Sample records for extremely high aspect

  1. Extreme Fire Severity Patterns in Topographic, Convective and Wind-Driven Historical Wildfires of Mediterranean Pine Forests

    PubMed Central

    Lecina-Diaz, Judit; Alvarez, Albert; Retana, Javier

    2014-01-01

    Crown fires associated with extreme fire severity are extremely difficult to control. We have assessed fire severity using differenced Normalized Burn Ratio (dNBR) from Landsat imagery in 15 historical wildfires of Pinus halepensis Mill. We have considered a wide range of innovative topographic, fuel and fire behavior variables with the purposes of (1) determining the variables that influence fire severity patterns among fires (considering the 15 wildfires together) and (2) ascertaining whether different variables affect extreme fire severity within the three fire types (topographic, convective and wind-driven fires). The among-fires analysis showed that fires in less arid climates and with steeper slopes had more extreme severity. In less arid conditions there was more crown fuel accumulation and closer forest structures, promoting high vertical and horizontal fuel continuity and extreme fire severity. The analyses carried out for each fire separately (within fires) showed more extreme fire severity in areas in northern aspects, with steeper slopes, with high crown biomass and in climates with more water availability. In northern aspects solar radiation was lower and fuels had less water limitation to growth which, combined with steeper slopes, produced more extreme severity. In topographic fires there was more extreme severity in northern aspects with steeper slopes and in areas with more water availability and high crown biomass; in convection-dominated fires there was also more extreme fire severity in northern aspects with high biomass; while in wind-driven fires there was only a slight interaction between biomass and water availability. This latter pattern could be related to the fact that wind-driven fires spread with high wind speed, which could have minimized the effect of other variables. In the future, and as a consequence of climate change, new zones with high crown biomass accumulated in non-common drought areas will be available to burn as extreme severity wildfires. PMID:24465492

  2. Extreme fire severity patterns in topographic, convective and wind-driven historical wildfires of Mediterranean pine forests.

    PubMed

    Lecina-Diaz, Judit; Alvarez, Albert; Retana, Javier

    2014-01-01

    Crown fires associated with extreme fire severity are extremely difficult to control. We have assessed fire severity using differenced Normalized Burn Ratio (dNBR) from Landsat imagery in 15 historical wildfires of Pinus halepensis Mill. We have considered a wide range of innovative topographic, fuel and fire behavior variables with the purposes of (1) determining the variables that influence fire severity patterns among fires (considering the 15 wildfires together) and (2) ascertaining whether different variables affect extreme fire severity within the three fire types (topographic, convective and wind-driven fires). The among-fires analysis showed that fires in less arid climates and with steeper slopes had more extreme severity. In less arid conditions there was more crown fuel accumulation and closer forest structures, promoting high vertical and horizontal fuel continuity and extreme fire severity. The analyses carried out for each fire separately (within fires) showed more extreme fire severity in areas in northern aspects, with steeper slopes, with high crown biomass and in climates with more water availability. In northern aspects solar radiation was lower and fuels had less water limitation to growth which, combined with steeper slopes, produced more extreme severity. In topographic fires there was more extreme severity in northern aspects with steeper slopes and in areas with more water availability and high crown biomass; in convection-dominated fires there was also more extreme fire severity in northern aspects with high biomass; while in wind-driven fires there was only a slight interaction between biomass and water availability. This latter pattern could be related to the fact that wind-driven fires spread with high wind speed, which could have minimized the effect of other variables. In the future, and as a consequence of climate change, new zones with high crown biomass accumulated in non-common drought areas will be available to burn as extreme severity wildfires.

  3. Adaptation potential of naturally ventilated barns to high temperature extremes: The OptiBarn project

    NASA Astrophysics Data System (ADS)

    Menz, Christoph

    2016-04-01

    Climate change interferes with various aspects of the socio-economic system. One important aspect is its influence on animal husbandry, especially dairy faming. Dairy cows are usually kept in naturally ventilated barns (NVBs) which are particular vulnerable to extreme events due to their low adaptation capabilities. An effective adaptation to high outdoor temperatures for example, is only possible under certain wind and humidity conditions. High temperature extremes are expected to increase in number and strength under climate change. To assess the impact of this change on NVBs and dairy cows also the changes in wind and humidity needs to be considered. Hence we need to consider the multivariate structure of future temperature extremes. The OptiBarn project aims to develop sustainable adaptation strategies for dairy housings under climate change for Europe, by considering the multivariate structure of high temperature extremes. In a first step we identify various multivariate high temperature extremes for three core regions in Europe. With respect to dairy cows in NVBs we will focus on the wind and humidity field during high temperature events. In a second step we will use the CORDEX-EUR-11 ensemble to evaluate the capability of the RCMs to model such events and assess their future change potential. By transferring the outdoor conditions to indoor climate and animal wellbeing the results of this assessment can be used to develop technical, architectural and animal specific adaptation strategies for high temperature extremes.

  4. Method for obtaining a collimated near-unity aspect ratio output beam from a DFB-GSE laser with good beam quality.

    PubMed

    Liew, S K; Carlson, N W

    1992-05-20

    A simple method for obtaining a collimated near-unity aspect ratio output beam from laser sources with extremely large (> 100:1) aspect ratios is demonstrated by using a distributed-feedback grating-surfaceemitting laser. Far-field power-in-the-bucket measurements of the laser indicate good beam quality with a high Strehl ratio.

  5. Achieving high aspect ratio wrinkles by modifying material network stress.

    PubMed

    Chen, Yu-Cheng; Wang, Yan; McCarthy, Thomas J; Crosby, Alfred J

    2017-06-07

    Wrinkle aspect ratio, or the amplitude divided by the wavelength, is hindered by strain localization transitions when an increasing global compressive stress is applied to synthetic material systems. However, many examples from living organisms show extremely high aspect ratios, such as gut villi and flower petals. We use three experimental approaches to demonstrate that these high aspect ratio structures can be achieved by modifying the network stress in the wrinkle substrate. We modify the wrinkle stress and effectively delay the strain localization transition, such as folding, to larger aspect ratios by using a zero-stress initial wavy substrate, creating a secondary network with post-curing, or using chemical stress relaxation materials. A wrinkle aspect ratio as high as 0.85, almost three times higher than common values of synthetic wrinkles, is achieved, and a quantitative framework is presented to provide understanding the different strategies and predictions for future investigations.

  6. Mechanisms of Stability of Robust Chaperones from Hyperthermophiles

    DTIC Science & Technology

    2009-02-03

    basis for high temperature stability is still under active study. Activity and stability of enzymes at high temperature is an obvious and critically...important adaptation for the survival of thermophiles at the extremes of their temperature ranges. One of the novel aspects of our project is that we...with optimal growth at 100°C, with homologous proteins from Methanococcus jannaschii, an 88°C extreme thermophile . We have previously shown that

  7. Advanced technique for ultra-thin residue inspection with sub-10nm thickness using high-energy back-scattered electrons

    NASA Astrophysics Data System (ADS)

    Han, Jin-Hee

    2018-03-01

    Recently the aspect ratio of capacitor and via hole of memory semiconductor device has been dramatically increasing in order to store more information in a limited area. A small amount of remained residues after etch process on the bottom of the high aspect ratio structure can make a critical failure in device operation. Back-scattered electrons (BSE) are mainly used for inspecting the defect located at the bottom of the high aspect ratio structure or analyzing the overlay of the multi-layer structure because these electrons have a high linearity with the direction of emission and a high kinetic energy above 50eV. However, there is a limitation on that it cannot detect ultra-thin residue material having a thickness of several nanometers because the surface sensitivity is extremely low. We studied the characteristics of BSE spectra using Monte Carlo simulations for several cases which the high aspect ratio structures have extreme microscopic residues. Based on the assumption that most of the electrons emitted without energy loss are localized on the surface, we selected the detection energy window which has a range of 20eV below the maximum energy of the BSE. This window section is named as the high-energy BSE region. As a result of comparing the detection sensitivity of the conventional and the high-energy BSE detection mode, we found that the detection sensitivity for the residuals which have 2nm thickness is improved by more than 10 times in the high-energy BSE mode. This BSE technology is a new inspection method that can greatly be improved the inspection sensitivity for the ultra-thin residual material presented in the high aspect ratio structure, and its application will be expanded.

  8. Epitaxy of GaN in high aspect ratio nanoscale holes over silicon substrate

    NASA Astrophysics Data System (ADS)

    Wang, Kejia; Wang, Anqi; Ji, Qingbin; Hu, Xiaodong; Xie, Yahong; Sun, Ying; Cheng, Zhiyuan

    2017-12-01

    Dislocation filtering in gallium nitride (GaN) by epitaxial growth through patterned nanoscale holes is studied. GaN grown from extremely high aspect ratio holes by metalorganic chemical vapor deposition is examined by transmission electron microscopy and high-resolution transmission electron microscopy. This selective area epitaxial growth method with a reduced epitaxy area and an increased depth to width ratio of holes leads to effective filtering of dislocations within the hole and improves the quality of GaN significantly.

  9. Theoretical and practical aspects of application of a low-energy electromagnetic radiation of the extremely high-frequency range in medicine

    NASA Astrophysics Data System (ADS)

    Lyapina, Elena P.; Chesnokov, Igor A.; Bushuev, Nikolay A.; Kuzyutkina, Svetlana E.; Shuldjakov, Andrey A.

    2006-02-01

    The questions concerning the mechanism of action of a low-energy electromagnetic radiation of the extremely high frequency range (EMR EHF) are considered. Also the features of biological effects are considered in their application as therapeutic actions. As an example the advantages of EHF treatment of patients with chronic brucellosis are shown, the algorithm of a choice of the scheme of treatment using EMR EHF is offered.

  10. Mechanical characterization of alloys in extreme conditions of high strain rates and high temperature

    NASA Astrophysics Data System (ADS)

    Cadoni, Ezio

    2018-03-01

    The aim of this paper is the description of the mechanical characterization of alloys under extreme conditions of temperature and loading. In fact, in the frame of the Cost Action CA15102 “Solutions for Critical Raw Materials Under Extreme Conditions (CRM-EXTREME)” this aspect is crucial and many industrial applications have to consider the dynamic response of materials. Indeed, for a reduction and substitution of CRMs in alloys is necessary to design the materials and understand if the new materials behave better or if the substitution or reduction badly affect their performance. For this reason, a deep knowledge of the mechanical behaviour at high strain-rates of considered materials is required. In general, machinery manufacturing industry or transport industry as well as energy industry have important dynamic phenomena that are simultaneously affected by extended strain, high strain-rate, damage and pressure, as well as conspicuous temperature gradients. The experimental results in extreme conditions of high strain rate and high temperature of an austenitic stainless steel as well as a high-chromium tempered martensitic reduced activation steel Eurofer97 are presented.

  11. Fabrication of high aspect ratio tungsten nanostructures on ultrathin c-Si membranes for extreme UV applications

    NASA Astrophysics Data System (ADS)

    Delachat, F.; Le Drogoff, B.; Constancias, C.; Delprat, S.; Gautier, E.; Chaker, M.; Margot, J.

    2016-01-01

    In this work, we demonstrate a full process for fabricating high aspect ratio diffraction optics for extreme ultraviolet lithography. The transmissive optics consists in nanometer scale tungsten patterns standing on flat, ultrathin (100 nm) and highly transparent (>85% at 13.5 nm) silicon membranes (diameter of 1 mm). These tungsten patterns were achieved using an innovative pseudo-Bosch etching process based on an inductively coupled plasma ignited in a mixture of SF6 and C4F8. Circular ultra-thin Si membranes were fabricated through a state-of-the-art method using direct-bonding with thermal difference. The silicon membranes were sputter-coated with a few hundred nanometers (100-300 nm) of stress-controlled tungsten and a very thin layer of chromium. Nanoscale features were written in a thin resist layer by electron beam lithography and transferred onto tungsten by plasma etching of both the chromium hard mask and the tungsten layer. This etching process results in highly anisotropic tungsten features at room temperature. The homogeneity and the aspect ratio of the advanced pattern transfer on the membranes were characterized with scanning electron microscopy after focus ion beam milling. An aspect ratio of about 6 for 35 nm size pattern is successfully obtained on a 1 mm diameter 100 nm thick Si membrane. The whole fabrication process is fully compatible with standard industrial semiconductor technology.

  12. Categorization of erosion control matting.

    DOT National Transportation Integrated Search

    2012-05-29

    Erosion control is a critical aspect of any Georgia Department of Transportation (GDOT) : construction project, with the extreme negative impacts of high sediment loads in natural : waterways having been well documented. A variety of erosion control ...

  13. Categorization of erosion control matting for slope applications.

    DOT National Transportation Integrated Search

    2013-12-25

    Erosion control is an important aspect of any Georgia Department of Transportation (GDOT) construction project, with the extreme negative impacts of high sediment loads in natural waterways having been well documented. Selection of a proper erosion c...

  14. Absence of sex differences in mental rotation performance in autism spectrum disorder.

    PubMed

    Rohde, Melanie S; Georgescu, Alexandra L; Vogeley, Kai; Fimmers, Rolf; Falter-Wagner, Christine M

    2017-08-01

    Mental rotation is one of the most investigated cognitive functions showing consistent sex differences. The 'Extreme Male Brain' hypothesis attributes the cognitive profile of individuals with autism spectrum disorder to an extreme version of the male cognitive profile. Previous investigations focused almost exclusively on males with autism spectrum disorder with only limited implications for affected females. This study is the first testing a sample of 12 female adults with high-functioning autism spectrum disorder compared to 14 males with autism spectrum disorder, 12 typically developing females and 14 typically developing males employing a computerised version of the mental rotation test. Reaction time and accuracy served as dependent variables. Their linear relationship with degree of rotation allows separation of rotational aspects of the task, indicated by slopes of the psychometric function, and non-rotational aspects, indicated by intercepts of the psychometric function. While the typical and expected sex difference for rotational task aspects was corroborated in typically developing individuals, no comparable sex difference was found in autism spectrum disorder individuals. Autism spectrum disorder and typically developing individuals did not differ in mental rotation performance. This finding does not support the extreme male brain hypothesis of autism.

  15. Heating up the Baryonic Branch with U-duality: a unified picture of conifold black holes

    NASA Astrophysics Data System (ADS)

    Cáceres, Elena; Núñez, Carlos; Pando Zayas, Leopoldo A.

    2011-03-01

    We study different aspects of a U-duality recently presented by Maldacena and Martelli and apply it to non-extremal backgrounds. In particular, starting from new non-extremal wrapped D5 branes we generate new non-extremal generalizations of the Baryonic Branch of the Klebanov-Strassler solution. We also elaborate on different conceptual aspects of these U-dualities, like its action on (extremal and non-extremal) Dp branes, dual models for Yang-Mills-like theories, generic asymptotics and decoupling limit of the generated solutions.

  16. Aspect-dependent soil saturation and insight into debris-flow initiation during extreme rainfall in the Colorado Front Range

    USGS Publications Warehouse

    Ebel, Brian A.; Rengers, Francis K.; Tucker, Gregory E.

    2015-01-01

    Hydrologic processes during extreme rainfall events are poorly characterized because of the rarity of measurements. Improved understanding of hydrologic controls on natural hazards is needed because of the potential for substantial risk during extreme precipitation events. We present field measurements of the degree of soil saturation and estimates of available soil-water storage during the September 2013 Colorado extreme rainfall event at burned (wildfire in 2010) and unburned hillslopes with north- and south-facing slope aspects. Soil saturation was more strongly correlated with slope aspect than with recent fire history; south-facing hillslopes became fully saturated while north-facing hillslopes did not. Our results suggest multiple explanations for why aspect-dependent hydrologic controls favor saturation development on south-facing slopes, causing reductions in effective stress and triggering of slope failures during extreme rainfall. Aspect-dependent hydrologic behavior may result from (1) a larger gravel and stone fraction, and hence lower soil-water storage capacity, on south-facing slopes, and (2) lower weathered-bedrock permeability on south-facing slopes, because of lower tree density and associated deep roots penetrating bedrock as well as less intense weathering, inhibiting soil drainage.

  17. Simulation and experimental study of aspect ratio limitation in Fresnel zone plates for hard-x-ray optics.

    PubMed

    Liu, Jianpeng; Shao, Jinhai; Zhang, Sichao; Ma, Yaqi; Taksatorn, Nit; Mao, Chengwen; Chen, Yifang; Deng, Biao; Xiao, Tiqiao

    2015-11-10

    For acquiring high-contrast and high-brightness images in hard-x-ray optics, Fresnel zone plates with high aspect ratios (zone height/zone width) have been constantly pursued. However, knowledge of aspect ratio limits remains limited. This work explores the achievable aspect ratio limit in polymethyl methacrylate (PMMA) by electron-beam lithography (EBL) under 100 keV, and investigates the lithographic factors for this limitation. Both Monte Carlo simulation and EBL on thick PMMA are applied to investigate the profile evolution with exposure doses over 100 nm wide dense zones. A high-resolution scanning electron microscope at low acceleration mode for charging free is applied to characterize the resultant zone profiles. It was discovered for what we believe is the first time that the primary electron-beam spreading in PMMA and the proximity effect due to extra exposure from neighboring areas could be the major causes of limiting the aspect ratio. Using the optimized lithography condition, a 100 nm zone plate with aspect ratio of 15/1 was fabricated and its focusing property was characterized at the Shanghai Synchrotron Radiation Facility. The aspect ratio limit found in this work should be extremely useful for guiding further technical development in nanofabrication of high-quality Fresnel zone plates.

  18. Validation of extremes within the Perfect-Predictor Experiment of the COST Action VALUE

    NASA Astrophysics Data System (ADS)

    Hertig, Elke; Maraun, Douglas; Wibig, Joanna; Vrac, Mathieu; Soares, Pedro; Bartholy, Judith; Pongracz, Rita; Mares, Ileana; Gutierrez, Jose Manuel; Casanueva, Ana; Alzbutas, Robertas

    2016-04-01

    Extreme events are of widespread concern due to their damaging consequences on natural and anthropogenic systems. From science to applications the statistical attributes of rare and infrequent occurrence and low probability become connected with the socio-economic aspect of strong impact. Specific end-user needs regarding information about extreme events depend on the type of application, but as a joining element there is always the request for easily accessible climate change information with a clear description of their uncertainties and limitations. Within the Perfect-Predictor Experiment of the COST Action VALUE extreme indices modelled from a wide range of downscaling methods are compared to reference indices calculated from observational data. The experiment uses reference data from a selection of 86 weather stations representative of the different climates in Europe. Results are presented for temperature and precipitation extremes and include aspects of the marginal distribution as well as spell-length related aspects.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moroz, P.E.

    A new stellarator configuration, the Double-Helix Stellarator (DHS), is introduced. This novel configuration features a double-helix center post as the only helical element of the stellarator coil system. The DHS configuration has many unique characteristics. One of them is the extreme low plasma aspect ratio, A {approx} 1--1.2. Other advantages include a high enclosed volume, appreciable rotational transform, and a possibility of extreme-high-{beta} MHD equilibria. Moreover, the DHS features improved transport characteristics caused by the absence of the magnetic field ripple on the outboard of the torus. Compactness, simplicity and modularity of the coil system add to the DHS advantagesmore » for fusion applications.« less

  20. Extreme Terrestrial Environments: Life in Thermal Stress and Hypoxia. A Narrative Review.

    PubMed

    Burtscher, Martin; Gatterer, Hannes; Burtscher, Johannes; Mairbäurl, Heimo

    2018-01-01

    Living, working and exercising in extreme terrestrial environments are challenging tasks even for healthy humans of the modern new age. The issue is not just survival in remote environments but rather the achievement of optimal performance in everyday life, occupation, and sports. Various adaptive biological processes can take place to cope with the specific stressors of extreme terrestrial environments like cold, heat, and hypoxia (high altitude). This review provides an overview of the physiological and morphological aspects of adaptive responses in these environmental stressors at the level of organs, tissues, and cells. Furthermore, adjustments existing in native people living in such extreme conditions on the earth as well as acute adaptive responses in newcomers are discussed. These insights into general adaptability of humans are complemented by outcomes of specific acclimatization/acclimation studies adding important information how to cope appropriately with extreme environmental temperatures and hypoxia.

  1. Extreme Terrestrial Environments: Life in Thermal Stress and Hypoxia. A Narrative Review

    PubMed Central

    Burtscher, Martin; Gatterer, Hannes; Burtscher, Johannes; Mairbäurl, Heimo

    2018-01-01

    Living, working and exercising in extreme terrestrial environments are challenging tasks even for healthy humans of the modern new age. The issue is not just survival in remote environments but rather the achievement of optimal performance in everyday life, occupation, and sports. Various adaptive biological processes can take place to cope with the specific stressors of extreme terrestrial environments like cold, heat, and hypoxia (high altitude). This review provides an overview of the physiological and morphological aspects of adaptive responses in these environmental stressors at the level of organs, tissues, and cells. Furthermore, adjustments existing in native people living in such extreme conditions on the earth as well as acute adaptive responses in newcomers are discussed. These insights into general adaptability of humans are complemented by outcomes of specific acclimatization/acclimation studies adding important information how to cope appropriately with extreme environmental temperatures and hypoxia. PMID:29867589

  2. Entry at Venus

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Smith, Brandon

    2016-01-01

    This is lecture to be given at the IPPW 2016, as part of the 2 day course on Short Course on Destination Venus: Science, Technology and Mission Architectures. The attached presentation material is intended to be introduction to entry aspects of Venus in-situ robotic missions. The presentation introduces the audience to the aerodynamic and aerothermodynamic aspects as well as the loads, both aero and thermal, generated during entry. The course touches upon the system design aspects such as TPS design and both high and low ballistic coefficient entry system concepts that allow the science payload to be protected from the extreme entry environment and yet meet the mission objectives.

  3. Creating 3D Physical Models to Probe Student Understanding of Macromolecular Structure

    ERIC Educational Resources Information Center

    Cooper, A. Kat; Oliver-Hoyo, M. T.

    2017-01-01

    The high degree of complexity of macromolecular structure is extremely difficult for students to process. Students struggle to translate the simplified two-dimensional representations commonly used in biochemistry instruction to three-dimensional aspects crucial in understanding structure-property relationships. We designed four different physical…

  4. Training for Women's Basketball: A Biomechanical Emphasis for Preventing Anterior Cruciate Ligament Injury.

    ERIC Educational Resources Information Center

    Pettitt, Robert W.; Bryson, Erin R.

    2002-01-01

    Summarizes proposed variables linked with higher incidences of anterior cruciate ligament tears in females and the biomechanical aspects of the lower extremity during the performance of common basketball skills, focusing on gender differences in knee joint stability and neuromuscular control, biomechanical aspects of lower extremity skills in…

  5. Broadband interference lithography at extreme ultraviolet and soft x-ray wavelengths.

    PubMed

    Mojarad, Nassir; Fan, Daniel; Gobrecht, Jens; Ekinci, Yasin

    2014-04-15

    Manufacturing efficient and broadband optics is of high technological importance for various applications in all wavelength regimes. Particularly in the extreme ultraviolet and soft x-ray spectra, this becomes challenging due to the involved atomic absorption edges that rapidly change the optical constants in these ranges. Here we demonstrate a new interference lithography grating mask that can be used for nanopatterning in this spectral range. We demonstrate photolithography with cutting-edge resolution at 6.5 and 13.5 nm wavelengths, relevant to the semiconductor industry, as well as using 2.5 and 4.5 nm wavelength for patterning thick photoresists and fabricating high-aspect-ratio metal nanostructures for plasmonics and sensing applications.

  6. Parenting in emerging adulthood: an examination of parenting clusters and correlates.

    PubMed

    Nelson, Larry J; Padilla-Walker, Laura M; Christensen, Katherine J; Evans, Cortney A; Carroll, Jason S

    2011-06-01

    The changing nature of the transition to adulthood in western societies, such as the United States, may be extending the length of time parents are engaged in "parenting" activities. However, little is known about different approaches parents take in their interactions with their emerging-adult children. Hence, this study attempted to identify different clusters of parents based on the extent to which they exhibited both extremes of control (psychological control, punishment, verbal hostility, indulgence) and responsiveness (knowledge, warmth, induction, autonomy granting), and to examine how combinations of parenting were related to emerging adult children's relational and individual outcomes (e.g. parent-child relationship quality, drinking, self-worth, depression). The data were collected from 403 emerging adults (M age = 19.89, SD = 1.78, range = 18-26, 62% female) and at least one of their parents (287 fathers and 317 mothers). Eighty-four percent of participants reported being European American, 6% Asian American, 4% African American, 3% Latino, and 4% reported being of other ethnicities. Data were analyzed using hierarchical cluster analysis, separately for mothers and fathers, and identified three similar clusters of parents which we labeled as uninvolved (low on all aspects of parenting), controlling-indulgent (high on both extremes of control and low on all aspects of responsiveness), and authoritative (high on responsiveness and low on control). A fourth cluster was identified for both mothers and fathers and was labeled as inconsistent for mothers (mothers were above the mean on both extremes of control and on responsiveness) and average for fathers (fathers were at the mean on all eight aspects of parenting). The discussion focuses on how each of these clusters effectively distinguished between child outcomes.

  7. Extreme risk assessment based on normalized historic loss data

    NASA Astrophysics Data System (ADS)

    Eichner, Jan

    2017-04-01

    Natural hazard risk assessment and risk management focuses on the expected loss magnitudes of rare and extreme events. Such large-scale loss events typically comprise all aspects of compound events and accumulate losses from multiple sectors (including knock-on effects). Utilizing Munich Re's NatCatSERVICE direct economic loss data, we beriefly recap a novel methodology of peril-specific loss data normalization which improves the stationarity properties of highly non-stationary historic loss data (due to socio-economic growth of assets prone to destructive forces), and perform extreme value analysis (peaks-over-threshold method) to come up with return level estimates of e.g. 100-yr loss event scenarios for various types of perils, globally or per continent, and discuss uncertainty in the results.

  8. Reversible creation of nanostructures between identical or different species of materials

    NASA Astrophysics Data System (ADS)

    Jang, Hyun-Ik; Ko, Sungho; Park, Junyong; Lee, Dong-Eon; Jeon, Seokwoo; Ahn, Chi Won; Yoo, Kwang Soo; Park, Jae Hong

    2012-07-01

    In this study, accurate nanostructures with various aspect ratios are created on several types of material. This work is highly applicable to the energy, optical, and nano-bio fields, for example. A silicon (Si) nano-mold is preserved using the method described, and target nanostructures are replicated reversibly and unlimitedly to or from various hard and soft materials. It is also verified that various materials can be applied to the substrates. The results confirm that the target nanostructures are successfully created in precise straight line structures and circle structures with various aspect ratios, including extremely high aspect ratios of 1:18. It is suggested that the optimal replicating and demolding process of nanostructures with high aspect ratios, which are the most problematic, could be controlled by means of the surface energy between the functional materials. Relevant numerical and analytical studies are also performed. It is possible to expand the applicability of the nanostructured mold by adopting various backing materials, including rounded substrates. The scope of the applications is extended further by transferring the nanostructures between different species of materials including metallic materials as well as identical species.

  9. Initial performance results for high-aspect ratio gold MEMS deformable mirrors

    NASA Astrophysics Data System (ADS)

    Fernández, Bautista; Kubby, Joel

    2009-02-01

    The fabrication and initial performance results of high-aspect ratio 3-dimensional Micro-Electro-Mechanical System (MEMS) Deformable Mirrors (DM) for Adaptive Optics (AO) will be discussed. The DM systems were fabricated out of gold, and consist of actuators bonded to a continuous face sheet, with different boundary conditions. DM mirror displacements vs. voltage have been measured with a white light interferometer and the corresponding results compared to Finite Element Analysis (FEA) simulations. Interferometer scans of a DM have shown that ~9.4um of stroke can be achieved with low voltage, thus showing that this fabrication process holds promise in the manufacturing of future MEMS DM's for the next generation of extremely large telescopes.

  10. Psychiatric Aspects of Extreme Sports: Three Case Studies

    PubMed Central

    Tofler, Ian R; Hyatt, Brandon M; Tofler, David S

    2018-01-01

    Extreme sports, defined as sporting or adventure activities involving a high degree of risk, have boomed since the 1990s. These types of sports attract men and women who can experience a life-affirming transcendence or “flow” as they participate in dangerous activities. Extreme sports also may attract people with a genetic predisposition for risk, risk-seeking personality traits, or underlying psychiatric disorders in which impulsivity and risk taking are integral to the underlying problem. In this report, we attempt to illustrate through case histories the motivations that lead people to repeatedly risk their lives and explore psychiatry’s role in extreme sports. A sports psychiatrist can help with therapeutic management, neuromodulation of any comorbid psychiatric diagnosis, and performance enhancement (eg, risk minimization) to cultivate improved judgment which could include identifying alternative safer recreational options. Because flirting with death is critical to the extreme sports ethos, practitioners must gain further understanding of this field and its at-risk participants. PMID:29401052

  11. A Review of United States Air Force and Department of Defense Aerospace Propulsion Needs

    DTIC Science & Technology

    2006-01-01

    evolved expendable launch vehicle EHF extremely high frequency EMA electromechanical actuator EMDP engine model derivative program EMTVA...condition. A key aspect of the model was which of the two methods was used—parameters of the system or propulsion variables produced in the design ... models for turbopump analysis and design . In addition, the skills required to design a high -performance turbopump are very specialized and must be

  12. Ground Terminal Processor Interface Board for Skynet Uplink Synchronization Trials

    DTIC Science & Technology

    1997-11-01

    I1 National DMfense Defence nationale GROUND TERMINAL PROCESSOR INTERFACE BOARD FOR SKYNET UPLINK SYNCHRONIZATION TRIALS by Caroline Tom 19980126...National D6fense Defence nationale GROUND TERMINAL PROCESSOR INTERFACE BOARD FOR SKYNET UPLINK SYNCHRONIZATION TRIALS by Caroline Tom MilSat...aspects of uplink synchronization for extremely-high-frequency (EHF) spread spectrum satellite communications (SATCOM). Requirements of the GT subsystem

  13. Modeling of Turbulent Natural Convection in Enclosed Tall Cavities

    NASA Astrophysics Data System (ADS)

    Goloviznin, V. M.; Korotkin, I. A.; Finogenov, S. A.

    2017-12-01

    It was shown in our previous work (J. Appl. Mech. Tech. Phys 57 (7), 1159-1171 (2016)) that the eddy-resolving parameter-free CABARET scheme as applied to two-and three-dimensional de Vahl Davis benchmark tests (thermal convection in a square cavity) yields numerical results on coarse (20 × 20 and 20 × 20 × 20) grids that agree surprisingly well with experimental data and highly accurate computations for Rayleigh numbers of up to 1014. In the present paper, the sensitivity of this phenomenon to the cavity shape (varying from cubical to highly elongated) is analyzed. Box-shaped computational domains with aspect ratios of 1: 4, 1: 10, and 1: 28.6 are considered. The results produced by the CABARET scheme are compared with experimental data (aspect ratio of 1: 28.6), DNS results (aspect ratio of 1: 4), and an empirical formula (aspect ratio of 1: 10). In all the cases, the CABARET-based integral parameters of the cavity flow agree well with the other authors' results. Notably coarse grids with mesh refinement toward the walls are used in the CABARET calculations. It is shown that acceptable numerical accuracy on extremely coarse grids is achieved for an aspect ratio of up to 1: 10. For higher aspect ratios, the number of grid cells required for achieving prescribed accuracy grows significantly.

  14. Diagnosis, treatment, and rehabilitation of stress fractures in the lower extremity in runners

    PubMed Central

    Kahanov, Leamor; Eberman, Lindsey E; Games, Kenneth E; Wasik, Mitch

    2015-01-01

    Stress fractures account for between 1% and 20% of athletic injuries, with 80% of stress fractures in the lower extremity. Stress fractures of the lower extremity are common injuries among individuals who participate in endurance, high load-bearing activities such as running, military and aerobic exercise and therefore require practitioner expertise in diagnosis and management. Accurate diagnosis for stress fractures is dependent on the anatomical area. Anatomical regions such as the pelvis, sacrum, and metatarsals offer challenges due to difficulty differentiating pathologies with common symptoms. Special tests and treatment regimes, however, are similar among most stress fractures with resolution between 4 weeks to a year. The most difficult aspect of stress fracture treatment entails mitigating internal and external risk factors. Practitioners should address ongoing risk factors to minimize recurrence. PMID:25848327

  15. Formant characteristics of human laughter.

    PubMed

    Szameitat, Diana P; Darwin, Chris J; Szameitat, André J; Wildgruber, Dirk; Alter, Kai

    2011-01-01

    Although laughter is an important aspect of nonverbal vocalization, its acoustic properties are still not fully understood. Extreme articulation during laughter production, such as wide jaw opening, suggests that laughter can have very high first formant (F(1)) frequencies. We measured fundamental frequency and formant frequencies of the vowels produced in the vocalic segments of laughter. Vocalic segments showed higher average F(1) frequencies than those previously reported and individual values could be as high as 1100 Hz for male speakers and 1500 Hz for female speakers. To our knowledge, these are the highest F(1) frequencies reported to date for human vocalizations, exceeding even the F(1) frequencies reported for trained soprano singers. These exceptionally high F(1) values are likely to be based on the extreme positions adopted by the vocal tract during laughter in combination with physiological constraints accompanying the production of a "pressed" voice. Copyright © 2011 The Voice Foundation. All rights reserved.

  16. The influence of vegetation cover on debris-flow density during an extreme rainfall in the northern Colorado Front Range

    USGS Publications Warehouse

    Rengers, Francis K.; McGuire, Luke; Coe, Jeffrey A.; Kean, Jason W.; Baum, Rex L.; Staley, Dennis M.; Godt, Jonathan W.

    2016-01-01

    We explored regional influences on debris-flow initiation throughout the Colorado Front Range (Colorado, USA) by exploiting a unique data set of more than 1100 debris flows that initiated during a 5 day rainstorm in 2013. Using geospatial data, we examined the influence of rain, hillslope angle, hillslope aspect, and vegetation density on debris-flow initiation. In particular we used a greenness index to differentiate areas of high tree density from grass and bare soil. The data demonstrated an overwhelming propensity for debris-flow initiation on south-facing hillslopes. However, when the debris-flow density was analyzed with respect to total rainfall and greenness we found that most debris flows occurred in areas of high rainfall and low tree density, regardless of hillslope aspect. These results indicate that present-day tree density exerts a stronger influence on debris-flow initiation locations than aspect-driven variations in soil and bedrock properties that developed over longer time scales.

  17. Overcoming etch challenges related to EUV based patterning (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Metz, Andrew W.; Cottle, Hongyun; Honda, Masanobu; Morikita, Shinya; Kumar, Kaushik A.; Biolsi, Peter

    2017-04-01

    Research and development activities related to Extreme Ultra Violet [EUV] defined patterning continue to grow for < 40 nm pitch applications. The confluence of high cost and extreme process control challenges of Self-Aligned Quad Patterning [SAQP] with continued momentum for EUV ecosystem readiness could provide cost advantages in addition to improved intra-level overlay performance relative to multiple patterning approaches. However, Line Edge Roughness [LER] and Line Width Roughness [LWR] performance of EUV defined resist images are still far from meeting technology needs or ITRS spec performance. Furthermore, extreme resist height scaling to mitigate flop over exacerbates the plasma etch trade-offs related to traditional approaches of PR smoothing, descum implementation and maintaining 2D aspect ratios of short lines or elliptical contacts concurrent with ultra-high photo resist [PR] selectivity. In this paper we will discuss sources of LER/LWR, impact of material choice, integration, and innovative plasma process techniques and describe how TELTM VigusTM CCP Etchers can enhance PR selectivity, reduce LER/LWR, and maintain 2D aspect ratio of incoming patterns. Beyond traditional process approaches this paper will show the utility of: [1] DC Superposition in enhancing EUV resist hardening and selectivity, increasing resistance to stress induced PR line wiggle caused by CFx passivation, and mitigating organic planarizer wiggle; [2] Quasi Atomic Layer Etch [Q-ALE] for ARC open eliminating the tradeoffs between selectivity, CD, and shrink ratio control; and [3] ALD+Etch FUSION technology for feature independent CD shrink and LER reduction. Applicability of these concepts back transferred to 193i based lithography is also confirmed.

  18. Explorations Around "Graceful Failure" in Transportation Infrastructure: Lessons Learned By the Infrastructure and Climate Network (ICNet)

    NASA Astrophysics Data System (ADS)

    Jacobs, J. M.; Thomas, N.; Mo, W.; Kirshen, P. H.; Douglas, E. M.; Daniel, J.; Bell, E.; Friess, L.; Mallick, R.; Kartez, J.; Hayhoe, K.; Croope, S.

    2014-12-01

    Recent events have demonstrated that the United States' transportation infrastructure is highly vulnerable to extreme weather events which will likely increase in the future. In light of the 60% shortfall of the $900 billion investment needed over the next five years to maintain this aging infrastructure, hardening of all infrastructures is unlikely. Alternative strategies are needed to ensure that critical aspects of the transportation network are maintained during climate extremes. Preliminary concepts around multi-tier service expectations of bridges and roads with reference to network capacity will be presented. Drawing from recent flooding events across the U.S., specific examples for roads/pavement will be used to illustrate impacts, disruptions, and trade-offs between performance during events and subsequent damage. This talk will also address policy and cultural norms within the civil engineering practice that will likely challenge the application of graceful failure pathways during extreme events.

  19. Enabling fast charging - Battery thermal considerations

    NASA Astrophysics Data System (ADS)

    Keyser, Matthew; Pesaran, Ahmad; Li, Qibo; Santhanagopalan, Shriram; Smith, Kandler; Wood, Eric; Ahmed, Shabbir; Bloom, Ira; Dufek, Eric; Shirk, Matthew; Meintz, Andrew; Kreuzer, Cory; Michelbacher, Christopher; Burnham, Andrew; Stephens, Thomas; Francfort, James; Carlson, Barney; Zhang, Jiucai; Vijayagopal, Ram; Hardy, Keith; Dias, Fernando; Mohanpurkar, Manish; Scoffield, Don; Jansen, Andrew N.; Tanim, Tanvir; Markel, Anthony

    2017-11-01

    Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell, the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today's market. Thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.

  20. A Neuroscience Approach to Optimizing Brain Resources for Human Performance in Extreme Environments

    PubMed Central

    Paulus, Martin P.; Potterat, Eric G.; Taylor, Marcus K.; Van Orden, Karl F.; Bauman, James; Momen, Nausheen; Padilla, Genieleah A.; Swain, Judith L.

    2009-01-01

    Extreme environments requiring optimal cognitive and behavioral performance occur in a wide variety of situations ranging from complex combat operations to elite athletic competitions. Although a large literature characterizes psychological and other aspects of individual differences in performances in extreme environments, virtually nothing is known about the underlying neural basis for these differences. This review summarizes the cognitive, emotional, and behavioral consequences of exposure to extreme environments, discusses predictors of performance, and builds a case for the use of neuroscience approaches to quantify and understand optimal cognitive and behavioral performance. Extreme environments are defined as an external context that exposes individuals to demanding psychological and/or physical conditions, and which may have profound effects on cognitive and behavioral performance. Examples of these types of environments include combat situations, Olympic-level competition, and expeditions in extreme cold, at high altitudes, or in space. Optimal performance is defined as the degree to which individuals achieve a desired outcome when completing goal-oriented tasks. It is hypothesized that individual variability with respect to optimal performance in extreme environments depends on a well “contextualized” internal body state that is associated with an appropriate potential to act. This hypothesis can be translated into an experimental approach that may be useful for quantifying the degree to which individuals are particularly suited to performing optimally in demanding environments. PMID:19447132

  1. Extreme ecosystem instability suppressed tropical dinosaur dominance for 30 million years.

    PubMed

    Whiteside, Jessica H; Lindström, Sofie; Irmis, Randall B; Glasspool, Ian J; Schaller, Morgan F; Dunlavey, Maria; Nesbitt, Sterling J; Smith, Nathan D; Turner, Alan H

    2015-06-30

    A major unresolved aspect of the rise of dinosaurs is why early dinosaurs and their relatives were rare and species-poor at low paleolatitudes throughout the Late Triassic Period, a pattern persisting 30 million years after their origin and 10-15 million years after they became abundant and speciose at higher latitudes. New palynological, wildfire, organic carbon isotope, and atmospheric pCO2 data from early dinosaur-bearing strata of low paleolatitudes in western North America show that large, high-frequency, tightly correlated variations in δ(13)Corg and palynomorph ecotypes occurred within a context of elevated and increasing pCO2 and pervasive wildfires. Whereas pseudosuchian archosaur-dominated communities were able to persist in these same regions under rapidly fluctuating extreme climatic conditions until the end-Triassic, large-bodied, fast-growing tachymetabolic dinosaurian herbivores requiring greater resources were unable to adapt to unstable high CO2 environmental conditions of the Late Triassic.

  2. Sensitivity Analysis of Expected Wind Extremes over the Northwestern Sahara and High Atlas Region.

    NASA Astrophysics Data System (ADS)

    Garcia-Bustamante, E.; González-Rouco, F. J.; Navarro, J.

    2017-12-01

    A robust statistical framework in the scientific literature allows for the estimation of probabilities of occurrence of severe wind speeds and wind gusts, but does not prevent however from large uncertainties associated with the particular numerical estimates. An analysis of such uncertainties is thus required. A large portion of this uncertainty arises from the fact that historical observations are inherently shorter that the timescales of interest for the analysis of return periods. Additional uncertainties stem from the different choices of probability distributions and other aspects related to methodological issues or physical processes involved. The present study is focused on historical observations over the Ouarzazate Valley (Morocco) and in a high-resolution regional simulation of the wind in the area of interest. The aim is to provide extreme wind speed and wind gust return values and confidence ranges based on a systematic sampling of the uncertainty space for return periods up to 120 years.

  3. Extreme ecosystem instability suppressed tropical dinosaur dominance for 30 million years

    NASA Astrophysics Data System (ADS)

    Whiteside, Jessica H.; Lindström, Sofie; Irmis, Randall B.; Glasspool, Ian J.; Schaller, Morgan F.; Dunlavey, Maria; Nesbitt, Sterling J.; Smith, Nathan D.; Turner, Alan H.

    2015-06-01

    A major unresolved aspect of the rise of dinosaurs is why early dinosaurs and their relatives were rare and species-poor at low paleolatitudes throughout the Late Triassic Period, a pattern persisting 30 million years after their origin and 10-15 million years after they became abundant and speciose at higher latitudes. New palynological, wildfire, organic carbon isotope, and atmospheric pCO2 data from early dinosaur-bearing strata of low paleolatitudes in western North America show that large, high-frequency, tightly correlated variations in δ13Corg and palynomorph ecotypes occurred within a context of elevated and increasing pCO2 and pervasive wildfires. Whereas pseudosuchian archosaur-dominated communities were able to persist in these same regions under rapidly fluctuating extreme climatic conditions until the end-Triassic, large-bodied, fast-growing tachymetabolic dinosaurian herbivores requiring greater resources were unable to adapt to unstable high CO2 environmental conditions of the Late Triassic.

  4. Extreme ecosystem instability suppressed tropical dinosaur dominance for 30 million years

    PubMed Central

    Whiteside, Jessica H.; Lindström, Sofie; Irmis, Randall B.; Glasspool, Ian J.; Schaller, Morgan F.; Dunlavey, Maria; Nesbitt, Sterling J.; Smith, Nathan D.; Turner, Alan H.

    2015-01-01

    A major unresolved aspect of the rise of dinosaurs is why early dinosaurs and their relatives were rare and species-poor at low paleolatitudes throughout the Late Triassic Period, a pattern persisting 30 million years after their origin and 10–15 million years after they became abundant and speciose at higher latitudes. New palynological, wildfire, organic carbon isotope, and atmospheric pCO2 data from early dinosaur-bearing strata of low paleolatitudes in western North America show that large, high-frequency, tightly correlated variations in δ13Corg and palynomorph ecotypes occurred within a context of elevated and increasing pCO2 and pervasive wildfires. Whereas pseudosuchian archosaur-dominated communities were able to persist in these same regions under rapidly fluctuating extreme climatic conditions until the end-Triassic, large-bodied, fast-growing tachymetabolic dinosaurian herbivores requiring greater resources were unable to adapt to unstable high CO2 environmental conditions of the Late Triassic. PMID:26080428

  5. Recent Development in the CESE Method for the Solution of the Navier-Stokes Equations Using Unstructured Triangular or Tetrahedral Meshes With High Aspect Ratio

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Chang, Chau-Lyan; Yen, Joseph C.

    2013-01-01

    In the multidimensional CESE development, triangles and tetrahedra turn out to be the most natural building blocks for 2D and 3D spatial meshes. As such the CESE method is compatible with the simplest unstructured meshes and thus can be easily applied to solve problems with complex geometries. However, because the method uses space-time staggered stencils, solution decoupling may become a real nuisance in applications involving unstructured meshes. In this paper we will describe a simple and general remedy which, according to numerical experiments, has removed any possibility of solution decoupling. Moreover, in a real-world viscous flow simulation near a solid wall, one often encounters a case where a boundary with high curvature or sharp corner is surrounded by triangular/tetrahedral meshes of extremely high aspect ratio (up to 106). For such an extreme case, the spatial projection of a space-time compounded conservation element constructed using the original CESE design may become highly concave and thus its centroid (referred to as a spatial solution point) may lie far outside of the spatial projection. It could even be embedded beyond a solid wall boundary and causes serious numerical difficulties. In this paper we will also present a new procedure for constructing conservation elements and solution elements which effectively overcomes the difficulties associated with the original design. Another difficulty issue which was addressed more recently is the wellknown fact that accuracy of gradient computations involving triangular/tetrahedral grids deteriorates rapidly as the aspect ratio of grid cells increases. The root cause of this difficulty was clearly identified and several remedies to overcome it were found through a rigorous mathematical analysis. However, because of the length of the current paper and the complexity of mathematics involved, this new work will be presented in another paper.

  6. PSD Determination using a Simultaneous-Phase Acquisition Interferometer for the Constellation-X Spectroscopy X-ray Telescope (SXT) Mirrors

    NASA Technical Reports Server (NTRS)

    Lehan, J. P.; Saha, T.; Zhang, W. W.

    2006-01-01

    We investigated the use of a simultaneous-phase acquisition interferometer (a 4D FizCamTM 1500) for determining the PSD of the extremely-high aspect ratio (500: 1) glass mirrors for the Constellation-X SXT telescope. We found that the results obtained are strongly influenced by the methodology employed while collecting the data and outline a best method for this type of measurement.

  7. Using extremely halophilic bacteria to understand the role of surface charge and surface hydration in protein evolution, folding, and function

    NASA Astrophysics Data System (ADS)

    Hoff, Wouter; Deole, Ratnakar; Osu Collaboration

    2013-03-01

    Halophilic Archaea accumulate molar concentrations of KCl in their cytoplasm as an osmoprotectant, and have evolved highly acidic proteomes that only function at high salinity. We examine osmoprotection in the photosynthetic Proteobacteria Halorhodospira halophila. We find that H. halophila has an acidic proteome and accumulates molar concentrations of KCl when grown in high salt media. Upon growth of H. halophila in low salt media, its cytoplasmic K + content matches that of Escherichia coli, revealing an acidic proteome that can function in the absence of high cytoplasmic salt concentrations. These findings necessitate a reassessment of two central aspects of theories for understanding extreme halophiles. We conclude that proteome acidity is not driven by stabilizing interactions between K + ions and acidic side chains, but by the need for maintaining sufficient solvation and hydration of the protein surface at high salinity through strongly hydrated carboxylates. We propose that obligate protein halophilicity is a non-adaptive property resulting from genetic drift in which constructive neutral evolution progressively incorporates weakly stabilizing K + binding sites on an increasingly acidic protein surface.

  8. Extreme metabolic alkalosis with fludrocortisone therapy.

    PubMed Central

    Burns, A.; Brown, T. M.; Semple, P.

    1983-01-01

    We present an unusual case of extreme metabolic alkalosis resulting from severe hypokalaemia caused by unmonitored fludrocortisone therapy. Biochemical aspects of the disorder are discussed, as is the successful treatment with diuretics and potassium replacement. Some dangers of this therapy and necessary precautions are emphasized. PMID:6622340

  9. Snow Depth from Lidar: Challenges and New Technology for Measurements in Extreme Terrain

    NASA Astrophysics Data System (ADS)

    Berisford, D. F.; Kadatskiy, V.; Boardman, J. W.; Bormann, K.; Deems, J. S.; Goodale, C. E.; Mattmann, C. A.; Ramirez, P.; Richardson, M.; Painter, T. H.

    2014-12-01

    The Airborne Snow Observatory (ASO) uses an airborne LiDAR system to measure basin-wide snow depth with cm-scale accuracy at ~1m spatial resolution. This is accomplished by creating a Digital Elevation Model (DEM) over snow-free terrain in the summer, then repeating the flights again when the terrain is snow-covered and subtracting the elevations. Snow Water Equivalent (SWE) is then calculated by incorporating modeled snow density estimates, and when combined with coincident spectrometer albedo measurements, informs distributed hydrologic modeling and runoff prediction. This method provides SWE estimates of unprecedented accuracy and extent compared to traditional snow surveys and towers, and 24hr latency data products through the ASO processing pipeline using Apache Tika and OODT software. The timely ASO outputs support operational decision making by water/dam operators for optimal water management. The water-resource snowpack in the western US lies in remote mountainous terrain, spanning large areas containing steep faces at all aspects, often amongst tree canopy. This extreme terrain presents unusual challenges for LiDAR, and requires high altitude flights to achieve wide area coverage, high point density to capture small terrain features, and the ability to capture all slope aspects without shadowing. These challenges were met by the new state-of-the-art Riegl LMS-Q1560 LiDAR system, which incorporates two independent laser channels and a single rotating mirror. Both lasers and mirror are designed to provide forward, backward, and nadir look capability, which minimizes shadowing and ensures data capture even on very steep slopes. The system is capable of logging more than 10 simultaneous pulses in the air, which allows data collection at extremely high resolution while maintaining very high altitude which reduces complete region acquisition time significantly, and allows data collection over terrain with extreme elevation variation. Our experience to-date includes acquisition of data over terrain relief of more than 3500m, and ranges of up to 6000m in a single swath. We present data acquired during spring of 2013 and 2014 in western Colorado and the central Sierra Nevada, which demonstrates the capability of the new LiDAR technology and shows basin-wide measured snow depth and SWE results.

  10. Determining the mechanical constitutive properties of metals as a function of strain rate and temperature: A combined experimental and modeling approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    I. M. Robertson; A. Beaudoin; J. Lambros

    2004-01-05

    OAK-135 Development and validation of constitutive models for polycrystalline materials subjected to high strain rate loading over a range of temperatures are needed to predict the response of engineering materials to in-service type conditions (foreign object damage, high-strain rate forging, high-speed sheet forming, deformation behavior during forming, response to extreme conditions, etc.). To account accurately for the complex effects that can occur during extreme and variable loading conditions, requires significant and detailed computational and modeling efforts. These efforts must be closely coupled with precise and targeted experimental measurements that not only verify the predictions of the models, but also providemore » input about the fundamental processes responsible for the macroscopic response. Achieving this coupling between modeling and experimentation is the guiding principle of this program. Specifically, this program seeks to bridge the length scale between discrete dislocation interactions with grain boundaries and continuum models for polycrystalline plasticity. Achieving this goal requires incorporating these complex dislocation-interface interactions into the well-defined behavior of single crystals. Despite the widespread study of metal plasticity, this aspect is not well understood for simple loading conditions, let alone extreme ones. Our experimental approach includes determining the high-strain rate response as a function of strain and temperature with post-mortem characterization of the microstructure, quasi-static testing of pre-deformed material, and direct observation of the dislocation behavior during reloading by using the in situ transmission electron microscope deformation technique. These experiments will provide the basis for development and validation of physically-based constitutive models, which will include dislocation-grain boundary interactions for polycrystalline systems. One aspect of the program will involve the dire ct observation of specific mechanisms of micro-plasticity, as these will indicate the boundary value problem that should be addressed. This focus on the pre-yield region in the quasi-static effort (the elasto-plastic transition) is also a tractable one from an experimental and modeling viewpoint. In addition, our approach will minimize the need to fit model parameters to experimental data to obtain convergence. These are critical steps to reach the primary objective of simulating and modeling material performance under extreme loading conditions. In this annual report, we describe the progress made in the first year of this program.« less

  11. [Evidence of work-related musculo-skeletal disorders of the upper extremities and current methods of risk assessment: can Charlie Chaplin give us any suggestions in "modern times"].

    PubMed

    Apostoli, P; Sala, Emma

    2009-01-01

    in some sequences of the film "Modern Times" Chaplin is clearly involved in activities at high risk for work-related musculo-skeletal disorders of the upper extremities (UEWMSDs), but evidence and perception of any complaint are not evident. To evaluate the extent of the biomechanical risk using current risk assessment methods and discuss the possible reasons for lack of complaints. we made an analysis using six of the current methods for ergonomic risk assessment (State of Washington, check list OCRA, HAL by ACGIH, RULA Strain Index, OREGE). All the methods applied demonstrated high-to-very high levels of biomechanical risk for the upper extremities, with evident psychic effects but without apparent musculo-skeletal disorders. The discrepancy between evident psychological disorders ad apparent absence of UEWMSDs are discussed as being due to either: an artistic choice by Charlie Chaplin who focused on the aspects thought to be more immediately and easily comic; the short duration of the physical load exertion; or because of a different perception of muscular work and fatigue that was also typical until the 1970's and 1980's, which also confirmed the principles and practices of our preventive and medical disciplines at that time.

  12. Addiction in Extreme Sports: An Exploration of Withdrawal States in Rock Climbers

    PubMed Central

    Heirene, Robert M.; Shearer, David; Roderique-Davies, Gareth; Mellalieu, Stephen D.

    2016-01-01

    Background and aims Extreme sports athletes are often labeled “adrenaline junkies” by the media, implying they are addicted to their sport. Research suggests during abstinence these athletes may experience withdrawal states characteristic of individuals with an addiction (Celsi, Rose, & Leigh, 1993; Franken, Zijlstra, & Muris, 2006; Willig, 2008). Despite this notion, no research has directly explored withdrawal experiences of extreme sports athletes. Methods Using semi-structured interviews, we explored withdrawal experiences of high (n = 4) and average-ability (n = 4) male rock climbers during periods of abstinence. We investigated the psychological and behavioral aspects of withdrawal, including craving, anhedonia, and negative affect; and differences in the frequency and intensity of these states between groups. Results Deductive content analysis indicated support for each of the three categories of anhedonia, craving, and negative affect. Consistent with existing substance addiction literature, high-ability climbers recalled more frequent and intense craving states and negative affect during abstinence compared with average-ability climbers. No differences in anhedonic symptoms between high and average-ability participants were found. Conclusions Rock climbing athletes appear to experience withdrawal symptoms when abstinent from their sport comparable to individuals with substance and behavioral addictions. The implications of these findings and suggestions for future research are discussed. PMID:27348554

  13. Clinical features of body dysmorphic disorder in adolescents and adults

    PubMed Central

    Phillips, Katharine A.; Didie, Elizabeth R.; Menard, William; Pagano, Maria E.; Fay, Christina; Weisberg, Risa B.

    2006-01-01

    Body dysmorphic disorder (BDD) usually begins during adolescence, but its clinical features have received little investigation in this age group. Two hundred individuals with BDD (36 adolescents; 164 adults) completed interviewer-administered and self-report measures. Adolescents were preoccupied with numerous aspects of their appearance, most often their skin, hair, and stomach. Among the adolescents, 94.3% reported moderate, severe, or extreme distress due to BDD, 80.6% had a history of suicidal ideation, and 44.4% had attempted suicide. Adolescents experienced high rates and levels of impairment in school, work, and other aspects of psychosocial functioning. Adolescents and adults were comparable on most variables, although adolescents had significantly more delusional BDD beliefs and a higher lifetime rate of suicide attempts. Thus, adolescents with BDD have high levels of distress and rates of functional impairment, suicidal ideation, and suicide attempts. BDD’s clinical features in adolescents appear largely similar to those in adults. PMID:16499973

  14. Research progress of extreme climate and its vegetation response

    NASA Astrophysics Data System (ADS)

    Cui, Xiaolin; Wei, Xiaoqing; Wang, Tao

    2017-08-01

    The IPCC’s fifth assessment report indicates that climate warming is unquestionable, the frequency and intensity of extreme weather events may increase, and extreme weather events can destroy the growth conditions of vegetation that is otherwise in a stable condition. Therefore, it is essential to research the formation of extreme weather events and its ecological response, both in terms scientific development and the needs of societal development. This paper mainly examines these issues from the following aspects: (1) the definition of extreme climate events and the methods of studying the associated response of vegetation; (2) the research progress on extreme climate events and their vegetation response; and (3) the future direction of research on extreme climate and its vegetation response.

  15. Extremely high intracellular concentration of glucose-6-phosphate and NAD(H) in Deinococcus radiodurans.

    PubMed

    Yamashiro, Takumi; Murata, Kousaku; Kawai, Shigeyuki

    2017-03-01

    Deinococcus radiodurans is highly resistant to ionizing radiation and UV radiation, and oxidative stress caused by such radiations. NADP(H) seems to be important for this resistance (Slade and Radman, Microbiol Mol Biol Rev 75:133-191; Slade, Radman, Microbiol Mol Biol Rev 75:133-191, 2011), but the mechanism underlying the generation of NADP(H) or NAD(H) in D. radiodurans has not fully been addressed. Intracellular concentrations of NAD + , NADH, NADP + , and NADPH in D. radiodurans are also not determined yet. We found that cell extracts of D. radiodurans catalyzed reduction of NAD(P) + in vitro, indicating that D. radiodurans cells contain both enzymes and a high concentration of substrates for this activity. The enzyme and the substrate were attributed to glucose-6-phosphate dehydrogenase and glucose-6-phosphate of which intracellular concentration was extremely high. Unexpectedly, the intracellular concentration of NAD(H) was also much greater than that of NADP(H), suggesting some significant roles of NADH. These unusual features of this bacterium would shed light on a new aspect of physiology of this bacterium.

  16. Application of High Speed Digital Image Correlation in Rocket Engine Hot Fire Testing

    NASA Technical Reports Server (NTRS)

    Gradl, Paul R.; Schmidt, Tim

    2016-01-01

    Hot fire testing of rocket engine components and rocket engine systems is a critical aspect of the development process to understand performance, reliability and system interactions. Ground testing provides the opportunity for highly instrumented development testing to validate analytical model predictions and determine necessary design changes and process improvements. To properly obtain discrete measurements for model validation, instrumentation must survive in the highly dynamic and extreme temperature application of hot fire testing. Digital Image Correlation has been investigated and being evaluated as a technique to augment traditional instrumentation during component and engine testing providing further data for additional performance improvements and cost savings. The feasibility of digital image correlation techniques were demonstrated in subscale and full scale hotfire testing. This incorporated a pair of high speed cameras to measure three-dimensional, real-time displacements and strains installed and operated under the extreme environments present on the test stand. The development process, setup and calibrations, data collection, hotfire test data collection and post-test analysis and results are presented in this paper.

  17. Enabling fast charging – Battery thermal considerations

    DOE PAGES

    Keyser, Matthew; Pesaran, Ahmad; Li, Qibo; ...

    2017-10-23

    Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell,more » the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today’s market. Here, thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.« less

  18. Enabling fast charging – Battery thermal considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keyser, Matthew; Pesaran, Ahmad; Li, Qibo

    Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell,more » the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today’s market. Here, thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.« less

  19. Predictions of extreme precipitation and sea-level rise under climate change.

    PubMed

    Senior, C A; Jones, R G; Lowe, J A; Durman, C F; Hudson, D

    2002-07-15

    Two aspects of global climate change are particularly relevant to river and coastal flooding: changes in extreme precipitation and changes in sea level. In this paper we summarize the relevant findings of the IPCC Third Assessment Report and illustrate some of the common results found by the current generation of coupled atmosphere-ocean general circulation models (AOGCMs), using the Hadley Centre models. Projections of changes in extreme precipitation, sea-level rise and storm surges affecting the UK will be shown from the Hadley Centre regional models and the Proudman Oceanographic Laboratory storm-surge model. A common finding from AOGCMs is that in a warmer climate the intensity of precipitation will increase due to a more intense hydrological cycle. This leads to reduced return periods (i.e. more frequent occurrences) of extreme precipitation in many locations. The Hadley Centre regional model simulates reduced return periods of extreme precipitation in a number of flood-sensitive areas of the UK. In addition, simulated changes in storminess and a rise in average sea level around the UK lead to reduced return periods of extreme high coastal water events. The confidence in all these results is limited by poor spatial resolution in global coupled models and by uncertainties in the physical processes in both global and regional models, and is specific to the climate change scenario used.

  20. Invariant Imbedded T-Matrix Method for Axial Symmetric Hydrometeors with Extreme Aspect Ratios

    NASA Technical Reports Server (NTRS)

    Pelissier, Craig; Kuo, Kwo-Sen; Clune, Thomas; Adams, Ian; Munchak, Stephen

    2017-01-01

    The single-scattering properties (SSPs) of hydrometeors are the fundamental quantities for physics-based precipitation retrievals. Thus, efficient computation of their electromagnetic scattering is of great value. Whereas the semi-analytical T-Matrix methods are likely the most efficient for nonspherical hydrometeors with axial symmetry, they are not suitable for arbitrarily shaped hydrometeors absent of any significant symmetry, for which volume integral methods such as those based on Discrete Dipole Approximation (DDA) are required. Currently the two leading T-matrix methods are the Extended Boundary Condition Method (EBCM) and the Invariant Imbedding T-matrix Method incorporating Lorentz-Mie Separation of Variables (IITM+SOV). EBCM is known to outperform IITM+SOV for hydrometeors with modest aspect ratios. However, in cases when aspect ratios become extreme, such as needle-like particles with large height to diameter values, EBCM fails to converge. Such hydrometeors with extreme aspect ratios are known to be present in solid precipitation and their SSPs are required to model the radiative responses accurately. In these cases, IITM+SOV is shown to converge. An efficient, parallelized C++ implementation for both EBCM and IITM+SOV has been developed to conduct a performance comparison between EBCM, IITM+SOV, and DDSCAT (a popular implementation of DDA). We present the comparison results and discuss details. Our intent is to release the combined ECBM IITM+SOV software to the community under an open source license.

  1. Invariant Imbedding T-Matrix Method for Axial Symmetric Hydrometeors with Extreme Aspect Ratios

    NASA Astrophysics Data System (ADS)

    Pelissier, C.; Clune, T.; Kuo, K. S.; Munchak, S. J.; Adams, I. S.

    2017-12-01

    The single-scattering properties (SSPs) of hydrometeors are the fundamental quantities for physics-based precipitation retrievals. Thus, efficient computation of their electromagnetic scattering is of great value. Whereas the semi-analytical T-Matrix methods are likely the most efficient for nonspherical hydrometeors with axial symmetry, they are not suitable for arbitrarily shaped hydrometeors absent of any significant symmetry, for which volume integral methods such as those based on Discrete Dipole Approximation (DDA) are required. Currently the two leading T-matrix methods are the Extended Boundary Condition Method (EBCM) and the Invariant Imbedding T-matrix Method incorporating Lorentz-Mie Separation of Variables (IITM+SOV). EBCM is known to outperform IITM+SOV for hydrometeors with modest aspect ratios. However, in cases when aspect ratios become extreme, such as needle-like particles with large height to diameter values, EBCM fails to converge. Such hydrometeors with extreme aspect ratios are known to be present in solid precipitation and their SSPs are required to model the radiative responses accurately. In these cases, IITM+SOV is shown to converge. An efficient, parallelized C++ implementation for both EBCM and IITM+SOV has been developed to conduct a performance comparison between EBCM, IITM+SOV, and DDSCAT (a popular implementation of DDA). We present the comparison results and discuss details. Our intent is to release the combined ECBM & IITM+SOV software to the community under an open source license.

  2. A New Selective Area Lateral Epitaxy Approach for Depositing a-Plane GaN over r-Plane Sapphire

    NASA Astrophysics Data System (ADS)

    Chen, Changqing; Zhang, Jianping; Yang, Jinwei; Adivarahan, Vinod; Rai, Shiva; Wu, Shuai; Wang, Hongmei; Sun, Wenhong; Su, Ming; Gong, Zheng; Kuokstis, Edmundas; Gaevski, Mikhail; Khan, Muhammad Asif

    2003-07-01

    We report a new epitaxy procedure for growing extremely low defect density a-plane GaN films over r-plane sapphire. By combining selective area growth through a SiO2 mask opening to produce high height to width aspect ratio a-plane GaN pillars and lateral epitaxy from their c-plane facets, we obtained fully coalesced a-plane GaN films. The excellent structural, optical and electrical characteristics of these selective area lateral epitaxy (SALE) deposited films make them ideal for high efficiency III-N electronic and optoelectronic devices.

  3. Do Atmospheric Rivers explain the extreme precipitation events over East Asia?

    NASA Astrophysics Data System (ADS)

    Dairaku, K.; Nayak, S.

    2017-12-01

    Extreme precipitation events are now of serious concern due to their damaging societal impacts over last few decades. Thus, climate indices are widely used to identify and quantify variability and changes in particular aspects of the climate system, especially when considering extremes. In our study, we focus on few climate indices of annual precipitation extremes for the period 1979-2013 over East Asia to discuss some straightforward information and interpretation of certain aspects of extreme precipitation events that occur over the region. To do so, we first discuss different percentiles of precipitation and maximum length of wet spell with different thresholds from a regional climate model (NRAMS) simulation at 20km. Results indicate that the 99 percentile of precipitation events correspond to about 80mm/d over few regions of East Asia during 1979-2013 and maximum length of wet spell with minimum 20mm precipitation corresponds to about 10days (Figure 1). We then linked the extreme precipitation events with the intense moisture transport events associated with atmospheric rivers (ARs). The ARs are identified by computing the vertically integrated horizontal water vapor transport (IVT) between 1000hpa and 300hpa with IVT ≥ 250 kg/m/s and 2000 km minimum long. With this threshold and condition (set by previous research), our results indicate that some extreme propitiation events are associated with some ARs over East Asia, while some events are not associated with any ARs. Similarly, some ARs are associated with some extreme precipitation events, while some ARs are not associated with any events. Since the ARs are sensitive to the threshold and condition depending on region, so we will analyze the characteristics of ARs (frequency, duration, and annual variability) with different thresholds and discuss their relationship with extreme precipitation events over East Asia.

  4. 2016 Final Reports from the Los Alamos National Laboratory Computational Physics Student Summer Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Runnels, Scott Robert; Bachrach, Harrison Ian; Carlson, Nils

    The two primary purposes of LANL’s Computational Physics Student Summer Workshop are (1) To educate graduate and exceptional undergraduate students in the challenges and applications of computational physics of interest to LANL, and (2) Entice their interest toward those challenges. Computational physics is emerging as a discipline in its own right, combining expertise in mathematics, physics, and computer science. The mathematical aspects focus on numerical methods for solving equations on the computer as well as developing test problems with analytical solutions. The physics aspects are very broad, ranging from low-temperature material modeling to extremely high temperature plasma physics, radiation transportmore » and neutron transport. The computer science issues are concerned with matching numerical algorithms to emerging architectures and maintaining the quality of extremely large codes built to perform multi-physics calculations. Although graduate programs associated with computational physics are emerging, it is apparent that the pool of U.S. citizens in this multi-disciplinary field is relatively small and is typically not focused on the aspects that are of primary interest to LANL. Furthermore, more structured foundations for LANL interaction with universities in computational physics is needed; historically interactions rely heavily on individuals’ personalities and personal contacts. Thus a tertiary purpose of the Summer Workshop is to build an educational network of LANL researchers, university professors, and emerging students to advance the field and LANL’s involvement in it.« less

  5. Treatment strategy for metastatic prostate cancer with extremely high PSA level: reconsidering the value of vintage therapy.

    PubMed

    Yamada, Yasutaka; Sakamoto, Shinichi; Amiya, Yoshiyasu; Sasaki, Makoto; Shima, Takayuki; Komiya, Akira; Suzuki, Noriyuki; Akakura, Koichiro; Ichikawa, Tomohiko; Nakatsu, Hiroomi

    2018-05-04

    The prognostic significance of initial prostate-specific antigen (PSA) level for metastatic prostate cancer remains uncertain. We investigated the differences in prognosis and response to hormonal therapies of metastatic prostate cancer patients according to initial PSA levels. We analyzed 184 patients diagnosed with metastatic prostate cancer and divided them into three PSA level groups as follows: low (<100 ng ml -1 ), intermediate (100-999 ng ml -1 ), and high (≥1000 ng ml -1 ). All patients received androgen deprivation therapy (ADT) immediately. We investigated PSA progression-free survival (PFS) for first-line ADT and overall survival (OS) within each of the three groups. Furthermore, we analyzed response to antiandrogen withdrawal (AW) and alternative antiandrogen (AA) therapies after development of castration-resistant prostate cancer (CRPC). No significant differences in OS were observed among the three groups (P = 0.654). Patients with high PSA levels had significantly short PFS for first-line ADT (P = 0.037). Conversely, patients in the high PSA level group had significantly longer PFS when treated with AW than those in the low PSA level group (P = 0.047). Furthermore, patients with high PSA levels had significantly longer PFS when provided with AA therapy (P = 0.049). PSA responders to AW and AA therapies had significantly longer survival after CRPC development than nonresponders (P = 0.011 and P < 0.001, respectively). Thus, extremely high PSA level predicted favorable response to vintage sequential ADT and AW. The current data suggest a novel aspect of extremely high PSA value as a favorable prognostic marker after development of CRPC.

  6. Conceptualizing Rolling Motion through an Extreme Case Reasoning Approach

    ERIC Educational Resources Information Center

    Hasovic, Elvedin; Mešic, Vanes; Erceg, Nataša

    2017-01-01

    In this paper we are going to show how learning about some counterintuitive aspects of rolling motion can be facilitated by combining the use of analogies with extreme case reasoning. Specifically, the intuitively comprehensible examples of "rolling" polygonal prisms are used as an analogical anchor that is supposed to help the students…

  7. Pepper, chili (Capsicum annuum).

    PubMed

    Min, Jung; Shin, Sun Hee; Jeon, En Mi; Park, Jung Mi; Hyun, Ji Young; Harn, Chee Hark

    2015-01-01

    Pepper is a recalcitrant plant for Agrobacterium-mediated genetic transformation. Several obstacles to genetic transformation remain such as extremely low transformation rates; the choice of correct genotype is critical; and there is a high frequency of false positives due to direct shoot formation. Here, we report a useful protocol with a suitable selection method. The most important aspect of the pepper transformation protocol is selecting shoots growing from the callus, which is referred to as callus-mediated shoot formation. This protocol is a reproducible and reliable system for pepper transformation.

  8. Potential Use of Agile Methods in Selected DoD Acquisitions: Requirements Development and Management

    DTIC Science & Technology

    2014-04-01

    understanding of common Agile meth- ods, particularly Scrum and eXtreme Programming. For those unfamiliar with the basics of Agile development, the... Scrum (namely, the concepts of product owner, product backlog and self- organized teams) and eXtreme Programming (epics and user stories). These concepts...also been adopted as a requirements specification mechanism by many teams using Scrum , even if those teams don’t use other aspects of eXtreme

  9. Are satellite products good proxies for gauge precipitation over Singapore?

    NASA Astrophysics Data System (ADS)

    Hur, Jina; Raghavan, Srivatsan V.; Nguyen, Ngoc Son; Liong, Shie-Yui

    2018-05-01

    The uncertainties in two high-resolution satellite precipitation products (TRMM 3B42 v7.0 and GSMaP v5.222) were investigated by comparing them against rain gauge observations over Singapore on sub-daily scales. The satellite-borne precipitation products are assessed in terms of seasonal, monthly and daily variations, the diurnal cycle, and extreme precipitation over a 10-year period (2000-2010). Results indicate that the uncertainties in extreme precipitation is higher in GSMaP than in TRMM, possibly due to the issues such as satellite merging algorithm, the finer spatio-temporal scale of high intensity precipitation, and the swath time of satellite. Such discrepancies between satellite-borne and gauge-based precipitations at sub-daily scale can possibly lead to distorting analysis of precipitation characteristics and/or application model results. Overall, both satellite products are unable to capture the observed extremes and provide a good agreement with observations only at coarse time scales. Also, the satellite products agree well on the late afternoon maximum and heavier rainfall of gauge-based data in winter season when the Intertropical Convergence Zone (ITCZ) is located over Singapore. However, they do not reproduce the gauge-observed diurnal cycle in summer. The disagreement in summer could be attributed to the dominant satellite overpass time (about 14:00 SGT) later than the diurnal peak time (about 09:00 SGT) of gauge precipitation. From the analyses of extreme precipitation indices, it is inferred that both satellite datasets tend to overestimate the light rain and frequency but underestimate high intensity precipitation and the length of dry spells. This study on quantification of their uncertainty is useful in many aspects especially that these satellite products stand scrutiny over places where there are no good ground data to be compared against. This has serious implications on climate studies as in model evaluations and in particular, climate model simulated future projections, when information on precipitation extremes need to be reliable as they are highly crucial for adaptation and mitigation.

  10. Three-dimensional laser window formation for industrial application

    NASA Technical Reports Server (NTRS)

    Verhoff, Vincent G.; Kowalski, David

    1993-01-01

    The NASA Lewis Research Center has developed and implemented a unique process for forming flawless three-dimensional, compound-curvature laser windows to extreme accuracies. These windows represent an integral component of specialized nonintrusive laser data acquisition systems that are used in a variety of compressor and turbine research testing facilities. These windows are molded to the flow surface profile of turbine and compressor casings and are required to withstand extremely high pressures and temperatures. This method of glass formation could also be used to form compound-curvature mirrors that would require little polishing and for a variety of industrial applications, including research view ports for testing devices and view ports for factory machines with compound-curvature casings. Currently, sodium-alumino-silicate glass is recommended for three-dimensional laser windows because of its high strength due to chemical strengthening and its optical clarity. This paper discusses the main aspects of three-dimensional laser window formation. It focuses on the unique methodology and the peculiarities that are associated with the formation of these windows.

  11. Upper extremity transplantation: current concepts and challenges in an emerging field.

    PubMed

    Elliott, River M; Tintle, Scott M; Levin, L Scott

    2014-03-01

    Loss of an isolated upper limb is an emotionally and physically devastating event that results in significant impairment. Patients who lose both upper extremities experience profound disability that affects nearly every aspect of their lives. While prosthetics and surgery can eventually provide the single limb amputee with a suitable assisting hand, limited utility, minimal haptic feedback, weight, and discomfort are persistent problems with these techniques that contribute to high rates of prosthetic rejection. Moreover, despite ongoing advances in prosthetic technology, bilateral amputees continue to experience high levels of dependency, disability, and distress. Hand and upper extremity transplantation holds several advantages over prosthetic rehabilitation. The missing limb is replaced with one of similar skin color and size. Sensibility, voluntary motor control, and proprioception are restored to a greater degree, and afford better dexterity and function than prosthetics. The main shortcomings of transplantation include the hazards of immunosuppression, the complications of rejection and its treatment, and high cost. Hand and upper limb transplantation represents the most commonly performed surgery in the growing field of Vascularized Composite Allotransplantation (VCA). As upper limb transplantation and VCA have become more widespread, several important challenges and controversies have emerged. These include: refining indications for transplantation, optimizing immunosuppression, establishing reliable criteria for monitoring, diagnosing, and treating rejection, and standardizing outcome measures. This article will summarize the historical background of hand transplantation and review the current literature and concepts surrounding it.

  12. A lexicon based method to search for extreme opinions

    PubMed Central

    Gamallo, Pablo

    2018-01-01

    Studies in sentiment analysis and opinion mining have been focused on many aspects related to opinions, namely polarity classification by making use of positive, negative or neutral values. However, most studies have overlooked the identification of extreme opinions (most negative and most positive opinions) in spite of their vast significance in many applications. We use an unsupervised approach to search for extreme opinions, which is based on the automatic construction of a new lexicon containing the most negative and most positive words. PMID:29799867

  13. A lexicon based method to search for extreme opinions.

    PubMed

    Almatarneh, Sattam; Gamallo, Pablo

    2018-01-01

    Studies in sentiment analysis and opinion mining have been focused on many aspects related to opinions, namely polarity classification by making use of positive, negative or neutral values. However, most studies have overlooked the identification of extreme opinions (most negative and most positive opinions) in spite of their vast significance in many applications. We use an unsupervised approach to search for extreme opinions, which is based on the automatic construction of a new lexicon containing the most negative and most positive words.

  14. Educational Adventure Games.

    ERIC Educational Resources Information Center

    Williams, Fred D.

    An adventure game is a role-playing game that usually, but not always, has some fantasy aspect. The role-playing aspect is the key element because players become personally involved when they assume a role, and defeat becomes personal and less acceptable than in other types of games. Computer-based role-playing games are extremely popular because…

  15. Temperature Variations Recorded During Interinstitutional Air Shipments of Laboratory Mice

    PubMed Central

    Syversen, Eric; Pineda, Fernando J; Watson, Julie

    2008-01-01

    Despite extensive guidelines and regulations that govern most aspects of rodent shipping, few data are available on the physical environment experienced by rodents during shipment. To document the thermal environment experienced by mice during air shipments, we recorded temperatures at 1-min intervals throughout 103 routine interinstitutional shipments originating at our institution. We found that 49.5% of shipments were exposed to high temperatures (greater than 29.4 °C), 14.6% to low temperatures (less than 7.2 °C), and 61% to temperature variations of 11 °C or more. International shipments were more likely than domestic shipments to experience temperature extremes and large variations in temperature. Freight forwarders using passenger airlines rather than their own airplanes were more likely to have shipments that experienced temperature extremes or variations. Temperature variations were most common during stopovers. Some airlines were more likely than others to experience inflight temperature extremes or swings. Most domestic shipments lasted at least 24 h, whereas international shipments lasted 48 to 72 h. Despite exposure to high and low temperatures, animals in all but 1 shipment arrived alive. We suggest that simple measures, such as shipping at night during hot weather, provision of nesting material in shipping crates, and specifying aircraft cargo-hold temperatures that are suitable for rodents, could reduce temperature-induced stress. Measures such as additional training for airport ground crews, as previously recommended by the American Veterinary Medical Association, could further reduce exposure of rodents to extreme ambient temperatures during airport stopovers. PMID:18210996

  16. Temperature variations recorded during interinstitutional air shipments of laboratory mice.

    PubMed

    Syversen, Eric; Pineda, Fernando J; Watson, Julie

    2008-01-01

    Despite extensive guidelines and regulations that govern most aspects of rodent shipping, few data are available on the physical environment experienced by rodents during shipment. To document the thermal environment experienced by mice during air shipments, we recorded temperatures at 1-min intervals throughout 103 routine interinstitutional shipments originating at our institution. We found that 49.5% of shipments were exposed to high temperatures (greater than 29.4 degrees C), 14.6% to low temperatures (less than 7.2 degrees C), and 61% to temperature variations of 11 degrees C or more. International shipments were more likely than domestic shipments to experience temperature extremes and large variations in temperature. Freight forwarders using passenger airlines rather than their own airplanes were more likely to have shipments that experienced temperature extremes or variations. Temperature variations were most common during stopovers. Some airlines were more likely than others to experience inflight temperature extremes or swings. Most domestic shipments lasted at least 24 h, whereas international shipments lasted 48 to 72 h. Despite exposure to high and low temperatures, animals in all but 1 shipment arrived alive. We suggest that simple measures, such as shipping at night during hot weather, provision of nesting material in shipping crates, and specifying aircraft cargo-hold temperatures that are suitable for rodents, could reduce temperature-induced stress. Measures such as additional training for airport ground crews, as previously recommended by the American Veterinary Medical Association, could further reduce exposure of rodents to extreme ambient temperatures during airport stopovers.

  17. Mathematical aspects of assessing extreme events for the safety of nuclear plants

    NASA Astrophysics Data System (ADS)

    Potempski, Slawomir; Borysiewicz, Mieczyslaw

    2015-04-01

    In the paper the review of mathematical methodologies applied for assessing low frequencies of rare natural events like earthquakes, tsunamis, hurricanes or tornadoes, floods (in particular flash floods and surge storms), lightning, solar flares, etc., will be given in the perspective of the safety assessment of nuclear plants. The statistical methods are usually based on the extreme value theory, which deals with the analysis of extreme deviation from the median (or the mean). In this respect application of various mathematical tools can be useful, like: the extreme value theorem of Fisher-Tippett-Gnedenko leading to possible choices of general extreme value distributions, or the Pickands-Balkema-de Haan theorem for tail fitting, or the methods related to large deviation theory. In the paper the most important stochastic distributions relevant for performing rare events statistical analysis will be presented. This concerns, for example, the analysis of the data with the annual extreme values (maxima - "Annual Maxima Series" or minima), or the peak values, exceeding given thresholds at some periods of interest ("Peak Over Threshold"), or the estimation of the size of exceedance. Despite of the fact that there is a lack of sufficient statistical data directly containing rare events, in some cases it is still possible to extract useful information from existing larger data sets. As an example one can consider some data sets available from the web sites for floods, earthquakes or generally natural hazards. Some aspects of such data sets will be also presented taking into account their usefulness for the practical assessment of risk for nuclear power plants coming from extreme weather conditions.

  18. Coolant Design System for Liquid Propellant Aerospike Engines

    NASA Astrophysics Data System (ADS)

    McConnell, Miranda; Branam, Richard

    2015-11-01

    Liquid propellant rocket engines burn at incredibly high temperatures making it difficult to design an effective coolant system. These particular engines prove to be extremely useful by powering the rocket with a variable thrust that is ideal for space travel. When combined with aerospike engine nozzles, which provide maximum thrust efficiency, this class of rockets offers a promising future for rocketry. In order to troubleshoot the problems that high combustion chamber temperatures pose, this research took a computational approach to heat analysis. Chambers milled into the combustion chamber walls, lined by a copper cover, were tested for their efficiency in cooling the hot copper wall. Various aspect ratios and coolants were explored for the maximum wall temperature by developing our own MATLAB code. The code uses a nodal temperature analysis with conduction and convection equations and assumes no internal heat generation. This heat transfer research will show oxygen is a better coolant than water, and higher aspect ratios are less efficient at cooling. This project funded by NSF REU Grant 1358991.

  19. Synoptic and climatological aspects of extra-tropical cyclones

    NASA Astrophysics Data System (ADS)

    Leckebusch, G. C.

    2010-09-01

    Mid-latitude cyclones are highly complex dynamical features embedded in the general atmospheric circulation of the extra-tropics. Although the basic mechanisms leading to the formation of cyclones are commonly understood, the specific conditions and physical reasons triggering extreme, partly explosive development, are still under investigation. This includes also the identification of processes which might modulate the frequency and intensity of cyclone systems on time scales from days to centennials. This overview presentation will thus focus on three main topics: Firstly, the dynamic-synoptic structures of cyclones, the possibility to objectively identify cyclones and wind storms, and actual statistical properties of cyclone occurrence under recent climate conditions are addressed. In a second part, aspects of the interannual variability and its causing mechanisms are related to the seasonal predictability of extreme cyclones producing severe storm events. Extending the time frame will mean to deduce information on decadal or even centennial time periods. Thus, actual work to decadal as well as climatological variability and changes will be presented. In the last part of the talk focus will be laid on potential socio-economical impacts of changed cyclone occurrence. By means of global and regional climate modeling, future damages in terms of insured losses will be investigated and measures of uncertainty estimated from a multi-model ensemble analysis will be presented.

  20. High-Pressure Design of Advanced BN-Based Materials.

    PubMed

    Kurakevych, Oleksandr O; Solozhenko, Vladimir L

    2016-10-20

    The aim of the present review is to highlight the state of the art in high-pressure design of new advanced materials based on boron nitride. Recent experimental achievements on the governing phase transformation, nanostructuring and chemical synthesis in the systems containing boron nitride at high pressures and high temperatures are presented. All these developments allowed discovering new materials, e.g., ultrahard nanocrystalline cubic boron nitride (nano-cBN) with hardness comparable to diamond, and superhard boron subnitride B 13 N₂. Thermodynamic and kinetic aspects of high-pressure synthesis are described based on the data obtained by in situ and ex situ methods. Mechanical and thermal properties (hardness, thermoelastic equations of state, etc.) are discussed. New synthetic perspectives, combining both soft chemistry and extreme pressure-temperature conditions are considered.

  1. 2015 Final Reports from the Los Alamos National Laboratory Computational Physics Student Summer Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Runnels, Scott Robert; Caldwell, Wendy; Brown, Barton Jed

    The two primary purposes of LANL’s Computational Physics Student Summer Workshop are (1) To educate graduate and exceptional undergraduate students in the challenges and applications of computational physics of interest to LANL, and (2) Entice their interest toward those challenges. Computational physics is emerging as a discipline in its own right, combining expertise in mathematics, physics, and computer science. The mathematical aspects focus on numerical methods for solving equations on the computer as well as developing test problems with analytical solutions. The physics aspects are very broad, ranging from low-temperature material modeling to extremely high temperature plasma physics, radiation transportmore » and neutron transport. The computer science issues are concerned with matching numerical algorithms to emerging architectures and maintaining the quality of extremely large codes built to perform multi-physics calculations. Although graduate programs associated with computational physics are emerging, it is apparent that the pool of U.S. citizens in this multi-disciplinary field is relatively small and is typically not focused on the aspects that are of primary interest to LANL. Furthermore, more structured foundations for LANL interaction with universities in computational physics is needed; historically interactions rely heavily on individuals’ personalities and personal contacts. Thus a tertiary purpose of the Summer Workshop is to build an educational network of LANL researchers, university professors, and emerging students to advance the field and LANL’s involvement in it. This report includes both the background for the program and the reports from the students.« less

  2. A narrative insight into disability pensioners' work experiences in highly gender-segregated occupations.

    PubMed

    Reinholdt, Sofia; Alexanderson, Kristina

    2009-01-01

    This study examined some plausible explanations for the higher rates of ill-health seen in extremely gender-segregated occupations. The focus was on the work experiences of disability pensioners with last jobs prior to pensioning characterized by segregated conditions (i.e., less than 10% of the employees of their own sex). Seven interviews were subjected to qualitative content analyses focusing on aspects of health selection, gender differences in work tasks, and in the work situation. The results show a negative health selection into occupations in which the participants constitute an extreme minority. There were some differences in work tasks between the gender in extreme minority and the other gender. Exposure to different stress factors related to the minority status included increased visibility, performance pressure, and harassment. Gender had been of main importance for differences in exposure, for assigning work tasks, and for interaction dynamics between the groups in majority and extreme minority. A combination of negative health selection, gender marking of work tasks, and group interaction dynamics related to group proportions and gender may play a role in cumulative health risks. Additional longitudinal studies are needed to identify mechanisms and interactions in this context in order to better understand possible relationships between occupational gender segregation and increased health risks.

  3. The threshold of regulation and its application to indirect food additive contaminants in recycled plastics.

    PubMed

    Bayer, F L

    1997-01-01

    Recycled plastics have been used in food-contact applications since 1990 in various countries around the world. To date, there have been no reported issues concerning health or off-taste resulting from the use of recycled plastics in food-contact applications. This is due to the fact that the criteria that have been established regarding safety and processing are based on extremely high standards that render the finished recycled material equivalent in virtually all aspects to virgin polymers. The basis for this conclusion is detailed in this document.

  4. Single shot polarization characterization of XUV FEL pulses from crossed polarized undulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrari, E.; Allaria, E.; Buck, J.

    Polarization control is a key feature of light generated by short-wavelength free-electron lasers. In this work, we report the first experimental characterization of the polarization properties of an extreme ultraviolet high gain free-electron laser operated with crossed polarized undulators. We research the average degree of polarization and the shot-to-shot stability and we analyze aspects such as existing possibilities for controlling and switching the polarization state of the emitted light. The results are in agreement with predictions based on Gaussian beams propagation.

  5. A Laser Cavity for a Future Photon Collider at ILC

    NASA Astrophysics Data System (ADS)

    Klemz, G.; Moenig, K.

    2006-04-01

    Within a future photon-collider based on the infrastructure of ILC the energy of near-infrared laser photons will be boosted by Compton backscattering on a high energy electron beam to well above 100 GeV. By reason of luminosity, an extremely powerful lasersystem is required that will exceed today's state-of-the-art capabilities. An auxiliary cavity for resonantly enhancing the optical peak-power can relax demands on the power output of the laser. In this paper a possible design and the static aspects of a passive cavity are discussed.

  6. Technology update: Tethered aerostat structural design and material developments

    NASA Technical Reports Server (NTRS)

    Witherow, R. G.

    1975-01-01

    Requirements exist for an extremely stable, high performance, all-weather tethered aerostat system. This requirement has been satisfied by a 250,000 cubic foot captive buoyant vehicle as demonstrated by over a year of successful field operations. This achievement required significant advancements in several technology areas including composite materials design, aerostatics and aerodynamics, structural design, electro-mechanical design, vehicle fabrication and mooring operations. This paper specifically addresses the materials and structural design aspects of pressurized buoyant vehicles as related to the general class of Lighter Than Air vehicles.

  7. Reply to Comments by Tsurutani et al. on "Modeling Extreme `Carrington-Type' Space Weather Events Using Three-Dimensional Global MHD Simulations"

    NASA Astrophysics Data System (ADS)

    Ngwira, Chigomezyo M.; Pulkkinen, Antti; Kuznetsova, Maria M.; Glocer, Alex

    2018-02-01

    In this response, we address the three main comments by Tsurutani et al. (2018, http://doi.org/10.1002/2017JA024779) namely, unusually high plasma density, interplanetary magnetic field intensity, and fast storm recovery phase. The authors agree that there is room to improve the modeling by taking into account these comments and other aspects that were not fully explored during our initial work. We are already in the process of undertaking a more comprehensive modeling project.

  8. Single shot polarization characterization of XUV FEL pulses from crossed polarized undulators

    DOE PAGES

    Ferrari, E.; Allaria, E.; Buck, J.; ...

    2015-08-28

    Polarization control is a key feature of light generated by short-wavelength free-electron lasers. In this work, we report the first experimental characterization of the polarization properties of an extreme ultraviolet high gain free-electron laser operated with crossed polarized undulators. We research the average degree of polarization and the shot-to-shot stability and we analyze aspects such as existing possibilities for controlling and switching the polarization state of the emitted light. The results are in agreement with predictions based on Gaussian beams propagation.

  9. Characterization of the IEC 61000-4-6 Electromagnetic Clamp for Conducted-Immunity Testing

    NASA Astrophysics Data System (ADS)

    Grassi, F.; Pignari, S. A.; Spadacini, G.; Toscani, N.; Pelissou, P.

    2016-05-01

    A multiconductor transmission line model (MTL) is used to investigate the operation of the IEC 61000-4-6 electromagnetic (EM) clamp in a conducted-immunity test setup for aerospace applications. Aspects of interest include the performance of such a coupling device at very high frequencies (up to 1 GHz), and for extreme values of the common-mode impedance of equipment (short circuits, open circuits). The MTL model is finally exploited to predict the frequency response of coupling and decoupling factors defined in the IEC 61000-4-6 standard.

  10. Gis-Based Multi-Criteria Decision Analysis for Forest Fire Risk Mapping

    NASA Astrophysics Data System (ADS)

    Akay, A. E.; Erdoğan, A.

    2017-11-01

    The forested areas along the coastal zone of the Mediterranean region in Turkey are classified as first-degree fire sensitive areas. Forest fires are major environmental disaster that affects the sustainability of forest ecosystems. Besides, forest fires result in important economic losses and even threaten human lives. Thus, it is critical to determine the forested areas with fire risks and thereby minimize the damages on forest resources by taking necessary precaution measures in these areas. The risk of forest fire can be assessed based on various factors such as forest vegetation structures (tree species, crown closure, tree stage), topographic features (slope and aspect), and climatic parameters (temperature, wind). In this study, GIS-based Multi-Criteria Decision Analysis (MCDA) method was used to generate forest fire risk map. The study was implemented in the forested areas within Yayla Forest Enterprise Chiefs at Dursunbey Forest Enterprise Directorate which is classified as first degree fire sensitive area. In the solution process, "extAhp 2.0" plug-in running Analytic Hierarchy Process (AHP) method in ArcGIS 10.4.1 was used to categorize study area under five fire risk classes: extreme risk, high risk, moderate risk, and low risk. The results indicated that 23.81 % of the area was of extreme risk, while 25.81 % was of high risk. The result indicated that the most effective criterion was tree species, followed by tree stages. The aspect had the least effective criterion on forest fire risk. It was revealed that GIS techniques integrated with MCDA methods are effective tools to quickly estimate forest fire risk at low cost. The integration of these factors into GIS can be very useful to determine forested areas with high fire risk and also to plan forestry management after fire.

  11. Shooting the messenger to spite the message? Exploring reactions to claims of racial bias.

    PubMed

    Schultz, Jennifer R; Maddox, Keith B

    2013-03-01

    Two experiments examined aspects of the communicator, message, and audience in producing evaluative backlash toward minorities who make claims of ongoing racial bias. In Experiment 1, participants evaluated a White or Black confederate who gave a speech expressing no claim, a mild claim, or an extreme claim of racial bias. Results indicated a race-specific evaluative backlash: Participants more negatively rated Black compared with White communicators, but only when the claim was extreme. Experiment 2 found that participants more negatively rated Black (vs. White) communicators when they used low-quality arguments, but this backlash was eliminated when Black communicators used high-quality arguments. Furthermore, participants who held stronger meritocracy beliefs and who heard low-quality arguments were more likely to evaluate Black communicators harshly. These findings clarify the conditions under which people from advantaged groups are more likely to recognize claims of racial bias as legitimate and respond favorably to the communicator.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keyser, Matthew A

    Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell, the efficiencies of power and energy cells, and what type ofmore » battery thermal management solutions are available in today's market. Thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.« less

  13. Nerve Entrapment Syndromes at the Wrist and Elbow by Sonography.

    PubMed

    Klauser, Andrea S; Buzzegoli, Tommaso; Taljanovic, Mihra S; Strobl, Sylvia; Rauch, Stefan; Teh, James; Wanschitz, Julia; Löscher, Wolfgang; Martinoli, Carlo

    2018-07-01

    Nerve entrapment syndromes of the upper extremity are associated with structural abnormalities or by an intrinsic abnormality of the nerve. Nerve entrapment syndromes generally have a typical clinical presentation, and findings on physical examination and in conjunction with electrodiagnostic studies imaging is used to evaluate the cause, severity, and etiology of the entrapment. With the development of high-frequency linear array transducers (12-24 MHz), ultrasound (US) is incomparable in terms of spatial resolution to depict morphological aspects and changes in nerves. US can identify the abnormalities causing entrapment, such as fibrous bands, ganglia, anomalous muscles, and osseous deformities, with the advantage of dynamic assessment under active and passive examination. US is a unique diagnostic modality that allows superb visualization of both large and small peripheral terminal nerve branches of the upper extremity and enables the correct diagnosis of various nerve entrapment syndromes. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  14. The impact of randomness on the distribution of wealth: Some economic aspects of the Wright-Fisher diffusion process

    NASA Astrophysics Data System (ADS)

    Bouleau, Nicolas; Chorro, Christophe

    2017-08-01

    In this paper we consider some elementary and fair zero-sum games of chance in order to study the impact of random effects on the wealth distribution of N interacting players. Even if an exhaustive analytical study of such games between many players may be tricky, numerical experiments highlight interesting asymptotic properties. In particular, we emphasize that randomness plays a key role in concentrating wealth in the extreme, in the hands of a single player. From a mathematical perspective, we interestingly adopt some diffusion limits for small and high-frequency transactions which are otherwise extensively used in population genetics. Finally, the impact of small tax rates on the preceding dynamics is discussed for several regulation mechanisms. We show that taxation of income is not sufficient to overcome this extreme concentration process in contrast to the uniform taxation of capital which stabilizes the economy and prevents agents from being ruined.

  15. Atomic layer deposition frequency-multiplied Fresnel zone plates for hard x-rays focusing

    DOE PAGES

    Moldovan, Nicolaie; Divan, Ralu; Zeng, Hongjun; ...

    2017-12-01

    The design and fabrication of Fresnel zone plates for hard x-ray focusing up to 25 keV photon energies with better than 50 nm imaging half-pitch resolution is reported as performed by forming an ultrananocrystalline diamond (UNCD) scaffold, subsequently coating it with atomic layer deposition (ALD) with an absorber/phase shifting material, followed by back side etching of Si to form a diamond membrane device. The scaffold is formed by chemical vapor-deposited UNCD, electron beam lithography, and deep-reactive ion etching of diamond to desired specifications. The benefits of using diamond are as follows: improved mechanical robustness to prevent collapse of high-aspect-ratio ringmore » structures, a known high-aspect-ratio etch method, excellent radiation hardness, extremely low x-ray absorption, and significantly improved thermal/dimensional stability as compared to alternative materials. Central to the technology is the high-resolution patterning of diamond membranes at wafer scale, which was pushed to 60 nm lines and spaces etched 2.2-mu m-deep, to an aspect ratio of 36:1. The absorber growth was achieved by ALD of Ir, Pt, or W, while wafer-level processing allowed to obtain up to 121 device chips per 4 in. wafer with yields better than 60%. X-ray tests with such zone plates allowed resolving 50 nm lines and spaces, at the limit of the available resolution test structures.« less

  16. Microfabrication: LIGA-X and applications

    NASA Astrophysics Data System (ADS)

    Kupka, R. K.; Bouamrane, F.; Cremers, C.; Megtert, S.

    2000-09-01

    X-ray LIGA (Lithography, Electrogrowth, Moulding) is one of today's key technologies in microfabrication and upcoming modern (meso)-(nano) fabrication, already used and anticipated for micromechanics (micromotors, microsensors, spinnerets, etc.), micro-optics, micro-hydrodynamics (fluidic devices), microbiology, in medicine, in biology, and in chemistry for microchemical reactors. It compares to micro-electromechanical systems (MEMS) technology, offering a larger, non-silicon choice of materials and better inherent precision. X-ray LIGA relies on synchrotron radiation to obtain necessary X-ray fluxes and uses X-ray proximity printing. Inherent advantages are its extreme precision, depth of field and very low intrinsic surface roughness. However, the quality of fabricated structures often depends on secondary effects during exposure and effects like resist adhesion. UV-LIGA, relying on thick UV resists is an alternative for projects requiring less precision. Modulating the spectral properties of synchrotron radiation, different regimes of X-ray lithography lead to (a) the mass-fabrication of classical nanostructures, (b) the fabrication of high aspect ratio nanostructures (HARNST), (c) the fabrication of high aspect ratio microstructures (HARMST), and (d) the fabrication of high aspect ratio centimeter structures (HARCST). Reviewing very recent activities around X-ray LIGA, we show the versatility of the method, obviously finding its region of application there, where it is best and other competing microtechnologies are less advantageous. An example of surface-based X-ray and particle lenses (orthogonal reflection optics (ORO)) made by X-ray LIGA is given.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moldovan, Nicolaie; Divan, Ralu; Zeng, Hongjun

    The design and fabrication of Fresnel zone plates for hard x-ray focusing up to 25 keV photon energies with better than 50 nm imaging half-pitch resolution is reported as performed by forming an ultrananocrystalline diamond (UNCD) scaffold, subsequently coating it with atomic layer deposition (ALD) with an absorber/phase shifting material, followed by back side etching of Si to form a diamond membrane device. The scaffold is formed by chemical vapor-deposited UNCD, electron beam lithography, and deep-reactive ion etching of diamond to desired specifications. The benefits of using diamond are as follows: improved mechanical robustness to prevent collapse of high-aspect-ratio ringmore » structures, a known high-aspect-ratio etch method, excellent radiation hardness, extremely low x-ray absorption, and significantly improved thermal/dimensional stability as compared to alternative materials. Central to the technology is the high-resolution patterning of diamond membranes at wafer scale, which was pushed to 60 nm lines and spaces etched 2.2-mu m-deep, to an aspect ratio of 36:1. The absorber growth was achieved by ALD of Ir, Pt, or W, while wafer-level processing allowed to obtain up to 121 device chips per 4 in. wafer with yields better than 60%. X-ray tests with such zone plates allowed resolving 50 nm lines and spaces, at the limit of the available resolution test structures.« less

  18. Comparison of iSTAT and EPOC Blood Analyzers

    DTIC Science & Technology

    2017-10-25

    requires accurate blood analysis across a range of environmental conditions and, in extreme circumstances, use beyond the expiration date. We compared... analysis across a range of environmental conditions and, in extreme circumstances, use beyond the expiration date. We compared gold standard laboratory...temperatures for either device can result in spurious results, particularly for blood gases. 2.0 BACKGROUND Blood analysis is a critical aspect of

  19. Upper Extremity Proprioception After Stroke: Bridging the Gap Between Neuroscience and Rehabilitation.

    PubMed

    Findlater, Sonja E; Dukelow, Sean P

    2017-01-01

    Proprioception is an important aspect of function that is often impaired in the upper extremity following stroke. Unfortunately, neurorehabilitation has few evidence based treatment options for those with proprioceptive deficits. The authors consider potential reasons for this disparity. In doing so, typical assessments and proprioceptive intervention studies are discussed. Relevant evidence from the field of neuroscience is examined. Such evidence may be used to guide the development of targeted interventions for upper extremity proprioceptive deficits after stroke. As researchers become more aware of the impact of proprioceptive deficits on upper extremity motor performance after stroke, it is imperative to find successful rehabilitation interventions to target these deficits and ultimately improve daily function.

  20. A Review: Fundamental Aspects of Silicate Mesoporous Materials

    PubMed Central

    ALOthman, Zeid A.

    2012-01-01

    Silicate mesoporous materials have received widespread interest because of their potential applications as supports for catalysis, separation, selective adsorption, novel functional materials, and use as hosts to confine guest molecules, due to their extremely high surface areas combined with large and uniform pore sizes. Over time a constant demand has developed for larger pores with well-defined pore structures. Silicate materials, with well-defined pore sizes of about 2.0–10.0 nm, surpass the pore-size constraint (<2.0 nm) of microporous zeolites. They also possess extremely high surface areas (>700 m2 g−1) and narrow pore size distributions. Instead of using small organic molecules as templating compounds, as in the case of zeolites, long chain surfactant molecules were employed as the structure-directing agent during the synthesis of these highly ordered materials. The structure, composition, and pore size of these materials can be tailored during synthesis by variation of the reactant stoichiometry, the nature of the surfactant molecule, the auxiliary chemicals, the reaction conditions, or by post-synthesis functionalization techniques. This review focuses mainly on a concise overview of silicate mesoporous materials together with their applications. Perusal of the review will enable researchers to obtain succinct information about microporous and mesoporous materials.

  1. Forest response to heat waves at the dry timberline

    NASA Astrophysics Data System (ADS)

    Yakir, D.; Rotenberg, E.; Tatrinov, F.; Ogee, J.; Maseyk, K.

    2012-04-01

    Predictions of climate change consistently indicate continuous warming and drying for the entire Mediterranean basin and other regions during the next century. Investigating forest functioning at the current dry and hot "timberline" has therefore implications for predicting future forest distribution. In such investigations we should consider the forest adjustments to extreme conditions both at the long-term average climate basis, as at the time-scale of episodic extreme events, such as heat waves and droughts. Investigating both aspects in a 45-yr old semi-arid pine forest at the dry timberline (<300 mm annual rainfall) we observe adjustments that improve carbon-, nitrogen- and water- use efficiencies. An important aspect in the ecosystem sustainability is its ability to rapidly recover from extreme conditions, both at the short-term and the seasonal scale. A remarkable example is provided by the episodes (usually 2-4 days) of Easterly dry and hot air that are common in spring (so-called "Hamsin" events). During these events air temperature increases and relative humidity decreases within hours by 10˚C and 40%, respectively. Net ecosystem CO2 exchange (NEE) and photosynthesis (GPP) sharply decline, predominantly in response to the drastic increase in vapor pressure deficit (up to 6kPa), but then show full recovery to the pre-stress values within 24 h past the event. Similarly, following 5-6 months of seasonal drought, the forest resumes high photosynthetic activity within ~5 days following the first rain episode of about 10 mm in the fall. We show that these transient responses are useful in partitioning between the ecosystem responses to short-term atmosphere-driven stress and longer-term soil moisture stress. An ecosystem model (MuSICA) was used to test our understandings of underlying processes, and our ability to account for such differential responses.

  2. Wheat and ultra high diluted gibberellic acid--further experiments and re-analysis of data.

    PubMed

    Endler, Peter Christian; Scherer-Pongratz, Waltraud; Lothaller, Harald; Stephen, Saundra

    2015-10-01

    Following studies (a) on wheat seedlings and ultra high diluted silver nitrate, and (b) on amphibians and an ultra high diluted hormone, (c) a bio-assay on wheat and extremely diluted gibberellic acid was standardized. This assay was intended to combine the easy-to-handle aspect of (a) and biologically interesting aspects of (b). The purpose of the data analysis presented here was to investigate the influence of an extreme dilution of gibberellic acid on wheat stalk length and to determine the influence of external factors on the experimental outcome. Grains of winter wheat (Triticum aestivum, Capo variety) were observed under the influence of extremely diluted gibberellic acid (10(-30)) prepared by stepwise dilution and agitation according to a protocol derived from homeopathy ('G30x'). Analogously prepared water was used for control ('W30x'). 16 experiments including 8000+8000 grains were performed by 9 researchers. Experiments that were performed between January and April showed inconsistent results, whereas most of the experiments performed between September and December showed shorter stalks in the G30x group. This was confirmed by correlation analysis (p<0.01). Thus winter/spring experiments and autumn experiments were analysed separately. When all 10 autumn experiments were pooled, mean stalk lengths (mm) were 48.3±21.4 for the verum group and 52.1±20.4 for control (mean±SD) at grain level (N=5000 per group) and ±5.3 and ±5.1 respectively at dish level. In other words, verum stalk length (92.67%) was 7.33% smaller than control stalk length (100%). The effect size is small when calculation is done on the basis of grains (d=0.18) but, due to the smaller SD at dish level, medium when done on the basis of dishes (d=0.73). The inhibiting effect was observed by 6 of the 6 researchers who performed the autumn experiments. The model may be useful for further research as there exists a theoretical justification due to previous studies with wheat and extremely diluted silver nitrate, as well as to previous studies with amphibians and diluted hormones, and its methods are well standardized. Data confirm the hypothesis that information can be stored in the test liquid, even at a dilution of the original substance beyond Avogadro's value; and that the wheat bio-assay is sensitive to such information. Copyright © 2015 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  3. The Overshoot Phenomenon in Geodynamics Codes

    NASA Astrophysics Data System (ADS)

    Kommu, R. K.; Heien, E. M.; Kellogg, L. H.; Bangerth, W.; Heister, T.; Studley, E. H.

    2013-12-01

    The overshoot phenomenon is a common occurrence in numerical software when a continuous function on a finite dimensional discretized space is used to approximate a discontinuous jump, in temperature and material concentration, for example. The resulting solution overshoots, and undershoots, the discontinuous jump. Numerical simulations play an extremely important role in mantle convection research. This is both due to the strong temperature and stress dependence of viscosity and also due to the inaccessibility of deep earth. Under these circumstances, it is essential that mantle convection simulations be extremely accurate and reliable. CitcomS and ASPECT are two finite element based mantle convection simulations developed and maintained by the Computational Infrastructure for Geodynamics. CitcomS is a finite element based mantle convection code that is designed to run on multiple high-performance computing platforms. ASPECT, an adaptive mesh refinement (AMR) code built on the Deal.II library, is also a finite element based mantle convection code that scales well on various HPC platforms. CitcomS and ASPECT both exhibit the overshoot phenomenon. One attempt at controlling the overshoot uses the Entropy Viscosity method, which introduces an artificial diffusion term in the energy equation of mantle convection. This artificial diffusion term is small where the temperature field is smooth. We present results from CitcomS and ASPECT that quantify the effect of the Entropy Viscosity method in reducing the overshoot phenomenon. In the discontinuous Galerkin (DG) finite element method, the test functions used in the method are continuous within each element but are discontinuous across inter-element boundaries. The solution space in the DG method is discontinuous. FEniCS is a collection of free software tools that automate the solution of differential equations using finite element methods. In this work we also present results from a finite element mantle convection simulation implemented in FEniCS that investigates the effect of using DG elements in reducing the overshoot problem.

  4. Colossal Tooling Design: 3D Simulation for Ergonomic Analysis

    NASA Technical Reports Server (NTRS)

    Hunter, Steve L.; Dischinger, Charles; Thomas, Robert E.; Babai, Majid

    2003-01-01

    The application of high-level 3D simulation software to the design phase of colossal mandrel tooling for composite aerospace fuel tanks was accomplished to discover and resolve safety and human engineering problems. The analyses were conducted to determine safety, ergonomic and human engineering aspects of the disassembly process of the fuel tank composite shell mandrel. Three-dimensional graphics high-level software, incorporating various ergonomic analysis algorithms, was utilized to determine if the process was within safety and health boundaries for the workers carrying out these tasks. In addition, the graphical software was extremely helpful in the identification of material handling equipment and devices for the mandrel tooling assembly/disassembly process.

  5. A Novel Coupled Resonator Photonic Crystal Design in Lithium Niobate for Electrooptic Applications

    DOE PAGES

    Ozturk, Birol; Yavuzcetin, Ozgur; Sridhar, Srinivas

    2015-01-01

    High-aspect-ratio photonic crystal air-hole fabrication on bulk Lithium Niobate (LN) substrates is extremely difficult due to its inherent resistance to etching, resulting in conical structures and high insertion losses. Here, we propose a novel coupled resonator photonic crystal (CRPC) design, combining a coupled resonator approach with that of Bragg gratings. CRPC design parameters were optimized by analytical calculations and FDTD simulations. CRPC structures with optimized parameters were fabricated and electrooptically tested on bulk LN annealed proton exchange waveguides. Low insertion loss and large electrooptic effect were observed with the fabricated devices, making the CRPC design a promising structure for electroopticmore » device applications.« less

  6. Study on Temperature and Synthetic Compensation of Piezo-Resistive Differential Pressure Sensors by Coupled Simulated Annealing and Simplex Optimized Kernel Extreme Learning Machine

    PubMed Central

    Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam SM, Jahangir

    2017-01-01

    As a high performance-cost ratio solution for differential pressure measurement, piezo-resistive differential pressure sensors are widely used in engineering processes. However, their performance is severely affected by the environmental temperature and the static pressure applied to them. In order to modify the non-linear measuring characteristics of the piezo-resistive differential pressure sensor, compensation actions should synthetically consider these two aspects. Advantages such as nonlinear approximation capability, highly desirable generalization ability and computational efficiency make the kernel extreme learning machine (KELM) a practical approach for this critical task. Since the KELM model is intrinsically sensitive to the regularization parameter and the kernel parameter, a searching scheme combining the coupled simulated annealing (CSA) algorithm and the Nelder-Mead simplex algorithm is adopted to find an optimal KLEM parameter set. A calibration experiment at different working pressure levels was conducted within the temperature range to assess the proposed method. In comparison with other compensation models such as the back-propagation neural network (BP), radius basis neural network (RBF), particle swarm optimization optimized support vector machine (PSO-SVM), particle swarm optimization optimized least squares support vector machine (PSO-LSSVM) and extreme learning machine (ELM), the compensation results show that the presented compensation algorithm exhibits a more satisfactory performance with respect to temperature compensation and synthetic compensation problems. PMID:28422080

  7. Study on Temperature and Synthetic Compensation of Piezo-Resistive Differential Pressure Sensors by Coupled Simulated Annealing and Simplex Optimized Kernel Extreme Learning Machine.

    PubMed

    Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam Sm, Jahangir

    2017-04-19

    As a high performance-cost ratio solution for differential pressure measurement, piezo-resistive differential pressure sensors are widely used in engineering processes. However, their performance is severely affected by the environmental temperature and the static pressure applied to them. In order to modify the non-linear measuring characteristics of the piezo-resistive differential pressure sensor, compensation actions should synthetically consider these two aspects. Advantages such as nonlinear approximation capability, highly desirable generalization ability and computational efficiency make the kernel extreme learning machine (KELM) a practical approach for this critical task. Since the KELM model is intrinsically sensitive to the regularization parameter and the kernel parameter, a searching scheme combining the coupled simulated annealing (CSA) algorithm and the Nelder-Mead simplex algorithm is adopted to find an optimal KLEM parameter set. A calibration experiment at different working pressure levels was conducted within the temperature range to assess the proposed method. In comparison with other compensation models such as the back-propagation neural network (BP), radius basis neural network (RBF), particle swarm optimization optimized support vector machine (PSO-SVM), particle swarm optimization optimized least squares support vector machine (PSO-LSSVM) and extreme learning machine (ELM), the compensation results show that the presented compensation algorithm exhibits a more satisfactory performance with respect to temperature compensation and synthetic compensation problems.

  8. Ionization-induced annealing of pre-existing defects in silicon carbide

    DOE PAGES

    Zhang, Yanwen; Sachan, Ritesh; Pakarinen, Olli H.; ...

    2015-08-12

    A long-standing objective in materials research is to find innovative ways to remove preexisting damage and heal fabrication defects or environmentally induced defects in materials. Silicon carbide (SiC) is a fascinating wide-band gap semiconductor for high-temperature, high-power, high-frequency applications. Its high corrosion and radiation resistance makes it a key refractory/structural material with great potential for extremely harsh radiation environments. Here we show that the energy transferred to the electron system of SiC by energetic ions via inelastic ionization processes results in a highly localized thermal spike that can effectively heal preexisting defects and restore the structural order. This work revealsmore » an innovative self-healing process using highly ionizing ions, and it describes a critical aspect to be considered in modeling SiC performance as either a functional or a structural material for device applications or high-radiation environments.« less

  9. Holistic view to integrated climate change assessment and extreme weather adaptation in the Lake Victoria Basin East Africa

    NASA Astrophysics Data System (ADS)

    Mutua, F.; Koike, T.

    2013-12-01

    Extreme weather events have been the leading cause of disasters and damage all over the world.The primary ingredient to these disasters especially floods is rainfall which over the years, despite advances in modeling, computing power and use of new data and technologies, has proven to be difficult to predict. Also, recent climate projections showed a pattern consistent with increase in the intensity and frequency of extreme events in the East African region.We propose a holistic integrated approach to climate change assessment and extreme event adaptation through coupling of analysis techniques, tools and data. The Lake Victoria Basin (LVB) in East Africa supports over three million livelihoods and is a valuable resource to five East African countries as a source of water and means of transport. However, with a Mesoscale weather regime driven by land and lake dynamics,extreme Mesoscale events have been prevalent and the region has been on the receiving end during anomalously wet years in the region. This has resulted in loss of lives, displacements, and food insecurity. In the LVB, the effects of climate change are increasingly being recognized as a significant contributor to poverty, by its linkage to agriculture, food security and water resources. Of particular importance are the likely impacts of climate change in frequency and intensity of extreme events. To tackle this aspect, this study adopted an integrated regional, mesoscale and basin scale approach to climate change assessment. We investigated the projected changes in mean climate over East Africa, diagnosed the signals of climate change in the atmosphere, and transferred this understanding to mesoscale and basin scale. Changes in rainfall were analyzed and similar to the IPCC AR4 report; the selected three General Circulation Models (GCMs) project a wetter East Africa with intermittent dry periods in June-August. Extreme events in the region are projected to increase; with the number of wet days exceeding the 90% percentile of 1981-2000 likely to increase by 20-40% in the whole region. We also focused on short-term weather forecasting as a step towards adapting to a changing climate. This involved dynamic downscaling of global weather forecasts to high resolution with a special focus on extreme events. By utilizing complex model dynamics, the system was able to reproduce the Mesoscale dynamics well, simulated the land/lake breeze and diurnal pattern but was inadequate in some aspects. The quantitative prediction of rainfall was inaccurate with overestimation and misplacement but with reasonable occurrence. To address these shortcomings we investigated the value added by assimilating Advanced Microwave Scanning Radiometer (AMSR-E) brightness temperature during the event. By assimilating 23GHz (sensitive to water) and 89GHz (sensitive to cloud) frequency brightness temperature; the predictability of an extreme rain weather event was investigated. The assimilation through a Cloud Microphysics Data Assimilation (CMDAS) into the weather prediction model considerably improved the spatial distribution of this event.

  10. Jump conditions in transonic equilibria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guazzotto, L.; Betti, R.; Jardin, S. C.

    2013-04-15

    In the present paper, the numerical calculation of transonic equilibria, first introduced with the FLOW code in Guazzotto et al.[Phys. Plasmas 11, 604 (2004)], is critically reviewed. In particular, the necessity and effect of imposing explicit jump conditions at the transonic discontinuity are investigated. It is found that 'standard' (low-{beta}, large aspect ratio) transonic equilibria satisfy the correct jump condition with very good approximation even if the jump condition is not explicitly imposed. On the other hand, it is also found that high-{beta}, low aspect ratio equilibria require the correct jump condition to be explicitly imposed. Various numerical approaches aremore » described to modify FLOW to include the jump condition. It is proved that the new methods converge to the correct solution even in extreme cases of very large {beta}, while they agree with the results obtained with the old implementation of FLOW in lower-{beta} equilibria.« less

  11. Microwave dynamics of high aspect ratio superconducting nanowires studied using self-resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santavicca, Daniel F., E-mail: daniel.santavicca@unf.edu; Adams, Jesse K.; Grant, Lierd E.

    2016-06-21

    We study the microwave impedance of extremely high aspect ratio (length/width ≈ 5000) superconducting niobium nitride nanowires. The nanowires are fabricated in a compact meander geometry that is in series with the center conductor of a 50 Ω coplanar waveguide transmission line. The transmission coefficient of the sample is measured up to 20 GHz. At high frequency, a peak in the transmission coefficient is seen. Numerical simulations show that this is a half-wave resonance along the length of the nanowire, where the nanowire acts as a high impedance, slow wave transmission line. This resonance sets the upper frequency limit for these nanowires asmore » inductive elements. Fitting simulations to the measured resonance enables a precise determination of the nanowire's complex sheet impedance at the resonance frequency. The real part is a measure of dissipation, while the imaginary part is dominated by kinetic inductance. We characterize the dependence of the sheet resistance and sheet inductance on both temperature and current and compare the results to recent theoretical predictions for disordered superconductors. These results can aid in the understanding of high frequency devices based on superconducting nanowires. They may also lead to the development of novel superconducting devices such as ultra-compact resonators and slow-wave structures.« less

  12. Psychosocial burden among offshore drilling platform employees.

    PubMed

    Leszczyńska, Irena; Jeżewska, Maria

    2010-01-01

    Conditions of work on offshore drilling platforms are particularly hard due to extreme environmental situations created both by nature and technological processes. Oil drilling workers employed on the open sea are potentially exposed to permanently high stress. Apart from the obvious objective factors affecting drilling platform employees, a great role in the general work-related stress level is played by the working conditions and work-related psychosocial factors, defined according to Karask's concept as demands, control, and social support. A total of 184 drill platform workers were examined using objective and subjective research methods. The level of subjective stress among drilling platform workers is lower than the level of objective stress and the stress resulting from prognoses related with specificity of work in extremely hard conditions (audit). The examinations of drilling platform workers reveal a positive role of stress in psychological adaptation, being a special case of the "work ethos" and attachment to the firm. In such investigations of work-related stress on drilling platforms, which are very specific workplaces, a multi-aspect character, sociological and economic aspects, organizational culture conditions in the firm, and a tendency to conceal ailments and the stress experienced should be taken into account. It is important to apply measures referring to at least three different types of evidence (objective demands, subjective stress, health problems reported). Otherwise, the result reflecting work-related stress may not be objective and far from the truth.

  13. A traditional Chinese remedy points to a natural skin habitat: Indirubin (indigo naturalis) for psoriasis and the Malassezia metabolome.

    PubMed

    Gaitanis, G; Magiatis, P; Velegraki, A; Bassukas, I D

    2018-05-23

    We read with extreme interest the evidence for an impressively high, comparable to current systemic therapies, dose related efficacy of indirubin in plaque psoriasis. 1 Lin and co-authors 1 appropriately discuss their results, yet we would like to draw attention to a noteworthy aspect of the proposed therapeutic modality: The effectiveness of indirubin highlights the significance of the Malassezia metabolome in psoriasis, a long-term disputed issue. 2 This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. A quantitative comparison of resolution, scanning speed and lifetime behavior of CVD grown Single Wall Carbon Nanotubes and silicon SPM probes using spectral methods

    NASA Astrophysics Data System (ADS)

    Krause, O.; Bouchiat, V.; Bonnot, A. M.

    2007-03-01

    Due to their extreme aspect ratios and exceptional mechanical properties Carbon Nanotubes terminated silicon probes have proven to be the ''ideal'' probe for Atomic Force Microscopy. But especially for the manufacturing and use of Single Walled Carbon Nanotubes there are serious problems, which have not been solved until today. Here, Single and Double Wall Carbon Nanotubes, batch processed and used as deposited by Chemical Vapor Deposition without any postprocessing, are compared to standard and high resolution silicon probes concerning resolution, scanning speed and lifetime behavior.

  15. Teen Screen: Take a Walk on the Wild Side.

    ERIC Educational Resources Information Center

    Flowers, Sarah

    2002-01-01

    Reviews seven videos that involve some aspect of extreme sports, feature loud rock music, and are popular with teens. Includes snowboarding, Gravity Games, BMX bikes, skateboarding, and skydiving. (LRW)

  16. Temporal and spatial climatic controls on Holocene fire-related erosion and sedimentation, Jemez Mountains, New Mexico

    NASA Astrophysics Data System (ADS)

    Fitch, Erin P.; Meyer, Grant A.

    2016-01-01

    In the Jemez Mountains, tree-ring data indicate that low-severity fires characterized the 400 yr before Euro-American settlement, and that subsequent fire suppression promoted denser forests, recent severe fires, and erosion. Over longer timescales, climate change may alter fire regimes; thus, we used fire-related alluvial deposits to assess the timing of moderate- to high-severity fires, their geomorphic impact, and relation to climate over the last 4000 yr. Fire-related sedimentation does not clearly follow millennial-scale climatic changes, but probability peaks commonly correspond with severe drought, e.g., within the interval 1700-1400 cal yr BP, and ca. 650 and ca. 410 cal yr BP. The latter episodes were preceded by prolonged wet intervals that could promote dense stands. Estimated recurrence intervals for fire-related sedimentation are 250-400 yr. Climatic differences with aspect influenced Holocene post-fire response: fire-related deposits constitute 77% of fan sediments from north-facing basins but only 39% of deposits from drier southerly aspects. With sparser vegetation and exposed bedrock, south aspects can generate runoff and sediment when unburned, whereas soil-mantled north aspects produce minor sediment unless severely burned. Recent channel incision appears unprecedented over the last 2300 yr, suggesting that fuel loading and extreme drought produced an anomalously severe burn in 2002.

  17. Loads Carried by Soldiers: Historical, Physiological, Biomechanical and Medical Aspects

    DTIC Science & Technology

    1989-06-01

    EMG and cinematographic data in the study of load carriage. They showed that EMG activity of the trapezius, rectus femorls, gastrocnemus and erector... abdominal muscles. Backpack loads of 18 to 27 kg did not change the magnitude of this pressure while walking (45). MEDICAL ASPECTS RUCKSACK PARALYSIS...symptoms included minor pain , paresthesias, numbness and paralysis of the upper extremities. The shoulder girdle and elbow flexor muscle groups were usually

  18. Highly efficient photocatalytic conversion of solar energy to hydrogen by WO3/BiVO4 core-shell heterojunction nanorods

    NASA Astrophysics Data System (ADS)

    Kosar, Sonya; Pihosh, Yuriy; Bekarevich, Raman; Mitsuishi, Kazutaka; Mawatari, Kazuma; Kazoe, Yutaka; Kitamori, Takehiko; Tosa, Masahiro; Tarasov, Alexey B.; Goodilin, Eugene A.; Struk, Yaroslav M.; Kondo, Michio; Turkevych, Ivan

    2018-04-01

    Photocatalytic splitting of water under solar light has proved itself to be a promising approach toward the utilization of solar energy and the generation of environmentally friendly fuel in a form of hydrogen. In this work, we demonstrate highly efficient solar-to-hydrogen conversion efficiency of 7.7% by photovoltaic-photoelectrochemical (PV-PEC) device based on hybrid MAPbI3 perovskite PV cell and WO3/BiVO4 core-shell nanorods PEC cell tandem that utilizes spectral splitting approach. Although BiVO4 is characterized by intrinsically high recombination rate of photogenerated carriers, this is not an issue for WO3/BiVO4 core-shell nanorods, where highly conductive WO3 cores are combined with extremely thin absorber BiVO4 shell layer. Since the BiVO4 layer is thinner than the characteristic carrier diffusion length, the photogenerated charge carriers are separated at the WO3/BiVO4 heterojunction before their recombination. Also, such architecture provides sufficient optical thickness even for extremely thin BiVO4 layer due to efficient light trapping in the core-shell WO3/BiVO4 nanorods with high aspect ratio. We also demonstrate that the concept of fill factor can be used to compare I-V characteristics of different photoanodes regarding their optimization for PV/PEC tandem devices.

  19. Prognostic Factors and Expression of MDM2 in Patients with Primary Extremity Liposarcoma

    PubMed Central

    Júnior, Rosalvo Zósimo Bispo; de Camargo, Olavo Pires; de Oliveira, Cláudia Regina G. C. M.; Filippi, Renée Zon; Baptista, André Mathias; Caiero, Marcelo Tadeu

    2008-01-01

    OBJECTIVE The objective of this study was to investigate MDM2 (murine double minute 2) protein expression and evaluate its relationship with some anatomical and pathological aspects, aiming also to identify prognostic factors concerning local recurrence-free survival, metastasis-free survival and overall survival in patients with primary liposarcomas of the extremities. MATERIALS AND METHODS Of 50 patients with primary liposarcomas of the extremities admitted to a Reference Service, between 1968 and 2004, 25 were enrolled in the study, following eligibility and exclusion criteria. RESULTS The adverse factors that influenced the risk for local recurrence in the univariant analysis included male sex (P = 0.023), pleomorphic histological subtype (P = 0.027), and high histological grade (P = 0.007). Concerning metastasis-free survival, age less than 50 years (P = 0.040), male sex (P = 0.040), pleomorphic subtype (P < 0.001), and high histological grade (P = 0.003) had a worse prognosis. Adverse factors for overall survival were age under 50 years (P = 0.040), male sex (P = 0.040), pleomorphic subtype (P < 0.001), and high histological grade (P = 0.003). CONCLUSIONS There was no correlation between immunohistochemically observed MDM2 protein expressions and the anatomical and pathological variables studied. The immunohistochemical expression of MDM2 protein was not considered to have a prognostic value for any of the surviving patients in this study (local recurrence-free survival, metastasis-free survival, or overall survival). The immunoexpression of MDM2 protein was a frequent event in the different subtypes of liposarcomas. PMID:18438568

  20. Some aspects of the scientific significance of high energy gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E.

    1991-01-01

    The attraction of high energy gamma-ray astronomy lies in this radiation relating directly to those processes in astrophysical situations which deviate most from thermo-dynamic equilibrium. Some examples of these phenomena which are known to or expected to emit gamma rays are cosmic rays as they interact in intergalactic space, the high energy particles in the magnetic fields of neutron stars, the death of a black hole, the explosion and residual of a supernova, lumps of Weakly Interacting Massive Particles, energetic solar particles interacting near the sun, and very high energy particles in the extreme conditions associated with active galaxies. Although the intensities are known to be low as seen near the earth, a partially compensating characteristic is that the very penetrating nature of high energy gamma rays increases the probability that they can escape from their origin and reach the solar system.

  1. The NASA Langley Multidisciplinary Uncertainty Quantification Challenge

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.

    2014-01-01

    This paper presents the formulation of an uncertainty quantification challenge problem consisting of five subproblems. These problems focus on key aspects of uncertainty characterization, sensitivity analysis, uncertainty propagation, extreme-case analysis, and robust design.

  2. Sex differences in the brain: implications for explaining autism.

    PubMed

    Baron-Cohen, Simon; Knickmeyer, Rebecca C; Belmonte, Matthew K

    2005-11-04

    Empathizing is the capacity to predict and to respond to the behavior of agents (usually people) by inferring their mental states and responding to these with an appropriate emotion. Systemizing is the capacity to predict and to respond to the behavior of nonagentive deterministic systems by analyzing input-operation-output relations and inferring the rules that govern such systems. At a population level, females are stronger empathizers and males are stronger systemizers. The "extreme male brain" theory posits that autism represents an extreme of the male pattern (impaired empathizing and enhanced systemizing). Here we suggest that specific aspects of autistic neuroanatomy may also be extremes of typical male neuroanatomy.

  3. Towards a unified study of extreme events using universality concepts and transdisciplinary analysis methods

    NASA Astrophysics Data System (ADS)

    Balasis, George; Donner, Reik V.; Donges, Jonathan F.; Radebach, Alexander; Eftaxias, Konstantinos; Kurths, Jürgen

    2013-04-01

    The dynamics of many complex systems is characterized by the same universal principles. In particular, systems which are otherwise quite different in nature show striking similarities in their behavior near tipping points (bifurcations, phase transitions, sudden regime shifts) and associated extreme events. Such critical phenomena are frequently found in diverse fields such as climate, seismology, or financial markets. Notably, the observed similarities include a high degree of organization, persistent behavior, and accelerated energy release, which are common to (among others) phenomena related to geomagnetic variability of the terrestrial magnetosphere (intense magnetic storms), seismic activity (electromagnetic emissions prior to earthquakes), solar-terrestrial physics (solar flares), neurophysiology (epileptic seizures), and socioeconomic systems (stock market crashes). It is an open question whether the spatial and temporal complexity associated with extreme events arises from the system's structural organization (geometry) or from the chaotic behavior inherent to the nonlinear equations governing the dynamics of these phenomena. On the one hand, the presence of scaling laws associated with earthquakes and geomagnetic disturbances suggests understanding these events as generalized phase transitions similar to nucleation and critical phenomena in thermal and magnetic systems. On the other hand, because of the structural organization of the systems (e.g., as complex networks) the associated spatial geometry and/or topology of interactions plays a fundamental role in the emergence of extreme events. Here, a few aspects of the interplay between geometry and dynamics (critical phase transitions) that could result in the emergence of extreme events, which is an open problem, will be discussed.

  4. Use of dynamical downscaling to improve the simulation of Central U.S. warm season precipitation in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Harding, Keith J.; Snyder, Peter K.; Liess, Stefan

    2013-11-01

    supporting exceptionally productive agricultural lands, the Central U.S. is susceptible to severe droughts and floods. Such precipitation extremes are expected to worsen with climate change. However, future projections are highly uncertain as global climate models (GCMs) generally fail to resolve precipitation extremes. In this study, we assess how well models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulate summer means, variability, extremes, and the diurnal cycle of Central U.S. summer rainfall. Output from a subset of historical CMIP5 simulations are used to drive the Weather Research and Forecasting model to determine whether dynamical downscaling improves the representation of Central U.S. rainfall. We investigate which boundary conditions influence dynamically downscaled precipitation estimates and identify GCMs that can reasonably simulate precipitation when downscaled. The CMIP5 models simulate the seasonal mean and variability of summer rainfall reasonably well but fail to resolve extremes, the diurnal cycle, and the dynamic forcing of precipitation. Downscaling to 30 km improves these characteristics of precipitation, with the greatest improvement in the representation of extremes. Additionally, sizeable diurnal cycle improvements occur with higher (10 km) resolution and convective parameterization disabled, as the daily rainfall peak shifts 4 h closer to observations than 30 km resolution simulations. This lends greater confidence that the mechanisms responsible for producing rainfall are better simulated. Because dynamical downscaling can more accurately simulate these aspects of Central U.S. summer rainfall, policymakers can have added confidence in dynamically downscaled rainfall projections, allowing for more targeted adaptation and mitigation.

  5. Variability of temperature sensitivity of extreme precipitation from a regional-to-local impact scale perspective

    NASA Astrophysics Data System (ADS)

    Schroeer, K.; Kirchengast, G.

    2016-12-01

    Relating precipitation intensity to temperature is a popular approach to assess potential changes of extreme events in a warming climate. Potential increases in extreme rainfall induced hazards, such as flash flooding, serve as motivation. It has not been addressed whether the temperature-precipitation scaling approach is meaningful on a regional to local level, where the risk of climate and weather impact is dealt with. Substantial variability of temperature sensitivity of extreme precipitation has been found that results from differing methodological assumptions as well as from varying climatological settings of the study domains. Two aspects are consistently found: First, temperature sensitivities beyond the expected consistency with the Clausius-Clapeyron (CC) equation are a feature of short-duration, convective, sub-daily to sub-hourly high-percentile rainfall intensities at mid-latitudes. Second, exponential growth ceases or reverts at threshold temperatures that vary from region to region, as moisture supply becomes limited. Analyses of pooled data, or of single or dispersed stations over large areas make it difficult to estimate the consequences in terms of local climate risk. In this study we test the meaningfulness of the scaling approach from an impact scale perspective. Temperature sensitivities are assessed using quantile regression on hourly and sub-hourly precipitation data from 189 stations in the Austrian south-eastern Alpine region. The observed scaling rates vary substantially, but distinct regional and seasonal patterns emerge. High sensitivity exceeding CC-scaling is seen on the 10-minute scale more than on the hourly scale, in storms shorter than 2 hours duration, and in shoulder seasons, but it is not necessarily a significant feature of the extremes. To be impact relevant, change rates need to be linked to absolute rainfall amounts. We show that high scaling rates occur in lower temperature conditions and thus have smaller effect on absolute precipitation intensities. While reporting of mere percentage numbers can be misleading, scaling studies can add value to process understanding on the local scale, if the factors that influence scaling rates are considered from both a methodological and a physical perspective.

  6. Thermionic Emission of Single-Wall Carbon Nanotubes Measured

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Krainsky, Isay L.; Bailey, Sheila G.; Elich, Jeffrey M.; Landi, Brian J.; Gennett, Thomas; Raffaelle, Ryne P.

    2004-01-01

    Researchers at the NASA Glenn Research Center, in collaboration with the Rochester Institute of Technology, have investigated the thermionic properties of high-purity, single-wall carbon nanotubes (SWNTs) for use as electron-emitting electrodes. Carbon nanotubes are a recently discovered material made from carbon atoms bonded into nanometer-scale hollow tubes. Such nanotubes have remarkable properties. An extremely high aspect ratio, as well as unique mechanical and electronic properties, make single-wall nanotubes ideal for use in a vast array of applications. Carbon nanotubes typically have diameters on the order of 1 to 2 nm. As a result, the ends have a small radius of curvature. It is these characteristics, therefore, that indicate they might be excellent potential candidates for both thermionic and field emission.

  7. A zonation technique for landslide susceptibility in southern Taiwan

    NASA Astrophysics Data System (ADS)

    Chiang, Jie-Lun; Tian, Yu-Qing; Chen, Yie-Ruey; Tsai, Kuang-Jung

    2016-04-01

    In recent years, global climate changes violently, extreme rainfall events occur frequently and also cause massive sediment related disasters in Taiwan. The disaster seriously hit the regional economic development and national infrastructures. For example, in August, 2009, the typhoon Morakot brought massive rainfall especially in the mountains in Chiayi County and Kaohsiung County in which the cumulative maximum rainfall was up to 2900 mm; meanwhile, the cumulative maximum rainfall was over 1500m.m. in Nantou County, Tainan County and Pingtung County. The typhoon caused severe damage in southern Taiwan. The study will search for the influence on the sediment hazards caused by the extreme rainfall and hydrological environmental changes focusing on southern Taiwan (including Chiayi, Tainan, Kaohsiung and Pingtung). The instability index and kriging theories are applied to analyze the factors of landslide to determine the susceptibility in southern Taiwan. We collected the landslide records during the period year, 2007~2013 and analyzed the instability factors including elevation, slope, aspect, soil, and geology. Among these factors, slope got the highest weight. The steeper the slope is, the more the landslides occur. As for the factor of aspect, the highest probability falls on the Southwest. However, this factor has the lowest weight among all the factors. Likewise, Darkish colluvial soil holds the highest probability of collapses among all the soils. Miocene middle Ruifang group and its equivalents have the highest probability of collapses among all the geologies. In this study, Kriging was used to establish the susceptibility map in southern Taiwan. The instability index above 4.21 can correspond to those landslide records. The potential landslide area in southern Taiwan, where collapses more likely occur, belongs to high level and medium-high level; the area is 5.12% and 17.81% respectively.

  8. [Ecological basis of epiphytic Dendrobium officinale growth on cliff].

    PubMed

    Liu, Xiu-Juan; Zhu, Yan; Si, Jin-Ping; Wu, Ling-Shang; Cheng, Xue-Liang

    2016-08-01

    In order to make Dendrobium officinale return to the nature, the temperature and humidity in whole days of the built rock model with different slopes and aspects in the natural distribution of wild D. officinale in Tianmu Mountain were recorded by MH-WS01 automatic recorder. The results showed that the slope has a significant impact on the extreme temperature on the surface of the rocks. In summer, the extreme temperature on the surface of horizontal or soft rock can reach to 69.4 ℃, while the temperatures were lower than 50 ℃ on the vertical rock. In winter, the temperatures on the surface of vertical rock were higher and the low temperature duration was shorter than those on the horizontal or soft rock. Also, the humidity of the rocks was significantly influenced by the slope. The monthly average humidity on the surface of vertical rock was above 80%RH. Furthermore, the aspect had a significant impact on the temperature and humidity on the surface of the rocks, but had no significant effect on the daily mean temperature and extreme temperature on the surface of vertical rock. Therefore, the slope affects the survival of D. officinale by affecting the extreme temperature of rocks and affects the growth of D. officinale by affecting the humidity. The choice of slope is the key to the success of cliff epiphytic cultivation for D. officinale. Copyright© by the Chinese Pharmaceutical Association.

  9. A new deadlock resolution protocol and message matching algorithm for the extreme-scale simulator

    DOE PAGES

    Engelmann, Christian; Naughton, III, Thomas J.

    2016-03-22

    Investigating the performance of parallel applications at scale on future high-performance computing (HPC) architectures and the performance impact of different HPC architecture choices is an important component of HPC hardware/software co-design. The Extreme-scale Simulator (xSim) is a simulation toolkit for investigating the performance of parallel applications at scale. xSim scales to millions of simulated Message Passing Interface (MPI) processes. The overhead introduced by a simulation tool is an important performance and productivity aspect. This paper documents two improvements to xSim: (1)~a new deadlock resolution protocol to reduce the parallel discrete event simulation overhead and (2)~a new simulated MPI message matchingmore » algorithm to reduce the oversubscription management overhead. The results clearly show a significant performance improvement. The simulation overhead for running the NAS Parallel Benchmark suite was reduced from 102% to 0% for the embarrassingly parallel (EP) benchmark and from 1,020% to 238% for the conjugate gradient (CG) benchmark. xSim offers a highly accurate simulation mode for better tracking of injected MPI process failures. Furthermore, with highly accurate simulation, the overhead was reduced from 3,332% to 204% for EP and from 37,511% to 13,808% for CG.« less

  10. LTBP bridge performance primer.

    DOT National Transportation Integrated Search

    2013-12-01

    "The performance of bridges is critical to the overall performance of the highway transportation system in the United States. However, many critical aspects of bridge performance are not well understood. The reasons for this include the extreme diver...

  11. Extraordinary capabilities of optical devices incorporating guided-mode resonance gratings: application summary and recent examples

    NASA Astrophysics Data System (ADS)

    Magnusson, Robert; Yoon, Jae Woong; Amin, Mohammad Shyiq; Khaleque, Tanzina; Uddin, Mohammad Jalal

    2014-03-01

    For selected device concepts that are members of an evolving class of photonic devices enabled by guided-mode resonance (GMR) effects, we review physics of operation, design, fabrication, and characterization. We summarize the application potential of this field and provide new and emerging aspects. Our chosen examples include resonance elements with extremely wide reflection bands. Thus, in a multilevel structure with conformal germanium (Ge) films, reflectance exceeds 99% for spectral widths approaching 1100 nm. A simpler design, incorporating a partially etched single Ge layer on a glass substrate, exhibits a high-reflectance bandwidth close to 900 nm. We present a couple of interesting new device concepts enabled by GMRs coexisting with the Rayleigh anomaly. Our example Rayleigh reflector exhibits a wideband high-efficiency flattop spectrum and extremely rapid angular transitions. Moreover, we show that it is possible to fashion transmission filters by excitation of leaky resonant modes at the Rayleigh anomaly in a subwavelength nanograting. A unique transmission spectrum results, which is tightly delimited in angle and wavelength as experimentally demonstrated. We update our application list with new developments including GMR-based coherent perfect absorbers, multiparametric biosensors, and omnidirectional wideband absorbers.

  12. A centennial tribute to G.K. Gilbert's Hydraulic Mining Débris in the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    James, L. A.; Phillips, J. D.; Lecce, S. A.

    2017-10-01

    G.K. Gilbert's (1917) classic monograph, Hydraulic-Mining Débris in the Sierra Nevada, is described and put into the context of modern geomorphic knowledge. The emphasis here is on large-scale applied fluvial geomorphology, but other key elements-e.g., coastal geomorphology-are also briefly covered. A brief synopsis outlines key elements of the monograph, followed by discussions of highly influential aspects including the integrated watershed perspective, the extreme example of anthropogenic sedimentation, computation of a quantitative, semidistributed sediment budget, and advent of sediment-wave theory. Although Gilbert did not address concepts of equilibrium and grade in much detail, the rivers of the northwestern Sierra Nevada were highly disrupted and thrown into a condition of nonequilibrium. Therefore, concepts of equilibrium and grade-for which Gilbert's early work is often cited-are discussed. Gilbert's work is put into the context of complex nonlinear dynamics in geomorphic systems and how these concepts can be used to interpret the nonequilibrium systems described by Gilbert. Broad, basin-scale studies were common in the period, but few were as quantitative and empirically rigorous or employed such a range of methodologies as PP105. None demonstrated such an extreme case of anthropogeomorphic change.

  13. Landslide Hazard Assessment near Kedarnath Temple in Himalayan region considering cloudburst tragedy in 2013

    NASA Astrophysics Data System (ADS)

    Ansari, T. A.; Singh, T. N., Sr.

    2017-12-01

    The world famous Shri Kedarnath Temple in Uttarakhand state of India is located in the western extremity of the young and dynamically active Central Himalaya. As Indian plate is moving towards Eurasian plate which has steep slopes, highly variable altitudes and uncertain climatic conditions. Due to high seismic activity Himalayan rock mass is highly fractured, shattered and inherently weakness pose threat for landslide. On 16th and 17th June 2013, was witness an extreme climatic events of century in the history of the region, the high intensity rainfall, (> 400mm) caused number of landslide which have adverse economic and societal impacts, including the potential for heavy loss of human and widespread devastation of natural resources, infrastructures. The study region is at high altitude around 3583 meters, which is affected from impact of glacial melt due to climate change and future increase in rainfall subjected to high level uncertainty of landslides. Aerial and field survey has been done of the region and most vulnerable landslide locations of hill slope and road cut slope are studied for future prospect of safety. SLIDE 6.0, PHASE27 (numerical software) for slope stability, geomechanical profile of rock and kinematics analysis to know the type of failures. Rock quality tunneling index (Q), Geological strength (GSI), Slope mass Rating (SMR) and factor of safety were determined to know the slope instability. Our finding provides an important aspect for future safety as provide the information for landslide warning system and engineering countermeasures.

  14. Exploring the links between the phenomenology of creativity and bipolar disorder.

    PubMed

    Taylor, Katherine; Fletcher, I; Lobban, F

    2015-03-15

    The links between bipolar disorder (BD) and creativity have historically attracted academic and public interest. Previous research highlights common characteristics of people considered to be highly creative, and those diagnosed with BD, including extraversion, impulsivity, divergent thinking and high motivation (Ma, 2009). In the first phenomenological study focussing on the links between creativity and extreme mood, an Interpretative Phenomenological Analysis (IPA) approach was used to collect and analyse in-depth interview data from seven people diagnosed with BD in the UK. Four key themes were constructed to reflect and convey the collective accounts: 1. High mood leads to an expanding mind; 2. Full steam ahead; 3. A reciprocal relationship between mood and creativity 4. Reframing bipolar experiences through creative activity. Participants were a small sample of people who were identified as having BD on the basis of a clinical diagnosis and Mood Disorders screening Questionnaire (MDQ), and who defined themselves as creative without further corroboration. Among this sample, creativity was recognised as a valued aspect of BD. Clinical services may usefully draw on creative resources to aid assessment and formulation, and even utilise the effects of creativity on the management of mood. Research demonstrates a high prevalence of non-adherence to medication among persons with BD and this ambivalence might be better understood when the links between extreme mood and creativity are considered. Copyright © 2015. Published by Elsevier B.V.

  15. Multiscale Simulations of ALD in Cross Flow Reactors

    DOE PAGES

    Yanguas-Gil, Angel; Libera, Joseph A.; Elam, Jeffrey W.

    2014-08-13

    In this study, we have developed a multiscale simulation code that allows us to study the impact of surface chemistry on the coating of large area substrates with high surface area/high aspect-ratio features. Our code, based on open-source libraries, takes advantage of the ALD surface chemistry to achieve an extremely efficient two-way coupling between reactor and feature length scales, and it can provide simulated quartz crystal microbalance and mass spectrometry data at any point of the reactor. By combining experimental surface characterization with simple analysis of growth profiles in a tubular cross flow reactor, we are able to extract amore » minimal set of reactions to effectively model the surface chemistry, including the presence of spurious CVD, to evaluate the impact of surface chemistry on the coating of large, high surface area substrates.« less

  16. Write-Read 3D Patterning with a Dual-Channel Nanopipette.

    PubMed

    Momotenko, Dmitry; Page, Ashley; Adobes-Vidal, Maria; Unwin, Patrick R

    2016-09-27

    Nanopipettes are becoming extremely versatile and powerful tools in nanoscience for a wide variety of applications from imaging to nanoscale sensing. Herein, the capabilities of nanopipettes to build complex free-standing three-dimensional (3D) nanostructures are demonstrated using a simple double-barrel nanopipette device. Electrochemical control of ionic fluxes enables highly localized delivery of precursor species from one channel and simultaneous (dynamic and responsive) ion conductance probe-to-substrate distance feedback with the other for reliable high-quality patterning. Nanopipettes with 30-50 nm tip opening dimensions of each channel allowed confinement of ionic fluxes for the fabrication of high aspect ratio copper pillar, zigzag, and Γ-like structures, as well as permitted the subsequent topographical mapping of the patterned features with the same nanopipette probe as used for nanostructure engineering. This approach offers versatility and robustness for high-resolution 3D "printing" (writing) and read-out at the nanoscale.

  17. Integrated polarizers based on tapered highly birefringent photonic crystal fibers.

    PubMed

    Romagnoli, Priscila; Biazoli, Claudecir R; Franco, Marcos A R; Cordeiro, Cristiano M B; de Matos, Christiano J S

    2014-07-28

    This paper proposes and demonstrates the creation of sections with a high polarization dependent loss (PDL) in a commercial highly birefringent (polarization maintaining) photonic crystal fiber (PCF), via tapering with pressure applied to the holes. The tapers had a 1-cm-long uniform section with a 66% scale reduction, in which the original microstructure aspect ratio was kept by the pressure application. The resulting waveguides show polarizing action across the entire tested wavelength range, 1510-1600 nm, with a peak PDL of 35.3 dB/cm (c.f. ~1 dB/cm for a typical commercial polarizing fiber). The resulting structure, as well as its production, is extremely simple, and enable a small section with a high PDL to be obtained in a polarization maintaining PCF, meaning that the polarization axes in the polarizing and polarization maintaining sections are automatically aligned.

  18. Computer work and musculoskeletal disorders of the neck and upper extremity: A systematic review

    PubMed Central

    2010-01-01

    Background This review examines the evidence for an association between computer work and neck and upper extremity disorders (except carpal tunnel syndrome). Methods A systematic critical review of studies of computer work and musculoskeletal disorders verified by a physical examination was performed. Results A total of 22 studies (26 articles) fulfilled the inclusion criteria. Results show limited evidence for a causal relationship between computer work per se, computer mouse and keyboard time related to a diagnosis of wrist tendonitis, and for an association between computer mouse time and forearm disorders. Limited evidence was also found for a causal relationship between computer work per se and computer mouse time related to tension neck syndrome, but the evidence for keyboard time was insufficient. Insufficient evidence was found for an association between other musculoskeletal diagnoses of the neck and upper extremities, including shoulder tendonitis and epicondylitis, and any aspect of computer work. Conclusions There is limited epidemiological evidence for an association between aspects of computer work and some of the clinical diagnoses studied. None of the evidence was considered as moderate or strong and there is a need for more and better documentation. PMID:20429925

  19. Quantitation in chiral capillary electrophoresis: theoretical and practical considerations.

    PubMed

    D'Hulst, A; Verbeke, N

    1994-06-01

    Capillary electrophoresis (CE) represents a decisive step forward in stereoselective analysis. The present paper deals with the theoretical aspects of the quantitation of peak separation in chiral CE. Because peak shape is very different in CE with respect to high performance liquid chromatography (HPLC), the resolution factor Rs, commonly used to describe the extent of separation between enantiomers as well as unrelated compounds, is demonstrated to be of limited value for the assessment of chiral separations in CE. Instead, the conjunct use of a relative chiral separation factor (RCS) and the percent chiral separation (% CS) is advocated. An array of examples is given to illustrate this. The practical aspects of method development using maltodextrins--which have been proposed previously as a major innovation in chiral selectors applicable in CE--are documented with the stereoselective analysis of coumarinic anticoagulant drugs. The possibilities of quantitation using CE were explored under two extreme conditions. Using ibuprofen, it has been demonstrated that enantiomeric excess determinations are possible down to a 1% level of optical contamination and stereoselective determinations are still possible with a good precision near the detection limit, increasing sample load by very long injection times. The theoretical aspects of this possibility are addressed in the discussion.

  20. Unravelling textural heterogeneity in obsidian: Shear-induced outgassing in the Rocche Rosse flow

    NASA Astrophysics Data System (ADS)

    Shields, J. K.; Mader, H. M.; Caricchi, L.; Tuffen, H.; Mueller, S.; Pistone, M.; Baumgartner, L.

    2016-01-01

    Obsidian flow emplacement is a complex and understudied aspect of silicic volcanism. Of particular importance is the question of how highly viscous magma can lose sufficient gas in order to erupt effusively as a lava flow. Using an array of methods we study the extreme textural heterogeneity of the Rocche Rosse obsidian flow in Lipari, a 2 km long, 100 m thick, ~ 800 year old lava flow, with respect to outgassing and emplacement mechanisms. 2D and 3D vesicle analyses and density measurements are used to classify the lava into four textural types: 'glassy' obsidian (< 15% vesicles), 'pumiceous' lava (> 40% vesicles), high aspect ratio, 'shear banded' lava (20-40% vesicles) and low aspect ratio, 'frothy' obsidian with 30-60% vesicles. Textural heterogeneity is observed on all scales (m to μm) and occurs as the result of strongly localised strain. Magnetic fabric, described by oblate and prolate susceptibility ellipsoids, records high and variable degrees of shearing throughout the flow. Total water contents are derived using both thermogravimetry and infrared spectroscopy to quantify primary (magmatic) and secondary (meteoric) water. Glass water contents are between 0.08-0.25 wt.%. Water analysis also reveals an increase in water content from glassy obsidian bands towards 'frothy' bands of 0.06-0.08 wt.%, reflecting preferential vesiculation of higher water bands and an extreme sensitivity of obsidian degassing to water content. We present an outgassing model that reconciles textural, volatile and magnetic data to indicate that obsidian is generated from multiple shear-induced outgassing cycles, whereby vesicular magma outgasses and densifies through bubble collapse and fracture healing to form obsidian, which then re-vesiculates to produce 'dry' vesicular magma. Repetition of this cycle throughout magma ascent results in the low water contents of the Rocche Rosse lavas and the final stage in the degassing cycle determines final lava porosity. Heterogeneities in lava rheology (vesicularity, water content, microlite content, viscosity) play a vital role in the structural evolution of an obsidian flow and overprint flow-scale morphology. Post-emplacement hydration also depends heavily on local strain, whereby connectivity of vesicles as a result of shear deformation governs sample rehydration by meteoric water, a process previously correlated to lava vesicularity alone.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.K.; Yoo, M.H.

    The aspect of elastic strain for a deformation twin with a pure shear strain is studied through Eshelby's inclusion theory. Beta-Sn, TiO[sub 2], and TiAl of tetragonal structures are considered. As the aspect ratio of a twin approaches zero, its elastic strain energy vanishes since the stress components coupled with the twin shear strain vanish, suggesting that the twin habit plane cannot be determined solely from the shear energy viewpoint, for any twin mode would provide a vanishingly small strain energy for a thin twin. The application of Johnson and Cahn's shape bifurcation theory predicts that the transition from amore » circular to an elliptic shape would occur when the linear dimension of a lenticular twin is only in the order of 10 nm, indicating that most twins with a substantial aspect ratio should be influenced by growth kinetics. Under an applied stress. The extreme condition of the free energy change usually occurs when the resolved shear stress becomes extreme in the direction of the twin shear strain, thus following the relationship of Schmid's law. The analysis of the matrix stress field immediately outside a twin plate shows a biomodal stress distribution around the lateral tip of the lenticular plate. The locations of stress concentrations depend on both the twin aspect ratio and the elastic anisotropy. The locations of stress concentrations depend on both the twin aspect ratio and the elastic anisotropy. As the twin aspect ratio approaches zero, however, the two exterior stress concentrations merge together at the lateral tip of the lenticular plate, yielding a maximum stress value in the order of [mu]g, where [mu] and g are shear modulus and twin shear strain, respectively.« less

  2. The potential power of robotics for upper extremity stroke rehabilitation.

    PubMed

    Dukelow, Sean P

    2017-01-01

    Two decades of research on robots and upper extremity rehabilitation has resulted in recommendations from systematic reviews and guidelines on their use in stroke. Robotics are often cited for their ability to encourage mass practice as a means to enhance recovery of movement. Yet, stroke recovery is a complex process occurring across many aspects of neurologic function beyond movement. As newer devices are developed and enhanced assessments are integrated into treatment protocols, the potential of robotics to advance rehabilitation will continue to grow.

  3. Research in extreme ultraviolet and far ultraviolet astronomy

    NASA Technical Reports Server (NTRS)

    Labov, S. E.

    1985-01-01

    Instruments designed to explore different aspects of far and extreme ultraviolet cosmic radiation were studied. The far ultraviolet imager (FUVI) was flown on the Aries sounding rocket. Its unique large format 75mm detector mapped out the far ultraviolet background radiation with a resolution of only a few arc minutes. Analysis of this data indicates to what extent the FUVI background is extra galactic in origin. A power spectrum of the spatial fluctuations will have direct consequences for galactic evolution.

  4. EGFR gene overexpression retained in an invasive xenograft model by solid orthotopic transplantation of human glioblastoma multiforme into nude mice.

    PubMed

    Yi, Diao; Hua, Tian Xin; Lin, Huang Yan

    2011-03-01

    Orthotopic xenograft animal model from human glioblastoma multiforme (GBM) cell lines often do not recapitulate an extremely important aspect of invasive growth and epidermal growth factor receptor (EGFR) gene overexpression of human GBM. We developed an orthotopic xenograft model by solid transplantation of human GBM into the brain of nude mouse. The orthotopic xenografts sharing the same histopathological features with their original human GBMs were highly invasive and retained the overexpression of EGFR gene. The murine orthotopic GBM models constitute a valuable in vivo system for preclinical studies to test novel therapies for human GBM.

  5. Lysosomal storage diseases: natural history and ethical and economic aspects.

    PubMed

    Beutler, Ernest

    2006-07-01

    Potential treatment for lysosomal diseases now includes enzyme replacement therapy, substrate reduction therapy, and chaperone therapy. The first two of these have been implemented commercially, and the spectrum of diseases that are now treatable has expanded from Gaucher disease to include several other disorders. Treatment of these diseases is extremely costly. We explore some of the reasons for the high cost and discuss how, by proper selection of patients and appropriate dosing, the economic burden on society of treating these disease may be ameliorated, at least in part. However, the cost of treating rare diseases is a growing problem that society needs to address.

  6. Medical Complications In Anorexia And Bulimia Nervosa.

    PubMed

    Gravina, Giovanni; Milano, Walter; Nebbiai, Grazia; Piccione, Carla; Capasso, Anna

    2018-05-30

    Anorexia Nervosa (AN), Bulimia Nervosa (BN) and their variants are characterized by persistent alteration of eating behaviour, such as restricted intake or bingeing and purging, as well as excessive concerns about body shape and body weight. Purging behaviour may include self induced vomiting and/or abuse of laxatives, diuretics and physical hyperactivity. Unlike other psychiatric disorders, patients suffering from AN and BN have a high prevalence of many different medical complications, through the sequelae of undernutrition and purging, often with a serious impairment of health status and quality of life. This article describes the main diagnostic and clinical aspects of medical complications in AN and BN. The medical complications of ED are extremely variable and can occur with only modest biological and physical damage up to extremely serious and life-threatening conditions; the mortality rate of young subjects with AN is 4 - 11% with a risk of death about 12 times higher than that of subjects of the same age of the general population. The management of the medical-internship aspects of AN and BN is rightly placed within complex and articulated programs of interdisciplinary treatment with different levels of intensity of care (outpatient, semi-residential/residential, hospital in cases of emergency/medical and/or psychiatric emergency). the results of the investigations carried out, describe the functions of the various organs and apparatuses and the alterations detected, the possible complications and physiological adaptations to malnutrition. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. The Influence of Wildfire on Long-Term Erosion: Insights from the Jemez Mountains, NM and the Western USA

    NASA Astrophysics Data System (ADS)

    Fitch, E. P.; Meyer, G. A.

    2017-12-01

    A major influence of wildfire on long-term erosion in the western USA is strongly suggested by extreme postfire debris flows and floods, where fire severity has increased in recent decades due to climate change and land use. Roughly 30% of the ponderosa-mixed conifer forests of the Jemez Mountains has burned in the last 20 yr, much at high severity, whereas tree-ring data indicate mostly lower-severity burns from 1600-1900 CE, before fire suppression and grazing. Fire-related alluvial deposits proximal to hillslopes reflect mostly small to moderate erosional events over the last 4000 yr, compared to thick, bouldery debris-flow deposits from recent severe fires; some modern postfire debris flows appear truly extreme in comparison to Holocene deposits. Recognizable fire-related deposits make up 77% of fans from moist north aspects, as relatively dense vegetation and thick soil yield minor surface runoff unless severely burned. Only 39% of fan sediments from drier south aspects are fire-related, however, as sparser vegetation and exposed bedrock can produce runoff and sediment when unburned. Peaks in fire-related sedimentation at 1800, 650, 410, and 300 cal yr BP coincide with severe droughts, often preceded by wetter decades that could suppress fire activity and promote denser stands. Although the Medieval Climatic Anomaly (MCA, 1050-700 cal yr BP) was marked by generally warmer temperatures and multidecadal episodes of widespread, severe drought in the western USA, fire-related sedimentation was relatively minor in the Jemez Mountains. In contrast, dense subalpine forests of Yellowstone and central Idaho burned less frequently and more severely in the late Holocene, and produced major debris flows in the MCA. Fire accounts for only 30-50% of Holocene fan deposition in these areas, as steep unburned basins also produce large debris flows in extreme storms. The relative importance of fire in erosion depends on topography, bedrock, soil cover, and forest composition and density; potent climatic influence on the latter makes it difficult to generalize about how strongly fire drives long-term erosion rates, as even local aspect is important. Also, our data represent interglacial environments that are uncommon over the Quaternary, such that extrapolation of fire's importance beyond the last 104 yr is unwarranted.

  8. Tipping points? Curvilinear associations between activity level and mental development in toddlers.

    PubMed

    Flom, Megan; Cohen, Madeleine; Saudino, Kimberly J

    2017-05-01

    The Theory of Optimal Stimulation (Zentall & Zentall, Psychological Bulletin, 94, 1983, 446) posits that the relation between activity level (AL) and cognitive performance follows an inverted U shape where midrange AL predicts better cognitive performance than AL at the extremes. We explored this by fitting linear and quadratic models predicting mental development from AL assessed via multiple methods (parent ratings, observations, and actigraphs) and across multiple situations (laboratory play, laboratory test, home) in over 600 twins (2- and 3-year olds). Only observed AL in the laboratory was curvilinearly related to mental development scores. Results replicated across situations, age, and twin samples, providing strong support for the optimal stimulation model for this measure of AL in early childhood. Different measures of AL provide different information. Observations of AL which include both qualitative and quantitative aspects of AL within structured situations are able to capture beneficial aspects of normative AL as well as detriments of both low and high AL. © 2016 Association for Child and Adolescent Mental Health.

  9. Cause and Cure-Deterioration in Accuracy of CFD Simulations with Use of High-Aspect-Ratio Triangular/Tetrahedral Grids

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Chang, Chau-Lyan; Venkatachari, Balaji

    2017-01-01

    In the multi-dimensional space-time conservation element and solution element16 (CESE) method, triangles and tetrahedral mesh elements turn out to be the most natural building blocks for 2D and 3D spatial grids, respectively. As such, the CESE method is naturally compatible with the simplest 2D and 3D unstructured grids and thus can be easily applied to solve problems with complex geometries. However, because (a) accurate solution of a high-Reynolds number flow field near a solid wall requires that the grid intervals along the direction normal to the wall be much finer than those in a direction parallel to the wall and, as such, the use of grid cells with extremely high aspect ratio (103 to 106) may become mandatory, and (b) unlike quadrilateral hexahedral grids, it is well-known that accuracy of gradient computations involving triangular tetrahedral grids tends to deteriorate rapidly as cell aspect ratio increases. As a result, the use of triangular tetrahedral grid cells near a solid wall has long been deemed impractical by CFD researchers. In view of (a) the critical role played by triangular tetrahedral grids in the CESE development, and (b) the importance of accurate resolution of high-Reynolds number flow field near a solid wall, as will be presented in the main paper, a comprehensive and rigorous mathematical framework that clearly identifies the reasons behind the accuracy deterioration as described above has been developed for the 2D case involving triangular cells. By avoiding the pitfalls identified by the 2D framework, and its 3D extension, it has been shown numerically.

  10. Understanding neuromotor strategy during functional upper extremity tasks using symbolic dynamics.

    PubMed

    Nathan, Dominic E; Guastello, Stephen J; Prost, Robert W; Jeutter, Dean C

    2012-01-01

    The ability to model and quantify brain activation patterns that pertain to natural neuromotor strategy of the upper extremities during functional task performance is critical to the development of therapeutic interventions such as neuroprosthetic devices. The mechanisms of information flow, activation sequence and patterns, and the interaction between anatomical regions of the brain that are specific to movement planning, intention and execution of voluntary upper extremity motor tasks were investigated here. This paper presents a novel method using symbolic dynamics (orbital decomposition) and nonlinear dynamic tools of entropy, self-organization and chaos to describe the underlying structure of activation shifts in regions of the brain that are involved with the cognitive aspects of functional upper extremity task performance. Several questions were addressed: (a) How is it possible to distinguish deterministic or causal patterns of activity in brain fMRI from those that are really random or non-contributory to the neuromotor control process? (b) Can the complexity of activation patterns over time be quantified? (c) What are the optimal ways of organizing fMRI data to preserve patterns of activation, activation levels, and extract meaningful temporal patterns as they evolve over time? Analysis was performed using data from a custom developed time resolved fMRI paradigm involving human subjects (N=18) who performed functional upper extremity motor tasks with varying time delays between the onset of intention and onset of actual movements. The results indicate that there is structure in the data that can be quantified through entropy and dimensional complexity metrics and statistical inference, and furthermore, orbital decomposition is sensitive in capturing the transition of states that correlate with the cognitive aspects of functional task performance.

  11. Doping-Based Stabilization of the M2 Phase in Free-Standing VO2 Nanostructures at Room Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strelcov, Evgheni; Tselev, Alexander; Ivanov, Ilia N

    2012-01-01

    A new high-yield method of doping VO2 nanostructures with aluminum is proposed, which renders possible stabilization of the monoclinic M2 phase in free-standing nanoplatelets in ambient conditions and opens an opportunity for realization of a purely electronic Mott Transition Field-Effect Transistor without an accompanying structural transition. The synthesized free-standing M2-phase nanostructures are shown to have very high crystallinity and an extremely sharp temperature-driven metal-insulator transition. A combination of x-ray microdiffraction, micro-Raman spectroscopy, Energy-Dispersive X-ray spectroscopy, and four-probe electrical measurements allowed thorough characterization of the doped nanostructures. Light is shed onto some aspects of the nanostructure growth, and the temperature-doping levelmore » phase diagram is established.« less

  12. Physiology and toxicity of fluoride.

    PubMed

    Dhar, Vineet; Bhatnagar, Maheep

    2009-01-01

    Fluoride has been described as an essential element needed for normal development and growth of animals and extremely useful for human beings. Fluoride is abundant in the environment and the main source of fluoride to humans is drinking water. It has been proved to be beneficial in recommended doses, and at the same time its toxicity at higher levels has also been well established. Fluoride gets accumulated in hard tissues of the body and has been know to play an important role in mineralization of bone and teeth. At high levels it has been known to cause dental and skeletal fluorosis. There are suggested effects of very high levels of fluoride on various body organs and genetic material. The purpose of this paper is to review the various aspects of fluoride and its importance in human life.

  13. The Effects of Cryotherapy on Proprioception System

    PubMed Central

    Furmanek, Mariusz Paweł; Słomka, Kajetan; Juras, Grzegorz

    2014-01-01

    Proprioception plays an important role in the complex mechanism of joint control. Contemporary sport activities impose extremely high physical demands on athletes. Winter sports are played in areas with excessively low temperatures. Moreover, many athletes are subjected to treatments that involve local lowering of the body temperature before, during, and after physical activity. This work reviews the current knowledge regarding the influence of local cryotherapy on the proprioception system. The reviewed literature identified several tests that evaluate different aspects of proprioception. There is no universally agreed protocol, or clear set of criteria for test conditions. The outcomes of different tests and assessments of cryotherapy procedures using different cold modalities are poorly correlated. In general, the published results on the mechanism of cryotherapy effects on proprioception are not uniquely conclusive and are frequently contradictory. Additional high-quality research is required to explicitly answer the following questions: (1) whether local cryotherapy influences all aspects of proprioception; (2) whether the current methods of evaluation are adequate for the exploration of the relationship between cryotherapy and proprioception; and (3) whether the application of local cryotherapy is safe for athletes regarding proprioception. The review clearly showed that there is no comprehensive model relating cryotherapy and proprioception. PMID:25478573

  14. The effects of cryotherapy on proprioception system.

    PubMed

    Furmanek, Mariusz Paweł; Słomka, Kajetan; Juras, Grzegorz

    2014-01-01

    Proprioception plays an important role in the complex mechanism of joint control. Contemporary sport activities impose extremely high physical demands on athletes. Winter sports are played in areas with excessively low temperatures. Moreover, many athletes are subjected to treatments that involve local lowering of the body temperature before, during, and after physical activity. This work reviews the current knowledge regarding the influence of local cryotherapy on the proprioception system. The reviewed literature identified several tests that evaluate different aspects of proprioception. There is no universally agreed protocol, or clear set of criteria for test conditions. The outcomes of different tests and assessments of cryotherapy procedures using different cold modalities are poorly correlated. In general, the published results on the mechanism of cryotherapy effects on proprioception are not uniquely conclusive and are frequently contradictory. Additional high-quality research is required to explicitly answer the following questions: (1) whether local cryotherapy influences all aspects of proprioception; (2) whether the current methods of evaluation are adequate for the exploration of the relationship between cryotherapy and proprioception; and (3) whether the application of local cryotherapy is safe for athletes regarding proprioception. The review clearly showed that there is no comprehensive model relating cryotherapy and proprioception.

  15. Cultural influences on personality.

    PubMed

    Triandis, Harry C; Suh, Eunkook M

    2002-01-01

    Ecologies shape cultures; cultures influence the development of personalities. There are both universal and culture-specific aspects of variation in personality. Some culture-specific aspects correspond to cultural syndromes such as complexity, tightness, individualism, and collectivism. A large body of literature suggests that the Big Five personality factors emerge in various cultures. However, caution is required in arguing for such universality, because most studies have not included emic (culture-specific) traits and have not studied samples that are extremely different in culture from Western samples.

  16. Manipulation of Samples at Extreme Temperatures for Fast in-situ Synchrotron Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Richard

    An aerodynamic sample levitation system with laser beam heating was integrated with the APS beamlines 6 ID-D, 11 ID-C and 20 BM-B. The new capability enables in-situ measurements of structure and XANES at extreme temperatures (300-3500 °C) and in conditions that completely avoid contact with container surfaces. In addition to maintaining a high degree of sample purity, the use of aerodynamic levitation enables deep supercooling and greatly enhanced glass formation from a wide variety of melts and liquids. Development and integration of controlled extreme sample environments and new measurement techniques is an important aspect of beamline operations and user support.more » Processing and solidifying liquids is a critical value-adding step in manufacturing semiconductors, optical materials, metals and in the operation of many energy conversion devices. Understanding structural evolution is of fundamental importance in condensed materials, geology, and biology. The new capability provides unique possibilities for materials research and helps to develop and maintain a competitive materials manufacturing and energy utilization industry. Test samples were used to demonstrate key features of the capability including experiments on hot crystalline materials, liquids at temperatures from about 500 to 3500 °C. The use of controlled atmospheres using redox gas mixtures enabled in-situ changes in the oxidation states of cations in melts. Significant innovations in this work were: (i) Use of redox gas mixtures to adjust the oxidation state of cations in-situ (ii) Operation with a fully enclosed system suitable for work with nuclear fuel materials (iii) Making high quality high energy in-situ x-ray diffraction measurements (iv) Making high quality in-situ XANES measurements (v) Publishing high impact results (vi) Developing independent funding for the research on nuclear materials This SBIR project work led to a commercial instrument product for the niche market of processing and studying materials in extreme conditions. MDI registered the trademark “Instruments for Innovation®” and sells products under this trademark. SBIR is the ideal vehicle for funding developments such as this since the total market size is relatively small meaning that venture investments to develop products cannot typically be obtained. The sale of niche market instruments for work in extreme conditions has been several million dollars over the last decade. The work to develop and build and sell this instrument has created stable high paying jobs in the technology manufacturing sector. Outreach enabled by this research helped with PhD thesis research, supported three undergraduate interns and one local high school student. In addition, several scientific articles were published, papers were presented at international conferences, and a workshop was held.« less

  17. Scour in supercritical flow

    DOT National Transportation Integrated Search

    1988-10-01

    Scour in supercritical flow is one extreme aspect of the effects of velocity on scour. Analysis of the case of scour in a long contraction shows that if all other independent variables are kept constant (1) some finite velocity is necessary to have a...

  18. 15 CFR 200.103 - Consulting and advisory services.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...., details of design and construction, operational aspects, unusual or extreme conditions, methods of statistical control of the measurement process, automated acquisition of laboratory data, and data reduction... group seminars on the precision measurement of specific types of physical quantities, offering the...

  19. 15 CFR 200.103 - Consulting and advisory services.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...., details of design and construction, operational aspects, unusual or extreme conditions, methods of statistical control of the measurement process, automated acquisition of laboratory data, and data reduction... group seminars on the precision measurement of specific types of physical quantities, offering the...

  20. A rare disease in an atypical location-Kimura's Disease of the upper extremity.

    PubMed

    Lam, Alan Cheuk Si; Au Yeung, Rex Kwok Him; Lau, Vince Wing Hang

    2015-12-01

    Kimura's disease is a rare chronic inflammatory disorder predominantly affecting young Asian male patients, occurring mainly in the head and neck regions. Kimura's disease of the upper extremity is extremely rare, and previous case reports in the literature show similar imaging characteristics with consistent location at the medial epitrochlear region, predominantly with unilateral involvement. We present the first reported case of Kimura's disease affecting the anterolateral aspect of the upper arm, sparing the medial epitrochlear region, illustrating that with typical MR appearance and serology, the involvement of this rare disease in an atypical location still warrants consideration of this diagnosis. There was also bilateral asymmetrical involvement in our patient, suggesting the possibility of a propensity for Kimura's disease affecting the upper extremities to have bilateral involvement, which may necessitate imaging of the clinically asymptomatic contralateral limb in these patients for early lesion identification and treatment.

  1. Extreme events in optics: Challenges of the MANUREVA project

    NASA Astrophysics Data System (ADS)

    Dudley, J. M.; Finot, C.; Millot, G.; Garnier, J.; Genty, G.; Agafontsev, D.; Dias, F.

    2010-07-01

    In this contribution we describe and discuss a series of challenges and questions relating to understanding extreme wave phenomena in optics. Many aspects of these questions are being studied in the framework of the MANUREVA project: a multidisciplinary consortium aiming to carry out mathematical, numerical and experimental studies in this field. The central motivation of this work is the 2007 results from optical physics [D. Solli et al., Nature 450, 1054 (2007)] that showed how a fibre-optical system can generate large amplitude extreme wave events with similar statistical properties to the infamous hydrodynamic rogue waves on the surface of the ocean. We review our recent work in this area, and discuss how this observation may open the possibility for an optical system to be used to directly study both the dynamics and statistics of extreme-value processes, a potential advance comparable to the introduction of optical systems to study chaos in the 1970s.

  2. Extreme Ultraviolet Variability Experiment (EVE) Multiple EUV Grating Spectrographs (MEGS): Radiometric Calibrations and Results

    NASA Technical Reports Server (NTRS)

    Hock, R. A.; Woods, T. N.; Crotser, D.; Eparvier, F. G.; Woodraska, D. L.; Chamberlin, P. C.; Woods, E. C.

    2010-01-01

    The NASA Solar Dynamics Observatory (SDO), scheduled for launch in early 2010, incorporates a suite of instruments including the Extreme Ultraviolet Variability Experiment (EVE). EVE has multiple instruments including the Multiple Extreme ultraviolet Grating Spectrographs (MEGS) A, B, and P instruments, the Solar Aspect Monitor (SAM), and the Extreme ultraviolet SpectroPhotometer (ESP). The radiometric calibration of EVE, necessary to convert the instrument counts to physical units, was performed at the National Institute of Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF III) located in Gaithersburg, Maryland. This paper presents the results and derived accuracy of this radiometric calibration for the MEGS A, B, P, and SAM instruments, while the calibration of the ESP instrument is addressed by Didkovsky et al. . In addition, solar measurements that were taken on 14 April 2008, during the NASA 36.240 sounding-rocket flight, are shown for the prototype EVE instruments.

  3. Pinhole X-ray/coronagraph optical systems concept definition study

    NASA Technical Reports Server (NTRS)

    Zehnpfenning, T. F.; Rappaport, S.; Wattson, R. B.

    1980-01-01

    The Pinhole X-ray/Coronagraph Concept utilizes the long baselines possible in Earth orbit with the space transportation system (shuttle) to produce observations of solar X-ray emission features at extremely high spatial resolution (up to 0.1 arc second) and high energy (up to 100 keV), and also white light and UV observations of the inner and outer corona at high spatial and/or spectral resolution. An examination of various aspects of a preliminary version of the X-ray Pinhole/Coronagraph Concept is presented. For this preliminary version, the instrument package will be carried in the shuttle bay on a mounting platform, and will be connected to the occulter with a deployable boom such as an Astromast. Generally, the spatial resolution, stray light levels, and minimum limb observing angles improve as the boom length increases. However, the associated engineering problems also become more serious with greater boom lengths.

  4. Efficiency droop suppression of distance-engineered surface plasmon-coupled photoluminescence in GaN-based quantum well LEDs

    NASA Astrophysics Data System (ADS)

    Li, Yufeng; Wang, Shuai; Su, Xilin; Tang, Weihan; Li, Qiang; Guo, Maofeng; Zhang, Ye; Zhang, Minyan; Yun, Feng; Hou, Xun

    2017-11-01

    Ag coated microgroove with extreme large aspect-ratio of 500:1 was fabricated on p-GaN capping layer to investigate the coupling behavior between quantum wells and surface plasmon in highly spatial resolution. Significant photoluminescence enhancement was observed when the distance between Ag film and QWs was reduced from 220 nm to about 20 nm. A maximum enhancement ratio of 18-fold was achieved at the groove bottom where the surface plasmonic coupling was considered the strongest. Such enhancement ratio was found highly affected by the excitation power density. It also shows high correlation to the internal quantum efficiency as a function of coupling effect and a maximum Purcell Factor of 1.75 was estimated at maximum coupling effect, which matches number calculated independently from the time-resolved photoluminescence measurement. With such Purcell Factor, the efficiency was greatly enhanced and the droop was significantly suppressed.

  5. Asm-Triggered too Observations of 100,000 C/s Black Hole Candidates

    NASA Astrophysics Data System (ADS)

    van der Klis, Michiel

    One of the most valuable unique characteristics of the PCA is the high count rates (100,000 c/s) it can record, and the resulting extreme sensitivity to weak variability. Only few sources get this bright. Our Cycle-1 work on Sco X-1 has shown that performing high count rate observations is very rewarding, but also difficult and not without risk. In the life of the satellite probably only one black-hole transient (if any) will reach 100,000 c/s levels. When this occurs, a window of discovery will be opened on black holes, which will nearly certainly close again within a few days. This proposal aims at ensuring that optimal use is made of this opportunity by performing state-of-the-art high count rate observations covering all of the most crucial aspects of the source variability.

  6. Asm-Triggered too Observations of 100,000 C/s Black Hole Candidates

    NASA Astrophysics Data System (ADS)

    van der Klis, Michiel

    Resubmission accepted Cycle 2-7 proposal. - The PCA is unique by the high count rates (~100,000 c/s) it can record, and its resulting extreme sensitivity to weak variability. Only few sources get this bright. Our RXTE work on Sco X-1 and 1744-28 shows that high count rate observations are very rewarding, but also difficult and not without risk. In the life of the satellite probably only one black-hole transient (if any) will reach 10^5 c/s/5PCU levels. When this occurs, a window of discovery will be opened on black holes, which will nearly certainly close again within a few days. This proposal aims at ensuring that optimal use is made of this opportunity by performing state-of- the-art high count rate observations covering all of the most crucial aspects of the source variability.

  7. Asm-Triggered too Observations of 100,000 C/s Black Hole Candidates

    NASA Astrophysics Data System (ADS)

    van der Klis, Michiel

    Resubmission accepted Cycle 2-8 proposal. - The PCA is unique by the high count rates (~100,000 c/s) it can record, and its resulting extreme sensitivity to weak variability. Only few sources get this bright. Our RXTE work on Sco X-1 and 1744-28 shows that high count rate observations are very rewarding, but also difficult and not without risk. In the life of the satellite probably only one black-hole transient (if any) will reach 10^5 c/s/5PCU levels. When this occurs, a window of discovery will be opened on black holes, which will nearly certainly close again within a few days. This proposal aims at ensuring that optimal use is made of this opportunity by performing state-of- the-art high count rate observations covering all of the most crucial aspects of the source variability.

  8. Asm-Triggered too Observations of 100,000 C/s Black Hole Candidates

    NASA Astrophysics Data System (ADS)

    van der Klis, Michiel

    Resubmission accepted Cycle 2-9 proposal. The PCA is unique by the high count rates (~100,000 c/s) it can record, and its resulting extreme sensitivity to weak variability. Only few sources get this bright. Our RXTE work on Sco X-1 and 1744-28 shows that high count rate observations are very rewarding, but also difficult and not without risk. In the life og the satallire probably only one black-hole transient (if any) will reach 10^5 cps/5PCU levels. when this occurs, a window of discovery will be opened on black holes, which will nearly certainly close again within a few days. This proposal aims at ensuring that optimal use is made of this opportunity by performing state of the art high count rate observations covering all of the most crucial aspects of the source variability.

  9. Asm-Triggered too Observations of 100,000 C/s Black Hole Candidates

    NASA Astrophysics Data System (ADS)

    van der Klis, Michiel

    Resubmission accepted Cycle 2-5 proposal. - The PCA is unique by the high count rates (~100,000 c/s) it can record, and its resulting extreme sensitivity to weak variability. Only few sources get this bright. Our RXTE work on Sco X-1 and 1744-28 shows that high count rate observations are very rewarding, but also difficult and not without risk. In the life of the satellite probably only one black-hole transient (if any) will reach 100,000 c/s levels. When this occurs, a window of discovery will be opened on black holes, which will nearly certainly close again within a few days. This proposal aims at ensuring that optimal use is made of this opportunity by performing state-of- the-art high count rate observations covering all of the most crucial aspects of the source variability.

  10. Asm-Triggered too Observations of 100,000 C/s Black Hole Candidates

    NASA Astrophysics Data System (ADS)

    van der Klis, Michiel

    Resubmission accepted Cycle 2&3 proposal. - The PCA is unique by the high count rates (~100,000 c/s) it can record, and its resulting extreme sensitivity to weak variability. Only few sources get this bright. Our Cycle 1-3 work on Sco X-1 and 1744-28 shows that high count rate observations are very rewarding, but also difficult and not without risk. In the life of the satellite probably only one black-hole transient (if any) will reach 100,000 c/s levels. When this occurs, a window of discovery will be opened on black holes, which will nearly certainly close again within a few days. This proposal aims at ensuring that optimal use is made of this opportunity by performing state-of- the-art high count rate observations covering all of the most crucial aspects of the source variability.

  11. Asm-Triggered too Observations of 100,000 C/s Black Hole Candidates

    NASA Astrophysics Data System (ADS)

    van der Klis, Michiel

    Resubmission accepted Cycle 2,3&4 proposal. - The PCA is unique by the high count rates (~100,000 c/s) it can record, and its resulting extreme sensitivity to weak variability. Only few sources get this bright. Our Cycle 1-3 work on Sco X-1 and 1744-28 shows that high count rate observations are very rewarding, but also difficult and not without risk. In the life of the satellite probably only one black-hole transient (if any) will reach 100,000 c/s levels. When this occurs, a window of discovery will be opened on black holes, which will nearly certainly close again within a few days. This proposal aims at ensuring that optimal use is made of this opportunity by performing state-of- the-art high count rate observations covering all of the most crucial aspects of the source variability.

  12. Asm-Triggered too Observations of 100,000 C/s Black Hole Candidates

    NASA Astrophysics Data System (ADS)

    van der Klis, Michiel

    RESUBMISSION ACCEPTED CYCLE 2 PROPOSAL - The PCA is unique by the high count rates (~100,000 c/s) it can record, and its resulting extreme sensitivity to weak variability. Only few sources get this bright. Our Cycle 1&2 work on Sco X-1 and 1744-28 has shown that high count rate observations are very rewarding, but also difficult and not without risk. In the life of the satellite probably only one black-hole transient (if any) will reach 100,000 c/s levels. When this occurs, a window of discovery will be opened on black holes, which will nearly certainly close again within a few days. This proposal aims at ensuring that optimal use is made of this opportunity by performing state-of- the-art high count rate observations covering all of the most crucial aspects of the source variability.

  13. ASM Triggered too Observations of 100,000 C/s Black-Hole Candidates

    NASA Astrophysics Data System (ADS)

    van der Klis, Michiel

    Resubmission accepted Cycle 2-10 proposal. The PCA is unique by the high count rates (~100.000 c/s) it can record, and its resulting extreme sensitivity to weak variability. Only few sources get this bright. Our RXTE work on Sco X-1 and 1744-28 shows that high count rate observations are very rewarding, but also difficult and not without risk. In the life of the satellite probably only one black hole transient (if any) will reach 10^5 cps/5 PCU levels. When this occurs a window of discovery will be opened on black holes, which will nearly certainly close again within a few days. This proposal aims at ensuring that optimal use is made of this opportunity by performing state of the art high count rate observations covering all of the most crusial aspects of the source variability.

  14. ASM Triggered too Observations of 100,000 C/s Black-Hole Candidates (core Program)

    NASA Astrophysics Data System (ADS)

    Resubmission accepted Cycle 2-11 proposal. The PCA is unique by the high count rates (~100.000 c/s) it can record, and its resulting extreme sensitivity to weak variability. Only few sources get this bright. Our RXTE work on Sco X-1 and 1744-28 shows that high count rate observations are very rewarding, but also difficult and not without risk. In the life of the satellite probably only one black hole transient (if any) will reach 10^5 cps/5 PCU levels. When this occurs a window of discovery will be opened on black holes, which will nearly certainly close again within a few days. This proposal aims at ensuring that optimal use is made of this opportunity by performing state of the art high count rate observations covering all of the most crusial aspects of the source variability.

  15. ASM Triggered too Observations of 100,000 C/s Black-Hole Candidates

    NASA Astrophysics Data System (ADS)

    van der Klis, Michiel

    Resubmission accepted Cycle 2-11 proposal. The PCA is unique by the high count rates (~100.000 c/s) it can record, and its resulting extreme sensitivity to weak variability. Only few sources get this bright. Our RXTE work on Sco X-1 and 1744-28 shows that high count rate observations are very rewarding, but also difficult and not without risk. In the life of the satellite probably only one black hole transient (if any) will reach 10^5 cps/5 PCU levels. When this occurs a window of discovery will be opened on black holes, which will nearly certainly close again within a few days. This proposal aims at ensuring that optimal use is made of this opportunity by performing state of the art high count rate observations covering all of the most crusial aspects of the source variability.

  16. Improvement of a block co-polymer (PS-b-PDMS) template etch profile using amorphous carbon layer

    NASA Astrophysics Data System (ADS)

    Oh, JiSoo; Oh, Jong Sik; Sung, DaIn; Yim, SoonMin; Song, SeungWon; Yeom, GeunYoung

    2017-03-01

    Block copolymers (BCPs) are consisted of at least two types of monomers which have covalent bonding. One of the widely investigated BCPs is polystyrene-block-polydimethylsiloxane (PS-b-PDMS), which is used as an alternative patterning method for various deep nanoscale devices due to its high Flory-Huggins interaction parameter (χ), such as optical devices and transistors, replacing conventional photolithography. As an alternate or supplementary nextgeneration lithography technology to extreme ultraviolet lithography (EUVL), BCP lithography utilizing the DSA of BCP has been actively studied. However, the nanoscale BCP mask material is easily damaged by the plasma and has a very low etch selectivity over bottom semiconductor materials, because it is composed of polymeric materials even though it contains Si in PDMS. In this study, an amorphous carbon layer (ACL) was inserted as a hardmask material between BCP and materials to be patterned, and, by using O2 plasmas, the characteristics of dry etching of ACL for high aspect ratio (HAR) using a 10 nm PDMS pattern were investigated. The results showed that, by using a PS-b-PDMS pattern with an aspect ratio of 0.3 0.9:1, a HAR PDMS/ACL double layer mask with an aspect ratio of 10:1 could be fabricated. In addition, by the optimization of the plasma etch process, ACL masks with excellent sidewall roughness (SWR,1.35 nm) and sidewall angle (SWA, 87.9˚) could be fabricated.

  17. Brachial plexus injury management through upper extremity amputation with immediate postoperative prostheses.

    PubMed

    Malone, J M; Leal, J M; Underwood, J; Childers, S J

    1982-02-01

    Management of patients with brachial plexus injuries requires a team approach so that all aspects of their care are addressed simultaneously. This report examines elective amputation and prosthetic rehabilitation in a patient with brachial plexus avulsion of the left arm. The best possibility for good prosthetic rehabilitation is the early application of prosthetic devices with intensive occupational therapy. Using this type of approach, we have achieved significant improvement in amputation rehabilitation of upper extremity amputees treated with immediate postoperative conventional electric and myoelectric prostheses.

  18. Gas gangrene without wound: both lower extremities affected simultaneously.

    PubMed

    Lu, Jun; Wu, Xiao-Tao; Kong, Xiang-Fei; Tang, Wen-Hao; Cheng, Jian-Ming; Wang, Hai-Liang

    2008-10-01

    Gas gangrene is a necrotizing soft tissue infection characterized by muscular necrosis and gas formation. It develops quickly and can cause septic shock and death. In adults, gas gangrene used to be a well-known complication of war wounds. Recently, cases of spontaneous or nontraumatic gas gangrene have been reported in both adults and children. We report a case of nontraumatic gas gangrene involving both the lower extremities simultaneously. Pathogenesis of this fatal soft tissue infection is discussed.We also review the diagnosis and treatment aspects of this entity.

  19. SOHO EIT Carrington maps from synoptic full-disk data

    NASA Technical Reports Server (NTRS)

    Thompson, B. J.; Newmark, J. S.; Gurman, J. B.; Delaboudiniere, J. P.; Clette, F.; Gibson, S. E.

    1997-01-01

    The solar synoptic maps, obtained from observations carried out since May 1996 by the extreme-ultraviolet imaging telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO), are presented. The maps were constructed for each Carrington rotation with the calibrated data. The off-limb maps at 1.05 and 1.10 solar radii were generated for three coronal lines using the standard applied to coronagraph synoptic maps. The maps reveal several aspects of the solar structure over the entire rotation and are used in the whole sun month modeling campaign. @txt extreme-ultraviolet imaging telescope

  20. Modeling Aspect Controlled Formation of Seasonally Frozen Ground on Montane Hillslopes: a Case Study from Gordon Gulch, Colorado

    NASA Astrophysics Data System (ADS)

    Rush, M.; Rajaram, H.; Anderson, R. S.; Anderson, S. P.

    2017-12-01

    The Intergovernmental Panel on Climate Change (2013) warns that high-elevation ecosystems are extremely vulnerable to climate change due to short growing seasons, thin soils, sparse vegetation, melting glaciers, and thawing permafrost. Many permafrost-free regions experience seasonally frozen ground. The spatial distribution of frozen soil exerts a strong control on subsurface flow and transport processes by reducing soil permeability and impeding infiltration. Accordingly, evolution of the extent and duration of frozen ground may alter streamflow seasonality, groundwater flow paths, and subsurface storage, presenting a need for coupled thermal-hydrologic models to project hydrologic responses to climate warming in high-elevation regions. To be useful as predictive tools, such models should incorporate the heterogeneity of solar insolation, vegetation, and snowpack dynamics. We present a coupled thermal-hydrologic modeling study against the backdrop of field observations from Gordon Gulch, a seasonally snow-covered montane catchment in the Colorado Front Range in the Boulder Creek Critical Zone Observatory. The field site features two instrumented hillslopes with opposing aspects: the snowpack on the north-facing slope persists throughout much of the winter season, while the snowpack on the south-facing slope is highly ephemeral. We implemented a surface energy balance and snowpack accumulation and ablation model that is coupled to the subsurface flow and transport code PFLOTRAN-ICE to predict the hydrologic consequences of aspect-controlled frozen soil formation during water years 2013-2016. Preliminary model results demonstrate the occurrence of seasonally-frozen ground on the north-facing slope that directs snowmelt to the stream by way of shallow subsurface flow paths. The absence of persistently frozen ground on the south-facing slope allows deeper infiltration of snowmelt recharge. The differences in subsurface flow paths also suggest strong aspect-controlled heterogeneities in nitrate export and differences in geomorphic processes such as frost creep.

  1. The HESP (High Energy Solar Physics) project

    NASA Technical Reports Server (NTRS)

    Kai, K.

    1986-01-01

    A project for space observations of solar flares for the coming solar maximum phase is briefly described. The main objective is to make a comprehensive study of high energy phenomena of flares through simultaneous imagings in both hard and soft X-rays. The project will be performed with collaboration from US scientists. The HESP (High Energy Solar Physics) WG of ISAS (Institute of Space and Astronautical Sciences) has extensively discussed future aspects of space observations of high energy phenomena of solar flares based on successful results of the Hinotori mission, and proposed a comprehensive research program for the next solar maximum, called the HESP (SOLAR-A) project. The objective of the HESP project is to make a comprehensive study of both high energy phenomena of flares and quiet structures including pre-flare states, which have been left uncovered by SMM and Hinotori. For such a study simultaneous imagings with better resolutions in space and time in a wide range of energy will be extremely important.

  2. [Multi-temporal scale analysis of impacts of extreme high temperature on net carbon uptake in subtropical coniferous plantation.

    PubMed

    Zhang, Mi; Wen, Xue Fa; Zhang, Lei Ming; Wang, Hui Min; Guo, Yi Wen; Yu, Gui Rui

    2018-02-01

    Extreme high temperature is one of important extreme weathers that impact forest ecosystem carbon cycle. In this study, applying CO 2 flux and routine meteorological data measured during 2003-2012, we examined the impacts of extreme high temperature and extreme high temperature event on net carbon uptake of subtropical coniferous plantation in Qianyanzhou. Combining with wavelet analysis, we analyzed environmental controls on net carbon uptake at different temporal scales, when the extreme high temperature and extreme high temperature event happened. The results showed that mean daily cumulative NEE decreased by 51% in the days with daily maximum air temperature range between 35 ℃ and 40 ℃, compared with that in the days with the range between 30 ℃ and 34 ℃. The effects of the extreme high temperature and extreme high temperature event on monthly NEE and annual NEE related to the strength and duration of extreme high tempe-rature event. In 2003, when strong extreme high temperature event happened, the sum of monthly cumulative NEE in July and August was only -11.64 g C·m -2 ·(2 month) -1 . The value decreased by 90%, compared with multi-year average value. At the same time, the relative variation of annual NEE reached -6.7%. In July and August, when the extreme high temperature and extreme high temperature event occurred, air temperature (T a ) and vapor press deficit (VPD) were the dominant controller for the daily variation of NEE. The coherency between NEE T a and NEE VPD was 0.97 and 0.95, respectively. At 8-, 16-, and 32-day periods, T a , VPD, soil water content at 5 cm depth (SWC), and precipitation (P) controlled NEE. The coherency between NEE SWC and NEE P was higher than 0.8 at monthly scale. The results indicated that atmospheric water deficit impacted NEE at short temporal scale, when the extreme high temperature and extreme high temperature event occurred, both of atmospheric water deficit and soil drought stress impacted NEE at long temporal scales in this ecosystem.

  3. The CHARIS High-Contrast Integral-Field Spectrograph

    NASA Technical Reports Server (NTRS)

    Groff, Tyler D.; Chilcote, Jeffrey; Brandt, Timothy; Kasdin, N. Jeremy; Galvin, Michael; Loomis, Craig; Rizzo, Maxime; Knapp, Gillian; Guyon, Olivier; Jovanovic, Nemanja; hide

    2017-01-01

    One of the leading direct Imaging techniques, particularly in ground-based imaging, uses a coronagraphic system and integral field spectrograph (IFS). The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) is an IFS that has been built for the Subaru telescope. CHARIS has been delivered to the observatory and now sits behind the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system. CHARIS has 'high' and 'low' resolution operating modes. The "high-resolution" mode is used to characterize targets in J, H, and K bands at R70. The "low-resolution" prism is meant for discovery and spans J+H+K bands (1.15-2.37 microns) with a spectral resolution of R18. This discovery mode has already proven better than 15-sigma detections of HR8799c,d,e when combining ADI+SDI. Using SDI alone, planets c and d have been detected in a single 24 second image. The CHARIS team is optimizing instrument performance and refining ADI+SDI recombination to maximize our contrast detection limit. In addition to the new observing modes, CHARIS has demonstrated a design with high robustness to spectral crosstalk. CHARIS is in the final stages of commissioning, with the instrument open for science observations beginning February 2017. Here we review the science case, design, on-sky performance, engineering observations of exoplanet and disk targets, and specific lessons learned for extremely high contrast imagers. Key design aspects that will be demonstrated are crosstalk optimization, wavefront correction using the IFS image, lenslet tolerancing, the required spectral resolution to fit exoplanet atmospheres, and the utility of the spectrum in achieving higher contrast detection limits.

  4. An Extremely Halophilic Proteobacterium Combines a Highly Acidic Proteome with a Low Cytoplasmic Potassium Content*

    PubMed Central

    Deole, Ratnakar; Challacombe, Jean; Raiford, Douglas W.; Hoff, Wouter D.

    2013-01-01

    Halophilic archaea accumulate molar concentrations of KCl in their cytoplasm as an osmoprotectant and have evolved highly acidic proteomes that function only at high salinity. We examined osmoprotection in the photosynthetic Proteobacteria Halorhodospira halophila and Halorhodospira halochloris. Genome sequencing and isoelectric focusing gel electrophoresis showed that the proteome of H. halophila is acidic. In line with this finding, H. halophila accumulated molar concentrations of KCl when grown in high salt medium as detected by x-ray microanalysis and plasma emission spectrometry. This result extends the taxonomic range of organisms using KCl as a main osmoprotectant to the Proteobacteria. The closely related organism H. halochloris does not exhibit an acidic proteome, matching its inability to accumulate K+. This observation indicates recent evolutionary changes in the osmoprotection strategy of these organisms. Upon growth of H. halophila in low salt medium, its cytoplasmic K+ content matches that of Escherichia coli, revealing an acidic proteome that can function in the absence of high cytoplasmic salt concentrations. These findings necessitate a reassessment of two central aspects of theories for understanding extreme halophiles. First, we conclude that proteome acidity is not driven by stabilizing interactions between K+ ions and acidic side chains but by the need for maintaining sufficient solvation and hydration of the protein surface at high salinity through strongly hydrated carboxylates. Second, we propose that obligate protein halophilicity is a non-adaptive property resulting from genetic drift in which constructive neutral evolution progressively incorporates weakly stabilizing K+-binding sites on an increasingly acidic protein surface. PMID:23144460

  5. Vaginismus: A Review

    ERIC Educational Resources Information Center

    Fertel, Norman S.

    1977-01-01

    Vaginismus includes both physical as well as psychological aspects that make vaginal penetration extremely painful if not altogether impossible. Aside from history, diagnosis rests on the physical examination. The most important considerations in therapy seem to be the patient's understanding of the problem and flexibility of approach. (Author)

  6. Separating out the influence of climatic trend, fluctuations, and extreme events on crop yield: a case study in Hunan Province, China

    NASA Astrophysics Data System (ADS)

    Wang, Zhu; Shi, Peijun; Zhang, Zhao; Meng, Yongchang; Luan, Yibo; Wang, Jiwei

    2017-09-01

    Separating out the influence of climatic trend, fluctuations and extreme events on crop yield is of paramount importance to climate change adaptation, resilience, and mitigation. Previous studies lack systematic and explicit assessment of these three fundamental aspects of climate change on crop yield. This research attempts to separate out the impacts on rice yields of climatic trend (linear trend change related to mean value), fluctuations (variability surpassing the "fluctuation threshold" which defined as one standard deviation (1 SD) of the residual between the original data series and the linear trend value for each climatic variable), and extreme events (identified by absolute criterion for each kind of extreme events related to crop yield). The main idea of the research method was to construct climate scenarios combined with crop system simulation model. Comparable climate scenarios were designed to express the impact of each climate change component and, were input to the crop system model (CERES-Rice), which calculated the related simulated yield gap to quantify the percentage impacts of climatic trend, fluctuations, and extreme events. Six Agro-Meteorological Stations (AMS) in Hunan province were selected to study the quantitatively impact of climatic trend, fluctuations and extreme events involving climatic variables (air temperature, precipitation, and sunshine duration) on early rice yield during 1981-2012. The results showed that extreme events were found to have the greatest impact on early rice yield (-2.59 to -15.89%). Followed by climatic fluctuations with a range of -2.60 to -4.46%, and then the climatic trend (4.91-2.12%). Furthermore, the influence of climatic trend on early rice yield presented "trade-offs" among various climate variables and AMS. Climatic trend and extreme events associated with air temperature showed larger effects on early rice yield than other climatic variables, particularly for high-temperature events (-2.11 to -12.99%). Finally, the methodology use to separate out the influences of the climatic trend, fluctuations, and extreme events on crop yield was proved to be feasible and robust. Designing different climate scenarios and feeding them into a crop system model is a potential way to evaluate the quantitative impact of each climate variable.

  7. Insensitivity of Hawking radiation to an invariant Planck-scale cutoff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agullo, Ivan; Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Facultad de Fisica, Universidad de Valencia, Burjassot-46100, Valencia; Navarro-Salas, Jose

    2009-08-15

    A disturbing aspect of Hawking's derivation of black hole radiance is the need to invoke extreme conditions for the quantum field that originates the emitted quanta. It is widely argued that the derivation requires the validity of the conventional relativistic field theory to arbitrarily high, trans-Planckian scales. We stress in this note that this is not necessarily the case if the question is presented in a covariant way. We point out that Hawking radiation is immediately robust against an invariant Planck-scale cutoff. This important feature of Hawking radiation is relevant for a quantum gravity theory that preserves, in some way,more » the Lorentz symmetry.« less

  8. New Fossil Evidence on the Sister-Group of Mammals and Early Mesozoic Faunal Distributions

    NASA Astrophysics Data System (ADS)

    Shubin, Neil H.; Crompton, A. W.; Sues, Hans-Dieter; Olsen, Paul E.

    1991-03-01

    Newly discovered remains of highly advanced mammal-like reptiles (Cynodontia: Tritheledontidae) from the Early Jurassic of Nova Scotia, Canada, have revealed that aspects of the characteristic mammalian occlusal pattern are primitive. Mammals and tritheledontids share an homologous pattern of occlusion that is not seen in other cynodonts. The new tritheledontids represent the first definite record of this family from North America. The extreme similarity of North American and African tritheledontids supports the hypothesis that the global distribution of terrestrial tetrapods was homogeneous in the Early Jurassic. This Early Jurassic cosmopolitanism represents the continuation of a trend toward increased global homogeneity among terrestrial tetrapod communities that began in the late Paleozoic.

  9. Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling

    NASA Astrophysics Data System (ADS)

    Fomenkov, Igor; Brandt, David; Ershov, Alex; Schafgans, Alexander; Tao, Yezheng; Vaschenko, Georgiy; Rokitski, Slava; Kats, Michael; Vargas, Michael; Purvis, Michael; Rafac, Rob; La Fontaine, Bruno; De Dea, Silvia; LaForge, Andrew; Stewart, Jayson; Chang, Steven; Graham, Matthew; Riggs, Daniel; Taylor, Ted; Abraham, Mathew; Brown, Daniel

    2017-06-01

    Extreme ultraviolet (EUV) lithography is expected to succeed in 193-nm immersion multi-patterning technology for sub-10-nm critical layer patterning. In order to be successful, EUV lithography has to demonstrate that it can satisfy the industry requirements in the following critical areas: power, dose stability, etendue, spectral content, and lifetime. Currently, development of second-generation laser-produced plasma (LPP) light sources for the ASML's NXE:3300B EUV scanner is complete, and first units are installed and operational at chipmaker customers. We describe different aspects and performance characteristics of the sources, dose stability results, power scaling, and availability data for EUV sources and also report new development results.

  10. A three-decade-long journey at the College of Optical Sciences

    NASA Astrophysics Data System (ADS)

    Sarid, Dror

    2014-09-01

    In 1980, Peter Franken, the second director of the Optical Sciences Center, recruited an international quartet of faculty members from the US, Canada, England and Israel (DS). Peter shaped the Center as a clockwork operation, nailing down every aspect of its administration, business model and academic vision. I found myself from day one in a highly competitive environment with extreme peer pressure to make good science and generate a lot of funds. This paper describes the academic journey through my three decades at the Optical Sciences Center that became the College of Optical Sciences (Optical Sciences, in short) until my retirement in 2010, by highlighting selected areas of my group's research.

  11. Advanced Manufacturing and Value-added Products from US Agriculture

    NASA Technical Reports Server (NTRS)

    Villet, Ruxton H.; Child, Dennis R.; Acock, Basil

    1992-01-01

    An objective of the US Department of Agriculture (USDA) Agriculture Research Service (ARS) is to develop technology leading to a broad portfolio of value-added marketable products. Modern scientific disciplines such as chemical engineering are brought into play to develop processes for converting bulk commodities into high-margin products. To accomplish this, the extremely sophisticated processing devices which form the basis of modern biotechnology, namely, genes and enzymes, can be tailored to perform the required functions. The USDA/ARS is a leader in the development of intelligent processing equipment (IPE) for agriculture in the broadest sense. Applications of IPE are found in the production, processing, grading, and marketing aspects of agriculture. Various biotechnology applications of IPE are discussed.

  12. Future changes in precipitation patterns and extremes: a model-based approach

    NASA Astrophysics Data System (ADS)

    Mitsakis, Evangelos; Stamos, Iraklis; Anastassiadou, Kalliopi; Kammerer, Harald; Kaundinya, Ingo; Kohl, Bernhard; Kapsomenakis, John; Zerefos, Christos; Aifadopoulou, Georfia

    2016-04-01

    In recent decades, the Earth has experienced abrupt climate changes, including changes of mean precipitation heights as well as precipitation extremes. It is very likely that the abrupt climate changes which are result of the increase of the greenhouse gases (GHG) concentration (IPCC 2007) will continue with an accelerate magnitude in the coming decades. The modern tool used to project the future climate change is General Circulation Models (GCMs). Due to computational resources limitations, the horizontal resolution of present day GCMs is quite low, usually in the order of hundreds of kilometers. In such a crude resolution many local aspects of the climate are unable to be represented. In addition, the topographical input is equally crude, thus excluding important local features of the topographic forcing. For these reasons downscaling methods have been developed, which input the GCM results producing high resolution localized climate information. Dynamical downscaling is achieved using Regional Climate Models (RCMs) that increase the resolution of the GCMs to even less than 10 km. In that direction, future changes in the mean precipitation as well as precipitation extremes due to the anthropogenic climate change over the area of Greece are examined for various emission scenarios in the framework of this paper (e.g. RCP 8.5, SRES A1B, etc.). Regarding Greece, future changes are based on daily precipitation data from 18 Region Climate Models simulations (6 for RCP 8.5 and 12 for SRES A1B). The changes in precipitation extremes are defined by calculating the changes of nine extreme precipitation indices which are divided in three categories: percentile (R75p, R95p, R99p), absolute threshold (Rmax, R10, R20, R50, RX5day) and duration (CDD) indices, as defined by the Expert Team on Climate Change Detection and Indices (ETCCDI). Taking into account all the results that are discussed explicitly in the following sections we conclude that the mean precipitation as well as the number of moderate rainy days is projected to decrease over Greece especially in the end of 21th century. Nevertheless the frequency as well as the strength of individual extremely high precipitation events will be increased over the largest part of Greece.

  13. The Focal Surface of the JEM-EUSO Instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawasaki, Y.; EUSO Team, ASI, RIKEN; Casolino, M.

    The Extreme Universe Space Observatory on JEM/EF (JEM-EUSO) is a space mission to study extremely high-energy cosmic rays. The JEM-EUSO instrument is a wide-angle refractive telescope in the near-ultraviolet wavelength region which will be mounted to the International Space Station. Its goal is to measure time-resolved fluorescence images of extensive air showers in the atmosphere. In this paper we describe in detail the main features and technological aspects of the focal surface of the instrument. The JEM-EUSO focal surface is a spherically curved surface, with an area of about 4.5m{sup 2}. The focal surface detector is made of more thanmore » 5,000 multi-anode photomultipliers (MAPMTs). Current baseline is Hamamatsu R11265-03-M64. The approach to the focal surface detector is highly modular. Photo-Detector-Modules (PDM) are the basic units that drive the mechanical structure and data acquisition. Each PDM consists of 9 Elementary Cells (ECs). The EC, which is the basic unit of the MAPMT support structure and of the front-end electronics, contains 4 units of MAPMTs. In total, about 1,200 ECs or about 150 PDMs are arranged on the whole of the focal surface of JEM-EUSO.« less

  14. Precautions for breast cancer-related lymphoedema: risk from air travel, ipsilateral arm blood pressure measurements, skin puncture, extreme temperatures, and cellulitis.

    PubMed

    Asdourian, Maria S; Skolny, Melissa N; Brunelle, Cheryl; Seward, Cara E; Salama, Laura; Taghian, Alphonse G

    2016-09-01

    Precautionary recommendations conveyed to survivors of cancer by health-care practitioners to reduce the risk of breast cancer-related lymphoedema are indispensable aspects of clinical care, yet remain unsubstantiated by high-level scientific evidence. By reviewing the literature, we identified 31 original research articles that examined whether lifestyle-associated risk factors (air travel, ipsilateral arm blood pressure measurements, skin puncture, extreme temperatures, and skin infections-eg, cellulitis) increase the risk of breast cancer-related lymphoedema. Among the few studies that lend support to precautionary guidelines, most provide low-level (levels 3-5) or inconclusive evidence of an association between lymphoedema and these risk factors, and only four level 2 studies show a significant association. Skin infections and previous infection or inflammation on the ipsilateral arm were among the most clearly defined and well established risk factors for lymphoedema. The paucity of high-level evidence and the conflicting nature of the existing literature make it difficult to establish definitive predictive factors for breast cancer-related lymphoedema, which could be a considerable source of patient distress and anxiety. Along with further research into these risk factors, continued discussion regarding modification of the guidelines and adoption of a risk-adjusted approach is needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Synthesis and properties of electrically conductive, ductile, extremely long (~50 μm) nanosheets of K(x)CoO2·yH2O.

    PubMed

    Aksit, Mahmut; Hoselton, Benjamin C; Kim, Ha Jun; Ha, Don-Hyung; Robinson, Richard D

    2013-09-25

    Extremely long, electrically conductive, ductile, free-standing nanosheets of water-stabilized KxCoO2·yH2O are synthesized using the sol-gel and electric-field induced kinetic-demixing (SGKD) process. Room temperature in-plane resistivity of the KxCoO2·yH2O nanosheets is less than ~4.7 mΩ·cm, which corresponds to one of the lowest resistivity values reported for metal oxide nanosheets. The synthesis produces tens of thousands of very high aspect ratio (50,000:50,000:1 = length/width/thickness), millimeter length nanosheets stacked into a macro-scale pellet. Free-standing nanosheets up to ~50 μm long are readily delaminated from the stacked nanosheets. High-resolution transmission electron microscopy (HR-TEM) studies of the free-standing nanosheets indicate that the delaminated pieces consist of individual nanosheet crystals that are turbostratically stacked. X-ray diffraction (XRD) studies confirm that the nanosheets are stacked in perfect registry along their c-axis. Scanning electron microscopy (SEM) based statistical analysis show that the average thickness of the nanosheets is ~13 nm. The nanosheets show ductility with a bending radius as small as ~5 nm.

  16. Exploiting induced variation to dissect quantitative traits in barley.

    PubMed

    Druka, Arnis; Franckowiak, Jerome; Lundqvist, Udda; Bonar, Nicola; Alexander, Jill; Guzy-Wrobelska, Justyna; Ramsay, Luke; Druka, Ilze; Grant, Iain; Macaulay, Malcolm; Vendramin, Vera; Shahinnia, Fahimeh; Radovic, Slobodanka; Houston, Kelly; Harrap, David; Cardle, Linda; Marshall, David; Morgante, Michele; Stein, Nils; Waugh, Robbie

    2010-04-01

    The identification of genes underlying complex quantitative traits such as grain yield by means of conventional genetic analysis (positional cloning) requires the development of several large mapping populations. However, it is possible that phenotypically related, but more extreme, allelic variants generated by mutational studies could provide a means for more efficient cloning of QTLs (quantitative trait loci). In barley (Hordeum vulgare), with the development of high-throughput genome analysis tools, efficient genome-wide identification of genetic loci harbouring mutant alleles has recently become possible. Genotypic data from NILs (near-isogenic lines) that carry induced or natural variants of genes that control aspects of plant development can be compared with the location of QTLs to potentially identify candidate genes for development--related traits such as grain yield. As yield itself can be divided into a number of allometric component traits such as tillers per plant, kernels per spike and kernel size, mutant alleles that both affect these traits and are located within the confidence intervals for major yield QTLs may represent extreme variants of the underlying genes. In addition, the development of detailed comparative genomic models based on the alignment of a high-density barley gene map with the rice and sorghum physical maps, has enabled an informed prioritization of 'known function' genes as candidates for both QTLs and induced mutant genes.

  17. The effect of spatial organization of targets and distractors on the capacity to selectively memorize objects in visual short-term memory.

    PubMed

    Abbes, Aymen Ben; Gavault, Emmanuelle; Ripoll, Thierry

    2014-01-01

    We conducted a series of experiments to explore how the spatial configuration of objects influences the selection and the processing of these objects in a visual short-term memory task. We designed a new experiment in which participants had to memorize 4 targets presented among 4 distractors. Targets were cued during the presentation of distractor objects. Their locations varied according to 4 spatial configurations. From the first to the last configuration, the distance between targets' locations was progressively increased. The results revealed a high capacity to select and memorize targets embedded among distractors even when targets were extremely distant from each other. This capacity is discussed in relation to the unitary conception of attention, models of split attention, and the competitive interaction model. Finally, we propose that the spatial dispersion of objects has different effects on attentional allocation and processing stages. Thus, when targets are extremely distant from each other, attentional allocation becomes more difficult while processing becomes easier. This finding implicates that these 2 aspects of attention need to be more clearly distinguished in future research.

  18. Diversity in transcripts and translational pattern of stress proteins in marine extremophiles.

    PubMed

    Ambily Nath, I V; Loka Bharathi, P A

    2011-03-01

    Extremophiles occur in a diverse range of habitats, from the frigid waters of Antarctic to the superheated plumes of hydrothermal vents. Their in-depth study could provide important insights into the biochemical, ecological and evolutionary aspects of marine microbes. The cellular machinery of such extreme-lovers could be highly flexible to cope with such harsh environments. Extreme conditions of temperature, pressure, salinity, pH, oxidative stress, radiation, etc., above the physiological tolerance level can disrupt the natural conformation of proteins in the cell. The induction of stress proteins (heat/cold shock proteins/salt stress proteins/pressure-induced proteins) plays a vital role in the acclimatization of extremophiles. The present review focuses on the in vitro studies conducted on the transcripts and translational pattern of stress proteins in extremophiles. Though some proteins are unique, a commonality in stress resistance mechanism has been observed, for example, the universal occurrence of HSP60, 70 and the expression of metabolic and DNA repair proteins. The review highlights that among all the stressful conditions, salt/osmotic stress evokes the expression of highest number of transcripts/proteins while psychrophilic condition the least.

  19. Selective Tree-ring Models: A Novel Method for Reconstructing Streamflow Using Tree Rings

    NASA Astrophysics Data System (ADS)

    Foard, M. B.; Nelson, A. S.; Harley, G. L.

    2017-12-01

    Surface water is among the most instrumental and vulnerable resources in the Northwest United States (NW). Recent observations show that overall water quantity is declining in streams across the region, while extreme flooding events occur more frequently. Historical streamflow models inform probabilities of extreme flow events (flood or drought) by describing frequency and duration of past events. There are numerous examples of tree-rings being utilized to reconstruct streamflow in the NW. These models confirm that tree-rings are highly accurate at predicting streamflow, however there are many nuances that limit their applicability through time and space. For example, most models predict streamflow from hydrologically altered rivers (e.g. dammed, channelized) which may hinder our ability to predict natural prehistoric flow. They also have a tendency to over/under-predict extreme flow events. Moreover, they often neglect to capture the changing relationships between tree-growth and streamflow over time and space. To address these limitations, we utilized national tree-ring and streamflow archives to investigate the relationships between the growth of multiple coniferous species and free-flowing streams across the NW using novel species-and site-specific streamflow models - a term we coined"selective tree-ring models." Correlation function analysis and regression modeling were used to evaluate the strengths and directions of the flow-growth relationships. Species with significant relationships in the same direction were identified as strong candidates for selective models. Temporal and spatial patterns of these relationships were examined using running correlations and inverse distance weighting interpolation, respectively. Our early results indicate that (1) species adapted to extreme climates (e.g. hot-dry, cold-wet) exhibit the most consistent relationships across space, (2) these relationships weaken in locations with mild climatic variability, and (3) some species appear to be strong candidates for predicting high flow events, while others may be better at pridicting drought. These findings indicate that selective models may outperform traditional models when reconstructing distinctive aspects of streamflow.

  20. Physical activity and physical functioning in Swedish and Iranian 75-year-olds - a comparison.

    PubMed

    Mosallanezhad, Zahra; Hörder, Helena; Salavati, Mahyar; Nilsson-Wikmar, Lena; Frändin, Kerstin

    2012-01-01

    The pattern of population aging is highly complex and contextually based. Cross-national comparisons are helpful to explore related factors. Two cross-sectional studies designed to compare physical activity level, physical functioning and certain health related factors in 75-year-old women and men in Sweden and Iran. Cohorts of 637 Swedish and 851 Iranian 75-year-olds were investigated with the same methods regarding physical activity level, physical functioning and health related factors. There were differences in physical activity level (p<0.001), self-reported physical functioning (p<0.001) objective physical functioning (p<0.001), health status (p<0.001) and most socio-demographic aspects between the two countries. Here the Swedish cohort had the advantage. There was no difference between the countries regarding prevalence of vertigo or falls. The only variables where the Iranian cohort had advantage over the Swedes were grip strength and smoking habits. There were larger gender differences in walking habits, self-selected walking speed, timed chair stand, and one-leg stance in Iran, and in grip strength in Sweden, all to the disadvantage of women. Iranian 75-years-olds had a lower physical activity level, a worse lower extremity physical function but a better grip strength, a worse physical health status, but smoked less than their Swedish counterparts. Despite this, there were no differences regarding vertigo or falls. In most aspects, the magnitude of gender differences was about the same and in disadvantage of women, although there were larger differences in Iran in some lower extremity functions. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Center for Center for Technology for Advanced Scientific Component Software (TASCS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostadin, Damevski

    A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technologymore » for Advanced Scientific Component Software (TASCS)1 tackles these these issues by exploiting component-based software development to facilitate collaborative high-performance scientific computing.« less

  2. Analysis of the dependence of extreme rainfalls

    NASA Astrophysics Data System (ADS)

    Padoan, Simone; Ancey, Christophe; Parlange, Marc

    2010-05-01

    The aim of spatial analysis is to quantitatively describe the behavior of environmental phenomena such as precipitation levels, wind speed or daily temperatures. A number of generic approaches to spatial modeling have been developed[1], but these are not necessarily ideal for handling extremal aspects given their focus on mean process levels. The areal modelling of the extremes of a natural process observed at points in space is important in environmental statistics; for example, understanding extremal spatial rainfall is crucial in flood protection. In light of recent concerns over climate change, the use of robust mathematical and statistical methods for such analyses has grown in importance. Multivariate extreme value models and the class of maxstable processes [2] have a similar asymptotic motivation to the univariate Generalized Extreme Value (GEV) distribution , but providing a general approach to modeling extreme processes incorporating temporal or spatial dependence. Statistical methods for max-stable processes and data analyses of practical problems are discussed by [3] and [4]. This work illustrates methods to the statistical modelling of spatial extremes and gives examples of their use by means of a real extremal data analysis of Switzerland precipitation levels. [1] Cressie, N. A. C. (1993). Statistics for Spatial Data. Wiley, New York. [2] de Haan, L and Ferreria A. (2006). Extreme Value Theory An Introduction. Springer, USA. [3] Padoan, S. A., Ribatet, M and Sisson, S. A. (2009). Likelihood-Based Inference for Max-Stable Processes. Journal of the American Statistical Association, Theory & Methods. In press. [4] Davison, A. C. and Gholamrezaee, M. (2009), Geostatistics of extremes. Journal of the Royal Statistical Society, Series B. To appear.

  3. Female Criminal Violence and Differential MMPI Characteristics.

    ERIC Educational Resources Information Center

    Sutker, Patricia B.; And Others

    1978-01-01

    Compared MMPI scale elevations and profile patterns produced by female murderers. Results suggest significant, reliable relationships between extreme criminal violence and aspects of MMPI performance. Women murderers were more defensive, less in touch with impulses, more socially conforming, and more removed from stereotyped definitions of…

  4. The School Child with ME.

    ERIC Educational Resources Information Center

    Colby, Jane

    1994-01-01

    This article describes the incidence, symptoms, management, and other aspects of myalgic encephalomyelitis (ME) in relation to children in school. The disease is probably caused by an enterovirus and is characterized by extreme fatigue, muscle pain, an inability to concentrate, impaired speech, and sensory disturbances. Suggestions for managing…

  5. The Central Molecular Zone of the Milky Way: Lessons about Star Formation from an extreme Environment

    NASA Astrophysics Data System (ADS)

    Kauffmann, Jens; Thushara Pillai, G. S.; Zhang, Qizhou; Lu, Xing; Immer, Katharina

    2015-08-01

    The Central Molecular Zone of the Milky Way (CMZ; innermost ~100pc) hosts a number of remarkably dense and massive clouds. These are subject to extreme environmental conditions, including very high cosmic ray fluxes and strong magnetic fields. Exploring star formation under such exceptional circumstances is essential for several of reasons. First, the CMZ permits to probe an extreme point in the star formation parameter space, which helps to test theoretical models. Second, CMZ clouds might help to understand the star formation under extreme conditions in more distant environments, such as in starbursts and the early universe.One particularly striking aspect is that — compared to the solar neighborhood — CMZ star formation in dense gas is suppressed by more than an order of magnitude (Longmore et al. 2012, Kauffmann et al. 2013). This questions current explanations for relations between the dense gas and the star formation rate (e.g., Gao & Solomon 2004, Lada et al. 2012). In other words, the unusually dense and massive CMZ molecular clouds form only very few stars, if any at all. Why is this so?Based on data from ALMA, CARMA, and SMA interferometers, we present results from the Galactic Center Molecular Cloud Survey (GCMS), the first study of a comprehensive sample of molecular clouds in the CMZ. This research yields a curious result: most of the major CMZ clouds are essentially devoid of significant substructure of the sort usually found in regions of high-mass star formation (Kauffmann et al. 2013). Preliminary analysis indicates that some clouds rather resemble homogeneous balls of gas. This suggests a highly dynamic picture of cloud evolution in the CMZ where clouds form, disperse, and re-assemble constantly. This concept is benchmarked against a new ALMA survey and first results from a legacy survey on the SMA.It is plausible that dense clouds in other galaxies have a similar internal structure. Instruments like ALMA and the JWST will soon permit to resolve such regions in nearby galaxies.

  6. Range Performance of Bombers Powered by Turbine-Propeller Power Plants

    NASA Technical Reports Server (NTRS)

    Cline, Charles W.

    1950-01-01

    Calculations have been made to find range? attainable by bombers of gross weights from l40,000 to 300,000 pounds powered by turbine-propeller power plants. Only conventional configurations were considered and emphasis was placed upon using data for structural and aerodynamic characteristics which are typical of modern military airplanes. An effort was made to limit the various parameters invoked in the airplane configuration to practical values. Therefore, extremely high wing loadings, large amounts of sweepback, and very high aspect ratios have not been considered. Power-plant performance was based upon the performance of a typical turbine-propeller engine equipped with propellers designed to maintain high efficiencies at high-subsonic speeds. Results indicated, in general, that the greatest range, for a given gross weight, is obtained by airplanes of high wing loading, unless the higher cruising speeds associated with the high-wing-loading airplanes require-the use of thinner wing sections. Further results showed the effect of cruising at-high speeds, of operation at very high altitudes, and of carrying large bomb loads.

  7. Rationale and design of the ARCUS: Effects of trAnsRadial perCUtaneouS coronary intervention on upper extremity function.

    PubMed

    Zwaan, Eva M; IJsselmuiden, Alexander J J; van Rosmalen, Joost; van Geuns, Robert-Jan M; Amoroso, Giovanni; Moerman, Esther; Ritt, Marco J P F; Schreuders, Ton A R; Kofflard, Marcel J M; Holtzer, Carlo A J

    2016-12-01

    The aim of this study is to provide a complete insight in the access-site morbidity and upper extremity function after Transradial Percutaneous Coronary Intervention (TR-PCI). In percutaneous coronary intervention the Transradial Approach (TRA) is gaining popularity as a default technique. It is a very promising technique with respect to post-procedure complications, but the exact effects of TRA on upper extremity function are unknown. The effects of trAnsRadial perCUtaneouS coronary intervention on upper extremity function (ARCUS) trial is a multicenter prospective cohort study that will be conducted in all patients admitted for TR-PCI. Clinical outcomes will be monitored during a follow-up of 6 months, with its primary endpoint at two weeks of follow-up. To investigate the complete upper extremity function, a combination of physical examinations and validated questionnaires will be used to provide information on anatomical integrity, strength, range of motion (ROM), coordination, sensibility, pain, and functioning in everyday life. Procedural and material specifications will be registered in order to include all possible aspects influencing upper extremity function. Results from this study will elucidate the effect of TR-PCI on upper extremity function. This creates the opportunity to further optimize TR-PCI, to make improvements in functional outcome and to prevent morbidity regarding full upper extremity function. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. A user-targeted synthesis of the VALUE perfect predictor experiment

    NASA Astrophysics Data System (ADS)

    Maraun, Douglas; Widmann, Martin; Gutierrez, Jose; Kotlarski, Sven; Hertig, Elke; Wibig, Joanna; Rössler, Ole; Huth, Radan

    2016-04-01

    VALUE is an open European network to validate and compare downscaling methods for climate change research. A key deliverable of VALUE is the development of a systematic validation framework to enable the assessment and comparison of both dynamical and statistical downscaling methods. VALUE's main approach to validation is user-focused: starting from a specific user problem, a validation tree guides the selection of relevant validation indices and performance measures. We consider different aspects: (1) marginal aspects such as mean, variance and extremes; (2) temporal aspects such as spell length characteristics; (3) spatial aspects such as the de-correlation length of precipitation extremes; and multi-variate aspects such as the interplay of temperature and precipitation or scale-interactions. Several experiments have been designed to isolate specific points in the downscaling procedure where problems may occur. Experiment 1 (perfect predictors): what is the isolated downscaling skill? How do statistical and dynamical methods compare? How do methods perform at different spatial scales? Experiment 2 (Global climate model predictors): how is the overall representation of regional climate, including errors inherited from global climate models? Experiment 3 (pseudo reality): do methods fail in representing regional climate change? Here, we present a user-targeted synthesis of the results of the first VALUE experiment. In this experiment, downscaling methods are driven with ERA-Interim reanalysis data to eliminate global climate model errors, over the period 1979-2008. As reference data we use, depending on the question addressed, (1) observations from 86 meteorological stations distributed across Europe; (2) gridded observations at the corresponding 86 locations or (3) gridded spatially extended observations for selected European regions. With more than 40 contributing methods, this study is the most comprehensive downscaling inter-comparison project so far. The results clearly indicate that for several aspects, the downscaling skill varies considerably between different methods. For specific purposes, some methods can therefore clearly be excluded.

  9. Genetic and life-history consequences of extreme climate events

    PubMed Central

    Mangel, Marc; Jesensek, Dusan; Garza, John Carlos; Crivelli, Alain J.

    2017-01-01

    Climate change is predicted to increase the frequency and intensity of extreme climate events. Tests on empirical data of theory-based predictions on the consequences of extreme climate events are thus necessary to understand the adaptive potential of species and the overarching risks associated with all aspects of climate change. We tested predictions on the genetic and life-history consequences of extreme climate events in two populations of marble trout Salmo marmoratus that have experienced severe demographic bottlenecks due to flash floods. We combined long-term field and genotyping data with pedigree reconstruction in a theory-based framework. Our results show that after flash floods, reproduction occurred at a younger age in one population. In both populations, we found the highest reproductive variance in the first cohort born after the floods due to a combination of fewer parents and higher early survival of offspring. A small number of parents allowed for demographic recovery after the floods, but the genetic bottleneck further reduced genetic diversity in both populations. Our results also elucidate some of the mechanisms responsible for a greater prevalence of faster life histories after the extreme event. PMID:28148745

  10. Using hypnosis to disrupt face processing: mirrored-self misidentification delusion and different visual media

    PubMed Central

    Connors, Michael H.; Barnier, Amanda J.; Coltheart, Max; Langdon, Robyn; Cox, Rochelle E.; Rivolta, Davide; Halligan, Peter W.

    2014-01-01

    Mirrored-self misidentification delusion is the belief that one’s reflection in the mirror is not oneself. This experiment used hypnotic suggestion to impair normal face processing in healthy participants and recreate key aspects of the delusion in the laboratory. From a pool of 439 participants, 22 high hypnotisable participants (“highs”) and 20 low hypnotisable participants were selected on the basis of their extreme scores on two separately administered measures of hypnotisability. These participants received a hypnotic induction and a suggestion for either impaired (i) self-face recognition or (ii) impaired recognition of all faces. Participants were tested on their ability to recognize themselves in a mirror and other visual media – including a photograph, live video, and handheld mirror – and their ability to recognize other people, including the experimenter and famous faces. Both suggestions produced impaired self-face recognition and recreated key aspects of the delusion in highs. However, only the suggestion for impaired other-face recognition disrupted recognition of other faces, albeit in a minority of highs. The findings confirm that hypnotic suggestion can disrupt face processing and recreate features of mirrored-self misidentification. The variability seen in participants’ responses also corresponds to the heterogeneity seen in clinical patients. An important direction for future research will be to examine sources of this variability within both clinical patients and the hypnotic model. PMID:24994973

  11. Deformability of Oxide Inclusions in Tire Cord Steels

    NASA Astrophysics Data System (ADS)

    Zhang, Lifeng; Guo, Changbo; Yang, Wen; Ren, Ying; Ling, Haitao

    2018-04-01

    The deformation of oxide inclusions in tire cord steels during hot rolling was analyzed, and the factors influencing their deformability at high and low temperatures were evaluated and discussed. The aspect ratio of oxide inclusions decreased with the increasing reduction ratio of the steel during hot rolling owing to the fracture of the inclusions. The aspect ratio obtained after the first hot-rolling process was used to characterize the high-temperature deformability of the inclusions. The deformation first increased and then decreased with the increasing (MgO + Al2O3)/(SiO2 + MnO) ratio of the inclusions. It also increased with the decreasing melting temperatures of the inclusions. Young's modulus was used to evaluate the low-temperature deformability of the inclusions. An empirical formula was fitted to calculate the Young's moduli of the oxides using the mean atomic volume. The moduli values of the inclusions causing wire fracture were significantly greater than the average. To reduce fracture in tire cord steel wires during cold drawing, it is proposed that inclusions be controlled to those with high SiO2 content and extremely low Al2O3 content. This proposal is based on the hypothesis that the deformabilities of oxides during cold drawing are inversely proportional to their Young's moduli. The future study thus proposed includes an experimental confirmation for the abovementioned predictions.

  12. HYDROLOGY AND LANDSCAPE CONNECTIVITY OF VERNAL POOLS OF THE GLACIATED NORTHEAST

    EPA Science Inventory

    The hydrologic budget of a vernal pool influences many aspects of pool function and is the basis for pool life. Although alternating wet and dry periods occur in most wetlands, vernal pools can experience extreme moisture fluctuations. This variability results from intra- and i...

  13. Learning Human Aspects of Collaborative Software Development

    ERIC Educational Resources Information Center

    Hadar, Irit; Sherman, Sofia; Hazzan, Orit

    2008-01-01

    Collaboration has become increasingly widespread in the software industry as systems have become larger and more complex, adding human complexity to the technological complexity already involved in developing software systems. To deal with this complexity, human-centric software development methods, such as Extreme Programming and other agile…

  14. Wheat seed weight and quality differ temporally in sensitivity to warm or cool conditions during seed development and maturation

    PubMed Central

    Nasehzadeh, M

    2017-01-01

    Abstract Background and aims Short periods of extreme temperature may affect wheat (Triticum aestivum) seed weight, but also quality. Temporal sensitivity to extreme temperature during seed development and maturation was investigated. Methods Plants of ‘Tybalt’ grown at ambient temperature were moved to growth cabinets at 29/20°C or 34/20°C (2010), or 15/10°C or 34/20°C (2011), for successive 7-d periods from 7 DAA (days after anthesis) onwards, and also 7–65 DAA in 2011. Seed samples were harvested serially and moisture content, weight, ability to germinate, subsequent longevity in air-dry storage and bread-making quality were determined. Key Results High temperature (34/20°C) reduced final seed weight, with greatest temporal sensitivity at 7–14 or 14–21 DAA. Several aspects of bread-making quality were also most sensitive to high temperature then, but whereas protein quality decreased protein and sulphur concentrations improved. Early exposure to high temperature provided earlier development of ability to germinate and tolerate desiccation, but had little effect on maximum germination capacity. All treatments at 15/10°C resulted in ability to germinate declining between 58 and 65 DAA. Early exposure to high temperature hastened improvement in seed storage longevity, but the subsequent decline in late maturation preceded that in the control. Long (7–65 DAA) exposure to 15/10°C disrupted the development of seed longevity, with no improvement after seed filling ended. Longevity improved during maturation drying in other treatments. Early (7–14 DAA) exposure to high temperature reduced and low temperature increased subsequent longevity at harvest maturity, whereas late (35 or 42–49 DAA) exposure to high temperature increased and low temperature reduced it. Conclusions Temporal sensitivity to extreme temperature was detected. It varied considerably amongst the contrasting seed variables investigated. Subsequent seed longevity at harvest maturity responded negatively to temperature early in development, but positively later in development and throughout maturation. PMID:28637252

  15. Chromosomal Evolution in Chiroptera

    PubMed Central

    Sotero-Caio, Cibele G.; Baker, Robert J.; Volleth, Marianne

    2017-01-01

    Chiroptera is the second largest order among mammals, with over 1300 species in 21 extant families. The group is extremely diverse in several aspects of its natural history, including dietary strategies, ecology, behavior and morphology. Bat genomes show ample chromosome diversity (from 2n = 14 to 62). As with other mammalian orders, Chiroptera is characterized by clades with low, moderate and extreme chromosomal change. In this article, we will discuss trends of karyotypic evolution within distinct bat lineages (especially Phyllostomidae, Hipposideridae and Rhinolophidae), focusing on two perspectives: evolution of genome architecture, modes of chromosomal evolution, and the use of chromosome data to resolve taxonomic problems. PMID:29027987

  16. [Coat color in dogs. 2: Clinical significance].

    PubMed

    Laukner, A

    1998-04-01

    The meaning of the coat colour of the dog reaches further than only to the field of breeding for beauty. Besides aspects of destination (hunting dogs, herding dogs) the clinical meaning is of particular interest. Some colours can show certain defects. Diseases of allowed colours are the colour dilution alopecia (CDA) in diluted (mostly "blue") pigmentation with its subtype of Black hair follicular dysplasia (BHFD) in black pigmentation and congenital deafness in extreme piebalds. Not allowed coat colours, which are connected with defects, are the extreme dapple of the Merle-syndrome and the "grey" Collie with cyclic hematopoesis.

  17. [Socio-cultural aspects regarding the perception of quality of life amongst people engaging in extreme (high-risk) sports].

    PubMed

    Pimentel, Giuliano Gomes de Assis

    2008-01-01

    Considering the search for adventure activities as a form of improving life quality, the present paper aimed at analyzing the perception of some dimensions of that category among hang-gliding apprentices. A questionnaire was applied to 30 brasilians hang-gliding and paragliding apprentices in order to identify aspects such as, physical activity, preventive behavior, nutrition, stress control and social relationships. Comparing results with the ones found in other adventure sports, it was observed that flyers adopt a competitive and risky behavior, not showing good results in relation to affectionate relationships and physical exercises. On the other hand, all of them are considered as wealthy and more used to dealing with stress. Even not possessing good physical conditioning, individuals practice flight just due to their technical knowledge and the dominium of technology Thus, apprentices use those sport tensions as a form of training the stress control in risky situations. Regarding mental health, activities of active leisure are highly recommended as an escape valve to stress. The group studied showed that besides increasing the tolerance to stress, generated by risky situations, individuals went beyond, once it was observed that the risks of such sport have turned the individuals into more and more insensitive to the professional life pressure.

  18. High-resolution DNA content analysis of microbiopsy samples in oral lichen planus.

    PubMed

    Pentenero, M; Monticone, M; Marino, R; Aiello, C; Marchitto, G; Malacarne, D; Giaretti, W; Gandolfo, S; Castagnola, P

    2017-04-01

    DNA aneuploidy has been reported to be a predictor of poor prognosis in both premalignant and malignant lesions. In oral lichen planus (OLP), this hypothesis remains to be proved. This study aimed to determine the rate of occurrence of DNA aneuploidy in patients with OLP by high-resolution DNA flow cytometry. Patients with OLP were consecutively enrolled. Tissue samples were subdivided for formalin fixation and routine histological assessment and for immediate storage at -20°C for later DNA ploidy analysis, which was performed by DAPI staining of the extracted nuclei and excitation with a UV lamp. The DNA aneuploid sublines were characterized by the DNA Index. A DNA aneuploid status was observed in two of 77 patients with OLP (2.6%). When considering the clinical aspect of the OLP lesions, both DNA aneuploid cases had a reticular clinical aspect. DNA aneuploidy is an uncommon event in OLP and less frequent compared to other non-dysplastic and non-OLP oral potentially malignant disorders. The extremely low rate of DNA aneuploidy could represent an occasional finding or reflect the low rate of malignant transformation observed in patients with OLP even if the real prognostic value of DNA ploidy analysis in patients with OLP remains to be confirmed. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Climate services for an urban area (Baia Mare City, Romania) with a focus on climate extremes

    NASA Astrophysics Data System (ADS)

    Sima, Mihaela; Micu, Dana; Dragota, Carmen-Sofia; Mihalache, Sorin

    2013-04-01

    The Baia Mare Urban System is located in the north-western part of Romania, with around 200,000 inhabitants and represents one of the most important former mining areas in the country, whose socioeconomic profile and environmental conditions have greatly changed over the last 20 years during the transition and post-transition period. Currently the mining is closed in the area, but the historical legacy of this activity has implications in terms of economic growth, social and cultural developments and environmental quality. Baia Mare city lies in an extended depression, particularly sheltered by the mountain and hilly regions located in the north and respectively, in the south-south-eastern part of it, which explains the high frequency of calm conditions and low airstream channeling occurrences. This urban system has a typically moderate temperate-continental climate, subject to frequent westerly airflows (moist), which moderate the thermal regime (without depicting severe extremes, both positive and negative) and enhance the precipitation one (entailing a greater frequency of wet extremes). During the reference period (1971-2000), the climate change signal in the area is rather weak and not statistically significant. However, since the mid 1980s, the warming signal became more evident from the observational data (Baia Mare station), showing a higher frequency of dry spells and positive extremes. The modelling experiments covering the 2021-2050 time horizon using regional (RM5.1/HadRM3Q0/RCA3) and global (ARPEGE/HadCM3Q0/BCM/ECHAM5) circulation models carried out within the ECLISE FP7 project suggest an ongoing temperature rise, associated to an intensification of temperature and precipitation extremes. In this context, the aim of this study was to evaluate how the local authorities consider and include climate change in their activity, as well as in the development plans (e.g. territorial, economic and social development plans). Individual interviews have been undertaken with key institutions focusing on environmental, health and urban development issues. The survey was conducted in order to identify the local authorities' perception and needs on climate change information and the importance of climate services for the city and institution's activity. Generally, the results suggest that the selected institutions are poorly aware of the potential impacts of climate change and associated extremes in the area, but they showed a real interest for future climate estimations necessary to undertake reliable adaptation measures. At institutional level, do not exist specialized departments (job positions) to tackle or manage climate information and climate-related aspects, this not being a pressing or priority issue for the city. The climate services aspects are seen with interest mainly in supplying climate scenarios and models for a relatively short term (next 10 or 15 years), the climate information being in this way included in the local planning strategies.

  20. Photopolarimetric Retrievals of Snow Properties

    NASA Technical Reports Server (NTRS)

    Ottaviani, M.; van Diedenhoven, B.; Cairns, B.

    2015-01-01

    Polarimetric observations of snow surfaces, obtained in the 410-2264 nm range with the Research Scanning Polarimeter onboard the NASA ER-2 high-altitude aircraft, are analyzed and presented. These novel measurements are of interest to the remote sensing community because the overwhelming brightness of snow plagues aerosol and cloud retrievals based on airborne and spaceborne total reflection measurements. The spectral signatures of the polarized reflectance of snow are therefore worthwhile investigating in order to provide guidance for the adaptation of algorithms currently employed for the retrieval of aerosol properties over soil and vegetated surfaces. At the same time, the increased information content of polarimetric measurements allows for a meaningful characterization of the snow medium. In our case, the grains are modeled as hexagonal prisms of variable aspect ratios and microscale roughness, yielding retrievals of the grains' scattering asymmetry parameter, shape and size. The results agree with our previous findings based on a more limited data set, with the majority of retrievals leading to moderately rough crystals of extreme aspect ratios, for each scene corresponding to a single value of the asymmetry parameter.

  1. Some Spatial Aspects of Southeastern United States Climatology.

    ERIC Educational Resources Information Center

    Soule, Peter T.

    1998-01-01

    Focuses on the climatology of an eight-state region in the southern and southeastern United States. Discusses general controls of climate and spatial patterns of various climatic averages. Examines mapped extremes as a means of fostering increased awareness of the variability that exists for climatic conditions in the region. (CMK)

  2. Brief Report: Female-to-Male Transsexual People and Autistic Traits

    ERIC Educational Resources Information Center

    Jones, Rebecca M.; Wheelwright, Sally; Farrell, Krista; Martin, Emma; Green, Richard; Di Ceglie, Domenico; Baron-Cohen, Simon

    2012-01-01

    The "extreme male brain" theory suggests females with Autism Spectrum Conditions are hyper-masculinized in certain aspects of behavior. We predicted that females with Gender Identity Disorder (who are masculinized) would have elevated Autism Spectrum Quotient (AQ) scores. AQ scores from five groups were compared: (1) n = 61 transmen…

  3. The challenge for Cuba.

    PubMed Central

    Claudio, L

    1999-01-01

    The restrictions of a U.S. trade embargo and the collapse of the Soviet Union marked the beginning of a period of extreme economic hardship in Cuba. Economic adversity has had tremendous effects, both positive and negative, on all aspects of life on the Island, including environmental and public health. PMID:10210701

  4. New Strategies for Improving Rural Family Life.

    ERIC Educational Resources Information Center

    Coombs, Philip H.

    Presented in capsule form for the convenience of busy policy makers, planners, and program managers, this booklet summarizes major findings of a three-year study on practical aspects of rural development, with particular emphasis on ways of alleviating extreme poverty among disadvantaged rural families. Using case studies from Bangladesh, India,…

  5. Maritime Military Decision Making in Environments of Extreme Information Ambiguity: An Initial Exploration

    DTIC Science & Technology

    2005-09-01

    Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the...collection of information . Send comments regarding this burden estimate or any other aspect of this collection of information , including suggestions for

  6. Startup of Pumping Units in Process Water Supplies with Cooling Towers at Thermal and Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berlin, V. V., E-mail: vberlin@rinet.ru; Murav’ev, O. A., E-mail: muraviov1954@mail.ru; Golubev, A. V., E-mail: electronik@inbox.ru

    Aspects of the startup of pumping units in the cooling and process water supply systems for thermal and nuclear power plants with cooling towers, the startup stages, and the limits imposed on the extreme parameters during transients are discussed.

  7. Freestanding membrane composed of micro-ring array with ultrahigh sidewall aspect ratio for application in lightweight cathode arrays

    NASA Astrophysics Data System (ADS)

    Wang, Lanlan; Liu, Hongzhong; Jiang, Weitao; Gao, Wei; Chen, Bangdao; Li, Xin; Ding, Yucheng; An, Ningli

    2014-12-01

    A freestanding multilayer ultrathin nano-membrane (FUN-membrane) with a micro-ring array (MRA) is successfully fabricated through the controllable film deposition. Each micro-ring of FUN-membrane is 3 μm in diameter, 2 μm in height and sub-100 nm in sidewall thickness, demonstrating an ultrahigh sidewall aspect ratio of 20:1. In our strategy, a silica layer (200 nm in thickness), a chromium transition layer (5 nm-thick) and a gold layer (40 nm-thick), were in sequence deposited on patterned photoresist. After removal of the photoresist by lift-off process, a FUN-membrane with MRA was peeled off from the substrate, where the gold layer acted as a protecting layer to prevent the MRA from fracture. The FUN-membrane was then transferred to a flexible polycarbonate (PC) sheet coated with indium tin oxide (ITO) layer, which was then used as a flexible and lightweight cathode. Remarkably, the field emission effect of the fabricated FUN-membrane cathode performs a high field-enhancement factor of 1.2 × 104 and a low turn-on voltage of 2 V/μm, indicating the advantages of the sharp metal edge of MRA. Due to the rational design and material versatility, the FUN-membrane thus could be transferred to either rigid or flexible substrate, even curved surface, such as the skin of bio-robot's arm or leg. Additionally, the FUN-membrane composed of MRA with extremely high aspect ratio of insulator-metal sidewall, also provides potential applications in optical devices, lightweight and flexible display devices, and electronic eye imagers.

  8. Extreme Weather and Climate: Workshop Report

    NASA Technical Reports Server (NTRS)

    Sobel, Adam; Camargo, Suzana; Debucquoy, Wim; Deodatis, George; Gerrard, Michael; Hall, Timothy; Hallman, Robert; Keenan, Jesse; Lall, Upmanu; Levy, Marc; hide

    2016-01-01

    Extreme events are the aspects of climate to which human society is most sensitive. Due to both their severity and their rarity, extreme events can challenge the capacity of physical, social, economic and political infrastructures, turning natural events into human disasters. Yet, because they are low frequency events, the science of extreme events is very challenging. Among the challenges is the difficulty of connecting extreme events to longer-term, large-scale variability and trends in the climate system, including anthropogenic climate change. How can we best quantify the risks posed by extreme weather events, both in the current climate and in the warmer and different climates to come? How can we better predict them? What can we do to reduce the harm done by such events? In response to these questions, the Initiative on Extreme Weather and Climate has been created at Columbia University in New York City (extreme weather.columbia.edu). This Initiative is a University-wide activity focused on understanding the risks to human life, property, infrastructure, communities, institutions, ecosystems, and landscapes from extreme weather events, both in the present and future climates, and on developing solutions to mitigate those risks. In May 2015,the Initiative held its first science workshop, entitled Extreme Weather and Climate: Hazards, Impacts, Actions. The purpose of the workshop was to define the scope of the Initiative and tremendously broad intellectual footprint of the topic indicated by the titles of the presentations (see Table 1). The intent of the workshop was to stimulate thought across disciplinary lines by juxtaposing talks whose subjects differed dramatically. Each session concluded with question and answer panel sessions. Approximately, 150 people were in attendance throughout the day. Below is a brief synopsis of each presentation. The synopses collectively reflect the variety and richness of the emerging extreme event research agenda.

  9. High hepatotoxic dose of paracetamol produces generalized convulsions and brain damage in rats. A counteraction with the stable gastric pentadecapeptide BPC 157 (PL 14736).

    PubMed

    Ilic, S; Drmic, D; Zarkovic, K; Kolenc, D; Coric, M; Brcic, L; Klicek, R; Radic, B; Sever, M; Djuzel, V; Ivica, M; Boban Blagaic, A; Zoricic, Z; Anic, T; Zoricic, I; Djidic, S; Romic, Z; Seiwerth, S; Sikiric, P

    2010-04-01

    We focused on stable gastric pentadecapeptide BPC 157 (GEPPPGKPADDAGLV, MW 1419, an anti-ulcer peptide efficient in inflammatory bowel disease trials (PL 14736), no toxicity reported) because of its hepatoprotective effects. We investigate a particular aspect of the sudden onset of encephalopathy with extreme paracetamol overdose (5 g/kg intraperitoneally) so far not reported: rapidly induced progressive hepatic encephalopathy with generalized convulsions in rats. BPC 157 therapy (10 microg, 10 ng, 10 pg/kg, intraperitoneally or intragastrically) was effective (microg-ng range) against paracetamol toxicity, given in early (BPC 157 immediately after paracetamol, prophylactically) or advanced stage (BPC 157 at 3 hours after paracetamol, therapeutically). At 25 min post-paracetamol increased ALT, AST and ammonium serum values precede liver lesion while in several brain areas, significant damage became apparent, accompanied by generalized convulsions. Through the next 5 hour seizure period and thereafter, the brain damage, liver damage enzyme values and hyperammonemia increased, particularly throughout the 3-24 h post-paracetamol period. BPC 157 demonstrated clinical (no convulsions (prophylactic application) or convulsions rapidly disappeared (therapeutic effect within 25 min)), microscopical (markedly less liver and brain lesions) and biochemical (enzyme and ammonium serum levels decreased) counteraction. Both, the prophylactic and therapeutic benefits (intraperitoneally and intragastrically) clearly imply BPC 157 (microg-ng range) as a highly effective paracetamol antidote even against highly advanced damaging processes induced by an extreme paracetamol over-dose.

  10. Ion beam sputter coatings for laser technology

    NASA Astrophysics Data System (ADS)

    Ristau, Detlev; Gross, Tobias

    2005-09-01

    The initial motivation for the development of Ion Beam Sputtering (IBS) processes was the need for optical coatings with extremely low optical scatter losses for laser gyros. Especially, backscattering of the gyro-mirrors couples the directional modes in the ring resonator leading to the lock in effect which limits the sensitivity of the gyro. Accordingly, the first patent on IBS was approved for an aircraft company (Litton) in 1978. In the course of the rapid development of the IBS-concept during the last two decades, an extremely high optical quality could be achieved for laser coatings in the VIS- and NIR-spectral region. For example, high reflecting coatings with total optical losses below 1 ppm were demonstrated for specific precision measurement applications with the Nd:YAG-laser operating at 1.064 μm. Even though the high quality level of IBS-coatings had been confirmed in many applications, the process has not found its way into the production environment of most optical companies. Major restrictions are the relatively low rate of the deposition process and the poor lateral homogeneity of the coatings, which are related to the output characteristics of the currently available ion sources. In the present contribution, the basic principles of IBS will be discussed in the context of the demands of modern laser technology. Besides selected examples for special applications of IBS, aspects will be presented for approaches towards rapid manufacturing of coatings and the production of rugate filters on the basis of IBS-techniques.

  11. JB-300: An advanced medium size transport for 2005

    NASA Technical Reports Server (NTRS)

    Debrouwer, Giles; Graham, Katherine; Ison, Jim; Juarez, Vince; Moskalik, Steve; Pankonin, Jon; Weinstein, Arnold

    1993-01-01

    In the fall of 1992, the TAC Team was presented with a Request for Proposal (PFP) for a mid-size (250-350 passenger) commercial transport. The aircraft was to be extremely competitive in the areas of passenger comfort, performance, and economic aspects. Through the use of supercritical airfoils, a technologically advanced Very High By-pass Ratio (VHBR) turbofan engine, a low overall drag configuration, a comparable interior layout, and mild use of composites, the JB-300 offers an economically viable choice to the airlines. The cents per passenger mile of the JB-300 is 1.76, which is considerably lower than current aircraft in the same range. Overall, the JB-300 is a technologically advanced aircraft, which will meet the demands of the 21st century.

  12. Exopolysaccharides enriched in rare sugars: bacterial sources, production, and applications.

    PubMed

    Roca, Christophe; Alves, Vitor D; Freitas, Filomena; Reis, Maria A M

    2015-01-01

    Microbial extracellular polysaccharides (EPS), produced by a wide range of bacteria, are high molecular weight biopolymers, presenting an extreme diversity in terms of chemical structure and composition. They may be used in many applications, depending on their chemical and physical properties. A rather unexplored aspect is the presence of rare sugars in the composition of some EPS. Rare sugars, such as rhamnose or fucose, may provide EPS with additional biological properties compared to those composed of more common sugar monomers. This review gives a brief overview of these specific EPS and their producing bacteria. Cultivation conditions are summarized, demonstrating their impact on the EPS composition, together with downstream processing. Finally, their use in different areas, including cosmetics, food products, pharmaceuticals, and biomedical applications, are discussed.

  13. Exercise at the Extremes: The Amount of Exercise to Reduce Cardiovascular Events.

    PubMed

    Eijsvogels, Thijs M H; Molossi, Silvana; Lee, Duck-Chul; Emery, Michael S; Thompson, Paul D

    2016-01-26

    Habitual physical activity and regular exercise training improve cardiovascular health and longevity. A physically active lifestyle is, therefore, a key aspect of primary and secondary prevention strategies. An appropriate volume and intensity are essential to maximally benefit from exercise interventions. This document summarizes available evidence on the relationship between the exercise volume and risk reductions in cardiovascular morbidity and mortality. Furthermore, the risks and benefits of moderate- versus high-intensity exercise interventions are compared. Findings are presented for the general population and cardiac patients eligible for cardiac rehabilitation. Finally, the controversy of excessive volumes of exercise in the athletic population is discussed. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  14. Changes in Extreme Events: from GCM Output to Social, Economic and Ecological Impacts

    NASA Astrophysics Data System (ADS)

    Tebaldi, C.; Meehl, G. A.

    2006-12-01

    Extreme events can deeply affect social and natural systems. The current generation of global climate model is producing information that can be directly used to characterize future changes in extreme events, and through a further step their impacts, despite their still relatively coarse resolution. It is important to define extreme indicators consistently with what we expect GCM to be able to represent reliably. We use two examples from our work, heat waves and frost days, that well describe different aspects of the analysis of extremes from GCM output. Frost days are "mild extremes" and their definition and computation is straightforward. GCMs can represent them accurately and display a strong consistent signal of change. The impacts of these changes will be extremely relevant for ecosystems and agriculture. Heat waves do not have a standard definition. On the basis of historical episodes we isolate characteristics that were responsible for the worst effects on human health, for example, and analyze these characteristics in model simulations, validating the model's historical simulations. The changes in these characteristics can then be easily translated in expected differential impacts on public health. Work in progress goes in the direction of better characterization of "heat waves" taking into account jointly a set of variables like maximum and minimum temperatures and humidity, better addressing the biological vulnerabilities of the populations at risk.

  15. Experimental investigation of fiberglass sandwich composite bending behaviour after severe aging condition

    NASA Astrophysics Data System (ADS)

    Gambaro, Carla; Lertora, Enrico; Mandolfino, Chiara

    2016-10-01

    Fiber Reinforced Polymer (FRP) sandwich panels are increasing their application as structural and non-structural components in all kinds of construction. By varying the material and thickness of core and face sheets, it is possible to obtain sandwich structures with different properties and performance. In particular, their advantages as lightweight and high mechanical properties make them extremely suitable for the transport industry. One of the most critical aspects regarding composite materials for engineering application is their performance after hygrothermal aging. The panels used in this study are composed of low density core, made by thermosetting resin foam with microspheres and glass fibers rolled until obtaining the required thickness, and two face sheets of the same material but realized in high density. In this study, the authors focused on the bending behaviour of this kind of sandwich panel, as received and after severe aging cycles.

  16. The Challenge of Aviation Emergency and Abnormal Situations

    NASA Technical Reports Server (NTRS)

    Burian, Barbara K.; Barshi, Immanuel; Dismukes, Key

    2005-01-01

    Emergency and abnormal situations occur on flights everyday around the world. They range from minor situations readily managed to extremely serious and highly time-critical situations that deeply challenge the skills of even the most effective crews. How well crews respond to these situations is a function of several interacting sets of issues: (1) the design of non-normal procedures and checklists, (2) design of aircraft systems and automation, (3) specific aspects of the non-normal situation, such as time criticality and complexity of the situation, (4) human performance capabilities and cognitive limitations under high workload and stress, (5) design of training for non-normal situations, (6) philosophies, policies and practices within the industry, and (7) economic and regulatory constraints. Researchers and pilots working on NASA's Emergency and Abnormal Situations project are addressing these issues in a long-range study. In this paper we discuss these issues and illustrate them with examples from recent incidents and accidents.

  17. Quasar massive ionized outflows traced by CIV λ1549 and [OIII]λλ4959,5007

    NASA Astrophysics Data System (ADS)

    Marziani, Paola; Negrete, C. Alenka; Dultzin, Deborah; Martínez-Aldama, Mary L.; Del Olmo, Ascensión; D'Onofrio, Mauro; Stirpe, Giovanna M.

    2017-09-01

    The most luminous quasars (with bolometric luminosities are 1047 erg/s) show a high prevalence of CIV λ1549 and [OIII]λλ4959,5007 emission line profiles with strong blueshifts. Blueshifts are interpreted as due to Doppler effect and selective obscuration, and indicate outflows occurring over a wide range of spatial scales. We found evidence in favor of the nuclear origin of the outflows diagnosed by [OIII]λλ 4959,5007. The ionized gas mass, kinetic power, and mechanical thrust are extremely high, and suggest widespread feedback effects on the host galaxies of very luminous quasars, at cosmic epochs between 2 and 6 Gyr from the Big Bang. In this mini-review we summarize results obtained by our group and reported in several major papers in the last few years with an eye on challenging aspects of quantifying feedback effects in large samples of quasars.

  18. Captive breeding of pangolins: current status, problems and future prospects.

    PubMed

    Hua, Liushuai; Gong, Shiping; Wang, Fumin; Li, Weiye; Ge, Yan; Li, Xiaonan; Hou, Fanghui

    2015-01-01

    Pangolins are unique placental mammals with eight species existing in the world, which have adapted to a highly specialized diet of ants and termites, and are of significance in the control of forest termite disaster. Besides their ecological value, pangolins are extremely important economic animals with the value as medicine and food. At present, illegal hunting and habitat destruction have drastically decreased the wild population of pangolins, pushing them to the edge of extinction. Captive breeding is an important way to protect these species, but because of pangolin's specialized behaviors and high dependence on natural ecosystem, there still exist many technical barriers to successful captive breeding programs. In this paper, based on the literatures and our practical experience, we reviewed the status and existing problems in captive breeding of pangolins, including four aspects, the naturalistic habitat, dietary husbandry, reproduction and disease control. Some recommendations are presented for effective captive breeding and protection of pangolins.

  19. Oxidation-induced structural changes in sub-nanometer platinum supported on alumina

    DOE PAGES

    DeBusk, Melanie Moses; Allard, Jr, Lawrence Frederick; Blom, Douglas Allen; ...

    2015-06-26

    Platinum supported on alumina is an essential component of emission treatment catalysts used in transportation. Theoretical, experimental, and mechanistic aspects of platinum particles supported on a variety of supports have been extensively studied; however, available experimental information on the behavior of single vs. sub-nanometer platinum is extremely limited. To bridge the knowledge gap between single supported platinum and well-formed supported platinum nanoparticles, we have carried out synthesis, characterization, and CO and NO oxidation studies of sub-nanometer platinum supported on α, θ, and γ-Al 2O 3 and monitored changes in structure upon exposure to CO and NO oxidation conditions. Furthermore, wemore » find that sub-nanometer Pt is highly effective for CO oxidation due to high platinum dispersion but is not very efficient as NO oxidation catalyst. Lastly, sub-nanometer platinum agglomerates rapidly under CO or NO oxidation conditions to form nanoparticles.« less

  20. Beam test results of STS prototype modules for the future accelerator experiments FAIR/CBM and NICA/MPD projects

    NASA Astrophysics Data System (ADS)

    Kharlamov, Petr; Dementev, Dmitrii; Shitenkov, Mikhail

    2017-10-01

    High-energy heavy-ion collision experiments provide the unique possibility to create and investigate extreme states of strongly-interacted matter and address the fundamental aspects of QCD. The experimental investigation the QCD phase diagram would be a major breakthrough in our understanding of the properties of nuclear matter. The reconstruction of the charged particles created in the nuclear collisions, including the determination of their momenta, is the central detection task in high-energy heavy-ion experiments. It is taken up by the Silicon Tracking System in CBM@FAIR and by Inner Tracker in MPD@NICA currently under development. These experiments requires very fast and radiation hard detectors, a novel data read-out and analysis concept including free streaming front-end electronics. Thermal and beam tests of prototype detector modules for these tracking systems showed the stability of sensors and readout electronics operation.

  1. Gas dispersion measurements using a mobile Raman lidar system

    NASA Technical Reports Server (NTRS)

    Houston, J. D.; Brown, D. R.

    1986-01-01

    The exploitation of natural gas resources to supply energy demands has resulted in the need to engineer pipelines and plants capable of handling extremely high pressures and throughputs. Consequently, more attention has been directed to evaluating the consequences of releases of material whether accidental or deliberate in nature. An important aspect of assessing the consequences of a release is an understanding of how gas disperses in the atmosphere over a wide range of release and atmospheric conditions. The most cost effective way of providing such information is through the development and use of reliable theoretical prediction methods. The need for some form of remote sensing device was identified. The various possibilities studied led to the conclusion that LIDAR (Light Detection And Ranging) offered the most suitable method. The system designed and built is described, and its recent use in monitoring operational ventings from a high pressure transmission system is discussed.

  2. High prevalence of abnormal motor repertoire at 3 months corrected age in extremely preterm infants.

    PubMed

    Fjørtoft, Toril; Evensen, Kari Anne I; Øberg, Gunn Kristin; Songstad, Nils Thomas; Labori, Cathrine; Silberg, Inger Elisabeth; Loennecken, Marianne; Møinichen, Unn Inger; Vågen, Randi; Støen, Ragnhild; Adde, Lars

    2016-03-01

    To compare early motor repertoire between extremely preterm and term-born infants. An association between the motor repertoire and gestational age and birth weight was explored in extremely preterm infants without severe ultrasound abnormalities. In a multicentre study, the early motor repertoire of 82 infants born extremely preterm (ELGAN:<28 weeks) and/or with extremely low birth weight (ELBW:<1000 g) and 87 term-born infants were assessed by the "Assessment of Motor Repertoire - 2 to 5 Months" (AMR) which is part of Prechtl's "General Movement Assessment", at 12 weeks post-term age. Fidgety movements were classified as normal if present and abnormal if absent, sporadic or exaggerated. Concurrent motor repertoire was classified as normal if smooth and fluent and abnormal if monotonous, stiff, jerky and/or predominantly fast or slow. Eight-teen ELBW/ELGAN infants had abnormal fidgety movements (8 absent, 7 sporadic and 3 exaggerated fidgety movements) compared with 2 control infants (OR:12.0; 95%CI:2.7-53.4) and 46 ELBW/ELGAN infants had abnormal concurrent motor repertoire compared with 17 control infants (OR:5.3; 95%CI:2.6-10.5). Almost all detailed aspects of the AMR differed between the groups. Results were the same when three infants with severe ultrasound abnormalities were excluded. In the remaining ELBW/ELGAN infants, there was no association between motor repertoire and gestational age or birth weight. ELBW/ELGAN infants had poorer quality of early motor repertoire than term-born infants.The findings were not explained by severe abnormalities on neonatal ultrasound scans and were not correlated to the degree of prematurity. The consequences of these abnormal movement patterns remain to be seen in future follow-up studies. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  3. Modeling, Forecasting and Mitigating Extreme Earthquakes

    NASA Astrophysics Data System (ADS)

    Ismail-Zadeh, A.; Le Mouel, J.; Soloviev, A.

    2012-12-01

    Recent earthquake disasters highlighted the importance of multi- and trans-disciplinary studies of earthquake risk. A major component of earthquake disaster risk analysis is hazards research, which should cover not only a traditional assessment of ground shaking, but also studies of geodetic, paleoseismic, geomagnetic, hydrological, deep drilling and other geophysical and geological observations together with comprehensive modeling of earthquakes and forecasting extreme events. Extreme earthquakes (large magnitude and rare events) are manifestations of complex behavior of the lithosphere structured as a hierarchical system of blocks of different sizes. Understanding of physics and dynamics of the extreme events comes from observations, measurements and modeling. A quantitative approach to simulate earthquakes in models of fault dynamics will be presented. The models reproduce basic features of the observed seismicity (e.g., the frequency-magnitude relationship, clustering of earthquakes, occurrence of extreme seismic events). They provide a link between geodynamic processes and seismicity, allow studying extreme events, influence of fault network properties on seismic patterns and seismic cycles, and assist, in a broader sense, in earthquake forecast modeling. Some aspects of predictability of large earthquakes (how well can large earthquakes be predicted today?) will be also discussed along with possibilities in mitigation of earthquake disasters (e.g., on 'inverse' forensic investigations of earthquake disasters).

  4. Upper-extremity and mobility subdomains from the Patient-Reported Outcomes Measurement Information System (PROMIS) adult physical functioning item bank.

    PubMed

    Hays, Ron D; Spritzer, Karen L; Amtmann, Dagmar; Lai, Jin-Shei; Dewitt, Esi Morgan; Rothrock, Nan; Dewalt, Darren A; Riley, William T; Fries, James F; Krishnan, Eswar

    2013-11-01

    To create upper-extremity and mobility subdomain scores from the Patient-Reported Outcomes Measurement Information System (PROMIS) physical functioning adult item bank. Expert reviews were used to identify upper-extremity and mobility items from the PROMIS item bank. Psychometric analyses were conducted to assess empirical support for scoring upper-extremity and mobility subdomains. Data were collected from the U.S. general population and multiple disease groups via self-administered surveys. The sample (N=21,773) included 21,133 English-speaking adults who participated in the PROMIS wave 1 data collection and 640 Spanish-speaking Latino adults recruited separately. Not applicable. We used English- and Spanish-language data and existing PROMIS item parameters for the physical functioning item bank to estimate upper-extremity and mobility scores. In addition, we fit graded response models to calibrate the upper-extremity items and mobility items separately, compare separate to combined calibrations, and produce subdomain scores. After eliminating items because of local dependency, 16 items remained to assess upper extremity and 17 items to assess mobility. The estimated correlation between upper extremity and mobility was .59 using existing PROMIS physical functioning item parameters (r=.60 using parameters calibrated separately for upper-extremity and mobility items). Upper-extremity and mobility subdomains shared about 35% of the variance in common, and produced comparable scores whether calibrated separately or together. The identification of the subset of items tapping these 2 aspects of physical functioning and scored using the existing PROMIS parameters provides the option of scoring these subdomains in addition to the overall physical functioning score. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  5. Climate extremes and the carbon cycle - a review using an integrated approach with regional examples for forests & native ecosystems -

    NASA Astrophysics Data System (ADS)

    Frank, D.; Reichstein, M.; Bahn, M.; Beer, C.; Ciais, P.; Mahecha, M.; Seneviratne, S. I.; Smith, P.; van Oijen, M.; Walz, A.

    2012-04-01

    The terrestrial carbon cycle provides an important biogeochemical feedback to climate and is itself particularly susceptible to extreme climate events. Climate extremes can override any (positive) effects of mean climate change as shown in European and recent US-American heat waves and dry spells. They can impact the structure, composition, and functioning of terrestrial ecosystems and have the potential to cause rapid carbon losses from accumulated stocks. We review how climate extremes like severe droughts, heat waves, extreme precipitation or storms can cause direct impacts on the CO2 fluxes [e.g. due to extreme temperature and/ or drought events] as well as lagged impacts on the carbon cycle [e.g. via an increased fire risk, or disease outbreaks and pest invasions]. The relative impact of the different climate extremes varies according to climate region and vegetation type. We present lagged effects on plant growth (and mortality) in the year(s) following an extreme event and their impacts on the carbon sequestration of forests and natural ecosystems. Comprehensive regional or even continental quantification with regard to extreme events is missing, and especially compound extreme events, the role of lagged effects and aspects of the return frequency are not studied enough. In a case study of a Mediterranean ecosystem we illustrate that the response of the net carbon balance at ecosystem level to regional climate change is hard to predict as interacting and partly compensating processes are affected and several processes which have the ability to substantially alter the carbon balance are not or not sufficiently represented in state-of-the-art biogeochemical models.

  6. Challenges and requirements of mask data processing for multi-beam mask writer

    NASA Astrophysics Data System (ADS)

    Choi, Jin; Lee, Dong Hyun; Park, Sinjeung; Lee, SookHyun; Tamamushi, Shuichi; Shin, In Kyun; Jeon, Chan Uk

    2015-07-01

    To overcome the resolution and throughput of current mask writer for advanced lithography technologies, the platform of e-beam writer have been evolved by the developments of hardware and software in writer. Especially, aggressive optical proximity correction (OPC) for unprecedented extension of optical lithography and the needs of low sensitivity resist for high resolution result in the limit of variable shaped beam writer which is widely used for mass production. The multi-beam mask writer is attractive candidate for photomask writing of sub-10nm device because of its high speed and the large degree of freedom which enable high dose and dose modulation for each pixel. However, the higher dose and almost unlimited appetite for dose modulation challenge the mask data processing (MDP) in aspects of extreme data volume and correction method. Here, we discuss the requirements of mask data processing for multi-beam mask writer and presents new challenges of the data format, data flow, and correction method for user and supplier MDP tool.

  7. Fabrication of enzyme-degradable and size-controlled protein nanowires using single particle nano-fabrication technique

    PubMed Central

    Omichi, Masaaki; Asano, Atsushi; Tsukuda, Satoshi; Takano, Katsuyoshi; Sugimoto, Masaki; Saeki, Akinori; Sakamaki, Daisuke; Onoda, Akira; Hayashi, Takashi; Seki, Shu

    2014-01-01

    Protein nanowires exhibiting specific biological activities hold promise for interacting with living cells and controlling and predicting biological responses such as apoptosis, endocytosis and cell adhesion. Here we report the result of the interaction of a single high-energy charged particle with protein molecules, giving size-controlled protein nanowires with an ultra-high aspect ratio of over 1,000. Degradation of the human serum albumin nanowires was examined using trypsin. The biotinylated human serum albumin nanowires bound avidin, demonstrating the high affinity of the nanowires. Human serum albumin–avidin hybrid nanowires were also fabricated from a solid state mixture and exhibited good mechanical strength in phosphate-buffered saline. The biotinylated human serum albumin nanowires can be transformed into nanowires exhibiting a biological function such as avidin–biotinyl interactions and peroxidase activity. The present technique is a versatile platform for functionalizing the surface of any protein molecule with an extremely large surface area. PMID:24770668

  8. Design of High Altitude Long Endurance UAV: Structural Analysis of Composite Wing using Finite Element Method

    NASA Astrophysics Data System (ADS)

    Kholish Rumayshah, Khodijah; Prayoga, Aditya; Mochammad Agoes Moelyadi, Ing., Dr.

    2018-04-01

    Research on a High Altitude Long Endurance (HALE) Unmanned Aerial Vehicle (UAV) is currently being conducted at Bandung Institute of Technology (ITB). Previously, the 1st generation of HALE UAV ITB used balsa wood for most of its structure. Flight test gave the result of broken wings due to extreme side-wind that causes large bending to its high aspect ratio wing. This paper conducted a study on designing the 2nd generation of HALE UAV ITB which used composite materials in order to substitute balsa wood at some critical parts of the wing’s structure. Finite element software ABAQUS/CAE is used to predict the stress and deformation that occurred. Tsai-Wu and Von-Mises failure criteria were applied to check whether the structure failed or not. The initial configuration gave the results that the structure experienced material failure. A second iteration was done by proposing a new configuration and it was proven safe against the load given.

  9. Performance of the upgraded LTP-II at the ALS Optical Metrology Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Advanced Light Source; Yashchuk, Valeriy V; Kirschman, Jonathan L.

    2008-07-14

    The next generation of synchrotrons and free electron laser facilities requires x-ray optical systems with extremely high performance, generally of diffraction limited quality. Fabrication and use of such optics requires adequate, highly accurate metrology and dedicated instrumentation. Previously, we suggested ways to improve the performance of the Long Trace Profiler (LTP), a slope measuring instrument widely used to characterize x-ray optics at long spatial wavelengths. The main way is use of a CCD detector and corresponding technique for calibration of photo-response non-uniformity [J. L. Kirschman, et al., Proceedings of SPIE 6704, 67040J (2007)]. The present work focuses on the performancemore » and characteristics of the upgraded LTP-II at the ALS Optical Metrology Laboratory. This includes a review of the overall aspects of the design, control system, the movement and measurement regimes for the stage, and analysis of the performance by a slope measurement of a highly curved super-quality substrate with less than 0.3 microradian (rms)slope variation.« less

  10. Evaluating display fidelity and interaction fidelity in a virtual reality game.

    PubMed

    McMahan, Ryan P; Bowman, Doug A; Zielinski, David J; Brady, Rachael B

    2012-04-01

    In recent years, consumers have witnessed a technological revolution that has delivered more-realistic experiences in their own homes through high-definition, stereoscopic televisions and natural, gesture-based video game consoles. Although these experiences are more realistic, offering higher levels of fidelity, it is not clear how the increased display and interaction aspects of fidelity impact the user experience. Since immersive virtual reality (VR) allows us to achieve very high levels of fidelity, we designed and conducted a study that used a six-sided CAVE to evaluate display fidelity and interaction fidelity independently, at extremely high and low levels, for a VR first-person shooter (FPS) game. Our goal was to gain a better understanding of the effects of fidelity on the user in a complex, performance-intensive context. The results of our study indicate that both display and interaction fidelity significantly affect strategy and performance, as well as subjective judgments of presence, engagement, and usability. In particular, performance results were strongly in favor of two conditions: low-display, low-interaction fidelity (representative of traditional FPS games) and high-display, high-interaction fidelity (similar to the real world).

  11. Effect of regional slopes on local structure and exploration of tilted paleo-highs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazarov, D.A.; Chernobrov, B.S.

    1986-06-01

    Prospects for discovering local highs in old petroleum-producing regions have by now been substantially exhausted. Hence it is of great importance at this stage to seek non-anticlinal accumulations of hydrocarbons, including those in traps genetically associated with tilted paleo-highs, often represented in the modern structural plan by structural noses and terraces. Appropriate exploration for such types of deposits may soon become important in Ciscaucasia and other old petroleum-producing regions. Consequently, problems of the scientific basis for prospecting paleo-highs tilted in the modern structural plan, and developing procedures both for revealing and also for assessing their expression in the structural planmore » during different stages of geological history, and establishing the time and depth of changes in aspect, will become extremely topical. In order to discover possible local highs and to study their features within the margins of the platformal basins and the platformal edges of the marginal troughs, the authors use the method of removing the effect of the regional slope on the local structural plan. This paper describes this method. 13 references.« less

  12. Diurnal ocean surface layer model validation

    NASA Technical Reports Server (NTRS)

    Hawkins, Jeffrey D.; May, Douglas A.; Abell, Fred, Jr.

    1990-01-01

    The diurnal ocean surface layer (DOSL) model at the Fleet Numerical Oceanography Center forecasts the 24-hour change in a global sea surface temperatures (SST). Validating the DOSL model is a difficult task due to the huge areas involved and the lack of in situ measurements. Therefore, this report details the use of satellite infrared multichannel SST imagery to provide day and night SSTs that can be directly compared to DOSL products. This water-vapor-corrected imagery has the advantages of high thermal sensitivity (0.12 C), large synoptic coverage (nearly 3000 km across), and high spatial resolution that enables diurnal heating events to be readily located and mapped. Several case studies in the subtropical North Atlantic readily show that DOSL results during extreme heating periods agree very well with satellite-imagery-derived values in terms of the pattern of diurnal warming. The low wind and cloud-free conditions necessary for these events to occur lend themselves well to observation via infrared imagery. Thus, the normally cloud-limited aspects of satellite imagery do not come into play for these particular environmental conditions. The fact that the DOSL model does well in extreme events is beneficial from the standpoint that these cases can be associated with the destruction of the surface acoustic duct. This so-called afternoon effect happens as the afternoon warming of the mixed layer disrupts the sound channel and the propagation of acoustic energy.

  13. Sympathetic skin responses in patients with hyperthyroidism.

    PubMed

    Gozke, E; Ozyurt, Z; Dortcan, N; Ore, O; Kocer, A; Ozer, E

    2007-01-01

    The aim of this study was to investigate the disorders of sympathetic nervous system in patients with hyperthyroidism using sympathetic skin response (SSR). Twenty-two newly diagnosed cases with hyperthyroidism were included in the study. The results were compared with those of 20 healthy controls. SSR was recorded with the contralateral electrical stimulation of the median nerve (of the upper extremities) and tibial nerve (of the lower extremities) with active electrodes placed on palms and soles and reference electrodes attached on the dorsal aspects of hands and feet. Ages of the cases with hyperthyroidism and controls ranged between 15-65 years (mean: 46.7 +/- 15.0 years) and 24-62 years (mean: 39.6 +/- 9.8 years) respectively (p > 0.05). In all the control subjects SSR could be obtained, while from the lower extremities of 4 cases with hyperthyroidism (18.0%) SSR could not be elicited. Mean SSR latencies of lower extremities were found significantly longer than control group (p < 0. 05). No difference was detected between mean amplitudes of SSR in upper and lower extremities. These findings suggest that SSR is useful for investigation of sympathetic nervous system involvement in cases with hyperthyroidism.

  14. Genetic and life-history consequences of extreme climate events.

    PubMed

    Vincenzi, Simone; Mangel, Marc; Jesensek, Dusan; Garza, John Carlos; Crivelli, Alain J

    2017-02-08

    Climate change is predicted to increase the frequency and intensity of extreme climate events. Tests on empirical data of theory-based predictions on the consequences of extreme climate events are thus necessary to understand the adaptive potential of species and the overarching risks associated with all aspects of climate change. We tested predictions on the genetic and life-history consequences of extreme climate events in two populations of marble trout Salmo marmoratus that have experienced severe demographic bottlenecks due to flash floods. We combined long-term field and genotyping data with pedigree reconstruction in a theory-based framework. Our results show that after flash floods, reproduction occurred at a younger age in one population. In both populations, we found the highest reproductive variance in the first cohort born after the floods due to a combination of fewer parents and higher early survival of offspring. A small number of parents allowed for demographic recovery after the floods, but the genetic bottleneck further reduced genetic diversity in both populations. Our results also elucidate some of the mechanisms responsible for a greater prevalence of faster life histories after the extreme event. © 2017 The Author(s).

  15. INDICATORS OF UV EXPOSURE IN CORAL AND THEIR RELEVANCE TO GLOBAL CLIMATE CHANGE AND CORAL BLEACHING

    EPA Science Inventory

    A compelling aspect of the deterioration of coral reefs is the phenomenon of coral bleaching. Bleaching can destroy large areas of a reef with limited recovery or recruitment, and it may be induced by a variety of stressors ranging from exposure to temperature and salinity extrem...

  16. OZONE DEPLETION AND THE AIR-SEA EXCHANGE OF GREENHOUSE AND CHEMICALLY REACTIVE TRACE GASES

    EPA Science Inventory

    One of the most important aspects of global change is that of stratospheric ozone depletion and the resulting increase in UV radiation reaching the surface of the Earth. Some 70% of the Earth surface is covered by water containing an extremely complicated milieu of organic and in...

  17. Exploring uncertainty and model predictive performance concepts via a modular snowmelt-runoff modeling framework

    Treesearch

    Tyler Jon Smith; Lucy Amanda Marshall

    2010-01-01

    Model selection is an extremely important aspect of many hydrologic modeling studies because of the complexity, variability, and uncertainty that surrounds the current understanding of watershed-scale systems. However, development and implementation of a complete precipitation-runoff modeling framework, from model selection to calibration and uncertainty analysis, are...

  18. Examining the Effects of Mosaic Land Cover on Extreme Events in Historical Downscaled WRF Simulations

    EPA Science Inventory

    The representation of land use and land cover (hereby referred to as “LU”) is a challenging aspect of dynamically downscaled simulations, as a mesoscale model that is utilized as a regional climate model (RCM) may be limited in its ability to represent LU over multi-d...

  19. DEMON, MARK II: AN EXTREMAL EQUATION APPROACH TO NEW PRODUCT MARKETING,

    DTIC Science & Technology

    Numerous alternatives are available in the kinds of studies which can be elected in the market research which should precede the introduction of a...profit). A chart is provided for interpreting these and other aspects of policy which bear on the problems of marketing a new product and, by reference

  20. Interrupting Extremism by Creating Educative Turbulence

    ERIC Educational Resources Information Center

    Davies, Lynn

    2014-01-01

    This article begins from the premise that it is important to explore how people unlearn, as well as learn, specifically in terms of extremist or violent attitudes. It shows the implications of two aspects of complexity theory--turbulence and self-organisation--for educational practice and the fostering of a complex adaptive school, which can aid…

  1. Design, fabrication and performance of two grazing incidence telescopes for celestial extreme ultraviolet astronomy

    NASA Technical Reports Server (NTRS)

    Lampton, M.; Cash, W.; Malina, R. F.; Bowyer, S.

    1977-01-01

    The design and performance of grazing incidence telescopes for celestial extreme ultraviolet (EUV) astronomy are described. The telescopes basically consist of a star tracker, collimator, grazing incidence mirror, vacuum box lid, vacuum housing, filters, a ranicon detector, an electronics box, and an aspect camera. For the survey mirror a Wolter-Schwarzschild type II configuration was selected. Diamond-turning was used for mirror fabrication, a technique which machines surfaces to the order of 10 microns over the required dimensions. The design of the EUV spectrometer is discussed with particular reference to the optics for a primarily spectroscopic application and the fabrication of the f/10 optics.

  2. Exploring end of life priorities in Saudi males: usefulness of Q-methodology.

    PubMed

    Hammami, Muhammad M; Al Gaai, Eman; Hammami, Safa; Attala, Sahar

    2015-11-26

    Quality end-of-life care depends on understanding patients' end-of-life choices. Individuals and cultures may hold end-of-life priorities at different hierarchy. Forced ranking rather than independent rating, and by-person factor analysis rather than averaging may reveal otherwise masked typologies. We explored Saudi males' forced-ranked, end-of-life priorities and dis-priorities. Respondents (n = 120) rank-ordered 47 opinion statements on end-of-life care following a 9-category symmetrical distribution. Statements' scores were analyzed by averaging analysis and factor analysis (Q-methodology). Respondents' mean age was 32.1 years (range, 18-65); 52% reported average religiosity, 88 and 83% ≥ very good health and life-quality, respectively, and 100% ≥ high school education. Averaging analysis revealed that the extreme five end-of-life priorities were to, be at peace with God, be able to say the statement of faith, maintain dignity, resolve conflicts, and have religious death rituals respected, respectively. The extreme five dis-priorities were to, die in the hospital, not receive intensive care if in coma, die at peak of life, be informed about impending death by family/friends rather than doctor, and keep medical status confidential from family/friends, respectively. Q-methodology classified 67% of respondents into five highly transcendent opinion types. Type-I (rituals-averse, family-caring, monitoring-coping, life-quality-concerned) and Type-V (rituals-apt, family-centered, neutral-coping, life-quantity-concerned) reported the lowest and highest religiosity, respectively. Type-II (rituals-apt, family-dependent, monitoring-coping, life-quantity-concerned) and Type-III (rituals-silent, self/family-neutral, avoidance-coping, life-quality & quantity-concerned) reported the best and worst life-quality, respectively. Type-I respondents were the oldest with the lowest general health, in contrast to Type-IV (rituals-apt, self-centered, monitoring-coping, life-quality/quantity-neutral). Of the extreme 14 priorities/dis-priorities for the five types, 29, 14, 14, 50, and 36%, respectively, were not among the extreme 20 priorities/dis-priorities identified by averaging analysis for the entire cohort. 1) Transcendence was the extreme end-of-life priority, and dying in the hospital was the extreme dis-priority. 2) Quality of life was conceptualized differently with less emphasize on its physiological aspects. 3) Disclosure of terminal illness to family/close friends was preferred as long it is through the patient. 4) Q-methodology identified five types of constellations of end-of-life priorities and dis-priorities that may be related to respondents' demographics and are partially masked by averaging analysis.

  3. Melorheostosis in the upper extremity.

    PubMed

    Yildirim, Cengiz; Ozyürek, Selahattin; Ciçek, Engin Ilker; Kuskucu, Mesih

    2009-04-01

    Melorheostosis is a rare mesodermal disease affecting the skeleton and adjacent soft tissues. Often it is incidentally detected on radiographs. In the standard radiology and orthopedics literature, melorheostosis is described as a "flowing hyperostosis, resembling dripping candle wax as an incidental radiographic finding." A 22-year-old man presented with a 2-year history of right-hand pain. Radiologic evaluation of the hand showed massive sclerotic changes in the first and second metacarpal and phalangeal bones on the right side. Further radiographic evaluation of the right upper extremity revealed the same sclerotic changes in the right scapula, humerus, radius, and scaphoid. Computed tomography (CT) scans showed a high attenuation undulating cortical hyperostosis with a "dripping candle wax appearance" involving the radial and/or dorsal aspects of humerus, radius, scaphoid, and first and second ray bones of the hand. Radionuclide triphasic bone scintigraphy showed diffuse homogenous radiotracer uptake within the entire right upper extremity involving the scapula, humerus, radius, scaphoid, and first and second metacarpals and phalangeal bones of the hand. The patient was followed conservatively, and 1-year follow-up revealed no change in the clinical, laboratory, or radiological findings. The diagnosis of melorheostosis was made on the basis of the characteristic distribution, location, and combined radiographic, CT, and radionuclide imaging features of the abnormalities. Conservative treatment was recommended for the patient. After 26 months of follow-up, despite the persistence of the radiologic findings, the patient is currently well, with no painful symptoms unless he performs forceful exercise.

  4. Secondary abdominal compartment syndrome after complicated traumatic lower extremity vascular injuries.

    PubMed

    Macedo, F I B; Sciarretta, J D; Otero, C A; Ruiz, G; Ebler, D J; Pizano, L R; Namias, N

    2016-04-01

    Secondary abdominal compartment syndrome (ACS) can occur in trauma patients without abdominal injuries. Surgical management of patients presenting with secondary ACS after isolated traumatic lower extremity vascular injury (LEVI) continues to evolve, and associated outcomes remain unknown. From January 2006 to September 2011, 191 adult trauma patients presented to the Ryder Trauma Center, an urban level I trauma center in Miami, Florida with traumatic LEVIs. Among them 10 (5.2 %) patients were diagnosed with secondary ACS. Variables collected included age, gender, mechanism of injury, and clinical status at presentation. Surgical data included vessel injury, technical aspects of repair, associated complications, and outcomes. Mean age was 37.4 ± 18.0 years (range 16-66 years), and the majority of patients were males (8 patients, 80 %). There were 7 (70 %) penetrating injuries (5 gunshot wounds and 2 stab wounds), and 3 blunt injuries with mean Injury Severity Score (ISS) 21.9 ± 14.3 (range 9-50). Surgical management of LEVIs included ligation (4 patients, 40 %), primary repair (1 patient, 10 %), reverse saphenous vein graft (2 patients, 20 %), and PTFE interposition grafting (3 patients, 30 %). The overall mortality rate in this series was 60 %. The association between secondary ACS and lower extremity vascular injuries carries high morbidity and mortality rates. Further research efforts should focus at identifying parameters to accurately determine resuscitation goals, and therefore, prevent such a devastating condition.

  5. Record Balkan floods of 2014 linked to planetary wave resonance.

    PubMed

    Stadtherr, Lisa; Coumou, Dim; Petoukhov, Vladimir; Petri, Stefan; Rahmstorf, Stefan

    2016-04-01

    In May 2014, the Balkans were hit by a Vb-type cyclone that brought disastrous flooding and severe damage to Bosnia and Herzegovina, Serbia, and Croatia. Vb cyclones migrate from the Mediterranean, where they absorb warm and moist air, to the north, often causing flooding in central/eastern Europe. Extreme rainfall events are increasing on a global scale, and both thermodynamic and dynamical mechanisms play a role. Where thermodynamic aspects are generally well understood, there is large uncertainty associated with current and future changes in dynamics. We study the climatic and meteorological factors that influenced the catastrophic flooding in the Balkans, where we focus on large-scale circulation. We show that the Vb cyclone was unusually stationary, bringing extreme rainfall for several consecutive days, and that this situation was likely linked to a quasi-stationary circumglobal Rossby wave train. We provide evidence that this quasi-stationary wave was amplified by wave resonance. Statistical analysis of daily spring rainfall over the Balkan region reveals significant upward trends over 1950-2014, especially in the high quantiles relevant for flooding events. These changes cannot be explained by simple thermodynamic arguments, and we thus argue that dynamical processes likely played a role in increasing flood risks over the Balkans.

  6. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation

    PubMed Central

    Sunday, Jennifer M.; Bates, Amanda E.; Kearney, Michael R.; Colwell, Robert K.; Dulvy, Nicholas K.; Longino, John T.; Huey, Raymond B.

    2014-01-01

    Physiological thermal-tolerance limits of terrestrial ectotherms often exceed local air temperatures, implying a high degree of thermal safety (an excess of warm or cold thermal tolerance). However, air temperatures can be very different from the equilibrium body temperature of an individual ectotherm. Here, we compile thermal-tolerance limits of ectotherms across a wide range of latitudes and elevations and compare these thermal limits both to air and to operative body temperatures (theoretically equilibrated body temperatures) of small ectothermic animals during the warmest and coldest times of the year. We show that extreme operative body temperatures in exposed habitats match or exceed the physiological thermal limits of most ectotherms. Therefore, contrary to previous findings using air temperatures, most ectotherms do not have a physiological thermal-safety margin. They must therefore rely on behavior to avoid overheating during the warmest times, especially in the lowland tropics. Likewise, species living at temperate latitudes and in alpine habitats must retreat to avoid lethal cold exposure. Behavioral plasticity of habitat use and the energetic consequences of thermal retreats are therefore critical aspects of species’ vulnerability to climate warming and extreme events. PMID:24616528

  7. Symmetry in the Generalized Rotor Model for Extremely Floppy Molecules

    NASA Astrophysics Data System (ADS)

    Schmiedt, Hanno; Jensen, Per; Schlemmer, Stephan

    2016-06-01

    Protonated methane CH_5^+ is unique: It is an extremely fluxional molecule. All attempts to assign quantum numbers to the high-resolution transitions obtained over the last 20 years have failed because molecular rotation and vibration cannot be separated in the conventional way. The first step towards a theoretical description is to include internal rotational degrees of freedom into the overall ones, which can be used to formulate a fundamentally new zero order approximation for the (now) generalized rotational states and energies. Predictions from this simple five-dimensional rotor model compare very favorably with the combination differences of protonated methane found in recent low temperature experiments. This talk will focus on symmetry aspects and implications of permutation symmetry for the generalized rotational states. Furthermore, refinements of the theory will be discussed, ranging from the generalization to even higher-dimensional rotors to explicit symmetry breaking and corresponding energy splittings. The latter includes the link to well-known theories of internal rotation dynamics and will show the general validity of the presented theory. Schmiedt, H., et al.; J. Chem. Phys. 143 (15), 154302 (2015) Wodraszka, R. et al.; J. Phys. Chem. Lett. 6, 4229-4232 (2015) Asvany, O. et al.; Science, 347, (6228), 1346-1349 (2015)

  8. The effect of spatial organization of targets and distractors on the capacity to selectively memorize objects in visual short-term memory

    PubMed Central

    Abbes, Aymen Ben; Gavault, Emmanuelle; Ripoll, Thierry

    2014-01-01

    We conducted a series of experiments to explore how the spatial configuration of objects influences the selection and the processing of these objects in a visual short-term memory task. We designed a new experiment in which participants had to memorize 4 targets presented among 4 distractors. Targets were cued during the presentation of distractor objects. Their locations varied according to 4 spatial configurations. From the first to the last configuration, the distance between targets’ locations was progressively increased. The results revealed a high capacity to select and memorize targets embedded among distractors even when targets were extremely distant from each other. This capacity is discussed in relation to the unitary conception of attention, models of split attention, and the competitive interaction model. Finally, we propose that the spatial dispersion of objects has different effects on attentional allocation and processing stages. Thus, when targets are extremely distant from each other, attentional allocation becomes more difficult while processing becomes easier. This finding implicates that these 2 aspects of attention need to be more clearly distinguished in future research. PMID:25339978

  9. Life satisfaction and work-related satisfaction among anesthesiologists in Poland.

    PubMed

    Gaszynska, Ewelina; Stankiewicz-Rudnicki, Michal; Szatko, Franciszek; Wieczorek, Andrzej; Gaszynski, Tomasz

    2014-01-01

    The aim of the study was to assess the level of life and job satisfaction of Polish anesthesiologists and to explore the impact of extrinsic-hygiene and intrinsic-motivating determinants. A cross-sectional questionnaire study was conducted among consultant anesthesiologists in Lodz region. The questionnaire concerned patient care, burden, income, personal rewards, professional relations, job satisfaction in general, and life satisfaction. Respondents were asked to rate their level of satisfaction for each item on a seven-point Likert scale (1: extremely dissatisfied; 7: extremely satisfied). 86.03% of anesthesiologists were satisfied with their economic status, 77.94% found their health status satisfactory, and 52.21% viewed their personal future optimistically. In general, 71.32% of anesthesiologists were satisfied with their current job situation. Among the less satisfying job aspects were work-related stress (2.49; SD = 1.23), administrative burden (2.85; SD = 1.47), workload (3.63; SD = 1.56), and leisure time (3.09; SD = 1.44). Considerable work-related stress leads to job dissatisfaction among anesthesiologists. There is an association between job satisfaction and health status, social life, and economic status. Working for long hours by anesthesiologists results in a high risk of burnout.

  10. When I equals we: exploring the relation between social and personal identity of extreme right-wing political party members.

    PubMed

    Baray, Gamze; Postmes, Tom; Jetten, Jolanda

    2009-12-01

    This paper introduces the concept of self-defining groups to explain how personal and social aspects of identity relate to each other among members of an extreme right-wing political party. Two studies were conducted. Study 1 examined how affiliation with a social group that has clear-cut, rigid norms and values affects the personal and social self-concept. Participants were members of a (self-defining) Turkish nationalist organisation (N=66) and a control group of Turkish university students (N=58). Paradoxically, high levels of national identification were associated with stronger personal identity. Study 2 used the same participant population (N=177) and manipulated self-focused attention by means of a mirror. Self-aware members reported the highest levels of identification with the nationalist organisation. Results suggest that members of this groups show no signs of 'vanishing individuality': although boundaries between personal and social identities are blurred, extremist group members retain a distinct and strengthened sense of personal identity. This raises some interesting questions for the concept of personal identity and how it can be informed by the content of one's social identity.

  11. Lower extremity injuries in runners. Advances in prediction.

    PubMed

    Macera, C A

    1992-01-01

    Recreational and competitive running is practised by many individuals to improve cardiorespiratory function and general well-being. The major negative aspect of running is the high rate of injuries to the lower extremities. Several well-designed population-based studies have found no major differences in injury rates between men and women; no increasing effect of age on injuries; a declining injury rate with more years of running experience; no substantial effect of weight or height; an uncertain effect of psychological factors; and a strong effect of previous injury on future injuries. Among the modifiable risk factors studied, weekly distance is the strongest predictor of future injuries. Other training characteristics (speed, frequency, surface, timing) have little or no effect on future injuries after accounting for distance run. More studies are needed to address the effects of appropriate stretching practices and abrupt change in training patterns. For recreational runners who have sustained injuries, especially within the past year, a reduction in running to below 32 km per week is recommended. For those about to begin a running programme, moderation is the best advice. For competitive runners, great care should be taken to ensure that prior injuries are sufficiently healed before attempting any racing event, particularly a marathon.

  12. Life Satisfaction and Work-Related Satisfaction among Anesthesiologists in Poland

    PubMed Central

    Gaszynska, Ewelina; Szatko, Franciszek; Wieczorek, Andrzej

    2014-01-01

    The aim of the study was to assess the level of life and job satisfaction of Polish anesthesiologists and to explore the impact of extrinsic-hygiene and intrinsic-motivating determinants. Materials and Methods. A cross-sectional questionnaire study was conducted among consultant anesthesiologists in Lodz region. The questionnaire concerned patient care, burden, income, personal rewards, professional relations, job satisfaction in general, and life satisfaction. Respondents were asked to rate their level of satisfaction for each item on a seven-point Likert scale (1: extremely dissatisfied; 7: extremely satisfied). Results. 86.03% of anesthesiologists were satisfied with their economic status, 77.94% found their health status satisfactory, and 52.21% viewed their personal future optimistically. In general, 71.32% of anesthesiologists were satisfied with their current job situation. Among the less satisfying job aspects were work-related stress (2.49; SD = 1.23), administrative burden (2.85; SD = 1.47), workload (3.63; SD = 1.56), and leisure time (3.09; SD = 1.44). Conclusions. Considerable work-related stress leads to job dissatisfaction among anesthesiologists. There is an association between job satisfaction and health status, social life, and economic status. Working for long hours by anesthesiologists results in a high risk of burnout. PMID:25013860

  13. Control of heat and humidity in German mines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlotte, W.

    1999-07-01

    In order to increase the economic efficiency of West European hard coal, great efforts are being made at present in the coal-producing countries to lower production costs. This aim is to be achieved in Germany, among other things, by a drastic increase in the saleable output per working face up to an average of 10,000 t/d in these cases where very long longwall faces (400 m {+-} 50 m) are possible. With the substantially greater heat input into the air stream which this involves, there is the danger that climatic limits will be exceeded even at longwall faces with lowermore » than average rock temperatures. Working in high temperatures and/or humidities can lead to risky lack of concentration of the miners to heat collapse and extremely dangerous heat stroke. In order to minimize the costs for mine climate control well-proven planning software and climitization technology is necessary for underground workings. With the DMT climate simulation programs, both the dry and the extremely significant humid heat transfer can be calculated and the optimum air cooling system for a mine can be designed with due regard to technical and economic aspects.« less

  14. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation.

    PubMed

    Sunday, Jennifer M; Bates, Amanda E; Kearney, Michael R; Colwell, Robert K; Dulvy, Nicholas K; Longino, John T; Huey, Raymond B

    2014-04-15

    Physiological thermal-tolerance limits of terrestrial ectotherms often exceed local air temperatures, implying a high degree of thermal safety (an excess of warm or cold thermal tolerance). However, air temperatures can be very different from the equilibrium body temperature of an individual ectotherm. Here, we compile thermal-tolerance limits of ectotherms across a wide range of latitudes and elevations and compare these thermal limits both to air and to operative body temperatures (theoretically equilibrated body temperatures) of small ectothermic animals during the warmest and coldest times of the year. We show that extreme operative body temperatures in exposed habitats match or exceed the physiological thermal limits of most ectotherms. Therefore, contrary to previous findings using air temperatures, most ectotherms do not have a physiological thermal-safety margin. They must therefore rely on behavior to avoid overheating during the warmest times, especially in the lowland tropics. Likewise, species living at temperate latitudes and in alpine habitats must retreat to avoid lethal cold exposure. Behavioral plasticity of habitat use and the energetic consequences of thermal retreats are therefore critical aspects of species' vulnerability to climate warming and extreme events.

  15. [Severe sensorineural impairment in very premature infants: epidemiological aspects].

    PubMed

    Ancel, P-Y

    2004-10-01

    Advances in perinatal care have resulted in a sharply increasing survival rate among very preterm infants. However, there is some concern about the later neurodevelopmental outcome of those infants who survive. In this paper, we review the prevalence estimates of motor (cerebral palsy), sensorineural and cognitive impairments and their recent time-trends in very preterm infants. A review of studies describing neurodevelopmental outcome of very preterm infants in Europe, Australia and America North. The gestational age-specific prevalences of cerebral palsy (CP) were 72-86 for extremely preterm children (<28 weeks), 32-60 for very preterm (28-31 weeks) and 5-6 for moderate preterm (32-36 weeks), and 1.3-1.5 for term children per 1000. The live birth prevalence for CP remained unchanged in extremely and very preterm infants since 1990. The prevalence estimates of moderate and severe cognitive impairments are 15 to 25% in very preterm children. Less than 4% of very preterm infants develop severe hearing or visual loss. This review indicates that very preterm infants have high risk of disability. Most studies have been conducted between 1985 and 1995. Thus, these results should be interpreted with caution before generalisation to recent cohorts.

  16. High Energy Density Physics and Exotic Acceleration Schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowan, T.; /General Atomics, San Diego; Colby, E.

    2005-09-27

    The High Energy Density and Exotic Acceleration working group took as our goal to reach beyond the community of plasma accelerator research with its applications to high energy physics, to promote exchange with other disciplines which are challenged by related and demanding beam physics issues. The scope of the group was to cover particle acceleration and beam transport that, unlike other groups at AAC, are not mediated by plasmas or by electromagnetic structures. At this Workshop, we saw an impressive advancement from years past in the area of Vacuum Acceleration, for example with the LEAP experiment at Stanford. And wemore » saw an influx of exciting new beam physics topics involving particle propagation inside of solid-density plasmas or at extremely high charge density, particularly in the areas of laser acceleration of ions, and extreme beams for fusion energy research, including Heavy-ion Inertial Fusion beam physics. One example of the importance and extreme nature of beam physics in HED research is the requirement in the Fast Ignitor scheme of inertial fusion to heat a compressed DT fusion pellet to keV temperatures by injection of laser-driven electron or ion beams of giga-Amp current. Even in modest experiments presently being performed on the laser-acceleration of ions from solids, mega-amp currents of MeV electrons must be transported through solid foils, requiring almost complete return current neutralization, and giving rise to a wide variety of beam-plasma instabilities. As keynote talks our group promoted Ion Acceleration (plenary talk by A. MacKinnon), which historically has grown out of inertial fusion research, and HIF Accelerator Research (invited talk by A. Friedman), which will require impressive advancements in space-charge-limited ion beam physics and in understanding the generation and transport of neutralized ion beams. A unifying aspect of High Energy Density applications was the physics of particle beams inside of solids, which is proving to be a very important field for diverse applications such as muon cooling, fusion energy research, and ultra-bright particle and radiation generation with high intensity lasers. We had several talks on these and other subjects, and many joint sessions with the Computational group, the EM Structures group, and the Beam Generation group. We summarize our groups' work in the following categories: vacuum acceleration schemes; ion acceleration; particle transport in solids; and applications to high energy density phenomena.« less

  17. Climate Change: A New Metric to Measure Changes in the Frequency of Extreme Temperatures using Record Data

    NASA Technical Reports Server (NTRS)

    Munasinghe, L.; Jun, T.; Rind, D. H.

    2012-01-01

    Consensus on global warming is the result of multiple and varying lines of evidence, and one key ramification is the increase in frequency of extreme climate events including record high temperatures. Here we develop a metric- called "record equivalent draws" (RED)-based on record high (low) temperature observations, and show that changes in RED approximate changes in the likelihood of extreme high (low) temperatures. Since we also show that this metric is independent of the specifics of the underlying temperature distributions, RED estimates can be aggregated across different climates to provide a genuinely global assessment of climate change. Using data on monthly average temperatures across the global landmass we find that the frequency of extreme high temperatures increased 10-fold between the first three decades of the last century (1900-1929) and the most recent decade (1999-2008). A more disaggregated analysis shows that the increase in frequency of extreme high temperatures is greater in the tropics than in higher latitudes, a pattern that is not indicated by changes in mean temperature. Our RED estimates also suggest concurrent increases in the frequency of both extreme high and extreme low temperatures during 2002-2008, a period when we observe a plateauing of global mean temperature. Using daily extreme temperature observations, we find that the frequency of extreme high temperatures is greater in the daily minimum temperature time-series compared to the daily maximum temperature time-series. There is no such observable difference in the frequency of extreme low temperatures between the daily minimum and daily maximum.

  18. Brane Physics in M-theory

    NASA Astrophysics Data System (ADS)

    Argurio, Riccardo

    1998-07-01

    The thesis begins with an introduction to M-theory (at a graduate student's level), starting from perturbative string theory and proceeding to dualities, D-branes and finally Matrix theory. The following chapter treats, in a self-contained way, of general classical p-brane solutions. Black and extremal branes are reviewed, along with their semi-classical thermodynamics. We then focus on intersecting extremal branes, the intersection rules being derived both with and without the explicit use of supersymmetry. The last three chapters comprise more advanced aspects of brane physics, such as the dynamics of open branes, the little theories on the world-volume of branes and how the four dimensional Schwarzschild black hole can be mapped to an extremal configuration of branes, thus allowing for a statistical interpretation of its entropy. The original results were already reported in hep-th/9701042, hep-th/9704190, hep-th/9710027 and hep-th/9801053.

  19. Percolation in suspensions of hard nanoparticles: From spheres to needles

    NASA Astrophysics Data System (ADS)

    Schilling, Tanja; Miller, Mark A.; van der Schoot, Paul

    2015-09-01

    We investigate geometric percolation and scaling relations in suspensions of nanorods, covering the entire range of aspect ratios from spheres to extremely slender needles. A new version of connectedness percolation theory is introduced and tested against specialised Monte Carlo simulations. The theory accurately predicts percolation thresholds for aspect ratios of rod length to width as low as 10. The percolation threshold for rod-like particles of aspect ratios below 1000 deviates significantly from the inverse aspect ratio scaling prediction, thought to be valid in the limit of infinitely slender rods and often used as a rule of thumb for nanofibres in composite materials. Hence, most fibres that are currently used as fillers in composite materials cannot be regarded as practically infinitely slender for the purposes of percolation theory. Comparing percolation thresholds of hard rods and new benchmark results for ideal rods, we find that i) for large aspect ratios, they differ by a factor that is inversely proportional to the connectivity distance between the hard cores, and ii) they approach the slender rod limit differently.

  20. Extreme developmental temperatures result in morphological abnormalities in painted turtles (Chrysemys picta): a climate change perspective.

    PubMed

    Telemeco, Rory S; Warner, Daniel A; Reida, Molly K; Janzen, Fredric J

    2013-06-01

    Increases in extreme environmental events are predicted to be major results of ongoing global climate change and may impact the persistence of species. We examined the effects of heat and cold waves during embryonic development of painted turtles (Chrysemys picta) in natural nests on the occurrence of abnormal shell morphologies in hatchlings. We found that nests exposed to extreme hot temperatures for >60 h produced more hatchlings with abnormalities than nests exposed to extreme hot temperatures for shorter periods, regardless of whether or not nesting females displayed abnormal morphologies. We observed no effect of extreme cold nest temperatures on the occurrence of hatchlings with abnormalities. Moreover, the frequency of nesting females with abnormal shell morphologies was approximately 2-fold lower than that of their offspring, suggesting that such abnormalities are negatively correlated with survival and fitness. Female turtles could potentially buffer their offspring from extreme heat by altering aspects of nesting behavior, such as choosing shadier nesting sites. We addressed this hypothesis by examining the effects of shade cover on extreme nest temperatures and the occurrence of hatchling abnormalities. While shade cover was negatively correlated with the occurrence of extreme hot nest temperatures, it was not significantly correlated with abnormalities. Therefore, female choice of shade cover does not appear to be a viable target for selection to reduce hatchling abnormalities. Our results suggest that increases in the frequency and intensity of heat waves associated with climate change might perturb developmental programs and thereby reduce the fitness of entire cohorts of turtles. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  1. The quality of visual information about the lower extremities influences visuomotor coordination during virtual obstacle negotiation.

    PubMed

    Kim, Aram; Kretch, Kari S; Zhou, Zixuan; Finley, James M

    2018-05-09

    Successful negotiation of obstacles during walking relies on the integration of visual information about the environment with ongoing locomotor commands. When information about the body and environment are removed through occlusion of the lower visual field, individuals increase downward head pitch angle, reduce foot placement precision, and increase safety margins during crossing. However, whether these effects are mediated by loss of visual information about the lower extremities, the obstacle, or both remains to be seen. Here, we used a fully immersive, virtual obstacle negotiation task to investigate how visual information about the lower extremities is integrated with information about the environment to facilitate skillful obstacle negotiation. Participants stepped over virtual obstacles while walking on a treadmill with one of three types of visual feedback about the lower extremities: no feedback, end-point feedback, or a link-segment model. We found that absence of visual information about the lower extremities led to an increase in the variability of leading foot placement after crossing. The presence of a visual representation of the lower extremities promoted greater downward head pitch angle during the approach to and subsequent crossing of an obstacle. In addition, having greater downward head pitch was associated with closer placement of the trailing foot to the obstacle, further placement of the leading foot after the obstacle, and higher trailing foot clearance. These results demonstrate that the fidelity of visual information about the lower extremities influences both feed-forward and feedback aspects of visuomotor coordination during obstacle negotiation.

  2. Psychometric Evaluation of the Lower Extremity Computerized Adaptive Test, the Modified Harris Hip Score, and the Hip Outcome Score.

    PubMed

    Hung, Man; Hon, Shirley D; Cheng, Christine; Franklin, Jeremy D; Aoki, Stephen K; Anderson, Mike B; Kapron, Ashley L; Peters, Christopher L; Pelt, Christopher E

    2014-12-01

    The applicability and validity of many patient-reported outcome measures in the high-functioning population are not well understood. To compare the psychometric properties of the modified Harris Hip Score (mHHS), the Hip Outcome Score activities of daily living subscale (HOS-ADL) and sports (HOS-sports), and the Lower Extremity Computerized Adaptive Test (LE CAT). The hypotheses was that all instruments would perform well but that the LE CAT would show superiority psychometrically because a combination of CAT and a large item bank allows for a high degree of measurement precision. Cohort study (diagnosis); Level of evidence, 2. Data were collected from 472 advanced-age, active participants from the Huntsman World Senior Games in 2012. Validity evidences were examined through item fit, dimensionality, monotonicity, local independence, differential item functioning, person raw score to measure correlation, and instrument coverage (ie, ceiling and floor effects), and reliability evidences were examined through Cronbach alpha and person separation index. All instruments demonstrated good item fit, unidimensionality, monotonicity, local independence, and person raw score to measure correlations. The HOS-ADL had high ceiling effects of 36.02%, and the mHHS had ceiling effects of 27.54%. The LE CAT had ceiling effects of 8.47%, and the HOS-sports had no ceiling effects. None of the instruments had any floor effects. The mHHS had a very low Cronbach alpha of 0.41 and an extremely low person separation index of 0.08. Reliabilities for the LE CAT were excellent and for the HOS-ADL and HOS-sports were good. The LE CAT showed better psychometric properties overall than the HOS-ADL, HOS-sports, and mHHS for the senior population. The mHHS demonstrated pronounced ceiling effects and poor reliabilities that should be of concern. The high ceiling effects for the HOS-ADL were also of concern. The LE CAT was superior in all psychometric aspects examined in this study. Future research should investigate the LE CAT for wider use in different populations.

  3. Psychometric Evaluation of the Lower Extremity Computerized Adaptive Test, the Modified Harris Hip Score, and the Hip Outcome Score

    PubMed Central

    Hung, Man; Hon, Shirley D.; Cheng, Christine; Franklin, Jeremy D.; Aoki, Stephen K.; Anderson, Mike B.; Kapron, Ashley L.; Peters, Christopher L.; Pelt, Christopher E.

    2014-01-01

    Background: The applicability and validity of many patient-reported outcome measures in the high-functioning population are not well understood. Purpose: To compare the psychometric properties of the modified Harris Hip Score (mHHS), the Hip Outcome Score activities of daily living subscale (HOS-ADL) and sports (HOS-sports), and the Lower Extremity Computerized Adaptive Test (LE CAT). The hypotheses was that all instruments would perform well but that the LE CAT would show superiority psychometrically because a combination of CAT and a large item bank allows for a high degree of measurement precision. Study Design: Cohort study (diagnosis); Level of evidence, 2. Methods: Data were collected from 472 advanced-age, active participants from the Huntsman World Senior Games in 2012. Validity evidences were examined through item fit, dimensionality, monotonicity, local independence, differential item functioning, person raw score to measure correlation, and instrument coverage (ie, ceiling and floor effects), and reliability evidences were examined through Cronbach alpha and person separation index. Results: All instruments demonstrated good item fit, unidimensionality, monotonicity, local independence, and person raw score to measure correlations. The HOS-ADL had high ceiling effects of 36.02%, and the mHHS had ceiling effects of 27.54%. The LE CAT had ceiling effects of 8.47%, and the HOS-sports had no ceiling effects. None of the instruments had any floor effects. The mHHS had a very low Cronbach alpha of 0.41 and an extremely low person separation index of 0.08. Reliabilities for the LE CAT were excellent and for the HOS-ADL and HOS-sports were good. Conclusion: The LE CAT showed better psychometric properties overall than the HOS-ADL, HOS-sports, and mHHS for the senior population. The mHHS demonstrated pronounced ceiling effects and poor reliabilities that should be of concern. The high ceiling effects for the HOS-ADL were also of concern. The LE CAT was superior in all psychometric aspects examined in this study. Future research should investigate the LE CAT for wider use in different populations. PMID:26535291

  4. The C20C+ Detection and Attribution Project

    NASA Astrophysics Data System (ADS)

    Stone, D. A.; Angélil, O. M.; Cholia, S.; Christidis, N.; Dittus, A. J.; Folland, C. K.; King, A.; Kinter, J. L.; Krishnan, H.; Min, S. K.; Shiogama, H.; Wehner, M. F.; Wolski, P.

    2015-12-01

    Over the past decade there has been a remarkable growth in interest concerning the effects of anthropogenic emissions on extreme weather. However, research has been constrained by the lack of a public climate-model-based data product optimised for investigation of extreme weather in the context of climate change, relying instead on products designed for other purposes or on bespoke simulations designed for the particular study and not generally applicable to other extremes. The international Climate of the 20th Century Plus (C20C+) Detection and Attribution Project is filling this gap by producing the first large ensemble, multi-model, multi-year, and multi-scenario historical climate data product, specifically designed for resolving variations in the occurrence and characteristics of extreme weather from year to year and their differences from what might have been in the absence of anthropogenic emissions. Updates on project status and tens of terabytes of simulation output are available at http://portal.nersc.gov/c20c.Here we describe the experimental design of the first phase of the project, conducted with six atmospheric climate models, and discuss its various strengths and weaknesses with respect to various types of extreme weather. We also present analyses of the relative importance of climate model, estimate of anthropogenic ocean warming, spatial and temporal scale, and aspects of experimental design on estimates of how much emissions have affected extreme weather.

  5. Method for thermal and structural evaluation of shallow intense-beam deposition in matter

    NASA Astrophysics Data System (ADS)

    Pilan Zanoni, André

    2018-05-01

    The projected range of high-intensity proton and heavy-ion beams at energies below a few tens of MeV/A in matter can be as short as a few micrometers. For the evaluation of temperature and stresses from a shallow beam energy deposition in matter conventional numerical 3D models require minuscule element sizes for acceptable element aspect ratio as well as extremely short time steps for numerical convergence. In order to simulate energy deposition using a manageable number of elements this article presents a method using layered elements. This method is applied to beam stoppers and accidental intense-beam impact onto UHV sector valves. In those cases the thermal results from the new method are congruent to those from conventional solid-element and adiabatic models.

  6. The clinical impact of recent advances in LC-MS for cancer biomarker discovery and verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hui; Shi, Tujin; Qian, Wei-Jun

    2015-12-04

    Mass spectrometry-based proteomics has become an indispensable tool in biomedical research with broad applications ranging from fundamental biology, systems biology, and biomarker discovery. Recent advances in LC-MS have made it become a major technology in clinical applications, especially in cancer biomarker discovery and verification. To overcome the challenges associated with the analysis of clinical samples, such as extremely wide dynamic range of protein concentrations in biofluids and the need to perform high throughput and accurate quantification, significant efforts have been devoted to improve the overall performance of LC-MS bases clinical proteomics. In this review, we summarize the recent advances inmore » LC-MS in the aspect of cancer biomarker discovery and quantification, and discuss its potentials, limitations, and future perspectives.« less

  7. Dedifferentiated Liposarcoma of Sigmoid Mesocolon - A Case Report.

    PubMed

    Constantinoiu, Silviu; Achim, Ion-Florin; Cretu, Oana-Eliza; Dumitru, Tatiana; Constantin, Adrian; Enache, Simona; Mates, Ioan Nicolae

    2016-01-01

    Dedifferentiated liposarcoma is a liposarcoma that contains a well-differentiated liposarcoma component juxtaposed to areas of high-grade non-lipogenic sarcoma and was believed to occur from well-differentiated liposarcoma after several years. Dedifferentiated liposarcoma most commonly occurs in the retroperitoneum, while an intraperitoneal location is extremely rare, only seven cases have been reported in literature. Many pathologists recognize that a large number of intra-abdominal poorly differentiated sarcomas are dedifferentiated liposarcomas. We present the case of a 73 years old patient known with multiple cardiovascular comorbidities, stroke sequelae and a large abdominal mass evolving for 3 years. He was referred to our clinic for abdominal pain and bowel disorders. Instead of all clinical and imagistic aspects suggested a gastrointestinal stromal tumour, the histological exam revealed the diagnosis of a dedifferentiated liposarcoma. Celsius.

  8. Vortices at Microwave Frequencies

    NASA Astrophysics Data System (ADS)

    Silva, Enrico; Pompeo, Nicola; Dobrovolskiy, Oleksandr V.

    2017-11-01

    The behavior of vortices at microwave frequencies is an extremely useful source of information on the microscopic parameters that enter the description of the vortex dynamics. This feature has acquired particular relevance since the discovery of unusual superconductors, such as cuprates. Microwave investigation then extended its field of application to many families of superconductors, including the artificially nanostructured materials. It is then important to understand the basics of the physics of vortices moving at high frequency, as well as to understand what information the experiments can yield (and what they can not). The aim of this brief review is to introduce the readers to some basic aspects of the physics of vortices under a microwave electromagnetic field, and to guide them to an understanding of the experiment, also by means of the illustration of some relevant results.

  9. Air Intake Performance of Air Breathing Ion Engines

    NASA Astrophysics Data System (ADS)

    Fujita, Kazuhisa

    The air breathing ion engine (ABIE) is a new type of electric propulsion system which can be used to compensate the aerodynamic drag of the satellite orbiting at extremely low altitudes. In this propulsion system, the low-density atmosphere surrounding the satellite is taken in and used as the propellant of ion engines to reduce the propellant mass for a long operation lifetime. Since feasibility and performance of the ABIE are subject to the compression ratio and the air intake efficiency, a numerical analysis has been conducted by means of the direct-simulation Monte-Carlo method to clarify the characteristics of the air-intake performance in highly rarefied flows. Influences of the flight altitude, the aspect-ratio of the air intake duct, the angle of attack, and the wall conditions are investigated.

  10. Exopolysaccharides enriched in rare sugars: bacterial sources, production, and applications

    PubMed Central

    Roca, Christophe; Alves, Vitor D.; Freitas, Filomena; Reis, Maria A. M.

    2015-01-01

    Microbial extracellular polysaccharides (EPS), produced by a wide range of bacteria, are high molecular weight biopolymers, presenting an extreme diversity in terms of chemical structure and composition. They may be used in many applications, depending on their chemical and physical properties. A rather unexplored aspect is the presence of rare sugars in the composition of some EPS. Rare sugars, such as rhamnose or fucose, may provide EPS with additional biological properties compared to those composed of more common sugar monomers. This review gives a brief overview of these specific EPS and their producing bacteria. Cultivation conditions are summarized, demonstrating their impact on the EPS composition, together with downstream processing. Finally, their use in different areas, including cosmetics, food products, pharmaceuticals, and biomedical applications, are discussed. PMID:25914689

  11. How Confident can we be in Flood Risk Assessments?

    NASA Astrophysics Data System (ADS)

    Merz, B.

    2017-12-01

    Flood risk management should be based on risk analyses quantifying the risk and its reduction for different risk reduction strategies. However, validating risk estimates by comparing model simulations with past observations is hardly possible, since the assessment typically encompasses extreme events and their impacts that have not been observed before. Hence, risk analyses are strongly based on assumptions and expert judgement. This situation opens the door for cognitive biases, such as `illusion of certainty', `overconfidence' or `recency bias'. Such biases operate specifically in complex situations with many factors involved, when uncertainty is high and events are probabilistic, or when close learning feedback loops are missing - aspects that all apply to risk analyses. This contribution discusses how confident we can be in flood risk assessments, and reflects about more rigorous approaches towards their validation.

  12. Leveraging Indian Talent Pool and Demographics to Build Competitive Advantage

    ERIC Educational Resources Information Center

    Gupta, Rakesh

    2009-01-01

    Human capital is a broad and multifaceted concept encompassing many different types of investment in people. However, the key aspect of human capital has to do with the knowledge and skills embodied in people. Human capital has always been an extremely important determinant of individual and social progress. In the present scenario, it is the…

  13. Anthropology, Participation, and the Democratization of Knowledge: Participatory Research Using Video with Youth Living in Extreme Poverty

    ERIC Educational Resources Information Center

    Batallan, Graciela; Dente, Liliana; Ritta, Loreley

    2017-01-01

    This article aims to open up a debate on methodological aspects of ethnographic research, arguing for the legitimacy of the information produced in a research "taller" or workshop using a participatory methodology and video production as a methodological tool. Based on the theoretical foundations and analysis of a "taller"…

  14. Adaptive Coping under Conditions of Extreme Stress: Multilevel Influences on the Determinants of Resilience in Maltreated Children

    ERIC Educational Resources Information Center

    Cicchetti, Dante; Rogosch, Fred A.

    2009-01-01

    The study of resilience in maltreated children reveals the possibility of coping processes and resources on multiple levels of analysis as children strive to adapt under conditions of severe stress. In a maltreating context, aspects of self-organization, including self-esteem, self-reliance, emotion regulation, and adaptable yet reserved…

  15. Investigation of Chronic Pain Following Traumatic Brain Injury

    DTIC Science & Technology

    2013-01-01

    aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services...irritability. headaches. tinnitus . extremity numbness. fatigue. dizziness. and memory difficulty with long-term or permanent disabil ity 11 11. This syn...persistent complaints. including headache. tinnitus . fatigue. sleep disturbance and irritability 135 l- In those paticms with continued complaints

  16. Rhetoric and Reality: The Role of the Teacher in Shaping a School Sport Programme

    ERIC Educational Resources Information Center

    Bowles, Richard; O'Sullivan, Mary

    2012-01-01

    Background: Extra-curricular sport is an important aspect of life in Irish primary schools. Team invasion games hold a dominant position and, within this category, Gaelic games are extremely popular. Teachers have, historically, played a significant role in the promotion of Gaelic games through the organization of inter-school competitions. The…

  17. Hierarchical multifunctional composites by conformally coating aligned carbon nanotube arrays with conducting polymer.

    PubMed

    Vaddiraju, Sreeram; Cebeci, Hülya; Gleason, Karen K; Wardle, Brian L

    2009-11-01

    A novel method for the fabrication of carbon nanotube (CNT)-conducting polymer composites is demonstrated by conformally coating extremely high aspect ratio vertically aligned-CNT (A-CNT) arrays with conducting polymer via oxidative chemical vapor deposition (oCVD). A mechanical densification technique is employed that allows the spacing of the A-CNTs to be controlled, yielding a range of inter-CNT distances between 20 and 70 nm. Using this morphology control, oCVD is shown to conformally coat 8-nm-diameter CNTs having array heights up to 1 mm (an aspect ratio of 10(5)) at all inter-CNT spacings. Three phase CNT-conducting polymer nanocomposites are then fabricated by introducing an insulating epoxy via capillary-driven wetting. CNT morphology is maintained during processing, allowing quantification of direction-dependent (nonisotropic) composite properties. Electrical conductivity occurs primarily along the CNT axial direction, such that the conformal conducting polymer has little effect on the activation energy required for charge conduction. In contrast, the conducting polymer coating enhanced the conductivity in the radial direction by lowering the activation energy required for the creation of mobile charge carriers, in agreement with variable-range-hopping models. The fabrication strategy introduced here can be used to create many multifunctional materials and devices (e.g., direction-tailorable hydrophobic and highly conducting materials), including a new four-phase advanced fiber composite architecture.

  18. Reassurance as a key outcome valued by emergency ambulance service users: a qualitative interview study.

    PubMed

    Togher, Fiona J; O'Cathain, Alicia; Phung, Viet-Hai; Turner, Janette; Siriwardena, Aloysius Niroshan

    2015-12-01

    There is an increasing need to assess the performance of emergency ambulance services using measures other than the time taken for an ambulance to arrive on scene. In line with government policy, patients and carers can help to shape new measures of ambulance service performance. To investigate the aspects of emergency ambulance service care valued by users. Qualitative interview study. One of 11 ambulance services in England. Twenty-two users and eight of their spouses (n = 30). Users of the emergency ambulance service, experiencing different types of ambulance service response, valued similar aspects of their pre-hospital care. Users were often extremely anxious about their health, and the outcome they valued was reassurance provided by ambulance service staff that they were receiving appropriate advice, treatment and care. This sense of being reassured was enhanced by the professional behaviour of staff, which instilled confidence in their care; communication; a short wait for help; and continuity during transfers. A timely response was valued in terms of allaying anxiety quickly. The ability of the emergency ambulance service to allay the high levels of fear and anxiety felt by users is crucial to the delivery of a high quality service. Measures developed to assess and monitor the performance of emergency ambulance services should include the proportion of users reporting feeling reassured by the response they obtained. © 2014 John Wiley & Sons Ltd.

  19. How Important Is Intrinsic Spirituality in Depression Care?

    PubMed Central

    Cooper, Lisa A; Brown, Charlotte; Thi Vu, Hong; Ford, Daniel E; Powe, Neil R

    2001-01-01

    We used a cross-sectional survey to compare the views of African-American and white adult primary care patients (N = 76) regarding the importance of various aspects of depression care. Patients were asked to rate the importance of 126 aspects of depression care (derived from attitudinal domains identified in focus groups) on a 5-point Likert scale. The 30 most important items came from 9 domains: 1) health professionals' interpersonal skills, 2) primary care provider recognition of depression, 3) treatment effectiveness, 4) treatment problems, 5) patient understanding about treatment, 6) intrinsic spirituality, 7) financial access, 8) life experiences, and 9) social support. African-American and white patients rated most aspects of depression care as similarly important, except that the odds of rating spirituality as extremely important for depression care were 3 times higher for African Americans than the odds for whites. PMID:11556945

  20. Association of extremely high levels of high-density lipoprotein cholesterol with cardiovascular mortality in a pooled analysis of 9 cohort studies including 43,407 individuals: The EPOCH-JAPAN study.

    PubMed

    Hirata, Aya; Sugiyama, Daisuke; Watanabe, Makoto; Tamakoshi, Akiko; Iso, Hiroyasu; Kotani, Kazuhiko; Kiyama, Masahiko; Yamada, Michiko; Ishikawa, Shizukiyo; Murakami, Yoshitaka; Miura, Katsuyuki; Ueshima, Hirotsugu; Okamura, Tomonori

    2018-02-08

    The effect of very high or extremely high levels of high-density lipoprotein cholesterol (HDL-C) on cardiovascular disease (CVD) is not well described. Although a few recent studies have reported the adverse effects of extremely high levels of HDL-C on CVD events, these did not show a statistically significant association between extremely high levels of HDL-C and cause-specific CVD mortality. In addition, Asian populations have not been studied. We examine the impact of extremely high levels of HDL-C on cause-specific CVD mortality using pooled data of Japanese cohort studies. We performed a large-scale pooled analysis of 9 Japanese cohorts including 43,407 participants aged 40-89 years, dividing the participants into 5 groups by HDL-C levels, including extremely high levels of HDL-C ≥2.33 mmol/L (≥90 mg/dL). We estimated the adjusted hazard ratio of each HDL-C category for all-cause death and cause-specific deaths compared with HDL-C 1.04-1.55 mmol/L (40-59 mg/dL) using a cohort-stratified Cox proportional hazards model. During a 12.1-year follow-up, 4995 all-cause deaths and 1280 deaths due to overall CVD were identified. Extremely high levels of HDL-C were significantly associated with increased risk of atherosclerotic CVD mortality (hazard ratio = 2.37, 95% confidence interval: 1.37-4.09 for total) and increased risk for coronary heart disease and ischemic stroke. In addition, the risk for extremely high HDL-C was more evident among current drinkers. We showed extremely high levels of HDL-C had an adverse effect on atherosclerotic CVD mortality in a pooled analysis of Japanese cohorts. Copyright © 2018 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  1. A hierarchical-multiobjective framework for risk management

    NASA Technical Reports Server (NTRS)

    Haimes, Yacov Y.; Li, Duan

    1991-01-01

    A broad hierarchical-multiobjective framework is established and utilized to methodologically address the management of risk. United into the framework are the hierarchical character of decision-making, the multiple decision-makers at separate levels within the hierarchy, the multiobjective character of large-scale systems, the quantitative/empirical aspects, and the qualitative/normative/judgmental aspects. The methodological components essentially consist of hierarchical-multiobjective coordination, risk of extreme events, and impact analysis. Examples of applications of the framework are presented. It is concluded that complex and interrelated forces require an analysis of trade-offs between engineering analysis and societal preferences, as in the hierarchical-multiobjective framework, to successfully address inherent risk.

  2. Fabrication of Single, Vertically Aligned Carbon Nanotubes in 3D Nanoscale Architectures

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Megerian, Krikor G.; Von Allmen, Paul A.; Baron, Richard L.

    2010-01-01

    Plasma-enhanced chemical vapor deposition (PECVD) and high-throughput manufacturing techniques for integrating single, aligned carbon nanotubes (CNTs) into novel 3D nanoscale architectures have been developed. First, the PECVD growth technique ensures excellent alignment of the tubes, since the tubes align in the direction of the electric field in the plasma as they are growing. Second, the tubes generated with this technique are all metallic, so their chirality is predetermined, which is important for electronic applications. Third, a wafer-scale manufacturing process was developed that is high-throughput and low-cost, and yet enables the integration of just single, aligned tubes with nanoscale 3D architectures with unprecedented placement accuracy and does not rely on e-beam lithography. Such techniques should lend themselves to the integration of PECVD grown tubes for applications ranging from interconnects, nanoelectromechanical systems (NEMS), sensors, bioprobes, or other 3D electronic devices. Chemically amplified polyhydroxystyrene-resin-based deep UV resists were used in conjunction with excimer laser-based (lambda = 248 nm) step-and-repeat lithography to form Ni catalyst dots = 300 nm in diameter that nucleated single, vertically aligned tubes with high yield using dc PECVD growth. This is the first time such chemically amplified resists have been used, resulting in the nucleation of single, vertically aligned tubes. In addition, novel 3D nanoscale architectures have been created using topdown techniques that integrate single, vertically aligned tubes. These were enabled by implementing techniques that use deep-UV chemically amplified resists for small-feature-size resolution; optical lithography units that allow unprecedented control over layer-to-layer registration; and ICP (inductively coupled plasma) etching techniques that result in near-vertical, high-aspect-ratio, 3D nanoscale architectures, in conjunction with the use of materials that are structurally and chemically compatible with the high-temperature synthesis of the PECVD-grown tubes. The techniques offer a wafer-scale process solution for integrating single PECVD-grown nanotubes into novel architectures that should accelerate their integration in 3D electronics in general. NASA can directly benefit from this technology for its extreme-environment planetary missions. Current Si transistors are inherently more susceptible to high radiation, and do not tolerate extremes in temperature. These novel 3D nanoscale architectures can form the basis for NEMS switches that are inherently less susceptible to radiation or to thermal extremes.

  3. The MARIACHI Project: Mixed Apparatus for Radio Investigation of Atmospheric Cosmic Rays of High Ionization

    NASA Astrophysics Data System (ADS)

    Inglis, M. D.; Takai, H.; Warasia, R.; Sundermier, J.

    2005-12-01

    Extreme Energy Cosmic Rays are nuclei that have been accelerated to kinetic energies in excess of 1020 eV. Where do they come from? How are they produced? Are they survivors of the early universe? Are they remnants of supernovas? MARIACHI, a unique collaboration between scientists, physics teachers and students, is an innovative technique that allows us to detect and study them. The Experiment MARIACHI is a unique research experiment that seeks the detection of extreme energy cosmic rays (EECRs), with E >1020 eV. It is an exciting project with many aspects: Research: It investigates an unconventional way of detecting EECRs based upon a method successfully used to detect meteors entering the upper atmosphere. The method was developed by planetary astronomers listening to radio signals reflected off the ionization trail. MARIACHI seeks to listen to TV signals reflected off the ionization trail of an EECR. The unique experiment topology will also permit the study of meteors, exotic forms of lightning, and atmospheric science. Computing and Technology: It uses radio detection stations, along with mini shower arrays hooked up to GPS clocks. Teachers and students build the arrays. It implements the Internet and the GRID as means of communication, data transfer, data processing, and for hosting a public educational outreach web site. Outreach and Education: It is an open research project with the active participation of a wide audience of astronomers, physicists, college professors, high school teachers and students. Groups representing high schools, community colleges and universities all collaborate in the project. The excitement of a real experiment motivates the science and technology classroom, and incorporates several high school physical science topics along with material from other disciplines such as astronomy, electronics, radio, optics.

  4. Why is Housing Always Satisfactory? A Study into the Impact of Preference and Experience on Housing Appreciation.

    PubMed

    Jansen, Sylvia J T

    2013-01-01

    This study focuses on residents' perceptions of residential quality concerning 23 different dwelling aspects. Respondents were asked to indicate their appreciation of these dwelling aspects on a scale ranging from 0 ("extremely unattractive") to 100 ("extremely attractive"). The influence of two potential factors on the appreciation of dwelling aspects is examined: (1) preference and (2) experience. It was hypothesized that residents who live according to their preferences give higher appreciation scores than residents who do not. This should even apply to low-quality housing. Furthermore, it was argued that residents appreciate their current housing situation more than residents who do not live in that particular housing situation. This effect should be independent of preference. The impact of both preference and of experience could be confirmed. The results also showed an interaction effect between preference and experience: the positive effect of experience on appreciation is larger in residents who live in a housing situation that they do not prefer. This result would be expected if the impact of experience works to decrease the 'gap' in residential satisfaction due to the discrepancy between what residents have and what they want. In conclusion, why is housing always satisfactory? In this paper, housing is satisfactory because the 'gap' between what residents want and what they have is small; residents seem to have realistic aspirations. Furthermore, residents appreciate what they already have, even if this is not what they prefer.

  5. The bottlenose dolphin (Tursiops truncatus) faecal microbiota.

    PubMed

    Soverini, Matteo; Quercia, Sara; Biancani, Barbara; Furlati, Stefano; Turroni, Silvia; Biagi, Elena; Consolandi, Clarissa; Peano, Clelia; Severgnini, Marco; Rampelli, Simone; Brigidi, Patrizia; Candela, Marco

    2016-04-01

    Cetaceans have evolved from herbivorous terrestrial artiodactyls closely related to ruminants and hippopotamuses. Delphinidae, a family included in this order, represent an extreme and successful re-adaptation of mammalian physiology to the marine habitat and piscivorous diet. The anatomical aspects of Delphinidae success are well understood, whereas some physiological aspects of their environmental fitness are less defined, such as the gut microbiota composition and its adaptation to their dietary niche. Here, we explored the faecal microbiota structure of nine adult bottlenose dolphins (Tursiops truncatus) and one breast-fed calf living in a controlled environment. According to our findings, dolphins possess a unique microbiota profile within the Mammalia class, highly resembling that of carnivorous marine fishes. The breast-fed calf showed a distinctive compositional structure of the gut microbial ecosystem, which partially overlaps with the mother's milk microbiota. Taken together, our data indicate that in dolphins the adaptation to the marine niche and piscivorous diet involved the convergence of their gut microbiota structure with that of marine fishes, overcoming the gut microbiota phylogenetic inertia previously described in terrestrial mammalians. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. A high aspect ratio SU-8 fabrication technique for hollow microneedles for transdermal drug delivery and blood extraction

    NASA Astrophysics Data System (ADS)

    Chaudhri, Buddhadev Paul; Ceyssens, Frederik; De Moor, Piet; Van Hoof, Chris; Puers, Robert

    2010-06-01

    Protein drugs, e.g. hormonal drugs, cannot be delivered orally to a patient as they get digested in the gastro-intestinal (GI) tract. Thus, it is imperative that these kinds of drugs are delivered transdermally through the skin. To provide for real-time feedback as well as to test independently for various substances in the blood, we also need a blood sampling system. Microneedles can perform both these functions. Further, microneedles made of silicon or metal have the risk of breaking inside the skin thereby leading to complications. SU-8, being approved of as being biocompatible by the Food and Drug Agency (FDA) of the United States, is an attractive alternative because firstly it is a polymer material, thereby reducing the chances of breakages inside the skin, and secondly it is a negative photoresist, thereby leading to ease of fabrication. Thus, here we present very tall (around 1600 µm) SU-8 polymer-based hollow microneedles fabricated by a simple and repeatable process, which are a very good candidate for transdermal drug delivery as well as blood extraction. The paper elaborates on the details that allow the fabrication of such extreme aspect ratios (>100).

  7. Electrophysiological correlates of forming memories for faces, names, and face-name associations.

    PubMed

    Guo, Chunyan; Voss, Joel L; Paller, Ken A

    2005-02-01

    The ability to put a name to a face is a vital aspect of human interaction, but many people find this extremely difficult, especially after being introduced to someone for the first time. Creating enduring associations between arbitrary stimuli in this manner is also a prime example of what patients with amnesia find most difficult. To help develop a better understanding of this type of memory, we sought to obtain measures of the neural events responsible for successfully forming a new face-name association. We used event-related potentials (ERPs) extracted from high-density scalp EEG recordings in order to compare (1) memory for faces, (2) memory for names, and (3) memory for face-name associations. Each visual face appeared simultaneously with a unique spoken name. Signals observed 200-800 ms after the onset of face-name pairs predicted subsequent memory for faces, names, or face-name associations. Difference potentials observed as a function of subsequent memory performance were not identical for these three memory tests, nor were potentials predicting associative memory equivalent to the sum of potentials predicting item memory, suggesting that different neural events at the time of encoding are relevant for these distinct aspects of remembering people.

  8. Wind tunnel tests for wind pressure distribution on gable roof buildings.

    PubMed

    Jing, Xiao-kun; Li, Yuan-qi

    2013-01-01

    Gable roof buildings are widely used in industrial buildings. Based on wind tunnel tests with rigid models, wind pressure distributions on gable roof buildings with different aspect ratios were measured simultaneously. Some characteristics of the measured wind pressure field on the surfaces of the models were analyzed, including mean wind pressure, fluctuating wind pressure, peak negative wind pressure, and characteristics of proper orthogonal decomposition results of the measured wind pressure field. The results show that extremely high local suctions often occur in the leading edges of longitudinal wall and windward roof, roof corner, and roof ridge which are the severe damaged locations under strong wind. The aspect ratio of building has a certain effect on the mean wind pressure coefficients, and the effect relates to wind attack angle. Compared with experimental results, the region division of roof corner and roof ridge from AIJ2004 is more reasonable than those from CECS102:2002 and MBMA2006.The contributions of the first several eigenvectors to the overall wind pressure distributions become much bigger. The investigation can offer some basic understanding for estimating wind load distribution on gable roof buildings and facilitate wind-resistant design of cladding components and their connections considering wind load path.

  9. Gravitational self-force meets the post-Newtonian approximation in extreme-mass ratio inspiral of binary black holes

    NASA Astrophysics Data System (ADS)

    Detweiler, Steven

    2010-02-01

    Post-Newtonian analysis, numerical relativity and, now, perturbation-based gravitational self-force analysis are all being used to describe various aspects of black hole binary systems. Recent comparisons between self-force analysis, with m1m2, and post-Newtonian analysis, with v/c 1 show excellent agreement in their common domain of validity. This lends credence to the two very different regularization procedures which are invoked in these approximations. When self-force analysis is able to create gravitational waveforms from extreme mass-ratio inspiral, then unprecedented cross cultural comparisons of these three distinct approaches to understanding gravitational waves will reveal the strengths and weaknesses of each. )

  10. The Extreme Ultraviolet Explorer mission

    NASA Technical Reports Server (NTRS)

    Malina, R. F.; Battel, S. J.

    1989-01-01

    The Extreme Ultraviolet Explorer (EUVE) mission will be the first user of NASA's new Explorer platform. The instrumentation included on this mission consists of three grazing incidence scanning telescopes, a deep survey instrument and an EUV spectrometer. The bandpass covered is 80 to 900 A. During the first six months of the mission, the scanning telescopes will be used to make all-sky maps in four bandpasses; astronomical sources wil be detected and their positions determined to an accuracy of 0.1 deg. The deep survey instrument will survey the sky with higher sensitivity along the ecliptic in two bandpasses between 80 and 500 A. Engineering and design aspects of the science payload and features of the instrument design are described.

  11. Future changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basins

    PubMed Central

    Lutz, Arthur F.; Nepal, Santosh; Khanal, Sonu; Pradhananga, Saurav; Shrestha, Arun B.; Immerzeel, Walter W.

    2017-01-01

    Future hydrological extremes, such as floods and droughts, may pose serious threats for the livelihoods in the upstream domains of the Indus, Ganges, Brahmaputra. For this reason, the impacts of climate change on future hydrological extremes is investigated in these river basins. We use a fully-distributed cryospheric-hydrological model to simulate current and future hydrological fluxes and force the model with an ensemble of 8 downscaled General Circulation Models (GCMs) that are selected from the RCP4.5 and RCP8.5 scenarios. The model is calibrated on observed daily discharge and geodetic mass balances. The climate forcing and the outputs of the hydrological model are used to evaluate future changes in climatic extremes, and hydrological extremes by focusing on high and low flows. The outcomes show an increase in the magnitude of climatic means and extremes towards the end of the 21st century where climatic extremes tend to increase stronger than climatic means. Future mean discharge and high flow conditions will very likely increase. These increases might mainly be the result of increasing precipitation extremes. To some extent temperature extremes might also contribute to increasing discharge extremes, although this is highly dependent on magnitude of change in temperature extremes. Low flow conditions may occur less frequently, although the uncertainties in low flow projections can be high. The results of this study may contribute to improved understanding on the implications of climate change for the occurrence of future hydrological extremes in the Hindu Kush–Himalayan region. PMID:29287098

  12. Probabilistic forecasting of extreme weather events based on extreme value theory

    NASA Astrophysics Data System (ADS)

    Van De Vyver, Hans; Van Schaeybroeck, Bert

    2016-04-01

    Extreme events in weather and climate such as high wind gusts, heavy precipitation or extreme temperatures are commonly associated with high impacts on both environment and society. Forecasting extreme weather events is difficult, and very high-resolution models are needed to describe explicitly extreme weather phenomena. A prediction system for such events should therefore preferably be probabilistic in nature. Probabilistic forecasts and state estimations are nowadays common in the numerical weather prediction community. In this work, we develop a new probabilistic framework based on extreme value theory that aims to provide early warnings up to several days in advance. We consider the combined events when an observation variable Y (for instance wind speed) exceeds a high threshold y and its corresponding deterministic forecasts X also exceeds a high forecast threshold y. More specifically two problems are addressed:} We consider pairs (X,Y) of extreme events where X represents a deterministic forecast, and Y the observation variable (for instance wind speed). More specifically two problems are addressed: Given a high forecast X=x_0, what is the probability that Y>y? In other words: provide inference on the conditional probability: [ Pr{Y>y|X=x_0}. ] Given a probabilistic model for Problem 1, what is the impact on the verification analysis of extreme events. These problems can be solved with bivariate extremes (Coles, 2001), and the verification analysis in (Ferro, 2007). We apply the Ramos and Ledford (2009) parametric model for bivariate tail estimation of the pair (X,Y). The model accommodates different types of extremal dependence and asymmetry within a parsimonious representation. Results are presented using the ensemble reforecast system of the European Centre of Weather Forecasts (Hagedorn, 2008). Coles, S. (2001) An Introduction to Statistical modelling of Extreme Values. Springer-Verlag.Ferro, C.A.T. (2007) A probability model for verifying deterministic forecasts of extreme events. Wea. Forecasting {22}, 1089-1100.Hagedorn, R. (2008) Using the ECMWF reforecast dataset to calibrate EPS forecasts. ECMWF Newsletter, {117}, 8-13.Ramos, A., Ledford, A. (2009) A new class of models for bivariate joint tails. J.R. Statist. Soc. B {71}, 219-241.

  13. Bimetallic 3D nanostar dimers in ring cavities: recyclable and robust surface-enhanced Raman scattering substrates for signal detection from few molecules.

    PubMed

    Gopalakrishnan, Anisha; Chirumamilla, Manohar; De Angelis, Francesco; Toma, Andrea; Zaccaria, Remo Proietti; Krahne, Roman

    2014-08-26

    Top-down fabrication of electron-beam lithography (EBL)-defined metallic nanostructures is a successful route to obtain extremely high electromagnetic field enhancement via plasmonic effects in well-defined regions. To this aim, various geometries have been introduced such as disks, triangles, dimers, rings, self-similar lenses, and more. In particular, metallic dimers are highly efficient for surface-enhanced Raman spectroscopy (SERS), and their decoupling from the substrate in a three-dimensional design has proven to further improve their performance. However, the large fabrication time and cost has hindered EBL-defined structures from playing a role in practical applications. Here we present three-dimensional nanostar dimer devices that can be recycled via maskless metal etching and deposition processes, due to conservation of the nanostructure pattern in the 3D geometry of the underlying Si substrate. Furthermore, our 3D-nanostar-dimer-in-ring structures (3D-NSDiRs) incorporate several advantageous aspects for SERS by enhancing the performance of plasmonic dimers via an external ring cavity, by efficient decoupling from the substrate through an elevated 3D design, and by bimetallic AuAg layers that exploit the increased performance of Ag while maintaining the biocompatibility of Au. We demonstrate SERS detection on rhodamine and adenine at extremely low density up to the limit of few molecules and analyze the field enhancement of the 3D-NSDiRs with respect to the exciting wavelength and metal composition.

  14. Attention and multisensory modulation argue against total encapsulation.

    PubMed

    de Haas, Benjamin; Schwarzkopf, Dietrich Samuel; Rees, Geraint

    2016-01-01

    Firestone & Scholl (F&S) postulate that vision proceeds without any direct interference from cognition. We argue that this view is extreme and not in line with the available evidence. Specifically, we discuss two well-established counterexamples: Attention directly affects core aspects of visual processing, and multisensory modulations of vision originate on multiple levels, some of which are unlikely to fall "within perception."

  15. Which Social Elements Are Visible in Virtual Groups? Addressing the Categorization of Social Expressions

    ERIC Educational Resources Information Center

    Perez-Mateo, M.; Guitert, M.

    2012-01-01

    Learning is a social process. That is why it is extremely important to understand how students interact socially in online courses and how it affects the learning process. However, social aspects, understood as those expressions or comments that go beyond strictly academic interaction, i.e. the need to carry out group work, are not clearly…

  16. An Automated System for Generating Situation-Specific Decision Support in Clinical Order Entry from Local Empirical Data

    ERIC Educational Resources Information Center

    Klann, Jeffrey G.

    2011-01-01

    Clinical Decision Support is one of the only aspects of health information technology that has demonstrated decreased costs and increased quality in healthcare delivery, yet it is extremely expensive and time-consuming to create, maintain, and localize. Consequently, a majority of health care systems do not utilize it, and even when it is…

  17. The Effect of EFL Teachers' Attitude toward English Language and English Language Proficiency on Their Sense of Efficacy

    ERIC Educational Resources Information Center

    Sabokrouh, Farzaneh

    2014-01-01

    Researchers in education have documented that teachers' sense of efficacy has strong impacts on various aspects of teaching and learning. Yet, in the field of TESOL, inquiry into teachers' sense of efficacy is extremely scarce. The present study, by adopting the notion of teachers' sense of efficacy as the theoretical framework, has explored…

  18. Meadow vole-induced mortality of oak seedlings in a former agricultural field planting

    Treesearch

    Andrew B. Self; Andrew W. Ezell; Dennis Rowe; Emily B. Schultz; John D. Hodges

    2015-01-01

    Seedling mortality due to meadow vole herbivory is an often acknowledged but relatively unstudied aspect of hardwood afforestation. Vole-induced mortality is not typically a major item of concern in afforestation attempts. However, damage has been extreme in some plantings. A total of 4,320 bare-root Nuttall oak (Quercus texana Buckley), Shumard oak (Quercus shumardii...

  19. "This Performance Art Is for the Birds:" "Jackass," "Extreme" Sports, and the De(con)struction of Gender

    ERIC Educational Resources Information Center

    Sweeny, Robert W.

    2008-01-01

    Many challenges currently face art educators who aim to address aspects of popular visual culture in the art classroom. This article analyzes the relationship between performance art and the MTV program "Jackass," one example of problematic popular visual culture. Issues of gender representation and violence within the context of Reality TV and…

  20. The clinical aspects of the upper extremity exoskeleton "EXAR" use

    NASA Astrophysics Data System (ADS)

    Vorobiev, A. A.; Krivonozhkina, P. S.; Andryushchenko, F. A.; Zasypkina, O. A.

    2015-11-01

    The article considers some of indications and contraindications for the use of the exoskeleton "EXAR". Our experience with the present construction use shows that the exoskeleton "EXAR" is able to make up the following lost or disturbed muscle functions:- an arm raise; a drawing of the arm aside from the trunk;- a bending of the arm in shoulder or elbow joints.

  1. Brief Report: The Relationship between Visual Acuity, the Embedded Figures Test and Systemizing in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Brosnan, Mark J.; Gwilliam, Lucy R.; Walker, Ian

    2012-01-01

    Enhanced performance upon the Embedded Figures Test (EFT) in individuals with autism spectrum disorder (ASD) has informed psychological theories of the non-social aspects that characterise ASD. The Extreme Male Brain theory of autism proposes that enhanced visual acuity underpins greater attention to detail (assessed by the EFT) which is a…

  2. Seismic Leadership, Hope, and Resiliency: Stories of Two Christchurch Schools Post-Earthquake

    ERIC Educational Resources Information Center

    Notman, Ross

    2015-01-01

    This article takes the form of a research report which examines personal resiliency and a sense of hope among educational leaders in times of extreme crises. Findings indicated that, despite the trauma of an earthquake in Christchurch, New Zealand, school leaders were still able to find satisfying aspects in their jobs, and to display a range of…

  3. Leveraging organismal biology to forecast the effects of climate change.

    PubMed

    Buckley, Lauren B; Cannistra, Anthony F; John, Aji

    2018-04-26

    Despite the pressing need for accurate forecasts of ecological and evolutionary responses to environmental change, commonly used modelling approaches exhibit mixed performance because they omit many important aspects of how organisms respond to spatially and temporally variable environments. Integrating models based on organismal phenotypes at the physiological, performance and fitness levels can improve model performance. We summarize current limitations of environmental data and models and discuss potential remedies. The paper reviews emerging techniques for sensing environments at fine spatial and temporal scales, accounting for environmental extremes, and capturing how organisms experience the environment. Intertidal mussel data illustrate biologically important aspects of environmental variability. We then discuss key challenges in translating environmental conditions into organismal performance including accounting for the varied timescales of physiological processes, for responses to environmental fluctuations including the onset of stress and other thresholds, and for how environmental sensitivities vary across lifecycles. We call for the creation of phenotypic databases to parameterize forecasting models and advocate for improved sharing of model code and data for model testing. We conclude with challenges in organismal biology that must be solved to improve forecasts over the next decade.acclimation, biophysical models, ecological forecasting, extremes, microclimate, spatial and temporal variability.

  4. Climate Change and Food Safety: Beyond Production

    NASA Astrophysics Data System (ADS)

    Ziska, L. H.; Crimmins, A. R.

    2016-12-01

    There is merited interest in determining the extent of climate disruption on agricultural production and food security. However, additional aspects of food security, including food safety, nutrition and distribution have, overall, received less attention. Beginning in 2013, the U.S. Global Change Research Program as part of the ongoing National Climate Assessment, began a directed effort to evaluate the vulnerability of climate change to these under-represented aspects of food security for developed countries. Based on this extensive review of current science, several key findings were developed: (a) Climate change, including rising temperatures and changes in weather extremes, is expected to increase the exposure of food to certain pathogens and toxins; (b) Climate change will increase human exposure to chemical contaminants in food through several pathways; (c) The nutritional value of agriculturally important food crops, including cereals, will decrease in response to the ongoing increase in atmospheric carbon dioxide; (d) Increases in the frequency or intensity of extreme weather events associated with climate change may disrupt food distribution. These findings will be presented as a means to describe the state of the science and expand on food security research in the broader context of public health and climate change.

  5. Walking smoothness is associated with self-reported function after accounting for gait speed.

    PubMed

    Lowry, Kristin A; Vanswearingen, Jessie M; Perera, Subashan; Studenski, Stephanie A; Brach, Jennifer S

    2013-10-01

    Gait speed has shown to be an indicator of functional status in older adults; however, there may be aspects of physical function not represented by speed but by the quality of movement. The purpose of this study was to determine the relations between walking smoothness, an indicator of the quality of movement based on trunk accelerations, and physical function. Thirty older adults (mean age, 77.7±5.1 years) participated. Usual gait speed was measured using an instrumented walkway. Walking smoothness was quantified by harmonic ratios derived from anteroposterior, vertical, and mediolateral trunk accelerations recorded during overground walking. Self-reported physical function was recorded using the function subscales of the Late-Life Function and Disability Instrument. Anteroposterior smoothness was positively associated with all function components of the Late-Life Function and Disability Instrument, whereas mediolateral smoothness exhibited negative associations. Adjusting for gait speed, anteroposterior smoothness remained associated with the overall and lower extremity function subscales, whereas mediolateral smoothness remained associated with only the advanced lower extremity subscale. These findings indicate that walking smoothness, particularly the smoothness of forward progression, represents aspects of the motor control of walking important for physical function not represented by gait speed alone.

  6. Correlates of depression, anxiety and stress among Malaysian university students.

    PubMed

    Shamsuddin, Khadijah; Fadzil, Fariza; Ismail, Wan Salwina Wan; Shah, Shamsul Azhar; Omar, Khairani; Muhammad, Noor Azimah; Jaffar, Aida; Ismail, Aniza; Mahadevan, Raynuha

    2013-08-01

    University students face not only challenges related with independent living, but also academic challenges. This predisposes them to depression, anxiety and stress, which are fairly common. The aim was to assess the prevalence of depression, anxiety and stress, and identify their correlates among university students. A cross-sectional study was conducted on 506 students between the ages of 18 and 24 years from four public universities in the Klang Valley, Malaysia. Through an anonymous, self administered questionnaire, they were assessed by the Depression Anxiety Stress Scale-21 (DASS-21). Data on socio-demographic, family characteristics and living arrangement were also obtained. Student's t-test and one-way ANOVA were used to explore association between these aspects. Analysis showed among all students, 27.5% had moderate, and 9.7% had severe or extremely severe depression; 34% had moderate, and 29% had severe or extremely severe anxiety; and 18.6% had moderate and 5.1% had severe or extremely severe stress scores based on the DASS-21 inventory. Both depression and anxiety scores were significantly higher among older students (20 and above) and those born in rural areas. Whereas, higher stress scores were significantly higher among older students (20 and above), females, Malays and those whose family had either low or high incomes compared to those with middle incomes. The prevalence of anxiety is much higher than either depression or stress, with some differences in their correlates except for age. These differences need to be further explored for development of better intervention programs and appropriate support services targeting this group. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. From Local to EXtreme Environments (FLEXE): Promoting Earth Systems Science Literacy Through Student Inquiry and Real Data

    NASA Astrophysics Data System (ADS)

    Goehring, E. C.; Carlsen, W.; Larsen, J.; Simms, E.; Smith, M.

    2007-12-01

    From Local to EXtreme Environments (FLEXE) is an innovative new project of the GLOBE Program that involves middle and high school students in systematic, facilitated analyses and comparisons of real environmental data. Through FLEXE, students collect and analyze data from various sources, including the multi-year GLOBE database, deep-sea scientific research projects, and direct measurements of the local environment collected by students using GLOBE sampling protocols. Initial FLEXE materials and training have focused on student understanding of energy transfer through components of the Earth system, including a comparison of how local environmental conditions differ from those found at deep-sea hydrothermal vent communities. While the importance of data acquisition, accuracy and replication is emphasized, FLEXE is also uniquely structured to deepen students' understanding of multiple aspects of the process and nature of science, including written communication of results and on-line peer review. Analyses of data are facilitated through structured, web-based interactions and culminating activities with at-sea scientists through an online forum. The project benefits from the involvement of a professional evaluator, and as the model is tested and refined, it may serve as a template for the inclusion of additional "extreme" earth systems. FLEXE is a partnership of the international GLOBE web- based education program and the NSF Ridge 2000 mid-ocean ridge and hydrothermal vent research program, and includes the expertise of the Center for Science and the Schools at Penn State University. International collaborators also include the InterRidge and ChEss international research programs.

  8. Mechanical profiles of murder and murderers: An extensive review.

    PubMed

    Kamaluddin, M R; Md Shariff, N S; Mat Saat, G A

    2018-04-01

    Murder is an extreme form of violent crime which occurs across all social, cultural, and ethnic spheres. It is therefore, crucial to understand the nature and the extent of mechanical profiles of murder and murderers. The purpose of this article is to review such critical aspects of murder in a nutshell. An archival research methodology was employed in this study where relevant search for literatures on these mechanical aspects related to murder was made across search engines such as Google Scholar and Elsevier with relevant articles selected for this review. This review discusses in an in-depth manner, pivotal mechanical profiles which include motives, methods of killing, choice of weapon, settings, targeted body parts, and murder victim concealment. In-depth understanding of each mechanical aspect offers an opportunity to the public at large to expand their knowledge on murder prevention manners which is vital for crime prevention efforts in the future.

  9. Ion cyclotron emission studies: Retrospects and prospects

    DOE PAGES

    Gorelenkov, N. N.

    2016-06-05

    Ion cyclotron emission (ICE) studies emerged in part from the papers by A.B. Mikhailovskii published in the 1970s. Among the discussed subjects were electromagnetic compressional Alfv,nic cyclotron instabilities with the linear growth rate similar ~ √(n α/n e) driven by fusion products, -particles which draw a lot of attention to energetic particle physics. The theory of ICE excited by energetic particles was significantly advanced at the end of the 20th century motivated by first DT experiments on TFTR and subsequent JET experimental studies which we highlight. Recently ICE theory was advanced by detailed theoretical and experimental studies on spherical torusmore » (ST) fusion devices where the instability signals previously indistinguishable in high aspect ratio tokamaks due to high toroidal magnetic field became the subjects of experiments. Finally, we discuss prospects of ICE theory applications for future burning plasma (BP) experiments such as those to be conducted in ITER device in France, where neutron and gamma rays escaping the plasma create extremely challenging conditions fusion alpha particle diagnostics.« less

  10. High Luminosity LHC: challenges and plans

    NASA Astrophysics Data System (ADS)

    Arduini, G.; Barranco, J.; Bertarelli, A.; Biancacci, N.; Bruce, R.; Brüning, O.; Buffat, X.; Cai, Y.; Carver, L. R.; Fartoukh, S.; Giovannozzi, M.; Iadarola, G.; Li, K.; Lechner, A.; Medina Medrano, L.; Métral, E.; Nosochkov, Y.; Papaphilippou, Y.; Pellegrini, D.; Pieloni, T.; Qiang, J.; Redaelli, S.; Romano, A.; Rossi, L.; Rumolo, G.; Salvant, B.; Schenk, M.; Tambasco, C.; Tomás, R.; Valishev, S.; Van der Veken, F. F.

    2016-12-01

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will undergo a major upgrade in the 2020s. This will increase its rate of collisions by a factor of five beyond the original design value and the integrated luminosity by a factor ten. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 T superconducting magnets, including Nb3Sn-based magnets never used in accelerators before, compact superconducting cavities for longitudinal beam rotation, new technology and physical processes for beam collimation. The dynamics of the HL-LHC beams will be also particularly challenging and this aspect is the main focus of this paper.

  11. Superior Robust Ultrathin Single-Crystalline Silicon Carbide Membrane as a Versatile Platform for Biological Applications.

    PubMed

    Nguyen, Tuan-Khoa; Phan, Hoang-Phuong; Kamble, Harshad; Vadivelu, Raja; Dinh, Toan; Iacopi, Alan; Walker, Glenn; Hold, Leonie; Nguyen, Nam-Trung; Dao, Dzung Viet

    2017-12-06

    Micromachined membranes are promising platforms for cell culture thanks to their miniaturization and integration capabilities. Possessing chemical inertness, biocompatibility, and integration, silicon carbide (SiC) membranes have attracted great interest toward biological applications. In this paper, we present the batch fabrication, mechanical characterizations, and cell culture demonstration of robust ultrathin epitaxial deposited SiC membranes. The as-fabricated ultrathin SiC membranes, with an ultrahigh aspect ratio (length/thickness) of up to 20 000, possess high a fracture strength up to 2.95 GPa and deformation up to 50 μm. A high optical transmittance of above 80% at visible wavelengths was obtained for 50 nm membranes. The as-fabricated membranes were experimentally demonstrated as an excellent substrate platform for bio-MEMS/NEMS cell culture with the cell viability rate of more than 92% after 72 h. The ultrathin SiC membrane is promising for in vitro observations/imaging of bio-objects with an extremely short optical access.

  12. Multiphoton, confocal, and lifetime microscopy for molecular imaging in cartilage

    NASA Astrophysics Data System (ADS)

    Wachsmann-Hogiu, Sebastian; Krakow, Deborah; Kirilova, Veneta T.; Cohn, Daniel H.; Bertolotto, Cristina; Acuna, Dora; Fang, Qiyin; Krivorov, Nikola; Farkas, Daniel L.

    2005-03-01

    It has recently been shown that mutations in Filamin A and B genes produce a large spectrum of skeletal disorders in developing fetuses. However, high-resolution optical microscopy in cartilage growth plate using fluorescent antibody assays, which should elucidate molecular aspects of these disorders, is extremely difficult due to the high level of autofluoresce in this tissue. We apply multiphoton, confocal, lifetime and spectral microscopy to (i) image and characterize autofluorophores in chondrocytes and subtract their contributions to obtain a corrected antibody-marker fluorescence signal, and (ii) measure the interaction between Filamin A and B proteins by detecting the fluorescence resonance energy transfer (FRET) between markers of the two proteins. Taking advantage of the different fluorescence spectra of the endogenous and exogenous markers, we can significantly reduce the autofluorescence background. Preliminary results of the FRET experiments suggest no interaction between Filamin A and B proteins. However, developing of new antibodies targeting the carboxy-terminal immunoglobulin-like domain may be necessary to confirm this result.

  13. Ion cyclotron emission studies: Retrospects and prospects

    NASA Astrophysics Data System (ADS)

    Gorelenkov, N. N.

    2016-05-01

    Ion cyclotron emission (ICE) studies emerged in part from the papers by A.B. Mikhailovskii published in the 1970s. Among the discussed subjects were electromagnetic compressional Alfvénic cyclotron instabilities with the linear growth rate √ {n_α /n_e } driven by fusion products, -particles which draw a lot of attention to energetic particle physics. The theory of ICE excited by energetic particles was significantly advanced at the end of the 20th century motivated by first DT experiments on TFTR and subsequent JET experimental studies which we highlight. More recently ICE theory was advanced by detailed theoretical and experimental studies on spherical torus (ST) fusion devices where the instability signals previously indistinguishable in high aspect ratio tokamaks due to high toroidal magnetic field became the subjects of experiments. We discuss further prospects of ICE theory applications for future burning plasma (BP) experiments such as those to be conducted in ITER device in France, where neutron and gamma rays escaping the plasma create extremely challenging conditions fusion alpha particle diagnostics.

  14. Marketing and reputation aspects of neonatal safeguards and hospital-security systems.

    PubMed

    Smith, Alan D

    2009-01-01

    Technological advancements have migrated from personal-use electronics into the healthcare setting for security enhancements. Within maternity wards and nurseries, technology was seen as one of best way to protect newborns from abduction. The present study is a focus on what systems and methods are used in neonatal security, the security arrangements, staff training, and impacts outside the control of the hospital, customer satisfaction and customer relations management. Through hypothesis-testing and exploratory analysis, gender biases and extremely high levels of security were found within a web-enabled and professional sample of 200 respondents. The factor-based constructs were found to be, in order of the greatest explained variance: security concerns, personal technology usage, work technology applications, and demographic maturity concerns, resulting in four factor-based scores with significant combined variance of 61.5%. It was found that through a better understanding on the importance and vital need for hospitals to continue to improve on their technology-based security policies significantly enhanced their reputation in the highly competitive local healthcare industry.

  15. Methods in elastic tissue biology: elastin isolation and purification.

    PubMed

    Mecham, Robert P

    2008-05-01

    Elastin provides recoil to tissues subjected to repeated stretch, such as blood vessels and the lung. It is encoded by a single gene in mammals and is secreted as a 60-70 kDa monomer called tropoelastin. The functional form of the protein is that of a large, highly crosslinked polymer that organizes as sheets or fibers in the extracellular matrix. Purification of mature, crosslinked elastin is problematic because its insolubility precludes its isolation using standard wet-chemistry techniques. Instead, relatively harsh experimental approaches designed to remove non-elastin 'contaminates' are employed to generate an insoluble product that has the amino acid composition expected of elastin. Although soluble, tropoelastin also presents problems for isolation and purification. The protein's extreme stickiness and susceptibility to proteolysis requires careful attention during purification and in tropoelastin-based assays. This article describes the most common approaches for purification of insoluble elastin and tropoelastin. It also addresses key aspects of studying tropoelastin production in cultured cells, where elastin expression is highly dependent upon cell type, culture conditions, and passage number.

  16. Captive breeding of pangolins: current status, problems and future prospects

    PubMed Central

    Hua, Liushuai; Gong, Shiping; Wang, Fumin; Li, Weiye; Ge, Yan; Li, Xiaonan; Hou, Fanghui

    2015-01-01

    Abstract Pangolins are unique placental mammals with eight species existing in the world, which have adapted to a highly specialized diet of ants and termites, and are of significance in the control of forest termite disaster. Besides their ecological value, pangolins are extremely important economic animals with the value as medicine and food. At present, illegal hunting and habitat destruction have drastically decreased the wild population of pangolins, pushing them to the edge of extinction. Captive breeding is an important way to protect these species, but because of pangolin’s specialized behaviors and high dependence on natural ecosystem, there still exist many technical barriers to successful captive breeding programs. In this paper, based on the literatures and our practical experience, we reviewed the status and existing problems in captive breeding of pangolins, including four aspects, the naturalistic habitat, dietary husbandry, reproduction and disease control. Some recommendations are presented for effective captive breeding and protection of pangolins. PMID:26155072

  17. Quantifying the relationship between extreme air pollution events and extreme weather events

    NASA Astrophysics Data System (ADS)

    Zhang, Henian; Wang, Yuhang; Park, Tae-Won; Deng, Yi

    2017-05-01

    Extreme weather events can strongly affect surface air quality, which has become a major environmental factor to affect human health. Here, we examined the relationship between extreme ozone and PM2.5 (particular matter with an aerodynamic diameter less than 2.5 μm) events and the representative meteorological parameters such as daily maximum temperature (Tmax), minimum relative humidity (RHmin), and minimum wind speed (Vmin), using the location-specific 95th or 5th percentile threshold derived from historical reanalysis data (30 years for ozone and 10 years for PM2.5). We found that ozone and PM2.5 extremes were decreasing over the years, reflecting EPA's tightened standards and effort on reducing the corresponding precursor's emissions. Annual ozone and PM2.5 extreme days were highly correlated with Tmax and RHmin, especially in the eastern U.S. They were positively (negatively) correlated with Vmin in urban (rural and suburban) stations. The overlapping ratios of ozone extreme days with Tmax were fairly constant, about 32%, and tended to be high in fall and low in winter. Ozone extreme days were most sensitive to Tmax, then RHmin, and least sensitive to Vmin. The majority of ozone extremes occurred when Tmax was between 300 K and 320 K, RHmin was less than 40%, and Vmin was less than 3 m/s. The number of annual extreme PM2.5 days was highly positively correlated with the extreme RHmin/Tmax days, with correlation coefficient between PM2.5/RHmin highest in urban and suburban regions and the correlation coefficient between PM2.5/Tmax highest in rural area. Tmax has more impact on PM2.5 extreme over the eastern U.S. Extreme PM2.5 days were more likely to occur at low RH conditions in the central and southeastern U.S., especially during spring time, and at high RH conditions in the northern U.S. and the Great Plains. Most extreme PM2.5 events occurred when Tmax was between 300 K and 320 K and RHmin was between 10% and 50%. Extreme PM2.5 days usually occurred when Vmin was under 2 m/s. However, during spring season in the Southeast and fall season in Northwest, high winds were found to accompany extreme PM2.5 days, likely reflecting the impact of fire emissions.

  18. Transcranial Doppler and Lower Extremity Function in Older Adults: Einstein Aging Study.

    PubMed

    Ezzati, Ali; Rundek, Tatjana; Verghese, Joe; Derby, Carol A

    2017-12-01

    To determine whether transcranial Doppler ultrasound (TCD) measures of mean blood flow velocity (MBFV) in the major cerebral arteries are associated with measures of lower extremity function in community-dwelling older adults. Cross-sectional study. Community sample. Individuals aged 70 and older (mean 79.5, 54% female) without dementia participating in the Einstein Aging Study (N = 200). All participants underwent TCD assessments and tests of lower extremity function at an annual clinic visit. Average MBFV for anterior (left and right anterior and middle cerebral arteries (MCAs)) and posterior (vertebral (VA) and basilar (BA) artery) circulation was measured using a standardized TCD protocol. Lower extremity function was characterized according to gait speed (cm/s) measured using an instrumented walkway, balance according to unipedal stance time (UPST, seconds), and lower extremity strength according to timed repeated chair rise (seconds). Multiple regression models adjusted for age, sex, race, education, and medical comorbidities showed that lower MBFV in the MCA was associated with slower gait speed and chair rise time but not with UPST. Ordinal regression models showed that lower MBFV in the VA and BA is associated with shorter UPST. Low MBFV in the anterior and posterior cerebral circulation was associated with worse lower extremity function and balance in older adults. This might be indicative of the importance of age-related changes in cerebral hemodynamics in the function of brain regions involved in specific aspects of physical performance. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.

  19. Hyperspectral remote sensing and long term monitoring reveal watershed-estuary ecosystem interactions

    NASA Astrophysics Data System (ADS)

    Hestir, E. L.; Schoellhamer, D. H.; Santos, M. J.; Greenberg, J. A.; Morgan-King, T.; Khanna, S.; Ustin, S.

    2016-02-01

    Estuarine ecosystems and their biogeochemical processes are extremely vulnerable to climate and environmental changes, and are threatened by sea level rise and upstream activities such as land use/land cover and hydrological changes. Despite the recognized threat to estuaries, most aspects of how change will affect estuaries are not well understood due to the poorly resolved understanding of the complex physical, chemical and biological processes and their interactions in estuarine systems. Remote sensing technologies such as high spectral resolution optical systems enable measurements of key environmental parameters needed to establish baseline conditions and improve modeling efforts. The San Francisco Bay-Delta is a highly modified estuary system in a state of ecological crisis due to the numerous threats to its sustainability. In this study, we used a combination of hyperspectral remote sensing and long-term in situ monitoring records to investigate how water clarity has been responding to extreme climatic events, anthropogenic watershed disturbances, and submerged aquatic vegetation (SAV) invasions. From the long-term turbidity monitoring record, we found that water clarity underwent significant increasing step changes associated with sediment depletion and El Nino-extreme run-off events. Hyperspectral remote sensing data revealed that invasive submerged aquatic pant species have facultative C3 and C4-like photosynthetic pathways that give them a competitive advantage under the changing water clarity conditions of the Bay-Delta system. We postulate that this adaptation facilitated the rapid expansion of SAV following the significant step changes in increasing water clarity caused by watershed disturbances and the 1982-1983 El Nino events. Using SAV maps from hyperspectral remote sensing, we estimate that SAV-water clarity feedbacks were responsible for 20-70% of the increasing water clarity trend in the Bay-Delta. Ongoing and future developments in airborne and global mapping hyperspectral satellite missions will enable full canopy-to-benthos characterization of estuarine ecosystems. When coupled with synoptic watershed measurements, these will improve understanding of watershed-estuary interactions for improved sustainable management.

  20. The opposite end of the attention deficit hyperactivity disorder continuum: genetic and environmental aetiologies of extremely low ADHD traits.

    PubMed

    Greven, Corina U; Merwood, Andrew; van der Meer, Jolanda M J; Haworth, Claire M A; Rommelse, Nanda; Buitelaar, Jan K

    2016-04-01

    Although attention deficit hyperactivity disorder (ADHD) is thought to reflect a continuously distributed quantitative trait, it is assessed through binary diagnosis or skewed measures biased towards its high, symptomatic extreme. A growing trend is to study the positive tail of normally distributed traits, a promising avenue, for example, to study high intelligence to increase power for gene-hunting for intelligence. However, the emergence of such a 'positive genetics' model has been tempered for ADHD due to poor phenotypic resolution at the low extreme. Overcoming this methodological limitation, we conduct the first study to assess the aetiologies of low extreme ADHD traits. In a population-representative sample of 2,143 twins, the Strength and Weaknesses of ADHD Symptoms and Normal behaviour (SWAN) questionnaire was used to assess ADHD traits on a continuum from low to high. Aetiological influences on extreme ADHD traits were estimated using DeFries-Fulker extremes analysis. ADHD traits were related to behavioural, cognitive and home environmental outcomes using regression. Low extreme ADHD traits were significantly influenced by shared environmental factors (23-35%) but were not significantly heritable. In contrast, high-extreme ADHD traits showed significant heritability (39-51%) but no shared environmental influences. Compared to individuals with high extreme or with average levels of ADHD traits, individuals with low extreme ADHD traits showed fewer internalizing and externalizing behaviour problems, better cognitive performance and more positive behaviours and positive home environmental outcomes. Shared environmental influences on low extreme ADHD traits may reflect passive gene-environment correlation, which arises because parents provide environments as well as passing on genes. Studying the low extreme opens new avenues to study mechanisms underlying previously neglected positive behaviours. This is different from the current deficit-based model of intervention, but congruent with a population-level approach to improving youth wellbeing. © 2015 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for Child and Adolescent Mental Health.

  1. Thermo-Rheometric Studies of New Class Ionic Liquid Lubricants

    NASA Astrophysics Data System (ADS)

    Bakhtiyarov, Sayavur; Street, Kenneth; Scheiman, Daniel; van Dyke, Alan

    2010-11-01

    Due to their specific properties, such as small volatility, nonflammability, extreme thermal stability, low melting point, wide liquid range, and good miscibility with organic materials, ionic liquids attracted particular interest in various industrial processes. Recently, the unique properties of ionic liquids caught the attention of space tribologists. The traditional lubricating materials used in space have limited lifetimes in vacuum due to the catalytic degradation on metal surfaces, high vaporization at high temperatures, dewetting, and other disadvantages. The lubricants for the space applications must have vacuum stability, high viscosity index, low creep tendency, good elastohydrodynamic and boundary lubrication properties, radiation atomic oxygen resistance, optical or infrared transparency. Unfortunately, the properties such as heat flow, heat capacity, thermogravimetric weight loss, and non-linearity in the rheological behavior of the lubricants are not studied well for newly developed systems. These properties are crucial to analyzing thermodynamic and energy dissipative aspects of the lubrication process. In this paper we will present the rheological and heat and mass transfer measurements for the ionic liquid lubricants, their mixtures with and without additive.

  2. Upper Limit for Regional Sea Level Projections

    NASA Astrophysics Data System (ADS)

    Jevrejeva, Svetlana; Jackson, Luke; Riva, Riccardo; Grinsted, Aslak; Moore, John

    2016-04-01

    With more than 150 million people living within 1 m of high tide future sea level rise is one of the most damaging aspects of warming climate. The latest Intergovernmental Panel on Climate Change report (AR5 IPCC) noted that a 0.5 m rise in mean sea level will result in a dramatic increase the frequency of high water extremes - by an order of magnitude, or more in some regions. Thus the flood threat to the rapidly growing urban populations and associated infrastructure in coastal areas are major concerns for society. Hence, impact assessment, risk management, adaptation strategy and long-term decision making in coastal areas depend on projections of mean sea level and crucially its low probability, high impact, upper range. With probabilistic approach we produce regional sea level projections taking into account large uncertainties associated with Greenland and Antarctica ice sheets contribution. We calculate the upper limit (as 95%) for regional sea level projections by 2100 with RCP8.5 scenario, suggesting that for the most coastlines upper limit will exceed the global upper limit of 1.8 m.

  3. Assessment and Survey of Potential Catastrophic Landslides by Using Geomorphometric Analysis

    NASA Astrophysics Data System (ADS)

    Hsieh, Yu-Chung; Hou, Chin-Shyong; Hu, Jyr-Ching; Chan, Yu-Chang; Fei, Li-Yuan; Chen, Hung-Jen; Chiu, Cheng-Lung

    2013-04-01

    In recent years, extreme weather events have induced more frequent geological hazards in Taiwan. The heavy rainfall brought by the Typhoon Morakot has triggered a large amount of landslides. The most unfortunate case occurred in the Hsiaolin village which was totally demolished by a catastrophic landslide in less than a minute. The study of such catastrophic landslides is urgently needed to mitigate loss of lives and properties in the future. Traditionally, the study of landslides usually includes shallow landslides, rockslide, and debris flow etc. and is commonly made use of satellite images, aerial photos, coupled with field surveys. It is considered that the creep phase of a landslide is a progressive stage of failure and gives sufficient signals before turning into a catastrophic landslide. Due to lack of high quality terrain data, however, the research of catastrophic landslides has been time consuming with often unsatisfactory results. This study used high-resolution airborne LiDAR-derived DEM data from the Central Geological Survey, MOEA. Different geomorphometric analyses were applied to process the high resolution and high accuracy DEM data including the hillshade, aspect, slope, eigenvalue ratio (ER) & openness. Among the geomorphometric analyses, combining the characteristics of openness, slope and hillshade gives a clear advantage to distinguish and analyze regions of potential catastrophic landslides in many cases. Statistical and image processing techniques to quantify morphological and other aspects of the terrain surface are also employed. Our results indicate that over hundreds of potential catastrophic landslides may present in southern Taiwan after the Typhoon Morakot event. The quantitative methods used in this study highlight the terrain features of the creep phase of catastrophic landslides and is helpful for landslide feature interpretation and hazard assessment.

  4. LDRD Project 52523 final report :Atomic layer deposition of highly conformal tribological coatings.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jungk, John Michael; Dugger, Michael Thomas; George, Steve M.

    2005-10-01

    Friction and wear are major concerns in the performance and reliability of micromechanical (MEMS) devices. While a variety of lubricant and wear resistant coatings are known which we might consider for application to MEMS devices, the severe geometric constraints of many micromechanical systems (high aspect ratios, shadowed surfaces) make most deposition methods for friction and wear-resistance coatings impossible. In this program we have produced and evaluate highly conformal, tribological coatings, deposited by atomic layer deposition (ALD), for use on surface micromachined (SMM) and LIGA structures. ALD is a chemical vapor deposition process using sequential exposure of reagents and self-limiting surfacemore » chemistry, saturating at a maximum of one monolayer per exposure cycle. The self-limiting chemistry results in conformal coating of high aspect ratio structures, with monolayer precision. ALD of a wide variety of materials is possible, but there have been no studies of structural, mechanical, and tribological properties of these films. We have developed processes for depositing thin (<100 nm) conformal coatings of selected hard and lubricious films (Al2O3, ZnO, WS2, W, and W/Al{sub 2}O{sub 3} nanolaminates), and measured their chemical, physical, mechanical and tribological properties. A significant challenge in this program was to develop instrumentation and quantitative test procedures, which did not exist, for friction, wear, film/substrate adhesion, elastic properties, stress, etc., of extremely thin films and nanolaminates. New scanning probe and nanoindentation techniques have been employed along with detailed mechanics-based models to evaluate these properties at small loads characteristic of microsystem operation. We emphasize deposition processes and fundamental properties of ALD materials, however we have also evaluated applications and film performance for model SMM and LIGA devices.« less

  5. Sources of Variability in Performance Times at the World Orienteering Championships.

    PubMed

    Hébert-Losier, Kim; Platt, Simon; Hopkins, William G

    2015-07-01

    An improvement equal to 0.3 of the typical variation in an elite athlete's race-to-race performance estimates the smallest worthwhile enhancement, which has not yet been determined for orienteers. Moreover, much of the research in high-performance orienteering has focused on physical and cognitive aspects, although course characteristics might influence race performance. Analysis of race data provides insights into environmental effects and other aspects of competitive performance. Our aim was to examine such factors in relation to World Orienteering Championships performances. We used mixed linear modelling to analyze finishing times from the three qualification rounds and final round of the sprint, middle-distance, and long-distance disciplines of World Orienteering Championships from 2006 to 2013. Models accounted for race length, distance climbed, number of controls, home advantage, venue identity, round (qualification final), athlete identity, and athlete age. Within-athlete variability (coefficient of variation, mean ± SD) was lower in the final (4.9% ± 1.4%) than in the qualification (7.3% ± 2.4%) rounds and provided estimates of smallest worthwhile enhancements of 1.0%-3.5%. The home advantage was clear in most disciplines, with distance climbed particularly impacting sprint performances. Small to very large between-venue differences were apparent. Performance predictability expressed as intraclass correlation coefficients was extremely high within years and was high to very high between years. Age of peak performance ranged from 27 to 31 yr. Our results suggest that elite orienteers should focus on training and strategies that enhance performance by at least 1.0%-3.5% for smallest worthwhile enhancement. Moreover, as greater familiarity with the terrain likely mediated the home advantage, foreign athletes would benefit from training in nations hosting the World Orienteering Championships for familiarization.

  6. Continuous Isotropic-Nematic Transition in Amyloid Fibril Suspensions Driven by Thermophoresis.

    PubMed

    Vigolo, Daniele; Zhao, Jianguo; Handschin, Stephan; Cao, Xiaobao; deMello, Andrew J; Mezzenga, Raffaele

    2017-04-27

    The isotropic and nematic (I + N) coexistence for rod-like colloids is a signature of the first-order thermodynamics nature of this phase transition. However, in the case of amyloid fibrils, the biphasic region is too small to be experimentally detected, due to their extremely high aspect ratio. Herein, we study the thermophoretic behaviour of fluorescently labelled β-lactoglobulin amyloid fibrils by inducing a temperature gradient across a microfluidic channel. We discover that fibrils accumulate towards the hot side of the channel at the temperature range studied, thus presenting a negative Soret coefficient. By exploiting this thermophoretic behaviour, we show that it becomes possible to induce a continuous I-N transition with the I and N phases at the extremities of the channel, starting from an initially single N phase, by generating an appropriate concentration gradient along the width of the microchannel. Accordingly, we introduce a new methodology to control liquid crystal phase transitions in anisotropic colloidal suspensions. Because the induced order-order transitions are achieved under stationary conditions, this may have important implications in both applied colloidal science, such as in separation and fractionation of colloids, as well as in fundamental soft condensed matter, by widening the accessibility of target regions in the phase diagrams.

  7. Groundwater flood of a river terrace in southwest Wisconsin, USA

    NASA Astrophysics Data System (ADS)

    Gotkowitz, Madeline B.; Attig, John W.; McDermott, Thomas

    2014-09-01

    Intense rainstorms in 2008 resulted in wide-spread flooding across the Midwestern United States. In Wisconsin, floodwater inundated a 17.7-km2 area on an outwash terrace, 7.5 m above the mapped floodplain of the Wisconsin River. Surface-water runoff initiated the flooding, but results of field investigation and modeling indicate that rapid water-table rise and groundwater inundation caused the long-lasting flood far from the riparian floodplain. Local geologic and geomorphic features of the landscape lead to spatial variability in runoff and recharge to the unconfined sand and gravel aquifer, and regional hydrogeologic conditions increased groundwater discharge from the deep bedrock aquifer to the river valley. Although reports of extreme cases of groundwater flooding are uncommon, this occurrence had significant economic and social costs. Local, state and federal officials required hydrologic analysis to support emergency management and long-term flood mitigation strategies. Rapid, sustained water-table rise and the resultant flooding of this high-permeability aquifer illustrate a significant aspect of groundwater system response to an extreme precipitation event. Comprehensive land-use planning should encompass the potential for water-table rise and groundwater flooding in a variety of hydrogeologic settings, as future changes in climate may impact recharge and the water-table elevation.

  8. Extremely large telescopes as a motor of socio-economic development and implications of their construction and installation

    NASA Astrophysics Data System (ADS)

    Burgos-Martin, J.; Sanchez-Padron, M.; Sanchez, F.; Martinez-Roger, Carlos

    2004-07-01

    Large-Scale observing facilities are scarce and costly. Even so, the perspective to enlarge or to increase the number of these facilities are quite real and several projects are undertaking their first steps in this direction. These costly facilities require the cooperation of highly qualified institutions, able to undertake the project from the scientific and technological point of view, as well as the vital collaboration and effective support of several countries, at the highest level, able to provide the necessary investment for their construction. Because of these technological implications and the financial magnitude of these projects, their impact goes well beyond the international astrophysical community. We propose to carry out a study on the socio-economic impact from the construction and operation of an Extremely Large Telescope of class 30 - 100 m. We plan to approach several aspects such as its impact in the promotion of the employment; social, educational and cultural integration of the population; the impulse of industries; its impact on the national and international policies on research; environmental issues; etc. We will also analyze the financial instruments available, and those special aids only accessible for some countries and regions to encourage their participation in projects of this magnitude.

  9. Training Shoes do not Decrease the Negative Work of the Lower Extremity Joints.

    PubMed

    Hashizume, Satoru; Murai, Akihiko; Hobara, Hiroaki; Kobayashi, Yoshiyuki; Tada, Mitsunori; Mochimaru, Masaaki

    2017-11-01

    Different types of running shoes may have different influence on the negative work of each lower extremity joint. Clarifying this influence can reduce the potential risk of muscle injury. The present study examined the difference in the negative work and associated kinetic and kinematic parameters of the lower extremity joints between training shoes and racing flats during the contact phase of running. Participants were asked to run on a runway at a speed of 3.0 m·s -1 for both training shoes and racing flats. The negative work and associated kinetic and kinematic parameters of each lower extremity joint were calculated. No difference was found in the negative work of the hip and ankle joints between the two types of running shoes. Meanwhile, the negative work of the knee joint was significantly greater for training shoes than for racing flats. This aspect was related to a longer duration of the negative power of the knee joint with the invariant amplitude of the negative power, moment, and angular velocity. These results suggest a higher potential risk of muscle injury around the knee joint for training shoes than for racing flats. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Limitations of bootstrap current models

    DOE PAGES

    Belli, Emily A.; Candy, Jefferey M.; Meneghini, Orso; ...

    2014-03-27

    We assess the accuracy and limitations of two analytic models of the tokamak bootstrap current: (1) the well-known Sauter model and (2) a recent modification of the Sauter model by Koh et al. For this study, we use simulations from the first-principles kinetic code NEO as the baseline to which the models are compared. Tests are performed using both theoretical parameter scans as well as core- to-edge scans of real DIII-D and NSTX plasma profiles. The effects of extreme aspect ratio, large impurity fraction, energetic particles, and high collisionality are studied. In particular, the error in neglecting cross-species collisional couplingmore » – an approximation inherent to both analytic models – is quantified. Moreover, the implications of the corrections from kinetic NEO simulations on MHD equilibrium reconstructions is studied via integrated modeling with kinetic EFIT.« less

  11. Three-dimensional near-field MIMO array imaging using range migration techniques.

    PubMed

    Zhuge, Xiaodong; Yarovoy, Alexander G

    2012-06-01

    This paper presents a 3-D near-field imaging algorithm that is formulated for 2-D wideband multiple-input-multiple-output (MIMO) imaging array topology. The proposed MIMO range migration technique performs the image reconstruction procedure in the frequency-wavenumber domain. The algorithm is able to completely compensate the curvature of the wavefront in the near-field through a specifically defined interpolation process and provides extremely high computational efficiency by the application of the fast Fourier transform. The implementation aspects of the algorithm and the sampling criteria of a MIMO aperture are discussed. The image reconstruction performance and computational efficiency of the algorithm are demonstrated both with numerical simulations and measurements using 2-D MIMO arrays. Real-time 3-D near-field imaging can be achieved with a real-aperture array by applying the proposed MIMO range migration techniques.

  12. Design of a spanloader cargo aircraft

    NASA Technical Reports Server (NTRS)

    Weisshaar, Terrence A.

    1989-01-01

    The design features of an aircraft capable of fulfilling a long haul, high capacity cargo mission are described. This span-loading aircraft, or flying wing, is capable of carrying extremely large payloads and is expected to be in demand to replace the slow-moving cargo ships currently in use. The spanloader seeks to reduce empty weight by eliminating the aircraft fuselage. Disadvantages are the thickness of the cargo-containing wing, and resulting stability and control problems. The spanloader presented here has a small fuselage, low-aspect ratio wings, winglets, and uses six turbofan engines for propulsion. It will have a payload capacity of 300,000 pounds plus 30 first class passengers and 6 crew members. Its projected market is transportation of freight from Europe and the U.S.A. to countries in the Pacific Basin. Cost estimates support its economic feasibility.

  13. Natural scene logo recognition by joint boosting feature selection in salient regions

    NASA Astrophysics Data System (ADS)

    Fan, Wei; Sun, Jun; Naoi, Satoshi; Minagawa, Akihiro; Hotta, Yoshinobu

    2011-01-01

    Logos are considered valuable intellectual properties and a key component of the goodwill of a business. In this paper, we propose a natural scene logo recognition method which is segmentation-free and capable of processing images extremely rapidly and achieving high recognition rates. The classifiers for each logo are trained jointly, rather than independently. In this way, common features can be shared across multiple classes for better generalization. To deal with large range of aspect ratio of different logos, a set of salient regions of interest (ROI) are extracted to describe each class. We ensure the selected ROIs to be both individually informative and two-by-two weakly dependant by a Class Conditional Entropy Maximization criteria. Experimental results on a large logo database demonstrate the effectiveness and efficiency of our proposed method.

  14. Watermarking textures in video games

    NASA Astrophysics Data System (ADS)

    Liu, Huajian; Berchtold, Waldemar; Schäfer, Marcel; Lieb, Patrick; Steinebach, Martin

    2014-02-01

    Digital watermarking is a promising solution to video game piracy. In this paper, based on the analysis of special challenges and requirements in terms of watermarking textures in video games, a novel watermarking scheme for DDS textures in video games is proposed. To meet the performance requirements in video game applications, the proposed algorithm embeds the watermark message directly in the compressed stream in DDS files and can be straightforwardly applied in watermark container technique for real-time embedding. Furthermore, the embedding approach achieves high watermark payload to handle collusion secure fingerprinting codes with extreme length. Hence, the scheme is resistant to collusion attacks, which is indispensable in video game applications. The proposed scheme is evaluated in aspects of transparency, robustness, security and performance. Especially, in addition to classical objective evaluation, the visual quality and playing experience of watermarked games is assessed subjectively in game playing.

  15. Geometric constrained variational calculus I: Piecewise smooth extremals

    NASA Astrophysics Data System (ADS)

    Massa, Enrico; Bruno, Danilo; Luria, Gianvittorio; Pagani, Enrico

    2015-05-01

    A geometric setup for constrained variational calculus is presented. The analysis deals with the study of the extremals of an action functional defined on piecewise differentiable curves, subject to differentiable, non-holonomic constraints. Special attention is paid to the tensorial aspects of the theory. As far as the kinematical foundations are concerned, a fully covariant scheme is developed through the introduction of the concept of infinitesimal control. The standard classification of the extremals into normal and abnormal ones is discussed, pointing out the existence of an algebraic algorithm assigning to each admissible curve a corresponding abnormality index, related to the co-rank of a suitable linear map. Attention is then shifted to the study of the first variation of the action functional. The analysis includes a revisitation of Pontryagin's equations and of the Lagrange multipliers method, as well as a reformulation of Pontryagin's algorithm in Hamiltonian terms. The analysis is completed by a general result, concerning the existence of finite deformations with fixed endpoints.

  16. Workers' compensation claims for musculoskeletal disorders and injuries of the upper extremity and knee among union carpenters in Washington State, 1989-2008.

    PubMed

    Lipscomb, Hester J; Schoenfisch, Ashley L; Cameron, Wilfrid; Kucera, Kristen L; Adams, Darrin; Silverstein, Barbara A

    2015-04-01

    Numerous aspects of construction place workers at risk of musculoskeletal disorders and injuries (MSDIs). Work organization and the nature of MSDIs create surveillance challenges. By linking union records with workers' compensation claims, we examined 20-year patterns of MSDIs involving the upper extremity (UE) and the knee among a large carpenter cohort. MSDIs were common and accounted for a disproportionate share of paid lost work time (PLT) claims; UE MSDIs were three times more common than those of the knee. Rates declined markedly over time and were most pronounced for MSDIs of the knee with PLT. Patterns of risk varied by extremity, as well as by age, gender, union tenure, and predominant work. Carpenters in drywall installation accounted for the greatest public health burden. A combination of factors likely account for the patterns observed over time and across worker characteristics. Drywall installers are an intervention priority. © 2015 Wiley Periodicals, Inc.

  17. Successful Treatment of Pyoderma Gangrenosum with Cryoglobulinemia and Hepatitis C

    PubMed Central

    Pourmorteza, Mohsen; Tawadros, Fady; Bader, Gilbert; Al-Tarawneh, Mohammad; Cook, Emilie; Shams, Wael; Young, Mark

    2016-01-01

    Patient: Male, 68 Final Diagnosis: Pyoderma gangrenosum Symptoms: Worsening lower extremity wound Medication: — Clinical Procedure: — Specialty: Infectious Diseases Objective: Rare disease Background: Pyoderma gangrenosum is a rare, ulcerative cutaneous condition that was first described by Brocq in 1916. This diagnosis is quite challenging as the histopathological findings are nonspecific. Pyoderma gangrenosum is usually associated with inflammatory bowel disease, leukemia, and hepatitis C. We describe a rare clinical case of a patient with hepatitis C (HCV), mixed cryoglubinemia, and pyoderma gangrenosum, which was successfully treated with prednisone in combination with the new antiviral medication ledipasvir/sofosbuvir. Case Report: A 68-year-old male with a history of untreated HCV presented to the clinic with a left lower extremity ulcer that had progressively worsened over 4 days after the patient sustained a minor trauma to the left lower extremity. Examination revealed a 2×3 cm purulent ulcer with an erythematous rim on medial aspect of his left lower leg. HCV viral load and genotype analysis revealed genotype 1A with polymerase chain reaction (PCR) showing viral counts of 9,506,048 and cryoglobulinemia. With a worsening and enlarging erythematous ulcer and failure of IV antibiotic therapy, the patient underwent skin biopsy, which showed acanthotic epidermis with superficial and deep perivascular lymphoplasmacytic dermatitis admixed with mild neutrophilic infiltrate. The patient was subsequently started on ledipasvir/sofosbuvir and prednisone with a high suspicion of pyoderma gangrenosum. At one-month follow-up at the hepatology clinic, the patient demonstrated a near resolution of the lower extremity ulcer with undetectable viral load. Conclusions: Pyoderma gangrenosum is an inflammatory process of unknown etiology, and establishing the correct diagnosis can be a difficult task. For this reason it is prudent for clinicians to consider Pyoderma gangrenosum in their differential diagnosis, especially in the setting of a nonhealing surgical wound or skin infection. PMID:27345376

  18. Does quality control matter? Surface urban heat island intensity variations estimated by satellite-derived land surface temperature products

    NASA Astrophysics Data System (ADS)

    Lai, Jiameng; Zhan, Wenfeng; Huang, Fan; Quan, Jinling; Hu, Leiqiu; Gao, Lun; Ju, Weimin

    2018-05-01

    The temporally regular and spatially comprehensive monitoring of surface urban heat islands (SUHIs) have been extremely difficult, until the advent of satellite-based land surface temperature (LST) products. However, these LST products have relatively higher errors compared to in situ measurements. This has resulted in comparatively inaccurate estimations of SUHI indicators and, consequently, may have distorted interpretations of SUHIs. Although reports have shown that LST qualities are important for SUHI interpretations, systematic investigations of the response of SUHI indicators to LST qualities across cities with dissimilar bioclimates are rare. To address this issue, we chose eighty-six major cities across mainland China and analyzed SUHI intensity (SUHII) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) LST data. The LST-based SUHII differences due to inclusion or exclusion of MODIS quality control (QC) flags (i.e., ΔSUHII) were evaluated. Our major findings included, but are not limited to, the following four aspects: (1) SUHIIs can be significantly impacted by MODIS QC flags, and the associated QC-induced ΔSUHIIs generally accounted for 24.3% (29.9%) of the total SUHII value during the day (night); (2) the ΔSUHIIs differed between seasons, with considerable differences between transitional (spring and autumn) and extreme (summer and winter) seasons; (3) significant discrepancies also appeared among cities located in northern and southern regions, with northern cities often possessing higher annual mean ΔSUHIIs. The internal variations of ΔSUHIIs within individual cities also showed high heterogeneity, with ΔSUHII variations that generally exceeded 5.0 K (3.0 K) in northern (southern) cities; (4) ΔSUHIIs were negatively related to SUHIIs and cloud cover percentages (mostly in transitional seasons). No significant relationship was found in the extreme seasons. Our findings highlight the need to be extremely cautious when using LST product-based SUHIIs to interpret SUHIs.

  19. Edges of Radicalization: Ideas, Individuals and Networks in Violent Extremism

    DTIC Science & Technology

    2012-02-01

    1980), 301–310.  35 David  Matsumoto , “ Cultural  Similarities and Differences in Display Rules,” Motivation and Emotion 14,  no. 3 (1990), 195–214; and...understanding of  psychological  studies of terrorist actors. Garry Robins  reviewed an earlier draft, highlighting important aspects of network dynamics. Others...social‐ psychological  process  that occur  as people  come  to  adopt  new radical views.  6  INTRODUCTION  Violent  extremism presents  one  of

  20. Investigating Extreme Heat and Humidity in the Northeast United States from a Joint Hazard Perspective

    NASA Astrophysics Data System (ADS)

    Horton, R. M.; Coffel, E.; Kushnir, Y.

    2014-12-01

    Recent years have seen an increasing focus on extreme high temperature events, as our understanding of societal vulnerability to such extremes has grown. Less climate research has been devoted to heat indices that consider the joint hazard posed by high temperatures and high humidity, even though heat indices are being prioritized by utility providers and public health officials. This paper evaluates how well CMIP5 models are able to reproduce the large-scale features and surface conditions associated with joint high heat and humidity events in the Northeast U.S. Projected changes in heat indices are also shown both for the full set of CMIP5 models and for a subset of models that best reproduce the statistics of historical high heat index events. The importance of considering the relationship between 1) temperature and humidity extremes and 2) projected changes in extreme temperature and humidity extremes, rather than investigating each variable independently, will be emphasized. Potential impacts of the findings on human mortality and energy consumption will be briefly discussed.

  1. Outreach and education from EuroGeoMoonMars2009 Field Campaign in Utah

    NASA Astrophysics Data System (ADS)

    Foing, Bernard H.

    The goal of the EuroGeoMoonMars mission at Utah Desert Research station(from 24 January to 28 February 2009) was to demonstrate instruments from ExoGeoLab pilot project, to support the interpretation of ongoing lunar and planetary missions, to validate a procedure for surface in-situ and return science, to study human performance aspects, and perform outreach and education projects. The EuroGeoMoonMars campaign included four sets of objectives: 1) Technology demonstration aspects: a set of instruments were deployed, tested, assessed, and training was provided to scientists using them in subsequent rotations 2) Research aspects: a series of field science and exploration investigations were conducted in geology, geochemistry, biology, astronomy, with synergies with space missions and research from planetary surfaces and Earth extreme environments. 3) Human crew related aspects, i.e. (a) evaluation of the different functions and interfaces of a planetary habitat, (b) crew time organization in this habitat, (c) evaluation of man-machine interfaces of science and technical equipment; 4) Education, outreach, communications, multi-cultural public relations Outreach, education and inspiration: We produced written, pictures, and video materials that can be used for education, outreach and public relations. Daily reports were posted on the MDRS website. We had during the Technical crew preparation, the visit of film producer Mark Arabella and film crew for a Moon related National Geographics documentary "Earth without the Moon". Two media crew visitors stayed also in the Hab to film our activities documenting the operational, research, human, simulation, imaginative and fantasy aspects of Moon-Mars-extreme Earth exploration. They contributed a journalist report, and even performed an EVA outreach filming a sortie to Hanksville village on Earth. Other film and journalists visited the EuroGeoMars crew for interviews and exchange. Specific crew reports were also prepared for some national and international communication channels, including Plan`te Mars, RTBF, ILEWG, COSPAR, IAF, IAA. We thank ILEWG, NASA Ames, ESA, the Mars society, VU Amsterdam and collaborating institutes for supporting the campaign.

  2. Effects of Extreme Temperatures on Cause-Specific Cardiovascular Mortality in China

    PubMed Central

    Wang, Xuying; Li, Guoxing; Liu, Liqun; Westerdahl, Dane; Jin, Xiaobin; Pan, Xiaochuan

    2015-01-01

    Objective: Limited evidence is available for the effects of extreme temperatures on cause-specific cardiovascular mortality in China. Methods: We collected data from Beijing and Shanghai, China, during 2007–2009, including the daily mortality of cardiovascular disease, cerebrovascular disease, ischemic heart disease and hypertensive disease, as well as air pollution concentrations and weather conditions. We used Poisson regression with a distributed lag non-linear model to examine the effects of extremely high and low ambient temperatures on cause-specific cardiovascular mortality. Results: For all cause-specific cardiovascular mortality, Beijing had stronger cold and hot effects than those in Shanghai. The cold effects on cause-specific cardiovascular mortality reached the strongest at lag 0–27, while the hot effects reached the strongest at lag 0–14. The effects of extremely low and high temperatures differed by mortality types in the two cities. Hypertensive disease in Beijing was particularly susceptible to both extremely high and low temperatures; while for Shanghai, people with ischemic heart disease showed the greatest relative risk (RRs = 1.16, 95% CI: 1.03, 1.34) to extremely low temperature. Conclusion: People with hypertensive disease were particularly susceptible to extremely low and high temperatures in Beijing. People with ischemic heart disease in Shanghai showed greater susceptibility to extremely cold days. PMID:26703637

  3. Effects of Extreme Temperatures on Cause-Specific Cardiovascular Mortality in China.

    PubMed

    Wang, Xuying; Li, Guoxing; Liu, Liqun; Westerdahl, Dane; Jin, Xiaobin; Pan, Xiaochuan

    2015-12-21

    Limited evidence is available for the effects of extreme temperatures on cause-specific cardiovascular mortality in China. We collected data from Beijing and Shanghai, China, during 2007-2009, including the daily mortality of cardiovascular disease, cerebrovascular disease, ischemic heart disease and hypertensive disease, as well as air pollution concentrations and weather conditions. We used Poisson regression with a distributed lag non-linear model to examine the effects of extremely high and low ambient temperatures on cause-specific cardiovascular mortality. For all cause-specific cardiovascular mortality, Beijing had stronger cold and hot effects than those in Shanghai. The cold effects on cause-specific cardiovascular mortality reached the strongest at lag 0-27, while the hot effects reached the strongest at lag 0-14. The effects of extremely low and high temperatures differed by mortality types in the two cities. Hypertensive disease in Beijing was particularly susceptible to both extremely high and low temperatures; while for Shanghai, people with ischemic heart disease showed the greatest relative risk (RRs = 1.16, 95% CI: 1.03, 1.34) to extremely low temperature. People with hypertensive disease were particularly susceptible to extremely low and high temperatures in Beijing. People with ischemic heart disease in Shanghai showed greater susceptibility to extremely cold days.

  4. A web-based study of bipolarity and impulsivity in athletes engaging in extreme and high-risk sports.

    PubMed

    Dudek, Dominika; Siwek, Marcin; Jaeschke, Rafał; Drozdowicz, Katarzyna; Styczeń, Krzysztof; Arciszewska, Aleksandra; Chrobak, Adrian A; Rybakowski, Janusz K

    2016-06-01

    We hypothesised that men and women who engage in extreme or high-risk sports would score higher on standardised measures of bipolarity and impulsivity compared to age and gender matched controls. Four-hundred and eighty extreme or high-risk athletes (255 males and 225 females) and 235 age-matched control persons (107 males and 128 females) were enrolled into the web-based case-control study. The Mood Disorder Questionnaire (MDQ) and Barratt Impulsiveness Scale (BIS-11) were administered to screen for bipolarity and impulsive behaviours, respectively. Results indicated that extreme or high-risk athletes had significantly higher scores of bipolarity and impulsivity, and lower scores on cognitive complexity of the BIS-11, compared to controls. Further, there were positive correlations between the MDQ and BIS-11 scores. These results showed greater rates of bipolarity and impulsivity, in the extreme or high-risk athletes, suggesting these measures are sensitive to high-risk behaviours.

  5. Phonology in the mirror. Comment on "Towards a Computational Comparative Neuroprimatology: Framing the language-ready brain" by Michael A. Arbib

    NASA Astrophysics Data System (ADS)

    Schwartz, Jean-Luc; Barnaud, Marie-Lou; Bessière, Pierre; Diard, Julien; Moulin-Frier, Clément

    2016-03-01

    The contribution by M.A. Arbib over the years and as it appears summarized and conceptualized in this paper [1] is admirable, extremely impressive, and very convincing in many aspects. A key value of this work is that it systematically attempts to introduce formal conceptualization and modeling in the reasoning about facts and interpretations.

  6. How Can the Expansion of the Apprenticeship System in India Create Conditions for Greater Equity and Social Justice?

    ERIC Educational Resources Information Center

    Smith, Erica; Kemmis, Ros Brennan; Comyn, Paul

    2014-01-01

    This paper reports on aspects of a recent project carried out for the International Labour Organization (ILO) and the World Bank, which was designed to feed into the process of updating and expanding India's apprenticeship system. The apprenticeship system in India is extremely small for the country's population, even taking into account the high…

  7. Communicating the science of the 11-year sunspot cycle to the general public

    NASA Astrophysics Data System (ADS)

    Choudhuri, A. R.

    2015-03-01

    Astrophysics is one branch of science which excites the imagination of the general public. Pioneer science popularizers like George Gamow and Fred Hoyle wrote on different aspects of astrophysics. However, of late, we see a trend which I find disturbing. While it has become extremely fashionable to write popular science books on cosmology, other areas of astrophysics are grossly neglected.

  8. A Code Of Ethics And Professional Conduct For NSA Intelligence Professionals

    DTIC Science & Technology

    2015-02-17

    protects the nation. Such releases may especially damage the cohesion of the workforce. Team Cohesion and Self - esteem The Greek philosopher...individual, the corporation , and the community, self -interest and the public good.” 25 Two aspects of this assertion accurately characterize NSA employees...reasons, most of which are thwarted by monitoring, security investigations, and self -reporting. Recently, individuals responsible for extremely damaging

  9. The Normalizing of Hate Speech and How Communication Educators Should Respond. Wicked Problems Forum: Freedom of Speech at Colleges and Universities

    ERIC Educational Resources Information Center

    Waltman, Michael S.

    2018-01-01

    Whereas hate is defined as extreme negative feelings for others because of some aspect of their identity (Perry, 2001; Waltman & Haas, 2011), hate speech is discourse devoted to the vilification of the other's identity (Waltman, 2015; Waltman & Mattheis, 2017). It is an attempt to vandalize the other's identity to such an extent that the…

  10. Universality far from equilibrium: From superfluid Bose gases to heavy-ion collisions

    DOE PAGES

    Schlichting, S.; Venugopalan, R.; Berges, J.; ...

    2015-02-10

    Isolated quantum systems in extreme conditions can exhibit unusually large occupancies per mode. In addition, this over-population gives rise to new universality classes of many-body systems far from equilibrium. We present theoretical evidence that important aspects of non-Abelian plasmas in the ultra-relativistic limit admit a dual description in terms of a Bose condensed scalar field theory.

  11. Intradural-extramedullary haemangioblastoma with paraspinal extension in a dog.

    PubMed

    Binanti, D; De Zani, D; Fantinato, E; Allevi, G; Sironi, G; Zani, D D

    2015-12-01

    An 8-year-old spayed female cross-breed dog was evaluated following a 2-month history of thoracic limb weakness. Neurological examination revealed a spinal cord lesion between C1 and C5 segments. Magnetic resonance imaging (MRI) revealed that almost 70% of the spinal canal between C1 and C2 was occupied by an intradural extramedullary mass that was connected to a paraspinal mass from the cranial aspect of C2 to the cranial aspect of C3. The dog was anaesthetised and a dorsal, right-sided hemilaminectomy was performed. A durotomy was performed to expose a multilobular mass located principally along the right dorsal-lateral aspect of the spinal cord. The mass did not appear to infiltrate the cord parenchyma. The abnormal tissue was removed as completely as possible using gentle dissection and submitted for histological evaluation. The histological findings were consistent with an intradural-extramedullary haemangioblastoma with paraspinal extension. Following surgery, no neurological deterioration was detected. A metronomic-dosing chemotherapy protocol was administered to prevent progression or recurrence of the tumour. Follow-up MRI studies were performed 3, 6 and 12 months after the surgery, confirming complete tumour removal and the absence of recurrence. Haemangioblastoma is an extremely rare neoplasm in animals and only two cases of this tumour have been reported, but in other anatomical locations. Haemangioblastomas in human patients are more commonly located in the cerebellum and intradural-extramedullary growth is extremely rare. The dog in this study responded favourably to combined surgery and metronomic chemotherapy and was clinically normal 1 year after surgery. © 2015 Australian Veterinary Association.

  12. Factors affecting the thermal environment of Agassiz’s Desert Tortoise (Gopherus agassizii) cover sites in the Central Mojave Desert during periods of temperature extremes

    USGS Publications Warehouse

    Mack, Jeremy S.; Berry, Kristin H.; Miller, David; Carlson, Andrea S.

    2015-01-01

    Agassiz's Desert Tortoises (Gopherus agassizii) spend >95% of their lives underground in cover sites that serve as thermal buffers from temperatures, which can fluctuate >40°C on a daily and seasonal basis. We monitored temperatures at 30 active tortoise cover sites within the Soda Mountains, San Bernardino County, California, from February 2004 to September 2006. Cover sites varied in type and structural characteristics, including opening height and width, soil cover depth over the opening, aspect, tunnel length, and surficial geology. We focused our analyses on periods of extreme temperature: in summer, between July 1 and September 1, and winter, between November 1 and February 15. With the use of multivariate regression tree analyses, we found cover-site temperatures were influenced largely by tunnel length and subsequently opening width and soil cover. Linear regression models further showed that increasing tunnel length increased temperature stability and dampened seasonal temperature extremes. Climate change models predict increased warming for southwestern North America. Cover sites that buffer temperature extremes and fluctuations will become increasingly important for survival of tortoises. In planning future translocation projects and conservation efforts, decision makers should consider habitats with terrain and underlying substrate that sustain cover sites with long tunnels and expanded openings for tortoises living under temperature extremes similar to those described here or as projected in the future.

  13. Antarctic climate change: extreme events disrupt plastic phenotypic response in Adélie penguins.

    PubMed

    Lescroël, Amélie; Ballard, Grant; Grémillet, David; Authier, Matthieu; Ainley, David G

    2014-01-01

    In the context of predicted alteration of sea ice cover and increased frequency of extreme events, it is especially timely to investigate plasticity within Antarctic species responding to a key environmental aspect of their ecology: sea ice variability. Using 13 years of longitudinal data, we investigated the effect of sea ice concentration (SIC) on the foraging efficiency of Adélie penguins (Pygoscelis adeliae) breeding in the Ross Sea. A 'natural experiment' brought by the exceptional presence of giant icebergs during 5 consecutive years provided unprecedented habitat variation for testing the effects of extreme events on the relationship between SIC and foraging efficiency in this sea-ice dependent species. Significant levels of phenotypic plasticity were evident in response to changes in SIC in normal environmental conditions. Maximum foraging efficiency occurred at relatively low SIC, peaking at 6.1% and decreasing with higher SIC. The 'natural experiment' uncoupled efficiency levels from SIC variations. Our study suggests that lower summer SIC than currently observed would benefit the foraging performance of Adélie penguins in their southernmost breeding area. Importantly, it also provides evidence that extreme climatic events can disrupt response plasticity in a wild seabird population. This questions the predictive power of relationships built on past observations, when not only the average climatic conditions are changing but the frequency of extreme climatic anomalies is also on the rise.

  14. Antarctic Climate Change: Extreme Events Disrupt Plastic Phenotypic Response in Adélie Penguins

    PubMed Central

    Lescroël, Amélie; Ballard, Grant; Grémillet, David; Authier, Matthieu; Ainley, David G.

    2014-01-01

    In the context of predicted alteration of sea ice cover and increased frequency of extreme events, it is especially timely to investigate plasticity within Antarctic species responding to a key environmental aspect of their ecology: sea ice variability. Using 13 years of longitudinal data, we investigated the effect of sea ice concentration (SIC) on the foraging efficiency of Adélie penguins (Pygoscelis adeliae) breeding in the Ross Sea. A ‘natural experiment’ brought by the exceptional presence of giant icebergs during 5 consecutive years provided unprecedented habitat variation for testing the effects of extreme events on the relationship between SIC and foraging efficiency in this sea-ice dependent species. Significant levels of phenotypic plasticity were evident in response to changes in SIC in normal environmental conditions. Maximum foraging efficiency occurred at relatively low SIC, peaking at 6.1% and decreasing with higher SIC. The ‘natural experiment’ uncoupled efficiency levels from SIC variations. Our study suggests that lower summer SIC than currently observed would benefit the foraging performance of Adélie penguins in their southernmost breeding area. Importantly, it also provides evidence that extreme climatic events can disrupt response plasticity in a wild seabird population. This questions the predictive power of relationships built on past observations, when not only the average climatic conditions are changing but the frequency of extreme climatic anomalies is also on the rise. PMID:24489657

  15. Ultrananocrystalline Diamond Membranes for Detection of High-Mass Proteins

    NASA Astrophysics Data System (ADS)

    Kim, H.; Park, J.; Aksamija, Z.; Arbulu, M.; Blick, R. H.

    2016-12-01

    Mechanical resonators realized on the nanoscale by now offer applications in mass sensing of biomolecules with extraordinary sensitivity. The general idea is that perfect mechanical mass sensors should be of extremely small size to achieve zepto- or yoctogram sensitivity in weighing single molecules similar to a classical scale. However, the small effective size and long response time for weighing biomolecules with a cantilever restricts their usefulness as a high-throughput method. Commercial mass spectrometry (MS), on the other hand, such as electrospray ionization and matrix-assisted laser desorption and ionization (MALDI) time of flight (TOF) and their charge-amplifying detectors are the gold standards to which nanomechanical resonators have to live up to. These two methods rely on the ionization and acceleration of biomolecules and the following ion detection after a mass selection step, such as TOF. The principle we describe here for ion detection is based on the conversion of kinetic energy of the biomolecules into thermal excitation of chemical vapor deposition diamond nanomembranes via phonons followed by phonon-mediated detection via field emission of thermally emitted electrons. We fabricate ultrathin diamond membranes with large lateral dimensions for MALDI TOF MS of high-mass proteins. These diamond membranes are realized by straightforward etching methods based on semiconductor processing. With a minimal thickness of 100 nm and cross sections of up to 400 ×400 μ m2 , the membranes offer extreme aspect ratios. Ion detection is demonstrated in MALDI TOF analysis over a broad range from insulin to albumin. The resulting data in detection show much enhanced resolution as compared to existing detectors, which can offer better sensitivity and overall performance in resolving protein masses.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Reshmi; Thomas, Anoop; Pullanchery, Saranya

    Strong coupling interactions between plasmon and exciton-based excitations have been proposed to be useful in the design of optoelectronic systems. However, the role of various optical parameters dictating the plasmon-exciton (plexciton) interactions is less understood. Herein, we propose an inequality for achieving strong coupling between plasmons and excitons through appropriate variation of their oscillator strengths and spectral widths. These aspects are found to be consistent with experiments on two sets of free-standing plexcitonic systems obtained by (i) linking fluorescein isothiocyanate on Ag nanoparticles of varying sizes through silane coupling and (ii) electrostatic binding of cyanine dyes on polystyrenesulfonate-coated Au nanorodsmore » of varying aspect ratios. Being covalently linked on Ag nanoparticles, fluorescein isothiocyanate remains in monomeric state, and its high oscillator strength and narrow spectral width enable us to approach the strong coupling limit. In contrast, in the presence of polystyrenesulfonate, monomeric forms of cyanine dyes exist in equilibrium with their aggregates: Coupling is not observed for monomers and H-aggregates whose optical parameters are unfavorable. The large aggregation number, narrow spectral width, and extremely high oscillator strength of J-aggregates of cyanines permit effective delocalization of excitons along the linear assembly of chromophores, which in turn leads to efficient coupling with the plasmons. Further, the results obtained from experiments and theoretical models are jointly employed to describe the plexcitonic states, estimate the coupling strengths, and rationalize the dispersion curves. The experimental results and the theoretical analysis presented here portray a way forward to the rational design of plexcitonic systems attaining the strong coupling limits.« less

  17. Allosteric Modulators for the Treatment of Schizophrenia: Targeting Glutamatergic Networks

    PubMed Central

    Menniti, Frank S.; Lindsley, Craig W.; Conn, P. Jeffrey; Pandit, Jayvardhan; Zagouras, Panayiotis; Volkmann, Robert A.

    2013-01-01

    Schizophrenia is a highly debilitating mental disorder which afflicts approximately 1% of the global population. Cognitive and negative deficits account for the lifelong disability associated with schizophrenia, whose symptoms are not effectively addressed by current treatments. New medicines are needed to treat these aspects of the disease. Neurodevelopmental, neuropathological, genetic, and behavioral pharmacological data indicate that schizophrenia stems from a dysfunction of glutamate synaptic transmission, particularly in frontal cortical networks. A number of novel pre- and postsynaptic mechanisms affecting glutamatergic synaptic transmission have emerged as viable targets for schizophrenia. While developing orthosteric glutamatergic agents for these targets has proven extremely difficult, targeting allosteric sites of these targets has emerged as a promising alternative. From a medicinal chemistry perspective, allosteric sites provide an opportunity of finding agents with better drug-like properties and greater target specificity. Furthermore, allosteric modulators are better suited to maintaining the highly precise temporal and spatial aspects of glutamatergic synaptic transmission. Herein, we review neuropathological and genomic/genetic evidence underscoring the importance of glutamate synaptic dysfunction in the etiology of schizophrenia and make a case for allosteric targets for therapeutic intervention. We review progress in identifying allosteric modulators of AMPA receptors, NMDA receptors, and metabotropic glutamate receptors, all with the aim of restoring physiological glutamatergic synaptic transmission. Challenges remain given the complexity of schizophrenia and the difficulty in studying cognition in animals and humans. Nonetheless, important compounds have emerged from these efforts and promising preclinical and variable clinical validation has been achieved. PMID:23409764

  18. Proteomics on the rims; insights into the biology of the nuclear envelope and flagellar pocket of trypanosomes

    PubMed Central

    Field, Mark C.; Adung’a, Vincent; Obado, Samson; Chait, Brian T.; Rout, Michael P.

    2014-01-01

    SUMMERY Trypanosomatids represent the causative agents of major diseases in humans, livestock and plants, with inevitable suffering and economic hardship as a result. They are also evolutionarily highly divergent organisms, and the many unique aspects of trypanosome biology provide opportunities in terms of identification of drug targets, the challenge of exploiting these putative targets, and at the same time significant scope for exploration of novel and divergent cell biology. We can estimate from genome sequences that the degree of divergence of trypanosomes from animals and fungi is extreme, with perhaps one third to one half of predicted trypanosome proteins having no known function based on homology or recognizable protein domains/architecture. Two highly important aspects of trypanosome biology are the flagellar pocket and the nuclear envelope, where in silico analysis clearly suggests great potential divergence in the proteome. The flagellar pocket is the sole site of endo- and exocytosis in trypanosomes and plays important roles in immune evasion via variant surface glycoprotein (VSG) trafficking and providing a location for sequestration of various invariant receptors. The trypanosome nuclear envelope has been largely unexplored, but by analogy with higher eukaryotes, roles in the regulation of chromatin and most significantly, in controlling VSG gene expression are expected. Here we discuss recent successful proteomics-based approaches towards characterization of the nuclear envelope and the endocytic apparatus, the identification of conserved and novel trypanosomatid-specific features, and the implications of these findings. PMID:22309600

  19. Spin-orbit coupling and tidal dissipation in hot Jupiter systems

    NASA Astrophysics Data System (ADS)

    Shabaltas, Natalia Igorevna

    Hot Jupiters are giant planets located extremely close to their host stars, with orbital periods less than 5 days. Many aspects of hot Jupiter (HJ) formation remain unclear, but several clues, such as the observed misalignment between their orbital axes and their hosts' spin axes, point to a dynamical origin. In the first portion of this work we explore the stellar spin-orbit dynamics of one such dynamical formation channel, the Lidov-Kozai mechanism. We show that the coupling between the stellar spin and the planet orbit can lead to complex, and sometimes chaotic, behavior of the stellar spin vector. Many features of this behavior arise due to a set of resonances between the stellar spin axis precession timescale and the Lidov-Kozai timescale. Under the assumption that the stellar quadrupole does not induce precession in the planet's orbit, given a system with a set of initial parameters, we show that it is possible to predict whether the system can attain high spin-orbit misalignments. In the second portion of this work, we discuss tidal dissipation in giant planets, another aspect that is crucial to dynamical HJ formation theories. We show that tidal dissipation in the cores of giant planets can be significant, and can help reconcile inconsistencies in the tidal dissipation efficiencies inferred from observations of Jupiter's moons and from high-eccentricity HJ migration theories. Finally, we improve upon existing core tidal dissipation theories by presenting semi-analytical formulae for dissipation in a core surrounded by a polytropic n = 1 envelope.

  20. The nonstationary impact of local temperature changes and ENSO on extreme precipitation at the global scale

    NASA Astrophysics Data System (ADS)

    Sun, Qiaohong; Miao, Chiyuan; Qiao, Yuanyuan; Duan, Qingyun

    2017-12-01

    The El Niño-Southern Oscillation (ENSO) and local temperature are important drivers of extreme precipitation. Understanding the impact of ENSO and temperature on the risk of extreme precipitation over global land will provide a foundation for risk assessment and climate-adaptive design of infrastructure in a changing climate. In this study, nonstationary generalized extreme value distributions were used to model extreme precipitation over global land for the period 1979-2015, with ENSO indicator and temperature as covariates. Risk factors were estimated to quantify the contrast between the influence of different ENSO phases and temperature. The results show that extreme precipitation is dominated by ENSO over 22% of global land and by temperature over 26% of global land. With a warming climate, the risk of high-intensity daily extreme precipitation increases at high latitudes but decreases in tropical regions. For ENSO, large parts of North America, southern South America, and southeastern and northeastern China are shown to suffer greater risk in El Niño years, with more than double the chance of intense extreme precipitation in El Niño years compared with La Niña years. Moreover, regions with more intense precipitation are more sensitive to ENSO. Global climate models were used to investigate the changing relationship between extreme precipitation and the covariates. The risk of extreme, high-intensity precipitation increases across high latitudes of the Northern Hemisphere but decreases in middle and lower latitudes under a warming climate scenario, and will likely trigger increases in severe flooding and droughts across the globe. However, there is some uncertainties associated with the influence of ENSO on predictions of future extreme precipitation, with the spatial extent and risk varying among the different models.

  1. National Variation in Urethroplasty Cost and Predictors of Extreme Cost: A Cost Analysis With Policy Implications.

    PubMed

    Harris, Catherine R; Osterberg, E Charles; Sanford, Thomas; Alwaal, Amjad; Gaither, Thomas W; McAninch, Jack W; McCulloch, Charles E; Breyer, Benjamin N

    2016-08-01

    To determine which factors are associated with higher costs of urethroplasty procedure and whether these factors have been increasing over time. Identification of determinants of extreme costs may help reduce cost while maintaining quality. We conducted a retrospective analysis using the 2001-2010 Healthcare Cost and Utilization Project-Nationwide Inpatient Sample (HCUP-NIS). The HCUP-NIS captures hospital charges which we converted to cost using the HCUP cost-to-charge ratio. Log cost linear regression with sensitivity analysis was used to determine variables associated with increased costs. Extreme cost was defined as the top 20th percentile of expenditure, analyzed with logistic regression, and expressed as odds ratios (OR). A total of 2298 urethroplasties were recorded in NIS over the study period. The median (interquartile range) calculated cost was $7321 ($5677-$10,000). Patients with multiple comorbid conditions were associated with extreme costs [OR 1.56, 95% confidence interval (CI) 1.19-2.04, P = .02] compared with patients with no comorbid disease. Inpatient complications raised the odds of extreme costs (OR 3.2, CI 2.14-4.75, P <.001). Graft urethroplasties were associated with extreme costs (OR 1.78, 95% CI 1.2-2.64, P = .005). Variations in patient age, race, hospital region, bed size, teaching status, payor type, and volume of urethroplasty cases were not associated with extremes of cost. Cost variation for perioperative inpatient urethroplasty procedures is dependent on preoperative patient comorbidities, postoperative complications, and surgical complexity related to graft usage. Procedural cost and cost variation are critical for understanding which aspects of care have the greatest impact on cost. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. National Variation in Urethroplasty Cost and Predictors of Extreme Cost: A Cost Analysis with Policy Implications

    PubMed Central

    Harris, Catherine R.; Osterberg, E. Charles; Sanford, Thomas; Alwaal, Amjad; Gaither, Thomas W.; McAninch, Jack W.; McCulloch, Charles E.; Breyer, Benjamin N.

    2016-01-01

    Objective To determine which factors are associated with higher urethroplasty procedural costs and whether they have been increasing or decreasing over time. Identification of determinants of extreme costs may help reduce cost while maintaining quality. Materials and Methods We conducted a retrospective analysis using the 2001–2010 Healthcare Cost and Utilization Project - Nationwide Inpatient Sample (HCUP-NIS). The HCUP-NIS captures hospital charges which we converted to cost using the HCUP Cost-to-Charge Ratio. Log cost linear regression with sensitivity analysis was used to determine variables associated with increased costs. Extreme cost was defined as the top 20th percentile of expenditure, analyzed with logistic regression and expressed as Odds Ratios (OR). Results A total of 2298 urethroplasties were recorded in NIS over the study period. The median (interquartile range) calculated costs was $7321 ($5677–$10000). Patients with multiple comorbid conditions were associated with extreme costs (OR 1.56 95% CI 1.19–2.04, p=0.02) compared to patients with no comorbid disease. Inpatient complications raised the odds of extreme costs OR 3.2 CI 2.14–4.75, p<0.001). Graft urethroplasties were associated with extreme costs (OR 1.78 95% CI 1.2–2.64, p=0.005). Variation in patient age, race, hospital region, bed size, teaching status, payer type, and volume of urethroplasty cases were not associated with extremes of cost. Conclusion Cost variation for perioperative inpatient urethroplasty procedures is dependent on preoperative patient comorbidities, postoperative complications and surgical complexity related to graft usage. Procedural cost and cost variation are critical for understanding which aspects of care have the greatest impact on cost. PMID:27107626

  3. Understanding Evolutionary Impacts of Seasonality: An Introduction to the Symposium.

    PubMed

    Williams, Caroline M; Ragland, Gregory J; Betini, Gustavo; Buckley, Lauren B; Cheviron, Zachary A; Donohue, Kathleen; Hereford, Joe; Humphries, Murray M; Lisovski, Simeon; Marshall, Katie E; Schmidt, Paul S; Sheldon, Kimberly S; Varpe, Øystein; Visser, Marcel E

    2017-11-01

    Seasonality is a critically important aspect of environmental variability, and strongly shapes all aspects of life for organisms living in highly seasonal environments. Seasonality has played a key role in generating biodiversity, and has driven the evolution of extreme physiological adaptations and behaviors such as migration and hibernation. Fluctuating selection pressures on survival and fecundity between summer and winter provide a complex selective landscape, which can be met by a combination of three outcomes of adaptive evolution: genetic polymorphism, phenotypic plasticity, and bet-hedging. Here, we have identified four important research questions with the goal of advancing our understanding of evolutionary impacts of seasonality. First, we ask how characteristics of environments and species will determine which adaptive response occurs. Relevant characteristics include costs and limits of plasticity, predictability, and reliability of cues, and grain of environmental variation relative to generation time. A second important question is how phenological shifts will amplify or ameliorate selection on physiological hardiness. Shifts in phenology can preserve the thermal niche despite shifts in climate, but may fail to completely conserve the niche or may even expose life stages to conditions that cause mortality. Considering distinct environmental sensitivities of life history stages will be key to refining models that forecast susceptibility to climate change. Third, we must identify critical physiological phenotypes that underlie seasonal adaptation and work toward understanding the genetic architectures of these responses. These architectures are key for predicting evolutionary responses. Pleiotropic genes that regulate multiple responses to changing seasons may facilitate coordination among functionally related traits, or conversely may constrain the expression of optimal phenotypes. Finally, we must advance our understanding of how changes in seasonal fluctuations are impacting ecological interaction networks. We should move beyond simple dyadic interactions, such as predator prey dynamics, and understand how these interactions scale up to affect ecological interaction networks. As global climate change alters many aspects of seasonal variability, including extreme events and changes in mean conditions, organisms must respond appropriately or go extinct. The outcome of adaptation to seasonality will determine responses to climate change. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  4. Microbial diversity of extreme habitats in human homes.

    PubMed

    Savage, Amy M; Hills, Justin; Driscoll, Katherine; Fergus, Daniel J; Grunden, Amy M; Dunn, Robert R

    2016-01-01

    High-throughput sequencing techniques have opened up the world of microbial diversity to scientists, and a flurry of studies in the most remote and extreme habitats on earth have begun to elucidate the key roles of microbes in ecosystems with extreme conditions. These same environmental extremes can also be found closer to humans, even in our homes. Here, we used high-throughput sequencing techniques to assess bacterial and archaeal diversity in the extreme environments inside human homes (e.g., dishwashers, hot water heaters, washing machine bleach reservoirs, etc.). We focused on habitats in the home with extreme temperature, pH, and chemical environmental conditions. We found a lower diversity of microbes in these extreme home environments compared to less extreme habitats in the home. However, we were nonetheless able to detect sequences from a relatively diverse array of bacteria and archaea. Habitats with extreme temperatures alone appeared to be able to support a greater diversity of microbes than habitats with extreme pH or extreme chemical environments alone. Microbial diversity was lowest when habitats had both extreme temperature and one of these other extremes. In habitats with both extreme temperatures and extreme pH, taxa with known associations with extreme conditions dominated. Our findings highlight the importance of examining interactive effects of multiple environmental extremes on microbial communities. Inasmuch as taxa from extreme environments can be both beneficial and harmful to humans, our findings also suggest future work to understand both the threats and opportunities posed by the life in these habitats.

  5. Purification, crystallization and preliminary crystallographic study of haemoglobin from camel (Camelus dromedarius): a high oxygen-affinity lowland species.

    PubMed

    Balasubramanian, M; Moorthy, Pon Sathya; Neelagandan, K; Ponnuswamy, M N

    2009-08-01

    Haemoglobin is a prototypical allosteric protein that is mainly involved in the transportation of oxygen from the lungs to tissues and of carbon dioxide back to the lungs in an intrinsically coordinated manner to maintain the viability of cells. Haemoglobin from Camelus dromedarius provides an interesting case study of adaptation to life in deserts at extremely high temperatures. An ambition to unravel the integrated structural and functional aspects of the casual survival of this animal at high temperatures led us to specifically work on this problem. The present work reports the preliminary crystallographic study of camel haemoglobin. Camel blood was collected and the haemoglobin was purified by anion-exchange chromatography and crystallized using the hanging-drop vapour-diffusion method under buffered high salt concentration using PEG 3350 as a precipitant. Intensity data were collected using a MAR 345 dtb image-plate detector system. Camel haemoglobin crystallized in the monoclinic space group P2(1), with one whole biological molecule (alpha(2)beta(2)) in the asymmetric unit and unit-cell parameters a = 52.759, b = 116.782, c = 52.807 A, beta = 120.07 degrees .

  6. Solar ultraviolet radiation measurements in one of the most populous cities of the world: aspects related to skin cancer cases and vitamin D availability.

    PubMed

    de Paula Corrêa, Marcelo; Ceballos, Juan Carlos

    2010-01-01

    A number of studies published in the scientific literature have shown the relationship between sun exposure and nonmelanoma skin cancer (NMSC) and vitamin D synthesis. However, the paucity of medical data, particularly in developing countries, hampers a global assessment of the impact of sun exposure on NMSC and vitamin D. To improve knowledge on this subject, this paper presents UV index (UVI) measurements performed in São Paulo City (SPC) in the period 2005-2008. It was found that 65% of the UVI measured 2 h around local noon during the summer show very high (8 < UVI < 10) and extreme (UVI > 11) levels according to the World Health Organization (WHO) classification. During the winter, 40% of the measurements around noontime show high or very high levels. In spite of worrisome recent statistics from SPC, showing that NMSCs make up about 28% of over a million of new cases of cancer in 2008, sun protection is not considered a real problem in these urban areas. UV measurements also show that every month of the year UV levels are high enough to ensure vitamin D production in human skin from incidental sun exposure.

  7. Career perspective: John B West

    PubMed Central

    2012-01-01

    I have been fortunate to work in two areas of extreme physiology and medicine: very high altitude and the microgravity of spaceflight. My introduction to high altitude medicine was as a member of Sir Edmund Hillary's Silver Hut Expedition in 1960–1961 when a small group of physiologists spent the winter and spring at an altitude of 5,800 m just south of Mt. Everest. The physiological objective was to obtain a better understanding of the acclimatization process of lowlanders during exposure to a very high altitude for several months. As far as we knew, no one had ever spent so long at such a high altitude before. The success of this expedition prompted me to organize the 1981 American Medical Research Expedition to Everest where the scientific objective was to determine the physiological changes that allow humans to survive in the extreme hypoxia of the highest point on earth. There is good evidence that this altitude is very near the limit of human tolerance to oxygen deprivation. Much novel information was obtained including an extraordinary degree of hyperventilation which reduced the alveolar partial pressure of carbon dioxide (Pco2) to about 8 mmHg (1.1 kPa) on the summit, and this in turn allowed the alveolar partial pressure of oxygen, PO2, to be maintained at a viable level of about 35 mmHg (4.7 kPa). The low Pco2 caused a severe degree of respiratory alkalosis with an arterial pH exceeding 7.7. These were the first physiological measurements to be made on the Everest summit, and essentially, none has been made since. The second extreme environment is microgravity. We carried out an extensive series of measurements on astronauts in the orbiting laboratory known as SpaceLab in the 1990s. Many aspects of pulmonary function are affected by gravity, so it was not surprising that many changes were found. However, overall gas exchange remained efficient. Some of the findings such as an anomalous behavior of inhaled helium and sulfur hexafluoride have still not been explained. Measurements made after astronauts were exposed to 6 months of microgravity in the International Space Station indicate that the function of the lung returns to its preexposure state within a few days. PMID:23849052

  8. Extreme High-Temperature Events Over East Asia in 1.5°C and 2°C Warmer Futures: Analysis of NCAR CESM Low-Warming Experiments

    NASA Astrophysics Data System (ADS)

    Li, Donghuan; Zhou, Tianjun; Zou, Liwei; Zhang, Wenxia; Zhang, Lixia

    2018-02-01

    Extreme high-temperature events have large socioeconomic and human health impacts. East Asia (EA) is a populous region, and it is crucial to assess the changes in extreme high-temperature events in this region under different climate change scenarios. The Community Earth System Model low-warming experiment data were applied to investigate the changes in the mean and extreme high temperatures in EA under 1.5°C and 2°C warming conditions above preindustrial levels. The results show that the magnitude of warming in EA is approximately 0.2°C higher than the global mean. Most populous subregions, including eastern China, the Korean Peninsula, and Japan, will see more intense, more frequent, and longer-lasting extreme temperature events under 1.5°C and 2°C warming. The 0.5°C lower warming will help avoid 35%-46% of the increases in extreme high-temperature events in terms of intensity, frequency, and duration in EA with maximal avoidance values (37%-49%) occurring in Mongolia. Thus, it is beneficial for EA to limit the warming target to 1.5°C rather than 2°C.

  9. Wind Tunnel Tests for Wind Pressure Distribution on Gable Roof Buildings

    PubMed Central

    2013-01-01

    Gable roof buildings are widely used in industrial buildings. Based on wind tunnel tests with rigid models, wind pressure distributions on gable roof buildings with different aspect ratios were measured simultaneously. Some characteristics of the measured wind pressure field on the surfaces of the models were analyzed, including mean wind pressure, fluctuating wind pressure, peak negative wind pressure, and characteristics of proper orthogonal decomposition results of the measured wind pressure field. The results show that extremely high local suctions often occur in the leading edges of longitudinal wall and windward roof, roof corner, and roof ridge which are the severe damaged locations under strong wind. The aspect ratio of building has a certain effect on the mean wind pressure coefficients, and the effect relates to wind attack angle. Compared with experimental results, the region division of roof corner and roof ridge from AIJ2004 is more reasonable than those from CECS102:2002 and MBMA2006.The contributions of the first several eigenvectors to the overall wind pressure distributions become much bigger. The investigation can offer some basic understanding for estimating wind load distribution on gable roof buildings and facilitate wind-resistant design of cladding components and their connections considering wind load path. PMID:24082851

  10. The application of proteomics in different aspects of hepatocellular carcinoma research.

    PubMed

    Xing, Xiaohua; Liang, Dong; Huang, Yao; Zeng, Yongyi; Han, Xiao; Liu, Xiaolong; Liu, Jingfeng

    2016-08-11

    Hepatocellular carcinoma (HCC) is one of the most common malignant tumors, which is causing the second leading cancer-related death worldwide. With the significant advances of high-throughput protein analysis techniques, the proteomics offered an extremely useful and versatile analytical platform for biomedical researches. In recent years, different proteomic strategies have been widely applied in the various aspects of HCC studies, ranging from screening the early diagnostic and prognostic biomarkers to in-depth investigating the underlying molecular mechanisms. In this review, we would like to systematically summarize the current applications of proteomics in hepatocellular carcinoma study, and discuss the challenges of applying proteomics in study clinical samples, as well as discuss the possible application of proteomics in precision medicine. In this review, we have systematically summarized the current applications of proteomics in hepatocellular carcinoma study, ranging from screening biomarkers to in-depth investigating the underlying molecular mechanisms. In addition, we have discussed the challenges of applying proteomics in study clinical samples, as well as the possible applications of proteomics in precision medicine. We believe that this review would help readers to be better familiar with the recent progresses of clinical proteomics, especially in the field of hepatocellular carcinoma research. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Ergonomics aspects of tree-planting using 'multipot' technology.

    PubMed

    Giguère, D; Bélanger, R; Gauthier, J M; Larue, C

    1993-08-01

    The highlights of a descriptive study on the ergonomics and occupational health and safety aspects of tree-planting in Québec are presented. The study was planned to consider the most representative geographical sites, planting technologies, and planting organizations. Semi-directed interviews were made with a mixed group of 48 male and female tree-planters and physiological measurements were made on four male planters. Tools and other equipment were also examined. An analysis of the work identified the main elements of the planting cycle, and the high cardiac rate in the working planters was related more to his manual transportation of seedlings and travel on rough paths than to planting per se. A tree-planter will typically travel 2.4 km carrying 16.8 kg of material and equipment in order to plant an average of 1245 seedlings daily. One out of two interviewed planters reported having a work-related accident or incident during his or her lifetime planting career. The body parts reported most frequently injured were the lower extremities (knee, foot, ankle), the skin, the eyes, and the wrist. Recommendations on the development of appropriate tools and footwear for tree-planters and for further research on repetitive strain injury induced by tree-planting have been made.

  12. Temporal Compounding of Heat Waves in the Present and Projected Future

    NASA Astrophysics Data System (ADS)

    Baldwin, J. W.; Dessy, J.; Vecchi, G. A.; Oppenheimer, M.

    2017-12-01

    The hazard of heat waves is projected to increase significantly with global warming, motivating much recent research characterizing various aspects of these extreme events. One less examined aspect of heat waves is their temporal structure. Here we first modify existing heat wave duration definitions to flexibly account for a variety of possible heat wave temporal structures (sequences of hot and cooler days). We then examine past heat waves associated with high mortality using observational reanalysis data, and note that many past heat waves might be better described as series of hot days compounded together with short breaks of cooler days in between. We employ Geophysical Fluid Dynamics Laboratory (GFDL) global climate model (GCM) simulations to compare the frequency of these compound heat waves in the present and projected future with higher levels of atmospheric carbon dioxide. Our results indicate that temporally compound heatwaves will constitute a greater proportion of heat wave risk with global warming. Via examining synthetic autoregressive model data, we propose that this phenomenon is expected when shifting the mean of a time series with some memory and noise. Notably, an increased proportion of compound events implies that vulnerability from prior hot days will play an increasingly large role in heat wave risk, with possible implications for both heat wave-related policy and preparedness.

  13. Heat Transfer in a Complex Trailing Edge Passage for a High Pressure Turbine Blade - Part 1: Experimental Measurements. Part 1; Experimental Measurements

    NASA Technical Reports Server (NTRS)

    Bunker, Ronald S.; Wetzel, Todd G.; Rigby, David L.; Reddy, D. R. (Technical Monitor)

    2000-01-01

    A combined experimental and computational study has been performed to investigate the detailed heat transfer coefficient distributions within a complex blade trailing edge passage. The experimental measurements are made using a steady liquid crystal thermography technique applied to one major side of the passage. The geometry of the trailing edge passage is that of a two-pass serpentine circuit with a sharp 180-degree turning region at the tip. The upflow channel is split by interrupted ribs into two major subchannels, one of which is turbulated. This channel has an average aspect ratio of roughly 14:1. The spanwise extent of the channel geometry includes both area convergence from root to tip, as well as taper towards the trailing edge apex. The average section Reynolds numbers tested in this upflow channel range from 55,000 to 98,000. The tip section contains a turning vane near the extreme comer. The downflow channel has an aspect ratio of about 5:1, and also includes convergence and taper. Turbulators of varying sizes are included in this channel also. Both detailed heat transfer and pressure distribution measurements are presented. The pressure measurements are incorporated into a flow network model illustrating the major loss contributors.

  14. [Historical Transition of Sexuality Education in Japan and Outline of Reproductive Health/Rights].

    PubMed

    Nishioka, Emiko

    2018-01-01

    In this paper, we describe the historical transition of sexuality education in Japan and the direction of sexuality education taken by the Ministry of Education, Culture, Sports, Science and Technology (MEXT). Reproductive health/rights, a key concept in sex education, is also discussed. In Japanese society, discussion on sexuality has long been considered taboo. After the Second World War, sexuality education in Japan began as "purity education." From 1960 until the early 1970s, physical aspects such as genital organs, function, secondary sexual characteristics, and gender differences were emphasized. Comprehensive education as a human being, including physiological, psychological, and social aspects, began to be adopted in the late 1970s. In 2002, it was criticized that teaching genital terms at primary schools and teaching about sexual intercourse and contraceptive methods at junior high schools were "overdue guidance" and "extreme contents." Sexuality education in schools has become a problem and has stagnated for about 10 years. Currently, schools teach sexuality education that does not deviate from the MEXT course guidelines. The direction of MEXT regarding sexuality education should be examined from the basic position that sexual activity by children is inappropriate. Reproductive health/rights apply the concept of human rights to sexuality and reproduction. Reproductive health/rights are key concepts that support sex education and women's health.

  15. Trends in body mass index and prevalence of extreme high obesity among Pennsylvania children and adolescents, 2007-2011: promising but cautionary.

    PubMed

    Lohrmann, David; YoussefAgha, Ahmed; Jayawardene, Wasantha

    2014-04-01

    We determined current trends and patterns in overweight, obesity, and extreme high obesity among Pennsylvania pre-kindergarten (pre-K) to 12th grade students and simulated future trends. We analyzed body mass index (BMI) of pre-K to 12th grade students from 43 of 67 Pennsylvania counties in 2007 to 2011 to determine trends and to discern transition patterns among BMI status categories for 2009 to 2011. Vinsem simulation, confirmed by Markov chain modeling, generated future prevalence trends. Combined rates of overweight, obesity, and extreme high obesity decreased among secondary school students across the 5 years, and among elementary students, first increased and then markedly decreased. BMI status remained constant for approximately 80% of normal and extreme high obese students, but both decreased and increased among students who initially were overweight and obese; the increase in BMI remained significant. Overall trends in child and adolescent BMI status seemed positive. BMI transition patterns indicated that although overweight and obesity prevalence leveled off, extreme high obesity, especially among elementary students, is projected to increase substantially over time. If current transition patterns continue, the prevalence of overweight, obesity, and extreme high obesity among Pennsylvania students in 2031 is projected to be 16.0%, 6.6%, and 23.2%, respectively.

  16. Radiation Oncology Medical Student Clerkship: Implementation and Evaluation of a Bi-institutional Pilot Curriculum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golden, Daniel W., E-mail: dgolden@radonc.uchicago.edu; Spektor, Alexander; Rudra, Sonali

    Purpose: To develop and evaluate a structured didactic curriculum to complement clinical experiences during radiation oncology clerkships at 2 academic medical centers. Methods and Materials: A structured didactic curriculum was developed to teach fundamentals of radiation oncology and improve confidence in clinical competence. Curriculum lectures included: (1) an overview of radiation oncology (history, types of treatments, and basic clinic flow); (2) fundamentals of radiation biology and physics; and (3) practical aspects of radiation treatment simulation and planning. In addition, a hands-on dosimetry session taught students fundamentals of treatment planning. The curriculum was implemented at 2 academic departments in 2012. Studentsmore » completed anonymous evaluations using a Likert scale to rate the usefulness of curriculum components (1 = not at all, 5 = extremely). Likert scores are reported as (median [interquartile range]). Results: Eighteen students completed the curriculum during their 4-week rotation (University of Chicago n=13, Harvard Longwood Campus n=5). All curriculum components were rated as extremely useful: introduction to radiation oncology (5 [4-5]); radiation biology and physics (5 [5-5]); practical aspects of radiation oncology (5 [4-5]); and the treatment planning session (5 [5-5]). Students rated the curriculum as “quite useful” to “extremely useful” (1) to help students understand radiation oncology as a specialty; (2) to increase student comfort with their specialty decision; and (3) to help students with their future transition to a radiation oncology residency. Conclusions: A standardized curriculum for medical students completing a 4-week radiation oncology clerkship was successfully implemented at 2 institutions. The curriculum was favorably reviewed. As a result of completing the curriculum, medical students felt more comfortable with their specialty decision and better prepared to begin radiation oncology residency.« less

  17. Lower extremity muscle activation during baseball pitching.

    PubMed

    Campbell, Brian M; Stodden, David F; Nixon, Megan K

    2010-04-01

    The purpose of this study was to investigate muscle activation levels of select lower extremity muscles during the pitching motion. Bilateral surface electromyography data on 5 lower extremity muscles (biceps femoris, rectus femoris, gluteus maximus, vastus medialis, and gastrocnemius) were collected on 11 highly skilled baseball pitchers and compared with individual maximal voluntary isometric contraction (MVIC) data. The pitching motion was divided into 4 distinct phases: phase 1, initiation of pitching motion to maximum stride leg knee height; phase 2, maximum stride leg knee height to stride foot contact (SFC); phase 3, SFC to ball release; and phase 4, ball release to 0.5 seconds after ball release (follow-through). Results indicated that trail leg musculature elicited moderate to high activity levels during phases 2 and 3 (38-172% of MVIC). Muscle activity levels of the stride leg were moderate to high during phases 2-4 (23-170% of MVIC). These data indicate a high demand for lower extremity strength and endurance. Specifically, coaches should incorporate unilateral and bilateral lower extremity exercises for strength improvement or maintenance and to facilitate dynamic stabilization of the lower extremities during the pitching motion.

  18. Successful Treatment of Pyoderma Gangrenosum with Cryoglobulinemia and Hepatitis C.

    PubMed

    Pourmorteza, Mohsen; Tawadros, Fady; Bader, Gilbert; Al-Tarawneh, Mohamed; Cook, Emilie; Shams, Wael; Young, Mark

    2016-06-27

    Pyoderma gangrenosum is a rare, ulcerative cutaneous condition that was first described by Brocq in 1916. This diagnosis is quite challenging as the histopathological findings are nonspecific. Pyoderma gangrenosum is usually associated with inflammatory bowel disease, leukemia, and hepatitis C. We describe a rare clinical case of a patient with hepatitis C (HCV), mixed cryoglubinemia, and pyoderma gangrenosum, which was successfully treated with prednisone in combination with the new antiviral medication ledipasvir/sofosbuvir. A 68-year-old male with a history of untreated HCV presented to the clinic with a left lower extremity ulcer that had progressively worsened over 4 days after the patient sustained a minor trauma to the left lower extremity. Examination revealed a 2×3 cm purulent ulcer with an erythematous rim on medial aspect of his left lower leg. HCV viral load and genotype analysis revealed genotype 1A with polymerase chain reaction (PCR) showing viral counts of 9,506,048 and cryoglobulinemia. With a worsening and enlarging erythematous ulcer and failure of IV antibiotic therapy, the patient underwent skin biopsy, which showed acanthotic epidermis with superficial and deep perivascular lymphoplasmacytic dermatitis admixed with mild neutrophilic infiltrate. The patient was subsequently started on ledipasvir/sofosbuvir and prednisone with a high suspicion of pyoderma gangrenosum. At one-month follow-up at the hepatology clinic, the patient demonstrated a near resolution of the lower extremity ulcer with undetectable viral load. Pyoderma gangrenosum is an inflammatory process of unknown etiology, and establishing the correct diagnosis can be a difficult task. For this reason it is prudent for clinicians to consider Pyoderma gangrenosum in their differential diagnosis, especially in the setting of a nonhealing surgical wound or skin infection.

  19. Generalist genes and high cognitive abilities.

    PubMed

    Haworth, Claire M A; Dale, Philip S; Plomin, Robert

    2009-07-01

    The concept of generalist genes operating across diverse domains of cognitive abilities is now widely accepted. Much less is known about the etiology of the high extreme of performance. Is there more specialization at the high extreme? Using a representative sample of 4,000 12-year-old twin pairs from the UK Twins Early Development Study, we investigated the genetic and environmental overlap between web-based tests of general cognitive ability, reading, mathematics and language performance for the top 15% of the distribution using DF extremes analysis. Generalist genes are just as evident at the high extremes of performance as they are for the entire distribution of abilities and for cognitive disabilities. However, a smaller proportion of the phenotypic intercorrelations appears to be explained by genetic influences for high abilities.

  20. Generalist genes and high cognitive abilities

    PubMed Central

    Haworth, Claire M.A.; Dale, Philip S.; Plomin, Robert

    2014-01-01

    The concept of generalist genes operating across diverse domains of cognitive abilities is now widely accepted. Much less is known about the etiology of the high extreme of performance. Is there more specialization at the high extreme? Using a representative sample of 4000 12-year-old twin pairs from the UK Twins Early Development Study, we investigated the genetic and environmental overlap between web-based tests of general cognitive ability, reading, mathematics and language performance for the top 15% of the distribution using DF extremes analysis. Generalist genes are just as evident at the high extremes of performance as they are for the entire distribution of abilities and for cognitive disabilities. However, a smaller proportion of the phenotypic intercorrelations appears to be explained by genetic influences for high abilities. PMID:19377870

  1. Ways to be different: foraging adaptations that facilitate higher intake rates in a northerly-wintering shorebird compared to a low-latitude conspecific

    USGS Publications Warehouse

    Ruthrauff, Daniel R.; Dekinga, Anne; Gill, Robert E.; van Gils, Jan A.; Piersma, Theunis

    2015-01-01

    At what phenotypic level do closely related subspecies that live in different environments differ with respect to food detection, ingestion, and processing? This question motivated an experimental study on rock sandpipers (Calidris ptilocnemis). The species' nonbreeding range spans 20 degrees of latitude, the extremes of which are inhabited by two subspecies: Calidris p. ptilocnemis that winters primarily in upper Cook Inlet, Alaska (61°N), and C. p. tschuktschorum that overlaps slightly with C. p. ptilocnemis but whose range extends much farther south (~40°N). In view of the strongly contrasting energetic demands of their distinct nonbreeding distributions, we conducted experiments to assess the behavioural, physiological, and sensory aspects of foraging, and we used the bivalve Macoma balthica for all trials. Ptilocnemis consumed a wider range of prey sizes, had higher maximum rates of energy intake, processed shell waste at higher maximum rates, and handled prey more quickly. Notably, however, the two subspecies did not differ in their abilities to find buried prey. The subspecies were similar in size and had equally sized gizzards, but the more northern ptilocnemis individuals were 10-14% heavier than their same-sex tschuktschorum counterparts. The higher body mass in ptilocnemis likely resulted from hypertrophy of digestive organs (e.g. intestine, liver) related to digestion and nutrient assimilation. Given the previously established equality of the two subspecies' metabolic capacities, we propose that the high-latitude nonbreeding range of ptilocnemis rock sandpipers is primarily facilitated by digestive (i.e. physiological) aspects of their foraging ecology rather than behavioural or sensory aspects.

  2. A Research Review on Psychological Aspects of Extreme Behavior

    DTIC Science & Technology

    1987-01-01

    helpful in placing some order on the situation. He describes Criminal Terrorism, Psychic Terrorism, War Terrorism and Political Terrorism. The...of the promiscuous use of the term may well fall within this category. Psychic Terrorism is characterized by religious or magical ends (as practised by...The data presented on socio-economic background is limited, but it would appear that relatively few members were unemployed , or living on unemployment

  3. Research in Inorganic Fluorine Chemistry.

    DTIC Science & Technology

    1987-03-01

    fluoride is bound to yield fluorine, the required reaction temperatures and conditions are so extreme that rapid reaction of the evolved fluorine with the... temperatures as low as -31 *C. indicating an ionic two-electra. oxidation mechanism. An unproved syntheisis of KtF’MF64 (M - As. Sb). Ramn data and...Fz. and PtF, at elevated temperature and praisurs. General aspects of the formaetion mechianisaw of coardinatively saturated complex fluoro cations

  4. The Role of Technical Vocational Education and Training in Transition Countries. The Case of Central and Eastern Europe and the New Independent States. Working Document.

    ERIC Educational Resources Information Center

    European Training Foundation, Turin (Italy).

    In comparison with the context in which reforms usually occur, the current vocational education and training (VET) reforms in Central and Eastern Europe (CEE) and New Independent States (NIS) have these two unusual aspects: breadth, range, and depth of VET reforms are extremely large; and the reform process is exceptionally rapid. The European…

  5. The Co-Construction of Learning Difficulties in Mathematics--Teacher-Student Interactions and Their Role in the Development of a Disabled Mathematical Identity

    ERIC Educational Resources Information Center

    Heyd-Metzuyanim, Einat

    2013-01-01

    Leaning on a communicational framework for studying social, affective, and cognitive aspects of learning, the present study offers a new look at the construction of an identity of failure in mathematics as it occurs through teaching-learning interactions. Using the case of Dana, an extremely low-achieving student in 7th grade mathematics, I…

  6. Critical mass flux for flaming ignition of wood as a function of external radiant heat flux and moisture content

    Treesearch

    S. McAllister; M. Finney; J. Cohen

    2011-01-01

    Extreme weather often contributes to crown fires, where the fire spreads from one tree crown to the next as a series of piloted ignitions. An important aspect in predicting crown fires is understanding the ignition of fuel particles. The ignition criterion considered in this work is the critical mass flux criterion - that a sufficient amount of pyrolysis gases must be...

  7. Critical mass flux for flaming ignition of dead, dry wood as a function of exernal radiant heat flux

    Treesearch

    Sara McAllister; Mark Finney; Jack Cohen

    2010-01-01

    Extreme weather often contributes to crown fires, where the fire spreads from one tree crown to the next as a series of piloted ignitions. An important aspect in predicting crown fires is understanding the ignition of fuel particles. The ignition criterion considered in this work is the critical mass flux criterion - that a sufficient amount of pyrolysis gases must be...

  8. A case of keratosis lichenoid chronica.

    PubMed

    Baczewski, Natasha; Albano, Brian

    2012-01-01

    Keratosis lichenoid chronica is a rare dermatologic anomaly believed to be a variant of lichen planus. It presents as violaceous, nodular lesions usually on the dorsal aspects of the extremities and the trunk. The disease is refractory to treatment although psoralen ultraviolet A therapy and oral retinoids have been proven useful in some cases. Here we present the case of a 58-year-old male diagnosed with keratosis lichenoid chronica.

  9. [Neuroanatomical, genetic and neurochemical aspects of infantile autism].

    PubMed

    Gerhant, Aneta; Olajossy, Marcin; Olajossy-Hilkesberger, Luiza

    2013-01-01

    Infantile autism is a neurodevelopmental disorder characterized by impairments in communication, reciprocal social interaction and restricted repetitive behaviors or interests. Although the cause of these disorders is not yet known, studies strongly suggest a genetic basis with a complex mode of inheritance. The etiopathogenetic processes of autism are extremely complex, which is reflected in the varying course and its symptomatology. Trajectories of brain development and volumes of its structures are aberrant in autistic patients. It is suggested that disturbances in sertotoninergic, gabaergic, glutaminergic, cholinergic and dopaminergic neurotransmission can be responsible for symptoms of autism as well as can disturb the development of the young brain. The objective of this article is to present the results of reasearch on neuroanatomical, neurochemical and genetic aspects of autism.

  10. Intrapersonal, interpersonal, and physical space in anorexia nervosa: a virtual reality and repertory grid investigation.

    PubMed

    Cipolletta, Sabrina; Malighetti, Clelia; Serino, Silvia; Riva, Giuseppe; Winter, David

    2017-06-01

    Anorexia nervosa (AN) is an eating disorder characterized by severe body image disturbances. Recent studies from spatial cognition showed a connection between the experience of body and of space. The objectives of this study were to explore the meanings that characterize AN experience and to deepen the examination of spatiality in relational terms, through the study of how the patient construes herself and her interpersonal world. More specifically this study aimed (1) to verify whether spatial variables and aspects of construing differentiate patients with AN and healthy controls (HCs) and are related to severity of anorexic symptomatology; (2) to explore correlations between impairments in spatial abilities and interpersonal construing. A sample of 12 AN patients and 12 HCs participated in the study. The Eating Disorder Inventory, a virtual reality-based procedure, traditional measures of spatial abilities, and repertory grids were administered. The AN group compared to HCs showed significant impairments in spatial abilities, more unidimensional construing, and more extreme construing of the present self and of the self as seen by others. All these dimensions correlated with the severity of symptomatology. Extreme ways of construing characterized individuals with AN and might represent the interpersonal aspect of impairment in spatial reference frames. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  11. Bipolar Latissimus Dorsi Transfer for Restoration of Pectoralis Major Function in Poland Syndrome.

    PubMed

    Buchanan, Patrick; Leyngold, Mark; Mast, Bruce A

    2016-01-01

    Poland syndrome typically presents as a unilateral congenital complete or partial absence of the pectoralis major muscle, variably with other associated anomalies. Reconstruction of the defect typically concentrates on aesthetic restoration with functional outcomes being unsuccessful or limited. We present an innovative means of true muscle transfer that provided functional benefit to increase upper extremity strength. A 16-year-old adolescent boy with Poland syndrome manifesting as left pectoralis major muscle agenesis wished to undergo functional reconstruction. He wanted to play on his high school football team, but could not meet the minimum weightlifting requirements. An ipsilateral latissimus dorsi muscle bipolar functional transfer was done with bone-anchored inset into the sternum and humerus so that muscle flexion would replace the absent pectoralis major. A progressive weight training program was then instituted postoperatively. At 9 months, a significant increase in left upper extremity strength was confirmed. The patient ultimately was able to surpass the weightlifting requirements for his high school football team, and joined the team. Our highlighted procedure restored functional outcome using both plastic surgical principles and orthopedic techniques for muscle and tendon repair: bipolar muscle transfer and load-bearing muscle inset. Heretofore, transfer of the latissimus for provision of pectoralis major function has not been reported. Functional reconstruction was possible due to stable, bipolar muscle transfer with load-bearing muscle attachments into cortical bone of the anterior sternum and anteromedial aspect of the humerus. The techniques described should be within the skill set of most plastic surgeons, so that functional restoration for those with Poland syndrome is possible and accessible.

  12. Towards clarifying what distinguishes cyanobacteria able to resurrect after desiccation from those that cannot: The photosynthetic aspect.

    PubMed

    Raanan, Hagai; Oren, Nadav; Treves, Haim; Keren, Nir; Ohad, Itzhak; Berkowicz, Simon M; Hagemann, Martin; Koch, Moriz; Shotland, Yoram; Kaplan, Aaron

    2016-06-01

    Organisms inhabiting biological soil crusts (BSCs) are able to cope with extreme environmental conditions including daily hydration/dehydration cycles, high irradiance and extreme temperatures. The photosynthetic machinery, potentially the main source of damaging reactive oxygen species during cessation of CO(2) fixation in desiccating cells, must be protected to avoid sustained photodamage. We compared certain photosynthetic parameters and the response to excess light of BCS-inhabiting, desiccation-tolerant cyanobacteria Leptolyngbya ohadii and Nostoc reinholdii with those observed in the "model" organisms Nostoc sp. PCC 7120, able to resurrect after mild desiccation, and Synechococcus elongatus PCC 7942 and Synechocystis sp. PCC 6803 that are unable to recover from dehydration. Desiccation-tolerant strains exhibited a transient decline in the photosynthetic rate at light intensities corresponding to the inflection point in the PI curve relating the O(2) evolution rate to light intensity. They also exhibited a faster and larger loss of variable fluorescence and profoundly faster Q(A)(-) re-oxidation rates after exposure to high illumination. Finally, a smaller difference was found in the temperature of maximal thermoluminescence signal in the absence or presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) than observed in "model" cyanobacteria. These parameters indicate specific functional differences of photosystem II (PSII) between desiccation tolerant and sensitive cyanobacteria. We propose that exposure to excess irradiation activates a non-radiative electron recombination route inside PSII that minimizes formation of damaging singlet oxygen in the desiccation-tolerant cyanobacteria and thereby reduces photodamage. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Biparental incubation patterns in a high-Arctic breeding shorebird: how do pairs divide their duties?

    PubMed Central

    2014-01-01

    In biparental species, parents may be in conflict over how much they invest into their offspring. To understand this conflict, parental care needs to be accurately measured, something rarely done. Here, we quantitatively describe the outcome of parental conflict in terms of quality, amount, and timing of incubation throughout the 21-day incubation period in a population of semipalmated sandpipers (Calidris pusilla) breeding under continuous daylight in the high Arctic. Incubation quality, measured by egg temperature and incubation constancy, showed no marked difference between the sexes. The amount of incubation, measured as length of incubation bouts, was on average 51min longer per bout for females (11.5h) than for males (10.7h), at first glance suggesting that females invested more than males. However, this difference may have been offset by sex differences in the timing of incubation; females were more often off nest during the warmer period of the day, when foraging conditions were presumably better. Overall, the daily timing of incubation shifted over the incubation period (e.g., for female incubation from evening–night to night–morning) and over the season, but varied considerably among pairs. At one extreme, pairs shared the amount of incubation equally, but one parent always incubated during the colder part of the day; at the other extreme, pairs shifted the start of incubation bouts between days so that each parent experienced similar conditions across the incubation period. Our results highlight how the simultaneous consideration of different aspects of care across time allows sex-specific investment to be more accurately quantified. PMID:24347997

  14. Biparental incubation patterns in a high-Arctic breeding shorebird: how do pairs divide their duties?

    PubMed

    Bulla, Martin; Valcu, Mihai; Rutten, Anne L; Kempenaers, Bart

    2014-01-01

    In biparental species, parents may be in conflict over how much they invest into their offspring. To understand this conflict, parental care needs to be accurately measured, something rarely done. Here, we quantitatively describe the outcome of parental conflict in terms of quality, amount, and timing of incubation throughout the 21-day incubation period in a population of semipalmated sandpipers ( Calidris pusilla ) breeding under continuous daylight in the high Arctic. Incubation quality, measured by egg temperature and incubation constancy, showed no marked difference between the sexes. The amount of incubation, measured as length of incubation bouts, was on average 51min longer per bout for females (11.5h) than for males (10.7h), at first glance suggesting that females invested more than males. However, this difference may have been offset by sex differences in the timing of incubation; females were more often off nest during the warmer period of the day, when foraging conditions were presumably better. Overall, the daily timing of incubation shifted over the incubation period (e.g., for female incubation from evening-night to night-morning) and over the season, but varied considerably among pairs. At one extreme, pairs shared the amount of incubation equally, but one parent always incubated during the colder part of the day; at the other extreme, pairs shifted the start of incubation bouts between days so that each parent experienced similar conditions across the incubation period. Our results highlight how the simultaneous consideration of different aspects of care across time allows sex-specific investment to be more accurately quantified.

  15. The Interfaces Between Historical, Paleo-, and Modern Climatology

    NASA Astrophysics Data System (ADS)

    Mock, C. J.

    2011-12-01

    Historical climatology, commonly defined as the study of reconstructing past climates from documentary and early instrumental data, has routinely utilized data within the last several hundred years down to sub-daily temporal resolution prior to the advent of "modern" instrumental records beginning in the late 19th and 20th centuries. Historical climate reconstruction methods generally share similar aspects conducted in both paleoclimate reconstruction and modern climatology, given the need to quantify, calibrate, and conduct careful data quality assessments. Although some studies have integrated historical climatic studies with other high resolution paleoclimatic proxies, very few efforts have integrated historical data with modern "systematic" climate networks to further examine spatial and temporal patterns of climate variability. This presentation describes historical climate examples of how such data can be integrated within modern climate timescales, including examples of documentary data on tropical cyclones from the Western Pacific and Atlantic Basins, colonial records from Belize and Constantinople, ship logbooks in the Western Arctic, plantation diaries from the American Southeast, and newspaper data from the Fiji Islands and Bermuda. Some results include a unique wet period in Belize and active tropical cyclone periods in the Western and South Pacific in the early 20th century - both are not reflected in conventional modern climate datasets. Documentary data examples demonstrate high feasibility in further understanding extreme weather events at daily timeframes such as false spring/killing frost episodes and hydrological extremes in southeastern North America. Recent unique efforts also involve community participation, secondary education, and web- based volunteer efforts to digitize and archive historical weather and climate information.

  16. Health-related effects of worksite interventions involving physical exercise and reduced workhours.

    PubMed

    von Thiele Schwarz, Ulrica; Lindfors, Petra; Lundberg, Ulf

    2008-06-01

    This study examined the health-related effects of two worksite interventions, physical exercise and reduced workhours, on women employed in dentistry. Six workplaces were randomized to one of the following three conditions: (i) 2.5 hours of weekly, mandatory physical exercise of middle-to-high intensity to be performed during workhours (N=62), (ii) a reduction of full-time weekly workhours from 40 to 37.5 hours (N=50), and (iii) reference. In all, 177 women participated. Biomarkers and self-ratings in questionnaires were obtained before the intervention (T (1)), and six (T (2)) and 12 months (T (3)) after the intervention. The results showed increased levels of physical activity and exercise in all of the groups, the level of physical exercise being significantly greater in the physical exercise group. Repeated-measures analyses of variance using data from T (1)and T (3)for biological measures and all three time points for self-ratings produced significant interaction effects for glucose, waist-to-hip ratio, and work ability and clear trends for general symptoms and upper-extremity disorders. Posthoc analyses showed that the results of the health-related measures differed between the interventions, decreased glucose and upper-extremity disorders in the exercise group, and increased high-density lipoprotein and waist-to-hip ratio among those working reduced hours. These results show that the two interventions had small and varied effects on biomarkers and self-reports of different aspects of health among women. It is suggested that interventions involving a modest reduction in workhours seem to be more effective if these hours are used for physical exercise.

  17. Intra-seasonal Characteristics of Wintertime Extreme Cold Events over South Korea

    NASA Astrophysics Data System (ADS)

    Park, Taewon; Jeong, Jeehoon; Choi, Jahyun

    2017-04-01

    The present study reveals the changes in the characteristics of extreme cold events over South Korea for boreal winter (November to March) in terms of the intra-seasonal variability of frequency, duration, and atmospheric circulation pattern. Influences of large-scale variabilities such as the Siberian High activity, the Arctic Oscillation (AO), and the Madden-Julian Oscillation (MJO) on extreme cold events are also investigated. In the early and the late of the winter during November and March, the upper-tropospheric wave-train for a life-cycle of the extreme cold events tends to pass quickly over East Asia. In addition, compared with the other months, the intensity of the Siberian High is weaker and the occurrences of strong negative AO are less frequent. It lead to events with weak amplitude and short duration. On the other hand, the amplified Siberian High and the strong negative AO occur more frequently in the mid of the winter from December to February. The extreme cold events are mainly characterized by a well-organized anticyclonic blocking around the Ural Mountain and the Subarctic. These large-scale circulation makes the extreme cold events for the midwinter last long with strong amplitude. The MJO phases 2-3 which provide a suitable condition for the amplification of extreme cold events occur frequently for November to January when the frequencies are more than twice those for February and March. While the extreme cold events during March have the least frequency, the weakest amplitude, and the shortest duration due to weak impacts of the abovementioned factors, the strong activities of the factors for January force the extreme cold events to be the most frequent, the strongest, and the longest among the boreal winter. Keywords extreme cold event, wave-train, blocking, Siberian High, AO, MJO

  18. MESSENGER Observations of Extreme Loading and Unloading of Mercury's Magnetic Tail

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Boardsen, Scott A.; Gloeckler, George; Gold, Robert E.; Ho, George C.; Korth, Haje; Krimigis, Stamatios M.; hide

    2010-01-01

    During MESSENGER's third flyby of Mercury, a series of 2-3 minute long enhancements of the magnetic field in the planet's magnetotail were observed. Magnetospheric substorms at Earth are powered by similar tail loading, but the amplitude is approximately 10 times less and the durations are 1 hr. These observations of extreme loading imply that the relative intensity of substorms at Mercury must be much larger than at Earth. The correspondence between the duration of tail enhancements and the calculated approximately 2 min Dungey cycle, which describes plasma circulation through Mercury's magnetosphere, suggests that such circulation determines substorm timescale. A key aspect of tail unloading during terrestrial substorms is the acceleration of energetic charged particles. Such signatures are puzzlingly absent from the MESSENGER flyby measurements.

  19. MESSENGER Observations of Extreme Loading and Unloading of Mercury's Magnetic Tail

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Boardsen, Scott A.; Gloeckler, George; Gold, Robert E.; Ho, George C.; Korth, Haje; Krimigis, Stamatios M.; hide

    2010-01-01

    During MESSENGER's third flyby of Mercury, the magnetic field in the planet's magnetotail increased by factors of 2 to 3.5 over intervals of 2 to 3 min. Magnetospheric substorms at Earth are powered by similar tail loading, but the amplitude is approx.10 times less and typical durations are approx.1 hour. The extreme tail loading observed at Mercury implies that the relative intensity of sub storms must be much larger than at Earth. The correspondence between the duration of tail field enhancements and the characteristic time for the Dungey cycle, which describes plasma circulation through Mercury's magnetosphere. suggests that such circulation determines substorm timescale. A key aspect of tail unloading during terrestrial substorms is the acceleration of energetic charged particles, but no acceleration signatures were seen during the MESSENGER flyby.

  20. Fast detection of the fuzzy communities based on leader-driven algorithm

    NASA Astrophysics Data System (ADS)

    Fang, Changjian; Mu, Dejun; Deng, Zhenghong; Hu, Jun; Yi, Chen-He

    2018-03-01

    In this paper, we present the leader-driven algorithm (LDA) for learning community structure in networks. The algorithm allows one to find overlapping clusters in a network, an important aspect of real networks, especially social networks. The algorithm requires no input parameters and learns the number of clusters naturally from the network. It accomplishes this using leadership centrality in a clever manner. It identifies local minima of leadership centrality as followers which belong only to one cluster, and the remaining nodes are leaders which connect clusters. In this way, the number of clusters can be learned using only the network structure. The LDA is also an extremely fast algorithm, having runtime linear in the network size. Thus, this algorithm can be used to efficiently cluster extremely large networks.

  1. Vision Aspects of Space Flight

    NASA Technical Reports Server (NTRS)

    Manuel, Keith; Billica, Roger (Technical Monitor)

    2000-01-01

    Vision, being one of our most important senses, is critically important in the unique working environment of space flight. Critical evaluation of the astronauts visual system begins with pre-selection examinations resulting in an average of 65% of all medical disqualification's caused by ocular findings. With an average age of 42, approximately 60% of the astronaut corps requires vision correction. Further demands of the unique training and working environment of microgravity, variable lighting from very poor to extreme brightness of sunlight and exposure to extremes of electromagnetic energy results in unique eyewear and contact lens applications. This presentation will describe some of those unique eyewear and contact lens applications used in space flight and training environments. Additionally, ocular findings from 26 shuttle and 5 MIR mission post-flight examinations will be presented.

  2. Percutaneous and Endoscopic Adhesiolysis in Managing Low Back and Lower Extremity Pain: A Systematic Review and Meta-analysis.

    PubMed

    Helm, Standiford; Racz, Gabor B; Gerdesmeyer, Ludger; Justiz, Rafael; Hayek, Salim M; Kaplan, Eugene D; El Terany, Mohamed Ahamed; Knezevic, Nebojsa Nick

    2016-02-01

    Chronic refractory low back and lower extremity pain is frustrating to treat. Percutaneous adhesiolysis and spinal endoscopy are techniques which can treat chronic refractory low back and lower extremity pain.Percutaneous adhesiolysis is performed by placing the catheter into the tissue plane at the ventrolateral aspect of the foramen so that medications can be injected. Adhesiolysis is used both for pain caused by scarring which is not resistant to catheter placement and other sources of pain, including inflammation in the absence of scarring.Mechanical lysis of scars with a catheter may or may not be necessary for percutaneous adhesiolysis to be effective. Spinal endoscopy allows direct visualization of the epidural space and has the possibility to use laser energy to treat pathology. A systematic review of the effectiveness of percutaneous adhesiolysis and spinal endoscopic adhesiolysis to treat chronic refractory low back and lower extremity pain. To evaluate and update the effectiveness of percutaneous adhesiolysis and spinal endoscopic adhesiolysis to treat chronic refractory low back and lower extremity pain. The available literature on percutaneous adhesiolysis and spinal endoscopic adhesiolysis in treating persistent low back and leg pain was reviewed. The quality of each article used in this analysis was assessed. The level of evidence was classified on a 5-point scale from strong, based upon multiple randomized controlled trials to weak, based upon consensus, as developed by the U.S. Preventive Services Task Force (USPSTF) and modified by ASIPP. Data sources included relevant literature identified through searches of PubMed and EMBASE from 1966 to September 2015, and manual searches of the bibliographies of known primary and review articles. Pain relief of at least 50% and functional improvement of at least 40% were the primary outcome measures. Short-term efficacy was defined as improvement of 6 months or less; whereas, long-term efficacy was defined more than 6 months. For this systematic review, 45 studies were identified. Of these, for percutaneous adhesiolysis there were 7 randomized controlled trials and 3 observational studies which met the inclusion criteria. For spinal endoscopy, there was one randomized controlled trial and 3 observational studies. Based upon 7 randomized controlled trials showing efficacy, with no negative trials, there is Level I or strong evidence of the efficacy of percutaneous adhesiolysis in the treatment of chronic refractory low back and lower extremity pain. Based upon one high-quality randomized controlled trial, there is Level II to III evidence supporting the use of spinal endoscopy in treating chronic refractory low back and lower extremity pain. The evidence is Level I or strong that percutaneous adhesiolysis is efficacious in the treatment of chronic refractory low back and lower extremity pain. Percutaneous adhesiolysis may be considered as a first-line treatment for chronic refractory low back and lower extremity pain. The evidence is Level II to III that spinal endoscopy is effective in the treatment of chronic refractory low back and lower extremity pain. Spinal pain, chronic low back pain, post lumbar surgery syndrome, epidural scarring, adhesiolysis, endoscopy, radicular pain.

  3. The influence of carbon nanotubes on the properties of water solutions and fresh cement pastes

    NASA Astrophysics Data System (ADS)

    Leonavičius, D.; Pundienė, I.; Girskas, G.; Pranckevičienė, J.; Kligys, M.; Sinica, M.

    2017-10-01

    It is known, that the properties of cement-based materials can be significantly improved by addition of carbon nanotubes (CNTs). The dispersion of CNTs is an important process due to an extremely high specific surface area. This aspect is very relevant and is one of the main factors for the successful use of CNTs in cement-based materials. The influence of CNTs in different amounts (from 0 to 0.5 percent) on the pH values of water solutions and fresh cement pastes, and also on rheological properties, flow characteristics, setting time and EXO reaction of the fresh cement pastes was analyzed in this work. It was found that the increment of the amount of CNTs leads to decreased pH values of water solutions and fresh cement pastes, and also increases viscosity, setting times and EXO peak times of fresh cement pastes.

  4. Engagement practices that join scientific methods with community wisdom: Designing a patient-centered, randomized control trial with a Pacific Islander Community

    PubMed Central

    Goulden, Peter A.; Bursac, Zoran; Hudson, Jonell; Purvis, Rachel S.; Yeary, Karen H. Kim; Aitaoto, Nia; Kohler, Peter O.

    2016-01-01

    This article illustrates how a collaborative research process can successfully engage an underserved minority community to address health disparities. Pacific Islanders, including the Marshallese, are one of the fastest growing US populations. They face significant health disparities, including extremely high rates of type 2 diabetes. This article describes the engagement process of designing patient-centered outcomes research with Marshallese stakeholders, highlighting the specific influences of their input on a randomized control trial to address diabetes. Over 18 months, an interdisciplinary research team used community-based participatory principles to conduct patient-engaged outcomes research that involved 31 stakeholders in all aspects of research design, from defining the research question to making decisions about budgets and staffing. This required academic researcher flexibility, but yielded a design linking scientific methodology with community wisdom. PMID:27325179

  5. Li + -Desolvation Dictating Lithium-Ion Battery’s Low-Temperature Performances

    DOE PAGES

    Li, Qiuyan; Lu, Dongping; Zheng, Jianming; ...

    2017-11-17

    Lithium (Li) ion battery (LIB) has penetrated almost every aspects of human life, from portable electronics, vehicles to grids, and its operation stability in extreme environments becomes increasingly important. Among these, sub-zero temperature presents a kinetic challenge to the electrochemical reactions required to deliver the stored energy. Here, in this work, we attempted to identify the rate-determining process for Li + migration under such low temperatures, so that an optimum electrolyte formulation could be designed to maximize the energy output. Substantial increase in available capacities from graphite||LiNi 0.80Co 0.15Al 0.05O 2 chemistry down to -40°C is achieved by reducing themore » solvent molecule that more tightly binds to Li + and thus constitutes high desolvation energy barrier. Lastly, the fundamental understanding is applicable universally to a wide spectrum of electrochemical devices that have to operate in similar environments.« less

  6. HITS-CLIP yields genome-wide insights into brain alternative RNA processing

    NASA Astrophysics Data System (ADS)

    Licatalosi, Donny D.; Mele, Aldo; Fak, John J.; Ule, Jernej; Kayikci, Melis; Chi, Sung Wook; Clark, Tyson A.; Schweitzer, Anthony C.; Blume, John E.; Wang, Xuning; Darnell, Jennifer C.; Darnell, Robert B.

    2008-11-01

    Protein-RNA interactions have critical roles in all aspects of gene expression. However, applying biochemical methods to understand such interactions in living tissues has been challenging. Here we develop a genome-wide means of mapping protein-RNA binding sites in vivo, by high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP). HITS-CLIP analysis of the neuron-specific splicing factor Nova revealed extremely reproducible RNA-binding maps in multiple mouse brains. These maps provide genome-wide in vivo biochemical footprints confirming the previous prediction that the position of Nova binding determines the outcome of alternative splicing; moreover, they are sufficiently powerful to predict Nova action de novo. HITS-CLIP revealed a large number of Nova-RNA interactions in 3' untranslated regions, leading to the discovery that Nova regulates alternative polyadenylation in the brain. HITS-CLIP, therefore, provides a robust, unbiased means to identify functional protein-RNA interactions in vivo.

  7. The Fluid Dynamics of Competitive Swimming

    NASA Astrophysics Data System (ADS)

    Wei, Timothy; Mark, Russell; Hutchison, Sean

    2014-01-01

    Nowhere in sport is performance so dependent on the interaction of the athlete with the surrounding medium than in competitive swimming. As a result, understanding (at least implicitly) and controlling (explicitly) the fluid dynamics of swimming are essential to earning a spot on the medal stand. This is an extremely complex, highly multidisciplinary problem with a broad spectrum of research approaches. This review attempts to provide a historical framework for the fluid dynamics-related aspects of human swimming research, principally conducted roughly over the past five decades, with an emphasis on the past 25 years. The literature is organized below to show a continuous integration of computational and experimental technologies into the sport. Illustrations from the authors' collaborations over a 10-year period, coupling the knowledge and experience of an elite-level coach, a lead biomechanician at USA Swimming, and an experimental fluid dynamicist, are intended to bring relevance and immediacy to the review.

  8. 6th International Conference on Nanomaterials by Severe Plastic Deformation (NanoSPD6)

    NASA Astrophysics Data System (ADS)

    2014-08-01

    ''NanoSPD'' means Nano-material by Severe Plastic Deformation (SPD), which is an efficient way to obtain bulk nano-structured materials. During SPD, the microstructure of the material is transformed into a very fine structure consisting of ultra fine grains (UFG) approaching even the nano-scale. SPD is different from classical large strain forming processes in two aspects: 1. The sample undergoes extremely large strains without significant change in its dimensions, 2. In most SPD processes high hydrostatic stress is applied which makes it possible to deform difficult-to-form materials. This conference is part of a series of conferences taking place every third year; the history of NanoSPD conferences began in 1999 in Moscow (Russia), followed by Vienna in 2002 (Austria), Fukuoka in 2005 (Japan), Goslar in 2008 (Germany), Nanjing in 2011 (China), and Metz in 2014 (France). The preface continues in the pdf.

  9. Reactive approach motivation (RAM) for religion.

    PubMed

    McGregor, Ian; Nash, Kyle; Prentice, Mike

    2010-07-01

    In 3 experiments, participants reacted with religious zeal to anxious uncertainty threats that have caused reactive approach motivation (RAM) in past research (see McGregor, Nash, Mann, & Phills, 2010, for implicit, explicit, and neural evidence of RAM). In Study 1, results were specific to religious ideals and did not extend to merely superstitious beliefs. Effects were most pronounced among the most anxious and uncertainty-averse participants in Study 1 and among the most approach-motivated participants in Study 2 (i.e., with high Promotion Focus, Behavioral Activation, Action Orientation, and Self-Esteem Scale scores). In Studies 2 and 3, anxious uncertainty threats amplified even the most jingoistic and extreme aspects of religious zeal. In Study 3, reactive religious zeal occurred only among participants who reported feeling disempowered in their everyday goals in life. Results support a RAM view of empowered religious idealism for anxiety management (cf. Armstrong, 2000; Inzlicht, McGregor, Hirsch, & Nash, 2009).

  10. Some aspects of wind tunnel magnetic suspension systems with special application at large physical scales

    NASA Technical Reports Server (NTRS)

    Britcher, C. P.

    1983-01-01

    Wind tunnel magnetic suspension and balance systems (MSBSs) have so far failed to find application at the large physical scales necessary for the majority of aerodynamic testing. Three areas of technology relevant to such application are investigated. Two variants of the Spanwise Magnet roll torque generation scheme are studied. Spanwise Permanent Magnets are shown to be practical and are experimentally demonstrated. Extensive computations of the performance of the Spanwise Iron Magnet scheme indicate powerful capability, limited principally be electromagnet technology. Aerodynamic testing at extreme attitudes is shown to be practical in relatively conventional MSBSs. Preliminary operation of the MSBS over a wide range of angles of attack is demonstrated. The impact of a requirement for highly reliable operation on the overall architecture of Large MSBSs is studied and it is concluded that system cost and complexity need not be seriously increased.

  11. Interactive degraded document enhancement and ground truth generation

    NASA Astrophysics Data System (ADS)

    Bal, G.; Agam, G.; Frieder, O.; Frieder, G.

    2008-01-01

    Degraded documents are frequently obtained in various situations. Examples of degraded document collections include historical document depositories, document obtained in legal and security investigations, and legal and medical archives. Degraded document images are hard to to read and are hard to analyze using computerized techniques. There is hence a need for systems that are capable of enhancing such images. We describe a language-independent semi-automated system for enhancing degraded document images that is capable of exploiting inter- and intra-document coherence. The system is capable of processing document images with high levels of degradations and can be used for ground truthing of degraded document images. Ground truthing of degraded document images is extremely important in several aspects: it enables quantitative performance measurements of enhancement systems and facilitates model estimation that can be used to improve performance. Performance evaluation is provided using the historical Frieder diaries collection.1

  12. Li+-Desolvation Dictating Lithium-Ion Battery's Low-Temperature Performances.

    PubMed

    Li, Qiuyan; Lu, Dongping; Zheng, Jianming; Jiao, Shuhong; Luo, Langli; Wang, Chong-Min; Xu, Kang; Zhang, Ji-Guang; Xu, Wu

    2017-12-13

    Lithium (Li) ion battery has penetrated almost every aspect of human life, from portable electronics, vehicles, to grids, and its operation stability in extreme environments is becoming increasingly important. Among these, subzero temperature presents a kinetic challenge to the electrochemical reactions required to deliver the stored energy. In this work, we attempted to identify the rate-determining process for Li + migration under such low temperatures, so that an optimum electrolyte formulation could be designed to maximize the energy output. Substantial increase in the available capacities from graphite∥LiNi 0.80 Co 0.15 Al 0.05 O 2 chemistry down to -40 °C is achieved by reducing the solvent molecule that more tightly binds to Li + and thus constitutes a high desolvation energy barrier. The fundamental understanding is applicable universally to a wide spectrum of electrochemical devices that have to operate in similar environments.

  13. Li + -Desolvation Dictating Lithium-Ion Battery’s Low-Temperature Performances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qiuyan; Lu, Dongping; Zheng, Jianming

    Lithium (Li) ion battery (LIB) has penetrated almost every aspects of human life, from portable electronics, vehicles to grids, and its operation stability in extreme environments becomes increasingly important. Among these, sub-zero temperature presents a kinetic challenge to the electrochemical reactions required to deliver the stored energy. In this work, we attempted to identify the rate-determining process for Li+ migration under such low temperatures, so that an optimum electrolyte formulation could be designed to maximize the energy output. Substantial increase in available capacities from graphite||LiNi0.80Co0.15Al0.05O2 chemistry down to -40°C is achieved by reducing the solvent molecule that more tightly bindsmore » to Li+ and thus constitutes high desolvation energy barrier. The fundamental understanding is applicable universally to all electrochemical devices that have to operate in similar environments.« less

  14. Li + -Desolvation Dictating Lithium-Ion Battery’s Low-Temperature Performances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qiuyan; Lu, Dongping; Zheng, Jianming

    Lithium (Li) ion battery (LIB) has penetrated almost every aspects of human life, from portable electronics, vehicles to grids, and its operation stability in extreme environments becomes increasingly important. Among these, sub-zero temperature presents a kinetic challenge to the electrochemical reactions required to deliver the stored energy. Here, in this work, we attempted to identify the rate-determining process for Li + migration under such low temperatures, so that an optimum electrolyte formulation could be designed to maximize the energy output. Substantial increase in available capacities from graphite||LiNi 0.80Co 0.15Al 0.05O 2 chemistry down to -40°C is achieved by reducing themore » solvent molecule that more tightly binds to Li + and thus constitutes high desolvation energy barrier. Lastly, the fundamental understanding is applicable universally to a wide spectrum of electrochemical devices that have to operate in similar environments.« less

  15. [Life forms of organisms as patterns of organization and spatial ecological factors].

    PubMed

    Kirpotin, S N

    2005-01-01

    Tectological and archaetectonical approaches which are conventionally used in morphology are discussed. The similarity of these approaches to some views on the structure and organization of nature systems was shown. These wiews were originated within the framework of the modern system-cybernetic conception. The morphology particularities of natural object of any rank (from organism to biosphere) allow determination of environment influence character. In some cases intensity of the influence can be determined. This, morphological-geometrical approach of nature investigation acquires high prognostic value. The aspects of "pattern organization" concept and its perspectives are discussed. The patterns of organization of organisms could be characterized only in the context of their interactions with environment. Therefore it is necessary to distinguish new group of ecological factors: spatial or chorological one. It was suggested that spatial ecological factors is predominant if all other physical factors have no extreme values.

  16. IDE spatio-temporal impact fluxes and high time-resolution studies of multi-impact events and long-lived debris clouds

    NASA Technical Reports Server (NTRS)

    Mulholland, J. Derral; Singer, S. Fred; Oliver, John P.; Weinberg, Jerry L.; Cooke, William J.; Montague, Nancy L.; Wortman, Jim J.; Kassel, Phillip C.; Kinard, William H.

    1992-01-01

    The purpose of the Interplanetary Dust Experiment (IDE) on the Long Duration Exposure Facility (LDEF) was to sample the cosmic dust environment and to use the spatio-temporal aspect of the experiment to distinguish between the various components of the environment: zodiacal cloud, beta meteoroids, meteor streams, interstellar dust, and orbital debris. It was found that the introduction of precise time and even rudimentary directionality as co-lateral observables in sampling the particulate environment in near-Earth space produces an enormous qualitative improvement in the information content of the impact data. The orbital debris population is extremely clumpy, being dominated by persistent clouds in which the fluxes may rise orders of magnitude above the background. The IDE data suggest a strategy to minimize the damage to sensitive spacecraft components, using the observed characteristics of cloud encounters.

  17. Experience Paper: Software Engineering and Community Codes Track in ATPESC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubey, Anshu; Riley, Katherine M.

    Argonne Training Program in Extreme Scale Computing (ATPESC) was started by the Argonne National Laboratory with the objective of expanding the ranks of better prepared users of high performance computing (HPC) machines. One of the unique aspects of the program was inclusion of software engineering and community codes track. The inclusion was motivated by the observation that the projects with a good scientific and software process were better able to meet their scientific goals. In this paper we present our experience of running the software track from the beginning of the program until now. We discuss the motivations, the reception,more » and the evolution of the track over the years. We welcome discussion and input from the community to enhance the track in ATPESC, and also to facilitate inclusion of similar tracks in other HPC oriented training programs.« less

  18. Threat in dreams: an adaptation?

    PubMed

    Malcolm-Smith, Susan; Solms, Mark; Turnbull, Oliver; Tredoux, Colin

    2008-12-01

    Revonsuo's influential Threat Simulation Theory (TST) predicts that people exposed to survival threats will have more threat dreams, and evince enhanced responses to dream threats, compared to those living in relatively safe conditions. Participants in a high crime area (South Africa: n=208) differed significantly from participants in a low crime area (Wales, UK: n=116) in having greater recent exposure to a life-threatening event (chi([1,N=186])(2)=14.84, p<.00012). Contrary to TST's predictions, the SA participants reported significantly fewer threat dreams (chi([1,N=287])(2)=6.11, p<.0134), and did not differ from the Welsh participants in responses to dream threats (Fisher's Exact test, p=.2478). Overall, the incidence of threat in dreams was extremely low-less than 20% of dreams featured realistic survival threats. Escape from dream threats occurred in less than 2% of dreams. We conclude that this evidence contradicts key aspects of TST.

  19. The Imprint of Extreme Climate Events in Century-Long Time Series of Wood Anatomical Traits in High-Elevation Conifers

    PubMed Central

    Carrer, Marco; Brunetti, Michele; Castagneri, Daniele

    2016-01-01

    Extreme climate events are of key importance for forest ecosystems. However, both the inherent infrequency, stochasticity and multiplicity of extreme climate events, and the array of biological responses, challenges investigations. To cope with the long life cycle of trees and the paucity of the extreme events themselves, our inferences should be based on long-term observations. In this context, tree rings and the related xylem anatomical traits represent promising sources of information, due to the wide time perspective and quality of the information they can provide. Here we test, on two high-elevation conifers (Larix decidua and Picea abies sampled at 2100 m a.s.l. in the Eastern Alps), the associations among temperature extremes during the growing season and xylem anatomical traits, specifically the number of cells per ring (CN), cell wall thickness (CWT), and cell diameter (CD). To better track the effect of extreme events over the growing season, tree rings were partitioned in 10 sectors. Climate variability has been reconstructed, for 1800–2011 at monthly resolution and for 1926–2011 at daily resolution, by exploiting the excellent availability of very long and high quality instrumental records available for the surrounding area, and taking into account the relationship between meteorological variables and site topographical settings. Summer temperature influenced anatomical traits of both species, and tree-ring anatomical profiles resulted as being associated to temperature extremes. Most of the extreme values in anatomical traits occurred with warm (positive extremes) or cold (negative) conditions. However, 0–34% of occurrences did not match a temperature extreme event. Specifically, CWT and CN extremes were more clearly associated to climate than CD, which presented a bias to track cold extremes. Dendroanatomical analysis, coupled to high-quality daily-resolved climate records, seems a promising approach to study the effects of extreme events on trees, but further investigations are needed to improve our comprehension of the critical role of such elusive events in forest ecosystems. PMID:27242880

  20. Influences of extreme weather, climate and pesticide use on invertebrates in cereal fields over 42 years.

    PubMed

    Ewald, Julie A; Wheatley, Christopher J; Aebischer, Nicholas J; Moreby, Stephen J; Duffield, Simon J; Crick, Humphrey Q P; Morecroft, Michael B

    2015-11-01

    Cereal fields are central to balancing food production and environmental health in the face of climate change. Within them, invertebrates provide key ecosystem services. Using 42 years of monitoring data collected in southern England, we investigated the sensitivity and resilience of invertebrates in cereal fields to extreme weather events and examined the effect of long-term changes in temperature, rainfall and pesticide use on invertebrate abundance. Of the 26 invertebrate groups examined, eleven proved sensitive to extreme weather events. Average abundance increased in hot/dry years and decreased in cold/wet years for Araneae, Cicadellidae, adult Heteroptera, Thysanoptera, Braconidae, Enicmus and Lathridiidae. The average abundance of Delphacidae, Cryptophagidae and Mycetophilidae increased in both hot/dry and cold/wet years relative to other years. The abundance of all 10 groups usually returned to their long-term trend within a year after the extreme event. For five of them, sensitivity to cold/wet events was lowest (translating into higher abundances) at locations with a westerly aspect. Some long-term trends in invertebrate abundance correlated with temperature and rainfall, indicating that climate change may affect them. However, pesticide use was more important in explaining the trends, suggesting that reduced pesticide use would mitigate the effects of climate change. © 2015 John Wiley & Sons Ltd.

  1. Extreme rainfall-induced landslide changes based on landslide susceptibility in China, 1998-2015

    NASA Astrophysics Data System (ADS)

    Li, Weiyue; Liu, Chun; Hong, Yang

    2017-04-01

    Nowadays, landslide has been one of the most frequent and seriously widespread natural hazards all over the world. Rainfall, especially heavy rainfall is a trigger to cause the landslide occurrence, by increasing soil pore water pressures. In China, rainfall-induced landslides have risen up over to 90% of the total number. Rainfall events sometimes generate a trend of extremelization named rainfall extremes that induce the slope failure suddenly and severely. This study shows a method to simulate the rainfall-induced landslide spatio-temporal distribution on the basis of the landslide susceptibility index. First, the study on landslide susceptibility in China is introduced. We set the values of the index to the range between 0 and 1. Second, we collected TRMM 3B42 precipitation products spanning the years 1998-2015 and extracted the daily rainfall events greater than 50mm/day as extreme rainfall. Most of the rainfall duration time that may trigger a landslide has resulted between 3 hours and 45 hours. The combination of these two aspects can be exploited to simulate extreme rainfall-induced landslide distribution and illustrate the changes in 17 years. This study shows a useful tool to be part of rainfall-induced landslide simulation methodology for landslide early warning.

  2. Impacts of extreme events of drought and flood on local communities of Amazon basin

    NASA Astrophysics Data System (ADS)

    Borma, L. D.; Roballo, S.; Zauner, M.; Nascimento, V. F.

    2013-05-01

    The analysis of drought events of 1997/98, 2005 and 2010 in terms of discharge anomalies in the Amazon region confirmed previous findings, such as: a) the influence of the El Niño in more than one hydrological year; b) the increase of the influence of the Atlantic Multidecadal Oscillation of 1998, 2005 and 2010 drought events; c) the low levels of discharge observed in the 2010 drought are attributed to the association of discharge anomalies of the northern and southern tributaries of the Amazon river, and d) the 2010 drought lasted around 1 month (August to November) more than the other drought events analized here. The riverine communities located along the river banks of Solimões/Amazonas suit their economic activities to the oscillation of the water level. In general, low water periods favor the access to important sources of food such as fish and livestock, still allowing crop cultivation on fertile agricultural areas of the floodplain. Conversely, periods of drought increases the difficulties of transport and drinking water supply. During the high water, access to the main food supply (described above) are greatly hampered. However, the floods are recognized as an importance process of natural fertilization. Thus, despite the political, social and economic shortcomings, the local community has, since the pre-colonial period, learned to get the best of each season, providing local, regional and national markets with varzea products. During periods of extreme weather, however, the advantages of each season appear to be reduced, and the drawbacks increased. In fact, during flooding extremes, the access to primary sources of food is hampered by a long period of time and families find themselves forced to leave their homes, eventually losing them. Analysis of flow data to the extreme flooding of 2009, indicate a period of about 6 months of positive anomalies discharge (occurring mainly during high water). At the same time, Civil Defense data points to a contingent of about 50% of rural homeless during this event. On the ther side, during the extreme droughts, crops and cattle are likely to perish due to drought. The prolonged dry season threatens local ichthyofauna, promoting an increase in fish mortality. In 1997/98 and 2005 episodes were recorded about 3 months of negative anomalies of discharge, while in 2010, there were about 4 months of negative anomalies during the low water period. According to the data obtained from the Civil Defense, flood events would be more impactful to the local community than the drought ones. However, the absence of quantitative indicators hinders a more precise analysis of the real impacts of drought and flood events in the region. In fact, during the dry season two aspects of extreme importance need to be better addressed: i) the fact that the population of one of the wettest regions of the planet does not have a good water supply for human being, and ii) what are the impacts of extreme drought on the cycle of reproduction of species of local fish fauna?

  3. Projected timing of perceivable changes in climate extremes for terrestrial and marine ecosystems.

    PubMed

    Tan, Xuezhi; Gan, Thian Yew; Horton, Daniel E

    2018-05-26

    Human and natural systems have adapted to and evolved within historical climatic conditions. Anthropogenic climate change has the potential to alter these conditions such that onset of unprecedented climatic extremes will outpace evolutionary and adaptive capabilities. To assess whether and when future climate extremes exceed their historical windows of variability within impact-relevant socioeconomic, geopolitical, and ecological domains, we investigate the timing of perceivable changes (time of emergence; TOE) for 18 magnitude-, frequency-, and severity-based extreme temperature (10) and precipitation (8) indices using both multimodel and single-model multirealization ensembles. Under a high-emission scenario, we find that the signal of frequency- and severity-based temperature extremes is projected to rise above historical noise earliest in midlatitudes, whereas magnitude-based temperature extremes emerge first in low and high latitudes. Precipitation extremes demonstrate different emergence patterns, with severity-based indices first emerging over midlatitudes, and magnitude- and frequency-based indices emerging earliest in low and high latitudes. Applied to impact-relevant domains, simulated TOE patterns suggest (a) unprecedented consecutive dry day occurrence in >50% of 14 terrestrial biomes and 12 marine realms prior to 2100, (b) earlier perceivable changes in climate extremes in countries with lower per capita GDP, and (c) emergence of severe and frequent heat extremes well-before 2030 for the 590 most populous urban centers. Elucidating extreme-metric and domain-type TOE heterogeneities highlights the challenges adaptation planners face in confronting the consequences of elevated twenty-first century radiative forcing. © 2018 John Wiley & Sons Ltd.

  4. The Peak Structure and Future Changes of the Relationships Between Extreme Precipitation and Temperature

    NASA Technical Reports Server (NTRS)

    Wang, Guiling; Wang, Dagang; Trenberth, Kevin E.; Erfanian, Amir; Yu, Miao; Bosilovich, Michael G.; Parr, Dana T.

    2017-01-01

    Theoretical models predict that, in the absence of moisture limitation, extreme precipitation intensity could exponentially increase with temperatures at a rate determined by the Clausius-Clapeyron (C-C) relationship. Climate models project a continuous increase of precipitation extremes for the twenty-first century over most of the globe. However, some station observations suggest a negative scaling of extreme precipitation with very high temperatures, raising doubts about future increase of precipitation extremes. Here we show for the present-day climate over most of the globe,the curve relating daily precipitation extremes with local temperatures has a peak structure, increasing as expected at the low medium range of temperature variations but decreasing at high temperatures. However, this peak-shaped relationship does not imply a potential upper limit for future precipitation extremes. Climate models project both the peak of extreme precipitation and the temperature at which it peaks (T(sub peak)) will increase with warming; the two increases generally conform to the C-C scaling rate in mid- and high-latitudes,and to a super C-C scaling in most of the tropics. Because projected increases of local mean temperature (T(sub mean)) far exceed projected increases of T(sub peak) over land, the conventional approach of relating extreme precipitation to T(sub mean) produces a misleading sub-C-C scaling rate.

  5. The `Nature of Science' and the Perils of Epistemic Relativism

    NASA Astrophysics Data System (ADS)

    Romero-Maltrana, Diego; Benitez, Federico; Vera, Francisco; Rivera, Rodrigo

    2017-11-01

    There is an increasing demand in the field of science education for the incorporation of philosophical and sociological aspects that are related to the scientific enterprise in school curricula, to the extent that the incorporation of these aspects is now considered a necessity. Several of these aspects can be categorised within the framework of the nature of science, or NOS. We warn that a possible misinterpretation of the common view of NOS tenets can lead to epistemic relativism. We pay special attention to the empirical and objective nature of science because these important features, properly understood, can help eliminate subjective flaws and protect against relativism. Some of the epistemological concepts that are relevant to this discussion are disambiguated in an attempt to prevent the temptation to take views to an extreme, as has occurred in some cases. We expect this analysis to contribute to the extant literature by improving how science is presented in the classroom without oversimplifying scientific practice.

  6. The Effect of Orifice Eccentricity on Instability of Liquid Jets

    NASA Astrophysics Data System (ADS)

    Amini, Ghobad; Dolatabadi, Ali

    2011-11-01

    The hydrodynamic instability of inviscid jets issuing from elliptic orifices is studied. A linear stability analysis is presented for liquid jets that includes the effect of the surrounding gas and an explicit dispersion equation is derived for waves on an infinite uniform jet column. Elliptic configuration has two extreme cases; round jet when ratio of minor to major axis is unity and plane sheet when this ratio approaches zero. Dispersion equation of elliptic jet is approximated for large and small aspect ratios considering asymptotic of the dispersion equation. In case of aspect ratio equal to one, the dispersion equation is analogous to one of the circular jets derived by Yang. In case of aspect ratio approaches zero, the behavior of waves is qualitatively similar to that of long waves on a two dimensional liquid jets and the varicose and sinuous modes are predicted. The growth rate of initial disturbances for various azimuthal modes has been presented in a wide range of disturbances. PhD Candidate.

  7. A constitutive relation for the viscous flow of an oriented fiber assembly

    NASA Technical Reports Server (NTRS)

    Pipes, R. B.; Hearle, J. W. S.; Beaussart, A. J.; Sastry, A. M.; Okine, R. K.

    1991-01-01

    A constitutive relation for an equivalent, homogeneous fluid is developed for the anisotropic viscous flow of an oriented assembly of discontinuous fibers suspended in a viscous fluid. The anisotropic viscous compliance matrix can be expressed in terms of three constants by assuming the equivalent fluid to be incompressible and the microstructure to have axial symmetry (transversely isotropic). By means of a micromechanics analysis, the three terms of the constitutive relation are expressed in terms of the viscosity of the matrix fluid, the fiber aspect ratio, and the fiber volume fraction. A comparison of the viscosity terms reveals that the elongational viscosity in the fiber direction varies as the square of the fiber aspect ratio and a complex function of the fiber volume fraction. Furthermore, the ratio of the axial elongational viscosity to the transverse elongational viscosity and both axial and transverse shear viscosities was shown to be 10 exp 4 - 10 exp 6 for fiber aspect ratio of 100-1000, except at extreme values of the fiber volume fraction.

  8. Spatial and temporal analysis of extreme sea level and storm surge events around the coastline of the UK

    PubMed Central

    Haigh, Ivan D.; Wadey, Matthew P.; Wahl, Thomas; Ozsoy, Ozgun; Nicholls, Robert J.; Brown, Jennifer M.; Horsburgh, Kevin; Gouldby, Ben

    2016-01-01

    In this paper we analyse the spatial footprint and temporal clustering of extreme sea level and skew surge events around the UK coast over the last 100 years (1915–2014). The vast majority of the extreme sea level events are generated by moderate, rather than extreme skew surges, combined with spring astronomical high tides. We distinguish four broad categories of spatial footprints of events and the distinct storm tracks that generated them. There have been rare events when extreme levels have occurred along two unconnected coastal regions during the same storm. The events that occur in closest succession (<4 days) typically impact different stretches of coastline. The spring/neap tidal cycle prevents successive extreme sea level events from happening within 4–8 days. Finally, the 2013/14 season was highly unusual in the context of the last 100 years from an extreme sea level perspective. PMID:27922630

  9. High-Performance Flexible Transparent Electrode with an Embedded Metal Mesh Fabricated by Cost-Effective Solution Process.

    PubMed

    Khan, Arshad; Lee, Sangeon; Jang, Taehee; Xiong, Ze; Zhang, Cuiping; Tang, Jinyao; Guo, L Jay; Li, Wen-Di

    2016-06-01

    A new structure of flexible transparent electrodes is reported, featuring a metal mesh fully embedded and mechanically anchored in a flexible substrate, and a cost-effective solution-based fabrication strategy for this new transparent electrode. The embedded nature of the metal-mesh electrodes provides a series of advantages, including surface smoothness that is crucial for device fabrication, mechanical stability under high bending stress, strong adhesion to the substrate with excellent flexibility, and favorable resistance against moisture, oxygen, and chemicals. The novel fabrication process replaces vacuum-based metal deposition with an electrodeposition process and is potentially suitable for high-throughput, large-volume, and low-cost production. In particular, this strategy enables fabrication of a high-aspect-ratio (thickness to linewidth) metal mesh, substantially improving conductivity without considerably sacrificing transparency. Various prototype flexible transparent electrodes are demonstrated with transmittance higher than 90% and sheet resistance below 1 ohm sq(-1) , as well as extremely high figures of merit up to 1.5 × 10(4) , which are among the highest reported values in recent studies. Finally using our embedded metal-mesh electrode, a flexible transparent thin-film heater is demonstrated with a low power density requirement, rapid response time, and a low operating voltage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Probability modeling of high flow extremes in Yingluoxia watershed, the upper reaches of Heihe River basin

    NASA Astrophysics Data System (ADS)

    Li, Zhanling; Li, Zhanjie; Li, Chengcheng

    2014-05-01

    Probability modeling of hydrological extremes is one of the major research areas in hydrological science. Most basins in humid and semi-humid south and east of China are concerned for probability modeling analysis of high flow extremes. While, for the inland river basin which occupies about 35% of the country area, there is a limited presence of such studies partly due to the limited data availability and a relatively low mean annual flow. The objective of this study is to carry out probability modeling of high flow extremes in the upper reach of Heihe River basin, the second largest inland river basin in China, by using the peak over threshold (POT) method and Generalized Pareto Distribution (GPD), in which the selection of threshold and inherent assumptions for POT series are elaborated in details. For comparison, other widely used probability distributions including generalized extreme value (GEV), Lognormal, Log-logistic and Gamma are employed as well. Maximum likelihood estimate is used for parameter estimations. Daily flow data at Yingluoxia station from 1978 to 2008 are used. Results show that, synthesizing the approaches of mean excess plot, stability features of model parameters, return level plot and the inherent independence assumption of POT series, an optimum threshold of 340m3/s is finally determined for high flow extremes in Yingluoxia watershed. The resulting POT series is proved to be stationary and independent based on Mann-Kendall test, Pettitt test and autocorrelation test. In terms of Kolmogorov-Smirnov test, Anderson-Darling test and several graphical diagnostics such as quantile and cumulative density function plots, GPD provides the best fit to high flow extremes in the study area. The estimated high flows for long return periods demonstrate that, as the return period increasing, the return level estimates are probably more uncertain. The frequency of high flow extremes exhibits a very slight but not significant decreasing trend from 1978 to 2008, while the intensity of such flow extremes is comparatively increasing especially for the higher return levels.

  11. Architectural concepts of Martian bases built: of domes, around greenhouses and into slopes -the human aspect and the technology

    NASA Astrophysics Data System (ADS)

    Kozicki, Janek; Kozicka, Joanna

    Human missions to Mars are a special kind of space missions due to their long duration. The human aspect of such missions becomes as important as the technological one. The need for a human friendly and comfortable habitat arises. Studies of human behavior in ICEs have shown that larger groups of people mean a lower occurrence of conflicts. However, for a larger crew a larger habitat has to be designed -a Martian base. The research deals with psychological, sociological and technological aspects influencing the architectural design of a Martian Base. Extreme conditions present on Mars demand a partic-ular approach to technological and architectural design. To reduce the cost of building a bigger habitat, low cost solutions have been inquired into. A series of analyses has been performed to identify the best architectural solutions for a Martian base. A review of existing technologies and extreme condition habitats (both terrestrial and extraterrestrial) has revealed solutions that are the most reliable and efficient ones. Additionally, innovative technologies have been analyzed in search of the best candidates for actual base construction. Low cost solutions have been prioritized in the process. An in-depth study of architectural problems inherent in the design of a Martian base has resulted in a number of guidelines for the architect. The main ones are introduced in this review. Based on them, several concepts have been drafted as examples of user-friendly and aesthetically pleasing habitats. They are discussed in the following order: habitats made of domes, those built around greenhouses and those situated in sloping terrain. One of them is presented in detail, including interior design.

  12. Numerical modeling of macrodispersion in heterogeneous media: a comparison of multi-Gaussian and non-multi-Gaussian models

    NASA Astrophysics Data System (ADS)

    Wen, Xian-Huan; Gómez-Hernández, J. Jaime

    1998-03-01

    The macrodispersion of an inert solute in a 2-D heterogeneous porous media is estimated numerically in a series of fields of varying heterogeneity. Four different random function (RF) models are used to model log-transmissivity (ln T) spatial variability, and for each of these models, ln T variance is varied from 0.1 to 2.0. The four RF models share the same univariate Gaussian histogram and the same isotropic covariance, but differ from one another in terms of the spatial connectivity patterns at extreme transmissivity values. More specifically, model A is a multivariate Gaussian model for which, by definition, extreme values (both high and low) are spatially uncorrelated. The other three models are non-multi-Gaussian: model B with high connectivity of high extreme values, model C with high connectivity of low extreme values, and model D with high connectivities of both high and low extreme values. Residence time distributions (RTDs) and macrodispersivities (longitudinal and transverse) are computed on ln T fields corresponding to the different RF models, for two different flow directions and at several scales. They are compared with each other, as well as with predicted values based on first-order analytical results. Numerically derived RTDs and macrodispersivities for the multi-Gaussian model are in good agreement with analytically derived values using first-order theories for log-transmissivity variance up to 2.0. The results from the non-multi-Gaussian models differ from each other and deviate largely from the multi-Gaussian results even when ln T variance is small. RTDs in non-multi-Gaussian realizations with high connectivity at high extreme values display earlier breakthrough than in multi-Gaussian realizations, whereas later breakthrough and longer tails are observed for RTDs from non-multi-Gaussian realizations with high connectivity at low extreme values. Longitudinal macrodispersivities in the non-multi-Gaussian realizations are, in general, larger than in the multi-Gaussian ones, while transverse macrodispersivities in the non-multi-Gaussian realizations can be larger or smaller than in the multi-Gaussian ones depending on the type of connectivity at extreme values. Comparing the numerical results for different flow directions, it is confirmed that macrodispersivities in multi-Gaussian realizations with isotropic spatial correlation are not flow direction-dependent. Macrodispersivities in the non-multi-Gaussian realizations, however, are flow direction-dependent although the covariance of ln T is isotropic (the same for all four models). It is important to account for high connectivities at extreme transmissivity values, a likely situation in some geological formations. Some of the discrepancies between first-order-based analytical results and field-scale tracer test data may be due to the existence of highly connected paths of extreme conductivity values.

  13. Doctor discontent. A comparison of physician satisfaction in different delivery system settings, 1986 and 1997.

    PubMed

    Murray, A; Montgomery, J E; Chang, H; Rogers, W H; Inui, T; Safran, D G

    2001-07-01

    To examine the differences in physician satisfaction associated with open- versus closed-model practice settings and to evaluate changes in physician satisfaction between 1986 and 1997. Open-model practices refer to those in which physicians accept patients from multiple health plans and insurers (i.e., do not have an exclusive arrangement with any single health plan). Closed-model practices refer to those wherein physicians have an exclusive relationship with a single health plan (i.e., staff- or group-model HMO). Two cross-sectional surveys of physicians; one conducted in 1986 (Medical Outcomes Study) and one conducted in 1997 (Study of Primary Care Performance in Massachusetts). Primary care practices in Massachusetts. General internists and family practitioners in Massachusetts. Seven measures of physician satisfaction, including satisfaction with quality of care, the potential to achieve professional goals, time spent with individual patients, total earnings from practice, degree of personal autonomy, leisure time, and incentives for high quality. Physicians in open- versus closed-model practices differed significantly in several aspects of their professional satisfaction. In 1997, open-model physicians were less satisfied than closed-model physicians with their total earnings, leisure time, and incentives for high quality. Open-model physicians reported significantly more difficulty with authorization procedures and reported more denials for care. Overall, physicians in 1997 were less satisfied in every aspect of their professional life than 1986 physicians. Differences were significant in three areas: time spent with individual patients, autonomy, and leisure time (P < or =.05). Among open-model physicians, satisfaction with autonomy and time with individual patients were significantly lower in 1997 than 1986 (P < or =.01). Among closed-model physicians, satisfaction with total earnings and with potential to achieve professional goals were significantly lower in 1997 than in 1986 (P < or =.01). This study finds that the state of physician satisfaction in Massachusetts is extremely low, with the majority of physicians dissatisfied with the amount of time they have with individual patients, their leisure time, and their incentives for high quality. Satisfaction with most areas of practice declined significantly between 1986 and 1997. Open-model physicians were less satisfied than closed-model physicians in most aspects of practices.

  14. Doctor Discontent

    PubMed Central

    Murray, Alison; Montgomery, Jana E; Chang, Hong; Rogers, William H; Inui, Thomas; Safran, Dana Gelb

    2001-01-01

    OBJECTIVE To examine the differences in physician satisfaction associated with open- versus closed-model practice settings and to evaluate changes in physician satisfaction between 1986 and 1997. Open-model practices refer to those in which physicians accept patients from multiple health plans and insurers (i.e., do not have an exclusive arrangement with any single health plan). Closed-model practices refer to those wherein physicians have an exclusive relationship with a single health plan (i.e., staff- or group-model HMO). DESIGN Two cross-sectional surveys of physicians; one conducted in 1986 (Medical Outcomes Study) and one conducted in 1997 (Study of Primary Care Performance in Massachusetts). SETTING Primary care practices in Massachusetts. PARTICIPANTS General internists and family practitioners in Massachusetts. MEASUREMENTS Seven measures of physician satisfaction, including satisfaction with quality of care, the potential to achieve professional goals, time spent with individual patients, total earnings from practice, degree of personal autonomy, leisure time, and incentives for high quality. RESULTS Physicians in open- versus closed-model practices differed significantly in several aspects of their professional satisfaction. In 1997, open-model physicians were less satisfied than closed-model physicians with their total earnings, leisure time, and incentives for high quality. Open-model physicians reported significantly more difficulty with authorization procedures and reported more denials for care. Overall, physicians in 1997 were less satisfied in every aspect of their professional life than 1986 physicians. Differences were significant in three areas: time spent with individual patients, autonomy, and leisure time (P ≤ .05). Among open-model physicians, satisfaction with autonomy and time with individual patients were significantly lower in 1997 than 1986 (P ≤ .01). Among closed-model physicians, satisfaction with total earnings and with potential to achieve professional goals were significantly lower in 1997 than in 1986 (P ≤ .01). CONCLUSIONS This study finds that the state of physician satisfaction in Massachusetts is extremely low, with the majority of physicians dissatisfied with the amount of time they have with individual patients, their leisure time, and their incentives for high quality. Satisfaction with most areas of practice declined significantly between 1986 and 1997. Open-model physicians were less satisfied than closed-model physicians in most aspects of practices.

  15. Metronidazole as a protector of cells from electromagnetic radiation of extremely high frequencies

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Pavel E.; Malinina, Ulia A.; Popyhova, Era B.; Rogacheva, Svetlana M.; Somov, Alexander U.

    2006-08-01

    It is well known that weak electromagnetic fields of extremely high frequencies cause significant modification of the functional status of biological objects of different levels of organization. The aim of the work was to study the combinatory effect of metronidazole - the drug form of 1-(2'hydroxiethil)-2-methil-5-nitroimidazole - and electromagnetic radiation of extremely high frequencies (52...75 GHz) on the hemolytic stability of erythrocytes and hemotaxis activity of Infusoria Paramecium caudatum.

  16. Are recent severe floods in Xiang River basin of China linked with the increase extreme precipitation?

    NASA Astrophysics Data System (ADS)

    Cheng, L.; Du, J.

    2015-12-01

    The Xiang River, a main tributary of the Yangtze River, is subjected to high floods frequently in recent twenty years. Climate change, including abrupt shifts and fluctuations in precipitation is an important factor influencing hydrological extreme conditions. In addition, human activities are widely recognized as another reasons leading to high flood risk. With the effects of climate change and human interventions on hydrological cycle, there are several questions that need to be addressed. Are floods in the Xiang River basin getting worse? Whether the extreme streamflow shows an increasing tendency? If so, is it because the extreme rainfall events have predominant effect on floods? To answer these questions, the article detected existing trends in extreme precipitation and discharge using Mann-Kendall test. Continuous wavelet transform method was employed to identify the consistency of changes in extreme precipitation and discharge. The Pearson correlation analysis was applied to investigate how much degree of variations in extreme discharge can be explained by climate change. The results indicate that slightly upward trends can be detected in both extreme rainfalls and discharge in the upper region of Xiang River basin. For the most area of middle and lower river basin, the extreme rainfalls show significant positive trends, but the extreme discharge displays slightly upward trends with no significance at 90% confidence level. Wavelet transform analysis results illustrate that highly similar patterns of signal changes can be seen between extreme precipitation and discharge in upper section of the basin, while the changes in extreme precipitation for the middle and lower reaches do not always coincide with the extreme streamflow. The correlation coefficients of the wavelet transforms for the precipitation and discharge signals in most area of the basin pass the significance test. The conclusion may be drawn that floods in recent years are not getting worse in Xiang River basin. The similar signal patterns and positive correlation between extreme discharge and precipitation indicate that the variability of extreme precipitation has an important effect on extreme discharge of flood, although the intensity of human impacts in lower section of Xiang River basin has increased markedly.

  17. Extreme-volatility dynamics in crude oil markets

    NASA Astrophysics Data System (ADS)

    Jiang, Xiong-Fei; Zheng, Bo; Qiu, Tian; Ren, Fei

    2017-02-01

    Based on concepts and methods from statistical physics, we investigate extreme-volatility dynamics in the crude oil markets, using the high-frequency data from 2006 to 2010 and the daily data from 1986 to 2016. The dynamic relaxation of extreme volatilities is described by a power law, whose exponents usually depend on the magnitude of extreme volatilities. In particular, the relaxation before and after extreme volatilities is time-reversal symmetric at the high-frequency time scale, but time-reversal asymmetric at the daily time scale. This time-reversal asymmetry is mainly induced by exogenous events. However, the dynamic relaxation after exogenous events exhibits the same characteristics as that after endogenous events. An interacting herding model both with and without exogenous driving forces could qualitatively describe the extreme-volatility dynamics.

  18. Kinetics of Materials at Extreme Conditions: Understanding the Time Dependent Approach to Equilibrium at MaRIE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, R. G.; Mcnabb, D.; Kumar, M.

    The National Nuclear Security Agency has recently recognized that a long-term need exists to establish a stronger scientific basis for the assessment and qualification of materials and manufacturing processes for the nuclear stockpile and other national security applications. These materials may have undergone substantial changes with age, or may represent new materials that are being introduced because of difficulties associated with reusing or recreating materials used in original stockpile components. Also, with advancements in manufacturing methods, the NNSA anticipates opportunities for an enhanced range of control over fabricated components, an enhanced pace of materials development, and enhanced functionality. The developmentmore » of qualification standards for these new materials will require the ability to understand and control material characteristics that affect both mechanical and dynamic performance. A unique aspect for NNSA is that the performance requirements for materials are often set by system hydrodynamics, and these materials must perform in extreme environments and loading conditions. Thus, the scientific motivation is to understand “Matter-Radiation Interactions in Extremes (MaRIE).”« less

  19. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV

    PubMed Central

    Wang, He; Xu, Yiming; Ulonska, Stefan; Robinson, Joseph S.; Ranitovic, Predrag; Kaindl, Robert A.

    2015-01-01

    Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. Here, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ≈3 × 1013 s−1 is generated at 22.3 eV, with 5 × 10−5 conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications. PMID:26067922

  20. Observed and predicted sensitivities of extreme surface ozone to meteorological drivers in three US cities

    NASA Astrophysics Data System (ADS)

    Fix, Miranda J.; Cooley, Daniel; Hodzic, Alma; Gilleland, Eric; Russell, Brook T.; Porter, William C.; Pfister, Gabriele G.

    2018-03-01

    We conduct a case study of observed and simulated maximum daily 8-h average (MDA8) ozone (O3) in three US cities for summers during 1996-2005. The purpose of this study is to evaluate the ability of a high resolution atmospheric chemistry model to reproduce observed relationships between meteorology and high or extreme O3. We employ regional coupled chemistry-transport model simulations to make three types of comparisons between simulated and observational data, comparing (1) tails of the O3 response variable, (2) distributions of meteorological predictor variables, and (3) sensitivities of high and extreme O3 to meteorological predictors. This last comparison is made using two methods: quantile regression, for the 0.95 quantile of O3, and tail dependence optimization, which is used to investigate even higher O3 extremes. Across all three locations, we find substantial differences between simulations and observational data in both meteorology and meteorological sensitivities of high and extreme O3.

  1. Nucleic acid-based aptamers: applications, development and clinical trials.

    PubMed

    Kanwar, Jagat R; Roy, Kislay; Maremanda, Nihal G; Subramanian, Krishnakumar; Veedu, Rakesh N; Bawa, Raj; Kanwar, Rupinder K

    2015-01-01

    Short single-stranded oligonucleotides called aptamers, often termed as chemical antibodies, have been developed as powerful alternatives to traditional antibodies with respect to their obvious advantages like high specificity and affinity, longer shelf-life, easier manufacturing protocol, freedom to introduce chemical modifications for further improvement, etc. Reiterative selection process of aptamers over 10-15 cycles starting from a large initial pool of random nucleotide sequences renders them with high binding affinity, thereby making them extremely specific for their targets. Aptamer-based detection systems are well investigated and likely to displace primitive detection systems. Aptamer chimeras (combination of aptamers with another aptamer or biomacromolecule or chemical moiety) have the potential activity of both the parent molecules, and thus hold the capability to perform diverse functions at the same time. Owing to their extremely high specificity and lack of immunogenicity or pathogenicity, a number of other aptamers have recently entered clinical trials and have garnered favorable attention from pharmaceutical companies. Promising results from the clinical trials provide new hope to change the conventional style of therapy. Aptamers have attained high therapeutic relevance in a short time as compared to synthetic drugs and/or other modes of therapy. This review follows the various trends in aptamer technology including production, selection, modifications and success in clinical fields. It focusses largely on the various applications of aptamers which mainly depend upon their selection procedures. The review also sheds light on various modifications and chimerizations that have been implemented in order to improve the stability and functioning of the aptamers, including introduction of locked nucleic acids (LNAs). The application of various aptamers in detection systems has been discussed elaborately in order to stress on their role as efficient diagnostic agents. The key aspect of this review is focused on success of aptamers on the basis of their performance in clinical trials for various diseases.

  2. The role of ensemble post-processing for modeling the ensemble tail

    NASA Astrophysics Data System (ADS)

    Van De Vyver, Hans; Van Schaeybroeck, Bert; Vannitsem, Stéphane

    2016-04-01

    The past decades the numerical weather prediction community has witnessed a paradigm shift from deterministic to probabilistic forecast and state estimation (Buizza and Leutbecher, 2015; Buizza et al., 2008), in an attempt to quantify the uncertainties associated with initial-condition and model errors. An important benefit of a probabilistic framework is the improved prediction of extreme events. However, one may ask to what extent such model estimates contain information on the occurrence probability of extreme events and how this information can be optimally extracted. Different approaches have been proposed and applied on real-world systems which, based on extreme value theory, allow the estimation of extreme-event probabilities conditional on forecasts and state estimates (Ferro, 2007; Friederichs, 2010). Using ensemble predictions generated with a model of low dimensionality, a thorough investigation is presented quantifying the change of predictability of extreme events associated with ensemble post-processing and other influencing factors including the finite ensemble size, lead time and model assumption and the use of different covariates (ensemble mean, maximum, spread...) for modeling the tail distribution. Tail modeling is performed by deriving extreme-quantile estimates using peak-over-threshold representation (generalized Pareto distribution) or quantile regression. Common ensemble post-processing methods aim to improve mostly the ensemble mean and spread of a raw forecast (Van Schaeybroeck and Vannitsem, 2015). Conditional tail modeling, on the other hand, is a post-processing in itself, focusing on the tails only. Therefore, it is unclear how applying ensemble post-processing prior to conditional tail modeling impacts the skill of extreme-event predictions. This work is investigating this question in details. Buizza, Leutbecher, and Isaksen, 2008: Potential use of an ensemble of analyses in the ECMWF Ensemble Prediction System, Q. J. R. Meteorol. Soc. 134: 2051-2066.Buizza and Leutbecher, 2015: The forecast skill horizon, Q. J. R. Meteorol. Soc. 141: 3366-3382.Ferro, 2007: A probability model for verifying deterministic forecasts of extreme events. Weather and Forecasting 22 (5), 1089-1100.Friederichs, 2010: Statistical downscaling of extreme precipitation events using extreme value theory. Extremes 13, 109-132.Van Schaeybroeck and Vannitsem, 2015: Ensemble post-processing using member-by-member approaches: theoretical aspects. Q.J.R. Meteorol. Soc., 141: 807-818.

  3. Synchronous GIST with osteoclast-like giant cells and a well-differentiated neuroendocrine tumor in Ampula Vateri: coexistence of two extremely rare entities.

    PubMed

    Koçer, N Emrah; Kayaselçuk, Fazilet; Calişkan, Kenan; Ulusan, Serife

    2007-01-01

    Mesenchymal tumors of the gastrointestinal system with variable histopathological appearances and constant expression of CD117 are known as gastrointestinal stromal tumors (GISTs). Neuroendocrine tumors may be seen in the gastrointestinal system and other organ systems of the body. We report a 44-year-old male patient with a 6.5 x 3 x 6cm mass located in the Ampulla of Vater. Histopathologic examination revealed a GIST with a marked nuclear pleomorphism and a high mitotic rate, and that was rich in osteoclast-like giant cells (OGC). Immunohistochemically, GIST was positive for CD117, while OGCs were negative for CD117 and positive for CD68 and alpha1-antitrypsin. There was also found a well-differentiated neuroendocrine tumor near the GIST, in the serosal aspect of the duodenum at the point of the Ampulla of Vater. This second tumor was 20mm in diameter, and was relatively well circumscribed with few glands invading the GIST. This tumor was positive for synaptophysin and chromogranin. Neither mitosis nor vascular invasion was observed. The patient had no familial history or clinical manifestations of neurofibromatosis. This case presents the unique synchronous existence of two extremely rare entities, a GIST with OGC and a well-differentiated neuroendocrine tumor, both located in the Ampulla of Vater.

  4. Radar HRRP Target Recognition Based on Stacked Autoencoder and Extreme Learning Machine

    PubMed Central

    Liu, Yongxiang; Huo, Kai; Zhang, Zhongshuai

    2018-01-01

    A novel radar high-resolution range profile (HRRP) target recognition method based on a stacked autoencoder (SAE) and extreme learning machine (ELM) is presented in this paper. As a key component of deep structure, the SAE does not only learn features by making use of data, it also obtains feature expressions at different levels of data. However, with the deep structure, it is hard to achieve good generalization performance with a fast learning speed. ELM, as a new learning algorithm for single hidden layer feedforward neural networks (SLFNs), has attracted great interest from various fields for its fast learning speed and good generalization performance. However, ELM needs more hidden nodes than conventional tuning-based learning algorithms due to the random set of input weights and hidden biases. In addition, the existing ELM methods cannot utilize the class information of targets well. To solve this problem, a regularized ELM method based on the class information of the target is proposed. In this paper, SAE and the regularized ELM are combined to make full use of their advantages and make up for each of their shortcomings. The effectiveness of the proposed method is demonstrated by experiments with measured radar HRRP data. The experimental results show that the proposed method can achieve good performance in the two aspects of real-time and accuracy, especially when only a few training samples are available. PMID:29320453

  5. Radar HRRP Target Recognition Based on Stacked Autoencoder and Extreme Learning Machine.

    PubMed

    Zhao, Feixiang; Liu, Yongxiang; Huo, Kai; Zhang, Shuanghui; Zhang, Zhongshuai

    2018-01-10

    A novel radar high-resolution range profile (HRRP) target recognition method based on a stacked autoencoder (SAE) and extreme learning machine (ELM) is presented in this paper. As a key component of deep structure, the SAE does not only learn features by making use of data, it also obtains feature expressions at different levels of data. However, with the deep structure, it is hard to achieve good generalization performance with a fast learning speed. ELM, as a new learning algorithm for single hidden layer feedforward neural networks (SLFNs), has attracted great interest from various fields for its fast learning speed and good generalization performance. However, ELM needs more hidden nodes than conventional tuning-based learning algorithms due to the random set of input weights and hidden biases. In addition, the existing ELM methods cannot utilize the class information of targets well. To solve this problem, a regularized ELM method based on the class information of the target is proposed. In this paper, SAE and the regularized ELM are combined to make full use of their advantages and make up for each of their shortcomings. The effectiveness of the proposed method is demonstrated by experiments with measured radar HRRP data. The experimental results show that the proposed method can achieve good performance in the two aspects of real-time and accuracy, especially when only a few training samples are available.

  6. Impact of the Extreme Warming of 2012 on Shelfbreak Frontal Structure North of Cape Hatteras

    NASA Astrophysics Data System (ADS)

    Gawarkiewickz, G.

    2014-12-01

    Continental shelf circulation north of Cape Hatteras is complex, with southward flowing Middle Atlantic Bight shelf water intersecting the Gulf Stream and subducting offshore into the Gulf Stream. In May, 2012, a cruise was conducted in order to study the shelf circulation and acoustic propagation through fish schools in the area. An important aspect of the study was to use Autonomous Underwater Vehicles to map fish schools with a sidescan sonar. High-resolution hydrographic surveys to map the continental shelf water masses and shelfbreak frontal structure were sampled to relate oceanographic conditions to the fish school distributions. The cold pool water mass over the continental shelf in May 2012 was extremely warm, with temperature anomalies of up to 5 Degrees C relative to observations from the same area in May, 1996. The normal cross-shelf temperature gradients within the shelfbreak front were not present because of the warming. As a result, the shelf density field was much more buoyant than usual, which led to an accelerated shelfbreak jet. Moored velocity measurements at the 60 m isobath recorded alongshelf flow of as much as 0.6 m/s. The anticipated fish species were not observed over the continental shelf. Some comments on the forcing leading to the large scale warming will be presented, along with a brief discussion of the impact of the warming on the marine ecosystem in the northeast U.S.

  7. Fructans of the saline world.

    PubMed

    Kırtel, Onur; Versluys, Maxime; Van den Ende, Wim; Öner, Ebru Toksoy

    2018-06-20

    Saline and hypersaline environments make up the largest ecosystem on earth and the organisms living in such water-restricted environments have developed unique ways to cope with high salinity. As such these organisms not only carry significant industrial potential in a world where freshwater supplies are rapidly diminishing, but they also shed light upon the origins and extremes of life. One largely overlooked and potentially important feature of many salt-loving organisms is their ability to produce fructans, fructose polymers widely found in various mesophilic Eubacteria and plants, with potential functions as storage carbohydrates, aiding stress tolerance, and acting as virulence factors or signaling molecules. Intriguingly, within the whole archaeal domain of life, Archaea possessing putative fructan biosynthetic enzymes were found to belong to the extremely halophilic class of Halobacteria only, indicating a strong, yet unexplored link between the fructan syndrome and salinity. In fact, this link may indeed lead to novel strategies in fighting the global salinization problem. Hence this review explores the unknown world of fructanogenic salt-loving organisms, where water scarcity is the main stress factor for life. Within this scope, prokaryotes and plants of the saline world are discussed in detail, with special emphasis on their salt adaptation mechanisms, the potential roles of fructans and fructosyltransferase enzymes in adaptation and survival as well as future aspects for all fructanogenic salt-loving domains of life. Copyright © 2018. Published by Elsevier Inc.

  8. Iterative Evolution in Triassic Gondolelloidea (Conodonta)

    NASA Astrophysics Data System (ADS)

    Murat Kilic, Ali; Plasencia, Pablo; Guex, Jean; Hirsch, Francis

    2017-04-01

    The phylogeny and distribution of Triassic gondolelloid conodont multi-elements reveals aspects of their natural history. In conodont phylogeny, taxonomy incorporates the morphologic riposte to temperature as well as to eustatic cycles, expressed in speciation, radiation and extinction as these are not fortuitous and evolution uses diverse strategies such as heterochrony (progenesis and neoteny) in response to stress generating events. Proteromorphosis (reappearance of ancestral morphs) and paedomorphosis (retention of juvenile traits) is a reaction to sublethal environmental stress. It is often followed by radiation of fully developed forms, in the recovery stage after extinction, timely matching transgressions. Evolutionary retrogradation (neoteny) during eustatic high stands often precedes extinction. This was the case of the Alaunian Mockina whereafter the ultimate Misikella brought no post-Rhaetian recovery. The Late Triassic, an extremely long time span of 37 Ma represents 70 % of the total length of the period. Evolutionary rebounds after quasi extinction of subfamily Neogondolellinae, by radiation, out of the single surviving genus Paragondolella: Julian Metapolygnathus and Mazzaella, and Tuvalian-Lacian Metapolygnathus-Carnepigondolella-Ancyrogondolella. The survival of the clade throughout Alaunian and Sevatian took place by successive retrogradations (proteromorphosis) of the Alaunian Mockina and Sevatian-Rhaetian Misikella, bringing no ultimate post-Rhaetian recovery. The cryptic gondolellid features, encoded in "neospathid" proteromorphs permitted the conodont survival throughout the entire Triassic, signaling Dienerian, Anisian, Ladinian, Carnian, and Norian crises, extreme and ultimately vain in the terminal Rhaetian. Key words: Triassic; Conodonts; Phylogeny; Evolution; Proteromorphosis.

  9. Projected Changes in Hydrological Extremes in a Cold Region Watershed: Sensitivity of Results to Statistical Methods of Analysis

    NASA Astrophysics Data System (ADS)

    Dibike, Y. B.; Eum, H. I.; Prowse, T. D.

    2017-12-01

    Flows originating from alpine dominated cold region watersheds typically experience extended winter low flows followed by spring snowmelt and summer rainfall driven high flows. In a warmer climate, there will be temperature- induced shift in precipitation from snow towards rain as well as changes in snowmelt timing affecting the frequency of extreme high and low flow events which could significantly alter ecosystem services. This study examines the potential changes in the frequency and severity of hydrologic extremes in the Athabasca River watershed in Alberta, Canada based on the Variable Infiltration Capacity (VIC) hydrologic model and selected and statistically downscaled climate change scenario data from the latest Coupled Model Intercomparison Project (CMIP5). The sensitivity of these projected changes is also examined by applying different extreme flow analysis methods. The hydrological model projections show an overall increase in mean annual streamflow in the watershed and a corresponding shift in the freshet timing to earlier period. Most of the streams are projected to experience increases during the winter and spring seasons and decreases during the summer and early fall seasons, with an overall projected increases in extreme high flows, especially for low frequency events. While the middle and lower parts of the watershed are characterised by projected increases in extreme high flows, the high elevation alpine region is mainly characterised by corresponding decreases in extreme low flow events. However, the magnitude of projected changes in extreme flow varies over a wide range, especially for low frequent events, depending on the climate scenario and period of analysis, and sometimes in a nonlinear way. Nonetheless, the sensitivity of the projected changes to the statistical method of analysis is found to be relatively small compared to the inter-model variability.

  10. Scientific and personal recollections of Roberto Petronzio

    NASA Astrophysics Data System (ADS)

    Parisi, Giorgio

    2018-03-01

    This paper aims to recall some of the main contributions of Roberto Petronzio to physics, with a particular regard to the period we have been working together. His seminal contributions cover an extremely wide range of topics: the foundation of the perturbative approach to QCD, various aspects of weak interaction theory, from basic questions (e.g. the mass of the Higgs) to lattice weak interaction, lattice QCD from the beginning to most recent computations.

  11. 3rd IAGA/ICMA Workshop on Vertical Coupling in the Atmosphere/Ionosphere System/ Abstract

    DTIC Science & Technology

    2007-01-10

    energy and momentum from the lower atmosphere to the upper atmosphere and ionosphere and vice versa. The programme focussed on various aspects and...ICMA Workshop Vertical Coupling in the Atmosphere/Ionosphere System - 6 - The influence of global dependence of gravity wave energy in the troposphere...transport during the polar night of thermospheric odd nitrogen produced by lower- energy electron precipitation and solar extreme UV fluxes. However, at low

  12. General Consideration in the History, Physical Examination, and Safety Determination.

    PubMed

    Buchanan, Jonathan; Dexter, William; Powell, Amy; Wright, Justin

    2015-12-01

    A thorough medical history is perhaps the most important aspect when evaluating an athlete before wilderness adventure. A physical examination should follow focusing on conditions that may be affected by changes in atmospheric pressure, extremes of temperature, or altitude. This information can then be used to make safety recommendations ensuring that adventurers are able to safely enjoy participation in the wilderness pursuit of their choice. Copyright © 2015. Published by Elsevier Inc.

  13. Insufficiency fractures of the distal tibia misdiagnosed as cellulitis in three patients with rheumatoid arthritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Straaton, K.V.; Lopez-Mendez, A.; Alarcon, G.S.

    We describe 3 patients with rheumatoid arthritis who presented with diffuse pain, swelling, and erythema of the distal aspect of the lower extremity, suggestive of either cellulitis or thrombophlebitis, but were found to have insufficiency fractures of the distal tibia. The value of technetium-99m diphosphonate bone scintigraphy in the early recognition of these fractures and a possible explanation for the associated inflammatory symptoms are discussed.

  14. Effects of elevated mean and extremely high temperatures on the physio-ecological characteristics of geographically distinctive populations of Cunninghamia lanceolata

    NASA Astrophysics Data System (ADS)

    Zhou, Ting; Jia, Xiaorong; Liao, Huixuan; Peng, Shijia; Peng, Shaolin

    2016-12-01

    Conventional models for predicting species distribution under global warming scenarios often treat one species as a homogeneous whole. In the present study, we selected Cunninghamia lanceolata (C. lanceolata), a widely distributed species in China, to investigate the physio-ecological responses of five populations under different temperature regimes. The results demonstrate that increased mean temperatures induce increased growth performance among northern populations, which exhibited the greatest germination capacity and largest increase in the overlap between the growth curve and the monthly average temperature. However,tolerance of the southern population to extremely high temperatures was stronger than among the population from the northern region,shown by the best growth and the most stable photosynthetic system of the southern population under extremely high temperature. This result indicates that the growth advantage among northern populations due to increased mean temperatures may be weakened by lower tolerance to extremely high temperatures. This finding is antithetical to the predicted results. The theoretical coupling model constructed here illustrates that the difference in growth between populations at high and low latitudes and altitudes under global warming will decrease because of the frequent occurrence of extremely high temperatures.

  15. Variability of hydrological extreme events in East Asia and their dynamical control: a comparison between observations and two high-resolution global climate models

    NASA Astrophysics Data System (ADS)

    Freychet, N.; Duchez, A.; Wu, C.-H.; Chen, C.-A.; Hsu, H.-H.; Hirschi, J.; Forryan, A.; Sinha, B.; New, A. L.; Graham, T.; Andrews, M. B.; Tu, C.-Y.; Lin, S.-J.

    2017-02-01

    This work investigates the variability of extreme weather events (drought spells, DS15, and daily heavy rainfall, PR99) over East Asia. It particularly focuses on the large scale atmospheric circulation associated with high levels of the occurrence of these extreme events. Two observational datasets (APHRODITE and PERSIANN) are compared with two high-resolution global climate models (HiRAM and HadGEM3-GC2) and an ensemble of other lower resolution climate models from CMIP5. We first evaluate the performance of the high resolution models. They both exhibit good skill in reproducing extreme events, especially when compared with CMIP5 results. Significant differences exist between the two observational datasets, highlighting the difficulty of having a clear estimate of extreme events. The link between the variability of the extremes and the large scale circulation is investigated, on monthly and interannual timescales, using composite and correlation analyses. Both extreme indices DS15 and PR99 are significantly linked to the low level wind intensity over East Asia, i.e. the monsoon circulation. It is also found that DS15 events are strongly linked to the surface temperature over the Siberian region and to the land-sea pressure contrast, while PR99 events are linked to the sea surface temperature anomalies over the West North Pacific. These results illustrate the importance of the monsoon circulation on extremes over East Asia. The dependencies on of the surface temperature over the continent and the sea surface temperature raise the question as to what extent they could affect the occurrence of extremes over tropical regions in future projections.

  16. Highly Conductive Multifunctional Graphene Polycarbonate Nanocomposites

    NASA Technical Reports Server (NTRS)

    Yoonessi, Mitra; Gaier, James R.

    2010-01-01

    Graphene nanosheet bisphenol A polycarbonate nanocomposites (0.027 2.2 vol %) prepared by both emulsion mixing and solution blending methods, followed by compression molding at 287 C, exhibited dc electrical percolation threshold of approx.0.14 and approx.0.38 vol %, respectively. The conductivities of 2.2 vol % graphene nanocomposites were 0.512 and 0.226 S/cm for emulsion and solution mixing. The 1.1 and 2.2 vol % graphene nanocomposites exhibited frequency-independent behavior. Inherent conductivity, extremely high aspect ratio, and nanostructure directed assembly of the graphene using PC nanospheres are the main factors for excellent electrical properties of the nanocomposites. Dynamic tensile moduli of nanocomposites increased with increasing graphene in the nanocomposite. The glass transition temperatures were decreased with increasing graphene for the emulsion series. High-resolution electron microscopy (HR-TEM) and small-angle neutron scattering (SANS) showed isolated graphene with no connectivity path for insulating nanocomposites and connected nanoparticles for the conductive nanocomposites. A stacked disk model was used to obtain the average particle radius, average number of graphene layers per stack, and stack spacing by simulation of the experimental SANS data. Morphology studies indicated the presence of well-dispersed graphene and small graphene stacking with infusion of polycarbonate within the stacks.

  17. Energy Penetration into Arrays of Aligned Nanowires Irradiated with Relativistic Intensities: Scaling to Terabar Pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bargsten, Clayton; Hollinger, Reed; Capeluto, Maria Gabriela

    Ultra-high-energy-density (UHED) matter, characterized by energy densities > 1 x 10 8 J cm -3 and pressures greater than a gigabar, is encountered in the center of stars and in inertial confinement fusion capsules driven by the world’s largest lasers. Similar conditions can be obtained with compact, ultra-high contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. Here we report the measurement of the key physical process in determining the energy density deposited in high aspect ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Nimore » nanowire arrays irradiated at an intensity of 4 x 10 19 W cm -2, we demonstrate energy penetration depths of several μm, leading to UHED plasmas of that size. Relativistic 3D particle-in-cell-simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of > 1 x 10 22 W cm -2 will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 x 10 10 J cm -3, equivalent to a pressure of 0.35 Tbar.« less

  18. Rapid Black-Hole Growth in the Nitrogen-Rich Era

    NASA Astrophysics Data System (ADS)

    Matsuoka, Kenta

    2014-01-01

    The connection between the active galactic nuclei (AGNs) and star formation is one of the most crucial aspects in understanding the co-evolution of supermassive black holes (SMBHs) and galaxies. In Matsuoka et al. (2011, A&A, 527, A100), by using SDSS quasar spectra we found that the nitrogen abundance correlates with the Eddington ratio. This correlation suggests that the mass accretion is associated with a post-starburst phase, when AGB stars enrich the interstellar medium with nitrogen. To further pursue this relation, we focus on nitrogen-loud quasars that show extremely strong emission lines of nitrogen (e.g., N iv]λ1486 and N iii]λ1750) due to high-abundance of nitrogen instead of high metallicity. Based on the C ivλ1549 line which is available in SDSS optical spectra, we found they may show high accretion rate, supporting above correlation. However, this is not enough to confirm the relation since the C iv line may be unreliable as a mass indicator. In this proposal, we detect the Hα line which is reliable to estimate black-hole masses, and to shed light on the AGN-starburst connection.

  19. Experimental neuropharmacology of Gelsemium sempervirens: Recent advances and debated issues.

    PubMed

    Bellavite, Paolo; Bonafini, Clara; Marzotto, Marta

    Gelsemium sempervirens L. (Gelsemium) is traditionally used for its anxiolytic-like properties and its action mechanism in laboratory models are under scrutiny. Evidence from rodent models was reported suggesting the existence of a high sensitivity of central nervous system to anxiolytic power of Gelsemium extracts and Homeopathic dilutions. In vitro investigation of extremely low doses of this plant extract showed a modulation of gene expression of human neurocytes. These studies were criticized in a few commentaries, generated a debate in literature and were followed by further experimental studies from various laboratories. Toxic doses of Gelsemium cause neurological signs characterized by marked weakness and convulsions, while ultra-low doses or high Homeopathic dilutions counteract seizures induced by lithium and pilocarpine, decrease anxiety after stress and increases the anti-stress allopregnanolone hormone, through glycine receptors. Low (non-Homeopathic) doses of this plant or its alkaloids decrease neuropathic pain and c-Fos expression in mice brain and oxidative stress. Due to the complexity of the matter, several aspects deserve interpretation and the main controversial topics, with a focus on the issues of high dilution pharmacology, are discussed and clarified. Copyright © 2017 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  20. The evaluation of a deformable diffraction grating for a stigmatic EUV spectroheliometer

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1987-01-01

    A high-efficiency, extreme ultraviolet (EUV) imaging spectrometer is constructed and tested. The spectrometer employs a concave toroidal grating illuminated at normal incidence in a Rowland circle mounting and has only one reflecting surface. The toroidal grating has been fabricated by a new technique employing an elastically-deformable sub-master grating replicated in a spherical form and then mechanically distorted to produce the desired aspect ratio of the toroidal surface for stigmatic imaging over the selected wavelength range. The fixed toroidal grating used in the spectrometer is then replicated from this surface. Photographic tests and initial photoelectric tests with a two-dimensional, pulse-counting detector system verify the image quality of the toroidal grating at wavelengths near 600 A. The results of these tests and the basic designs of two instruments which could employ the imaging spectrometer for astrophysical investigations in space are described; i.e., a high-resolution EUV spectroheliometer for studies of the solar chromosphere, transition region, and corona; and an EUV spectroscopic telescope for studies of non-solar objects.

  1. Erosion and sediment yields in the Transverse Ranges, Southern California

    USGS Publications Warehouse

    Scott, Kevin M.; Williams, Rhea P.

    1978-01-01

    Major-storm and long-term erosion rates in mountain watersheds of the western Transverse Ranges of Ventura County, Calif., are estimated to range from low values that would not require the construction of catchments or channel-stabilization structures to values as high as those recorded anywhere for comparable bedrock erodibilities. A major reason for this extreme variability is the high degree of tectonic activity in the area--watersheds are locally being uplifted by at least as much as 25 feet per 1,000 years, yet the maximum extrapolated rate of denudation measured over the longest available period of record is 7.5 feet per 1,000 years adjusted to a drainage area of 0.5 square mile. Evidence of large amounts of uplift continuing into historic time includes structurally overturned strata of Pleistocene age, active thrust faulting, demonstrable stream antecedence, uplifted and deformed terraces, and other results of base-level change seen in stream channels. Such evidence is widespread in the Transverse Ranges, and aspects of the landscape are locally more a function of tectonic activity than of the denudational process. (Woodard-USGS)

  2. Rheology and fluid mechanics of a hyper-concentrated biomass suspension

    NASA Astrophysics Data System (ADS)

    Botto, Lorenzo; Xu, Xiao

    2013-11-01

    The production of bioethanol from biomass material originating from energy crops requires mixing of highly concentrated suspensions, which are composed of millimetre-sized lignocellulosic fibers. In these applications, the solid concentration is typically extremely high. Owing to the large particle porosity, for a solid mass concentration slightly larger than 10%, the dispersed solid phase can fill the available space almost completely. To extract input parameters for simulations, we have carried out rheological measurements of a lignocellulosic suspension of Miscanthus, a fast-growing plant, for particle concentrations close to maximum random packing. We find that in this regime the rheometric curves exhibit features similar to those observed in model ``gravitational suspensions,'' including viscoplastic behaviour, strong shear-banding, non-continuum effects, and a marked influence of the particle weight. In the talk, these aspects will be examined in some detail, and differences between Miscanthus and corn stover, currently the most industrially relevant biomass substrate, briefly discussed. We will also comment on values of the Reynolds and Oldroyd numbers found in biofuel applications, and the flow patterns expected for these parameter values.

  3. High Luminosity LHC: Challenges and plans

    DOE PAGES

    Arduini, G.; Barranco, J.; Bertarelli, A.; ...

    2016-12-28

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will undergo a major upgrade in the 2020s. This will increase its rate of collisions by a factor of five beyond the original design value and the integrated luminosity by a factor ten. The new configuration, known as High Luminosity LHC (HL-LHC), willmore » rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11–12 T superconducting magnets, including Nb 3Sn-based magnets never used in accelerators before, compact superconducting cavities for longitudinal beam rotation, new technology and physical processes for beam collimation. As a result, the dynamics of the HL-LHC beams will be also particularly challenging and this aspect is the main focus of this paper.« less

  4. Quasi-model free control for the post-capture operation of a non-cooperative target

    NASA Astrophysics Data System (ADS)

    She, Yuchen; Sun, Jun; Li, Shuang; Li, Wendan; Song, Ting

    2018-06-01

    This paper investigates a quasi-model free control (QMFC) approach for the post-capture control of a non-cooperative space object. The innovation of this paper lies in the following three aspects, which correspond to the three challenges presented in the mission scenario. First, an excitation-response mapping search strategy is developed based on the linearization of the system in terms of a set of parameters, which is efficient in handling the combined spacecraft with a high coupling effect on the inertia matrix. Second, a virtual coordinate system is proposed to efficiently compute the center of mass (COM) of the combined system, which improves the COM tracking efficiency for time-varying COM positions. Third, a linear online corrector is built to reduce the control error to further improve the control accuracy, which helps control the tracking mode within the combined system's time-varying inertia matrix. Finally, simulation analyses show that the proposed control framework is able to realize combined spacecraft post-capture control in extremely unfavorable conditions with high control accuracy.

  5. Global control of tuberculosis: from extensively drug-resistant to untreatable tuberculosis

    PubMed Central

    Dheda, Keertan; Gumbo, Tawanda; Gandhi, Neel R; Murray, Megan; Theron, Grant; Udwadia, Zarir; Migliori, G B; Warren, Robin

    2017-01-01

    Extensively drug-resistant tuberculosis is a burgeoning global health crisis mainly affecting economically active young adults, and has high mortality irrespective of HIV status. In some countries such as South Africa, drug-resistant tuberculosis represents less than 3% of all cases but consumes more than a third of the total national budget for tuberculosis, which is unsustainable and threatens to destabilise national tuberculosis programmes. However, concern about drug-resistant tuberculosis has been eclipsed by that of totally and extremely drug-resistant tuberculosis—ie, resistance to all or nearly all conventional first-line and second-line antituberculosis drugs. In this Review, we discuss the epidemiology, pathogenesis, diagnosis, management, implications for health-care workers, and ethical and medicolegal aspects of extensively drug-resistant tuberculosis and other resistant strains. Finally, we discuss the emerging problem of functionally untreatable tuberculosis, and the issues and challenges that it poses to public health and clinical practice. The emergence and growth of highly resistant strains of tuberculosis make the development of new drugs and rapid diagnostics for tuberculosis—and increased funding to strengthen global control efforts, research, and advocacy—even more pressing. PMID:24717628

  6. Methods in Elastic Tissue Biology: Elastin Isolation and Purification

    PubMed Central

    Mecham, Robert P.

    2008-01-01

    Elastin provides recoil to tissues subjected to repeated stretch, such as blood vessels and the lung. It is encoded by a single gene in mammals and is secreted as a 60–70 kDa monomer call tropoelastin. The functional form of the protein is that of a large, highly crosslinked polymer that organizes as sheets or fibers in the extracellular matrix. Purification of mature, crosslinked elastin is problematic because its insolubility precludes its isolation using standard wet-chemistry techniques. Instead, relatively harsh experimental approaches designed to remove non-elastin ‘contaminates’ are employed to generate an insoluble product that has the amino acid composition expected of elastin. Although soluble, tropoelastin also presents problems for isolation and purification. The protein’s extreme stickiness and susceptibility to proteolysis requires careful attention during purification and in tropoelastin-based assays. This article describes the most common approaches for purification of insoluble elastin and tropoelastin. It also addresses key aspects of studying tropoelastin production in cultured cells, where elastin expression is highly dependent upon cell type, culture conditions, and passage number. PMID:18442703

  7. Confined high-pressure chemical deposition of hydrogenated amorphous silicon.

    PubMed

    Baril, Neil F; He, Rongrui; Day, Todd D; Sparks, Justin R; Keshavarzi, Banafsheh; Krishnamurthi, Mahesh; Borhan, Ali; Gopalan, Venkatraman; Peacock, Anna C; Healy, Noel; Sazio, Pier J A; Badding, John V

    2012-01-11

    Hydrogenated amorphous silicon (a-Si:H) is one of the most technologically important semiconductors. The challenge in producing it from SiH(4) precursor is to overcome a significant kinetic barrier to decomposition at a low enough temperature to allow for hydrogen incorporation into a deposited film. The use of high precursor concentrations is one possible means to increase reaction rates at low enough temperatures, but in conventional reactors such an approach produces large numbers of homogeneously nucleated particles in the gas phase, rather than the desired heterogeneous deposition on a surface. We report that deposition in confined micro-/nanoreactors overcomes this difficulty, allowing for the use of silane concentrations many orders of magnitude higher than conventionally employed while still realizing well-developed films. a-Si:H micro-/nanowires can be deposited in this way in extreme aspect ratio, small-diameter optical fiber capillary templates. The semiconductor materials deposited have ~0.5 atom% hydrogen with passivated dangling bonds and good electronic properties. They should be suitable for a wide range of photonic and electronic applications such as nonlinear optical fibers and solar cells. © 2011 American Chemical Society

  8. Low cost split stirling cryogenic cooler for aerospace applications

    NASA Astrophysics Data System (ADS)

    Veprik, Alexander; Zechtzer, Semeon; Pundak, Nachman; Riabzev, Sergey; Kirckconnel, C.; Freeman, Jeremy

    2012-06-01

    Cryogenic coolers are used in association with sensitive electronics and sensors for military, commercial or scientific space payloads. The general requirements are high reliability and power efficiency, low vibration export and ability to survive launch vibration extremes and long-term exposure to space radiation. A long standing paradigm of using exclusively space heritage derivatives of legendary "Oxford" cryocoolers featuring linear actuators, flexural bearings, contactless seals and active vibration cancellation is so far the best known practice aiming at delivering high reliability components for the critical and usually expensive space missions. The recent tendency of developing mini and micro satellites for the budget constrained missions has spurred attempts to adapt leading-edge tactical cryogenic coolers to meet the space requirements. The authors are disclosing theoretical and practical aspects of a collaborative effort on developing a space qualified cryogenic refrigerator based on the Ricor model K527 tactical cooler and Iris Technology radiation hardened, low cost cryocooler electronics. The initially targeted applications are cost-sensitive flight experiments, but should the results show promise, some long-life "traditional" cryocooler missions may well be satisfied by this approach.

  9. Remote refilling of LN2 cryostats for high sensitivity astronomical applications

    NASA Astrophysics Data System (ADS)

    l'Allemand, J. L. Lizon a.

    2017-12-01

    The most sensitive observation mode of the ESO VLT (European Southern Observatory Very Large Telescope) is the interferometric mode, where the 4 Units Telescopes are directed to the same stellar object in order to operate as a gigantic interferometer. The beam is then re-combined in the main interferometry laboratory and fed into the analyzing instruments. In order not to disturb the performance of the Interferometer, this room is considered as a sanctuary where one enters only in case of extreme need. A simple opening of the door would create air turbulences affecting the stability for hours. Any cold spot in the room could also cause convection which might change the optical path by fraction of a micron. Most of the instruments are operating at cryogenic temperatures using passive cooling based on LN2 bath cryostat. For this reason, dedicated strategy has been developed for the transfer of LN2 to the various instruments. The present document describes the various aspects and care taken in order to guarantee the very high thermal and mechanical environmental stability.

  10. Evaluation of Clipping Based Iterative PAPR Reduction Techniques for FBMC Systems

    PubMed Central

    Kollár, Zsolt

    2014-01-01

    This paper investigates filter bankmulticarrier (FBMC), a multicarrier modulation technique exhibiting an extremely low adjacent channel leakage ratio (ACLR) compared to conventional orthogonal frequency division multiplexing (OFDM) technique. The low ACLR of the transmitted FBMC signal makes it especially favorable in cognitive radio applications, where strict requirements are posed on out-of-band radiation. Large dynamic range resulting in high peak-to-average power ratio (PAPR) is characteristic of all sorts of multicarrier signals. The advantageous spectral properties of the high-PAPR FBMC signal are significantly degraded if nonlinearities are present in the transceiver chain. Spectral regrowth may appear, causing harmful interference in the neighboring frequency bands. This paper presents novel clipping based PAPR reduction techniques, evaluated and compared by simulations and measurements, with an emphasis on spectral aspects. The paper gives an overall comparison of PAPR reduction techniques, focusing on the reduction of the dynamic range of FBMC signals without increasing out-of-band radiation. An overview is presented on transmitter oriented techniques employing baseband clipping, which can maintain the system performance with a desired bit error rate (BER). PMID:24558338

  11. High-aspect-ratio and high-flatness Cu3(SiGe) nanoplatelets prepared by chemical vapor deposition.

    PubMed

    Klementová, Mariana; Palatinus, Lukás; Novotný, Filip; Fajgar, Radek; Subrt, Jan; Drínek, Vladislav

    2013-06-01

    Cu3(SiGe) nanoplatelets were synthesized by low-pressure chemical vapor deposition of a SiH3C2H5/Ge2(CH3)6 mixture on a Cu-substrate at 500 degrees C, total pressure of 110-115 Pa, and Ge/Si molar ratio of 22. The nanoplatelets with composition Cu76Si15Ge12 are formed by the 4'-phase, and they are flattened perpendicular to the [001] direction. Their lateral dimensions reach several tens of micrometers in size, but they are only about 50 nm thick. Their surface is extremely flat, with measured root mean square roughness R(q) below 0.2 nm. The nanoplatelets grow via the non-catalytic vapor-solid mechanism and surface growth. In addition, nanowires and nanorods of various Cu-Si-Ge alloys were also obtained depending on the experimental conditions. Morphology of the resulting Cu-Si-Ge nanoobjects is very sensitive to the experimental parameters. The formation of nanoplatelets is associated with increased amount of Ge in the alloy.

  12. Flow-induced gelation of microfiber suspensions.

    PubMed

    Perazzo, Antonio; Nunes, Janine K; Guido, Stefano; Stone, Howard A

    2017-10-10

    The flow behavior of fiber suspensions has been studied extensively, especially in the limit of dilute concentrations and rigid fibers; at the other extreme, however, where the suspensions are concentrated and the fibers are highly flexible, much less is understood about the flow properties. We use a microfluidic method to produce uniform concentrated suspensions of high aspect ratio, flexible microfibers, and we demonstrate the shear thickening and gelling behavior of such microfiber suspensions, which, to the best of our knowledge, has not been reported previously. By rheological means, we show that flowing the suspension triggers the irreversible formation of topological entanglements of the fibers resulting in an entangled water-filled network. This phenomenon suggests that flexible fiber suspensions can be exploited to produce a new family of flow-induced gelled materials, such as porous hydrogels. A significant consequence of these flow properties is that the microfiber suspension is injectable through a needle, from which it can be extruded directly as a hydrogel without any chemical reactions or further treatments. Additionally, we show that this fiber hydrogel is a soft, viscoelastic, yield-stress material.

  13. About climate variabilitiy leading the hydric condition of the soil in the rainfed region of Argentina

    NASA Astrophysics Data System (ADS)

    Pántano, V. C.; Penalba, O. C.

    2013-05-01

    Extreme events of temperature and rainfall have a socio-economic impact in the rainfed agriculture production region in Argentina. The magnitude of the impact can be analyzed through the water balance which integrates the characteristics of the soil and climate conditions. Changes observed in climate variables during the last decades affected the components of the water balance. As a result, a displacement of the agriculture border towards the west was produced, improving the agricultural production of the region. The objective of this work is to analyze how the variability of rainfall and temperature leads the hydric condition of the soil, with special focus on extreme events. The hydric conditions of the soil (HC= Excess- Deficit) were estimated from the monthly water balance (Thornthwaite and Mather method, 1957), using monthly potential evapotranspiration (PET) and monthly accumulated rainfall (R) for 33 stations (period 1970-2006). Information of temperature and rainfall was provided by National Weather Service and the effective capacity of soil water was considered from Forte Lay and Spescha (2001). An agricultural extreme condition occurs when soil moisture and rainfall are inadequate or excessive for the development of the crops. In this study, we define an extreme event when the variable is less (greater) than its 20% and 10% (80% and 90%) percentile. In order to evaluate how sensitive is the HC to water and heat stress in the region, different conditional probabilities were evaluated. There is a weaker response of HC to extreme low PET while extreme low R leads high values of HC. However, this behavior is not always observed, especially in the western region where extreme high and low PET show a stronger influence over the HC. Finally, to analyze the temporal variability of extreme PET and R, leading hydric condition of the soil, the number of stations presenting extreme conditions was computed for each month. As an example, interesting results were observed for April. During this month, the water recharge of the soil is crucial to let the winter crops manage with the scarce rainfalls occurring in the following months. In 1970, 1974, 1977, 1978 and 1997 more than 50% of the stations were under extreme high PET; while 1970, 1974, 1978 and 1988 presented more than 40% under extreme low R. Thus, the 70s was the more threatened decade of the period. Since the 80s (except for 1997), extreme dry events due to one variable or the other are mostly presented separately, over smaller areas. The response of the spatial distribution of HC is stronger when both variables present extreme conditions. In particular, during 1997 the region presents extreme low values of HC as a consequence of extreme low R and high PET. Communities dependent on agriculture are highly sensitive to climate variability and its extremes. In the studied region, it was shown that scarce water and heat stress contribute to the resulting hydric condition, producing strong impact over different productive activities. Extreme temperature seems to have a stronger influence over extreme unfavorable hydric conditions.

  14. Effect of Roy's Adaptation Model-Guided Education on Coping Strategies of the Veterans with Lower Extremities Amputation: A Double-Blind Randomized Controlled Clinical Trial.

    PubMed

    Farsi, Zahra; Azarmi, Somayeh

    2016-04-01

    Any defect in the extremities of the body can affect different life aspects. The purpose of this study was to investigate the effect of Roy's adaptation model-guided education on coping strategies of the veterans with lower extremities amputation. In a double-blind randomized controlled clinical trial, 60 veterans with lower extremities amputation referring to Kowsar Orthotics and Prosthetics Center of Veterans Clinic in Tehran, Iran were recruited using convenience method and randomly assigned to intervention and control groups in 2013-2014. Lazarus and Folkman coping strategies questionnaire was used to collect the data. After completing the questionnaires in both groups, maladaptive behaviours were determined in the intervention group and an education program based on Roy's adaptation model was implemented. After 2 months, both groups completed the questionnaires again. Data were analyzed using SPSS software. Independent T-test showed that the score of the dimensions of coping strategies did not have a statistically significant difference between the intervention and control groups in the pre-intervention stage (P>0.05). This test showed a statistically significant difference between the two groups in the post-intervention stage in terms of the scores of different dimensions of coping strategies (P>0.05), except in dimensions of social support seeking and positive appraisal (P>0.05). The findings of this research indicated that the Roy's adaptation model-guided education improved the majority of coping strategies in veterans with lower extremities amputation. It is recommended that further interventions based on Roy's adaptation model should be performed to improve the coping of the veterans with lower extremities amputation. IRCT2014081118763N1.

  15. Interactions of Mean Climate Change and Climate Variability on Food Security Extremes

    NASA Technical Reports Server (NTRS)

    Ruane, Alexander C.; McDermid, Sonali; Mavromatis, Theodoros; Hudson, Nicholas; Morales, Monica; Simmons, John; Prabodha, Agalawatte; Ahmad, Ashfaq; Ahmad, Shakeel; Ahuja, Laj R.

    2015-01-01

    Recognizing that climate change will affect agricultural systems both through mean changes and through shifts in climate variability and associated extreme events, we present preliminary analyses of climate impacts from a network of 1137 crop modeling sites contributed to the AgMIP Coordinated Climate-Crop Modeling Project (C3MP). At each site sensitivity tests were run according to a common protocol, which enables the fitting of crop model emulators across a range of carbon dioxide, temperature, and water (CTW) changes. C3MP can elucidate several aspects of these changes and quantify crop responses across a wide diversity of farming systems. Here we test the hypothesis that climate change and variability interact in three main ways. First, mean climate changes can affect yields across an entire time period. Second, extreme events (when they do occur) may be more sensitive to climate changes than a year with normal climate. Third, mean climate changes can alter the likelihood of climate extremes, leading to more frequent seasons with anomalies outside of the expected conditions for which management was designed. In this way, shifts in climate variability can result in an increase or reduction of mean yield, as extreme climate events tend to have lower yield than years with normal climate.C3MP maize simulations across 126 farms reveal a clear indication and quantification (as response functions) of mean climate impacts on mean yield and clearly show that mean climate changes will directly affect the variability of yield. Yield reductions from increased climate variability are not as clear as crop models tend to be less sensitive to dangers on the cool and wet extremes of climate variability, likely underestimating losses from water-logging, floods, and frosts.

  16. Cyclones and extreme windstorm events over Europe under climate change: Global and regional climate model diagnostics

    NASA Astrophysics Data System (ADS)

    Leckebusch, G. C.; Ulbrich, U.

    2003-04-01

    More than any changes of the climate system mean state conditions, the development of extreme events may influence social, economic and legal aspects of our society. This linkage results from the impact of extreme climate events (natural hazards) on environmental systems which again are directly linked to human activities. Prominent examples from the recent past are the record breaking rainfall amounts of August 2002 in central Europe which produced widespread floodings or the wind storm Lothar of December 1999. Within the MICE (Modelling the Impact of Climate Extremes) project framework an assessment of the impact of changes in extremes will be done. The investigation is carried out for several different impact categories as agriculture, energy use and property damage. Focus is laid on the diagnostics of GCM and RCM simulations under different climate change scenarios. In this study we concentrate on extreme windstorms and their relationship to cyclone activity in the global HADCM3 as well as in the regional HADRM3 model under two climate change scenarios (SRESA2a, B2a). In order to identify cyclones we used an objective algorithm from Murry and Simmonds which was widely tested under several different conditions. A slight increase in the occurrence of systems is identified above northern parts of central Europe for both scenarios. For more severe systems (core pressure < 990 hPa) we find an increase for western Europe. Strong wind events can be defined via different percentile values of the windspeed (e.g. above the 95 percentile). By this means the relationship between strong wind events and cyclones is also investigated. For several regions (e.g. Germany, France, Spain) a shift to more deep cyclones connected with an increasing number of strong wind events is found.

  17. Projected regional changes in the characteristics of dry and moist heat waves in the United States derived from downscaled CMIP5 models

    NASA Astrophysics Data System (ADS)

    Schoof, J. T.

    2017-12-01

    Extreme temperatures affect society in multiple ways, but the impacts are often different depending on the concurrent humidity. For example, the greatest impacts on human morbidity and mortality result when the temperature and humidity are both elevated. Conversely, high temperatures coupled with low humidity often lead to agricultural impacts resulting in lower yields. Despite the importance of humidity in determining heat wave impacts, relatively few students of future temperature extremes have also considered possible changes in humidity. In a recent study, we investigated recent historical changes in the frequency and intensity and low humidity and high humidity extreme temperature events using a framework based on isobaric equivalent temperature. Here, we extend this approach to climate projections from CMIP5 models to explore possible regional changes in extreme heat characteristics. After using quantile mapping to bias correct and downscale the CMIP5 model outputs, we analyze results from two future periods (2031-2055 and 2061-2085) and two representative concentration pathways, RCP 4.5 and RCP 8.5, corresponding to moderate and high levels of radiative forcing from greenhouse gases. For each of seven US regions, we consider changes in extreme temperature frequency, changes in the proportion of extreme temperature days characterized by high humidity, and changes in the magnitude of temperature and humidity on extreme temperature days.

  18. The critical role of uncertainty in projections of hydrological extremes

    NASA Astrophysics Data System (ADS)

    Meresa, Hadush K.; Romanowicz, Renata J.

    2017-08-01

    This paper aims to quantify the uncertainty in projections of future hydrological extremes in the Biala Tarnowska River at Koszyce gauging station, south Poland. The approach followed is based on several climate projections obtained from the EURO-CORDEX initiative, raw and bias-corrected realizations of catchment precipitation, and flow simulations derived using multiple hydrological model parameter sets. The projections cover the 21st century. Three sources of uncertainty are considered: one related to climate projection ensemble spread, the second related to the uncertainty in hydrological model parameters and the third related to the error in fitting theoretical distribution models to annual extreme flow series. The uncertainty of projected extreme indices related to hydrological model parameters was conditioned on flow observations from the reference period using the generalized likelihood uncertainty estimation (GLUE) approach, with separate criteria for high- and low-flow extremes. Extreme (low and high) flow quantiles were estimated using the generalized extreme value (GEV) distribution at different return periods and were based on two different lengths of the flow time series. A sensitivity analysis based on the analysis of variance (ANOVA) shows that the uncertainty introduced by the hydrological model parameters can be larger than the climate model variability and the distribution fit uncertainty for the low-flow extremes whilst for the high-flow extremes higher uncertainty is observed from climate models than from hydrological parameter and distribution fit uncertainties. This implies that ignoring one of the three uncertainty sources may cause great risk to future hydrological extreme adaptations and water resource planning and management.

  19. Regional-Scale High-Latitude Extreme Geoelectric Fields Pertaining to Geomagnetically Induced Currents

    NASA Technical Reports Server (NTRS)

    Pulkkinen, Antti; Bernabeu, Emanuel; Eichner, Jan; Viljanen, Ari; Ngwira, Chigomezyo

    2015-01-01

    Motivated by the needs of the high-voltage power transmission industry, we use data from the high-latitude IMAGE magnetometer array to study characteristics of extreme geoelectric fields at regional scales. We use 10-s resolution data for years 1993-2013, and the fields are characterized using average horizontal geoelectric field amplitudes taken over station groups that span about 500-km distance. We show that geoelectric field structures associated with localized extremes at single stations can be greatly different from structures associated with regionally uniform geoelectric fields, which are well represented by spatial averages over single stations. Visual extrapolation and rigorous extreme value analysis of spatially averaged fields indicate that the expected range for 1-in-100-year extreme events are 3-8 V/km and 3.4-7.1 V/km, respectively. The Quebec reference ground model is used in the calculations.

  20. Plexcitons: The Role of Oscillator Strengths and Spectral Widths in Determining Strong Coupling.

    PubMed

    Thomas, Reshmi; Thomas, Anoop; Pullanchery, Saranya; Joseph, Linta; Somasundaran, Sanoop Mambully; Swathi, Rotti Srinivasamurthy; Gray, Stephen K; Thomas, K George

    2018-01-23

    Strong coupling interactions between plasmon and exciton-based excitations have been proposed to be useful in the design of optoelectronic systems. However, the role of various optical parameters dictating the plasmon-exciton (plexciton) interactions is less understood. Herein, we propose an inequality for achieving strong coupling between plasmons and excitons through appropriate variation of their oscillator strengths and spectral widths. These aspects are found to be consistent with experiments on two sets of free-standing plexcitonic systems obtained by (i) linking fluorescein isothiocyanate on Ag nanoparticles of varying sizes through silane coupling and (ii) electrostatic binding of cyanine dyes on polystyrenesulfonate-coated Au nanorods of varying aspect ratios. Being covalently linked on Ag nanoparticles, fluorescein isothiocyanate remains in monomeric state, and its high oscillator strength and narrow spectral width enable us to approach the strong coupling limit. In contrast, in the presence of polystyrenesulfonate, monomeric forms of cyanine dyes exist in equilibrium with their aggregates: Coupling is not observed for monomers and H-aggregates whose optical parameters are unfavorable. The large aggregation number, narrow spectral width, and extremely high oscillator strength of J-aggregates of cyanines permit effective delocalization of excitons along the linear assembly of chromophores, which in turn leads to efficient coupling with the plasmons. Further, the results obtained from experiments and theoretical models are jointly employed to describe the plexcitonic states, estimate the coupling strengths, and rationalize the dispersion curves. The experimental results and the theoretical analysis presented here portray a way forward to the rational design of plexcitonic systems attaining the strong coupling limits.

Top