difficult to explain. Case studies of such luminous starbursts are thus of profound importance to understand how star formation is triggered and quenched at z > 3, and help reconcile models with observations. Our group has been intensively studying the quasar SDSS J160705.16, at z = 3.65 (or 1.7Gyr after the Big Bang). This quasar is an excellent case study of luminous star formation at z > 3, and how AGN activity may affect such star formation. SDSS J160705.16 harbors both a broad-line, luminous quasar and an extremely high star formation rate, with an AGN luminosity of 10^47 ergs s-1 and an SFR of 2000 Msol yr-1. Sub-mm interferometry has further revealed that the star formation is highly spatially extended on scales up to 40kpc. Furthermore, VLA observations show an emerging 4kpc radio jet.We here propose WFC3 imaging with the following goals: (1) to set precise constraints on any lensing magnification, (2) to determine the morphology and color structure of the extended star formation, (3) to compare the optical morphology of the star formation to that seen in the sub-mm data, and (4) to search for evidence that SDSS J160705.16 resides in a protocluster.
Ju, Yumi; Yoon, In-Jin
2018-01-01
[Purpose] Modified constraint-induced movement therapy and mirror therapy are recognized as stroke rehabilitation methods. The aim of the present study was to determine whether these therapies influence upper extremity function and whether upper extremity function influences the ability to perform activities of daily living in further. [Subjects and Methods] Twenty-eight stroke patients participated in the study. Interventions were administered five times per week for 3 weeks. Activities of daily living or self-exercise were performed after modified constraint-induced movement therapy or mirror therapy, respectively. Analyses were performed on the results of the Manual Function Test and the Korean version of the Modified Barthel Index to determine the factors influencing activities of daily living. [Results] Both groups showed improvement in upper extremity function, but only the modified constraint-induced movement therapy group showed a correlation between upper extremity function and performance in the hygiene, eating, and dressing. The improved hand manipulation function found in the modified constraint-induced movement therapy had statistically significant influences on eating and dressing. [Conclusion] Our results suggest that a patient's attempts to move the affected side result in improved performance in activities of daily living as well as physical function.
Ju, Yumi; Yoon, In-Jin
2018-01-01
[Purpose] Modified constraint-induced movement therapy and mirror therapy are recognized as stroke rehabilitation methods. The aim of the present study was to determine whether these therapies influence upper extremity function and whether upper extremity function influences the ability to perform activities of daily living in further. [Subjects and Methods] Twenty-eight stroke patients participated in the study. Interventions were administered five times per week for 3 weeks. Activities of daily living or self-exercise were performed after modified constraint-induced movement therapy or mirror therapy, respectively. Analyses were performed on the results of the Manual Function Test and the Korean version of the Modified Barthel Index to determine the factors influencing activities of daily living. [Results] Both groups showed improvement in upper extremity function, but only the modified constraint-induced movement therapy group showed a correlation between upper extremity function and performance in the hygiene, eating, and dressing. The improved hand manipulation function found in the modified constraint-induced movement therapy had statistically significant influences on eating and dressing. [Conclusion] Our results suggest that a patient’s attempts to move the affected side result in improved performance in activities of daily living as well as physical function. PMID:29410571
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanhemmen, J.J.; Meuling, W.J.A.; Bleichrodt, J.F.
1974-01-01
The radiosensitization by oxygen of biological active bacteriophage DNA in bacterial extracts was studied. The oxygen effect in such a system appeared not to be due or due only to a minor extent to the presence of endogenous sulfhydryl compounds. The components in a cell extract which enable oxygen and other sensitizers to sensitize DNA could not be destroyed by extremely high doses of gamma radiation. (Author) (GRA)
Quenching and disruption of lunar KREEP lava flows by impacts
NASA Technical Reports Server (NTRS)
Ryder, Graham
1988-01-01
The results of a reexamination of petrography of the Apollo 15 KREEP basalts are reported. Several of the basalts contain yellow residual glasses which cross-cut the crystallized phases; some show more extreme disruption. The features of the glasses appear to be compatible only with impact disruption, ejection, and quenching from actively crystallizing flows, indicating a high impact flux immediately after the impact that formed the Imbrium basin. No other example of impacts into active lava flows is known in the solar system.
NASA Astrophysics Data System (ADS)
Hata, Kenji
2005-03-01
We demonstrate an extremely efficient chemical vapour deposition synthesis of single-walled carbon nanotubes where the activity and lifetime of the catalysts are enhanced by water [1]. Water-stimulated enhanced catalytic activity results in massive growth of super-dense and vertically-aligned nanotube forests with heights up to 2.5 millimeters that can be easily separated from the catalysts, providing nanotube material with carbon purity above 99.98%. Moreover, patterned highly organized intrinsic nanotube structures were successfully fabricated. The water-assisted synthesis method addresses many critical problems that currently plague carbon nanotube synthesis. [1] K. Hata, et al., Science, 306, 1362 (2004).
Manjappa, Manukumara; Srivastava, Yogesh Kumar; Solanki, Ankur; Kumar, Abhishek; Sum, Tze Chien; Singh, Ranjan
2017-08-01
The recent meteoric rise in the field of photovoltaics with the discovery of highly efficient solar-cell devices is inspired by solution-processed organic-inorganic lead halide perovskites that exhibit unprecedented light-to-electricity conversion efficiencies. The stunning performance of perovskites is attributed to their strong photoresponsive properties that are thoroughly utilized in designing excellent perovskite solar cells, light-emitting diodes, infrared lasers, and ultrafast photodetectors. However, optoelectronic application of halide perovskites in realizing highly efficient subwavelength photonic devices has remained a challenge. Here, the remarkable photoconductivity of organic-inorganic lead halide perovskites is exploited to demonstrate a hybrid perovskite-metamaterial device that shows extremely low power photoswitching of the metamaterial resonances in the terahertz part of the electromagnetic spectrum. Furthermore, a signature of a coupled phonon-metamaterial resonance is observed at higher pump powers, where the Fano resonance amplitude is extremely weak. In addition, a low threshold, dynamic control of the highly confined electric field intensity is also observed in the system, which could tremendously benefit the new generation of subwavelength photonic devices as active sensors, low threshold optically controlled lasers, and active nonlinear devices with enhanced functionalities in the infrared, optical, and the terahertz parts of the electromagnetic spectrum. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pérez, Dolores; Martín, Sara; Fernández-Lorente, Gloria; Filice, Marco; Guisán, José Manuel; Ventosa, Antonio; García, María Teresa; Mellado, Encarnación
2011-01-01
Background Among extremophiles, halophiles are defined as microorganisms adapted to live and thrive in diverse extreme saline environments. These extremophilic microorganisms constitute the source of a number of hydrolases with great biotechnological applications. The interest to use extremozymes from halophiles in industrial applications is their resistance to organic solvents and extreme temperatures. Marinobacter lipolyticus SM19 is a moderately halophilic bacterium, isolated previously from a saline habitat in South Spain, showing lipolytic activity. Methods and Findings A lipolytic enzyme from the halophilic bacterium Marinobacter lipolyticus SM19 was isolated. This enzyme, designated LipBL, was expressed in Escherichia coli. LipBL is a protein of 404 amino acids with a molecular mass of 45.3 kDa and high identity to class C β-lactamases. LipBL was purified and biochemically characterized. The temperature for its maximal activity was 80°C and the pH optimum determined at 25°C was 7.0, showing optimal activity without sodium chloride, while maintaining 20% activity in a wide range of NaCl concentrations. This enzyme exhibited high activity against short-medium length acyl chain substrates, although it also hydrolyzes olive oil and fish oil. The fish oil hydrolysis using LipBL results in an enrichment of free eicosapentaenoic acid (EPA), but not docosahexaenoic acid (DHA), relative to its levels present in fish oil. For improving the stability and to be used in industrial processes LipBL was immobilized in different supports. The immobilized derivatives CNBr-activated Sepharose were highly selective towards the release of EPA versus DHA. The enzyme is also active towards different chiral and prochiral esters. Exposure of LipBL to buffer-solvent mixtures showed that the enzyme had remarkable activity and stability in all organic solvents tested. Conclusions In this study we isolated, purified, biochemically characterized and immobilized a lipolytic enzyme from a halophilic bacterium M. lipolyticus, which constitutes an enzyme with excellent properties to be used in the food industry, in the enrichment in omega-3 PUFAs. PMID:21853111
Prefrontal/accumbal catecholamine system processes high motivational salience
Puglisi-Allegra, Stefano; Ventura, Rossella
2012-01-01
Motivational salience regulates the strength of goal seeking, the amount of risk taken, and the energy invested from mild to extreme. Highly motivational experiences promote highly persistent memories. Although this phenomenon is adaptive in normal conditions, experiences with extremely high levels of motivational salience can promote development of memories that can be re-experienced intrusively for long time resulting in maladaptive outcomes. Neural mechanisms mediating motivational salience attribution are, therefore, very important for individual and species survival and for well-being. However, these neural mechanisms could be implicated in attribution of abnormal motivational salience to different stimuli leading to maladaptive compulsive seeking or avoidance. We have offered the first evidence that prefrontal cortical norepinephrine (NE) transmission is a necessary condition for motivational salience attribution to highly salient stimuli, through modulation of dopamine (DA) in the nucleus accumbens (NAc), a brain area involved in all motivated behaviors. Moreover, we have shown that prefrontal-accumbal catecholamine (CA) system determines approach or avoidance responses to both reward- and aversion-related stimuli only when the salience of the unconditioned stimulus (UCS) is high enough to induce sustained CA activation, thus affirming that this system processes motivational salience attribution selectively to highly salient events. PMID:22754514
Rational engineering of a mesohalophilic carbonic anhydrase to an extreme halotolerant biocatalyst
Warden, Andrew C.; Williams, Michelle; Peat, Thomas S.; Seabrook, Shane A.; Newman, Janet; Dojchinov, Greg; Haritos, Victoria S.
2015-01-01
Enzymes expressed by highly salt-tolerant organisms show many modifications compared with salt-affected counterparts including biased amino acid and lower α-helix content, lower solvent accessibility and negative surface charge. Here, we show that halotolerance can be generated in an enzyme solely by modifying surface residues. Rational design of carbonic anhydrase II is undertaken in three stages replacing 18 residues in total, crystal structures confirm changes are confined to surface residues. Catalytic activities and thermal unfolding temperatures of the designed enzymes increase at high salt concentrations demonstrating their shift to halotolerance, whereas the opposite response is found in the wild-type enzyme. Molecular dynamics calculations reveal a key role for sodium ions in increasing halotolerant enzyme stability largely through interactions with the highly ordered first Na+ hydration shell. For the first time, an approach to generate extreme halotolerance, a trait with broad application in industrial biocatalysis, in a wild-type enzyme is demonstrated. PMID:26687908
Future changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basins
Lutz, Arthur F.; Nepal, Santosh; Khanal, Sonu; Pradhananga, Saurav; Shrestha, Arun B.; Immerzeel, Walter W.
2017-01-01
Future hydrological extremes, such as floods and droughts, may pose serious threats for the livelihoods in the upstream domains of the Indus, Ganges, Brahmaputra. For this reason, the impacts of climate change on future hydrological extremes is investigated in these river basins. We use a fully-distributed cryospheric-hydrological model to simulate current and future hydrological fluxes and force the model with an ensemble of 8 downscaled General Circulation Models (GCMs) that are selected from the RCP4.5 and RCP8.5 scenarios. The model is calibrated on observed daily discharge and geodetic mass balances. The climate forcing and the outputs of the hydrological model are used to evaluate future changes in climatic extremes, and hydrological extremes by focusing on high and low flows. The outcomes show an increase in the magnitude of climatic means and extremes towards the end of the 21st century where climatic extremes tend to increase stronger than climatic means. Future mean discharge and high flow conditions will very likely increase. These increases might mainly be the result of increasing precipitation extremes. To some extent temperature extremes might also contribute to increasing discharge extremes, although this is highly dependent on magnitude of change in temperature extremes. Low flow conditions may occur less frequently, although the uncertainties in low flow projections can be high. The results of this study may contribute to improved understanding on the implications of climate change for the occurrence of future hydrological extremes in the Hindu Kush–Himalayan region. PMID:29287098
Probabilistic forecasting of extreme weather events based on extreme value theory
NASA Astrophysics Data System (ADS)
Van De Vyver, Hans; Van Schaeybroeck, Bert
2016-04-01
Extreme events in weather and climate such as high wind gusts, heavy precipitation or extreme temperatures are commonly associated with high impacts on both environment and society. Forecasting extreme weather events is difficult, and very high-resolution models are needed to describe explicitly extreme weather phenomena. A prediction system for such events should therefore preferably be probabilistic in nature. Probabilistic forecasts and state estimations are nowadays common in the numerical weather prediction community. In this work, we develop a new probabilistic framework based on extreme value theory that aims to provide early warnings up to several days in advance. We consider the combined events when an observation variable Y (for instance wind speed) exceeds a high threshold y and its corresponding deterministic forecasts X also exceeds a high forecast threshold y. More specifically two problems are addressed:} We consider pairs (X,Y) of extreme events where X represents a deterministic forecast, and Y the observation variable (for instance wind speed). More specifically two problems are addressed: Given a high forecast X=x_0, what is the probability that Y>y? In other words: provide inference on the conditional probability: [ Pr{Y>y|X=x_0}. ] Given a probabilistic model for Problem 1, what is the impact on the verification analysis of extreme events. These problems can be solved with bivariate extremes (Coles, 2001), and the verification analysis in (Ferro, 2007). We apply the Ramos and Ledford (2009) parametric model for bivariate tail estimation of the pair (X,Y). The model accommodates different types of extremal dependence and asymmetry within a parsimonious representation. Results are presented using the ensemble reforecast system of the European Centre of Weather Forecasts (Hagedorn, 2008). Coles, S. (2001) An Introduction to Statistical modelling of Extreme Values. Springer-Verlag.Ferro, C.A.T. (2007) A probability model for verifying deterministic forecasts of extreme events. Wea. Forecasting {22}, 1089-1100.Hagedorn, R. (2008) Using the ECMWF reforecast dataset to calibrate EPS forecasts. ECMWF Newsletter, {117}, 8-13.Ramos, A., Ledford, A. (2009) A new class of models for bivariate joint tails. J.R. Statist. Soc. B {71}, 219-241.
NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyons, K.D.; Honeygan, S.; Moroz, T.H.
2008-12-01
The U.S. Department of Energy's National Energy Technology Laboratory (NETL) established the Extreme Drilling Laboratory to engineer effective and efficient drilling technologies viable at depths greater than 20,000 ft. This paper details the challenges of ultradeep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL's research and development activities. NETL is invested in laboratory-scale physical simulation. Its physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480°F around a single drill cutter. This simulator is not yet operational; therefore, the results will be limited to themore » identification of leading hypotheses of drilling phenomena and NETL's test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Laboratory's studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.« less
Öney, S; Tabur, S; Tuna, M
2015-01-01
Effects of ammonium sulphate [(NH4)2SO4] on mitosis, cell cycle and chromosomes in Vicia faba L. seeds exposed to extreme temperatures were investigated using flowcytometric and cytogenetic analysis. Seeds germinated at high and low temperatures showed a signiicant decrease in mitotic index as compared to those of optimum temperature conditions. Application of 50 and 1000 µM (NH4)2SO4 were successful in alleviating the negative effects of low and high temperature on mitotic activity, respectively. 50 µM (NH4)2SO4 showed the most positive effect on cell cycle at the extreme temperatures. This concentration increased the cell division removing or decreasing the negative effects of temperature stress. Namely, the highest G2/M and S phase percentages under stress conditions were obtained with application of 50 µM (NH4)2SO4. Chromosomal aberrations were not observed in cells of seeds germinated in distilled water and also at any temperatures. However, the frequency of chromosomal aberrations increased significantly by increasing (NH4)2SO4 concentration. The highest aberration frequency in all temperature degree tested was found at 1000 µM (NH4)2SO4 concentration.
Shaw, W S; Feuerstein, M; Lincoln, A E; Miller, V I; Wood, P M
2001-08-01
A case manager's ability to obtain worksite accommodations and engage workers in active problem solving may improve health and return to work outcomes for clients with work related upper extremity disorders (WRUEDs). This study examines the feasibility of a 2 day training seminar to help nurse case managers identify ergonomic risk factors, provide accommodation, and conduct problem solving skills training with workers' compensation claimants recovering from WRUEDs. Eight procedural steps to this case management approach were identified, translated into a training workshop format, and conveyed to 65 randomly selected case managers. Results indicate moderate to high self ratings of confidence to perform ergonomic assessments (mean = 7.5 of 10) and to provide problem solving skills training (mean = 7.2 of 10) after the seminar. This training format was suitable to experienced case managers and generated a moderate to high level of confidence to use this case management approach.
Extremely high efficient nanoreactor with Au@ZnO catalyst for photocatalysis
NASA Astrophysics Data System (ADS)
Su, Chung-Yi; Yang, Tung-Han; Gurylev, Vitaly; Huang, Sheng-Hsin; Wu, Jenn-Ming; Perng, Tsong-Pyng
2015-10-01
We fabricated a photocatalytic Au@ZnO@PC (polycarbonate) nanoreactor composed of monolayered Au nanoparticles chemisorbed on conformal ZnO nanochannel arrays within the PC membrane. A commercial PC membrane was used as the template for deposition of a ZnO shell into the pores by atomic layer deposition (ALD). Thioctic acid (TA) with sufficient steric stabilization was used as a molecular linker for functionalization of Au nanoparticles in a diameter of 10 nm. High coverage of Au nanoparticles anchored on the inner wall of ZnO nanochannels greatly improved the photocatalytic activity for degradation of Rhodamine B. The membrane nanoreactor achieved 63% degradation of Rhodamine B within only 26.88 ms of effective reaction time owing to its superior mass transfer efficiency based on Damköhler number analysis. Mass transfer limitation can be eliminated in the present study due to extremely large surface-to-volume ratio of the membrane nanoreactor.
King, Gary M
2015-04-07
Carbon monoxide occurs at relatively high concentrations (≥800 parts per million) in Mars' atmosphere, where it represents a potentially significant energy source that could fuel metabolism by a localized putative surface or near-surface microbiota. However, the plausibility of CO oxidation under conditions relevant for Mars in its past or at present has not been evaluated. Results from diverse terrestrial brines and saline soils provide the first documentation, to our knowledge, of active CO uptake at water potentials (-41 MPa to -117 MPa) that might occur in putative brines at recurrent slope lineae (RSL) on Mars. Results from two extremely halophilic isolates complement the field observations. Halorubrum str. BV1, isolated from the Bonneville Salt Flats, Utah (to our knowledge, the first documented extremely halophilic CO-oxidizing member of the Euryarchaeota), consumed CO in a salt-saturated medium with a water potential of -39.6 MPa; activity was reduced by only 28% relative to activity at its optimum water potential of -11 MPa. A proteobacterial isolate from hypersaline Mono Lake, California, Alkalilimnicola ehrlichii MLHE-1, also oxidized CO at low water potentials (-19 MPa), at temperatures within ranges reported for RSL, and under oxic, suboxic (0.2% oxygen), and anoxic conditions (oxygen-free with nitrate). MLHE-1 was unaffected by magnesium perchlorate or low atmospheric pressure (10 mbar). These results collectively establish the potential for microbial CO oxidation under conditions that might obtain at local scales (e.g., RSL) on contemporary Mars and at larger spatial scales earlier in Mars' history.
Li, Ye; Guan, Xiang-Hong; Wang, Rui; Li, Bin; Ning, Bo; Su, Wei; Sun, Tao; Li, Hong-Yan
2016-01-01
Background The aim of this study was to assess the preventive value of active ankle movements in the formation of lower-extremity deep venous thrombosis (DVT), attempting to develop a new method for rehabilitation nursing after orthopedic surgery. Material/Methods We randomly assigned 193 patients undergoing orthopedic surgery in the lower limbs into a case group (n=96) and a control group (n=97). The control group received routine nursing while the case group performed active ankle movements in addition to receiving routine nursing. Maximum venous outflow (MVO), maximum venous capacity (MVC), and blood rheology were measured and the incidence of DVT was recorded. Results On the 11th and 14th days of the experiment, the case group had significantly higher MVO and MVC than the control group (all P<0.05). The whole-blood viscosity at high shear rate and the plasma viscosity were significantly lower in the case group than in the control group on the 14th day (both P<0.05). During the experiment, a significantly higher overall DVT incidence was recorded in the control group (8 with asymptomatic DVT) compared with the case group (1 with asymptomatic DVT) (P=0.034). During follow-up, the case group presented a significantly lower DVT incidence (1 with symptomatic DVT and 4 with asymptomatic DVT) than in the control group (5 with symptomatic DVT and 10 with asymptomatic DVT) (P=0.031). Conclusions Through increasing MVO and MVC and reducing blood rheology, active ankle movements may prevent the formation of lower-extremity DVT after orthopedic surgery. PMID:27600467
King, Gary M.
2015-01-01
Carbon monoxide occurs at relatively high concentrations (≥800 parts per million) in Mars’ atmosphere, where it represents a potentially significant energy source that could fuel metabolism by a localized putative surface or near-surface microbiota. However, the plausibility of CO oxidation under conditions relevant for Mars in its past or at present has not been evaluated. Results from diverse terrestrial brines and saline soils provide the first documentation, to our knowledge, of active CO uptake at water potentials (−41 MPa to −117 MPa) that might occur in putative brines at recurrent slope lineae (RSL) on Mars. Results from two extremely halophilic isolates complement the field observations. Halorubrum str. BV1, isolated from the Bonneville Salt Flats, Utah (to our knowledge, the first documented extremely halophilic CO-oxidizing member of the Euryarchaeota), consumed CO in a salt-saturated medium with a water potential of −39.6 MPa; activity was reduced by only 28% relative to activity at its optimum water potential of −11 MPa. A proteobacterial isolate from hypersaline Mono Lake, California, Alkalilimnicola ehrlichii MLHE-1, also oxidized CO at low water potentials (−19 MPa), at temperatures within ranges reported for RSL, and under oxic, suboxic (0.2% oxygen), and anoxic conditions (oxygen-free with nitrate). MLHE-1 was unaffected by magnesium perchlorate or low atmospheric pressure (10 mbar). These results collectively establish the potential for microbial CO oxidation under conditions that might obtain at local scales (e.g., RSL) on contemporary Mars and at larger spatial scales earlier in Mars’ history. PMID:25831529
NASA Technical Reports Server (NTRS)
Margon, Bruce; Canizares, Claude; Catura, Richard C.; Clark, George W.; Fichtel, Carl E.; Friedman, Herbert; Giacconi, Riccardo; Grindlay, Jonathan E.; Helfand, David J.; Holt, Stephen S.
1991-01-01
The following subject areas are covered: (1) important scientific problems for high energy astrophysics (stellar activity, the interstellar medium in galaxies, supernovae and endpoints of stellar evolution, nucleosynthesis, relativistic plasmas and matter under extreme conditions, nature of gamma-bursts, identification of black holes, active nuclei, accretion physics, large-scale structures, intracluster medium, nature of dark matter, and the X- and gamma-ray background); (2) the existing experimental programs (Advanced X-Ray Astrophysics Facility (AXAF), Gamma Ray Observatory (GRO), X-Ray Timing Explorer (XTE), High Energy Transient Experiment (HETE), U.S. participation in foreign missions, and attached Shuttle and Space Station Freedom payloads); (3) major missions for the 1990's; (4) a new program of moderate missions; (5) new opportunities for small missions; (6) technology development issues; and (7) policy issues.
Perspectives on Extremes as a Climate Scientist and Farmer
NASA Astrophysics Data System (ADS)
Grotjahn, R.
2016-12-01
The speaker is both a climate scientist whose research emphasizes climate extremes and a small farmer in the most agriculturally productive region in the world. He will share some perspectives about the future of extremes over the United States as they relate to farming. General information will be drawn from the National Climate Assessment (NCA) published in 2014. Different weather-related quantities are useful for different commodities. While plant and animal production are time-integrative, extreme events can cause lasting harm long after the event is over. Animal production, including dairy, is sensitive to combinations of high heat and humidity; lasting impacts include suspended milk production, aborted fetuses, and increased mortality. The rice crop can be devastated by the wrong combination of wind and humidity just before harvest time. Extremes at the bud break, flowering, and nascent fruit stage and greatly reduce the fruit production for the year in tree crops. Saturated soils from heavy rainfall cause major losses to some crops (for example, by fostering pathogen growth), harm water delivery systems, and disrupt timing of field activities (primarily harvest).After an overview of some general issues relating to Agriculture, some extreme weather impacts on specific commodities (primarily dairy and specialty crops, some grains) will be highlighted including quantities relevant to agriculture. Example extreme events economic impacts will be summarized. If there is interest, issues related to water availability and management will be described. Projected extreme event changes over the US will be discussed. Some conclusions will be drawn about: future impacts and possible changes to farming (some are already occurring). Perspectives will be given on including the diverse range of quantities useful to agriculture when developing climate models. As time permits, some personal experiences with climate change and discussing it with fellow farmers will be shared.
NASA Astrophysics Data System (ADS)
Shi, Z.; Xu, G.; McCann, P. J.; Fang, X. M.; Dai, N.; Felix, C. L.; Bewley, W. W.; Vurgaftman, I.; Meyer, J. R.
2000-06-01
Midinfrared broadband high-reflectivity Pb1-xSrxSe/BaF2 distributed Bragg reflectors and vertical-cavity surface-emitting lasers (VCSELs) with PbSe as the active material were grown by molecular-beam epitaxy. Because of an extremely high index contrast, mirrors with only three quarter-wave layer pairs had reflectivities exceeding 99%. For pulsed optical pumping, a lead salt VCSEL emitting at the cavity wavelength of 4.5-4.6 μm operated nearly to room temperature (289 K).
Influence of lower body pressure support on the walking patterns of healthy children and adults.
Kurz, Max J; Deffeyes, Joan E; Arpin, David J; Karst, Gregory M; Stuberg, Wayne A
2012-11-01
The purpose of this investigation was to evaluate the effect of a lower body positive pressure support system on the joint kinematics and activity of the lower extremity antigravity musculature of adults and children during walking. Adults (age = 25 ± 4 years) and children (age = 13 ± 2 years) walked at a preferred speed and a speed that was based on the Froude number, while 0-80% of their body weight was supported. Electrogoniometers were used to monitor knee and ankle joint kinematics. Surface electromyography was used to quantify the magnitude of the vastus lateralis and gastrocnemius muscle activity. There were three key findings: (1) The lower extremity joint angles and activity of the lower extremity antigravity muscles of children did not differ from those of adults. (2) The magnitude of the changes in the lower extremity joint motion and antigravity muscle activity was dependent upon an interaction between body weight support and walking speed. (3) Lower body positive pressure support resulted in reduced activation of the antigravity musculature, and reduced range of motion of the knee and ankle joints.
Microbial activity at gigapascal pressures.
Sharma, Anurag; Scott, James H; Cody, George D; Fogel, Marilyn L; Hazen, Robert M; Hemley, Russell J; Huntress, Wesley T
2002-02-22
We observed physiological and metabolic activity of Shewanella oneidensis strain MR1 and Escherichia coli strain MG1655 at pressures of 68 to 1680 megapascals (MPa) in diamond anvil cells. We measured biological formate oxidation at high pressures (68 to 1060 MPa). At pressures of 1200 to 1600 MPa, living bacteria resided in fluid inclusions in ice-VI crystals and continued to be viable upon subsequent release to ambient pressures (0.1 MPa). Evidence of microbial viability and activity at these extreme pressures expands by an order of magnitude the range of conditions representing the habitable zone in the solar system.
Lecina-Diaz, Judit; Alvarez, Albert; Retana, Javier
2014-01-01
Crown fires associated with extreme fire severity are extremely difficult to control. We have assessed fire severity using differenced Normalized Burn Ratio (dNBR) from Landsat imagery in 15 historical wildfires of Pinus halepensis Mill. We have considered a wide range of innovative topographic, fuel and fire behavior variables with the purposes of (1) determining the variables that influence fire severity patterns among fires (considering the 15 wildfires together) and (2) ascertaining whether different variables affect extreme fire severity within the three fire types (topographic, convective and wind-driven fires). The among-fires analysis showed that fires in less arid climates and with steeper slopes had more extreme severity. In less arid conditions there was more crown fuel accumulation and closer forest structures, promoting high vertical and horizontal fuel continuity and extreme fire severity. The analyses carried out for each fire separately (within fires) showed more extreme fire severity in areas in northern aspects, with steeper slopes, with high crown biomass and in climates with more water availability. In northern aspects solar radiation was lower and fuels had less water limitation to growth which, combined with steeper slopes, produced more extreme severity. In topographic fires there was more extreme severity in northern aspects with steeper slopes and in areas with more water availability and high crown biomass; in convection-dominated fires there was also more extreme fire severity in northern aspects with high biomass; while in wind-driven fires there was only a slight interaction between biomass and water availability. This latter pattern could be related to the fact that wind-driven fires spread with high wind speed, which could have minimized the effect of other variables. In the future, and as a consequence of climate change, new zones with high crown biomass accumulated in non-common drought areas will be available to burn as extreme severity wildfires. PMID:24465492
Lecina-Diaz, Judit; Alvarez, Albert; Retana, Javier
2014-01-01
Crown fires associated with extreme fire severity are extremely difficult to control. We have assessed fire severity using differenced Normalized Burn Ratio (dNBR) from Landsat imagery in 15 historical wildfires of Pinus halepensis Mill. We have considered a wide range of innovative topographic, fuel and fire behavior variables with the purposes of (1) determining the variables that influence fire severity patterns among fires (considering the 15 wildfires together) and (2) ascertaining whether different variables affect extreme fire severity within the three fire types (topographic, convective and wind-driven fires). The among-fires analysis showed that fires in less arid climates and with steeper slopes had more extreme severity. In less arid conditions there was more crown fuel accumulation and closer forest structures, promoting high vertical and horizontal fuel continuity and extreme fire severity. The analyses carried out for each fire separately (within fires) showed more extreme fire severity in areas in northern aspects, with steeper slopes, with high crown biomass and in climates with more water availability. In northern aspects solar radiation was lower and fuels had less water limitation to growth which, combined with steeper slopes, produced more extreme severity. In topographic fires there was more extreme severity in northern aspects with steeper slopes and in areas with more water availability and high crown biomass; in convection-dominated fires there was also more extreme fire severity in northern aspects with high biomass; while in wind-driven fires there was only a slight interaction between biomass and water availability. This latter pattern could be related to the fact that wind-driven fires spread with high wind speed, which could have minimized the effect of other variables. In the future, and as a consequence of climate change, new zones with high crown biomass accumulated in non-common drought areas will be available to burn as extreme severity wildfires.
Mozheiko, E Yu; Prokopenko, S V; Alekseevich, G V
To reason the choice of methods of restoration of advanced hand activity depending on severity of motor disturbance in the top extremity. Eighty-eight patients were randomized into 3 groups: 1) the mCIMT group, 2) the 'touch glove' group, 3) the control group. For assessment of physical activity of the top extremity Fugl-Meyer Assessment Upper Extremity, Nine-Hole Peg Test, Motor Assessment Scale were used. Assessment of non-use phenomenon was carried out with the Motor Activity Log scale. At a stage of severe motor dysfunction, there was a restoration of proximal departments of a hand in all groups, neither method was superior to the other. In case of moderate severity of motor deficiency of the upper extremity the most effective was the method based on the principle of biological feedback - 'a touch glove'. In the group with mild severity of motor dysfunction, the best recovery was achieved in the mCIMT group.
NASA Astrophysics Data System (ADS)
Vogt, S.; Neumayer, F. F.; Serkyov, I.; Jesner, G.; Kelsch, R.; Geile, M.; Sommer, A.; Golle, R.; Volk, W.
2017-09-01
Steel is the most common material used in vehicles’ chassis, which makes its research an important topic for the automotive industry. Recently developed ultra-high-strength steels (UHSS) provide extreme tensile strength up to 1,500 MPa and combine great crashworthiness with good weight reduction potential. However, in order to reach the final shape of sheet metal parts additional cutting steps such as trimming and piercing are often required. The final trimming of quenched metal sheets presents a huge challenge to a conventional process, mainly because of the required extreme cutting force. The high cutting impact, due to the materials’ brittleness, causes excessive tool wear or even sudden tool failure. Therefore, a laser is commonly used for the cutting process, which is time and energy consuming. The purpose of this paper is to demonstrate the capability of a conventional blanking tool design in a continuous stroke piercing process using boron steel 22MnB5 sheets. Two different types of tool steel were tested for their suitability as active cutting elements: electro-slag remelted (ESR) cold work tool steel Bohler K340 ISODUR and powder-metallurgic (PM) high speed steel Bohler S390 MICROCLEAN. A FEM study provided information about an optimized punch design, which withstands buckling under high cutting forces. The wear behaviour of the process was assessed by the tool wear of the active cutting elements as well as the quality of cut surfaces.
Assessing Upper Extremity Motor Function in Practice of Virtual Activities of Daily Living
Adams, Richard J.; Lichter, Matthew D.; Krepkovich, Eileen T.; Ellington, Allison; White, Marga; Diamond, Paul T.
2015-01-01
A study was conducted to investigate the criterion validity of measures of upper extremity (UE) motor function derived during practice of virtual activities of daily living (ADLs). Fourteen hemiparetic stroke patients employed a Virtual Occupational Therapy Assistant (VOTA), consisting of a high-fidelity virtual world and a Kinect™ sensor, in four sessions of approximately one hour in duration. An Unscented Kalman Filter-based human motion tracking algorithm estimated UE joint kinematics in real-time during performance of virtual ADL activities, enabling both animation of the user’s avatar and automated generation of metrics related to speed and smoothness of motion. These metrics, aggregated over discrete sub-task elements during performance of virtual ADLs, were compared to scores from an established assessment of UE motor performance, the Wolf Motor Function Test (WMFT). Spearman’s rank correlation analysis indicates a moderate correlation between VOTA-derived metrics and the time-based WMFT assessments, supporting the criterion validity of VOTA measures as a means of tracking patient progress during an UE rehabilitation program that includes practice of virtual ADLs. PMID:25265612
Assessing upper extremity motor function in practice of virtual activities of daily living.
Adams, Richard J; Lichter, Matthew D; Krepkovich, Eileen T; Ellington, Allison; White, Marga; Diamond, Paul T
2015-03-01
A study was conducted to investigate the criterion validity of measures of upper extremity (UE) motor function derived during practice of virtual activities of daily living (ADLs). Fourteen hemiparetic stroke patients employed a Virtual Occupational Therapy Assistant (VOTA), consisting of a high-fidelity virtual world and a Kinect™ sensor, in four sessions of approximately one hour in duration. An unscented Kalman Filter-based human motion tracking algorithm estimated UE joint kinematics in real-time during performance of virtual ADL activities, enabling both animation of the user's avatar and automated generation of metrics related to speed and smoothness of motion. These metrics, aggregated over discrete sub-task elements during performance of virtual ADLs, were compared to scores from an established assessment of UE motor performance, the Wolf Motor Function Test (WMFT). Spearman's rank correlation analysis indicates a moderate correlation between VOTA-derived metrics and the time-based WMFT assessments, supporting the criterion validity of VOTA measures as a means of tracking patient progress during an UE rehabilitation program that includes practice of virtual ADLs.
Prefrontal brain asymmetry and aggression in imprisoned violent offenders.
Keune, Philipp M; van der Heiden, Linda; Várkuti, Bálint; Konicar, Lilian; Veit, Ralf; Birbaumer, Niels
2012-05-02
Anterior brain asymmetry, assessed through the alpha and beta band in resting-state electroencephalogram (EEG) is associated with approach-related behavioral dispositions, particularly with aggression in the general population. To date, the association between frontal asymmetry and aggression has not been examined in highly aggressive groups. We examined the topographic characteristics of alpha and beta activity, the relation of both asymmetry metrics to trait aggression, and whether alpha asymmetry was extreme in anterior regions according to clinical standards in a group of imprisoned violent offenders. As expected, these individuals were characterized by stronger right than left-hemispheric alpha activity, which was putatively extreme in anterior regions in one third of the cases. We also report that in line with observations made in the general population, aggression was associated with stronger right-frontal alpha activity in these violent individuals. This suggests that frontal alpha asymmetry, as a correlate of trait aggression, might be utilizable as an outcome measure in studies which assess the effects of anti-aggressiveness training in violent offenders. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Albano, Christine M.; Dettinger, Michael; McCarthy, Maureen; Schaller, Kevin D.; Wellborn, Toby; Cox, Dale A.
2016-01-01
In the Sierra Nevada mountains (USA), and geographically similar areas across the globe where human development is expanding, extreme winter storm and flood risks are expected to increase with changing climate, heightening the need for communities to assess risks and better prepare for such events. In this case study, we demonstrate a novel approach to examining extreme winter storm and flood risks. We incorporated high-resolution atmospheric–hydrologic modeling of the ARkStorm extreme winter storm scenario with multiple modes of engagement with practitioners, including a series of facilitated discussions and a tabletop emergency management exercise, to develop a regional assessment of extreme storm vulnerabilities, mitigation options, and science needs in the greater Lake Tahoe region of Northern Nevada and California, USA. Through this process, practitioners discussed issues of concern across all phases of the emergency management life cycle, including preparation, response, recovery, and mitigation. Interruption of transportation, communications, and interagency coordination were among the most pressing concerns, and specific approaches for addressing these issues were identified, including prepositioning resources, diversifying communications systems, and improving coordination among state, tribal, and public utility practitioners. Science needs included expanding real-time monitoring capabilities to improve the precision of meteorological models and enhance situational awareness, assessing vulnerabilities of critical infrastructure, and conducting cost–benefit analyses to assess opportunities to improve both natural and human-made infrastructure to better withstand extreme storms. Our approach and results can be used to support both land use and emergency planning activities aimed toward increasing community resilience to extreme winter storm hazards in mountainous regions.
Extreme Events and Disaster Risk Reduction - a Future Earth KAN initiative
NASA Astrophysics Data System (ADS)
Frank, Dorothea; Reichstein, Markus
2017-04-01
The topic of Extreme Events in the context of global environmental change is both a scientifically challenging and exciting topic, and of very high societal relevance. The Future Earth Cluster initiative E3S organized in 2016 a cross-community/co-design workshop on Extreme Events and Environments from Climate to Society (http://www.e3s-future-earth.eu/index.php/ConferencesEvents/ConferencesAmpEvents). Based on the results, co-design research strategies and established network of the workshop, and previous activities, E3S is thriving to establish the basis for a longer-term research effort under the umbrella of Future Earth. These led to an initiative for a Future Earth Knowledge Action Network on Extreme Events and Disaster Risk Reduction. Example initial key question in this context include: What are meaningful indices to describe and quantify impact-relevant (e.g. climate) extremes? Which system properties yield resistance and resilience to extreme conditions? What are the key interactions between global urbanization processes, extreme events, and social and infrastructure vulnerability and resilience? The long-term goal of this KAN is to contribute to enhancing the resistance, resilience, and adaptive capacity of socio-ecological systems across spatial, temporal and institutional scales, in particular in the light of hazards affected by ongoing environmental change (e.g. climate change, global urbanization and land use/land cover change). This can be achieved by enhanced understanding, prediction, improved and open data and knowledge bases for detection and early warning decision making, and by new insights on natural and societal conditions and governance for resilience and adaptive capacity.
Heating and Cooling System Design for a Modern Transportable Container
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, Jason E.
Sandia National Laboratories (SNL) has been tasked with the design of a modern transportable container (MTC) for use in high reliability transportation environments. The container is required to transport cargo capable of generating its own heat and operate under the United States’ climatic extremes. In response to these requirements, active heating and cooling is necessary to maintain a controlled environment inside the container. The following thesis project documents the design of an active heating, active cooling, and combined active heating and cooling system (now referred to as active heating and cooling systems) through computational thermal analyses, scoping of commercial systemmore » options, and mechanical integration with the container’s structure.« less
A review on the effects of supercritical carbon dioxide on enzyme activity.
Wimmer, Zdenek; Zarevúcka, Marie
2010-01-19
Different types of enzymes such as lipases, several phosphatases, dehydrogenases, oxidases, amylases and others are well suited for the reactions in SC-CO(2). The stability and the activity of enzymes exposed to carbon dioxide under high pressure depend on enzyme species, water content in the solution and on the pressure and temperature of the reaction system. The three-dimensional structure of enzymes may be significantly altered under extreme conditions, causing their denaturation and consequent loss of activity. If the conditions are less adverse, the protein structure may be largely retained. Minor structural changes may induce an alternative active protein state with altered enzyme activity, specificity and stability.
A Review on the Effects of Supercritical Carbon Dioxide on Enzyme Activity
Wimmer, Zdeněk; Zarevúcka, Marie
2010-01-01
Different types of enzymes such as lipases, several phosphatases, dehydrogenases, oxidases, amylases and others are well suited for the reactions in SC-CO2. The stability and the activity of enzymes exposed to carbon dioxide under high pressure depend on enzyme species, water content in the solution and on the pressure and temperature of the reaction system. The three-dimensional structure of enzymes may be significantly altered under extreme conditions, causing their denaturation and consequent loss of activity. If the conditions are less adverse, the protein structure may be largely retained. Minor structural changes may induce an alternative active protein state with altered enzyme activity, specificity and stability. PMID:20162013
Continuous catchment-scale monitoring of geomorphic processes with a 2-D seismological array
NASA Astrophysics Data System (ADS)
Burtin, A.; Hovius, N.; Milodowski, D.; Chen, Y.-G.; Wu, Y.-M.; Lin, C.-W.; Chen, H.
2012-04-01
The monitoring of geomorphic processes during extreme climatic events is of a primary interest to estimate their impact on the landscape dynamics. However, available techniques to survey the surface activity do not provide a relevant time and/or space resolution. Furthermore, these methods hardly investigate the dynamics of the events since their detection are made a posteriori. To increase our knowledge of the landscape evolution and the influence of extreme climatic events on a catchment dynamics, we need to develop new tools and procedures. In many past works, it has been shown that seismic signals are relevant to detect and locate surface processes (landslides, debris flows). During the 2010 typhoon season, we deployed a network of 12 seismometers dedicated to monitor the surface processes of the Chenyoulan catchment in Taiwan. We test the ability of a two dimensional array and small inter-stations distances (~ 11 km) to map in continuous and at a catchment-scale the geomorphic activity. The spectral analysis of continuous records shows a high-frequency (> 1 Hz) seismic energy that is coherent with the occurrence of hillslope and river processes. Using a basic detection algorithm and a location approach running on the analysis of seismic amplitudes, we manage to locate the catchment activity. We mainly observe short-time events (> 300 occurrences) associated with debris falls and bank collapses during daily convective storms, where 69% of occurrences are coherent with the time distribution of precipitations. We also identify a couple of debris flows during a large tropical storm. In contrast, the FORMOSAT imagery does not detect any activity, which somehow reflects the lack of extreme climatic conditions during the experiment. However, high resolution pictures confirm the existence of links between most of geomorphic events and existing structures (landslide scars, gullies...). We thus conclude to an activity that is dominated by reactivation processes. It highlights the major interest of a seismic monitoring since it allows a detailed spatial and temporal survey of events that classic approaches are not able to observe. In the future, dense two dimensional seismological arrays will assess in real-time the landscape dynamics of an entire catchment, tracking sediments from slopes to rivers.
Rasuk, María Cecilia; Ferrer, Gabriela Mónica; Kurth, Daniel; Portero, Luciano Raúl; Farías, María Eugenia; Albarracín, Virginia Helena
2017-05-01
Polyextremophiles are present in a wide variety of extreme environments in which they must overcome various hostile conditions simultaneously such as high UVB radiation, extreme pHs and temperatures, elevated salt and heavy-metal concentration, low-oxygen pressure and scarce nutrients. High-altitude Andean lakes (HAALs; between 2000 and 4000 m) are one example of these kinds of ecosystems suffering from the highest total solar and UVB radiation on Earth where an abundant and diverse polyextremophilic microbiota was reported. In this work, we performed the first extensive isolation of UV-resistant actinobacteria from soils, water, sediments and modern stromatolites at HAALs. Based on the 16S rRNA sequence, the strains were identified as members of the genera Streptomyces, Micrococcus, Nesterenkonia, Rhodococcus, Microbacterium, Kocuria, Arthrobacter, Micromonospora, Blastococcus, Citrococcus and Brevibacterium. Most isolates displayed resistance to multiple environmental stress factors confirming their polyextremophilic nature and were able to produce effective antimicrobial compounds. HAALs constitute a largely unexplored repository of UV-resistant actinobacteria, with high potential for the biodiscovery of novel natural products. © 2017 The American Society of Photobiology.
Yamashiro, Takumi; Murata, Kousaku; Kawai, Shigeyuki
2017-03-01
Deinococcus radiodurans is highly resistant to ionizing radiation and UV radiation, and oxidative stress caused by such radiations. NADP(H) seems to be important for this resistance (Slade and Radman, Microbiol Mol Biol Rev 75:133-191; Slade, Radman, Microbiol Mol Biol Rev 75:133-191, 2011), but the mechanism underlying the generation of NADP(H) or NAD(H) in D. radiodurans has not fully been addressed. Intracellular concentrations of NAD + , NADH, NADP + , and NADPH in D. radiodurans are also not determined yet. We found that cell extracts of D. radiodurans catalyzed reduction of NAD(P) + in vitro, indicating that D. radiodurans cells contain both enzymes and a high concentration of substrates for this activity. The enzyme and the substrate were attributed to glucose-6-phosphate dehydrogenase and glucose-6-phosphate of which intracellular concentration was extremely high. Unexpectedly, the intracellular concentration of NAD(H) was also much greater than that of NADP(H), suggesting some significant roles of NADH. These unusual features of this bacterium would shed light on a new aspect of physiology of this bacterium.
Quantifying the relationship between extreme air pollution events and extreme weather events
NASA Astrophysics Data System (ADS)
Zhang, Henian; Wang, Yuhang; Park, Tae-Won; Deng, Yi
2017-05-01
Extreme weather events can strongly affect surface air quality, which has become a major environmental factor to affect human health. Here, we examined the relationship between extreme ozone and PM2.5 (particular matter with an aerodynamic diameter less than 2.5 μm) events and the representative meteorological parameters such as daily maximum temperature (Tmax), minimum relative humidity (RHmin), and minimum wind speed (Vmin), using the location-specific 95th or 5th percentile threshold derived from historical reanalysis data (30 years for ozone and 10 years for PM2.5). We found that ozone and PM2.5 extremes were decreasing over the years, reflecting EPA's tightened standards and effort on reducing the corresponding precursor's emissions. Annual ozone and PM2.5 extreme days were highly correlated with Tmax and RHmin, especially in the eastern U.S. They were positively (negatively) correlated with Vmin in urban (rural and suburban) stations. The overlapping ratios of ozone extreme days with Tmax were fairly constant, about 32%, and tended to be high in fall and low in winter. Ozone extreme days were most sensitive to Tmax, then RHmin, and least sensitive to Vmin. The majority of ozone extremes occurred when Tmax was between 300 K and 320 K, RHmin was less than 40%, and Vmin was less than 3 m/s. The number of annual extreme PM2.5 days was highly positively correlated with the extreme RHmin/Tmax days, with correlation coefficient between PM2.5/RHmin highest in urban and suburban regions and the correlation coefficient between PM2.5/Tmax highest in rural area. Tmax has more impact on PM2.5 extreme over the eastern U.S. Extreme PM2.5 days were more likely to occur at low RH conditions in the central and southeastern U.S., especially during spring time, and at high RH conditions in the northern U.S. and the Great Plains. Most extreme PM2.5 events occurred when Tmax was between 300 K and 320 K and RHmin was between 10% and 50%. Extreme PM2.5 days usually occurred when Vmin was under 2 m/s. However, during spring season in the Southeast and fall season in Northwest, high winds were found to accompany extreme PM2.5 days, likely reflecting the impact of fire emissions.
Park, Jung Ho; Kim, Hee-Chun; Lee, Jae Hoon; Kim, Jin Soo; Roh, Si Young; Yi, Cheol Ho; Kang, Yoon Kyoo; Kwon, Bum Sun
2009-05-01
While the lower extremities support the weight and move the body, the upper extremities are essential for the activities of daily living, which require many detailed movements. Therefore, a disability of the upper extremity function should include a limitation of all motions of the joints and sensory loss, which affects the activities. In this study, disabilities of the upper extremities were evaluated according to the following conditions: 1) amputation, 2) joint contracture, 3) diseases of upper extremity, 4) weakness, 5) sensory loss of the finger tips, and 6) vascular and lymphatic diseases. The order of 1) to 6) is the order of major disability and there is no need to evaluate a lower order disability when a higher order one exists in the same joint or a part of the upper extremity. However, some disabilities can be either added or substituted when there are special contributions from multiple disabilities. An upper extremity disability should be evaluated after the completion of treatment and full adaptation when further functional changes are not expected. The dominance of the right or left hand before the disability should not be considered when there is a higher rate of disability.
Functionally Graded Multifunctional Hybrid Composites for Extreme Environments
2010-02-01
Develop multifunctional FGHC with multiple layers: a ceramic thermal barrier layer, a graded ceramic /metal composite (GCMeC) layer and a high...AFOSR-MURI Functionally Graded Hybrid Composites Actively Cooled PMC White (UIUC) FGHC Fabrication Team Graded Ceramic Metal Composites (GCMeC...Composites Fabrication and Characterization of Bulk Ceramic MAX Phase and MAX–Metal Composites AFOSR-MURI Functionally Graded Hybrid Composites Mn
Greven, Corina U; Merwood, Andrew; van der Meer, Jolanda M J; Haworth, Claire M A; Rommelse, Nanda; Buitelaar, Jan K
2016-04-01
Although attention deficit hyperactivity disorder (ADHD) is thought to reflect a continuously distributed quantitative trait, it is assessed through binary diagnosis or skewed measures biased towards its high, symptomatic extreme. A growing trend is to study the positive tail of normally distributed traits, a promising avenue, for example, to study high intelligence to increase power for gene-hunting for intelligence. However, the emergence of such a 'positive genetics' model has been tempered for ADHD due to poor phenotypic resolution at the low extreme. Overcoming this methodological limitation, we conduct the first study to assess the aetiologies of low extreme ADHD traits. In a population-representative sample of 2,143 twins, the Strength and Weaknesses of ADHD Symptoms and Normal behaviour (SWAN) questionnaire was used to assess ADHD traits on a continuum from low to high. Aetiological influences on extreme ADHD traits were estimated using DeFries-Fulker extremes analysis. ADHD traits were related to behavioural, cognitive and home environmental outcomes using regression. Low extreme ADHD traits were significantly influenced by shared environmental factors (23-35%) but were not significantly heritable. In contrast, high-extreme ADHD traits showed significant heritability (39-51%) but no shared environmental influences. Compared to individuals with high extreme or with average levels of ADHD traits, individuals with low extreme ADHD traits showed fewer internalizing and externalizing behaviour problems, better cognitive performance and more positive behaviours and positive home environmental outcomes. Shared environmental influences on low extreme ADHD traits may reflect passive gene-environment correlation, which arises because parents provide environments as well as passing on genes. Studying the low extreme opens new avenues to study mechanisms underlying previously neglected positive behaviours. This is different from the current deficit-based model of intervention, but congruent with a population-level approach to improving youth wellbeing. © 2015 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for Child and Adolescent Mental Health.
Observations and Impact Assessments of Extreme Space Weather Events
NASA Astrophysics Data System (ADS)
Baker, D. N.
2007-05-01
"Space weather" refers to conditions on the Sun, in the solar wind, and in Earth`s magnetosphere, ionosphere, and thermosphere. Activity on the Sun such as solar flares and coronal mass ejections can lead to high levels of radiation in space and can cause major magnetic storms at the Earth. Space radiation can come as energetic particles or as electromagnetic emissions. Adverse conditions in the near-Earth space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids. This can lead to a variety of socioeconomic losses. Astronauts and airline passengers exposed to high levels of radiation are also at risk. Society`s vulnerability to space weather effects is an issue of increasing concern. We are dependent on technological systems that are becoming more susceptible to space weather disturbances. We also have a permanent human presence in space with the International Space Station and the President and NASA have expressed a desire to expand our human space activities with missions to the moon and Mars. This will make space weather of even greater concern in the future. In this talk I will describe many space weather effects and will describe some of the societal and economic impacts that extreme events have had.
NASA Astrophysics Data System (ADS)
Bhowmik, Debsindhu; Shrestha, Utsab; Dhindsa, Gurpreet; Sharp, Melissa; Stingaciu, Laura R.; Chu, Xiang-Qiang; Xiang-Qiang Chu Team
Deep-sea microorganisms have the ability to survive under extreme conditions, such as high pressure and high temperature. In this work, we used the combination of the neutron spin-echo (NSE) and the small angle neutron scattering (SANS) techniques to study the inter-domain motions of the inorganic pyrophosphate (IPPase) enzyme derived from thermostable microorganisms Thermococcus thioreducens. The IPPase has hexameric quaternary structure with molecular mass of approx. 120kDa (each subunit of 20kDa), which is a large oligomeric structure. The understanding of its slow inter-domain motions can be the key to explain how they are able to perform catalytic activity at higher temperature compared to mesophilic enzymes, thus leading to adapt to extreme environment present at the seabed. The NSE can probe these slow motions directly in the time domain up to several tens of nanoseconds at the nanometers length scales, while the corresponding structural change can be explored by the SANS. Our results provide a better picture of the local flexibility and conformational substates unique to these types of proteins, which will help us better understandthe relation between protein dynamics and their biological activities
Navarro-Pujalte, Esther; Gacto-Sánchez, Mariano; Montilla-Herrador, Joaquina; Escolar-Reina, Pilar; Ángeles Franco-Sierra, María; Medina-Mirapeix, Francesc
2018-01-12
Prospective longitudinal study. To examine the sensitivity of the Mobility Activities Measure for lower extremities and to compare it to the sensitivity of the Physical Functioning Scale (PF-10) and the Patient-Specific Functional Scale (PSFS) at week 4 and week 8 post-hospitalization in outpatient rehabilitation settings. Mobility Activities Measure is a set of short mobility measures to track outpatient rehabilitation progress: its scales have shown good properties but its sensitivity to change has not been reported. Patients with musculoskeletal conditions were recruited at admission in three outpatient rehabilitation settings in Spain. Data were collected at admission, week 4 and week 8 from an initial sample of 236 patients (mean age ± SD = 36.7 ± 11.1). Mobility Activities Measure scales for lower extremity; PF-10; and PSFS. All the Mobility Activities Measure scales were sensitive to both positive and negative changes (the Standardized Response Means (SRMs) ranged between 1.05 and 1.53 at week 4, and between 0.63 and 1.47 at week 8). The summary measure encompassing the three Mobility Activities Measure scales detected a higher proportion of participants who had improved beyond the minimal detectable change (MDC) than detected by the PSFS and the PF-10 both at week 4 (86.64% vs. 69.81% and 42.23%, respectively) and week 8 (71.14% vs. 55.65% and 60.81%, respectively). The three Mobility Activities Measure scales assessing the lower extremity can be used across outpatient rehabilitation settings to provide consistent and sensitive measures of changes in patients' mobility. Implications for rehabilitation All the scales of the Mobility Activities Measure for the lower extremity were sensitive to both positive and negative change across the follow-up periods. Overall, the summary measure encompassing the three Mobility Activities Measure scales for the lower extremity appeared more sensitive to positive changes than the Physical Functioning Scale, especially during the first four weeks of treatment. The summary measure also detected a higher percentage of participants with positive change that exceeded the minimal detectable change than the Patient-Specific Functional Scale and the Physical Functioning Scale at the first follow-up period. By demonstrating their consistency and sensitivity to change, the three Mobility Activities Measures scales can now be considered in order to track patients' functional progress. Mobility Activities Measure can be therefore used in patients with musculoskeletal conditions across outpatient rehabilitation settings to provide estimates of change in mobility activities focusing on the lower extremity.
Nustar: Bringing the High-Energy Universe into Focus
NASA Technical Reports Server (NTRS)
Fineberg, Larry
2016-01-01
This is a presentation to students at the University of Florida in the Small Satellite Design Club. The subject matter is the NuSTAR mission and covers topics about the spacecraft itself and the launch campaign. NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) is the first focusing high-energy X-ray mission. Studies the hottest, densest, most energetic phenomena in the Universe. Purpose is to search for black holes, map the remnants of stellar explosions, and study the most extreme active galaxies.
Shewan, Louise G; Glatz, Jane A; Bennett, Christine C; Coats, Andrew J S
To investigate the perceptions of Australian health and medical researchers 4 years after the Wills Report recommended and led to a substantial increase in health and medical research funding in Australia. A telephone poll of 501 active health and medical researchers, conducted between 28 April and 5 May, 2003. Researchers' views on the adequacy of funding, infrastructure and support, salary, community recognition, the excitement of discovery and research outcomes such as publication and patenting in research. Research funding was the most important concern: 91% of researchers (455/498) viewed funding as "very" or "extremely" important to their role, but only 10% (52/500) were "very" or "extremely" satisfied with the level of funding. Research infrastructure and support were seen as "very" or "extremely" important by 90% of researchers (449/501), while only 21% (104/501) were "very" or "extremely" satisfied. Researchers in medical research institutes were significantly more likely to be satisfied (27% [56/205] "very" or "extremely" satisfied) with the level of infrastructure and support than those working in universities (15% [41/268] "very" or "extremely" satisfied; P = 0.001). Among the factors that motivate researchers, the excitement of discovery stood out in terms of both high importance and satisfaction. Publications were viewed as more important research outcomes than patenting or commercial ventures. Funding and infrastructure support remain overwhelmingly researchers' greatest concerns. University-based researchers were less satisfied with infrastructure and support than those in independent medical research institutes.
Crowell, Michael S.; Deyle, Gail D.; Owens, Johnny; Gill, Norman W.
2016-01-01
Objectives Severe lower extremity trauma accounts for large healthcare costs and often results in elective amputation and poor long-term outcomes. The purpose of this case series is to describe an orthopedic manual physical therapy (OMPT) approach combined with a return to run (RTR) clinical pathway consisting of high-intensity functional rehabilitation with a custom energy-storing orthosis. Methods Three consecutive male patients, aged 21–23 years, with severe lower extremity musculoskeletal injuries were treated with a combined intervention that included a mean (SD) of 12 (2·1) OMPT sessions and 24 (8·7) functional rehabilitation sessions over a mean of 6 weeks (1·0). Additional training with a custom energy-storing orthosis consisted of a mean of 15 (1·2) additional sessions over 4 weeks. Patient self-report outcome measures and a variety of physical performance tests captured change in function. Results Baseline lower extremity functional scale (LEFS) and foot and ankle ability measure activities of daily living subscale (FAAM-ADL) scores indicated severe disability. All patients exceeded the minimal clinically important difference (MCID) in at least one self-report outcome or physical performance test without a brace. Two of three patients exceeded the MCID for at least two physical performance tests after training with and utilizing a custom energy-storing orthosis. Discussion Clinically meaningful changes in self-reported function or physical performance were observed in all patients. A multi-modal approach, including manual therapy and functional exercise, may address the entire spectrum of impairments in patients with severe lower extremity trauma, resulting in improvements in both braced and un-braced function. PMID:27252581
The Motor Activity Log-28: assessing daily use of the hemiparetic arm after stroke.
Uswatte, G; Taub, E; Morris, D; Light, K; Thompson, P A
2006-10-10
Data from monkeys with deafferented forelimbs and humans after stroke indicate that tests of the motor capacity of impaired extremities can overestimate their spontaneous use. Before the Motor Activity Log (MAL) was developed, no instruments assessed spontaneous use of a hemiparetic arm outside the treatment setting. To study the MAL's reliability and validity for assessing real-world quality of movement (QOM scale) and amount of use (AOU scale) of the hemiparetic arm in stroke survivors. Participants in a multisite clinical trial completed a 30-item MAL before and after treatment (n = 106) or an equivalent no-treatment period (n = 116). Participants also completed the Stroke Impact Scale (SIS) and wore accelerometers that monitored arm movement for three consecutive days outside the laboratory. All were 3 to 12 months post-stroke and had mild to moderate paresis of an upper extremity. After an item analysis, two MAL tasks were eliminated. Revised participant MAL QOM scores were reliable (r =0.82). Validity was also supported. During the first observation period, the correlation between QOM and SIS Hand Function scale scores was 0.72. The corresponding correlation for QOM and accelerometry values was 0.52. Participant QOM and AOU scores were highly correlated (r = 0.92). The participant Motor Activity Log is reliable and valid in individuals with subacute stroke. It might be employed to assess the real-world effects of upper extremity neurorehabilitation and detect deficits in spontaneous use of the hemiparetic arm in daily life.
Maudrich, Tom; Kenville, Rouven; Lepsien, Jöran; Villringer, Arno; Ragert, Patrick; Steele, Christopher J
2017-01-01
During unimanual motor tasks, muscle activity may not be restricted to the contracting muscle, but rather occurs involuntarily in the contralateral resting limb, even in healthy individuals. This phenomenon has been referred to as mirror electromyographic activity (MEMG). To date, the physiological (non-pathological) form of MEMG has been observed predominately in upper extremities (UE), while remaining sparsely described in lower extremities (LE). Accordingly, evidence regarding the underlying mechanisms and modulation capability of MEMG, i.e., the extent of MEMG in dependency of exerted force during unilateral isometric contractions are insufficiently investigated in terms of LE. Furthermore, it still remains elusive if and how MEMG is affected by long-term exercise training. Here, we provide novel quantitative evidence for physiological MEMG in homologous muscles of LE (tibialis anterior (TA), rectus femoris (RF)) during submaximal unilateral dorsiflexion in healthy young adults. Furthermore, endurance athletes (EA, n = 11) show a higher extent of MEMG in LE compared to non-athletes (NA, n = 11) at high force demands (80% MVC, maximum voluntary contraction). While the underlying neurophysiological mechanisms of MEMG still remain elusive, our study indicates, at least indirectly, that sport-related long-term training might affect the amount of MEMG during strong isometric contractions specifically in trained limbs. To support this assumption of exercise-induced limb-specific MEMG modulation, future studies including different sports disciplines with contrasting movement patterns and parameters should additionally be performed.
Maudrich, Tom; Kenville, Rouven; Lepsien, Jöran; Villringer, Arno; Ragert, Patrick; Steele, Christopher J.
2017-01-01
During unimanual motor tasks, muscle activity may not be restricted to the contracting muscle, but rather occurs involuntarily in the contralateral resting limb, even in healthy individuals. This phenomenon has been referred to as mirror electromyographic activity (MEMG). To date, the physiological (non-pathological) form of MEMG has been observed predominately in upper extremities (UE), while remaining sparsely described in lower extremities (LE). Accordingly, evidence regarding the underlying mechanisms and modulation capability of MEMG, i.e., the extent of MEMG in dependency of exerted force during unilateral isometric contractions are insufficiently investigated in terms of LE. Furthermore, it still remains elusive if and how MEMG is affected by long-term exercise training. Here, we provide novel quantitative evidence for physiological MEMG in homologous muscles of LE (tibialis anterior (TA), rectus femoris (RF)) during submaximal unilateral dorsiflexion in healthy young adults. Furthermore, endurance athletes (EA, n = 11) show a higher extent of MEMG in LE compared to non-athletes (NA, n = 11) at high force demands (80% MVC, maximum voluntary contraction). While the underlying neurophysiological mechanisms of MEMG still remain elusive, our study indicates, at least indirectly, that sport-related long-term training might affect the amount of MEMG during strong isometric contractions specifically in trained limbs. To support this assumption of exercise-induced limb-specific MEMG modulation, future studies including different sports disciplines with contrasting movement patterns and parameters should additionally be performed. PMID:29085288
Local finite-amplitude wave activity as an objective diagnostic of midlatitude extreme weather
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Gang; Lu, Jian; Burrows, Alex D.
Midlatitude extreme weather events are responsible for a large part of climate related damage, yet our understanding of these extreme events is limited, partly due to the lack of a theoretical basis for midlatitude extreme weather. In this letter, the local finite-amplitude wave activity (LWA) of Huang and Nakamura [2015] is introduced as a diagnostic of the 500-hPa geopotential height (Z500) to characterizing midlatitude weather events. It is found that the LWA climatology and its variability associated with the Arctic Oscillation (AO) agree broadly with the previously reported blocking frequency in literature. There is a strong seasonal and spatial dependencemore » in the trend13 s of LWA in recent decades. While there is no observational evidence for a hemispheric-scale increase in wave amplitude, robust trends in wave activity can be identified at the regional scales, with important implications for regional climate change.« less
dC Rubin, Sergio S; Marín, Irma; Gómez, Manuel J; Morales, Eduardo A; Zekker, Ivar; San Martín-Uriz, Patxi; Rodríguez, Nuria; Amils, Ricardo
2017-09-01
Salar de Uyuni (SdU), with a geological history that reflects 50 000 years of climate change, is the largest hypersaline salt flat on Earth and is estimated to be the biggest lithium reservoir in the world. Its salinity reaches saturation levels for NaCl, a kosmotropic salt, and high concentrations of MgCL 2 and LiCl, both salts considered important chaotrophic stressors. In addition, extreme temperatures, anoxic conditions, high UV irradiance, high albedo and extremely low concentrations of phosphorous, make SdU a unique natural extreme environment in which to contrast hypotheses about limiting factors of life diversification. Geophysical studies of brines from different sampling stations show that water activity is rather constant along SdU. Geochemical measurements show significant differences in magnesium concentration, ranging from 0.2 to 2M. This work analyses the prokaryotic diversity and community structure at four SdU sampling stations, selected according to their location and ionic composition. Prokaryotic communities were composed of both Archaea (with members of the classes Halobacteria, Thermoplasmata and Nanohaloarchaea, from the Euryarchaeota and Nanohaloarcheota phyla respectively) and Bacteria (mainly belonging to Bacteroidetes and Proteobacteria phyla). The important differences in composition of microbial communities inversely correlate with Mg 2+ concentration, suggesting that prokaryotic diversity at SdU is chaotropic dependent. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Korehi, H; Blöthe, M; Sitnikova, M A; Dold, B; Schippers, A
2013-03-05
The marine shore sulfidic mine tailings dump at the Chañaral Bay in the Atacama Desert, northern Chile, is characterized by extreme acidity, high salinity, and high heavy metals concentrations. Due to pyrite oxidation, metals (especially copper) are mobilized under acidic conditions and transported toward the tailings surface and precipitate as secondary minerals (Dold, Environ. Sci. Technol. 2006, 40, 752-758.). Depth profiles of total cell counts in this almost organic-carbon free multiple extreme environment showed variable numbers with up to 10(8) cells g(-1) dry weight for 50 samples at four sites. Real-time PCR quantification and bacterial 16S rRNA gene diversity analysis via clone libraries revealed a dominance of Bacteria over Archaea and the frequent occurrence of the acidophilic iron(II)- and sulfur-oxidizing and iron(III)-reducing genera Acidithiobacillus, Alicyclobacillus, and Sulfobacillus. Acidophilic chemolithoautotrophic iron(II)-oxidizing bacteria were also frequently found via most-probable-number (MPN) cultivation. Halotolerant iron(II)-oxidizers in enrichment cultures were active at NaCl concentrations up to 1 M. Maximal microcalorimetrically determined pyrite oxidation rates coincided with maxima of the pyrite content, total cell counts, and MPN of iron(II)-oxidizers. These findings indicate that microbial pyrite oxidation and metal mobilization preferentially occur in distinct tailings layers at high salinity. Microorganisms for biomining with seawater salt concentrations obviously exist in nature.
NASA Astrophysics Data System (ADS)
Horton, R. M.; Coffel, E.; Kushnir, Y.
2014-12-01
Recent years have seen an increasing focus on extreme high temperature events, as our understanding of societal vulnerability to such extremes has grown. Less climate research has been devoted to heat indices that consider the joint hazard posed by high temperatures and high humidity, even though heat indices are being prioritized by utility providers and public health officials. This paper evaluates how well CMIP5 models are able to reproduce the large-scale features and surface conditions associated with joint high heat and humidity events in the Northeast U.S. Projected changes in heat indices are also shown both for the full set of CMIP5 models and for a subset of models that best reproduce the statistics of historical high heat index events. The importance of considering the relationship between 1) temperature and humidity extremes and 2) projected changes in extreme temperature and humidity extremes, rather than investigating each variable independently, will be emphasized. Potential impacts of the findings on human mortality and energy consumption will be briefly discussed.
Effect of constrained weight shift on the static balance and muscle activation of stroke patients
Kang, Kyung Woo; Kim, Kyoung; Lee, Na Kyung; Kwon, Jung Won; Son, Sung Min
2015-01-01
[Purpose] The purpose of this study was to evaluate the effects of constrained weight shift induced by shoe lift beneath the unaffected lower extremity, on balance functions and electromyography of the affected lower extremity of stroke patients. [Subjects and Methods] Twelve patients with unilateral stroke were recruited as volunteers for this study. The subjects were repeatedly measured in a randomized order under three conditions: no-shoe lift, and shoe lifts of 5 mm and 10 mm heights beneath the unaffected lower extremity. [Results] Standing with a 10 mm shoe lift for the unaffected lower extremity decreased the mean velocity of mediolateral sway compared to no-shoe lift. Regarding the velocity of anteroposterior sway, standing with 5 mm and 10 mm shoe lifts decreased the mean velocity of anteroposterior sway. The muscle activation of the affected lower extremity was not significantly different among the no-shoe lift, 5 mm shoe lift and 10 mm shoe lift conditions; however, the muscle activities of the rectus femoris, biceps femoris, tibialis anterior, and medial gastrocnemius of the affected lower extremity progressively improved with increasing height of the shoe lift. [Conclusion] A constrained weight shift to the affected side elicited by a shoe insole of 10 mm height on the unaffected side can improve the static standing balance of stroke patients, and it resulted in 14–24% increases in the muscle activities of the affected leg. PMID:25931729
Muscle Strength and Changes in Physical Function in Women With Systemic Lupus Erythematosus.
Andrews, James S; Trupin, Laura; Schmajuk, Gabriela; Barton, Jennifer; Margaretten, Mary; Yazdany, Jinoos; Yelin, Edward H; Katz, Patricia P
2015-08-01
Cross-sectional studies have observed that muscle weakness is associated with worse physical function among women with systemic lupus erythematosus (SLE). The present study examines whether reduced upper and lower extremity muscle strength predict declines in function over time among adult women with SLE. One hundred forty-six women from a longitudinal SLE cohort participated in the study. All measures were collected during in-person research visits approximately 2 years apart. Upper extremity muscle strength was assessed by grip strength. Lower extremity muscle strength was assessed by peak knee torque of extension and flexion. Physical function was assessed using the Short Physical Performance Battery (SPPB). Regression analyses modeled associations of baseline upper and lower extremity muscle strength with followup SPPB scores controlling for baseline SPPB, age, SLE duration, SLE disease activity (Systemic Lupus Activity Questionnaire), physical activity level, prednisone use, body composition, and depression. Secondary analyses tested whether associations of baseline muscle strength with followup in SPPB scores differed between intervals of varying baseline muscle strength. Lower extremity muscle strength strongly predicted changes over 2 years in physical function even when controlling for covariates. The association of reduced lower extremity muscle strength with reduced physical function in the future was greatest among the weakest women. Reduced lower extremity muscle strength predicted clinically significant declines in physical function, especially among the weakest women. Future studies should test whether therapies that promote preservation of lower extremity muscle strength may prevent declines in function among women with SLE. © 2015, American College of Rheumatology.
Farrokhi, Shawn; Pollard, Christine D; Souza, Richard B; Chen, Yu-Jen; Reischl, Stephen; Powers, Christopher M
2008-07-01
Experimental laboratory study. To examine how a change in trunk position influences the kinematics, kinetics, and muscle activity of the lead lower extremity during the forward lunge exercise. Altering the position of the trunk during the forward lunge exercise is thought to affect the muscular actions of the lead lower extremity. However, no studies have compared the biomechanical differences between the traditional forward lunge and its variations. Ten healthy adults (5 males, 5 females; mean age +/- SD, 26.7 +/- 3.2 years) participated. Lower extremity kinematics, kinetics, and surface electromyographic (EMG) data were obtained while subjects performed 3 lunge exercises: normal lunge with the trunk erect (NL), lunge with the trunk forward (LTF), and lunge with trunk extension (LTE). A 1-way analysis of variance with repeated measures was used to compare lower extremity kinematics, joint impulse (area under the moment-time curve), and normalized EMG (highest 1-second window of activity for selected lower extremity muscles) among the 3 lunge conditions. During the LTF condition, significant increases were noted in peak hip flexion angle, hip extensor and ankle plantar flexor impulse, as well as gluteus maximus and biceps femoris EMG (P<.015) when compared to the NL condition. During the LTE condition, a significant increase was noted in peak ankle dorsiflexion and a significant decrease was noted in peak hip flexion angle (P<.015) compared to the NL condition. Performing a lunge with the trunk forward increased the hip extensor impulse and the recruitment of the hip extensors. In contrast, performing a forward lunge with the trunk extended did not alter joint impulse or activation of the lower extremity musculature. Therapy, level 5.
TransFormers for Ensuring Long-Term Operations in Lunar Extreme Environments
NASA Technical Reports Server (NTRS)
Mantovani, J. G.; Stoica, A.; Alkalai, L.; Wilcox, B.; Quadrelli, M.
2016-01-01
"Surviving Extreme Space Environments" (EE) is one of NASA's Space Technology Grand Challenges. Power generation and thermal control are the key survival ingredients that allow a robotic explorer to cope with the EE using resources available to it, for example, by harvesting the local solar energy or by utilizing an onboard radioisotope thermoelectric generator (RTG). TransFormers (TFs) are a new technology concept designed to transform a localized area within a harsh extreme environment into a survivable micro-environment by projecting energy to the precise location where robots or humans operate. For example, TFs placed at a location on the rim of Shackleton Crater, which is illuminated by solar radiation for most of the year, would be able to reflect solar energy onto robots operating in the dark cold crater. TFs utilize a shape transformation mechanism to un-fold from a compact volume to a large reflective surface, and to control how much-and where-the energy is projected, and by adjusting for the changing position of the sun. TFs would enable in-situ resource utilization (ISRU) activities within locations of high interest that would normally be unreachable because of their extreme environment
Sex Differences During an Overhead Squat Assessment.
Mauntel, Timothy C; Post, Eric G; Padua, Darin A; Bell, David R
2015-08-01
A disparity exists between the rates of male and female lower extremity injuries. One factor that may contribute to this disparity is high-risk biomechanical patterns that are commonly displayed by females. It is unknown what biomechanical differences exist between males and females during an overhead squat. This study compared lower extremity biomechanics during an overhead squat and ranges of motion between males and females. An electromagnetic motion tracking system interfaced with a force platform was used to quantify peak lower extremity kinematics and kinetics during the descent phase of each squat. Range of motion measurements were assessed with a standard goniometer. Differences between male and female kinematics, kinetics, and ranges of motion were identified with t tests. Males displayed greater peak knee valgus angle, peak hip flexion angle, peak vertical ground reaction forces, and peak hip extension moments. Males also displayed less active ankle dorsiflexion with the knee extended and hip internal and external rotation than females. No other differences were observed. The biomechanical differences between males and females during the overhead squat may result from differences in lower extremity ranges of motion. Therefore, sex-specific injury prevention programs should be developed to improve biomechanics and ranges of motion.
Simulation of Extreme Surface Winds by Regional Climate Models in the NARCCAP Archive
NASA Astrophysics Data System (ADS)
Hatteberg, R.; Takle, E. S.
2011-12-01
Surface winds play a significant role in many natural processes as well as providing a very important ecological service for many human activities. Surface winds ventilate pollutants and heat from our cities, contribute to pollination for our crops, and regulate the fluxes of heat, moisture, and carbon dioxide from the earth's surface. Many environmental models such as biogeochemical models, crop models, lake models, pollutant transport models, etc., use surface winds as a key variable. Studies of the impacts of climate change and climate variability on a wide range of natural systems and coupled human-natural systems frequently need information on how surface wind speeds will change as greenhouse gas concentrations in the earth's atmosphere change. We have studied the characteristics of extreme winds - both high winds and low winds - created by regional climate models (RCMs) in the NARCCAP archives. We evaluated the capabilities of five RCMs forced by NCEP reanalysis data as well as global climate model (GCM) data for contemporary and future scenario climates to capture the observed statistical distribution of surface winds, both high-wind events and low-wind conditions. Our domain is limited to the Midwest (37°N to 49°N, -82°W to -101°W) with the Great Lakes masked out, which eliminates orographic effects that may contribute to regional circulations. The majority of this study focuses on the warm seasonal in order to examine derechos on the extreme high end and air pollution and plant processes on the low wind speed end. To examine extreme high winds we focus on derechos, which are long-lasting convectively driven extreme wind events that frequently leave a swath of damage extending across multiple states. These events are unusual in that, despite their relatively small spatial scale, they can persist for hours or even days, drawing energy from well-organized larger mesoscale or synoptic scale processes. We examine the ability of NARCCAP RCMs to reproduce these isolated extreme events by assessing their existence, location, magnitude, synoptic linkage, initiation time and duration as compared to the record of observations of derechos in the Midwest and Northeast US. We find that RCMs do reproduce features with close resemblance to derechos although their magnitudes are considerably below those observed (which may be expected given the 50-km grid spacing of the RCM models). Extreme low wind speeds in summer are frequently associated with stagnation conditions leading to high air pollution events in major cities. Low winds also lead to reduced evapotranspiration by crops, which can impact phenological processes (e.g. pollination and seed fertilization, carbon uptake by plants). We evaluate whether RCMs can simulate climatic distributions of low-wind conditions in the northern US. Results show differences among models in their ability to reproduce observed characteristics of low summer-time winds. Only one model reproduces observed high frequency of calm night-time surface winds in summer, which suggests a need to improve model capabilities for simulating extreme stagnation events.
Effects of Extreme Temperatures on Cause-Specific Cardiovascular Mortality in China
Wang, Xuying; Li, Guoxing; Liu, Liqun; Westerdahl, Dane; Jin, Xiaobin; Pan, Xiaochuan
2015-01-01
Objective: Limited evidence is available for the effects of extreme temperatures on cause-specific cardiovascular mortality in China. Methods: We collected data from Beijing and Shanghai, China, during 2007–2009, including the daily mortality of cardiovascular disease, cerebrovascular disease, ischemic heart disease and hypertensive disease, as well as air pollution concentrations and weather conditions. We used Poisson regression with a distributed lag non-linear model to examine the effects of extremely high and low ambient temperatures on cause-specific cardiovascular mortality. Results: For all cause-specific cardiovascular mortality, Beijing had stronger cold and hot effects than those in Shanghai. The cold effects on cause-specific cardiovascular mortality reached the strongest at lag 0–27, while the hot effects reached the strongest at lag 0–14. The effects of extremely low and high temperatures differed by mortality types in the two cities. Hypertensive disease in Beijing was particularly susceptible to both extremely high and low temperatures; while for Shanghai, people with ischemic heart disease showed the greatest relative risk (RRs = 1.16, 95% CI: 1.03, 1.34) to extremely low temperature. Conclusion: People with hypertensive disease were particularly susceptible to extremely low and high temperatures in Beijing. People with ischemic heart disease in Shanghai showed greater susceptibility to extremely cold days. PMID:26703637
Effects of Extreme Temperatures on Cause-Specific Cardiovascular Mortality in China.
Wang, Xuying; Li, Guoxing; Liu, Liqun; Westerdahl, Dane; Jin, Xiaobin; Pan, Xiaochuan
2015-12-21
Limited evidence is available for the effects of extreme temperatures on cause-specific cardiovascular mortality in China. We collected data from Beijing and Shanghai, China, during 2007-2009, including the daily mortality of cardiovascular disease, cerebrovascular disease, ischemic heart disease and hypertensive disease, as well as air pollution concentrations and weather conditions. We used Poisson regression with a distributed lag non-linear model to examine the effects of extremely high and low ambient temperatures on cause-specific cardiovascular mortality. For all cause-specific cardiovascular mortality, Beijing had stronger cold and hot effects than those in Shanghai. The cold effects on cause-specific cardiovascular mortality reached the strongest at lag 0-27, while the hot effects reached the strongest at lag 0-14. The effects of extremely low and high temperatures differed by mortality types in the two cities. Hypertensive disease in Beijing was particularly susceptible to both extremely high and low temperatures; while for Shanghai, people with ischemic heart disease showed the greatest relative risk (RRs = 1.16, 95% CI: 1.03, 1.34) to extremely low temperature. People with hypertensive disease were particularly susceptible to extremely low and high temperatures in Beijing. People with ischemic heart disease in Shanghai showed greater susceptibility to extremely cold days.
NASA Astrophysics Data System (ADS)
Berg, Danielle A.; Erb, Dawn K.; Auger, Matthew W.; Pettini, Max; Brammer, Gabriel B.
2018-06-01
We report new observations of SL2S J021737–051329, a lens system consisting of a bright arc at z = 1.84435, magnified ∼17× by a massive galaxy at z = 0.65. SL2S0217 is a low-mass (M < 109 M ⊙), low-metallicity (Z ∼ 1/20 Z ⊙) galaxy, with extreme star-forming conditions that produce strong nebular UV emission lines in the absence of any apparent outflows. Here we present several notable features from rest-frame UV Keck/LRIS spectroscopy: (1) Very strong narrow emission lines are measured for C IV λλ1548, 1550, He II λ1640, O III] λλ1661, 1666, Si III] λλ1883, 1892, and C III] λλ1907, 1909. (2) Double-peaked Lyα emission is observed with a dominant blue peak and centered near the systemic velocity. (3) The low- and high-ionization absorption features indicate very little or no outflowing gas along the sight line to the lensed galaxy. The relative emission-line strengths can be reproduced with a very high ionization, low-metallicity starburst with binaries, with the exception of He II, which indicates that an additional ionization source is needed. We rule out large contributions from active galactic nuclei and shocks to the photoionization budget, suggesting that the emission features requiring the hardest radiation field likely result from extreme stellar populations that are beyond the capabilities of current models. Therefore, SL2S0217 serves as a template for the extreme conditions that are important for reionization and thought to be more common in the early universe.
Dudek, Dominika; Siwek, Marcin; Jaeschke, Rafał; Drozdowicz, Katarzyna; Styczeń, Krzysztof; Arciszewska, Aleksandra; Chrobak, Adrian A; Rybakowski, Janusz K
2016-06-01
We hypothesised that men and women who engage in extreme or high-risk sports would score higher on standardised measures of bipolarity and impulsivity compared to age and gender matched controls. Four-hundred and eighty extreme or high-risk athletes (255 males and 225 females) and 235 age-matched control persons (107 males and 128 females) were enrolled into the web-based case-control study. The Mood Disorder Questionnaire (MDQ) and Barratt Impulsiveness Scale (BIS-11) were administered to screen for bipolarity and impulsive behaviours, respectively. Results indicated that extreme or high-risk athletes had significantly higher scores of bipolarity and impulsivity, and lower scores on cognitive complexity of the BIS-11, compared to controls. Further, there were positive correlations between the MDQ and BIS-11 scores. These results showed greater rates of bipolarity and impulsivity, in the extreme or high-risk athletes, suggesting these measures are sensitive to high-risk behaviours.
The Climate Science Special Report: Detection and Attribution
NASA Astrophysics Data System (ADS)
Wehner, M. F.
2017-12-01
The Climate Science Special Report reiterates previous findings about the human influence on global mean surface air temperature with the statement "…it is extremely likely that human activities, especially emissions of greenhouse gases, are the dominant cause of the observed warming since the mid 20th century. For the warming over the last century, there is no convincing alternative explanation supported by the extent of the observational evidence." This is a statement made with high confidence and supported by multiple lines of evidence. The report also assesses the latest developments in the field of probabilistic extreme event attribution—the quantification of the influence of anthropogenic climate change on individual extreme weather events—with a focus on those recent events within the United States that have been analyzed. Thirty different events within the US are reported on including heat waves, cold snaps, wet seasons, individual storms and droughts. Most but not all of the individual US events studied revealed an influence from human induced changes to the climate system.
Detection of the relationship between peak temperature and extreme precipitation
NASA Astrophysics Data System (ADS)
Yu, Y.; Liu, J.; Zhiyong, Y.
2017-12-01
Under the background of climate change and human activities, the characteristics and pattern of precipitation have changed significantly in many regions. As the political and cultural center of China, the structure and character of precipitation in Jingjinji District has varied dramatically in recent years. In this paper, the daily precipitation data throughout the period 1960-2013 are selected for analyzing the spatial-temporal variability of precipitation. The results indicate that the frequency and intensity of precipitation presents an increasing trend. Based on the precipitation data, the maximum, minimum and mean precipitation in different temporal and spatial scales is calculated respectively. The temporal and spatial variation of temperature is obtained by using statistical methods. The relationship between temperature and precipitation in different range is analyzed. The curve relates daily precipitation extremes with local temperatures has a peak structure, increasing at the low-medium range of temperature variations but decreasing at high temperatures. The relationship between extreme precipitation is stronger in downtown than that in suburbs.
NASA Astrophysics Data System (ADS)
Sawyer, D.; Reece, R.; Gulick, S. P. S.; Lenz, B. L.
2017-12-01
The southern Alaskan offshore margin is prone to submarine landslides and tsunami hazards due to seismically active plate boundaries and extreme sedimentation rates from glacially enhanced mountain erosion. We examine the submarine landslide potential with new shear strength measurements acquired by Integrated Ocean Drilling Program Expedition 341 on the continental slope and Surveyor Fan. These data reveal lower than expected sediment strength. Contrary to other active margins where seismic strengthening enhances slope stability, the high-sedimentation margin offshore southern Alaska behaves like a passive margin from a shear strength perspective. We interpret that seismic strengthening occurs but is offset by high sedimentation rates and overpressure within the slope and Surveyor Fan. This conclusion is supported because shear strength follows an expected active margin profile outside of the fan, where background sedimentation rates occur. More broadly, seismically active margins with wet-based glaciers are susceptible to submarine landslide hazards because of the combination of high sedimentation rates and earthquake shaking
NASA Astrophysics Data System (ADS)
Menz, Christoph
2016-04-01
Climate change interferes with various aspects of the socio-economic system. One important aspect is its influence on animal husbandry, especially dairy faming. Dairy cows are usually kept in naturally ventilated barns (NVBs) which are particular vulnerable to extreme events due to their low adaptation capabilities. An effective adaptation to high outdoor temperatures for example, is only possible under certain wind and humidity conditions. High temperature extremes are expected to increase in number and strength under climate change. To assess the impact of this change on NVBs and dairy cows also the changes in wind and humidity needs to be considered. Hence we need to consider the multivariate structure of future temperature extremes. The OptiBarn project aims to develop sustainable adaptation strategies for dairy housings under climate change for Europe, by considering the multivariate structure of high temperature extremes. In a first step we identify various multivariate high temperature extremes for three core regions in Europe. With respect to dairy cows in NVBs we will focus on the wind and humidity field during high temperature events. In a second step we will use the CORDEX-EUR-11 ensemble to evaluate the capability of the RCMs to model such events and assess their future change potential. By transferring the outdoor conditions to indoor climate and animal wellbeing the results of this assessment can be used to develop technical, architectural and animal specific adaptation strategies for high temperature extremes.
Low-concentrated solar-pumped laser via transverse excitation fiber-laser geometry.
Masuda, Taizo; Iyoda, Mitsuhiro; Yasumatsu, Yuta; Endo, Masamori
2017-09-01
We demonstrate an extremely low-concentrated solar-pumped laser (SPL) using a fiber laser with transverse excitation geometry. A low concentration factor is highly desired in SPLs to eliminate the need for precise solar tracking and to considerably increase the practical applications of SPL technology. In this Letter, we have exploited the intrinsic low-loss property of silica fibers to compensate for the extremely low gain coefficient of the weakly pumped active medium. A 40 m long Nd 3+ -doped fiber coil is packed in a ring-shaped chamber filled with a sensitizer solution. We demonstrated a lasing threshold that is 15 times the concentration of natural sunlight and two orders of magnitude smaller than those of conventional SPLs.
Very fast optical flaring from a possible new Galactic magnetar.
Stefanescu, A; Kanbach, G; Słowikowska, A; Greiner, J; McBreen, S; Sala, G
2008-09-25
Highly luminous rapid flares are characteristic of processes around compact objects like white dwarfs, neutron stars and black holes. In the high-energy regime of X-rays and gamma-rays, outbursts with variabilities on timescales of seconds or less are routinely observed, for example in gamma-ray bursts or soft gamma-ray repeaters. At optical wavelengths, flaring activity on such timescales has not been observed, other than from the prompt phase of one exceptional gamma-ray burst. This is mostly due to the fact that outbursts with strong, fast flaring are usually discovered in the high-energy regime; most optical follow-up observations of such transients use instruments with integration times exceeding tens of seconds, which are therefore unable to resolve fast variability. Here we show the observation of extremely bright and rapid optical flaring in the Galactic transient SWIFT J195509.6+261406. Our optical light curves are phenomenologically similar to high-energy light curves of soft gamma-ray repeaters and anomalous X-ray pulsars, which are thought to be neutron stars with extremely high magnetic fields (magnetars). This suggests that similar processes are in operation, but with strong emission in the optical, unlike in the case of other known magnetars.
Chang, Chia-Yuan; Rupp, Jonathan D; Reed, Matthew P; Hughes, Richard E; Schneider, Lawrence W
2009-11-01
In a previous study, the authors reported on the development of a finite-element model of the midsize male pelvis and lower extremities with lower-extremity musculature that was validated using PMHS knee-impact response data. Knee-impact simulations with this model were performed using forces from four muscles in the lower extremities associated with two-foot bracing reported in the literature to provide preliminary estimates of the effects of lower-extremity muscle activation on knee-thigh-hip injury potential in frontal impacts. The current study addresses a major limitation of these preliminary simulations by using the AnyBody three-dimensional musculoskeletal model to estimate muscle forces produced in 35 muscles in each lower extremity during emergency one-foot braking. To check the predictions of the AnyBody Model, activation levels of twelve major muscles in the hip and lower extremities were measured using surface EMG electrodes on 12 midsize-male subjects performing simulated maximum and 50% of maximum braking in a laboratory seating buck. Comparisons between test results and the predictions of the AnyBody Model when it was used to simulate these same braking tests suggest that the AnyBody model appropriately predicts agonistic muscle activations but under predicts antagonistic muscle activations. Simulations of knee-to-knee-bolster impacts were performed by impacting the knees of the lower-extremity finite element model with and without the muscle forces predicted by the validated AnyBody Model. Results of these simulations confirm previous findings that muscle tension increases knee-impact force by increasing the effective mass of the KTH complex due to tighter coupling of muscle mass to bone. They also indicate that muscle activation preferentially couples mass distal to the hip, thereby accentuating the decrease in femur force from the knee to the hip. However, the reduction in force transmitted from the knee to the hip is offset by the increased force at the knee and by increased compressive forces at the hip due to activation of lower-extremity muscles. As a result, approximately 45% to 60% and 50% to 65% of the force applied to the knee is applied to the hip in the simulations without and with muscle tension, respectively. The simulation results suggest that lower-extremity muscle tension has little effect on the risk of hip injuries, but it increases the bending moments in the femoral shaft, thereby increasing the risk of femoral shaft fractures by 20%-40%. However, these findings may be affected by the inability of the AnyBody Model to appropriately predict antagonistic muscle forces.
NASA Astrophysics Data System (ADS)
Sun, Qiaohong; Miao, Chiyuan; Qiao, Yuanyuan; Duan, Qingyun
2017-12-01
The El Niño-Southern Oscillation (ENSO) and local temperature are important drivers of extreme precipitation. Understanding the impact of ENSO and temperature on the risk of extreme precipitation over global land will provide a foundation for risk assessment and climate-adaptive design of infrastructure in a changing climate. In this study, nonstationary generalized extreme value distributions were used to model extreme precipitation over global land for the period 1979-2015, with ENSO indicator and temperature as covariates. Risk factors were estimated to quantify the contrast between the influence of different ENSO phases and temperature. The results show that extreme precipitation is dominated by ENSO over 22% of global land and by temperature over 26% of global land. With a warming climate, the risk of high-intensity daily extreme precipitation increases at high latitudes but decreases in tropical regions. For ENSO, large parts of North America, southern South America, and southeastern and northeastern China are shown to suffer greater risk in El Niño years, with more than double the chance of intense extreme precipitation in El Niño years compared with La Niña years. Moreover, regions with more intense precipitation are more sensitive to ENSO. Global climate models were used to investigate the changing relationship between extreme precipitation and the covariates. The risk of extreme, high-intensity precipitation increases across high latitudes of the Northern Hemisphere but decreases in middle and lower latitudes under a warming climate scenario, and will likely trigger increases in severe flooding and droughts across the globe. However, there is some uncertainties associated with the influence of ENSO on predictions of future extreme precipitation, with the spatial extent and risk varying among the different models.
NASA Astrophysics Data System (ADS)
Rosendahl, D. H.; Ćwik, P.; Martin, E. R.; Basara, J. B.; Brooks, H. E.; Furtado, J. C.; Homeyer, C. R.; Lazrus, H.; Mcpherson, R. A.; Mullens, E.; Richman, M. B.; Robinson-Cook, A.
2017-12-01
Extreme precipitation events cause significant damage to homes, businesses, infrastructure, and agriculture, as well as many injures and fatalities as a result of fast-moving water or waterborne diseases. In the USA, these natural hazard events claimed the lives of more than 300 people during 2015 - 2016 alone, with total damage reaching $24.4 billion. Prior studies of extreme precipitation events have focused on the sub-daily to sub-weekly timeframes. However, many decisions for planning, preparing and resilience-building require sub-seasonal to seasonal timeframes (S2S; 14 to 90 days), but adequate forecasting tools for prediction do not exist. Therefore, the goal of this newly funded project is an enhancement in understanding of the large-scale forcing and dynamics of S2S extreme precipitation events in the United States, and improved capability for modeling and predicting such events. Here, we describe the project goals, objectives, and research activities that will take place over the next 5 years. In this project, a unique team of scientists and stakeholders will identify and understand weather and climate processes connected with the prediction of S2S extreme precipitation events by answering these research questions: 1) What are the synoptic patterns associated with, and characteristic of, S2S extreme precipitation evens in the contiguous U.S.? 2) What role, if any, do large-scale modes of climate variability play in modulating these events? 3) How predictable are S2S extreme precipitation events across temporal scales? 4) How do we create an informative prediction of S2S extreme precipitation events for policymaking and planing? This project will use observational data, high-resolution radar composites, dynamical climate models and workshops that engage stakeholders (water resource managers, emergency managers and tribal environmental professionals) in co-production of knowledge. The overarching result of this project will be predictive models to reduce of the societal and economic impacts of extreme precipitation events. Another outcome will include statistical and co-production frameworks, which could be applied across other meteorological extremes, all time scales and in other parts of the world to increase resilience to extreme meteorological events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Jian; Xue, Daokai; Gao, Yang
Understanding how regional hydrological extremes would respond to warming is a grand challenge to the community of climate change research. To address this challenge, we construct an analysis framework based on column integrated water vapor (CWV) wave activity to diagnose the wave component of the hydrological cycle that contributes to hydrological extremes. By applying the analysis to the historical and future climate projections from the CMIP5 models, we found that the wet-versus-dry disparity of daily net precipitation along a zonal band can increase at a super Clausius-Clapeyron rate due to the enhanced stirring length of wave activity at the polewardmore » flank of the mean storm track. The local variant of CWV wave activity reveals the unique characteristics of atmospheric rivers (ARs) in terms of their transport function, enhanced mixing and hydrological cycling rate (HC). Under RCP8.5, the local moist wave activity increases by ~40% over the northeastern Pacific by the end of the 21st century, indicating more ARs hitting the west coast, giving rise to a ~20% increase in the related hydrological extremes - $ despite a weakening of the local HC.« less
Microbial diversity of extreme habitats in human homes.
Savage, Amy M; Hills, Justin; Driscoll, Katherine; Fergus, Daniel J; Grunden, Amy M; Dunn, Robert R
2016-01-01
High-throughput sequencing techniques have opened up the world of microbial diversity to scientists, and a flurry of studies in the most remote and extreme habitats on earth have begun to elucidate the key roles of microbes in ecosystems with extreme conditions. These same environmental extremes can also be found closer to humans, even in our homes. Here, we used high-throughput sequencing techniques to assess bacterial and archaeal diversity in the extreme environments inside human homes (e.g., dishwashers, hot water heaters, washing machine bleach reservoirs, etc.). We focused on habitats in the home with extreme temperature, pH, and chemical environmental conditions. We found a lower diversity of microbes in these extreme home environments compared to less extreme habitats in the home. However, we were nonetheless able to detect sequences from a relatively diverse array of bacteria and archaea. Habitats with extreme temperatures alone appeared to be able to support a greater diversity of microbes than habitats with extreme pH or extreme chemical environments alone. Microbial diversity was lowest when habitats had both extreme temperature and one of these other extremes. In habitats with both extreme temperatures and extreme pH, taxa with known associations with extreme conditions dominated. Our findings highlight the importance of examining interactive effects of multiple environmental extremes on microbial communities. Inasmuch as taxa from extreme environments can be both beneficial and harmful to humans, our findings also suggest future work to understand both the threats and opportunities posed by the life in these habitats.
NASA Astrophysics Data System (ADS)
White, C. J.; Franks, S. W.; McEvoy, D.
2015-06-01
Meteorological and hydrological centres around the world are looking at ways to improve their capacity to be able to produce and deliver skilful and reliable forecasts of high-impact extreme rainfall and flooding events on a range of prediction timescales (e.g. sub-daily, daily, multi-week, seasonal). Making improvements to extended-range rainfall and flood forecast models, assessing forecast skill and uncertainty, and exploring how to apply flood forecasts and communicate their benefits to decision-makers are significant challenges facing the forecasting and water resources management communities. This paper presents some of the latest science and initiatives from Australia on the development, application and communication of extreme rainfall and flood forecasts on the extended-range "subseasonal-to-seasonal" (S2S) forecasting timescale, with a focus on risk-based decision-making, increasing flood risk awareness and preparedness, capturing uncertainty, understanding human responses to flood forecasts and warnings, and the growing adoption of "climate services". The paper also demonstrates how forecasts of flood events across a range of prediction timescales could be beneficial to a range of sectors and society, most notably for disaster risk reduction (DRR) activities, emergency management and response, and strengthening community resilience. Extended-range S2S extreme flood forecasts, if presented as easily accessible, timely and relevant information are a valuable resource to help society better prepare for, and subsequently cope with, extreme flood events.
Batch-fabricated high-performance graphene Hall elements
Xu, Huilong; Zhang, Zhiyong; Shi, Runbo; Liu, Honggang; Wang, Zhenxing; Wang, Sheng; Peng, Lian-Mao
2013-01-01
Hall elements are by far the most widely used magnetic sensor. In general, the higher the mobility and the thinner the active region of the semiconductor used, the better the Hall device. While most common magnetic field sensors are Si-based Hall sensors, devices made from III-V compounds tend to favor over that based on Si. However these devices are more expensive and difficult to manufacture than Si, and hard to be integrated with signal-processing circuits for extending function and enforcing performance. In this article we show that graphene is intrinsically an ideal material for Hall elements which may harness the remarkable properties of graphene, i.e. extremely high carrier mobility and atomically thin active body, to create ideal magnetic sensors with high sensitivity, excellent linearity and remarkable thermal stability. PMID:23383375
Pharmacological Correction of the Human Functional State in High Altitude Conditions
2001-06-01
Operational Medical Issues in Hypo-and Hyperbaric Conditions [les Questions medicales a caractere oprationel liees aux conditions hypobares ou hyperbares ...Cholesterol, Adaptation Paper presented at the RTO HFM Symposium on "Operational Medical Issues in Hypo- and Hyperbaric Conditions", held in Toronto...T.D., 1986, Recovery after Extreme Hypobaric Hypoxia as a Method of Study of Antihypoxic Activity of Chemical Compounds. In: Farmakologicheskaya
Tunable Shape-Shifting Structures for Military Applications
2014-01-01
autonomous (also self - healing and fault-tolerant) systems that can provide multifunctionality whilst minimising weight/size, particularly in extreme...The proof-of-concept approach was successfully demonstrated. It is possible to deform the surface of a multilayer soft structure with a high level...biological systems found in Nature (e.g. adaptive skin texture of cephalopods), active soft structures producing large deformations offer attractive ways to
Kaposi’s sarcoma (KS), a disease characterized by the development of malignant tumors usually in the lower extremities, is a major complication of HIV/AIDS. KS continues to be a problem even with the use of highly active antiretroviral therapy (HAART), today’s standard of care for patients with HIV/AIDS. CCR investigators recently investigated the effects of interleukin-12
NASA Astrophysics Data System (ADS)
Tanaka, Yasuyuki T.; Buson, Sara; Kocevski, Daniel
2017-09-01
We searched for Fermi-LAT sources inside the extremely high-energy (EHE) IceCube-170922A neutrino event error region (https://gcn.gsfc.nasa.gov/gcn3/21916.gcn3, see also ATels 10773, 10787) with all-sky survey data from the Large Area Telescope (LAT), on board the Fermi Gamma-ray Space Telescope.
Equipment for Subpicosecond Extreme Ultraviolet Facility.
1986-02-05
Excitation Induced by...................... 36 Coherent Motion of Outer-Shell Electrons" E. "A Theoretical Model of Inner-Shell...efficient production of x-rays are feasible. Our work involves a program of activities, involving both experimental -nd theoretical components, to...in addition to a theoretical effort con- itrating on the character of high order multiquantum coupling in the inten- I regime above 10 1 7 W cm2 . In
Extreme storm activity in North Atlantic and European region
NASA Astrophysics Data System (ADS)
Vyazilova, N.
2010-09-01
The extreme storm activity study over North Atlantic and Europe includes the analyses of extreme cyclone (track number, integral cyclonic intensity) and extreme storm (track number) during winter and summer seasons in the regions: 1) 55°N-80N, 50°W-70°E; 2) 30°N-55°N, 50°W-70°E. Extreme cyclones were selected based on cyclone centre pressure (P<=970 mbar). Extreme storms were selected from extreme cyclones based on wind velocity on 925 mbar. The Bofort scala was used for this goal. Integral cyclonic intensity (for region) includes the calculation cyclone centers number and sum of MSLP anomalies in cyclone centers. The analyses based on automated cyclone tracking algorithm, 6-hourly MSLP and wind data (u and v on 925 gPa) from the NCEP/NCAR reanalyses from January 1948 to March 2010. The comparision of mean, calculated for every ten years, had shown, that in polar region extreme cyclone and storm track number, and integral cyclonic intensity gradually increases and have maximum during last years (as for summer, as for winter season). Every ten years means for summer season are more then for winter season, as for polar, as for tropical region. Means (ten years) for tropical region are significance less then for polar region.
NASA Astrophysics Data System (ADS)
Na, HeYa; Zhang, Lei; Qiu, HaiXia; Wu, Tao; Chen, MingXi; Yang, Nian; Li, LingZhi; Xing, FuBao; Gao, JianPing
2015-08-01
Palladium-copper nanoparticles (Pd-Cu NPs) supported on reduced graphene oxide (RGO) with different Pd/Cu ratios (Pd-Cu/RGO) were prepared by a two step method. The Pd-Cu/RGO hybrids were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction and thermogravimetric analyses. Cyclic voltammetry and chronoamperometry were used to investigate the electrochemical activities and stabilities of the Pd-Cu/RGO catalysts for the electro-oxidation of methanol and ethanol in alkaline media. The Pd-Cu/RGO catalysts exhibited high catalytic activities and good stabilities. This is because the catalysts have a bimetallic structure consisting of a small Pd-Cu core surrounded by a thin Pd-rich shell which improves the catalytic activities of the Pd-Cu/RGO hybrids. Thus they should be useful in direct methanol and ethanol fuel cells.
Isolation and characterization of high affinity aptamers against DNA polymerase iota.
Lakhin, Andrei V; Kazakov, Andrei A; Makarova, Alena V; Pavlov, Yuri I; Efremova, Anna S; Shram, Stanislav I; Tarantul, Viacheslav Z; Gening, Leonid V
2012-02-01
Human DNA-polymerase iota (Pol ι) is an extremely error-prone enzyme and the fidelity depends on the sequence context of the template. Using the in vitro systematic evolution of ligands by exponential enrichment (SELEX) procedure, we obtained an oligoribonucleotide with a high affinity to human Pol ι, named aptamer IKL5. We determined its dissociation constant with homogenous preparation of Pol ι and predicted its putative secondary structure. The aptamer IKL5 specifically inhibits DNA-polymerase activity of the purified enzyme Pol ι, but did not inhibit the DNA-polymerase activities of human DNA polymerases beta and kappa. IKL5 suppressed the error-prone DNA-polymerase activity of Pol ι also in cellular extracts of the tumor cell line SKOV-3. The aptamer IKL5 is useful for studies of the biological role of Pol ι and as a potential drug to suppress the increase of the activity of this enzyme in malignant cells.
Parra-Robles, Juan; Cross, Albert R; Santyr, Giles E
2005-05-01
Hyperpolarized noble gases (HNGs) provide exciting possibilities for MR imaging at ultra-low magnetic field strengths (<0.15 T) due to the extremely high polarizations available from optical pumping. The fringe field of many superconductive magnets used in clinical MR imaging can provide a stable magnetic field for this purpose. In addition to offering the benefit of HNG MR imaging alongside conventional high field proton MRI, this approach offers the other useful advantage of providing different field strengths at different distances from the magnet. However, the extremely strong field gradients associated with the fringe field present a major challenge for imaging since impractically high active shim currents would be required to achieve the necessary homogeneity. In this work, a simple passive shimming method based on the placement of a small number of ferromagnetic pieces is proposed to reduce the fringe field inhomogeneities to a level that can be corrected using standard active shims. The method explicitly takes into account the strong variations of the field over the volume of the ferromagnetic pieces used to shim. The method is used to obtain spectra in the fringe field of a high-field (1.89 T) superconducting magnet from hyperpolarized 129Xe gas samples at two different ultra-low field strengths (8.5 and 17 mT). The linewidths of spectra measured from imaging phantoms (30 Hz) indicate a homogeneity sufficient for MRI of the rat lung.
Peng, Xiong; Karakalos, Stavros G; Mustain, William E
2018-01-17
Selective electrochemical reduction of CO 2 is one of the most important processes to study because of its promise to convert this greenhouse gas to value-added chemicals at low cost. In this work, a simple anodization treatment was devised that first oxidizes Ag to Ag 2 CO 3 , then uses rapid electrochemical reduction to create preferentially oriented nanoparticles (PONs) of metallic Ag (PON-Ag) with high surface area as well as high activity and very high selectivity for the reduction of CO 2 to CO. The PON-Ag catalyst was dominated by (110) and (100) orientation, which allowed PON-Ag to achieve a CO Faradaic efficiency of 96.7% at an operating potential of -0.69 V vs RHE. This performance is not only significantly higher than that of polycrystalline Ag (60% at -0.87 V vs RHE) but also represents one of the best combinations of activity and selectivity achieved to date - all with a very simple, scalable approach to electrode fabrication.
Understanding neuromotor strategy during functional upper extremity tasks using symbolic dynamics.
Nathan, Dominic E; Guastello, Stephen J; Prost, Robert W; Jeutter, Dean C
2012-01-01
The ability to model and quantify brain activation patterns that pertain to natural neuromotor strategy of the upper extremities during functional task performance is critical to the development of therapeutic interventions such as neuroprosthetic devices. The mechanisms of information flow, activation sequence and patterns, and the interaction between anatomical regions of the brain that are specific to movement planning, intention and execution of voluntary upper extremity motor tasks were investigated here. This paper presents a novel method using symbolic dynamics (orbital decomposition) and nonlinear dynamic tools of entropy, self-organization and chaos to describe the underlying structure of activation shifts in regions of the brain that are involved with the cognitive aspects of functional upper extremity task performance. Several questions were addressed: (a) How is it possible to distinguish deterministic or causal patterns of activity in brain fMRI from those that are really random or non-contributory to the neuromotor control process? (b) Can the complexity of activation patterns over time be quantified? (c) What are the optimal ways of organizing fMRI data to preserve patterns of activation, activation levels, and extract meaningful temporal patterns as they evolve over time? Analysis was performed using data from a custom developed time resolved fMRI paradigm involving human subjects (N=18) who performed functional upper extremity motor tasks with varying time delays between the onset of intention and onset of actual movements. The results indicate that there is structure in the data that can be quantified through entropy and dimensional complexity metrics and statistical inference, and furthermore, orbital decomposition is sensitive in capturing the transition of states that correlate with the cognitive aspects of functional task performance.
Hard beta and gamma emissions of 124I. Impact on occupational dose in PET/CT.
Kemerink, G J; Franssen, R; Visser, M G W; Urbach, C J A; Halders, S G E A; Frantzen, M J; Brans, B; Teule, G J J; Mottaghy, F M
2011-01-01
The hard beta and gamma radiation of 124I can cause high doses to PET/CT workers. In this study we tried to quantify this occupational exposure and to optimize radioprotection. Thin MCP-Ns thermoluminescent dosimeters suitable for measuring beta and gamma radiation were used for extremity dosimetry, active personal dosimeters for whole-body dosimetry. Extremity doses were determined during dispensing of 124I and oral administration of the activity to the patient, the body dose during all phases of the PET/CT procedure. In addition, dose rates of vials and syringes as used in clinical practice were measured. The procedure for dispensing 124I was optimized using newly developed shielding. Skin dose rates up to 100 mSv/min were measured when in contact with the manufacturer's vial containing 370 MBq of 124I. For an unshielded 5 ml syringe the positron skin dose was about seven times the gamma dose. Before optimization of the preparation of 124I, using an already reasonably safe technique, the highest mean skin dose caused by handling 370 MBq was 1.9 mSv (max. 4.4 mSv). After optimization the skin dose was below 0.2 mSv. The highly energetic positrons emitted by 124I can cause high skin doses if radioprotection is poor. Under optimized conditions occupational doses are acceptable. Education of workers is of paramount importance.
Universal EUV in-band intensity detector
Berger, Kurt W.
2004-08-24
Extreme ultraviolet light is detected using a universal in-band detector for detecting extreme ultraviolet radiation that includes: (a) an EUV sensitive photodiode having a diode active area that generates a current responsive to EUV radiation; (b) one or more mirrors that reflects EUV radiation having a defined wavelength(s) to the diode active area; and (c) a mask defining a pinhole that is positioned above the diode active area, wherein EUV radiation passing through the pinhole is restricted substantially to illuminating the diode active area.
NASA Astrophysics Data System (ADS)
Piao, YongJun; Choi, YounJung; Kim, JungJa; Kwan, TaeKyu; Kim, Nam-Gyun
2009-03-01
Adequate postural balance depends on the spatial and temporal integration of vestibular, visual, and somatosensory information. Especially, the musculoskeletal function (range of joint, flexibility of spine, muscular strength) is essential in maintaining the postural balance. Muscular strength training methods include the use of commercialized devices and repeatable resistance training tools (rubber band, ball, etc). These training systems cost high price and can't control of intensity. Thus we suggest a new training system which can adjust training intensity and indicate the center of pressure of a subject while the training was passively controlled by applying controlled electric current to the Magneto- Rheological damper. And we performed experimental studies on the muscular activities in the lower extremities during maintaining, moving and pushing exercises on an unstable platform with Magneto rheological dampers. A subject executed the maintaining, moving and pushing exercises which were displayed in a monitor. The electromyographic signals of the eight muscles in lower extremities were recorded and analyzed in the time and frequency domain: the muscles of interest were rectus femoris, biceps femoris, tensor fasciae latae, vastus lateralis, vastus medialis, gastrocnemius, tibialis anterior, and soleus. The experimental results showed the difference of muscular activities at the four moving exercises and the nine maintaining exercises. The rate of the increase in the muscular activities was affected by the condition of the unstable platform with MR dampers for the maintaining and moving exercises. The experimental results suggested the choice of different maintaining and moving exercises could selectively train different muscles with varying intensity. Furthermore, the findings also suggested the training using this system can improve the ability of postural balance.
Petrilli, A S; Kechichian, R; Broniscer, A; Garcia, R J; Tanaka, C; Francisco, J; Lederman, H; Odone Filho, V; Camargo, O P; Bruniera, P; Pericles, P; Consentino, E; Ortega, J A
1999-08-01
Chemotherapy has dramatically improved the rates of cure and survival of patients with localized and metastatic osteosarcoma. Nonetheless, the number of chemotherapeutic agents active against osteosarcoma is limited to doxorubicin, cisplatin, high-dose methotrexate, and ifosfamide. Carboplatin, a cisplatin analogue, has been tested as a single agent in patients with recurrent osteosarcoma or as part of multiagent chemotherapy in newly diagnosed patients. We tested the activity and toxicity of two cycles of intraarterial carboplatin as a "window therapy" (600 mg/m2 per cycle) in 33 consecutive patients with extremity osteosarcoma before the start of multiagent chemotherapy. Response was based on clinical (tumor diameter, local inflammatory signs, and range of motion) and radiological parameters (plain local films and arteriographic studies prior to drug administration). Patients' age ranged between 8 and 18 years (median age 13 years). Primary tumor originated from the femur (15 patients), tibia (10 patients), fibula (4 patients), humerus (3 patients), and calcaneus (1 patient). Only 7 patients (21%) had metastatic disease at diagnosis (5 in the lung and 2 in other bones). A favorable clinical and radiological response was documented in 81% and 73% of the patients, respectively. Clinical and radiological progression occurred in 12% and 9% of the patients, respectively. Seventeen of the patients remain alive and disease-free. Survival and event-free survival at 3 years for nonmetastatic patients are 71% (SE = 9%) and 65% (SE = 9%), respectively; for metastatic patients, the figures are 17% (SE = 15%) and 14% (SE = 13%), respectively. We conclude that carboplatin is an active agent in the treatment of newly diagnosed extremity osteosarcoma. Copyright 1999 Wiley-Liss, Inc.
2015-07-08
Flaring, active regions of our sun are highlighted in this image combining observations from several telescopes. High-energy X-rays from NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) are shown in blue; low-energy X-rays from Japan's Hinode spacecraft are green; and extreme ultraviolet light from NASA's Solar Dynamics Observatory (SDO) is yellow and red. All three telescopes captured their solar images around the same time on April 29, 2015. The NuSTAR image is a mosaic made from combining smaller images. The active regions across the sun's surface contain material heated to several millions of degrees. The blue-white areas showing the NuSTAR data pinpoint the most energetic spots. During the observations, microflares went off, which are smaller versions of the larger flares that also erupt from the sun's surface. The microflares rapidly release energy and heat the material in the active regions. NuSTAR typically stares deeper into the cosmos to observe X-rays from supernovas, black holes and other extreme objects. But it can also look safely at the sun and capture images of its high-energy X-rays with more sensitivity than before. Scientists plan to continue to study the sun with NuSTAR to learn more about microflares, as well as hypothesized nanoflares, which are even smaller. In this image, the NuSTAR data shows X-rays with energies between 2 and 6 kiloelectron volts; the Hinode data, which is from the X-ray Telescope instrument, has energies of 0.2 to 2.4 kiloelectron volts; and the Solar Dynamics Observatory data, taken using the Atmospheric Imaging Assembly instrument, shows extreme ultraviolet light with wavelengths of 171 and 193 Angstroms. Note the green Hinode image frame edge does not extend as far as the SDO ultraviolet image, resulting in the green portion of the image being truncated on the right and left sides. http://photojournal.jpl.nasa.gov/catalog/PIA19821
Lattice Boltzmann for Airframe Noise Predictions
NASA Technical Reports Server (NTRS)
Barad, Michael; Kocheemoolayil, Joseph; Kiris, Cetin
2017-01-01
Increase predictive use of High-Fidelity Computational Aero- Acoustics (CAA) capabilities for NASA's next generation aviation concepts. CFD has been utilized substantially in analysis and design for steady-state problems (RANS). Computational resources are extremely challenged for high-fidelity unsteady problems (e.g. unsteady loads, buffet boundary, jet and installation noise, fan noise, active flow control, airframe noise, etc) ü Need novel techniques for reducing the computational resources consumed by current high-fidelity CAA Need routine acoustic analysis of aircraft components at full-scale Reynolds number from first principles Need an order of magnitude reduction in wall time to solution!
[Suicide and suicide prevention in Vienna from 1938 to 1945].
Sonneck, Gernot; Hirnsperger, Hans; Mundschütz, Reinhard
2012-01-01
Beginning with the inception of suicide prevention in interwar Vienna, the paper illustrates how the high number of counselling centres contrasted with a discourse of selection. Despite the fact that suicide rates proved extremely high, suicide prevention declined in importance between 1934 and 1945. Suicide was increasingly attributed to the weak and the inferior. The massive threat to Vienna's Jewish population and the high suicide rates among Viennese Jews are also outlined. The paper concludes with a synopsis of V. E. Frankl's activities in the field of suicide prevention at the Rothschild Hospital as well as the concentration camp in Theresienstadt.
NASA Astrophysics Data System (ADS)
Li, Donghuan; Zhou, Tianjun; Zou, Liwei; Zhang, Wenxia; Zhang, Lixia
2018-02-01
Extreme high-temperature events have large socioeconomic and human health impacts. East Asia (EA) is a populous region, and it is crucial to assess the changes in extreme high-temperature events in this region under different climate change scenarios. The Community Earth System Model low-warming experiment data were applied to investigate the changes in the mean and extreme high temperatures in EA under 1.5°C and 2°C warming conditions above preindustrial levels. The results show that the magnitude of warming in EA is approximately 0.2°C higher than the global mean. Most populous subregions, including eastern China, the Korean Peninsula, and Japan, will see more intense, more frequent, and longer-lasting extreme temperature events under 1.5°C and 2°C warming. The 0.5°C lower warming will help avoid 35%-46% of the increases in extreme high-temperature events in terms of intensity, frequency, and duration in EA with maximal avoidance values (37%-49%) occurring in Mongolia. Thus, it is beneficial for EA to limit the warming target to 1.5°C rather than 2°C.
Lohrmann, David; YoussefAgha, Ahmed; Jayawardene, Wasantha
2014-04-01
We determined current trends and patterns in overweight, obesity, and extreme high obesity among Pennsylvania pre-kindergarten (pre-K) to 12th grade students and simulated future trends. We analyzed body mass index (BMI) of pre-K to 12th grade students from 43 of 67 Pennsylvania counties in 2007 to 2011 to determine trends and to discern transition patterns among BMI status categories for 2009 to 2011. Vinsem simulation, confirmed by Markov chain modeling, generated future prevalence trends. Combined rates of overweight, obesity, and extreme high obesity decreased among secondary school students across the 5 years, and among elementary students, first increased and then markedly decreased. BMI status remained constant for approximately 80% of normal and extreme high obese students, but both decreased and increased among students who initially were overweight and obese; the increase in BMI remained significant. Overall trends in child and adolescent BMI status seemed positive. BMI transition patterns indicated that although overweight and obesity prevalence leveled off, extreme high obesity, especially among elementary students, is projected to increase substantially over time. If current transition patterns continue, the prevalence of overweight, obesity, and extreme high obesity among Pennsylvania students in 2031 is projected to be 16.0%, 6.6%, and 23.2%, respectively.
NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyons, K.D.; Honeygan, S.; Moroz, T
2007-06-01
The U.S. Department of Energy’s National Energy Technology Laboratory (NETL) established an Extreme Drilling Lab to engineer effective and efficient drilling technologies viable at depths greater than 20,000 feet. This paper details the challenges of ultra-deep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL’s Research and Development activities. NETL is invested in laboratory-scale physical simulation. Their physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480 °F around a single drill cutter. This simulator will not yet be operational by the planned conference dates; therefore,more » the results will be limited to identification of leading hypotheses of drilling phenomena and NETL’s test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Lab’s studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.« less
Generalist genes and high cognitive abilities.
Haworth, Claire M A; Dale, Philip S; Plomin, Robert
2009-07-01
The concept of generalist genes operating across diverse domains of cognitive abilities is now widely accepted. Much less is known about the etiology of the high extreme of performance. Is there more specialization at the high extreme? Using a representative sample of 4,000 12-year-old twin pairs from the UK Twins Early Development Study, we investigated the genetic and environmental overlap between web-based tests of general cognitive ability, reading, mathematics and language performance for the top 15% of the distribution using DF extremes analysis. Generalist genes are just as evident at the high extremes of performance as they are for the entire distribution of abilities and for cognitive disabilities. However, a smaller proportion of the phenotypic intercorrelations appears to be explained by genetic influences for high abilities.
Generalist genes and high cognitive abilities
Haworth, Claire M.A.; Dale, Philip S.; Plomin, Robert
2014-01-01
The concept of generalist genes operating across diverse domains of cognitive abilities is now widely accepted. Much less is known about the etiology of the high extreme of performance. Is there more specialization at the high extreme? Using a representative sample of 4000 12-year-old twin pairs from the UK Twins Early Development Study, we investigated the genetic and environmental overlap between web-based tests of general cognitive ability, reading, mathematics and language performance for the top 15% of the distribution using DF extremes analysis. Generalist genes are just as evident at the high extremes of performance as they are for the entire distribution of abilities and for cognitive disabilities. However, a smaller proportion of the phenotypic intercorrelations appears to be explained by genetic influences for high abilities. PMID:19377870
Representing Extremes in Agricultural Models
NASA Technical Reports Server (NTRS)
Ruane, Alex
2015-01-01
AgMIP and related projects are conducting several activities to understand and improve crop model response to extreme events. This involves crop model studies as well as the generation of climate datasets and scenarios more capable of capturing extremes. Models are typically less responsive to extreme events than we observe, and miss several forms of extreme events. Models also can capture interactive effects between climate change and climate extremes. Additional work is needed to understand response of markets and economic systems to food shocks. AgMIP is planning a Coordinated Global and Regional Assessment of Climate Change Impacts on Agricultural Production and Food Security with an aim to inform the IPCC Sixth Assessment Report.
NASA Astrophysics Data System (ADS)
Xu, S.; Curry, S.; Mitchell, D. L.; Luhmann, J. G.; Lillis, R. J.; Dong, C.
2017-12-01
Characterizing how the solar cycle affects the physics of the Mars-solar wind interaction can improve our understanding of Mars' atmospheric evolution and the plasma environment at Mars. In particular, solar transient events such as Interplanetary Coronal Mass Ejections (ICMEs) and Stream Interaction Regions (SIRs) significantly change the solar-wind interaction, including the magnetic topology and ion acceleration. However, both the Mars Express and Mars Atmosphere Volatile EvolutioN (MAVEN) missions have encountered relatively few extreme solar transient events due to the recent low solar activity (2004-2017). In contrast, Mars Global Surveyor (MGS) was operating during a relatively active solar maximum (1999-2003). Based on new results from MAVEN, this study reanalyzes MGS data to better understand how the Martian plasma environment responds to extreme solar events. In particular, we aim to investigate how the magnetic topology during these extreme events differs from the topology during quiet times. We conduct orbit comparisons of the magnetic topology inferred from MGS electron pitch angle distributions during quiet periods and extreme events to determine how the open and closed field patterns respond to extreme events.
Challenges of anamorphic high-NA lithography and mask making
NASA Astrophysics Data System (ADS)
Hsu, Stephen D.; Liu, Jingjing
2017-06-01
Chip makers are actively working on the adoption of 0.33 numerical aperture (NA) EUV scanners for the 7-nm and 5-nm nodes (B. Turko, S. L. Carson, A. Lio, T. Liang, M. Phillips, et al., in `Proc. SPIE9776, Extreme Ultraviolet (EUV) Lithography VII', vol. 977602 (2016) doi: 10.1117/12.2225014; A. Lio, in `Proc. SPIE9776, Extreme Ultraviolet (EUV) Lithography VII', vol. 97760V (2016) doi: 10.1117/12.2225017). In the meantime, leading foundries and integrated device manufacturers are starting to investigate patterning options beyond the 5-nm node (O. Wood, S. Raghunathan, P. Mangat, V. Philipsen, V. Luong, et al., in `Proc. SPIE. 9422, Extreme Ultraviolet (EUV) Lithography VI', vol. 94220I (2015) doi: 10.1117/12.2085022). To minimize the cost and process complexity of multiple patterning beyond the 5-nm node, EUV high-NA single-exposure patterning is a preferred method over EUV double patterning (O. Wood, S. Raghunathan, P. Mangat, V. Philipsen, V. Luong, et al., in `Proc. SPIE. 9422, Extreme Ultraviolet (EUV) Lithography VI', vol. 94220I (2015) doi: 10.1117/12.2085022; J. van Schoot, K. van Ingen Schenau, G. Bottiglieri, K. Troost, J. Zimmerman, et al., `Proc. SPIE. 9776, Extreme Ultraviolet (EUV) Lithography VII', vol. 97761I (2016) doi: 10.1117/12.2220150). The EUV high-NA scanner equipped with a projection lens of 0.55 NA is designed to support resolutions below 10 nm. The high-NA system is beneficial for enhancing resolution, minimizing mask proximity correction bias, improving normalized image log slope (NILS), and controlling CD uniformity (CDU). However, increasing NA from 0.33 to 0.55 reduces the depth of focus (DOF) significantly. Therefore, the source mask optimization (SMO) with sub-resolution assist features (SRAFs) are needed to increase DOF to meet the demanding full chip process control requirements (S. Hsu, R. Howell, J. Jia, H.-Y. Liu, K. Gronlund, et al., EUV `Proc. SPIE9048, Extreme Ultraviolet (EUV) Lithography VI', (2015) doi: 10.1117/12.2086074). To ensure no assist feature printing, the assist feature sizes need to be scaled with λ/NA. The extremely small SRAF width (below 25 nm on the reticle) is difficult to fabricate across the full reticle. In this paper, we introduce an innovative `attenuated SRAF' to improve SRAF manufacturability and still maintain the process window benefit. A new mask fabrication process is proposed to use existing mask-making capability to manufacture the attenuated SRAFs. The high-NA EUV system utilizes anamorphic reduction; 4× in the horizontal (slit) direction and 8× in the vertical (scanning) direction (J. van Schoot, K. van Ingen Schenau, G. Bottiglieri, K. Troost, J. Zimmerman, et al., `Proc. SPIE. 9776, Extreme Ultraviolet (EUV) Lithography VII', vol. 97761I (2016) doi: 10.1117/12.2220150; B. Kneer, S. Migura, W. Kaiser, J. T. Neumann, J. van Schoot, in `Proc. SPIE9422, Extreme Ultraviolet (EUV) Lithography VI', vol. 94221G (2015) doi: 10.1117/12.2175488). For an anamorphic system, the magnification has an angular dependency, and thus, familiar mask specifications such as mask error factor (MEF) need to be redefined. Similarly, mask-manufacturing rule check (MRC) needs to consider feature orientation.
NASA Astrophysics Data System (ADS)
Vreeland, Heidi; Schauer, James J.; Russell, Armistead G.; Marshall, Julian D.; Fushimi, Akihiro; Jain, Grishma; Sethuraman, Karthik; Verma, Vishal; Tripathi, Sachi N.; Bergin, Michael H.
2016-12-01
Roadside trash burning is largely unexamined as a factor that influences air quality, radiative forcing, and human health even though it is ubiquitously practiced across many global regions, including throughout India. The objective of this research is to examine characteristics and redox activity of fine particulate matter (PM2.5) associated with roadside trash burning in Bangalore, India. Emissions from smoldering and flaming roadside trash piles (n = 24) were analyzed for organic and elemental carbon (OC/EC), brown carbon (BrC), and toxicity (i.e. redox activity, measured via the dithiothreitol "DTT" assay). A subset of samples (n = 8) were further assessed for toxicity by a cellular assay (macrophage assay) and also analyzed for trace organic compounds. Results show high variability of chemical composition and toxicity between trash-burning emissions, and characteristic differences from ambient samples. OC/EC ratios for trash-burning emissions range from 0.8 to 1500, while ambient OC/EC ratios were observed at 5.4 ± 1.8. Trace organic compound analyses indicate that emissions from trash-burning piles were frequently composed of aromatic di-acids (likely from burning plastics) and levoglucosan (an indicator of biomass burning), while the ambient sample showed high response from alkanes indicating notable representation from vehicular exhaust. Volume-normalized DTT results (i.e., redox activity normalized by the volume of air pulled through the filter during sampling) were, unsurprisingly, extremely elevated in all trash-burning samples. Interestingly, DTT results suggest that on a per-mass basis, fresh trash-burning emissions are an order of magnitude less redox-active than ambient air (13.4 ± 14.8 pmol/min/μgOC for trash burning; 107 ± 25 pmol/min/μgOC for ambient). However, overall results indicate that near trash-burning sources, exposure to redox-active PM can be extremely high.
Contributions of natural climate changes and human activities to the trend of extreme precipitation
NASA Astrophysics Data System (ADS)
Gao, Lu; Huang, Jie; Chen, Xingwei; Chen, Ying; Liu, Meibing
2018-06-01
This study focuses on the analysis of the nonstationarity characteristics of extreme precipitation and their attributions in the southeastern coastal region of China. The maximum daily precipitation (MDP) series is extracted from observations at 79 meteorological stations in the study area during the first flood season (April-June) from 1960 to 2012. The trends of the mean (Mn) and variance (Var) of MDP are detected using the Generalized Additive Models for Location, Scale, and Shape parameters (GAMLSS) and Mann-Kendall test. The contributions of natural climate change and human activities to the Mn and Var changes of MDP are investigated using six large-scale circulation variables and emissions of four greenhouse gases based on GAMLSS and a contribution analysis method. The results demonstrate that the nonstationarity of extreme precipitation on local scales is significant. The Mn and Var of extreme precipitation increase in the north of Zhejiang, the middle of Fujian, and the south of Guangdong. In general, natural climate change contributes more to Mn from 1960 to 2012 than to Var. However, human activities cause a greater Var in the rapid socioeconomic development period (1986-2012) than in the slow socioeconomic development period (1960-1985), especially in Zhejiang and Guangdong. The community should pay more attention to the possibility of extreme precipitation events and associated disasters triggered by human activities.
ERIC Educational Resources Information Center
Coffman, Sandra J.; Martell, Christopher R.; Dimidjian, Sona; Gallop, Robert; Hollon, Steven D.
2007-01-01
In a recent placebo-controlled comparison, behavioral activation was superior to cognitive therapy in the treatment of moderate to severely depressed adults. Moreover, a subset of patients exhibited a pattern of extreme nonresponse to cognitive therapy on self-reports of depression not evident on the clinician ratings. These patients were severely…
Constrained handgrip force decreases upper extremity muscle activation and arm strength.
Smets, Martin P H; Potvin, James R; Keir, Peter J
2009-09-01
Many industrial tasks require repetitive shoulder exertions to be performed with concurrent physical and mental demands. The highly mobile nature of the shoulder predisposes it to injury. The purpose of this study was to determine the effects of simultaneous gripping, at a specified magnitude, on muscle activity and maximal arm force in various directions. Ten female subjects performed maximal arm exertions at two different heights and five directions using both specified (30% maximum voluntary grip) and preferred (self-selected) grip forces. Electromyography was recorded from eight muscles of the right upper extremity. The preferred grip condition produced grip forces that were dependent on the combination of arm height and force direction and were significantly greater (arm force down), lower (to left, up and push forward), or similar to the specified grip condition. Regardless of the magnitude of the preferred grip force, specifying the grip resulted in decreased maximal arm strength (by 18-25%) and muscle activity (by 15-30%) in all conditions, indicating an interfering effect when the grip force was specified by visual target force-matching. Task constraints, such as specific gripping demands, may decrease peak force levels attainable and alter muscle activity. Depending on the nature of task, the amount of relative demand may differ, which should be considered when determining safety thresholds.
Li, Zhengqun; Pei, Xue; Zhang, Ziyu; Wei, Yi; Song, Yanyue; Chen, Lina; Liu, Shouan; Zhang, Shi-Hong
2018-07-01
In a halotolerant fungus Aspergillus glaucus CCHA, several functional proteins with stress-tolerant activity have been studied, but no secretory enzymes have been identified yet. The unique GH5 cellulase candidate from A. glaucus, an endoglucanase termed as AgCMCase, was cloned, expressed in the Pichia pastoris system and the purified enzyme was characterized. A large amount of recombinant enzyme secreted by the P. pastoris GS115 strain was purified to homogeneity. The molecular weight of the purified endoglucanase is about 55.0 kDa. The AgCMCase exhibited optimum catalytic activity at pH 5.0 and 55 °C. However, it remained relatively stable at temperatures ranging from 45 to 80 °C and pH ranging from 4.0 to 9.0. In addition, it showed higher activity at extreme NaCl concentrations from 1.0 to 4.0 M, suggesting it is an enzyme highly stable under heat, acid, alkaline and saline conditions. To evaluate the catalytic activity of AgCMCase, the hydrolysis products of rice and corn straws were successfully studied. In conclusion, the AgCMCase is a thermostable and salt-tolerant cellulase with potential for industrial application.
Atmospheric conditions associated with extreme fire activity in the Western Mediterranean region.
Amraoui, Malik; Pereira, Mário G; DaCamara, Carlos C; Calado, Teresa J
2015-08-15
Active fire information provided by TERRA and AQUA instruments on-board sun-synchronous polar MODIS platform is used to describe fire activity in the Western Mediterranean and to identify and characterize the synoptic patterns of several meteorological fields associated with the occurrence of extreme fire activity episodes (EEs). The spatial distribution of the fire pixels during the period of 2003-2012 leads to the identification of two most affected sub-regions, namely the Northern and Western parts of the Iberian Peninsula (NWIP) and Northern Africa (NAFR). The temporal distribution of the fire pixels in these two sub-regions is characterized by: (i) high and non-concurrent inter- and intra-annual variability with maximum values during the summer of 2003 and 2005 in NWIP and 2007 and 2012 in NAFR; and, (ii) high intra-annual variability dominated by a prominent annual cycle with a main peak centred in August in both sub-regions and a less pronounced secondary peak in March only evident in NWIP region. The 34 EEs identified were grouped according to the location, period of occurrence and spatial configuration of the associated synoptic patterns into 3 clusters (NWIP-summer, NWIP-winter and NAFR-summer). Results from the composite analysis reveal similar fire weather conditions (statistically significant positive anomalies of air temperature and negative anomalies of air relative humidity) but associated with different circulation patterns at lower and mid-levels of the atmosphere associated with the occurrence of EEs in each cluster of the Western Mediterranean region. Copyright © 2015 Elsevier B.V. All rights reserved.
Upper Extremity Muscle Activity During In-Phase and Anti-Phase Continuous Pushing Tasks.
Gruevski, Kristina M; Hodder, Joanne N; Keir, Peter J
2017-11-01
To determine the effect of anti-phase, in-phase bimanual and unimanual simulated industrial pushing tasks and frequency on upper extremity muscle activity. Research investigating symmetrical (in-phase) and asymmetrical (anti-phase) pushing exertions is limited despite a high prevalence in industry. Fifteen female participants completed five pushing tasks using a dual handle apparatus at three frequencies: 15 cycles per minute (cpm), 30 cpm, and self-selected. Tasks included two bimanual symmetrical pushes (constrained and unconstrained), two bimanual asymmetrical pushes (reciprocating and continuous), and one right unimanual push. Surface electromyography (EMG) from the right anterior, middle, and posterior deltoid (AD, MD, and PD); right and left trapezius (RT and LT); right pectoralis major (PM); and right and left external obliques (REO and LEO) was collected and normalized to maximum voluntary effort. There was a task by frequency interaction in the AD, MD, PD, and RT ( p < .005), where activity in AD, MD, and PD was highest in the continuous task at 15 cpm, but activity was similar across task in 30 cpm and self-selected. Muscle activity coefficient of variation was lowest during continuous task across all frequencies. Continuous, anti-phase pushes and constrained, in-phase pushes had the highest muscle activity demands and the least amount of variability in muscle activity and therefore may present the greatest risk of injury. Anti-phase pushing is known to have a greater cognitive demand, and this study demonstrated that it also has a greater physical demand when performed continuously.
Contrasting the projected change in extreme extratropical cyclones in the two hemispheres
NASA Astrophysics Data System (ADS)
Chang, E. K. M.
2017-12-01
Extratropical cyclones form an important part of the global circulation. They are responsible for much of the high impact weather in the mid-latitudes, including heavy precipitation, strong winds, and coastal storm surges. They are also the surface manifestation of baroclinic waves that are responsible for much of the transport of momentum, heat, and moisture across the mid-latitudes. Thus how these storms will change in the future is of much general interest. In particular, how the frequency of the extreme cyclones change are of most concern, since they are the ones that cause most damages. While the projection of a poleward shift of the Southern Hemisphere storm track and cyclone activity is widely accepted, together with a small decrease in the total number of extratropical cyclones, as discussed in the 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5), projected change in cyclone intensity is still rather uncertain. Several studies have suggested that cyclone intensity, in terms of absolute value of sea level pressure (SLP) minima or SLP perturbations, is projected to increase under global warming. However, other studies found no increase in wind speed around extratropical cyclones. In this study, CMIP5 multi-model projection of how the frequency of extreme cyclones in terms of near surface wind intensity may change under global warming has been examined. Results suggest significant increase in the occurrences of extreme cyclones in the Southern Hemisphere. In the Northern Hemisphere, CMIP5 models project a northeastward shift in extreme cyclone activity over the Pacific, and significant decrease over the Atlantic. Substantial differences are also found between projected changes in near surface wind intensity and wind intensity at 850 hPa, suggesting that wind change at 850 hPa is not a good proxy for change in surface wind intensity. Finally, projected changes in the large scale environment are examined to understand the dynamics behind these contrasting projected changes.
Wildfire risk in the wildland-urban interface: A simulation study in northwestern Wisconsin
Massada, Avi Bar; Radeloff, Volker C.; Stewart, Susan I.; Hawbaker, Todd J.
2009-01-01
The rapid growth of housing in and near the wildland–urban interface (WUI) increases wildfirerisk to lives and structures. To reduce fire risk, it is necessary to identify WUI housing areas that are more susceptible to wildfire. This is challenging, because wildfire patterns depend on fire behavior and spread, which in turn depend on ignition locations, weather conditions, the spatial arrangement of fuels, and topography. The goal of our study was to assess wildfirerisk to a 60,000 ha WUI area in northwesternWisconsin while accounting for all of these factors. We conducted 6000 simulations with two dynamic fire models: Fire Area Simulator (FARSITE) and Minimum Travel Time (MTT) in order to map the spatial pattern of burn probabilities. Simulations were run under normal and extreme weather conditions to assess the effect of weather on fire spread, burn probability, and risk to structures. The resulting burn probability maps were intersected with maps of structure locations and land cover types. The simulations revealed clear hotspots of wildfire activity and a large range of wildfirerisk to structures in the study area. As expected, the extreme weather conditions yielded higher burn probabilities over the entire landscape, as well as to different land cover classes and individual structures. Moreover, the spatial pattern of risk was significantly different between extreme and normal weather conditions. The results highlight the fact that extreme weather conditions not only produce higher fire risk than normal weather conditions, but also change the fine-scale locations of high risk areas in the landscape, which is of great importance for fire management in WUI areas. In addition, the choice of weather data may limit the potential for comparisons of risk maps for different areas and for extrapolating risk maps to future scenarios where weather conditions are unknown. Our approach to modeling wildfirerisk to structures can aid fire risk reduction management activities by identifying areas with elevated wildfirerisk and those most vulnerable under extreme weather conditions.
FALCON reactor-pumped laser description and program overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1989-12-01
The FALCON (Fission Activated Laser CONcept) reactor-pumped laser program at Sandia National Laboratories is examining the feasibility of high-power systems pumped directly by the energy from a nuclear reactor. In this concept we use the highly energetic fission fragments from neutron induced fission to excite a large volume laser medium. This technology has the potential to scale to extremely large optical power outputs in a primarily self-powered device. A laser system of this type could also be relatively compact and capable of long run times without refueling.
Tian, Chengcheng; Zhu, Xiang; Abney, Carter W.; ...
2017-04-12
An ultrastable Au nanocatalyst based on a heterostructured perovskite support with high surface area and uniform LaFeO3 nanocoatings was successfully synthesized and tested for CO oxidation. Strikingly, small Au nanoparticles (4-6 nm) are obtained after calcination in air at 700 °C and under reaction conditions. The designed Au catalyst not only possessed extreme sintering resistance but also showed high catalytic activity and stability because of the strong interfacial interaction between Au and the heterostructured perovskite support.
Carrer, Marco; Brunetti, Michele; Castagneri, Daniele
2016-01-01
Extreme climate events are of key importance for forest ecosystems. However, both the inherent infrequency, stochasticity and multiplicity of extreme climate events, and the array of biological responses, challenges investigations. To cope with the long life cycle of trees and the paucity of the extreme events themselves, our inferences should be based on long-term observations. In this context, tree rings and the related xylem anatomical traits represent promising sources of information, due to the wide time perspective and quality of the information they can provide. Here we test, on two high-elevation conifers (Larix decidua and Picea abies sampled at 2100 m a.s.l. in the Eastern Alps), the associations among temperature extremes during the growing season and xylem anatomical traits, specifically the number of cells per ring (CN), cell wall thickness (CWT), and cell diameter (CD). To better track the effect of extreme events over the growing season, tree rings were partitioned in 10 sectors. Climate variability has been reconstructed, for 1800–2011 at monthly resolution and for 1926–2011 at daily resolution, by exploiting the excellent availability of very long and high quality instrumental records available for the surrounding area, and taking into account the relationship between meteorological variables and site topographical settings. Summer temperature influenced anatomical traits of both species, and tree-ring anatomical profiles resulted as being associated to temperature extremes. Most of the extreme values in anatomical traits occurred with warm (positive extremes) or cold (negative) conditions. However, 0–34% of occurrences did not match a temperature extreme event. Specifically, CWT and CN extremes were more clearly associated to climate than CD, which presented a bias to track cold extremes. Dendroanatomical analysis, coupled to high-quality daily-resolved climate records, seems a promising approach to study the effects of extreme events on trees, but further investigations are needed to improve our comprehension of the critical role of such elusive events in forest ecosystems. PMID:27242880
Glomeromycota communities survive extreme levels of metal toxicity in an orphan mining site.
Sánchez-Castro, I; Gianinazzi-Pearson, V; Cleyet-Marel, J C; Baudoin, E; van Tuinen, D
2017-11-15
Abandoned tailing basins and waste heaps of orphan mining sites are of great concern since extreme metal contamination makes soil improper for any human activity and is a permanent threat for nearby surroundings. Although spontaneous revegetation can occur, the process is slow or unsuccessful and rhizostabilisation strategies to reduce dispersal of contaminated dust represent an option to rehabilitate such sites. This requires selection of plants tolerant to such conditions, and optimization of their fitness and growth. Arbuscular mycorrhizal fungi (AMF) can enhance metal tolerance in moderately polluted soils, but their ability to survive extreme levels of metal contamination has not been reported. This question was addressed in the tailing basin and nearby waste heaps of an orphan mining site in southern France, reaching in the tailing basin exceptionally high contents of zinc (ppm: 97,333 total) and lead (ppm: 31,333 total). In order to contribute to a better understanding of AMF ecology under severe abiotic stress and to identify AMF associated with plants growing under such conditions, that may be considered in future revegetation and rhizostabilisation of highly polluted areas, nine plant species were sampled at different growing seasons and AMF root colonization was determined. Glomeromycota diversity was monitored in mycorrhizal roots by sequencing of the ribosomal LSU. This first survey of AMF in such highly contaminated soils revealed the presence of several AMF ribotypes, belonging mainly to the Glomerales, with some examples from the Paraglomerales and Diversisporales. AMF diversity and root colonization in the tailing basin were lower than in the less-contaminated waste heaps. A Paraglomus species previously identified in a polish mining site was common in roots of different plants. Presence of active AMF in such an environment is an outstanding finding, which should be clearly considered for the design of efficient rhizostabilisation processes. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Wu, Wenqian; Guo, Lin; Liu, Bin; Ni, Song; Liu, Yong; Song, Min
2017-12-01
The effects of torsional deformation on the microstructures and mechanical properties of a CoCrFeNiMo0.15 high-entropy alloy have been investigated. The torsional deformation generates a gradient microstructure distribution due to the gradient torsional strain. Both dislocation activity and deformation twinning dominated the torsional deformation process. With increasing the torsional equivalent strain, the microstructural evolution can be described as follows: (1) formation of pile-up dislocations parallel to the trace of {1 1 1}-type slip planes; (2) formation of Taylor lattices; (3) formation of highly dense dislocation walls; (3) formation of microbands and deformation twins. The extremely high deformation strain (strained to fracture) results in the activation of wavy slip. The tensile strength is very sensitive to the torsional deformation, and increases significantly with increasing the torsional angle.
Fabricating Ir/C Nanofiber Networks as Free-Standing Air Cathodes for Rechargeable Li-CO2 Batteries.
Wang, Chengyi; Zhang, Qinming; Zhang, Xin; Wang, Xin-Gai; Xie, Zhaojun; Zhou, Zhen
2018-06-07
Li-CO 2 batteries are promising energy storage systems by utilizing CO 2 at the same time, though there are still some critical barriers before its practical applications such as high charging overpotential and poor cycling stability. In this work, iridium/carbon nanofibers (Ir/CNFs) are prepared via electrospinning and subsequent heat treatment, and are used as cathode catalysts for rechargeable Li-CO 2 batteries. Benefitting from the unique porous network structure and the high activity of ultrasmall Ir nanoparticles, Ir/CNFs exhibit excellent CO 2 reduction and evolution activities. The Li-CO 2 batteries present extremely large discharge capacity, high coulombic efficiency, and long cycling life. Moreover, free-standing Ir/CNF films are used directly as air cathodes to assemble Li-CO 2 batteries, which show high energy density and ultralong operation time, demonstrating great potential for practical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-Performance of Gas Hydrates in Confined Nanospace for Reversible CH4 /CO2 Storage.
Casco, Mirian E; Jordá, José L; Rey, Fernando; Fauth, François; Martinez-Escandell, Manuel; Rodríguez-Reinoso, Francisco; Ramos-Fernández, Enrique V; Silvestre-Albero, Joaquín
2016-07-11
The molecular exchange of CH4 for CO2 in gas hydrates grown in confined nanospace has been evaluated for the first time using activated carbons as a host structure. The nano-confinement effects taking place inside the carbon cavities and the exceptional physicochemical properties of the carbon structure allows us to accelerate the formation and decomposition process of the gas hydrates from the conventional timescale of hours/days in artificial bulk systems to minutes in confined nanospace. The CH4 /CO2 exchange process is fully reversible with high efficiency at practical temperature and pressure conditions. Furthermore, these activated carbons can be envisaged as promising materials for long-distance natural gas and CO2 transportation because of the combination of a high storage capacity, a high reversibility, and most important, with extremely fast kinetics for gas hydrate formation and release. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Constraints on the extremely high-energy cosmic ray accelerators from classical electrodynamics
NASA Astrophysics Data System (ADS)
Aharonian, F. A.; Belyanin, A. A.; Derishev, E. V.; Kocharovsky, V. V.; Kocharovsky, Vl. V.
2002-07-01
We formulate the general requirements, set by classical electrodynamics, on the sources of extremely high-energy cosmic rays (EHECRs). It is shown that the parameters of EHECR accelerators are strongly limited not only by the particle confinement in large-scale magnetic fields or by the difference in electric potentials (generalized Hillas criterion) but also by the synchrotron radiation, the electro-bremsstrahlung, or the curvature radiation of accelerated particles. Optimization of these requirements in terms of an accelerator's size and magnetic field strength results in the ultimate lower limit to the overall source energy budget, which scales as the fifth power of attainable particle energy. Hard γ rays accompanying generation of EHECRs can be used to probe potential acceleration sites. We apply the results to several populations of astrophysical objects-potential EHECR sources-and discuss their ability to accelerate protons to 1020 eV and beyond. The possibility of gain from ultrarelativistic bulk flows is addressed, with active galactic nuclei and gamma-ray bursts being the examples.
Constraints on the extremely high-energy cosmic rays accelerators from classical electrodynamics
NASA Astrophysics Data System (ADS)
Belyanin, A.; Aharonian, F.; Derishev, E.; Kocharovsky, V.; Kocharovsky, V.
We formulate the general requirements, set by classical electrodynamics, to the sources of extremely high-energy cosmic rays (EHECRs). It is shown that the parameters of EHECR accelerators are strongly limited not only by the particle confinement in large-scale magnetic field or by the difference in electric potentials (generalized Hillas criterion), but also by the synchrotron radiation, the electro-bremsstrahlung, or the curvature radiation of accelerated particles. Optimization of these requirements in terms of accelerator's size and magnetic field strength results in the ultimate lower limit to the overall source energy budget, which scales as the fifth power of attainable particle energy. Hard gamma-rays accompanying generation of EHECRs can be used to probe potential acceleration sites. We apply the results to several populations of astrophysical objects - potential EHECR sources - and discuss their ability to accelerate protons to 1020 eV and beyond. A possibility to gain from ultrarelativistic bulk flows is addressed, with Active Galactic Nuclei and Gamma-Ray Bursts being the examples.
Liu, Jason J; Huang, Ming-Chun; Xu, Wenyao; Zhang, Xiaoyi; Stevens, Luke; Alshurafa, Nabil; Sarrafzadeh, Majid
2015-09-01
The ability to continuously monitor respiration rates of patients in homecare or in clinics is an important goal. Past research showed that monitoring patient breathing can lower the associated mortality rates for long-term bedridden patients. Nowadays, in-bed sensors consisting of pressure sensitive arrays are unobtrusive and are suitable for deployment in a wide range of settings. Such systems aim to extract respiratory signals from time-series pressure sequences. However, variance of movements, such as unpredictable extremities activities, affect the quality of the extracted respiratory signals. BreathSens, a high-density pressure sensing system made of e-Textile, profiles the underbody pressure distribution and localizes torso area based on the high-resolution pressure images. With a robust bodyparts localization algorithm, respiratory signals extracted from the localized torso area are insensitive to arbitrary extremities movements. In a study of 12 subjects, BreathSens demonstrated its respiratory monitoring capability with variations of sleep postures, locations, and commonly tilted clinical bed conditions.
Gravitational Instabilities, Chondrule Formation, and the FU Orionis Phenomenon
NASA Astrophysics Data System (ADS)
Boley, Aaron C.; Durisen, Richard H.
2008-10-01
Using analytic arguments and numerical simulations, we examine whether chondrule formation and the FU Orionis phenomenon can be caused by the burstlike onset of gravitational instabilities (GIs) in dead zones. At least two scenarios for bursting dead zones can work, in principle. If the disk is on the verge of fragmentation, GI activation near r ~ 4-5 AU can produce chondrule-forming shocks, at least under extreme conditions. Mass fluxes are also high enough during the onset of GIs to suggest that the outburst is related to an FU Orionis phenomenon. This situation is demonstrated by numerical simulations. In contrast, as supported by analytic arguments, if the burst takes place close to r ~ 1 AU, then even low pitch angle spiral waves can create chondrule-producing shocks and outbursts. We also study the stability of the massive disks in our simulations against fragmentation and find that although disk evolution is sensitive to changes in opacity, the disks we study do not fragment, even at high resolution and even for extreme assumptions.
Özcan Kahraman, Buse; Özsoy, İsmail; Acar, Serap; Özpelit, Ebru; Akdeniz, Bahri; Sevinç, Can; Savcı, Sema
2017-07-01
Pulmonary arterial hypertension (PAH) is a rare disease. Although muscle strength, exercise capacity, quality of life, and activities of daily living of patients with PAH are affected, it is not known how they are affected by disease severity. The purpose of the present study was to investigate effects of disease severity on upper extremity muscle strength, exercise capacity, and performance of activities of daily living in patients with PAH. Twenty-five patients with disease severity classified according to the New York Heart Association (NYHA) as functional class II (n=14) or class III (n=11) were included in the study. Upper-extremity exercise capacity and limitations in performing activities of daily living were assessed with 6-minute pegboard and ring test (6PBRT) and the Milliken activities of daily living scale (MAS), respectively. Shoulder flexion, elbow extension, elbow flexion muscle strength, and handgrip strength were measured with dynamometer. There were no significant differences in age, gender, body mass index, or mean pulmonary artery pressure between groups (p>0.05). The 6PBRT, MAS, and elbow flexion (right) and grip strength (right and left) results were significantly lower in NYHA III group than in NYHA II group (p=0.004, p=0.002, p=0.043, p=0.002 and p=0.003, respectively). There was no significant difference in shoulder flexion, elbow flexion (left), or elbow extension between groups (p>0.05). Results suggest that upper extremity exercise capacity, elbow flexion muscle strength (right), and handgrip strength decrease and that limitations in activities of daily living grow as disease severity increases in patients with PAH. When planning rehabilitation programs, disease severity should be considered and evaluations and treatments for the upper extremities should be included.
Sung, Aaron; Garcia, Nathan S.; Gracey, Andrew Y.; German, Donovan P.
2016-01-01
ABSTRACT The intertidal mussel Mytilus californianus is a critical foundation species that is exposed to fluctuations in the environment along tidal- and wave-exposure gradients. We investigated feeding and digestion in mussels under laboratory conditions and across environmental gradients in the field. We assessed whether mussels adopt a rate-maximization (higher ingestion and lower assimilation) or a yield-maximization acquisition (lower ingestion and higher assimilation) strategy under laboratory conditions by measuring feeding physiology and digestive enzyme activities. We used digestive enzyme activity to define resource acquisition strategies in laboratory studies, then measured digestive enzyme activities in three microhabitats at the extreme ends of the tidal- and wave-exposure gradients within a stretch of shore (<20 m) projected sea-ward. Our laboratory results indicated that mussels benefit from a high assimilation efficiency when food concentration is low and have a low assimilation efficiency when food concentration is high. Additionally, enzyme activities of carbohydrases amylase, laminarinase and cellulase were elevated when food concentration was high. The protease trypsin, however, did not increase with increasing food concentration. In field conditions, low-shore mussels surprisingly did not have high enzyme activities. Rather, high-shore mussels exhibited higher cellulase activities than low-shore mussels. Similarly, trypsin activity in the high-shore-wave-sheltered microhabitat was higher than that in high-shore-wave-exposed. As expected, mussels experienced increasing thermal stress as a function of reduced submergence from low to high shore and shelter from wave-splash. Our findings suggest that mussels compensate for limited feeding opportunities and thermal stress by modulating digestive enzyme activities. PMID:27402963
SIS (Superconductor-Insulator-Superconductor) Mixer Research.
1988-02-01
performed in that work was unique in that it employed the complete equations of the quantum theory of mixing in the three- frequency , low -intermediate...addition, these results cast doubt upon recent reports of low - noise single-junction 5IS rec, ivers which have extremely wide bandwidths. In conjunction...have significant and widespread implications for any active arrayed device which has a very low driving power. 3. High frequency : The third objective
Coherent Extreme Ultraviolet Generation and Surface Studies Using Ultraviolet Excimer Lasers.
1986-02-10
of Outer-Shell Electrons" 7. "A Theoretical Model of Inner-Shell ......................... 30 A Excitation by Outer-Snell Electrons" E. "Anomalous...rays are feasible. Our work involves a program of activities, involving both experimental and theoretical components, to explore the physical... theoretical effort con- centrating on the character of high order multiquantum coupling in the inten- sity regime above 1017 WcM2 . In addition
Projected timing of perceivable changes in climate extremes for terrestrial and marine ecosystems.
Tan, Xuezhi; Gan, Thian Yew; Horton, Daniel E
2018-05-26
Human and natural systems have adapted to and evolved within historical climatic conditions. Anthropogenic climate change has the potential to alter these conditions such that onset of unprecedented climatic extremes will outpace evolutionary and adaptive capabilities. To assess whether and when future climate extremes exceed their historical windows of variability within impact-relevant socioeconomic, geopolitical, and ecological domains, we investigate the timing of perceivable changes (time of emergence; TOE) for 18 magnitude-, frequency-, and severity-based extreme temperature (10) and precipitation (8) indices using both multimodel and single-model multirealization ensembles. Under a high-emission scenario, we find that the signal of frequency- and severity-based temperature extremes is projected to rise above historical noise earliest in midlatitudes, whereas magnitude-based temperature extremes emerge first in low and high latitudes. Precipitation extremes demonstrate different emergence patterns, with severity-based indices first emerging over midlatitudes, and magnitude- and frequency-based indices emerging earliest in low and high latitudes. Applied to impact-relevant domains, simulated TOE patterns suggest (a) unprecedented consecutive dry day occurrence in >50% of 14 terrestrial biomes and 12 marine realms prior to 2100, (b) earlier perceivable changes in climate extremes in countries with lower per capita GDP, and (c) emergence of severe and frequent heat extremes well-before 2030 for the 590 most populous urban centers. Elucidating extreme-metric and domain-type TOE heterogeneities highlights the challenges adaptation planners face in confronting the consequences of elevated twenty-first century radiative forcing. © 2018 John Wiley & Sons Ltd.
First direct comparison of high and low ionization line kinematics in active galactic nuclei
NASA Technical Reports Server (NTRS)
Sulentic, J. W.; Marziani, P.; Dultzin-Hacyan, D.; Calvani, M.; Moles, M.
1995-01-01
We present first results of a comparison of emission line shift properties for the high (HILs) and low (LILs) ionization lines in 43 low-reshift quasars. We identify a core sample of C IV lambda 1549 and hydrogen beta profiles with a wide distribution of red- and blueshifts (less than or equal to +/- 1000 km/sec). We also identify two tails in this distribution: one with large hydrogen beta redshifts (greater than or equal to 2000 km/sec) and another with large C IV blueshifts (greater than or equal to 1500 km/sec). The tails are mutually exclusive. All objects with extreme hydrogen beta redshift are radio loud, and all objects with extreme C IV blueshift are radio quiet. The core samples of smaller shifts can be most simply divided into: (1) hydrogen beta - a redshifted radio-loud population (related to the tail) and a radio-quiet population with mean shift near zero, and (2) C IV - a blueshifted radio-quiet population (related to the tail) and a radio-loud population with mean shift near zero. The results suggest fundamentally different kinematics for the HILs and LILs. They also suggest very different kinematics for radio-loud and radio-quiet active galactic nuclei. They also favor a predominance of radial motion in a large fraction of the sample.
NASA Astrophysics Data System (ADS)
Lui, Yuk Sing; Tam, Chi-Yung; Lau, Ngar-Cheung
2018-04-01
This study examines the impacts of climate change on precipitation extremes in the Asian monsoon region during boreal summer, based on simulations from the 20-km Meteorological Research Institute atmospheric general circulation model. The model can capture the summertime monsoon rainfall, with characteristics similar to those from Tropical Rainfall Measuring Mission and Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation. By comparing the 2075-2099 with the present-day climate simulations, there is a robust increase of the mean rainfall in many locations due to a warmer climate. Over southeastern China, the Baiu rainband, Bay of Bengal and central India, extreme precipitation rates are also enhanced in the future, which can be inferred from increases of the 95th percentile of daily precipitation, the maximum accumulated precipitation in 5 consecutive days, the simple daily precipitation intensity index, and the scale parameter of the fitted gamma distribution. In these regions, with the exception of the Baiu rainband, most of these metrics give a fractional change of extreme rainfall per degree increase of the lower-tropospheric temperature of 5 to 8.5% K-1, roughly consistent with the Clausius-Clapeyron relation. However, over the Baiu area extreme precipitation change scales as 3.5% K-1 only. We have also stratified the rainfall data into those associated with tropical cyclones (TC) and those with other weather systems. The AGCM gives an increase of the accumulated TC rainfall over southeastern China, and a decrease in southern Japan in the future climate. The latter can be attributed to suppressed TC occurrence in southern Japan, whereas increased accumulated rainfall over southeastern China is due to more intense TC rain rate under global warming. Overall, non-TC weather systems are the main contributor to enhanced precipitation extremes in various locations. In the future, TC activities over southeastern China tend to further exacerbate the precipitation extremes, whereas those in the Baiu region lead to weaker changes of these extremes.
Comparative analysis of the antioxidant properties of Icelandic and Hawaiian lichens.
Hagiwara, Kehau; Wright, Patrick R; Tabandera, Nicole K; Kelman, Dovi; Backofen, Rolf; Ómarsdóttir, Sesselja; Wright, Anthony D
2016-09-01
Antioxidant activity of symbiotic organisms known as lichens is an intriguing field of research because of its strong contribution to their ability to withstand extremes of physical and biological stress (e.g. desiccation, temperature, UV radiation and microbial infection). We present a comparative study on the antioxidant activities of 76 Icelandic and 41 Hawaiian lichen samples assessed employing the DPPH- and FRAP-based antioxidant assays. Utilizing this unprecedented sample size, we show that while highest individual sample activity is present in the Icelandic dataset, the overall antioxidant activity is higher for lichens found in Hawaii. Furthermore, we report that lichens from the genus Peltigera that have been described as strong antioxidant producers in studies on Chinese, Russian and Turkish lichens also show high antioxidant activities in both Icelandic and Hawaiian lichen samples. Finally, we show that opportunistic sampling of lichens in both Iceland and Hawaii will yield high numbers of lichen species that exclusively include green algae as photobiont. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
The Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS)
NASA Technical Reports Server (NTRS)
Oegerle, William (Technical Monitor); Rabin, D.; Davila, J.; Thomas, R. J.; Engler, C.; Irish, S.; Keski-Kuha, R.; Novello, J.; Nowak, M.; Payne, L.;
2003-01-01
EUNIS (Extreme Ultraviolet Normal Incidence Spectrograph) is a high-efficiency extreme ultraviolet spectrometer that is expected to fly for the first time in 2004 as a sounding rocket payload. Using two independent optical systems, EUNIS will probe the structure and dynamics of the inner solar corona high spectral resolution in two wavelength regions: 17-21 nm with 3.5 pm resolution and 30-37 nm with 7 pm resolution. The long wavelength channel includes He II 30.4 nm and strong lines from Fe XI-XVI; the short wavelength channel includes strong lines of Fe IX-XIII. Angular resolution of 2 arcsec is maintained along a slit covering a full solar radius. EUNIS will have 100 times the throughput of the highly successful SERTS payloads that have preceded it. There are only two reflections in each optical channel, from the superpolished, off-axis paraboloidal primary and the toroidal grating. Each optical element is coated with a high-efficiency multilayer coating optimized for its spectral bandpass. The detector in each channel is a microchannel plate image intensifier fiber- coupled to three 1K x 1K active pixel sensors. EUNIS will obtain spectra with a cadence as short as 1 sec, allowing unprecedented studies of the physical properties of evolving and transient structures. Diagnostics of wave heating and reconnection wil be studied at heights above 2 solar radii, in the wind acceleration region. The broad spectral coverage and high spectral resolution will provide superior temperature and density diagnostics and will enable underflight calibration of several orbital instruments, including SOHO/CDS and EIT, TRACE, Solar-B/EIS, and STEREO/EUVI. EUNIS is supported by NASA through the Low Cost Access to Space Program in Solar and Heliospheric Physics.
Martinez-Avila, G C G; Aguilera, A F; Saucedo, S; Rojas, R; Rodriguez, R; Aguilar, C N
2014-01-01
Agro-industrial by-products are important sources of potent bioactive phenolic compounds. These compounds are of extreme relevance for food and pharmacological industries due to their great variety of biological activities. Fermentation represents an environmentally clean technology for production and extraction of these bioactive compounds, providing high quality and high activity extracts, which can be incorporated in foods using coatings/films wax-based in order to avoid alterations in their quality. In this document is presented an overview about importance and benefits of solid-state fermentation, pointing out this bioprocess as an alternative technology for use agro-industrial by-products as substrates to produce valuable secondary metabolites and their applications as food quality conservatives.
Phosphatase activity in Antarctica soil samples as a biosignature of extant life
NASA Astrophysics Data System (ADS)
Sato, Shuji; Itoh, Yuki; Takano, Yoshinori; Fukui, Manabu; Kaneko, Takeo; Kobayashi, Kensei
Microbial activities have been detected in such extreme terrestrial environments as deep lithosphere, a submarine hydrothermal systems, stratosphere, and Antarctica. Microorganisms have adapted to such harsh environments by evolving their biomolecules. Some of these biomolecules such as enzymes might have different characteristics from those of organisms in ordinary environments. Many biosignatures (or biomarkers) have been proposed to detect microbial activities in such extreme environments. A number of techniques are proposed to evaluate biological activities in extreme environments including cultivation methods, assay of metabolism, and analysis of bioorganic compounds like amino acids and DNA. Enzyme activities are useful signature of extant life in extreme environments. Among many enzymes, phosphatase could be a good indicator of biological activities, since phosphate esters are essential for all the living terrestrial organisms. In addition, alkaline phosphatase is known as a typical zinc-containing metalloenzyme and quite stable in environments. We analyzed phosphatase activities in Antarctica soil samples to see whether they can be used as biosignatures for extant life. In addition, we characterized phosphatases extracted from the Antarctica soil samples, and compared with those obtained from other types of environments. Antarctica surface environments are quite severe environments for life since it is extremely cold and dry and exposed to strong UV and cosmic rays. We tried to evaluate biological activities in Antarctica by measuring phosphatase activities. Surface soil samples are obtained at the Sites 1-8 near Showa Base in Antarctica during the 47th Japan Antarctic exploration mission in 2005-6. Activities of acid phosphatase (ACP) and alkaline phosphatase (ALP) are measured spectrophotometrically after mixing the powdered sample and p-nitrophenyl phosphate solution (pH 6.5 for ACP, pH 8.0 for ALP). ALP was characterized after extraction from soils with Tris-HCl buffer (pH 9.0), where the activity was measured fluorometrically with 4-methylumbelliferyl phosphate (pH 8.0) as a substance. The soil of Site 8 (near a penguin rookery) showed almost the same level of ACP and ALP activities as usual surface soil sampled in YNU campus, while the soil of Sites 1-7 showed much less activities. ALP in the extract from the soil of Site 8 was characterized. It showed the maximal at 338 K, while ALP from the campus soil showed the maximal at 358 K. Gel filtration chromatography showed that the ALP activity was found only in the fraction whose molecular weights were over 60000. The ALP activity was diminished with EDTA and was recovered with addition of zinc ion. The present results showed that zinc-containing metalloenzymes, which had lower optimum temperature than those in usual environments, are present in Antarctica soil. It was suggested that phosphatases are good bio-signatures for extant life in extreme environments.
Pyle, Angela; Hudson, Gavin; Wilson, Ian J; Coxhead, Jonathan; Smertenko, Tania; Herbert, Mary; Santibanez-Koref, Mauro; Chinnery, Patrick F
2015-05-01
Recent reports have questioned the accepted dogma that mammalian mitochondrial DNA (mtDNA) is strictly maternally inherited. In humans, the argument hinges on detecting a signature of inter-molecular recombination in mtDNA sequences sampled at the population level, inferring a paternal source for the mixed haplotypes. However, interpreting these data is fraught with difficulty, and direct experimental evidence is lacking. Using extreme-high depth mtDNA re-sequencing up to ~1.2 million-fold coverage, we find no evidence that paternal mtDNA haplotypes are transmitted to offspring in humans, thus excluding a simple dilution mechanism for uniparental transmission of mtDNA present in all healthy individuals. Our findings indicate that an active mechanism eliminates paternal mtDNA which likely acts at the molecular level.
Pyle, Angela; Hudson, Gavin; Wilson, Ian J.; Coxhead, Jonathan; Smertenko, Tania; Herbert, Mary; Santibanez-Koref, Mauro; Chinnery, Patrick F.
2015-01-01
Recent reports have questioned the accepted dogma that mammalian mitochondrial DNA (mtDNA) is strictly maternally inherited. In humans, the argument hinges on detecting a signature of inter-molecular recombination in mtDNA sequences sampled at the population level, inferring a paternal source for the mixed haplotypes. However, interpreting these data is fraught with difficulty, and direct experimental evidence is lacking. Using extreme-high depth mtDNA re-sequencing up to ~1.2 million-fold coverage, we find no evidence that paternal mtDNA haplotypes are transmitted to offspring in humans, thus excluding a simple dilution mechanism for uniparental transmission of mtDNA present in all healthy individuals. Our findings indicate that an active mechanism eliminates paternal mtDNA which likely acts at the molecular level. PMID:25973765
Searching for intermediate-mass black holes in extremely-metal poor galaxies
NASA Astrophysics Data System (ADS)
Mezcua, Mar
2016-09-01
Extremely metal-poor dwarf galaxies (XMPs) are star-forming, low-mass galaxies with metallicites highly sub-solar. Their regions of star formation could be triggered by the accretion of pristine gas from the cosmic web and harbour Population III stars. XMPs are thus ideal laboratories for searching for the seed black holes or intermediate-mass black holes (IMBHs) that populated the early Universe. The combination of X-ray, radio and optical observations offer the best tool for detecting such IMBHs in the local Universe. We propose Chandra observations of a sample of XMPs whose optical spectra indicate the possible presence of an active black hole of 1e4 - 1e6 Msun. The Chandra data could confirm this and yield the first detection of an IMBH in these type of galaxies.
NASA Technical Reports Server (NTRS)
Wang, Guiling; Wang, Dagang; Trenberth, Kevin E.; Erfanian, Amir; Yu, Miao; Bosilovich, Michael G.; Parr, Dana T.
2017-01-01
Theoretical models predict that, in the absence of moisture limitation, extreme precipitation intensity could exponentially increase with temperatures at a rate determined by the Clausius-Clapeyron (C-C) relationship. Climate models project a continuous increase of precipitation extremes for the twenty-first century over most of the globe. However, some station observations suggest a negative scaling of extreme precipitation with very high temperatures, raising doubts about future increase of precipitation extremes. Here we show for the present-day climate over most of the globe,the curve relating daily precipitation extremes with local temperatures has a peak structure, increasing as expected at the low medium range of temperature variations but decreasing at high temperatures. However, this peak-shaped relationship does not imply a potential upper limit for future precipitation extremes. Climate models project both the peak of extreme precipitation and the temperature at which it peaks (T(sub peak)) will increase with warming; the two increases generally conform to the C-C scaling rate in mid- and high-latitudes,and to a super C-C scaling in most of the tropics. Because projected increases of local mean temperature (T(sub mean)) far exceed projected increases of T(sub peak) over land, the conventional approach of relating extreme precipitation to T(sub mean) produces a misleading sub-C-C scaling rate.
Amaroli, Andrea; Trielli, Francesca; Bianco, Bruno; Giordano, Stefano; Moggia, Elsa; Corrado, Maria U Delmonte
2005-12-15
Recently, we detected propionylcholinesterase (PrChE) activity in single-cell amoebae of Dictyostelium discoideum using cytochemical, electrophoretic, and spectrophotometric methods. The involvement of this enzyme activity in cell-cell and cell-environment interactions was suggested. In this work, we found that exposure of single-cell amoebae to an extremely low-frequency electromagnetic fields (ELF-EMF) of 300 microT, 50 Hz, from 1 h up to 48 h at 21 +/- 1 degrees C affected PrChE activity.
Haigh, Ivan D.; Wadey, Matthew P.; Wahl, Thomas; Ozsoy, Ozgun; Nicholls, Robert J.; Brown, Jennifer M.; Horsburgh, Kevin; Gouldby, Ben
2016-01-01
In this paper we analyse the spatial footprint and temporal clustering of extreme sea level and skew surge events around the UK coast over the last 100 years (1915–2014). The vast majority of the extreme sea level events are generated by moderate, rather than extreme skew surges, combined with spring astronomical high tides. We distinguish four broad categories of spatial footprints of events and the distinct storm tracks that generated them. There have been rare events when extreme levels have occurred along two unconnected coastal regions during the same storm. The events that occur in closest succession (<4 days) typically impact different stretches of coastline. The spring/neap tidal cycle prevents successive extreme sea level events from happening within 4–8 days. Finally, the 2013/14 season was highly unusual in the context of the last 100 years from an extreme sea level perspective. PMID:27922630
NASA Astrophysics Data System (ADS)
Li, Zhanling; Li, Zhanjie; Li, Chengcheng
2014-05-01
Probability modeling of hydrological extremes is one of the major research areas in hydrological science. Most basins in humid and semi-humid south and east of China are concerned for probability modeling analysis of high flow extremes. While, for the inland river basin which occupies about 35% of the country area, there is a limited presence of such studies partly due to the limited data availability and a relatively low mean annual flow. The objective of this study is to carry out probability modeling of high flow extremes in the upper reach of Heihe River basin, the second largest inland river basin in China, by using the peak over threshold (POT) method and Generalized Pareto Distribution (GPD), in which the selection of threshold and inherent assumptions for POT series are elaborated in details. For comparison, other widely used probability distributions including generalized extreme value (GEV), Lognormal, Log-logistic and Gamma are employed as well. Maximum likelihood estimate is used for parameter estimations. Daily flow data at Yingluoxia station from 1978 to 2008 are used. Results show that, synthesizing the approaches of mean excess plot, stability features of model parameters, return level plot and the inherent independence assumption of POT series, an optimum threshold of 340m3/s is finally determined for high flow extremes in Yingluoxia watershed. The resulting POT series is proved to be stationary and independent based on Mann-Kendall test, Pettitt test and autocorrelation test. In terms of Kolmogorov-Smirnov test, Anderson-Darling test and several graphical diagnostics such as quantile and cumulative density function plots, GPD provides the best fit to high flow extremes in the study area. The estimated high flows for long return periods demonstrate that, as the return period increasing, the return level estimates are probably more uncertain. The frequency of high flow extremes exhibits a very slight but not significant decreasing trend from 1978 to 2008, while the intensity of such flow extremes is comparatively increasing especially for the higher return levels.
Chang, Hyung Lan; Jung, Jin Hee; Kwak, Young Ho; Kim, Do Kyun; Lee, Jin Hee; Jung, Jae Yun; Kwon, Hyuksool; Paek, So Hyun; Park, Joong Wan; Shin, Jonghwan
2018-03-01
The aim of this study was to investigate the effectiveness of a quality improvement activity for pain management in patients with extremity injury in the emergency department (ED). This was a retrospective interventional study. The patient group consisted of those at least 19 years of age who visited the ED and were diagnosed with International Classification of Diseases codes S40-S99 (extremity injuries). The quality improvement activity consisted of three measures: a survey regarding activities, education, and the triage nurse's pain assessment, including change of pain documentation on electronic medical records. The intervention was conducted from January to April in 2014 and outcome was compared between May and August in 2013 and 2014. The primary outcome was the rate of analgesic prescription, and the secondary outcome was the time to analgesic prescription. A total of 1,739 patients were included, and 20.3% of 867 patients in the pre-intervention period, and 28.8% of 872 patients in the post-intervention period received analgesics (P< 0.001). The prescription rate of analgesics for moderate-to-severe injuries was 36.4% in 2013 and 44.5% in 2014 (P=0.026). The time to analgesics prescription was 116.6 minutes (standard deviation 225.6) in 2013 and 64 minutes (standard deviation 75.5) in 2014 for all extremity injuries. The pain scoring increased from 1.4% to 51.6%. ED-based quality improvement activities including education and change of pain score documentation can improve the rate of analgesic prescription and time to prescription for patients with extremity injury in the ED.
NASA Astrophysics Data System (ADS)
Wen, Xian-Huan; Gómez-Hernández, J. Jaime
1998-03-01
The macrodispersion of an inert solute in a 2-D heterogeneous porous media is estimated numerically in a series of fields of varying heterogeneity. Four different random function (RF) models are used to model log-transmissivity (ln T) spatial variability, and for each of these models, ln T variance is varied from 0.1 to 2.0. The four RF models share the same univariate Gaussian histogram and the same isotropic covariance, but differ from one another in terms of the spatial connectivity patterns at extreme transmissivity values. More specifically, model A is a multivariate Gaussian model for which, by definition, extreme values (both high and low) are spatially uncorrelated. The other three models are non-multi-Gaussian: model B with high connectivity of high extreme values, model C with high connectivity of low extreme values, and model D with high connectivities of both high and low extreme values. Residence time distributions (RTDs) and macrodispersivities (longitudinal and transverse) are computed on ln T fields corresponding to the different RF models, for two different flow directions and at several scales. They are compared with each other, as well as with predicted values based on first-order analytical results. Numerically derived RTDs and macrodispersivities for the multi-Gaussian model are in good agreement with analytically derived values using first-order theories for log-transmissivity variance up to 2.0. The results from the non-multi-Gaussian models differ from each other and deviate largely from the multi-Gaussian results even when ln T variance is small. RTDs in non-multi-Gaussian realizations with high connectivity at high extreme values display earlier breakthrough than in multi-Gaussian realizations, whereas later breakthrough and longer tails are observed for RTDs from non-multi-Gaussian realizations with high connectivity at low extreme values. Longitudinal macrodispersivities in the non-multi-Gaussian realizations are, in general, larger than in the multi-Gaussian ones, while transverse macrodispersivities in the non-multi-Gaussian realizations can be larger or smaller than in the multi-Gaussian ones depending on the type of connectivity at extreme values. Comparing the numerical results for different flow directions, it is confirmed that macrodispersivities in multi-Gaussian realizations with isotropic spatial correlation are not flow direction-dependent. Macrodispersivities in the non-multi-Gaussian realizations, however, are flow direction-dependent although the covariance of ln T is isotropic (the same for all four models). It is important to account for high connectivities at extreme transmissivity values, a likely situation in some geological formations. Some of the discrepancies between first-order-based analytical results and field-scale tracer test data may be due to the existence of highly connected paths of extreme conductivity values.
Diekhof, Esther Kristina; Nerenberg, Lesly; Falkai, Peter; Dechent, Peter; Baudewig, Jürgen; Gruber, Oliver
2012-12-01
The ability to resist immediate rewards is crucial for lifetime success and individual well-being. Using functional magnetic resonance imaging, we assessed the association between trait impulsivity and the neural underpinnings of the ability to control immediate reward desiring. Low and high extreme impulsivity groups were compared with regard to their behavioral performance and brain activation in situations, in which they had to forego immediate rewards with varying value to achieve a superordinate long-term goal. We found that highly impulsive (HI) individuals, who successfully compensated for their lack in behavioral self-control, engaged two complementary brain mechanisms when choosing actions in favor of a long-term goal, but at the expense of an immediate reward. First, self-controlled decisions led to a general attenuation of reward-related activation in the nucleus accumbens, which was accompanied by an increased inverse connectivity with the anteroventral prefrontal cortex. Second, HI subjects controlled their desire for increasingly valuable, but suboptimal rewards through a linear reduction of activation in the ventromedial prefrontal cortex (VMPFC). This was achieved by an increased inverse coupling between the VMPFC and the ventral striatum. Importantly, the neural mechanisms observed in the HI group differed from those in extremely controlled individuals, despite similar behavioral performance. Collectively, these results suggest trait-specific neural mechanisms that allow HI individuals to control their desire for immediate reward. Copyright © 2011 Wiley Periodicals, Inc.
An Update on the VAMOS Extremes Working Group Activities
NASA Technical Reports Server (NTRS)
Schubert, Siegfried; Cavalcanti, Iracema
2011-01-01
We review here the progress of the Variability of the American MOnsoon Systems (VAMOS) extremes working group since it was formed in February of 2010. The goals of the working group are to 1) develop an atlas of warm-season extremes over the Americas, 2) evaluate existing and planned simulations, and 3) suggest new model runs to address mechanisms and predictability of extremes. Substantial progress has been made in the development of an extremes atlas based on gridded observations and several reanalysis products including Modern Era Retrospective-Analysis for Research and Applications (MERRA) and Climate Forecast System Reanalysis (CFSR). The status of the atlas, remaining issues and plans for its expansion to include model data will be discussed. This includes the possibility of adding a companion atlas based on station observations based on the software developed under the World Climate Research Programme (WCRP) Expert Team on Climate Change. Detection and Indices (ETCCDI) activity. We will also review progress on relevant research and plans for the use and validation of the atlas results.
Hemispheric preference and progressive-part or whole practice in beginning typewriting.
Johns, L B
1989-04-01
This investigation explored the interaction of progressive-part versus whole methods of practice with hemispheric preference for processing information and the impact of each upon high school students' speed and accuracy in beginning typewriting. Zenhausern's Differential Hemispheric Activation Test was scored in such a way that it was possible to plot the scores along a continuum. Analysis of variance gave significant F ratios on 3 of the 4 testing days. The continuous scores were divided into five categories: middle, left moderates, right moderates, extreme rights, and extreme lefts. The moderate-left group speed was consistently the fastest group, and the extreme rights were consistently the slowest group. This difference was significant for all four testing days with the moderate-left mean speed varying between 4 to 6 words per minute faster each testing day. The extreme rights were consistently the most accurate, even though not statistically significantly so. There was no significant difference between method of practice and typewriting speed or between method of practice and typewriting accuracy; however, on all four testing days the mean gross speed of the whole practice learning group was 0.73 to 0.99 words per minute faster than the progressive-part group. A two-way analysis of variance indicated no interaction between method or practice and hemispheric preference.
Survival in extreme environments - on the current knowledge of adaptations in tardigrades.
Møbjerg, N; Halberg, K A; Jørgensen, A; Persson, D; Bjørn, M; Ramløv, H; Kristensen, R M
2011-07-01
Tardigrades are microscopic animals found worldwide in aquatic as well as terrestrial ecosystems. They belong to the invertebrate superclade Ecdysozoa, as do the two major invertebrate model organisms: Caenorhabditis elegans and Drosophila melanogaster. We present a brief description of the tardigrades and highlight species that are currently used as models for physiological and molecular investigations. Tardigrades are uniquely adapted to a range of environmental extremes. Cryptobiosis, currently referred to as a reversible ametabolic state induced by e.g. desiccation, is common especially among limno-terrestrial species. It has been shown that the entry and exit of cryptobiosis may involve synthesis of bioprotectants in the form of selective carbohydrates and proteins as well as high levels of antioxidant enzymes and other free radical scavengers. However, at present a general scheme of mechanisms explaining this phenomenon is lacking. Importantly, recent research has shown that tardigrades even in their active states may be extremely tolerant to environmental stress, handling extreme levels of ionizing radiation, large fluctuation in external salinity and avoiding freezing by supercooling to below -20 °C, presumably relying on efficient DNA repair mechanisms and osmoregulation. This review summarizes the current knowledge on adaptations found among tardigrades, and presents new data on tardigrade cell numbers and osmoregulation. © 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society.
Rámila, Consuelo D P; Contreras, Samuel A; Di Domenico, Camila; Molina-Montenegro, Marco A; Vega, Andrea; Handford, Michael; Bonilla, Carlos A; Pizarro, Gonzalo E
2016-11-05
Phytoremediation is a promising technology to tackle boron toxicity, which restricts agricultural activities in many arid and semi-arid areas. Puccinellia frigida is a perennial grass that was reported to hyperaccumulate boron in extremely boron-contaminated sites. To further investigate its potential for phytoremediation, we determined its response to boron stress under controlled conditions (hydroponic culture). Also, as a first step towards understanding the mechanisms underlying its extreme tolerance, we evaluated the presence and expression of genes related with boron tolerance. We found that P. frigida grew normally even at highly toxic boron concentrations in the medium (500mg/L), and within its tissues (>5000mg/kg DW). We postulate that the strategies conferring this extreme tolerance involve both restricting boron accumulation and an internal tolerance mechanism; this is consistent with the identification of putative genes involved in both mechanisms, including the expression of a possible boron efflux transporter. We also found that P. frigida hyperaccumulated boron over a wide range of boron concentrations. We propose that P. frigida could be used for boron phytoremediation strategies in places with different soil characteristics and boron concentrations. Further studies should pave the way for the development of clean and low-cost solutions to boron toxicity problems. Copyright © 2016 Elsevier B.V. All rights reserved.
Extreme-volatility dynamics in crude oil markets
NASA Astrophysics Data System (ADS)
Jiang, Xiong-Fei; Zheng, Bo; Qiu, Tian; Ren, Fei
2017-02-01
Based on concepts and methods from statistical physics, we investigate extreme-volatility dynamics in the crude oil markets, using the high-frequency data from 2006 to 2010 and the daily data from 1986 to 2016. The dynamic relaxation of extreme volatilities is described by a power law, whose exponents usually depend on the magnitude of extreme volatilities. In particular, the relaxation before and after extreme volatilities is time-reversal symmetric at the high-frequency time scale, but time-reversal asymmetric at the daily time scale. This time-reversal asymmetry is mainly induced by exogenous events. However, the dynamic relaxation after exogenous events exhibits the same characteristics as that after endogenous events. An interacting herding model both with and without exogenous driving forces could qualitatively describe the extreme-volatility dynamics.
Frank, Barnett S.; Gilsdorf, Christine M.; Goerger, Benjamin M.; Prentice, William E.; Padua, Darin A.
2014-01-01
Background: Females with history of anterior cruciate ligament (ACL) injury and subsequent ligament reconstruction are at high risk for future ACL injury. Fatigue may influence the increased risk of future injury in females by altering lower extremity biomechanics and postural control. Hypothesis: Fatigue will promote lower extremity biomechanics and postural control deficits associated with ACL injury. Study Design: Descriptive laboratory study. Methods: Fourteen physically active females with ACL reconstruction (mean age, 19.64 ± 1.5 years; mean height, 163.52 ± 6.18 cm; mean mass, 62.6 ± 13.97 kg) volunteered for this study. Postural control and lower extremity biomechanics were assessed in the surgical limb during single-leg balance and jump-landing tasks before and after a fatigue protocol. Main outcome measures were 3-dimensional hip and knee joint angles at initial contact, peak angles, joint angular displacements and peak net joint moments, anterior tibial shear force, and vertical ground reaction force during the first 50% of the loading phase of the jump-landing task. During the single-leg stance task, the main outcome measure was center of pressure sway speed. Results: Initial contact hip flexion angle decreased (t = −2.82, P = 0.01; prefatigue, 40.98° ± 9.79°; postfatigue, 36.75° ± 8.61°) from pre- to postfatigue. Hip flexion displacement (t = 2.23, P = 0.04; prefatigue, 45.19° ± 14.1°; postfatigue, 47.48° ± 14.21°) and center of pressure sway speed (t = 3.95, P < 0.05; prefatigue, 5.18 ± 0.96 cm/s; postfatigue, 6.20 ± 1.72 cm/s) increased from pre- to postfatigue. There was a trending increase in hip flexion moment (t = 2.14, P = 0.05; prefatigue, 1.66 ± 0.68 Nm/kg/m; postfatigue, 1.91 ± 0.62 Nm/kg/m) from pre- to postfatigue. Conclusion: Fatigue may induce lower extremity biomechanics and postural control deficits that may be associated with ACL injury in physically active females with ACL reconstruction. Clinical Relevance: Rehabilitation and maintenance programs should incorporate activities that aim to improve muscular endurance and improve the neuromuscular system’s tolerance to fatiguing exercise in efforts to maintain stability and safe landing technique during subsequent physical activity. PMID:24982701
NASA Astrophysics Data System (ADS)
Palmer, S. J.; Rycroft, M. J.; Cermack, M.
2006-09-01
The possibility that conditions on the Sun and in the Earth’s magnetosphere can affect human health at the Earth’s surface has been debated for many decades. This work reviews the research undertaken in the field of heliobiology, focusing on the effect of variations of geomagnetic activity on human cardiovascular health. Data from previous research are analysed for their statistical significance, resulting in support for some studies and the undermining of others. Three conclusions are that geomagnetic effects are more pronounced at higher magnetic latitudes, that extremely high as well as extremely low values of geomagnetic activity seem to have adverse health effects and that a subset of the population (10-15%) is predisposed to adverse health due to geomagnetic variations. The reported health effects of anthropogenic sources of electric and magnetic fields are also briefly discussed, as research performed in this area could help to explain the results from studies into natural electric and magnetic field interactions with the human body. Possible mechanisms by which variations in solar and geophysical parameters could affect human health are discussed and the most likely candidates investigated further. Direct effects of natural ELF electric and magnetic fields appear implausible; a mechanism involving some form of resonant absorption is more likely. The idea that the Schumann resonance signals could be the global environmental signal absorbed by the human body, thereby linking geomagnetic activity and human health is investigated. Suppression of melatonin secreted by the pineal gland, possibly via desynchronised biological rhythms, appears to be a promising contender linking geomagnetic activity and human health. There are indications that calcium ions in cells could play a role in one or more mechanisms. It is found to be unlikely that a single mechanism can explain all of the reported phenomena.
Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV
Wang, He; Xu, Yiming; Ulonska, Stefan; Robinson, Joseph S.; Ranitovic, Predrag; Kaindl, Robert A.
2015-01-01
Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. Here, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ≈3 × 1013 s−1 is generated at 22.3 eV, with 5 × 10−5 conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications. PMID:26067922
NASA Astrophysics Data System (ADS)
Fix, Miranda J.; Cooley, Daniel; Hodzic, Alma; Gilleland, Eric; Russell, Brook T.; Porter, William C.; Pfister, Gabriele G.
2018-03-01
We conduct a case study of observed and simulated maximum daily 8-h average (MDA8) ozone (O3) in three US cities for summers during 1996-2005. The purpose of this study is to evaluate the ability of a high resolution atmospheric chemistry model to reproduce observed relationships between meteorology and high or extreme O3. We employ regional coupled chemistry-transport model simulations to make three types of comparisons between simulated and observational data, comparing (1) tails of the O3 response variable, (2) distributions of meteorological predictor variables, and (3) sensitivities of high and extreme O3 to meteorological predictors. This last comparison is made using two methods: quantile regression, for the 0.95 quantile of O3, and tail dependence optimization, which is used to investigate even higher O3 extremes. Across all three locations, we find substantial differences between simulations and observational data in both meteorology and meteorological sensitivities of high and extreme O3.
Observation of acoustic-gravity waves in the upper atmosphere during severe storm activity
NASA Technical Reports Server (NTRS)
Hung, R. J.
1975-01-01
A nine-element continuum wave spectrum, high-frequency, Doppler sounder array has been used to detect upper atmospheric wave-like disturbances during periods with severe weather activity, particularly severe thunderstorms and tornadoes. Five events of severe weather activity, including extreme tornado outbreak of April 3, 1974, were chosen for the present study. The analysis of Doppler records shows that both infrasonic waves and gravity waves were excited when severe storms appeared in the north Alabama area. Primarily, in the case of tornado activity, S-shaped Doppler fluctuations or Doppler fold-backs are observed, while quasi-sinusoidal fluctuations are more common in the case of thunderstorm activity. A criterion for the production of Doppler fold-backs is derived and compared with possible tornado conditions.
Symptoms of exercise dependence and physical activity in students.
MacLaren, Vance V; Best, Lisa A
2007-12-01
Health professionals recognize the benefits of moderate physical activity and encourage clients to engage in some form of activity on a regular basis. In spite of these recognized benefits, there are growing concerns that some may exercise at levels detrimental to health. The term exercise dependence refers to those individuals whose extreme exercise schedules interfere with their social, occupational, and family lives. The purpose of this study was to examine the relationship between weekly exercise habits and scores on the Exercise Dependence Questionnaire in a sample of undergraduate students (213 women and 79 men). Overall, participants who reported high activity scored higher than those reporting low activity on subscales measuring interference with family and social life, positive reward, withdrawal, exercise for social reasons, exercise for health reasons, and stereotyped behavior.
Extremely high data-rate, reliable network systems research
NASA Technical Reports Server (NTRS)
Foudriat, E. C.; Maly, Kurt J.; Mukkamala, R.; Murray, Nicholas D.; Overstreet, C. Michael
1990-01-01
Significant progress was made over the year in the four focus areas of this research group: gigabit protocols, extensions of metropolitan protocols, parallel protocols, and distributed simulations. Two activities, a network management tool and the Carrier Sensed Multiple Access Collision Detection (CSMA/CD) protocol, have developed to the point that a patent is being applied for in the next year; a tool set for distributed simulation using the language SIMSCRIPT also has commercial potential and is to be further refined. The year's results for each of these areas are summarized and next year's activities are described.
Block-Module Electric Machines of Alternating Current
NASA Astrophysics Data System (ADS)
Zabora, I.
2018-03-01
The paper deals with electric machines having active zone based on uniform elements. It presents data on disk-type asynchronous electric motors with short-circuited rotors, where active elements are made by integrated technique that forms modular elements. Photolithography, spraying, stamping of windings, pressing of core and combined methods are utilized as the basic technological approaches of production. The constructions and features of operation for new electric machine - compatible electric machines-transformers are considered. Induction motors are intended for operation in hermetic plants with extreme conditions surrounding gas, steam-to-gas and liquid environment at a high temperature (to several hundred of degrees).
NASA Astrophysics Data System (ADS)
Dibike, Y. B.; Eum, H. I.; Prowse, T. D.
2017-12-01
Flows originating from alpine dominated cold region watersheds typically experience extended winter low flows followed by spring snowmelt and summer rainfall driven high flows. In a warmer climate, there will be temperature- induced shift in precipitation from snow towards rain as well as changes in snowmelt timing affecting the frequency of extreme high and low flow events which could significantly alter ecosystem services. This study examines the potential changes in the frequency and severity of hydrologic extremes in the Athabasca River watershed in Alberta, Canada based on the Variable Infiltration Capacity (VIC) hydrologic model and selected and statistically downscaled climate change scenario data from the latest Coupled Model Intercomparison Project (CMIP5). The sensitivity of these projected changes is also examined by applying different extreme flow analysis methods. The hydrological model projections show an overall increase in mean annual streamflow in the watershed and a corresponding shift in the freshet timing to earlier period. Most of the streams are projected to experience increases during the winter and spring seasons and decreases during the summer and early fall seasons, with an overall projected increases in extreme high flows, especially for low frequency events. While the middle and lower parts of the watershed are characterised by projected increases in extreme high flows, the high elevation alpine region is mainly characterised by corresponding decreases in extreme low flow events. However, the magnitude of projected changes in extreme flow varies over a wide range, especially for low frequent events, depending on the climate scenario and period of analysis, and sometimes in a nonlinear way. Nonetheless, the sensitivity of the projected changes to the statistical method of analysis is found to be relatively small compared to the inter-model variability.
Extreme geomagnetic storms: Probabilistic forecasts and their uncertainties
Riley, Pete; Love, Jeffrey J.
2017-01-01
Extreme space weather events are low-frequency, high-risk phenomena. Estimating their rates of occurrence, as well as their associated uncertainties, is difficult. In this study, we derive statistical estimates and uncertainties for the occurrence rate of an extreme geomagnetic storm on the scale of the Carrington event (or worse) occurring within the next decade. We model the distribution of events as either a power law or lognormal distribution and use (1) Kolmogorov-Smirnov statistic to estimate goodness of fit, (2) bootstrapping to quantify the uncertainty in the estimates, and (3) likelihood ratio tests to assess whether one distribution is preferred over another. Our best estimate for the probability of another extreme geomagnetic event comparable to the Carrington event occurring within the next 10 years is 10.3% 95% confidence interval (CI) [0.9,18.7] for a power law distribution but only 3.0% 95% CI [0.6,9.0] for a lognormal distribution. However, our results depend crucially on (1) how we define an extreme event, (2) the statistical model used to describe how the events are distributed in intensity, (3) the techniques used to infer the model parameters, and (4) the data and duration used for the analysis. We test a major assumption that the data represent time stationary processes and discuss the implications. If the current trends persist, suggesting that we are entering a period of lower activity, our forecasts may represent upper limits rather than best estimates.
Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors.
Zhang, Li Li; Zhao, Xin; Stoller, Meryl D; Zhu, Yanwu; Ji, Hengxing; Murali, Shanthi; Wu, Yaping; Perales, Stephen; Clevenger, Brandon; Ruoff, Rodney S
2012-04-11
We present a novel method to prepare highly conductive, free-standing, and flexible porous carbon thin films by chemical activation of reduced graphene oxide paper. These flexible carbon thin films possess a very high specific surface area of 2400 m(2) g(-1) with a high in-plane electrical conductivity of 5880 S m(-1). This is the highest specific surface area for a free-standing carbon film reported to date. A two-electrode supercapacitor using these carbon films as electrodes demonstrated an excellent high-frequency response, an extremely low equivalent series resistance on the order of 0.1 ohm, and a high-power delivery of about 500 kW kg(-1). While higher frequency and power values for graphene materials have been reported, these are the highest values achieved while simultaneously maintaining excellent specific capacitances and energy densities of 120 F g(-1) and 26 W h kg(-1), respectively. In addition, these free-standing thin films provide a route to simplify the electrode-manufacturing process by eliminating conducting additives and binders. The synthetic process is also compatible with existing industrial level KOH activation processes and roll-to-roll thin-film fabrication technologies. © 2012 American Chemical Society
1987-09-21
objectives of our program are to isolate and characterize a fully active DNA dependent RNA polymerase from the extremely halophilic archaebacteria of the genus...operons in II. Marismortui. The halobacteriaceae are extreme halophiles . They require 3.5 M NaCI for optimal growth an(l no growth is observed below 2...was difficutlt to perform due to the extreme genetic instability in this strain (6). In contrast, the genoine of the extreme halophilic and prototrophic
Kowalczewski, Jan; Gritsenko, Valeriya; Ashworth, Nigel; Ellaway, Peter; Prochazka, Arthur
2007-07-01
To test the efficacy of functional electric stimulation (FES)-assisted exercise therapy (FES-ET) on a workstation in the subacute phase of recovery from a stroke. Single-blind, randomly controlled comparison of high- and low-intensity treatment. Laboratory in a rehabilitation hospital. Nineteen stroke survivors (10 men, 9 women; mean age +/- standard deviation, 60.6+/-5.8y), with upper-extremity hemiplegia (mean poststroke time, 48+/-17d). The main inclusion criteria were: stroke occurred within 3 months of onset of trial and resulted in severe upper-limb dysfunction, and FES produced adequate hand opening. An FES stimulator and an exercise workstation with instrumented objects were used by 2 groups to perform specific motor tasks with their affected upper extremity. Ten subjects in the high-intensity FES-ET group received FES-ET for 1 hour a day on 15 to 20 consecutive workdays. Nine subjects in the low-intensity FES-ET group received 15 minutes of sensory electric stimulation 4 days a week and on the fifth day they received 1 hour of FES-ET. Primary outcome measure included the Wolf Motor Function Test (WMFT). Secondary outcome measures included the Motor Activity Log (MAL), the upper-extremity portion of the Fugl-Meyer Assessment (FMA), and the combined kinematic score (CKS) derived from workstation measurements. The WMFT, MAL, and FMA were used to assess function in the absence of FES whereas CKS was used to evaluate function assisted by FES. Improvements in the WMFT and CKS were significantly greater in the high-intensity group (post-treatment effect size, .95) than the low-intensity group (post-treatment effect size, 1.3). The differences in MAL and FMA were not statistically significant. Subjects performing high-intensity FES-ET showed significantly greater improvements on the WMFT than those performing low-intensity FES-ET. However, this was not reflected in subjects' self-assessments (MAL) or in their FMA scores, so the clinical significance of the result is open to debate. The CKS data suggest that high-intensity FES-ET may be advantageous in neuroprosthetic applications.
NASA Astrophysics Data System (ADS)
Pustil'Nik, Lev A.; Dorman, L. I.; Yom Din, G.
2003-07-01
The database of Professor Rogers, with wheat prices in England in the Middle Ages (1249-1703) was used to search for possible manifestations of solar activity and cosmic ray variations. The main object of the statistical analysis is investigation of bursts of prices. We present a conceptual model of possible modes for sensitivity of wheat prices to weather conditions, caused by solar cycle variations in cosmic rays, and compare the expected price fluctuations with wheat price variations recorded in the Medieval England. We compared statistical properties of the intervals between price bursts with statistical properties of the intervals between extremes (minimums) of solar cycles during the years 1700-2000. Statistical properties of these two samples are similar both in averaged/median values of intervals and in standard deviation of this values. We show that histogram of intervals distribution for price bursts and solar minimums are coincidence with high confidence level. We analyzed direct links between wheat prices and solar activity in the th 17 Century, for which wheat prices and solar activity data as well as cosmic ray intensity (from 10 Be isotop e) are available. We show that for all seven solar activity minimums the observed prices were higher than prices for the nine intervals of maximal solar activity proceed preceding to the minimums. This result, combined with the conclusion on similarity of statistical properties of the price bursts and solar activity extremes we consider as direct evidence of a causal connection between wheat prices bursts and solar activity.
NASA Astrophysics Data System (ADS)
Huang, S. Y.; Nakamura, N.
2016-12-01
The finite-amplitude local wave activity (LWA) identifies both the locations and magnitudes of anomalous wave events (Huang and Nakamura 2016, JAS), which are often associated with extreme weather conditions such as heat waves and storms at the rim. Variance in LWA in synoptic timescale is well-explained by the wave activity flux variance (i.e. conservative dynamics), while beyond seasonal time scale, the convergence/divergence of wave activity flux is balanced by non-conservative processes (e.g. vertical fluxes of heat and momentum at the surface, mixing, radiative forcing etc.). Analysis of ERA-Interim data during 1979-2015 shows that there is generally an increasing trend in the vertically-integrated interior LWA in Northern Winter, except over Central Pacific and Southern Europe. There is, in contrast, a decreasing trend in LWA in Northern summer, except over the high-latitude oceanic regions and low-latitude continental regions. The trends in the wave activity flux convergence in both seasons are consistent with such observations in LWA except over the Atlantic sector. In this presentation, I will illustrate how the change in circulation in a warming climate is associated with change in spatial distribution and frequency of extreme weather events by comparing the change in wave activity flux vectors with the observed change in LWA climatology. I will also quantify the permanent effect of non-conservative processes in terms of decadal change in eddy-free reference states of zonal wind and temperature (Nakamura and Solomon 2011).
Shoulder model validation and joint contact forces during wheelchair activities.
Morrow, Melissa M B; Kaufman, Kenton R; An, Kai-Nan
2010-09-17
Chronic shoulder impingement is a common problem for manual wheelchair users. The loading associated with performing manual wheelchair activities of daily living is substantial and often at a high frequency. Musculoskeletal modeling and optimization techniques can be used to estimate the joint contact forces occurring at the shoulder to assess the soft tissue loading during an activity and to possibly identify activities and strategies that place manual wheelchair users at risk for shoulder injuries. The purpose of this study was to validate an upper extremity musculoskeletal model and apply the model to wheelchair activities for analysis of the estimated joint contact forces. Upper extremity kinematics and handrim wheelchair kinetics were measured over three conditions: level propulsion, ramp propulsion, and a weight relief lift. The experimental data were used as input to a subject-specific musculoskeletal model utilizing optimization to predict joint contact forces of the shoulder during all conditions. The model was validated using a mean absolute error calculation. Model results confirmed that ramp propulsion and weight relief lifts place the shoulder under significantly higher joint contact loading than level propulsion. In addition, they exhibit large superior contact forces that could contribute to impingement. This study highlights the potential impingement risk associated with both the ramp and weight relief lift activities. Level propulsion was shown to have a low relative risk of causing injury, but with consideration of the frequency with which propulsion is performed, this observation is not conclusive.
NASA Astrophysics Data System (ADS)
Zhou, Ting; Jia, Xiaorong; Liao, Huixuan; Peng, Shijia; Peng, Shaolin
2016-12-01
Conventional models for predicting species distribution under global warming scenarios often treat one species as a homogeneous whole. In the present study, we selected Cunninghamia lanceolata (C. lanceolata), a widely distributed species in China, to investigate the physio-ecological responses of five populations under different temperature regimes. The results demonstrate that increased mean temperatures induce increased growth performance among northern populations, which exhibited the greatest germination capacity and largest increase in the overlap between the growth curve and the monthly average temperature. However,tolerance of the southern population to extremely high temperatures was stronger than among the population from the northern region,shown by the best growth and the most stable photosynthetic system of the southern population under extremely high temperature. This result indicates that the growth advantage among northern populations due to increased mean temperatures may be weakened by lower tolerance to extremely high temperatures. This finding is antithetical to the predicted results. The theoretical coupling model constructed here illustrates that the difference in growth between populations at high and low latitudes and altitudes under global warming will decrease because of the frequent occurrence of extremely high temperatures.
NASA Astrophysics Data System (ADS)
Freychet, N.; Duchez, A.; Wu, C.-H.; Chen, C.-A.; Hsu, H.-H.; Hirschi, J.; Forryan, A.; Sinha, B.; New, A. L.; Graham, T.; Andrews, M. B.; Tu, C.-Y.; Lin, S.-J.
2017-02-01
This work investigates the variability of extreme weather events (drought spells, DS15, and daily heavy rainfall, PR99) over East Asia. It particularly focuses on the large scale atmospheric circulation associated with high levels of the occurrence of these extreme events. Two observational datasets (APHRODITE and PERSIANN) are compared with two high-resolution global climate models (HiRAM and HadGEM3-GC2) and an ensemble of other lower resolution climate models from CMIP5. We first evaluate the performance of the high resolution models. They both exhibit good skill in reproducing extreme events, especially when compared with CMIP5 results. Significant differences exist between the two observational datasets, highlighting the difficulty of having a clear estimate of extreme events. The link between the variability of the extremes and the large scale circulation is investigated, on monthly and interannual timescales, using composite and correlation analyses. Both extreme indices DS15 and PR99 are significantly linked to the low level wind intensity over East Asia, i.e. the monsoon circulation. It is also found that DS15 events are strongly linked to the surface temperature over the Siberian region and to the land-sea pressure contrast, while PR99 events are linked to the sea surface temperature anomalies over the West North Pacific. These results illustrate the importance of the monsoon circulation on extremes over East Asia. The dependencies on of the surface temperature over the continent and the sea surface temperature raise the question as to what extent they could affect the occurrence of extremes over tropical regions in future projections.
Serial EEG findings in anti-NMDA receptor encephalitis: correlation between clinical course and EEG.
Ueda, Jun; Kawamoto, Michi; Hikiami, Ryota; Ishii, Junko; Yoshimura, Hajime; Matsumoto, Riki; Kohara, Nobuo
2017-12-01
Anti-NMDA receptor encephalitis is a paraneoplastic encephalitis characterised by psychiatric features, involuntary movement, and autonomic instability. Various EEG findings in patients with anti-NMDA receptor encephalitis have been reported, however, the correlation between the EEG findings and clinical course of anti-NMDA receptor encephalitis remains unclear. We describe a patient with anti-NMDA receptor encephalitis with a focus on EEG findings, which included: status epilepticus, generalised rhythmic delta activity, excess beta activity, extreme delta brush, and paroxysmal alpha activity upon arousal from sleep, which we term"arousal alpha pattern". Initially, status epilepticus was observed on the EEG when the patient was comatose with conjugate deviation. The EEG then indicated excess beta activity, followed by the emergence of continuous slow activity, including generalised rhythmic delta activity and extreme delta brush, in the most severe phase. Slow activity gradually faded in parallel with clinical amelioration. Excess beta activity persisted, even after the patient became almost independent in daily activities, and finally disappeared with full recovery. In summary, our patient with anti-NMDA receptor encephalitis demonstrated slow activity on the EEG, including extreme delta brush during the most severe phase, which gradually faded in parallel with clinical amelioration, with excess beta activity persisting into the recovery phase.
Dissipation of ‘dark energy’ by cortex in knowledge retrieval
NASA Astrophysics Data System (ADS)
Capolupo, Antonio; Freeman, Walter J.; Vitiello, Giuseppe
2013-03-01
We have devised a thermodynamic model of cortical neurodynamics expressed at the classical level by neural networks and at the quantum level by dissipative quantum field theory. Our model is based on features in the spatial images of cortical activity newly revealed by high-density electrode arrays. We have incorporated the mechanism and necessity for so-called dark energy in knowledge retrieval. We have extended the model first using the Carnot cycle to define our measures for energy, entropy and temperature, and then using the Rankine cycle to incorporate criticality and phase transitions. We describe the dynamics of two interactive fields of neural activity that express knowledge, one at high and the other at low energy density, and the two operators that create and annihilate the fields. We postulate that the extremely high density of energy sequestered briefly in cortical activity patterns can account for the vividness, richness of associations, and emotional intensity of memories recalled by stimuli.
Dissipation of 'dark energy' by cortex in knowledge retrieval.
Capolupo, Antonio; Freeman, Walter J; Vitiello, Giuseppe
2013-03-01
We have devised a thermodynamic model of cortical neurodynamics expressed at the classical level by neural networks and at the quantum level by dissipative quantum field theory. Our model is based on features in the spatial images of cortical activity newly revealed by high-density electrode arrays. We have incorporated the mechanism and necessity for so-called dark energy in knowledge retrieval. We have extended the model first using the Carnot cycle to define our measures for energy, entropy and temperature, and then using the Rankine cycle to incorporate criticality and phase transitions. We describe the dynamics of two interactive fields of neural activity that express knowledge, one at high and the other at low energy density, and the two operators that create and annihilate the fields. We postulate that the extremely high density of energy sequestered briefly in cortical activity patterns can account for the vividness, richness of associations, and emotional intensity of memories recalled by stimuli. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhang, Hua; Wang, Chen; Sun, Han-Lei; Fu, Gang; Chen, Shu; Zhang, Yue-Jiao; Chen, Bing-Hui; Anema, Jason R.; Yang, Zhi-Lin; Li, Jian-Feng; Tian, Zhong-Qun
2017-01-01
Surface molecular information acquired in situ from a catalytic process can greatly promote the rational design of highly efficient catalysts by revealing structure-activity relationships and reaction mechanisms. Raman spectroscopy can provide this rich structural information, but normal Raman is not sensitive enough to detect trace active species adsorbed on the surface of catalysts. Here we develop a general method for in situ monitoring of heterogeneous catalytic processes through shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) satellite nanocomposites (Au-core silica-shell nanocatalyst-satellite structures), which are stable and have extremely high surface Raman sensitivity. By combining operando SHINERS with density functional theory calculations, we identify the working mechanisms for CO oxidation over PtFe and Pd nanocatalysts, which are typical low- and high-temperature catalysts, respectively. Active species, such as surface oxides, superoxide/peroxide species and Pd–C/Pt–C bonds are directly observed during the reactions. We demonstrate that in situ SHINERS can provide a deep understanding of the fundamental concepts of catalysis. PMID:28537269
Bailey, Ryan; Kaskutas, Vicki; Fox, Ida; Baum, Carolyn M; Mackinnon, Susan E
2009-11-01
To explore the relationship between upper extremity nerve damage and activity participation, pain, depression, and perceived quality of life. A total of 49 patients with upper extremity nerve damage completed standardized measures of activity participation, pain, depression, and quality of life. We analyzed scores for all subjects and for 2 diagnostic groups: patients with compressive neuropathy and patients with nerve injury (laceration, tumor, and brachial plexus injury), and explored predictors of overall quality of life. Participants had given up 21% of their previous daily activities; greater activity loss was reported in patients with nerve injury. Pain was moderate and 39% had signs of clinical depression. Physical and psychological quality of life ratings were below the norms. Activity loss was strongly associated with higher levels of depression and lower physical and psychological quality of life. Higher depression scores correlated strongly with lower overall quality of life. Greater pain correlated moderately with higher depression scores and weakly with quality of life; no statistical relationship was found between pain and physical quality of life. Activity participation and depression predicted 61% of the variance in overall quality of life in patients with nerve damage. The results of this study suggest that hand surgeons and therapists caring for patients with nerve compression and nerve injury should discuss strategies to improve activity participation, and decrease pain and depression, to improve overall effect on quality of life throughout the recovery process. Depression screening and referral when indicated should be included in the overall treatment plan for patients with upper extremity nerve damage. Prognostic IV.
The Engineering for Climate Extremes Partnership
NASA Astrophysics Data System (ADS)
Holland, G. J.; Tye, M. R.
2014-12-01
Hurricane Sandy and the recent floods in Thailand have demonstrated not only how sensitive the urban environment is to the impact of severe weather, but also the associated global reach of the ramifications. These, together with other growing extreme weather impacts and the increasing interdependence of global commercial activities point towards a growing vulnerability to weather and climate extremes. The Engineering for Climate Extremes Partnership brings academia, industry and government together with the goals encouraging joint activities aimed at developing new, robust, and well-communicated responses to this increasing vulnerability. Integral to the approach is the concept of 'graceful failure' in which flexible designs are adopted that protect against failure by combining engineering or network strengths with a plan for efficient and rapid recovery if and when they fail. Such an approach enables optimal planning for both known future scenarios and their assessed uncertainty.
Dobrinas, Maria; Crettol, Séverine; Oneda, Beatrice; Lahyani, Rachel; Rotger, Margalida; Choong, Eva; Lubomirov, Rubin; Csajka, Chantal; Eap, Chin B
2013-02-01
(S)-Methadone, metabolized mainly by CYP2B6, shows a wide interindividual variability in its pharmacokinetics and pharmacodynamics. Resequencing of the CYP2B6 gene was performed in 12 and 35 selected individuals with high (S)-methadone plasma exposure and low (S)-methadone plasma exposure, respectively, from a previously described cohort of 276 patients undergoing methadone maintenance treatment. Selected genetic polymorphisms were then analyzed in the complete cohort. The rs35303484 (*11; c136A>G; M46V) polymorphism was overrepresented in the high (S)-methadone level group, whereas the rs3745274 (*9; c516G>T; Q172H), rs2279344 (c822+183G>A), and rs8192719 (c1294+53C>T) polymorphisms were underrepresented in the low (S)-methadone level group, suggesting an association with decreased CYP2B6 activity. Conversely, the rs3211371 (*5; c1459C>T; R487C) polymorphism was overrepresented in the low-level group, indicating an increased CYP2B6 activity. A higher allele frequency was found in the high-level group compared with the low-level group for rs3745274 (*9; c516G>T; Q172H), rs2279343 (*4; c785A>G; K262R) (together representing CYP2B6*6), rs8192719 (c1294+53C>T), and rs2279344 (c822+183G>A), suggesting their involvement in decreased CYP2B6 activity. These results should be replicated in larger independent cohorts. Known genetic polymorphisms in CYP2B6 contribute toward explaining extreme (S)-methadone plasma levels observed in a cohort of patients following methadone maintenance treatment.
Frydendal, Thomas; Eshøj, Henrik; Liaghat, Behnam; Edouard, Pascal; Søgaard, Karen; Juul-Kristensen, Birgit
2018-05-05
Shoulder pain is highly prevalent in competitive swimmers, and generalized joint hypermobility (GJH) is considered a risk factor. Sensorimotor control deficiencies and altered neuromuscular activation of the shoulder may represent underlying factors. To investigate whether competitive swimmers with GJH including shoulder hypermobility (GJHS) differ in shoulder sensorimotor control and muscle activity from those without GJH and no shoulder hypermobility (NGJH). Competitive swimmers (aged 13-17) were recruited. GJHS or NGJH status was determined using the Beighton score (0-9) and Rotès-Quérol test (positive/negative). Inclusion criteria for GJHS were a Beighton score ≥5 and minimum one hypermobile shoulder, while NGJH was defined as a Beighton score ≤3 and no shoulder hypermobility. Three prone lying, upper-extremity weight-bearing shoulder stabilometric tests were performed on a force platform: Bilateral upper-extremity support eyes open (BL-EO) and eyes closed (BL-EC) and unilateral upper-extremity support eyes open (UL-EO). Surface electromyography (SEMG) was measured from the upper trapezius, lower trapezius, serratus anterior, infraspinatus and pectoralis major muscles. SEMG was normalized using maximal voluntary isometric contractions and presented relative to maximal voluntary SEMG (%MVE). Co-contraction index (CCI) was calculated for the following muscle pairs: upper trapezius-lower trapezius, upper trapezius-serratus anterior, and infraspinatus-pectoralis major. Between-group differences in stabilometric parameters, %MVE, and CCI were analyzed with a mixed effects model. Thirty-eight swimmers were enrolled as GJHS (n = 19) or NGJH (n = 19). There were no group differences in stabilometric parameters or CCI. GJHS displayed significantly decreased (29%) pectoralis major activity during BL-EO compared to NGJH (5.35 ± 1.77%MVE vs. 7.51 ± 1.96%MVE; p = 0.043). Adolescent competitive swimmers with GJHS displayed no shoulder sensorimotor control deficiencies and no generally altered shoulder muscle activity pattern, except for decreased pectoralis major activity in BL-EO. Longitudinal studies are needed to investigate whether decreased pectoralis major activation contributes to the development of shoulder pain in swimmers with GJHS. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, Juan; Liu, Guannan; Wu, Hao; Zhang, Tao; Liu, Xinhui; Li, Wuqing
2018-04-01
The physicochemical properties and heavy metal(loid) concentrations of the river water both fluctuate greatly along the river affected by mining activities, and the transportation of heavy metal(loid)s is therefore more complicated than unpolluted river. Dissolved and particulate heavy metal(loid)s in a river polluted by mining activities were measured to study their temporal-spatial variation and partitioning. The concentrations of dissolved arsenic (As), cadmium (Cd), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) were considerably high at the sites near the mine area. Notably, dissolved As at most sites were higher than the Chinese quality criterion of class II for surface water indicating high environmental risk. Mn and Pb at most sites and Ni at a part of the sites mainly existed in the particulate phase. For other heavy metal(loid)s, i.e., As, Cd, chromium (Cr), and Zn, the particulate phase was extremely high at the sites near the mine area and responsible for heavy metal(loid) transport. Significant correlations between particulate heavy metal(loid)s and temperature and electrical conductivity (EC) were found. However, the partitioning of heavy metal(loid)s did not significantly relate to the river water properties, due to most heavy metal(loid)s in suspended particulate matter (SPM) are stable and affected less by water properties. Except for Cr and Ni, other heavy metal(loid)s showed high concentrations in sediments, and considerable Cd, Mn, and Zn existed in exchangeable and carbonate fraction indicating high environmental risk. The environmental assessment of SPM showed that Cd, Zn, and As, as the main pollutants in SPM, all reached extremely polluted level at the sites near the mine area, and the environmental risk of heavy metal(loid)s in SPM was higher during dry season than that during wet season. The results can contribute to understanding the partitioning and transportation of heavy metal(loid)s in the river affected by mining activities.
Microorganisms in desert rocks: the edge of life on Earth.
Wierzchos, Jacek; de los Ríos, Asunción; Ascaso, Carmen
2012-12-01
This article reviews current knowledge on microbial communities inhabiting endolithic habitats in the arid and hyper-arid regions of our planet. In these extremely dry environments, the most common survival strategy is to colonize the interiors of rocks. This habitat provides thermal buffering, physical stability, and protection against incident UV radiation, excessive photosynthetically active radiation, and freeze-thaw events. Above all, through water retention in the rocks' network of pores and fissures, moisture is made available. Some authors have argued that dry environments pose the most extreme set of conditions faced by microorganisms. Microbial cells need to withstand the biochemical stresses created by the lack of water, along with temperature fluctuations and/or high salinity. In this review, we also address the variety of ways in which microorganisms deal with the lack of moisture in hyper-arid environments and point out the diversity of microorganisms that are able to cope with only the scarcest presence of water. Finally, we discuss the important clues to the history of life on Earth, and perhaps other places in our solar system, that have emerged from the study of extreme microbial ecosystems.
Snow and ice ecosystems: not so extreme.
Maccario, Lorrie; Sanguino, Laura; Vogel, Timothy M; Larose, Catherine
2015-12-01
Snow and ice environments cover up to 21% of the Earth's surface. They have been regarded as extreme environments because of their low temperatures, high UV irradiation, low nutrients and low water availability, and thus, their microbial activity has not been considered relevant from a global microbial ecology viewpoint. In this review, we focus on why snow and ice habitats might not be extreme from a microbiological perspective. Microorganisms interact closely with the abiotic conditions imposed by snow and ice habitats by having diverse adaptations, that include genetic resistance mechanisms, to different types of stresses in addition to inhabiting various niches where these potential stresses might be reduced. The microbial communities inhabiting snow and ice are not only abundant and taxonomically diverse, but complex in terms of their interactions. Altogether, snow and ice seem to be true ecosystems with a role in global biogeochemical cycles that has likely been underestimated. Future work should expand past resistance studies to understanding the function of these ecosystems. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Hung, Man; Hon, Shirley D; Cheng, Christine; Franklin, Jeremy D; Aoki, Stephen K; Anderson, Mike B; Kapron, Ashley L; Peters, Christopher L; Pelt, Christopher E
2014-12-01
The applicability and validity of many patient-reported outcome measures in the high-functioning population are not well understood. To compare the psychometric properties of the modified Harris Hip Score (mHHS), the Hip Outcome Score activities of daily living subscale (HOS-ADL) and sports (HOS-sports), and the Lower Extremity Computerized Adaptive Test (LE CAT). The hypotheses was that all instruments would perform well but that the LE CAT would show superiority psychometrically because a combination of CAT and a large item bank allows for a high degree of measurement precision. Cohort study (diagnosis); Level of evidence, 2. Data were collected from 472 advanced-age, active participants from the Huntsman World Senior Games in 2012. Validity evidences were examined through item fit, dimensionality, monotonicity, local independence, differential item functioning, person raw score to measure correlation, and instrument coverage (ie, ceiling and floor effects), and reliability evidences were examined through Cronbach alpha and person separation index. All instruments demonstrated good item fit, unidimensionality, monotonicity, local independence, and person raw score to measure correlations. The HOS-ADL had high ceiling effects of 36.02%, and the mHHS had ceiling effects of 27.54%. The LE CAT had ceiling effects of 8.47%, and the HOS-sports had no ceiling effects. None of the instruments had any floor effects. The mHHS had a very low Cronbach alpha of 0.41 and an extremely low person separation index of 0.08. Reliabilities for the LE CAT were excellent and for the HOS-ADL and HOS-sports were good. The LE CAT showed better psychometric properties overall than the HOS-ADL, HOS-sports, and mHHS for the senior population. The mHHS demonstrated pronounced ceiling effects and poor reliabilities that should be of concern. The high ceiling effects for the HOS-ADL were also of concern. The LE CAT was superior in all psychometric aspects examined in this study. Future research should investigate the LE CAT for wider use in different populations.
Hung, Man; Hon, Shirley D.; Cheng, Christine; Franklin, Jeremy D.; Aoki, Stephen K.; Anderson, Mike B.; Kapron, Ashley L.; Peters, Christopher L.; Pelt, Christopher E.
2014-01-01
Background: The applicability and validity of many patient-reported outcome measures in the high-functioning population are not well understood. Purpose: To compare the psychometric properties of the modified Harris Hip Score (mHHS), the Hip Outcome Score activities of daily living subscale (HOS-ADL) and sports (HOS-sports), and the Lower Extremity Computerized Adaptive Test (LE CAT). The hypotheses was that all instruments would perform well but that the LE CAT would show superiority psychometrically because a combination of CAT and a large item bank allows for a high degree of measurement precision. Study Design: Cohort study (diagnosis); Level of evidence, 2. Methods: Data were collected from 472 advanced-age, active participants from the Huntsman World Senior Games in 2012. Validity evidences were examined through item fit, dimensionality, monotonicity, local independence, differential item functioning, person raw score to measure correlation, and instrument coverage (ie, ceiling and floor effects), and reliability evidences were examined through Cronbach alpha and person separation index. Results: All instruments demonstrated good item fit, unidimensionality, monotonicity, local independence, and person raw score to measure correlations. The HOS-ADL had high ceiling effects of 36.02%, and the mHHS had ceiling effects of 27.54%. The LE CAT had ceiling effects of 8.47%, and the HOS-sports had no ceiling effects. None of the instruments had any floor effects. The mHHS had a very low Cronbach alpha of 0.41 and an extremely low person separation index of 0.08. Reliabilities for the LE CAT were excellent and for the HOS-ADL and HOS-sports were good. Conclusion: The LE CAT showed better psychometric properties overall than the HOS-ADL, HOS-sports, and mHHS for the senior population. The mHHS demonstrated pronounced ceiling effects and poor reliabilities that should be of concern. The high ceiling effects for the HOS-ADL were also of concern. The LE CAT was superior in all psychometric aspects examined in this study. Future research should investigate the LE CAT for wider use in different populations. PMID:26535291
NASA Astrophysics Data System (ADS)
Schoof, J. T.
2017-12-01
Extreme temperatures affect society in multiple ways, but the impacts are often different depending on the concurrent humidity. For example, the greatest impacts on human morbidity and mortality result when the temperature and humidity are both elevated. Conversely, high temperatures coupled with low humidity often lead to agricultural impacts resulting in lower yields. Despite the importance of humidity in determining heat wave impacts, relatively few students of future temperature extremes have also considered possible changes in humidity. In a recent study, we investigated recent historical changes in the frequency and intensity and low humidity and high humidity extreme temperature events using a framework based on isobaric equivalent temperature. Here, we extend this approach to climate projections from CMIP5 models to explore possible regional changes in extreme heat characteristics. After using quantile mapping to bias correct and downscale the CMIP5 model outputs, we analyze results from two future periods (2031-2055 and 2061-2085) and two representative concentration pathways, RCP 4.5 and RCP 8.5, corresponding to moderate and high levels of radiative forcing from greenhouse gases. For each of seven US regions, we consider changes in extreme temperature frequency, changes in the proportion of extreme temperature days characterized by high humidity, and changes in the magnitude of temperature and humidity on extreme temperature days.
Larionova, Marina D; Markova, Svetlana V; Vysotski, Eugene S
2017-01-29
The bright bioluminescence of copepod Metridia longa is conditioned by a small secreted coelenterazine-dependent luciferase (MLuc). To date, three isoforms of MLuc differing in length, sequences, and some properties were cloned and successfully applied as high sensitive bioluminescent reporters. In this work, we report cloning of a novel group of genes from M. longa encoding extremely psychrophilic isoforms of MLuc (MLuc2-type). The novel isoforms share only ∼54-64% of protein sequence identity with the previously cloned isoforms and, consequently, are the product of a separate group of paralogous genes. The MLuc2 isoform with consensus sequence was produced as a natively folded protein using baculovirus/insect cell expression system, purified, and characterized. The MLuc2 displays a very high bioluminescent activity and high thermostability similar to those of the previously characterized M. longa luciferase isoform MLuc7. However, in contrast to MLuc7 revealing the highest activity at 12-17 °C and 0.5 M NaCl, the bioluminescence optima of MLuc2 isoforms are at ∼5 °C and 1 M NaCl. The MLuc2 adaptation to cold is also accompanied by decrease of melting temperature and affinity to substrate suggesting a more conformational flexibility of a protein structure. The luciferase isoforms with different temperature optima may provide adaptability of the M. longa bioluminescence to the changes of water temperature during diurnal vertical migrations. Copyright © 2016 Elsevier Inc. All rights reserved.
The critical role of uncertainty in projections of hydrological extremes
NASA Astrophysics Data System (ADS)
Meresa, Hadush K.; Romanowicz, Renata J.
2017-08-01
This paper aims to quantify the uncertainty in projections of future hydrological extremes in the Biala Tarnowska River at Koszyce gauging station, south Poland. The approach followed is based on several climate projections obtained from the EURO-CORDEX initiative, raw and bias-corrected realizations of catchment precipitation, and flow simulations derived using multiple hydrological model parameter sets. The projections cover the 21st century. Three sources of uncertainty are considered: one related to climate projection ensemble spread, the second related to the uncertainty in hydrological model parameters and the third related to the error in fitting theoretical distribution models to annual extreme flow series. The uncertainty of projected extreme indices related to hydrological model parameters was conditioned on flow observations from the reference period using the generalized likelihood uncertainty estimation (GLUE) approach, with separate criteria for high- and low-flow extremes. Extreme (low and high) flow quantiles were estimated using the generalized extreme value (GEV) distribution at different return periods and were based on two different lengths of the flow time series. A sensitivity analysis based on the analysis of variance (ANOVA) shows that the uncertainty introduced by the hydrological model parameters can be larger than the climate model variability and the distribution fit uncertainty for the low-flow extremes whilst for the high-flow extremes higher uncertainty is observed from climate models than from hydrological parameter and distribution fit uncertainties. This implies that ignoring one of the three uncertainty sources may cause great risk to future hydrological extreme adaptations and water resource planning and management.
[The heart in extreme sports: hyperbaric activity and microgravity].
Berrettini, Umberto; Landolfi, Angelo; Patteri, Giovanna
2008-10-01
The study of the cardiovascular and respiratory modifications in extreme environments could be useful for the understanding of the adaptive mechanisms of the body in particular conditions. The knowledge of how different environmental conditions in terms of extreme pressure, temperature and gravity modify the neurovegetative and cardiovascular system could be useful in daily practice for hypobaric and hyperbaric sports.
NASA Technical Reports Server (NTRS)
Pulkkinen, Antti; Bernabeu, Emanuel; Eichner, Jan; Viljanen, Ari; Ngwira, Chigomezyo
2015-01-01
Motivated by the needs of the high-voltage power transmission industry, we use data from the high-latitude IMAGE magnetometer array to study characteristics of extreme geoelectric fields at regional scales. We use 10-s resolution data for years 1993-2013, and the fields are characterized using average horizontal geoelectric field amplitudes taken over station groups that span about 500-km distance. We show that geoelectric field structures associated with localized extremes at single stations can be greatly different from structures associated with regionally uniform geoelectric fields, which are well represented by spatial averages over single stations. Visual extrapolation and rigorous extreme value analysis of spatially averaged fields indicate that the expected range for 1-in-100-year extreme events are 3-8 V/km and 3.4-7.1 V/km, respectively. The Quebec reference ground model is used in the calculations.
Gozani, Shai N
2016-01-01
Objective The objective of this study was to determine if fixed-site high-frequency transcutaneous electrical nerve stimulation (FS-TENS) is effective in treating chronic low back and lower extremity pain. Background Transcutaneous electrical nerve stimulation is widely used for treatment of chronic pain. General-purpose transcutaneous electrical nerve stimulation devices are designed for stimulation anywhere on the body and often cannot be used while the user is active or sleeping. FS-TENS devices are designed for placement at a pre-determined location, which enables development of a wearable device for use over extended time periods. Methods Study participants with chronic low back and/or lower extremity pain self-administered an FS-TENS device for 60 days. Baseline, 30-, and 60-day follow-up data were obtained through an online questionnaire. The primary outcome measure was the patient global impression of change. Pain intensity and interference were assessed using the Brief Pain Inventory. Changes in use of concomitant pain medications were evaluated with a single-item global self-rating. Results One hundred and thirty participants were enrolled, with 88 completing the 60-day follow-up questionnaire. Most participants (73.9%) were 50 years of age or older. At baseline, low back pain was identified by 85.3%, lower extremity pain by 71.6%, and upper extremity pain by 62.5%. Participants reported widespread pain, at baseline, with a mean of 3.4 (standard deviation 1.1) pain sites. At the 60-day follow-up, 80.7% of participants reported that their chronic pain had improved and they were classified as responders. Baseline characteristics did not differentiate non-responders from responders. There were numerical trends toward reduced pain interference with walking ability and sleep, and greater pain relief in responders. There was a large difference in use of concomitant pain medications, with 80.3% of responders reporting a reduction compared to 11.8% of non-responders. Conclusion FS-TENS is a safe and effective option for treating chronic low back and lower extremity pain. These results motivate the use of FS-TENS in development of wearable analgesic devices. PMID:27418854
Gozani, Shai N
2016-01-01
The objective of this study was to determine if fixed-site high-frequency transcutaneous electrical nerve stimulation (FS-TENS) is effective in treating chronic low back and lower extremity pain. Transcutaneous electrical nerve stimulation is widely used for treatment of chronic pain. General-purpose transcutaneous electrical nerve stimulation devices are designed for stimulation anywhere on the body and often cannot be used while the user is active or sleeping. FS-TENS devices are designed for placement at a pre-determined location, which enables development of a wearable device for use over extended time periods. Study participants with chronic low back and/or lower extremity pain self-administered an FS-TENS device for 60 days. Baseline, 30-, and 60-day follow-up data were obtained through an online questionnaire. The primary outcome measure was the patient global impression of change. Pain intensity and interference were assessed using the Brief Pain Inventory. Changes in use of concomitant pain medications were evaluated with a single-item global self-rating. One hundred and thirty participants were enrolled, with 88 completing the 60-day follow-up questionnaire. Most participants (73.9%) were 50 years of age or older. At baseline, low back pain was identified by 85.3%, lower extremity pain by 71.6%, and upper extremity pain by 62.5%. Participants reported widespread pain, at baseline, with a mean of 3.4 (standard deviation 1.1) pain sites. At the 60-day follow-up, 80.7% of participants reported that their chronic pain had improved and they were classified as responders. Baseline characteristics did not differentiate non-responders from responders. There were numerical trends toward reduced pain interference with walking ability and sleep, and greater pain relief in responders. There was a large difference in use of concomitant pain medications, with 80.3% of responders reporting a reduction compared to 11.8% of non-responders. FS-TENS is a safe and effective option for treating chronic low back and lower extremity pain. These results motivate the use of FS-TENS in development of wearable analgesic devices.
Euro-Atlantic winter storminess and precipitation extremes under 1.5 °C vs. 2 °C warming scenarios
NASA Astrophysics Data System (ADS)
Barcikowska, Monika J.; Weaver, Scott J.; Feser, Frauke; Russo, Simone; Schenk, Frederik; Stone, Dáithí A.; Wehner, Michael F.; Zahn, Matthias
2018-06-01
Severe winter storms in combination with precipitation extremes pose a serious threat to Europe. Located at the southeastern exit of the North Atlantic's storm track, European coastlines are directly exposed to impacts by high wind speeds, storm floods and coastal erosion. In this study we analyze potential changes in simulated winter storminess and extreme precipitation, which may occur under 1.5 or 2 °C warming scenarios. Here we focus on a first simulation suite of the atmospheric model CAM5 performed within the HAPPI project and evaluate how changes of the horizontal model resolution impact the results regarding atmospheric pressure, storm tracks, wind speed and precipitation extremes. The comparison of CAM5 simulations with different resolutions indicates that an increased horizontal resolution to 0.25° not only refines regional-scale information but also improves large-scale atmospheric circulation features over the Euro-Atlantic region. The zonal bias in monthly pressure at mean sea level and wind fields, which is typically found in low-resolution models, is considerably reduced. This allows us to analyze potential changes in regional- to local-scale extreme wind speeds and precipitation in a more realistic way. Our analysis of the future response for the 2 °C warming scenario generally confirms previous model simulations suggesting a poleward shift and intensification of the meridional circulation in the Euro-Atlantic region. Additional analysis suggests that this shift occurs mainly after exceeding the 1.5 °C global warming level, when the midlatitude jet stream manifests a strengthening northeastward. At the same time, this northeastern shift of the storm tracks allows an intensification and northeastern expansion of the Azores high, leading to a tendency of less precipitation across the Bay of Biscay and North Sea. Regions impacted by the strengthening of the midlatitude jet, such as the northwestern coasts of the British Isles, Scandinavia and the Norwegian Sea, and over the North Atlantic east of Newfoundland, experience an increase in the mean as well as daily and sub-daily precipitation, wind extremes and storminess, suggesting an important influence of increasing storm activity in these regions in response to global warming.
Extreme fluctuations of active Brownian motion
NASA Astrophysics Data System (ADS)
Pietzonka, Patrick; Kleinbeck, Kevin; Seifert, Udo
2016-05-01
In active Brownian motion, an internal propulsion mechanism interacts with translational and rotational thermal noise and other internal fluctuations to produce directed motion. We derive the distribution of its extreme fluctuations and identify its universal properties using large deviation theory. The limits of slow and fast internal dynamics give rise to a kink-like and parabolic behavior of the corresponding rate functions, respectively. For dipolar Janus particles in two- and three-dimensions interacting with a field, we predict a novel symmetry akin to, but different from, the one related to entropy production. Measurements of these extreme fluctuations could thus be used to infer properties of the underlying, often hidden, network of states.
Adaptive optics at the Subaru telescope: current capabilities and development
NASA Astrophysics Data System (ADS)
Guyon, Olivier; Hayano, Yutaka; Tamura, Motohide; Kudo, Tomoyuki; Oya, Shin; Minowa, Yosuke; Lai, Olivier; Jovanovic, Nemanja; Takato, Naruhisa; Kasdin, Jeremy; Groff, Tyler; Hayashi, Masahiko; Arimoto, Nobuo; Takami, Hideki; Bradley, Colin; Sugai, Hajime; Perrin, Guy; Tuthill, Peter; Mazin, Ben
2014-08-01
Current AO observations rely heavily on the AO188 instrument, a 188-elements system that can operate in natural or laser guide star (LGS) mode, and delivers diffraction-limited images in near-IR. In its LGS mode, laser light is transported from the solid state laser to the launch telescope by a single mode fiber. AO188 can feed several instruments: the infrared camera and spectrograph (IRCS), a high contrast imaging instrument (HiCIAO) or an optical integral field spectrograph (Kyoto-3DII). Adaptive optics development in support of exoplanet observations has been and continues to be very active. The Subaru Coronagraphic Extreme-AO (SCExAO) system, which combines extreme-AO correction with advanced coronagraphy, is in the commissioning phase, and will greatly increase Subaru Telescope's ability to image and study exoplanets. SCExAO currently feeds light to HiCIAO, and will soon be combined with the CHARIS integral field spectrograph and the fast frame MKIDs exoplanet camera, which have both been specifically designed for high contrast imaging. SCExAO also feeds two visible-light single pupil interferometers: VAMPIRES and FIRST. In parallel to these direct imaging activities, a near-IR high precision spectrograph (IRD) is under development for observing exoplanets with the radial velocity technique. Wide-field adaptive optics techniques are also being pursued. The RAVEN multi-object adaptive optics instrument was installed on Subaru telescope in early 2014. Subaru Telescope is also planning wide field imaging with ground-layer AO with the ULTIMATE-Subaru project.
High Sensitive Scintillation Observations At Very Low Frequencies
NASA Astrophysics Data System (ADS)
Konovalenko, A. A.; Falkovich, I. S.; Kalinichenko, N. N.; Olyak, M. R.; Lecacheux, A.; Rosolen, C.; Bougeret, J.-L.; Rucker, H. O.; Tokarev, Yu.
The observation of interplanetary scintillations of compact radio sources is powerful method of solar wind diagnostics. This method is developed mainly at decimeter- meter wavelengths. New possibilities are opened at extremely low frequencies (decameter waves) especially at large elongations. Now this approach is being actively developed using high effective decameter antennas UTR-2, URAN and Nancay Decameter Array. New class of back-end facility like high dynamic range, high resolution digital spectral processors, as well as dynamic spectra determination ideology give us new opportunities for distinguishing of the ionospheric and interplanetary scintillations and for observations of large number of radio sources, whith different angular sizes and elongations, even for the cases of rather weak objects.
ERIC Educational Resources Information Center
Tedroff, Kristina; Knutson, Loretta M.; Soderberg, Gary L.
2008-01-01
This study was designed to determine whether children with cerebral palsy (CP) showed more co-activity than comparison children in non-prime mover muscles with regard to the prime mover during maximum voluntary isometric contraction (MVIC) of four lower-extremity muscles. Fourteen children with spastic diplegic CP (10 males, four females; age…
Hierarchically structured activated carbon for ultracapacitors
NASA Astrophysics Data System (ADS)
Kim, Mok-Hwa; Kim, Kwang-Bum; Park, Sun-Min; Roh, Kwang Chul
2016-02-01
To resolve the pore-associated bottleneck problem observed in the electrode materials used for ultracapacitors, which inhibits the transport of the electrolyte ions, we designed hierarchically structured activated carbon (HAC) by synthesizing a mesoporous silica template/carbon composite and chemically activating it to simultaneously remove the silica template and increase the pore volume. The resulting HAC had a well-designed, unique porous structure, which allowed for large interfaces for efficient electric double-layer formation. Given the unique characteristics of the HAC, we believe that the developed synthesis strategy provides important insights into the design and fabrication of hierarchical carbon nanostructures. The HAC, which had a specific surface area of 1,957 m2 g-1, exhibited an extremely high specific capacitance of 157 F g-1 (95 F cc-1), as well as a high rate capability. This indicated that it had superior energy storage capability and was thus suitable for use in advanced ultracapacitors.
THE ORIGIN AND OPTICAL DEPTH OF IONIZING RADIATION IN THE 'GREEN PEA' GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaskot, A. E.; Oey, M. S.
2013-04-01
Although Lyman-continuum (LyC) radiation from star-forming galaxies likely drove the reionization of the universe, observations of star-forming galaxies at low redshift generally indicate low LyC escape fractions. However, the extreme [O III]/[O II] ratios of the z = 0.1-0.3 Green Pea galaxies may be due to high escape fractions of ionizing radiation. To analyze the LyC optical depths and ionizing sources of these rare, compact starbursts, we compare nebular photoionization and stellar population models with observed emission lines in the Peas' Sloan Digital Sky Survey (SDSS) spectra. We focus on the six most extreme Green Peas, the galaxies with themore » highest [O III]/[O II] ratios and the best candidates for escaping ionizing radiation. The Balmer line equivalent widths and He I {lambda}3819 emission in the extreme Peas support young ages of 3-5 Myr, and He II {lambda}4686 emission in five extreme Peas signals the presence of hard ionizing sources. Ionization by active galactic nuclei or high-mass X-ray binaries is inconsistent with the Peas' line ratios and ages. Although stacked spectra reveal no Wolf-Rayet (WR) features, we tentatively detect WR features in the SDSS spectra of three extreme Peas. Based on the Peas' ages and line ratios, we find that WR stars, chemically homogeneous O stars, or shocks could produce the observed He II emission. If hot stars are responsible, then the Peas' optical depths are ambiguous. However, accounting for emission from shocks lowers the inferred optical depth and suggests that the Peas may be optically thin. The Peas' ages likely optimize the escape of LyC radiation; they are old enough for supernovae and stellar winds to reshape the interstellar medium, but young enough to possess large numbers of UV-luminous O or WR stars.« less
NASA Astrophysics Data System (ADS)
Irvine, P. J.; Keith, D.; Dykema, J. A.; Vecchi, G. A.; Horowitz, L. W.
2016-12-01
Solar geoengineering may limit or even halt the rise in global-average surface temperatures. Evidence from the geoMIP model intercomparison project shows that idealized geoengineering can greatly reduce temperature changes on a region-by-region basis. If solar geoengineering is used to hold radiative forcing or surface temperatures constant in the face of rising CO2, then the global evaporation and precipitation rates will be reduced below pre-industrial. The spartial and frequency distribution of the precipitation response is, however, much less well understood. There is limited evidence that solar geoengineering may reduce extreme precipitation events more that it reduces mean precipitation, but that evidence is based on relatively course resolution models that may to a poor job representing the distribution of extreme precipitation in the current climate. The response of global and regional climate, as well as tropical cyclone (TC) activity, to increasing solar geoengineering is explored through experiments with climate models spanning a broad range of atmospheric resolutions. Solar geoengineering is represented by an idealized adjustment of the solar constant that roughly halves the rate of increase in radiative forcing in a scenario with increasing CO2 concentration. The coarsest resolution model has approximately a 2-degree global resolution, representative of the typical resolution of past GCMs used to explore global response to CO2 increase, and its response is compared to that of two tropical cyclone permitting GCMs of approximately 0.5 and 0.25 degree resolution (FLOR and HiFLOR). The models have exactly the same ocean and sea-ice components, as well as the same parameterizations and parameter settings. These high-resolution models are used for real-time seasonal prediction, providing a unified framework for seasonal-to-multidecadal climate modeling. We assess the extreme precipitation response, comparing the frequency distribution of extreme events with and without solar geoengineering. We compare our results to two prior studies of the response of climate extremes to solar geoengineering.
Pituitary, gonadal and adrenal hormones after prolonged residence at extreme altitude in man.
Basu, M; Pal, K; Prasad, R; Malhotra, A S; Rao, K S; Sawhney, R C
1997-06-01
High altitude-induced alterations in pituitary, gonadal and adrenal hormones were studied in (i) eugonadal men from the armed forces who were resident at sea level (SL), (ii) SL residents staying at an altitude of 3542 m for periods ranging from 3 to 12 months (acclimatized lowlanders, ALL), (iii) ALL who stayed at 6300 m for 6 months, (iv) ALL who trekked from 3542 to 5080 m and stayed at an altitude of more than 6300 m in the glacier region for 6 months, and (v) high-altitude natives (HAN) resident at an altitude of 3300-3700 m. Circulating levels of LH, FSH, prolactin, cortisol, testosterone, dihydrotestosterone (DHT) and progesterone in ALL at 3542 m and in HAN were not significantly different (p > 0.05) from the SL control values. When the ALL living at 3542 m trekked to an extreme altitude of 5080 m, their testosterone levels showed a significant decrease (p < 0.01) compared to the preceding altitude values but had returned to SL values when measured after 6 months' continuous stay at 6300 m. As with testosterone, the levels of DHT and oestradiol-17 beta (E2) after prolonged stay at extreme altitude were also not significantly different (p > 0.05) from the SL values. The LH levels after trekking to 5080 m were significantly higher (p < 0.01) than at an altitude of 3542 m, but decreased to levels found at 3542 m or SL after prolonged residence at extreme altitude. Plasma levels of ACTH, prolactin, FSH and cortisol on arrival at 5080 m, and after a 6-month stay at extreme altitude, were not significantly different (p > 0.05) from the SL values. Plasma progesterone levels tended to increase on arrival at 5080 m but a significant increase (p < 0.001) was evident only after a 6-month stay at extreme altitude. These observations suggest that prolonged residence at lower as well as at extreme altitude does not appreciably alter blood levels of pituitary, gonadal or adrenal hormones except for plasma levels of progesterone. The exact mechanism and significance of this increase remains unknown, but may be important in increasing the sensitivity of the hypoxic ventilatory response and activation of haemoglobin synthesis.
Snyder, Kelli R; Earl, Jennifer E; O'Connor, Kristian M; Ebersole, Kyle T
2009-01-01
Movement and muscle activity of the hip have been shown to affect movement of the lower extremity, and been related to injury. The purpose of this study was to determine if increased hip strength affects lower extremity mechanics during running. Within subject, repeated measures design. Fifteen healthy women volunteered. Hip abduction and external rotation strength were measured using a hand-held dynamometer. Three-dimensional biomechanical data of the lower extremity were collected during running using a high-speed motion capture system. Measurements were made before, at the mid-point, and after a 6-week strengthening program using closed-chain hip rotation exercises. Joint range of motion (rearfoot eversion, knee abduction, hip adduction, and internal rotation), eversion velocity, eversion angle at heel strike, and peak joint moments (rearfoot inversion, knee abduction, hip abduction, and external rotation) were analyzed using repeated measures analysis of variance (P
NASA Astrophysics Data System (ADS)
Kusangaya, Samuel; Warburton Toucher, Michele L.; van Garderen, Emma Archer
2018-02-01
Downscaled General Circulation Models (GCMs) output are used to forecast climate change and provide information used as input for hydrological modelling. Given that our understanding of climate change points towards an increasing frequency, timing and intensity of extreme hydrological events, there is therefore the need to assess the ability of downscaled GCMs to capture these extreme hydrological events. Extreme hydrological events play a significant role in regulating the structure and function of rivers and associated ecosystems. In this study, the Indicators of Hydrologic Alteration (IHA) method was adapted to assess the ability of simulated streamflow (using downscaled GCMs (dGCMs)) in capturing extreme river dynamics (high and low flows), as compared to streamflow simulated using historical climate data from 1960 to 2000. The ACRU hydrological model was used for simulating streamflow for the 13 water management units of the uMngeni Catchment, South Africa. Statistically downscaled climate models obtained from the Climate System Analysis Group at the University of Cape Town were used as input for the ACRU Model. Results indicated that, high flows and extreme high flows (one in ten year high flows/large flood events) were poorly represented both in terms of timing, frequency and magnitude. Simulated streamflow using dGCMs data also captures more low flows and extreme low flows (one in ten year lowest flows) than that captured in streamflow simulated using historical climate data. The overall conclusion was that although dGCMs output can reasonably be used to simulate overall streamflow, it performs poorly when simulating extreme high and low flows. Streamflow simulation from dGCMs must thus be used with caution in hydrological applications, particularly for design hydrology, as extreme high and low flows are still poorly represented. This, arguably calls for the further improvement of downscaling techniques in order to generate climate data more relevant and useful for hydrological applications such as in design hydrology. Nevertheless, the availability of downscaled climatic output provide the potential of exploring climate model uncertainties in different hydro climatic regions at local scales where forcing data is often less accessible but more accurate at finer spatial scales and with adequate spatial detail.
Preconditioning electromyographic data for an upper extremity model using neural networks
NASA Technical Reports Server (NTRS)
Roberson, D. J.; Fernjallah, M.; Barr, R. E.; Gonzalez, R. V.
1994-01-01
A back propagation neural network has been employed to precondition the electromyographic signal (EMG) that drives a computational model of the human upper extremity. This model is used to determine the complex relationship between EMG and muscle activation, and generates an optimal muscle activation scheme that simulates the actual activation. While the experimental and model predicted results of the ballistic muscle movement are very similar, the activation function between the start and the finish is not. This neural network preconditions the signal in an attempt to more closely model the actual activation function over the entire course of the muscle movement.
NASA Astrophysics Data System (ADS)
Fredsgaard, Casper; Moore, Donald B.; Al Soudi, Amer F.; Crisler, James D.; Chen, Fei; Clark, Benton C.; Schneegurt, Mark A.
2017-04-01
The most extremely osmotolerant microbial isolates are fungi from high-sugar environments that tolerate the lowest water activity (0.61) for growth yet reported. Studies of osmotolerant bacteria have focused on halotolerance rather than sucretolerance (ability to grow in high sugar concentrations). A collection of salinotolerant (>=10% NaCl or >=50% MgSO4) bacterial isolates from the Great Salt Plains of Oklahoma and Hot Lake in Washington were screened for sucretolerance in medium supplemented with >=50% fructose, glucose or sucrose. Tolerances significantly differed between solutes, even though water activities for saline media (0.92 and 0.85 for 10 and 20% NaCl Salt Plains media, respectively) were comparable or lower than water activities for high-sugar media (0.93 and 0.90 for 50 and 70% sucrose artificial nectar media, respectively). These specific solute effects were differentially expressed among individual isolates. Extrapolating the results of earlier food science studies with yeasts at high sugar concentrations to bacteria in salty environments with low water activity should be done with caution. Furthermore, the discussion of habitable Special Regions on Mars and the icy worlds should reflect an understanding of specific solute effects.
Lian, Fei; Chang, Chun; Du, Yang; Zhu, Lingyan; Xing, Baoshan; Liu, Chang
2012-01-01
Adsorption of the hydrophobic organic compounds (HOCs) trichloroethylene (TCE), 1,3-dichlorobenzene (DCB), 1,3-dinitrobenzene (DNB) and gamma-hexachlorocyclohexane (HCH) on five different carbonaceous materials was compared. The adsorbents included three polymer-based activated carbons, one coal-based activated carbon (F400) and multiwalled carbon nanotubes (MWNT). The polymer-based activated carbons were prepared using KOH activation from waste polymers: polyvinyl chloride (PVC), polyethyleneterephthalate (PET) and tire rubber (TR). Compared with F400 and MWNT, activated carbons derived from PVC and PET exhibited fast adsorption kinetics and high adsorption capacity toward the HOCs, attributed to their extremely large hydrophobic surface area (2700 m2/g) and highly mesoporous structures. Adsorption of small-sized TCE was stronger on the tire-rubber-based carbon and F400 resulting from the pore-filling effect. In contrast, due to the molecular sieving effect, their adsorption on HCH was lower. MWNT exhibited the lowest adsorption capacity toward HOCs because of its low surface area and characteristic of aggregating in aqueous solution.
NASA Astrophysics Data System (ADS)
Hsu, Jiann-wien; Huang, Ding-wei
2009-12-01
We study the survival of extreme opinions in various processes of consensus formation. All the opinions are treated equally and subjected to the same rules of changing. We investigate three typical models to reach a consensus in each case: (A) personal influence, (B) influence from surroundings, and (C) influence to surroundings. Starting with uniformly distributed random opinions, our calculated results show that the extreme opinions can survive in both models (A) and (B), but not in model (C). We obtain a conclusion that both personal influence and passive adaptation to the environment are not sufficient enough to eradicate all the extreme opinions. Only the active persuasion to change the surroundings eliminates the extreme opinions completely.
Sterzing, Thorsten; Frommhold, Clivia; Rosenbaum, Dieter
2016-05-01
Backward locomotion in humans occurs during leisure, rehabilitation, and competitive sports. Little is known about its general biomechanical characteristics and how it affects lower extremity loading as well as muscle coordination. Thus, the purpose of this research was to analyze in-shoe plantar pressure patterns and lower extremity muscle activity patterns for backward compared to forward running. On a treadmill, nineteen runners performed forward running at their individually preferred speed, followed by backward running at 70% of their self-selected forward speed. In-shoe plantar pressures of nine foot regions and muscular activity of nine lower extremity muscles were recorded simultaneously over a one-minute interval. Backward and forward running variables were averaged over the accumulated steps and compared with Wilcoxon-signed rank tests (p<.05). For backward compared to forward running, in-shoe plantar pressure distribution showed a load increase under metatarsal heads I and II, as well as under the medial midfoot. This was indicated by higher maximum forces and peak pressures, and by longer contact times. Muscle activity showed significantly higher mean amplitudes during backward running in the semitendinosus, rectus femoris, vastus lateralis, and gluteus medius during stance, and in the rectus femoris during swing phase, while significantly lower mean amplitudes were observed in the tibialis anterior during swing phase. Observations indicate plantar foot loading and muscle activity characteristics that are specific for the running direction. Thus, backward running may be used on purpose for certain rehabilitation tasks, aiming to strengthen respective lower extremity muscles. Furthermore, the findings are relevant for sport specific backward locomotion training. Finally, results provide an initial baseline for innovative athletic footwear development aiming to increase comfort and performance during backward running. Copyright © 2016 Elsevier B.V. All rights reserved.
Effects of diurnal temperature range on mortality in Hefei city, China
NASA Astrophysics Data System (ADS)
Tang, Jing; Xiao, Chang-chun; Li, Yu-rong; Zhang, Jun-qing; Zhai, Hao-yuan; Geng, Xi-ya; Ding, Rui; Zhai, Jin-xia
2017-12-01
Although several studies indicated an association between diurnal temperature range (DTR) and mortality, the results about modifiers are inconsistent, and few studies were conducted in developing inland country. This study aims to evaluate the effects of DTR on cause-specific mortality and whether season, gender, or age might modify any association in Hefei city, China, during 2007-2016. Quasi-Poisson generalized linear regression models combined with a distributed lag non-linear model (DLNM) were applied to evaluate the relationships between DTR and non-accidental, cardiovascular, and respiratory mortality. We observed a J-shaped relationship between DTR and cause-specific mortality. With a DTR of 8.3 °C as the reference, the cumulative effects of extremely high DTR were significantly higher for all types of mortality than effects of lower or moderate DTR in full year. When stratified by season, extremely high DTR in spring had a greater impact on all cause-specific mortality than other three seasons. Male and the elderly (≥ 65 years) were consistently more susceptible to extremely high DTR effect than female and the youth (< 65 years) for non-accidental and cardiovascular mortality. To the contrary, female and the youth were more susceptible to extremely high DTR effect than male and the elderly for respiratory morality. The study suggests that extremely high DTR is a potential trigger for non-accidental mortality in Hefei city, China. Our findings also highlight the importance of protecting susceptible groups from extremely high DTR especially in the spring.
Effects of diurnal temperature range on mortality in Hefei city, China
NASA Astrophysics Data System (ADS)
Tang, Jing; Xiao, Chang-chun; Li, Yu-rong; Zhang, Jun-qing; Zhai, Hao-yuan; Geng, Xi-ya; Ding, Rui; Zhai, Jin-xia
2018-05-01
Although several studies indicated an association between diurnal temperature range (DTR) and mortality, the results about modifiers are inconsistent, and few studies were conducted in developing inland country. This study aims to evaluate the effects of DTR on cause-specific mortality and whether season, gender, or age might modify any association in Hefei city, China, during 2007-2016. Quasi-Poisson generalized linear regression models combined with a distributed lag non-linear model (DLNM) were applied to evaluate the relationships between DTR and non-accidental, cardiovascular, and respiratory mortality. We observed a J-shaped relationship between DTR and cause-specific mortality. With a DTR of 8.3 °C as the reference, the cumulative effects of extremely high DTR were significantly higher for all types of mortality than effects of lower or moderate DTR in full year. When stratified by season, extremely high DTR in spring had a greater impact on all cause-specific mortality than other three seasons. Male and the elderly (≥ 65 years) were consistently more susceptible to extremely high DTR effect than female and the youth (< 65 years) for non-accidental and cardiovascular mortality. To the contrary, female and the youth were more susceptible to extremely high DTR effect than male and the elderly for respiratory morality. The study suggests that extremely high DTR is a potential trigger for non-accidental mortality in Hefei city, China. Our findings also highlight the importance of protecting susceptible groups from extremely high DTR especially in the spring.
The Microbial Sulfur Cycle at Extremely Haloalkaline Conditions of Soda Lakes
Sorokin, Dimitry Y.; Kuenen, J. Gijs; Muyzer, Gerard
2011-01-01
Soda lakes represent a unique ecosystem with extremely high pH (up to 11) and salinity (up to saturation) due to the presence of high concentrations of sodium carbonate in brines. Despite these double extreme conditions, most of the lakes are highly productive and contain a fully functional microbial system. The microbial sulfur cycle is among the most active in soda lakes. One of the explanations for that is high-energy efficiency of dissimilatory conversions of inorganic sulfur compounds, both oxidative and reductive, sufficient to cope with costly life at double extreme conditions. The oxidative part of the sulfur cycle is driven by chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacteria (SOB), which are unique for soda lakes. The haloalkaliphilic SOB are present in the surface sediment layer of various soda lakes at high numbers of up to 106 viable cells/cm3. The culturable forms are so far represented by four novel genera within the Gammaproteobacteria, including the genera Thioalkalivibrio, Thioalkalimicrobium, Thioalkalispira, and Thioalkalibacter. The latter two were only found occasionally and each includes a single species, while the former two are widely distributed in various soda lakes over the world. The genus Thioalkalivibrio is the most physiologically diverse and covers the whole spectrum of salt/pH conditions present in soda lakes. Most importantly, the dominant subgroup of this genus is able to grow in saturated soda brines containing 4 M total Na+ – a so far unique property for any known aerobic chemolithoautotroph. Furthermore, some species can use thiocyanate as a sole energy source and three out of nine species can grow anaerobically with nitrogen oxides as electron acceptor. The reductive part of the sulfur cycle is active in the anoxic layers of the sediments of soda lakes. The in situ measurements of sulfate reduction rates and laboratory experiments with sediment slurries using sulfate, thiosulfate, or elemental sulfur as electron acceptors demonstrated relatively high sulfate reduction rates only hampered by salt-saturated conditions. However, the highest rates of sulfidogenesis were observed not with sulfate, but with elemental sulfur followed by thiosulfate. Formate, but not hydrogen, was the most efficient electron donor with all three sulfur electron acceptors, while acetate was only utilized as an electron donor under sulfur-reducing conditions. The native sulfidogenic populations of soda lakes showed a typical obligately alkaliphilic pH response, which corresponded well to the in situ pH conditions. Microbiological analysis indicated a domination of three groups of haloalkaliphilic autotrophic sulfate-reducing bacteria belonging to the order Desulfovibrionales (genera Desulfonatronovibrio, Desulfonatronum, and Desulfonatronospira) with a clear tendency to grow by thiosulfate disproportionation in the absence of external electron donor even at salt-saturating conditions. Few novel representatives of the order Desulfobacterales capable of heterotrophic growth with volatile fatty acids and alcohols at high pH and moderate salinity have also been found, while acetate oxidation was a function of a specialized group of haloalkaliphilic sulfur-reducing bacteria, which belong to the phylum Chrysiogenetes. PMID:21747784
Differences in activation properties of the hamstring muscles during overground sprinting.
Higashihara, Ayako; Nagano, Yasuharu; Ono, Takashi; Fukubayashi, Toru
2015-09-01
The purpose of this study was to quantify activation of the biceps femoris (BF) and medial hamstring (MH) during overground sprinting. Lower-extremity kinematics and electromyography (EMG) of the BF and MH were recorded in 13 male sprinters performing overground sprinting at maximum effort. Mean EMG activity was calculated in the early stance, late stance, mid-swing, and late-swing phases. Activation of the BF was significantly greater during the early stance phase than the late stance phase (p<0.01). Activation of the BF muscle was significantly lower during the first half of the mid-swing phase than the other phases (p<0.05). The MH had significantly greater EMG activation relative to its recorded maximum values compared to that for the BF during the late stance (p<0.05) and mid-swing (p<0.01) phases. These results indicate that the BF shows high activation before and after foot contact, while the MH shows high activation during the late stance and mid-swing phases. We concluded that the activation properties of the BF and MH muscles differ within the sprinting gait cycle. Copyright © 2015 Elsevier B.V. All rights reserved.
Synoptic Conditions and Moisture Sources Actuating Extreme Precipitation in Nepal
NASA Astrophysics Data System (ADS)
Bohlinger, Patrik; Sorteberg, Asgeir; Sodemann, Harald
2017-12-01
Despite the vast literature on heavy-precipitation events in South Asia, synoptic conditions and moisture sources related to extreme precipitation in Nepal have not been addressed systematically. We investigate two types of synoptic conditions—low-pressure systems and midlevel troughs—and moisture sources related to extreme precipitation events. To account for the high spatial variability in rainfall, we cluster station-based daily precipitation measurements resulting in three well-separated geographic regions: west, central, and east Nepal. For each region, composite analysis of extreme events shows that atmospheric circulation is directed against the Himalayas during an extreme event. The direction of the flow is regulated by midtropospheric troughs and low-pressure systems traveling toward the respective region. Extreme precipitation events feature anomalous high abundance of total column moisture. Quantitative Lagrangian moisture source diagnostic reveals that the largest direct contribution stems from land (approximately 75%), where, in particular, over the Indo-Gangetic Plain moisture uptake was increased. Precipitation events occurring in this region before the extreme event likely provided additional moisture.
Batista-García, Ramón Alberto; Sutton, Thomas; Jackson, Stephen A; Tovar-Herrera, Omar Eduardo; Balcázar-López, Edgar; Sánchez-Carbente, María Del Rayo; Sánchez-Reyes, Ayixon; Dobson, Alan D W; Folch-Mallol, Jorge Luis
2017-01-01
Extreme habitats have usually been regarded as a source of microorganisms that possess robust proteins that help enable them to survive in such harsh conditions. The deep sea can be considered an extreme habitat due to low temperatures (<5°C) and high pressure, however marine sponges survive in these habitats. While bacteria derived from deep-sea marine sponges have been studied, much less information is available on fungal biodiversity associated with these sponges. Following screening of fourteen fungi isolated from the deep-sea sponge Stelletta normani sampled at a depth of 751 metres, three halotolerant strains (TS2, TS11 and TS12) were identified which displayed high CMCase and xylanase activities. Molecular based taxonomic approaches identified these strains as Cadophora sp. TS2, Emericellopsis sp. TS11 and Pseudogymnoascus sp. TS 12. These three fungi displayed psychrotolerance and halotolerant growth on CMC and xylan as sole carbon sources, with optimal growth rates at 20°C. They produced CMCase and xylanase activities, which displayed optimal temperature and pH values of between 50-70°C and pH 5-8 respectively, together with good thermostability and halotolerance. In solid-state fermentations TS2, TS11 and TS12 produced CMCases, xylanases and peroxidase/phenol oxidases when grown on corn stover and wheat straw. This is the first time that CMCase, xylanase and peroxidase/phenol oxidase activities have been reported in these three fungal genera isolated from a marine sponge. Given the biochemical characteristics of these ligninolytic enzymes it is likely that they may prove useful in future biomass conversion strategies involving lignocellulosic materials.
Batista-García, Ramón Alberto; Sutton, Thomas; Jackson, Stephen A.; Tovar-Herrera, Omar Eduardo; Balcázar-López, Edgar; Sánchez-Carbente, María del Rayo; Sánchez-Reyes, Ayixon; Dobson, Alan D. W.
2017-01-01
Extreme habitats have usually been regarded as a source of microorganisms that possess robust proteins that help enable them to survive in such harsh conditions. The deep sea can be considered an extreme habitat due to low temperatures (<5°C) and high pressure, however marine sponges survive in these habitats. While bacteria derived from deep-sea marine sponges have been studied, much less information is available on fungal biodiversity associated with these sponges. Following screening of fourteen fungi isolated from the deep-sea sponge Stelletta normani sampled at a depth of 751 metres, three halotolerant strains (TS2, TS11 and TS12) were identified which displayed high CMCase and xylanase activities. Molecular based taxonomic approaches identified these strains as Cadophora sp. TS2, Emericellopsis sp. TS11 and Pseudogymnoascus sp. TS 12. These three fungi displayed psychrotolerance and halotolerant growth on CMC and xylan as sole carbon sources, with optimal growth rates at 20°C. They produced CMCase and xylanase activities, which displayed optimal temperature and pH values of between 50–70°C and pH 5–8 respectively, together with good thermostability and halotolerance. In solid-state fermentations TS2, TS11 and TS12 produced CMCases, xylanases and peroxidase/phenol oxidases when grown on corn stover and wheat straw. This is the first time that CMCase, xylanase and peroxidase/phenol oxidase activities have been reported in these three fungal genera isolated from a marine sponge. Given the biochemical characteristics of these ligninolytic enzymes it is likely that they may prove useful in future biomass conversion strategies involving lignocellulosic materials. PMID:28339473
Methane production and consumption in an active volcanic environment of Southern Italy.
Castaldi, Simona; Tedesco, Dario
2005-01-01
Methane fluxes were measured, using closed chambers, in the Crater of Solfatara volcano, Campi Flegrei (Southern Italy), along eight transects covering areas of the crater presenting different landscape physiognomies. These included open bare areas, presenting high geothermal fluxes, and areas covered by vegetation, which developed along a gradient from the central open area outwards, in the form of maquis, grassland and woodland. Methane fluxes decreased logarithmically (from 150 to -4.5 mg CH4 m(-2)day(-1)) going from the central part of the crater (fangaia) to the forested edges, similarly to the CO2 fluxes (from 1500 g CO2 m(-2)day(-1) in the centre of the crater to almost zero flux in the woodlands). In areas characterized by high emissions, soil presented elevated temperature (up to 70 degrees C at 0-10 cm depth) and extremely low pH (down to 1.8). Conversely, in woodland areas pH was higher (between 3.7 and 5.1) and soil temperature close to air values. Soil (0-10 cm) was sampled, in two different occasions, along the eight transects, and was tested for methane oxidation capacity in laboratory. Areas covered by vegetation mostly consumed CH4 in the following order woodland>macchia>grassland. Methanotrophic activity was also measured in soil from the open bare area. Oxidation rates were comparable to those measured in the plant covered areas and were significantly correlated with field CH4 emissions. The biological mechanism of uptake was demonstrated by the absence of activity in autoclaved replicates. Thus results suggest the existence of a population of micro-organisms adapted to this extreme environment, which are able to oxidize CH4 and whose activity could be stimulated and supported by elevated concentrations of CH4.
Passmore, Brandon; Cole, Zach; Whitaker, Bret; Barkley, Adam; McNutt, Ty; Lostetter, Alexander
2016-08-02
A multichip power module directly connecting the busboard to a printed-circuit board that is attached to the power substrate enabling extremely low loop inductance for extreme environments such as high temperature operation. Wire bond interconnections are taught from the power die directly to the busboard further enabling enable low parasitic interconnections. Integration of on-board high frequency bus capacitors provide extremely low loop inductance. An extreme environment gate driver board allows close physical proximity of gate driver and power stage to reduce overall volume and reduce impedance in the control circuit. Parallel spring-loaded pin gate driver PCB connections allows a reliable and reworkable power module to gate driver interconnections.
Lang, Catherine E.; Bland, Marghuretta D.; Bailey, Ryan R.; Schaefer, Sydney Y.; Birkenmeier, Rebecca L.
2012-01-01
The purpose of this review is to provide a comprehensive approach for assessing the upper extremity (UE) after stroke. First, common upper extremity impairments and how to assess them are briefly discussed. While multiple UE impairments are typically present after stroke, the severity of one impairment, paresis, is the primary determinant of UE functional loss. Second, UE function is operationally defined and a number of clinical measures are discussed. It is important to consider how impairment and loss of function affect UE activity outside of the clinical environment. Thus, this review also identifies accelerometry as an objective method for assessing UE activity in daily life. Finally, the role that each of these levels of assessment should play in clinical decision making is discussed in order to optimize the provision of stroke rehabilitation services. PMID:22975740
Regulation of a mammalian gene bearing a CpG island promoter and a distal enhancer.
Berrozpe, Georgina; Bryant, Gene O; Warpinski, Katherine; Ptashne, Mark
2013-08-15
A quantitative nucleosome occupancy assay revealed rules for nucleosome disposition in yeast and showed how disposition affects regulation of the GAL genes. Here, we show how those findings apply to the control of Kit, a mammalian gene. The Kit promoter lies in a CpG island, and its enhancer (active in mast cells) lies some 150 kb upstream. Nucleosomes form with especially high avidities at the Kit promoter, a reaction that, we surmise, ensures extremely low basal expression. In mast cells, transcriptional activators displace nucleosomes that are less tightly formed at the Kit enhancer. In turn, the active enhancer replaces a single Kit promoter nucleosome with the transcriptional machinery, thereby inducing transcription over 1,000-fold. As at the yeast GAL genes, the inhibitory effects of nucleosomes facilitate high factors of induction by mammalian activators working in the absence of specific repressors. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Communities that thrive in extreme conditions captured from a freshwater lake.
Low-Décarie, Etienne; Fussmann, Gregor F; Dumbrell, Alex J; Bell, Graham
2016-09-01
Organisms that can grow in extreme conditions would be expected to be confined to extreme environments. However, we were able to capture highly productive communities of algae and bacteria capable of growing in acidic (pH 2), basic (pH 12) and saline (40 ppt) conditions from an ordinary freshwater lake. Microbial communities may thus include taxa that are highly productive in conditions that are far outside the range of conditions experienced in their host ecosystem. The organisms we captured were not obligate extremophiles, but were capable of growing in both extreme and benign conditions. The ability to grow in extreme conditions may thus be a common functional attribute in microbial communities. © 2016 The Author(s).
Imaging of upper extremity stress fractures in the athlete.
Anderson, Mark W
2006-07-01
Although it is much less common than injuries in the lower extremities, an upper extremity stress injury can have a significant impact on an athlete. If an accurate and timely diagnosis is to be made, the clinician must have a high index of suspicion of a stress fracture in any athlete who is involved in a throwing, weightlifting, or upper extremity weight-bearing sport and presents with chronic pain in the upper extremity. Imaging should play an integral role in the work-up of these patients; if initial radiographs are unrevealing, further cross-sectional imaging should be strongly considered. Although a three-phase bone scan is highly sensitive in this regard, MRI has become the study of choice at most centers.
Geomorphic Complexity of Sequential Fire and Floods in Mountain Watersheds
NASA Astrophysics Data System (ADS)
Brogan, D. J.; Nelson, P. A.; MacDonald, L. H.; Morgan, J. A.
2017-12-01
Fires and floods are important drivers of fluvial geomorphic changes. While each has been studied independently, there have been almost no situations where the hydrologic and geomorphic effects of fires and extreme floods could be compared at the watershed scale. Following the 2012 High Park fire in montane northcentral Colorado we began intensively monitoring channel changes in two 15 km2 watersheds (Skin Gulch and Hill Gulch) burned primarily at moderate to high severity. Summer thunderstorms resulted in extensive hillslope erosion and deposition in the valley bottoms, and subsequent incision through these deposits occurred due to spring snowmelt and elevated baseflows. The complex response associated with this state change from unburned to burned can be completely disrupted and overwhelmed by the larger changes resulting from extreme floods. Fifteen months after burning, both watersheds experienced an extreme flood resulting from a long-duration rainstorm; however, the geomorphic changes resulting from this flood differed markedly between the two watersheds. In Skin Gulch, sustained high flows from the September 2013 flood excavated nearly all of the accumulated sediment, expanded the active channel, and either scoured to bedrock or armored the bed with coarser substrate. Geomorphic changes in Hill Gulch due to the September 2013 flood, however, were small. The disparity between watersheds is likely the legacy of the catastrophic 1976 Big Thompson flood, which scoured out much of the previously accumulated sediment in Hill Gulch but did not appreciably impact Skin Gulch. These different sequences of disturbances indicate that fires in the Rocky Mountains often generate significant and dynamic geomorphic changes over sub-decadal timescales, while extreme floods can result in much longer lasting geomorphic changes. Our results allow us to compare the geomorphic sensitivity for different sequences of fire and floods, and propose a new conceptual model to explain the complicated interactions between the effects of fires and floods on the landscape.
Seeing Red and Shooting Blanks: A Study of Red Quasars and Blank Field X-Ray Sources
NASA Technical Reports Server (NTRS)
Elvis, Martin; Oliversen, Ronald J. (Technical Monitor)
2002-01-01
We have identified a population of 'blank field sources' (or 'blanks') among the ROSAT (Roentgen Satellite) bright unidentified X-ray sources with faint optical counterparts. The extreme X-ray over optical flux ratio of blank field sources is not compatible with the main classes of X-ray emitters except for extreme BL Lacertae objects at fx/fv is equal to or less than 35. From the analysis of ROSAT archival data we found evidence for only three sources, out of 16, needing absorption in excess of the Galactic value and no indication of variability. We also found evidence for an extended nature for only one of the five blanks with a serendipitous HRI (High Resolution Imager) detection; this source (1WGA J1226.9+3332) was confirmed as a z=0.89 cluster of galaxies. Palomar images reveal the presence of a red (O - E is equal to or greater than 2) counterpart in the X-ray error circle for six blanks. The identification process brought to the discovery of another high z cluster of galaxies, one (possibly extreme) BL Lac and two apparently normal type 1 AGNs (Active Galactic Nuclei). These AGNs, together with four more AGN-like objects seem to form a well defined group: they present type 1 X-ray spectra but red Palomar counterparts. We discuss the possible explanations for the discrepancy between the X-ray and optical data, among which: a suppressed big blue bump emission, an extreme dust to gas (approximately 40 - 60 the Galactic ratio) ratio value and a high redshift (z is greater than or equal to 3.5) QSO (Quasi-Stellar Object) nature. These AGN-like blanks seem to be the bright (and easier to study) analogs of the sources which are being found in deep Chandra observations. Five more blanks have a still an unknown nature.
Lejiang Yu; Shiyuan Zhong; Lisi Pei; Xindi (Randy) Bian; Warren E. Heilman
2016-01-01
The mean global climate has warmed as a result of the increasing emission of greenhouse gases induced by human activities. This warming is considered the main reason for the increasing number of extreme precipitation events in the US. While much attention has been given to extreme precipitation events occurring over several days, which are usually responsible for...
Post-disturbance sediment recovery: Implications for watershed resilience
NASA Astrophysics Data System (ADS)
Rathburn, Sara L.; Shahverdian, Scott M.; Ryan, Sandra E.
2018-03-01
Sediment recovery following disturbances is a measure of the time required to attain pre-disturbance sediment fluxes. Insight into the controls on recovery processes and pathways builds understanding of geomorphic resilience. We assess post-disturbance sediment recovery in three small (1.5-100 km2), largely unaltered watersheds within the northern Colorado Rocky Mountains affected by wildfires, floods, and debris flows. Disturbance regimes span 102 (floods, debris flows) to 103 years (wildfires). For all case studies, event sediment recovery followed a nonlinear pattern: initial high sediment flux during single precipitation events or high annual snowmelt runoff followed by decreasing sediment fluxes over time. Disturbance interactions were evaluated after a high-severity fire within the South Fork Cache la Poudre basin was followed by an extreme flood one year post-fire. This compound disturbance hastened suspended sediment recovery to pre-fire concentrations 3 years after the fire. Wildfires over the last 1900 YBP in the South Fork basin indicate fire recurrence intervals of 600 years. Debris flows within the upper Colorado River basin over the last two centuries have shifted the baseline of sediment recovery caused by anthropogenic activities that increased debris flow frequency. An extreme flood on North St. Vrain Creek with an impounding reservoir resulted in extreme sedimentation that led to a physical state change. We introduce an index of resilience as sediment recovery/disturbance recurrence interval, providing a relative comparison between sites. Sediment recovery and channel form resilience may be inversely related because of high or low physical complexity in streams. We propose management guidelines to enhance geomorphic resilience by promoting natural processes that maintain physical complexity. Finally, sediment connectivity within watersheds is an additional factor to consider when establishing restoration treatment priorities.
Tedesco Triccas, L; Burridge, J H; Hughes, A M; Pickering, R M; Desikan, M; Rothwell, J C; Verheyden, G
2016-01-01
To systematically review the methodology in particular treatment options and outcomes and the effect of multiple sessions of transcranial direct current stimulation (tDCS) with rehabilitation programmes for upper extremity recovery post stroke. A search was conducted for randomised controlled trials involving tDCS and rehabilitation for the upper extremity in stroke. Quality of included studies was analysed using the Modified Downs and Black form. The extent of, and effect of variation in treatment parameters such as anodal, cathodal and bi-hemispheric tDCS on upper extremity outcome measures of impairment and activity were analysed using meta-analysis. Nine studies (371 participants with acute, sub-acute and chronic stroke) were included. Different methodologies of tDCS and upper extremity intervention, outcome measures and timing of assessments were identified. Real tDCS combined with rehabilitation had a small non-significant effect of +0.11 (p=0.44) and +0.24 (p=0.11) on upper extremity impairments and activities at post-intervention respectively. Various tDCS methods have been used in stroke rehabilitation. The evidence so far is not statistically significant, but is suggestive of, at best, a small beneficial effect on upper extremity impairment. Future research should focus on which patients and rehabilitation programmes are likely to respond to different tDCS regimes. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dimitrova, S.; Mustafa, F. R.; Stoilova, I.; Babayev, E. S.; Kazimov, E. A.
2009-02-01
This collaborative study is based on the analysis and comparison of results of coordinated experimental investigations conducted in Bulgaria and Azerbaijan for revealing a possible influence of solar activity changes and related geomagnetic activity variations on the human cardio-vascular state. Arterial blood pressure and heart rate of 86 healthy volunteers were measured on working days during a period of comparatively high solar and geomagnetic activity (2799 measurements in autumn 2001 and spring 2002) in Sofia. Daily experimental investigations of parameters of cardio-vascular health state were performed in Azerbaijan with a permanent group of examined persons. Heart rate and electrocardiograms were digitally registered (in total 1532 records) for seven functionally healthy persons on working days and Saturdays, in the Laboratory of Heliobiology at the Medical Center INAM in Baku, from 15.07.2006 to 13.11.2007. Obtained digital recordings were subjected to medical, statistical and spectral analyses. Special attention was paid to effects of solar extreme events, particularly those of November 2001 and December 2006. The statistical method of the analysis of variance (ANOVA) and post hoc analysis were applied to check the significance of the influence of geomagnetic activity on the cardio-vascular parameters under consideration. Results revealed statistically significant increments for the mean systolic and diastolic blood pressure values of the group with geomagnetic activity increase. Arterial blood pressure values started increasing two days prior to geomagnetic storms and kept their high values up to two days after the storms. Heart rate reaction was ambiguous and not significant for healthy persons examined (for both groups) under conditions with geomagnetic activity changes. It is concluded that heart rate for healthy persons at middle latitudes can be considered as a more stable physiological parameter which is not so sensitive to environmental changes while the dynamics of arterial blood pressure reveals a compensatory reaction of the human organism for adaptation.
NASA Astrophysics Data System (ADS)
Sánchez-García, L.; Carrizo, D.; Fernández-Remolar, D.; Parro, V.
2017-09-01
The characterization of extreme environments with analogies to Mars is important for understanding if/how life may have thrived in the Red Planet. Río Tinto in SW Spain is an extreme environment with constant acidic waters (mean pH of 2.3) and high concentration of heavy metals, which are direct consequence of the active metabolism of chemolithotrophic microorganisms thriving in the rich polymetallic sulfides present in the massive Iberian Pyritic Belt. Abundant minerals rich in ferric iron and sulfates, which result from the pyrite metabolism (e.g. jarosite, goethite, hematites, etc.) are of special interest for their potential for organics preservation [1]. Here, we investigate the occurrence and preservation of biological signatures in diagenetically stabilized ironstone deposits in Río Tinto, by using geolipidic markers.
NASA Astrophysics Data System (ADS)
Barlas, Thanasis; Pettas, Vasilis; Gertz, Drew; Madsen, Helge A.
2016-09-01
The application of active trailing edge flaps in an industrial oriented implementation is evaluated in terms of capability of alleviating design extreme loads. A flap system with basic control functionality is implemented and tested in a realistic full Design Load Basis (DLB) for the DTU 10MW Reference Wind Turbine (RWT) model and for an upscaled rotor version in DTU's aeroelastic code HAWC2. The flap system implementation shows considerable potential in reducing extreme loads in components of interest including the blades, main bearing and tower top, with no influence on fatigue loads and power performance. In addition, an individual flap controller for fatigue load reduction in above rated power conditions is also implemented and integrated in the general controller architecture. The system is shown to be a technology enabler for rotor upscaling, by combining extreme and fatigue load reduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNally, N.; Liu, Xiang Yang; Choudary, P.V.
1997-01-01
The authors describe a microplate-based high-throughput procedure for rapid assay of the enzyme activities of nitrate reductase and nitrite reductase, using extremely small volumes of reagents. The new procedure offers the advantages of rapidity, small sample size-nanoliter volumes, low cost, and a dramatic increase in the throughput sample number that can be analyzed simultaneously. Additional advantages can be accessed by using microplate reader application software packages that permit assigning a group type to the wells, recording of the data on exportable data files and exercising the option of using the kinetic or endpoint reading modes. The assay can also bemore » used independently for detecting nitrite residues/contamination in environmental/food samples. 10 refs., 2 figs.« less
NASA Astrophysics Data System (ADS)
Zhai, Yanling; Zhu, Zhijun; Lu, Xiaolin; Zhou, H. Susan
2016-10-01
The direct ethanol fuel cell is an emerging energy conversion device for which palladium is considered as the one of the most effective components for anode catalyst, however, its widespread application has been still limited by the activity and durability of the anode catalyst. In this work, AuPd alloy networks (NWs) are synthesized using H2PdCl4 and HAuCl4 as precursors reduced by NaBH4 in the presence of sodium citrate (SC). The results reveal that SC plays significant role in network structure, resulting in the enhanced electrocatalytic activity of the catalyst. This self-supported AuPd NWs catalyst exhibits much higher electrochemical catalytic activity than commercial Pd/C catalyst toward ethanol electrooxidation in alkaline solution. Significantly, AuPd NWs catalyst shows extremely high durability at the beginning of the chronoamperometry test, and as high as 49% of the mass current density (1.41 A/mgPd) remains after 4000 s current-time test at -0.3 V (vs. Ag/AgCl) in N2-saturated KOH-ethanol solution. This strategy provides a facile method for the preparation of alloy networks with high electrochemical activity, and can be potentially expanded to a variety of electrochemical applications.
Glycerol enhances fungal germination at the water‐activity limit for life
Stevenson, Andrew; Hamill, Philip G.; Medina, Ángel; Kminek, Gerhard; Rummel, John D.; Dijksterhuis, Jan; Timson, David J.; Magan, Naresh; Leong, Su‐Lin L.
2016-01-01
Summary For the most‐extreme fungal xerophiles, metabolic activity and cell division typically halts between 0.700 and 0.640 water activity (approximately 70.0–64.0% relative humidity). Here, we investigate whether glycerol can enhance xerophile germination under acute water‐activity regimes, using an experimental system which represents the biophysical limit of Earth's biosphere. Spores from a variety of species, including Aspergillus penicillioides, Eurotium halophilicum, Xerochrysium xerophilum (formerly Chrysosporium xerophilum) and Xeromyces bisporus, were produced by cultures growing on media supplemented with glycerol (and contained up to 189 mg glycerol g dry spores−1). The ability of these spores to germinate, and the kinetics of germination, were then determined on a range of media designed to recreate stresses experienced in microbial habitats or anthropogenic systems (with water‐activities from 0.765 to 0.575). For A. penicillioides, Eurotium amstelodami, E. halophilicum, X. xerophilum and X. bisporus, germination occurred at lower water‐activities than previously recorded (0.640, 0.685, 0.651, 0.664 and 0.637 respectively). In addition, the kinetics of germination at low water‐activities were substantially faster than those reported previously. Extrapolations indicated theoretical water‐activity minima below these values; as low as 0.570 for A. penicillioides and X. bisporus. Glycerol is present at high concentrations (up to molar levels) in many types of microbial habitat. We discuss the likely role of glycerol in expanding the water‐activity limit for microbial cell function in relation to temporal constraints and location of the microbial cell or habitat. The findings reported here have also critical implications for understanding the extremes of Earth's biosphere; for understanding the potency of disease‐causing microorganisms; and in biotechnologies that operate at the limits of microbial function. PMID:27631633
Botha-Scheepers, S; Riyazi, N; Kroon, H M; Scharloo, M; Houwing-Duistermaat, J J; Slagboom, E; Rosendaal, F R; Breedveld, F C; Kloppenburg, M
2006-11-01
Using the International Classification of Functioning, Disability and Health as framework, we evaluated modifying effects of illness perceptions and mental health on the association between impairments in body structures and functions due to osteoarthritis (OA) and limitation in activities in the lower extremities. Self-reported limitation in activities was assessed by the Western Ontario and McMaster Universities OA index (WOMAC) function subscale in 316 patients with knee or hip pain or evidence of OA on knee or hip radiographs. Body structures and functions were evaluated during clinical and radiological assessments. Illness perceptions and mental health were assessed with the revised Illness Perception Questionnaire (IPQ-R) and the mental component summary score of the RAND 36-item Health Survey, respectively. For each patient an expected WOMAC function score was calculated, using an equation based on a multivariate model of the association of body structures and functions with limitation in activities. The median (interquartile) self-reported WOMAC function score was 22.2 (9.6-43.5). Ninety-one patients reported more and 120 patients reported less limitation in activities than expected. Patients with lumbar spine degeneration, physical or exercise therapy and high IPQ-R identity, consequences and chronic timeline scores had an increased risk to report more limitation in activities than the expected range. Low IPQ-R identity, consequences and emotional representation scores and better mental health were associated with reporting less limitation in activities than the expected range. Illness perceptions and mental health modify the association between self-reported limitation in activities and calculated limitation in activities based on impairments in body structures and functions due to OA.
Blood tolerant laccase by directed evolution.
Mate, Diana M; Gonzalez-Perez, David; Falk, Magnus; Kittl, Roman; Pita, Marcos; De Lacey, Antonio L; Ludwig, Roland; Shleev, Sergey; Alcalde, Miguel
2013-02-21
High-redox potential laccases are powerful biocatalysts with a wide range of applications in biotechnology. We have converted a thermostable laccase from a white-rot fungus into a blood tolerant laccase. Adapting the fitness of this laccase to the specific composition of human blood (above neutral pH, high chloride concentration) required several generations of directed evolution in a surrogate complex blood medium. Our evolved laccase was tested in both human plasma and blood, displaying catalytic activity while retaining a high redox potential at the T1 copper site. Mutations introduced in the second coordination sphere of the T1 site shifted the pH activity profile and drastically reduced the inhibitory effect of chloride. This proof of concept that laccases can be adapted to function in extreme conditions opens an array of opportunities for implantable nanobiodevices, chemical syntheses, and detoxification. Copyright © 2013 Elsevier Ltd. All rights reserved.
Earth-like aqueous debris-flow activity on Mars at high orbital obliquity in the last million years
de Haas, T.; Hauber, E.; Conway, S. J.; van Steijn, H.; Johnsson, A.; Kleinhans, M. G.
2015-01-01
Liquid water is currently extremely rare on Mars, but was more abundant during periods of high obliquity in the last few millions of years. This is testified by the widespread occurrence of mid-latitude gullies: small catchment-fan systems. However, there are no direct estimates of the amount and frequency of liquid water generation during these periods. Here we determine debris-flow size, frequency and associated water volumes in Istok crater, and show that debris flows occurred at Earth-like frequencies during high-obliquity periods in the last million years on Mars. Results further imply that local accumulations of snow/ice within gullies were much more voluminous than currently predicted; melting must have yielded centimetres of liquid water in catchments; and recent aqueous activity in some mid-latitude craters was much more frequent than previously anticipated. PMID:26102485
Strong potential for baroreflex-governed sympathetic outflow revealed during nausea.
Fagius, Jan; Nygren, Ingela
2010-12-01
Muscle sympathetic nerve activity (MSNA) was recorded in two patients with amyotrophic lateral sclerosis. As expected, they exhibited a high level of MSNA at rest, with an inverse weak response to different maneuvers normally eliciting strong increase in MSNA. About 30 min after the intake of a glucose solution, they developed nausea with an extreme rise in MSNA and blood pressure. In one patient, a quantified analysis of this reaction could be done: the outflow was close to 200% above the already high resting level and >100% stronger than the response to any of the performed maneuvers. We regard this observation of importance, because it seems to unveil resources utilized only rarely, and strongly overcoming the "ceiling effect" that seemingly is a hindrance for sympathetic activation in subjects with high lever of MSNA at rest. An inhibitory "safety limit" might exist, the trespassing of which would damage the organism and thus occurs only during extraordinary circumstances.
Source localization of brain activity using helium-free interferometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dammers, Jürgen, E-mail: J.Dammers@fz-juelich.de; Chocholacs, Harald; Eich, Eberhard
2014-05-26
To detect extremely small magnetic fields generated by the human brain, currently all commercial magnetoencephalography (MEG) systems are equipped with low-temperature (low-T{sub c}) superconducting quantum interference device (SQUID) sensors that use liquid helium for cooling. The limited and increasingly expensive supply of helium, which has seen dramatic price increases recently, has become a real problem for such systems and the situation shows no signs of abating. MEG research in the long run is now endangered. In this study, we report a MEG source localization utilizing a single, highly sensitive SQUID cooled with liquid nitrogen only. Our findings confirm that localizationmore » of neuromagnetic activity is indeed possible using high-T{sub c} SQUIDs. We believe that our findings secure the future of this exquisitely sensitive technique and have major implications for brain research and the developments of cost-effective multi-channel, high-T{sub c} SQUID-based MEG systems.« less
NASA Astrophysics Data System (ADS)
Puskás, R.; Varga, T.; Grósz, A.; Sápi, A.; Oszkó, A.; Kukovecz, Á.; Kónya, Z.
2016-06-01
Extremely high specific surface area mesoporous carbon-supported Pd nanoparticle catalysts were prepared with both impregnation and polyol-based sol methods. The silica template used for the synthesis of mesoporous carbon was removed by both NaOH and HF etching. Pd/mesoporous carbon catalysts synthesized with the impregnation method has as high specific surface area as 2250 m2/g. In case of NaOH-etched impregnated samples, the turnover frequency of cyclohexene hydrogenation to cyclohexane at 313 K was obtained 14 molecules • site- 1 • s- 1. The specific surface area of HF-etched samples was higher compared to NaOH-etched samples. However, catalytic activity was 3-6 times higher on NaOH-etched samples compared to HF-etched samples, which can be attributed to the presence of sodium and surface hydroxylgroups of the catalysts etched with NaOH solution.
Self-activated ultrahigh chemosensitivity of oxide thin film nanostructures for transparent sensors
Moon, Hi Gyu; Shim, Young-Soek; Kim, Do Hong; Jeong, Hu Young; Jeong, Myoungho; Jung, Joo Young; Han, Seung Min; Kim, Jong Kyu; Kim, Jin-Sang; Park, Hyung-Ho; Lee, Jong-Heun; Tuller, Harry L.; Yoon, Seok-Jin; Jang, Ho Won
2012-01-01
One of the top design priorities for semiconductor chemical sensors is developing simple, low-cost, sensitive and reliable sensors to be built in handheld devices. However, the need to implement heating elements in sensor devices, and the resulting high power consumption, remains a major obstacle for the realization of miniaturized and integrated chemoresistive thin film sensors based on metal oxides. Here we demonstrate structurally simple but extremely efficient all oxide chemoresistive sensors with ~90% transmittance at visible wavelengths. Highly effective self-activation in anisotropically self-assembled nanocolumnar tungsten oxide thin films on glass substrate with indium-tin oxide electrodes enables ultrahigh response to nitrogen dioxide and volatile organic compounds with detection limits down to parts per trillion levels and power consumption less than 0.2 microwatts. Beyond the sensing performance, high transparency at visible wavelengths creates opportunities for their use in transparent electronic circuitry and optoelectronic devices with avenues for further functional convergence. PMID:22905319
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhangpeng; Yang, Xinchun; Tsumori, Nobuko
2017-03-10
Highly dispersed palladium nanoclusters (Pd NCs) immobilized by a nitrogen (N)-functionalized porous carbon support (N-MSC-30) are synthesized by a wet chemical reduction method, wherein the N-MSC-30 prepared by a tandem low temperature heat-treatment approach proved to be a distinct support for stabilizing the Pd NCs. The prepared Pd/N-MSC-30 shows extremely high catalytic activity and recyclability for the dehydrogenation of formic acid (FA), affording the highest turnover frequency (TOF = 8414 h -1) at 333 K, which is much higher than that of the Pd catalyst supported on the N-MSC-30 prepared via a one-step process. This tandem heat treatment strategy providesmore » a facile and effective synthetic methodology to immobilize ultrafine metal NPs on N-functionalized carbon materials, which have tremendous application prospects in various catalytic fields.« less
Stress fractures: diagnosis, treatment, and prevention.
Patel, Deepak S; Roth, Matt; Kapil, Neha
2011-01-01
Stress fractures are common injuries in athletes and military recruits. These injuries occur more commonly in lower extremities than in upper extremities. Stress fractures should be considered in patients who present with tenderness or edema after a recent increase in activity or repeated activity with limited rest. The differential diagnosis varies based on location, but commonly includes tendinopathy, compartment syndrome, and nerve or artery entrapment syndrome. Medial tibial stress syndrome (shin splints) can be distinguished from tibial stress fractures by diffuse tenderness along the length of the posteromedial tibial shaft and a lack of edema. When stress fracture is suspected, plain radiography should be obtained initially and, if negative, may be repeated after two to three weeks for greater accuracy. If an urgent diagnosis is needed, triple-phase bone scintigraphy or magnetic resonance imaging should be considered. Both modalities have a similar sensitivity, but magnetic resonance imaging has greater specificity. Treatment of stress fractures consists of activity modification, including the use of nonweight-bearing crutches if needed for pain relief. Analgesics are appropriate to relieve pain, and pneumatic bracing can be used to facilitate healing. After the pain is resolved and the examination shows improvement, patients may gradually increase their level of activity. Surgical consultation may be appropriate for patients with stress fractures in high-risk locations, nonunion, or recurrent stress fractures. Prevention of stress fractures has been studied in military personnel, but more research is needed in other populations.
Extremely Low Frequency-Magnetic Field (ELF-MF) Exposure Characteristics among Semiconductor Workers
Choi, Sangjun; Cha, Wonseok; Kim, Won; Yoon, Chungsik; Park, Ju-Hyun; Ha, Kwonchul; Park, Donguk
2018-01-01
We assessed the exposure of semiconductor workers to extremely low frequency-magnetic fields (ELF-MF) and identified job characteristics affecting ELF-MF exposure. These were demonstrated by assessing the exposure of 117 workers involved in wafer fabrication (fab) and chip packaging wearing personal dosimeters for a full shift. A portable device was used to monitor ELF-MF in high temporal resolution. All measurements were categorized by operation, job and working activity during working time. ELF-MF exposure of workers were classified based on the quartiles of ELF-MF distribution. The average levels of ELF-MF exposure were 0.56 µT for fab workers, 0.59 µT for chip packaging workers and 0.89 µT for electrical engineers, respectively. Exposure to ELF-MF differed among types of factory, operation, job and activity. Workers engaged in the diffusion and chip testing activities showed the highest ELF-MF exposure. The ELF-MF exposures of process operators were found to be higher than those of maintenance engineers, although peak exposure and/or patterns varied. The groups with the highest quartile ELF-MF exposure level are operators in diffusion, ion implantation, module and testing operations, and maintenance engineers in diffusion, module and testing operations. In conclusion, ELF-MF exposure among workers can be substantially affected by the type of operation and job, and the activity or location. PMID:29614730